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Pantha rhei. (Everything flows.)

— Heraclitus
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A B S T R A C T

Studying the dynamics of blood flow is a key task for diagnosis,
treatment, and monitoring of any diseases affecting the heart and
the complex vasculature. With emerging biomedical imaging prin-
ciples such as four-dimensional flow magnetic resonance imaging
(4D flow MRI), we can map time-resolved and multi-directional blood
velocity distributions in a three-dimensional volume of interest. Using
image-based computational methods, the measured high-dimensional
velocity data can be leveraged to perform a quantitative analysis of
hemodynamic features. Clinical studies on various cohorts have sug-
gested that these features present novel predictive markers that may
aid cardiovascular disease management toward better patient out-
comes. However, 4D flow MRI is yet to become a default sequence
for quantitative flow assessment in the clinical routine. This thesis
contributes to a better understanding of the potentials and limitations
of quantifying hemodynamics using 4D flow MRI, with a particular
focus on its applicability in aortic diseases. We develop and investi-
gate quantitative flow parameters based on (i) in vivo MRI data of
healthy and diseased aortas, (ii) in vitro MRI data, which we acquire
with a custom-build physiological flow circuit that allows for highly
controlled, model-based, and prolonged (i.e. non-accelerated) imaging
studies, and (iii) simulated CFD data that we incorporate for proof-
of-principle and comparison at multiple points. Key contributions of
the conducted studies are: (i) a description of the impact of data noise,
image resolution, and vessel wall motion on wall shear stress esti-
mation; (ii) an investigation of the sensitivity of image-derived pulse
wave velocity estimates for changes in aortic wall compliance, as well
as confounding effects of temporal sampling; and (iii) novel insights
into hemodynamics of aortic dissections, in particular the complex
interplay between flow, pressure and wall dynamics, which we com-
pare with CFD simulations using fluid-structure interaction. Results
emphasize the versatility and promising potentials of quantitative
4D flow MRI while underlining important current limitations. This
should consolidate the role of 4D flow MRI in basic and translational
cardiovascular research, and further promote its use in the clinic.
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Z U S A M M E N FA S S U N G

Die Analyse der Blutflussdynamik spielt eine zentrale Rolle in der
Diagnose, Behandlung und Überwachung jeglicher Erkrankungen des
Herzens und des komplexen Gefäßsystems. Mit Bildgebungsverfah-
ren wie der vierdimensionalen Fluss-Magnetresonanztomographie
(4D-Fluss-MRT) werden zeitaufgelöste und multidirektionale Blut-
geschwindigkeitsverteilungen in einem dreidimensionalen Volumen
abgebildet. Weiterhin können mit computergestützter Bildanalyse die
gemessenen Daten verarbeitet werden, und eine quantitative Analyse
von hämodynamischen Parametern durchgeführt werden. Klinische
Studien an einer Vielzahl von Patientenkohorten haben gezeigt, dass
diese Parameter neue Biomarker darstellen, die das Management von
Herz-Kreislauf-Krankheiten hin zu verbesserter Behandlungsergebnis-
se unterstützen können. Allerdings ist die 4D-Fluss-MRT noch keine
Standardmethode zur Quantifizierung der Hämodynamik in der klini-
schen Routine. Diese Arbeit trägt zu einem besseren Verständnis der
Potenziale und Limitationen der 4D-Fluss-MRT bei; der Fokus liegt
dabei auf der Anwendbarkeit zur Quantifizierung hämodynamischer
Parameter in der Aorta. Wir untersuchen bildbasierte Metriken mit
(i) in vivo Daten von gesunden und pathologischen Aorten, (ii) in
vitro Daten, die wir mit einem maßgeschneiderten physiologischen
Strömungskreislauf erfassen, der hochkontrollierte, modellbasierte
und verlängerte (d. h. nicht beschleunigte) Bildakquisitionen ermög-
licht, und (iii) simulierte Blutflussdaten, die für Proof-of-Principle
Experimente und zum multi-modalen Vergleich integriert werden.
Die durchgeführten Studien beinhalten unter anderem die folgenden
zentralen Beiträge: (i) die Beschreibung des Einflusses von Datenrau-
schen, Bildauflösung und Gefäßwandbewegung auf die Schätzung
der Wandschubspannung; (ii) die Untersuchung der Sensitivität von
bildbasierten Kalkulationen der Pulswellengeschwindigkeit für Än-
derungen der Aortenwand-Compliance; und (iii) neue Einblicke in
die Hämodynamik von Aortendissektionen mittels 4D-Fluss-MRT,
insbesondere das komplexe Zusammenspiel zwischen Fluss-, Druck-
und Wanddynamik, wobei alle gemessenen Parameter mit CFD Si-
mulationen unter Verwendung von Fluid-Struktur-Interaktion (FSI)
verglichen werden. Die Ergebnisse unterstreichen die Vielseitigkeit der
quantitativen 4D-Fluss-MRT, während gleichzeitig kritische aktuelle
Limitationen hervorgehoben werden. Dies sollte die Bedeutung der
4D-Fluss-MRT festigen und ihren Einsatz in der klinischen Routine
weiter etablieren.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D





1
I N T R O D U C T I O N

”Cardiology is about flow. The primary purpose of the cardiovascular
system is to drive, control, and maintain blood flow to all parts of the
body.“1

The ultimate task of the cardiovascular system is to continuously
supply all organs with oxygen and nutrients. Its effective and efficient
functioning is inevitable to life. It may not be surprising that the heart,
the driving force of blood circulation, is the first functional organ in
vertebrate embryos and starts beating (in the human) only five weeks
after conception.

Today, mortality associated with cardiovascular diseases (CVD)
makes up 32 % of global deaths, representing the number one cause
of death worldwide.2 The burden on health care systems and society
as a whole and the associated costs for CVD treatment are immense.
CVD include pathologies of the heart itself, but also conditions that
affect the complex vasculature, from small cerebrovascular arteries in
the brain to large vessels such as the aorta. Some CVD conditions are
acquired over lifetime, others present themselves as congenital defects.

As with most diseases, early detection and tailored disease man-
agement are of utmost importance to improve patient outcome. To
achieve the best possible patient outcome, understanding the complex
dynamics of blood flow must be a focus of research: how they describe
the underlying pathophysiological condition, how they explain where
lesions form, how they dictate disease progression, how they reveal
the extent of restauration after an intervention.

Cardiovascular magnetic resonance imaging (MRI) has established
itself as a key modality to study CVD. Specifically, phase-contrast MRI
allows for the measurement of blood flow velocity with full volumetric
coverage [87]. That is, we are able to obtain in vivo time-resolved three-
directional flow information at millimeter resolution of the whole
heart and surrounding great vessels — a technique referred to as
4D flow MRI — all within one scan session. Recent developments to
achieve clinically acceptable scan durations are expected to further
push the use of 4D flow MRI as part of the standard imaging protocol
for CVD assessment.

The generated 4D flow image data is analyzed using computational
methods for both qualitative and quantitative assessment. Qualita-
tively, we can visualize instantaneous flow patterns and profiles, and
render blood particle traces over time. Quantitatively, we can derive

1 Yoram Richter and Elazer R. Edelman, Cardiology is Flow, 2006 [112]
2 Estimated percentage for 2019, World Health Organization, www.who.int

3
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4 introduction

numerical results for flow rates, net flow, velocity statistics, wall shear
stress, pressure gradients, and others.

Over the past 10 to 15 years, these qualitative and quantitative met-
rics have been utilized in numerous (mostly small-cohort) studies
focusing on a broad spectrum of CVD, from diseases of the cerebrovas-
cular system (e.g. intracranial aneurysm, arteriovenous malformation),
through complex congenital defects (e.g. tetralogy of Fallot, single-
ventricle hearts, septal defects), to heart valve malfunctions (e.g. steno-
sis, regurgitation).3 Aortic diseases have been a major focus in the
clinical application of 4D flow MRI and the use of image-based predic-
tive flow biomarkers [20]. For example, studies showed: the influence
of a bicuspid aortic valve (rather than a tricuspid one) on flow eccen-
tricity, jets, wall shear stress (WSS), and helical flow patterns [6, 15, 61,
62]; the association between 4D flow-based pulse wave velocity (PWV)
and wall stiffness [40, 89, 92]; or evidence of a relationship between
altered wall shear stress and plaque formation in atherosclerosis [51,
93].

Despite these many reports that show promising clinical applica-
tions of 4D flow MRI, the technique is yet to become a default sequence
in the clinical routine. While relatively long acquisition times seem
to be the obvious (and always listed) bottleneck delaying widespread
clinical translation, open questions also remain concerning the ro-
bustness and reliability of quantifying hemodynamics with 4D flow
MRI. Uncertainties in flow quantification may originate from the vari-
ous image analysis tasks performed during post-processing, but also
from erroneous velocity data owing to limited spatio-temporal resolu-
tion, the chosen acquisition parameters, the use of scan acceleration
techniques, and/or artifacts due to cardiac and respiratory motion.

The overall research aim was to promote 4D flow MRI through ex-
panding our understanding of its potentials and limitations regarding
the image-derived computation of quantitative parameters. Findings
should support decisions about when and how to include these quan-
titative parameters in large-cohort studies and further push develop-
ments to improve 4D flow MRI acquisitions. In the long term, this
should consolidate the use of 4D flow MRI as default quantitative flow
imaging sequence in the clinical routine.

1.1 contributions

This work’s contributions advance the analysis of quantitative hemo-
dynamics with 4D flow MRI. We performed experimental MRI studies,
and developed and evaluated image post-processing strategies that
quantitatively analyze 4D flow MRI data, including in vivo data of

3 Clinical applications are given in a plethora of 4D flow MRI review articles [50, 60,
91, 94, 121, 126, 135].



1.2 outline 5

healthy volunteers and patients with aortic pathologies, as well as in
vitro ’phantom data‘.

Individual technical and scientific contributions comprise the fol-
lowing:

• developing an advanced MRI-compatible flow circuit setup that
integrates patient-specific large vessel models under highly-
controlled physiological conditions;

• applying novel 3D printing technologies for manufacturing
subject-specific compliant aorta models;

• understanding the influences of image noise, image resolution,
and vessel wall motion on 4D flow-based wall shear stress (WSS);

• benchmarking the sensitivity of 4D flow-based pulse wave veloc-
ity estimates for aortic wall compliance and temporal sampling;

• benchmarking MRI against computational fluid dynamics with
fluid-structure interaction (CFD FSI). Here, boundary conditions
for tuning the simulation framework were directly informed by
measurements from the experimental setup;

• providing novel insights into flow and pressure dynamics in
aortic dissections.

1.2 outline

In part I, the following chapter 2 provides the clinical and technical
background and is divided into four sections. Sec. 2.1 gives a concise
introduction to anatomy and physiology of the cardiovascular system
with a focus on the human aorta. Sec. 2.2.4 reviews the physics prin-
ciples of phase-contrast MRI. Sec. 2.3 reviews multi-directional and
three-dimensional flow encoding (4D flow MRI); and sec. 2.4 defines
quantitative hemodynamic parameters in the context of 4D flow MR
image analysis.

In part II, Chap. 3 [148], we propose and implement software tools
for image-based planar WSS estimation. We analyze the robustness
of wall shear stress and oscillatory shear index against vessel wall
motion, signal noise, and spatial resolution. Quantitative analysis is
performed on simulated data with varying noise and spatial resolution
levels, as well as in vivo 4D flow MRI data of patients with aortic valve
defects and healthy volunteers.

In Chap. 4 [154], we develop a custom-build in vitro physiolog-
ical flow circuit setup that embeds subject-specific and compliant
3D printed aorta models. This publication presents (1) a detailed de-
scription of the technical aspects of the flow circuit and (2) deploys
the setup to investigate the relationship of aortic wall stiffness on



6 introduction

image-based quantitative hemodynamics. A particular focus is on
the computation of flow-waveform-derived pulse wave velocity and
confounding effects of temporal sampling.

In Chap. 5 [155], we advance our prior developments by integrating
a patient specific model of a dissected aorta to study luminal flow and
pressure dynamics in the true and false lumen. Furthermore, we per-
form CFD FSI simulations with a deformable structural domain (aortic
wall), which are informed by measured flow and pressure boundary
conditions. Qualitative and quantitative analyses regarding flow pat-
terns, net flow splits, and pressure are presented, focusing on the
similarities and differences between measured (MRI) and simulated
(CFD FSI) data.

In part III, Chap. 6, the overall contributions of this dissertation
are discussed and important limitations, which shall be the focus of
follow-up work, are revisited. Chap. 7 gives an outlook for ongoing
and future work.

In part IV, the appendix includes all relevant conference abstracts. Al-
though these shall not contribute to the evaluation of this publication-
based dissertation, they are reproduced as they complement the con-
tent.



2
B A C K G R O U N D

2.1 the cardiovascular system

The cardiovascular system is an organ system with the task to circulate
blood and nutrients around the human body. It comprises the heart as
the central pump and vasculature, with large and small vessels (Fig.
2.1, left). Per definition, the systemic circulation transports oxygenated
blood from the pumping heart to all organs, and deoxygenated blood
from the same organs back to the heart. The pulmonary circulation
connects the heart with the lungs where blood is reoxygenated as we
breath in and out. We refer to arteries as all vasculature transporting
blood away from the heart, and to veins as all vasculature reaching
back to the heart.

The following gives a brief introduction to the anatomy and phys-
iology of the heart and the aorta, which is the vessel of interest of
much of the work presented in this dissertation. For a comprehensive
description of cardiovascular mechanics, it is worthwile looking into
’The Mechanics of the Circulation‘ by Caro et al. [26].

2.1.1 The heart

The (healthy) heart itself has a left and a right side, each of which
comprise one atria (LA: left atria, RA: right atria) and one ventricle
(LV: left ventricle, RV: right ventricle). LA receives oxygenated blood
via the pulmonary veins from the lungs, sends it through the mitral
valve into the LV, which then pumps it out through the aortic valve
into the aorta and further to all organs. RA receives deoxygenated
blood via the vena cava from all organs, sends it through the tricuspid
valve into the RV, which then pumps it out through the pulmonary
valve into the pulmonary artery, which connects back to the lungs.

The cardiac output (CO, in L/min) is defined by the stroke volume
(SV, in mL) times the heart rate (HR, in min−1):

CO = SV · HR. (2.1)

At rest, the adult human heart pumps around 5 L of blood per minute,
at a rate of 60–90 beats per minute, depending on age and physical
condition, which leads to an average SV of 70 mL. However, the heart
has excellent capabilities to adapt and a well-trained athlete may
output up to 30 L/min by increasing both SV and HR during exercise.
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Figure 2.1: The complex circulatory system of the human body (left) and
the thoracic (above diaphragm) and abdomial (below diaphragm)
aorta with major branching vessels (right). (Adapted based on
originals by Mikael Häggström and Mariana Ruiz Villarreal,
CC-BY-3.0)

2.1.2 The cardiac cycle

Events of the cardiac cycle are illustrated in the so-called Wigger’s
diagram (Fig. 2.2). It includes time-dependent pressure waveforms in
the LA, LV, and aorta, blood volume in the LV, the electrocardiagram
(ECG) signal originating from the heart, and a phonocardiogram,
which presents the typical sounds that accompany certain events.

Overall, the duration of heart contraction is referred to as systole,
while the relaxation of the heart is referred to as diastole.

Systolic phase. The contraction of the heart is initiated by an electrical
impulse which spreads to the ventricles through a conduction system.
This stimulus is observed in the ECG signal as the QRS complex and
marks the beginning of the cardiac cycle. The left ventricle contracts
under constant blood volume. LV pressure rises until it hits the lu-
minal pressure level of the aorta, which causes the aortic valve to
open. Consequently, blood is ejected. During the ejection phase, LV
volume decreases gradually, followed by a decrease of LV pressure,
and eventually closure of the aortic valve.

Diastolic phase. Following aortic valve closure, the LV starts to relax
under constant blood volume (as both valves are closed). LV pressure
drops rapidly until it falls below LA pressure, which initiates the
opening of the mitral valve, and blood to flow from the LA into the
LV. LV fills up steadily until the mitral valve closes again, which is
essential to prevent blood from flowing back into the LA during the
subsequent next contraction event. We should add that the closure of
the mitral valve is supported by the so-called papillary muscles which

https://creativecommons.org/licenses/by/3.0/legalcode
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Figure 2.2: Wiggers diagram showing events of the cardiac cycle. (Adapted
based on original by Daniel Cheng, CC-BY-4.0)

connect to the mitral valve leaflets on one end and the ventricular wall
on the other end.

Events on the right hand side of the heart (RV, RA) are very similar to
the events described above and thus not mentioned here. The ’lub-dub’
heart sounds (see phonocardiogram) are associated with the closing
of the valves at the beginning of systole and diastole, respectively.

2.1.3 Physiology of the aorta

The aorta is the largest vessel of the vasculature carrying around 200
million liters of blood in an average lifetime, and the aortic valve is its
’Golden Gate‘ if you will.

anatomy The aorta is divided into the thoracic aorta (above di-
aphragm level) and the abdomial aorta (below diaphram level) and
has several major branching vessels (Fig. 2.1, right). The thoracic aorta
starts with the aortic root from which the coronary arteries branch off.
It follows the ascending aorta (AAo), the aortic arch — from which
the left and right subclavian arteries and the left and right common
carotid arteries branch off —, and the descending aorta (DAo). The
aorta breaks through the diaphragm and other major branching points
follow further distally (celiac trunk, mesentric artery, renal arteries,
etc.) supplying blood to abdomial organs. The distal end of the (ab-
domial) aorta is the branching point of the iliac arteries, which sits
approximately at navel height. The diameter of the aorta measures
20–30 mm at the root and tapers down toward its distal end.

https://creativecommons.org/licenses/by/4.0/legalcode
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Figure 2.3: Layers of the aortic wall and dissection of the wall with formation
of a secondary (’false‘) lumen. Image courtesy of Nienaber et
al. [102]

aortic wall The aortic wall has an average thickness of 2–3 mm
and is composed of multiple layers: the (outer) adventitia, (middle)
media, and (inner) intima layer (Fig. 2.3).

The adventitia contains the blood vessels supplying the aortic wall
(vasa vasorum) and nerves. Owing to a rich collagen content, the
tensile strength of the adventitia is the highest among the three layers.
The adjacent media layer accounts for up to 80 % of the aortic wall
thickness and consists of elastic tissue intertwined with muscle fibers.
The intima is the thin inner wall layer, characterized histologically by
a basement membrane lined with endothelial cells that are in direct
contact with the blood.

The compliant nature of the aortic wall (and the vasculature in gen-
eral) is key to its function. If it were stiff, pressure would rise signifi-
cantly during systole, and drop to close to zero in diastole. Moreover,
the pressure pulse would be similar in shape and synchronous at any
site along the vessel. But, owing to the vessel’s compliance, the vessel
distends during systole, acting like a capacitor, and recoils during
diastole, mimicking a secondary ejection phase. This way, blood flow
in peripheral arteries is kept alive during diastole.

flow and pressure In the healthy aorta, peak systolic flow rates
(in the AAo) reach 300–450 mL/s and peak velocities are typically at
around 150 cm/s. Luminal pressure is at 110–120 mmHg during sys-
tole and at 70–80 mmHg during diastole. The pressure waveform (as
measured in the AAo) depicts some particular features. The first being
the so-called dicrotic notch at the beginning of systole (also shown
in Fig. 2.2). This short elevation of pressure is due to sudden closure
of the aortic valve. Second, the pressure wave reflects at branching
points of the arterial tree, which leads to systolic pulse amplifications,
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typically seen as secondary bumps on top of the main pressure lobe.
As the pressure pulse travels downstream and into the peripherial ar-
teries, peak pressure increases. In contrary, the flow waveform widens
owing to the dampening effects of the compliant aortic wall.

2.1.4 Examples of aortic disease

There is a wide spectrum of diseases involving the aorta and/or aortic
valve, both congenital and acquired [45]. A few selected examples are
briefly introduced in the following.

aortic valve stenosis Aortic valve stenosis occurs when the
opening area of the aortic valve is narrowed. Most commonly, a
stenotic valve is caused by calcification of the leaflets [76]. A bicuspid
aortic valve — a congenital defect where there is only two instead of
three leaflets — is also associated with aortic stenosis [115]. The nar-
rowed cross-sectional outflow area increases resistance, which leads to
increased LV pressure and an increased (negative) pressure gradient
across the valve. A flow jet may form during systole, followed by flow
turbulences and/or helical flow patterns in the AAo (Fig. 2.4). The
severity of the aortic stenosis or BAV can be assessed by quantitatively
characterizing these hemodynamic features.

Figure 2.4: 4D flow MRI streamlines in systole in subject with (a) tricuspid
aortic valve (TAV) and (b) bicuspid aortic valve (BAV). In the case
of BAV, the right and left coronary leaflets are fused thus the label
RL-BAV. Image courtesy of Markl et al. [94].

aortic insufficiency Aortic insufficiency, also known as aortic
regurgitation, occurs when there is reverse flow from the aortic root
into the LV during ventricular diastole, meaning the valve is not fully
closed when it should be. As a consequence, net flow is reduced and
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the cardiac muscle has to work harder to provide the same output.
The severity of aortic insufficiency can be quantifie, d by measuring
the regurgitant flow fraction (RF).

aneurysm An aortic aneurysms is a baloon-like dilation in the
thoracic or abdomial aorta. An aneurysm poses the risk of partial
(i.e., dissected aortic wall) or complete rupture; the latter leads to
life-threatening internal bleeding. Aneurysms are typically monitored
by measuring size and growth rate (e.g. through repeated imaging
sessions), but flow parameters (e.g. wall shear stress) may be additional
markers for risk-stratification.

aortic dissection In an aortic dissection, layers of the aortic
wall tear apart locally at one or multiple points (Fig. 2.3) [102]. Blood
will rush in between the separated layers and form a secondary (’false‘)
lumen. An aortic dissections is categorized according to its anatomical
location. As per ’Stanford’ classification, a type A dissection involves
the AAo or AAo + DAo, whereas a type B dissection involves the DAo
only. The ultimate risk of an aortic dissection is a complete rupture of
the aortic wall. Conventionally, the prognosis and treatment strategy
is based on geometric features (e.g. false lumen size and growth rate).
But hemodynamic markers (e.g. net flow through the false lumen,
pressure distribution) are also of potential interest and may confer
added sensitivity for patient-specific treatment planning.
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2.2 phase contrast magnetic resonance imaging

Magnetic resonance imaging (MRI) is a tomographic imaging modality
based on the physics principles of nuclear magnetic resonance (NMR).
Its versatility, unprecedented soft tissue contrast, and broad spectrum
of basic science and clinical applications established MRI as a primary
radiological method. MRI was first invented in the 1970s, led by Paul
C. Lauterbur and Sir Peter Mansfield [74, 86], and has since grown a
large research community.

In a nutshell, with MRI we use a strong static magnet (1.5 T or 3 T
in the clinical setting) to align magnetic moments of nuclear spin
along one spatial direction; radiofrequency (RF) transmit and receive
coils to excite these spins (i.e. flipping their moment direction) and to
later collect the actual MR signal (i.e. the oscillating resonance signal
that the spins emit while relaxing back to their original state); several
gradient coils to generate time- and spatially varying magnetic fields
for three-dimensional spatial encoding of the image volume; as well as
computer hardware and tailored software to control all processes. The
image contrast is achieved as different tissues have different intrinsic
relaxation properties (labeled T1 and T2) and varying amounts of spin
density (ρ). MRI is non-invasive and does not require the injection of
an agent or tracer, as opposed to nuclear medicine techniques. It also
does not use ionizing radiation, as opposed to for example X-ray or
computed tomography.

While conventional MRI methods generate data of qualitative na-
ture and the image intensity represents a weighted combination of the
intrinsic tissue properties, a subgroup of MRI acquisition protocols
provides quantitative data. One quantitative technique is phase con-
trast MRI (PC MRI), which encodes the velocity of moving spins into
the phase component of the complex valued MRI signal [19, 99–101,
106, 107]. In other words, we can reconstruct two- or three-dimensional
image matrices for which each element is a one- or multi-directional
vector describing blood flow velocity in the three-dimensional space.

The following should provide necessary background information
on PC MRI, from the general theory of sensitizing velocity of moving
spins, velocity encoding strength, cardiac motion controlling, to multi-
directional and three-dimensional velocity mapping. For a detailed
mathematical description of the MR imaging physics, I would like to
direct the reader to — my personal favorite — Bernstein et al. [11] or
Brown et al. [18].

2.2.1 Theory of encoding motion

To understand the mechanism of encoding spin velocity into MRI
signal phase, we should introduce the linear relationship between the
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magnetic field and the rotating frequency of magnetic moments that
experience it, also known as Lamor equation:

ω = γB, (2.2)

where B is the magnetic field, ω is the so-called Lamor frequency,
and γ is the gyromagnetic ratio — a specific constant for every given
nuclei. (For MRI targeting hydrogen-1 nuclei γ1H = 42.57 MHz T−1.)
The present magnetic field B originates from multiple sources, and for
now we will consider B as:

B(⃗r, t) = B0 + ∆B + G⃗(t) · r⃗(t), (2.3)

where B0 is the strong main (static) magnetic field, ∆B is the sum of
all local field inhomogeneities, and G⃗(t) · r⃗(t) is the superimposed and
time varying magnetic gradient field. This leads us to

ω(⃗r, t) = γB0 + γ∆B + γG⃗(t) · r⃗(t). (2.4)

As we typically look at this in the rotating reference frame — precess-
ing with ω = γB0 — we can drop the first term and write

ω(⃗r, t) = γ∆B + γG⃗(t) · r⃗(t). (2.5)

The MR signal which gets picked up by the radiofrequency coil is
complex valued, which means every image consists of a magnitude
and a phase component

I (⃗r, ρ, T1, T2) = |I (⃗r, ρ, T1, T2)|eiϕ. (2.6)

The image intensity is a function of space (⃗r), hydrogen-1 density
(ρ), and intrinsic tissue relaxation times T1 and T2. Fig. 2.5 shows an
example for both a magnitude and phase image slice. As illustrated
in Fig. 2.6 signal phase adds up as the gradients are played out and
the stronger the gradient amplitude and the longer they are turned
on, the more phase accumulates.

Most conventional MRI sequences only make use of the magnitude
image data which typically depicts anatomical information. However,
in PC MRI, the phase component is used to sensitize velocity of
moving spins. To determine the phase that spins at a specific location
accrue up until the echo time (TE), we integrate equation 2.5 over TE:

ϕ(⃗r, t) = γ∆BTE + γ
∫ TE

0
G⃗(t) · r⃗(t). (2.7)

γ∆BTE is referred to as the phase offset ϕ0. To describe the position of
any spin, we expand r⃗(t) with its Taylor series expansion

r⃗(t) = r⃗0 + v⃗t +
1
2

a⃗t2 + . . . (2.8)
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Figure 2.5: Magnitude (from cine bSSFP sequence) and phase (from PC MRI
sequence) image data. The 2D slice was prescribed such that it
cuts through the base of the heart and the aortic valve. Image
acqisiton was triggered to peak systole to capture the open aortic
valve.

For the purpose of describing the coherent motion blood elements
we may neglect any second or higher order term in Eq. 2.8, thus the
phase that is accrued while playing the magnetic gradient is

ϕ(⃗r, t) = ϕ0 + γ⃗r0

∫ TE

0
G⃗(t)dt + γv⃗

∫ TE

0
G⃗(t)tdt. (2.9)

Following the phase offset term ϕ0 we can now see what is called the
0th and 1st moment of the gradient:

M0 =
∫ TE

0
G⃗(t)dt and M1 =

∫ TE

0
G⃗(t)tdt. (2.10)

Equation 2.9 already hints at the relationship between the velocity v⃗
of moving spins and the accumulated phase. The key for generating
phase data that directly describe the velocity of moving spins is to
play gradients which effectively null M0, and for which M1 is nonzero.
(Additionally, we need to cancel out the ϕ0 term, as described in
sec. 2.2.2). If this condition for gradient moments holds true, the
relationship between the acquired phase and velocity of spins moving
along the gradient direction can be described as

ϕ(⃗r, t) = γv⃗M1. (2.11)

In practice, to achieve M0 = 0 and M1 ̸= 0, we utilize so-called
bipolar gradients (Fig. 2.7, bottom), for which the net phase after τ is
zero for static spins but nonzero for moving spins. Other MR imaging
sequences for which accumulated phase is unwanted as phase offsets
lead to a number of phase-related artifacts (e.g. flow artifacts) need to
be designed such that M1 is nulled, too. This principle is then referred
to as a flow or motion compensated gradient waveforms (Fig. 2.7, top)
and will come in handy for canceling out the ϕ0 term.
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Figure 2.7: Flow compensating (top) and flow encoded (i.e. bipolar, bottom)
gradient waveforms and accrued phase for static and moving
spins. In PC-MRI we make use of both gradient waveforms to
sensitize first order blood flow velocity. Note that the second and
higher order velocity terms are negligible for our purposes an not
displayed here.

2.2.2 Phase from many things

Before moving on to introducing the complete pulse sequence used in
PC MRI, it is important to understand that phase in the complex val-
ued MR signal originates from many things besides motion. Needless
to say, we intentionally induce phase shifts while playing out gradients
to spatially encode the MR signal in the second dimension of k-space
(’phase-encode direction‘, ky). But phase offsets also originate from (i)
B0 field inhomogeneity and susceptibility effects (referred to as off res-
onance effects, ϕ0), (ii) chemical shift effects (ϕcs), (iii) Maxwell terms
(ϕmaxwell), also known as concomitant fields, and (iv) eddy currents
(ϕeddy).

To correct for (i) ϕ0 (as given in equation 2.9), one widely adapted
approach is to run one flow compensated pulse sequence with M0

and M1 nulled, followed by a flow encoded pulse sequence with M0

nulled and M1 nonzero. As both data should have identical ϕ0, we
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then reconstruct a phase difference map to cancel out the unwanted
phase offset and end up with the phase difference:

∆ϕ = γv⃗∆M1. (2.12)

Note that in practice, we do not run this subtraction on the final
pixel-by-pixel velocity maps, but perform multiplication of the com-
plex flow compensated data with the complex conjugate of the flow
encoded data [10].

Other sources of phase offsets (ii – iv) would lead to substantially
inaccurate velocity maps and perturbed quantitative flow parameters
if not corrected for. These effects and methods for correction are
described in detail elsewhere [12, 28, 53, 59].

To summarize, ϕcs can be mitigated by selecting a mid to high RF
bandwidth, though we trade off SNR by doing so; ϕmaxwell can be
corrected for analytically; and ϕeddy can be minimized by estimating a
phase difference offset map for each scan and subtracting this offset
map from the final phase difference volume. This map can be gener-
ated by either fitting a polynamial through (known) stationary tissue,
or by running an additional PC MRI scan using a static phantom
for which the image output directly depicts the offset map. While
the former is dependent on having sufficient static tissue within the
FOV [21], latter adds an additional phantom scan and thus is typically
not done as part of the clinical routine.

To complete the list of necessary PC MRI correction steps: distortion
effects in both magnitude and phase data owing to (imperfect) non-
linear gradients are system-specific and can (must) be corrected for,
e.g. as proposed by Markl et al. [87].

2.2.3 Velocity sensitivity and Venc

The net gradient moment ∆M1 in the phase difference term (Eq. 2.12)
gives rise to the proportionality between the spin velocity and the
reconstructed phase difference ∆ϕ.

v⃗ =
∆ϕ

γ∆M1
. (2.13)

The maximum phase that we can measure is ±π which leads us
to the so-called velocity encoding strength (Venc), that is the velocity
which gets mapped to a phase shift ±π:

±Venc =
±π

γ |∆M1|
. (2.14)

All other velocities smaller than |Venc| are mapped to a phase num-
ber between 0 and ±π as illustrated in Fig. 2.8. Venc is one of the
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Figure 2.8: Mapping accrued phase shifts to absolute velocities with Venc =
100 cm/s.

important parameters to define prior to the PC MRI acquisition and
should be chosen such that peak velocities within the region of in-
terested are captured. However, we trade-off low velocity noise (σv)
when setting a higher Venc, according to this linear relationship:

σv =

√
2

π

Venc

SNR
, (2.15)

where SNR is the signal-to-noise-ratio of the MRI signal magnitude.
Velocities higher than the chosen Venc will induce phase wrap-

around artifacts. For example, if Venc = 100 cm/s, a velocity vector
with |⃗v| = 110 cm/s will map to |⃗v| = 90 cm/s with swapped sign.
This phenomenon is also referred to as aliasing and can — to a certain
extend — be corrected for with image post-processing [66, 79].

2.2.4 2D PC MRI sequence

We use a spoiled gradient echo (SPGR) pulse sequence as base to
develop our flow encoding PC MRI pulse sequence (Fig. 2.9). An
SPGR consists of an RF excitation pulse played together with the slice-
select gradient (Gslice), followed by a phase-encoding gradient (Gphase),
followed by a readout gradient (Gread) during which the MR signal
(echo) is collected, followed by a spoiler gradient to crush remaining
transverse magnetization before the next RF excitation and TR interval.
To generate a 2D image with N lines along phase-encode direction,
this pulse sequence needs to be repeated N times to fill in a fully
sampled k-space.

To modify the SPGR sequence toward a PC MRI acquisition, we
need to add necessary gradient lobes for flow compensation and flow
encoding (Fig. 2.10). The flow compensated part includes the M0 and
M1 nulled gradients, shifting the readout section in time. It is followed
by the flow encoded part which includes the bipolar gradient lobes.
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Figure 2.9: Pulse sequence diagram for spoiled gradient echo (SPGR) acqui-
sition. Note that this sequence is neither M0 nor M1 nulled and
phase will accumulate over time.

Again, this line of gradient waveforms needs to be repeated for every
phase encoding step. We can already see that encoding velocity into
phase requires additional time compared to a conventional SPGR
(> 2TR).

2.2.5 k-space segmentation

In cardiovascular motion and flow imaging, we typically are interested
in temporally resolved data (labeled cine in MRI jargon). In this context,
a widely established concept is k-space segmentation, as illustrated in
Fig. 2.11.

An electrocardiogram (ECG) provides a trigger signal at the time of
the QRS complex which initiates data acquisition at the beginning of
the cardiac cycle. The cardiac cycle gets divided up into N temporal
frames, also referred to as cardiac frames, and for each frame only a
segment of k-space is filled in. The segment size — i.e. the number of
k-lines — can vary, but ultimately it influences the effective temporal
resolution or cardiac frame length. During the first RR cycle, we fill in
segment 1 for each cardiac frame, during the second RR cycle, we fill
in segment 2 of each frame, etc. The acquisition is complete once all
segments are filled in and after reconstruction we end up with a stack
of N images representing one cardiac cycle that in fact were stitched
together over multiple heart beats.

The performance and efficiency of k-space segmentation is depen-
dent on a ’clean‘ ECG signal and (ideally) constant HR without much
variation over the duration of the scan. For example, patients with
cardiac arrhythmia pose a challenge for efficient k-space segmentation.
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Figure 2.10: Pulse sequence diagram for through-plane encoded 2D PC MRI
acquisitions using a flow compensated and flow encoded part.
The gradient lobes nulling M0 and M1 (flow compensated part)
and nulling M0 only (with M1 ̸= 0) (flow encoded part with
bipolars) are shaded in gray. The effective temporal resolution
decreases by a factor of 2 as two TR cycles (or two echos) are
needed.

To give a simple example for sequence run time: A 2D PC MRI
single-direction encoded acquisition to generate an image with matrix
size 256 × 160 (i.e. 160 ky lines), with TR = 5 ms, single averaging,
five ky lines per segment, no acceleration technique applied, and a
given cardiac cycle length of 1000 ms (HR = 60 min−1) provides spatial
resolution of 1.5 × 1.5 mm2, temporal resolution of 50 ms (or 20 image
frames) and it would take 40 heart beats (40 s) to acquire k-space.
Note that image frame length is a product of TR, number of lines per
segment, and the factor 2, as we need to acquire the flow compensated
and flow encoded part.

2.3 multi-directional flow encoding (4d-flow mri)

So far, we have reviewed 2D PC MRI, which generates a 2D time-
resolved tomographic magnitude and phase-contrast image where the
velocity of moving spins along a selected direction (e.g. through-plane)
is encoded into phase. This acquisition technique can be extended to
encode velocity in all three spatial directions (Fig. 2.12), then referred
to as 2D PC MRI with 3-directional velocity encoding.

To enable velocity encoding in x, y, and z direction, we need to play
nonzero M1 bipolar gradients in all three encoding directions (two
in-plane, one through-plane). Here, one widely established approach
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Figure 2.11: k-space segmentation with an electrocardiogram (ECG) trigger
to acquire cine data of the beating heart. (Image courtesy of
Daniel B. Ennis, with adaptations)

is the 4-point method. That means we run one flow compensated
reference scan with a nulled M0 and M1, followed by three flow
encoded scans, one for each encoding direction, each with a bipolar
gradient in the respective direction. The flow compensated data serves
as reference for correcting for ϕ0 in all three flow encoded scans.
Besides the 4-point method, there are several other velocity encoding
techniques, which will not be described here [29, 39, 67, 105].

We can move to even higher dimensions by acquiring a cine 3D
slab rather than a single cine slice. This sequence is referred to as cine
3D PC MRI with 3-directional velocity encoding, or short, 4D flow
MRI [88].

The development of 4D flow MRI opened up new possibilities for
studying hemodynamics with several advantages over conventional
2D PC MRI. Given a fully dimensional velocity vector map, we can per-
form retrospective multi-planar reformatting in arbitrary orientation
(Fig. 2.13). Contrary to cine 2D PC MRI, there is no need to manually
choose a specific image plane that cuts through the cross-section of
interest (e.g. heart valve) prior to running the scan, which is necessary
for 2D PC MRI. Further, 3D visualization techniques can be used to
qualitative assess flow patterns and velocity distribution with stream-
lines, or trace particles through one or more cardiac cycles given the
time-resolved underlying velocity vector field. On the quantitative
side, we can retrieve a number of hemodynamic parameters that will
be described in detail in sec. 2.4.
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Figure 2.12: 2D PC magnitude and three-directional phase image data with
the 2D slice prescribed in sagittal orientation cutting through
the aorta (’candy cane view‘). The peak systolic frame is shown.

2.3.1 Scan time and acceleration techniques

The key challenge with 4D flow MRI is scan time, in particular when
it comes to deploying it as part of the clincial routine. In comparison
to 2D PC MRI, it is obvious that more time is spent to acquire this
high-dimensional dataset. In fact, if we were to run a a whole heart 4D
flow MRI scan in the most conventional way with 3 mm through-plane
resolution (i.e. at least 40 slices needed to cover most of the heart),
in-plane acquisition matrix 256 × 160, TR = 5 ms, single averaging,
two ky lines per segment, and a given cardiac cycle length of 1000 ms
(HR = 60 min), we would scan over 3200 heartbeats (> 53 min) at a
temporal resolution of 40 ms. This time increases even further as we
apply a motion-controlling breathing navigator which may reduce
scan efficiency down to approximately 60 %; that is, the actual data
acquisition only takes place during 60 % of the scan duration, and
total scan time becomes well over 1 h.

Therefore, acceleration techniques are inevitable for in vivo cardio-
vascular 4D flow MRI. Many concepts for acceleration exist, but the
most important are listed below.

parallel imaging With parallel imaging (or parallel acquisiton
technique, PAT) we purposefully undersample k-space and leverage
the spatial information of the multiple elements in the RF coil arrays
to reconstruct an image free of aliasing artifacts [33, 55, 111]. Parallel
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Figure 2.13: Reformatted planar views of the heart (based on 3D SPGR se-
quence) with absolute velocity overlay (based on 4D flow se-
quence). AAo: ascending aorta, DAo: descending aorta, LV: left
ventricle, LA: left atria, MPA: main pulmonary artery, RPA: right
pulmonary artery, LPA: left pulmonary artery.

imaging techniques and its many derivatives (e.g. multidimensional
PAT as in k-t GRAPPA) are often used techniques to accelerate 4D
flow MRI [5, 17, 68, 117, 118, 127].

compressed sensing Compressed sensing (CS) [83, 84] uses inco-
herent (randomized) k-space undersampling, sparsity transformation,
and an iterative optimization process during reconstruction, and in
recent years has shown promising results for highly accelerated 4D
flow MRI [85, 104, 134]. As per limitations, CS requires longer re-
construction times and may introduce CS-related artifacts, such as
blurring of fine details or global ringing.

non-cartesian sampling As an alternative to sampling k-space
on a conventional cartesian grid, other non-cartesian trajectories (e.g.
3D radial projections as in PC VIPR [56, 98]) have been explored to
run highly-accelerated 4D flow MRI. Here, acceleration is achieved by
shortening the time that is spent to traverse k-space, combined with
inherent k-space undersampling.

echo planar imaging Advances in gradient hardware (i.e. very
fast slewing) paved the way to establish echo planar imaging (EPI) [128]
techniques that aim to acquire k-space during a single or only a few
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Aortic Coarctation Bicuspid Aortic Valve

Figure 2.14: 4D flow MRI streamline visualization in congenital defects of
the aorta: (left) coarctation of DAo with increased flow velocity
through stenotic region, and dilated aortic root with strong flow
vortices at cusps; (right) bicuspid aortic valve that mediates
helical flow in AAo.

RF excitation events. Multiple studies of recent years reported to have
deployed EPI with 4D flow MRI [23, 38, 44].

Nowadays, by making use of these acceleration concepts, a whole
heart 4D flow MRI scan with adequate spatio-temporal resolution (e.g.
2.5 × 2.5 × 2.5 mm3 voxel size, 40 ms cardiac frame length) may take
no more than 10 minutes. While this is great news for establishing 4D
flow MRI as part of the standard clinical imaging protocol1, one also
needs to acknowledge the possible negative effects on quantitative
image quality due to acceleration. For example, Dillinger et al. showed
considerable velocity misregistration and degradation of resolution
in high velocity regimes when using EPI readout [34]. Schnell et
al. [118] show significant differences in peak and mean WSS when
using k-t-GRAPPA with acceleration factor R=5.

2.3.2 Acquisition and processing pipeline

After data acquisition, several processing steps must be performed
to prepare image data for qualitative and quantitative assessment.
Fig. 2.15 outlines a typical 4D flow MRI acquisition and processing
pipeline and hints at the many steps that need to be performed towards
obtaining quantitative hemodynamic parameters.

1 For the application of 4D flow MRI in the clinical setting, the 4D flow MRI consensus
statement provides a good reference for setting up sequence parameter [43].
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Raw data (i.e. multi-dimensional k-space) will either be recon-
structed online (at the MRI scanner workstation) or offline, in case the
necessary reconstruction software framework is not available online.
Latter typically applies to in-house developed 4D flow sequences with
advanced reconstruction requirements. Raw data size may be well
over 20 GB for a whole heart imaging volume. Data correction (i.e.
compensating for phase offsets, distortion control, etc.) is either done
in the Fourier domain (k-space) or the image domain.

Before running qualitative and quantitative flow assessment, sev-
eral (3D+t ) segmentation and/or registration tasks are required. For
example, a 3D (or 3D+t) segmentation of the vessel of interest can
be used to mask the 3D+t velocity vector field for optimized flow
rendering; and cross-sectional lumen contours that are tracked over
time are essential to calculate through plane net flow. The magnitude
image component displays anatomical information and can be used
for these pre-analysis tasks. Other anatomical MRI data that were
acquired as part of the exam may also be used. Unless patient bulk
motion occurred, all images should be co-registered and ’live‘ in the
same reference frame.

Finally, data is ready to be processed for qualitative visualization
and/or quantitiative hemodynamics analysis. Quantitative parameters
will be defined in more detail in the following sec. 2.4. A comprehen-
sive survey of 4d flow MRI qualitative and quantitative post-processing
was published by Köhler et al. [71].
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Figure 2.15: 4D flow MRI acquisition and processing pipeline. Data acqui-
sition lists the most important parameters which need to be
confirmed (case-by-case) prior to sequence run. For qualitative
assessment, a variety of visualization can be done, only a few
examples are listed here. For definition of quantitative parame-
ters, see sec. 2.4.
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2.4 image-based hemodynamic parameters

Given a 3D and time-resolved velocity vector field many quantitative
hemodynamic parameters can be derived. The following should list
most of those that have been applied in the context of quantitative 4D
flow MRI analysis, but certainly include all of which that were studied
in this dissertation.

flow The time-dependent volumetric flow rate (in mL/s) through
an arbitrarily oriented cross-section c is defined as the surface integral

Qc[t] =
∫∫

Ac

⟨v[x, t],nc⟩dAc, (2.16)

where v[x, t] ∈ R3 is a time-dependent 3D velocity vector at position
x ∈ R3, Ac is the cross-sectional area, and nc ∈ R3 is the plane normal
defining Ac. Given a planar-reformatted discrete image, in order to
calculate the volumetric flow rate, we implement

Qc[t] = ∑
i
⟨vi[t],nc⟩∆Ac, (2.17)

where i presents indices of all pixels that lay within the closed contour
and ∆A is the pixel area size. (Note that the definition for an ’en-
closed pixel‘ may vary between implementations for flow rate which
adversely affects contour-based quantification.)

Net flow (positive or negative valued, in mL [per cycle]) is then
calculated as

Vcycle =
N−1

∑
t=0

Qc[t]∆t, (2.18)

where N is the number of temporal (cardiac) frames and ∆t is the
frame length.

As the notation of flow rate accounts for the plane normal direction,
the forward flow volume (FFV, in mL [per cycle]) and backward flow
volume (BFV, mL [per cycle]) are defined as the area above and below
Qc[t] = 0. Consequently, we define the regurgitant fraction (RF, in %)
through a cross-section as

RF =
BFV

FFV + BFV
· 100. (2.19)

Lastly, peak flow rate (in mL/s) is defined as

Qmax = max
t

Qc[t] (2.20)

and may be used to define the peak systolic frame (tsys)

tsys = arg max
t

Qc[t]. (2.21)
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Figure 2.16: Shear stress and velocity gradient arising from an applied force
deforming a rectangular fluid element. (Image courtesy of Tu et
al. [132])

velocity statistics Time-dependent velocity statistics (in cm/s)
are computed either on a 2D reformatted cross-section or a 3D (sub-)
volume of interest. We define the maximum, minimum, and mean velocity
across all pixels/voxels i as

vmax[t] = max
i

∥vi[t]∥, vmin[t] = min
i
∥vi[t]∥, and

vmean[t] =
1
M ∑

i
∥vi[t]∥

(2.22)

with M being the number of enclosed pixels/voxels as defined by
the contour (in 2D) or surface mesh (in 3D). The magnitude of each
velocity vector is defined by the euclidean norm:

∥vi[t]∥ =
√

v2
1,i + v2

2,i + v2
3,i. (2.23)

wall shear stress Fluid rushing along a boundary layer at
which velocities are assumed to be zero (’no-slip-condition‘) will
incur shear stress at that boundary (Fig. 2.16). For an incompressible,
Newtonian fluid and assuming a 1D scenario with velocity v ∈ R1 (for
simplicity) and dynamic fluid viscosity µ we define shear stress as

τ(y) = µ
δv
δy

(2.24)

where y is the height above the boundary layer. More specific, wall
shear stress (WSS, in N/m2) refers to shear stress at a solid structure
(here also in 1D):

τw(y) = τ(y = 0) = µ
δv
δy

∣∣∣
y=0

. (2.25)

In the case of a 3-directional flow field (⃗v = (v1, v2, v3)T) defined in
3D space (⃗x = (x1, x2, x3)T) this notation becomes more complex and
requires the 3D derivative of the velocity vector field:
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τ⃗w = µ ·
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The WSS vector τ⃗w ∈ R3 at each wall point is three-dimensional
and time-dependent. τ⃗w can be projected onto the vessel’s tangent
plane at the evaluated wall point (⃗τw,tang), and further be decomposed
into its axial (⃗τw,axial) — i.e. parallel to the vessel centerline — and
circumferential (⃗τw,circ) — i.e. tangential to a cross-sectional contour in
2D — vector component. For each component, we typically report the
vector length, e.g. ∥τ⃗w,tang∥.

If we wish to estimate WSS along wall contour points on a reformat-
ted cross-sectional plane, we then have n⃗ = (n1, n2, 0)T, and with the
assumption of no flow through the vessel boundary — i.e. ⟨⃗n, v⃗⟩ = 0
— we can imply

n⃗ · δv⃗
δx3

= n1
δv1

δx3
+ n3

δv2

δx3
= 0 (2.27)

and equation 2.26 is reduced to

τ⃗w = µ
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In practice, given a discrete velocity map that is sampled on a raster-
ized image grid, there are several ways to implement spatial deriva-
tives for WSS estimation. Each of which may affect the final WSS
output. More details on this were described by Petersson et al. [108].

Besides time-resolved WSS, we define the time-averaged WSS as

TAWSS =
1
N

N−1

∑
t=0

|τ⃗w| (2.29)

where N is the number of acquired time frames. Further, the oscillatory
shear index (OSI, unitless ∈ [0..0.5]) describes the fluctuation of the
WSS vector direction over time

OSI =
1
2


1 −

∣∣∣
∫ T

0
τ⃗wdt

∣∣∣∫ T

0
|τ⃗w| dt


 . (2.30)
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It should be noted that all WSS-related metrics are defined for any
wall point on the 2D vessel contour or 3D vessel surface. Binning
these wall points into circular segments is useful to ease presentation
and analysis of quantitative results and to enable intra- and inter-case
comparisons. An example for how to present all WSS-related statis-
tics using wall point correspondence and arc segments is presented
in [147].

flow displacement The normalized flow displacement (NFD, unit-
less ∈ [0..1]) [122] describes the eccentricity of a cross-sectional non-
parabolic flow profile. NFD is defined as the distance of ’center of
velocity‘ (cv) from the lumen center, normalized to the lumen radius,
where

cv =
∑i ri∥vi∥
∑i∥vi∥

. (2.31)

and ri ∈ R3 is the pixel center position of lumen pixel i.

secondary flow We can decompose the velocity vector into
a through-plane (⃗vtp) and in-plane (⃗vip) component. The in-plane
component is referred to as secondary flow. We can then define a
secondary flow index (SFI, ∈ [0..1]) to describe the relative amount of
in-plane flow as:

SFI =
∥vip∥

∥vtp∥+ ∥vip∥
. (2.32)

swirling flow With regard to describing swirling flow patterns,
the term vortex describes in-plane swirling motion with negligible
forward motion in the centerline direction; other swirling motion
patterns are termed helix.

In this context, the mathematical notation of vorticity, or curl, of a
3D vector field defined on x = (x1, x2, x3)T is calculated as

ω⃗ = ∇× v⃗ =




δv3
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− δv2

δx3
δv1

δx3
− δv3

δx1
δv2

δx1
− δv1

δx2




. (2.33)

Vorticity (in s−1) is vector valued and defined per voxel; its norm
describes the strength of the local spinning motion at that position,
while its direction describes the rotational axis per right-hand-rule.

Intuitively, velocity-based vorticity maps (e.g. displayed as voxel-by-
voxel heat maps) can be used as visual indicator of swirling flow [136].
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(However, keep in mind that ω⃗ ̸= 0 at the vessel boundary, too, or in
general any location with spatial velocity gradient.)

Based on the notation of vorticity, Lorenz et al. [81] utilized helicity
density Hd and relative helicity Hr — both defined voxel-by-voxel — to
characterize helical flow in the thoracic aorta:

Hd = ω⃗ · v⃗ and Hr =
Hd

∥ω⃗∥∥v⃗∥ (2.34)

To get a more explicit description of the core location in 3D ves-
sel space, Spiczak et al. [136] proposed to combine the prediction-
correction method with the λ2 criterium [64] to define a core line;
and Drexl et al. [37] combined vorticity maps with a vector pattern
matching (VPM) approach, as propsed by Heiberg et al. [58].

Based on a detected core, we can characterize the core and its
surrounding swirling pattern by quantitative metrics. These metrics
of interest include elongation of the core, size with respect to cross-
sectional lumen area, velocity statistics of the swirling velocity field,
swirling direction (left or right handed), or the temporal occurrence
and duration within cardiac cycle.

pulse wave velocity The pulse wave velocity (PWV, in m/s) of
pulsatile flow is a descriptor of arterial stiffness, as defined by the
Moens-Korteweg equation:

PWV =

√
Eh
2ρr

(2.35)

where E is the vessel wall’s elastic modulus, h the wall thickness, r the
vessel radius, and ρ the fluid density.

For image-based PWV estimation, we analyze the relative time shift
of derived flow rate waveforms (Eq. 2.16) at two or more cross-section
along the vessel’s centerline [48, 89, 92, 138]. PWV is then estimated
as distance-over-time

PWV =
△d
△t

(2.36)

where △d is a fixed distance along the centerline and △t is the rel-
ative temporal offset of flow rate waveforms obtained at sections
along the centerline. The temporal offset can be obtained in multiple
ways — e.g. time-to-foot (TTF), time-to-peak (TTP), or time-to-half-
max (TT50) [138].

With 4D flow MRI we can generate an arbitrary number of reformat-
ted cross-sectional planes pi and thus an arbitrary number of (△dp,i,
△tp,i) value pairs. The final value for PWV is then defined as the
inverse slope of a linear regression line fitted to all (△dp,i, △tp,i) data
points. 4D-flow based PWV estimation is dependent on accurate flow
rate curves and sufficient temporal resolution to resolve temporal
waveform shifts.
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pressure The Navier-Stokes equations describe the motion of in-
compressible Newtonian fluid. They form the basis to recover relative
— i.e. with respect to an arbitrary reference point in the volume of
interest — time-resolved 3D pressure maps p(x, t) (in mmHg) from
4D flow MRI data:

ρ(
δv

δt
+ v ×∇v)− µ∇2v +∇p = 0, ∇× v = 0. (2.37)

where v: velocity, ρ: fluid density, and µ: dynamic viscosity.
This partial differential equation (PDE) constrained optimization

problem can be solved iteratively. p(x, t) results can then be visualized
as time-resolved pressure point clouds in a 3D scene and pressure
differentials between any two points of interest (e.g. pre- and post-
valve, pre- and post-stenosis) can be studied, which has been reported
for phantom and in vivo studies [16, 47, 82, 95, 113, 133].

turbulent kinetic energy Turbulent kinetic energy (TKE, in
J m−3) is a descriptor of energy loss in turbulent (i.e. non-laminar)
flow regimes, as most of TKE is dissipated into heat. Potential clinical
applications of TKE assessment include studying valve performance
(e.g. in aortic stenosis) [14, 42].

PC MRI velocity maps represent the averaged velocity of all spins
within a voxel, and we can directly derive mean kinetic energy (MKE).
Moreover, as described in [41], TKE is defined based on the velocity
fluctuation within each voxel:

TKE =
ρ

2

3

∑
i=1

σ2
i , (2.38)

where σi is the variance for intra-voxel velocity fluctuation, or intra-
voxel standard deviation (IVSD), in encoding direction i and ρ is fluid
density.

In contrast to the 4D flow MRI acquisition scheme with flow compen-
sated and flow encoded part, as introduced in sec. 2.3, IVSD mapping
requires two flow encoded parts with different first order gradient mo-
ments. For each encoding direction, IVSD maps for are then calculated
in k-space by combining the PC-MRI signals of these two different
first order moments, as described by Dyverfeldt et al. [41].
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WA L L S H E A R S T R E S S E S T I M AT I O N I N T H E A O RTA :
I M PA C T O F WA L L M O T I O N , S PAT I A L R E S O L U T I O N ,
A N D P H A S E N O I S E

Authors: Judith Zimmermann, Daniel Demedts, Hanieh Mirzaee, Pe-
ter Ewert, Heiko Stern, Christian Meierhofer, Bjoern Menze, Anja
Hennemuth.
In: Journal of Magnetic Resonance Imaging 2018;48(3):718-728 [148]

Abstract: Purpose. To investigate the robustness of wall shear stress
(WSS) and oscillatory shear index (OSI) estimation based on 4D flow
magnetic resonance imaging (MRI) against vessel wall motion in the
ascending aorta (AAo) throughout the cardiac cycle. Also, to compare
these sources of error with inaccuracies induced by spatio-temporal
resolution and velocity encoding (Venc). Methods. Synthetic 4D flow
MRI data of the aorta was simulated using the Lattice-Boltzmann
method, and was used to vary spatio-temporal and Venc dependent
phase noise. 4D flow MRI of the ascending aorta was performed
in healthy volunteers (N=11) and patients with congenital heart de-
fects (N=17). Based on three-dimensional cubic B-splines interpola-
tion of the velocity field, WSS was numerically estimated in mid-
systole, early-diastole, and late-diastole. As for synthetic data, we
studied the impact of spatio-temporal resolution and phase noise.
As for in vivo data, we quantitatively compared shear stress results
based on tracked (using Morphon deformable registration) and static
vessel wall location. Results. Synthetic data results show system-
atic over-/underestimation of WSS when different spatial resolution
(mean±1.96SD up to −0.24 ± 0.40 N/m2 and 0.50 ± 1.38 N/m2 for
8-fold and 27-fold voxel size, resp.) and Venc-depending phase noise
(mean±1.96SD up to 0.31 ± 0.12 N/m2 and 0.94 ± 0.28 N/m2 for 2-
fold and 4-fold Venc increase, resp.) are given. Neglecting wall motion
when defining the vessel wall perturbs WSS estimates to a consid-
erable extent (1.96SD up to 1.21 N/m2 ) without systematic over-
/underestimation (Bland-Altman mean ranging from −0.06 N/m2–
0.05 N/m2). Conclusion. In addition to sufficient spatial resolution and
velocity to noise ratio, accurate tracking of the vessel wall is essential
for reliable image-based WSS estimation and should not be neglected
if wall motion is present.

Contributions of J.Z.: study conceptualization, algorithm development
and implementation, image acquisition, image data analysis and inter-
pretation, writing and editing of manuscript.
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ORIGINAL RESEARCH

Wall Shear Stress Estimation in the Aorta:
Impact of Wall Motion, Spatiotemporal

Resolution, and Phase Noise

Judith Zimmermann, MS,1,2* Daniel Demedts, MS,3 Hanieh Mirzaee, PhD,3,4

Peter Ewert, MD,2 Heiko Stern, MD,2 Christian Meierhofer, MD,2

Bjoern Menze, PhD,1 and Anja Hennemuth, PhD3,4

Background: Wall shear stress (WSS) presents an important parameter for assessing blood flow characteristics and eval-
uating flow-mediated lesions in the aorta.
Purpose: To investigate the robustness of WSS and oscillatory shear index (OSI) estimation based on 4D flow MRI
against vessel wall motion, spatiotemporal resolution, and velocity encoding (VENC).
Study Type: Simulated and prospective.
Population: Synthetic 4D flow MRI data of the aorta, simulated using the Lattice-Boltzmann method; in vivo 4D flow
MRI data of the aorta from healthy volunteers (n 5 11) and patients with congenital heart defects (n 5 17).
Field Strength/Sequence: 1.5T; 4D flow MRI with PEAK-GRAPPA acceleration and prospective electrocardiogram
triggering.
Assessment: Predicated upon 3D cubic B-splines interpolation of the image velocity field, WSS was estimated in mid-
systole, early-diastole, and late-diastole and OSI was derived. We assessed the impact of spatiotemporal resolution and
phase noise, and compared results based on tracked—using deformable registration—and static vessel wall location.
Statistical Tests: Bland–Altman analysis to assess WSS/OSI differences; Hausdorff distance (HD) to assess wall motion;
and Pearson’s correlation coefficient (PCC) to assess correlation of HD with WSS.
Results: Synthetic data results show systematic over-/underestimation of WSS when different spatial resolution (mean 6

1.96 SD up to –0.24 6 0.40 N/m2 and 0.5 6 1.38 N/m2 for 8-fold and 27-fold voxel size, respectively) and VENC-
depending phase noise (mean 6 1.96 SD up to 0.31 6 0.12 N/m2 and 0.94 6 0.28 N/m2 for 2-fold and 4-fold VENC
increase, respectively) are given. Neglecting wall motion when defining the vessel wall perturbs WSS estimates to a con-
siderable extent (1.96 SD up to 1.21 N/m2) without systematic over-/underestimation (Bland–Altman mean range –0.06
to 0.05).
Data Conclusion: In addition to sufficient spatial resolution and velocity to noise ratio, accurate tracking of the vessel
wall is essential for reliable image-based WSS estimation and should not be neglected if wall motion is present.
Level of Evidence: 2
Technical Efficacy: Stage 2

J. MAGN. RESON. IMAGING 2018;00:000–000.

Assessing features of blood flow through the cardiovascu-

lar system is considered a major task in understanding

the development and progression of flow-mediated lesions.1

Among other valuable hemodynamic parameters, wall shear

stress (WSS) is the frictional force of the flowing blood

exerted on the vessel wall.2 Various studies support the

hypothesis that changes in WSS are associated with endothe-

lial function,3–6 valvular diseases,7–9 vessel malformations,10

kinetic energy loss,11 and abnormal wall stiffness.12 There-

fore, WSS is an important clinical parameter for risk stratifi-

cation of altered hemodynamics and vessel wall

characteristics.
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4D flow magnetic resonance imaging (MRI) conveys

information on the direction and magnitude of blood flow

velocity in all three spatial dimensions. Basic and advanced

image analysis paired with intelligent deployment of visuali-

zation techniques allow for the assessment of quantitative

hemodynamic features. In this context, previous studies pre-

sented and evaluated technical developments in order to

estimate WSS from 4D flow image data.10,13,14 Based on

the principles of fluid dynamics, WSS (expressed in N/m2)

is linearly dependent on the local velocity gradient along the

inward normal of the vessel surface. For incompressible

Newtonian fluids, WSS (if a 1D case is considered) is

defined as:

~s5g
@~u

@x

� �
x50

(1)

where g: dynamic viscosity of the fluid, u: three-directional

fluid velocity, and x: distance from the wall in an inward

normal direction.2 In order to derive the local WSS vector

for each imaged timeframe of the cardiac cycle, accurate

tracking of the vessel wall points is essential in the first

place.

The majority of prior studies considered WSS esti-

mates in peak systole only. Here, a method widely adopted

is to segment the vessel of interest based on the time-

averaged phase contrast magnetic resonance angiography

(PC-MRA) image volume.10,15–18 However, the resulting

surface mesh only represents an approximation of the vessel

wall location, as it lacks the dynamics through the cardiac

cycle. As the surface mesh based on the PC-MRA image

most likely represents the wall location in systole, this

approach may be sufficient for assessing systolic WSS. With

respect to diastolic timeframes, however, this representation

may limit the reliable estimation of WSS. In addition, com-

puting the oscillatory shear index (OSI)—a measure of WSS

vector oscillation over time—requires accurate WSS esti-

mates throughout the entire cardiac cycle. To illustrate, Fig.

1A–C depicts the challenges of delineating the wall in a

reformatted plane of a 4D flow dataset of the aorta. Here,

systolic flow is limited to a certain area of the lumen (cap-

tured well by the PC-MRA representation), whereas the

true vessel wall strongly deviates from the boundary of sys-

tolic flow when tracked throughout the cardiac cycle.

Previous studies assessed the influence of MRI acquisi-

tion parameters on shear stress estimates.13,15,19,20 Particu-

larly, a thorough study by Petersson et al19 using synthetic

data found that image-based WSS estimates are impacted by

velocity encoding, velocity resolution, and spatial resolution

to a considerable extent. In contrast, an in vivo study by

Schnell et al20 revealed robustness of WSS estimates against

higher parallel imaging acceleration factors, which are state-

of-the-art for speeding up 4D flow imaging. Moreover, van

Ooij et al21 reported on the reproducibility of systolic veloc-

ity and wall shear stress estimation in the healthy aorta.

The purpose of this study was twofold: first, to investi-

gate the impact of vessel wall tracking on 4D flow-based

FIGURE 1: A: Reformatted PC-MRA image slice with static contour (blue) based on 3D watershed-based segmentation. B: Wall
contours tracked through all cardiac frames (red) based on the deformable registration of subsequent magnitude images. C: Pla-
nar velocity field at instantaneous timeframe with tracked contour (red) and static contour (white). Note that A–C depict the iden-
tical reformatted image slice. D: Synthetic data with delineated wall contour (red) used for all synthetic data experiments. E:
Exemplary in vivo data with three equidistantly spaced wall contours (red) used for in vivo experiments. Vectors are color-coded
based on 3D vector direction.
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WSS estimates in contrast to approximating the vessel wall

by a static surface mesh; second, to compare these findings

with inaccuracies implied by spatiotemporal resolution and

velocity encoding (VENC)-dependent phase noise in order

to put these two sources of error (wall motion and acquisi-

tion parameters) into perspective. This work used in vivo

volunteer and patient data of the ascending aorta as well as

synthetic flow data through the aortic arch.

Material and Methods

Synthetic Data
To assess the impact of varying acquisition parameters, flow

through the aorta was simulated on a high-resolution

1 3 1 3 1 mm3 grid using the Lattice-Boltzmann method (LBM).22

Simulated 3D1t magnitude and phase image volumes were then

modified as follows (Table 1): 1) spatial resampling using linear

interpolation to create image volumes with 1 3 1 3 1 mm3,

2 3 2 3 2 mm3, and 3 3 3 3 3 mm3 spatial resolution. Phase noise

was added in inverse linear relationship with voxel volume; 2) tem-

poral resampling using a cubic B-spline image function and subse-

quent sampling to generate 15, 20, and 25 frames over the full

cardiac cycle (cycle length 5 0.8s); 3) adding velocity noise as a lin-

ear function of the VENC number as described by Lee et al23:

r/5

ffiffiffi
2
p

p
VENC

SNR
(2)

with SNR 5 signal-to-noise ratio in magnitude images. Three

VENC settings were selected for evaluations (VENC 5 1/2/3 m/s).

Neither phase offset nor synthetic aliasing was included in the syn-

thetic data. WSS and OSI estimates (see computational method

described below) were analyzed at a single location in the descend-

ing aorta using an identical delineation of the contour wall (Fig.

1D). In the region of interest flow velocity (mean/min/max) is

0.81/0.06/2.46 m/s and flow rate is 148 ml/s, in peak systole. Note

that the synthetic dataset did not exhibit any vessel wall motion.

In Vivo Data
The study was approved by the Institutional Ethics Committee

and written consent was obtained from all subjects. The study pop-

ulation included 17 patients with congenital heart defects (bicuspid

aortic valve [n 5 15], atrial septal defect [n 5 1], and Marfan’s syn-

drome [n 5 1]), as well as 11 healthy volunteers without any his-

tory of cardiovascular disease. All subjects were examined using a

1.5T Magnetom Avanto MRI system (Siemens, Erlangen, Ger-

many) to acquire 4D flow MRI data in a parasagittal view covering

the thoracic aorta. No contrast agent was injected prior to the

scan. Pulse sequence parameters were as follows: spatial reso-

lution 5 2.0–3.0 3 1.7–2.3 3 2.3–2.5 mm3; field of view 5 320–

400 3 240–340 3 64–90 mm3; temporal resolution 5 40 msec

(16–24 frames); repetition time / echo time (TE/TR) 5 2.7/5.0

msec; flip angle 5 7–88; VENC 5 150 cm/s (healthy volunteers)

and 150–230 cm/s (patients). Prospective electrocardiogram (ECG)

triggering and navigator gating was applied in all acquisitions.

PEAK-GRAPPA24 with an acceleration factor R 5 5 and 24 refer-

ence lines was applied in all acquisitions excluding the patients

with bicuspid aortic valve (not yet available at that time).

Data Preprocessing
Preprocessing steps of in vivo data included: 1) image-based phase

offset correction by manually selecting a phase deviation threshold to

determine static tissue regions followed by fitting a polynomial to

subtract the phase offset; 2) noise masking to exclude phase noise in

image background regions; and 3)—if necessary—fully automated

phase unwrapping using PRELUDE.25 None of the above steps was

performed on synthetic data, as systematic errors were not included

in the simulation. A time-averaged 3D PC-MRA image was then

generated to be used for watershed-based segmentation of the entire

aorta. Subsequently, a centerline was computed for each aorta seg-

mentation mask and smoothed using Laplacian smoothing.

Vessel Wall Definition
Based on the centerline, three positions in the ascending aorta (equi-

distant plane spacing 5 20 mm) were defined and the image volumes

were reformatted to generate three planes oriented perpendicular to

the centerline (Fig. 1E). We then generated two contour groups for

each plane: 1) Moving contours: for each plane, the vessel wall was

manually contoured in a single magnitude image frame in peak sys-

tole by placing several knots along the vessel boundary. Morphon

deformable registration26 was applied to calculate 2D deformation

fields between neighboring magnitude image frames, which were

then used for propagating the knot points through all frames. Spline

TABLE 1. Synthetic Datasets Used for Spatiotemporal Resolution and Phase Noise Evaluation

Dataset Voxel
size [mm3]

VENC
[m/s]

Noise factor
(rel. to A)

Number of frames per
cycle (frame length)

A 1 3 1 3 1 1 1 25 (32 msec)

B 1 3 1 3 1 1 1 20 (40 msec)

C 1 3 1 3 1 1 1 15 (53 msec)

D 2 3 2 3 2 1 1/8 25 (32 msec)

E 3 3 3 3 3 1 1/27 25 (32 msec)

F 1 3 1 3 1 2 2 25 (32 msec)

G 1 3 1 3 1 4 4 25 (32 msec)
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interpolation was used to generate a closed contour for each frame.

2) Static contours: static contours for all three positions were defined

as the cross-section border of the 3D aortic segmentation at the

reformatted 2D plane. Laplacian smoothing (factor 5 0.2, number

of passes 5 100) was applied to all static contours to compensate

for possible rough borders of the 3D aortic segmentation.

Both static and moving contours were represented explicitly

by a set of path points (�150–200 per contour per frame, depend-

ing on contour diameter). WSS estimates were then computed at

each path point.

Shear Stress Estimation
WSS was estimated based on the approach described by Stalder

et al.13 In brief, the WSS vector~s is derived for each path point in

each timeframe considering:

~s5gð_� �~nÞ (3)

with g 5 dynamic viscosity ð0:0032 Pa � sÞ, _�5 velocity deforma-

tion tensor, and ~n 5 unit surface inward normal at the evaluated

path point. _� is directly related to the velocity derivatives at the

vessel wall and thus requires computation of 3D local derivatives

of the velocity field. To cope with the limited spatial resolution of

4D flow MRI data, the applied algorithm performs cubic B-spline

interpolation to generate a continuous image function of the 3D

and three-directional velocity field.

As opposed to the implementation described by Stalder et al,13

our work presents two major adaptations. First of all, we considered

the full 3D (rather than the planar-only) velocity vector field to gen-

erate a 3D image function, which was then used to compute local

derivatives at each path point. This way we ensured that both in-

plane and longitudinal velocity gradients are taken into account. Sec-

ond, we integrated the 3D Gauss gradient field G of the segmented

vessel mask (with r set to the average voxel side length) to define the

unit surface inward normal~n at each contour point x as follows:

~nx5~ax1~g x;p (4)

where

~g x;p5ðGx �~pÞ~p (5)

is the projection of the local Gauss gradient vector at x onto the

plane normal ~p (vessel centerline direction); and ~ax is the inward

normal lying on the 2D contour plane, defined by the cross prod-

uct of the local plane normal and the tangent vector at x. Note

that ~n is not required to lie within the analysis plane, but adapts

to possibly complex (i.e., nonparallel) vessel courses. All WSS vec-

tors were projected onto the local vessel surface tangent plane.

In this work, we used the definition proposed by He and

Ku27 to compute the oscillatory shear index (OSI):

OSI5
1

2
12
j
Ð T

0 ~sdt jÐ T
0 j~sjdt

!
(6)

Here, integrals were interpreted as sums with no further temporal

resampling. Note that OSI is a unitless index that measures WSS

vector oscillation over the entire cycle length, and is thus time-

frame-independent.

As the number of existing path points per contour may vary

between timeframes (depending on the contour circumference), we

sampled each path point ensemble representing the wall contour at

a specific timepoint with a fixed equidistant radial pattern (number

of rays 5 120), using nearest neighbor interpolation. The sampled

path points were also used as a means to establish point corre-

spondences between timeframes, which allow for a standardized

computation of OSI and WSS statistics (min/max/mean) over

time. A 12 angular segment model was then applied to bin WSS

and OSI numbers with segment statistics given in mean 6SD.

Multiple segment models within the same analysis plane were

aligned automatically to ensure that the same index segments corre-

spond to each other. To this end, our implementation used the ves-

sel’s center of gravity as an alignment point. All preprocessing

steps, image analysis methods, and visualizations were implemented

using the MevisLab medical image computing framework.28

Statistical Evaluation
To quantitatively grade the motion of the wall over the course of

the cardiac cycle, we computed the Hausdorff distance (HD, given

in mm) for each static versus moving contour pair. Here, HD

depicts the deviation of the tracked contour from the static (ie,

averaged) vessel wall location.

For synthetic data, we compared shear stress estimates with

regard to varying spatial resolution, VENC setting, and temporal

resolution both segment-wise and over time (choosing the segment

depicting maximum WSS). In addition, we assessed the impact of

dilated and shrunken contours on WSS estimates using the syn-

thetic dataset. For in vivo data, we analyzed absolute differences in

WSS and OSI per segment, based on moving versus static con-

tours. In both synthetic and in vivo data we chose to evaluate

WSS differences at three distinct timepoints: t1, t2, and t3, at

20%, 40%, and 80% of the acquired cardiac cycle length, respec-

tively. We found that these timepoints roughly correspond to the

mid-systole, early diastole, and late diastole. To define a single

quantitative metric over all segments per case, analysis plane, and

timeframe we defined the median of absolute WSS (OSI) differ-

ence over all segments. Bland–Altman analyses were used to assess

the difference in WSS and OSI estimates based on static versus

moving contours; and Pearson’s correlation coefficient (PCC) was

used to study how deviations in WSS and OSI correlate with HD.

Results

Synthetic Data Analysis
The results in Fig. 2 show that mean WSS and OSI esti-

mates per segment decrease with increased voxel size, while

the standard deviation per segment is noticeably reduced

with increased voxel size. When comparing isotropic voxel

sizes (1 vs. 2 mm and 1 vs. 3 mm) Bland–Altman lines

(mean 6 1.96 SD, given in N/m2) are as follows: In mid-

systole (t1) WSS estimates differ by –0.07 6 1.41 and –

0.51 6 1.38; in early diastole (t2) WSS estimates differ by –

0.24 6 0.40 and –0.35 6 0.37; and in late diastole (t3)
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WSS estimates differ by –0.23 6 0.16 and –0.26 6 0.17.

OSI estimates vary by –0.21 6 0.22 and –0.22 6 0.29.

The results obtained by varying VENC and thus

increasing phase noise are presented in Fig. 3. Overall, we

observe that both mean and standard deviation of WSS and

OSI per segment is increased with increasing VENC. When

comparing VENC settings (1 vs. 2 m/s and 1 vs. 4 m/s)

Bland–Altman lines (mean 6 1.96 SD, given in N/m2) are

as follows: In mid-systole (t1) WSS estimates differ by

0.18 6 0.28 and 0.64 6 0.70; in early diastole (t2) WSS

estimates differ by 0.26 6 0.31 and 0.87 6 0.78; and in late

diastole (t3) WSS estimates differ by 0.31 6 0.12 and

0.94 6 0.28. OSI estimates vary by 0.05 6 0.06 and

0.09 6 0.12.

Changes in shear stress estimates due to varying tem-

poral resolution are presented in Fig. 4. Here, OSI estimates

(mean 6 1.96 SD) differed by 0.00 6 0.05 and 0.00 6 0.04

when comparing temporal resolutions of 32 vs. 40 msec

and 32 vs. 53 msec, respectively. Overall, WSS time curves

were preserved when changing temporal resolution (Fig. 4,

top), although the peak WSS is slightly shifted in time due

to lacking temporal precision.

Figure 5 presents the impact of slightly dilated and

shrunken wall contours on WSS estimates in synthetic data-

set A (highest spatiotemporal resolution, VENC 5 1 m/s).

Note that zero flow (excluding synthetic noise) was assumed

outside the lumen. In segments with increased flow we

observe a strong increase in WSS if the contour is defined

inside the lumen (inner contour), whereas no typical WSS

time curve with peak WSS during systole can be captured if

the wall contour is defined beyond (outer contour) the bor-

der of the lumen.

In Vivo Data Analysis
Figure 6 (left) shows that wall motion in the aorta was most

pronounced at analysis plane 1 (median/min/max HD

[mm] at timepoints t1, t2, and t3 was 5.6/2.8/9.1, 5.4/2.6/

10.1, and 4.9/3.5/10.1). Also, refer to Supplements 1–3 for

FIGURE 2: Analysis of spatial resolution impact on WSS and OSI in synthetic data. Top: Absolute WSS (mean 6 SD) per segment
(1–12) for timepoints t1, t2, and t3; absolute OSI value. Middle: Corresponding Bland–Altman plots comparing WSS (OSI) output
based on voxel dimension 1 3 1 3 1 mm3 vs. 2 3 2 3 2 mm3 (red) and 1 3 1 3 1 mm3 vs. 3 3 3 3 3 mm3 (green). Bottom: WSS time
curve in single segment (sampled at 25 timepoints over the course of the cardiac cycle).
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a visualization of static and moving contours in an exem-

plary case. Figure 6 (right) plots the computed median abso-

lute difference value per case, plane, and timepoint against

the respective HD. PCC values between both variables

were: PCC 5 0.27 overall; PCC 5 0.43/0.09/0.25 for time-

points t1/t2/t3; and PCC 5 0.31/0.01/0.06 for planes 1/2/

3.

Overall results of in vivo data WSS and OSI estimates

based on static versus moving contour definition analyzed at

individual planes and timepoints are presented in Fig. 7.

Mean absolute differences in WSS estimates appear to be

independent of the analysis plane location and point in

time with no systematic under-/overestimation (Bland–Alt-

man mean lines ranging from –0.06 to 0.05 N/m2). Yet the

results show strong deviations in absolute WSS differences

(61.96 SD lines (t1/t2/t3) at 1.21/0.82/0.64, 0.72/0.57/

0.55, and 0.59/0.70/0.47 for planes 1, 2, and 3, respec-

tively; all numbers given in N/m2). Moreover, plots suggest

that absolute differences between static contour-based and

moving contours-based WSS estimates increase with increas-

ing absolute WSS values. Concerning the impact on OSI

estimates, the results present no systematic offset between

both contouring approaches, but sample points deviate

noticeably (61.96 SD lines at 0.14, 0.15, and 0.16 for

planes 1, 2, and 3, respectively).

Figures 8 and 9 show segment-wise WSS evaluation

results based on static and moving contour definition that

are specific to an exemplary volunteer and patient dataset,

respectively. The former case presents with a homogeneous

flow profile, while the latter case depicts an altered flow pat-

tern. Both examples present the strong scattering of absolute

differences between both approaches with only minor sys-

tematic offsets, ie, individual results are in line with the

overall results reported above.

Discussion

This work assessed the impact of wall contour position on

WSS estimates in the ascending aorta throughout the

FIGURE 3: Analysis of VENC impact on WSS and OSI in synthetic data. Top: Absolute WSS (mean 6 SD) per segment (1–12) for
timepoints t1, t2, and t3; absolute OSI value. Middle: Corresponding Bland–Altman plots comparing WSS (OSI) output based on
VENC 5 1 m/s vs. 2 m/s (red) and 1 m/s vs. 4 m/s (green). Bottom: WSS time curve in single segment (sampled at 25 timepoints
over the course of the cardiac cycle).
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cardiac cycle. Equally, we evaluated the influence of spatio-

temporal resolution and phase noise in synthetic datasets

using the identical implementation to estimate shear stress

parameters. The latter has already been studied in related

works,13,15,19 although the extent of uncertainties induced

by acquisition parameters compared to those induced by

imprecise wall tracking had not been reported yet.

As the vessel wall of the ascending aorta exhibits a

periodic motion throughout the cardiac cycle that is beyond

the typical image resolution, this region was chosen for eval-

uation. All in vivo acquisitions were performed without the

administration of contrast agent (CA), which has been

shown to enhance SNR. We chose to only include data

scanned without CA to mimic a worst-case scenario regard-

ing SNR and to evaluate the true robustness of estimating

shear stress parameters based on 4D flow images. Thus, the

results may also be applicable to those subjects who are

intolerant to CA administration. The authors want to point

out that this study did not seek to compare WSS in subjects

with congenital heart defects with WSS in healthy volun-

teers, which has been covered in previous works.7–9

In summary, our results suggest that estimated shear

stress parameters strongly depend on where the wall is posi-

tioned. Differences in shear stress parameters based on static

versus moving (tracked using deformable registration) con-

tours were in the range of those observed when poor spatial

resolution and increased phase noise was given.

With respect to spatial resolution, WSS and OSI were

greatly influenced by voxel dimensions. Particularly, WSS

was underestimated and OSI appeared to be averaged out

(ie, the estimation becomes insensitive to WSS vector oscil-

lations) with increasing voxel size. These findings corre-

spond in a qualitative manner to those reported by Stalder

et al13 as well as Petersson et al.19 According to Stalder

et al, WSS drops to 60% of its analytical value for a voxel

length of 1 mm and further decreases to above 30% of its

analytical value for a voxel length of 10 mm. Equally, Peters-

son et al show an increasing underestimation of WSS with

increasing voxel size and increasing analytical WSS value

(ranging from 1 to 20 N/m2). We note that both referenced

works prescribed an idealized parabolic flow profile when

synthesizing the underlying image data, whereas the syn-

thetic data presented in this work was generated with MRI-

based (ie, measured) inflow boundary conditions. Therefore,

we did not attempt to give an analytical WSS value for

comparison. Moreover, Petersson et al did not simulate

noise with their synthetic data, whereas our approach seeks

to model the linear dependency between phase noise,

VENC, and spatial resolution.

Regarding VENC dependency, both WSS and OSI

increased systematically at higher VENC values (ie, phase

noise). We deduce that OSI becomes a measure of phase

image noise rather than WSS vector fluctuation if VENC is

set to a number greatly exceeding the maximum flow veloc-

ity. Besides, assessing shear stress parameters was particularly

prone to errors in diastolic timeframes where the velocity-

to-noise ratio is decreased. One should take account of this

when assessing shear stress in the full cardiac cycle rather

than focusing on WSS at peak flow. Here, a dedicated

VENC setting focused on analyzing hemodynamics in dias-

tole that is crucial to optimize the velocity-to-noise ratio,

and advanced antialiasing techniques25 are important to

compensate for possibly resulting phase-wrapping in systole.

With regard to previous works, the results in Petersson et al

show only a minor impact of the VENC; however, those

results are based on synthetic data excluding noise, which

defines one major tradeoff of increased VENC.

Our results suggest that temporal resolution, unlike

spatial resolution and phase noise, only has a minor impact

on the estimation of WSS and OSI. This partially agrees

with findings made by Cibis et al,15 who reported on a

FIGURE 4: Analysis of effect of temporal resolution on WSS
and OSI in synthetic data. Top: WSS time curve (mean 6 SD) at
single segment. Middle: OSI (mean 6 SD) per segment. Bottom:
Corresponding Bland–Altman plot comparing OSI output based
on synthetic frame length 5 32 msec vs. 40 msec (red) and 32
msec vs. 53 msec (green).
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dependence of OSI on temporal resolution. However, in

our study, we only examined three resolution settings (32,

40, and 53 msec), whereas Cibis et al lowered it down to

142.9 msec per frame (corresponding to 5–6 frames per

cycle at 75 beats per minute). We argue that temporal reso-

lutions at this range are not employed in the clinical setting,

and thus did not evaluate the impact to this extreme.

In vivo results showed that inaccurate wall delineation

produces WSS and OSI deviations that are considerable. In

contrary to the systematic over-/underestimation of shear

stress parameters due to poor spatial resolution and phase

noise, our results do not suggest any systematic error when

the wall contour is falsely positioned. This point is rein-

forced by the observed weak correlation between the com-

puted HD and the median absolute difference per static-

moving contour pair. Although the degree of wall motion is

reduced for analysis planes positioned distal to the aortic

valve, the measured deviations remain unaffected. Based on

the analysis of individual cases, we propose that the extent

to which WSS estimates deviate mainly arises from the

velocity field in the vicinity of the vessel wall. In our case,

small vessels close to the ascending aorta were a major con-

cern. If the true vessel wall is imprecisely captured and

neighboring vessels are included, flow through these vessels

might become the deciding factor for falsely increased WSS.

Therefore, we suggest that the standard deviation of the

segment-binned WSS values should act as an indicator for

WSS reliability assuming that shear stress should be rather

homogeneous within one segment (with appropriately sized

segments).

As stated in the introduction, various recent works

used the time-averaged PC-MRA image to define a wall

contour for peak-systolic WSS estimation. Based on the HD

analysis of our work, we claim that this approach is

FIGURE 6: HD analysis of static vs. moving wall contours in all in vivo datasets (patients and volunteers). Left: Boxplots of HD per
analysis plane and timepoint, with dots depicting outliers. Right: Each scatter point depicts the median (over all segments) of the
absolute difference in WSS based on static vs. moving contour against the respective HD.

FIGURE 5: Impact of dilated and shrunken wall contours on WSS in synthetic flow data. A: Wall contours at three positions (yel-
low: inner, green: border, blue: outer) and planar velocity vector field. B,C: Magnitude image and planar velocity field with angu-
lar segment model and contour overlay. Segments are indexed clockwise. D–F: WSS estimates for all defined contours presented
as bull’s-eye plots (BEP). Note that BEPs depict two WSS metrics: Peak systolic WSS (outer BEP values) and mean WSS over time
(inner BEP values). G: WSS time curves corresponding to segment 4.
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FIGURE 8: WSS analysis of a healthy volunteer dataset. A: Visualization of planar velocity vector field (color coding depicts vector
direction in 3D), magnitude data, and 2D velocity overlay at timepoints t1–t3. Segments are indexed clockwise (see segment label
1). B: Absolute WSS (mean 6 SD) per segment comparing WSS output based on moving (red) and static (blue) wall definition. C:
Corresponding Bland–Altman plot.

FIGURE 7: Overall results of absolute difference in in vivo WSS (top row) and OSI (bottom row) estimates (patients and volun-
teers). Bland–Altman plots compare outputs based on moving versus static wall contours. Columns 1–3 depict analysis planes 1–3.
Colors depict three different timepoints of the cardiac cycle: mid-systole (t1, red), early diastole (t2, green), and late diastole (t3,
blue).
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inaccurate even if merely focused on peak systole. Our

results suggest that the tracked contour is not any closer to

the static contour in mid-systole than it is in early/late dias-

tole. We propose that this may be explained by inhomoge-

neous flow that results in misleading PC-MRA, ie, the

angiographic representation does not depict the full vessel

lumen. This should be taken into account specifically when

dealing with flow data exhibiting pathological flow patterns.

Concerning the limitations of the work presented, this

study only focused on the ascending aorta, and the study

population was vastly comprised of patients with bicuspid

aortic valve and of healthy volunteers. We note that other

vessels and pathologies should be included to achieve a

more representative cohort of all vessels for which shear

stress parameters are of clinical interest. Furthermore, in

vivo data may comprise all types of errors induced by acqui-

sition parameters. Despite the fact that preprocessing aimed

at compensating for phase offsets and possible aliasing, we

did not assess to what extent any of the remaining errors

perturbed WSS and OSI. Additionally, this work relies on

accurate wall tracking and assumes that the moving contour

is in line with the true vessel boundary. Although we visu-

ally inspected each propagated contour for obvious misregis-

tration, we did not quantitatively evaluate the error

propagation due to automated propagation inaccuracies.

Here, we also want to point out that deformable registration

was only performed in-plane (2D), ie, possible out-of-plane

movement of tissue points was neglected. A recent work by

Cibis et al29 proposes time-resolved 3D segmentation of ves-

sels of interest based on 4D flow MRI data.

Regarding numerical WSS computation, our imple-

mentation is predicated on Stalder et al13; however, other

methods exist that have not been considered in this work:

Petersson et al19 compared multiple approaches using

numerical simulations; Piatti et al30 described the use of

Sobel derivative filters; and Sotelo et al18 presented a finite

element method. With respect to OSI computation, its defi-

nition—as do all other shear stress metrics over time—

requires establishing contour point correspondences. Our

implementation samples the ensemble of discrete contour

points through all timepoints using a static radial pattern to

establish the necessary correspondence. This approach only

holds true if wall tissue points travel inwards/outwards

through the cardiac cycle, and do not rotate around the

contour center. Here, any possible errors were not taken

into account and should be subject to future works. Lastly,

we note that this work is only able to report relative differ-

ences in WSS and OSI, since no ground truth was available.

Other works sought to validate WSS based on analytical

computations.13,18,19

In conclusion, the present work suggests that image-

based WSS and OSI estimates are considerably sensitive to

FIGURE 9: WSS analysis of a patient dataset with inhomogeneous cross-section flow profile. A: Visualization of planar velocity vec-
tor field (color coding depicts vector direction in 3D), magnitude data, and 2D velocity overlay at timepoints t1–t3. Segments are
indexed clockwise (see segment label 1). B: Absolute WSS (mean 6 SD) per segment comparing WSS output based on moving
(red) and static (blue) wall definition. C: Corresponding Bland–Altman plot.
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where the wall contour is defined. Precise wall tracking

should be given particular attention in any image-based

shear stress estimation.
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Abstract: Background. Aortic wall stiffening is a predictive marker for
morbidity in hypertensive patients. Arterial pulse wave velocity (PWV)
correlates with the level of stiffness and can be derived using non-
invasive 4D-flow magnetic resonance imaging (MRI). Objective. The
objectives of this study were twofold: to develop subject-specific tho-
racic aorta models embedded into an MRI-compatible flow circuit
operating under controlled physiological conditions; and to evaluate
how a range of aortic wall stiffness impacts 4D-flow-based quantifica-
tion of hemodynamics, particularly PWV. Methods.Three aorta models
were 3D-printed using a novel photopolymer material at two com-
pliant and one nearly rigid stiffnesses and characterized via tensile
testing. Luminal pressure and 4D-flow MRI data were acquired for
each model and cross-sectional net flow, peak velocities, and PWV
were measured. In addition, the confounding effect of temporal res-
olution on all metrics was evaluated. Results. Stiffer models resulted
in increased systolic pressures (112, 116, and 133 mmHg), variations
in velocity patterns, and increased peak velocities, peak flow rate,
and PWV (5.8 to 7.3 m/s). Lower temporal resolution (20 ms down
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On the impact of vessel wall 
stiffness on quantitative flow 
dynamics in a synthetic model 
of the thoracic aorta
Judith Zimmermann1,2*, Michael Loecher1,3, Fikunwa O. Kolawole4, Kathrin Bäumler1, 
Kyle Gifford1, Seraina A. Dual1, Marc Levenston4, Alison L. Marsden5,6,7 & Daniel B. Ennis1,3,7 

Aortic wall stiffening is a predictive marker for morbidity in hypertensive patients. Arterial pulse 
wave velocity (PWV) correlates with the level of stiffness and can be derived using non-invasive 
4D-flow magnetic resonance imaging (MRI). The objectives of this study were twofold: to develop 
subject-specific thoracic aorta models embedded into an MRI-compatible flow circuit operating 
under controlled physiological conditions; and to evaluate how a range of aortic wall stiffness 
impacts 4D-flow-based quantification of hemodynamics, particularly PWV. Three aorta models were 
3D-printed using a novel photopolymer material at two compliant and one nearly rigid stiffnesses and 
characterized via tensile testing. Luminal pressure and 4D-flow MRI data were acquired for each model 
and cross-sectional net flow, peak velocities, and PWV were measured. In addition, the confounding 
effect of temporal resolution on all metrics was evaluated. Stiffer models resulted in increased systolic 
pressures (112, 116, and 133 mmHg), variations in velocity patterns, and increased peak velocities, 
peak flow rate, and PWV (5.8–7.3 m/s). Lower temporal resolution (20 ms down to 62.5 ms per image 
frame) impacted estimates of peak velocity and PWV (7.31 down to 4.77 m/s). Using compliant 
aorta models is essential to produce realistic flow dynamics and conditions that recapitulated in vivo 
hemodynamics.

Aortic wall stiffness is a strong predictor for all-cause and cardiovascular morbidity in patients with systemic 
arterial  hypertension1–3. Model-based studies estimate that a total of 1.56 billion people worldwide may be 
affected by systemic arterial hypertension by  20254,5. Consequently, monitoring aortic wall stiffness has become 
increasingly important and could guide treatment strategies and prevention of systemic arterial hypertension. 
Aortic wall stiffening is linked to an increase of pulse wave velocity (PWV) - the velocity at which the blood 
pressure pulse travels through the circulatory system. For a vessel of constant diameter, this relationship is mod-
eled by the Moens-Korteweg equation:

where E is the elasticity modulus, ρ blood density, h wall thickness, and r vessel radius. Several PWV meas-
urement technologies exist, with the carotid-femoral PWV (cfPWV) approach considered the clinical gold-
standard6. cfPWV is approximated using the foot-to-foot temporal shifts of two signal waveforms (e.g. Doppler) 
recorded transcutaneously at the common carotid and femoral artery. The technical challenges associated with 
cfPWV measurements, such as carotid-femoral path length measurement inaccuracies or difficulties in trans-
cutaneous signal recording, have limited broader adoption.

Non-invasive 4D-flow magnetic resonance imaging (MRI) provides three-dimensional (3D) and time-
resolved velocity vector maps that serve as basis for image-based quantitative flow  characterization7,8. In 

(1)PWV =

√
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2ρr
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particular, 4D-flow PWV calculations use a similar transit-time over fixed distance approach as in conventional 
cfPWV measurements, but in addition exploits the volumetric imaging  data9 and analyzes temporal shifts in 
flow rate waveforms extracted at numerous cross-sectional image planes along the aorta. This approach enables 
both regionally specific and more robust PWV estimates compared to two-point methods. In addition, the 3D 
anatomical image information is used to precisely measure the path length. Previous studies suggest low intra- 
and inter-observer variability and moderate test-retest  performance10,11. The same studies affirm that PWV 
increases with age and in the presence of aortic atherosclerosis.

The otherwise lengthy clinical in vivo 4D-flow MRI scan must be accelerated using parallel imaging, com-
pressed sensing, or fast readout  techniques12–17. Each of these techniques, however, trades-off spatio-temporal 
image resolution and signal-to-noise ratio (SNR), both of which impact flow quantification accuracy. 4D-flow 
MRI sampling requirements to report robust PWV values are missing.

In vitro 4D-flow MRI using subject-specific synthetic aorta models connected to a cardiovascular flow pump 
enables prolonged imaging, thereby allowing optimal image quality. Moreover, in vitro setups enable studying 
flow dynamics under controllable conditions. In particular, we can program physiological flow waveforms, tune 
flow volume splits via outlet resistance control, and tune systemic pulse pressure via integration of capacitor 
elements. The majority of previous studies simplify their setup using rigid wall materials, which neglects the 
compliant nature of the human  vasculature18–20. A limited number of studies embed compliant models, but do 
not report on how the compliance of the model compares to the human  aorta21,22.

Novel 3D-printing technology permits building models with realistic and varying compliance which we seek 
to leverage. Herein, this work exploits in vitro 4D-flow MRI with realistic and compliant models of the thoracic 
aorta to study quantitative flow dynamics. The two objectives of this study were: (1) to demonstrate feasibility 
of deploying compliant 3D-printed subject-specific aorta models in an MRI-compatible flow circuit setup that 
matches physiological flow and pressure conditions; and (2) to evaluate the impact of wall stiffness variations 
on cross-sectional flow metrics and PWV.

Methods
Compliant aorta models. An in vivo chest 4D-flow MRI dataset was acquired from a healthy subject (50 
y/o, male) using a protocol that was in accordance with relevant guidelines and regulations, and approved by 
Stanford University Institutional Review Board. Informed consent was obtained from the subject prior to imag-
ing. The 4D-flow MRI magnitude image was used to generate a subject-specific polygon mesh model of the tho-
racic aortic wall including the brachiocephalic trunk, left common carotid, and left subclavian artery. The wall 
domain mesh generation (Fig. 1f) consisted of: (1) binary segmentation of the aortic lumen; (2) polygon surface 
meshing of lumen mask (edge size = 0.8 mm); (3) extrusion of the mesh nodes in the normal direction to define 
the outer wall surface mesh; (4) boolean differencing of the outer wall and lumen surface mesh. The resulting 
wall thickness ( hwall = 2mm ) was within the reported range of the average wall thickness of the human adult 
 aorta23. The mesh model was extended by cylindrical caps (length = 20 mm) at the ascending aorta inlet and at 
the four outlets to enable connection to customized barbed model-tubing transition elements. These steps were 
performed using  SimVascular24 and Meshmixer (Autodesk) open software tools.

A photopolymerization 3D printer (J735 PolyJet, Stratasys) with novel printing materials (Agilus30 and Vero-
Clear, Stratasys) was used to manufacture two compliant and one nearly rigid model of the subject-specific aorta 
geometry (referred to as Mc1 , Mc2 , and Mr ). Printed models were finished with a thin coating (Bectron, Elantas) to 
prevent fluid absorption (Fig. 1h). To characterize the material stiffness, standardized dumbbell shaped samples 
(ASTM D412 type A) were 3D-printed in the same batch and using the same material blend as the aorta models.

Uniaxial tensile testing (Instron 5848 Microtester, 10-KN load cell) was performed on three dumbbell samples 
per material elasticity. Samples were pre-conditioned with five loading and unloading cycles to 10 % peak strain 
followed by a sixth measurement cycle to 50 % peak strain. Testing was done at ambient conditions with a strain 
rate of 25%/sec . This rate corresponds to the upper loading rate limit on the aorta models when embedded in the 
flow circuit, which was assessed by analyzing the dynamic wall circumference in the imaging data. 3D-printing 
direction anisotropy was evaluated by varying the sample’s orientation on the print bed.

Flow circuit setup. An MRI-compatible flow circuit setup (Fig.  1a) was engineered to enable in vitro 
4D-flow imaging of the aorta models under physiological and controllable flow and pressure conditions. The 
inlets and outlets of the models were sealed to tubing via custom-fit 3D-printed barbed connectors with tapered 
transitions and then embedded into a ballistics gel block (Fig. 1b, ClearBallistics). The gel block provided a fixed 
positioning reference and had a short T1 relaxation time, which facilitated using it as static “tissue” for eddy 
current induced phase offset correction. Aortic model and gel block were placed inside an enclosed box that 
connects through five box-mounted flow ports to both the pump unit (CardioFlow 5000 MR, Shelley Medical 
Imaging Technologies) and to the fluid reservoir which supplies the pump unit via a return flow path.

The subject’s previously performed MRI exam included aortic flow measurements from which the flow 
rate waveform was derived and programmed to the pump unit. To this end, the original waveform was spline-
interpolated, down-scaled to meet the pump’s peak flow rate limit (300 mL/s), and discretized ( �t = 10 ms) over 
a cardiac cycle length of RR = 1000 ms (heart rate 60 bpm). The resulting stroke volume was 71.2 mL and total 
flow was 4.3 L/min.

Flow volume splits across model outlets were controlled via the ratio of clamping the soft downstream tubing 
(ID = 12.7 mm) at R1dist and R2dist with adjustable pinch valves. We note that R1prox and R2prox were inherently 
defined by the model-to-capacitor tubing which should be kept as short as possible to most efficiently leverage 
the effect of the capacitors (described below). Flow splits were assessed using an ultrasonic flow probe (ME-
PXL14, Transonic) that clamped-on at the DAo outlet and was connected to a data acquisition system (DAQ) 
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via a flow module (TS410, Transonic). Based on preliminary bench top tests, we targeted a flow volume split of 
70/30 for model Mc1.

Pulse pressure was controlled using two capacitance elements at the DAo outlet (C1) and at the merged arch 
branches (C2). The capacitors were designed as cylindrical towers with sealed air compression chambers in which 
the enclosed air volume (height = 16 cm, diameter = 10.2 cm) dictated the amount of downstream capacitance. 
Pressure transducers (Micro-Tip SPR-350S, Millar) were inserted at the model inlet and descending aorta outlet, 
and pressure signal was received at the DAQ through a bridge amplifier front-end (FE224 Quad Bridge, ADIn-
struments). The mean arterial pressure was elevated by increasing the overall system resistance via the distal 
pinch valves which—after final tuning—reduced the tubing cross-section to a slit of 1.3–2.3 mm. We defined 
110–120 mmHg and 70–80 mmHg as target systolic ( Psys ) and diastolic ( Pdias ) pressure ranges for model Mc1.

For the three models, identical inflow conditions were programmed, whereas pressure and flow split tuning 
was performed with model Mc1 only. Subsequently, models Mc2 and Mr were embedded under the identical 
periphery without re-tuning system capacitance or resistance. All DAQ data analysis was performed using 
dedicated DAQ software (LabChart 8, ADInstruments).

Figure 1.  (a) Schematic of the MRI-compatible flow circuit setup. The pump unit was positioned at the end 
of the patient bed; the fluid reservoir was positioned on the patient bed and inside the MRI bore. The pump 
controller provided a pulse for triggering both image acquisition and DAQ signals. Ultrasonic flow transducers 
and pressure transducers (dotted lines) were disconnected after tuning and prior to moving the setup to the MRI 
iso-center. (b) Photograph of the model-specific gel block with embedded aorta model and ports (blue) at inlet 
and outlet to insert pressure transducers. (c–e) 3D spoiled-gradient echo MRI image data for three reformatted 
planes (XY, XZ, YZ) depicting the aorta model embedded into the gel. (f) Model construction showing lumen 
mesh (cyan) and extruded wall mesh (gray). (g) Final print-ready aortic wall model with defined cross-
sectional landmarks, full centerline (black), and descending aorta centerline (blue) that was used for PWV 
analysis. The original model was extended with cylindrical caps (length = 2 cm) at the inlet and all outlets to 
accommodate connection to customized barbed connectors that then connect to tubing. (h) Photographs of a 
finished 3D-printed model. Graphics created using Inkscape (v0.92, https:// inksc ape. org/), SimVascular (release 
2020–04, https:// simva scular. github. io/), and Meshmixer (v3.5, https:// www. meshm ixer. com/).
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Imaging experiments. Imaging experiments were performed using a 3T MRI scanner (Skyra, Siemens 
Healthineers) with a 32-channel spine and a 18-channel chest coil. We used a total fluid volume of seven liters 
(glycerol-water mixture with ratio = 40/60) with T1-shortening contrast agent (ferumoxytol, concentration = 
0.75 mL/L) for increased signal-to-noise ratio (SNR). Protocol steps were as follows: (1) set up “fluid-empty” 
circuit on the MRI scanner table; (2) flush and de-bubble all fluid lines (steady flow); (3) record and tune pres-
sures and flow splits (pulsatile flow); (4) remove pressure and flow transducers before moving setup to MRI iso-
center; (5) run high-resolution 3D spoiled gradient echo (SPGR) acquisition (steady flow, 71.2 mL/s, Fig. 1c–e); 
(5) run 4D-flow acquisitions (three series, all pulsatile flow); (6) run 2D-PC and 2D-cine-GRE at pre-defined 
landmark slices (14 series, all pulsatile flow). The pump trigger signal was used for retrospective cardiac gating 
(direct input to scanner) and to later synchronize signals from pressure and ultrasonic recordings (direct input 
to DAQ). Image acquisition time per model was 1 hour 45 minutes, and total end-to-end experiment time 
(including setting up and swapping models) was 10 hours.

2D‑PC and 2D‑cine‑GRE MRI. Two-dimensional (2D) imaging through lumen cross-section was performed 
at the following landmarks (Fig. 1g): ascending aorta inlet (‘inlet’), ascending aorta (‘AAo’), arch just proximal 
to brachiocephalic trunk (‘BCT’), and distal to left subclavian artery (‘LSA’), mid-descending aorta (‘DAo’), 
descending aorta outlet (‘outlet’), and three arch branches (‘b1’, ‘b2’, ‘b3’). 2D MRI sequences included: (1) 2D 
cine gradient echo (2D-cine-GRE) with in-plane resolution 0.9 × 0.9 mm, slice thickness = 6 mm, FoV = 240 
× 150 mm, TE/TR = 3/4.75 ms, flip angle = 7 ◦ , averages = 2, retrospective gating, number of temporal frames 
= 50 (frame length = 20 ms), no parallel imaging acceleration; and (2) 2D phase-contrast (2D-PC) with Venc = 
90–120 cm/s, in-plane resolution 1.1 × 1.1 mm, slice thickness = 6 mm, FoV = 220 × 123 mm, TE/TR = 3/21 ms, 
flip angle = 25◦ , averages = 2, retrospective gating, number of temporal frames = 50 (frame length = 20 ms), no 
parallel imaging acceleration.

4D‑flow MRI. We used a conventional 4D-flow sequence with Cartesian k-space sampling, a velocity encoding 
range ( Venc ) of 120 cm/s, and repeated scans at three temporal resolutions (20 ms, 40 ms, 62.5 ms), leading to a 
total of nine datasets (Table 1). Venc was chosen to optimize signal-to-noise ratio during systole while avoiding 
phase-wrapping artifacts, i.e. just above peak systolic velocities as measured by preceding 2D-PC. To minimize 
phase offsets and to improve geometric fidelity, the image data were corrected for Maxwell terms (during recon-
struction), gradient non-linearity, and eddy current (both post-reconstruction). Distortion correction due to 
gradient non-linearity was implemented as described by Markl et al.25 3D phase images were corrected for eddy 
current effects via linear fitting of 3D offset maps through the ballistics gel image region. No phase unwrapping 
was required. 4D-flow images were processed using MEVISFlow software solution (v11.2, Fraunhofer Institute 
for Digital Medicine)26.

Image analysis. 2D‑PC and 2D‑cine‑GRE analysis. For all cross-sectional landmarks (Fig. 1g) aorta lu-
men contours were manually drawn in the first cardiac frame ( t = 0 ) of the 2D-cine-GRE slices and tracked 
through all subsequent frames ( t = 1−49 ) using a phase-based motion tracking algorithm as described by Tautz 
et al.27. Lumen expansion was assessed by calculating relative contour area change over time. Identical contours 
were used to assess inflow conditions and net flow splits based on the acquired 2D-PC data.

4D‑flow analysis. For each aorta model, we segmented a 3D aorta lumen mask m[x] in the 3D SPGR image data 
using an automated 3D region growing algorithm, and subsequently derived the lumen centerline ( cfull ) using a 
skeleton  approach28 on the 3D binary mask. The centerline was used to define cross-sectional planes for 4D-flow 

Table 1.  4D-flow MRI sequence parameters. Three data sets were acquired with each model, resulting in a 
total of nine datasets available for analysis. Variations in effective temporal resolution were controlled by the 
number of acquired k-space lines per segment, and the number of reconstructed cardiac frames was adapted 
accordingly. FOV field of view, TE echo time, TR repetition time, Venc velocity encoding range, BW bandwidth.

High temp-res Baseline temp-res Low temp-res

FoV ( mm
3) 360× 260× 100 360× 260× 100 360× 260× 100

Acquisition matrix 144× 104× 40 144× 104× 40 144× 104× 40

Spatial resolution (mm) 2.5 isotropic 2.5 isotropic 2.5 isotropic

Lines per segment 1 2 3

Reconstructed frames 50 25 16

Temporal resolution (ms) 20 40 62.5

TE/TR (ms) 2.8/5.2 2.8/5.2 2.8/5.2

Venc (cm/s) 120 120 120

Flip angle ( ◦) 15 15 15

BW (Hz/px) 451 451 451

Scan time (mm:ss) 42:40 21:20 14:40
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parameter quantification at landmarks identical to those defined as part of the 2D acquisitions (Fig. 1b) and to 
extract equidistant flow waveforms used for the PWV computation.

Based on the 4D-flow magnitude image output, time-resolved lumen contours were automatically tracked 
as described above. The following 4D-flow based metrics were computed: flow rate (mL/s), net flow per cycle 
(mL), and mean/max velocity (cm/s). All metrics were compared for all combinations of model wall stiffness 
and temporal resolution.

PWV calculation. PWV computation was focused on the descending aorta only (with centerline cDAo , reaching 
from landmarks ‘LSA’ to ‘outlet’), owing to flow effects at the arch branches that alter flow waveforms and com-
pound the computation. Given the full velocity vector field v[x, t] , lumen mask m[x] , and cDAo , flow rate curves 
were computed as follows: (1) define N cross-sectional analysis planes with normal vector nk with k = [1, N] 
at equidistant points ck along cDAo (spacing = 5 mm) ; (2) retrieve oriented lumen cross-sections Ak at planes 
defined by nk , ck , and lumen mask m[x] ; (3) compute flow rate

Qk[t] curves were interpolated using cubic-splines and the time-to-foot (TTF) approach (Fig. 7a) was used to 
calculate  PWV29. Briefly, TTFk for each Qk[t] curve was defined as the x-intercept of a line fitted through the 
waveform’s upslope points at 20 % and 80 % of the peak flow rate. TTFk[ck] was plotted as function of the cen-
terline location and PWVTTF was defined as the inverse slope of the linear regression line fitted to TTFk[ck] . 
Linear regression used a conventional least-square-error (LSE) approach as well as a random sampling consensus 
(RANSAC) algorithm to better handle outlier.

Results
Tensile testing. All material samples exhibited non-linear stress-strain behavior. The incremental Young’s 
moduli were estimated by the tangent modulus ( Et ) at nominal stress σ = 0.053MPa , which was approximated 
by σ = Pr/hwall with P given by the recorded mean pressure PMAP = 57mmHg (during pulsatile flow), wall 
thickness hwall = 0.002m , and average lumen radius r = 0.014m . Et for the compliant models Mc1 and Mc2 were 
1.27MPa (ranging 1.23MPa to 1.31MPa) and 4.3MPa (ranging 3.7MPa to 4.88MPa), respectively. As for model 
Mr , no absolute elasticity estimates could be derived from the given stress-strain data, but differences in Mr elas-
ticity were approximated to be at least 15-fold (> 15MPa) when compared to model Mc1 . 3D-printing anisotropy 
was negligible with differences < 5% within the relevant strain range for all three samples. Stress-strain plots are 
shown in Supplementary Fig. S1.

Pressure tuning. Pressure recordings were performed on the scanner bed prior to image acquisition. Pres-
sure waveforms (Fig.  2, top row) recorded at the model inlet show increased peak pressures in models Mc2 
(116mmHg) and Mr (133mmHg) compared to the most compliant model Mc1 (112mmHg). At the model outlet 
(DAo branch) peak pressures dropped by 7mmHg for both compliant models Mc1 and Mc2 , and by 11mmHg 
for the nearly rigid model Mr . Diastolic pressure values were between 38mmHg and 40mmHg for all models at 
the inlet and dropped by 1mmHg at the outlet. All pressure waveforms showed an oscillating behaviour both in 
systole and diastole, which was most dominant in model Mr.

Flow split tuning. Flow splits between all model outlets were consistent between the three models, with net 
flows of 48–49 ml measured with the ultrasonic probe at the descending aorta outlet prior to each acquisition 
(corresponding 68% of the programmed inlet flow). Inlet net flow volumes calculated from 2D-PC flow rate 
waveforms (Fig. 2, row 2) ranged from 64.6 to 66.4 ml; 2D-PC DAo outlet net flow volumes ranged from 51.6 
to 52.7 ml. Adding up 2D-PC measured net flow at all outlets (b1, b2, b3 and DAo) total outflow was 70.0, 70.8, 
67.8 ml for Mc1 , Mc2 , and Mr , corresponding to relative differences of 1.7, 0.6, and 4.8 % from the programmed 
inflow (71.2 ml).

Aorta wall expansion. Aortic wall expansion was clearly visible in systole for models Mc1 and Mc2 and 
most pronounced in the ascending aorta. The wall expanded non-uniformly for all evaluated landmarks (Fig. 2, 
row 4, and Supplementary Fig. S2) owing to the posterior constraint provided by the gel block (Fig. 1c). Based 
on the tracked contours, the calculated cross-sectional area increased by > 5% in models Mc1 and Mc2 , whereas 
no detectable area change (< 1%) was measured for model Mr (Fig. 2, row 3). For models Mc1 and Mc2 , relative 
area change over the cardiac cycle also depicted a small secondary lobe in early diastole which was in phase with 
the secondary lobes of the pressure and flow rate waveforms.

Velocities at cross-sections. Figure 4 shows a qualitative comparison between model Mc1 and model Mr 
and their velocity vector profiles for cardiac frames at peak systole and end systole. While profiles in models Mc1 
and Mr were similar at peak systole, minor qualitative differences were observed at end systole, particularly at 
landmarks proximal to the arch branches. Here, the nearly rigid model Mr showed a more centered cross-sec-
tional velocity profile with less backward flow components and less helical flow tendencies. Velocity profiles at 
landmarks distal to the arch branches mainly differed with regards to the velocity vector magnitude, with higher 
velocities in model Mr . Model dependent velocity differences in the descending aorta can also be observed in 
maps of traced particles, as visualized in Fig. 3.

Qk[t] =

∫

�v[x, t], nk�dAk .

original publication no. 2 55



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6703  | https://doi.org/10.1038/s41598-021-86174-6

www.nature.com/scientificreports/

Figure 5 shows mean and maximum velocity analysis results. Maximum velocities at peak systole were highest 
in model Mr (73.1 cm/s at AAo, 42.5 cm/s at BCT, 39.1 cm/s at LSA, and 43.2 cm/s at DAo) compared to both 
compliant models Mc1 (73.0 cm/s at AAo, 38.5 cm/s at BCT, 35.4 cm/s at LSA, and 35.5 cm/s at DAo) and Mc2 
(70.5 cm/s at AAo, 36.6 cm/s at BCT, 35.5 cm/s at LSA, and 39.2 cm/s at DAo). Likewise, cross-sectional mean 
velocities in systole were higher in model than in the compliant models. Decreasing temporal sampling from 
50 frames down to 16 frames showed greatest effects at the AAo landmark for peak velocity which decreased by 
16%, 19 %, 14 % for Mc1 , Mc2 , and Mr.

Figure 2.  Experimental setup conditions for aorta models Mc1 (red), Mc2 (green), and Mr (blue), evaluated at 
selected landmarks (Fig. 1g). (Row 1) Pressure conditions recorded at inlet (solid) and outlet (dashed). (Row 
2) Flow rate waveforms at inlet and all outlets with calculated net flow volumes, based on 2D PC-MRI data. 
(Row 3) Cross-sectional area change relative to area at cardiac cycle start, based on tracked lumen contours in 
2D-cine-GRE data. (Row 4) Overlay of tracked lumen contour at cross-section AAo for all acquired time frames 
(N = 50). Animated contour tracking results are presented in Supplementary Fig. S2. Plots created using Python 
(v3.6, https:// www. python. org/).
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Flow at cross-sections. Figure  6 shows flow rate and cumulative net flow results. Results were simi-
lar between different models or between 4D-flow data of different temporal sampling rates. Net flow values 
were 69.6± 1.9ml for AAo, 63.4± 1.6ml for BCT, 47.0± 0.7ml for LSA, and 45.7± 1.0ml for DAo (given 
as mean± SD over three models and three temporal sampling rates). Net flow at the landmarks upstream and 
downstream of the arch branches were within 10% of the programmed pump value (71.2 ml) and the measured 
ultrasonic value (48.5 ml), respectively.

Flow rate waveforms over the cardiac cycle (Fig. 6, solid lines) showed weaker peak flow rate dampening with 
increased model wall stiffness. This effect was most pronounced at landmarks further downstream (LSA, DAo). 
4D-flow sampled at 50 frames per cycle revealed a double flow rate peak in systole at all cross-sections, which 
was much less apparent in the dataset sampled at 25 frames per cycle and not apparent in the dataset sampled at 
16 frames per cycle. Moreover, a distinct second (t = 0.66 s) and third (t = 0.85 ms) flow rate peak were present 
in all derived waveforms, irrespective of model stiffness and temporal sampling rate.

PWV. PWV values were estimated from time-to-foot (TTF) delays of flow rate waveforms at equidistantly 
spaced cross-sectional planes along the descending aorta (Fig. 7b). Based on the datasets with highest temporal 
sampling (50 frames/cycle), PWV was 6.98 m/s (LSE) and 5.78 m/s (RANSAC) for model Mc1 , and 7.31 m/s 
(LSE) and 7.31 m/s (RANSAC) for model Mc2 . Both for model Mc1 and Mc2 , PWV values were lower with data-
sets sampled at 25 frames/cycle and further decreased for datasets sampled at 16 frames/cycle. The 16 frames/
cycle dataset of model Mc1 included four extreme outlier points posting large negative TTF values. These points 
were excluded prior to fitting the linear model. No linear relationship between TTF and centerline position was 
detectable for model Mr irrespective of temporal resolution. Consequently, while PWV was very high, no PWV 
values could be reported based on the data.

Figure 3.  Particle tracing based on 4D-flow MRI data for the three aorta models of identical subject-specific 
geometry, but different wall stiffness. While particle traces matched among the three models, velocities along 
the descending aorta—as depicted by the color—were slightly higher in the nearly rigid model Mr . An animated 
version of traced particles is shown in Supplementary Video S3–5. Graphic created using MevisLab (v3.4a, 
https:// www. mevis lab. de/).
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Discussion
This study demonstrated the feasibility of integrating a subject-specific aorta model with varying wall elastic-
ity into an MRI-compatible flow circuit setup that operates under physiological flow and pressure conditions. 
Utilizing prolonged and highly-controlled in vitro 4D-flow imaging, we showed the influences of aortic wall 
compliance and temporal sampling rates on both cross-sectional flow parameters and 4D-flow derived PWV.

Stress-strain testing of the compliant 3D-printing material suggested that the derived tangent moduli Et 
of models Mc1 and Mc2 are in the same range as the incremental Young’s moduli that have been reported for a 
‘young’ (more compliant) and ‘old’ (stiffer) human thoracic aorta,  respectively30. We did not attempt to report 
Et for the non-realistic model Mr due to the material’s substantially higher stiffness which challenged reliable 
tensile testing, but approximated the difference in elasticity to be at least 15-fold when compared to model Mc1.

Pressure tuning was performed for model Mc1 only. Subsequently, model Mc1 was interchanged with models 
Mc2 and Mr , but resistance and downstream capacitance were kept constant. This approach allowed for isolated 
evaluation of the effect increased wall compliance on pressure and flow. While tuning model Mc1 to physiologi-
cal Psys was successful, Pdias was below the target range of 70–80 mmHg. Previous work with advanced MRI-
compatible flow circuit setups reported similar increased (i.e. > 50mmHg ) pulse  pressures21,31,32. We note that 

Figure 4.  4D-flow cross-sectional velocity profiles in models Mc1 (top) and Mr (bottom) at peak-systolic 
( t = 280ms ) and end-systolic ( t = 400ms ) frames. All profiles are 3D-rendered using the identical camera 
view and colored according to the 3D direction (red-green-blue arrow legend). Backward flow is visible at 
cross-sections prior to the arch branches (inlet, AAo, BCT), specifically at end-systole. One can appreciate the 
different vector profiles for the compliant model Mc1 when compared to the nearly rigid model Mr . Velocity 
profiles rendered using MevisLab (v3.4a, https:// www. mevis lab. de/).
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two main factors determine successful pressure tuning: (1) Psys or PMAP can easily be elevated by increasing flow 
resistance distal to the capacitors for which the pulse pressure remains constant; (2) pulse pressure is governed 
by the available capacitance, i.e. compressible air volume (C1, C2) and by the ratio of distal to proximal resist-
ance ( R1dist/R1prox , R2dist/R2prox ). A greater ratio provides a wider range for tuning pulse pressure. Despite Pdias 
being lower than physiological values, the achieved conditions were found to be sufficient to study the impact 
wall compliance on flow dynamics. Interchanging models under consistent resistance and capacitance settings 
led to two effects on pressure: (1) Psys increased in model Mc2 , and more so in model Mr , but no effects were 

Figure 5.  4D-flow cross-sectional mean (solid) and maximum (dashed) velocity at four landmarks (Fig. 1g) 
and three different temporal sampling rates. Highest peak-systolic velocities (see values in legends) were 
measured in model Mr (blue); and inter-model peak-systolic velocity differences were greater at landmarks 
further downstream. The temporal sampling rate impacted the measurement of peak velocities, which was most 
pronounced at AAo point. Spikes in diastole were attributed to noise in near-boundary pixels and inaccurate 
contouring. Plots created using Python (v3.6, https:// www. python. org/).
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seen on Pdias ; (2) inlet to outlet peak pressure differences increased with increasing wall stiffness. Both of these 
observations were as expected and they affirmed the validity of the setup.

Pressure and flow rate oscillations (Fig. 2) are expected to be caused by wave reflections at several branch-
ing points—natural arch branches, rigid flow connectors, flow valves, etc.—and under-damping in the system. 
Other studies with comparable flow circuit setups showed similar oscillating waveform  shapes21,31,32. Additional 
engineering efforts to mitigate this phenomenon may benefit analyses of pressure and flow waveform shapes in 
multiple vessel geometries and/or under varying boundary conditions.

4D-flow image-based visualizations of vector profiles and traced particles indicated that variations in wall 
compliance lead to variations in velocity amplitudes and profiles (Figs. 3, 4). The quantitative analyses showed 
that both mean and maximum velocities decreased for the compliant models when compared to the nearly 
rigid version. Likewise, flow rate waveform dampening was most pronounced in the most compliant model and 

Figure 6.  4D-flow derived flow rate waveforms (left ordinates) and cumulative net flow (right ordinates) at 
four landmarks (Fig. 1g) and three different temporal sampling rates. Grey horizontal lines show the expected 
net flow according to the programmed inflow (71.2 mL/cycle) for the AAo and BCT slices, and measured (via 
ultrasonic transducer during setup tuning) DAo branch outflow (48.5 mL/cycle) for the LSA and DAo slices. 
Plots created using Python (v3.6, https:// www. python. org/).
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Figure 7.  (a) Principle of retrieving TTF values at three positions along the descending aorta centerline. (b) 
PWV calculations for models Mc1 (red), Mc2 (green), and Mr (blue) for three temporal sampling rates (row 1 
through 3). Scattered points depict TTF of flow rate waveforms extracted at equidistantly spaced cross sections 
along cDAo (Fig. 1f). All TTF values are shown as TTF differences to TTF at centerline position 0. Conventional 
LSE linear regression (solid line, with R2 given in legend) and RANSAC (dashed line with assigned outlier 
marked +) were used to derive PWV values, defined as the inverse slope of the respective line (given in legend). 
Differences in PWV were observed between models Mc1 and Mc2 . However, temporal sampling rates impacted 
these values, with decreasing PWV estimates for lower temporal resolution. It appears that PWV in model Mr is 
too fast such that plausible TTF along the centerline cannot be resolved with the 4D-flow based approach. LSE is 
very sensitive to outlier data which was apparent in data Mc1 (50 frames) and Mc1 (16 frames). For the latter one, 
four TTF points laid outside the displayed y-axis with linear regression deviations >100 × RMSE and were thus 
excluded prior to fitting the model. TTF, time-to-foot; LSE, least-squared-error; RANSAC, random sampling 
consensus; RMSE, root-mean-squared-error. Plots created using Python (v3.6, https:// www. python. org/).
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the further downstream the centerline. Thus, in comparative in vitro to in vivo studies—regardless of efforts to 
match patient-specific inflow conditions—fully rigid aorta models are likely insufficient for direct comparison.

4D-flow based PWV calculations in compliant models Mc1 and Mc2 provided values within the range of PWV 
values that have been reported in in vivo 4D-flow  studies11,33,34. PWV in the model Mr was too high to reliably 
resolve TTF delays along the centerline. Thus, we did not attempt to report a 4D-flow derived PWV for model 
Mr . The referenced in vivo studies included healthy volunteers (young and old) and patients with atherosclero-
sis. Mean PWV among the respective cohorts ranged from 3.8 to 6.4 m/s. However, they did not include PWV 
measurements based on multiple 4D-flow datasets with varying temporal resolutions, which ranged from 32–41 
ms—a typical temporal resolution in in vivo 4D-flow acquisitions amid scan time limitations. Another previous 
study utilizing through-plane encoded 2D-PC MRI with higher temporal resolution (6–10 ms), reported PWV 
values ranging from 4.3 m/s (healthy and young controls) to 6.5 m/s (older patients).

In contrast to the reported in vivo 4D-flow based PWV values, theoretical PWV values based on Moens-
Korteweg (Eq. 1) are 8–10.7 m/s for model Mc1 , 14.9–20 m/s for model Mc2 , and 31–41 m/s (assuming Et of 
model Mr to be 15-fold over model Mc1 ). The given ranges correspond to the change of aortic diameter, which 
ranges from 36 mm in the ascending aorta to 20 mm in the distal descending aorta. These theoretical values may 
be debated, as the Moens-Korteweg equations assumes a constant vessel diameter, which is not true of the aorta.

Variations in 4D-flow temporal resolutions affected PWV considerably. Assuming that the presented 4D-flow 
data at highest temporal resolution ( �t = 20ms ) generates the most reliable PWV values, the present results 
suggest that lower temporal sampling rates underestimate absolute PWV (up to 35 %). Specifically, our data 
shows that the impact of temporal resolution on PWV calculation may be more dominant than the effect of vary-
ing wall compliance. One TTF plot (model Mc1 , 16 frames) included distinct outlier points with negative TTF 
delay that were removed prior to linear model fitting. This emphasizes that reliable PWV calculations are highly 
dependent on accurate flow waveforms, particularly when derived from data with low temporal resolution. In 
that case, using the alternative iterative RANSAC approach for fitting a linear regression showed the effect on 
PWV while directly excluding these outlier points.

Four key limitations of this study were identified. First, only a single approach for PWV measurement (TTF) 
was used. In addition to the TTF, others derived PWV by time-to-peak (TTP), time-to-upstroke (TTU), and by 
correlation analysis of time-shifted flow waveforms (xCorr)29,34,35. Wentland et al.34 analyzed differences in PWV 
for these four approaches. PWV values were similar for TTF, TTU and xCorr, while TTP results deviated most 
due to challenges of detecting the true peak flow point in data with mediocre temporal resolution.

Second, synthetic aorta models were manufactured with uniform wall thickness and elasticity which simplifies 
the in vivo aorta. These local variations of the model may impact calculated PWV values. A subject-specific wall 
mesh directly built on a vessel wall segmentation—rather than segmenting the lumen and extruding the surface 
by a pre-defined and uniform wall thickness—may be an alternative approach. To this end, a 3D dark blood MRI 
protocol is able to provide the necessary image basis for building models with non-uniform wall  thickness36.

Third, potential effects of cardiac motion on aortic hemodynamics cannot be assessed with our setup, as 
there was no contracting left ventricle and/or moving aortic valve. While PWV analyses were focused on the 
descending aorta and thus are expected to not be impacted, hemodynamics in the ascending aorta may change.

Fourth, the study design did not assess the effects of heart rate or pressure variations on PWV, which remains 
a controversial topic according to other previous studies. A pre-clinical study with rats reported a positive HR 
to PWV correlation, which was further pronounced at higher mean arterial  pressures37. Clinical studies that 
paced patients at different heart rates found either a positive HR to PWV  correlation38–41 or no  correlation42,43. 
If heart rate to PWV dependencies were to be investigated with the presented in vitro setup, careful considera-
tions need to be made on how to modify the inlet flow rate waveform and whether or not pressures should be 
regulated with programmed HR changes. Given this open research question, we consider the present flow circuit 
setup with compliant aorta models to be of high value to further investigate heart rate and pressure variations.

In conclusion, this work demonstrated 3D-printed subject-specific compliant models of the thoracic aorta 
integrated into a highly-controlled physiological flow circuit for assessment via in vitro MRI. Using compliant 
rather than rigid models of the aorta is essential to produce realistic flow dynamics and conditions that reca-
pitulate in vivo hemodynamics.

Data availability
The subject-specific thoracic aorta model and custom-build model-specific connectors (.stl files), as well as all 
acquired MRI DICOM data is publicly available: https:// purl. stanf ord. edu/ dz488 kx6180.
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Abstract. The analysis of quantitative hemodynamics and luminal
pressure may add valuable information to aid treatment strategies and
prognosis for aortic dissections. This work directly compared in vitro
4D-flow magnetic resonance imaging (MRI), catheter-based pressure
measurements, and computational fluid dynamics that integrated fluid-
structure interaction (CFD FSI). Experimental data was acquired with a
compliant 3D-printed model of a type-B aortic dissection (TBAD) that
was embedded into a flow circuit with tunable boundary conditions. In
vitro flow and relative pressure information were used to tune the CFD
FSI Windkessel boundary conditions. Results showed overall agreement
of complex flow patterns, true to false lumen flow splits, and pressure
distribution. This work demonstrates feasibility of a tunable experimen-
tal setup that integrates a patient-specific compliant model and provides
a test bed for exploring critical imaging and modeling parameters that
ultimately may improve the prognosis for patients with aortic dissections.

Keywords: Aortic dissection · CFD FSI · 4D-flow MRI

1 Introduction

An aortic dissection is a life-threatening vascular disorder in which a focal tear
develops within the inner aortic wall layer. This leads to subsequent formation
of a secondary channel (‘false lumen’, FL) that is separated from the primary
channel (‘true lumen’, TL) by a dissection flap. [13] Patients with type-B aortic
dissection (TBAD, i.e. without involvement of the ascending aorta) often receive
pharmacologic treatment and frequent monitoring is used in an attempt to pre-
dict late adverse events. Prognosis of late adverse events is largely informed by
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morphologic imaging features, but conflicting results have been reported among
several predictors [17].

To improve prognosis several hemodynamic quantities are of potential inter-
est and may confer added sensitivity of individual risk. Recent studies have
suggested high FL outflow [15] as strong predictor for late adverse events, and
FL ejection fraction [5] as indicator for false lumen growth rate.

To retrieve these hemodynamic markers, computational fluid dynamics
(CFD) frameworks provide simulated patient-specific flow fields at high spatio-
temporal resolution [11]; and those that integrate fluid-structure interaction
(FSI) at deformable walls are expected to amplify the realism of patient-specific
modeling even further. If simulations were able to reliably replicate hemodynam-
ics, it would further enable non-invasive prediction of risk related to pathological
changes (e.g. tear size).

While CFD FSI approaches show great potential, a direct validation with
measured data in highly controlled, but realistic environments is missing. Pre-
vious comparisons between simulations and in vivo 4D-flow MRI [1,6,14] are
challenged by: the assumption of a rigid aortic wall and dissection flap; a lack
of information on accurate patient-specific hemodynamic conditions; and/or an
unknown patient-specific aortic wall and dissection flap compliance.

Herein, we compare qualitative and quantitative TBAD hemodynamics based
on: (1) simulations that use a recently proposed FSI framework [1], and (2) in
vitro MRI including catheter-based pressure mapping. We utilized a patient-
specific, compliant TBAD model embedded into a highly-controlled flow circuit.
Uniaxial tensile testing of the compliant material, image-based flow splits and
catheter-based pressure recordings informed simulation tuning.

2 Methods

2.1 Patient-Specific Aortic Dissection Model

A 3D computed tomography angiogram (CTA) of a patient (31 y/o, female) with
TBAD was selected from our institution’s database. A proximal intimal ‘entry’
tear was present distal to the left subclavian artery and an ‘exit’ tear was located
proximal to the celiac trunk. Each tear measured 2.3 cm2 in area size. The CTA
study was approved by the institutional review board and written consent was
obtained prior to imaging.

The lumen of the thoracic aorta was segmented using the active contour
algorithm with manual refinements (itk-SNAP v3.4, Fig. 1a). Two tetrahedral
meshes were generated (Fig. 1b): the ‘fluid domain’ representing the full aortic
lumen; and the ‘wall domain’ (as extruded fluid domain) representing the outer
aortic wall and dissection flap that separates TL and FL with uniform thickness
(h = 2 mm). The wall domain mesh was further refined with (i) cylindrical
caps that facilitated tubing connections, and (ii) visual landmarks to define
image analysis planes. Meshing and refinements were done using SimVascular
(release 2020-04) [19] and Meshmixer (v3.5, Autodesk). Further details on model
generation are given in [1].
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The wall model was 3D-printed using a novel photopolymer technique (Poly-
Jet J735, Stratasys Inc.), as shown in Fig. 1d. The print material underwent
uniaxial tensile testing as described in [21] and proved to be comparable to in
vivo aortic wall compliance (tangent Young’s modulus Ey,t = 1.3 MPa).

Fig. 1. (a) CTA images with lumen segmentation. (b) Tetrahedral meshes of fluid
(gray) and wall domains with dissection flap (blue). (c) Cross-sectional landmarks and
pressure mapping points (*). ‘Entry’ and ‘exit’ tear cover sections with combined TL
and FL flow. Landmarks DAO1, DAO2, and DAO3 consist of a TL and FL cross-
section. (d) Photograph of finished 3D-printed model. (Color figure online)

2.2 MRI Experiments

Imaging was performed on a 3 T MRI machine (Skyra, Siemens). An MRI-
compatible flow circuit that includes a programmable pump (CardioFlow 5000
MR, Shelley) was engineered to provide controllable flow and pressure condi-
tions similar with target values within the physiological range (Fig. 2a). Details
were recently published in [21]. Glycerol-water (ratio = 40%/60%) with con-
trast (ferumoxytol) was used as a blood-mimicking fluid; and a typical aortic
flow waveform (Fig. 2b) was applied (heart rate = 60/min, stroke volume = 74.1
mL/s, total flow = 4.45 L/min).

The circuit was tuned on the scanner table prior to image acquisition, target-
ing a flow split of 70%/30% (DAo outlet vs. arch branches), and luminal systolic
pressure (at model inlet) of 120 mmHg. The pulse pressure was controlled via
capacitance elements—designed as sealed air compression chambers—at the DAo
outlet (C1) and at the merged arch branches (C2). A pressure transducer (SPR-
350S, Millar) was inserted through ports at the model inlet and DAo outlet, and
luminal pressures were recorded at eight points (Fig. 1c). Ultrasonic flow and
pressure signals were fed into PowerLab (ADInstruments) for analysis.
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Fig. 2. (a) Schematic of the flow circuit setup. Pressure transducers were inserted
through ports at the model inlet and DAo outlet. (b) Flow rate waveform that was
programmed into the pump. C1, C2: ‘capacitance’ air-compression chambers, R1, R2:
‘resistance’ flow clamps. (Color figure online)

2D-Cine and 2D-PC MRI. Two-dimensional (2D) acquisitions at landmarks
(Fig. 1c) included: (1) 2D cine gradient echo (2D-cine) with pixel size = 0.9 ×
0.9 mm2, slice thickness = 6 mm, TE/TR = 3/4.75 ms, flip angle = 7◦, avg. = 2,
retro. gating (40 frames); and (2) 2D phase-contrast (2D-PC) with pixel size =
1.1 × 1.1 mm2, slice thickness = 6 mm, TE/TR = 3/5.25 ms, flip angle = 25◦,
avg. = 2, Venc = 90 − 120 cm s1, retro. gating (40 frames).

4D-Flow MRI. A four-point encoded Cartesian 4D-flow sequence was acquired
as follows: FoV = 340 × 236 × 84 mm3, matrix = 220 × 156 × 56, voxel size =
1.5 × 1.5 × 1.5 mm3, TE/TR = 2.7/5.6 ms, flip angle = 15◦, parallel imaging
(GRAPPA, R = 2), Venc = 120 cm s−1, lines/seg. = 2, retro. gating (20 frames).

Image Analysis. Lumen contours were automatically tracked through time
based on 2D-cine data via image-based deformable registration, which provided
values of cross-sectional area and served as the boundary for net flow calculation.
2D-PC images were corrected for phase offsets (via planar 2nd order fitting) and
then processed to retrieve the inlet flow and net flow splits across outlets.

4D-flow MRI data was corrected for (i) Maxwell terms, (ii) gradient non-
linearity distortion [10], and (iii) phase offsets (via 3rd order fitting). Five land-
marks along the dissected region were used for analysis (Fig. 1c). 4D-flow MRI
offset correction, flow calculations, and streamline visualization were done using
MEVISFlow (v11.2, Fraunhofer Institute) and ParaView (v5.7); quantitative
results were exported as numeric files for comparison with simulation results.
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2.3 CFD FSI Simulations

Governing Equations. The governing equations for fluid flow and struc-
tural mechanics were solved in the fluid and wall domain, respectively. In
the fluid domain, the working fluid was considered incompressible and New-
tonian (�f = 1100 kg m−3, μf = 0.00392 Pa s). Momentum and mass balance
were described by the Navier-Stokes Equations in arbitrary Lagrangian Eule-
rian formulation to account for motion. The structural material was modeled
with a Neo-Hookean model for homogeneous, isotropic hyperelastic materials
(Ey = 1.3 MPa, �s = 1450 kg/m3). Both domains were coupled at the interface
via kinetic and dynamic interface conditions. A detailed mathematical descrip-
tion can be found in [1].

CFD FSI Boundary Conditions. The 2D-PC derived flow waveform was
prescribed at the model inlet as a Dirichlet boundary condition, assuming a
parabolic velocity profile. Three-element Windkessel boundary conditions were
applied at fluid outlets and coupled to the 3D domain with the coupled multido-
main method [7]. The catheter-based pressure values at the inlet of the model
used as simulation tuning targets were: 119 mmHg, 42 mmHg, and 77 mmHg for
the systolic (Ps), diastolic (Pd) and pulse pressure (�P ), respectively. Addition-
ally, the 2D-PC derived flow splits informed the Windkessel parameter tuning,
and were measured as 78.4%, 12.3%, 3.0%, and 5.2% for the DAo outlet, BCT,
LCC, and LSA, respectively. The tuning of the Windkessel parameters (a distal
and proximal resistance and capacitance at each of the model outlets) was then
carried out in an iterative and manual process, by which a total resistance RT

and total capacitance CT are distributed across all model outlets according to
the measured flowsplits and a pre-prescribed ratio of distal to proximal resistance
(kd = 0.9). Details of the tuning process can be found in [1].

Wall domain outlets were fixed in space via a homogeneous Dirichlet condi-
tion for the displacement and a homogeneous Neumann boundary condition was
prescribed at the outer wall of the vessel domain. This is in contrast to patient-
specific simulations where a non-homogeneous Robin type boundary condition
can be prescribed to account for external tissue support of the vessel. Likewise,
the outer wall of the vessel domain was assumed to not be under prestress,
contrary to a typical in vivo environment.

Numerical Formulation. The numerical simulations were performed with the
SVFSI finite element solver, as implemented in SimVascular [19]. SVFSI features
linear elements for velocity and pressure and is based on the “Residual Based
Variational Multiscale” method. The fluid and wall domain were solved in a
monolithic approach and backflow stabilization was applied at the fluid outlets.
To avoid mesh degeneration, a nodal mesh smoothing was performed after each
time step. Details of the numerical formulation are given in [1]. For details about
the numerical discretization we refer to [2,3,8,18].
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Fig. 3. CFD FSI (blue) tuning conditions, showing (a) flow rate and (b) pressure
waveform at TBAD model inlet, in comparison to 4D-flow and catheter measurements
(green). While the inlet flow rate waveforms match well, CFD FSI shows a slower
diastolic pressure decay without oscillations. (Color figure online)

Discretization and Simulation Setup. Tetrahedral meshes of fluid and wall
domain were sampled with a spatial resolution of �h = 1.3 mm (1.6 × 106 tetra-
hedral elements) which was found to be a sufficiently fine resolution [1]. The tem-
poral resolution was set to 4 × 103 timesteps per cardiac cycle (�t = 0.25 ms).
The simulation achieved cycle-to-cycle periodicity within 5 iterative runs. Com-
pute time was 12 h per cycle on a high performance computing cluster.

CFD FSI Analysis. Time-resolved parameters were extracted from the last
simulation cycle: (i) flow rate, (ii) area change, and (iii) pressure. We extracted
data from every 50th simulated time step, which totaled 80 incremental results
with an effective temporal resolution �t = 12.5 ms. Quantitative metrics
were analyzed at cross-sectional landmarks (Fig. 1c) using ParaView (v5.7) and
exported as numeric files for direct 4D-Flow MRI comparison.

3 Results

Boundary Conditions. Inlet flow (Fig. 3a) for CFD FSI was directly pre-
scribed based on 2D-PC results and agreed well with 4D-flow MRI. CFD-FSI
flow splits across model outlets 78.7%, 12.7%, 3.2%, and 5.5% for DAo out-
let, BCT, LCC, and LSA, respectively) aligned well with 2D-PC splits (78.4%,
12.1%, 3.0%, and 5.2%). After tuning, CFD FSI pressure (Fig. 3b) matched
catheter measurements within the pre-defined 10% error margin (119.6 mmHg,
43.2 mmHg, and 76.4 mmHg for simulated Ps, Pd and �P , corresponding to a
relative error of ≤4%). While catheter-based measurements showed oscillations
and a fast pressure drop at end-systole (t = 0.4 s), CFD FSI pressure decayed
slower and without oscillation. As a results, mean pressure differed by 15.8% (78
mmHg for CFD FSI compared to 68 mmHg for catheter-based measurements).
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Flow Patterns and Velocities. Qualitative flow visualizations (Fig. 4) showed
well-matched flow patterns between CFD FSI and 4D-flow MRI. Particularly,
streamlines depicted helical flow in FL aneurysm during systole and distal FL
during diastole, as well as increased velocities through the proximal FL entry
tear and along the distal TL. Overall, velocities were higher in CFD FSI, but
the intra-model spatial distribution of velocities matched well.
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Fig. 4. Streamline visualization at systole (t = 0.2 s) for CFD FSI (top) and 4D-
flow MRI (bottom) data. CFD FSI shows higher velocities, but intra-modality flow
patterns and velocity distribution is consistent. Increased velocities through entry tear
(blue arrows) and true lumen (green arrows). A helical flow pattern is visible in the
false lumen aneurysm (white arrows). (Color figure online)

Pressure, Area, and Flow. Systolic TL pressure exceeded FL pressure
(Fig. 5a) for both simulation and catheter measurements. At peak systole, the
TL-FL presure difference was greater for CFD FSI data at landmarks DAO1 and
DAO2, but matched well at DAO3. During diastole, the TL-FL difference was
close to zero for CFD FSI, but was 1 to 2 mmHg for the catheter measurements.
Cross-sectional area (Fig. 6, dashed lines) expanded most in FL cross-sections
with up to 11% based on CFD FSI and up to 5% based on 2D-cine MRI.

Net flow volumes (Fig. 6) revealed a FL to TL flow split of 78%/22% for
CFD FSI and 73%/27% for 4D-flow MRI measurements. Flow waveform shapes
(Fig. 6, solid lines) aligned well, particularly regarding the peak flow timepoint,
systolic upslope (t = 0.1 s), and oscillatory lobes in diastole. CFD FSI flow rates
were higher in systole and lower in diastole when compared to 4D-flow values.
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Pressure-area loops showed a steeper slope for in vitro data (Fig. 5b). FL
peak flow preceded peaks of pressure and area change. This temporal delay was
longer for CFD FSI, which was consistent for all DAO landmarks (Fig. 5c).

Fig. 5. (a) The TL-FL pressure difference was higher in proximal and lower in distal
region. (b) FL pressure-area loops. (c) Flow rate peaks preceding both pressure and
area peaks, with greater delay times for CFD FSI. (Color figure online)

4 Discussion

This study leveraged compliant 3D-printing as well as a highly-controlled MRI-
compatible flow circuit setup to directly compare CFD FSI and MRI results
with regards to flow and pressure dynamics in a patient-specific TBAD model.
The aorta’s secondary lumen and proximal FL aneurysm presented complex flow
patterns with a large velocity range. These characteristics were well captured by
both modalities and streamline visualizations were in very good agreement.

Our approach links measured luminal pressure with CFD FSI boundary con-
ditions, which presents a major advantage over previous comparisons with in vivo
data that usually lack invasive pressure measurements. During simulation tuning,
pressure targets (Ps, Pd) were met, but pressure waveform shapes differed—i.e.
faster and oscillatory pressure decay in catheter measurements versus slower and
steady decline in CFD FSI. We note that a slower and steady pressure decline in
diastole is desirable and would resemble in vivo pressure shapes of the arterial
system [12].

To further investigate this mis-match, additional exploratory pressure data
were recorded on the benchtop. Moreover, additional CFD FSI simulations with
varying configurations of boundary conditions were computed. We identified
three aspects to better match the measured and simulated pressure conditions.
First, increasing the ratio between the distal and proximal resistance—described
by parameter kd in the three-element Windkessel model—is the key factor to
improve the pressure shape towards a slower diastolic decline with its minimum
at end-diastole (Fig. 7a). In practice, we increased kd by decreasing proximal
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Fig. 6. Flow rate and area change (w.r.t area of first frame) at eight landmarks. Net
flow values for CFD FSI (blue) and 4D-flow MRI (green) are given. CFD-FSI showed
increased FL flow (78%) compared to 4D-flow (73%); and increased maximum area
expansion (11% for CFD FSI vs. 5% for 4D-flow). (Color figure online)

resistance, and thus also decreased total system resistance which led to reduced
�P . Second, exploratory benchtop experiments also suggested that the charac-
teristic pressure oscillations originate from wave reflections at multiple branching
points. Other previous works that deployed flow circuits in model-based stud-
ies reported similar pressure waveform shapes [4,9,16,20]. Further engineering
efforts should be made to minimize wave reflections at non-smooth boundaries
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Fig. 7. (a) Exploratory benchtop data showing improvements for the setup’s pressure
condition. By drastically reducing proximal resistance, pulse pressure is reduced from 78
to 52 mmHg, and—if wave reflections were to be neglected—diastolic pressure declines
steadily towards its minimum at end-diastole. (b) CFD FSI (blue) vs catheter-based
(green) pressure at the inlet face in an adapted simulation with rigid walls and inho-
mogeneous pressure boundary condition at the BCT outlet. By tuning the simulation
using the full pressure waveform, inlet pressure conditions closely resemble measured
values, including wave reflections. (Color figure online)

as much as possible. Third, additional exploratory simulation runs suggested
that the measured pressure conditions can be closely approximated by directly
prescribing pressure data as inhomogeneous Neumann boundary condition at
one of the outlets. To do so, we prescribed the catheter-based pressure data that
was measured at the model inlet as pressure boundary condition at the brachio-
cephalic trunk outlet. Resulting well-matched pressure waveforms are shown in
Fig. 7b. We seek to adapt both our experimental and simulation setup in future
studies regarding these three aspects.

Overall, our presented results showed similar tendencies of flow and pres-
sure parameters in the dissected region between MRI, catheter measurements,
and FSI simulation. TL-FL pressure differences were comparable such that they
were almost consistently positive, and that the most distal landmark (DAO3)
showed a smaller difference compared to the two proximal points (DAO1, DAO2).
Interestingly, CFD FSI TL-FL pressure difference briefly dropped to negative
(t = 0.4 s) and then to zero (t > 0.65 s), while catheter measurements showed
preserved positive TL-FL differences at all locations and times. Moreover, with
only 5% difference between modalities, results suggest a well-matched TL-FL
flow split.

Multiple results indicate that the performed tensile testing underestimated
Ey,t: a steeper slope of the pressure-area loop for in vitro data, shorter flow-
pressure-area waveform delays, and consistently lower outer wall expansion.
To address this mis-match, future CFD FSI experiments should iteratively
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increase the value for Ey,t until in vitro wall deformations are sufficiently repli-
cated.

Moving toward clinical deployment of simulation-based treatment decision
support, future work should also investigate uncertainties of pressure and flow
conditions and their impact on hemodynamic quantities. In particular, if pressure
data are unavailable, it should be investigated how approximations of pressure
boundary conditions (e.g. two-point systolic to diastolic cuff pressure) propagate
errors into hemodynamic quantities. The presented highly-controlled in vitro
setup is well suited to investigate these effects.

In conclusion, this work presents valuable information on hemodynamic sim-
ilarities and differences as retrieved from CFD FSI, in vitro MRI, and catheter-
based pressure measurements in a patient-specific aortic dissection model.
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6
D I S C U S S I O N O F T H E P R E S E N T E D W O R K S

The core of this research sought to elucidate potentials and limitations
of 4D flow MRI, in particular with regards to retrieving parameters
that quantitatively characterize cardiovascular flow mechanics. Specifi-
cally, this dissertation focused on the quantification of hemodynamics
in vascular disorders of the human thoracic aorta.

The conducted studies investigated image-derived metrics with
(1) in vivo 4D flow MRI data from healthy subjects and patients who
presented aortic diseases, and (2) in vitro data that were acquired with a
custom-build MRI-compatible flow circuit setup and 3D printed aorta
models during comprehensive experiments. Additionally, simulated
data were integrated for proof-of-principle, comparison, and validation
tasks at multiple points.

Though a plethora of previous studies described the use of quan-
titative 4D flow MRI to assess aortic diseases, the reliability and
robustness of image-derived hemodynamic markers are yet to be fully
understood. We may categorize these uncertainties into (1) errors orig-
inating from perturbations in the given PC MR image data and (2)
errors originating from imperfect image post-processing algorithms.

As per (1), imperfections in the measured PC MR image data arise
from: the fact that 4D flow MRI always warrants a trade-off between
spatio-temporal resolution, SNR, and sequence run time; the always
present cardiac and respiratory motion, which we need to compensate
for using motion-controlling techniques; and different types of phase
offsets as introduced in sec. 2.2.2. In particular, the effect of phase
offsets induced by eddy currents shall not be underestimated [24].
Here, methods for mitigating eddy currents and/or reliable correc-
tion during post-processing present an active area of research. Novel
developments such as DL-based offset correction [143] suggest promis-
ing results, but warrant rigorous multi-center and multi-sequence
validation.

As per (2), image post-processing comprises multiple tasks that may
introduce errors. These computational tasks include: segmenting the
vessel of interest, registering image frames for landmark tracking, ap-
plying denoising filters, interpolating velocity vector fields, computing
spatial derivatives, and others. All of which can potentially propagate
errors that lead to uncertainties in the final flow metric.

Therefore, in order to implement 4D flow MRI as a standard method
for quantitative analysis of blood flow dynamics, it is crucial to un-
derstand to what extent errors propagate and how they consequently
affect the quantitative metric. The individual contributions presented
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in Chap. 3, 4, 5 addressed this important research question. Their key
findings are discussed in the following.

The first study [148] investigated the influences of spatial resolution,
phase data noise, and aortic wall motion on wall shear stress esti-
mation. The study was motivated by a lack of knowledge regarding
the influences of assuming a static rather than moving aortic wall
on WSS estimates. The majority of prior research articles that had
introduced WSS as descriptive biomarker had used a time-averaged
definition of the lumen boundary. In our work, we implemented a
registration-based algorithm to propagate an initial single-frame lu-
men contour through all cardiac frames. We further extended the
numerical computation of the WSS vectors by adapting the computa-
tion of the vessel inward normal, as presented in [147]. Our results
suggested motion-dependent WSS perturbations to be as considerable
as the effects of increased phase noise and low spatial resolution. The
results emphasized that a precise definition of the structural boundary
is crucial for reliable estimation of wall parameters.

However, limitations of this work should be discussed. First, we only
evaluated in vivo data of the ascending aorta and only included two
groups (BAV patients and healthy volunteers). Extending the study
population by other cohorts should be part of future works.

Second, assessing the performance of the registration-based wall
contour propagation algorithm was not the focus of this study. We
note that PC MRI magnitude image quality is inferior to state-of-the-
art cardiac cine MRI sequences (e.g. bSSFP), which challenges contour
propagation performance. However, it often is the only available 3D+t
data for defining moving vessel boundaries in arbitrarily reformatted
planes. Preliminary results in a small number of datasets (N=6) showed
acceptable performance, as presented in [145, 146], but further inves-
tigation on a diverse set of PC MRI data is warranted. Moreover, we
extended the implementation for contour tracking from 2D+t to 3D+t
to allow for fully dimensional tracking of vascular structures [150].
As with contour tracking in 2D, 3D surface tracking demonstrated
acceptable performance in a small-sized cohort of healthy volunteers
(N=11), but more comprehensive validation studies are needed.

Third, the image-based WSS estimation algorithm used here is based
on the notation described by Stalder et al. [125], but alternative meth-
ods have been proposed [30, 108, 109, 123] by others. Benchmarking all
of these methods on a comprehensive dataset with available ground
truth would be an important next step to determine the role of 4D
flow-based WSS as hemodynamic marker.

In the context of WSS uncertainty quantification, Castagna et al. [27]
recently suggested a system based on laser doppler velocimetry as
reliable basis for WSS validation; and Ko et al. [70] proposed a criterion
termed ’Reynolds resolution‘ as a metric for WSS uncertainty.
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While the first contribution to this dissertation exclusively consid-
ered in vivo 4D flow MRI acquisitions, the following works leveraged
in vitro experiments. In contrast to in vivo MRI acquisitions, in par-
ticular those that are being added to routine clinical exams, in vitro
approaches allow for prolonged imaging, thereby providing excellent
image quality. Furthermore, in vitro experiments enable studying flow
dynamics under controllable hemodynamic states (e.g. pressure).

We designed and engineered a closed-loop flow circuit that meets
the following requirements: (i) generic layout that integrates models
of the thoracic aorta, which can be swapped out during experiments,
(ii) pulsatile and programmable flow conditions, (iii) flow volumes
and luminal pressure at physiological range, and (iv) MRI-compatible
such that it reliably and safely performs inside the scanner bore.

Regarding the aortic wall model, the aim was to develop subject-
specific models that mimic wall properties of the human aorta. This
is in contrast to the majority of previous works, which simplify their
setup with rigid vessel models [25, 80, 137]. Depending on the specific
research question, a rigid model may be a totally legitimate solution.
However, with our study design, we sought to investigate influences
of wall properties on flow mechanics, as well as generating image
data for simulations that incorporate fluid-structure interaction. A
compliant model was therefore inevitable.

The second study [154] demonstrated the feasibility of engineering
a flow circuit that fulfills all requirements as stated above, and showed
promising results regarding the use of novel photopolymer-based 3D
printing technologies to manufacture compliant and subject-specific
models of the thoracic aorta. Moreover, this work showed the impact
of aortic wall compliance on 4D flow-derived pulse wave velocity, peak
flow rate, and peak velocity, and analyzed the confounding effects of
temporal sampling rates. Using compliant rather than rigid vascular
models is essential to reproduce realistic quantitative hemodynamics
that recapitulate in vivo conditions.

This study did not assess the linkage between HR and/or pressure
variations and PWV, which appears to be a controversial topic as
suggested by a number of pre-clinical [129] and clinical studies [1,
2, 57, 73, 75, 139]. In this regard, we showed preliminary results of
two HR modes (60 and 100 min−1) and three aorta models at ISMRM
2020 [151]. A comprehensive study is to follow, but we suggest that the
developed setup is of high value to investigate this research question.

The third study [155] used the emerging advanced capabilities of
3D printing and integrated a complex type B aortic dissection (TBAD)
model into the flow circuit. An aortic dissection is a life-threatening
vascular disorder and to this date treatment strategies are largely
informed by morphological features such as false lumen diameter
and growth rate. The analysis of the complex interplay between flow
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and pressure in TBAD is expected to add valuable knowledge that
helps to better risk-stratify an individual’s condition. In our work, the
objective was to compare quantitative flow metrics as obtained via 4D
flow MRI with simulated CFD FSI data. An advanced framework for
CFD FSI had recently been described by Bäumler et al. [8]. However,
previous comparisons with measured flow data were challenged by
low in vivo image quality and by incomplete data for tuning boundary
conditions. With the developed flow circuit, we were able to provide
4D flow MRI data of highest quality owing to prolonged imaging.
Moreover, we directly measure pressure and flow to inform the tuning
of boundary conditions in the simulations. Lastly, tensile testing of the
compliant printing material directly provided the model’s stress-strain
data curve and elasticity modulus.

The results of this work suggested good agreement between MRI
and CFD FSI data with respect to complex flow patterns, velocity
distribution, TL-FL flow splits, and relative TL-FL pressure differences.
However, the mismatch of aortic wall and dissection flap motion
will require further assessment in future studies. Also, the published
data demonstrated the challenges of matching pressure boundary
conditions. In particular, the catheter-based pressure measurements
showed an oscillatory behavior, which we were only able to replicate
after directly prescribing the measured pressure waveform to one of
the model outlets (see chap. 5, Fig. 7b). The influences of matched/non-
matched boundary flow and pressure boundary condition should be
investigated in future work.

With the gained expertise in in vitro flow imaging studies, we shall
emphasize the unique role of such experimental setups. In particular,
we identify the following key advantages: (1) controlled physiological
conditions with a programmable pump and tunable downstream pe-
riphery such that flow and pressure conditions can be set as desired
(and kept constant throughout an imaging experiment); (2) prolonged
imaging time that is not restricted by patient compliance or clinical
schedules, contrary to in vivo studies; (3) diverse possibilities with
novel 3D printing techniques to manufacture patient-specific models
with varying mechanical properties (e.g. aortic wall elasticity) and
varying local morphologies (e.g. pre/post vascular repair); (4) a test
bed for MRI reproducibility studies; and (5) generation of high-quality
flow data with directly measured boundary conditions for CFD vali-
dation studies.

In conclusion, this dissertation contributed to the field of quanti-
tative hemodynamics and 4D flow MRI by performing robustness
and sensitivity analyses and by pushing novel applications, as demon-
strated in our comprehensive in vitro studies with an advanced experi-
mental setup.



7
O N G O I N G A N D F U T U R E W O R K

In addition to addressing limitations of the presented studies in follow-
up work, other exciting ongoing and future directions are outlined
below.

aortic dissection morphology. Regarding the assessment of
flow dynamics in TBAD, ongoing work considers multiple modified
versions of the TBAD model presented in Chap. 5 to investigate the
influence of tear morphology (i.e. size) on flow dynamics in the true
and false lumen. Fig. 7.1 shows preliminary results of flow streamlines
— retrieved from in vitro 4D flow MRI — at peak systole for three
TBAD models: (a) native morphology, (b) smaller-sized primary inti-
mal tear (PIT), and (c) smaller-sized re-entry tear in distal DAo. As per
qualitative assessment, we can appreciate the different flow patterns
and velocity distribution. In particular, decreased PIT size resulted in
a strong flow jet that impinges on the false lumen vessel wall. Several
local helical flow patterns can be observed surrounding the PIT. As per
quantitative assessment, pressure catheter data showed considerable
absolute pressure changes and changes in TL vs. FL pressure differen-
tials between models. The ongoing study runs detailed evaluation of
the influences of tear size on multiple flow parameters. Moreover, the
results are being compared against CFD FSI simulations.

advanced 3d-printed models . The field of 3D printing has
emerged considerably over the past decade. Cutting-edge technologies
open up an entire new field of research methods and experimental
research in cardiovascular flow mechanics can benefit hugely from
these developments. While this dissertation only considers two aortic
geometries (healthy and dissected) there are plenty of other complex
pathologies, e.g. aortic coarctation, valvular defects such as BAV, or
aortic dilation (aneurysm). Further, a big portion of 3D printing re-
search is concerned with the development of new polymers as print
material. Multi-material printed models (e.g. with local variations in
stiffness) or materials with MRI properties (i.e. signal) would certainly
level up the use of 3D printed phantoms in MRI studies.

reproducibility Reproducibility in MRI is a key component to
its integrity, in particular when it comes to quantitative MRI methods.
Talks and discussions among the MRI community at the ISMRM 2021

member-initiated symposium ’Reproducible MRI all across the world’
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(a) native model (b) smaller PIT, native re-entry tear (c) native PIT, smaller re-entry tear

FL

TL AAo

DAo

Figure 7.1: Varying morphology of aortic dissection tear size. Visualizations
show streamlines through the aortic arch and primary intimal tear
(PIT, dashed ellipsoid) in the model with (a) native morphology,
(b) smaller PIT, and (c) smaller re-entry tear (in DAo, not shown).
Tear size influence flow patterns, jet profiles, and TL/FL flow
volume ratio. (unpublished data)

once more emphasized the continued need for infrastructure that
enables rigorous reproducibility studies.

A recently published ’travelling volunteer’ study by Demir et al. [32]
investigated 4D flow-based aortic hemodynamic parameters in healthy
volunteers (N=9) at three sites regarding inter-vendor comparability
and reproducibility, scan-rescan reproducibility, and intra- and inter-
observer agreement. A concluding statement of this study was that
’hemodynamic parameters [...] are not equivalent’. In vivo reproducibil-
ity studies such as this one are challenging due to possibly varying
hemodynamic states for each volunteer at multiple MRI sites.

In this regard, in vitro studies with highly-controlled (and repro-
ducible) physiological flow circuits that integrate realistic models will
play an important role. As an example, Williams et al. [140] demon-
strated the use of a ’travelling phantom’ to assess reproducibility and
repeatability of CSF flow dynamics in a realistic 3D printed patient
model of the spinal cord.

data for ml methods Another application of in vitro phantom
studies is the generation of large datasets to assist the development of
machine learning methods. For example, DL-based super-resolution
of 4D flow MRI datasets acquired at low spatio-temporal resolution
would enable us to perform quick scans without sacrificing image res-
olution. Here, ongoing work (unpublished) considers a convolutional
neural network that learns the inter-scale relationship of the velocity
maps. Related work combining DL and CFD (’4DFlowNet’) was pre-
sented by Ferdian et al. [46] and demonstrated noise-free images with
upsampling factor 2. To validate such methods, studies which apply
prospectively under-sampled (i.e. low resolution) and fully sampled
(i.e. high resolution) data are preferred over approaches that retro-
spectively downs-sample data for validation purposes. A controlled
experimental setup that is used to generate multiple datasets with
varying sampling schemes opens up new possibilities for validation.
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Authors: Judith Zimmermann, Lennart Tautz, Naira Mkrtchyan, Heiko
Stern, Christian Meierhofer, Anja Hennemuth.

In: Proc. ISMRM Workshop on Quantitative Flow 2016, San Francisco,
CA, USA. [145]

background 4D flow MRI allows the image-based estimation of
advanced quantitative measures such as wall shear stress (WSS) dis-
tribution in vascular structures surrounding the heart. Computation
of three-dimensional WSS requires a surface mesh representation of
the vessel boundary of interest (e.g. arterial wall). To enable the as-
sessment of change in WSS (e. g.for the calculation of the oscillating
shear index, OSI) in the moving aorta during the cardiac cycle, surface
points have to be tracked in all cardiac phases. Accurate segmenta-
tion is crucial for the reliability of WSS [110]. Manual tracking of
the aorta is extremely time-consuming and observer-dependent [13].
Our objective was to study the performance of different automatic
propagation algorithms applied to the aorta. In the future, the imple-
mented methodology for tracking should facilitate the generation of
time-resolved vessel surface meshes to ultimately allow for a patient
study to assess time-dependent WSS in the entire aorta.

methods After obtaining written consent, six subjects underwent a
cardiac MRI exam (Avanto, Siemens, 1.5 T) to obtain 4D flow MRI data
covering the aorta from bulb through the descending part. Acquisition
parameters were: TE = 2.6 ms; TR = 5 ms; FOV = 400× 300× 60 mm3;
voxel resolution = 2.3 × 2.3 × 2.3 mm3; Venc = 150 cm/s. The acquisi-
tion was navigator-gated and ECG-triggered (prospectively). To re-
format the time-resolved 3D magnitude data into 2D image planes
on which the contour tracking is applied, a processing pipeline as
shown in figure 1 was performed for each dataset. Three image regis-
tration approaches were adapted to compute vector deformation fields
between neighboring time frames: Morphon [69, 131], Normalized
Gradient Fields (NGF), and Mutual Information (MI). All approaches
use local similarity measures for registration optimization: the Mor-
phon is guided by local phase difference between the images, NGF
is guided by similarity between image gradients, and MI is guided
by the entropy which is calculated based on the joint histogram of
the two images [49, 97]. All data analysis was implemented using
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the MevisLab framework. Manual contours were obtained from two
independent clinical experts. For performance evaluation, the Dice
similarity index and the Hausdorff distance were computed.

results Comparison of manual contours from two independent
observers resulted in mean ± SD for Dice (HD, in mm) of 0.88 ±
0.04(5.61 ± 1.01), 0.89 ± 0.04(5.22 ± 1.28), and 0.89 ± 0.03(4.87 ± 1.04)
for the three reformatted image planes at aAo, arch, and dAo respec-
tively. Comparatively, Morphon contour tracking performed best with
Dice/HD (in mm) values of 0.89± 0.04(5.01± 1.05), 0.92± 0.03(4.74±
0.85), and 0.92 ± 0.02(4.62 ± 0.75) for the same three locations. For all
MPRs, NGF and MI presented lower Dice/higher HD with higher
standard deviations (Fig. A.3).

discussion and conclusion Out of the three evaluated algo-
rithms, Morphon-based tracking is most suitable to replace manual
tracking without loss in accuracy. NGF and MI fall behind where poor
image quality (e.g. missing edges in diastole frames) is present. Future
processing steps are necessary to integrate contour tracking into the
pipeline for generating “moving” surface meshes. Ultimately, the im-
plemented framework will facilitate the computation of time-resolved
arterial WSS and OSI.

Figure A.1: Processing pipeline for definition of multi-planar-reformatted
(MPR) images.
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Figure A.2: 3D WSS visualization at single timepoint. A time-independent
and static surface mesh was used.

Figure A.3: Mean/SD Dice (red) and HD (blue, in mm) values for different
algorithms.
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A D VA N C I N G Q UA N T I TAT I V E 4 D F L O W M R I :
A S S E S S M E N T O F M A N UA L V E R S U S AU T O M AT I C
B O U N D A RY D E F I N I T I O N I N T H E A O RTA .

Authors: Judith Zimmermann, Lennart Tautz, Naira Mkrtchyan, Heiko
Stern, Christian Meierhofer, Anja Hennemuth.

In: Proc. SCMR Scientific Sessions 2017, Washington D.C., USA. [144]

background 4D flow MRI enables the assessment of various quan-
titative hemodynamic parameters (e.g. velocity profiles) in the heart
and surrounding vessel [43]. However, calculation of these parameters
relies on a pre-computed lumen boundary, which should be defined
individually at all cardiac phases. In contrast, if vessel movement
throughout the cardiac cycle is not taken into account, velocities origi-
nating from outside the vessel of interest will contribute. Our objective
was to study the performance of automatic contour propagation in
the aorta based on an image registration approach using quadrature
filters (Morphon registration) [69, 131].

methods Six subjects underwent a 4D flow MRI exam (Avanto,
Siemens, 1.5 T) to acquire a parasagittal slab of the aorta. Acquisition
parameters were: TE = 2.6 ms; TR = 5 ms; FOV = 400 × 300 × 60 mm3;
voxel resolution = 2.3 × 2.3 × 2.3 mm3; Venc = 150 cm s−1. Prospective
ECG-triggering and navigator gating was employed. All data process-
ing was performed using application tailored software implemented
with the MevisLab framework [114]. 3D+t magnitude image data was
reformatted to obtain image planes (MPR) orthogonal to the aortic
centerline at three locations: ascending aorta (aAo), arch, and descend-
ing aorta (dAo). Manual vessel contours were obtained from two
independent experts for all datasets, for all defined MPRs and for all
given cardiac phases. Accordingly, automatic contour propagation of
a single manually defined contour at systole and diastole throughout
the cardiac cycle was performed based on the suggested image regis-
tration approach [69, 131]. Dice indices and Hausdorff distance (HD,
in mm) were computed to evaluate inter-expert variability as well as
algorithm performance given the corresponding manual contours as
ground truth.

results Inter-observer variability resulted in acceptable scores for
Dice (median = 0.88) and HD (median = 5.23 mm), with max/min
outliers of 0.99/0.72 and 12.6/1.27 for Dice index and HD (in mm),
respectively (Fig. B.1 A). Similarly, performance of the automatic
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propagation was consistently decent when compared to the manual
contours: 0.92/0.98/0.72 and 4.86 mm/13.8 mm/1.46 mm (median/-
max/min) for Dice index and HD, respectively (Fig. B.1 B). Different
initializations (i.e. manual starting contours) did not impact propaga-
tion results, showing acceptable agreement in overall Dice (median =
0.91) and HD (median = 4.97 mm) with small deviations (Fig. B.1 C).

conclusion Automatic propagation is feasible and shows con-
sistent results when compared to manual contours. Inter-observer
median similarity scores are acceptable, however, outliers are present
and would negatively influence subsequent quantitative flow data
analysis. Here, propagation offers results with increased reproducibil-
ity. In addition, automation will speed up the workflow where a
time-variant volumetric surface mesh is required for quantitative 4D
flow analysis.

Figure B.1: Dice indices (red) and Hausdorff distance (blue) for inter-observer
variability (A), Morphon performance when compared to man-
ual contours (B), and Morphon reproducibility when different
manual contours are used for initialization (C). Different MPR
locations (aAo: left, arch: middle, dAo: left) are plotted separately,
with better overall scores for dAo. Each subplot shows results
from six datasets with mean (dot), standard deviation (bar), and
min/max (triangles) values.
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background 4D flow magnetic resonance imaging (MRI) outputs
three-dimensional, time-resolved velocity vector fields, which depict
blood flow dynamics in the vascular system. This information can be
exploited by applying post-processing techniques to compute image-
based hemodynamic parameters [54]. However, the accuracy of all
image post-processing depends on the image characteristics such
as noise level, temporal and spatial resolution, velocity encoding
number (Venc), and image artifacts. Therefore, understanding how
these characteristics impact the computed hemodynamic parameter
is crucial. The aim of this work was to implement a software tool
for generating various software blood flow phantoms mimicking 4D
flow MRI data. The tool’s output may then be used for evaluating the
computation of hemodynamic parameters.

methods Flow through the aorta was simulated using the Lattice-
Boltzmann method [96] and 3D+t phase images (PH) were derived.
A 3D phantom image of the thorax served as the initial magnitude
image (MAG). We then used the artificial PH and MAG data as the
input to the software toolbox. It comprises the following steps to ma-
nipulate the input images: spatial resampling with linear interpolation
(PH, MAG); adjusting signal intensity and standard deviation (MAG);
temporal resampling via cubic B-spline image function and subse-
quent sampling at discrete time points (PH); adding Venc-depending
phase wraps (PH); adding Venc-depending velocity noise (PH); adding
phase offsets (PH). The tool was implemented using the MevisLab
framework.

results Fig. C.1 shows a sample phase image result of a cross sec-
tion of the aorta. Here, we applied different Venc values and otherwise
identical parameters. Noise in the velocity images clearly increases
with increasing Venc.

conclusion In this work we present a software tool to generate
artificial 4D flow MRI phase and magnitude images. The tool allows
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Figure C.1: Velocity images with different Venc and otherwise identical pa-
rameters. Top: A cross section at aortic arch level with ascending
(top circle) and descending (lower circle). Bottom: Corresponding
side view of 3D velocity vector field. Left/middle/right images
were generated with Venc = 100, 200 and 300 cm/s.

to create phantom data of various image characteristics. It is therefore
suitable when assessing the impact of noise, resolution, and artifact
errors on the image-based computation of hemodynamic parameters.
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introduction 4D flow MRI allows the image-based estimation
of quantitative wall shear stress (WSS) in vascular structures. WSS (⃗τ)
at any vessel wall point is defined as

τ⃗ = 2ηϵ̇ · n⃗, (D.1)

with n⃗: vessel surface inward normal, η: dynamic viscosity, and ϵ̇:
velocity deformation tensor. Furthermore, the oscillatory shear index
(OSI) is defined as

OSI =
1
2

(
1 − |

∫ T
0 τ⃗ · dt|

∫ T
0 |⃗τ| · dt

)
. (D.2)

Previous works studied the impact of MRI acquisition parameters
on WSS estimation [108], though the burden of inaccurate inward
normal definition is unknown. Most commonly, WSS and OSI are
estimated by analyzing 2D analysis planes [6, 63, 90] and the inward
normal at each wall point is only comprised of the vector component
lying on the respective plane. However, in case of complex vessel
geometries (e.g. stenosis, dilatation) the inward normal may deviate
from the analysis plane.

The aim of this work was to (1) introduce a method to accurately
compute surface inward normals in cone-shaped vessel regions given
the typical 4D flow MRI image data, and to (2) study the influence of
deviating inward normal vectors on WSS and OSI estimates.

methods Synthetic data. Steady flow was simulated through a pipe
with narrowing on a high resolution grid (Fig. D.1) using Comsol Mul-
tiphysics (resolution = 0.7 × 0.7 × 0.7 mm3; min/max vessel diameter
= 10.3/33.5mm; mean velocity at inlet = 3.89 cm s−1).

In-vivo data. Six 4D flow MRI data sets of patients with stenotic
or dilated vessel geometry were included. Scans were performed
on a 1.5 T Avanto (N=3) or 3 T Trio (N=3) system (both Siemens)
with: TE = 2.6 ms; TR = 5.1 ms; FOV = 400 × 300 × 60 mm3; voxel
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dimension = 1.7–2.5 x 1.7–2.5 x 2.0–2.5 mm3; Venc = 150–300cm s−1;
parallel imaging with R = 5; prospective ECG triggering covering the
full cycle; navigator gating.

Data pre-processing included phase offset correction (via polynomial
function fitting), background noise masking, and automatic phase
unwrapping if needed. WSS computation. Vessels were segmented
from the generated PC-MRA image using watershed-based algorithm.
For each case, one analysis plane was placed in the dilated/stenotic
vessel region and vessel contours were tracked through all time frames
(Fig. D.3).

Inward normals. The binary vessel mask was used to derive a Gauss
gradient field (G) to advance the computation of the vessel inward
normal at each sampled contour point x

n⃗x = a⃗x + g⃗x,p (D.3)

where g⃗x,p = (Gx · p⃗) p⃗ is the projection of Gx (local Gauss gradi-
ent) onto the unit plane normal, and a⃗x is the conventional inward
normal lying on the analysis plane.

WSS. WSS was then estimated at each contour point using a B-spline
image function based approach [125] with µ = 0.0032 Pa s. Regarding
synthetic data, we analyzed single timepoint WSS (WSSsingle); regard-
ing in vivo data, we analyzed WSS at peak velocity (WSSpeak) and
OSI. Estimates were binned into twelve angular segments to compute
mean ± SD per segment. All image analysis was implemented using
the MevisLab framework [114].

Evaluation. WSSsingle, WSSpeak, and OSI were assessed segment-wise
regarding absolute and relative differences of estimates based on
conventional vs. adapted inward normal. Angle deviations between
conventional (⃗ax) and adapted (⃗nx) inward normals were computed.

results Both synthetic data (Fig. D.1) and in vivo data (D.3) results
show noticeably deviated inward normals when the Gauss gradient
field is incorporated with angle deviations ranging from 0.00-0.70 rad
for in-vivo data and 0.41-0.43 rad for the pipe phantom. With adapted
inward normals, synthetic data results show an increase in WSSsingle by
(45.9 ± 49.6)% (Fig. D.2). Regarding in-vivo data results, we observe
differences in WSSpeak of (8.5± 7.5)%, (24.4± 15.5)%, (18.1± 12.1)%,
(21.6 ± 18.2)%, (25.8 ± 23.9)%, and (10.9 ± 9.7)% (Fig. D.4); and in
OSI of (15.8 ± 13.3)%, (10.5 ± 10.8)%, (23.1 ± 23.2)%, (7.2 ± 8.0)%,
(4.6 ± 6.0)%, and (3.0 ± 3.2)% for cases 1-6, respectively (Fig. D.5).
All numbers indicated above are given as mean±SD over all twelve
segments.

discussion Synthetic data results show a clear underestimation
when inward normal vectors are not adapted to the local vessel geom-
etry. Here, an outlier is present due to a very subtle flow profile and
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Figure D.1: Synthetic data representing steady flow through a pipe with
narrow. Left: vector visualization (color coding = direction) of ve-
locity field with simulated flow from right to left and delineated
vessel wall contour at the region of interest (red). Right: Contour
point samples of the vessel wall contour (red dots) and inward
normal vectors defined by the conventional method (white ar-
rows) and by integrating the gauss gradient field of the vessel
mask to adapt to the vessel course (red arrows).

thus comparably small WSS values, which challenges the assessment
in terms of relative differences. Synthetic data should be optimized
to better represent flow velocities as given in the in-vivo data. In vivo
data results clearly show that adapted inward normal vectors result
in strong deviations of WSS and OSI, which should not be neglected
when using these parameters in a clinical study. Particularly, differ-
ences are very pronounced for high angular deviations. This study did
not assess differences in WSS/OSI contour-point-wise (only segment-
wise) and thus did not correlate each contour point WSS/OSI value
with the angular deviation of the conventional and adapted inward
normal at this point.

conclusion The proposed method may be used to more precisely
define vessel inward normal vectors for increased WSS and OSI es-
timation. Particularly, this is crucial where the vessel wall depicts a
cone-shaped course.
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Figure D.2: Synthetic data WSSsingle estimates. Top: Absolute differences of
WSSsingle estimates comparing the conventional (red) with the
adapted (blue) inward normal vector computation. Bottom: Rel-
ative differences of WSSsingle estimates with the conventional
method considered a reference. Green bars depict a ±5 % mar-
gin. Here, results show that adapted inward normals effect an
increase in WSS. Note that absolute WSSsingle values are very
low compared to in vivo results, which is due to low overall flow
velocities in the pipe phantom. This may also cause outliers as
seen for the first segment.
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Figure D.3: Close-up view of in-vivo data vessel surface rendering (grey)
with vessel wall inward normal vectors at contour points (red
dots). For each case, white arrows and red arrows represent
the normal vectors defined by the conventional method and
by our approach, respectively. Angle deviations between white
and red vectors (computed at each contour point) are given in
median/min/max radian for each case.
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Figure D.4: In-vivo data WSSpeak estimates for six cases. Top: Absolute dif-
ferences of WSSpeak estimates comparing the conventional (red)
with the adapted (blue) inward normal vector computation. Bot-
tom: Relative differences of WSSpeak estimates with the conven-
tional method considered a reference. Green dashed lines depict
a ±5 % margin. Here, results show that adapted inward normals
effect an increase/decrease in WSSpeak - depending on the spe-
cific case but also on the evaluated segment within one particular
case. This is mainly due to the inhomogeneous flow profile ob-
served in the in-vivo (patient) data.

Figure D.5: In-vivo data OSI estimates for six cases. Top: Absolute differ-
ences of OSI estimates comparing the conventional (red) with the
adapted (blue) inward normal vector computation. Bottom: Rela-
tive differences of OSI estimates with the conventional method
considered a reference. Green dashed lines depict a ±5 % margin.
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introduction Fully dimensional (spatial + temporal) segmen-
tation is a crucial step for accurate 3D PC-MRI based hemodynamic
quantification in all moving vessels of interest. Throughout the car-
diac cycle the aortic wall moves in the range of 5–10 mm which en-
compasses several voxels. [148] However, most flow characterization
studies employ a static definition of vessel boundaries [3, 7] and ap-
proaches exploring suitable algorithms for 3D PC-MRI based 4D vessel
segmentation are lacking. The objective of this work is to show feasibil-
ity of a deformable-registration-based algorithm for 4D segmentation
of the aorta in non-contrast enhanced 3D PC-MRI data.

methods Data. After obtaining written consent, 11 healthy vol-
unteers were examined using a 1.5 T MRI scanner (Avanto, Siemens)
without the administration of signal-to-noise (SNR)-enhancing con-
trast agent. Two datasets were generated:

1. whole heart 3D PC-MRI (MAG): TE = 2.54 ms; TR = 5 ms; flip
angle = 7°; FOV = 270 × 360 mm3; slices/slab = 50–64; spatial
resolution = 2.25 × 2.25 × 2.3 mm3; temporal resolution = 40 ms;
Venc = 150 cm s−1; PEAK-GRAPPA factor = 5; prospective ECG
triggering (18–22 frames).

2. whole heart 3D (3DWH) balanced steady-state GRE (TrueFISP):
TE = 1.35 ms; TR = 269 ms; flip angle = 90°; FOV = 500 ×
500 mm3; slices/slab = 96; spatial resolution = 2 × 2 × 1.3 mm3;
prospective ECG triggering to capture single cardiac frame in
diastole.

4D segmentation. We use a registration-based segmentation approach
to generate a time-resolved 3D surface mesh of the aorta. Algorithm
steps are (Fig. E.1): (1) Initial shape definition by watershed-based
segmentation of the aorta in static 3D whole heart (3DWH) data with
subsequent surface mesh generation (marching cubes with 1 mm3 ×
1 mm3 × 1 mm3 voxelization) and Laplacian smoothing (passes = 20,
factor = 0.2). (2) Iterative computation of N deformation fields between
3DWH and MAG(t) (with t = [1, N − 1]), using local 2D quadrature
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Figure E.1: Workflow for 4D vessel segmentation using high-resolution 3D
whole heart data to define an initial shape via watershed based
3D segmentation and marching-cubes meshing (top row) and 3D
PC-MRI magnitude data for computation of N 3D deformation
fields (middle row). In the last step, we regularize each node’s
trajectory through spatial smoothing of the node position through
time to generate our final 4D segmentation (bottom row).

filters in scale space [69, 130]. The algorithm runs on S = 2 down
sampled scale-spaces, with I = 5 iterations per scale, and employs a
Gaussian filter (σ = 4) for spatial regularization. For fast computation
of the 3D deformation field, we reformat both target and source 3D
image into 2D stacks along x, y, and y dimension, for which we
compute 2D deformation fields separately and then assemble our final
3D deformation field in the last step. (3) Applying deformation field to
initial shape’s nodes to generate N target meshes. (4) Temporal node
trajectory regularization by smoothing each node’s position through
time (kernel = [0.25, 0.5, 0.25], passes = 2).

Evaluation Expert annotations of the ascending through descending
aorta (2D manual contours at 8 sample locations at each time frame)
were obtained and defined as ground truth (Fig. E.2). Dice index and
Hausdorff distance (HD) similarity metrics were used for comparison.
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Figure E.2: (Left) Typical distribution of manual contours in 3D PC-MRI
magnitude data. Eight evaluation points from ascending aorta
through descending aorta were defined for evaluating algorithm
performance. (Right) Sample 2D reformatted slice at five time
points to show image quality given with low contrast between
AAo and PA. AAo = ascending aorta; DAo = descending aorta.
PA = pulmonary artery.

results Qualitative results for three exemplary cases are shown
in Fig. E.3. Overall quantitative similarity (mean ± SD) is 0.86 ± 0.04
(with min/median/max = 0.74/0.87/0.93) for Dice and 3.63 ± 0.75
mm (with min/median/max = 2.27/3.56/6.24 mm) for HD (Fig. E.4b).
Without applying temporal node regularization, we achieve scores of
0.87 ± 0.04 (with min/median/max = 0.75/0.87/0.93) for Dice and
(3.69 ± 0.77)mm (with min/median/max = 2.34/3.60/6.31 mm) for
HD (Fig. E.4a). Time-resolved evaluation does not show any preferred
phase (both in systole and diastole) which performs consistently better
over other phases (Fig. E.4c). Although quantitative results do not
show any impact of temporal smoothing on our output, we note that
qualitative visualization improved enormously, eliminating flickering
of the mesh.

discussion Based on the quantitative comparison results, we
found our proposed 4D segmentation workflow suitable for fully di-
mensional vessel wall definition in non-contrast-enhanced 3D PC-MRI
data. Bustamente et al. [22] proposed an atlas-based method for time-
resolved angiographic segmentation of the heart cavities and vascular
structures. In contrast, our method is based on patient-specific vessel
shape, which may be obtained from any 3D whole heart sequence
output. We note that PC-MRI magnitude data exhibits extremely low
contrast between blood pool and surrounding tissue, particularly
when imaged without the administration of SNR-enhancing contrast
agent, which is preferred in the clinical routine. Manual vessel wall
contouring is therefore challenging and may not always present the
true wall position and in turn ground truth for evaluating an algo-
rithm’s performance. The presented workflow faces two limitations,
which we seek to tackle in the future: (1) registration parameters (num-
ber of iterations, size of scale-space) need to be tuned based on a-priori
information (range of movement); (2) no automated segmentation of
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initial 3D shape in 3DWH data, restricting the pipeline from being
fully automated.

conclusion This work evaluates an algorithm which proves to be
suitable for accurate fully dimensional segmentation of the aorta in
noisy 3D PC-MRI image data.

Figure E.3: Final segmentation results for three in-vivo cases at three time
points (systole, early diastole, late diastole) with manual contours
at 8 sample points along the aorta (white contours). Case 1 (top
row) delivered best quantitative segmentation results, whereas
case 3 (bottom row) delivered lowest quantitative segmentation
results when compared to manual annotations.
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Figure E.4: Statistical evaluation of 4D segmentation output when compared
to manual contours. (a, b): Dice and Hausdorff distance (HD) for
each dataset (color-coded) at each available time frame prior (a)
and post (b) node regularization. Solid and dashed lines depict
overall mean ± SD of Dice index and HD, respectively. (c): Time-
resolved analysis of similarity at five distinct time points. All
points (error bars) depict mean (SD) over eight evaluation points.
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introduction Vortices and helices are crucial features of hemo-
dynamic flow [4, 52, 119]. Such structures may define new clinically
relevant biomarkers when assessing cardiovascular pathologies me-
diated by abnormal flow patterns (e.g. aneurysm formation). Thus,
retrieving such structures in time-resolved and velocity-encoded 3D
PC-MRI image data is of tremendous interest. However, prior studies
only focused on a voxel-wise identification, and are lacking mean-
ingful quantitative metrics which characterize the full vortical flow
pattern [81, 124, 136]. The objective of this work is to propose met-
rics for fully automated detection and quantitative characterization of
vortical flow patterns in the aorta.

Figure F.1: Workflow for quantitative vortical pattern characterization. Visu-
alization at the bottom right shows the final output with detected
Vortex VOI (red box), curved centerline (red line), and vortex core
PCA axes (dark blue). AVPM = adaptive vector pattern matching;
vmtk = vascular modeling toolkit; PCA = principle component
analysis.

methods Vortex volume of interest (VOI) exploration. The proposed
pipeline builds upon the adaptive vector pattern matching (AVPM)
algorithm proposed by Drexl et al. [36]. AVPM combines template
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vector pattern matching, initially proposed by Heiberg et al. [58], with
robust orientation estimation by projecting the local velocity field v⃗
onto the local vortical structure orientation n, estimated by the integral
curl of v⃗. We run AVPM on each time frame t of the 3D PC-MRI phase
data to generate T[0, T − 1] binary 3D vortex core masks. Each 3D
vortex core mask is then processed using morphological operations
(to retrieve a well-defined core), connected-component-analysis (to
distinguish between multiple cores per volume), thresholding (to filter
out small cores with number of voxels in core < 20). Subsequently,
each detected core is used to define a Vortex VOI bounding box via
principle component analysis (PCA), and to compute the core length
via the VMTK centerline algorithm. We further propose quantitative
metrics to characterize the flow pattern within each Vortex VOI (Fig.
F.1):

1. mean ± SD velocity (m/s) over all voxels within bounding box.

2. in-plane/forward/backward flow distribution (% of voxels with
respect to all voxels). Forward is defined as the primary flow
direction in the vessel.

3. mean± SD forward/backward propulsion index p[0, 1]. For each
voxel labeled forward (backward), we compute

p =
|vtp|

|vtp|+ |vip|
(F.1)

with |vtp| = forward (backward)-component, and |vip| = in-plane-
component.

4. swirl direction (left/right) with respect to the primary flow
direction.

Synthetic data. We generated a synthetic velocity vector field on a
64 × 64 × 64 image grid using the Burgers-Rott vortex model with
varying Gaussian noise (σ = [0, 0.01, 0.05, 0.1]) and circulation strength
(Γ = [75, 150, 300, 500]).

In vivo patient data. To show feasibility on clinical datasets, we an-
alyzed six 3D PC-MRI aorta datasets of patients with aortic valve
stenosis, scanned on a 1.5 T Tesla MRI machine (Philips Achieva) be-
fore (N=3) and after (N=3) valve replacement. Acquisition parameters
were: TE = 2.1 ms; TR = 3.34 ms; flip angle = 5°; slices = 38; spa-
tial resolution = 2.0 × 2.0 × 2.8 mm3; temporal resolution = 40; Venc =
300–600 cm/s; PAT = SENSE (factor = 2); prospective ECG triggering;
respiratory navigator gating. Aortic segmentation was performed on
static 3D whole heart datasets that were acquired in the same session.
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results Evaluation of synthetic data showed acceptable detection
and quantification of the vortical structure in 15 out of 16 tested models.
All computed metrics were consistent through different levels of noise
with negligible differences (Fig. F.2). The algorithm failed for subtle
circulation strength (Γ = 75) and highest noise perturbation (σ = 0.1).
In-vivo data results show that core detection was positive in five out
of six datasets and were in line with qualitative particle tracing (Fig.
F.3). In case 1, no core was detected in one dataset post-treatment, for
which particle tracing did not exhibit any vortical/helical pattern. In
case 3 and 4, quantitative metrics differed for pre- and post-treatment,
assuring the use of the proposed markers in a future studies which
seek to evaluate pre- and post-treatment flow.

discussion We present a fully automated way for a quantitative
description of vortical/helical blood flow in tubular vessels. In partic-
ular, we propose reproducible metrics based on 3D PC-MRI data. As
shown for synthetic velocity data, the algorithm proves to be robust
towards noise, which is of great importance when considering its
deployment in an in-vivo patient study. A remaining limitation of the
proposed pipeline is the bounding box which we expect to generate
uncertainties in the quantitative metrics for curved cores. Future ef-
forts must include a full evaluation of the algorithm using a bigger
in-vivo data patient cohort and a pre-clinical study to discover which
metric may define a valuable hemodynamic biomarker.

conclusion This work proposes a pipeline for characterizing vor-
tical flow in tubular structures using a fully automated vector pattern
matching and computed quantitative metrics. We seek to optimize this
tool with respect to the current limitations and subsequently deploy it
in a clinical study.
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Figure F.2: Synthetic data with various circulation strength numbers (rows)
and Gaussian noise levels (columns). Streamlines originating from
a down-sampled 16x16 grid with color-coded velocity values.
Vortex cores are visualized as grey structures, with principle
component axes in dark blue. Vortex VOIs are depicted by red
bounding boxes with local in-plane axes (yellow) and through
plane axis (light blue, i.e. forward flow axis). Successful detection
in 15/16 cases. v = velocity [m/s]; p = forward propulsion index;
l = length of detected core [mm].
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Figure F.3: Vortex quantification in three patients with aortic valve stenosis,
both prior (pre) and after (post) valve replacement. Column 1:
particle tracing in the ascending aorta (color-coding = velocity).
Column 2: detected vortex cores (green path) and derived Vor-
texVOI bounding boxes (red) with single velocity vector slice
(color-coding = 3D-direction). Column 3: top view of VortexVOI
with single velocity vector slice. Column 4: Quantitative results.
Our algorithm did not detect any vortex core in the case 1 post
dataset.
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introduction Pulse wave velocity (PWV) is recognized as a met-
ric of aortic wall stiffness and may inform the diagnosis and disease
management of several vascular pathologies [65, 72, 141]. 4D-flow MRI
outputs velocity maps from which PWV can be estimated [31, 92]. The
sensitivity of PWV to true changes in stiffness and wall thickening,
however, remains uncertain and is impacted by the 4D-flow image
quality which – in the clinical setting – has modest spatiotemporal
resolution and signal-to-noise-ratio (SNR). This work utilizes a novel
approach to subject-specific 3D-printing of compliant thoracic aorta
models. The objectives of this work were: (1) to demonstrate feasibility
of an in vitro flow circuit setup using a subject specific healthy thoracic
aorta model; and (2) to analyze the impact of vessel wall characteristics
(thickness, stiffness) and heart rate (HR) variability on quantitative
flow dynamics.

methods Models. A 4D-flow MRI dataset of a healthy subject was
used to generate a polygon mesh model of the thoracic aorta wall
(Fig. G.1 A). The model was printed (scale 1:1) using 3D additive
manufacturing (J735 PolyJet, Stratasys) and a compliant photopolymer
material (Agilus, Stratasys) in three configurations (Fig. G.1 B):

• M1_1.6_soft with 1.6 mm wall thickness and Young’s modulus =
0.7 MPa (Agilus30, Stratasys),

• M2_2.0_soft with 2.0 mm wall thickness and Young’s modulus =
0.7 MPa (Agilus30, Stratasys), and

• M3_2.0_hardened with 2.0 mm wall thickness and Young’s mod-
ulus = 3.5 MPa (Agilus30 + VeroClear, both Stratasys).

M1_1.6_soft and M2_2.0_soft closely resemble the healthy aortic stiff-
ness; M3_2.0_hardened resembles extreme aortic hardening.
4D-flow. Each model was embedded into a pulsatile flow circuit

that includes an MRI-compatible and programmable pump system
(CardioFlow 5000, Shelley Medical). Six liters of glycerol-water fluid
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Figure G.1: (A) Subject-specific polygon mesh model with prescribed wall
thickness of 2 mm. (B) Finished 3D-printed result (M2_2.0_soft).
(C) Model connected to tubing with customized transition con-
nectors (blue), and double-secured with sealing tape and cable
ties. (D) Analysis landmarks shown in the acquired in vitro 4D-
flow data (fluid domain mask in red), cross-sectional regions
of interest at inlet, AAo, and DAo (white), and equidistantly
spaced landmarks (colored path) used for PWV analysis. AAo
= ascending aorta; DAo = descending aorta; PWV = pulse wave
velocity.

(ratio = 2/3) infused with T1-shortening contrast agent (Ferumoxytol,
0.75 mL per liter of fluid) was used to mimic blood viscosity with
increased SNR. Six 4D-flow MRI datasets were acquired with: TE =

2.6 ms; TR = 5.2 ms; flip angle = 12°; spatial resolution = 2.5 × 2.5 ×
2.5 mm3; FOV = 320 × 320 mm2; matrix = 128 × 128; num. slices =
36; temporal resolution = 20.6 ms; averages = 1; Venc = 150 cm s−1;
GRAPPA (R = 2, ref. lines = 24); and prospective external triggering.
For each model, we applied the subject-specific flow rate waveform —
derived from in vivo 4D-flow MRI data, scaled to meet 300 mL/s peak
flow rate pump limit —, and acquired data with two heart rates: (1)
HR = 60 min−1 (RR = 1008 ms, frames = 48); and (2) HR = 100 min−1

(RR = 594 ms, frames = 28). Both HR settings led to a total flow volume
of 4.38 L/min.

Analysis. Image data was pre-processed as follows: (1) image back-
ground noise filtering to improve performance of automated analysis;
(2) fully-automated phase unwrapping based on PRELUDE [66]; (3)
3D watershed segmentation of the aortic lumen; and (4) lumen cen-
terline detection [120]. PWV was measured as follows: (1) definition
of descending aorta (DAo) centerline (distal to left subclavian artery
to end of model, length = 240 mm); (2) computation of flow rate
curves at equidistant cross-sectional DAo planes (N = 48, spacing
= 5 mm); (3) computation of temporal shifts for each flow curve via
cross-correlation; (“travelling-time-for-fixed-distance” approach) (4)
PWV was defined as the slope of the fitted linear regression line. In
addition, we analyzed flow rate curves and absolute velocity maps
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at the model inlet and at mid DAo. Refer to Fig. G.1 D for landmark
definition.

Figure G.2: Absolute velocity maps at mid-systole. AAo cross-sectional ve-
locity maps are in good agreement for all models, but vary at the
DAo landmark. Mid-systole was defined as 0.33 × cycle length
(i.e. t = 300 ms for HR = 60 min−1, and t = 180 ms for HR =
100 min−1). Progressive flow dampening is apparent in the softer
3D-printed models.

results Absolute velocity maps qualitatively demonstrated the
impact of wall characteristics. Compliant wall recoiling effects was
present in all models and overall higher velocities were measured
in the hardened model (Fig. G.2). Measured inlet flow waveforms
were consistent with programmed flow waveforms and in good agree-
ment between all models (Fig. G.4 A). For all models, peak flow rate
was dampened through the inflow tubing (firm, length = 3 m) from
300 mL s−1 (programmed) to 258–265 mL s−1 (HR = 60 min−1) and
278–284 mL s−1 (HR = 100 1/min) at the inlet landmark (Fig. G.4 B).
Measured peak flow rate through the models was further dampened
at the DAo landmark, with the strongest dampening effect in the most
compliant model. PWV (Fig. G.3) was lowest in M1_1.6_soft (2.22,
2.56 m s−1 for HR = 60, 100 min−1) and increased by a factor of 2.5
(HR = 60 min−1) and 3.5 (HR = 100 min−1) for the hardened model.

discussion Embedding compliant aorta models into the described
experimental setup is technically feasible and allows acquiring high-
quality 4D-flow MRI data. Measured PWV numbers are within a plau-
sible range when compared to prior in vivo studies.5 Results suggest
that waveform dampening and PWV in the 3D-printed thoracic aorta
model are influenced by vessel wall thickness and stiffness. Therefore,
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choosing a material that resembles in vivo aortic wall characteristics
best is important as it impacts flow dynamics, thus impacting any
quantitation. Changes in HR influence the quantitation of flow dy-
namics. Therefore, HR variations need to be considered for large-scale
clinical studies. The presented experimental setup is valuable for as-
sessing 4D-flow MRI sampling requirements, generating high-quality
ground truth data for CFD/FSI validation, as well as studying flow
dynamics in different vascular pathologies under controlled conditions
(e. g.atherosclerosis, dissections, aneurysms). This work is limited by
not incorporating pressure measurements to tune the setup toward
optimal boundary conditions, which will be approached next.

conclusion This work demonstrates the feasibility of in vitro flow
measurements in subject-specific and compliant 3D-printed aorta mod-
els and emphasizes the importance of choosing compliant materials of
appropriate stiffness and thickness for vessel models in quantitative
4D-flow studies.

Figure G.3: PWV estimation along the descending aorta centerline. (A) Mea-
sured time-shift over distance points and linear regression of the
time-shift over distance along the centerline for three models at
two heart rates (triangles and dashed lines for 60 min−1, dots and
solid lines for 100 min−1). (B) Derived PWV values, i.e. inverse
slope values for each fitted linear regression line, increase with
increasing stiffness, increasing wall thickness, and higher heart
rate.
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Figure G.4: (A) Flow rate curves at inlet and DAo landmarks under HR =
60 min−1 and HR = 100 min−1. The black dotted curve represents
the programmed flow rate curve with a constant update time of
18 ms (i.e. 56, 33 sampling points at HR = 60, 100 min−1). Note
that prospective ECG triggering missed the last ≈ 30 ms of the
programmed cycle. (B) Results show consistency of flow rates
at the inlet, and model-specific dampening effects at the DAo
landmark. Stronger dampening at DAo occurs for the higher
heart rate.
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background The treatment and prognosis of patients with type-B
aortic dissection (TBAD) is strongly informed by morphologic imaging
findings [102, 116]. However, flow-based factors and pressure distri-
bution may be better markers of individual risk [9, 35, 103], but the
complex interplay between morphology and function is poorly under-
stood. 4D-flow MRI excels at mapping flow, but in vivo evaluation
is challenged by the balance of image quality and clinically efficient
scan times [34, 108, 148]. Computational fluid dynamics (CFD) with
deformable walls, i. e.integrating fluid structure interaction (FSI), is
missing validation against high-quality measured data [8]. Our ob-
jective was to (1) to engineer an MRI-compatible setup that embeds
a compliant, 3D-printed TBAD model under physiological flow and
pressure conditions; and (2) to report flow parameters and catheter-
based absolute pressure waveforms in the true and false lumen (TL,
FL).

methods A TBAD model was constructed from a CT angiogram
of a 31 year old woman with TBAD and FL aneurysm (Fig. H.1 A,
B). The model was 3D-printed (Fig. H.1 C) using a photopolymer
material with aortic compliance (E=0.58 MPa) and was embedded
into a bio-mimicking flow loop with HR=60 min−1 and stroke volume
= 71 mL (Fig. H.1 D). Prior to image acquisition, the system was
tuned to 124/68 mmHg at the ascending aorta (AAo), and 75/25 flow
volume split (DAo outlet vs arch branches). Additionally, pressures
were directly recorded at TL, FL, and DAo outlet. Imaging (3T, Skyra,
Siemens) included:

• 4D-flow 6-point high-moment encoding acquisition [78]: voxel
size = 1.5 × 1.5 × 1.5 mm3, FOV = 360 × 360 × 84 mm3, Venc =
80 cm s−1, Vmax (reconstructed) = 80 cm s−1; temporal resolution
= 50 ms; TE = 3.3 ms; TR = 6.2 ms.

• 2D-CINE (pixel size = 0.9 × 0.9 mm3, temporal resolution =
50 ms) at specific cross-sectional landmarks (Fig. H.1 B);
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• 2D-PC (pixel size = 1.4 × 1.4 mm3, temporal resolution = 50 ms)
at identical cross-sectional landmarks.

4D-flow datutza was visualized using MEVISFlow [114], and 2D-CINE
and PC data was processed to retrieve flow rate, velocity, and wall
expansion curves.

results 4D-flow path line tracing showed increased velocities
through the entry tear and in the distal, narrow FL, as well as dominant
helical flow in the FL aneurysm and FL flow residence over two cardiac
cycles (Fig. H.2 A, B). Absolute velocity maps (Fig. H.2 C) showed a
large range of velocities in systole, confirming that selection of velocity
encoding range to accurately capture velocities in both TL and FL is
challenging. 2D cross-sectional analysis (Fig. H.3) showed TL/FL flow
volume splits of 30/70%. Instantaneous TL pressure was >8 mmHg
higher than FL pressure in peak systole.

conclusions We demonstrated an advanced setup to study TBAD
flow and pressure conditions, displaying valuable information of flow
patterns, flow volume, velocity and TL/FL pressure. Future studies
will (1) exploit options to vary flow (i. e.programmed inlet waveform)
and pressure conditions (i. e.lowering pressure) to evaluate impacts
on flow and pressure dynamics; and (2) provide high-quality 4D-flow
data for verifying novel CFD simulation approaches that integrate
deformable aortic walls.
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Figure H.1: (A) TBAD model construction based on 3D computed tomog-
raphy data using semi-automated wall and flap segmentation
and subsequent surface meshing. Entry tear is distal to the left
subclavian artery and the re-entry tear is just proximal to the
origin of the celiac trunk. (B) Aortic wall and intimal flap model
with wall thickness = 2 mm, depicting location of the primary
entry and re-entry tear, as well cross-sections used for 2D-CINE
and 2D-PC acquisitions. (C) Photographs of finished 3D-printed
model. (D) Schematic drawing of experimental setup. (E) TL/FL
pressures were mapped at landmark DAO2 via catheterization
through the DAO outlet port. (F) TBAD model fully embedded
into a gel block to mimic static tissue to ensure eddy current
phase offset correction of the entire volume of interest.
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Figure H.2: 4D-flow based path line tracing (emitter plane distal to left subcla-
vian artery, proximal to entry tear) with (A) velocity color-coding
and (B) 3D-direction color-coding over two cardiac cycles. Snap-
shots are shown at end-systole (t = 400 ms) and end-diastole (t
= 950 ms). Increased velocities at the entry tear (close-up view
marked *) and in the distal TL region. Straight flow patterns
in TL (blue direction) vs. helical flow patterns in FL (red lines).
Path lines in the FL take two cycles to arrive at the entry tear.
(C) Cross-sectional absolute velocity overlays at four systolic
timepoints show a large velocity range between the TL (high
velocities) and the FL (low velocities).
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Figure H.3: 2D analysis at cross-sectional landmarks (see Fig. H.1 B for
definition) and TL, FL pressure recording. (A, B) Flow splits
between the DAo outlet and arch branch vessel confirm pre-
scan mapping with ultrasonic probe (≈ 75/25). Smaller DAo
flow volume (total = 55 mL) through TL (15–16 mL, ≈ 30 %),
and more flow through FL (36–43 mL, ≈ 70 %). (C) Mean cross-
section velocities in peak systole are highest at the AAo inlet
and branch vessels, and lower at the DAo outlet, but diastolic
flow is most pronounced at the DAo outlet. (D) Mean cross-
section velocities in peak systole are higher in the TL (due to
much smaller cross-sectional area, particularly at the DAo3).
(E) Luminal pressure mapping at four points prior to image
acquisition shows a TL (green) to FL (red) pressure gradient of
>8 mmHg at peak systole, and mean arterial pressures of 80,
81, 77 and 79 mmHg for the AAo inlet, TL, FL, and DAo outlet,
respectively. (F) Relative cross-sectional lumen area change (w.r.t.
lumen area at start-systole) shows expansion of ≈ 6 % in FL, and
non-detectable area change of TL lumen. Note that accuracy of
TL area change curves may be impacted by the small absolute
TL area.
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introduction The treatment and prognosis of patients with type-
B aortic dissection (TBAD) is largely based on morphologic imaging
findings [102]. However, flow parameters in the true and false lumen
(TL, FL) may confer added sensitivity of individual risk. 4D-flow
MRI [88] can be used to estimate several flow parameters in TBAD
cases [9, 35, 77]. Typical TBAD flow, however, presents substantial
flow pattern complexity including a large velocity range. Therefore,
careful consideration should be made regarding 4D-flow acquisition
parameters and the trade-offs that balance flow measurement accuracy
and precision against exam time. The objective of this work was to
use an accelerated high spatial resolution multi-directional (ICOSA6)
high-moment stack-of-stars 4D-flow sequence in a TBAD model to
determine the maximum acceleration factor that minimized errors in
net flow and peak velocity within 5 %.

methods A patient-specific TBAD model with two aortic wall tears
(entry and exit) was constructed and 3D-printed using a photopolymer
material with wall elasticity similar to the human aortic wall [153]. The
model was embedded into a bio-mimicking pulsatile flow loop (Fig. I.1)
with HR = 60 min−1, stroke volume = 74.1 mL, and systolic/diastolic
pressure = 124/68mmHg.

4D-flow data was acquired (3 T Skyra, Siemens) using a multi-
directional (ICOSA6) high-moment encoding scheme [156] with a
stack-of-stars k-space trajectory: FOV = 360 × 360 × 90 mm3; voxel
size = 1.5 × 1.5 × 1.5 mm3; TE = 3.3 ms; TR = 6.2 ms; 92 000 radial
spokes per flow encode (corresponding to R = 5 acceleration); Venc =
±80 cm s−1; and retrospective binning with 20 frames/cycle. ICOSA6

datasets were reconstructed with parallel imaging and compressed
sensing (using JSENSE coil maps [142]) as well as total variation
regularizations in space and time, which were increased with under-
sampling to keep similar image quality and apparent aliasing. Im-
ages were reconstructed to ±160 cm s−1 using a weighted non-convex
velocity solver [78]. ICOSA6 data corresponded to the following
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Figure I.1: Schematic diagram of the engineered MRI-compatible flow circuit
setup. The pump unit is positioned at the end of the patient table,
leading to an inflow tubing length of 3 meter. The pump con-
trol provides an external trigger for triggering image acquisition
and data acquisition system (DAQ) for synchronizing the sam-
pling flow and pressure signals. Ultrasonic flow transducers and
pressure transducers were disconnected after tuning and prior
to moving the setup to bore iso-center amid their lacking MRI
compatibility. The gel embedding defines the 3D imaging volume
with slab orientation along the y-direction. The top right photo-
graph shows the 3D-printed TBAD model used in this study.

scan times (in minutes): 67 min (using 100 % of radial spokes, R
= 5), 33 min (50 %, R = 10), 17 min (25 %, R = 20), 8 min (12 %, R
= 40), and 5 min (7.5 %, R = 65). The latter two were each recon-
structed with two different space-time regularization weighting pairs,
leading to a total of seven ICOSA6 datasets. Regularization weight-
ing pairs (λspace/λtime) were: 1 × 10−3/1 × 10−3, 2 × 10−3/2 × 10−3,
2.5× 10−3/5× 10−3, 5× 10−3/1× 10−2, 7.5× 10−3/1.25× 10−2 (Reg1,
Reg2, Reg3, Reg4, and Reg5).

results Multi-directional (ICOSA6) high-moment encoding was
reconstructed with very limited residual phase wrapping, but velocity
data displayed some smoothing effects (over the entire FOV) and
visible radial sampling artifacts (at FOV boundaries) when compared
to four-point Cartesian data (Fig. I.2). Overall, flow patterns in the
TBAD model recapitulated in vivo patterns. Pathline tracing revealed
helical flow patterns for all ICOSA6 data, but pathline travelling-range
at end-diastole was decreased for ICOSA6 12 % and 7.5 % data.

Fig. I.3 displays flow volume (b, c) and peak velocity (d, e) errors
for different under-sampling factors. When compared to four-point
Cartesian for a range of slice locations, ICOSA6 net flow volumes
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(reported as mean ± SD %) differed by 2.0 ± 8.1, 0.3 ± 4.5, −3.0 ± 5.6,
−2.5± 5.3, −2.4± 5.3, −10.5± 10.7, and −12.8± 12.8 for 100 % (Reg1),
50 %(Reg2), 25 % (Reg2), 12 % (Reg2), 12 % (Reg3), 7.5 % (Reg4), and
7.5 % (Reg5) of radial spokes used. Likewise, peak flow velocities (i.e.
maximum velocity through cross-section at peak-systole, reported as
mean ± SD %) differed by −18.1 ± 14.6, −26.0 ± 11.9, −25.3 ± 15.4,
4.7 ± 47.9, −6.3 ± 35.9, −18.3 ± 54.4, and −15.8 ± 93.5.

Flow rate waveforms evaluated at three landmarks (Fig. I.3f, I.3g,
I.3h) showed an overall decrease in peak flow rates with increasing
under-sampling. ICOSA6 100 % (Reg1) and 50 % (Reg2) were within
the ±5 % margin when compared to peak flow rates of four-point
Cartesian data, and values were dampened by up to 49.1 %for ICOSA6

7.5 %.

discussion This work demonstrates the successful deployment of
a 3D-printed patient-specific TBAD model with complex flow pattern
in an in vitro setup to evaluate the effect of ICOSA6 under-sampling
and how flow quantitation compares to four-point Cartesian data.
Under-sampling down to 12 % (R=40) of the acquired radial spokes
measured average net flow volumes within the ±5 % margin when
compared to four-point Cartesian data. However, net flow standard
deviations among all evaluated cross-sections showed larger disagree-
ments in complex flow zones (e.g. ‘entry tear’). This emphasizes the
importance of performing acceleration analyses using ‘patient-specific’
flow phantoms that include large velocity ranges and complex flow
patterns, rather than simple tube phantoms. We note that sampling
requirements — and thus scan time — were much higher compared
to standard 4D-flow exams because of the high spatial resolution
(1.5 mm3), and the ICOSA6 velocity encoding, which requires seven
velocity encodes instead of four. Regularization schemes and parame-
ter tuning both require further investigation. The 4D-flow Cartesian
references scan was very long (42 min) and accelerated schemes also
need to be evaluated and compared.

conclusion Multi-directional high-moment 4D-flow compares
well to Cartesian 4D-flow if performed with adequate sampling.
Highly under-sampled (<12 % of spokes, R>40) ICOSA6 4D-flow
underestimates net flow and results in inaccurate peak velocity mea-
surements.
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Figure I.2: (a) Phase data for four-point Cartesian and ICOSA6 100 %.
Smoothing effects were observed in ICOSA6 data, particularly
in the entry tear region, where helical flow with a large velocity
range is present. Four-point Cartesian included aliased pixels
prior to the model inlet, which was not present in ICOSA6 data.
(b) End-diastolic pathlines based on four-point Cartesian and
ICOSA6 data. With increased under-sampling, the pathline travel-
ling range decreased, the detection of helical flow in the proximal
FL becomes more challenging, and jet flow velocities (entry tear)
become smaller.
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Figure I.3: (a) TBAD cross-sections. (b, c) Calculated net flow and (d, e) peak
velocity for four-point Cartesian and ICSOA6. Conservation of
mass dictates that net flow through ‘inlet’ versus ‘BCT, ‘entry tear’
versus ‘exit tear’, all TL sections, as well as all FL sections should
be equal. Flow waveforms shown for the entry tear (f), true lumen
(g), and false lumen (h). Overall, flow waveforms between the
four-point Cartesian (blue) and ICOSA6 100 % (green) as well as
50 % (red) correspond well. With increased under-sampling of
ICOSA6 reconstructions, peak flow rates decrease by up to 49.1 %.
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