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Abstract

Increasing demand for HPC applications has resulted in large clusters with thousands
of nodes that can suffer from various types of failures which are even expected to
increase in future systems. Hence resilience must be taken into account while running
such large applications. In this thesis we focus on soft errors which can corrupt the state
of an SWE application without raising an error. We introduce and analyse different
methods that can provide soft error resilience. While our first method can only provide
soft error detection using hash-value comparison of the results, our second and third
methods can additionally provide recovery within the application. Their recovery
and detection mechanisms utilize process replication and admissibility validation of
the results. We analyze the soft error outcomes of our methods in various situations
using bit-flip injections, and discuss their advantages and drawbacks. We have found
out that our second method which employs task sharing is the most efficient one in
terms of performance. However our third method which depends on independent
redundant computation can additionally correct some errors that otherwise would only
be detectable using the other methods.
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1 Introduction

Today, the increasing demand for high-performance computing (HPC) has resulted
in large computer clusters with thousands of nodes which are designed to run large
parallel jobs. As the number of system components such as CPU and memory increase,
the mean time between failures (MTBF) will decrease, and the future systems will be
more exposed to hardware errors than today [22, 20]. The exact cause of the failures
can vary depending on the structure and the environment of the system, and their
consequences can be fatal. In this thesis we focus on transient (soft) errors that may
result in silent data corruptions (SDCs). SDCs materialize themselves as bit-flips that
can be induced by particles such as neutrons from cosmic radiation or alpha particles
emitted from packaging material [2]. The consequences can be crash, infinite loop, or
undetected incorrect results. Studies have showed that simple Error Correction Codes
(ECC) mechanisms cannot correct a large amount of DRAM errors [12], and SRAM soft
error rates keep growing as memory chips become larger [15]. Therefore mechanisms
for error resilience are needed especially for the applications that run in large computer
clusters. Replication or Checkpoint/Restart (CR) procedures are the most well-known
approaches for failure tolerance against physical (hard) errors such as process failures
[10].

CR however cannot be used alone for soft error resilience if SDCs remain undetectable.
We thus construct and analyze three different replication-based methods for soft error
resilience in SWE applications that utilizes TeaMPI library in this thesis. In the next
section we briefly look at other related works, in section 3 we give an overview of the
fault-tolerance in HPC and give some background information about the tools and
software that are used in our implementations. Later in section 4 we introduce our soft
error resilient methods including their implementation decisions and the fault-tolerance
they provide. We then evaluate our methods, compare their soft error outcome rates
and performances, and discuss their advantages and drawbacks in section 5. Then in
section 6 we give an outlook on the future work that can be done, and finally in section
7 we summarize our findings.
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2 Related Work

2.1 RedMPI

RedMPI library [8] provides the capability of soft error resilience for MPI applications
by comparing the communicated messages of replicated MPI processes. It uses the MPI
profiling layer to intercept the MPI calls and makes the replicated process executions
transparent to the application. The comparison is optimized by not comparing the full
message contents, but only comparing their hash values on the receiver side. In double
redundant mode RedMPI makes sure it can detect faulty messages because the replicas
are run in a deterministic manner. Additionally in triple redundant mode a voting
algorithm can be used to even correct faulty results. RedMPI assumes that an SDC
that is not immediately communicated over MPI should eventually be detected as the
corrupted memory may be operated on and finally be transmitted. It is important to
note that RedMPI does not provide resilience for transmission errors. Results show that
even under extreme scenarios RedMPI can prevent SDCs from propagating without
being detected.

2.2 Soft Error Detection and Automatic Recovery

A recent study [13] has proposed a soft error resilience solution that combines repli-
cation and CR in order to recover from failures. The first feature it has, is SDC
detection by employing thread-level replication. The second feature is recovery with
double redundant mode by using either multiple system-level checkpoints or a single
application-level checkpoint. Multiple checkpoints can be written in different time
intervals to make a safe rollback possible in case there is no guarantee of a checkpoint
to be consistent. For example if the latest checkpoint has already been corrupted by
a previously occurred SDC, a prior checkpoint must be loaded. However this feature
comes with the overhead of storing multiple checkpoints, and this still cannot guarantee
the validity of the prior checkpoints. As an alternative a single safe application-level
checkpoint can be written. Each thread calculates the hash value of its own checkpoint
and compares it with its replica. If the checkpoints match, the prior checkpoint can be
discarded. If not, then a rollback to the prior safe checkpoint has to be made.
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3 Background

3.1 Message Passing Interface

The Message-Passing Interface (MPI) is a message-passing library interface specification
that describes a parallel programming model. The model focuses on communication
between processes with different address spaces through cooperative operations on
each process. MPI is mainly used in distributed memory communication environments
such as large clusters that are used in HPC. It is being developed since 1992, and at the
time of writing the latest official version is MPI-4.0 [14].

MPI is not an implementation itself but a specification. It only contains MPI op-
erations that are expressed as functions, subroutines, or methods. One of the most
well-known implementations of MPI, Open MPI [9], is used in this thesis and as a
consequence all the examples and provided source codes will be based on Open MPI.

3.2 Fault Tolerance Techniques in HPC

The rate and root cause of a failure in a machine can depend on its size, structure, and
the intensity/type of the workload running on it [20]. In this thesis we focus on the
failures of following types:

• Hard Error : Failures that cause a process to fail and stop execution.

• Soft Error : Failures that do not cause a permanent failure.

Unlike the hard errors, soft errors may remain "silent" and not be detected until the
program’s output is observed. They are triggered by a subatomic event, where energetic
particles such as neutrons from cosmic rays or alpha particles that are emitted from
packaging material hit the silicon device and cause a sufficient charge to get deposited
around a transistor that inverts the state of a logic device such as an SRAM cell, latch
or a gate [15].

Soft errors can cause an SDC if the faulty bit has no error protection and it affects
the outcome of the program. Some examples of SDCs are [22]: undetected arithmetic
computation error, undetected control error that results in a premature termination
of an iterative loop, incorrect memory or network transfers that were not detected by
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3 Background

the error protection mechanisms. Soft errors may eventually be detected in later cycles
depending on their impact on the application, however they may also affect the results
of an application but never raise an alert.

Hard and soft error rates are expected to increase in future systems and therefore lots
of research has been done in the past years towards better failure mitigation techniques.
In the following we look into two main fault-tolerance techniques in HPC.

3.2.1 Checkpoint/Restart

One of the most well-known techniques in HPC is the application level CR, where the
state of an application is stored in a safe place (e.g. hard disk) to prevent any loss
of useful work caused by failures. CR allows the application to be restarted at any
time from its stored state, and it is widely used for hard error tolerance [22]. However
using CR for soft error tolerance is not very effective since the stored checkpoint could
include an SDC which would disable the restart mechanism.

One limitation of CR is that the overhead of saving a checkpoint increases with the
number of cores [22]. A study shows that only 35% of the work is spent on actual
computation for a 168 hour job on 100k nodes with a MTBF of 5 years while the
remainder is spent on CR [7].

3.2.2 Replication

Replication in HPC means the duplication of the same application or task by a process
or thread. As the overhead of CR increases with the increasing core count, replication
can be a better alternative in large-scale systems where a replica can take over the
execution of a failed process. For example the protocol rMPI provides dual-execution of
MPI applications that can provide hard error resilience, and it can actually be cheaper
than CR at large core counts where CR overhead exceeds 50% [7]. Redundancy can
also be combined with CR using partial process replication and CR in non-replicated
processes to allow a trade-off between additional resources and wall-clock time that
can be tuned depending on the application and available resources [6].

Another major advantage of replication against CR is that it can provide soft error
resilience. One example implementation is RedMPI which uses process replication to
compare the outcomes of the replicated processes [8]. It optimizes the comparison by
not sharing the full content but just comparing the hashes of the outcomes at the receiver
side. Results show that it can provide soft error resilience even on systems with a high
failure rate, and therefore can potentially be used on future systems. Unfortunately
replication needs to be at least tripled to provide correction by employing a voting
mechanism. To avoid triple redundancy CR can be added to replication to save a
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3 Background

chain of system-level checkpoints that ensure recovery [13]. After an error detection,
if the latest checkpoint has already been corrupted, a prior checkpoint must be used.
This solution however has the overhead of storing multiple checkpoints which is not
expected to be the best solution for recovery in future systems. Instead, the study
[13] states that a single safe checkpoint can be written as the last stored checkpoint to
reduce multi-checkpoint overhead. Replicas can validate the checkpoints by comparing
their hash values and make the recovery from an SDC possible while only utilizing
double redundancy – one replica per process.

One major disadvantage of replication is losing at least half of the available com-
putation power. Team-based resilience using task sharing with TeaMPI can reduce
this redundancy overhead [19]. It shuffles the task execution order among the repli-
cated ranks that allows replicas to save some redundant computation. On the other
hand without redundant computation providing soft error resilience becomes more
challenging since e.g. we cannot utilize task validation using hashes.

3.3 User Level Failure Mitigation

One important feature that the current MPI version lacks is failure tolerance in terms
of recovering from component failures such as corrupted transmission over a faulty
network interface or process failures due to a process or node failure. MPI-4.0 addresses
this as: "MPI does not provide mechanisms for dealing with transmission failures in the
communication system [..] MPI itself provides no mechanisms for handling MPI process
failures, that is, when an MPI process unexpectedly and permanently stops communicating
(e.g., a soft-ware or hardware crash results in an MPI process terminating unexpectedly)."
[14]. The User Level Failure Mitigation (ULFM) [3] was proposed as an extension in
order to integrate fault tolerance into MPI. ULFM provides different error codes such
as MPI_PROC_FAILED that can be returned to notify the application about a possible
process failure. The error codes then can be used to handle process failures within the
application.

3.4 SWE

We have tested all of our techniques that we present in section 4 in SWE which is a
flexible simulation software that was developed for teaching parallel programming. It
implements simple Finite Volume models that solve two-dimensional shallow water
equations. We will consider the approach described in equation 3.1, where we formulate
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3 Background

the changes from one simulation-time to the next.

Qn+1
i,j = Qn

i,j −
∆t
∆x

(A+∆Qi−1/2,j +A−∆Qn
i+1/2,j)

− ∆t
∆y

(B+∆Qi,j−1/2 + B−∆Qn
i,j+1/2)

(3.1)

The term Qn
i,j = [hi,j, (hu)i,j, (hv)i,j] is the vector of conserved quantities: water height

(h), horizontal (hu) and vertical (hv) momentum at simulation-time tn ∈ R+
0 , ∆t is the

length of the time step between the simulation-times, ∆x and ∆y are the size of the
grid cells. The term A±∆Qi∓1/2,j accumulates the solution to the Riemann problems
on the left and right side, and B±∆Qn

i,j∓1/2 on the top and bottom side of the cell
(i, j) ∈ Ω ⊂ R2 [4].

The main purpose of SWE is to introduce students different parallel programming
models such as OpenMP, MPI, and CUDA. SWE can also be used to simulate tsunamis
and wave propagation in various domains.

Figure 3.1: Wave propagation in radialBathymetryDamBreak scenario. Black lines are the
boundaries of the divided domain for parallel processing. 4 MPI processes
were used for the simulation.

The software architecture of SWE is kept simple for educational purposes but it can
change a lot depending on the implementation and the methods being used. In the
following we cover the sub-partitions of the main computational domain in SWE: blocks.
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3 Background

3.4.1 Blocks in SWE

In SWE a single Cartesian grid block can be used to represent the computational
domain. We will use the MPI implementation of SWE and divide the computational
domain into multiple grid blocks which are then assigned to MPI processes for parallel
processing. At the end of the decomposition each grid block will represent a single task
that needs to be computed by a process. In SWE the blocks are typically derived from
a base abstract class SWE_Blocks, which contains:
• 2D arrays for the bathymetry (b), water height (h), horizontal water momentum

(hu) and vertical water momentum (hv). It is assumed that b stays constant during
the simulation and the variables h, hu and hv are updated by the classes derived
from SWE_Blocks.

• Virtual methods that define important components for the simulation to be
implemented by the derived blocks. Two main components that are important
for this thesis are computeNumericalFluxes() and updateUnknowns(). In our derived
block implementation we use the first method to compute the net-updates from
the arrays h,hu,hv and the maximum possible time step that we can update in our
simulation. We use the second method to actually update the arrays h,hu,hv with
the updates that were computed by the first method.

• Other information such as grid sizes, maximum possible time step etc.

Before running a simulation the user can typically specify the number of cells for
the simulation grid in horizontal (x) and vertical (y) directions and the total simulation
duration in simulated time. When using MPI the initialized simulation domain is
divided and assigned to the ranks, and the simulation begins. In figure 3.2 in the next
page we demonstrate a simple code structure along with its flow diagram in figure
3.3 where the main methods are executed and the simulation domain is updated. We
will refer to this loop as the computation-loop in further sections. In our example we
first exchange boundaries between the blocks. Then each rank can compute their tasks
and globally agree on an admissible time step size. After the agreement the ranks can
update their blocks’ arrays and their current simulation time. The computation-loop is
then iterated until the current simulation time reaches the simulation duration given by
the user.

An example output can be visualized using a visualization application like ParaView
[1]. Figure 3.1 in the previous page is an example visualization of a wave propagation
in a hard-coded scenario (RadialBathymetryDamBreak) simulated using four MPI ranks.
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3 Background

float t = 0.f;
/∗ Computation−loop ∗/
while ( t < simulationDuration ) {

/∗ Exchange boundaries between blocks ∗/
[...]
/∗ Compute the current net−updates ∗/
block.computeNumericalFluxes();

/∗ Agree on an admissible time step size ∗/
float local_maxTimestep = block.maxTimestep;
float agreed_maxTimestep;
MPI_Allreduce(&local_maxTimestep,

&agreed_maxTimestep, 1,
MPI_FLOAT, MPI_MIN,
MPI_COMM_WORLD);

block.maxTimestep = agreed_maxTimestep;

/∗ Update the arrays h,hu,hv ∗/
block.updateUnknowns(agreed_maxTimestep);

t += agreed_maxTimestep;

/∗ Output can be written here if desired ∗/
}

Figure 3.2: Basic SWE code structure with
MPI.

start

t < SDstop

boundary
exchange

solve

timestep
agreement

update

true

false

Figure 3.3: Basic SWE flow diagram with
MPI. [t=time, SD=Simulation
Duration]

3.5 TeaMPI

TeaMPI is a minimalist MPI wrapper implemented using the MPI Profiling Interface as a
C++ library [19]. It enables replication for MPI applications by dividing all the processes
into groups at the beginning of an application where each rank in a group has a replica
in the other groups. This requires the number of total processes and the number of
groups to be divisible with no remainder. Groups can be referred as teams which run
the same application redundantly. Each process is assigned to its team communicator
where the process can use the MPI world communicator (MPI_COMM_WORLD) as a
communicator that includes its own team only. This makes TeaMPI transparent to the
application, meaning that the application does not need to replicate any data structures
or to be aware of the replication. We use TeaMPI wrapper in our methods that we will
propose in section 4.
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3 Background

3.5.1 Heartbeats

Processes can exchange non-blocking messages between their replicas to identify any
failing ranks. We call those messages heartbeats. Exchange of a heartbeats is done
using inter-team communicators which contains all the replicas of a rank. Using the
heartbeats ranks can spot failing or slowing ranks including themselves. Even with
the inter-team communication TeaMPI requires no strict synchronization between the
teams unlike other replication models [8].

The messages in the heartbeats do not necessarily have to contain any data to
detect failing ranks. However the heartbeats can carry e.g. hash values of the results
computed redundantly by the replicated ranks. This can be used as an early SDC
detection mechanism that ensures data consistency.

3.5.2 Task Sharing

One of the concepts that can be used to reduce the overhead of replicated task compu-
tations is task sharing [19, 21]. A task can be defined as a combination of data which
we continuously update in our computations like the arrays h, hv and hu in SWE. The
main idea of task sharing is dividing the computation domain into multiple tasks that
can be assigned to different processes which then can share those tasks among other
replicated processes. This can only work if the tasks are shareable. We define a task as
shareable if [19]:

• the task has a unique id and it is assignable to a single process,

• the task does not depend on the results of other tasks in the task computation,

• the task’s results can be sent to other processes via MPI.

In addition to shareable tasks if the tasks require intensive calculations and their
computation time is greater than the MPI communication, then task sharing can
significantly reduce the overhead of redundant computations in replication. In order to
achieve this, the replicated processes in replication can skip their calculations and use
the shared tasks of their replicas. This can yet also make the application more sensitive
to soft errors. A possible SDC in a single rank can be spread to its replicas and corrupt
them as well.

3.5.3 ULFM Integration into TeaMPI

In his thesis Alexander Hölzl has integrated team recovery using ULFM (3.3) into
TeaMPI [11]. If a slowing rank or process failure is detected using the heartbeats, his
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3 Background

integration uses the features of ULFM to handle the failure. There are three strategies
to mitigate a hard failure:

1. KillTeam : kills the team if one of its ranks fails. Remaining teams can continue
their executions with a new inter-team communicator which does not include the
team that has been killed.

2. RespawnProc : spawns new ranks to replace the failed ones.

3. WarmSpare : uses warm spares: Spare ranks that are launched together with the
other ranks at the start of the application to replace the failed ones. Warm spares
are interrupted during TeaMPI initialization to wait for such a replacement.

In order to use this integration in an SWE setting, one should:

• first set the desired error-handling strategy,

• create a callback function that can create a checkpoint,

• create a callback function that can recover from a checkpoint,

• and periodically check for failures using the heartbeats provided by TeaMPI.

The error handler can call the callback functions only if a rank fails which can reduce
the total checkpointing time in the application. The major overhead of this reactive
recovery mechanism comes from the redundant replication of processes. His analytical
model showed that the redundant computation can become more efficient than CR
with higher costs of writing checkpoints, however his tests on SWE reported that CR is
faster than the reactive team recovery. In order to reduce the redundant computation
overhead he mentioned task sharing as a possible solution.

3.6 Hard Failure Tolerance with Task Sharing in SWE with
TeaMPI

Simon Schuck has integrated the mentioned task sharing candidate into the Hölzl’s
work in his thesis [21]. His task sharing mechanism is implemented between the
replicated processes in each team in order to reduce the replication overhead mentioned
in the previous section.
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3 Background

3.6.1 Task Sharing in SWE

In his method of task sharing Schuck first divides the domain in SWE into multiple
blocks like mentioned in section 3.4.1 and defines each block as a single task which
have the properties defined in section 3.5.2. After these blocks are assigned to the ranks,
each rank has to compute and share its results in every iteration. Since the method
requires task sharing between the replicated processes in each team and each replicated
process must have the same blocks, it is essential for the method that each rank has at
least one primary block which is computed and shared by the rank to all of its replicas,
and one secondary block per replica which the rank tries to receive from its replicas.
If a replica-rank that the rank tries to receive form runs into a failure, the failure is
detected by the tools provided by ULFM and the rank just computes the secondary
block by itself. The blocks are ordered using the algorithm in figure 3.4 below.

std::vector<int> myBlockOrder{};
/∗ Primary Blocks ∗/
for (int i = myTeamNumber; i < blocksPerRank; i += numberofTeams)

myBlockOrder.push_back(i);
/∗ Secondary Blocks ∗/
for (int i = 0; i < blocksPerRank; i++)

if (i % numberOfTeams != myTeamNumber)
myBlockOrder.push_back(i);

Figure 3.4: Algorithm to determine primary and secondary blocks [21].

Schuck has evaluated his task sharing mechanism with team recovery from Hölzl’s
work and reported a 35% performance improvement. Team recovery with task sharing
could keep up with CR. Which one is better depends on the checkpoint interval in CR.

One major drawback of this task sharing method is the increased risk of SDCs. As
already mentioned in section 3.5.2, task sharing can make the SDCs propagate into the
other teams: If all the replicas of a rank use the shared corrupted solution of that rank,
then there would be no team left with a correct solution.

3.6.2 Decomposition Factor

Dividing the computation domain into smaller domains by splitting it into smaller
problems is also called domain decomposition. For the task sharing explained in the
previous section each rank gets a fixed number of primary blocks that is equal to
the decomposition factor d. For d = 1 each rank gets a single primary block and
numberOfTeams - 1 (also equals to number of its replicas) secondary blocks. Increasing d
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3 Background

allows us to divide the domain even further [21]:

blocksPerRank = numberOfTeams · d (3.2)

Above in equation 3.2 we see the general formula for the total number of blocks
(primary + secondary) per rank where each rank has d primary blocks. Additionally
each rank holds also d secondary blocks for each of its replica. We can then calculate
the total number of blocks in a team as:

totalBlocks = blocksPerRank · ranksPerTeam (3.3)

In this thesis we will always use the term decomposition factor in this context.
Schuck’s implementations already include the decomposition factor, however he did
not evaluate its effect on the performance. For example he reported a 70% overhead
of inter-node communication when the ranks of the teams are on the same node (we
will also use: teams on the same node in this sense in future sections). His workaround
for this was to map the replicas onto the same node, because there are a lot more
MPI communication between the replicas than within the teams due to task sharing.
But depending on the implementation, the decomposition factor may also increase
performance if the application can do some useful computation while waiting for the
non-blocking communication of task sharing to finish for the secondary blocks. Schuck
also does not share the data arrays (h,hu,hv) in his task sharing, but he shares the
net-update arrays which are a lot larger than the data arrays in total. This might also
have an effect on the large overhead that he reported when teams were on the same
node.
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4 Integrating Soft Error Resilience
Techniques in SWE with TeaMPI

In the following we introduce different techniques for providing soft error detection/re-
covery in SWE applications with TeaMPI using replication with two teams. Then we
look at their implementation decisions and briefly preview their soft error tolerances.
All the source code is written in C++ to be compatible with TeaMPI and SWE which
are also based on C++.

4.1 Soft Error Detection Using Heartbeats with Hashes

We use software-level redundancy in this method, mentioned in the section 3.2.2, by
redundantly running the application twice with MPI. We hash the tasks computed by
the replicas of two teams and share the hashes across them in fixed simulation-time
intervals. Any mismatching hash can be a sign of an SDC, and therefore this method is
a very simple usage example of software-level redundancy that can provide an early
SDC detection. We will refer to this method as Hashes in later sections.

4.1.1 Implementation

We use the C++ standard library function std::hash for better performance. Other hash
functions like SHA-1 [5] could also be used but it is expected to be slower due to its
greater length. In order to update the hash value of our important data arrays we have
implemented the method updateHash which first converts the data arrays (b,h,hu,hv)
and the agreed time step size to strings and then hash them individually. Then it
combines their resulted 8-byte long hash values using xor operations.

In our implementation we issue a single-heartbeat that includes a hash value in
regular heartbeat intervals in simulation time. Our heartbeat usage is different from the
usage explained in section 3.5.1 where the heartbeats are used to detect any slowing
or failing rank by comparing the wall-clock time differences of the heartbeats. In our
case we do not have to periodically start a heartbeat before a heavy task computation
and end it after with a total of two heartbeats. Therefore we have integrated a single-
heartbeat mechanism into TeaMPI that can include messages. Additionally, since hard
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error tolerance is out of scope for this thesis we do not keep the wall-clock times of
the single-heartbeats, but we compare the received hashes from the other replicas
within the TeaMPI library. The actual sending, receiving and the comparison of the
hashes are done transparently to the application and we use non-blocking send and
receives to avoid additional synchronization between the replicas. The fixed heartbeat
interval is determined by dividing the given total simulation duration to the total
number of hashes that we want to send. The more hashes we send, the smaller the
heartbeat-interval is and the sooner we can detect an SDC.

float t = 0.f;
for (int i = 0; i < numberOfHashes; i++) {

/∗ Computation−loop ∗/
while (t < sendHashAt[i]) {

/∗ Exchange boundaries between blocks ∗/
[...]
/∗ Compute the current net−updates ∗/
block.computeNumericalFluxes();

/∗ Agree on an admissible time step size ∗/
float local_maxTimestep = block.maxTimestep;
float agreed_maxTimestep;
MPI_Allreduce(&local_maxTimestep,

&agreed_maxTimestep, 1,
MPI_FLOAT, MPI_MIN,
MPI_COMM_WORLD);

block.maxTimestep = agreed_maxTimestep;

/∗ Update the arrays h,hu,hv ∗/
block.updateUnknowns(agreed_maxTimestep);

t += agreed_maxTimestep;

/∗ Output can be written here if desired ∗/

updateHash();
}
/∗ Send a single heartbeat with the hash value
∗ to the replica rank ∗/

[...]
}

Figure 4.1: Computation-loop for method
Hashes.
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Figure 4.2: Flow diagram of method
Hashes. [t=time, N=total hash
sends, SA=equally distanced
simulation-times for each hash
to send]

In method Hashes we only compute one block per rank so we divide the domain in
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SWE into number_of_ranks_in_a_team blocks. After we read important user parameters
like the heartbeat-interval and initialize the blocks, we go into our computation-loop
in figure 4.1 in the previous page. The flow diagram in figure 4.2 shows the general
structure of the computation-loop which is very similar to the example 3.3 that we have
discussed in the previous section except for loop conditions. Since we use the TeaMPI
wrapper, the original MPI_Allreduce function is modified for the MPI_COMM_WORLD
communicator to agree on an admissible time step size across all the ranks in the team.
The ranks continue to compute their blocks and update their hashes as explained above
until the current simulation time reaches the next simulation time to send the updated
hash value. Then the ranks issue a single-heartbeat that includes the hash value to
their replicas and go into the loop again until all the hashes are sent. The simulation
time intervals between the heartbeats are equally distanced (simulationDuration / num-
berOfHashes), and the last heartbeat is always issued when the simulation-time reaches
the simulation duration given by the user.

4.1.2 Soft Error Tolerance

We assume that any bit-flip that can occur in our data will eventually be detected by the
hash comparisons. The hash value is updated with xor operations after every iteration
with the hash values of the data arrays (b,h,hu,hv) and the current agreed time step
size which should be same in all the replicas. This also allows us to detect any SDC
that eventually affects these important data arrays. One downside of method Hashes is
that it uses replication which loses half of our computation power, and even if an SDC
is detected we must always restart the application unlike the other methods that we
propose in the following sections.

4.2 Soft Error Resilience Using Verification and Task Sharing

Instead of comparing the results calculated by the replicated processes, we can adopt an
a-posteriori approach where the validity of each computed task is checked using some
predefined admissibility criteria in every iteration. With this approach we can assume
that we have an SDC if an admissibility criterion gets violated, which can provide SDC
detection without replication. In this method we use replication only for recovery of
the corrupted ranks. One major advantage of this is that the replicated ranks are no
longer needed for redundant computation, so we reduce their overhead by employing
task sharing. We will refer to this method as Sharing, again for better readability. In
the following we first introduce our predefined admissibility criteria, and then explain
our task sharing mechanism. Finally we introduce our implementation for this method
and give a preview of its soft error resilience.
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4.2.1 Admissibility Criteria

Our admissibility criteria are very similar to the criteria defined in [17]. We use the
following two main criteria:

1. Physical Admissibility Criteria: computations are within some certain physical
constraints which are highly application specific. We use the following two
constraints:

• Bathymetry (b) must be constant.

• Water height (h) cannot be negative.

2. Numerical Admissibility Criteria:

• No floating point number errors (NaNs). This criterion is checked for all the
data and update arrays.

• Relaxed discrete maximum principle (DMP) in the sense of polynomials. We
check this criterion only for the data arrays h, hu, hv.

min
y∈Vi,j

u(y, tn)− δ ≤ u∗(x, tn+1) ≤ max
y∈Vi,j

u(y, tn) + δ (4.1)

The term u∗(x, tn+1) is a candidate solution for h, hu or hv at cell x = (i, j) at time
tn+1. The candidate solution fulfills the DMP, if the relation in 4.1 above is fulfilled for
all conserved variables and for all points x. Vi.j is the set that contains the neighbouring
cells of cell (i, j). The strict DMP (δ = 0) may however be violated even without a soft
error in some cases. Therefore a relaxation factor δ is used to relax the strict DMP
for small surpasses for both directions. We have e.g. run the seaAtRest scenario with
the strict way and it did not violate the DMP because all the arrays remain constant
throughout the simulation, but for wave propagation scenarios the relaxation factor
should not be set to zero. In the next sections we will always assume that a relaxation
factor is set properly for the scenario so that the DMP does not give us false positives –
always validates when there is no soft error. Additionally relaxed DMP cannot always
detect soft errors – e.g. when the corrupted value still lies in the allowed interval.

We mostly use library functions like std::min or std::isnan for the implementations
of the admissibility criteria to minimize their overhead. However relative to the other
criteria, the DMP can still be very expensive to check because it additionally needs to
access all the neighbouring indexes.

Only the predefined admissibility criteria explained above are used in the methods
that we are going to present in the next sections. With these criteria and the assumption
that we have made we can assume that a rank may have an SDC if any of the criteria
fails for at least one of its blocks.

16



4 Integrating Soft Error Resilience Techniques in SWE with TeaMPI

4.2.2 Task Sharing

Task sharing becomes available for method Sharing since soft error detection does not
depend on redundant computation. Similar to Schuck’s work explained in section
3.6 we need replication only for recovery in this method, but in our case we focus on
soft error resilience. We use the same algorithm and techniques explained in sections
3.6.1 and 3.6.2 for dividing and ordering of the primary/secondary blocks in each
rank. We however change the actual task sharing implementation by only sharing the
updated data arrays (h,hu,hv). We do not share any bathymetry data since it should
stay constant.

In the following we present the structure and implementation decisions of our
task sharing. We assume that up to this point the application has already called
computeNumericalFluxes and calculated the primary blocks’ updates for the current
iteration, however it did not call updateUnknowns to update their data arrays (h,hu,hv)
yet. We will later look at the computation and validation of the primary blocks, as well
as the complete algorithm of method Sharing in section 4.2.3.

/∗ Receive requests of the non−blocking receive calls ∗/
std::vector<MPI_Request> recv_reqs(totalRecvReqs_taskSharing, MPI_REQUEST_NULL);
/∗ Iterate the secondary blocks, receive h,hu,hv per block ∗/
for (int i = decompFactor; i < blocksPerRank; i++) {

const int& currentBlockNr = myBlockOrder[i];
auto& currentSecondaryBlock = ∗simulationBlocks[currentBlockNr];
/∗ Save previous h,hu,hv locally for the DMP criterion ∗/
currentSecondaryBlock.savePreviousData();
/∗ Size of h,hu,hv ∗/
const int dataArraySize = currentSecondaryBlock.dataArraySize;
/∗ The source replica for the current secondary block ∗/
int source_replica = currentBlockNr % numTeams;

MPI_Irecv(...); /∗ For h ∗/
MPI_Irecv(...); /∗ For hu ∗/
MPI_Irecv(...); /∗ For hv ∗/

}

Figure 4.3: Non-blocking MPI receive posts for the task sharing.

Figure 4.3 above implements the very beginning of the task sharing, where each
replica posts three non-blocking MPI receive calls (for the data arrays h,hu,hv) for all
of its secondary blocks. The source replica that the rank is going to receive from is
calculated using the ordering algorithm 3.4. Before posting the receives, current states
of the secondary blocks are redundantly stored. This is necessary for the DMP criterion
explained in the previous section.
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/∗ Iterate the primary blocks, send h,hu,hv per block ∗/
for (int i = 0; i < decompFactor; i++) {

const int& currentBlockNr = myBlockOrder[i];
auto& currentPrimaryBlock = ∗simulationBlocks[currentBlockNr];
/∗ Save previous h,hu,hv locally for the DMP criterion ∗/
currentPrimaryBlock.savePreviousData();
/∗ Update the data arrays ∗/
currentPrimaryBlock.updateUnknowns(timestep);
/∗ Size of h,hu,hv ∗/
const int dataArraySize = currentPrimaryBlock.dataArraySize;

/∗ Iterate all my replicas ∗/
for (int destTeam = 0; destTeam < numTeams; destTeam++)

if(destTeam != myTeam) {
MPI_Isend(...); /∗ For h ∗/
MPI_Isend(...); /∗ For hu ∗/
MPI_Isend(...); /∗ For hv ∗/

}
}

Figure 4.4: Non-blocking MPI send calls for the task sharing.

After the non-blocking receives, ranks go into the loop in figure 4.4 above and iterate
their primary blocks which they need to update and share to all of their replicas. They
first save their primary blocks’ current state redundantly for the DMP criterion in
the current iteration before updating them to the next time step. Then the blocks are
updated by calling the updateUnknowns, and lastly their data arrays (h,hu,hv) are sent to
all of their replicas by using non-blocking MPI send operations. At this point we have
posted all the necessary non-blocking send/receive MPI calls for the task sharing.

In the end of our task sharing algorithm we need to wait for all the previously posted
non-blocking MPI communications to be completed. Figure 4.5 in the next page is
the algorithm that we use to achieve this. Ranks go into a loop where they check if a
secondary block is received using three MPI_Test calls for the pending data arrays. If a
secondary block is completely received, then we immediately validate the received data
arrays using our predefined admissibility checks again, even it was already validated
by the sender right after the computeNumericalFluxes call as we will see in the next
section. If an admissibility criterion is violated here, we mark this secondary block as
potentially corrupted by setting a flag. We will see what we do with these flags and
how a potentially corruption can be handled in the next section. Ranks iterate this loop
until all of their secondary blocks are received, checked and flagged accordingly.
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std::vector<int> received(totalSecondaryBlocks, 0);
int pendingBlocks = totalSecondaryBlocks;
/∗ Loop until all the non−blocking receives are completed ∗/
while (pendingBlocks) {

/∗ Iterate the secondary blocks ∗/
for (int i = decompFactor; i < blocksPerRank; i++) {

/∗ If the block is not received yet ∗/
if (!received[i−decompFactor]) {

/∗ Check if the receive requests are completed ∗/
int h_received, hu_received, hv_received;
MPI_Test(...); /∗ Check if h is received ∗/
MPI_Test(...); /∗ Check if hu is received ∗/
MPI_Test(...); /∗ Check if hv is received ∗/
if (h_received && hu_received && hv_received) {

bool admissible;
/∗ Check admissibility criteria for the
∗ received block, set flag if violates ∗/

[...]
received[i−decompFactor] = 1;
pendingBlocks−−;

}
}

}
}

Figure 4.5: Algorithm for checking the admissibility criteria on the received secondary
blocks while waiting for the non-blocking MPI communications to be com-
pleted.

4.2.3 Implementation

We start with our method Sharing after the blocks are initialized and ordered. Figure
4.6 in the next page represents our main implementation and figure 4.7 depicts our
algorithm for this method. We have included heartbeats that are bound to wall-clock
time. They however do not contribute to soft error resilience. We start the heartbeat and
iterate the inner loop until the heartbeat interval (in wall-clock time) is reached. Then
we end the heartbeat and go into the outer loop again until the simulation is finished.

In the computation-loop after the boundary exchange ranks first iterate and compute
their primary blocks. Each block is checked using our admissibility criteria predefined
in section 4.2.1 right after the computation and flagged accordingly – e.g. as possibly-
corrupted if any of the admissibility criteria fails. After all the primary blocks are
computed and flagged accordingly, ranks follow the procedure defined in figure 4.8
in the second next page which represents our reporting and recovery mechanism for
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float t = 0.f;
while (t < simulationDuration) {

/∗ Start Heartbeat (HB) ∗/
[...]
/∗ Computation−loop ∗/
while (timeSinceLast_HB < HB_Interval

&& t < simulationDuration) {
/∗ Exchange boundaries between blocks ∗/
[...]
/∗ Iterate the primary blocks ∗/
for (int i = 0; i < decompFactor; i++) {

/∗ Compute the current net−updates ∗/
[...]
/∗ Validate admissibility checks ∗/
[...]

}

/∗ Report to all my replicas ∗/
[...]
/∗ Go into recovery mode if an SDC
∗ is detected in my primary blocks,
∗ or reported from a replica ∗/

[...]

/∗ Agree on an admissible time step size ∗/
[...]

/∗ Update primary blocks and do
∗ task sharing ∗/

[...]

/∗ Report to all my replicas ∗/
[...]
/∗ Go into recover mode if an SDC
∗ is detected in my secondary blocks,
∗ or reported from a replica ∗/

[...]

t += agreed_maxTimestep;
/∗ Output can be written here if desired ∗/

}
/∗ End Heartbeat ∗/
[...]

}

Figure 4.6: Computation-loop for method
Sharing.
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Figure 4.7: Flow diagram of method Shar-
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Is any of my primary blocks flagged as potentially corrupted?

Set my SDC flagAssume that I have no SDC

Send report (SDC flag) to replicas

Is my SDC flag is set?

Receive block information from any replica

Compute + Validate again

Admissibility fails again?

AbortAssume we fixed SDC

Receive reports (SDC flag) from replicas

Did any of my replicas set SDC flag?

Am I the lowest-rank "healthy" replica?

Send block info. to possibly corrupted replicas

Assume that I recovered them
End of report/recovery

yesno

yes

no

yesno

yes

no
yes

no

Figure 4.8: Reports and recovery after primary block validation.
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their primary blocks. If any of the primary blocks of a rank is flagged as potentially
corrupted after the admissibility checks then the rank sets its SDC flag and assumes
that it has detected a possible SDC, but if all of its blocks are admissible then the rank
assumes that it has no SDC in its primary blocks. Then the ranks send/receive a single
MPI message that contains their SDC flag to/from each of their replicas. The purpose of
this is to report their block status to each other and activate recovery mode in case they
detect a possible SDC together with their replicas that hold the ranks’ primary blocks
as their secondary blocks. In the recovery mode – If a rank reports a possible SDC to
its replicas – the possibly-corrupted rank waits for a respond from any of its replicas,
and its other replicas that did not report a possible SDC (possibly healthy) decides who
has the lowest rank and the lowest rank sends its blocks data arrays (b,h,hu,hv) to the
possibly-corrupted rank and assumes that it has recovered the possibly-corrupted rank.
The possibly-corrupted rank receives and immediately checks the received data arrays
for admissibility. If any of the admissibility criteria still fails for any received block
from the recovery then the rank assumes that its replica also holds a possibly-corrupted
block – e.g. when a previously occurred SDC could not be detected and has propagated
to the other ranks due to task sharing – and aborts. It is important to note here that
we do not handle the situation where every replica reports a possible SDC in their
primary blocks at the same time and everyone waits. This scenario can happen when
e.g. multiple soft errors corrupt the application at all the replicas of a rank at the
same time, or when a single soft error propagates to other teams corrupting their state
because of task sharing and is detected later on. In this thesis we will only experiment
with single soft errors per run, and if an error propagates due to task sharing and later
be detected by all the replicas in their primary blocks causing the deadlock explained
above, then a recovery would not be possible anyways because after the recovery the
admissibility of the recovered block would again fail since all the replicas would also
be corrupted with the exact same blocks that were shared in the previous iteration to
those replicas. If the rank does not abort and accepts the solution of its replica because
it is admissible, then the application continues and the ranks assume that they have
managed to recover from an SDC.

After the primary block reports and recovery mode, the ranks agree on an admissible
time step size and do the task sharing with secondary block validation using the
admissibility criteria as explained in the previous section. After this, all the secondary
blocks that have violated an admissibility criterion are flagged as possibly-corrupted,
and ranks again follow a similar reporting and recovery mechanism depicted in figure
4.9 in the next page for their secondary blocks. At this point in the algorithm we
actually assume that our primary blocks (and therefore all the main blocks) are valid
and healthy because we have already checked them for soft errors, but this additional
check on the secondary blocks may expose some soft errors that can occur after our first
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Figure 4.9: Reports and recovery after secondary block validation.
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validation or during task sharing communication before actually writing any output.
Its only difference to our previous recovery mechanism is that the possibly-corrupted
blocks are tried to be recovered using their owners (same ranks that has sent the
blocks in the task sharing) which are the replica ranks that hold the possibly-corrupted
secondary blocks in the possibly-corrupted rank as their primary blocks, which means
that they were already been validated and flagged as healthy in their computations
in the current iteration. If any of the admissibility criteria still fails for any of the
received blocks after the recovery then the rank aborts. This can happen e.g. when
a soft error corrupts the primary block of a rank after its validation and causes the
admissibility criteria to fail. We however did not implement a recovery system for
this case. One could maybe try to first store the received blocks from the task sharing
without overwriting the secondary blocks’ current state and try to recover using them
in case a possible SDC is detected. Our recovery for the secondary blocks can however
recover from corrupted transmissions in the task sharing that directly violates our
admissibility checks. We also do not handle some other cases where e.g. there is a
transmission error during the recovery. If after the recovery the blocks validate all
the admissibility checks without any problem, then the rank assumes that there was
a faulty transmission but it has managed to recover its blocks and can continue its
execution.

After the task sharing and secondary block reports/recovery, the current simulation
time can finally be updated with the agreed time step size and the ranks can continue
iterating the computation-loop.

4.2.4 Soft Error Tolerance

Since this and the next method that we will present rely on the admissibility checks to
validate tasks, a possible SDC detection depends on the quality and sensitivity of the
predefined admissibility criteria. If the relaxation factor is set properly, DMP can be
a very sensitive admissibility criterion – we assume that it is high enough to give us
no false positives when there is no soft error. However even with the DMP criterion
we cannot guarantee SDC detection or recovery in this method. We can only assume
that a block is corrupted if it violates an admissibility criterion and vice versa. For this
method it is also very important when we detect the SDC because the method tries
to save redundancy overhead by employing task sharing, but task sharing can also
make the SDCs propagate to other teams like explained in the previous section. This
makes our method even more sensible to SDCs because even if an SDC is detected in
the later simulation times, the replica-ranks would already have been corrupted due to
task sharing, and a recovery using a replica would not be possible. Additionally we
have not implemented any recovery mechanisms for some cases that we are aware of –
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especially for the cases where there can be more than one soft error at the same time,
or for the soft errors that can occur in the primary blocks between the primary block
validation and task sharing. In the following we propose a method that may recover
even from such cases.

4.3 Soft Error Resilience Using Verification and Redundant
Computation

Our last method is similar to our previous method Sharing. We again use our predefined
admissibility criteria to validate the blocks but we disable the task sharing, and as a
consequence ranks do not have any secondary blocks. Instead, every replicated process
in a team keeps its blocks for itself and only send/receive blocks in the recovery. We
will refer to this method as Redundant in later sections.

4.3.1 Implementation

Since we do not have task sharing we do not use any block-ordering, so the ranks only
have primary blocks.

blocksPerRank = d (4.2)

In equation 4.2 above each rank has d=decompositionFactor number of primary blocks.
We can again calculate the total number of blocks in a team using the equation 3.3.

After ranks initialize their blocks, they follow the computation-loop in figure 4.10
in the next page. We again include heartbeats that are bound to wall-clock time
but they do not contribute to soft error resilience. The structure is very similar to
our previous method Sharing without the task sharing, secondary block receive and
validation procedure and secondary block reporting and recovery mechanism. After
the ranks exchange their boundaries, they iterate their blocks where they compute
the updates for the current iteration and validate their blocks using our predefined
admissibility criteria. The ranks make the same assumptions that they did after their
primary block validation in method Sharing – if any primary block of a rank is not
admissible then the rank assumes that it has a possible SDC and it is possibly corrupted.
Then the ranks follow the same reporting and recovery procedure defined in 4.8 which
is already explained in 4.2.3 in detail. In short, ranks send/receive a potential SDC
report to/from their replicas. If a rank is possibly-corrupted, a replica sends its data
arrays to the rank. We again do not handle the case where all the replicas report a
possible SDC in their blocks at the same time. In this method this can only happen
when all the replicas suffer from an SDC at the same time since we run the teams
redundantly without task sharing and a possible SDC in a team cannot propagate to
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float t = 0.f;
while (t < simulationDuration) {

/∗ Start Heartbeat (HB) ∗/
[...]
/∗ Computation−loop ∗/
while (timeSinceLast_HB < HB_Interval

&& t < simulationDuration) {
/∗ Exchange boundaries between blocks ∗/
[...]
/∗ Iterate the blocks ∗/
for (int i = 0; i < decompFactor; i++) {

/∗ Compute the current net−updates ∗/
[...]
/∗ Validate admissibility checks ∗/
[...]

}

/∗ Report to all my replicas ∗/
[...]
/∗ Go into recovery mode if an SDC
∗ is detected in my blocks,
∗ or reported from a replica ∗/

[...]

/∗ Agree on an admissible time step size ∗/
[...]

/∗ Update the blocks ∗/
[...]

t += agreed_maxTimestep;

/∗ Output can be written here if desired ∗/
}
/∗ End Heartbeat ∗/
[...]

}

Figure 4.10: Computation-loop for method
Redundant.
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other teams or replicas. This case would again require multiple soft errors at the same
time. Unfortunately we forgot to include full recovery by recovering all the ranks in
the possibly corrupted team in our recovery mode, and we have only implemented
the recovery of the possibly corrupted ranks. This however does not guarantee us a
complete healthy recovery since the error might have propagated to other ranks in the
corrupted team, and all the corrupted ranks might not have detected the error. It is also
unfortunate that we did not have the time to add this but this will not affect our results
in this thesis since we will only analyze single soft errors and we have the option of
relying on other teams’ solution if the corrupted team detects an error. Nevertheless
this is a very important future to have for the recovery especially for this method
Redundant. After our primary block reporting and recovery mechanism, the replicas
have redundantly computed, validated and reported all of their blocks. Similarly to
our previous method a rank can still be corrupted but has appeared healthy in the
admissibility checks. But in this method teams can detect a previously occurred SDC
in later iterations and a recovery from such a situation would theoretically still possible
(we again neglect multiple soft error situations) since an error cannot propagate to
other teams. After the time step agreement, the ranks finally update their blocks and
repeat this loop until the simulation is finished. The flow diagram in figure 4.11 in the
previous page represents this method Redundant.

4.3.2 Soft Error Tolerance

Similar to the previous method, this method also relies on the same admissibility checks
to validate tasks. So we cannot guarantee any SDC detection. We again assume that a
rank is corrupted if any of our admissibility criteria gets violated for any of its blocks.
We only use the admissibility checks once in the algorithm – we do not separate primary
and secondary block validations since ranks only have primary blocks – and an SDC in
a block can only occur before or/and after the validation of the block. SDCs that can
occur before the block validation, and that are detectable by our admissibility checks
directlytrigger the recovery mode, and SDCs that can occur after the block validation
or that are not immediately detected by the admissibility checks can be spread only
across the corrupted team. A recovery is theoretically possible in both of these cases if
the other teams do not also get corrupted by other SDCs. Therefore we can guarantee
to have at least one healthy team if we only consider single soft error situations with
this method because teams do not share any data and run redundantly, which allows
us to recover even in later iterations if the error can eventually be detected by our
admissibility checks. In such a case we cannot prevent the corrupted team from writing
faulty outputs in previous iterations. But if a team finally detects an SDC, the user can
rely on the other teams’ outputs. This is also our workaround in the absence of full
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recovery explained in the previous section. For single soft error scenarios we therefore
expect to have at least one healthy solution under the following two conditions: (1)
if the error does not naturally cause the application to abort, and (2) if the error can
eventually be detected by our admissibility checks at any time until the simulation
time reaches the simulation duration. Since we have disabled task sharing we can
prevent SDCs from propagating but we may also suffer from redundant computation
overhead.
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In the following section we analyze our methods’ soft error resilience by injecting ran-
dom bit-flips into different data structures in SWE applications that utilize our methods,
and then their SDC outcome rates (only detectable, or detectable and correctable) are
compared and different situations are discussed. Later in section 5.2 we compare the
performance of our methods on single- and multi-node environments, and discuss how
different soft error resilience techniques can affect the performance.

5.1 Soft Error Outcome Rates

In our bit-flip injector we focus on the largest data structures that we have: data
arrays containing water height (h), water momentum in both directions (hu,hv) and
bathymetry (b); and last but not least the 8 net-update arrays for the computation.
All the methods are run using two teams, and for each injection the error is injected
into the first rank of the first team by flipping a single randomly selected bit from a
randomly selected floating-point number right after the main computation function
call computeNumericalFluxes which accesses all the data structure listed above. We
do not analyze the errors that can occur in different code places or the transmission
errors that can occur during MPI communications in this thesis. We analyze only our
methods Sharing and Redundant explained in sections 4.2 and 4.3 respectively for the
SDC outcome rates since method Hashes explained in section 4.1 relies on direct hash
value comparison and cannot recover from failures. We will analyze Hashes only in
performance section 5.2.

It is important to note that random bit-flip injections may not have an affect on
the application if they are too small. We have prepared a script to extract different
outcome rates of the injected SDCs using the stdout (standard output) of the runs with
the methods and the procedure defined in figure 5.1 in the next page which helps us
to decide if the injected error actually causes an SDC or the error is negligible (too
small), detected or detected + correctable. Before applying this procedure we have
run a reference solution to compare it with the NetCDF [18] outputs (actual results) of
the runs where we actually inject the errors in order to see if they have correct results
at the end. If an error can only be detected and the application aborts, we count it
as a detectable but uncorrectable error (DUE). We do not count the injected SDC as
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SDC is injected

SDC reported in application?

Results correct?Results correct?

Aborted? Negligible Aborted? Correctable

SDC DUE SDC DUE

yesno

no yes no yes

no yes no yes

Figure 5.1: SDC Injection Outcome Analysis Procedure.

corrected if it is not reported in our application – e.g. in method Redundant an SDC
may not be reported by the corrupted rank, but the other team may still have a correct
solution at hand. But we count this case as an SDC because no team reports an error
and we do not know which result is correct. If the corrupted team reports an error, it
might have written faulty results before it manages to detect and recover its state. In
this case we say the error is correctable if the other healthy teams’ results are correct and
the error is reported by the corrupted team. This assumption is also important because
we did not implement full recovery as explained in section 4.3.1 and in some cases
the corrupted team cannot be recovered completely after an error detection, but we
rely on the healthy team’s outputs if the error can at least be detected and reported as
mentioned above. After this procedure we divide the total number of error injections to
the number of total DUE and Correctable outcomes in order to get soft error detection
(DUE) and correction (detectable + correctable) rates. We will refer to these rates as
DUE and Correctable outcome rates in later sections.

In the following we first inject bit-flips randomly into each of the largest data
structures to see the results of the DUE and Correctable outcome rates of our methods,
and then in section 5.1.2 we focus on relatively larger bit-flip injections and discuss the
parameters that can affect our DUE and Correctable outcome rates.

5.1.1 Random Injection

In order to get accurate outcome rates, we inject errors into the data structures of our
application separately. The bathymetry array (b) is checked with 1000 error injections
and it has a correction rate of 100%. This was expected because we store its initial
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value redundantly and compare it with its current value in every iteration with the
admissibility checks. So, we only consider the other three data arrays (h,hu,hv) and the
remaining 8 update arrays.

For our analysis we use the radialBathymetryDamBreak scenario, where a 25 meters
tall dam breaks in the lower left side of the 2 by 2 km square domain, and we use
200 by 200 cells to simulate the domain. We will later see how different scenarios
can affect the resilience in section 5.1.2. If not stated otherwise, we inject bit-flips at
simulation-time 50 with a total simulation duration of 100, and relaxation factor set to
100. These parameters will also be changed to analyze their affects on resilience in the
later section.

Table 5.1: Outcomes of 10000 random bit-flip injections into each listed array of method
Sharing. Last random injection covers all the arrays and it is evaluated with
30000 injections.

outcome\array h hu hv updates random

Correctable 18.55% 13.83% 14.47% 0% 15.22%
DUE 0.25% 0.13% 0.04% 7.32% 4.36%
SDC 81.21% 86.03% 85.49% 92.68% 80.41%

Negligible 2.95% 3.26% 3.31% 28.17% 19.84%

Table 5.2: Outcomes of 10000 random bit-flip injections into each listed array of method
Redundant. Last random injection covers all the arrays and it is evaluated
with 30000 injections.

outcome\array h hu hv updates random

Correctable 18.6% 13.63% 15% 6.09% 19.06%
DUE 0.03% 0.1% 0.04% 0.96% 0.43%
SDC 81.37% 86.26% 84.96% 92.95% 80.52%

Negligible 2.91% 3.32% 2.95% 28.09% 19.56%

In table 5.1 above we see the evaluation of our method Sharing. The update arrays
could not be corrected right after the error because we could not include DMP criterion
for them, so the method could not detect and correct the error right after the injection.
Moreover our method Sharing uses task sharing, and as we have discussed in sections
4.2.4 and 4.3.2 task sharing can make SDCs propagate and we believe because of
the task sharing our method Sharing could only detect 7.32% of the errors injected
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into update arrays but could not correct any of them. In fact, our method Sharing
could never correct the errors injected into the update arrays as we will also see in
the next sections. On the other hand in table 5.2 in the previous page we see that our
method Redundant could detect and correct 6.09% of the errors injected into update
arrays because it employs redundant computation and avoids task sharing between the
teams – if an error is detected in later iterations, then it can propagate but still stays
in the same team so it can still be corrected using the other healthy team. Generally,
method Redundant seems to have a higher Correctable but a lower DUE outcome rate
than Sharing. We believe that this shows how redundant computation can help us to
additionally correct some of the injected soft errors that our method Sharing could
only detect. We also believe that the DUE outcomes in method Redundant are the cases
where the injected bit-flip leads to an error in the application – e.g. division by zero –
causing the corrupted team to halt the program execution abruptly which affects both
of the teams.

Since both methods use the same admissibility checks, method Redundant should
have better Correctable outcome rates because it additionally has redundant and
independent computation (no task sharing) and in our bit-flip injection results in this
section method Redundant has actually a slightly better Correctable outcome rate. The
difference between the Correctable outcome rates can also depend on the application
and some parameters that we will see in the next section. If we look at the sum of DUE
and Correctable outcome rates, both methods have about 20% soft error resilience in
this case.

5.1.2 Parameters that can Affect the Soft Error Outcome Rates

In random bit-flip injections in the previous section we did not restrict ourselves while
injecting bit-flips – our injections covered all the floating-point number bits, even some
rightmost fraction bits that can have a relatively small impact on the simulation. In the
following sections we only focus on the leftmost 10 bits of the floating-point numbers
in the error injections. This will help us analyze how different parameters such as the
relaxation factor, total simulation duration and type of the scenario can affect the SDC
outcome rates of our methods. We still run two teams and an error is still injected by
flipping a single randomly selected bit per run. While analyzing a parameter other
parameters are kept same as our previous set-up in the previous section.

Relaxation Factor

In section 4.2.1 we have introduced the relaxation factor in the relaxed DMP criterion.
Table 5.3 in the next page shows how the Correctable outcome rates of our methods
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Table 5.3: Correctable Outcome Rates of 2000 bit-flip injections into the leftmost 10 bits
of randomly selected floating-point numbers, that are separately injected into
the listed arrays with different relaxation factors (r).

Sharing Redundant

r\array h hu hv updates h hu hv updates

80 59.44% 43.37% 50.44% 0% 60.34% 45.31% 50.7% 15.76%
100 59.95% 43.47% 47.07% 0% 58.97% 43.91% 47.74% 15.34%

10000 39.69% 29.91% 29.24% 0% 39.96% 28.1% 30.62% 11.21%
1000000 34.9% 22.07% 25.32% 0% 37.68% 24% 25.46% 10.16%

can change as we increase the relaxation factor. The lower we set the relaxation factor,
the higher the sensibility of the relaxed DMP criterion is, and therefore the higher the
Correctable outcome rates are. However as explained in section 4.2.1 the DMP may give
us false positives if we set the relaxation factor too small. In this particular scenario
(radialBathymetryDamBreak) we could for example not set the relaxation factor to 50
because the simulation violated the DMP even without an error.

Simulation Duration

Another important parameter that can affect the SDC outcome rates of our methods
is how long the scenario has to be simulated. In tables 5.4/5.5 below and in the next
page we see how the DUE and Correctable outcome rates of our methods changes as
we increase the total simulation duration. It is important to note that we do not change
the simulation time in which we inject the error.

Table 5.4: DUE outcome Rates of 5000 bit-flip injections at simulation time 50 into the
leftmost 10 bits of randomly selected floating-point numbers, that are sepa-
rately injected into the listed arrays with different total simulation durations
(t).

Sharing Redundant

t\array h hu hv updates h hu hv updates

50 0.06% 0.25% 0.17% 1.52% 0% 0.27% 0.16% 1.57%
100 1.35% 0.24% 0.2% 17.63% 0.01% 0.24% 0.18% 1.52%
200 1.13% 0.31% 0.14% 16.06% 0.02% 0.35% 0.31% 1.64%
400 1.24% 0.41% 0.14% 15.93% 0% 0.21% 0.18% 2.02%
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Table 5.5: Correctable outcome Rates of 5000 bit-flip injections at simulation time 50
into the leftmost 10 bits of randomly selected floating-point numbers, that
are separately injected into the listed arrays with different total simulation
durations (t).

Sharing Redundant

t\array h hu hv updates h hu hv updates

50 60.39% 43.97% 47.38% 0% 58.72% 43.25% 46.98% 0%
100 59.95% 43.47% 47.07% 0% 58.97% 43.91% 47.74% 15.34%
200 58.37% 43.78% 47.97% 0% 59.99% 44.16% 48.29% 15.18%
400 58.1% 44.06% 47.95% 0% 60.31% 44.7% 48.34% 14.89%

One can see that if the simulation stops right after the injection at total simulation
time 50, then even method Redundant cannot help us correct any errors injected into
the update arrays because the error cannot be detected and recovered in later iterations
– the error is injected in the last iteration. In this case we get similar SDC outcome
rates for both of our methods. We however see that method Redundant starts correcting
errors injected into the update arrays – this again means that the detected error stays
in the corrupted team and is correctable using the other healthy team – and method
Sharing increases its DUE outcome rate of the injected errors as the simulation duration
exceeds the simulation time in which the error is injected. The DUE outcome rates of
the water momentum arrays (hu,hv) are quite similar which may indicate that these
outcomes were the natural detections of the application causing a halt and the errors
could not be detected by the admissibility checks, whereas the DUE outcome rates
of the water height array (h) and the update arrays are quite different which might
be because that the propagated error could be detected in later simulation times by
the admissibility checks however could not be corrected in Sharing and has resulted
in DUE and it could be recovered in Redundant using the healthy team and resulted
in Correctable outcome. The increasing Correctable outcome rates of Redundant also
supports this idea but we need more evaluations to get more accurate rates. This may
indicate that soft error resilience of our methods can even depend on the different data
structures of our application.

Scenario

The last parameter that we analyze is the type of scenario that we simulate. In table
5.6 in the next page we compare our standard scenario radialBathymetryDamBreak (A)
with the scenarios splashingPool (B) and seaAtRest (C). In contrast to the setup in A, the
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other scenarios have relatively little wave propagation. In fact, scenario C does not have
any water momentum at all. The water is at rest position where there are no waves.
Similar to C, scenario B reaches the rest position at the end of the simulation and the
water height changes relatively less than scenario A during the simulation. We have
calculated the mean and the standard deviation of the water height array h in both A
and B. The standard deviation is around 5.5 in B whereas it is around 19.9 in A. The
mean value of the water height is around 15.1 meters in scenario A and 245 meters in
scenario B, and the mean value of the water momentum in both directions is about
6.5 in A and 171.5 in B. Water height is always 10 meters in scenario C and there is no
water momentum.

Table 5.6: Correctable outcome rates of 2000 bit-flip injections into the leftmost 10 bits
of randomly selected floating-point numbers, that are separately injected into
the listed arrays in 3 different scenarios: A = radialBathymetryDamBreak, B =
splashingPool, C = seaAtRest.

Sharing Redundant

t\array h hu hv updates h hu hv updates

A 59.95% 43.47% 47.07% 0% 58.97% 43.91% 47.74% 15.34%
B 89.77% 89.39% 90.28% 0% 99.95% 90.1% 90.5% 15.99%
C 58.25% 0% 0% 0% 61.65% 0% 0% 0%

C (r=0) 100% 100% 100% 0% 100% 100% 100% 99.8%

We first compare scenarios A and B, and see that the errors injected into scenario B
could be corrected with a much greater rate. Since the values in the arrays in scenario
B are bigger than the values in the arrays in scenario A, the injected errors into the
leftmost 10 bits of the selected floating-point numbers that includes mostly the exponent
bits have a larger impact and therefore make the DMP criterion more sensible when
using the same relaxation factor (r = 100). Additionally, having a less standard deviation
in the array h can also affect the sensibility of the DMP because the previous values
in the arrays can be close to the current computed values. Therefore we get an almost
100% correction rate in method Redundant for the h array in scenario B. In scenario C
almost all the error injections into momentum arrays (hu,hv) are negligible except for
the leftmost second bit which changes the value from 0 to 2. We also count the sign-bit
flip as negligible in this case because it changes the value from 0 to −0. If we use the
same relaxation as we did for the other scenarios, we cannot detect the errors that are
injected into the momentum arrays (hu,hv) that changes the value from 0 to 2. And
since the water height in scenario C is similar to the water height in A, they have similar
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error correction rates while using the same relaxation factor (r = 100). But scenario C
can also be run using the strict DMP criterion (r = 0) because the arrays remain constant,
and with the strict DMP we can also detect and correct the other errors that could not
be detected with a relaxed DMP. This is not possible with scenario A or B where we
have wave propagation.

5.1.3 Limitations of our Resilience Methods

We have seen the effect of task sharing on our soft error correction rates, especially
for the errors that were injected into the update arrays. One should keep this in mind
while using our method Sharing. The injected errors that could not be immediately
detected after the injection may eventually be detected in later iterations. Using the
task sharing mechanism however limits our ability to recover our data structures in this
case. In Redundant we try to overcome this situation by using redundant computation
by running the teams independently. Therefore it has higher Correctable and lower
DUE outcome rates overall.

The relaxation factor in our relaxed DMP criterion cannot be set to lower values
that are violating the DMP criterion even without an error injection. In our case we
use wave propagation simulation and the minimum relaxation factor that can be set
depends on the changes in the water height (h) and momentum (hu,hv) arrays from one
time step to another, which are highly scenario dependent.

5.2 Performance Comparison

Our code was compiled using the gcc version 8.4.0 and the MPI compiler wrapper from
ULFM version 4.0.2u1. We use the same radialBathymetryDamBreak scenario explained
in the previous section with 3000 by 3000 cells and a total simulation duration of
30 seconds. The decomposition factor is set to one if not stated otherwise. All the
performance tests in this section are evaluated on the Linux cluster segment CoolMUC-
2 at Leibniz Supercomputing Centre (LRZ). The cluster provides 812 Haswell-based
nodes that each run 28 cores at the nominal frequency of 2.6 GHz and with 64 GB of
memory.

In the following we compare the performance of our soft error resilience methods
explained in section 4 with a baseline model that has no integrated error resilience. We
will refer to the baseline model as NoRes which uses the computation-loop defined
in figure 3.2 without the TeaMPI library, where ranks divide the simulation domain
into blocks and each rank holds a single domain block. We focus on single-node and
multi-node performances in the following sections 5.2.1 and 5.2.2 respectively.
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5.2.1 Single-Node

We use 16 processes of a single node and run the baseline model and our methods to
get their wall-clock times. Additionally we profile them using Hotspots Analysis of
the Intel VTune Profiler 2020 Update 3 to list the CPU-time percentages of the most
important function calls in our application and resilience methods to get the results
depicted in figure 5.2 below.
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Figure 5.2: Profiling on a single node.

NoRes has the fastest possible execution time with 230.5 seconds. Our method
Hashes uses replication and redundant computation and therefore it has taken twice the
runtime of NoRes for the compute and update function calls that are used to compute
and write results for the next simulation time. Additionally it has the overhead of its
soft error detection mechanism that needs to update the hash values. In total it has a
runtime of 469.5 seconds. Similarly, our method Redundant has a runtime of 527 seconds
because it makes use of replication and redundant computation, and uses admissibility
checks to validate the blocks’ states. About 61% of the overhead of our admissibility
criteria comes from the relaxed DMP criterion, and we see that hashing can be executed
a lot faster than our admissibility checks. Our method Sharing improves our Redundant
method’s runtime by about 43% with a runtime of 301.6 seconds which is only about
31% above the method NoRes. Our task sharing mechanism manages to reduce the
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Figure 5.3: Strong scaling on a single node.

redundant computation overhead while still utilizing the replication which is needed
for the recovery of the corrupted ranks. It only brings the additional overhead of
sharing the tasks which is almost negligible in this single-node case.

Strong Scaling

We have also evaluated strong scaling comparison on a single-node environment to see
our resilience methods scaling in figure 5.3 above from 4 up to 28 MPI processes. In the
following section we will experiment with multiple nodes and compare its results with
this single-node strong scaling.
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5.2.2 Multi-Node

Similar to what we have done in our single-node performance analysis, we first analyze
the methods’ runtimes in a multi-node environment using 2 nodes and 8 processes per
node with a total 16 MPI processes.
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Figure 5.4: Profiling on two nodes with teams on the same node.

For the analysis we have two options while using multiple nodes. We can either
map the ranks of the same team onto the same node, or map the replicated ranks
onto the same node. We first look into the case where the teams are mapped onto
the same node in figure 5.4 above. All the methods except our method Sharing seem
unaffected, but our method Sharing now has a runtime of 448.7 seconds which lies
slightly under the runtime of our method Hashes. The reason for this is the increased
MPI_Test execution time which indicates our task sharing communication overhead.
Ranks call MPI_Test while waiting for their ongoing MPI communication between
their replicas to be completed (4.2.2). And since teams are one the same node and
replicas are on different nodes, and the inter-node communication is a lot slower than
the intra-node communication we get a much higher execution time compared to the
single-node case.

We can reduce this overhead by mapping the replicated ranks onto the same node
and as a consequence use task sharing (heavy MPI communication) on this node only,
which is evaluated and plotted in figure 5.5 in the next page. In this case we get a very
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Figure 5.5: Profiling on two nodes with replicas on the same node.

similar result as the single-node run because the MPI communication between replicas
is much more expensive than the MPI communication within teams if task sharing
is used and by mapping the replicas onto the same node we can avoid expensive
inter-node MPI communication.

Strong Scaling

In our multi-node strong scaling analysis we test with 2 nodes and from 2 processes
per node up to 16 processes per node with a total of 32 MPI processes. For the strong
scaling comparison on multiple nodes we again have the option of mapping the teams
or replicas onto the same node. We first look into the expensive case for our method
Sharing where teams are on the same node in figure 5.6 in the next page.

As we have already seen in our previous analysis, our method Sharing which employs
our task sharing mechanism suffers from this option. The cyan line that represents
our method Sharing loses its performance advantage that comes from its task sharing
mechanism after about 8 processes per node, and becomes even less efficient than our
redundant solutions in terms of performance. This decline in performance is because
of the increased communication overhead. We have noted in section 3.5.2 that the
tasks need to be compute-heavy in order for the task sharing to compensate for the
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Figure 5.6: Strong scaling on two nodes with teams on the same node.

additional MPI communication overhead that it brings. In strong scaling the more
processes we conduct in the experiment, the more the domain gets divided per process,
and because the domain gets smaller per rank, the actual computation time of a task
gets also smaller per rank which makes the tasks not compute-heavy enough. Instead
of waiting for the MPI communication of the task sharing to be completed, computing
the tasks redundantly becomes more efficient in this case.

We can again mitigate the performance problem explained above by mapping the
replicas on the same node and use the intra-node communication for the more expensive
MPI communications. The plot of this case is depicted in figure 5.7 in the next page.
We have only included even numbers for the number of processes per node because
we could not map all the replicas onto the same node otherwise. We again get a result
that is very similar to the single-node case. Other methods than Sharing seem to be
unaffected from the rank mapping options in this setup as well.

In multi-node performance evaluations we have solved our performance problems
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Figure 5.7: Strong scaling on two nodes with replicas on the same node.

for our method Sharing by employing a specific rank-to-node mapping. As we have
mentioned in section 3.6.2, there is also another possible approach of increasing the
decomposition factor which may help us improve the performance depending on the
implementation of our methods.

5.2.3 Decomposition Factor Scaling

In this section we only focus on our method Sharing and the option of mapping teams
onto the same node. We see its runtime in figure 5.8 in the next page, evaluated with
different decomposition factors further dividing the domain and creating more primary
and secondary blocks. We do not notice a significant change in the runtime. If we
look into our task sharing implementation explained in section 4.2.2, we notice that
the only useful computation that we have while waiting for the ongoing task sharing
MPI communication to be completed is checking the admissibility of the secondary
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Figure 5.8: Decomposition factor scaling using 3000 by 3000 cells.

blocks after receiving (4.5). One thing we could not do e.g. was posting the task sharing
receive calls and then computing, updating and sending the primary blocks iteratively
while waiting for the posted receives to be completed, because we have to first agree
on an admissible time step size and therefore we must first compute all of our primary
blocks before updating them. If we increase the number of cells in x and y directions
up to 6000 then we get the result in figure 5.9 in the next page. Here we notice that
the only performance improvement comes from adding an extra decomposition factor,
however the rest looks similar to our previous result. We believe that this performance
improvement is related to the send buffer sizes and the protocols that are used within
the MPI. For smaller message a different protocol is used and therefore we can see its
difference only in the first additional decomposition factor. If we further increase the
decomposition factor we still cannot see that our computations during the ongoing MPI
communication can improve the runtime with our current implementation scheme.
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Figure 5.9: Decomposition factor scaling using 6000 by 6000 cells.
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6 Further Work

6.1 Improvement

Our method Hashes that we introduce in section 4.1 can only provide an early SDC
detection. The method can be improved to support more than two teams with a voting
mechanism similar to the mechanism defined in RedMPI (2.1) to identify healthy teams
within the TeaMPI library and recover the detected corrupted teams. This would
additionally provide recovery to the method.

A second improvement could be done by adding additional admissibility criteria to
our admissibility checks, especially for the update arrays. The previous values in the
update arrays that are computed in previous simulation times could maybe be saved
and used for a prediction or guess of their current state, similar to the DMP that we
use for the data arrays. In our SWE applications there are more update arrays than the
data arrays in total, so adding an admissibility criterion for the update arrays could
greatly improve the DUE and Correctable outcome rates of our methods Sharing and
Redundant in random bit-flip injection evaluations.

Our reporting and recovery system for the primary blocks (4.8) as well as for the
secondary blocks (4.9) cannot handle some soft error cases explained in sections 4.2.3.
We have e.g. not implemented any recovery mechanisms for the multiple soft errors that
can corrupt the application at different replicas at the same time. Also, our secondary
block recovery mechanism can be improved to recover from the cases where a soft
error corrupts a primary block of a rank after its validation and causes the admissibility
criteria to fail in the secondary block validation right after the task sharing in our
method Sharing. This situation can be handled e.g. by storing the received blocks from
the task sharing without overwriting the current states of the secondary blocks and
trying to recover using them in case a possible SDC is detected. It is also possible to
integrate additional mechanisms to our recovery like bit-wise comparison of the blocks
to make sure that the replicas hold the exact same block information after the recovery.

One study did use CR together with replication as explained in section 2.2. Applica-
tion level CR mechanisms or different communication mechanisms that can communi-
cate the "in-memory" checkpoint via MPI can similarly be combined with our methods
to recover a whole team.

Lastly, one important thing we have noticed is that in some cases the injected error
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can be spread to other blocks that are held in different ranks of the same team, and the
recovery of a corrupted rank should therefore include the recovery of all of its team.
This is especially important for our method Redundant because it has the potential to
recover from such cases. However in our recovery mechanisms we did not include the
recovery of all the ranks in the corrupted teams, but we only recover the corrupted
ranks that could notice the error using our admissibility criteria. So, their recovery
does not depend on each other. Yet, we have noticed this too late and did not have the
time to extend our recovery mechanism. Fortunately this has no effect on our soft error
outcome rate evaluations in section 5.1 because our method Sharing cannot recover if it
does not immediately detect the injected error anyways because of the task sharing, and
our method Redundant runs the teams independent from each other and this just affects
the corrupted teams’ current states and does not affect the healthy teams’ outputs.
However, extending this is important for our method Redundant since it could guarantee
us a complete recovery of the whole team in case an error could eventually be detected
by our admissibility checks at any iteration. Additionally, a recovered team could e.g.
later help us recover other corrupted teams. Therefore this extension needs to be added
to our recovery mechanism by e.g. modifying our primary/secondary block reporting
and recovery system to recover all the ranks in a team in case any of them is potentially
corrupted.

It is hard to cover all the error cases especially when it comes to soft error resilience
since soft errors can typically cause SDCs which do not directly raise an error in the
application. Therefore our methods should definitely be tested with more random
bit-flip injections – also at different places in the code – for better identification of their
weaknesses which could then be improved accordingly.

6.2 Hard Error Resilience

Providing hard error resilience was out of scope for this thesis, however our method
Hashes can easily be integrated to also provide additional hard error resilience using
the TeaMPI library by adding an additional heartbeat pair that is bound to wall-clock
time. It should then be able to detect any slowing or failing rank. Also we have already
prepared our methods Sharing and Redundant for hard error integration using the
TeaMPI-heartbeats but they need to be tested and evaluated using different set-ups and
techniques in order to make sure that our soft error resilience does not intervene with
hard error resilience mechanisms.
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6.3 Testing on Different and Larger Applications

It would also be very interesting to test our methods on larger and different applications.
ExaHyPE [16] can e.g. use different solvers that has different schemes and can maybe
help improving our multi-node performances by studying the decomposition factor.
Our methods can also be tested with different simulation types e.g. in areas like
seismology and astrophysics to study the effect of different simulation types on the
soft error outcome rates.
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We have introduced three different methods for soft error resilience, which are im-
plemented for the simulation software SWE using the TeaMPI library. Each method
makes use of replication by employing two teams. The resilience in our first method
(Hashes) depends on the direct hash value comparisons of the results and can detect any
SDC that can occur in the largest data structures of our application, however it cannot
provide error correction and always needs to be restarted after an error detection. Our
second (Sharing) and third (Redundant) methods can provide both soft error detection
and recovery. They both use an a-posteriori approach to detect a potential error by
applying predefined admissibility checks which are not always accurate with their
predictions. In order to make sure that no potential error is detected at other replicas,
they exchange byte-size reports and can recover each other by sending their block
information via MPI communication in case a potential error is detected. Our method
Sharing additionally employs a task sharing mechanism between its replicas, which can
reduce the compute costs by up to 43%. Our methods Hashes and Redundant however
make use of redundant computation and therefore have worse runtimes than method
Sharing. And since method Redundant employs admissibility checks which are more
expensive than hashing, it has the worst runtime overall.

We have also evaluated our methods Sharing and Redundant by injecting randomly
selected bit-flips into the four largest data arrays (b,h,hu,hv) and eight net-update arrays
of a wave propagation (radialBathymetryDamBreak) scenario at a fixed place in the source
code and achieved 4.36%/0.43% DUE and 15.22%/19.06% Correctable outcome rates.
Our methods could detect and correct all the errors injected into the array b since it
should stay constant, and if we only focus on relatively larger errors that are injected
only into the left 10 bits of randomly selected floating-point numbers we can get a
50.2% Correctable outcome rates for the data arrays for both of the methods. Our
method Sharing could however never correct the errors that were injected into the
update arrays since the task sharing makes them propagate to other teams, which
disables the recovery for the errors that are detected in later simulation times. In this
case the redundant computation in method Redundant can help us achieve a Correctable
outcome rate of about 15.34% of the errors that are injected into the update arrays even
though we do not have any sensible admissibility criterion for the update arrays. Any
additional admissibility criterion for the update arrays could improve our methods’
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correction rates. Also our recovery mechanisms need to be improved to provide better
soft error detection and recovery since they cannot recover from some soft error cases
that we are aware of. We have also found out that the SDC outcome rates of our
methods can really depend on a lot of parameters such as the relaxation factor in our
relaxed DMP criterion, total simulation duration, and the simulated scenario type. In
our analysis of different parameters we have reported higher DUE and Correctable
outcome rates for lower relaxation factors and for total simulation durations that are
greater than the simulation time in which the error was injected. We have also seen
that the type of the simulation scenario can have a significant effect on the correction
rates of our methods.
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