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Abstract—High computational demands of complex deep learn-
ing models led to workload distribution across multiple machines.
Many frameworks for distributed machine learning (DML) have
been developed and are employed in practice for orchestrating
workload distribution.

In this paper, we analyze and compare network behaviors of
three widely used state-of-the-art DML frameworks. The study
reveals that traffic can largely vary across the frameworks. While
some frameworks exhibit well predictable patterns, others are less
structured. We further explore whether and how it is possible to
relate the network traffic to the DML jobs’ attributes, and present
a multiple linear regression model accordingly. Our results can
inform the networking community about traffic characteristics
and contribute toward the generation of realistic DML traffic for
simulation studies.

Index Terms—distributed machine learning, network traffic
measurement

I. INTRODUCTION

Machine learning (ML) is becoming an integral part of
today’s applications from business over health to entertain-
ment [1]–[3]. The increased demand for high performance
models has led to a continuous growth of model complexities
and dataset sizes [4], [5]. This growth has outpaced the
technological advancements in the hardware field and, hence,
workload is distributed across several workers. In particular,
data parallelism that partitions and distributes the dataset
across multiple machines in a cluster training the model, has
received much attention both in academia and industry.

As the workload is distributed to several workers, com-
putational restraints shift to communication bottlenecks [6]:
Improvements in hardware accelerators for computing, such
as GPUs or TPUs, increased the frequency of gradient updates
which demands for higher performance from the network. It
has been shown that neglecting this can result in reduced
benefits of distributed training [6], [7]. Hence, aside from
scaling up bare network capacity, e.g., from 10G or 40G to
100G, a variety of frameworks for distributed training of ML
models (DML) has been proposed which take communication
into account [8]–[13]. On one hand these frameworks aim to
reduce the training time by reducing the communication time
with computation methods, e.g., compressing gradients [14].
On the other hand, they also address the communication
between workers, e.g., by training in synchronous or asyn-
chronous manner [15] or by using different communication

structures such as server/client [10], rings [8], trees or full-
meshed patterns [9]. Recent proposals, such as KungFu, can
even adapt their communication structure during run-time to
account for individual performance of workers or to mitigate
network issues [9].

Motivated by these challenges, the networking community
has started making great efforts to support DML workloads.
Proposed solutions range from tailored flow scheduling [16],
[17], via in-network aggregation of gradients leveraging pro-
grammable data-planes [18]–[20], to specifically crafted high-
bandwidth topologies [21]–[23]. While the variety of (dy-
namic) communication patterns suggests heterogenity of the
resulting network traffic, the network-level improvements as-
sume one particular pattern, e.g., parameter-server [23] or
ring-reduce [21]. This might especially be problematic when
targeting public cloud environments [24] with many tenants
that might use different frameworks. More specifically, the
traces and distributions used for evaluating networking algo-
rithms or topology designs cover mainly web-based and related
backend services but neglect the nature of DML network
traffic, e.g., [25], [26]. Available traces from the DML regime
cover only the DML job requirements but do not account for
network traffic [27]. To the best of our knowledge, traffic
traces of DML workloads are not available. Consequently,
networks for DML are often evaluated using testbed imple-
mentations, e.g., [16], [18] – a costly undergoing. Simulative
evaluations considering DML traffic rely on simple approaches
and are limited to single variants of distributed training proce-
dures [18], [23], [28]. Available theoretical models also lack
in-depth involvement of batch size, model, and framework. An
analysis of the network traffic, which grasps the heterogeneity
of available frameworks and configurations, and the impact of
network conditions, is missing.

To illustrate heterogeneity of DML traffic, this paper
overviews and characterizes the communication behavior of
three state-of-the-art industry standard DML frameworks. It
analyzes traffic traces from running DML frameworks in
more than 75 scenarios varying trained deep learning models,
framework configurations, and packet loss. Further, it provides
insights into the flow patterns and the throughput of the
network. By relating networking resource consumption to ML
training metrics such as accuracy, another cost aspect of DML
training is presented. To this end, the study derives an integral
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Fig. 1. Two approaches to parallelization of distributed training: Model and
Data Parallelism. Figure based on [15, Fig. 2].

model to estimate the data consumption of a given training job.
Overall, we believe that our results provide interesting insights
to be reused, e.g., in generative traffic models for simulations,
and future network algorithm and topology design studies. As
a contribution to the research community, we make our code
and traces publicly available.1

The remainder is structured as follows: Sec. II gives a brief
overview of DML and the available frameworks. Sec. III lists
related traces or generation methodologies for DML traffic.
Sec. IV describes the testbed and measurement procedure.
Sec. V provides the flow-level analysis of the communication
behavior and outlines potential influence factors of bandwidth
consumption. Finally, Sec. VI introduces a regression model
to uncover the drivers of network utilization. We conclude and
discuss future work in Sec. VII.

II. BACKGROUND

This section gives an introduction to DML in general,
introduces available communication flavors and frameworks.

A. Distributed Training

There are two types of distributed training utilized by
common frameworks:

• Model Parallelism: distributing parts of a single model
to multiple nodes using the same training data (Fig. 1(a)).

• Data Parallelism: training multiple instances of the same
model on different subsets of the training data (Fig. 1(b)).

Model parallelism is beneficial if the model does not fit into
the memory of a single node. However, since most commonly
used models still fit onto single nodes, it is less often applied in
practice. Therefore, our analysis focuses on data parallelism.

Data parallel methods divide the training dataset into non-
overlapping partitions (Fig. 1). All of the workers apply the
same model on different subsets of the training data using the
parallelized variant of the Stochastic Gradient Descent (SGD)
algorithm. The exchanged gradients are then aggregated and
sent back to each worker to update their local version of the
model. This process can be done either in synchronous or
asynchronous manner.

In the synchronous variant, each worker waits until all
the other workers complete their calculations and only then
exchanges parameters. The asynchronous variant enables each

1https://github.com/tum-lkn/dml-network-traffic-analysis

worker to work at their own pace, without being affected by
the slow workers. This approach increases the fault tolerance,
as the system will continue to function even if one of the
nodes fail, at the cost of introducing stale gradients, in which
the slow workers train and update an old version of the model.

B. Communication Topologies
There are several popular structures such as trees, rings and

parameter server (PS) architectures, which are being used in
practice for DML clusters [15]. The synchronous all-reduce
paradigm [29] is used for mesh, tree and ring structures,
whereas asynchronous training is generally implemented on
PS architectures.

The implementation of all-reduce consists of each worker
updating all other workers. In the ring structure, updates are
only sent to the next worker and thus forming a ring-like
structure. For tree structures, communication and exchange
is directed via parent nodes. PS uses a more centralized
approach: All the variables are stored in parameter server(s)
and workers communicate with the parameter server(s) for
pushing and pulling updated gradients. A chief is responsible
for coordinating the process.

Various communication topologies have different needs and
hence multiple communication libraries exist in the litera-
ture [30].

C. Communication Libraries
The two main communication primitives are point-to-point

communication and collective communication. Point-to-point
communication serves the purpose for transmitting a message
between a pair of processes, whereas collective communica-
tion is used for transmission of messages among groups of
processes. Frequently used libraries for the implementation of
communication strategies include Google Remote Procedure
Call (gRPC) [31], Message Passing Interface (MPI) [32],
Facebook’s Gloo [33] and NVIDIA Collective Communication
Library (NCCL) [34].
gRPC relies on point-to-point communication, in the spirit
of client/server communication where a client can directly
call a method on a server. The library has no collective
communication support.
MPI is the most often used, de facto standard for high-
performance computing and supports collective communica-
tion [30]. It has many implementations ranging from widely
used open source OpenMPI library to commercial ones.
Gloo is a collective communications library developed by
Facebook specially for ML applications.
NCCL is developed to achieve high bandwidth over PCIe and
NVLink between GPUs in a single node, or over Ethernet and
InfiniBand for connections across machines. It is optimized
for NVIDIA GPUs, implementing multi-node and multi-GPU
communication standards supporting collective communica-
tion as well as point-to-point communication. It is often used
for accelerating collective communication in DML [9].

Communication libraries and topologies are made available
to frameworks, which in turn orchestrate the distributed train-
ing process.
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Fig. 2. Overview of the testbed.

D. DML Frameworks

The DML survey presented in [15] outlines the existing
libraries and frameworks for distributing the training work-
load. Our evaluation focuses on three frameworks which
provide Data Parallelism, and represent state-of-the-art in
research and/or are adopted by industry: TensorFlow Dis-
tributed [10], Horovod [8] and KungFu [9].
TensorFlow has its own distributed training implementation
that allows to distribute tasks across multiple GPUs, TPUs,
or machines employing data parallel methods. It uses gRPC
as communication library [30] and supports synchronous
and asynchronous communication strategies through ring all-
reduce algorithms on top of gRPC, NCCL’s all-reduce algo-
rithms, and parameter server strategies.
Horovod is an industry standard distributed deep learning
training framework supporting TensorFlow, Keras [35],
PyTorch [12], and Apache MXNet [36]. It distributes the
training process with minimal code addition to the single node
training scripts and supports only synchronous communication
strategies through ring all-reduce algorithms. Horovod can
use Gloo or MPI for collective communication. It also supports
NCCL for tensor operations, however, primitive administrative
operations such as gathering the number of workers and the
ranks of the workers require MPI or Gloo.
KungFu is a framework for adaptively distributing the ML
workload. It provides synchronous and asynchronous training,
and includes an online monitoring component which adapts
the communication architecture of the workers according to
the network state during training. Its distributed synchronous
optimizer (referred as Synchronous SGD optimizer) is equiv-
alent to the one in Horovod. The asynchronous optimizer
(referred to as Pair Averaging optimizer) is the implementation
of Asynchronous Decentralized Parallel SGD [37]. KungFu
includes its own collective communication API which can
be accelerated via NCCL. Moreover, KungFu provides many
topologies for the connectivity patterns of the workers, e.g.,
Tree, Star, Clique and Binary Tree Star (BTS).

III. RELATED WORK

We are not aware of any thorough comparison of network
traffic from different DML frameworks. However, there are
several relevant works, which shed light on the topic from
different perspectives. From a computing resources perspec-
tive, insights about requirements and analysis on GPU usage

from production DML clusters have been provided in the
literature [27]. But they neglect the communication aspect
and do not focus on network analysis. Since several studies
have shown that communication is a bottleneck to distributed
training [6], many research papers focus on improving the
communication efficiency such that increasing the number of
GPUs scales-out linearly. Solutions include compressing the
gradients [14], micro-managing communication patterns of
nodes by coordinating distributed gradient computations [38],
pruning model parameters [4] or scheduling communica-
tion [39]. They use additional (local) computation to reduce
communication and focus on improving the total training time
but they leave aside implications on the network.

In order to achieve linear scale-out, literature focuses
on modifying the all-reduce architecture to hierarchical all-
reduce [40], and developing network-based systems such as
in-network aggregation to overcome communication bottle-
necks [18], [19], flow schedulers [17] or tailored topolo-
gies [22], [23]. These works revolve around network traffic of
DML but focus on point solutions for specific frameworks or
communication patterns. For instance, [23] assumes only PS-
based DML while [18] considers only ring-reduce DML traffic
in the evaluation. Our study provides a comparison of traffic
patterns as observed from publicly available frameworks.

In addition to proposing new designs, some works examine
different approaches’ throughput in terms of image per second
trained and scalability [41], [42]. Other works aim to measure
network performance of distributed training approaches as
in [6], [30]. All these researches focus on identifying the
communication bottleneck to the total training time but leave
patterns on the network aside. There exists papers in the
literature which simulate performance of DML on various
topologies [18], [28]. However, these works include simpli-
fied assumptions about flow distributions and the used DML
frameworks. That is, they consider given flow sizes and only
homogeneous communication structures. Finally, there are
papers outlining link utilization metrics of DML training [43].
However, these papers also lack either distinction between
frameworks, model sizes, or do not specify temporal patterns.

IV. MEASUREMENT SETUP

Our goal is to explore and compare the network behavior of
frameworks and models on a small representative setup. This
section describes the testbed and the measurement procedure
for tracing the network traffic.

A. Testbed

Fig. 2 shows the testbed. It consists of four servers running
Ubuntu 18.04 (5.15.0-47-generic kernel) with 128 GB of RAM
and Intel Xeon Silver 4114 @ 2.2 GHz (20 cores). Each of
them contains one NVIDIA Tesla T4 GPU and is connected
via a 10G Ethernet port to a Dell S4048-ON switch in L2 for-
warding mode. The servers run kernel-based virtual machines
(VM) with 48 GB of RAM and 8 pinned CPU cores. Each of
the VMs is running the latest version of ”generic/ubuntu1804”
Vagrant Box. The GPUs and NICs are handed over to the VMs



using PCI pass-through capabilities. Communication libraries
and frameworks are installed using the default instructions
from the respective webpages or repositories. Specifically, the
testbed uses TensorFlow 2.3.0, Horovod v0.22, KungFu
0.2. Each VM is configured to collect packets originating
from itself via tcpdump. Moreover, application-level logs are
collected with respect to each training step (training accuracy,
loss, and step duration) for further analysis.

B. Settings

In order to analyze and understand the communication
pattern structure, four models of different sizes are trained:
MobileNetv2 (14MB) [44], DenseNet201 (80MB) [45],
ResNet50 (97MB) [46] and ResNet101 (171MB) [46]. The
models are selected from the most popular deep learning
libraries and are also used as benchmarks in similar studies [9],
[30]. We use the CIFAR10 [47] dataset to train the models. It
consists of 60 000 32x32 color images with 50 000 training
and 10 000 test samples. If not stated otherwise, we set
the batch size per worker to 64. All networks are trained
with random weight initialization (cold start). We use the
Adam optimizer [48] and train for 20 epochs where an epoch
considers all samples in the training dataset.

The compared training framework settings are:
• TensorFlow Distributed Framework: Ring-Reduce

Synchronous SGD (S-SGD) on GPU;
• TensorFlow Distributed Framework: Parameter Server

Training on CPU (PS);
• Horovod Framework: Ring Reduce and Hierarchical

Reduce S-SGD on GPU;
• KungFu Framework: S-SGD on GPU;
• KungFu Framework: Asynchronous Decentralized Par-

allel SGD on GPU (PairAvg).
For further variation, Horovod uses NCCL in addition to
MPI and Gloo, and TensorFlow is also run with NCCL
support in addition to gRPC. For KungFu, BTS, Tree, Star
and Clique connectivity patterns are run. We exclude addi-
tional optimization strategies described in Sec. III since they
are not an inherent component of the frameworks. All the
measurements include four nodes, except PS training, which
includes six nodes. Each of the framework settings and models
are measured once – more than 75 scenarios in total.

V. EVALUATION

In this section, we analyze the packet traces collected
during the distributed training process in order to compare
the network traffic of different frameworks, models, and com-
munication backends.

A. Total Data Transferred and Communication Patterns

Data Transferred. Fig. 3 shows the total transmitted volume
per model and framework together with the model sizes. The
volumes for 20 epochs range between ≈ 140GB and ≈
4 000GB. The trained model is the main influencing factor on
the total transmitted volume. TensorFlow, Horovod and
KungFu S-SGD distribute the SGD via the same approaches.
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Fig. 3. Comparison of total traffic volume for 20 training epochs across four
models and four framework configurations. Traffic volumes vary with the size
of the model being trained (right axis).

Hence, they transmit the same total amount of data. Compared
to these, KungFu PairAvg is more communication efficient;
it transmits ≈ 30% less data for all of the models. Other
influence factors are not observed. For instance, measurements
that use RMSProp instead of Adam or NCCL instead of gRPC
or MPI, do not differ in the transmitted volumes.

The right axis in Fig. 3 presents the model sizes. Model
size is seen to be positively correlated with total amount of
data transferred during a run. This is in line with similar
assessments, e.g., as done in [18]. Larger models have more
variables, accordingly the gradients exchanged in-between
steps are expected to be larger and therefore, more data is
transmitted.
Communication Patterns. Fig. 4 shows heatmaps of the total
transmitted volume between nodes to illustrate the commu-
nication pattern of various architectures. For the ring-reduce
pattern (Fig. 4(a)), the dark squares indicate the neighboring
nodes in the ring. In this case, the structure of the ring is
W1 −W2 −W3 −W4 −W1. In all frameworks, the user
can specify the order of the ring. On average, the intense
communication pairs in the ring accumulate 566GB, whereas
the opposite direction in the ring amounts to less than 1GB.
These opposite flows are constituted from acknowledgements.
KungFu S-SGD with BTS (Fig. 4(b)) illustrates a pattern
where W1 is the root of a tree and relays all the commu-
nication. W4 is a child of W2 and relays 1/3 of the traffic
through it. The reason for the direct communication between
W1 and W4 could not be clarified. Tree and Star topologies
use only W1 as relaying node (Fig. 4(c) & 4(d) ). The Clique
structure (Fig. 4(e)) shows the most dense pattern for S-
SGD with data transmissions for all available communication
pairs. KungFu PairAvg (Fig. 4(f)-4(i)) consistently employs
a full-mesh pattern. A more intense structure similar to the
ring pattern is evident. Finally, PS training pattern (Fig. 4(j))
shows that workers are communicating only with the param-
eter server. No cross-communication amongst the workers is
observed. The chief distributes the tasks to all the workers
and the parameter server. Ring, tree and PS structures exploit
predictable patterns for generalization to larger scales whereas
asynchronous training requires further analysis with larger
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(a) Ring (Horovod).
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(b) BTS (KungFu S-SGD).
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(c) Tree (KungFu S-SGD).
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(d) Star (KungFu S-SGD).
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(e) Clique (KungFu S-SGD).
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(f) BTS (KungFu PairAvg).
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(g) Tree (KungFu PairAvg).
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(h) Star (KungFu PairAvg).
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(i) Clique (KungFu PairAvg).
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(j) PS (TensorFlow).

Fig. 4. Communication Patterns: heatmap of total transmitted volume per framework configuration, averaged over all models. Connectivity patterns depend
on the distributed optimizer and training strategy in use. “Ch.” stands for Chief in Fig. 4(j).
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Fig. 5. Number of flows per framework and model. TensorFlow and
Horovod represent ring topology. For KungFu, BTS, Tree and Star topolo-
gies have same number of flows whereas Clique topology has more flows.

settings.

B. Flow Analysis

Having analyzed the total traffic, we are now interested in
how many network flows are used and how traffic is distributed
among flows. We define a flow as the five tuple of source and
destination IP addresses, transport protocol, and source and
destination ports.

1) Flow Structure: Fig. 5 reports the total number of
flows per framework and model. The number of flows in a
framework is constant across models except for Horovod
and KungFu with Clique topology. Moreover, the number
of flows in a distributed training scenario depends mainly
on the number of workers and the communication strategies.
Repeated measurements with the same settings indicate that
the number of flows do not change. The number of large
flows for serving gradient exchanges varies. For synchronous
training, there are four big flows in the ring topology, six big
flows in BTS and Tree, and eight big flows for the case of the
asynchronous PairAvg optimizer. These big flows make up to
99% of the total transmitted volume on average.
TensorFlow using ring all-reduce strategy has 24 flows.

For 4 workers in ring structure, 4 main flows exchange gradi-
ents and other 4 serve for acknowledgements in the reverse

direction. However, TensorFlow opens side connections
between the non-neighboring nodes in the ring. The traces
contain per run 16 of such flows which each amounts only to
1MB traffic on average with 912KB variance.
Horovod has 24 flows except for a single MobileNetv2

measurement with 88 flows. When the VM and Horovod is
set up for the first time, Horovod runs initialization checks
between the servers and this causes the number of flows
to grow to 88. This behavior is repeated every hour due
to caching mechanisms. Although the number of flows in
TensorFlow and Horovod is the same, 8 flows are used
by SSH connections in Horovod.
KungFu S-SGD, using BTS, Tree and Star communication

topologies, has 12 flows in total, consisting of 2 flows in both
directions for each edge of the tree. The Clique topology serves
46 flows on average. In addition to the 12 flows for serving
gradient exchanges, it has 22 small flows consisting of two
sizes with 54Bytes and 74Bytes. The remaining flows have
an average size of 63MB. KungFu PairAvg’s pattern has 36
flows in total for BTS, Tree and Star communication patterns
and 64 for Clique topology. W1 has 4 flows with the other
workers in both directions making up 24 flows. The remaining
12 flows are between the rest of the workers in both directions.
As W1 is the root node of the tree, it has double the number
of connections. Similar to S-SGD case, small flows amounting
to 54Bytes and 74Bytes make up the difference between
flow numbers between Clique topology and other topologies.
Overall, we conclude that the chosen communication strategy
impacts the number of flows independently of the framework.

2) Temporal Behavior of Flows: Fig. 6 presents the tem-
poral behavior of the flows.2 For each flow, it illustrates the
transmitted data per 10 s time window. The more solid the bar
a window, the more data is transmitted. Values are normalized
to the maximum throughput per scenario. As seen from the
number of opaque bars, large flows only form a small fraction
and serve uniformly throughout the whole training process.
They exist mainly due to serving the gradient exchanges which

2We omit the PS scenario in the following since it was trained on CPU and
hence the timings are not comparable.
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Fig. 7. Throughput per communication pair over time. Synchronous commu-
nication shows clearly periodic behavior (a). Less structure is evident in the
asynchronous case (b). The ring structure of the synchronous case has only
4 flows forming the ring; the other flows are 0.

contribute towards learning process. The smaller flows are also
present during the whole run. However, the transmitted volume
is low. For the ring-reduce patterns employed by Horovod
and TensorFlow, all the big flows start at the very beginning
of the training. This is different for KungFu S-SGD optimizer.
A closer look with one second precision reveals that two sets
of flows start at the very beginning and the other two starts
slightly after. This difference is caused by the BTS pattern.
All the traffic is relayed via the root node of the tree. There
is a slight delay between receiving and sending at the root
and hence the arrival times of the flows are slightly different.
In the asynchronous case implemented by KungFu PairAvg,
flows arrive independently of each other. Besides, the data
transmission shows less of a continuous pattern. This is not
very much clear since all workers have the same specifications
and do not deviate in terms of computation power.

The flow-level analysis reveals different patterns across the
frameworks. Besides the number of flows, also the intra-
flow behavior differs. To assess this more in detail, the data
transmission rates of the communication pairs are evaluated
in the following subsection.

C. Intra-flow Patterns

As a first analysis of the intra-flow behavior, Table I presents
the average accumulated throughput values for the four 10G
links in the testbed. To obtain a larger number of samples,

TABLE I
THROUGHPUT VALUES [GBPS]: TOTAL THROUGHPUT IN ALL OF THE

LINKS, WITHOUT NCCL ACCELERATION. 95% CONFIDENCE INTERVALS
ARE REPORTED IN SQUARE BRACKETS.

TensorFlow Horovod KungFu
(S-SGD)

KungFu
(PairAvg)

MobileNetv2 4.91
[4.82, 5.00]

8.19
[7.80, 8.58]

6.96
[6.14, 7.78]

4.55
[4.06, 5.04]

DenseNet201 6.42
[6.29, 6.55]

11.59
[11.39, 11.80]

12.33
[12.00, 12.65]

10.09
[9.88, 10.29]

ResNet50 6.81
[6.71, 6.90]

12.80
[12.12, 13.48]

13.17
[12.68, 13.67]

11.72
[11.46, 11.98]

ResNet101 6.33
[6.19, 6.47]

13.68
[13.37, 14.00]

13.56
[13.18, 13.95]

12.08
[11.76, 12.41]

one run is split into multiple windows (batch mean) and
in addition 10 runs per framework are collected. Values are
reported from 30 samples in total. None of the frameworks
makes efficient usage of the available bandwidth without
NCCL acceleration. We note that Horovod and KungFu S-
SGD consistently obtain higher throughput values, followed
by KungFu PairAvg and TensorFlow. Within a framework,
the trained model affects the observed throughput. Smaller
models, e.g. MobileNetv2 and DenseNet201, result in lower
average throughput values than the larger models such as
ResNet101.

Larger models lead to larger gradients being transmitted at
the end of a step; hence, larger models lead to more data
transmission. However, contrary to the expectation, framework
causes a bottleneck and bandwidth utilization is closely linked
to framework and communication backend in use rather than
the model size. TensorFlow bottlenecks the communica-
tion at total throughput around 4.9Gbps for MobileNetv2
and 6.5Gbps for the other models. The lower utilization
of TensorFlow is caused by the lack of collective com-
munication support of gRPC library. OpenMPI as used by
Horovod outperforms gRPC and KungFu’s dedicated API
further improves upon OpenMPI. Since KungFu PairAvg op-
timizer consumes less data overall in comparison to the other
frameworks, it translates into lower bandwidth utilization.

In order to understand how the synchronous and asyn-
chronous case behave on a smaller time scale, Fig. 7 zooms
into 250ms of the captured data. It compares the throughput
for each communication pair across these cases for training
MobileNetv2 model. Synchronous (Fig. 7(a)) uses Horovod
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(a) MobileNetv2. (b) DenseNet201. (c) ResNet50. (d) ResNet101.

TensorFlow Horovod KungFu (S-SGD) KungFu (PairAvg)

Fig. 8. Accuracy vs. transmitted volume. Dashed lines indicate 60% and 80% accuracy levels respectively. Each framework exhibits diminishing gains in
accuracy with respect to transmitted data.

TABLE II
THROUGHPUT VALUES [GBPS]: THROUGHPUT OF A FLOW WHICH

CARRIES GRADIENT EXCHANGE. SQUARE BRACKETS REPORT 95%
CONFIDENCE INTERVALS.

Average
Throughput

Peak
Throughput

TensorFlow - gRPC 1.65 [1.61, 1.68] 9.60
TensorFlow - gRPC - NCCL 6.38 [6.25, 6.51] 9.78

Horovod - MPI 3.29 [3.20, 3.39] 8.07
Horovod - MPI - NCCL 6.61 [6.55, 6.67] 9.74

Horovod - Gloo 4.70 [4.56, 4.83] 9.61
Horovod - Gloo - NCCL 6.23 [6.11, 6.35] 9.76

KungFu (S-SGD) 2.76 [2.65, 2.87] 9.56
KungFu (PairAvg) 1.42 [1.28, 1.56] 9.62

with the ring-reduce pattern. It uses all connections forming
the ring in a burst and stop fashion. The peaks correspond
to gradient exchanges and the valleys correspond to compu-
tation intervals. Since the training is synchronized across the
workers, they exchange gradients at the same time. The asyn-
chronous implementation uses KungFu PairAvg (Fig. 7(b)).
It shows peaks and bottoms at independent times without a
particular structure as all the workers are pushing updates once
the calculation is complete. Moreover, it can be seen that less
than 50% of the bandwidth is utilized at peaks for Horovod
whereas KungFu PairAvg utilizes over 60% bandwidth.

Table II compares eight combinations of frameworks and
communication backends for a single communication pair
which is used for gradient exchange while training a ResNet50
model. Throughput significantly depends on the communica-
tion backend. gRPC utilizes less than 20% of the available
bandwidth. MPI and Gloo backends make better use of the
bandwidth with collective communication support (NCCL).
They obtain average throughputs of 3.29Gbps and 4.70Gbps
respectively. KungFu seems to under-perform in comparison
to other backends for a single flow. However, as it uses six or
eight communication pairs depending on training strategy, it
makes up for it on the total throughput. Finally, accelerating
gRPC, MPI, or Gloo with NCCL most efficiently uses of
the available bandwidth by providing fast collectives. Using
NCCL utilizes around 65% of the whole bandwidth on av-
erage. For all cases, the peak throughput is close to the link

capacity.
From an intra-flow perspective, there are clear phases of

computation and communication for all frameworks indepen-
dently of the distribution approach. All frameworks show the
periodic nature of synchronous all-reduce. However, depend-
ing on the framework, there are specific nuances in flow
timings. The asynchronous case exhibits less structure. A
deeper analysis is left for future work.

D. The Cost of Accuracy

Fig. 8 shows the accuracy on training dataset vs ac-
cumulated data transmitted for the considered models and
frameworks. Overall, we observe the expected increase in
accuracy with transmitting more data and diminishing gains in
accuracy with more data transmitted. However, depending on
the used framework and model, there are differences. Starting
with MobileNetV2 (Fig. 8(a)), TensorFlow achieves much
lower accuracy of ≈ 0.65 compared to the other frameworks.
As the synchronous distribution approach for KungFu and
Horovod is implemented in a similar fashion which wraps
TensorFlow’s optimizer, it can be seen that 80% accuracy
can be reached with < 50GB data for MobileNetV2 by
both frameworks with the specified setting; for DenseNet201
500GB (Fig. 8(b)), for ResNet50 around 750GB (Fig. 8(c)),
and for ResNet101 2.6TB are required (Fig. 8(d)). KungFu
PairAvg outperforms all the other frameworks as it reaches
same accuracy with around 30% less data consumption.

The used frameworks and desired training performance need
to be considered when estimating the cost of training in the
network. A direct relation between the amount of transmitted
data and the achieved accuracy is hard to infer. The main
relation is introduced by the number of training steps as also
elaborated by other works. Hence, we limit the modeling to
the per step transmitted volume in the following.

E. Impact of Batch Size

Batch size refers to the number of data samples used by
each worker in a single training step. The DML frameworks
exchange data between the workers at the end of each step.
Therefore, batch size and communication/computation ratio
are closely linked to one another. Fig. 9 shows the throughput
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on a single link for batch sizes 64, 128 and 512. Bigger batch
sizes, increase computation to communication ratio: the dura-
tion of the valleys with no communication increases. Although
the batch size effects the communication ratio, transferred
volume per step remains the same and the communication
bursts utilize similar bandwidth, on average, to exchange the
gradients. This behavior is consistent across all frameworks
and models (figures are omitted for brevity).

F. Impact of Packet Loss

In order to simulate a complex topology with network
contention, we introduce additional packet loss to the mea-
surements. Fig. 10 shows the total training duration for
MobileNetv2 trained with TensorFlow normalized by the
case with 0% loss. Increased packet loss results in drastically
larger training times. With 0.01% loss, the time is already
doubled; 2% loss lead to training duration 8 times larger
than for 0% loss. An explanation is given by the performance
decrease of TCP in lossy networks. Introducing loss reduces
the exponential growth of the congestion window, which
results in lower throughput and, hence, increased training time.

VI. PREDICTION MODEL

Given an ML model and training parameters, our measure-
ments show that data transmitted per step is constant through-
out the training process (cf. Fig. 6). Since gradient exchange
is performed at the end of every step and it only depends
on the model, the size of the exchange remains constant. In
addition, the previous analysis shows that data transmitted for
the whole training process depends mainly on the framework
and communication topology in use and the model being
trained. In order to find out the main drivers of bandwidth
consumption, we build a model to predict transmitted volume
in each step (DataStep) given the framework, ML model, and
training parameters. We regress all the available parameters
on DataStep and report the significance of each parameter
using Ordinary Least Squares Multiple Linear Regression. The
model can be summarized as

DataStep =β0 + β1 ·Model Size (1)
+β2 · Framework Backend

+β3 ·Batch Size+ β4 · Comm Topology.

Model Size is a continuous variable while rest of the
variables are binary indicators. Framework and com-
munication backend are stacked into a single variable
(Framework Backend) in order to eliminate correlation
between regressors and to get an unbiased estimate.

The regression yields an R2 of 0.98. This indicates a very
strong correlation between the regressor and the variables.
Moreover, the regression results show that 95% confidence
intervals for Batch Size and Comm Topology include 0
and therefore, they are statistically insignificant at α = 0.05.
Framework Backend is only significant for KungFu

PairAvg, whereas it is insignificant for the other configura-
tions. The coefficient is negative. This confirms that KungFu
PairAvg consumes significantly less data. Moreover, the coef-
ficient of the Model Size is also significant: an increase of
1MB in model size corresponds to 5.7MB increase in data
transmitted per step on average with 95% confidence.

Finally, correlating model size and data transmitted per step
yields a correlation value of 0.97. This indicates that model
size explains most of the variance in transmitted volume per
step.

VII. CONCLUSION

This paper investigated the network traffic of three state-of-
the-art DML frameworks with varying training parameters. We
report key network metrics such as throughput, flow, and intra-
flow patterns and relate them to training accuracy. The findings
indicate that the traffic in terms of volume and communication
patterns varies depending on the framework and the specific
configuration. Our model for predicting the transmitted volume
per step indicates that the model size is the main determinant
of transmitted volume.

We believe that our measurement campaign opens interest-
ing future research directions and may even help improve traf-
fic engineering for machine learning applications. The estab-
lishment of the network behavior further provides guidance for
realistic traffic modeling and generation for simulation studies
and users to tune their data center architecture according to
the communication needs of the training system.
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