
Equipment data-based activity recogni-
tion of construction machinery
Maschinendatenbasierte Aktivitätserkennung von
Baumaschinen

Bachelor’s thesis
TUM Department of Mechanical Engineering

Technical University of Munich

Topic assigned by Prof. Dr.-Ing. Johannes Fottner

Chair of Materials Handling, Material Flow, Logistics

Supervisor M.Sc. Anne Fischer

Submitted by: Alexandre Beiderwellen Bedrikow

Kohlbrennerstr. 16

81929, München

Submitted on: 15.06.2021 in Garching

Inventory no. fml: 2020/118

Preface

This thesis was written under the scientific and content guidance of Anne Fischer, M. Sc.,

research assistant at the Chair of Materials Handling Material Flow Logistics (fml) at the

Technical University of Munich.

Copyright agreement

I hereby grant the Chair of Materials Handling Material Flow Logistics permission to pass

on, publish or otherwise use this student research project or parts of it to third parties at

its own discretion. My personal copyright is not affected beyond this regulation. Any non-

disclosure agreements regarding the content of the thesis between myself or the Chair

of Materials Handling Material Flow Logistics and third parties remain unaffected by this

agreement.

Garching, 15.06.2021

Contents

Contents I

Table of abbreviations V

Table of Symbols VII

I Introduction 1

1 Motivation 3

1.1 Motivation 3

1.2 Structure 4

2 Previous work 7

2.1 Activity recognition of construction equipment 7

2.1.1 Vision-based methods 7

2.1.2 Audio-based methods 8

2.1.3 Motion-based methods 8

2.2 Research gaps and objectives 9

3 Theoretical background 13

3.1 Kelly drilling method 13

3.2 Deep Learning 14

3.2.1 Artificial Neural Networks 15

3.2.2 Convolutional Neural Networks 22

3.2.3 Recurrent Neural Networks 24

3.3 Time series classification 27

II Methodology 31

4 Data understanding 33

4.1 Data acquisition 33

4.2 Data exploration 34

5 Data preparation 39

I

Contents

5.1 Data segmentation 39

5.2 Scaling 40

5.3 Data splitting 41

6 Modeling 43

6.1 Requirements 43

6.2 Models 43

6.2.1 Baseline models 44

6.2.2 Hybrid models 45

6.3 Hierarchical classification 49

6.4 Implementation and training 51

6.5 Performance analysis 52

III Evaluation 55

7 Results 57

7.1 Models 57

7.1.1 Training 57

7.1.2 Test 60

7.2 Sensitivity analysis 66

7.2.1 Window size 66

7.2.2 Overlap 68

7.2.3 Splitting method 70

7.3 Hierarchical classification 80

7.3.1 LoD 1 - Working/Idle 80

7.3.2 LoD 2 - Process steps 82

7.3.3 LoD 3 - Detailed process steps 86

8 Discussion and future work 93

8.1 Discussion 93

8.1.1 Hybrid models 93

8.1.2 Generalization capabilities 93

8.1.3 Labeling strategy as a limitation 94

8.2 Future work 95

II

Contents

9 Conclusion 97

IV Supplement 99

References 101

List of Figures 107

List of Tables 109

A Source code A-1

A.1 Merging of machine and activity data A-1

A.2 Data preprocessing pipeline A-3

A.2.1 Random split A-3

A.2.2 Split by days A-4

A.3 Models A-14

A.3.1 MLP A-14

A.3.2 LSTM A-15

A.3.3 DeepConvLSTM A-15

A.3.4 DeepConvBiLSTM A-16

B Appendix B-1

B.1 Histograms B-1

B.2 Loss plots B-2

B.3 Confusion matrices B-4

B.4 Predictions B-5

III

Table of abbreviations

Abbreviation Meaning

AI Artificial Intelligence

ANN Artificial Neural Network

BiLSTM Bidirectional long-short term memory

CNN Convolutional Neural Network

CM Casing machine

DES Discrete event simulation

DNN Deep Neural Network

FNOW Fully non-overlapping window

HAR Human Activity Recognition

IMU Inertial measurement unit

IQR Interquartile range

LoD Level of Detail

LSTM Long-short term memory

MLP Multilayer perceptron

MTS Multivariate time series

OW Overlapping window

RNN Recurrent neural network

SNOW Semi non-overlapping window

TLU Threshold logic unit

V

TS Training set

TSC Time Series Classification

TTS Test set

TUM Technische Universität München

VS Validation set

VI

Table of Symbols

Symbol Unit Description

W [-] Weight matrix

y [-] Model output

x [-] Model input

b [-] Bias vector

φ [-] Activation function

i [-] LSTM Input gate

o [-] LSTM Output gate

f [-] LSTM Forget gate

c [-] LSTM Long term state

h [-] LSTM Short term state

p [-] Output probabilities of a softmax layer

TP [-] True positive

TN [-] True negative

FP [-] False positive

FN [-] False negative

P [-] Positive

N [-] Negative

VII

Part I

Introduction

1

1 Motivation

1.1 Motivation

With more than 800 000 employees and an projected annual revenue of more than 330

billion Euro in 2021, the construction industry represents a large share of the economic

output in Germany [Sta-2021, Sta-2020]. This phenomenon is not only restricted to Ger-

many, but can be found all over the globe. Although the industry plays an essential role

economically and socially, it faces a number of challenges. As is the case for the industry

in general, according to a survey of leading companies in the German construction indus-

try, staff shortages and increasing competitiveness and price pressure are the two biggest

challenges facing the sector [PwC-2013]. But unlike the overall industry, the construction

sector has seen only a low rate of productivity growth in recent years. The labor productivity

growth rate of the German construction industry grew by an average of only 0.12 % between

the years 1998 and 2015, which represents only about 10 % of the average development

of the overall economy [Ber-2019].

Another challenge is the way in which the construction industry addresses the growing de-

mands for environmentally friendly practices, as the emissions generated by the construc-

tion industry are not insignificant. The main source of these emissions is fuel consumption

by construction equipment [U.S-2008]. These emissions are especially critical during down-

times, during which the machines are kept in an idle state. Despite the fact that no progress

is being accomplished in the construction project, the construction equipment continues to

emit pollutants [Lew-2011].

The two challenges described above give rise to the need to reduce the downtime of con-

struction machinery as far as possible and to maximize operational efficiency. The starting

point for this optimization is the precise assessment of the actual operating condition by

recording the activities of the machines. Based on the activity data of the machines, var-

ious approaches can be pursued to achieve the mentioned goals. For instance, discrete

event simulation (DES) can be used to predict the progress of the construction project in

order to formulate recommendations for the next steps and ultimately increase operational

efficiency [Fis-2020]. In addition to that, an estimation of the emission can be provided

3

1 Motivation

based on the detailed knowledge of the performed activities [Ahn-2015, She-2020].

Although different methods are available to increase productivity, the main problem lies

in obtaining the activity data. In practice, the activities of the machines are still mostly

recorded manually, which leads to a number of implications and problems [Gol-2013]. The

first problem is the time and manpower required for this task, which makes manual labeling

very time consuming and costly. Furthermore, manual recording is also inaccurate, prone

to errors and poorly reproducible, as it partly depends on the perception of the operator

[Lan-2021, Gol-2013]. In order to circumvent these difficulties, automatic activity recognition

presents itself as a suitable solution. With the help of different methods, the activities should

be detected as far as possible without the need for human labeling.

In order to be able to overcome the explained challenges, possibilities for increasing the

efficiency and productivity of construction processes through networking and communica-

tion of mobile machines are being investigated as part of the research project "Building 4.0"

of the Chair of Materials Handling, Material Flow and Logistics (TUM). Among other topics,

the tracking and tracing of objects within the construction site, the simulation of construction

processes and modeling using Building Information Modeling (BIM) are being investigated.

[Tec-2021]

Another examined topic within the project is the possibility to use available data of the

construction equipment to infer about the performed activities. The aim of this work is to

extend these investigations and to gain further knowledge of the extent to which conclusions

about activity can be drawn from the machine data.

1.2 Structure

This thesis is basically divided into 3 parts. The first part includes Chapters 1 to 3. In Chap-

ter 1, the motivation for the thesis has been outlined. In Chapter 2, the current state of the

art and the existing approaches for automatic activity recognition of construction machines

are presented. Hereby, the limitations and issues of the approaches or the available room

for improvement are discussed. Based on these findings, the research objectives for this

4

1.2 Structure

thesis are formulated in Sec. 2.2. Chapter 3 covers the theoretical background. In par-

ticular, the drilling process with the Kelly drilling method, which is used as a use case in

the following, is explained. Furthermore, the foundations of artificial intelligence and deep

learning are outlined.

In the second part, which includes Chapters 4 to 6, the research methodology is described.

The structure of this part of the thesis follows the common approach to machine learning

projects according to CRISP-DM [Stu-2021, Cha-2000]. At the beginning of each chapter,

an excerpt from [Stu-2021] is provided within a gray box, which briefly explains each step.

However, this is not the main focus of the thesis and serves only as an orientation. Chapters

4 and 5 deal with the acquisition, analysis and preprocessing of the data. In Chapter 6, the

models examined in the further work are introduced and explained.

In Part 3, the results of the investigations are presented and discussed. In Chapter 8

possible approach points for further future investigations are outlined. Chapter 9 provides

a summary of the thesis.

5

2 Previous work

2.1 Activity recognition of construction equipment

Automatic activity detection of construction machines can be essentially divided into three

groups according to the nature of the data: vision-based methods (Sec. 2.1.1), audio-based

methods (Sec. 2.1.2) and kinematics- or motion-based methods (Sec. 2.1.3) [She-2020].

2.1.1 Vision-based methods

With the proliferation of low-cost video cameras with high-resolution and the simplification

of storing and transmitting large data sets, the possibility of using vision-based methods for

activity detection is also becoming increasingly popular [Gol-2013]. Cameras are placed at

the construction site and record the movements of construction equipment. The methods

used to analyze the recordings range from pure image processing methods to complex

deep learning architectures.

On the side of simpler methods, Zou and Kim use the hue,saturation and value of record-

ings to determine the downtime of an excavator [Zou-2007]. Furthermore, Golparvar-Fard

et al. explored techniques to detect five different activities of excavators and 3 activities of

dump trucks [Gol-2013]. For this purpose, recordings from 10 cameras at different orienta-

tions from five different construction projects during six months were used as data to train

a Support Vector Machine. Accuracies of up to 86.33 % were achieved for the excavator

and 98.33 % for the dump truck. Furthermore, the models proved to be robust against

small movements of the camera. Gong et al. employ a bag-of-video-features approach to

distinguish between the swing, excavating, and relocating of a backhoe [Gon-2011]. The

features are extracted using a 3D Harris detector and then represented using a local his-

togram. The activity detection is performed using a Bayersian network model. The results

of the model range from 73.6 % to 79 %. A further approach using Deep Learning methods

was developed by Kim and Chi and mainly consists of three steps [Kim-2019]. The first

two steps are responsible for identifying and tracking the excavators in the recordings of

the construction site. In the third step, the actual activity detection takes place. The models

7

2 Previous work

are based on a combination of convolutional and recurrent neural networks and achieve a

precision of up to 90.9 % for the six examined activities.

2.1.2 Audio-based methods

Audio-based methods use sound recordings of the machine at the construction site to obtain

inferences about the activity performed. The whole approach is based on the assumption

that the machines emit different sound patterns and levels when performing different activi-

ties [Lan-2021]. Since these approaches are the least similar with the goals pursued here,

these methods will not be discussed further in detail.

2.1.3 Motion-based methods

Motion-based methods rely on sensor data from accelerometers, gyroscopes or IMUs [Lan-

2021]. As is the case with cameras, motion sensors have become popular in recent years

and are already present in most smartphones, for example. In contrast to vision and audio

based methods, where the cameras or microphones are often located outside the area

of operation, the sensors for motion based methods have to be attached directly to the

machines under investigation, e.g. to the excavator arm or the cabin of an excavator.

Akhavian and Behzadan [Akh-2015] placed smartphones with accelerometers and gyro-

scopes inside the cabin of a front-end loader to measure the vibrations of the machine. The

approach is based on the assumption that different activities also induce different vibrations.

Statistical (e.g. mean, variance, interquartile range, etc.) as well as frequency domain (sig-

nal energy) features are extracted from the measured vibrations. A total of 42 features were

available for analysis. Logistic Regression, k-Nearest Neighbour (KNN), Decision Tree (DT),

Support Vector Machines (SVM) and Neural Networks (ANN) were investigated as methods

for the classification of the activities on 3 different levels of detail (LoD). The most detailed

LoD consisted of the activities "Engine Off", "Idle", "Scooping", "Moving" and "Dumping".

Among the best results, accuracies of up to 86.09 % were obtained using neural networks

for the five activities.

Rashid and Louis [Ras-2020] use data from an IMU to predict the activities of an excavator.

However, instead of relying on the vibrations of the machine, they investigated the possibility

8

2.2 Research gaps and objectives

of using activity-specific motions of the machine to detect its activity. The reason for this,

according to the authors, is the fact that vibrations can be highly machine-dependent and

may also be influenced by external forces. The sensors were attached to the bucket, stick

and boom of the excavator. As was the case with Akhavian and Behzadan [Akh-2015],

different LoD with up to nine activities were analyzed. The maximum accuracies range from

100 % for two activities to 92.1 % for 9 activities among the four machine learning methods

investigated (DT, SVM, ANN, and KNN).

Since most machine learning methods require a large amount of data to deliver reliable

results, obtaining the data to train the models is a major problem. This problem only in-

creases when the application of deep learning methods is considered. To address these

issues, Rashid and Louis [Ras-2019] also investigated the effects of using time-series data

augmentation methods (jittering, scaling, rotation, and time-warping). The main deep learn-

ing methods used were ANN and recurrent neural networks for the activity detection of an

excavator and a front-end loader. The advantage of using deep learning methods lies in the

fact that high-level features can be extracted automatically from the data. For the excavator,

accuracies of 62.2 % (ANN) and 63.3 % without data augmentation were achieved, which

increased up to 97.9 % (LSTM) when using the augmented data set. For the front loader,

the results increased from 59.6 % (LSTM) to up to 96.7 % (LSTM).

Slaton et al. [Sla-2020] use a hybrid approach consisting of convolutional layers and recur-

rent layers for the activity detection of a roller compactor (six activities) and an excavator

(seven activities). The validation accuracy for the compactor amounts to 77.1 % for all six

activities and 96.2 % when only the direction is considered. For the excavator, the accuracy

is as high as 90.7 %.

2.2 Research gaps and objectives

Each of the explained approaches presents its own advantages and disadvantages. Al-

though very good results have been achieved with the vision based methods and its rel-

atively simple setup, the generalization of the results to new cases can be challenging.

Since the methods are based on visual characteristics, a large data set with different ma-

chine types and perspectives is required. Furthermore, poor lighting conditions, coverage

9

2 Previous work

0 50 100 150 200 250 300 350 400 450 500

Time [sec]

0

5

10

15

20

25

30

35
D

e
p
th

 [
m

]

0

20

40

60

80

100

T
o
rq

u
e
 [
%

]

Screw in casing Emptying Lowering Drilling Pulling Screw in casing Emptying

Figure 2-1: Measured depth and torque during drilling with a Kelly drilling rig

of the camera by other machines or weather conditions can also negatively influence the re-

sults. Regarding the audio based methods, mainly the difficulty to detect multiple machines

simultaneously and the less detailed LoD compared to other methods can be mentioned.

[Lan-2021]

Furthermore, it is important to highlight that although a large amount of construction equip-

ment exists and is employed, the existing approaches primarily focus on only a small set

of these machines, mainly front-end loaders [Akh-2015, Ras-2019], hydraulic excavators

[Gol-2013, Ras-2020, Ras-2019, Sla-2020], and compactors [Sla-2020]. Industry-specific

aspects of other sectors such as special civil engineering are not considered. Many ma-

chines used in special civil engineering do not allow the attachment of the required sensors

(accelerometers, gyroscopes, IMUs, etc.) due to the high forces involved or the poorly ac-

cessible parts of the machine, which makes the application of the mentioned motion-based

approaches difficult [Fis-2021]. In addition, another issue arises from the fact that a major

portion of the processes in special civil engineering takes place below surface and is not

visible, thus not allowing the use of vision based methods.

These requirements of special civil engineering demand a different approach to automatic

activity recognition. A possible solution for addressing this was developed by Fischer et al.

as part of the Building 4.0 project [Fis-2021]. The underlying principle is the machine data

already available from the machine. Many machines used in special civil engineering, such

10

2.2 Research gaps and objectives

as Kelly drilling rigs, already include a series of sensors which already measure several

signals such as depth, pump pressure, torque or forces, eliminating the necessity of attach-

ing additional sensors [Fis-2020]. However, the data from these sensors are rarely used in

practice, and may mask great potential as a basis for further knowledge about the process

flow. In the remainder of this thesis, these data are referred to as "telematics data". The

measured telematics data during a drilling operation are shown in Figure 2-1.

First investigations of the extent to which inferences about the performed activities can be

drawn from these available machine data have been conducted by Fischer et al. [Fis-2021].

For the detection of the activities "Emptying", "Lowering", "Drilling", "Pulling" and "Drilling

in casing" the use of Decision Trees, Logistic Regression, Support Vector Machine, Naive

Bayes and Artificial Neural Networks was explored. The models achieved high accuracies

of up to 95 %. Although good results were achieved, a possible generalization problem can

be identified, since strong outlier filtering was performed during the preprocessing of the

data and a large number of data points (up to one fifth of the data set) were removed. Since

it cannot be excluded that the removed outliers are to be expected during a deployment in

practice, it is not known how well the models would respond to a deployment in practice.

Based on the outlined aspects, the following points can be formulated as research objec-

tives:

1. Extend investigations of activity recognition using telematics data.

2. Explore the effectiveness of existing motion-based methods for activity recognition

based on telematics data.

3. Investigate models which require little preprocessing, are robust to outliers and sensor

noise, and can detect many activities.

4. Determine influence of adopted labels on activity recognition.

11

3 Theoretical background

3.1 Kelly drilling method

Figure 3-1: Process steps of the Kelly drilling method: (1) Screw in casing; (2) Drilling; (3) Reinforcing; (4)
Concreting; (5) Remove casing [Bau-2021]

In this section, the construction of a pile using the Kelly drilling method is briefly explained.

Since the focus of the work is on the activity detection itself, the section serves only as an

orientation and looks at the procedure only superficially. The production process of a bored

pile by means of the Kelly drilling method can be fundamentally divided into 5 steps. These

are shown graphically in Figure 3-1. The informations of the following paragraphs are taken

from [May-2011].

The first step consists of screwing in the casing (1). A standpipe is placed over the

planned borehole and the casing is screwed into the ground. If the drilling machine cannot

provide the required torque or force, then a casing machine can be employed. In the second

step, the actual drilling (2) takes place. This step can further be divided into four steps.

First, the drilling tool is lowered until the bottom of the hole is reached. Then the actual

drilling takes place until the drill box is entirely filled. Subsequently, the drilling tool is pulled

up to the surface. Before the cycle is repeated, the drilling tool is emptied. When the

13

3 Theoretical background

desired hole depth is reached, the drilling step ends. The next step involves installing the

reinforcement (3). This operation can be performed either directly by the drilling machine

or optionally by an additional crane. In the fourth step, the concreting (4) stage takes place.

For this purpose, pouring tubes are inserted into the drilled hole and the concrete is poured

in. When the desired amount of concrete has been added, the pouring tube is removed

again. In the fifth and last step, the casing and the standpipe are removed (5) from the

ground.

In addition to the above-mentioned process steps with their respective sub-processes, other

activities can also be performed. However, these do not belong directly to the process and

are therefore considered either as secondary processes or downtime processes. Examples

of such activities are, for example, refilling water, changing tools, refueling, break times or

waiting for concrete.

3.2 Deep Learning

The term Artificial Intelligence (AI), formulated in the 1950s, refers to the "effort to auto-

mate intellectual tasks normally performed by humans" [Cho-2018]. According to Chollet,

these approaches do not necessarily involve a so-called "learning" process and consisted

at the beginning mainly of explicitly programmed rules (also called symbolic AI). For simpler

problems an explicit formulation of the rules is still possible, but for more complex problems

the formulation of the rules can represent a major challenge. To solve these problems, a

change of paradigm in problem solving occured. Instead of the classical approach of ex-

plicitly programming the rules, the goal of the new paradigm is to determine these rules and

learn a specific task. This new paradigm is referred to as Machine Learning. [Cho-2018]

Machine learning methods can be essentially divided into four main groups: supervised,

unsupervised, semisupervised and reinforcement learning. The group of reinforcement

learning methods is not relevant in the context of this study and will not be considered in

detail. The fundamental principles of the first three variants are shown graphically in Figure

3-2. In supervised learning, the data set already contains the desired labels and the map-

ping of the inputs to the outputs is then searched. In unsupervised learning, the labels are

not part of the data set and an attempt is made to extract knowledge, e.g. by clustering data

14

3.2 Deep Learning

points into groups, from the data set based only on the inputs. The intersection between

supervised and unsupervised learning is represented by semisupervised learning when the

existing dataset only partially contains labels. [Gér-2019]

Figure 3-2: Types of Machine Learning problems, based on [Gér-2019]

As the use case under consideration focuses on a connection between sensor data and

activity and uses real-world machine data to train a model, supervised learning methods

will be discussed in more detail below.

The term supervised learning includes a series of methods, such as probabilistic modeling

(e.g. Naive Bayes), which is based on statistical methods, kernel methods (e.g. Support

Vector Machines), or decision trees. [Cho-2018]

Another subgroup of machine learning methods are deep learning approaches, which aim

at formulate models with high levels of abstraction, which are characterized by their high

complexity or their "depth" [Cho-2018, LeC-2015]. Deep learning also became well known

because of the very good results achieved in the field of computer vision or machine trans-

lation. In the following, some specific types of Deep Learning methods are further ex-

plained.

3.2.1 Artificial Neural Networks

Perceptrons as a recreation of biological neurons

Artificial neural networks are machine learning models based on the structure of biologi-

cal networks of neurons [Shr-2019, Gér-2019]. Biological neurons consist of a cell body,

which aggregates several branches that are connected to other neurons. Connected to the

cell body is also the axon, from which further branches then bind to several subsequent

15

3 Theoretical background

Figure 3-3: Overview of Artificial Intelligence and Machine Learning

neurons. The communication and transmission of neuroimpulses takes place through neu-

rotransmitters. If sufficient neurotransmitters are provided within a short time by previous

neurons, then the own neuron is "activated", so that further neurotransmitters are released

at the synapses and the impulse is passed on. [Gér-2019]

Based on the structure of a single biological neuron, the threshold logic units (TLU) were

developed (Fig. 3-4). The different inputs xi of the TLU are multiplied with corresponding

weights wi and summed up to z (Eq. 3-1). Analogous to the biological variant, the unit

is activated if z exceeds a certain threshold. For this purpose, the summed inputs are

passed to the Heaviside function (see definition in Eq. 3-2) and the output h is potentially

Figure 3-4: Schematic representation of a TLU

16

3.2 Deep Learning

activated.

z = xTw

h = heaviside(z)
(3-1)

heaviside(z) =

0 if z < 0

1 if z ≥ 0

(3-2)

Since the Heaviside function can only take one of two possible values, TLUs are only useful

for simple binary classification problems. An extension of the TLUs are the perceptrons,

which consist of several juxtaposed TLUs. An additional bias unit, which invariably assumes

the value 1, is added to the existing inputs. The relationships applicable to each individual

TLU from Eq. 3-1 can be combined for a perceptron with m TLUs and n inputs to Eq. 3-3:

h(W,b)(X) = heaviside(WTx + b) (3-3)

where x ∈ Rn is the input vector, W ∈ Rn×m is the weight matrix, and b ∈ Rm is the

vector with weights for the bias terms

Perceptrons are also suitable for solving multiclass classification problems, since several

outputs are available. The weights of the individual TLUs must be adjusted so that the

desired output is produced for a given set of inputs. This process of adjusting the weights

is called training and will be discussed in more detail later on. Although perceptrons can

be used to differentiate between several classes, good results are limited to linearly sepa-

rable problems. This is the case since the output of a perceptron consists only of a linear

combination of the inputs and the application of the Heaviside function.

Dealing with complex problems using multilayer perceptrons

In order to solve more complex and nonlinear problems, it is advantageous to stack multiple

perceptron layers. Such an architecture is called multilayer perceptron [Gér-2019]. The

architecture can fundamentally be divided into three main components [Shr-2019]. The

17

3 Theoretical background

input layer consists of the inputs of the model plus a bias term. The second to the previous

layer are called hidden layers and consist of one or more perceptron layers. Finally, the last

layer is called output layer. The number of hidden layers is also referred to as the "depth" of

a model [Goo-2018]. If a model comprises multiple hidden layers, then it is called a Deep

Neural Network (DNN). The architecture of a multilayer perceptron is shown schematically

in Figure 3-5. As can be seen in the figure, the information flow takes place in one direction

only. Due to this property, such networks are also called Feedforward Neural Networks

[Goo-2018].

Figure 3-5: Exemplary architecture of a multilayer perceptron

Given that multilayer perceptrons are just the stacking of individual perceptrons on top of

each other, then Eq. 3-3 describes the behavior of each individual layer, where for hidden

layers no longer the inputs of the model but the outputs of the previous layer are used.

Furthermore, the Heaviside function can be replaced by other nonlinear functions Φ. These

functions are called activation functions and play an essential role, since without them

the MLP would merely be a linear transformation of the inputs. The most commonly used

18

3.2 Deep Learning

activation functions are listed in Eq. 3-4 [Goo-2018].

Sigmoid function σ(z) =
1

1 + e−z

ReLU ReLU(z) = max(0, z)

Hyperbolic tangent tanh(z) =
2

1 + e−2z
− 1

(3-4)

Based on this, the mathematical description derived from Eq. 3-3 can be adapted and

generalized for an MLP layer and states [Goo-2018, Gér-2019]:

h
(i)
(Wi,bi)

(h(i−1)) = Φ(WT
i h

(i) + bi) (3-5)

where the Φ represents a general activation function and i is the index of the layer.

For the MLP shown in Fig. 3-5, the mapping from input x to output y using the two hidden

layers h(1) and h(2) is given by:

h
(1)
(W1,b1)

(x) = Φ(WT
1 x + b1)

h
(2)
(W2,b2)

(h(1)) = Φ(WT
2 h

(1) + b2)

y(W3,b3)(h
(2)) = Φ(WT

3 h
(2) + b3)

(3-6)

In summary, the architecture of MLPs can be described as follows [Shr-2019]:

• The neurons of one layer are connected to all neurons of the previous and the next layer.

Each connection has a weight.

• The connections of a neuron with the previous one are summed up weighted and passed

to a nonlinear activation function.

• The output of the activation function is connected to the neurons of the next layer.

19

3 Theoretical background

Different problems require different solutions

The supervised learning problems can essentially be divided into two subgroups. Regres-

sion problems are problems where a continuous numerical value has to be predicted. In

the case of classification problems, the instance must be assigned to one of a finite set of

classes. The group of classification problems can be further divided into binary problems

(only two possible classes), multilabel binary problems (multiple, non-exclusive classes)

and multiclass problems (multiple exclusive classes). Each type of problem also requires

an appropriate modification of the output layer, so that the output has the desired structure.

[Gér-2019]

For binary classification problems, it is possible to simply use the sigmoid function as the

activation function [Gér-2019, Goo-2018]. This activation function returns a value between

0 and 1, indicating the probability that the analyzed instance belongs to the class under

consideration [Gér-2019]. Multilabel binary problems can be treated as multiple single bi-

nary classification problems, where the output layer has as many neurons with a sigmoid

function as activation function as there are different classes [Gér-2019]. In the case of ex-

clusive classes, it must be ensured that the sum of the probabilities of the individual classes

does not exceed 100 %. To ensure this property, a so-called softmax layer (see Eq. 3-7)

is used [Goo-2018]. For each class i out of K possible classes, the probability that the

instance belongs to this class is output.

softmaxi(x) =
exi∑K
j e

xj

(3-7)

Training

The points presented up to this point in Sec. 3.2.1 address only the pure architecture

of the models. Thus, the question arises how a model which can predict solutions for a

specific problem is created from an ordinary and common architecture. The training already

introduced in the previous segment represents exactly this tuning of a model with a defined

architecture for a specific problem. This adjustment is done by modifying the weight matrix

W and the bias vector b in such a way that the desired outputs are obtained.

20

3.2 Deep Learning

Prerequisite for this tuning to be done correctly is the ability to quantify and measure the

quality of a model. For this purpose, a cost or loss function L is introduced, which character-

izes the difference between the predictions of the model and the desired results [LeC-2015].

The goal of training is to minimize this error term and therefore training a neural network

can be regarded as a minimization problem and is performed using the backpropagation

algorithm, which consists of three steps.

In the first step, also called forward pass, the model outputs y are calculated according to

Eq. 3-6 based on the inputs x. Then, using the selected loss function, the deviation between

the current predictions of the model and the correct outputs is calculated [Gér-2019, LeC-

2015]. The second step, also called reverse pass, applies the chain rule for derivatives to

determine the influence of each connection weight on the loss function [Gér-2019, LeC-

2015]. The last step consists of applying an optimization algorithm (e.g. Gradient Descent,

Momentum optimization or Adam) to update the weights so that the error is minimized [Gér-

2019].

Over- and underfitting

The quality of the models is basically assessed on the two criteria. The first is the loss

during training introduced above. The better and more complex the models, the smaller the

training loss and higher the achieved accuracy. However, if the model is too complex, then

not only the underlying behavior is modeled, but the data set itself. If one would attempt to

classify new instances, then only poor results would be achieved, since the real underlying

behavior was not correctly modeled. If this scenario occurs, where a low loss on the training

set can be detected, but a high loss on an additional validation set, then this is referred to

as overfitting. If, on the other hand, no high accuracy is achieved on the training set, then

underfitting occures. The reason for this is usually a too low complexity of the model.

[Gér-2019]

21

3 Theoretical background

3.2.2 Convolutional Neural Networks

Although MLPs can achieve very good results for certain problems, such models may en-

counter limitations or be inefficient for other problems. If a model is supposed to have a

large number of inputs, as is the case in image recognition, for example, the set of parame-

ters of MLPs can get excessively large. This is due to the fact that each input is connected

to all neurons of the next layer. At a resolution of only 400x400 pixels and only one hidden

layer with 100 neurons, 16 million weights have to be tuned, which represents a substantial

training effort.

A common feature of these types of machine learning problems is the structured form (of-

ten in the form of arrays) in which the data is presented. Convolutional Neural Networks

(CNN) make use of this structure to reduce the number of required weights. Instead of the

matrix vector multiplication which is performed within the MLP neurons, the mathematical

operation called convolution is used. The mathematical expression for the 1D convolution

of a signal X with a kernel (or filter) K states:

(K ∗X)(τ) =
W∑
i=1

K(i)X(τ − i) (3-8)

Figure 3-6 exemplifies the convolution of a 1D signal with a kernel of size 3. The elements

of the kernel are multiplied by the matching entries of the signal and summed up. Then the

kernel is shifted in the corresponding direction and the process is repeated.

Figure 3-6: Exemplary convolution of a 1D signal

22

3.2 Deep Learning

Replacing matrix-vector operations by convolution operations with a kernel yields a num-

ber of advantages [Goo-2018]. Since the selected kernel is smaller than the considered

signal, a neuron of a deeper layer is connected only to a subset of the signal (also called

receptive field of a unit), unlike MLPs in which a unit is connected to all previous units [Goo-

2018, LeC-2015, Shr-2019]. This characteristic is called sparse connectivity. In addition to

that, the same weights are used for all units (weight sharing). The combination of these

two concepts significantly reduces the amount of adjustable parameters [Goo-2018, Shr-

2019]. The architectural differences between MLPs and CNNs are illustrated schematically

in Figure 3-7.

Main characteristic of CNN layers is the ability to identify and extract local features [LeC-

2015]. Instead of adjusting the weights of the connections as in MLPs, the training of a

CNN involves learning the filters that detect the most useful features which help to cor-

rectly classify the instance. Shallow layers are responsible for extracting low-level features

of the signal, while filters from deeper layers can construct high-level abstractions [Gér-

2019]. This ability to extract features from raw data is also called representation learning

[LeC-2015]. Training a CNN follows the same principle of an MLP, but requires much less

resources, since there are considerably fewer parameters [Shr-2019].

Figure 3-7: Schematic comparison of MLPs and CNNs, based on [Goo-2018].
Left: A neuron of a MLP consists of a combination of all neurons of the previous layer. Each
connection has its own weight, which is stored separately.
Right: A CNN neuron consists of a convolution operation involving the neurons located in the re-
ceptive field with a filter. All neurons of a layer share the same filters. The affiliation of each neuron
to each receptive field is color coded. Connections of the same line type represent connections
with the same weights.

23

3 Theoretical background

3.2.3 Recurrent Neural Networks

The previous two sections introduced the common MLPs and explained the CNNs. MLPs

can be commonly employed for most types of problems, but may be inefficient for certain

types of problems or may require a large number of layers to correctly model the problem.

CNNs constitute a class of more specialized models that exploit the vector or matrix-like

structure of the data to increase the efficiency of the model. In addition to the possible grid-

like structure, data can also present itself in the form of a sequence, as for instance with

sensor measurements. Just like CNNs, Recurrent Neural Networks (RNN) form a class

of methods, which, however, is specialized for the processing of sequences [Goo-2018].

Unlike feedforward networks such as MLPs and CNNs, in which information flows in only

one direction, RNNs feature information flow in both directions [Gér-2019]. The underlying

reason for this is that RNNs use output loopback to store information from the past [Yu-

2019]. These feedbacks can be viewed as hidden units and are read by each neuron

in addition to the inputs from the previous layer at each point in time [Yu-2019, LeC-2015].

Hidden units offer the advantage of allowing the model to make decisions based not only on

the current data, but also to consider the temporal context [LeC-2015, Yu-2019, LeC-2015,

Goo-2018]. The basic architecture of an RNN neuron is shown in Figure 3-8.

Figure 3-8: Schematic representation of a RNN unit

Dealing with long sequences

Simple RNNs with one or more layers can achieve very good results for relatively short

sequences. The main limitation however, is when dealing with longer sequences [Gér-

2019]. If the distance between the current time step and the beginning of the sequence

is too large, then the context no longer contains the possibly relevant information of the

beginning [Hoc-1997]. In addition, it was found that RNN can rapidly suffer from instabilities

24

3.2 Deep Learning

during parameter tuning, which has a negative impact on the training process [Gér-2019,

Shr-2019].

To deal with these problems, Hochreiter and Schmidhuber developed in 1997 an alternative

to the simple RNN units, the so-called Long Short-Term Memory (LSTM) method [Hoc-

1997]. The important modification is the addition of two additional states: the long term

state c(t) and the short term state h(t). With the help of this additional long-term state,

even temporally distant information can be remembered and considered in context. The

architecture of the interior of an LSTM cell is shown in Figure 3-9 and is considered in more

detail below.

Figure 3-9: Architecture of the interior of an LSTM cell, based on [Gér-2019]

Within the LSTM cell a series of operations are performed which are used to determine and

update these states. Essentially, the cell can be divided into three main parts. The following

equations have been taken from [Gér-2019].

In the first part, the variable g(t) is calculated based on the inputs and the information stored

in the short term state:

g(t) = tanh(WT
xgx(t) + WT

hgh(t−1) + bg) (3-9)

25

3 Theoretical background

Meanwhile, in the second subsection, the vectors f(t), i(t) and o(t) are calculated (see Eq.

3-10 , which control the so-called forget gate, input gate and output gate.

i(t) = σ(WT
xix(t) + WT

hih(t−1) + bi)

f(t) = σ(WT
xfx(t) + WT

hfh(t−1) + bf)

o(t) = σ(WT
xox(t) + WT

hoh(t−1) + bo)

(3-10)

The forget gate is used to delete any no longer relevant information from the long-term state

(first term of Eq. 3-11). The function of the input gate is to control which information of the

currently active inputs should be stored in the long-term state (second term of Eq. 3-11).

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (3-11)

Finally, the output gate extracts the important information from the long-term state and

stores it in the short term state (Eq. 3-12). The information of the short term state is also

the output y(t) of the LSTM cell.

y(t) = h(t) = o(t) ⊗ tanh(c(t)) (3-12)

For all equations introduced above Wab denotes the weight matrix. The index a indicates

the variable to which the weights refer. The second index b indicates which variable is

calculated.

Bidirectional LSTMs

LSTM networks have a causal structure, i.e., outputs at a given time depend only on in-

puts and states from past moments in time [Goo-2018, Gra-2005, Gér-2019]. Schuster

26

3.3 Time series classification

and Paliwal [Sch-1997] developed an extension to RNNs which considers not only inputs

from the past, but also future ones. While in a normal RNN the processing of a sequence

starts at the beginning of the sequence and then moves forward, in bidirectional RNN the

sequence is additionally considered backwards. To make this possible, an additional layer

is added. The first layer processes the inputs in the forward direction in time, while the sec-

ond layer processes the inputs backward [Gér-2019, Goo-2018]. Thus, both time directions

can be processed simultaneously [Sch-1997]. Graves and Schmidhuber applied the con-

cept of bidirectionality in conjunction with LSTM networks. In general, it is possible to say

that LSTM networks give better results than simple RNN. The use of bidirectional LSTMs

showed a further improvement of the results [Gra-2005]. A schematic representation of a

bidirectional LSTM layer is shown in Figure 3-10.

Figure 3-10: Schematic representation of a bidirectional LSTM [Ola-2015]

3.3 Time series classification

One particular format in which the data of a problem may be available is in the form of a

Time Series. This is the case for many problems in engineering applications. The main

distinguishing characteristic is the existence of a chronological order of the data [Fu-2011].

According to Ismail Fawaz et al. [Ism-2019], univariate and multivariate (MTS) time series,

respectively, can be defined as follows:

"A univariate time series X = [x1, x2, ..., xT] is an ordered set of real values.

The length of X is equal to the number of real values T ."

27

3 Theoretical background

"An M -dimensional MTS, X = [X1, X2, ..., XM] consists of M different univari-

ate time series with X i ∈ RT ."

If for each univariate or multivariate time series instance Xi an additional label Yi assigning

the instance to a class is provided, then the problem is a Time Series Classification (TSC)

problem [Ism-2019]. The goal is to correctly classify a sample into one of K classes.

Time series are characterized by their continuous nature of data [Fu-2011]. For instance,

sensor measurements are continuous, i.e., they are taken over a longer period of time

with a high measurement frequency. To convert a time series dataset into a time series

classification problem, the continuous data must first be divided into samples [Ban-2014].

This process is called segementation.

Figure 3-11: Exemplary representation of the segmentation methods

The most common method for segmentation is the sliding window method [Fu-2011, Ban-

2014]. It involves sliding a window with a fixed window width along the time axis. This is

exemplified in Figure 3-11. The two properties of the method that affect the segmentation

the most are the window width and the overlap of two neighboring samples. In the over-

lapping temporal window (OW) all but one time step overlap. For the semi-non-overlapping

temporal window (SNOW), 50 % of the time steps overlap [Sin-2021] . These first two meth-

ods suffer from a high bias, since a large part of the samples coincide [Sin-2021]. With the

fully non-overlapping temporal window (FNOW) the samples do not overlap at all. The dis-

advantage is that the number of generated samples is significantly reduced [Sin-2021].

One of the most well-known applications of time series classification problems is activity

recognition, especially human activity recognition (HAR). The goal is to assess the ac-

tivity performed by a person based on sensor measurements of various types [Min-2020,

28

3.3 Time series classification

Mur-2017]. With the recent developments in the field of smartphones and wearables, the

number of available data also increased, which further boosted the progress in the field. In

the field of HAR, a wide range of research has been carried out in recent years. Activity

recognition of construction machines is highly similar to HAR in many aspects. Selected

relevant studies are discussed in Chapter 6 in the context of the proposed models.

29

Part II

Methodology

31

4 Data understanding

"The data understanding phase starts with an initial data collection and proceeds

with activities in order to get familiar with the data, to identify data quality problems, to

discover first insights into the data, or to detect interesting subsets to form hypotheses

for hidden information." [Stu-2021]

4.1 Data acquisition

The investigations into the automatic activity recognition of construction machines in spe-

cial civil engineering will be conducted based on a use case. For this purpose, data from a

real construction site will be used. The data used in this thesis originate from the construc-

tion project "Westtangente Rosenheim". Within the scope of this project, the construction

company Bauer Maschinen GmbH was responsible for the production of bored piles for

the foundation of the planned bridge near Rosenheim, Bavaria. Several bored piles with

lengths of up to 45 m and diameters of 1200 mm were produced. [Fis-2020]

During the drilling process, several machine data are recorded with the help of different

sensors. All available sensors with the corresponding units of the measurement data are

shown in Table 4-1. In total, measurements from 20 sensors are available. The readings

are taken at a frequency of 1 Hz. The data measured during the working time is then

transferred to a proprietary platform from Bauer and is available for analysis.

In addition to the machine data, the performed activities of the drill rig were recorded on

16 days. As already described in the motivation section (see Section 1.1), this recording is

performed manually. For this purpose, Bauer’s B-Tronic software is used to record the start

and end times of the different activities. In total, approximately 102 hours of activities were

recorded between 10/14/2019 and 12/04/2019.

Before any analysis of the data is done, a single data set must be created. This is the case

since the machine data and the activity data are collected separately. Each measurement

of the machine data is assigned a timestamp, each of which is then assigned to a specific

33

4 Data understanding

Table 4-1: Overview of available sensors

Sensor Unit Sensor Unit

Depth m Torque steps -

Torque of rotary drive kNm Torque of Kelly bar %

Speed of rotary drive rpm Aux. winch rope force t

Main winch rope force t Crowd depth m

Crowd-force t Casing length m

Main winch rope speed cm/min Status rig -

Pressure pump 1 bar Main winch gear mode -

Pressure pump 2 bar Inclination X deg

Pressure pump 3 bar Inclination Y deg

Pressure pump 4 bar Boring threshold m

label using the start and end times of the respective activities from the activity data. This

was automated using a Python code (see appendix A.1). As a result, one dataset per day

is obtained (except for the 20.11, 25.11, 27.11 and 02.12, which were split into two different

datasets), which contains the sensor data and the corresponding label of the activity.

4.2 Data exploration

In the following section, initial investigations of the data set are performed. In Table 4-

2, the number of observations of the different activities are broken down by day. For the

labeling, labels based on the process steps from Section 3.1 were used. A total of 27

activities are considered. It is recognizable that on different days also various activities

take place with different frequencies. For example, the activities that belong to the process

step Concreting in general are not performed on certain days (e.g. 14.10, 06.11 or 27.11).

However, the activities which belong to the process step Drilling are present in every data

set. Other activities, which do not directly belong to the drilling process, such as Relocate,

Pause, Wait, Failure or Maintenance, are only occasionally present. The reason for this is

the fact that the data originates from a real operation and was not generated artificially. This

leads to the dataset being highly imbalanced. For instance, Empty represents 8.97 % and

Drilling represents 5.28 % of the data, while Drilling with bucket and Wait for concrete

are only 0.23 % and 0.15 % of the dataset, respectively.

34

4.2 Data exploration

Ta
bl

e
4-

2:
B

re
ak

do
w

n
of

co
lle

ct
ed

da
ta

pe
rd

ay
an

d
la

be
l

A
ct

iv
ity

14
.1

0
16

.1
0

21
.1

0
23

.1
0

25
.1

0
28

.1
0

30
.1

0
06

.1
1

11
.1

1
13

.1
1

18
.1

1
20

.1
1

20
.1

1
25

.1
1

25
.1

1
27

.1
1

27
.1

1
02

.1
2

02
.1

2
04

.1
2

To
ta

l
%

C
on

cr
et

in
g

-
-

30
09

19
05

23
56

28
31

26
00

-
41

18
48

38
-

-
-

-
-

-
-

1
1

-
21

65
9

5.
85

%

P
la

ce
po

ur
in

g
pi

pe
-

-
15

49
11

94
10

44
11

64
12

17
-

16
28

15
55

16
58

-
-

-
-

-
-

-
-

-
11

00
9

2.
97

%

R
em

ov
e

po
ur

in
g

pi
pe

-
-

79
7

-
-

49
9

47
6

-
11

39
16

96
1

4
1

-
-

-
-

-
-

-
46

13
1.

25
%

R
em

ov
e

ca
si

ng
-

-
16

97
76

2
89

6
12

06
98

1
-

15
74

19
44

48
0

-
2

-
-

-
-

-
-

-
95

42
2.

58
%

P
ul

ls
ta

nd
pi

pe
-

-
17

91
42

00
12

95
61

4
67

7
-

36
99

78
4

-
-

1
-

-
-

-
3

1
-

13
06

5
3.

53
%

In
st

al
la

tio
n

cu
sh

io
n

-
18

85
24

88
29

87
30

68
20

88
22

79
-

13
3

11
82

23
41

-
53

7
-

48
2

-
-

-
-

-
19

47
0

5.
26

%

In
st

al
la

tio
n

re
ba

r
ca

ge
-

-
85

9
80

5
10

32
10

15
73

5
-

11
15

14
04

14
64

-
12

72
-

25
5

-
-

-
-

-
99

56
2.

69
%

P
la

ce
st

an
dp

ip
e

12
56

17
76

20
93

51
62

24
84

25
29

25
45

46
4

37
47

30
79

21
67

15
31

18
12

21
49

11
18

13
03

26
80

20
95

10
67

43
44

45
40

1
12

.2
6

%

S
cr

ew
in

ca
si

ng
11

49
37

18
35

07
28

58
27

42
33

29
26

17
79

6
54

68
27

31
76

19
33

87
3

24
17

53
8

14
35

13
33

23
73

31
24

12
42

33
6

11
.4

4
%

Lo
w

er
in

g
26

7
89

2
95

6
65

5
80

2
84

8
79

7
20

0
13

88
11

28
84

8
50

6
98

9
69

8
71

5
26

8
97

4
12

86
33

19
12

69
18

80
5

5.
08

%

D
ril

lin
g

w
ith

dr
ill

bu
ck

et
67

5
61

-
-

-
25

-
-

-
-

-
-

-
-

38
-

-
-

-
46

84
5

0.
23

%

P
ul

lin
g

55
2

20
51

23
29

14
61

20
28

20
57

20
27

60
3

29
28

24
65

12
27

13
67

14
31

14
70

11
97

87
1

19
01

19
87

52
6

27
39

33
21

7
8.

97
%

D
ril

lin
g

12
75

13
71

11
74

13
37

12
59

12
74

30
5

18
23

12
26

71
0

87
9

66
1

12
04

50
5

59
3

90
8

11
85

34
1

15
22

19
55

2
5.

28
%

E
m

pt
yi

ng
74

3
17

49
21

60
16

95
17

63
21

21
20

91
47

1
22

74
16

55
68

3
12

71
82

4
17

31
67

2
75

5
11

69
17

13
26

6
21

55
27

96
1

7.
55

%

S
cr

ew
in

ca
si

ng
(C

M
)

-
-

-
-

-
-

-
-

20
73

23
79

32
84

-
42

09
-

29
24

-
28

05
18

6
15

19
28

98
0

0.
00

%

P
ul

ls
ta

nd
pi

pe
(C

M
)

-
-

-
-

-
-

-
-

-
19

76
-

-
-

-
-

-
-

-
-

-
0

0.
00

%

O
th

er
44

6
16

10
66

9
46

3
40

3
99

2
35

8
18

99
1

39
1

85
6

-
-

52
16

41
0

25
5

31
1

54
80

16
2.

17
%

R
efi

ll
w

at
er

-
85

0
89

2
83

2
10

06
97

6
99

6
46

0
11

66
17

53
71

0
11

15
58

2
14

34
56

2
11

89
95

5
12

10
10

5
15

36
18

32
9

4.
95

%

To
ol

ex
ch

an
ge

-
-

36
7

38
7

50
-

17
5

-
67

4
28

4
18

1
-

23
1

-
29

9
-

15
3

-
19

7
19

6
31

94
0.

86
%

R
ef

ue
lin

g
-

50
3

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
17

1
67

4
0.

18
%

D
ep

th
se

ns
in

g
-

-
24

0
20

5
21

1
22

1
33

6
-

71
0

78
9

97
-

16
8

-
43

-
10

0
-

-
28

31
48

0.
85

%

R
el

oc
at

e
-

-
-

10
44

-
43

2
-

-
-

54
1

73
7

-
-

20
8

-
-

-
-

-
-

29
62

0.
80

%

W
ai

tin
g

fo
ro

th
er

-
-

-
-

-
-

27
7

-
30

2
-

-
-

-
-

-
-

41
29

48
1

-
35

69
0.

96
%

B
re

ak
-

-
53

37
42

93
45

83
46

03
70

24
-

42
04

-
25

5
-

43
21

-
38

64
-

12
20

-
37

01
32

24
46

62
9

12
.6

0
%

W
ai

tin
g

fo
rc

on
cr

et
e

-
-

-
-

-
53

3
6

-
-

-
-

-
-

-
-

-
-

-
-

-
53

9
0.

15
%

M
ai

nt
en

an
ce

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

0
0.

00
%

Fa
ilu

re
-

-
-

-
-

-
-

-
-

56
83

-
-

-
-

-
-

-
-

-
-

56
83

1.
54

%

To
ta

l
50

88
16

37
0

32
11

1
32

08
2

27
10

0
29

34
2

29
48

8
33

17
39

08
1

35
12

8
14

49
1

86
06

13
70

5
11

36
3

10
30

4
68

24
11

68
9

14
83

2
95

57
19

69
6

37
01

74

%
of

sa
m

pl
es

1.
37

%
4.

42
%

8.
67

%
8.

67
%

7.
32

%
7.

93
%

7.
97

%
0.

90
%

10
.5

6%
9.

49
%

3.
91

%
2.

32
%

3.
70

%
3.

07
%

2.
78

%
1.

84
%

3.
16

%
4.

01
%

2.
58

%
5.

32
%

35

4 Data understanding

Furthermore, different statistical metrics (mean, standard deviation, minimum, maximum,

and the .25, .50, and .75 quantiles) of the available sensors data are examined. These are

shown in Table 4-3. One can easily recognize the fact that three of the sensors do not pro-

vide any meaningful measurements and only assume a constant value. The data from the

Casing Length, Boring threshold, and Status rig sensors have no information content,

so these can be deleted from the dataset and do not serve as inputs to the models.

Table 4-3: Statistical properties of the data set

Sensor mean std min 25 % 50 % 75 % max

Depth 5.36 8.84 0 0 1.13 6.08 43.08

Torque of the Kelly bar 7.64 21.44 0 0 0 0 100

Rope Force Main Winch 13.58 3.43 0.40 12.80 14.30 14.90 49

Rope Force Aux. Winch 0.09 0.67 0 0 0 0 14.10

Speed of Rotary Drive 2.60 7.40 0 0 0 0 52

Crowd Depth 0.01 0.09 0 0 0 0 1.27

Pressure Pump 1 47.49 92.25 0 1 2 42 376

Pressure Pump 2 53.58 96.37 0 1 1 78 378

Pressure Pump 3 34.75 61.78 0 0 0 56 414

Pressure Pump 4 27.34 61.46 0 1 2 5 338

Torque Steps 2.85 0.50 0 3 3 3 3

Casing Length 0 0 0 0 0 0 0

Boring threshold 0 0 0 0 0 0 0

Status Rig 0 0 0 0 0 0 0

Inclination X -0.59 1.29 -6.40 -0.70 0 0 4.90

Inclination Y 0.69 1.69 -5.5 -0.10 0 0.30 8

Crowd-Force 0.59 9.61 -82.80 0 0 0 78.10

Torque of the rotary drive 30.33 84.08 0 0 0 0 390

Main Winch Rope Speed 5.28 12.06 0 0 0 2.39 191.94

Gear Mode Main Winch 0.71 0.90 0 0 0 2 2

A further issue which stands out is the very small or at times even non-existent interquartile

range (IQR, distance between the .25 and the .75 quantile). For example, when considering

the feature Torque of the Kelly bar, both the .25 and the .75 quantile are zero, although the

maximum measured value is 100. Similarly, for the feature Depth, the IQR is significantly

smaller than the difference between the minimum and maximum values. Such behavior is

evident for a large number of features. To further examine this phenomenon, Figures 4-1a

36

4.2 Data exploration

(a) Depth - All activities (b) Torque of the Kelly bar - All activities

(c) Depth - Only Drilling (d) Torque of the Kelly bar - Only Drilling

Figure 4-1: Histograms of selected sensor data

and 4-1b show exemplary plots of the distributions of the measured data.

Both for the feature Depth as well as for the feature Torque of the Kelly bar a clear right

skewed distribution is noticeable. In both cases, the most frequent value is zero. This also

makes sense, since for a large part of the activities the drilling tool is at the surface and no

torque is transmitted. It would seem logical to consider the extreme values on the right as

outliers and remove them from the data set. Yet, if only isolated activities are examined in

more detail instead of the entire data set (Fig. 4-1c and 4-1d), it can be observed that the

values which appear as extreme values in Fig. 4-1a and 4-1b are not actually such extreme

values. Since, however, a large number of classes are present and the individual classes

do not usually exceed 10 % of the data set, measurements which do not constitute outliers

may stand out as extreme values when considered as a whole, since the classes amount

to only a small portion of the entire data set. Removing such data would only manipulate

the data set by eventually removing individual classes. The histograms for the remaining

sensors are shown in Figure B-1 in the Appendix.

37

4 Data understanding

An additional reason, which would oppose the removal of outliers, is the sheer nature of the

process. The occurrence of extreme values is normal for some processes. A pure formal

removal of these cannot be performed, rather they must be considered in the context of

the actual process characteristics. This can be exemplified by considering the depth of the

drilling tool during a drilling operation. When a drilling cycle is started, the drilling tool moves

downward from the surface (0 m) until the desired depth is reached. If such an procedure

is repeated multiple times and each time the drilling is deeper, then the maximum depth

reached (e.g. 20 m) is measured only once, while the remaining segments (between 0 m

and 20 m) are measured multiple times. It is evident in this case that the measurement of

the maximum depth reached cannot be considered as an outlier.

Furthermore, the correlation between the individual sensors was also investigated. For this

purpose the function corr() of the Python library Pandas was employed. The correlation

matrix is shown in Figure 4-2. Overall, the dataset is characterized by weak correlations.

Notable exceptions are the correlations between Torque of the Kelly bar, Torque of the rotary

drive, and the pressures of pumps 1 and 2.

D
e

p
th

T
o

rq
u

e
 o

f
th

e
 K

e
lly

 b
a

r

R
o

p
e

 F
o

rc
e

 M
a

in
 W

in
c
h

R
o

p
e

 F
o

rc
e

 A
u

x
.

W
in

c
h

.

S
p

e
e

d
 o

f
R

o
ta

ry
 D

ri
v
e

C
ro

w
d

 D
e

p
th

P
u

m
p

 P
re

s
s
u

re
 1

P
u

m
p

 P
re

s
s
u

re
 2

P
u

m
p

 P
re

s
s
u

re
 3

P
u

m
p

 P
re

s
s
u

re
 4

T
o

rq
u

e
 S

te
p

s

In
c
lin

a
ti
o

n
 X

In
c
lin

a
ti
o

n
 Y

C
ro

w
d

-F
o

rc
e

T
o

rq
u

e
 o

f
th

e
 R

o
ta

ry
 D

ri
v
e

M
a

in
 W

in
c
h

 R
o

p
e

 S
p

e
e

d

G
e

a
r

M
o

d
e

 M
a

in
 W

in
c
h

Depth

Torque of the Kelly bar

Rope Force Main Winch

Rope Force Aux. Winch.

Speed of Rotary Drive

Crowd Depth

Pump Pressure 1

Pump Pressure 2

Pump Pressure 3

Pump Pressure 4

Torque Steps

Inclination X

Inclination Y

Crowd-Force

Torque of the Rotary Drive

Main Winch Rope Speed

Gear Mode Main Winch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4-2: Absolute values of the correlation coefficients of the sensors

38

5 Data preparation

"The data preparation phase covers all activities to construct the final dataset (data

that will be fed into the modeling tool(s)) from the initial raw data. Data preparation

tasks are likely to be performed multiple times, and not in any prescribed order. Tasks

include table, record, and attribute selection, data cleaning, construction of new at-

tributes, and transformation of data for modeling tools." [Stu-2021]

5.1 Data segmentation

As mentioned in Section 3.3, continuous time series measurements need to be prepro-

cessed so that they can be regarded as a supervised learning problem. The first aspect

is the segmentation of the continuous measurement into discrete samples, which serve as

inputs to the models. Since different model architectures and types also require inputs with

different data structures, the segmentation is also partially model dependent. Furthermore,

the corresponding sample must be determined for each sample.

Models which do not consider temporal context require only the measured values at a given

time point. Therefore, the inputs must have the shape of a matrix X ∈ Rm×n, where m

denotes the number of sensors and n the number of samples. Each time point corresponds

to a sample whose label is the activity at that exact time point.

On the other hand, for models which also consider the temporal context, samples have to be

generated from the continuous data set. For this, the sliding window approach explained in

section 3.3 with a fixed window width is used. The window width corresponds to the amount

of time considered retrospectively. If the window width is given by T and if one is located at

time t = tk, then a sample consists of the measurements from time tk − T to time tk. The

larger the window width, the larger the temporal context passed to the models. In this case,

the input matrix of the models is three-dimensional and has the form X ∈ Rm×T×n. In the

context of this work, different window widths and the influence of these are investigated.

Starting point is a window width of T = 16, which corresponds to a context of 16 seconds,

39

5 Data preparation

since the sensors measure with a frequency of 1 Hz. Furthermore, window widths of 8, 32

and 48 seconds are examined.

Another possible parameter in segmentation is the overlap of two neighboring samples.

Again, several approaches (OW, SNOW, and FNOW) are examined. The detailed descrip-

tion of the three methods is given in Section 3.3. Finally, a label must be assigned to each

sample. In contrast to the baseline MLP model, which considers only one time point and

the associated label is unambiguous, different approaches can be followed in the case of

sliding windows. The first possibility investigated is, for a sample between time points tk−T

and tk, to select the activity at the last time point tk as the associated label of the sample.

The second possibility investigated uses the most frequent activity occurring between time

points tk − T and tk as the label.

For the automatic generation of the samples, the procedure was automated through a self-

written Python function. The source code is given in Appendix A.2. The function takes,

among others, the size of the window, the overlap and the labeling method as inputs and

outputs the input matrix of the models X and the label vector y. In the context of this work,

only the first option is employed.

5.2 Scaling

Since each feature represents the measurements of a single sensor, they often possess

different orders of magnitude. For example, the torque of the Kelly bar can assume values

between 0 and 100, while the values of the inclination in X direction usually range between

-10 and 10.

These differences in scale usually have a negative impact on the performance of the mod-

els [Gér-2019]. For this reason, the data of all sensors are scaled. The two most common

methods are min-max scaling and standardization. However, as it was recognized in Chap-

ter 4.2 that the sensor measurements are not normally distributed, scaling by means of

Standardization is not advantageous. Therefore, all data are transformed so that they lie

40

5.3 Data splitting

in the range between 0 and 1. The transformation algorithm for a feature x is given by

[Gér-2019]:

x′i =
xi −min(x)

max(x)−min(x)
(5-1)

where x′ is the scaled feature.

5.3 Data splitting

The complete data set is divided into a training set (TS), validation set (VS) and test set

(TTS) according to the aspects explained in Section 3.2.1. The test set amounts to approx-

imately 30 % of the entire data set and the validation set constitutes another 20 % of the

remaining 70 %. In total, approximately 56 % is used as training set, 14 % as validation set

and 30 % as test set. The subdivision of the data can follow different approaches, which

are described in more detail below.

The primary and also most widely used method is based on a random partitioning of the

entire dataset. This approach was also used in previous student theses [Ors-2020, Bi-2020,

Lia-2020]. The subdivision is mostly done automatically using the function Scikit-Learn

included in the Python library train_test_split(), which randomly splits a given vector or

matrix [Sci-2021]. One potential issue that could arise and affect the results is the similarity

of the training and test data. Given that the data is recorded at a relatively low frequency

and the process is generally characterized by a rather slow behavior, it is perfectly possible

that two observable samples are extremely similar, but are located once in the training set

and once in the test set. This would be equivalent to using one sample for both training and

testing, which could potentially bias the results. Since the goal of the model is to model the

underlying behavior and not to memorize the data, such a division of the data can have a

negative impact.

One possible approach to address these potential issues is to split the data by days. In

this case, the data is still divided into training, validation and test set, but the single data

sets form the smallest possible unit for splitting. Samples from a single data set cannot be

41

5 Data preparation

present in both the training set and the test set. Furthermore, such a split can potentially

provide further insight into the generalization capabilities of the models and allows testing of

the models on a continuous time window rather than on single samples. The assignments

of the individual data sets to the respective training, validation and test sets is shown in

Table 5-1.

Table 5-1: Data splitting by days

Date TS VS TTS Date TS VS TTS

14.10 X 18.11 X

16.10 X 20.11 (1) X

21.10 X 20.11 (2) X

23.10 X 25.11 (1) X

25.10 X 25.11 (2) X

28.10 X 27.11 (1) X

30.10 X 27.11 (2) X

06.11 X 02.12 (1) X

11.11 X 02.12 (2) X

13.11 X 04.12 X

During the splitting, attention is paid to the fact that the ratios between TS, VS and TTS

are still followed. However, since the smallest unit is a complete data set of one day, it is

not possible to precisely match the percentages. Attention is also paid to avoid very strong

imbalances of activities in the different data sets. The exact ratios are shown in Table 5-2.

Table 5-2: Percentage of samples by dataset type

Dataset % of samples

Training (TS) 54.51 %

Validation (VS) 14.62 %

Test (TTS) 30.87 %

42

6 Modeling

"In this phase, various modeling techniques are selected and applied, and their pa-

rameters are calibrated to optimal values. Typically, there are several techniques for

the same data mining problem type. Some techniques require specific data formats.

There is a close link between Data Preparation and Modeling." [Stu-2021]

6.1 Requirements

Considering the motivation, the state of the art and the theoretical foundations of Deep

Learning and time series classification, this chapter aims to formulate the requirements for

the models to be investigated and to present the proposed approach. Based on the aspects

discussed up to this point, it is possible to summarize the following requirements regarding

the models:

1. The models must be capable of predicting the correct activity performed from existing

telematics data.

2. The models should take into account the time dependencies of the telematics data.

3. The models must be capable of using non-strongly filtered data as inputs, since the

presence of such data cannot be ruled out in practice.

4. The models should need as little human intervention as possible, as this can be time-

consuming and costly.

6.2 Models

Within the scope of this work, different models are investigated. The focus is on the per-

formance of hybrid models consisting of CNN and RNN, which have proven to perform well

in other similar applications. To compare the performance, two additional baseline models

are investigated. Section 6.2.1 explains the baseline models, while Section 6.2.2 deals with

the hybrid models. An overview of all used models is given schematically in Figure 6-1.

43

6 Modeling

6.2.1 Baseline models

The performance of a complex model can only be considered in comparison to other mod-

els. If simple models already achieve accuracies of 75 %, then an accuracy of 77 % of a very

complex model does not represent a large increase in performance. If, on the other hand, a

simple model only achieves 40 % accuracy, then the use of a more complex model, which is

also significantly more resource-intensive, might be appropriate. The models which serve

as a comparison and a starting point for the performance assessment of more complex

approaches are called baseline models.

Multilayer perceptron

The first baseline model considered is based on one of the models investigated by Fischer

et al. [Fis-2021]. Here, a simple ANN with 1 hidden layer containing 7 neurons was used

to classify five different activities. The accuracies achieved ranged from 77 % to 96 %

[Fis-2021].

The model based on these results and used in this work is an MLP, which consists of 4

layers with 128 neurons each (see Fig. 6-1a). The sensor data at a given time are used as

inputs. This kind of MLP architecture does not take into account temporal dependencies,

since no temporal context is provided to the model. To avoid possible overfitting, a dropout

rate of 30 % is set, i.e., during training, 30 % of the neuron connections are randomly

disabled at each iteration. Since this model is the only one which does not model the

temporal dependencies, it is used as a comparison to investigate the influence of these

temporal relationships in activity recognition.

Long-short term memory

The second model, which is considered as a baseline model, is a neural network consist-

ing of LSTM layers. LSTM networks are well-known and frequently the most widely used

models when considering sequences. As explained in Section 3.2.3, LSTMs distinguish

themselves exactly by their ability to model temporal relationships. For this reason, a model

consisting of 2 LSTM layers, each with 128 cells is investigated within the scope of this

44

6.2 Models

work. The raw sensor data without any processing (filtering, feature extration, etc.) are

used as inputs. As with the MLP baseline model, a dropout rate of 30 % is used.

6.2.2 Hybrid models

The focus of the investigations in this thesis is on two models, which are made of a com-

bination of two types of neural networks and are therefore called hybrid models. In the

following, the two variants of these hybrid models and their advantages and backgrounds

are explained in detail.

DeepConvLSTM

The foundation of hybrid models is the combination of the advantages of convolutional

neural networks and recurrent neural networks. This combination has already been

studied by different authors dealing with different application areas. To address problems

in human activity recognition, Ordóñez and Roggen [Ord-2016] developed an architecture

called DeepConvLSTM in 2016. This architecture combines the ability of CNNs to extract

features from pure signals (see Section 3.2.2) with the ability to model temporal depen-

dence of RNN (see Section 3.2.3). The original architecture proposed by Ordóñez and

Roggen [Ord-2016] consists of one input layer, four convolutional layers, two LSTM layers

and one softmax activation layer. The four convolutional layers convolve the multivariate

sensor data with different sensors and pass the convolved signals to the LSTM layers. The

convolutional filters are set so that the outputs of the convolutional layers form high level

representations of the sensor data. Thus, as already explained in Chapter 3, local and

short term properties and features can be extracted. These high-level representations are

passed to the LSTM layers, which are then responsible for modeling the long-term relation-

ships. The advantages of this architecture were summarized by Ordóñez and Roggen:

"[The framework] (i) is suitable for multimodal wearable sensors; (ii) can perform

sensor fusion naturally; (iii) does not require expert knowledge in designing fea-

tures; and (iv) explicitly models the temporal dynamics of feature activations.".

[Ord-2016]

45

6 Modeling

It is important to mention that these advantages match well with the requirements from

Section 6.1. Especially the capabilities of CNN to automatically merge the data from differ-

ent sensors and to automatically generate high-level features are very useful compared to

simple RNN.

Based on this architecture, Slaton et al. [Sla-2020] examined a variation of the model

concerning the activity recognition of construction machines. The model is adopted with

the same number of layers and neurons. In addition, batch normalization layers between

convolutional layers and a dropout layer between convolutional and recurrent layers are

added. Slaton et al. achieved good results using this architecture and, since telematics

data is most similar to acceleration data in terms of the nature of data, it is also conceivable

that such an architecture would also yield good results for telematics data.

The model presented in this thesis is strongly based on these two aforementioned works

and includes only minor adaptations (see Fig. 6-1c). The first adaptation is in terms of

the number of layers. Instead of four convolutional layers, only three layers with 64 feature

maps each are used, between which, as in Slaton et al. [Sla-2020], batch normalization

layers are also added. Each LSTM layer consists of 128 LSTM cells. In addition, a dropout

layer with a dropout rate of 30 % was added between each layer to further minimize the risk

of overfitting, as there was a significant difference between training and validation loss in

the experiments of Slaton et al.

DeepConvBiLSTM

The second approach involving hybrid models includes a replacement of the unidirectional

LSTM layers by bidirectional LSTM layers. As explained in Section 3.2.3, the inputs of bidi-

rectional RNN are processed in the two temporal directions. Replacing unidirectional with

bidirectional RNN generally has the potential to improve the results. Xu et al. [Xu-2019] in-

vestigated the use of bidirectional LSTM in the context of the DeepConvLSTM architecture

and human activity recognition. It was found that the use of bidirectional LSTM further im-

proved the results. Therefore, the impact of using bidirectional LSTM is further investigated

in this thesis.

46

6.2 Models

The proposed bidirectional architecture (DeepConvBiLSTM) is a modification of the unidi-

rectional architecture and further consists of one input layer, three convolutional layers, two

recurrent layers and one softmax activation layer (see Fig. 6-1d). However, the two LSTM

layers are replaced by two bidirectional LSTM layers. The number of cells within each layer

is not modified.

47

6 Modeling

(a)M
LP

(b)LS
TM

(c)D
eepC

onvLS
TM

(d)D
eepC

onvB
iLS

TM

Figure
6-1:O

verview
ofthe

selected
m

odels

48

6.3 Hierarchical classification

6.3 Hierarchical classification

An alternative approach to classification is the hierarchical classification. This is especially

useful in cases where the classes under investigation have a certain hierarchy or certain

classes can be grouped into metaclasses. One of the most popular approaches to hierchical

classification is the local classifier per parent node approach [Sil-2011]. For each subgroup

a separate multi-class classifier is trained, which is only specialized to distinguish between

child nodes within a group [Sil-2011]. For example, activities of a machine can be examined

with different levels of detail, as was also done by Akhavian and Behzadan [Akh-2015].

In the case of a Kelly drilling machine, it is possible to identify three levels of detail (LoD).

These are shown in Figure 6-2. In the first LoD (LoD 1), a distinction is only made between

working and idle. The Working group contains all activities in which the drill is actively

involved. The parent node Working contains several child nodes. These are the main pro-

cess steps (see Section 3.1) of the production of a pile: Drilling, Reinforcing and Concreting.

Within the idle node, a distinction can be made between downtime and secondary process

time. These subgroups form the second LoD (LoD 2). The third LoD (LoD 3) subdivides

the rough process steps into more detailed steps.

For each parent node (e.g. Working) a classifier is trained, which can classify among the

child nodes (Concreting, Reinforcing and Drilling). As possible classifiers the above men-

tioned models are considered and investigated. The advantage of such approaches is

the possibility to exploit the tree structure of the classes in order to reduce the number of

classes considered by a classifier. Instead of directly classifying 27 activities (flat classifica-

tion), which may require highly complex models which need to detect very subtle differences

in the data, local classifiers need to distinguish a much smaller number of classes (only up

to 7).

49

6 Modeling

Figure
6-2:Levels

ofdetail(LoD
)forhierarchicalclassification

50

6.4 Implementation and training

6.4 Implementation and training

The models were developed in Python using the Keras framework, which is based on the

popular Tensorflow library. Keras has a modular structure, whereby models can be assem-

bled based on different available layers and elements. To further facilitate the exploration,

a function was created for each of the four proposed models that allows the models to be

generated with the respective architecture depending on various parameters. The source

codes are shown in Appendix A.3.

Since it is a multi-class classification problem, the categorical crossentropy is used as the

loss function. The goal is to minimize the value of this function, which is the error of the

model. The categorical crossentropy J is given by [Gér-2019]:

J =
−1

m

m∑
i=1

K∑
k=1

y
(i)
k log(pik) (6-1)

where y
(i)
k are the entries of the one-hot encodings, pik are the output probabilities of the

softmax layer (see Eq. 3-7), K is the number of classes, and m is the number of in-

stances.

Table 6-1: Hyperparameters

Parameter Value

Loss function Categorical crossentropy

Optimizer Adam

Epochs 50

Batch size 256

Learning rate 0.001

For the optimization of the weights of the models the Adam (Adaptive Moment Estimation)

algorithm is employed. One of the advantages of this algorithm is that an adaptive learning

rate control is already integrated. The learning rate selected for the training is 0.001. To

allow a proper comparison of the models and to keep the computation time low, no further

hyperparameter tuning was performed. Each model is trained for 50 epochs with a batch

size of 256 instances. As training may also contain a random component and the results

51

6 Modeling

may vary slightly, each training process is performed three times. The used hyperparame-

ters are summarized in Table 6-1.

6.5 Performance analysis

In order to assess the quality of the models, the performance must be quantified. This may

be accomplished by means of various available metrics. The most intuitive metric is the

accuracy, which can be calculated for a particular class as follows:

Accuracy =
TP + TN

P +N
(6-2)

where TN denotes the number of correctly negatively classified instances, TP denotes the

number of correctly positively classified instances, P denotes the total number of positive

instances, and N denotes the total number of negative instances. The main drawback of

accuracy as a metric is the possible distortion of the results for imbalanced datasets. This

property was demonstrated in Section 4.2 for the analyzed dataset. The key problem is, if

a model would always predict the most frequent classes in a strongly imbalanced dataset,

then an accuracy equivalent to the frequency of the most frequent class would already be

achieved.

To counteract these issues, two other metrics can be employed. If the ratio of correctly posi-

tively predicted instances to the total number of positively predicted instances is considered,

then the precision can be defined as a metric [Gér-2019]:

Precision =
TP

TP + FP
(6-3)

where TN denotes the number of correctly negatively classified instances, TP denotes the

number of correctly positively classified instances and FP denotes the number of wrongly

positively classified instances. While the precision focuses primarily on the positive pre-

dictions, the recall considers the positive instances present in the dataset in general. The

basic idea behind the metric is to consider how often the positive instances that are present

52

6.5 Performance analysis

in the dataset are also classified as such. The mathematical description is given by [Gér-

2019]:

Recall =
TP

TP + FN
(6-4)

where FN denotes the number of wrongly negatively classified instances.

To combine the properties of these two metrics simultaneously, the F1 score is introduced

(Eq. 6-5).The F1 score can assume values between 0 and 1. The closer to 1 the determined

value, the better the performance of the model.

F1 = 2 · Precision×Recall
Precision+Recall

=
TP

TP + FN+FP
2

(6-5)

The metrics introduced so far are valid only for a specific class. Should a value be calculated

for the entire data set, then the mean value of the metrics of the individual classes is used.

In the scope of this thesis, primarily the accuracy in connection with the F1 score is used.

53

Part III

Evaluation

55

7 Results

This chapter presents the results of the experiments proposed in Part 2. First, the perfor-

mance of each model is compared, both during the training process and the application with

the test set. In the second part, the results of the different parameter studies are presented.

Finally, in the last part of the chapter, the results of the hierarchical classification are shown.

To facilitate the overview, the parameters to which the results of the respective sections re-

fer are indicated at the beginning of the sections within a gray box. The emphasis of the

respective investigation is indicated in bold.

7.1 Models

Models MLP, LSTM, DeepConvLSTM, DeepConvBiLSTM

Window size 16 seconds

Overlap OW

Splitting method Random

7.1.1 Training

As a first investigation of the performance of the models, the training procedures are an-

alyzed. As the different models have different degrees of complexity, the number of pa-

rameters to be trained also varies. The larger the number of parameters, the longer the

training process takes. The number of parameters and the duration of the training for the

four models are shown in Table 7-1. A difference in the number of parameters between

the various models is clearly visible. Although the model consisting of LSTM layers has

less than half the number of layers of the MLP, it has approximately four times as many

parameters. As a result, the training time is also longer. Adding the three CNN layers for

the DeepConvLSTM, on the other hand, only results in a significantly smaller increase in

the number of parameters. Since the number of LSTM cells is doubled when bidirectional

LSTMs are used, another significant increase can be seen. The training time amounts to

approx. 15 minutes with the use of a GPU, which is within the tolerable range for a data set

of this size.

57

7 Results

Table 7-1: Duration of the training

Model Trainable parameters Training duration [sec/Epoch]

MLP 55,194 2

LSTM 209,690 9

DeepConvLSTM 262,170 13

DeepConvBiLSTM 626,970 17

To assess the ability of the models to accurately model the process, the loss during training

is considered first. Figure 7-1 shows the curves of the loss function depending on the

number of epochs for the different models. Since the training was performed three times,

the mean and standard deviation were calculated. The solid lines represent the mean,

while the colored bands in the background represent the standard deviation. Additionally,

the training and validation accuracies of the different models are shown in Table 7-2.

Table 7-2: Training and validation accuracy for the proposed models

Model Training Accuracy Validation Accuracy

MLP 60.85 % 64.03 %

LSTM 61.39 % 57.88 %

DeepConvLSTM 87.13 % 88.52 %

DeepConvBiLSTM 88.14 % 89.59 %

The two upper figures show the loss for the MLP (Fig. 7-1a) and for the LSTM model (Fig.

7-1b). For both cases, it is visible that the loss of the training data set clearly converges

towards a constant value. Thus, further training of the model would not lead to a signif-

icant increase in performance. However, if the validation loss is considered, then some

differences are visible. In the case of the MLP, the validation loss follows the course of the

training loss, but shifted downwards. This is a consequence of the high dropout rate. In the

case of the LSTM model, an increase of the validation loss can be seen from epoch 30,

while the training loss continues to decrease. This is a clear signal of the overfitting of the

model (see Section 3.2.1). A further indication of this is also the smaller validation accuracy

compared to the training accuracy.

The two bottom figures show the loss for the DeepConvLSTM (Fig. 7-1c) and the Deep-

ConvBiLSTM (Fig. 7-1d). As for the two baseline models, the training loss converges to a

fixed value. However, the value is significantly lower than the final values of the baseline

58

7.1 Models

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

L
o
s
s

Training loss Validation loss

(b) LSTM

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

L
o
s
s

Training loss Validation loss

(c) DeepConvLSTM

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

L
o
s
s

Training loss Validation loss

(d) DeepConvBiLSTM

Figure 7-1: Training and validation loss for different models

models. The validation loss of the two hybrid models roughly follows the course of the train-

ing loss for both models. Furthermore, a larger spread of the values of the validation loss

is visible, which mainly originates from the beginning of the training and which decreases

in the course of the training. In contrast to the baseline LSTM model, where the variance

increases towards the end of the training, the variance of the validation loss of the two hy-

brid models is very low. In summary, it is possible to state that the two hybrid models do not

face an overfitting problem. Since for both models high accuracies could be achieved, it can

also be argued that for the hybrid models, in contrast to the baseline models, no underfitting

takes place.

59

7 Results

7.1.2 Test

Although estimations of the quality of the models can be made through training and val-

idation performance, the actual verification of the quality is conducted by examining the

performance on the test set. The F1 score introduced in Section 6.5 is used as a metric,

as simply considering the accuracy in imbalanced datasets is not recommended. Table 7-3

shows the average F1 score of the respective models. In addition to the normal mean,

a weighted average can be formed, which considers the number of respective labels and

uses them as weights. The weighted mean can be considered an optimistic estimate since

the more frequent labels are weighted more heavily, which is not optimal. Furthermore, the

F1 scores of the individual labels for the different models are specified in the Table 7-4.

Table 7-3: Averaged F1-Score for the proposed models

Model Avg. F1-Score Weighted Avg. F1-Score

MLP 0.49 0.62

LSTM 0.37 0.52

DeepConvLSTM 0.87 0.89

DeepConvBiLSTM 0.89 0.91

The MLP model, which achieves a validation accuracy of 64.03 %, only achieves an F1

score of 0.49 when tested. If only the labels which can be assigned to the process step

Drilling (LoD 2) and which have been considered in previous studies (Lowering, Drilling

(LoD 3), Emptying, Screw in casing and Pulling) are considered from Table 7-4, then

higher than average F1 scores can be observed. The average F1 score of these five activi-

ties is 0.73, which, nevertheless, remains far below the scores obtained in previous studies

[Bi-2020, Ors-2020], all of which are above 0.87. The reason for this deterioration is most

likely the absence of strong filtering (removal of outliers and smoothing of the data) of the

data in this study. It is evident that a model consisting of MLP does not have such strong

modeling capabilities for the process examined here. A further aspect to consider is the

impossibility of considering only these five activities separately, since in practice they may

be mixed with the rest of the activities and not occur separately.

Another aspect which can be identified during testing is the overfitting of the LSTM model,

which had already been mentioned in the previous section. Although theoretically the model

60

7.1 Models

Table 7-4: F1 values per label for all models

Label MLP LSTM DeepConvLSTM DeepConvBiLSTM

Break 0.64 0.48 0.95 0.96

Failure 0.94 0.91 0.99 0.99

Waiting for concrete 0.42 0.21 0.96 0.95

Waiting for other 0.53 0.07 0.94 0.94

Lowering 0.62 0.67 0.85 0.87

Concreting 0.51 0.24 0.83 0.86

Install cushion 0.73 0.20 0.92 0.94

Drilling 0.79 0.80 0.87 0.89

Drilling with bucket 0.00 0.00 0.74 0.81

Install rebar cage 0.56 0.44 0.93 0.94

Emptying 0.69 0.76 0.93 0.95

Remove pouring pipe 0.22 0.13 0.79 0.73

Place pouring pipe 0.53 0.04 0.92 0.93

Place standpipe 0.74 0.57 0.92 0.94

Pull standpipe 0.31 0.13 0.83 0.85

Remove casing 0.15 0.07 0.79 0.82

Screw in casing 0.84 0.86 0.94 0.96

CM - Pull standpipe 0.47 0.44 0.73 0.87

CM - Screw in casing 0.43 0.25 0.85 0.88

Pulling 0.72 0.73 0.86 0.88

Other 0.10 0.21 0.83 0.85

Refueling 0.56 0.00 0.83 0.83

Depth sensing 0.00 0.00 0.64 0.70

Relocate 0.30 0.30 0.94 0.95

Refill water 0.72 0.74 0.86 0.89

Tool exchange 0.27 0.26 0.90 0.92

61

7 Results

complexity is higher, the LSTM model achieves an average F1 score of only 0.37. If, how-

ever, only the five activities mentioned above are considered, then an improvement of the

results to an average F1 score of 0.76 is actually noticeable. The LSTM layers prove to

be an acceptable mechanism to model these activities, which however happens at the ex-

pense of the other labels, which experience a significant deterioration. For example, the

F1 score of the Place pouring pipe class drops from 0.53 to 0.04. This may be, among

other issues, a symptom of the class imbalance of the data set. The five activities combined

amount to about 40 % of the available data, while other 20 activities amount to only 36 %

of the data.

Both hybrid models (DeepConvLSTM and DeepConvBiLSTM) show a significantly higher

average F1 score, exceeding 0.85. For the DeepConvLSTM model, the mean F1 score is

0.87 and the weighted F1 score is 0.89. For the DeepConvBiLSTM model, the F1 score

is 0.89 and 0.91, respectively. Between the MLP/LSTM and DeepConvLSTM models, a

significant increase of the F1 score is evident for all labels. Between the DeepConvLSTM

and the DeepConvBiLSTM, a further weaker increase and improvement is subsequently

evident. The average F1 score of the five activities previously mentioned increases to 0.89,

which corresponds to a reduction of the error by more than 50 %. In Table 7-5, the average

F1 score for the five activities (Lowering, Drilling (LoD 3), Emptying, Screw in casing

and Pulling) is shown along with the variation of the error with respect to the previous

model.

Table 7-5: F1 values and variation for all models - Only Drilling (LoD 2)

Model Avg. F1-Score - Drilling (LoD 2) Error variation

MLP 0.73 -

LSTM 0.76 -11 %

DeepConvLSTM 0.89 -54.2 %

DeepConvBiLSTM 0.91 -18.9 %

Of further interest is the increase of the F1 score for the label Lowering, which in previous

work [Ors-2020] exhibited the lowest F1 score, from 0.67 (LSTM) to 0.85 (DeepConvLSTM)

and 0.87 (DeepConvBiLSTM), respectively, and for the label Emptying from 0.76 to 0.93.

These are similar to the results obtained in [Ors-2020], although no filtering of the data

was performed and all activities are considered. In addition to the increase in F1 scores

62

7.1 Models

for these five activities, the hybrid models are notable for the significant improvement in

the predictions of the other class, which represent only a much smaller fraction of the total

data set. For instance, the F1 score for the activity Remove casing increases from 0.15

(baseline models) to 0.82 (DeepConvBiLSTM). Similarly, the classes Relocate (0.3 to 0.95)

and Concreting (0.51 to 0.86) also experience significant improvements.

In order to obtain a more detailed insight into the performance of the models, the confusion

matrices for the predictions of the DeepConvLSTM (Fig .7-2c) and DeepConvBiLSTM (Fig.

7-2d) models for the test set are shown in Figure 7-2. Since a large number of activities

were considered, the confusion matrices have a large number of entries. For the sake of

clarity and due to the high complexity, only a few selected aspects of the confusion matrix

are explained in detail.

For both the baseline MLP and baseline LSTM models, the column of samples classified

as Break draws a considerable attention. Except for the activities that can be assigned to

the process step Drilling (LoD 2), nearly all activities are mistaken for the activity Break

at some level. This behavior is also found to occur with the LSTM model. Based on the

confusion matrix of the LSTM model, it can be observed that the activity’s low F1 values

for the classes Concreting, Place pouring pipe, Remove pouring pipe, Remove casing

and Pull standpipe mainly result from confusion with the classes Install cushion and

Break.

The confusion matrix of the two hybrid models shows a more pronounced diagonality of the

matrix. The majority of the entries are on the diagonal, which implies that an overall high

accuracy has been achieved. Most noticeable, as in the MLP model, are the many entries

of the column of the class Concreting as predictions. There is a mix-up especially between

the activities of the process step Concreting. For both hybrid models, the activity Depth

sensing is the activity with the lowest accuracy.Another activity which is often misclassified

is Drilling with bucket, which is mainly confused with the activity Drilling. Apart from

these mentioned anomalies, the hybrid models reach high overall accuracies.

63

7 Results

L
o

w
e

ri
n

g
D

ri
lli

n
g

D
ri
lli

n
g

 w
it
h

 b
u

c
k
e

t
E

m
p

ty
in

g
P

la
c
e

 s
ta

n
d

p
ip

e
S

c
re

w
 i
n

 c
a

s
in

g
P

u
lli

n
g

C
o

n
c
re

ti
n

g
P

la
c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g
P

u
ll

s
ta

n
d

p
ip

e
In

s
ta

ll
c
u

s
h

io
n

In
s
ta

ll
re

b
a

r
c
a

g
e

C
M

 -
 P

u
ll

s
ta

n
d

p
ip

e
C

M
 -

 S
c
re

w
 i
n

 c
a

s
in

g
O

th
e

r
R

e
fu

e
lin

g
D

e
p

th
 s

e
n

s
in

g
R

e
lo

c
a

te
R

e
fi
ll

w
a

te
r

T
o

o
l
e

x
c
h

a
n

g
e

B
re

a
k

F
a

ilu
re

W
a

it
in

g
 f

o
r

c
o

n
c
re

te
W

a
it
in

g
 f

o
r

o
th

e
r

Predicted label

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other
T

ru
e

 l
a

b
e

l

55

3

2

2

1

0

1

0

0

1

0

0

0

3

0

3

1

0

0

0

0

0

1

1

0

0

12

85

86

0

1

0

3

0

0

2

0

0

0

2

0

3

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13

2

0

84

3

5

5

0

0

4

1

0

0

7

0

18

5

2

3

4

3

16

3

4

2

4

8

0

0

6

85

5

1

1

0

1

4

3

2

13

0

12

21

23

6

51

7

19

2

1

2

39

2

0

0

1

3

82

5

0

0

1

0

0

0

0

0

2

8

0

0

0

1

0

0

0

0

3

4

8

11

3

1

2

78

0

0

1

0

0

0

5

0

18

3

0

2

0

10

0

1

3

0

0

0

0

0

0

0

0

0

52

6

29

23

23

4

2

18

0

3

0

33

5

0

1

2

0

2

1

0

0

0

0

0

0

0

6

56

9

5

6

9

1

0

0

6

0

2

0

0

2

3

0

5

6

0

0

0

0

0

0

0

0

1

14

2

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

10

1

0

1

20

0

1

0

5

3

0

3

1

0

1

0

0

0

0

0

0

0

0

5

1

5

6

22

0

0

0

0

3

0

4

1

0

0

1

0

12

0

0

0

0

0

0

0

0

0

4

0

0

0

69

2

0

0

4

0

0

0

0

2

1

0

1

0

1

0

0

1

1

0

0

0

0

4

0

0

1

46

0

1

5

0

1

3

0

13

1

0

3

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

34

0

0

0

1

0

0

0

0

0

0

0

3

0

0

1

1

1

1

0

0

0

0

0

4

3

0

34

3

0

5

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

74

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

19

0

1

0

0

0

0

1

1

0

0

0

3

5

0

0

0

0

0

0

2

0

7

13

0

0

0

78

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

2

0

1

2

0

21

0

0

0

0

1

1

0

1

1

0

1

35

31

27

45

45

11

12

28

2

15

0

37

12

0

22

79

0

45

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

89

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

27

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

37

0

10

20

30

40

50

60

70

80

90

100

(a) MLP

L
o

w
e

ri
n

g
D

ri
lli

n
g

D
ri
lli

n
g

 w
it
h

 b
u

c
k
e

t
E

m
p

ty
in

g
P

la
c
e

 s
ta

n
d

p
ip

e
S

c
re

w
 i
n

 c
a

s
in

g
P

u
lli

n
g

C
o

n
c
re

ti
n

g
P

la
c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g
P

u
ll

s
ta

n
d

p
ip

e
In

s
ta

ll
c
u

s
h

io
n

In
s
ta

ll
re

b
a

r
c
a

g
e

C
M

 -
 P

u
ll

s
ta

n
d

p
ip

e
C

M
 -

 S
c
re

w
 i
n

 c
a

s
in

g
O

th
e

r
R

e
fu

e
lin

g
D

e
p

th
 s

e
n

s
in

g
R

e
lo

c
a

te
R

e
fi
ll

w
a

te
r

T
o

o
l
e

x
c
h

a
n

g
e

B
re

a
k

F
a

ilu
re

W
a

it
in

g
 f

o
r

c
o

n
c
re

te
W

a
it
in

g
 f

o
r

o
th

e
r

Predicted label

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

T
ru

e
 l
a

b
e

l

63

5

5

4

1

1

1

0

0

1

0

0

0

2

0

4

0

0

1

0

0

0

1

1

0

0

7

82

85

0

1

0

3

0

0

2

0

0

0

1

0

2

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

2

2

84

2

3

3

0

0

3

0

0

0

3

0

13

2

1

0

2

2

7

1

3

1

3

4

0

0

1

57

2

0

5

8

9

8

13

7

10

0

10

19

3

7

37

6

8

3

0

7

55

2

0

0

2

3

83

3

0

0

2

1

0

0

0

0

1

1

0

0

0

1

0

0

1

1

4

5

8

8

3

1

4

84

0

0

1

0

0

0

6

0

22

2

0

2

0

10

0

2

3

0

0

0

0

0

0

0

0

0

15

0

1

6

6

1

0

0

0

0

0

2

2

0

0

0

0

1

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

0

0

1

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

2

2

9

1

0

0

0

1

0

4

0

0

0

1

0

12

5

0

0

0

0

3

0

0

26

3

23

14

19

28

7

17

0

4

20

25

3

0

8

1

0

3

0

1

0

0

1

2

0

0

0

10

7

1

0

4

39

0

3

6

0

1

6

0

13

6

0

16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

28

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

1

1

0

0

0

0

0

0

2

0

16

0

0

3

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

7

0

15

75

1

3

0

3

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

21

0

2

0

0

0

0

1

1

0

0

0

1

3

0

0

0

0

0

0

3

0

7

15

0

0

0

78

0

1

1

0

0

0

0

0

0

0

0

0

1

0

1

2

1

0

3

1

0

2

0

2

2

0

26

1

0

2

0

6

0

0

3

28

5

1

45

69

40

60

51

57

23

47

22

31

1

50

24

1

33

81

1

45

26

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

89

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

12

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

10

20

30

40

50

60

70

80

90

100

(b) LSTM

Figure 7-2: Confusion matrices - Random splitting

64

7.1 Models

L
o

w
e

ri
n

g
D

ri
lli

n
g

D
ri
lli

n
g

 w
it
h

 b
u

c
k
e

t
E

m
p

ty
in

g
P

la
c
e

 s
ta

n
d

p
ip

e
S

c
re

w
 i
n

 c
a

s
in

g
P

u
lli

n
g

C
o

n
c
re

ti
n

g
P

la
c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g
P

u
ll

s
ta

n
d

p
ip

e
In

s
ta

ll
c
u

s
h

io
n

In
s
ta

ll
re

b
a

r
c
a

g
e

C
M

 -
 P

u
ll

s
ta

n
d

p
ip

e
C

M
 -

 S
c
re

w
 i
n

 c
a

s
in

g
O

th
e

r
R

e
fu

e
lin

g
D

e
p

th
 s

e
n

s
in

g
R

e
lo

c
a

te
R

e
fi
ll

w
a

te
r

T
o

o
l
e

x
c
h

a
n

g
e

B
re

a
k

F
a

ilu
re

W
a

it
in

g
 f

o
r

c
o

n
c
re

te
W

a
it
in

g
 f

o
r

o
th

e
r

Predicted label

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

T
ru

e
 l
a

b
e

l

84

5

2

2

1

0

1

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

4

87

33

0

0

0

2

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

64

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

93

0

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

2

0

0

1

93

1

0

0

0

0

2

0

0

1

0

3

4

20

1

5

3

1

0

0

0

2

1

0

0

2

2

95

2

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

2

1

6

1

1

1

2

87

0

0

0

0

0

0

0

0

4

1

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

87

3

11

12

13

0

0

0

0

1

0

18

0

0

0

0

0

1

4

0

0

0

0

0

0

0

1

92

2

2

0

4

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

77

2

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

2

1

3

75

3

0

0

3

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

0

4

81

0

0

16

0

1

0

15

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

91

1

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

93

0

0

3

0

1

0

0

5

1

0

0

0

0

0

0

0

0

0

0

3

0

1

0

0

0

0

80

0

0

0

2

0

0

0

0

0

0

0

3

1

0

1

1

0

3

0

0

0

0

0

0

0

0

87

0

0

6

0

3

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

79

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

80

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

1

0

53

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

93

0

1

0

0

0

0

0

0

0

0

1

0

2

0

0

0

0

0

0

0

0

3

3

0

0

0

84

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

87

0

0

0

0

0

0

0

0

0

0

0

2

3

2

2

1

3

4

0

0

0

0

0

0

1

4

97

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

99

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

97

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

92

0

10

20

30

40

50

60

70

80

90

100

(c) DeepConvLSTM

L
o

w
e

ri
n

g
D

ri
lli

n
g

D
ri
lli

n
g

 w
it
h

 b
u

c
k
e

t
E

m
p

ty
in

g
P

la
c
e

 s
ta

n
d

p
ip

e
S

c
re

w
 i
n

 c
a

s
in

g
P

u
lli

n
g

C
o

n
c
re

ti
n

g
P

la
c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g
P

u
ll

s
ta

n
d

p
ip

e
In

s
ta

ll
c
u

s
h

io
n

In
s
ta

ll
re

b
a

r
c
a

g
e

C
M

 -
 P

u
ll

s
ta

n
d

p
ip

e
C

M
 -

 S
c
re

w
 i
n

 c
a

s
in

g
O

th
e

r
R

e
fu

e
lin

g
D

e
p

th
 s

e
n

s
in

g
R

e
lo

c
a

te
R

e
fi
ll

w
a

te
r

T
o

o
l
e

x
c
h

a
n

g
e

B
re

a
k

F
a

ilu
re

W
a

it
in

g
 f

o
r

c
o

n
c
re

te
W

a
it
in

g
 f

o
r

o
th

e
r

Predicted label

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

T
ru

e
 l
a

b
e

l

88

4

0

2

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

4

90

26

0

0

0

2

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

73

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

94

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

93

1

0

0

0

0

1

0

0

1

0

2

2

20

0

6

1

0

0

0

0

1

1

0

0

1

1

95

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

5

2

1

1

2

89

0

0

0

0

0

0

0

0

4

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

90

3

8

11

8

0

0

16

0

0

0

17

0

0

0

1

0

0

6

0

0

0

0

0

0

0

1

95

3

2

1

2

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

3

0

85

7

4

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

73

1

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

0

4

83

0

0

0

0

1

0

12

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

94

1

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

95

0

0

3

0

2

0

0

6

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

78

0

0

0

0

0

0

0

0

0

0

0

3

0

0

1

1

0

3

0

0

0

0

0

0

0

0

88

0

0

5

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

83

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

80

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

62

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

93

0

0

0

0

0

0

0

0

0

0

1

0

2

0

0

0

0

0

0

0

0

3

3

0

0

0

90

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

87

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

2

2

2

1

0

0

0

0

0

0

5

97

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

99

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

97

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

92

0

10

20

30

40

50

60

70

80

90

100

(d) DeepConvBiLSTM

Figure 7-2: Confusion matrices - Random splitting

65

7 Results

7.2 Sensitivity analysis

Based on the results of the previous section, this section presents the results of the investi-

gations on the influences of different parameters on the performance of the models. Since

the baseline LSTM models were shown to be inadequate and exhibit signs of overfitting,

they were not considered further for the parameter studies.

7.2.1 Window size

Models DeepConvLSTM, DeepConvBiLSTM

Window size 8,16,32,48,60 seconds

Overlap OW

Splitting method Random

The first parameter to be investigated was the influence of the window size during segmen-

tation. The average F1 scores for the different window widths are shown for the DeepCon-

vLSTM and DeepConvBiLSTM models in Figure 7-3.

8 sec 16 sec 32 sec 48 sec 60 sec

Window size

0.5

0.6

0.7

0.8

0.9

1

F
1
-S

c
o
re 0.8

0.75

0.87
0.89

0.91
0.93 0.92

0.89

0.95 0.95

DeepConvLSTM DeepConvBiLSTM

Figure 7-3: Variation of the F1 score as a function of the window width

It can be stated that an increase in the window width also results in an improvement in the

performance of the models. The only exception to this is the degradation in performance of

the DeepConvBiLSTM model at a window width of 48 seconds, which is most likely due to

a problem during the optimization of the model. Furthermore, it is also visible that when the

66

7.2 Sensitivity analysis

window size is reduced from 16 to 8 seconds, there is a significant drop in performance for

both models.

Basically, the improvement in performance can be explained by the nature of the models

of both hybrid models. The larger the window size, the larger the temporal context and the

amount of information the models have available to model the behavior. However, it is also

important to note that increasing the window size also increases the number of trainable

parameters and ultimately the training time of the models. Table 7-6 shows the increase

in training time as a function of window size. Depending on the size of the dataset and

the chosen window size, training the model may require very large training time and/or

resources, which may be disadvantageous. There is a tradeoff between the performance

of the model and the resources needed for training.

Table 7-6: Required time for processing an epoch of the DeepConvLSTM model depending on the window
size

Window size Training duration [sec/Epoch]

8 3

16 8

32 15

48 28

60 41

Another point that must be considered during the selection of the window size is the future

application of the model. If the model is to be used in real time, a high window size may

cause a number of shortcomings. Since the sensor measurements must always be seg-

mented, the model has a delay of, at least, the selected window size. If a window size of

60 seconds is chosen, the activity of the machine will only be classified 1 minute after the

performed activity. In addition, the processing time of the model is also longer. For some

applications this lag may be too large. Yet, if the activity detection is only to be performed

afterwards, e.g., to be used as input of a simulation, this lag is negligible.

67

7 Results

7.2.2 Overlap

Models DeepConvLSTM, DeepConvBiLSTM

Window size 16 seconds

Overlap OW, SNOW, FNOW

Splitting method Random

The second effect studied is that of the degree of overlap of two neighboring samples during

segmentation. In particular, three possibilities (OW, SNOW, and FNOW) were investigated.

Figure 7-4 shows the average F1 score for both models for the respective degrees of over-

lap.

OW SNOW FNOW

Overlap

0.5

0.6

0.7

0.8

0.9

1

F
1
-S

c
o
re

0.87
0.89

0.63 0.63

0.51

0.56

DeepConvLSTM DeepConvBiLSTM

Figure 7-4: Variation of the F1 score as a function of the overlap

Based on the plot, it is possible to observe that a significant difference exists between the

results of the different degrees of overlap. Both the DeepConvLSTM and the DeepConvBiL-

STM models deteriorate by about 25 % when the samples overlap by only 50 % instead of

fully overlapping. If the samples do not overlap at all, the F1 score drops even further to a

low 0.51 in the case of the DeepConvLSTM.

This sharp drop can arise from two possible causes. As described in Section 3.3, when

using the OW method, a high bias is introduced to the model due to the possible high

similarity of neighboring samples. This bias can increase performance in the dataset under

consideration, but is a disadvantage when the model is to be applied to a new dataset.

68

7.2 Sensitivity analysis

Both the SNOW and FNOW methods add a significantly lower bias to the model, but this

degrades the performance of the model.

The second possible reason that leads to the degradation is the number of samples gener-

ated. To examine this in more detail, the number of samples generated by each method is

shown in Table 7-7.

Table 7-7: Number of generated samples depending on the overlapping degree

Method Number of training samples

Overlapping window (OW) 220866

Semi non-overlapping window (SNOW) 27608

Fully non-overlapping window (FNOW) 13804

A consequence of the smaller overlap of samples is also the overall reduction in the number

of available samples. In the case of the OW method, more than 220 000 samples were

available. If the overlap is reduced to 50 %, then the amount is reduced by almost 10

times. If the samples are not supposed to overlap at all, then out of the more than 350

000 measured data points, only 13 804 samples are available for training. This significant

reduction in the size of the training data set can lead to problems, since in general Deep

Learning approaches rely on a very large amount of available data to achieve good results.

In order to determine whether the degradation is due to the high bias or the lower sample

number, it would be appropriate for future studies to test the same models on a larger

dataset.

69

7 Results

7.2.3 Splitting method

Models DeepConvLSTM, DeepConvBiLSTM

Window size 16 seconds

Overlap OW

Sampling method Last

Splitting method By days

An important aspect to be investigated is the generalization capability of the considered

models. In order to examine this in more detail, the selected model architectures are tested

on disjoint training and test sets with respect to the days of data. An important aspect to be

investigated is the generalization capability of the considered models.

Training

Since a new splitting of the data is considered in this section, the training process of the

models is examined again to ensure the convergence of the models. Initially, the exact same

models are used with the identical settings as in Section 7.1. The training and validation

losses of the models ares shown in Figure 7-5.

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(b) DeepConvLSTM

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(c) DeepConvBiLSTM

Figure 7-5: Training and validation loss for different models - Splitting by days

The history of the training process of the MLP model (Fig. 7-5a) is very similar to the history

from Section 7.1.1. Both training and validation clearly converge to a fixed value. There is

no sign of overfitting occurring. If, on the other hand, Figures 7-5b and 7-5c are considered,

a clear difference can be seen compared to Section 7.1.1. While the training loss steadily

decreases and converges to a low value, for both the DeepConvLSTM models as well as for

the bidirectional variant an increase of the validation loss is visible starting at approximately

the fifth epoch. It can be clearly stated that both hybrid models suffer from overfitting.

70

7.2 Sensitivity analysis

To counteract overfitting, the models are adapted. First, the dropout rate is increased to 50

%. Furthermore, the complexity of the model is reduced by using only 64 cells per layer

instead of 128 LSTM cells. The learning rate is reduced from 10−3 to 10−5. The adapted

models are referred to as DeepConvLSTM64 and DeepConvBiLSTM64 in the rest of the

section, while the previous models are referred to as DeepConvLSTM128 and DeepCon-

vBiLSTM128. The training and validation losses of the adapted models are shown in Figure

7-6.

10 20 30 40 50

Epoch

0

1

2

3

4

L
o

s
s

Training loss Validation loss

(a) DeepConvLSTM64

10 20 30 40 50

Epoch

0

1

2

3

4

L
o

s
s

Training loss Validation loss

(b) DeepConvBiLSTM64

Figure 7-6: Training and validation loss for the adapted models - Splitting by days

Based on the plots, it is easily recognizable that the actions taken have an effect on the

training. Both the training and the validation loss for both hybrid models converge and the

mentioned overfitting could be prevented. However, as a consequence of these measures,

the models do not reach such a low loss as shown in Figure 7-5. To take a closer look

at this aspect, the training and validation accuracies of both the original (MLP, DeepCon-

vLSTM128 and DeepConvBiLSTM128) and adapted models (DeepConvLSTM64 and Deep-

ConvBiLSTM64) are shown in Table 7-8.

The training and validation accuracies of the MLP are lower than the accuracies obtained

in Section 7.1.1 by approximately 10 %. The two hybrid models with 128 LSTM cells per

layer achieve accuracies comparable to the previous original results of about 90 % on the

training set. However, there is a significant drop when considering the validation accuracy,

which reaches only 53.75 % and 51.90 %, respectively. This indicates that the model has

the ability to replicate the training set data very well, but has difficulty generalizing to new

71

7 Results

Table 7-8: Training and validation accuracy for the proposed models - Splitting by days

Model Training Accuracy Validation Accuracy

MLP 51.83 % 54.47 %

DeepConvLSTM128 90.34 % 53.75 %

DeepConvBiLSTM128 91.31 % 51.90 %

DeepConvLSTM64 58.53 % 56.50 %

DeepConvBiLSTM64 58.38 % 55.77 %

data. For the two adapted hybrid models, the overfitting is no longer evident. The training

accuracy roughly equals the validation accuracy. However, it is possible to detect that a

significant drop in training accuracy is required as a tradeoff for this.

Test

In order to further test the models, data from 7 additional days are analyzed. The average

F1 scores obtained from the application of the five models discussed above to the test set

are shown in Table 7-9.

Table 7-9: Averaged F1-Score for the proposed models - Splitting by days

Model Avg. F1-Score

MLP 0.25

DeepConvLSTM128 0.31

DeepConvBiLSTM128 0.27

DeepConvLSTM64 0.26

DeepConvBiLSTM64 0.26

All the models exhibit a significant drop in the performance of the models compared to the

training, with a maximum F1 score of 0.31. The MLP, which did not present any problems

regarding overfitting, possesses the lowest F1 score of 0.25. The two original hybrid models

(DeepConvLSTM128 and DeepConvBiLSTM128) achieve the highest F1 scores among the

five models with 0.31 and 0.25, respectively. This occurs despite the fact that both models

face a clear overfitting issue. The models adapted to avoid overfitting (DeepConvLSTM64

and DeepConvBiLSTM64) each achieve an F1 score of only 0.26. Considering only the av-

erage F1 score, no significant differences between the five models are apparent. Likewise,

72

7.2 Sensitivity analysis

the adaptions to avoid overfitting, which according to Table 7-8 led to a weak increase in

validation accuracy, do not increase the average F1 score.

It is important to note that the F1 scores presented above represent only the average of the

individual classes. Therefore, it is possible that the F1 scores of the individual classes are

unevenly distributed and thus the mean value is negatively influenced. In order to obtain

deeper insights into the performance of the models, the F1 scores of the models for the

individual labels are examined, as in Section 7.1.2. These are shown in Table 7-10.

Based on their F1 scores, the labels can essentially be divided into three different groups.

Besides a limited number of exceptions, these divisions apply to all models. The first group

consists of activities with a high F1 score (F1> 0.5). This group consists of the activities

Lowering, Drilling, Emptying, Place standpipe, Screw in casing, Pulling and Refill wa-

ter. Except for the last activity, which is classified as secondary process time, the remaining

ones belong to the process step Drilling (LoD 2). Within this group, a small impact of the

model architecture and overfitting prevention measures on the performance can be seen.

The F1 value of the adapted hybrid models is generally higher or at least as high as that of

the original models (MLP, DeepConvLSTM128 and DeepConvBiLSTM128) for all activities in

the group. If the unidirectional is compared with bidirectional variant, it can be argued that

the influences are label dependent. While for some activities the results of the bidirectional

variant are better, for others the unidirectional variant yields better results.

The second group consists of activities that are not recognized at all or only very poorly and

feature a very low F1 score (F1< 0.1). This group comprises the activities Failure, Waiting

for concrete, Waiting for other, Install cushion, Drilling with bucket, Place pouring

pipe, Remove pouring pipe, Casing machine - Pull standpipe, Other, Refueling, Depth

sensing and Relocate. Two additional activities which could possibly be assigned to this

group are Remove casing and Tool exchange. These exhibit values above 0.1 for the

DeepConvLSTM128 and DeepConvBiLSTM128 models, but values very close to zero for the

MLP and adapted hybrid models. The labels Break, Concreting, Pull standpipe, Casing

machine - Screw in casing form the last group. All of them have low F1 scores, but these

differ in magnitude from those of the second group.

73

7 Results

Table
7-10:F1

values
perlabelforallm

odels
-S

plitting
by

days

Label
M

LP
D

eepC
onvLS

TM
1
2
8

D
eepC

onvB
iLS

TM
1
2
8

D
eepC

onvLS
TM

6
4

D
eepC

onvB
iLS

TM
6
4

B
reak

0.39
0.38

0.38
0.37

0.41

Failure
0.00

0.00
0.00

0.00
0.00

W
aiting

forconcrete
0.00

0.00
0.00

0.00
0.00

W
aiting

forother
0.00

0.00
0.00

0.00
0.00

Low
ering

0.66
0.66

0.66
0.67

0.68

C
oncreting

0.27
0.22

0.27
0.32

0.23

Installcushion
0.05

0.02
0.04

0.04
0.02

D
rilling

0.80
0.80

0.76
0.80

0.82

D
rilling

w
ith

bucket
0.00

0.00
0.00

0.00
0.00

Installrebarcage
0.06

0.39
0.36

0.10
0.10

E
m

ptying
0.71

0.70
0.71

0.78
0.74

R
em

ove
pouring

pipe
0.00

0.00
0.00

0.00
0.00

P
lace

pouring
pipe

0.00
0.02

0.02
0.05

0.09

P
lace

standpipe
0.72

0.70
0.67

0.75
0.73

P
ullstandpipe

0.34
0.23

0.24
0.22

0.26

R
em

ove
casing

0.01
0.26

0.15
0.03

0.00

S
crew

in
casing

0.83
0.85

0.84
0.88

0.87

C
M

-P
ullstandpipe

0.00
0.00

0.00
0.00

0.00

C
M

-S
crew

in
casing

0.12
0.21

0.21
0.21

0.20

P
ulling

0.76
0.74

0.74
0.74

0.78

O
ther

0.00
0.05

0.03
0.00

0.00

R
efueling

0.00
0.00

0.00
0.00

0.00

D
epth

sensing
0.00

0.00
0.00

0.00
0.00

R
elocate

0.00
0.00

0.00
0.00

0.00

R
efillw

ater
0.68

0.62
0.67

0.74
0.75

Toolexchange
0.00

0.10
0.17

0.00
0.00

74

7.2 Sensitivity analysis

Furthermore, the confusion matrix of the predictions can be used to identify any mix-ups

which may be taking place. The confusion matrices for the baseline MLP model, the Deep-

ConvLSTM128 and the DeepConvLSTM64 model are given in Figure 7-7. As just stated,

the performances of the unidirectional and bidirectional variants are very similar. Hence,

only the confusion matrix for the unidirectional variant is shown here. In the following, a few

points will be discussed in more detail.

In contrast to Figure 7-2, where in general most entries are located on the diagonal, this

phenomenon is limited only to the lower left square, which corresponds to the process step

Drilling (LoD 2). Another interesting aspect is that samples associated with one of the

labels of the process step Drilling (LoD 2) are mainly confused with labels from the same

process. Almost no confusion with other labels is observed.

L
o

w
e

ri
n

g
D

ri
lli

n
g

D
ri
lli

n
g

 w
it
h

 b
u

c
k
e

t
E

m
p

ty
in

g
P

la
c
e

 s
ta

n
d

p
ip

e
S

c
re

w
 i
n

 c
a

s
in

g
P

u
lli

n
g

C
o

n
c
re

ti
n

g
P

la
c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g
P

u
ll

s
ta

n
d

p
ip

e
In

s
ta

ll
c
u

s
h

io
n

In
s
ta

ll
re

b
a

r
c
a

g
e

C
M

 -
 P

u
ll

s
ta

n
d

p
ip

e
C

M
 -

 S
c
re

w
 i
n

 c
a

s
in

g
O

th
e

r
R

e
fu

e
lin

g
D

e
p

th
 s

e
n

s
in

g
R

e
lo

c
a

te
R

e
fi
ll

w
a

te
r

T
o

o
l
e

x
c
h

a
n

g
e

B
re

a
k

F
a

ilu
re

W
a

it
in

g
 f

o
r

c
o

n
c
re

te
W

a
it
in

g
 f

o
r

o
th

e
r

Predicted label

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

T
ru

e
 l
a

b
e

l

61

5

0

3

0

1

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

1

0

0

0

11

80

70

1

0

0

2

0

0

0

0

0

0

2

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

14

1

0

77

2

6

4

0

2

0

1

0

0

3

0

15

2

0

1

0

2

4

2

0

0

1

2

0

0

6

91

7

1

2

1

0

6

2

0

8

0

13

32

100

17

0

11

22

3

0

0

45

3

0

0

2

1

79

6

1

2

0

2

0

0

1

0

4

3

0

0

0

1

0

2

0

0

0

6

13

25

2

0

2

79

0

0

0

0

0

0

3

0

12

4

0

0

0

7

0

1

0

0

0

0

0

0

0

0

0

0

31

27

0

7

20

11

6

0

0

2

0

23

0

0

1

17

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

30

6

100

54

58

0

1

0

0

8

0

39

0

0

9

6

0

0

0

0

0

0

0

0

0

0

0

4

0

1

0

5

3

0

26

0

0

0

0

0

0

11

0

0

0

0

0

0

1

3

0

0

0

0

0

0

0

0

4

0

4

0

0

7

0

1

4

4

0

0

40

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

4

0

9

4

0

0

0

8

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

6

0

0

0

0

0

0

1

0

3

21

0

0

0

70

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

5

6

1

1

1

35

58

0

28

18

83

60

0

15

23

0

13

0

0

58

51

0

0

12

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

10

20

30

40

50

60

70

80

90

100

(a) MLP

Figure 7-7: Confusion matrices - Splitting by days

75

7 Results

L
o

w
e

ri
n

g
D

ri
lli

n
g

D
ri
lli

n
g

 w
it
h

 b
u

c
k
e

t
E

m
p

ty
in

g
P

la
c
e

 s
ta

n
d

p
ip

e
S

c
re

w
 i
n

 c
a

s
in

g
P

u
lli

n
g

C
o

n
c
re

ti
n

g
P

la
c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g
P

u
ll

s
ta

n
d

p
ip

e
In

s
ta

ll
c
u

s
h

io
n

In
s
ta

ll
re

b
a

r
c
a

g
e

C
M

 -
 P

u
ll

s
ta

n
d

p
ip

e
C

M
 -

 S
c
re

w
 i
n

 c
a

s
in

g
O

th
e

r
R

e
fu

e
lin

g
D

e
p

th
 s

e
n

s
in

g
R

e
lo

c
a

te
R

e
fi
ll

w
a

te
r

T
o

o
l
e

x
c
h

a
n

g
e

B
re

a
k

F
a

ilu
re

W
a

it
in

g
 f

o
r

c
o

n
c
re

te
W

a
it
in

g
 f

o
r

o
th

e
r

Predicted label

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other
T

ru
e

 l
a

b
e

l

67

8

0

5

2

1

1

0

0

0

0

0

0

1

0

3

0

0

0

0

0

0

0

0

0

2

7

75

72

0

0

0

3

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

9

0

0

67

3

3

1

0

0

0

1

0

0

2

0

9

1

0

0

0

1

4

1

0

0

1

1

4

0

3

78

6

2

0

0

0

0

0

0

5

0

12

18

100

14

0

6

19

1

0

0

35

2

1

0

6

1

84

5

0

0

0

3

0

0

0

0

3

2

0

0

0

4

0

0

0

0

2

2

10

28

4

0

4

75

0

0

0

0

0

0

2

0

7

4

0

0

0

9

0

1

0

0

0

0

0

0

0

0

0

0

18

16

0

7

6

6

1

0

0

4

0

10

0

0

1

9

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

3

3

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

1

0

1

0

6

0

0

1

1

15

7

0

0

0

0

0

0

0

0

6

0

0

0

0

0

0

0

0

0

0

30

5

100

43

40

1

2

0

0

6

0

36

0

0

1

4

0

0

0

0

0

0

0

0

0

0

29

22

0

28

38

14

4

0

0

2

0

16

0

0

4

14

0

0

1

0

0

0

0

0

0

0

5

9

0

3

1

2

2

0

29

0

0

2

0

0

1

10

0

0

1

1

0

0

1

3

0

0

0

0

0

0

0

3

32

0

12

1

0

9

0

0

17

3

0

0

33

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

1

0

0

0

0

0

6

0

0

0

7

1

0

11

3

1

4

0

0

0

0

0

0

1

0

21

1

0

0

0

15

1

3

0

0

1

0

0

0

0

2

0

0

1

1

0

0

2

0

1

0

1

3

0

0

0

0

6

2

0

0

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

2

0

2

2

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

4

0

0

0

0

0

1

0

0

2

0

0

12

0

1

0

0

6

0

0

0

4

0

0

0

1

0

0

7

0

0

0

0

0

0

1

0

1

25

0

2

0

60

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

2

2

28

5

0

0

10

0

7

0

0

23

1

0

0

6

2

0

0

1

0

0

0

8

46

0

8

8

26

24

0

1

8

0

2

0

0

15

33

0

0

5

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

10

20

30

40

50

60

70

80

90

100

(b) DeepConvLSTM128

L
o

w
e

ri
n

g
D

ri
lli

n
g

D
ri
lli

n
g

 w
it
h

 b
u

c
k
e

t
E

m
p

ty
in

g
P

la
c
e

 s
ta

n
d

p
ip

e
S

c
re

w
 i
n

 c
a

s
in

g
P

u
lli

n
g

C
o

n
c
re

ti
n

g
P

la
c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g
P

u
ll

s
ta

n
d

p
ip

e
In

s
ta

ll
c
u

s
h

io
n

In
s
ta

ll
re

b
a

r
c
a

g
e

C
M

 -
 P

u
ll

s
ta

n
d

p
ip

e
C

M
 -

 S
c
re

w
 i
n

 c
a

s
in

g
O

th
e

r
R

e
fu

e
lin

g
D

e
p

th
 s

e
n

s
in

g
R

e
lo

c
a

te
R

e
fi
ll

w
a

te
r

T
o

o
l
e

x
c
h

a
n

g
e

B
re

a
k

F
a

ilu
re

W
a

it
in

g
 f

o
r

c
o

n
c
re

te
W

a
it
in

g
 f

o
r

o
th

e
r

Predicted label

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

T
ru

e
 l
a

b
e

l

63

11

0

2

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

1

0

0

0

7

78

62

0

0

0

3

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

16

0

0

85

3

3

2

0

0

0

0

0

0

3

0

15

1

0

0

0

1

8

1

0

0

2

2

0

0

2

93

3

1

1

1

0

3

1

0

10

0

13

30

100

17

0

11

25

3

0

0

45

3

0

0

4

1

87

4

0

3

0

5

0

0

1

0

2

4

0

0

0

1

0

0

0

0

1

3

9

31

2

0

4

73

0

0

0

0

0

0

3

0

7

3

0

0

0

7

0

0

0

0

0

0

0

0

0

0

0

0

67

34

99

56

65

33

15

0

0

6

0

63

0

0

2

36

0

0

1

0

0

0

0

0

0

0

2

3

0

3

0

3

1

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

2

2

0

1

0

0

1

0

0

0

0

4

1

0

0

0

0

0

0

0

0

0

0

11

1

1

18

19

1

1

0

0

3

0

9

0

0

2

2

0

0

0

0

0

0

0

0

0

0

0

20

0

3

0

4

3

0

28

0

0

0

0

0

0

9

0

0

0

0

0

5

0

1

0

0

0

0

0

1

0

0

6

0

5

2

0

3

0

0

4

2

0

0

39

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

2

1

0

12

0

0

0

0

0

0

6

0

20

3

0

7

0

3

2

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

5

0

0

0

0

0

0

0

0

4

26

0

0

0

76

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

2

2

1

0

0

19

36

0

9

12

59

47

0

5

21

0

1

0

1

53

39

0

0

12

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

10

20

30

40

50

60

70

80

90

100

(c) DeepConvLSTM64

Figure 7-7: Confusion matrices - Splitting by days

76

7.2 Sensitivity analysis

On the other hand, numerous samples not belonging to this group are classified as such.

Especially noticeable is a confusion between labels of the group of secondary processes

(e.g. Tool exchange, Refueling or Other) with the activity Place standpipe. This is likely

due to the imbalance of the dataset, since models trained on imbalanced datasets tend to

output the most frequently occurring class as the prediction, and Place standpipe is the

most common class, accounting for about 11 % of the dataset.

If the labels Install rebar cage and Install cushion or the labels Casing machine - Screw

in casing and Casing machine - Pull standpipe are considered, it is recognizable from

Figure 7-7 that for all three models they are poorly detected. Likewise, out of the sec-

ondary processes (Tool exchange, Refill water, Relocate, Depth sensing, Refueling

and Other), all except Refill water are very poorly recognized.

Noteworthy is also the confusion of several activities with the class Break. Worth mention-

ing are the confusions with the classes Tool exchange, Other, Install rebar cage, Install

cushion, Place pouring pipe and Concreting. The label Concreting is also mistaken

for a lot of activities. Regarding these confusions, two considerations can be formulated to

provide an explanation. The first is the high incidence of the Break class in the dataset. The

second explanation is the inherent nature of the confused activities. During the activities

mentioned above, the drill is not directly involved in the process and is just passively waiting

until the process step is finished. As different labels were used for the same "waiting" of

the machine, which describe the process rather than the behavior of the machine, further

differentiating these activities proves to be very difficult for the model. For example, during

Concreting the machine is not directly involved, but only waits nearby until the drilled hole

has been filled with concrete. Therefore, this is confused with the activity Remove pouring

pipe (see Fig. 7-7c), which is carried out by employees and not by the machine.

This confusion with the Break class could already be detected for the MLP from Section 7.1

(see Fig. 7-2a). Both hybrid models, however, were able to model these weak and barely

noticeable differences of these similar classes. Based on Fig. 7-7b it can be acknowledged

that this good modeling does not generalize well to other days.

77

7 Results

0 100 200 300 400 500 600 700 800 900 1000

Time [sec]

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

A
c
ti
v
it
y

Drilling

Concreting

Reinforcing

Casing machine

Secondary process time

Downtime

Predicted

True

(a) MLP

Figure 7-8: True and predicted labels for a selected interval

One advantage of considering a continuous time window as a test set is the possibility to

investigate the application of the model to several consecutive samples. In Figure 7-8 the

predicted activity is depicted along with the real activity for a 1000 seconds time windows.

One further example can be found in Appendix B-10.

Although only slight advantages of the hybrid models have been identified so far in this

section in comparison to the baseline MLP, one additional advantage can be derived from

Figure 7-8. While the MLP (Fig. 7-8a) provides a solution that fundamentally shows the cor-

rect course, several jumps of the predictions to wrong labels can be observed. In contrast,

the solution provided by the DeepConvLSTM64 model (Fig. 7-8b) exhibits a much smoother

profile. In the 1000 seconds considered, no jump is visible at all. This behavior can also be

observed in the other two examples.

Further, based on Figure 7-8, it can be stated that there is a certain shift in the predictions

compared to the true labels. This might be due to the fact that the model needs a certain

number of time steps as context to predict the activity correctly. Until there is enough

context, the last activity is still output as the prediction.

78

7.2 Sensitivity analysis

0 100 200 300 400 500 600 700 800 900 1000

Time [sec]

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

A
c
ti
v
it
y

Drilling

Concreting

Reinforcing

Casing machine

Secondary process time

Downtime

Predicted

True

(b) DeepConvLSTM64

Figure 7-8: True and predicted labels for a selected interval

Another possible reason for the offset of the predictions is the uncertainty of the manual

labelling. Since the labels were recorded manually, the labels depend on the judgement of

the employee on the construction site. The exact boundaries of the activities depend on the

subjectivity of the employees.

Overall, it can be said that there is a strong day dependency of individual activities. The

activities, which could be modeled very well by the hybrid models in Section 7.1, could only

be partially recognized if tested on data which originated from another day. Activities where

the machine is actively involved could generally be recognized well, while other labels that

mainly describe the process and do not contain any active involvement of the machine are

often mistaken. This phenomenon will be considered in further detail in the next section.

79

7 Results

7.3 Hierarchical classification

Experiment 5
Models MLP, DeepConvLSTM, DeepConvBiLSTM

Window size 16 seconds

Overlap OW

Splitting method By days

This section presents the results of the activity recognition investigations considering dif-

ferent levels of detail. The investigations follow the subdivisions and levels of detail from

Figure 6-2.

7.3.1 LoD 1 - Working/Idle

In the first level of detail considered, the activities are only divided into Working and Idle.

Figure 7-9 shows the training process of the MLP, DeepConvLSTM and DeepConvBiLSTM.

As can be seen in the plots, no overfitting of the models takes place, as both the training

and validation loss converge.

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

3

L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

3

L
o
s
s

Training loss Validation loss

(b) DeepConvLSTM

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

3

L
o
s
s

Training loss Validation loss

(c) DeepConvBiLSTM

Figure 7-9: Training and validation loss for different models - LoD 1

The average F1 scores and the F1 scores for each class when applying the models to the

test set are shown in Table 7-11. Both the baseline MLP and the two hybrid model variants

have a similar mean F1 score of approximately 0.83. Among the individual labels, in the

three cases, the Working label has a higher F1 score of approximately 0.86. Meanwhile,

the F1 score for the label Idle is 0.80 for the MLP and the DeepConvBiLSTM and 0.82 for

the DeepConvLSTM.

80

7.3 Hierarchical classification

Table 7-11: F1-Scores for the proposed models - LoD 1

Model Idle - F1 Working - F1 Avg. F1-Score

MLP 0.80 0.86 0.83

DeepConvLSTM 0.82 0.87 0.84

DeepConvBiLSTM 0.80 0.86 0.83

If the confusion matrix of the predictions is considered (Fig. 7-10), it is possible to identify

differences in performance among the models. For the MLP (Fig. 7-10a), an accuracy of 73

% is achieved for the Idle class and 70 % for the Working class. An increase in accuracy

is visible for the two hybrid models (Fig. 7-10b and 7-10c). In particular, the accuracy of the

class Working increases to 90 %. For the class Idle only a small increase is visible.

73

30

27

70

Id
le

W
o
rk

in
g

Predicted label

Idle

WorkingT
ru

e
 l
a
b
e
l

0

50

100

(a) MLP

78

9

22

91

Id
le

W
o
rk

in
g

Predicted label

Idle

WorkingT
ru

e
 l
a
b
e
l

0

50

100

(b) DeepConvLSTM

75

10

25

90

Id
le

W
o
rk

in
g

Predicted label

Idle

WorkingT
ru

e
 l
a
b
e
l

0

50

100

(c) DeepConvBiLSTM

Figure 7-10: Confusion matrices - LoD 1

It can be argued that the class Working is identified very well by the hybrid models. The

percentage of samples which actually belong to the class Working but are classified as

Idle is only 9 %. The main problem lies in the identification of the class Idle. One reason

for the difficulty is the low number of samples in the dataset. As shown in Table 7-12, the

samples of class Idle amount to less than one fourth of the dataset.

Table 7-12: Number of samples in the training set - LoD 1

Model Number of samples % of samples

Idle 51042 23.3 %

Working 167707 76.7 %

81

7 Results

7.3.2 LoD 2 - Process steps

Within the second level of detail, the activities within the groups Working and Idle are

considered. The model for the Working group deals with the Casing machine, Concret-

ing, Drilling and Reinforcing classes. The model for the Idle group is responsible for

distinguishing between the Secondary processes and the Downtime activities. For the

sake of conciseness, the individual training and validation losses are only provided in the

Appendix.

Working

The training procedure of the three considered models for the subsets of the class working

are shown in Figure B-2 in the Appendix. None of the three models exhibit an overfitting

problem. The F1 scores of the test set for the particular labels as well as the average F1

score are shown in Table 7-13. Furthermore, Figure 7-11 shows the confusion matrices of

the predictions of the individual models.

Table 7-13: F1-Scores for the proposed models - LoD 2 - Working

Label MLP DeepConvLSTM DeepConvBiLSTM

Casing machine 0 0.21 0.21

Concreting 0.57 0.79 0.81

Drilling 0.89 0.94 0.95

Reinforcing 0.20 0.36 0.49

Avg. F1-Score 0.42 0.58 0.62

There are noticeable differences between the performance of the different models. The

baseline MLP model, for instance, achieves an average F1 score of 0.42. Yet there are

considerable differences between the individual classes. For the class Drilling a high F1-

score of 0.89 is achieved. Moreover, if the confusion matrix (Fig. 7-11a) is considered, it

can be seen that 99 % of the samples labeled as Drilling were also classified as such. The

lower F1 value compared to the very high accuracy stems from the tendency of the model

to generally classify samples as Drilling. 41 % of samples of class Concreting and 60 %

of samples of class Reinforcing are classified as Drilling. For the class Concreting, an

F1 value of 0.57 and an accuracy of 54 % are achieved. Especially the recognition of the

classes Reinforcing and Casing machine prove to be very difficult for the model.

82

7.3 Hierarchical classification

C
a

s
in

g
 m

a
c
h

in
e

C
o

n
c
re

ti
n

g

D
ri
lli

n
g

R
e

in
fo

rc
in

g

Predicted label

Casing machine

Concreting

Drilling

Reinforcing

T
ru

e
 l
a

b
e

l
0

0

0

0

32

54

1

28

56

41

99

60

12

6

0

13

0

20

40

60

80

100

(a) MLP

C
a

s
in

g
 m

a
c
h

in
e

C
o

n
c
re

ti
n

g

D
ri
lli

n
g

R
e

in
fo

rc
in

g

Predicted label

Casing machine

Concreting

Drilling

Reinforcing

T
ru

e
 l
a

b
e

l

14

1

0

4

1

87

0

39

59

7

99

31

27

6

0

26

0

20

40

60

80

100

(b) DeepConvLSTM

C
a

s
in

g
 m

a
c
h

in
e

C
o

n
c
re

ti
n

g

D
ri
lli

n
g

R
e

in
fo

rc
in

g

Predicted label

Casing machine

Concreting

Drilling

Reinforcing

T
ru

e
 l
a

b
e

l

14

0

1

3

0

89

0

39

61

5

99

20

24

6

0

38

0

20

40

60

80

100

(c) DeepConvBiLSTM

Figure 7-11: Confusion matrices - LoD 2 - Working

83

7 Results

Both hybrid models exhibit a better overall performance. The average F1 score increases to

0.58 in the case of the DeepConvLSTM and to 0.62 in the case of the bidirectional variant

DeepConvBiLSTM. Based on the confusion matrices of the models (Fig. 7-11b and 7-11c),

it is possible to observe that the entries are more concentrated on the secondary diagonal.

For example, the column of samples predicted as Drilling is less occupied compared to the

MLP model (Fig. 7-11a). The detection of the Concreting class is significantly improved

when the hybrid models are used, with 87 % and 89 % of the Concreting samples being

detected as such, respectively. The F1 score for this class increases to approximately 0.8

for both models. Furthermore, the class Casing machine is recognized at least to some

extent. The F1 score of this class, which amounts to 0 for the MLP, increases to 0.21 for both

hybrid models. A further improvement takes place with respect to the class Reinforcing.If

the MLP correctly classifies only 13 % of the sample of this class, the accuracy for the

DeepConvBiLSTM is almost three time as high with 38 %. In general, it can be seen that the

use of the bidirectional LSTM layers in this considered scenario leads to an improvement in

the performance of the models, since there is an increase in the F1 scores for all classes.

Idle

The second group within this level of detail is the Idle group and includes both the down-

time and the secondary processes necessary for drilling and concreting. The training and

validation loss of the models can be found in the Appendix in Figure B-3. The F1 scores for

the baseline MLP and the two hybrid models are shown in Table 7-14. In addition, Figure

7-12 shows the confusion matrices for the MLP and for the DeepConvLSTM model. The

confusion matrix for the bidirectional variant is provided only in the Appendix 7-15c due to

its similarity to that of the unidirectional variant.

Table 7-14: F1-Scores for the proposed models - LoD 2 - Idle

Label MLP DeepConvLSTM DeepConvBiLSTM

Downtime 0.72 0.78 0.78

Secondary processes 0.60 0.69 0.67

Avg. F1-Score 0.66 0.74 0.73

The distinction between activities from the Downtime class and the Secondary processes

class, which proved difficult in Section 7.2.3, is better accomplished when considered at a

84

7.3 Hierarchical classification

different level of detail. The baseline MLP model correctly classifies 70 % of the samples

of the class Downtime and 63 % of the samples of the class Secondary processes. This

leads to a mean F1 score of 0.66. For the two hybrid models, the accuracies increase to 75

% and 73 %, respectively. The F1 score rises to approx. 0.73.

D
o

w
n

ti
m

e

S
e

c
o

n
d

a
ry

 p
ro

c
e

s
s

Predicted label

Downtime

Secondary process

T
ru

e
 l
a

b
e

l

70

37

30

63

0

50

100

(a) MLP

D
o

w
n

ti
m

e

S
e

c
o

n
d

a
ry

 p
ro

c
e

s
s

Predicted label

Downtime

Secondary process

T
ru

e
 l
a

b
e

l

75

27

25

73

0

50

100

(b) DeepConvLSTM

Figure 7-12: Confusion matrices - LoD 2 - Idle

85

7 Results

7.3.3 LoD 3 - Detailed process steps

In the third and most detailed level, each process step considered in LoD 2 was again ex-

amined in more depth and detail. The results for the individual process steps are presented

below. Since the test contains only one activity of the class Downtime and one activity of

the class Casing machine, these are not considered in the investigations.

Concreting

The training process of the models is shown in Figure B-7 in the Appendix. Table 7-15

shows the F1 values for the respective models. Based on the F1 scores and the confusion

matrix shown in Figure B-9 as an example, it is possible to conclude that classifying within

the superclass Concreting proves to be very difficult. For all three models, there is a

tendency to output the two most common activities (Concreting and Place pouring pipe)

as predictions.

Table 7-15: F1-Scores for the proposed models - LoD 3 - Concreting

Label MLP DeepConvLSTM DeepConvBiLSTM

Pull standpipe 0.06 0.19 0.13

Remove casing 0.00 0.00 0.08

Remove pouring pipe 0.00 0.00 0.00

Place pouring pipe 0.49 0.56 0.51

Concreting 0.43 0.47 0.48

Avg. F1-Score 0.20 0.24 0.24

C
o
n
c
re

ti
n
g

P
la

c
e
 p

o
u
ri
n
g
 p

ip
e

R
e
m

o
v
e
 p

o
u
ri
n
g
 p

ip
e

R
e
m

o
v
e
 c

a
s
in

g

P
u
ll

s
ta

n
d
p
ip

e

Predicted label

Concreting

Place pouring pipe

Remove pouring pipe

Remove casing

Pull standpipe

T
ru

e
 l
a
b
e
l

55

30

100

60

77

35

58

0

19

18

0

0

0

0

0

0

0

0

0

0

10

12

0

21

5

0

50

100

Figure 7-13: Confusion matrix - LoD 3 - Concreting - MLP

86

7.3 Hierarchical classification

Reinforcing

The process step Reinforcing includes the activities Install rebar cage and Install cush-

ion. The training and validation loss of the models can be found in the Appendix in Figure

B-4. The F1 scores for the baseline MLP and the two hybrid models are shown in Table

7-16.

Table 7-16: F1-Scores for the proposed models - LoD 3 - Reinforcing

Label MLP DeepConvLSTM DeepConvBiLSTM

Install rebar cage 0.79 0.80 0.80

Install cushion 0.56 0.56 0.56

Avg. F1-Score 0.68 0.68 0.65

The performance of the three models considered are very similar and do not exhibit any

meaningful differences. Due to the strong similarities, only the confusion matrices for the

MLP and DeepConvLSTM are presented. The average F1 value is 0.68 for the MLP and

DeepConvLSTM and 0.65 for the DeepConvBiLSTM. It is important to mention the similar-

ity of the considered activities. Both the Installation of the rebar cage and the Installation

of the cushion can be performed either by the machine or also installed by an additional

crane. These multiple possible executions mean that the models must model different be-

haviors for the same label. For example, if the rebar cage is installed using a crane, no

activity can be detected from the machine data. The approximately 25 % of the Install

rebar cage samples and 37 % of the Install cushion samples that are misclassified may

stem from this strong similarity in machine behavior.

In
s
ta

ll
c
u
s
h
io

n

In
s
ta

ll
re

b
a
r

c
a
g
e

Predicted label

Install cushion

Install rebar cage

T
ru

e
 l
a
b
e
l

63

25

37

75

0

50

100

(a) MLP

In
s
ta

ll
c
u
s
h
io

n

In
s
ta

ll
re

b
a
r

c
a
g
e

Predicted label

Install cushion

Install rebar cage

T
ru

e
 l
a
b
e
l

62

23

38

77

0

50

100

(b) DeepConvLSTM

Figure 7-14: Confusion matrices - LoD 3 - Reinforcing

87

7 Results

Drilling

The consideration of the process step Drilling is the investigation most similar to the pre-

vious studies [Ors-2020, Bi-2020, Lia-2020]. In addition to the 5 activities examined in the

other studies, the activity Place standpipe is also considered here. The training and val-

idation loss of the models can be found in the Appendix in Figure B-6. Table 7-17 shows

the mean F1 score and the F1 score of the respective classes for the individual models.

Furthermore, Figure 7-15 shows the confusion matrices of the predictions of the three mod-

els.

Table 7-17: F1-Scores for the proposed models - LoD 3 - Drilling

Label MLP DeepConvLSTM DeepConvBiLSTM

Lowering 0.00 0.73 0.72

Drilling 0.81 0.84 0.83

Emptying 0.43 0.85 0.86

Place standpipe 0.89 0.93 0.93

Screw in casing 0.81 0.90 0.89

Pulling 0.60 0.86 0.87

Avg. F1-Score 0.59 0.85 0.85

The first model considered is the baseline MLP, which achieves an average F1 score of

0.59. Among the six considered activities, three are recognized well, two are recognized

averagely, and one is recognized very poorly. The best classified activity is the Place stand-

pipe, with an F1 score of 0.89. For the samples of this class, 94 % were correctly classified

and the number of samples of other classes classified as Place standpipe is low. Similarly,

93 % of the samples of the class Drilling were correctly detected. However, in contrast to

the class Place standpipe, samples of other classes were more often classified as Drilling.

This resulted in a lower F1 score of 0.81. Most of the incorrect samples classified as Drilling

originated from the Lowering and Pulling activities. Samples from the Drilling class were

misclassified as Pulling only 7 % of the time. Also with an F1 score of 0.81 is the class

Screw in casing. The high F1 score originates primarily from the very low number of false

positives, as otherwise an accuracy of only 69 % was achieved for the samples of this class.

In contrast, the pulling class, which classified 80 % of its samples correctly, only achieves

an F1 score of 0.6. This is due to the high number of false positives. 70 % of the Lowering

and almost 50 % of the Emptying samples were classified as Pulling. The Emptying class

88

7.3 Hierarchical classification

has the second worst F1 score at 0.43. As mentioned earlier, about 50 % of the samples in

this class were assigned to the Pulling class. Last, the activity Lowering is not considered

at all in the modeling and no sample was classified correctly. This, obviously, results in an

F1 score of 0.

The adoption of the hybrid models results in a significant increase of the average F1-score.

It amounts to 0.85 for the DeepConvLSTM as well as for the DeepConvBiLSTM model. All

individual labels show an increase of the F1 score. The F1 score of the Place standpipe

class, which yielded the highest F1 score for the MLP, increases to 0.93 due to a decrease in

the number of false positives and an increase in accuracy to 96 %. In Figures 7-15b and 7-

15c, a drop in the accuracy of the Drilling class to 81 % is noticeable. However, this did not

result in a decrease of the F1 score, since simultaneously the number of false positives also

decreased. The misclassified samples were mainly assigned to the classes Lowering and

Pulling. This is attention-grabbing since these two classes characterize the activities which

occur directly before or after the drilling. It is possible that, as also mentioned in Section

7.2.3, the difficulty in classification lies at the transitions of two subsequent activities.

Another aspect which is better addressed by the hybrid models is the classification of the

activity Screw in casing, which had the second lowest accuracy with 69 % for the baseline

MLP. The accuracy increases to about 87 % for the two hybrid models, while the number

of false positives barely changes. This leads to an increase in F1 scores to 0.90 for the

DeepConvLSTM and 0.89 for the DeepConvBiLSTM. However, the strongest improvements

take place for the Emptying and Lowering classes. For instance, the activity Emptying,

which is correctly recognized by the MLP only 41 % of the time, is correctly recognized by

the DeepConvLSTM model 87 % of the time. In the case of the Lowering class, about 67

% of the samples are correctly recognized, which represents a drastic increase compared

to the 0 % of the MLP. Nonetheless, this class is the worst recognized activity, which is also

consistent with the results from previous work [Ors-2020, Bi-2020, Lia-2020].

89

7 Results

0

0

0

0

0

0

15

93

3

0

1

10

11

0

41

1

19

8

2

0

7

94

7

1

2

0

1

1

69

1

70

7

48

4

5

80

L
o

w
e

ri
n

g

D
ri
lli

n
g

E
m

p
ty

in
g

P
la

c
e

 s
ta

n
d

p
ip

e

S
c
re

w
 i
n

 c
a

s
in

g

P
u

lli
n

g

Predicted label

Lowering

Drilling

Emptying

Place standpipe

Screw in casing

Pulling

T
ru

e
 l
a

b
e

l

0

20

40

60

80

100

(a) MLP

68

8

3

0

1

0

9

81

0

0

0

2

11

0

87

2

3

2

1

0

3

96

4

1

4

1

3

0

88

5

6

10

3

0

4

88

L
o

w
e

ri
n

g

D
ri
lli

n
g

E
m

p
ty

in
g

P
la

c
e

 s
ta

n
d

p
ip

e

S
c
re

w
 i
n

 c
a

s
in

g

P
u

lli
n

g

Predicted label

Lowering

Drilling

Emptying

Place standpipe

Screw in casing

Pulling

T
ru

e
 l
a

b
e

l

0

20

40

60

80

100

(b) DeepConvLSTM

67

8

3

0

1

0

9

81

0

0

0

2

12

0

88

2

3

2

2

0

4

97

5

1

4

0

3

0

87

5

6

11

2

0

4

89

L
o

w
e

ri
n

g

D
ri
lli

n
g

E
m

p
ty

in
g

P
la

c
e

 s
ta

n
d

p
ip

e

S
c
re

w
 i
n

 c
a

s
in

g

P
u

lli
n

g

Predicted label

Lowering

Drilling

Emptying

Place standpipe

Screw in casing

Pulling

T
ru

e
 l
a

b
e

l

0

20

40

60

80

100

(c) DeepConvBiLSTM

Figure 7-15: Confusion matrices - LoD 3 - Drilling

90

7.3 Hierarchical classification

Secondary process

The plots showing the training and validation loss can be found in the appendix in Figure

B-5. Table 7-18 shows the F1 scores for the respective models.

Table 7-18: F1-Scores for the proposed models - LoD 3 - Secondary processes

Label MLP DeepConvLSTM DeepConvBiLSTM

Refill water 0.82 0.82 0.82

Relocate - - -

Depth sensing 0.40 0.40 0.46

Refueling 0.00 0.00 0.00

Other 0.35 0.35 0.37

Avg. F1-Score 0.39 0.39 0.41

Both the baseline MLP and the two hybrid models have an F1 score of about 0.4, indi-

cating no advantages of using the hybrid model over the MLP. As in the analyses from

Section 7.2.3, only the activity Refill water can be properly detected among the secondary

processes. The F1 score for this activity is 0.82 for all models.

This is another case in which the choice of used labels plays a major role. As can be seen

in Figure 7-16, the activities Relocate, Depth sensing, Refueling and Other are not well

distinguished, since these only describe the actual process and do not imply any movement

of the machine.

O
th

e
r

R
e
fu

e
lin

g

D
e
p
th

 s
e
n
s
in

g

R
e
lo

c
a
te

R
e
fi
ll

w
a
te

r

Predicted label

Other

Refueling

Depth sensing

Relocate

Refill water

T
ru

e
 l
a
b
e
l

27

0

28

0

4

0

0

0

0

0

1

0

27

0

0

16

0

45

0

7

40

100

0

0

88

0

50

100

Figure 7-16: Confusion matrix - LoD 3 - Secondary processes - MLP

91

8 Discussion and future work

In this chapter, the knowledge acquired in the previous chapter is discussed and explained

with regard to the overall context. To facilitate the overview, individual aspects are ad-

dressed separately in subsections. Furthermore, possible approaches and suggestions for

further work are discussed.

8.1 Discussion

8.1.1 Hybrid models

Overall, it is apparent that the use of hybrid models provides a significant advantage over the

baseline models. Although the number of LSTM layers, which are theoretically responsible

for modeling the temporal dependencies, are exactly the same for the LSTM model and

the hybrid models, the quality of the predictions of the hybrid models is significantly higher.

Adding the CNN layers as a mechanism for feature extraction proves to be a powerful tool.

Merely feeding unprocessed sensor measurements to the LSTM model is not sufficient.

On the other hand, as already proposed by Ordóñez and Roggen [Ord-2016], the CNN

layers show to be very effective in extracting low and high level features from raw sensor

data. Furthermore, the use of bidirectional LSTM layers in the DeepConvBiLSTM model

also appear to have a positive impact on the results. An increase of the F1 score could be

identified for all classes. The mean F1 score increased from 0.87 to 0.89, an improvement

of about 15%. These improvements are consistent with expectations of a weak gain in

performance (see Section 6.2.2).

8.1.2 Generalization capabilities

When considering the generalization capabilities of the models to data obtained from other

working days, several difficulties emerged. The very good results obtained in Section 7.1

on training and test data obtained from the same day suffered a significant deterioration.

Based on these results, it can be concluded that, especially for the considered downtime

and secondary processes which were initially very well modeled by the hybrid models,

93

8 Discussion and future work

there is a strong dependency on the respective days and these may vary between different

days. Thus, a mere transfer of the excellent results from Section 7.1 to other days is not

possible.

8.1.3 Labeling strategy as a limitation

The selection of labels could be identified as a significant problem for the activity recogni-

tion. For both the flat classification in Section 7.2.3 as well as for the hierarchical classifica-

tion from Section 7.3, certain activities proved to be very difficult to classify. In addition to

this, most confusion misclassifications took place between these activities.

The root cause of these problems is the fact that the machine behavior was not taken into

account when selecting the labeling strategy, which in this case was only based on the

process steps. This resulted in different labels being assigned in cases where the ma-

chine does not exhibit different behaviors. As a simple example, the activities Concreting,

Waiting for concrete and Other can be considered. In all three activities, the machine

just passively waits by while the process is performed by other equipment and workers. A

differentiation of the activities on the basis of the machine data is thus only barely possi-

ble. However, if activities were considered in which the machine is actively involved, such

as Drilling, Screw in casing or Emptying, then satisfactory results were achieved in all

cases.

It can be pointed out that already during the selection of the labels for the automatic activity

recognition based on machine data, the basic machine behavior has to be considered.

94

8.2 Future work

8.2 Future work

Based on the obtained findings, several recommendations for further research can be for-

mulated. The first group of possibilities relates directly to the models used in this thesis. Due

to the high number of different models and parameter studies, no hyperparameter tuning

was performed in this study. However, this may further improve the achieved results without

demanding major changes. The depth of the models, number of LSTM cells, number of

convolution filters and filter size can also be considered as hyperparameters.

Since the considered hybrid models have shown to be generally able to model well the

behavior of the different activities and the problems arise mainly in the generalization of the

models to data collected on other days, the use of a larger data set can possibly benefit

the generalization. Another aspect which still has to be investigated is the generalization

of the models to other construction sites. For example, it can be investigated whether the

boundary conditions of the construction site, such as the geology of the soil, influence the

machine data and ultimately the activity recognition. It may also be possible to examine the

influence of the driving style of different machine operators on the activity detection.

The second group of suggestions deals with the approaches to activity recognition per se.

As already described on several occasions in Chapter 7 and explained again in Section

8.1, the activities were labeled with regard to the performed process. Instead of focusing on

the process, a more appropriate approach might be to consider the activities with respect

to the actual movements of the machines. As could be shown in the course of this thesis,

activities in which the machine actively participates are well recognized. A possible division

of the labels used in this work into Active and Idle can be found in Table 8-1. All the

activities labeled as Idle could be merged into a single class, which would presumably

simplify modeling.

This approach can further be used in combination with other, non-Deep Learning based,

approaches. As an example, modeling the process as a statechart would be a suitable

approach. In this case, the detected activities based on the movement of the machine

may be used to trigger the transitions between the individual steps. Advantage of such

a modeling would be the limitation of the possible state changes to the only reasonable

transition, something that is not achieved in the considered models.

95

8 Discussion and future work

Table 8-1: Proposed classification of activities into Active/Idle

Label Active Idle Label Active Idle

Break X Place standpipe X

Failure X Pull standpipe X

Waiting for concrete X Remove casing X

Waiting for other X Screw in casing X

Lowering X CM - Pull standpipe X

Concreting X CM - Screw in casing X

Install cushion X Pulling X

Drilling X Other X

Drilling with bucket X Refueling X

Install rebar cage X Depth sensing X

Emptying X Tool exchange X

Remove pouring pipe X Relocate X

Place pouring pipe X Refill water X

In addition to the mentioned points, there is the possibility to extract further information

based on the existing telematics data. One possibility, for example, is to investigate the

extent to which information about the geology of the soil can be extracted from the machine

data.

96

9 Conclusion

The goal of this thesis was to investigate the possibilities of performing automatic activity

recognition based on already available machine data of a Kelly drilling machine. For this

purpose, different Deep Learning architectures were considered and investigated.

In the first part of the thesis, the state of the art regarding automatic activity recognition

of construction machines was presented and possible problems of these approaches re-

garding special civil engineering were highlighted. Furthermore, the first part presented the

theoretical background of the Kelly drilling process and Deep Learning. In the second part,

the methodology employed in this thesis was explained. The acquisition and exploration of

the data set, as well as the segmentation, scaling and splitting into training and test set as

parts of the preprocessing were explained.

In Chapter 6 the used models were presented and explained. Emphasis was placed on two

different hybrid models that are intended to combine the capabilities of both convolutional

and recurrent neural networks. Both a unidirectional and a bidirectional variant were exam-

ined. To allow comparison, a multilayer perceptron and a pure LSTM model were used as

baseline models.

The acquired knowledge can be summarized with respect to the research objectives formu-

lated in Section 2.2 as follows:

1. Although further improvement is still possible, automatic activity recognition based

on telematics data is shown to fundamentally be a solid alternative to existing ap-

proaches.

2. Existing model architectures for activity recognition based on, mainly, acceleration

data, show good portability to activity recognition based on machine data.

3. The use of hybrid models based on the feature extraction capabilities of CNNs and

the temporal modeling capabilities of LSTM is shown to be beneficial. These also

proved to be robust against outliers and were able to achieve satisfactory results even

without strong preprocessing of the data. A limitation so far has been the non-optimal

generalization to data from other working days.

97

9 Conclusion

4. The selection of the labeling strategy proves to be a key issue for a satisfactory clas-

sification of the activities. For this purpose, it is important to ensure that labels are not

only selected from a pure process view, but also account for the machine behavior

during the process.

98

Part IV

Supplement

99

References

[Ahn-2015] Ahn, Changbum R.; Lee, SangHyun; Peña-Mora, Feniosky: Application of

Low-Cost Accelerometers for Measuring the Operational Efficiency of a Con-

struction Equipment Fleet. In: Journal of Computing in Civil Engineering 29.2

(2015), p. 04014042.

[Akh-2015] Akhavian, Reza; Behzadan, Amir H.: Construction equipment activity recog-

nition for simulation input modeling using mobile sensors and machine

learning classifiers. In: Advanced Engineering Informatics 29.4 (2015). PII:

S1474034615000282, pp. 867–877.

[Ban-2014] Banos, Oresti et al.: Window size impact in human activity recognition. eng.

In: Sensors (Basel, Switzerland) 14.4 (2014). Journal Article Research Sup-

port, Non-U.S. Gov’t, pp. 6474–6499.

[Bau-2021] Bauer Group: Kelly drilling. 2021. Url: https://bit.ly/2RXi8Qd (visited on

03/10/2021).

[Ber-2019] Bertschek, Irene; Niebel, Thomas; Ohnemus, Jörg: Zukunft Bau – Beitrag der

Digitalisierung zur Produktivität in der Baubranche. 2019.

[Bi-2020] Bi, H.: Application of artificial neural networks for the analysis of sensor data

from machines. Garching b. München: Technical University of Munich, 2020.

[Cha-2000] Chapman, Pete et al.: CRISP-DM 1.0. Step-by-step data mining guide.

SPSS, 2000.

[Cho-2018] Chollet, François: Deep learning with Python. eng. Safari Tech Books Online.

Chollet, François (VerfasserIn). Manning, Shelter Island, NY: 2018. 361 pp.

Url: http://proquest.safaribooksonline.com/9781617294433.

[Fis-2020] Fischer, A. et al.: Begleitende Prozesssimulation für das Kellybohrverfahren.

In: 8. Fachtagung Baumaschinentechnik 2020. 2020.

[Fis-2021] Fischer, A. et al.: Detecting Equipment Activities by Using Machine Learning

Algorithms. In: 17th IFAC Symposium on Information Control Problems in

Manufacturing (INCOM 2021). Budapest, Hungary: 2021.

101

References

[Fu-2011] Fu, Tak-chung: A review on time series data mining. In: Engineering Applica-

tions of Artificial Intelligence 24.1 (2011). PII: S0952197610001727, pp. 164–

181.

[Gér-2019] Géron, Aurélien: Hands-on machine learning with Scikit-Learn, Keras, and

TensorFlow. Concepts, tools, and techniques to build intelligent systems.

Second edition. O’Reilly Media: 2019. 819eiten.

[Gol-2013] Golparvar-Fard, Mani; Heydarian, Arsalan; Niebles, Juan Carlos: Vision-

based action recognition of earthmoving equipment using spatio-temporal

features and support vector machine classifiers. In: Advanced Engineering

Informatics 27.4 (2013). PII: S1474034613000761, pp. 652–663.

[Gon-2011] Gong, Jie; Caldas, Carlos H.; Gordon, Chris: Learning and classifying actions

of construction workers and equipment using Bag-of-Video-Feature-Words

and Bayesian network models. In: Advanced Engineering Informatics 25.4

(2011). PII: S1474034611000346, pp. 771–782.

[Goo-2018] Goodfellow, Ian.; Courville, Aaron; Bengio, Yoshua: Deep Learning. Das um-

fassende handbuch : grundlagen, aktuelle verfahren und algorithmen, neue

forschungsansätze. ger. 1. Auflage. Goodfellow, Ian. (VerfasserIn) Courville,

Aaron (joint author) Lenz, Guido (ÜbersetzerIn) Bengio, Yoshua (joint author).

Verlags GmbH & Co. KG, Frechen: 2018.

[Gra-2005] Graves, Alex; Schmidhuber, Jürgen: Framewise phoneme classification with

bidirectional LSTM and other neural network architectures. eng. In: Neural

networks : the official journal of the International Neural Network Society

18.5-6 (2005). Journal Article Research Support, Non-U.S. Gov’t, pp. 602–

610.

[Hoc-1997] Hochreiter, S.; Schmidhuber, J.: Long short-term memory. eng. In: Neural

computation 9.8 (1997). Journal Article Research Support, Non-U.S. Gov’t,

pp. 1735–1780.

[Ism-2019] Ismail Fawaz, Hassan et al.: Deep learning for time series classification:

a review. In: Data Mining and Knowledge Discovery 33.4 (2019). PII: 619,

pp. 917–963.

102

References

[Kim-2019] Kim, Jinwoo; Chi, Seokho: Action recognition of earthmoving excavators

based on sequential pattern analysis of visual features and operation cy-

cles. In: Automation in Construction 104 (2019). PII: S0926580518312731,

pp. 255–264.

[Lan-2021] Langroodi, Armin Kassemi; Vahdatikhaki, Faridaddin; Doree, Andre: Activity

recognition of construction equipment using fractional random forest. In: Au-

tomation in Construction 122 (2021). PII: S0926580520310451, p. 103465.

[LeC-2015] LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey: Deep learning. eng. In: Na-

ture 521.7553 (2015). Journal Article Research Support, Non-U.S. Gov’t Re-

search Support, U.S. Gov’t, Non-P.H.S. Review, pp. 436–444.

[Lew-2011] Lewis, Phil et al.: Assessing Effects of Operational Efficiency on Pollutant

Emissions of Nonroad Diesel Construction Equipment. In: Transportation Re-

search Record: Journal of the Transportation Research Board 2233.1 (2011),

pp. 11–18.

[Lia-2020] Liang, M.: Analysis of Machine Data in Special Foundation Engineering us-

ing Machine Learning. Garching b. München: Technical University of Munich,

2020.

[May-2011] Maybaum, Georg: Verfahrenstechnik und Baubetrieb im Grund- und

Spezialtiefbau. Baugrund - Baugruben - Baugrundverbesserung - Pfahlgrün-

dungen - Grundwasserhaltung. ger. 2., überarbeitete und aktualisierte Au-

flage. Praxis. Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden

GmbH Wiesbaden, Wiesbaden: 2011.

[Min-2020] Minh Dang, L. et al.: Sensor-based and vision-based human activity recog-

nition: A comprehensive survey. In: Pattern Recognition 108 (2020). PII:

S0031320320303642, p. 107561.

[Mur-2017] Murad, Abdulmajid; Pyun, Jae-Young: Deep Recurrent Neural Networks for

Human Activity Recognition. eng. In: Sensors (Basel, Switzerland) 17.11

(2017). Journal Article.

[Ola-2015] Olah, Christopher: Bidirectional Recursive Neural Networks. 2015. Url:

https://bit.ly/35kNyCX (visited on 06/10/2021).

103

References

[Ord-2016] Ordóñez, Francisco Javier; Roggen, Daniel: Deep Convolutional and LSTM

Recurrent Neural Networks for Multimodal Wearable Activity Recognition.

eng. In: Sensors (Basel, Switzerland) 16.1 (2016). Journal Article Research

Support, Non-U.S. Gov’t.

[Ors-2020] Orschlet, V.: Analysis for Activity Recognition in Construction Machinery us-

ing Machine Learning. Master Thesis. Garching b. München: Technical Uni-

versity of Munich, 2020.

[PwC-2013] PwC: Baubranche im Fokus. Wie das deutsche Baugewerbe in die Zukunft

blickt. 2013.

[Ras-2020] Rashid, Khandakar M.; Louis, Joseph: Automated Activity Identification for

Construction Equipment Using Motion Data From Articulated Members. In:

Frontiers in Built Environment 5 (2020).

[Ras-2019] Rashid, Khandakar M.; Louis, Joseph: Times-series data augmentation and

deep learning for construction equipment activity recognition. In: Advanced

Engineering Informatics 42 (2019). PII: S1474034619300886, p. 100944.

[Sch-1997] Schuster, M.; Paliwal, K. K.: Bidirectional recurrent neural networks. In: IEEE

Transactions on Signal Processing 45.11 (1997), pp. 2673–2681.

[Sci-2021] Scikit-Learn: sklearn.model_selection.train_test_split. 2021. (Visited on

06/05/2021).

[She-2020] Sherafat, Behnam et al.: Automated Methods for Activity Recognition of Con-

struction Workers and Equipment: State-of-the-Art Review. In: Journal of

Construction Engineering and Management 146.6 (2020), p. 03120002.

[Shr-2019] Shrestha, Ajay; Mahmood, Ausif: Review of Deep Learning Algorithms and

Architectures. In: IEEE Access 7 (2019), pp. 53040–53065.

[Sil-2011] Silla, Carlos N.; Freitas, Alex A.: A survey of hierarchical classification across

different application domains. In: Data Mining and Knowledge Discovery

22.1-2 (2011). PII: 175, pp. 31–72.

104

References

[Sin-2021] Singh, Satya P. et al.: Deep ConvLSTM with self-attention for human ac-

tivity decoding using wearables. In: IEEE Sensors Journal 21.6 (2021). 8

pages, 2 figures, 3 tables. IEEE Sensors Journal, 2020, pp. 8575–8582. Url:

http://arxiv.org/pdf/2005.00698v2.

[Sla-2020] Slaton, Trevor; Hernandez, Carlos; Akhavian, Reza: Construction activity

recognition with convolutional recurrent networks. In: Automation in Con-

struction 113 (2020). PII: S0926580519310234, p. 103138.

[Sta-2020] Statista; Statistisches Bundesamt: Prognostizierte Umsatzentwicklung in der

Branche Baugewerbe in Deutschland in den Jahren von 2012 bis 2024. Ed.

by Statista. 2020. (Visited on 06/15/2021).

[Sta-2021] Statistisches Bundesamt; Hauptverband der Deutschen Bauindustrie: Anzahl

der Beschäftigten im Bauhauptgewerbe in Deutschland in den Jahren 2003

bis 2020. Ed. by Statista. 2021. (Visited on 06/15/2021).

[Stu-2021] Studer, Stefan et al.: Towards CRISP-ML(Q): A Machine Learning Process

Model with Quality Assurance Methodology. In: Machine Learning and Knowl-

edge Extraction 3.2 (2021). PII: make3020020, pp. 392–413.

[Tec-2021] Technical University of Munich: Building 4.0 - Digitalization of the con-

struction site. 2021. Url: https://www.mw.tum.de/en/fml/research/current-

research-projects/building-40-digitalization-of-the-construction-site/ (visited

on 01/20/2021).

[U.S-2008] U.S. Environmental Protection Agency, ed.: Quantifying Greenhouse Gas

Emissions. from Key Industrial Sectors in the United States. 2008.

[Xu-2019] Xu, Cheng et al.: InnoHAR: A Deep Neural Network for Complex Human

Activity Recognition. In: IEEE Access 7 (2019), pp. 9893–9902.

[Yu-2019] Yu, Yong et al.: A Review of Recurrent Neural Networks: LSTM Cells and Net-

work Architectures. eng. In: Neural computation 31.7 (2019). Journal Article

Research Support, Non-U.S. Gov’t Review, pp. 1235–1270. eprint: 31113301.

[Zou-2007] Zou, Junhao; Kim, Hyoungkwan: Using Hue, Saturation, and Value Color

Space for Hydraulic Excavator Idle Time Analysis. In: Journal of Computing

in Civil Engineering 21.4 (2007), pp. 238–246.

105

31113301

List of Figures

Figure 2-1 Measured depth and torque during drilling with a Kelly drilling rig 10

Figure 3-1 Process steps of the Kelly drilling method 13

Figure 3-2 Types of Machine Learning problems 15

Figure 3-3 Overview of Artificial Intelligence and Machine Learning 16

Figure 3-4 Schematic representation of a TLU 16

Figure 3-5 Exemplary architecture of a multilayer perceptron 18

Figure 3-6 Exemplary convolution of a 1D signal 22

Figure 3-7 Schematic comparison of MLPs and CNNs 23

Figure 3-8 Schematic representation of a RNN unit 24

Figure 3-9 Architecture of the interior of an LSTM cell, based on [Gér-2019] 25

Figure 3-10 Schematic representation of a bidirectional LSTM [Ola-2015] 27

Figure 3-11 Exemplary representation of the segmentation methods 28

Figure 4-1 Histograms of selected sensor data 37

Figure 4-2 Absolute values of the correlation coefficients of the sensors 38

Figure 6-1 Overview of the selected models 48

Figure 6-2 Levels of detail (LoD) for hierarchical classification 50

Figure 7-1 Training and validation loss for different models 59

Figure 7-2 Confusion matrices - Random splitting 64

Figure 7-2 Confusion matrices - Random splitting 65

Figure 7-3 Variation of the F1 score as a function of the window width 66

Figure 7-4 Variation of the F1 score as a function of the overlap 68

Figure 7-5 Training and validation loss for different models - Splitting by days 70

Figure 7-6 Training and validation loss for the adapted models - Splitting by days 71

Figure 7-7 Confusion matrices - Splitting by days 75

Figure 7-7 Confusion matrices - Splitting by days 76

Figure 7-8 True and predicted labels for a selected interval 78

Figure 7-8 True and predicted labels for a selected interval 79

107

List of Figures

Figure 7-9 Training and validation loss for different models - LoD 1 80

Figure 7-10 Confusion matrices - LoD 1 81

Figure 7-11 Confusion matrices - LoD 2 - Working 83

Figure 7-12 Confusion matrices - LoD 2 - Idle 85

Figure 7-13 Confusion matrix - LoD 3 - Concreting - MLP 86

Figure 7-14 Confusion matrices - LoD 3 - Reinforcing 87

Figure 7-15 Confusion matrices - LoD 3 - Drilling 90

Figure 7-16 Confusion matrix - LoD 3 - Secondary processes - MLP 91

108

List of Tables

Table 4-1 Overview of available sensors 34

Table 4-2 Breakdown of collected data per day and label 35

Table 4-3 Statistical properties of the data set 36

Table 5-1 Data splitting by days 42

Table 5-2 Percentage of samples by dataset type 42

Table 6-1 Hyperparameters 51

Table 7-1 Duration of the training 58

Table 7-2 Training and validation accuracy for the proposed models 58

Table 7-3 Averaged F1-Score for the proposed models 60

Table 7-4 F1 values per label for all models 61

Table 7-5 F1 values and variation for all models - Only Drilling (LoD 2) 62

Table 7-6 Required time for processing an epoch of the DeepConvLSTM model

depending on the window size 67

Table 7-7 Number of generated samples depending on the overlapping degree 69

Table 7-8 Training and validation accuracy for the proposed models - Splitting by

days 72

Table 7-9 Averaged F1-Score for the proposed models - Splitting by days 72

Table 7-10 F1 values per label for all models - Splitting by days 74

Table 7-11 F1-Scores for the proposed models - LoD 1 81

Table 7-12 Number of samples in the training set - LoD 1 81

Table 7-13 F1-Scores for the proposed models - LoD 2 - Working 82

Table 7-14 F1-Scores for the proposed models - LoD 2 - Idle 84

Table 7-15 F1-Scores for the proposed models - LoD 3 - Concreting 86

Table 7-16 F1-Scores for the proposed models - LoD 3 - Reinforcing 87

Table 7-17 F1-Scores for the proposed models - LoD 3 - Drilling 88

Table 7-18 F1-Scores for the proposed models - LoD 3 - Secondary processes 91

Table 8-1 Proposed classification of activities into Active/Idle 96

109

A Source code

A.1 Merging of machine and activity data

1 import glob

2 import pandas as pd

3 import m a t p l o t l i b . pyp lo t as p l t

4 import numpy as np

5 import datet ime

6

7 def i m p o r t _ f i l e (path) :

8 data = pd . read_excel (path)

9 return data

10

11 def search_star t_end_t ime (p a t h _ l i s t , f i l e) :

12 t i m e _ l i s t = i m p o r t _ f i l e (p a t h _ l i s t)

13 selected_row = t i m e _ l i s t [t i m e _ l i s t [" b_repor t "] == f i l e]

14 s t a r t _ t i m e = selected_row [" s t a r t "] . i l o c [0]

15 end_time = selected_row [" end "] . i l o c [0]

16 return s ta r t_ t ime , end_time

17

18 path_b_repor t = r ’ ??? ’

19 p a t h _ a c t i v i t y = r ’ ??? ’

20 p a t h _ l i s t = r ’ ??? ’

21 path_output = r ’ ??? ’

22

23 a l l _ f i l e s _ b _ r e p o r t = glob . glob (path_b_repor t + " / ∗ . x l s x ")

24 a l l _ f i l e s _ a c t i v i t y = glob . glob (p a t h _ a c t i v i t y + " / ∗ . x l s x ")

25

26 m=0

27

28 for f i l e _ b _ r e p o r t in a l l _ f i l e s _ b _ r e p o r t :

29 m=m+1

30 f i le_name = f i l e _ b _ r e p o r t [len (path_b_repor t) + 1 :]

31 date = f i le_name [: 8]

32 date_complete = f i le_name [:−5]

33 f i l e _ a c t i v i t y = p a t h _ a c t i v i t y + " \ \ "+date+ ’ . x l sx ’

34

35 data_b_repor t = i m p o r t _ f i l e (f i l e _ b _ r e p o r t)

36

37 t ry :

A-1

A Source code

38 d a t a _ a c t i v i t y = i m p o r t _ f i l e (f i l e _ a c t i v i t y)

39 pr in t (" Successfu l impor t : " , date)

40 except :

41 pr in t (" A c t i v i t y data does not e x i s t f o r : " , date)

42

43 # Search s t a r t and end t ime

44 s ta r t_ t ime , end_time = search_star t_end_t ime (p a t h _ l i s t ,

↪→ date_complete)

45

46 # Add timestamp to data_b_repor t

47 data_b_repor t [" t ime "]= pd . Ser ies ([s t a r t _ t i m e] ∗ len (data_b_repor t))

48 n= len (data_b_repor t)

49

50 for i in range (1 , n) :

51 data_b_repor t [" t ime "] . i l o c [i] = data_b_repor t [" t ime "] . i l o c [i −1]

↪→ + pd . Timedel ta (seconds =1) ;

52

53 # Delete B−Report data before and a f t e r s t a r t o f A c t i v i t y−data

54 for index , row in data_b_repor t . i t e r r o w s () :

55 i f row [’ t ime ’] < d a t a _ a c t i v i t y ["Datum"] . i l o c [0] :

56 data_b_repor t . drop (index , inp lace=True)

57 e l i f row [’ t ime ’] > d a t a _ a c t i v i t y ["Datum"] . i l o c [−1] :

58 data_b_repor t . drop (index , inp lace=True)

59

60 # Create l a b e l s from a c t i v i t y data

61 l a b e l s = []

62 n = len (data_b_repor t)

63 k = 0

64

65 for i in range (n−1) :

66 i f data_b_repor t [" t ime "] . i l o c [i] >= d a t a _ a c t i v i t y ["Datum"] . i l o c [

↪→ k + 1] :

67 k=k+1

68 l a b e l s . append (d a t a _ a c t i v i t y ["Name"] . i l o c [k])

69

70 l a b e l s . append (l a b e l s [−1])

71

72 # Merge l a b e l s to B−Report data

73 data_b_repor t [" l a b e l s "]= l a b e l s

74

75 # Reset index

A-2

A.2 Data preprocessing pipeline

76 data_b_repor t . rese t_ index ()

77

78 # Export data

79 data_b_repor t . to_csv (path_output+ " \ \ dataset "+st r (m) +" . csv ")

80 pr in t (date , " suc cess fu l l y merged and exported ")

A.2 Data preprocessing pipeline

A.2.1 Random split
1 def da ta_p ipe l i ne (d a t a _ l i s t , n_t imesteps , l a b e l l i n g _ s t r a t e g y , over lap) :

2 data_merged = pd . concat (d a t a _ l i s t)

3 data = data_merged . drop ([" t ime " , " Absolut depth [m] " , " Casing Length [m

↪→] " , " Bor ing th resho ld [m] " , " Status Rig [] "] , ax is = 1)

4 data . rep lace (" Nebenprozesszeit − Leeren " , " Hauptze i t − Leeren " ,

↪→ i np lace = True)

5

6 l a b e l s = data [" l a b e l s "] . values

7 un ique_ labe ls = np . unique (l a b e l s)

8 un ique_ labe ls = np . de le te (unique_labels , np . argwhere (un ique_ labe ls== ’

↪→ A u s f a l l z e i t − Wartung ’) ,0)

9 pr in t (un ique_ labe ls)

10 inpu ts = data . drop ([" l a b e l s "] , ax is =1) . values

11 sca le r = MinMaxScaler () ;

12 inpu ts = sca le r . f i t _ t r a n s f o r m (inpu ts)

13 X = []

14 y = []

15 i =0

16 step = (1−over lap) ∗n_t imesteps

17 i f step == 0:

18 step =1

19 while i < i npu ts . shape [0] :

20 end_index = i + n_t imesteps

21

22 i f end_index >= inpu ts . shape [0] :

23 break ;

24

25 X_temp = inpu ts [i : end_index , :]

26

27 i f l a b e l l i n g _ s t r a t e g y == " l a s t " :

28 y_temp = l a b e l s [end_index−1]

29

A-3

A Source code

30 i f l a b e l l i n g _ s t r a t e g y == " frequency " :

31 y_temp = s t a t s . mode(l a b e l s [i : end_index]) [0]

32

33 X. append (X_temp)

34 y . append (y_temp)

35

36 i = i n t (i + step)

37

38 X = np . ar ray (X)

39 y = np . ar ray (y)

40

41 indices_maintenance = np . argwhere (y== ’ A u s f a l l z e i t − Wartung ’)

42

43 X = np . de le te (X, indices_maintenance , 0)

44 y = np . de le te (y , indices_maintenance , 0)

45

46 y = l a b e l _ b i n a r i z e (y , un ique_ labe ls)

47

48 X _ t r a i n _ f u l l , X_test , y _ t r a i n _ f u l l , y_ tes t = t r a i n _ t e s t _ s p l i t (X , y ,

↪→ t e s t _ s i z e =0.3 , random_state = 0)

49 X_t ra in , X_val id , y_ t ra in , y_va l i d = t r a i n _ t e s t _ s p l i t (X _ t r a i n _ f u l l ,

↪→ y _ t r a i n _ f u l l , t e s t _ s i z e =0.2 , random_state = 0)

50

51 i f n_t imesteps == 1:

52 X_ t ra in = X_ t ra in . squeeze ()

53 X_test = X_test . squeeze ()

54 X_val id = X_val id . squeeze ()

55

56 return X_tra in , y_ t ra in , X_val id , y_va l id , X_test , y_ tes t ,

↪→ un ique_ labe ls

A.2.2 Split by days
1 def da ta_p ipe l ine_con t (d a t a _ l i s t , f i le_names , n_timesteps ,

↪→ l a b e l l i n g _ s t r a t e g y , over lap) :

2 index_train_names = [4 ,7 ,9 ,10 ,11 ,12 ,14 ,15 ,17 ,19]

3 index_val_names = [1 ,6 ,20]

4 index_test_names = [2 ,3 ,5 ,8 ,13 ,16 ,18]

5

6 labe ls_work ing = [" Hauptze i t − Bohren " , " Hauptze i t − Bohren −
↪→ Bohreimer " , " Hauptze i t − Verrohrung eindrehen " , "

↪→ Nebenprozesszeit − Leeren " , " Hauptze i t − Ablassen " , " Hauptze i t −

A-4

A.2 Data preprocessing pipeline

↪→ Ziehen " , " Hauptze i t − Standrohr setzen " , " Hauptze i t − Standrohr

↪→ ziehen " , " Hauptze i t − Verrohrung abnehmen" ,]

7 l a b e l s _ i d l e = [" A u s f a l l z e i t − Schaden " , " A u s f a l l z e i t − Pause " , "

↪→ A u s f a l l z e i t − Warten auf − Sonst iges " , " A u s f a l l z e i t − Warten auf

↪→ − Beton " , " Nebenprozesszeit − Sonst iges " , " Nebenprozesszeit −
↪→ Tiefenmessung " , " Hauptze i t − Bewehrung einbauen " , " Hauptze i t −
↪→ S c h t t r o h r − Entfernen " , " Hauptze i t − S c h t t r o h r − Setzen " , "

↪→ Hauptze i t − Einbau K iespo l s t e r " , " Hauptze i t − Betonieren " , "

↪→ Hauptze i t − Verrohrungsanlage − Standrohr ziehen " , " Hauptze i t −
↪→ Verrohrungsanlage − Verrohrung eindrehen " , " Nebenprozesszeit −
↪→ Umsetzen " , " Nebenprozesszeit − Wasser n a c h f l l e n " , "

↪→ Nebenprozesszeit − Werkzeugwechsel " , " Nebenprozesszeit − Tanken "]

8

9 labe l s_conc re t i ng = [" Hauptze i t − Betonieren " , " Hauptze i t −
↪→ S c h t t r o h r − Entfernen " , " Hauptze i t − S c h t t r o h r − Setzen " , "

↪→ Hauptze i t − Verrohrung abnehmen" , " Hauptze i t − Standrohr ziehen "]

10 l a b e l s _ d r i l l i n g = [" Hauptze i t − Bohren " , " Hauptze i t − Bohren −
↪→ Bohreimer " , " Hauptze i t − Verrohrung eindrehen " , " Hauptze i t −
↪→ Leeren " , " Hauptze i t − Ablassen " , " Hauptze i t − Ziehen " , "

↪→ Hauptze i t − Standrohr setzen "]

11 l a b e l s _ r e i n f o r c e = [" Hauptze i t − Bewehrung einbauen " , " Hauptze i t −
↪→ Einbau K iespo l s t e r "]

12 labels_cm = [" Hauptze i t − Verrohrungsanlage − Standrohr ziehen " , "

↪→ Hauptze i t − Verrohrungsanlage − Verrohrung eindrehen "]

13 labels_secondary = [" Nebenprozesszeit − Sonst iges " , " Nebenprozesszeit −
↪→ Tiefenmessung " , " Nebenprozesszeit − Umsetzen " , " Nebenprozesszeit

↪→ − Wasser n a c h f l l e n " , " Nebenprozesszeit − Werkzeugwechsel " , "

↪→ Nebenprozesszeit − Tanken "]

14 labels_downtime = [" A u s f a l l z e i t − Schaden " , " A u s f a l l z e i t − Pause " , "

↪→ A u s f a l l z e i t − Warten auf − Sonst iges " , " A u s f a l l z e i t − Warten auf

↪→ − Beton "]

15

16

17 i n d e x _ t r a i n = []

18

19 for elem in index_train_names :

20 s t r i n g = ’ dataset ’+st r (elem) + ’ . csv ’

21 index = f i le_names . index (s t r i n g)

22 i n d e x _ t r a i n . append (index)

23

24 index_va l = []

A-5

A Source code

25

26 for elem in index_val_names :

27 s t r i n g = ’ dataset ’+st r (elem) + ’ . csv ’

28 index = f i le_names . index (s t r i n g)

29 index_va l . append (index)

30

31

32 index_ tes t = []

33

34 for elem in index_test_names :

35 s t r i n g = ’ dataset ’+st r (elem) + ’ . csv ’

36 index = f i le_names . index (s t r i n g)

37 index_ tes t . append (index)

38

39 d a t a _ l i s t _ t r a i n = []

40 d a t a _ l i s t _ t e s t = []

41 d a t a _ l i s t _ v a l = []

42

43 for i in range (len (i ndex_ tes t)) :

44 d a t a _ l i s t _ t e s t . append (d a t a _ l i s t [i ndex_ tes t [i]])

45

46 for i in range (len (index_va l)) :

47 d a t a _ l i s t _ v a l . append (d a t a _ l i s t [index_va l [i]])

48

49 for i in range (len (i n d e x _ t r a i n)) :

50 d a t a _ l i s t _ t r a i n . append (d a t a _ l i s t [i n d e x _ t r a i n [i]])

51

52 data_train_merged = pd . concat (d a t a _ l i s t _ t r a i n)

53 data_train_merged . head ()

54 d a t a _ t r a i n = data_train_merged . drop ([" t ime " , " Absolut depth [m] " , "

↪→ Casing Length [m] " , " Bor ing th resho ld [m] " , " Status Rig [] "] ,

↪→ ax is = 1 , e r r o r s = ’ ignore ’)

55 d a t a _ t r a i n . rep lace (" Nebenprozesszeit − Leeren " , " Hauptze i t − Leeren " ,

↪→ i np lace = True)

56 # d a t a _ t r a i n = d a t a _ t r a i n . rep lace (labe ls_concre t ing , " Concret ing ")

57 # d a t a _ t r a i n = d a t a _ t r a i n . rep lace (l a b e l s _ d r i l l i n g , " D r i l l i n g ")

58 # d a t a _ t r a i n = d a t a _ t r a i n . rep lace (l a b e l s _ r e i n f o r c e , " Re in fo rc ing ")

59 # d a t a _ t r a i n = d a t a _ t r a i n . rep lace (labels_cm , " Casing machine ")

60 # d a t a _ t r a i n = d a t a _ t r a i n . rep lace (labels_secondary , " Secondary process

↪→ ")

61 # d a t a _ t r a i n = d a t a _ t r a i n . rep lace (labels_downtime , " Downtime ")

A-6

A.2 Data preprocessing pipeline

62

63

64 data_test_merged = pd . concat (d a t a _ l i s t _ t e s t)

65 data_test_merged . head ()

66 da ta_ tes t = data_test_merged . drop ([" t ime " , " Absolut depth [m] " , " Casing

↪→ Length [m] " , " Bor ing th resho ld [m] " , " Status Rig [] "] , ax is = 1 ,

↪→ e r r o r s = ’ ignore ’)

67 da ta_ tes t . rep lace (" Nebenprozesszeit − Leeren " , " Hauptze i t − Leeren " ,

↪→ i np lace = True)

68 # da ta_ tes t = da ta_ tes t . rep lace (labe ls_concre t ing , " Concret ing ")

69 # da ta_ tes t = da ta_ tes t . rep lace (l a b e l s _ d r i l l i n g , " D r i l l i n g ")

70 # da ta_ tes t = da ta_ tes t . rep lace (l a b e l s _ r e i n f o r c e , " Re in fo rc ing ")

71 # da ta_ tes t = da ta_ tes t . rep lace (labels_cm , " Casing machine ")

72 # da ta_ tes t = da ta_ tes t . rep lace (labels_secondary , " Secondary process ")

73 # da ta_ tes t = da ta_ tes t . rep lace (labels_downtime , " Downtime ")

74

75 data_val_merged = pd . concat (d a t a _ l i s t _ v a l)

76 data_val_merged . head ()

77 data_val = data_val_merged . drop ([" t ime " , " Absolut depth [m] " , " Casing

↪→ Length [m] " , " Bor ing th resho ld [m] " , " Status Rig [] "] , ax is = 1 ,

↪→ e r r o r s = ’ ignore ’)

78 data_val . rep lace (" Nebenprozesszeit − Leeren " , " Hauptze i t − Leeren " ,

↪→ i np lace = True)

79 #data_va l = data_va l . rep lace (labe ls_concre t ing , " Concret ing ")

80 #data_va l = data_va l . rep lace (l a b e l s _ d r i l l i n g , " D r i l l i n g ")

81 #data_va l = data_va l . rep lace (l a b e l s _ r e i n f o r c e , " Re in fo rc ing ")

82 #data_va l = data_va l . rep lace (labels_cm , " Casing machine ")

83 #data_va l = data_va l . rep lace (labels_secondary , " Secondary process ")

84 #data_va l = data_va l . rep lace (labels_downtime , " Downtime ")

85

86

87 data_merged = pd . concat (d a t a _ l i s t)

88 data = data_merged . drop ([" t ime " , " Absolut depth [m] " , " Casing Length [m

↪→] " , " Bor ing th resho ld [m] " , " Status Rig [] "] , ax is = 1)

89 data . rep lace (" Nebenprozesszeit − Leeren " , " Hauptze i t − Leeren " ,

↪→ i np lace = True)

90 #data = data . rep lace (labe ls_concre t ing , " Concret ing ")

91 #data = data . rep lace (l a b e l s _ d r i l l i n g , " D r i l l i n g ")

92 #data = data . rep lace (l a b e l s _ r e i n f o r c e , " Re in fo rc ing ")

93 #data = data . rep lace (labels_cm , " Casing machine ")

94 #data = data . rep lace (labels_secondary , " Secondary process ")

A-7

A Source code

95 #data = data . rep lace (labels_downtime , " Downtime ")

96

97

98 l a b e l s = data [" l a b e l s "] . values

99 un ique_ labe ls = np . unique (l a b e l s)

100 un ique_ labe ls = np . de le te (unique_labels , np . argwhere (un ique_ labe ls== ’

↪→ A u s f a l l z e i t − Wartung ’) ,0)

101 inpu ts = data . drop ([" l a b e l s "] , ax is =1) . values

102 sca le r = MinMaxScaler () ;

103 sca le r . f i t (i npu ts)

104

105 pr in t (d a t a _ t r a i n . shape)

106 pr in t (da ta_ tes t . shape)

107 pr in t (data_val . shape)

108

109 #−−−−−−−−−−−−−−−−TRAINING−−−−−−−−−−−−−−−−−−−−−−−−
110

111 l a b e l s = d a t a _ t r a i n [" l a b e l s "] . values

112 inpu ts = d a t a _ t r a i n . drop ([" l a b e l s "] , ax is =1) . values

113 inpu ts = sca le r . t rans form (inpu ts)

114

115 X_t ra in = []

116 y _ t r a i n = []

117 i =0

118 step = (1−over lap) ∗n_t imesteps

119 i f step == 0:

120 step =1

121 while i < i npu ts . shape [0] :

122 end_index = i + n_t imesteps

123

124 i f end_index >= inpu ts . shape [0] :

125 break ;

126

127 X_temp = inpu ts [i : end_index , :]

128

129 i f l a b e l l i n g _ s t r a t e g y == " l a s t " :

130 y_temp = l a b e l s [end_index−1]

131

132 i f l a b e l l i n g _ s t r a t e g y == " frequency " :

133 y_temp = s t a t s . mode(l a b e l s [i : end_index]) [0]

134

A-8

A.2 Data preprocessing pipeline

135 X_t ra in . append (X_temp)

136 y _ t r a i n . append (y_temp)

137

138 i = i n t (i + step)

139

140 X_t ra in = np . ar ray (X_ t ra in)

141 y _ t r a i n = np . ar ray (y _ t r a i n)

142

143 indices_maintenance = np . argwhere (y _ t r a i n == ’ A u s f a l l z e i t − Wartung ’)

144

145 X_t ra in = np . de le te (X_t ra in , indices_maintenance , 0)

146 y _ t r a i n = np . de le te (y_ t ra in , indices_maintenance , 0)

147

148 # ind i ces_se l = np . where ((y _ t r a i n == ’ Hauptze i t − Verrohrung abnehmen ’) |

↪→ (y _ t r a i n == ’ Hauptze i t − Verrohrung eindrehen ’) | (y _ t r a i n == ’

↪→ Hauptze i t − Bohren ’) | (y _ t r a i n == ’ Hauptze i t − Leeren ’) | (

↪→ y _ t r a i n == ’ Hauptze i t − Ziehen ’) | (y _ t r a i n == ’ Hauptze i t − Ablassen

↪→ ’) | (y _ t r a i n == ’ Hauptze i t − Standrohr setzen ’) | (y _ t r a i n == ’

↪→ Hauptze i t − Standrohr ziehen ’))

149 # ind i ces_se l = np . where ((y _ t r a i n == ’ Hauptze i t − Verrohrung eindrehen ’)

↪→ | (y _ t r a i n == ’ Hauptze i t − Bohren ’) | (y _ t r a i n == ’ Hauptze i t −
↪→ Leeren ’) | (y _ t r a i n == ’ Hauptze i t − Ziehen ’) | (y _ t r a i n == ’

↪→ Hauptze i t − Ablassen ’) | (y _ t r a i n == ’ Hauptze i t − Standrohr setzen

↪→ ’) | (y _ t r a i n == ’ Hauptze i t − Bohren − Bohreimer ’))

150 ind i ces_se l = np . where ((y _ t r a i n == ’ Hauptze i t − Betonieren ’) | (y _ t r a i n

↪→ == ’ Hauptze i t − S c h t t r o h r − Setzen ’) | (y _ t r a i n == ’ Hauptze i t −
↪→ Verrohrung abnehmen ’) | (y _ t r a i n == ’ Hauptze i t − S c h t t r o h r −
↪→ Entfernen ’) | (y _ t r a i n == ’ Hauptze i t − Standrohr ziehen ’))

151 # ind i ces_se l = np . where ((y _ t r a i n == ’ A u s f a l l z e i t − Pause ’) | (y _ t r a i n == ’

↪→ A u s f a l l z e i t − Schaden ’) | (y _ t r a i n == ’ A u s f a l l z e i t − Wartung ’) | (

↪→ y _ t r a i n == ’ A u s f a l l z e i t − Warten auf − Beton ’) | (y _ t r a i n == ’

↪→ A u s f a l l z e i t − Warten auf − Sons t i f es ’))

152 # ind i ces_se l = np . where ((y _ t r a i n == ’ Hauptze i t − Bewehrung einbauen ’) |

↪→ (y _ t r a i n == ’ Hauptze i t − Einbau K iespo l s t e r ’))

153 # ind i ces_se l = np . where ((y _ t r a i n == ’ Hauptze i t − Verrohrungsanlage −
↪→ Standrohr ziehen ’) | (y _ t r a i n == ’ Hauptze i t − Verrohrungsanlage −
↪→ Verrohrung eindrehen ’))

154 # ind i ces_se l = np . where ((y _ t r a i n == ’ Nebenprozesszeit − Sonst iges ’) | (

↪→ y _ t r a i n == ’ Nebenprozesszeit − Tanken ’) | (y _ t r a i n == ’

↪→ Nebenprozesszeit − Tiefenmessung ’) | (y _ t r a i n == ’ Nebenprozesszeit

↪→ − Umsetzen ’) | (y _ t r a i n == ’ Nebenprozesszeit − Wasser n a c h f l l e n

A-9

A Source code

↪→ ’) | (y _ t r a i n == ’ Nebenprozesszeit − Werkzeugwechsel ’))

155 # ind i ces_se l = np . where ((y _ t r a i n == ’ D r i l l i n g ’) | (y _ t r a i n == ’ Concret ing

↪→ ’) | (y _ t r a i n == ’ Re in fo rc ing ’) | (y _ t r a i n == ’ Casing machine ’))

156 # ind i ces_se l = np . where ((y _ t r a i n == ’ Secondary process ’) | (y _ t r a i n == ’

↪→ Downtime ’))

157

158 X_t ra in = np . take (X_t ra in , i nd i ces = ind ices_se l , ax is =0)

159 X_ t ra in = np . squeeze (X_t ra in , ax is = 0)

160 y _ t r a i n = np . take (y_ t ra in , i nd i ces = ind ices_se l , ax is =0)

161

162 y _ t r a i n = l a b e l _ b i n a r i z e (y _ t r a i n . squeeze () , un ique_ labe ls)

163

164 #−−−−−−−−−−−−−−−−VALIDATION−−−−−−−−−−−−−−−−−−−−−−−−
165

166 l a b e l s = data_val [" l a b e l s "] . values

167 inpu ts = data_val . drop ([" l a b e l s "] , ax is =1) . values

168 inpu ts = sca le r . t rans form (inpu ts)

169

170 X_val id = []

171 y_va l i d = []

172 i =0

173 step = (1−over lap) ∗n_t imesteps

174 i f step == 0:

175 step =1

176 while i < i npu ts . shape [0] :

177 end_index = i + n_t imesteps

178

179 i f end_index >= inpu ts . shape [0] :

180 break ;

181

182 X_temp = inpu ts [i : end_index , :]

183

184 i f l a b e l l i n g _ s t r a t e g y == " l a s t " :

185 y_temp = l a b e l s [end_index−1]

186

187 i f l a b e l l i n g _ s t r a t e g y == " frequency " :

188 y_temp = s t a t s . mode(l a b e l s [i : end_index]) [0]

189

190 X_val id . append (X_temp)

191 y_va l i d . append (y_temp)

192

A-10

A.2 Data preprocessing pipeline

193 i = i n t (i + step)

194

195 X_val id = np . ar ray (X_va l id)

196 y_va l i d = np . ar ray (y_va l i d)

197

198 indices_maintenance = np . argwhere (y_va l i d == ’ A u s f a l l z e i t − Wartung ’)

199

200 X_val id = np . de le te (X_val id , indices_maintenance , 0)

201 y_va l i d = np . de le te (y_va l id , indices_maintenance , 0)

202

203 # ind i ces_se l = np . where ((y_va l i d == ’ Hauptze i t − Verrohrung abnehmen ’) |

↪→ (y_va l i d == ’ Hauptze i t − Verrohrung eindrehen ’) | (y_va l i d == ’

↪→ Hauptze i t − Bohren ’) | (y_va l i d == ’ Hauptze i t − Leeren ’) | (

↪→ y_va l i d == ’ Hauptze i t − Ziehen ’) | (y_va l i d == ’ Hauptze i t − Ablassen

↪→ ’) | (y_va l i d == ’ Hauptze i t − Standrohr setzen ’) | (y_va l i d == ’

↪→ Hauptze i t − Standrohr ziehen ’))

204 # ind i ces_se l = np . where ((y_va l i d == ’ Hauptze i t − Verrohrung eindrehen ’)

↪→ | (y_va l i d == ’ Hauptze i t − Bohren ’) | (y_va l i d == ’ Hauptze i t −
↪→ Leeren ’) | (y_va l i d == ’ Hauptze i t − Ziehen ’) | (y_va l i d == ’

↪→ Hauptze i t − Ablassen ’) | (y_va l i d == ’ Hauptze i t − Standrohr setzen

↪→ ’) | (y_va l i d == ’ Hauptze i t − Bohren − Bohreimer ’))

205 ind i ces_se l = np . where ((y_va l i d == ’ Hauptze i t − Betonieren ’) | (y_va l i d

↪→ == ’ Hauptze i t − S c h t t r o h r − Setzen ’) | (y_va l i d == ’ Hauptze i t −
↪→ Verrohrung abnehmen ’) | (y_va l i d == ’ Hauptze i t − S c h t t r o h r −
↪→ Entfernen ’) | (y_va l i d == ’ Hauptze i t − Standrohr ziehen ’))

206 # ind i ces_se l = np . where ((y_va l i d == ’ A u s f a l l z e i t − Pause ’) | (y_va l i d == ’

↪→ A u s f a l l z e i t − Schaden ’) | (y_va l i d == ’ A u s f a l l z e i t − Wartung ’) | (

↪→ y_va l i d == ’ A u s f a l l z e i t − Warten auf − Beton ’) | (y_va l i d == ’

↪→ A u s f a l l z e i t − Warten auf − Sons t i f es ’))

207 # ind i ces_se l = np . where ((y_va l i d == ’ Hauptze i t − Bewehrung einbauen ’) |

↪→ (y_va l i d == ’ Hauptze i t − Einbau K iespo l s t e r ’))

208 # ind i ces_se l = np . where ((y_va l i d == ’ Hauptze i t − Verrohrungsanlage −
↪→ Standrohr ziehen ’) | (y_va l i d == ’ Hauptze i t − Verrohrungsanlage −
↪→ Verrohrung eindrehen ’))

209 # ind i ces_se l = np . where ((y_va l i d == ’ Nebenprozesszeit − Sonst iges ’) | (

↪→ y_va l i d == ’ Nebenprozesszeit − Tanken ’) | (y_va l i d == ’

↪→ Nebenprozesszeit − Tiefenmessung ’) | (y_va l i d == ’ Nebenprozesszeit

↪→ − Umsetzen ’) | (y_va l i d == ’ Nebenprozesszeit − Wasser n a c h f l l e n

↪→ ’) | (y_va l i d == ’ Nebenprozesszeit − Werkzeugwechsel ’))

210 # ind i ces_se l = np . where ((y_va l i d == ’ D r i l l i n g ’) | (y_va l i d == ’ Concret ing

↪→ ’) | (y_va l i d == ’ Re in fo rc ing ’) | (y_va l i d == ’ Casing machine ’))

A-11

A Source code

211 # ind i ces_se l = np . where ((y_va l i d == ’ Secondary process ’) | (y_va l i d == ’

↪→ Downtime ’))

212

213

214 X_val id = np . take (X_val id , i nd i ces = ind ices_se l , ax is =0)

215 X_val id = np . squeeze (X_val id , ax is = 0)

216 y_va l i d = np . take (y_va l id , i nd i ces = ind ices_se l , ax is =0)

217

218 y_va l i d = l a b e l _ b i n a r i z e (y_va l i d . squeeze () , un ique_ labe ls)

219

220

221 #−−−−−−−−−−−−−−−−TEST−−−−−−−−−−−−−−−−−−−−−−−−
222

223 l a b e l s = da ta_ tes t [" l a b e l s "] . values

224 inpu ts = da ta_ tes t . drop ([" l a b e l s "] , ax is =1) . values

225 inpu ts = sca le r . t rans form (inpu ts)

226

227 X_test = []

228 y_ tes t = []

229 i =0

230 step = (1−over lap) ∗n_t imesteps

231 i f step == 0:

232 step =1

233 while i < i npu ts . shape [0] :

234 end_index = i + n_t imesteps

235

236 i f end_index >= inpu ts . shape [0] :

237 break ;

238

239 X_temp = inpu ts [i : end_index , :]

240

241 i f l a b e l l i n g _ s t r a t e g y == " l a s t " :

242 y_temp = l a b e l s [end_index−1]

243

244 i f l a b e l l i n g _ s t r a t e g y == " frequency " :

245 y_temp = s t a t s . mode(l a b e l s [i : end_index]) [0]

246

247 X_test . append (X_temp)

248 y_ tes t . append (y_temp)

249

250 i = i n t (i + step)

A-12

A.2 Data preprocessing pipeline

251

252 X_test = np . ar ray (X_test)

253 y_ tes t = np . ar ray (y_ tes t)

254

255 indices_maintenance = np . argwhere (y_ tes t == ’ A u s f a l l z e i t − Wartung ’)

256

257 X_test = np . de le te (X_test , indices_maintenance , 0)

258 y_ tes t = np . de le te (y_tes t , indices_maintenance , 0)

259

260 # ind i ces_se l = np . where ((y_ tes t == ’ Hauptze i t − Verrohrung abnehmen ’) |

↪→ (y_ tes t == ’ Hauptze i t − Verrohrung eindrehen ’) | (y_ tes t == ’

↪→ Hauptze i t − Bohren ’) | (y_ tes t == ’ Hauptze i t − Leeren ’) | (y_ tes t

↪→ == ’ Hauptze i t − Ziehen ’) | (y_ tes t == ’ Hauptze i t − Ablassen ’) | (

↪→ y_ tes t == ’ Hauptze i t − Standrohr setzen ’) | (y_ tes t == ’ Hauptze i t −
↪→ Standrohr ziehen ’))

261 # ind i ces_se l = np . where ((y_ tes t == ’ Hauptze i t − Verrohrung eindrehen ’) |

↪→ (y_ tes t == ’ Hauptze i t − Bohren ’) | (y_ tes t == ’ Hauptze i t − Leeren ’)

↪→ | (y_ tes t == ’ Hauptze i t − Ziehen ’) | (y_ tes t == ’ Hauptze i t −
↪→ Ablassen ’) | (y_ tes t == ’ Hauptze i t − Standrohr setzen ’) | (y_ tes t

↪→ == ’ Hauptze i t − Bohren − Bohreimer ’))

262 ind i ces_se l = np . where ((y_ tes t == ’ Hauptze i t − Betonieren ’) | (y_ tes t == ’

↪→ Hauptze i t − S c h t t r o h r − Setzen ’) | (y_ tes t == ’ Hauptze i t −
↪→ Verrohrung abnehmen ’) | (y_ tes t == ’ Hauptze i t − S c h t t r o h r −
↪→ Entfernen ’) | (y_ tes t == ’ Hauptze i t − Standrohr ziehen ’))

263 # ind i ces_se l = np . where ((y_ tes t == ’ A u s f a l l z e i t − Pause ’) | (y_ tes t == ’

↪→ A u s f a l l z e i t − Schaden ’) | (y_ tes t == ’ A u s f a l l z e i t − Wartung ’) | (

↪→ y_ tes t == ’ A u s f a l l z e i t − Warten auf − Beton ’) | (y_ tes t == ’

↪→ A u s f a l l z e i t − Warten auf − Sons t i f es ’))

264 # ind i ces_se l = np . where ((y_ tes t == ’ Hauptze i t − Bewehrung einbauen ’) | (

↪→ y_ tes t == ’ Hauptze i t − Einbau K iespo l s t e r ’))

265 # ind i ces_se l = np . where ((y_ tes t == ’ Hauptze i t − Verrohrungsanlage −
↪→ Standrohr ziehen ’) | (y_ tes t == ’ Hauptze i t − Verrohrungsanlage −
↪→ Verrohrung eindrehen ’))

266 # ind i ces_se l = np . where ((y_ tes t == ’ Nebenprozesszeit − Sonst iges ’) | (

↪→ y_ tes t == ’ Nebenprozesszeit − Tanken ’) | (y_ tes t == ’

↪→ Nebenprozesszeit − Tiefenmessung ’) | (y_ tes t == ’ Nebenprozesszeit

↪→ − Umsetzen ’) | (y_ tes t == ’ Nebenprozesszeit − Wasser n a c h f l l e n ’)

↪→ | (y_ tes t == ’ Nebenprozesszeit − Werkzeugwechsel ’))

267 # ind i ces_se l = np . where ((y_ tes t == ’ D r i l l i n g ’) | (y_ tes t == ’ Concret ing ’)

↪→ | (y_ tes t == ’ Re in fo rc ing ’) | (y_ tes t == ’ Casing machine ’))

268 # ind i ces_se l = np . where ((y_ tes t == ’ Secondary process ’) | (y_ tes t == ’

A-13

A Source code

↪→ Downtime ’))

269

270 X_test = np . take (X_test , i nd i ces = ind ices_se l , ax is =0)

271 X_test = np . squeeze (X_test , ax is = 0)

272 y_ tes t = np . take (y_tes t , i nd i ces = ind ices_se l , ax is =0)

273

274 y_ tes t = l a b e l _ b i n a r i z e (y_ tes t . squeeze () , un ique_ labe ls)

275

276 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
277

278 i f n_t imesteps == 1:

279 X_ t ra in = X_ t ra in . squeeze ()

280 X_test = X_test . squeeze ()

281 X_val id = X_val id . squeeze ()

282

283 return X_tra in , y_ t ra in , X_val id , y_va l id , X_test , y_ tes t ,

↪→ un ique_ labe ls

A.3 Models

A.3.1 MLP
1 def DenseNN(n_features , n_outputs , n_layers , neuros_per_layer ,

↪→ a c t i v a t i o n , dropout , op t im ize r) :

2 temp = range (n_ layers)

3 i n i t = keras . i n i t i a l i z e r s . g lo ro t_un i f o rm (seed=1)

4 model = keras . models . Sequent ia l ()

5 model . add (keras . l aye rs . InputLayer (input_shape=n_features))

6

7 for k in temp :

8 i f k<n_layers−1:

9 model . add (keras . l aye rs . Dense (neuros_per_layer ,

↪→ k e r n e l _ i n i t i a l i z e r = i n i t , a c t i v a t i o n = a c t i v a t i o n))

10 model . add (keras . l aye rs . Dropout (dropout))

11 else :

12 model . add (keras . l aye rs . Dense (n_outputs , k e r n e l _ i n i t i a l i z e r =

↪→ i n i t , a c t i v a t i o n = " softmax "))

13

14 model . compile (loss=" ca tego r i ca l_c rossen t ropy " , met r i cs = " accuracy "

↪→ , op t im ize r = op t im ize r)

15

16 return model

A-14

A.3 Models

A.3.2 LSTM

1 def Vanilla_LSTM (n_features , n_outputs , ls tm_size , ls tm_act , dropout ,

↪→ op t im ize r) :

2 model = keras . models . Sequent ia l ()

3

4 for i in range (l s tm_s ize [0]) :

5 i f i ==0:

6 model . add (keras . l aye rs .LSTM(ls tm_s ize [1] , a c t i v a t i o n =

↪→ l s tm_act , return_sequences = True , dropout = dropout ,

↪→ input_shape = (None , n_features)))

7 e l i f i < l s tm_s ize [0]−1:

8 model . add (keras . l aye rs .LSTM(ls tm_s ize [1] , a c t i v a t i o n =

↪→ l s tm_act , return_sequences = True , dropout = dropout))

9 else :

10 model . add (keras . l aye rs .LSTM(ls tm_s ize [1] , a c t i v a t i o n =

↪→ l s tm_act , return_sequences = False , dropout = dropout)

↪→)

11

12 model . add (keras . l aye rs . Dense (n_outputs , a c t i v a t i o n = ’ softmax ’))

13

14 model . compile (op t im ize r = opt im izer , loss=" ca tego r i ca l_c rossen t ropy "

↪→ , met r i cs = " accuracy ")

15

16 return model

A.3.3 DeepConvLSTM

1 def deep_conv_LSTM (n_features , n_outputs , t imesteps , cnn_size , cnn_act ,

↪→ l s tm_size , ls tm_act , batch_norm , dropout , op t im ize r) :

2 model = keras . models . Sequent ia l ()

3

4 for i in range (cnn_size [0]) :

5 i f i == 0 :

6 model . add (keras . l aye rs . Conv1D(cnn_size [1] , cnn_size [2] ,

↪→ input_shape =(t imesteps , n_features) , padding="same"))

7 else :

8 model . add (keras . l aye rs . Conv1D(cnn_size [1] , cnn_size [2] ,

↪→ padding="same"))

9

10 i f batch_norm == True :

11 model . add (keras . l aye rs . BatchNormal izat ion ())

12

A-15

A Source code

13 model . add (keras . l aye rs . A c t i v a t i o n (cnn_act))

14

15 for i in range (l s tm_s ize [0]) :

16 i f i ==0:

17 model . add (keras . l aye rs .LSTM(ls tm_s ize [1] , a c t i v a t i o n =

↪→ l s tm_act , return_sequences = True , dropout = dropout ,

↪→ input_shape = (None , n_features)))

18 e l i f i < l s tm_s ize [0]−1:

19 model . add (keras . l aye rs .LSTM(ls tm_s ize [1] , a c t i v a t i o n =

↪→ l s tm_act , return_sequences = True , dropout = dropout))

20 else :

21 model . add (keras . l aye rs .LSTM(ls tm_s ize [1] , a c t i v a t i o n =

↪→ l s tm_act , return_sequences = False , dropout = dropout)

↪→)

22

23 model . add (keras . l aye rs . Dense (n_outputs , a c t i v a t i o n = ’ softmax ’))

24

25 model . compile (op t im ize r = opt im izer , loss=" ca tego r i ca l_c rossen t ropy "

↪→ , met r i cs = " accuracy ")

26

27 return model

A.3.4 DeepConvBiLSTM
1 def deep_conv_BiLSTM (n_features , n_outputs , t imesteps , cnn_size , cnn_act

↪→ , ls tm_size , ls tm_act , batch_norm , dropout , op t im ize r) :

2 model = keras . models . Sequent ia l ()

3

4 for i in range (cnn_size [0]) :

5 i f i == 0 :

6 model . add (keras . l aye rs . Conv1D(cnn_size [1] , cnn_size [2] ,

↪→ input_shape =(t imesteps , n_features)))

7 else :

8 model . add (keras . l aye rs . Conv1D(cnn_size [1] , cnn_size [2]))

9

10 i f batch_norm == True :

11 model . add (keras . l aye rs . BatchNormal izat ion ())

12

13 model . add (keras . l aye rs . A c t i v a t i o n (cnn_act))

14

15 for i in range (l s tm_s ize [0]) :

16 i f i ==0:

A-16

A.3 Models

17 model . add (keras . l aye rs . B i d i r e c t i o n a l (keras . l aye rs .LSTM(

↪→ l s tm_s ize [1] , a c t i v a t i o n = ls tm_act , return_sequences

↪→ = True , dropout = dropout) , input_shape = (None ,

↪→ n_features)))

18 e l i f i < l s tm_s ize [0]−1:

19 model . add (keras . l aye rs . B i d i r e c t i o n a l (keras . l aye rs .LSTM(

↪→ l s tm_s ize [1] , a c t i v a t i o n = ls tm_act , return_sequences

↪→ = True , dropout = dropout)))

20 else :

21 model . add (keras . l aye rs . B i d i r e c t i o n a l (keras . l aye rs .LSTM(

↪→ l s tm_s ize [1] , a c t i v a t i o n = ls tm_act , return_sequences

↪→ = False , dropout = dropout)))

22

23 model . add (keras . l aye rs . Dense (n_outputs , a c t i v a t i o n = ’ softmax ’))

24

25 model . compile (op t im ize r = opt im izer , loss=" ca tego r i ca l_c rossen t ropy "

↪→ , met r i cs = " accuracy ")

26 #model . compile (op t im ize r = opt im izer , loss =" b inary_crossent ropy " ,

↪→ metr ics = " accuracy ")

27

28 return model

A-17

B Appendix

B.1 Histograms

Figure B-1: Histograms of the data of the available sensors

B-1

B Appendix

B.2 Loss plots

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(b) DeepConvLSTM

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(c) DeepConvBiLSTM

Figure B-2: Training and validation loss for different models - LoD 2 - Working

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(b) DeepConvLSTM

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(c) DeepConvBiLSTM

Figure B-3: Training and validation loss for different models - LoD 2 - Idle

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(b) DeepConvLSTM

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(c) DeepConvBiLSTM

Figure B-4: Training and validation loss for different models - LoD 3 - Reinforcing

B-2

B.2 Loss plots

10 20 30 40 50

Epoch

0

1

2

3

4
L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(b) DeepConvLSTM

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(c) DeepConvBiLSTM

Figure B-5: Training and validation loss for different models - LoD 3 - Secondary processes

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

3

L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

3

L
o
s
s

Training loss Validation loss

(b) DeepConvLSTM

10 20 30 40 50

Epoch

0

0.5

1

1.5

2

2.5

3

L
o
s
s

Training loss Validation loss

(c) DeepConvBiLSTM

Figure B-6: Training and validation loss for different models - LoD 3 - Drilling

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(a) MLP

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(b) DeepConvLSTM

10 20 30 40 50

Epoch

0

1

2

3

4

L
o
s
s

Training loss Validation loss

(c) DeepConvBiLSTM

Figure B-7: Training and validation loss for different models - LoD 3 - Concreting

B-3

B Appendix

B.3 Confusion matrices

D
o

w
n

ti
m

e

S
e

c
o

n
d

a
ry

 p
ro

c
e

s
s

Predicted label

Downtime

Secondary process

T
ru

e
 l
a

b
e

l

75

30

25

70

0

20

40

60

80

100

Figure B-8: Confusion matrix - LoD 2 - Idle - DeepConvBiLSTM

C
o

n
c
re

ti
n

g

P
la

c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g

P
u

ll
s
ta

n
d

p
ip

e

Predicted label

Concreting

Place pouring pipe

Remove pouring pipe

Remove casing

Pull standpipe

T
ru

e
 l
a

b
e

l

62

31

100

53

76

17

49

0

9

5

0

0

0

0

0

0

0

0

0

0

21

20

0

38

19

0

50

100

(a) DeepConvLSTM

C
o

n
c
re

ti
n

g

P
la

c
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 p
o

u
ri
n

g
 p

ip
e

R
e

m
o

v
e

 c
a

s
in

g

P
u

ll
s
ta

n
d

p
ip

e

Predicted label

Concreting

Place pouring pipe

Remove pouring pipe

Remove casing

Pull standpipe

T
ru

e
 l
a

b
e

l

63

29

100

55

79

17

51

0

9

4

0

0

0

0

0

2

2

0

5

4

18

19

0

31

12

0

50

100

(b) DeepConvBiLSTM

Figure B-9: Confusion matrix - LoD 3 - Concreting

B-4

B.4 Predictions

B.4 Predictions

0 100 200 300 400 500 600 700 800 900 1000

Time [sec]

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

A
c
ti
v
it
y

Drilling

Concreting

Reinforcing

Casing machine

Secondary process time

Downtime

Predicted

True

(a) MLP

0 100 200 300 400 500 600 700 800 900 1000

Time [sec]

Lowering
Drilling

Drilling with bucket
Emptying

Place standpipe
Screw in casing

Pulling
Concreting

Place pouring pipe
Remove pouring pipe

Remove casing
Pull standpipe
Install cushion

Install rebar cage
CM - Pull standpipe

CM - Screw in casing
Other

Refueling
Depth sensing

Relocate
Refill water

Tool exchange
Break

Failure
Waiting for concrete

Waiting for other

A
c
ti
v
it
y

Drilling

Concreting

Reinforcing

Casing machine

Secondary process time

Downtime

Predicted

True

(b) DeepConvLSTM64

Figure B-10: True and predicted labels for a selected interval (2)

B-5

Declaration

I hereby certify that I have written the thesis submitted by me independently and that I have

I have not used any sources or aids other than those indicated.

Garching, 15.06.2021

	Contents
	Table of abbreviations
	Table of Symbols
	Introduction
	Motivation
	Motivation
	Structure

	Previous work
	Activity recognition of construction equipment
	Vision-based methods
	Audio-based methods
	Motion-based methods

	Research gaps and objectives

	Theoretical background
	Kelly drilling method
	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Time series classification

	Methodology
	Data understanding
	Data acquisition
	Data exploration

	Data preparation
	Data segmentation
	Scaling
	Data splitting

	Modeling
	Requirements
	Models
	Baseline models
	Hybrid models

	Hierarchical classification
	Implementation and training
	Performance analysis

	Evaluation
	Results
	Models
	Training
	Test

	Sensitivity analysis
	Window size
	Overlap
	Splitting method

	Hierarchical classification
	LoD 1 - Working/Idle
	LoD 2 - Process steps
	LoD 3 - Detailed process steps

	Discussion and future work
	Discussion
	Hybrid models
	Generalization capabilities
	Labeling strategy as a limitation

	Future work

	Conclusion

	Supplement
	References
	List of Figures
	List of Tables
	Source code
	Merging of machine and activity data
	Data preprocessing pipeline
	Random split
	Split by days

	Models
	MLP
	LSTM
	DeepConvLSTM
	DeepConvBiLSTM

	Appendix
	Histograms
	Loss plots
	Confusion matrices
	Predictions

