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Abstract

Nanoplastic contamination is an emerging issue with the potential to negatively human health and the

environment. For a reliable risk assessment, suitable analytical methods are necessary. However,

established techniques from microplastic (MP) analysis face limitations, due to the small sizes and low

masses of nanoparticles. On the other hand, current techniques for nanoparticle characterization do not

allow for a chemical identification of the polymer, which is essential for a quantitative characterization.

The presented thesis aims to solve this analytical challenge by developing new methods for Raman

microspectroscopy (RM) in combination with scanning electron microscopy (SEM), field-flow fractionation

(FFF), and chemometrics.

As an initial step, a critical review presents the state of the art in nanoplastic analysis, including

a discussion of the methodological gap and the techniques that can potentially be adapted from

nanoparticle analysis and MP analysis. This results in a roadmap laying out the requirements and

possible techniques for each step of the nanoplastic analysis. It begins with the analytical question and

sample treatment, discusses methods for particle separation, visualization, and physical characterization,

and addresses the chemical identification of nanoplastic.

In a second step, the lower size limit of RM, combined with SEM, for the analysis of MP and nanoplastic

was evaluated and demonstrated to be applicable down to the theoretical diffraction limit at around

0.25 µm. This was experimentally tested for spherical and irregular, fragmented particles, as they

are expected in the environment. Following this qualitative assessment of lower particle size limits

for MP/sub-MP analysis, quantification of particle number and size distribution on the Raman filter

was approached. Here, a key challenge is to enable a statistically sound determination of the MP

number and the MP/non-MP ratio, respectively. This was solved by delineating a particle-by-particle

measurement algorithm based on window sampling, for which the bias and standard deviation of random

and systematic window placement was investigated using simulated filters. Results show that random

window sampling prevents the introduction of bias. It is, however, accompanied by an increased standard

deviation. Furthermore, increasing the size of the windows also increases the bias or standard deviation

for systematic and random windows, respectively. To obtain a confidence interval (CI) even though the

total particle number is unknown, a bootstrap method is used. This approach enables an on-the-fly

measurement algorithm where first, a smaller increment of particles/windows is measured and analyzed.

Subsequently, the CI of the data up to this point is estimated by bootstrap, and it is assessed whether

the error margin and error probability are below an acceptance criterion, in which case the measurement

can be stopped, else it is continued with the next increment of particles. This on-the-fly procedure will

enable that an optimal end-point is found such that no measurement time is wasted.

In a third step, RM was online-coupled to FFF by developing an optical tweezer-based flow-cell in order

to facilitate automated nanoplastic analysis, which does not rely on image analysis, but instead on

particle separation followed by chemical characterization. The setup was validated for particles in the

size range from 200 nm to 10 µm, concentrations in the order of 1 mg/L (109 particles L-1), and different
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material (polymers and inorganic). Using two variants of FFF (asymmetric flow field-flow fractionation

& centrifugal field-flow fractionation), it was shown that the online-coupling can be implemented for

multiple particle separation techniques. Thus, the optimal technique can be selected based on their

respective advantages and disadvantages. In addition to the chemical identification by the novel RM

flow-cell, physical characterization of the particles was performed by a UV and multi angle light scattering

(MALS) detector, providing the particle size distribution. Thus, the foundation for a multi-detector system

has been laid, which will enable a comprehensive nanoplastic analysis, as well as the application to a

broader set of particulate samples.
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Zusammenfassung

Die neuartige Problemstellung der Nanoplastik-Belastung ist von Bedeutung, weil Nanoplastik im Ver-

dacht steht, Gesundheit und Umwelt negativ zu beeinflussen. Um eine belastbare Risikobewertung zu

ermöglichen, sind belastbare analytische Methoden zur chemischen Identifizierung und Quantifizierung

notwendig. Allerdings sind die etablierten Techniken der Mikroplastik (MP)-Analytik in Bezug auf kleine

Partikelgrößen und -massen limitiert. Ebenso sind vorhandene Techniken für die Nanopartikelcharakter-

isierung nicht in der Lage, eine chemische Identifizierung zu gewährleisten, welche für eine korrekte

Quantifizierung essentiell ist. Die vorliegende Arbeit hat zum Ziel, diese analytische Herausforderung

durch die Entwicklung neuer Methoden für die Raman-Mikrospektroskopie (RM) in Kombination mit

Rasterelektronenmikroskopie (REM), Feldflussfraktionierung (FFF) und Chemometrie zu lösen.

Zu Beginn wurde ein kritischer Übersichtsartikel publiziert, der zum einen den Stand der Technik der

Nanoplastikanalytik darstellt und weiterhin eine Diskussion beinhaltet, die methodologische Lücken und

Techniken, die aus bestehender Nanopartikel- und MP-Analytik adaptiert werden können, adressiert.

Dieser Artikel entwirft somit einen Fahrplan, der die Problemstellungen und möglichen Techniken für

jeden einzelnen Schritt in der Nanoplastik-Analytik thematisiert. Dies beginnt bei der analytischen

Fragestellung und Probenaufbereitung, geht über Methoden zur Partikeltrennung, Bildgebung und

physikalischen Charakterisierung, und umfasst schließlich die chemische Identifizierung der Partikel.

Anschließend wurde die untere Größenbegrenzung der RM, ergänzt durch REM, für die Analytik von

Mikro- und Nanoplastik untersucht und seine Anwendbarkeit bis hinab zum theoretischen Diffraktionslimit

bei ca. 0.25 µm experimentell demonstriert. Dies wurde für sphärische und irreguläre, fragmentierte

Partikel, wie sie in der Umwelt zu erwarten sind, getestet. Nach dieser qualitativen Untersuchung zu un-

teren Grenzen einer mikrospektroskopischen Größenidentifizierung und chemischen Charakterisierung

wurde die Quantifizierung von Partikeln auf den Ramanfiltern thematisiert. Ein Hauptproblem ist hier die

Gewährleistung einer statistisch belastbaren Bestimmung von MP-Anzahl und dem Verhältnis von MP zu

nicht-MP. Dies wurde gelöst, indem ein Messalgorithmus für individuelle Partikel basierend auf Window

Sampling formuliert wurde. Anhand von simulierten Ramanfiltern wurde der Fehler (Bias) und die Stan-

dardabweichung für den Fall untersucht, dass Fensterpositionen, innerhalb derer Partikel ausgezählt und

charakterisiert werden, zufällig oder systematisch gewählt werden. Es zeigte sich, dass zufällige Fenster

einen Bias verhindern, allerdings bringen diese eine erhöhte Standardabweichung mit sich. Zudem

wurde gezeigt, dass wenige große Fenster, im Gegensatz zu vielen kleinen, diesen Bias bzw. erhöhte

Standardabweichung verstärken. Da die notwendige Gesamtpartikelanzahl nicht bekannt ist, um ein

Konfidenzintervall (CI) zu berechnen, wurde eine Bootstrapmethode implementiert. In diesem on-the-fly

Messalgorithmus wird zunächst ein kleines Inkrement der Partikel/Fenster gemessen und ausgewertet.

Mit diesen Daten wird durch Bootstrap das entsprechende CI geschätzt und daraus abgeleitet, ob es

unterhalb eines bestimmten Akzeptanzkriteriums liegt. Ist dies der Fall, wird die Messung beendet,

andernfalls wird ein weiteres Inkrement charakterisiert, bis die Gesamtheit der ausgezählten Partikel

die gewünschte statistische Sicherheit ermöglicht. Somit ermöglicht dieser on-the-fly-Algorithmus die

Bestimmung eines optimalen Endpunktes, so dass keine Messzeit verschwendet wird.
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In einem letzten Projekt wurde eine Nanoplastik Analyse verfolgt, die Partikelzahl und -größenverteilung

nicht aufgrund von Bild-basierter RM charakterisiert, sondern basierend auf Partikelgrößentrennung

und daran anschließender chemischer Identifizierung. Hierzu wurde RM online an die FFF gekoppelt,

indem eine Flusszelle auf Basis des Optical Tweezer-Effekts entwickelt wurde. Dieses Setup wurde für

Partikelgrößen von 200 nm bis 10 µm, Partikelgehalte in der Größenordnung von 1 mg/L (109 Partikel L-1)

und verschiedene Materialien (polymerisch und anorganisch) validiert. Anhand von zwei Varianten

der FFF (Asymmetrischer-Fluss-Feldflussfraktionierung & Zentrifugale Feldflussfraktionierung) wurde

gezeigt, dass diese Onlinekopplung für verschiedene Partikeltrenntechniken eingesetzt werden kann,

wobei die Wahl der jeweiligen Methode gemäß ihrer jeweiligen Vor- und Nachteile getroffen werden kann.

Durch den Einsatz eines UV- und multi angle light scattering (MALS)-Detektors kann eine physikalische

Charakterisierung der Partikel hinsichtlich ihrer Größenverteilung erreicht werden. Zusammen mit der

neuen RM-Flusszelle wurde nun der Grundstein für ein Multidetektorsystem gelegt, das eine umfassende

Nanoplastikanalytik, sowie die Anwendung für eine Bandbreite anderer partikulärer Proben ermöglichen

kann.
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Chapter 1

Introduction

1.1 What is Microplastic?

1.1.1 Definitions

Microplastic (MP) are particles from synthetic polymers that are classified according to their size1–4.

MP is defined as plastic particles in the size range of 1 µm – 1 mm, whereas particles between 1 mm

and 5 mm are called large MP, to incorporate the historical size definition, which initially extended

into the millimeter range5. Particles below 1 µm are called nanoplastic and sometimes an additional

distinction between subµ-plastic (100 nm – 1 µm) and nanoplastic (< 100 nm) is made2,4. Moreover, MP

is commonly differentiated according to its origin. Particles that are produced for a specific application

with these dimensions (e.g. abrasives in cosmetics) are termed primary MP, whereas particles resulting

from the fragmentation of large plastic debris in the environment, due to various stressors, are called

secondary MP1,2.

These two criteria are most common in MP studies. However, this analyte is vastly more complex, which

is not reflected in this reduced definition. Moving towards harmonization and comparability of data, it

is important that the relevant characteristics of MP are clearly understood and documented. To this

end, the following categories have been suggested: chemical composition, physical state, solubility in

water, size, shape, color and origin4. Other authors have proposed an even more general approach

by eliminating the categorical nature of the common data reporting, where sizes, shapes and polymer

types are presented in distinct categories. It should rather be reported as a fitted function for the size

distribution, the ratios of the xyz dimensions of the MP and the density, replacing the polymer type6.

1.1.2 The Omnipresent Contaminant

Synthetic polymers are an essential part of our lives. They offer the generation of wealth and a high

standard of living for a broad population. This is reflected in the huge production capacity of polymers,

which lies in the megaton range7. It is, however, also the case that a substantial part of these plastics

end up in the environment – a problem that is also in the megaton range8. The marine environment is the
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first point of observation for this contamination, which now appears globally, due to the interconnected

nature of our production and waste treatment pathways8,9 as well as the food chain10,11.

Plastic reaches the aquatic environments via waste water treatment plants (WWTP)9 and rivers8, where

it is exposed to diverse stressors, ranging from ultraviolet (UV) light to mechanical forces, that effect the

fragmentation to MP12 and nanoplastic13–15. The main entry path into terrestrial systems16 is via sewage

sludge from WWTPs17, mulch foils18, and tire wear19,20. Some studies also document airborne MP21.

The harmfulness22 of MP is hypothesized to be based on its particulate nature itself and also on the

various additives, which are blended into the material. Furthermore, MP can function as a vector for

pollutants and pathogenic microorganisms and viruses1,2. However, studies that quantify the effects

of MP produce partly contradicting results, ranging from none to severe effects23–25. This emphasizes

the need for improved and harmonized analytical techniques that provide the data for reliable studies

enabling regulatory agencies to tackle this issue.

1.1.3 Analytical Tools for Microplastic

1.1.3.1 The Analytical Question

Every analytical measurement starts with a question: What is the quantity of interest? Only if this question

is clearly defined, a sensible and suitable analytical method can be applied. This is especially true for a

diverse analyte such as MP with its multitude of properties and characteristics (see Section 1.1.1), of

which only a subset will constitute the required parameters for each individual study. These considerations

must start with the investigated system, such as surface waters, sediments, organisms, or food samples,

and sampling must take into account the required characteristics of the MP, which are relevant in

the study (e.g. environmental fragments, fibers, or tire wear). In terms of chemical identification, the

general decision between total mass of MP in a sample vs. a detailed particle size distribution needs

to be made. Here, the trade-off is that measurements of the mass content are comparatively quick,

whereas microspectroscopic techniques provide a large degree (such as particle sizes or distribution) of

information at the cost of longer measurement times3.

1.1.3.2 Sampling and Sample Treatment

The sampling procedure depends on the investigated system. Water samples from aquatic environments

are typically sampled volume-reduced (i.e. the particulate matter is taken from the water sample on-

site, typically by filtration or nets)5, whereas sediments are sampled in bulk3. Proper planning is very

important and includes aspects of sampling points and sample size, which effect the reliability and

representativeness of the study26. Furthermore, contamination control is of utmost importance, since

plastic is a ubiquitous material in every laboratory. It is not only present in material and equipment, but

also in clothing and gloves. Thus, using a laminar flow box is virtually obligatory3,27.

2
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Most samples will exhibit a relatively low concentration of MP and contain a large amount of inhibiting

matrix, thus, a sample treatment is necessary. Matrix can be composed of organic and inorganic matter,

which, in most cases, will have to be removed before any subsequent analysis can be performed. In

Raman microspectroscopy (RM), the natural fluorescence of organic matter (e.g. from carotenoids or

chlorophyll) is orders of magnitude larger than the Raman signal2, emphasizing the need for its removal.

Only in few, rare cases (e.g. drinking or tap water) can the sample be directly processed for chemical

identification, e.g. by filtration onto a filter for Fourier-transform infrared (FT-IR) microspectroscopy or

RM.

The removal of organic matrix can be performed by a variety of protocols. The list comprises acid

(HNO3, 65 %), alkaline (NaOH, KOH, dilute, e.g. 1 M or concentrated, e.g. 10 M), oxidative (H2O2 (30 %),

Fenton’s reagent (Fe(II) + H2O2), O3), or enzymatic treatments28–30. Further, some laboratories employ

sodium dodecyl sulfate and ultrasonic treatment31, the latter of which should be avoided, though, since

MP is shown to break down to smaller fragments under the influence of ultrasound32,33.

Aggressive chemicals can cause morphological changes of the MP particles34. For instance, alkaline

treatments affect polymers that are prone to hydrolysis, such as polyamide28. Other studies report a

leaching of fluorescence markers by acids, bases, or H2O2
35. For nanoplastic, most of the common

treatments showed to cause agglomeration35. Enzymatic treatments offer a less harsh alternative, which

can avoid many of the abovementioned sample alterations. The disadvantage of the enzymatic treatment,

however, is its long processing time of about 2 weeks30. It has to be noted that among different studies,

different efficacies and prevalences for the treatment protocols are reported. Thus, it is advisable for new

studies to perform a preliminary validation of the treatment on the stability of the particles, taking into

account the plastic types, sample characteristics, and sizes in question.

To remove inorganic matrix, as present in e.g. sediment samples, a common technique is density

separation2, for which the Munich Microplastic Sediment Separator (MPSS) can be employed. The

MPSS is a stirred container, in which 6 kg sample and 30 L ZnCl2 solution are stirred to a slurry and

then sedimented. Due to the density of the separating solution (ZnCl2: 1.6 – 1.7 g/mL), the lighter plastic

particles float on top and sediment remains at the bottom. A ball valve facilitates the decanting of the top

layer, which can be further treated, e.g. by filtration36. Next to ZnCl2, other solutions like NaCl (1.2 g/mL),

CaCl2 (1.3 g/mL), NaI (1.8 g/mL), or sodium polytungstate (1.4 g/mL, up to 3.1 g/mL) can be used.

The density of the respective salt solutions determines whether denser polymers like polyoxymethylene

(POM) can be separated, as well. In many cases, a trade-off has to be made, as e.g. NaCl is inexpensive

and non-toxic, but does not separate all polymer types (e.g. PVC, POM), whereas sodium polytungstate

has a higher density, but is quite expensive, and ZnCl2 is a good compromise of cost and density, but is

toxic and dangerous to the environment and needs special care when used2.

1.1.3.3 Chemical Identification and Quantification

The treated sample has to be subjected to an identification step to ensure the correct quantification of the

mass and/or number of MP among the total sample. This step is essential, since a distinction between
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natural particles and plastic particles has to be made because (i) any physical separation cannot be

assumed to be perfect and (ii) some samples are not subjected to a separation.

In the early stages of MP analysis, studies relied on a visual inspection alone, in some cases using a light

microscope, due to simplicity and cost-effectiveness. Particles are sorted by optical criteria like color and

shape5. This approach, however, has been heavily criticized, since polymer particles exhibit a multitude

of morphologies and, when altered by environmental influences, can be visually indistinguishable from

natural particles. This results in a large risk of false positives5,37.

Therefore, a chemical identification and quantification has been established, for which mainly two

analytical chemical approaches have been applied: (i) mass-based thermoanalytical methods, which

pyrolytically fragment the sample and analyze the indicative molecules by gas-chromatography/mass-

spectrometry and (ii) particle-based vibrational spectroscopic methods, in which molecular vibrations

are excited by infrared light (FT-IR) or monochromatic, visible light (inelastic scattering, Raman effect).

These methods enable the unambiguous identification of the polymer and in some cases the additives,

which results in far less error concerning the MP attribution compared to an approach based on visual

identification alone1,2,38.

The thermoanalytical methods primarily comprise two variants: pyrolysis-gas-chromatography-mass-

spectrometry (Py-GC-MS) and thermo-extraction-desorption-gas-chromatography-mass-spectrometry

(TED-GC-MS). Both identify the polymer type (and additives) by detecting thermal decomposition

products (desorbed molecules, respectively) by GC-MS and deliver an output based on the total mass

content of MP in the whole sample.

With Py-GC-MS, isolated particles are subjected to a temperature program, which first desorbs volatile

organic compounds and pollutants at app. 350 °C and then pyrolyzes the particle at app. 600 °C – 700 °C.

The polymer type is identified by comparison of the pyrogram with a validated database of known

polymers39,40. Polar polymers may require the presence of a reactant, i.e. thermochemolysis, for proper

pyrolyzation and chromatographic separation (e.g. hydrolysis or methylation)41. Mass quantification

is performed by external calibration42 with a limit of detection (LOD) of 0.01 – 1 µg, which is strongly

dependent on the polymer type43.

TED-GC-MS, on the other hand, uses a thermogravimetric analysis unit (TGA), in which the sample

is pyrolyzed and volatile fragments are collected on a solid-phase adsorber, which is subsequently

analyzed by thermodesorption-GC-MS44. This method requires a validation of the polymer types in

question45, in which polyethylene poses a particular challenge46. TED-GC-MS also enables the analysis

of tire wear47. By the use of the TGA unit, a larger sample size can be processed (up to 100 mg,

compared to 5 mg in Py-GC-MS). Quantification is also performed by external calibration, and LODs

range from 0.5 µg – 2.5 µg3. An automated instrumentation48 enables a fast and simple analysis even in

the presence of a matrix46.

Another established group of methods for the chemical identification and quantification of MP is based

on vibrational spectroscopy. Here, vibrational transitions in the molecules are excited, resulting in a

characteristic fingerprint spectrum. This enables an unambiguous identification of the polymer. FT-IR
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detects the absorption of infrared light, whereas RM detects the inelastic scattering of visible, (near) IR,

and UV laser light.

FT-IR is used for MP analysis with two variants. Attenuated-total-reflection-FT-IR (ATR-FT-IR) is chosen

for the manual identification of single MP particles. Due to the manual handling of the particles, there is

a practical size limitation2 of around 500 µm. Smaller particles can be identified with FT-IR microscopes

(µ-FT-IR), which provide chemical imaging of complete filters by utilizing focal-plane-arrays (FPA). Thus, a

larger number of particles can be analyzed33,49. This creates a very large dataset, for which an automated

data processing/analysis is necessary50. The result of the measurement comprises the characterization

of single particles in terms of size, shape, and chemical identity down to 10 µm2,38. Moreover, the

spectroscopic analysis can also identify additives in the polymer, like softeners or stabilizers51.

RM is a combination of Raman spectroscopy and optical microscopy, which uses lasers in the visible,

near-IR, or UV spectrum. Hence, it can give a better lateral resolution. This enables the analysis of MP

down to 1 µm (and below)1,2. It also effects a higher precision when analyzing smaller particles51,52.

RM can identify additives, including pigments, together with the polymer type. However, fluorescent

samples (containing e.g. chlorophyll or carotenoids) inhibit the spectrum acquisition, since fluorescence

is orders of magnitude stronger than the Raman effect. This can be avoided by either removing organic

matrix or photobleaching, i.e. irradiating the sample with the Raman laser to decompose the fluorescent

components2. A great advantage of RM is its insensitivity to water, which permits the analysis in a

flow-cell, as performed in this thesis, or the analysis of biota samples.

Spectra acquisition in RM is performed on individual points, thus, for each particle, one spectrum is

recorded. For automation and quantification, this implies that, initially, an optical microscope image is

acquired and processed by image recognition53, giving the coordinates of all particles. From these, a

subset for analysis is selected26, which is then targeted by the RM and measured. This subset needs to

be large enough to satisfy the quality requirements for the analysis. Then, database matching provides

the particle identity and gives a chemically correlated size distribution of up to 7000 particles54. The

automated routines enable the analysis of larger numbers of particles, which give more reliable data and

remove operator bias26.

These advances in the RM analysis of MP, together with automation routines, have increased the particle

numbers that can be measured. Consequently, smaller and smaller particle size ranges are being

targeted so that the transition from MP to nanoplastic is emerging as a new frontier in the global plastic

contamination issue with a new set of methodological challenges.
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1.2 Nanoplastic: The New Frontier

1.2.1 Why Bother?

Nanoplastic is expected in the environment, since the plastic particle contamination is mainly sourced

from the fragmentation of large plastic debris13–15. These fragmentation processes can be mechanical55

or by UV radiation15. Initially, the main focus was on MP so that only in recent years, interest in smaller

and smaller particles has led to the emergence of a dedicated focus on nanoplastic. Hence, research

on the topic is still scarce. Nonetheless, a study showed the presence of nanoplastic in personal care

products56, others confirmed the presence of nanoplastic in the Atlantic ocean57 and in snow58, and it

was also shown that MP could be fragmented to nanoplastic by biota59.

Concerning the size definition of nanoplastic, there are currently two approaches: On the one hand, the

whole nanometer range from 1 nm – 1000 nm is called nanoplastic, based on the consideration that

particles in this size range exhibit colloidal behavior60. On the other hand, a distinction is made between

the sizes of 1 nm – 100 nm and 100 nm – 1000 nm, which are denoted nanoplastic and subµ-plastic,

respectively4. The latter incorporates the size definitions for nanomaterials by the European Commission,

which defines an object with at least one dimension smaller than 100 nm as a nanomaterial61. This thesis

will use the term nanoplastic to address plastic particles in the whole nanometer range. Occasionally, a

distinction in two classes will be useful and will be made in appropriate places.

The decreasing size of nanoplastic particles effects a very large surface to volume ratio and, consequently

they will display a different behavior in the environment and organisms compared to MP. Concurrently,

from the analysis of MP size distributions and the resulting power law6, an exponential increase in the

particle numbers can reasonably be assumed for nanoplastic. Some knowledge can be drawn from

engineered nanoparticles as well as MP research62,63, however, there are distinct differences between

the MP and nanoplastic64. Indeed, in the environment, nanoplastic displays colloidal behavior60, and will,

hence, stay dispersed, unlike MP, which tends to settle64. It also has a propensity for heteroaggregation

with natural organic and inorganic matter65–67. Moreover, its large surface area implies an increased

potential for the leaching of additives64 and the sorption of organic pollutants68. In an organism, the

loaded particles can release the pollutants more effectively and pose a toxicological threat, as was

shown for polychlorinated biphenyls in daphniae69.

Nanoplastic showed effects on biota70, hence while the scientific community discusses whether MP is of

toxicological relevance23–25, the risk that nanoplastic bears may be greater due to its smaller size. In

this regard, acute toxicity tests on biofilms indicated toxicity for nano-sized particles (100 nm), where

larger particles (0.5 µm – 9 µm) showed no effects71. Other reports showed that nanoplastic is able to

penetrate the blood-brain barrier11,72, disturb73 and transfer through74 lipid membranes, persist over

multiple generations in the organism75, or exhibits trophic transfer10,11. Recently, the accumulation in

plants has also been reported76.
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In the light of these new effects, properties, and behaviors that are to be expected of nanoplastic particles,

it is all the more important to provide analytical techniques and methods that are capable of providing

reliable data on this emerging analyte. Dependable conclusions to approach this issue can only be

derived and detailed knowledge be achieved with a suitable methodological toolset available.

1.2.2 The New Analytical Challenge – Knowledge Gap

The most vital aspect of the analysis of the plastic contamination issue is the chemical identification

of the particles, to avoid false positives5,37 (Section 1.1.3). For nanoplastic, the particles can not even

be observed optically, which accentuates the need for chemical identification. Furthermore, although

somewhat counterintuitive, the expected exponential increase in particle numbers6 is accompanied by

lower mass contents, due to the dependency of the mass to the third power of the diameter d3. Hence,

analytical techniques appropriate for nanoplastic have to provide chemical information and also have to

exhibit low limits for size detection or low limits of detection in terms of mass determination.

As a consequence, we face a methodological gap in analysis when approaching the nanoplastic size

range. The established techniques for MP particle analysis hit their size limit in the low micrometer range.

Since the particle-based spectroscopic techniques, µ-FT-IR and RM, are integrated into a microscope,

their size range is determined by the diffraction limit, which, in turn, depends on the parameters of

the optical components and the observed wavelengths. Hence, this limit is placed at ca. 10 µm for IR

radiation and (according to the state of the art) ca. 1 µm for RM, which uses visible light2,51. Aside from

spectroscopic techniques, there are thermoanalytical techniques, which are also established for the

analysis of MP. Here, the resulting information is a total mass content. So, these techniques are not

subject to size limitations42,45. They do, however, require a sufficient LOD to enable the analysis of the

exponentially decreasing mass fraction of nanoplastic, which needs to be alleviated by a preconcentration

step57,77.

Here, the focus is put on the spectroscopic techniques, specifically RM, since these give a higher degree

of information on the size distribution and morphology on the level of individual particles. In addition,

RM can, in principle, provide this analysis on particles even in the subµ-range, giving access to optical

characterization of a part of the nanoplastic range and pushing the need to change the instrumental

approach down to a lower size threshold. This high degree of data is especially relevant for research,

since this challenging analyte needs to be understood well before regulatory action and fast routine

analysis with reduced information content can be implemented.

So far, the focus of this introduction has been on methods for MP analysis that are able to chemically

identify the particle. On the other hand, there is a wide range of knowledge on engineered nanopar-

ticles (ENP) in the environment and techniques for their physical rather than chemical analysis78–81.

For instance, light scattering techniques or electron microscopy are some of the most common and

routinely used representatives. Ergo, there are some methods that can possibly be transferred to the

analysis of nanoplastic. However, most of the techniques for nanoparticles only offer a physical particle

characterization, usually in terms of particle number, size, particle size distribution (PSD), or morphology.
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There are no methods that can provide the crucial chemical identification, yet. Furthermore, since ENPs

are mostly inorganic, the techniques for nanoparticles that actually give chemical information do so on an

elemental basis, like ICP-MS81, and are not sufficient for the identification of polymer type and distinction

of the carbon-based polymer particles from natural organic matter.

Consequently, new approaches in the analytical methodology need to be established. This, on the one

hand, can be achieved by pushing the limits of the established methods down to cover (part of) the

nanoplastic range. On the other hand, different techniques, which offer characterization for different

aspects of inquiry (e.g. Raman spectroscopy for chemical identification and light scattering for physical

size characterization) can be combined to close the current methodological gap. This can be relevant for

exploring the very small size range of nanoplastic, as established ENP techniques have the capability to

analyze these nanoparticles. Furthermore, many of the relevant techniques for the analysis of nanoplastic

and even very small MP are microscopy- or imaging-based and are facing issues with measurement

times, which scale with the data points required for reliable quantification of the exponentially increasing

particle numbers. Hence, an optimization towards representativity, high-throughput, and automatization

will be necessary.

1.2.3 State of the Art

In recent years, the analysis of nanoplastic has become an emergent topic of interest. At the beginning

of the thesis (October 2017), however, there was a very limited number of studies pertaining to this issue.

The earliest reviews proposed sources and effects of nanoplastic based on knowledge from polymeric

nanoparticles (mostly polystyrene latices)82. Knowledge was extrapolated from the environmental

behavior of ENPs onto MP to estimate the behavior of nanoplastic62.

The earliest investigations on the topic demonstrated that, indeed, nanoplastic is formed from larger

plastic debris by different fragmentation mechanisms. Gigault et al. exposed plastic, collected at a

beach, to solar radiation and analyzed the resulting nanoplastic by dynamic light scattering (DLS)

and transmission electron microscopy (TEM)13. Subsequently, Lambert et al. showed that also typical

polymers from single use consumer products fragment to nanoplastic by UV irradiation14,15. Actually

detecting nanoplastic was restricted to few studies. One showed the existence of primary (i.e. specifically

produced) nanoplastic in facial scrubs by scanning electron microscopy (SEM) and spectroscopic

methods (FT-IR, X-ray photoelectron spectroscopy, XPS)56. Another study confirmed the presence of

nanoplastic in the Atlantic Ocean by Py-GC-MS, after ultrafiltration preconcentration (factor of 100)57.

Furthermore, it has been documented that plastic particles fragment to nanoplastic in biota, i.e. the

Antarctic krill (Euphausia superba), which has a strong mastication apparatus59.

Concerning the environmental behavior of nanoplastic, first model studies were performed on polystyrene

latices, documenting heteroaggregation behavior with natural organic matter and inorganic colloids65,66,83.

The analytics applied in these studies were mainly based on DLS and SEM.
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Regarding the abovementioned methodological gap in the analytical methods, the need to push the

application range of RM down to smaller MP particle sizes has been discussed in earlier reviews26,84.

And in principle, the use of RM on nanostructured objects is theoretically possible85 and was performed

e.g. in a microtechnological application, in which 300 nm wide silicon strips were laterally profiled with a

resolution of 140 nm by RM with 1.3 N.A. objective and UV laser (364 nm)86. Another application showed

the spectrum acquisition of a 40 nm PS latex bead with a 1.25 N.A. Raman tweezer setup (730 nm,

120 mW)87. However, the application of RM on environmental plastic particles has not been shown in

the nanometer size range. Reports are limited to micrometer-sized particles, with the smallest particles

detected ranging from 5 µm to 10 µm in the respective studies31,51,88,89.

Moreover, the automation for the quantification of MP with RM is an important advance to be made26,

since the manual particle analysis is very time consuming and labor intensive88. It further enables the

measurement of greater numbers of particles, which increases the reliability of the data and removes

operator bias26. However, the development of such automated routines for MP is still in progress53,

except for some commercial RM control softwares, which offer sequential analysis of measurement

points90,91. Considerations on the particle selection have, consequently, also been limited to windows

with areas that could reasonably be analyzed. These windows are placed in an arbitrary89 or somewhat

structured38 pattern. Hence, automation needs to be advanced to enable the optimal – random26,92–94 –

particle selection.

Py-GC-MS as particle size-independent technique (see above) was shown to be able to identify nanoplas-

tic in a model application with a 100 nm PS latex77 and in the detection of nanoplastic in the Atlantic

ocean57. These studies, however, needed to apply a preconcentration by either a crossflow ultrafiltration

(factor 200) or a dead-end ultrafiltration (factor 100), respectively. The second established thermoanalyt-

ical method for MP analysis, TED-GC-MS45, has not been investigated for nanoplastic yet, but might

benefit from the greater sample volume, if the reduced sensitivity compared to Py-GC-MS is alleviated.

XPS has also been used for nanoplastic identification56,95 by the specific binding energies of the orbitals

giving insight in the molecular structure96. Current applications of XPS, however, are based on reference

matching – an identification of an unknown environmental sample needs to be performed yet. Further-

more, since the method observes bonding energies of the orbitals, an unambiguous identification of

many polymers might be difficult to achieve.

Field-flow fractionation (FFF) coupled to online detectors as particle separation and characterization

technique has the potential to provide an analysis on particles of a wide size range. Indeed, asymmetric-

flow field-flow fractionation coupled to UV and multi-angle light scattering (AF4-UV-MALS) was shown

to be able to investigate irregular and polydisperse nanoplastic particles97 and to process nanoplastic

(PS beads) after chemical digestion of biological matrix98. Mintenig et al. showed that offline Py-GC-MS

after AF4-UV-MALS characterization can be performed77. Chemical identification on the eluting fraction,

especially online-coupled, is rare and has not been implemented for nanoplastic. The commercially

available ICP-MS detector99 and an organic carbon detector (OCD)100 are only able to provide ele-

mental information on the sample and lack the specific structure elucidation required for nanoplastic

identification.

9



Chapter 1 Introduction

Nanoparticle analysis techniques that give physical characterization were used as well. Here, TEM and

SEM were both used to visualize (mainly primary) nanoplastic particles and derive a PSD60,66. Similarly,

the commercially available DLS66,83 and nanoparticle tracking analysis (NTA)14,15 were used to provide

size information and, in the case of DLS, the zeta potential. Further microscopic approaches were used

for the detection of nanoplastic: Fluorescence microscopy and confocal laser scanning microscopy

(CLSM) could be used to track the translocation of particles in the organism59,101. It was also emphasized

that the leaching of the fluorophore has to be accounted for102. Such an approach, however, might not

be feasible for environmental plastic, since it is not fluorescent.

Among the nanoparticle techniques, there are some that give chemical structure information. Scanning

probe microscopy (SPM) approaches were combined with Raman spectroscopy to tip-enhanced Ra-

man spectroscopy (TERS)103–105 and IR spectroscopy with atomic force microscopy-IR spectroscopy

(AFM-IR)106–108, providing vibrational spectroscopy with size limits of ca. 10 nm and 50 nm, respectively.

Additionally, the sub-diffraction photothermal IR spectroscopy/Raman spectroscopy109 could offer chemi-

cal identification in the subµ range. These techniques have not been used for nanoplastic analysis and

need to be validated for this application. They also need to account for the high measurement times and

the resulting representativity issues in particle selection.

1.2.4 How to Achieve Nanoplastic Analysis? – Goal of the Thesis

The new nanoplastic issue and its potentially negative impact on health and the environment makes

advances in method development imperative. This thesis aims to close the methodological gap as

described above (Section 1.2.2).

Since this field of inquiry is newly emerging, as a first step, a critical overview of the state of the art, the

established techniques in MP that can be adapted, and the techniques from ENP analysis that can benefit

the nanoplastic characterization is performed. Here, possible pathways for enabling nanoplastic analysis

with regard to the abovementioned demands (Section 1.2.2) are discussed and critically evaluated. Then,

a roadmap for a comprehensive nanoplastic analysis including sample treatment, preconcentration,

separation, and characterization is laid out.

Subsequently, technical solutions aiming at closing the methodological gap based on RM due to

the abovementioned advantages (Section 1.2.2) are developed. These solutions aim at tackling the

nanoplastic size range from two directions: Starting with methods of MP analysis, it is the aim to decrease

the lower bound of the application range and, secondly, to ensure statistically sound quantification even

of these small particles. In a third part, the nanoplastic size range is approached from the other end:

combining established nanoparticle techniques, specifically FFF, with Raman spectroscopy.

In the first part, the size limit of RM is pushed down to the subµ range, as estimated by the theoretical

description of the diffraction limit of around 0.25 µm, depending on the wavelength of the laser and the

numerical aperture of the instrument85. Hence, the presented work aims at illustrating the applicability of
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RM down to the theoretical limit and combining the RM analysis with high resolution imaging by SEM to

provide appropriate morphological characterization.

A second part of this thesis accompanies this effort by developing a measurement algorithm for the

particle-by-particle approach of RM. This is realized by employing chemometric methods, specifically

Theory of Sampling92–94, for a window-based particle selection and an error estimation by a bootstrap

method110. Hereby, a statistically sound quantification for the automated analysis of very small MP and

nanoplastic is pioneered.

In the third part, the combination of FFF, a suitable technique for nano-sized particles (and small

microparticles), with RM for chemical identification is realized for the first time. For this coupling,

a flow-cell has been developed that allows the online-coupling of Raman spectroscopy to FFF-UV-

MALS, enabling an automatable multi-detector setup, which provides particle detection (UV), size

characterization (MALS), and chemical identification (Raman) in one run. Moreover, two variants of FFF

(asymmetric-flow FFF, AF4 & centrifugal FFF, CF3) with their respective advantages and disadvantages

(see Section 2.3) are useda to enable a specific and modular analysis of the individual sample. This

technique aims to pave the path towards nanoplastic analysis with the potential for the application to a

much broader set of particulate samples.
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Chapter 2

Relevant Techniques for the Thesis

2.1 Raman Microspectroscopy

Raman spectroscopy and especially its surface-analytical variant, Raman microspectroscopy (RM) has

seen an immense increase in popularity in the last decades1 and is now a broadly utilized technique

for chemical identification and structure determination due to a variety of advantages. Among those

are its easy sample preparation, non-destructive nature, the insensitivity to water, which enables the

analysis of aqueous and living samples. Furthermore, the use of different laser sources in the visible

spectrum provides a tunable excitation and better resolution than infrared spectroscopy (IR). Hence, RM

finds many applications on topics covering environmental science (e.g. MP, aerosols), geology, art &

archaeology (e.g. pigments), medicine (analysis of biomolecules, bacteria, cells, tissue, ...), process

analysis (e.g. electronics, catalysis, nuclear industry), pharmaceutics, or forensics2,3.

The following chapter introduces fundamental aspects of Raman spectroscopy. These fundamentals and

a more in-depth and elaborated view of the matter can be found in the excellent books by Schrader4,

McCreery5, Ferraro et al.6, Smith & Dent3, or Popp & Mayerhöfer2.

2.1.1 Theory

2.1.1.1 Vibration

IR and Raman spectroscopy are vibrational spectroscopies, which excite molecular vibrations. These

are directly connected to the specific structure of the molecule and characteristic functional groups. A

basic model can be developed from Hooke’s law, which describes vibrations by the force of replacement

F = −k · x, where k is the force constant of the bond and x is the displacement from an equilibrium

position. With F = m · a it can be resolved to

ν =
1

2π

√
k

µ
(2.1.1)
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wherein

µ =
m1 ·m2

m1 +m2
(2.1.2)

is the reduced mass, m1, m2 are the masses of the bonded atoms and ν is the frequency of the vibration.

Vibrational frequencies ν can be converted to wavenumbers ν̃ and wavelengths λ by the correlation

ν̃ = ν
c = 1

λ and c, the speed of light. The energyE of this system is approximated in quantum mechanics

by the harmonic oscillator

E = hν(v +
1

2
) (2.1.3)

where h is Planck’s constant and v is the quantum number. To better include the inequivalency of the

transition energies and the border cases of dissociation and incompressibility for small displacement, it

is modelled by an anharmonic oscillator:

E = hcωe(v +
1

2
) + hcχeωe(v +

1

2
)2 + . . . (2.1.4)

where ωe is the wavenumber corrected for anharmonicity, and χeωe indicates the magnitude of anhar-

monicity.

Since energy levels in the harmonic oscillator are equidistant, the selection rule is ∆v = ±1 resulting in

only basic vibrations. For the anharmonic oscillator, it is ∆v = ±1,±2,±3, . . . , which also allows for

overtones. Further, the selection rules for IR and Raman spectroscopy imply that the vibration has to

change the dipole or the polarizability, respectively.

The population of the energy levels is described by the Maxwell-Boltzmann distribution, from which the

ratio of two levels can be written as
Pv=1

Pv=0
= e

−∆E
kT (2.1.5)

where −∆E is the energy difference between the two states, k is Boltzmann’s constant, and T is the

absolute temperature. This ratio determines the intensities of different transitions in Raman spectroscopy

(Stokes and Anti-Stokes bands, respectively, see below).

Vibrations transiently change the structure of the molecule, hence, the symmetry of the molecule

determines – and allows to predict – the normal modes of molecular vibrations. Furthermore, the

symmetry of any normal mode determines if it is strong or weak in IR or Raman, respectively. For

molecules with an inversion symmetry, there even is the rule of mutual exclusion, stating that modes

are either IR or Raman active. The vibrational modes appear in different types (e.g. stretching, in-plane

and out-of-plane bending, skeleton vibrations) and can be attributed to complete molecules (fingerprint,

< 1500 cm-1) or functional groups (e.g. carboxylic acid, or phenyl group)4,6.

The fact that functional groups tend to vibrate (almost) independently of the rest of the molecules in what

is known as group vibrations is vital for the interpretation of the spectra of polymers. Since, polymers

typically consists of many thousands of atoms and (non-linear) molecules have 3N-6 normal modes,

it would be impossible to analyze the spectrum of a polymer. However, due to the fact that polymers
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consist of repeating units, this complexity is reduce to a manageable spectrum. Thus, the spectrum is

dominated by vibrations of repeating units, which absorb/scatter in phase7.

2.1.1.2 Raman Spectroscopy

Vibrational spectroscopy is mainly performed in two variants: infrared spectroscopy (IR) and Raman

spectroscopya. These two are considered to be complementary as they excite different vibrations,

depending on their symmetry. Different instrumental approaches are pursued to excite and measure

the respective vibrational spectra. IR is based on the irradiation of molecules with light of the same

wavelength as the vibrational transitions (Figure 2.1, left). The spectrum is recorded by the absorption of

these wavelengths from the light source. In contrast, Raman spectroscopy utilizes the inelastic scattering

of visible light so that vibrational spectra are acquired as the difference of the incoming wavelength and

the scattered light, which is red/blue-shifted by the transition of the molecular vibrations. This effect was

first discovered by Sir Chandrasekhra Venkata Raman in 19289.

Fig. 2.1: Energy diagram (arbitrary y-axis scale) illustrating the transitions for IR absorption, Raman Scattering in the form of
Rayleigh, Stokes & Anti-Stokes and Resonance Raman.

For the scattering effects, the system can be treated as if it interacted with a virtual energy level to which

it is excited (Figure 2.1). In elastic, Rayleigh, scattering, the excited state on the virtual level relaxes to

the ground state and emits a photon with the same wavelength as the initial photon. In Raman scattering,

the system relaxes to an excited vibrational state (e.g. v = 1), thus, the emitted photon has a lower

energy. The difference equals the energy of the transition of the vibrational states. This form of inelastic

aThis thesis focuses on IR and Raman spectroscopy. There are more techniques that excite vibrational states, such as
photoacoustic spectroscopy, electron energy loss spectroscopy, inelastic electron tunneling spectroscopy, or inelastic neutron
scattering8.
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scattering is termed Stokes scattering. It is also possible for the scattering photon to excite a molecule

that occupies an excited vibrational state (e.g. v = 1) and when the system relaxes to the vibrational

ground state (e.g. v = 0) , the emitted photon has a higher energy. The difference also equals the

energy of the transition. This mode is called Anti-Stokes scattering and since it transitions from excited

vibrational states, the ratio of intensity of the Stokes and Anti-Stokes signal can give information on

the occupation of the vibrational levels, from which the temperature of the system can be calculated

(equation 2.1.5). If the incident laser wavelength matches with the energy of electronic transitions of a

molecule in the sample, Resonance Raman occurs, which gives a much stronger Raman signal6.

The intensity of the two spectroscopies correlate with the concentration of the sample, hence, they can

be used for quantification. Here, IR spectroscopy follows the Lambert-Beer law

A = log
I

I0
= εcd (2.1.6)

where, I0 and I denote the intensities of the incident and transmitted beams, respectively, ε is the

molecular absorption coefficient, c is the concentration of the sample and d is the cell length. It has to be

noted that the Lambert-Beer law loses linearity for high concentrations c. Contrary to this exponential

correlation, Raman spectroscopy follows a linear correlation with regard to the concentration c:

I = K(ν) ·A(ν) · ν4 · I0 · J(ν) · c (2.1.7)

where K(ν) describes the overall spectrometer response, A(ν) is the self-absorption of the medium, ν

is the frequency of the scattered radiation, I0 is the intensity of the incident radiation, J(ν) is a molar

scattering parameter, and c is the concentration of the sample. From this equation, it can be seen that

also the wavelength of the laser has a critical impact on the signal intensities. This is especially relevant

when utilizing infrared-lasers (see Section 2.1.2)6.

2.1.2 Instrumentation

RM is the combination of Raman spectroscopy with an optical microscope, which enables spatially

resolved chemical analysis of various samples. Most RM instruments comprise the following main

components2,10,11:

1. Excitation source, i.e. laser

2. Microscope unit, which also acquires optical images

3. Filter that removes Rayleigh scattering and stray light

4. Spectrograph that disperses light on a grating

5. Detector, i.e. CCD camera

6. Control/processing unit, i.e. computer
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2.1 Raman Microspectroscopy

Figure 2.2 shows the general setup of a RM, in which the sample is optically imaged by the microscope

and also irradiated with the excitation laser. This setup collects backscattered photons through the micro-

scope objective. Raman scattering passes through a filter, which eliminates the excitation wavelengths

and enters the spectrometer, in which it is diffracted on a grating with different densities of lines for the

respective resolution. Thus, the light is split by wavelength and is detected on a charge-coupled device

(CCD).

Fig. 2.2: Schematic setup of a Raman microspectroscope. A laser provides the excitation irradiation, which is directed via
beamsplitter and through a microscope onto the sample. Raman backscattering is collected by the microscope objective
and guided through the beamsplitter and filter into the spectrometer. There, it is diffracted on a grating, which disperses the
wavelengths onto a CCD detector.

Laser Since their implementation almost 50 years ago, lasers have been the basis for the broad

application of Raman spectroscopy, as they provide the required light intensity to off-set the low yield

of the Raman scattering. Today, very efficient lasers are available and many wavelengths can be

applied for analysis. Longer wavelengths (e.g. 785 nm) suffer from reduced intensities, as they correlate

with ν4 (equation 2.1.7). However, they can enable the analysis in samples, which would fluoresce,

if analyzed with visible light lasers (e.g. 532 nm). UV lasers also circumvent fluorescence and their

smaller wavelength can increase spatial resolution (see Section 2.1.3), however their instrumental

implementation requires special care (e.g. special mirrors).
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Filter Since the Raman scattering is much weaker than the elastic scattering (∼ 10−6), this Rayleigh

scattering would obstruct the Raman signal. Thus, a filter needs to be used, which blocks the wavelength

of the excitation laser. Mainly, two types are utilized: Edge filters are long pass optical filters, which

transmit all wavelengths above a certain cut-off (e.g. 534 nm for 532 nm excitation). Second, notch filters

only reject a sharp line (the excitation wavelength). Thus, notch filters allow the acquisition of Anti-Stokes

bands.

Microscope In RM, Raman spectroscopy is integrated in a microscope. Here, regular and inverted

microscopes are used and can be operated in reflectance or transmission mode. Further, optical

components such as darkfield, polarized light, or fluorescence excitation can be added as well. There are

also many different objectives for specific tasks, which have different magnifications, numerical apertures

(N.A.), or specific characteristics, such as water immersion or coverslip correction. Thus, a versatile

visualization is available. Raman microscopes are typically confocal microscopes, in which a pinhole

eliminates light from other planes than the focal plane. This improves the axial resolution (the lateral

resolution is also improved to a minor degree), which enables precise 2D and 3D mapping of samples.

The size of the pinhole opening determines the axial resolution and the signal intensity. A large pinhole

decreases resolution but gives a stronger signal10,12,13.

Spectrometer The spectrometer analyzes the Raman scattering by wavelength. In it, the grating is the

central component, diffracting light depending on its wavelength λ (and angle). Thus, a transposition of

spectral into spatial information takes place. This spatial information is then detected by a CCD camera.

The diffraction on the grating follows the grating formula

sinα+ sinβ = k · n · λ (2.1.8)

where α is the incoming angle, β the output angle, k the order of diffraction, and n the line (groove)

density, in grooves/mm (mm-1). Most commonly, the first order of diffraction (k = 1) is taken into

account.

There are different line densities available (e.g. 300 mm-1 – 1800 mm-1), where more grooves per mm

result in a higher spectral resolution. With high line density or longer path-length, the spectral region

becomes rather large. Hence, the spectrum has to be acquired in several windows (intervals of the

observed wavenumber region). To achieve this, the grating can be rotated.

Detector Detection in a RM system is performed on a CCD camera chip (charge coupled device) due

to the fact that CCDs are already optimized for use in the visible range (as well as UV and near IR). CCDs

are arrays of pixels, which generate charge depending on the incoming light intensity. Furthermore,

Electron Multiplying CCDs (EM-CCD) can be used to improve signal intensity due to low Raman

scattering. This leads to faster integration, which is especially useful for imaging.
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2.1.3 Lateral & Axial Resolution

When aiming at analyzing subµ- and nanoplastic by RM, the limiting factor for the smallest particle size

is the optical resolution of the microscope, since it determines which single particles can be targeted by

the Raman laser. This resolution is determined by the diffraction limit.

The lateral resolution is determined by the laser spot size, which, in turn, depends on the wavelength λ

and the characteristics of the instrument, i.e. the numerical aperture N.A.. The size is approximated

by an airy disc, whose diameter is dLaser = 1.22λ
N.A. . For example, with a green laser of λ = 532 nm

and a 100× magnification objective with a numerical aperture of N.A. = 0.9 the laser spot size is

dLaser = 0.72 µm. The actual spot size, of course, deviates from the theoretical one due to imperfections

in the setup and can be experimentally analyzed by a line scan across the sharp border of a test material

(e.g. silicon)14.

Aside the laser spot size, it is obvious that the criterion of when two (infinitesimal) points can be discerned

influences the resolution. Figure 2.3 shows some examples for such criteria. The Rayleigh criterion

puts the resolution at half the laser diameter (rRayleigh = 0.61λ
N.A. ). The 80 %-criterion demands that the

intensity between the two points is less than 80 % of the maximum (r80% = 0.42λ
N.A. ). Finally, the Sparrow

criterion only requires that the first and second derivative of the intensity of the combined peak is zero

(rSparrow = 0.33λ
N.A. ). The resulting resolutions for the above mentioned example setup (λ = 532 nm,

N.A. = 0.9) would then equate to rRayleigh = 0.31 µm, r80% = 0.25 µm and rSparrow = 0.20 µm,

respectively.

Fig. 2.3: Different resolution criteria for optical diffraction. Two infinitesimal points can be discerned by the (a) Rayleigh criterion,
(b) 80 %-criterion, (c) Sparrow criterion.

Although the lateral resolution is most important in this thesis, the axial resolution also plays an important

role. This is, again, determined by the airy approximation, where the sampling depth is daxial = 4nλ
N.A. ,

where n is the refractive index of the sample. This axial resolution is most improved by the confocal

pinhole, which eliminates out-of-plane scattering2,12–14.
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2.1.4 Raman Tweezers

During the treatment of particles in the low micrometer and nanometer range, the optical tweezer effect

can occur. This effect was first published in 1970 by Arthur Ashkin15 and describes the radiation pressure

on micrometer-sized particles. In other terms, a force is exerted on microscopic objects due to the

momentum transfer of photons onto the particles in a highly focused laser beam. The focussing is usually

achieved by a microscope objective of a high numerical aperture.

In this setup the particle is subject to two forces caused by the light. On the one hand, there is the

scattering force Fscatter, which propels the particle in the direction of light propagation and is a result of

the forward momentum of the photons. Second, the optical gradient force Fgrad directs the particles

towards the point of highest light intensity. Thus, for a laser spot with a Gaussian intensity profile, the

force is directed to the center of the focal point. The force is dependent on the gradient of the intensity,

thus a high numerical aperture objective is necessary. In the case that the gradient force is larger than

the scattering force, the particle will be pulled into the focal volume of the beam16, thus, creating a stable

3D trap (single-beam gradient force optical trap). This application is called „optical tweezers“ following its

first report by Ashkin in 198617.

There are different approaches to describe and model the gradient force. Each applies in one of three

regimes, depending on the size ratio of the particle d and the laser wavelength λ. If d � λ, the ray

optics approximation can be used, in which the force is modelled by a series of reflections on the particle

(inner/outer) surface18. When d� λ, the particles are considered as point dipole, which interacts with

the electric field of the light (dipole approximation)19. However, when the particle size is in the same

order of magnitude as the wavelength of the laser (d ∼ λ), those models are not sufficient. In this case,

the precise interaction of the electromagnetic wave with the particle has to be considered20.

The possibility of manipulating microscopic objects brought forward a plethora of applications for optical

tweezers ranging from nanoparticles, proteins, biophysics, to microorganisms or cells20–22. Moreover,

since RM and optical tweezers both utilize visible lasers and a microscope objective, it is possible to

collect a Raman spectrum from trapped particles, which is then called Raman Tweezers. This too has

found a variety of applications, such as spectroscopy of nanoparticles23 or blood cells24. It has been

used in an even more elaborate way, when trapped cells are identified by Raman spectroscopy and then

pushed into different eluent streams, thus causing a separation (Raman activated cell sorting)25.
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2.2 Scanning Electron Microscopy

Electron microscopy (EM) images samples by their interaction with electrons rather than with photons as

in optical microscopy. Thereby, several differences arise. Primarily the resolution is much higher, as it

is no longer bound to the wavelength of visible light. Here we focus on scanning electron microscopy

(SEM) instead of the other popular variant, transmission electron microscopy (TEM). The attainable

resolutions are in the range of 2 – 5 nm for SEM and 0.1 nm for TEM. In this work, SEM will complement

the Raman microscopic analysis, as it can provide a much better resolution and illustrate many otherwise

unobtainable, morphological details. This chapter will discuss the basic principles and instrumentation

of SEM. The fundamentals and a deeper elaboration of the matter can be found in the textbooks by

Michler26, Zhou et al.27, Ul Hamid28, and Goldstein et al.29.

2.2.1 Principle of SEM

In SEM, the imaging is performed by scanning an electron beam over the sample surface (as opposed

to transmitting the beam through a thinly sliced sample in TEM). This scanning of the sample causes

a variety of interactions of the electrons, which give different emissions. Figure 2.4 illustrates some of

them. The various emissions can be collected by their respective detectors (Section 2.2.2.3). It has

also to be noted that the electron beam focus diameter is in the size range of nanometers, whereas the

interacting electrons penetrate into a bulb-like volume with dimensions in the micrometer-range, which

constitutes the critical factor for lateral resolution.

Secondary electrons (SE) are caused by the interaction of the primary beam with the electron cloud

of the atoms of the sample, where electrons from the outer shells are ejected. These electrons have

lower energies than the incident beam and typically are generated in regions close to the sample surface.

Moreover, SEs can have different sources. If they result from the primary beam at the point of incidence,

they are called SE1. It is also possible that backscattering electrons, which have spread in the sample,

cause a SE to emit, which is then called SE2 and consequently results in worse resolution. Finally, SEs

can occur by the interaction of BSEs with the walls of the SEM sample chamber. These are SE3 and

occur as noise.

Backscattered electrons (BSE) are elastically scattered electrons of the primary beam that penetrate

into the sample and are directed out through the surface again, usually by interacting with multiple

atoms. Therefore, they typically emit from deeper regions of the sample, which implies that they do

not necessarily re-emit from the incident point of the primary beam. BSEs are defined by their energy,

which has to be larger than 50 eV. The backscattering efficiency correlates with the square of the atomic

number effecting that heavier metals in the sample give brighter signal.

X-ray emission can occur when the primary electrons knock out electrons from the atom shell, which then

constitutes an exited ionic state of the atom (cation). When this state relaxes, characteristic radiation is

emitted. If the missing electrons come from the inner shell, the resulting high-energy photons are X-rays,
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Fig. 2.4: Sample interaction volume and selected emissions by electron irradiation in electron microscopy. The primary electron
beam meets the sample at the incident spot and penetrates into the matter, where the different interactions occur at different
depths.

which can be used to perform elemental analysis on the sample. If an outer shell electron is knocked out,

the photon is in the visible range, this is then called cathodoluminescence. Another effect to note is the

emission of an Auger electron, which is ejected instead of a photon carrying the transition energy26,28.

The resolution of a SEM depends on both the spot of the focussed electron beam and on the penetration

depth. The minimal diameter d0 of the spot can be approximated by26

d0 =

(
4 · I0

π2 ·R

) 1
2

· 1

α0
(2.2.1)

where I0 is the beam current, R is the gun brightness, and α0 is the aperture angle. This implies

that smaller currents or a larger brightness R gives better resolution. The gun brightness includes the

diameter of the beam output of the gun and the scale of the demagnification by the condenser lenses.

Thus, the type of the cathode plays a critical role (see Section 2.2.2.1).

The penetration depth depends on the electron energy and the atomic number of the sample material

and effects the range of the electron interaction in/with the sample. This, in turn determines the visual

information, i.e. a high penetration depth provides information on the inner parts of the specimen at the

cost of the surface structure (see Figure 2.4).
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2.2 Scanning Electron Microscopy

2.2.2 Instrumentation

This and the next section will give a brief survey of the general setup of a SEM and its detectors. The

electron source and optics are within the so called electron column, detectors and sample are placed in

the sample chamber. Both are connected to a (in some cases, two) vacuum system.

Fig. 2.5: Schematic setup of a SEM comprising the column including electron gun and electron optics, sample chamber and
detectors (SE: secondary electron; BSE: backscattered electron; EDS: energy dispersive spectroscopy)

2.2.2.1 Electron Gun

The electron gun is the source of the electron beam. Here electrons are emitted from a cathode and

accelerated towards an anode. The potential pulling out the electrons (in SEM up to ca. 30 kV) that is

applied to the wire is called bias voltage. The size of the electron emitter tip determines the beam size
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at the anode, also called the crossover-point. Over time, the guns have been improved, as the older

thermionic W-filament is a simple bent fiber, whereas the more modern FE guns are microscopically

sharp tips, with a source radius of only ∼ 0.1 – 1 µm.

There are two types of guns: thermionic or field emission (FE). Thermionic electron guns (W-filament &

LaB6) are heated electrically to high temperatures (> 2000 °C) so that electrons are excited enough to

leave the metal and can be accelerated by an anode. FE guns use the tunneling effect, which occurs at

the extremely fine tips, where the local electric field becomes very strong. In Schottky emitters the effect

of the strong local field and a ZrO-coating on a W single crystal is combined with a medium temperature

(∼ 1500 °C), which is in itself too low for electron emission. Cold field emission guns, on the other hand,

are entirely based on the tunneling effect at the tip and work at room temperature26,28.

2.2.2.2 Electron Optics

In SEM, the electron beam from the gun has to be demagnified so that a narrow spot is formed on the

sample for appropriately high resolution (see Figure 2.5). This is achieved by the use of electron optics,

i.e. electromagnetic lenses. These have an impact on the electron beam by a magnetic field, which can

be varied in strength by the electric current. Electromagnetic lenses are composed of a copper coil in a

circular iron casing, through the center of which the electron beam runs. The magnetic field is located in

the center bore. Here, the perpendicular components of the magnetic field deflect the off-axis electrons

towards the beam direction (helically), effecting the electron beam to be (mostly) collimated.

The general setup (Figure 2.5) of the SEM comprises condenser lenses, an objective lens, an aperture,

scanning coils, and aberration correction (specific fine improvements are omitted for brevity). Here, the

reader is, again, referred to the literature26–29. Condenser lenses reduce (i.e. demagnify) the beam

diameter in a way comparable to optical lenses. The objective lens is the last lens before the sample,

which focusses the beam and has a different geometry to accommodate the sample below. The required

demagnification depends on the beam diameter provided by the gun. Thermionic guns produce a wider

beam, which usually requires three condenser lenses. The smaller beam from FE guns usually only

needs two. The beam passes an aperture, which has small holes of different diameter (∼ 5 – 500 µm) to

reduce lens effects (e.g. spherical aberration) and to control the spot size and beam current. Scanning

coils deflect the beam in the xy -direction to scan over the imaged area of the sample.

For appropriate focussing, some aberrations have to be accounted for. Spherical aberration occurs due

to a radially inhomogeneous magnetic field in the lens, which focusses the beam in a disk rather than a

in point. It can be controlled by a small aperture after the objective lens, which blocks off-axis electrons

that would form the disc. Chromatic aberration is caused by fluctuations in the acceleration voltage, i.e.

electron velocities and is a critical factor when working with small acceleration voltages. Astigmatism

is the result of an inhomogeneous field in the lenses due to instrument imperfections or contamination

and causes the focus to split along two axes. Thus, the image is distorted in one direction and moves to

a perpendicular direction, when the focus is changed. It is corrected by a stigmator, which is directly

placed in the objective lens and is able to apply a field on specific segments26,28.
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2.2.2.3 Detectors

Connected to the bottom of the column is the sample chamber, in which the sample is placed and the

different detectors are located. These detectors are each suited to collect specific emissions from the

interaction of the primary electron beam and the sample.

The most common type of detector for SEs is the Everhardt-Thornley (ET) detector, a scintillator-

photomultiplier. Here, the scintillator is placed close to the sample to collect electrons at an angle of

∼ 30 °. The entrance is shielded by a Faraday cage onto which a voltage is applied. A positive voltage

(+250 V) pulls in SEs and a negative voltage (-50 V) deflects SEs so that only BSEs are collected.

However, common SEMs have dedicated BSE detectors. It has to be noted that at positive voltages, the

image contains influences of both SEs and BSEs. Finally, photons from the scintillator are guided into

the photomultiplier tube, which amplifies the signal. From there on, the data is processed and the image

is generated.

Since the ET detector collects direct SEs from the sample but also BSEs and indirect SEs from the

interaction of BSE with distant spots on the sample (SE2) or the instrument itself (SE3), the resolution of

the image is degraded. This can be prevented by the use of in-lens SE detectors, which are placed in

the column, above the objective lens. They allow that the sample can be placed very close to the exit of

the electron beam at the objective lens so that its magnetic field only allows SEs to enter back up in the

column. This excludes much of the noise that would be collected on the ET detector and results in a

higher resolution and better sensitivity for surface layers28.

The BSE detector consists of a semiconductor (solid state) diode, which is typically divided into several

sub-panels. Those create a current when the high-energy BSEs hit. Scattering probability is highest

in the upward direction, thus, the BSE detector has a circular geometry and is placed below the pole

piece of the column so that the electron beam passes the center of the detector and low angle BSE are

detected26,28.

Energy dispersive spectroscopy (EDS), alternatively called energy dispersive X-ray spectroscopy (EDX),

enables chemical (i.e. elemental) characterization. The primary beam causes X-ray radiation (see

Section 2.2.1), which can be either characteristic radiation originating from the transition of electronic

levels or continuous radiation, resulting from the deceleration of the primary beam. Instrumentally, the

EDS detector is moved close to the sample and collects X-rays through a collimator and an electron

trap, which eliminate stray X-rays and electrons, respectively. Then, the radiation passes a beryllium

window and is detected on a semiconductor (usually, Li-doped silicon or Si drift detectors), on which the

photon generates a specific current that can be correlated to the energy of the X-ray. Finally, the number

of incidents can be used to quantify the specific elements in the sample27–29.
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2.2.3 Special Techniques

SEM is a versatile imaging technique, which has become relevant for many disciplines from fundamental

research to industry. Thus, it is not surprising that many special techniques were developed to analyze

samples with specific requirements, such as biological samples. In this section, a small selection,

comprising low vacuum SEM, Cryo-EM, and RISE, will be discussed.

2.2.3.1 Low Vacuum SEM

Low vacuum SEM or environmental SEM (ESEMTM) enables the analysis of samples that would suffer

from high vacuum and charging effects, like biological specimens or polymers without coating. Here a

gas atmosphere is introduced into the sample chamber, which alleviates pressure of high vacuum and

reduces charging due to the ionization of the gas (positive), which equilibrates the negative charge on

the sample surface. In low vacuum mode, however, the ET detector can not be applied. Thus, another

detector, which is based on cascade ionization by the SEs, is used. Here, the resolution becomes also

dependent on the gas pressure since high pressures broaden the primary beam, but on the other hand it

increases the intensity of the ion cascade. The operator needs to fine tune the parameters to suit the

respective sample26.

2.2.3.2 Cryogenic SEM

Cryogenic (scanning) electron microscopy (Cryo-SEM) offers the ability to analyze the structure of

complex biological or environmental samples, as it is present in the actual system. It also avoids

shrinking effects or destruction of e.g. cells. To this end, the sample suspension is deposited on a Cu-C

TEM grid, the excess is wiped off and the sample is then plunged into liquid ethane. This coolant is

chosen, as it has a high heat capacity and its thermal conductivity is much larger than liquid nitrogen

(ethane: ∼ 15000 K/s, N2: 500 K/s). Thus, sufficiently fast cooling is provided (> 105K/s). This step is

performed on specific plungers, which comprise a weighted rod, onto which the TEM grid is fixed, and

then dropped into the coolant. This fast cooling is essential to ensure that the water in the sample vitrifies

to amorphous ice rather than crystallizing. Thus, no expansion takes place and damage to e.g. cells is

prevented. Afterwards, the grid is transferred to liquid nitrogen for storage and subsequently inserted

to the SEM sample chamber on a cooled sample stage. Here, ice can be sublimated by a controlled

temperature increase. SEM imaging can be performed as usual30–33.

2.2.3.3 Correlated Raman Imaging and Scanning Electron Microscopy

The combination of Raman and SEM gives detailed information on a multitude of samples by providing

high resolution visualization by SEM and structural information by vibration spectroscopy and even the

potential for elemental analysis by EDS. An integrated solution has been developed, which avoids the
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necessity of transporting the sample between instruments. This technique is termed Raman imaging

and scanning electron microscopy, RISE microscopy. There are two possibilities to realize this coupling:

(i) by precise movement of the SEM stage to the microscopy objective, which is placed in the chamber,

next to the other detectors, or (ii) by utilizing a mirror that focusses the laser onto the sample under the

pole piece. For this application, the RM instrumentation has to be functional in vacuum34,35.

2.3 Field-flow Fractionation

Among separation techniques, field-flow fractionation (FFF) appears as prevalent technique for particle

separation, as it does not require a stationary phase. Thus, no principal size restrictions are imposed on

the analyte, which enables size ranges of e.g. 1 nm – 10 µm for asymmetric-flow field-flow fractionation

(AF4) or 10 nm – 20 µm for centrifugal field-flow fractionation (CF3)36. This qualifies this method for

the analysis of very small MP and nanoplastic37, for which there are, otherwise, not many alternatives

to tackle this entire size range. Thus, this section will briefly lay out the fundamentals of FFF, which

will be relevant for the studies of this thesis. More elaborate treatments can be found in the following

sources36,38–40.

2.3.1 Theory

The general setup of FFF (Figure 2.6) comprises a flow channel with a flat geometry, in which a

carrier fluid passes longitudinally with a flow rate that guarantees laminar flow. Further, a perpendicular

separation force is applied (uniformly) over the channel length, which can be of different nature. These

range from popular types such as hydrodynamic (i.e. by a cross-flow, AF4), thermal, or gravity, to more

experimental variants like electrical, dielectrophoretic, magnetic, or photophoretic36,41.

Fig. 2.6: Schematic setup of an AF4. Particles are injected via the inlet and focussed by keeping the particles in place using
the focus stream. A pump, which removes solvent through the permeable bottom, the accumulation wall, creates the separation
field. Separated particles elute via the outlet. To the right is a schematic plot of the concentration profiles of small and big
particles. The small particles have higher concentration to the center of the channel, which causes the separation42.

A force equilibrium occurs between the separating force U on the particle (e.g. liquid cross-flow) and

its diffusivity D (Brownian motion). Due to the parabolic profile of the flow velocities in the laminar
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flow, this equilibrium correlates with D and, thus, effects the location of the particles with regard to the

accumulation wall according to

c(x) = c0 · e−
x

λFFFw (2.3.1)

with c0 the concentration at the accumulation wall, c(x) the concentration at distance x perpendicular to

the accumulation wall, w the channel thickness, and λFFF the retention parameter. Figure 2.6, on the right,

illustrates two schematic concentration profiles for small and large particles. Their resulting equilibrium

position determines the retention of the particles, as those less affected by the separating force U are

located closer to the center of the stream where the laminar flow has larger flow velocities, which, in

turn, elute the particles faster. Thus, a spatial dependency of the particle properties is transformed into a

temporal one.

The correlating retention parameter expresses the force equilibrium by

λFFF =
D

U · w
(2.3.2)

which takes different forms, depending on the type of FFF. For asymmetric flow FFF (AF4)36, centrifugal

FFF (CF3)43, and thermal FFF (ThF3)36, these are, respectively:

λAF4 =
D · V 0

Vc · w2
(2.3.3)

λCF3 =
kT

meffGw
(2.3.4)

λThF3 =
D

DT
dT
dxw

(2.3.5)

where Vc is the cross-flow velocity, V 0 is the volume of the channel (i.e. void volume), k is Boltzmann’s

constant, T the temperature, meff = m∆ρ
ρs

, with m the particle mass, ρs the particle density, ∆ρ the

difference between particle density and carrier density, further, G = ω2r is the centrifugal acceleration,

with ω the angular velocity of the rotor and r its radius. DT is the thermal diffusion coefficient, DTD is the

Soret coefficient, and dT
dx is the Temperature gradient. From these, the hydrodynamic diameter dH for

AF4, mass and density, m and ρ for CF3, and the Soret coefficient DTD for ThF3, can be calculated.

The retention parameter λFFF is obtained in the experiment from the observable retention ratio

R =
V 0

V r
=
t0

tr
(2.3.6)

where V 0 is the void volume, V r the solvent volume that eluted until the analyte exits the channel, t0 is

the void time (i.e. elution time of unretained particle), tr is the retention time of the analyte. This ratio R

correlates to λFFF by

R = 6λFFF
(

coth
1

2λFFF − 2λFFF
)

(2.3.7)

which can be approximated by R = 6λFFF for sufficiently strong retention (V r > 6V 0) and spherical

particles. Thus, the separation experiment can be related to the characteristic properties of the analyte.
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E.g. in AF4, the diffusivity D is obtained, which can be converted to the hydrodynamic diameter of the

particles by the Stokes-Einstein equation

dH =
kT

3πηD
(2.3.8)

where η is the viscosity of the solvent38,39,44,45.

2.3.2 Working Principle

The working principle of FFF will be discussed on the example of AF4, as the general process bears

sufficient commonalities. Differences to CF3 will be noted in Section 2.3.2.2

2.3.2.1 Asymmetrical-Flow Field-Flow Fractionation

Commercial FFF instruments are equipped with a solvent supply and degasser, eliminating dissolved

gases and bubbles, which would be detrimental to the operation of the separation. The carrier fluid is

transported by HPLC pumps into the separation channel by the inlet port (see Figure 2.6), through which

the sample suspension is injected as well. This can be done either by manual injection into a valve or by

an autosampler.

The AF4 channel has a trapezoidal shape, which gets narrower towards the outlet, and its height is

determined (and varied) by spacers with heights available in the range of 100 µm – 500 µm. The bottom

of the channel (accumulation wall) is delimited by a porous ceramic frit, onto which a nanofiltration

membrane is placed, allowing the passage of solvent and dissolved (small) molecules but retains

particulate matter. The flow through the bottom membrane is called cross-flow and is usually performed

by syringe pumps, which enable a precise and constant flow.

An experiment has different phases. First, a focus step, in which the sample is injected, while a second

flow of carrier solvent, which enters through another port, several centimeters down-stream of the inlet,

counteracts the injection stream. This results in the particles retaining their position, while excess solvent

is removed by the cross-flow through the membrane. Hence, the sample is collected at the beginning of

the channel. The actual position of the particle cloud along the channel depends on the specific flow

rates of the individual pumps.

In the second step, the relaxation step, the whole sample is now in the channel, but the focus flow is left

active, so the particles still don’t elute. Now, equilibration of the forces can take place and each particle

type is located at its respective x position. If this phase is kept too short, the separation is not optimal

and larger amounts of sample are lost in the void peak (see below).

Finally, in the elution step, the focus flow is stopped and the elution takes place at a constant carrier flow.

During this step, the cross-flow is set to a predefined flow-rate profile, which has to be optimized for the

individual sample. Typically, the cross-flow is either set to a constant value, a linear, or an exponential
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decay. Ergo, in the process of elution, first, a void peak will occur, which contains dissolved small ions

and sample that has not achieved equilibrium. Then, particles will pass the channel in the order from

small to large. This order is present in normal mode elution, which is valid for particles smaller than

∼ 1 µm (the actual transition depends on the sample and the flow rates). Larger particles are subject to

steric mode elution. Here, they are sufficiently large to be affected by the force field in a way that they

are in contact with the accumulation wall. Hence, larger particles reach further in the channel, where

they experience higher flow velocities. This effects an inverse order of elution, where large particles elute

first36,38,39.

The AF4 channel permits two types of preconcentration of the sample. Since the particles are held in the

channel during the injection phase by the focus flow, while solvent is removed by the cross-flow, it is

possible to inject a larger sample volume and gather all particles in the starting point of elution. This,

however, is limited by the amount of particles, since a too high concentration degrades the quality of the

fractogram and also generates loss of particles on the membrane46. Secondly, the slot-outlet technique

enables an enrichment after separation, where at the end of the channel, a portion of the stream is

removed by a separate valve (via the overpressure valve). This is based on the principle that particles

are located at the accumulation wall at the bottom. Thus, solvent can be pumped from the top without

loss of analyte, thereby increasing the detector signal47.

The separated particle fractions exit the channel by the outlet valve and pass a series of online-coupled

detectors for characterization. Details on detectors are given in Section 2.3.3. Finally, the fractions are

either discharged in a waste container and the characterization data evaluated, or the fractions can be

collected for offline analysis and storage.

2.3.2.2 Centrifugal Field-Flow Fractionation

CF3 follows an analogous principle, where the separation channel is in a centrifuge. Eluent and sample

are introduced via a rotational valve at the central axis of the rotor. Since no solvent can be eliminated

through the accumulation wall, the injection and relaxation phases differ from AF4. Here, the sample

is injected in the rotating channel and the solvent flow is stopped during the relaxation phase. Hence,

flow is only switched on for the elution phase again. This has the effect that no preconcentration in

the injection step is possible. The separation is caused by the gravitational/centrifugal field, whose

intensity is controlled by the rotation speed of the centrifuge. This variant of FFF displays a similar elution

order with small particles eluting before larger ones, but also particles with lower density before those

with higher density (see Section 2.3.1). Steric inversion occurs analogously to AF4 but might be more

relevant, since the size range of CF3 covers larger particles (10 nm – 20 µm)36.

2.3.3 Detectors

Following the separation, a detection of the particles in the eluent has to take place. For FFF, as for e.g.

liquid chromatography or size exclusion chromatography, detectors of different kind are online-coupled
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to the separation system, which give the chromatogram/fractogram. There is a wide range of online

detectors for FFF, which give a variety of information on the fractions. Coupling (several) detectors to FFF

is commonly termed hyphenation (e.g. AF4-UV-MALS). The following brief mention of some detectors

is by no means exhaustive, but rather aimed at the problems, which are relevant to this thesis. For a

detailed list of detector possibilities and ongoing research in coupling techniques, the reader is referred

to current reviews36,42,45.

2.3.3.1 Concentration Detectors

Commercial FFF systems are often equipped with at least one detector that functions as indicator of a

passing fraction. Here, the common choice is either a UV detector or a refractive index (RI) detector,

which either detects the absorbance of a UV lamp emission or the change in refractive index, respectively.

Both detectors exhibit a concentration dependency of the signal42. Although UV detectors – as applied

in the setup of this thesis – are typically suggested as concentration detector, because the absorbance

of UV follows the Lambert-Beer correlation A = log I
I0

= εcd (see Section 2.1.1.2). However, this is

only applicable in select cases, since the absorption is also affected by diffraction (turbidity) and the

wavelength-dependent extinction coefficient, which varies with different samples38.

2.3.3.2 Size Characterization

One of the major features of hyphenated detectors is the instrumental determination of the particle

size, which is commonly performed by light scattering48. Size detectors complement the theoretical

size calculation from the retention parameter (Section 2.3.1) to account for deviations from the idealized

models38,45. Here, both dynamic and static light scattering are applied, however, static light scattering, in

the form of multi angle light scattering (MALS) is the predominantly applied technique. Dynamic light

scattering (DLS) is based on the correlation of light fluctuation to the Brownian motion, from which the

hydrodynamic diameter dH can be derived. MALS, on the other hand, observes the angular profile of the

scattering intensity, which depends on the particle size. Via suitable models, this size (i.e. the diameter

of gyration dg, which can be transformed into the geometric diameter by49 dgeo = dg/0.775) can be

derived from the signal intensities of a set of detectors at different angles38.

Ideally, the scattering at a 0° angle needs to be investigated. However, this is experimentally impossible,

since a detector can’t be placed in this position. Thus, MALS uses many angles, from which the

0° intensity can be extrapolated by a curve fit. This can be derived from the basic light scattering

relationship,
Rθ
Kc

= Mw · P (θ) (2.3.9)

assuming sufficiently low concentrations, which is reasonable in a FFF fraction50, where θ is the scattering

angle, Rθ is the Rayleigh ratio, K is an optical constant, c is the concentration, Mw is the molecular

weight by mass of the polymer, and P (θ) is the particle scattering function. This function P (θ) is
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approximated by different terms for different systems, such as small particles (ca. < 100 nm, in which

they are considered isotropic scatterers), for spheres, or random coils (typically polymer conformation).

Using the simplified approximation50

P (θ) = 1 −
(

16π2

3λ2

)
· r2
g · sin2(θ/2) (2.3.10)

where λ is the wavelength of the incident light source, a combined expression

Rθ
Kc

= Mw ·
(

1 −
(

16π2

3λ2

)
· r2
g · sin2(θ/2)

)
(2.3.11)

is achieved, which can be plotted by setting sin2(θ/2) as the x-axis and Rθ/Kc as the y-axis. This

plot is called Debye plot and represents a linearization, in which the intercept equals Mw and the

slope −16π2Mwr
2
g/3λ

2, from which dg is received. There are different possibilities to plot the MALS

data aside the Debye plot, such as the Zimm or Berry plot, which plot the inverse of equation 2.3.11

or the square root of the inverse, respectively. These different plots aim to provide a more accurate

representation for different types of particles. E.g. the Debye plot works well for spheres, whereas the

Zimm plot is recommended for small particles (< 40 nm), or the Berry plot for random coils50. Ultimately,

evaluating the MALS data requires the fine-tuning of the modelling and extrapolation, which includes the

careful selection of the angles to include in the evaluation.

2.3.3.3 Further Detection Methods

As stated above, FFF detection is a multi-method approach, hence, there is a wide choice in charac-

terization methods exceeding the ones mentioned here. Of especial note is the elemental analysis by

techniques like inductively-coupled plasma mass-spectrometry (ICP-MS), inductively-coupled plasma

optical emission spectroscopy (ICP-OES), or graphite furnace atom absorption spectroscopy (GF-AAS)38.

Of those elemental techniques, ICP-MS is the most common detector that has been established and

commercialized51,52. Additionally, single particle ICP-MS (spICP-MS) was online coupled to FFF for

nanoparticle analysis, as well45.

Aside from the hyphenated techniques, collecting fractions of the separated sample (automatically or

manually) enables the offline analysis by virtually any technique that can process particle suspensions.

Noteworthy is the use of electron microscopy to provide visualization of the separated particles, as well

as confirmation of the size characterization either by MALS or by the retention parameter36,38,42.

2.4 Concluding Remarks

These techniques in this thesis have been chosen due to their complementary advantages (and limi-

tations). RM provides chemical information and identification on the samples accompanied by optical
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imaging (> 1 µm) in a non-destructive way and with easy sample preparation. However, the optical

microscopy is almost insufficient for the resolution of nanoplastic. Thus, SEM is combined, which

provides high-resolution visualization of even the smallest nanoparticles (> 2 nm). Similar to RM, SEM

offers rather simple sample preparation, when applied for micro-/nanoplastic. But as they both work on

individual particles, measurement times are quite long. Typically, samples for SEM need to be electrically

conductive to prevent charging effects. However, for small plastic particles, the use of FE-guns and

the low-pressure mode can facilitate the visualization without metal coating. In addition, samples for

SEM – unlike RM – need to be dry to be put in the vacuum chamber. Thus the investigation of biological

samples is preferrably performed by RM or by low vacuum SEM. FFF and its detectors complement the

two, as they analyze the particles(1 nm – ∼ 20 µm) in bulk (Chapter 7.3). Therefore, measurements

are much faster, however, no chemical identification is provided. One has to keep in mind that the

validation of FFF protocols for new samples requires the optimization of many parameters, such as

flow rates, channel components, solvents, or relaxation and injection steps44. This makes FFF very

labour intensive in the initial phase (as well as maintenance). Finally, while the cost of all three is rather

high, they do, on the other hand, provide a high degree of information, which is very important when

approaching a new analyte such as nanoplastic. Further developments toward routine analysis, which

include faster and more specific (thus cheaper) analyses, will be an important task down the road, once

the proof-of-concepts have been presented.
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Abstract

Nanoplastic is an emerging topic of relevance in environmental science. The analytical methods for

microplastic have a particle size limit of a few micrometers so that new methods have to be developed

to cover the nanometer range. This contribution reviews the progress in environmental nanoplastic

analysis and critically evaluates which techniques from nanomaterial analysis may potentially be adapted

to close the methodological gap. A roadmap is brought forward for the whole analytical process from

sample treatment to particle characterization. This includes a critical review of (i) methods for analyte

extraction and preconcentration from various environmental matrices; (ii) methods for the separation of

the nanoplastic into specific size fractions; (iii) light scattering techniques and various types of microscopy

to characterize the particle fractions; (iv) chemical identification of particles to validate the obtained data.

For these methods, we will discuss prospects and limitations to develop analytical protocols for specific

sampling scenarios.

3.1 Introduction

Environmental plastic and especially microplastic (MP) pollution is a topic of great public concern. In

recent years, questions concerning even smaller particles, so called nanoplastic, have emerged and
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are of pressing interest, especially since it has been identified in facial scrubs1 and in marine surface

waters2. MP is defined as particles in the size range from 1 µm to 5 mm, nanoplastic ranges from 1 nm to

100 nm and the sizes between 100 nm to 1 µm are called subµ-plastic3. This classification adheres to the

European Commission’s definitions for engineered nanoparticles (ENPs)4. However, there is still debate

on the size classes for nanoplastic, with an alternative that defines the whole nanometer range (1 nm –

1000 nm) as nanoplastic5. Furthermore, MP is separated into primary MP, which comprises particles that

were produced for a specific purpose (e.g. for cosmetics), and secondary MP, which is generated from

larger plastic debris by fragmentation3. This classification could be applied to subµ- and nanoplastic as

well, denoting e.g. a polystyrene (PS) latex or nanometer-sized plastic particles in cosmetics as primary

nanoplastic. Particles that originate from larger pieces by fragmentation in the environment would, then,

be classified as secondary nanoplastic. This topic, thereby, creates a cross-section with nanoparticle

science, because nanoplastic particles are in principle polymeric nanoparticles. It is, however, well

placed in the field of environmental plastic analysis, since it is part of the whole plastic contamination

problem. The debate on what actually is comprised by „plastic“, thereby meaning „synthetic polymer“

(including associated additives), is still ongoing. Usually, particle size and, implicitly, the prerequisite that

the particle is insoluble in water are the core determinants for plastic particle analysis. However, this

excludes important aspects like the chemical composition (polymer type, additives, ageing) or whether

particles made of modified polymers of natural origin (e.g. natural rubbers in tire wear) can be assigned

to „plastic“. For more details on a definition and categorization framework for plastic debris, the reader is

referred to a recent publication of Hartmann et al.6.

These distinctions have to be kept in mind, when defining the analytical question for specific sample

scenarios. In MP analysis, the sampling and sample treatment of MP is accomplished with respect

to the system that is probed. Nets or sieving are applied for aquatic systems7, density separation for

sediments8,9, and chemical digestion for food or biota samples3,10, in the latter two, MP particles are

then collected on filters. The size cut-off of these methods, however, only covers the micrometer range

(except for membrane filtration, see Section 3.2.2.1). This is illustrated in Figure 3.1. Hence, for subµ-

and nanoplastic there is a need for sampling that retains such small particles.

Following the sampling and sample treatment, there is the determination of the MP particle size

and number – alternatively, the mass content – and the identification of the polymer. To that end,

there are (i) techniques that combine microscopic and spectroscopic analysis and (ii) thermoanalytical

methods3,10,11. In spectroscopy, MP can be measured on a particle by particle basis with attenuated

total reflection Fourier transform-infrared spectroscopy (ATR-FT-IR)10 [10], where MP particles (usually

larger than 500 µm) are handpicked. Smaller particles are collected on filters and identified with focal

plane array micro-FT-IR (FPA-FT-IR)10,12 [10,12] or Raman microspectroscopy (RM)13–15 with particle

sizes down to 10 µm and 1 µm, respectively. Thermoanalytical MP detection, on the other hand, provides

polymer and additive characterization and quantifies by mass content of MP in a sample. Its limits of

detection (LODs) depend on the polymer type and are in the range of nanograms to micrograms16–18.

It has to be kept in mind that the mass of the particle decreases with the third power of its diameter d3.

The orders of magnitude of the particle diameter d in m and particle mass m in g (assuming a density
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Fig. 3.1: The analysis of MP is established for particles down to 1 µm. Below, there is a methodological gap.

of 1) follow the correlation logm = 3 log d+ 6. It gives the masses of e.g. 10 µm, 100 nm and 10 nm

particles as 10-9 g = 1 ng, 10-15 g = 1 fg and 10-1 g = 1 ag, respectively. This demonstrates the steep

decrease of the particle mass and can be connected to the particle number, which, in turn, increases

with d3. This means that, with fixed mass, one 100 µm plastic particle (m = 1 µg) is equivalent to a

thousand 10 µm, a million 1 µm, a billion 100 nm and a trillion 10 nm particles. From this consideration it

can be concluded that, although unintuitive, subµ- and nanoplastic can constitute high particle numbers

and, at the same time, low masses in a sample (e.g.1,2,19).

Hence, techniques would have to provide low particle size detection limits or low LODs in terms of

mass to detect subµ- and nanoplastic in environmental samples. The size ranges for MP identification

are plotted in Figure 3.1, showing that for subµ- and nanoplastic they have hit a limit. So have the

thermoanalytical methods with LODs that are too high for the low masses of subµ- and nanoplastic that

we could expect in the environment.

This illustrates that for the analysis of subµ- and nanoplastic we are facing a methodological gap.

When entering the nanometer size range, a new approach in the analytical methodology must be

taken. This concerns specific characteristics, like particle size distribution (PSD) or morphology and the

chemical identity, for which techniques that detect in the nanometer range will be needed. In addition,

an appropriate sample treatment, especially, a preconcentration and also a separation step to properly

isolate the particles, will be an essential part of the required protocol.

The established methods for MP analysis, however, have the potential to be adapted for the analysis

of subµ- and nanoplastic particles by combining them to other techniques. Such combinations, like

preconcentration to solve LOD issues or light scattering-based techniques that give a PSD to solve the

problem of representativeness in techniques for single particle analysis, could alleviate their limitations.

Furthermore, there is much knowledge on the analysis of ENPs in the environment that may potentially
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be harnessed to close this methodological gap. A seminal paper by Hüffer et al. discussed similarities

and differences that may help the understanding of micro- and nanoplastic particles20. Especially when

regarding methods that concern particle characterization, there are many techniques for the analysis of

ENPs that have been established20–24. Some of them may be transferred to nanoplastic analysis, mainly

techniques that characterize particles by their geometry, like dynamic light scattering (DLS) or electron

microscopy (EM). However, since ENPs are mostly inorganic and nanoplastic is mainly carbon-based,

the identification of the chemical composition of the particle will require new protocols. Subµ- and

nanoplastic, as is usual in MP analysis, needs an identification of the particle composition in terms of

the polymer type (e.g. polyethylene (PE), PS) instead of just an elemental analysis to provide a reliable

characterization of the environmental sample.

Furthermore, first studies demonstrated the fragmentation of larger particles into subµ- and nanoplastic.

The tests were performed either on MP particles that were collected from the ocean25 or pristine con-

sumer products26,27. Two distinct steps in the formation of small plastic particles have been determined.

First, a surface erosion of small, nano-sized particles. Second, fragmentation of the parent particles into

equally sized smaller MP particles. The focus of other studies has been the propensity of subµ- and

nanoplastic to form heteroaggregates with organic and inorganic matter28. Primary nanoplastic beads

and the dissolved organic content in seawater was studied, to show that nanoplastic accelerates the

coagulation of dissolved organic matter to particulate organic matter29.

These findings emphasize the great difference between ENPs and primary subµ- and nanoplastic beads

compared to secondary subµ- and nanoplastic, which is likely to occur in the environment. Due to their

fragmented nature, they will exhibit irregular shape, surface morphologies and charges than synthetic

subµ- and nanoplastic beads, on which many studies concerning the topic have been based. Here it

is also important to mention their heteroaggregation behavior, which contrasts MP. The challenge for

method development will be to accommodate for the properties that will be inherent to environmental

subµ- and nanoplastic particles.

Here we want to review the techniques that have already been applied in subµ- and nanoplastic studies

(search was conducted using Web of Science and Google Scholar with the search terms „nanoplastic“,

„nano- and microplastic“ and „analysis“, amongst others, including publications until august 2018) and

present techniques from ENP analysis that we think may have a potential for subµ- and nanoplastic

research. We will critically discuss their applicability and project a roadmap for the whole analytical

process in environmental systems.
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3.2 Sample Preparation

Since the plastic contamination can be found in very diverse locations, the analytical process begins with

the clarification of the question that is to be answered (plastic particle number, size and PSD or mass of

plastic particles per mass or volume of sample), which, in turn, depends on the sample to be analyzed.

Samples can range from drinking water to food, environmental waters, sediments, biota tissue, to WWTP

in-/effluents, which have greatly different contents of matrix that accompanies the plastic particles.

Plastic is an omnipresent material in our live. Therefore, there is a strong risk of sample contamination

during sampling and sample handling, which shows that proper particle contamination measures have

to be taken. Tools and setups should be made from non-polymer materials to avoid a systematic

contamination of the sample. Also, contamination due to airborne particles and synthetic fibers from

clothing needs to be prevented by the use of laminar flow benches. However, it seems unlikely to

completely avoid plastic in all components, therefore, a thorough blank value and recovery evaluation of

the method should be performed.

3.2.1 Digestion of Matrix

When choosing methods for sample treatment, characterization, and identification, in order to obtain the

required information on the sample, in many cases it will be necessary to remove the matrix, in order

to enable the technique to analyses the particles. This means organic matrix like tissue, organisms, or

natural organic matter (NOM) has to be removed. Depending on the treatment, some inorganic particles

may be removed as well, e.g. carbonate-based sediments with acid treatment.

A multitude of approaches for the digestion of organic matrix have been applied in ENP21 and MP3

analysis, some of which have also been utilized for nanoplastics30. These approaches comprise acid

treatment, usually 65 % nitric acid30,31, sometimes in combination with 30 % hydrogen peroxide32,33 and

alkaline treatment with sodium hydroxide30,34,35. Additionally, a mild enzymatic protocol with Proteinase

K can be used for tissue decomposition30,32.

The treatment must not alter the plastic particles, therefore care has to be taken when choosing the

sample treatment protocol. Homogenization may damage the plastic particles. Also, it has been shown

with optical microscopy and DLS that acid, alkaline and H2O2 treatment cause aggregation of the

particles, most likely due to the strong change in ionic strength of the solution30. Enzymatic treatment is

milder and has been demonstrated to cause no32 or less30 aggregation with the particles (fluorescent,

100 nm, PS). Further, harsh treatments (acid, alkaline, H2O2) can, in some cases, negatively influence

the fluorescence signal of labelled plastic particles (e.g. in toxicology studies)30,33. In many studies

a proper validation of the digestion is lacking. It is, however, very important to find a sufficiently mild

protocol that does not alter the plastic particles and stabilizes them against aggregation. If, on the other

hand, information on the particle morphology and aggregation state is not required by the analytical

question, this step can be reduced to a mere recovery test for quantification. For quantification of
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fluorescent particles, a recovery test concerning the stability of the fluorophore should be performed to

evaluate a specific treatment33.

3.2.2 Preconcentration

Even though large amounts of plastic pollution are present in the environment36, the mass of subµ- and

nanoplastic particles is probably very low2,19. Therefore, for most types of sample, a preconcentration

step is inevitable. There are several different methods, from which may be chosen, depending on the

sample and the following characterization and identification (Table 3.1).

3.2.2.1 Membrane Filtration

The process of filtration is very common for MP analysis, where e.g. the whole micrometer range of

particles can be sampled on a filter membrane for spectroscopic analysis3,37,38. Membrane filters from

different materials (e.g. aluminum oxide, ceramics, or polycarbonate) are commercially available with

pore sizes in the range of several µm to 0.01 µm. It has to be noted that the use of polymeric membranes

could introduce plastic contamination to the sample. It should also be kept in mind that the size fraction

in the filtrate is usually smaller than the nominal pore size. Membrane filters need to be handled very

delicately to avoid damaging of the membrane, which would compromise the size cut-off. When using

filters with small pore sizes, especially below 0.1 µm, they exhibit very low flow rates, which effects

the sample volume that can realistically be filtered. This volume decreases with decreasing pore size

(e.g. 25 mL with 0.4 µm pores39 or 0.1 mL with 0.01 µm pores1). This needs to be considered when

deciding on a treatment protocol for a large sample volume, especially when planning for environmental

samples, which may contain high amounts of organic content in relation to the plastic particles, for which

ultrafiltration (UF) could be a preferable alternative. On the other hand, since subµ- and nanoplastic in

the environment is expected to occur in heteroaggregates with organic matter (Section 3.1) membrane

filtration could retain and enable an imaging of those aggregates.

Membrane filtration in a five-step sequence of the pore sizes 25 µm, 2.5 µm, 0.45 µm and two times

0.1 µm has been performed for the isolation of PE nanoplastic particles (24 nm – 52 nm) from facial

scrubs1. This filtration cascade helped to avoid a fast clogging of the pores.

3.2.2.2 Ultrafiltration

UF uses nano-porous membranes that have a molecular weight cut-off in the range of 10 – 100 kDa

(which roughly corresponds to 5 – 50 nm). They are employed either in a stirred cell2, a centrifugal

field40 or in cross-flow mode (also called tangential flow)41, in which the suspension flow is cycled past

a parallel membrane, to prevent its blockage. As opposed to the methodologically similar dialysis42,

the filtration is performed by applying pressure to facilitate the flow of the filtrate, which increases its

operation speed.
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A stirred cell with a molecular weight cut-off of 10 kDa has been used to concentrate (factor 50) the

subµ- and nanoplastic fraction (< 1.2 µm) of artificially fragmented MP particles25 and a marine water

sample (factor 100)2. Cross-flow UF with a cut-off between 40 and 60 kDa has been evaluated as

preconcentration (factor 200) step for asymmetric flow field flow fractionation (AF4) with PS beads in

the range of 50 nm – 1000 nm41. This indicates that Cross-flow UF is a method with high potential for

the processing of environmental samples, because it is able to process large volumes of water, in the

m3 range. It is also very gentle because it does not eliminate all the solvent, therefore particle loss

and sample alteration or aggregation are minimized21,43. It has to be added that AF4 is also able to

preconcentrate to some extent by creating a focusing flow that collects up to 50 mL of the sample at the

beginning of the flow channel44,45.

3.2.2.3 Ultracentrifugation

Centrifugation and ultracentrifugation (UC) can be used to sediment particles from suspensions into a

pellet. For subµ- and especially nanoplastic, the higher centrifugal forces of UC, which are in the range of

105 g, will be required to affect the smaller plastic particles, which bring the inherent difficulty of densities

close to that of water. This technique is readily available and simple to use, but has the caveat that it

only processes smaller sample volumes, in the range of 10 – 100 mL, which limits its applicability for

environmental water samples. UC collects all particles in the pellet without separation, irrespective of

whether they are plastic, or originate from the (in)organic environmental matrix. Additionally, the high

centrifugal forces or stress from redispersing the pellet may alter the sample by forming aggregates

or damaging plastic particles21,42,46. However, these drawbacks might be irrelevant in an analytical

protocol that is independent of the morphology of the sample, like pyrolysis gas chromatography mass

spectrometry (Py-GC-MS) that destroys the sample anyway.

Employing density gradient UC47, on the other hand, may provide a separation of plastic particles and

matrix with higher densities, e.g. sediment48. This, however, will require a preceding digestion of organic

matrix, which would otherwise be contained in the same fraction as the plastic particles.

There is also another variant called analytical ultracentrifugation (AUC) that spectroscopically (light

absorption) monitors the sedimentation during the centrifugation process, from which many parameters

on the morphology and spectroscopic information of the analyte can be derived. A fragmentation can be

obtained as well49,50.

3.2.2.4 Evaporation of Solvent

Evaporation of the solvent at reduced pressure, commonly with a rotary evaporator, is a technique from

nanoparticle synthesis and especially useful for organic solvents42. It has, however, been applied for the

concentration (factor 30) of environmentally more relevant, secondary PET nanoplastic suspensions

(ca. 100 nm) in water, which were generated by laser ablation51. Since this technique does not remove

dissolved matter and will be uneconomical for removing large volumes of water, it might be primarily
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applicable to further concentrate suspensions from e.g. dialysis or cross-flow UF that could only be

reduced to a certain volume.

3.2.3 Separation Techniques

3.2.3.1 Field-Flow Fractionation

Field-flow fractionation (FFF) is a separation technique that applies a perpendicular force on particles in

flow. Depending on their diffusivity, which is determined by characteristics like density or shape, particles

are retained in the flow channel for different durations, which causes a separation of the particles in the

sample. FFF works without a stationary phase, precluding interactions with the plastic particle, however,

interactions with the membrane of the flow channel are a common problem that has to be countered

by a proper method optimization for each individual sample. There are different variants of FFF, using

various separating fields, like thermal, electric, gravity (or centrifugal), or cross-flow, which cover the

whole nanometer range (for AF4) and can extend to the low micrometer range (up to 100 µm)52,53.

The most common variant of FFF is the AF4, which, like other flow techniques, is routinely coupled to

online detectors53,54. Frequently applied are refractive index51, UV-visible absorption41 or fluorescence32

detectors for particle presence in the fraction and multi angle light scattering (MALS)32,41,51 as well as

DLS54 that offer size characterization. Additionally, a mass spectrometric technique has been reported,

that combines Py-GC-MS analysis with AF4 allowing for the determination of the polymer type41.

AF4 (s. Table 3.1) has been widely utilized for the analysis of ENPs in environmental samples53. It has

also been shown to be of great potential for the separation of subµ- and nanoplastic samples: Gigault et

al. published an AF4 method that is optimized for the fast separation of primary subµ- and nanoplastic

PS beads in the range of 1 nm – 100 nm55. Correia et al. evaluated a protocol for the analysis of primary

nanoplastic particles (PS 100 nm) in a fish tissue sample, that digested the matrix with Proteinase K

(which was shown to prevent aggregation, as opposed to acid treatment, Section 3.2.1) and separated

the sample with AF4-MALS-Fluorescence32. Mintenig et al. proposed AF4 and Py-GC-MS (Section 3.4.2)

of samples that were preconcentrated by cross-flow UF for the analysis of plastic particles below 20 µm

as part of a framework for MP, subµ- and nanoplastic and validated the setup with primary PS particles

in the range from 50 nm – 1000 nm, suspended in drinking and surface water41.

These methods have all been validated with primary subµ- and nanoplastic particles. In contrast,

plastic particles in the environment are generated due to various stressors, which fragment the particle

and usually oxidize the polymer56, therefore, the surface can be expected to be rough and negatively

charged27. In addition, methods that have been developed for ENPs, will need optimization for subµ- and

nanoplastic particles due to their densities. These circumstances have to be accounted for in the method

development of environmental subµ- and nanoplastic by optimizing the dispersion medium, flow rates

and validating the detectors. The validation also needs to include a determination of the concentration

ranges, in order to perform a quantification57.
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Fig. 3.2: Comparison of the particle size ranges for analysis with the different techniques that are discussed in this review.
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When using AF4 for the separation of particles larger than around 1 µm, the so-called steric inversion

occurs. Here particles are drawn to the membrane almost equally strong but due to their size, large

particles experience stronger forces from the laminar flow causing them to elute faster than smaller

particles. The point of inversion depends on different parameters like channel thickness, flow rate or

cross-flow53. This brings the risk of co-elution of small and large particles due to the steric inversion,

which would compromise the separation. Therefore, a separation, e.g. filtration, step at the point of

inversion is suggested41.

As with the other separation techniques below, FFF is coupled online to detectors, which should also

provide quantitative information on the plastic particles. This is possible with mass-spectrometric

detectors or UV, refractive index, or fluorescence detectors58 by calibration with a standard59. However,

problems with particle–membrane interaction and limited concentration ranges60, as well as providing a

representative calibration material for the quantification of secondary subµ- and nanoplastic will have to

be addressed.

3.2.3.2 Chromatography

Chromatographic techniques (s. Table 3.1) use a stationary phase for the separation of analytes, which

make its applicability for particulate samples difficult, since interactions with the stationary phase may

occur and its pore size may not suffice. On the other hand, their wide-spread and easier application make

them a noteworthy alternative to FFF, which requires lots of method optimization and user experience.

Some techniques have been applied for ENP separation in environmental samples; among them are

reverse phase high performance liquid chromatography (HPLC)61, size exclusion chromatography

(SEC)62 and hydrodynamic chromatography (HDC)63. This indicates that they may be applicable to

nanoplastic separation as well. However, in contrast to ENPs, subµ- and nanoplastic particles, which

originate from fragmentation, can be expected to have rougher surfaces, which may increase their

interaction with the stationary phase. Another point to consider, is the difference in density between

ENPs and subµ- and nanoplastic, for which a stable suspension has to be ensured.

Many of the chromatographic methods, however, may only have an application for a specific analytical

question, since the particle size range is much smaller (1 nm – 40 nm for HPLC61 and 1 nm – 100 nm

for SEC62) as compared to e.g. FFF21 (Figure 3.2). Concerning these restrictions, HDC might be a

chromatographic method that is applicable for subµ- and nanoplastic particles because its stationary

phase is a non-porous material, packed into the column, in which the mobile phase flows through the

interspaces. This brings a larger size range (5 nm – 1.2 µm63) and less interactions. In a study on gold

ENPs (5 nm – 100 nm), HDC has shown better recoveries than AF4, although its separation resolution

was smaller64.
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3.2.3.3 Electrophoresis

Electrophoresis (s. Table 3.1) employs the mobility of charged particles in an electric field to achieve

a spatial separation. This review will focus only on capillary electrophoresis (CE) because it has the

largest range of applicability as compared to e.g. gel electrophoresis65,66. CE has been applied on

ENPs, indicating that it has the potential to be a promising alternative for the separation of subµ- and

nanoplastic particles. This method will also have to be adapted to the nature of environmental subµ- and

nanoplastic, especially its surface properties, which will depend on the influences that the particles have

experienced.

In all the separation techniques of this chapter, the suspension has to be stabilized with surface

functionalization agents. For CE they are also necessary to precisely control the surface charge21.

These surfactants may, however, impede subsequent characterization of the nanoplastic particles.

3.3 Methods for the Characterization of Particle Size and Morphology

3.3.1 Particle Characterization by Light Scattering

There are multiple methods that apply the scattering of laser light on particles to obtain information on

physical properties like size or PSD (Table 3.2). The most widely used, DLS measures particle sizes

in the range from 1 nm to 3 µm based on the fluctuation of intensity of a laser beam that passes the

suspension. This fluctuation is caused by the Brownian motion of the particles and can be associated to

the hydrodynamic diameter (dh) of the particles with an autocorrelation function68. Its easy application

makes DLS a broadly used technique for particle size and PSD characterization, especially for primary

nanoplastic, which is used for spiking and toxicological experiments.

It should, however, be kept in mind that DLS uses theoretical models that are based on spheres and that it

works optimally with monodisperse suspensions. This is due to the fact that the signal intensity correlates

with d6 and therefore overestimates large particles. The technique is, thus, prone to errors due to

contaminations that introduce large particles, which would mask the actual analyte. Such contaminations

may be residues from the matrix, aggregates or dust21,22. Furthermore, gaining reliable information on

polydisperse, non-spherical subµ- and nanoplastic dispersions, as would be present in the environment,

is nonetheless possible2,55. When employing any of these light scattering detectors, especially for

quantification, a preemptive method validation should contain a determination of the concentration

range69. In addition, DLS does not provide any chemical information and cannot distinguish particles of

similar form but different composition.

Commercial DLS instruments are usually coupled with the function to determine the zeta potential with

electrophoretic light scattering (ELS). The principle of ELS is similar to DLS, in that it measures the

fluctuation of laser intensity that is generated by particle movement in an electric field. This gives the

electrophoretic velocity that in turn correlates to the zeta potential, which is the charge of the particle
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Task Technique Range Advantages Disadvantages References

Preconc. Membrane
filtration

> 10 nm + Easily available
+ Cheap

- Low flow rates with
small pores
- Small volumes

[1] / –

UF 10 – 100 kDa
ca. 5 – 50 nm

+ Large volumes
+ Little sample
damage/aggregation
+ Little membrane
clogging/fouling

- Interaction with
membrane
- Setup not plastic free

[2, 25, 41, 43] / –

Dialysis Similar to UF + Easily available
+ Cheap

- Low flow rates with
small pores
- Small volumes

– / [42]

UC Any + Simple
+ Washing of particles
with centrifugation and
redispersing

- Harsh conditions
- No separation from
particulate matrix
- Difficult to obtain
complete separation

– / [21, 42]

AUC 1 nm – 1 mm + High resolution
+ Can provide many
information
+ Multiple detectors

- Best for small particles
(1 – 10 nm)

– / [49, 50, 67]

Evaporation
of solvent

Any + Cheap, easy - Does not remove
dissolved matter
- Superheating

[51] / [42]

Separation AF4 1 nm – 1 µm + No stationary phase
+ Sample focusing
+ Online Coupling

- Operation difficult
- Interaction with
membrane
- Steric inversion

[32, 41, 55] / [53]

HDC 5 nm – 1.2 µm + Less interaction with
stationary phase
+ Coupled detectors

- Little used – / [21]

SEC 1 nm – 1 nm + Coupled detectors - Stationary phase
- Small range

– / [62]

HPLC 1 nm – 40 nm + Coupled detectors - Stationary phase
- Small size range

– / [61]

CE 5 nm – 500 nm + High separation
resolution
+ Coupled detectors
+ Fast

- Charge required
- Electrolyte/surface
modification
- Interaction with
capillary/clogging
- Might damage sample
- Complex matrices
difficult

– / [23, 65, 66]

Tab. 3.1: Methods for the preconcentration and separation (detectors are listed in Table 3.2) of subµ- and nanoplastic particles.
References are divided whether they have been applied for subµ- and nanoplastic (left) and by documents from other fields
(right).
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shear surface. The zeta potential is a measure on the stability of a suspension, with values greater than

± 30 mV being considered stable against aggregation22,68. Since plastic particles in the environment will

experience weathering in the environment56, they will display oxidized surfaces27 and with that changes

in surface charge. Measuring the zeta potential can, therefore, be an important parameter to characterize

the ageing of plastic particles.

Static light scattering (SLS), which is also called MALS, records scattered laser light at different angles

to obtain information on the size of the particle, e.g. the radius of gyration dg. To provide precise size

information, a monodisperse suspension is needed21,68. Therefore, MALS is commonly coupled online

to AF432,41,51,55 to feed size-separated samples to the detector (see Section 3.2.3.1), which enables

measurement of polydisperse, environmentally relevant, subµ- and nanoplastic particles55.

Laser diffraction (LD) is another static laser scattering-based technique that is common in process

analysis, which is capable of sizing (among others) solid particles in liquid media across a very large

size range from 10 nm to 10 mm68. It would, therefore, be an interesting technique for characterizing

both MP, subµ- and nanoplastic at the same time.

Nanoparticle tracking analysis (NTA) records scattered laser light with a microscope and a digital camera.

Software processing tracks the motion, as recorded in the video, of the particles and correlates a

hydrodynamic diameter due to its Brownian motion21,26,70. NTA suffers less perturbation from large

particles in polydisperse samples69, which makes it an alternative to DLS for the determination of PSD of

subµ- and nanoplastic. This has already been shown for fragmented, i.e. secondary plastic25–27. Another

consideration for the application of NTA for subµ- and nanoplastic could be to use its fluorescence mode

in combination with particle staining, which would, however, have to be tested for interference with the

preceding sample digestion.

3.3.2 Imaging

To obtain information on the morphology of a sample, microscopy is the most viable method because it

offers direct access to its geometry and surface characteristics. There are many different operation modes

of microscopes, from which three groups are most prominent in particle imaging: optical microscopy, EM

and scanning probe microscopy (SPM). These types of microscopy utilize different sorts of interaction

with the sample, which effect their resolution (Table 3.2).

3.3.2.1 Optical Microscopy

Optical microscopy is a ubiquitous tool in almost every laboratory and is an essential part of the single

particle analysis of MP particles, i.e. micro-IR and RM. For the visualization of subµ- and nanoplastic,

however, optical microscopes can only be applied for particles above the diffraction limit of 0.3 µm to

0.5 µm depending on the numerical aperture and the criterion for single point differentiation71. Some
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techniques like fluorescence or RM (Section 3.4.1.1) utilize a confocal pinhole to block light from lateral

parts of the focal point, thereby enabling a lateral and axial resolution close to the diffraction limit.

Fluorescence microscopy in combination with fluorescently marked particles is a common tool to analyze

the behavior of (usually primary) subµ- and nanoplastic in organisms, e.g. to track the translocation

of the particles in the tissue. Such an experiment has e.g. been performed with fluorescent PE MP in

the Antarctic krill that breaks fluorescent reference particles down to secondary subµ-plastic particles

with its mastication apparatus. The particles can be further translocated into different parts of the

organism72,73.

Even though fluorescence microscopes are diffraction limited, as well, it is possible to locate smaller

particles as long as they emit sufficient fluorescence signal. This application is, however, limited to

synthetic particles with fluorescent dyes. It could not be used for the analysis of environmental subµ-

and nanoplastic because these particles do not usually contain fluorophores.

3.3.2.2 Electron Microscopy

In EM74,75 the sample is scanned with an electron beam that is generated in an electron gun and

focused with electron optics. The electrons display a wide variety of interactions with the sample that

can be observed with different detectors and give specific and complementary information. Since the

wavelength of the high-energy electrons is very short compared to the wavelength of visible light of

optical microscopy, the resolution of EM is much higher, spanning the range from sub-nanometers to

millimeters. Its high resolution makes EM a widely used technique that complements many studies with

imaging information on nanometer-sized particles.

Scanning electron microscopy (SEM) uses lower acceleration voltages up to 30 kV, usually around

5 kV, which causes varied interactions with the surface of the sample and accordingly detection being

(in an angle) above the sample. In most cases, imaging is performed by detecting lower energy

secondary electrons whose emission from sample atoms has been caused by the electron beam and

gives morphological information of the point of incidence. The electron beam can also eject an inner

shell electron of a sample atom, whose replacement is accompanied with the emission of an element-

specific X-ray photon that is registered on an energy dispersive spectroscopy (EDS) detector and gives

information on the elemental composition of the irradiated part of the sample.

Transmission electron microscopy (TEM) detects the transmitting electron beam below the sample, which

requires high electron acceleration voltages up to 300 kV and a very thin sample. This results in very

high resolutions enabling the imaging of very small nanoparticles. Due to the transmission mode of

operation, TEM provides information on the interior of the particles rather than the surface (for which

SEM can be utilized). It, too, can be coupled with EDS or electron energy loss spectroscopy (EELS) for

information on the elemental composition21.

TEM and SEM are often applied to characterize size, shape and surface characteristics of subµ- and

nanoplastic particles. Very commonly in studies that use primary nanoplastic that is pre-characterized
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before being used to spike samples for method validation32 or biota exposition experiments76. They have

also been utilized to image secondary subµ- and nanoplastic, e.g. from fragmentation studies25,26. The

strength of SEM to image surface topology has been used to analyze the heteroaggregation behavior

of nanoplastic with natural organic and inorganic matter28,77. EM is sometimes applied to deduce a

PSD51,78 of a subµ- or nanoplastic sample, which, however, is prone to error, since the imaged section

may not be representative for the whole sample and the number of measured particles may be too low.

In general, EM requires a sample preparation that makes the sample stable for high vacuum and

precludes artefacts from charging due to the electron irradiation. Here, drying a sample dispersion on a

suitable substrate, e.g. for TEM carbon coated Cu grids, is the common approach. This preparation,

however, alters the sample and may induce aggregation of the particles or shrinkage of organic matter

or bacteria. Furthermore, coating with a metal (Au, Pt, Ag) or carbon film is often applied in order to

avoid a charging of the sample.

Environmental scanning electron microscopy (ESEM) is a variant of SEM that allows the analysis of

environmental, wet samples in a low pressure (10 – 50 Torr) nitrogen atmosphere, thereby enabling the

imaging of samples that would otherwise degrade in high vacuum. The detector of the ESEM mode is

not based on direct secondary electron detection, but on the detection of an ion cascade caused by the

interaction of the electron with the low-pressure atmosphere, therefore, non-conductive samples may be

imaged without charge artefacts, even without prior metal coating.

Another method to image samples in their environmental condition, e.g. aggregation or the particle

corona, is Cryo-EM. Here, a dispersion of the sample is very rapidly frozen with liquid nitrogen or liquid

ethane, causing water in the sample to vitrify instead of crystallizing. Hence, water does not expand and

preserve the sample integrity. This technique has been used to determine the agglomeration behavior of

PS nanoplastic particles in the presence of NOM and different salts77. During the Cryo-SEM analysis

and image acquisition, it is important to remind that the sample preparation may produce spherical

droplets of vitreous ice with a diameter of few micrometers or below, which look similar to plastic particles.

To preclude an observed particle being ice, a confirmation of their identity is very important e.g. by EDS

or by heating and sublimating ice from the sample.

3.3.2.3 Scanning Probe Microscopy

A third group of microscopy that is not governed by the diffraction limitation of incident light is SPM22.

With these, a sensor, in some cases a sharp tip, scans the surface of the sample and detects the

interaction with it. For scanning tunneling microscopy (STM) this is the tunneling current between the

conductive surface and the tip in close proximity, which is dependent on the distance, hence giving a

topographic image79. Its application to nanoplastic may, therefore, be problematic, since the particles

itself are not conductive. Atomic force microscopy (AFM) records the deflection of a cantilever carrying

the tip, which is caused by electrostatic or van der Waals interactions, that generate a height profile of

the sample22,24. AFM is able to analyze samples in liquid, e.g. the adsorption behavior of nanoplastic

particles with the cell wall of green algae80, however, characterization of the particle surface roughness
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may be influenced by the tip geometry and needs to be accounted for by data processing models81.

It can also be combined with IR82–84 or Raman spectroscopy85–87 to create chemical images of the

samples (Section 3.4.1.1 and 3.4.1.2).

Another group of SPMs that are based on optical microscopy contain, on the one hand, the confocal

lasers microscope (CLSM, alternatively LSCM), which is a confocal optical microscope that scans the

sample with a resolution at the diffraction limit (down to about 200 nm), usually exciting and detecting

fluorescence. CLSM is often used to investigate the translocation of fluorescently dyed nanoplastic

particles in organisms72,88–90. And on the other hand, there is near-field scanning optical microscopy

(NSOM, alternatively SNOM) that conducts laser light through a tip aperture. This aperture is smaller

than the laser wavelength, which causes the light to evanesce in a strongly localized area in close

proximity of the tip, hence producing sub-diffraction limit resolution91. Due to their resolution these

techniques have the potential for subµ- and nanoplastic imaging.

These techniques offer high resolution but have the drawback of long and laborious measurements,

which can only be performed for specific particles or sections of the sample, but not for a representative

analysis. This makes SPMs, as well as the other types of microscopy, dependent on proper sample

treatment and characterization to guarantee representativeness.

3.4 Chemical Identification

The chemical identification of the polymeric particle is of great importance for the analysis of subµ-

and nanoplastic in environmental samples, because, on the one hand, it provides a confirmation of

the analytical question i.e. the subµ- and nanoplastic presence in a system. On the other hand, it

can provide an additional chemical characterization of the particle e.g. with information on additive

presence and/or ageing (Table 3.3). In MP analysis, vibrational spectroscopy has usually been integrated

with optical microscopy to provide imaging, which enables the analysis of individual particles. This

gives a great amount of information on particle size, PSD, and geometry, as well as the spectroscopic

identification. This methodology, however, becomes increasingly difficult with decreasing particle size

(below 10 µm) due to (i) an increase in the amount of small particles and (ii) particle size detection limits

of the method3,14.

In subµ- and nanoplastic analysis, this calls for a combined approach of techniques that provide

information on size and PSD (Section 3.3) and techniques that can give spectroscopic identification.

This, in turn, eliminates the need for single particle analysis with the spectroscopic methods and only

demands a bulk measurement (of e.g. a dried fraction), in case when the preceding sample treatment

has generated a sufficiently pure (and monodisperse) sample fractions.

Micro-FT-IR and RM are being more and more automated and provide information on the amount of

particles, their size, and PSD through their microscopy images, as well as chemical identity15,92. Their

optical resolution is, however, limited by the wavelength of the light source, which restricts them to the

micrometer range.
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Task Technique Information Range/Limits Advantages Disadvantages References

Charact. DLS Size (dh),
PSD,
aggregation
behavior

1 nm – 3 µm
c = 10-6–10-1

+ Fast, cheap
+ In situ
+ Non-invasive
+ Aggregation
+ Direct coupling

- Large particles
- Polydispersity
- Complex matrix
- Non-spherical particles
- Small volumes

[28, 29] / [68]

ELS Surface
charge,
stability

1 nm – 3 µm + Fast, cheap
+ Non-invasive
+ With DLS

- Electroosmotic effect
- Sensitive to
environment

[28] / [68]

MALS Size (dg),
PSD

10 nm – 1000 nm + Online coupling - Requires clean
samples

[41, 55] / [53, 54, 68]

LD Size 10 nm – 10 mm
c = 10-5–10-1

+ Large size range
+ Easy, fast
+ Automated

- Only spherical model – / [68]

NTA Size (dh),
PSD,
number
conc.

30 nm – 2 µm
c = 10-6–10-5

+ Better with
polydisperse samples
+ Complex media
+ Particle corona

- Complex in operation
- Spherical model

[26, 27] / [69, 70]

Imaging TEM Size,
shape,
aggregation,
imaging

< 1 nm + High resolution
+ Precise size
information

- Quantification difficult
- Sample preparation
- Expensive

[5] / [21, 22, 24, 75]

SEM Size,
shape,
aggregation,
imaging,
surface
morphol-
ogy

ca. 3 nm + High resolution - Quantification difficult
- Sample preparation
- Charging effects

[28] / [21, 22, 24, 74, 75]

ESEM Size,
shape,
imaging,
surface
morphol-
ogy

ca. 30 nm + Wet samples
+ Environmental
conditions
+ Non-conductive
samples

- Reduced resolution – / [21, 22, 24, 74, 75]

EDS Elemental
composi-
tion

nm range + Complementary to
EM

- Elemental information
not sufficient

– / [21, 22, 24, 74, 75]

Optical & Size,
shape,
morphology

> 1 µm + Non-destructive
+ Cheap, easy to
handle

- Diffraction-limited

Fluorescence
Microscopy

Particle
Location

+ Sub-diffraction
variants

- Environmental plastic
is not fluorescent

[72, 73] / –

AFM Size,
shape,
topography,
aggregation

ca. 0.1 nm + High resolution
+ AFM-IR
+ TERS
+ In liquid

- Slow
- Small area
- Artefacts due to
particle movement

– / [22, 24]

STM Size,
shape,
topography,
aggregation

ca. 1 nm + High resolution - Conductive samples
-Slow
-Small area

– / [22, 24, 79]

CLSM Size,
shape,
location

> 0.2 µm + Fluorescence imaging - Small area
- Diffraction limit

[72, 88–90] / –

NSOM Size,
shape

ca. 30 nm + Fluorescence - Slow
- Small area

– / [22, 24, 91]

Tab. 3.2: Techniques for the characterization and imaging of subµ- and nanoplastic particles. References are divided whether
they have been applied for subµ- and nanoplastic (left) and by documents from other fields (right). Concentration ranges quoted
from [68].
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3.4.1 Spectroscopy

3.4.1.1 Infrared Spectroscopy

FT-IR12,93 is the most common spectroscopic technique in MP analysis94, in which the irradiation of a

sample with infrared light excites vibrational transitions, whose absorbance gives a specific so-called

fingerprint spectrum that provides identification of the sample. With polymers, it is even able to display

ageing by observation of surface oxidation via characteristic bands (e.g. carbonyl). FT-IR is applied

mainly in two different modes of operation: attenuated total reflection FT-IR (ATR-FT-IR) which is used

for handpicked MP (> 500 µm)10 and focal plane array (FPA) detector-based micro-FT-IR (FPA-FT-IR)

which images MP particles on filters with a resolution of ca. 10 – 20 µm10,12.

FT-IR can only be applied for the bulk analysis of subµ- and nanoplastic, since the size limit for FT-IR

single particle analysis is in the range of 10 µm3,10,12,95. Such an analysis has already been done to

confirm the identity of nanoplastic contained in facial scrubs as PE, by drying the filtered suspension

and performing an ATR-FT-IR measurement on the powder1. This, however, requires a few mg of dried

particles, in this study the suspension that was dried for the measurement amounted to around 1010

particles. Another method for measuring the subµ- and nanoplastic particles is by producing a KBr

pellet containing the sample76,96. FT-IR, as well as, RM (see Section 3.4.1) is capable of identifying

mixtures, which produce an overlay of the respective spectra of each individual substance. Nonetheless,

deconvoluting a spectrum of a multitude of (possibly impure) polymers, which may be the case with

an environmental bulk sample, poses a significant challenge in data processing. Here, a separation

technique may provide alleviation, if the setup can achieve (partial) separation of the polymers, by e.g.

density or material-dependent surface properties.

There exists a commercial set-up that combines FT-IR with AFM, in order to be able to record chemical

images with a spatial resolution below the diffraction limit. Here IR absorption at the location of the tip

causes thermal expansion, which induces an oscillation of the AFM cantilever tip. With that, spectral and

spatial information in the range of 50 nm can be obtained82–84. AFM-IR can be an interesting method for

the analysis of nanoplastic particles, mainly for the analysis of special samples and specific particles.

Since the method images selected areas, a representative analysis of many particles could be hard to

realize.

3.4.1.2 Raman Microspectroscopy

Besides FT-IR, there is RM13–15, which employs the inelastic scattering of laser light that gives a

vibrational fingerprint spectrum. This spectrum is complementary to the FT-IR spectrum and also enables

the unambiguous identification of the plastic particles. Since the light source does not need to be infrared

light, shorter wavelength lasers (e.g. 532 nm) can be utilized, which results in higher spatial resolution.

RM is, therefore, applied for the analysis of MP particles down to 1 µm10,14,97,98.
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3.4 Chemical Identification

RM has the potential for single particle analysis of subµ-plastic, because, as mentioned in Section 3.3.2.1,

Raman microscopes are confocal, giving them submicrometer resolution. Although this resolution en-

ables the single particle analysis of subµ-plastics, it would take several days to identify a representative

amount of particles. Therefore, bulk measurements after preceding particle separation and characteriza-

tion would provide a reliable subµ- and nanoplastic analysis, which could easily be complemented with a

bulk FT-IR analysis.

As with AFM-IR, Raman spectroscopy has also been coupled to AFM for nanoscale imaging with

spectroscopic information at spatial resolutions of 10 nm85–87. In tip-enhanced Raman spectroscopy

(TERS), the tips are coated with Ag or Au and are able to generate Raman signal enhancements due to

localized surface plasmons and the lightning rod effect87. TERS has been used to investigate polymer-

blend interactions in thin films85, which suggests that it may be applied for environmental subµ- and

nanoplastic analysis. This, however, remains to be seen, since the surface plasmon signal enhancement

is strongly dependent on the distance from the sample and the probe tip. Hence organic matter on the

surface of the environmental plastic particle may obstruct a Raman spectroscopic identification.

3.4.1.3 X-ray Photoelectron Spectroscopy

In X-ray photoelectron spectroscopy (XPS) the sample is irradiated with X-radiation that causes the

emission of photoelectrons, which contain information on their binding energy, hence giving element-

specific characteristic bands. XPS valence band analysis allows the assignment of the binding energies

of different orbitals, which are influenced by their chemical structure (e.g. methylene vs. methyl groups)99.

XPS spectra have been used to confirm the chemical composition of a primary subµ PS latex [96] and

primary PE nanoplastic particles in cosmetics1. It has to be noted, though, that XPS alone may not be

able to unambiguously identify the polymer type. However, it has the capability to observe changes in the

surface oxidation of subµ- and nanoplastic particles via changes in the oxygen content of the sample51,96.

Further, XPS has been utilized to investigate the changes in the extracellular polymeric substances of

waste water treatment plant (WWTP) microorganisms, which were induced by nanoplastic particles76.

3.4.2 Gas Chromatographic-Mass Spectrometric Methods

Besides spectroscopy, the mass spectrometric polymer identification is another common approach in

MP analysis that gives information on the mass fraction of polymer rather than particle count. There are

two different methods. The first is Py-GC-MS, in which the sample – usually a handpicked MP particle

with a mass up to 350 µg100 – is thermally degraded in an inert atmosphere with the result that the

pyrolysis fragments of the polymer structure can be separated by gas chromatography and characterized

by mass spectrometry. Hence, polymers are identified by typical pyrolysis products16,17,101. The

second GC-MS-based approach, thermal extraction desorption gas chromatography mass spectrometry

(TED-GC-MS) allows the analysis of plastic in environmental samples (sample mass up to 20 mg18)

without removal of (in)organic matrix. It combines thermal extraction of thermogravimetric analysis

63



Chapter 3 Critical Review on the Methods for the Analysis of Nanoplastic

products onto a solid-phase adsorber, which comprises the main difference to Py-GC-MS. The pyrolysis

fragments are subsequently thermally desorbed into gas chromatography mass spectrometry to enable

the identification of the polymer18,102. Py-GC-MS has recently been used for the first observation of subµ-

and nanoplastic (< 1.2 µm) in the environment, i.e. in the North Atlantic Subtropical Gyre. Comparison to

a reference database and principle component analysis enabled the detection of PE, PS, polyethylene

terephthalate, and polyvinylchloride in the subµ-plastic fraction2. Py-GC-MS has also been validated for

the identification of subµ- and nanoplastic particles (PS, 50 nm – 1000 nm) in a protocol that combines

cross-flow UF, AF4 and Py-GC-MS41.

These techniques, however, suffer from limits of detection (LODs), which will be too high for subµ- and

nanoplastic detection without preconcentration. Mintenig et al. reported a LOD of 4 mg/L for a PS

nanoplastic suspension, which they could decrease by a factor of 200 to 20 µg/L by concentration with a

cross-flow UF41. A preconcentration will be essential for the detection of subµ- and nanoplastic, because

its mass in environmental samples can be expected to be very low (see Section 3.1). Since no data on

subµ- and nanoplastic content in the environment is available, it is difficult to project the demands to

LODs and preconcentration factors. However, in the one instance, where subµ- and nanoplastic has

been detected in the North Atlantic Subtropical Gyre with Py-GC-MS, a preconcentration by a factor 100

sufficed to enable a detection of characteristic decomposition products2.

Py-GC-MS and TED-GC-MS are faster than spectroscopic single particle analysis but cannot provide

information on particle size, number or PSD, as well as morphology or aggregation, which will have to

be obtained by other particle characterization techniques like AF4-MALS or DLS. This emphasizes the

need to combine different methods to generate the specific information, which is demanded to answer

the individual analytical question (see Section 3.5).
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3.4 Chemical Identification

Technique Information Range Advantages Disadvantages References

FPA-FT-IR Vibrational
spectrum,
Pigments,
Additives,
Ageing

> 10 µm + Non-destructive
+ Automated

- Not applicable for single
subµ- and nanoplastic
- Strong interference
from water

[1, 41] / [10, 12]

ATR-FT-IR Bulk + Simple, Fast

AFM-IR Spectrum,
imaging

> 50 nm + High resolution
+ Chemical imaging

- Slow
- Small area

– / [82, 83]

RM Fingerprint
spectrum,
Pigments,
Additives

> 0.5 µm
Bulk

+ Non-destructive
+ Easy sample
preparation
+ Fast
+ No interference from
water

- Fluorescence – / [3, 14]

XPS Binding
energies of
orbitals

Bulk + Surface
characterization

- UHV
- Laborious

[1, 51] / [99]

Py-CG-MS Mass,
Polymer type,
Additives

Bulk
LOD: ng – µg
e.g. PS:
LOD:4 mg/L

+ Little sample
preparation

- LOD dependent on
polymer type
- Some polymers difficult
- Dry sample needed
- Preconcentration
necessary

[2, 41] / [16, 17]

TED-GC-MS + Measurement with
matrix
+ Fast
+ Higher sample masses

– / [18]

Tab. 3.3: Techniques for the chemical identification and characterization of subµ- and nanoplastic particles. References are
divided whether they have been applied for subµ- and nanoplastic (left) and by documents from other fields (right).
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3.5 Roadmap

When regarding MP analysis, there is no single protocol but a multitude that covers a complex field,

requiring specific methods for each different type of sample. This is also true for subµ- and nanoplastic

analysis. Therefore, the essential first step is to clearly define the analytical question. This contains the

sampling scenario, like surface water, tap water, food, soil, or WWTP in-/effluent (Figure 3.3), which, in

turn, determines the following steps, in particular, the sample treatment to provide that the sample can

be analyzed by the different techniques. It should be noted that, initially, when a method is transferred to

an environmental sample, a preceding validation will be necessary.

Fig. 3.3: Roadmap for the analytical process of subµ- and nanoplastic particles. Starting from the sample in its matrix, we
present and discuss the single steps that will lead to a full subµ- and nanoplastic analysis.

The analytical question also defines the required information: Are detailed size parameters and geometry

of importance or is a pure mass content sufficient information? Is chemical information on the polymer

required? When a clear task has been set, the appropriate methods can be chosen.

If the sample contains too much organic matrix that would disrupt further analysis, a digestion of the

matter is necessary. Acidic, alkaline, or enzymatic methods have been presented (Section 3.2.1). In

case of samples without organic matrix, like drinking water, sample processing can be continued with the

preconcentration step. Presumably, preconcentration is necessary for virtually all samples because – due

to the small particle size – subµ- and nanoplastic content is always low when evaluated by mass. For this

step, we discussed membrane filtration, UF, UC and mere removing of the solvent (Section 3.2.2). Here

the desired information dictates the method of choice. If the PSD is to be studied, e.g. by DLS, sensitive

UF should be utilized; if only SEM and spectroscopic identification are planned, filtration on a membrane

filter could suffice; if a mass content is to be determined, a pellet from UC might be appropriate without

further separation.

Following the concentration, a separation can isolate subµ- and nanoplastic from organic or inorganic
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particles in other size fractions, for which we discussed field flow fractionation, chromatographic and

electrophoretic methods (Section 3.2.3). If a sediment-free and digested sample is analyzed, so that

only subµ- and nanoplastic particles should be left, the separation step could be omitted. In the present

literature on subµ- and nanoplastic, AF4 has been the separation technique of choice because it has no

stationary phase, its large size range and its online coupled detectors32,41,51,55.

After the analyte has been isolated, a morphological characterization and chemical identification can

be performed. For this, many different physicochemical parameters can be determined. Among

these are size and PSD, shape, surface morphology, surface charge, degree of aggregation, surface

functionalization, and chemical composition22,23. Which of them will be determined and with that, which

methods will be applied depends on the research question. For data connected to particle size and

PSD we discussed light scattering methods (Section 3.3.1) and for the imaging of the particles and their

morphology, optical, electron and scanning probe microscopy (Section 3.3.2).

When applying methods for particle size and PSD characterization, the inherent differences between

the spherical, monodisperse reference particles and environmental, secondary subµ- and nanoplastic

have to be accounted for with a proper method validation. Environmental plastic is mostly generated by

fragmentation, which causes the particles to have irregular shape and surface morphology, as well as a

different surface charge as particle standards. However, the break-down of macroplastic to subµ- and

nanoplastic will involve a substantially larger number of fragmentations, which should make the structural

variety that we see in MP (e.g. fibers, sheets) less pronounced. Furthermore, these particles in the

nanometer range will show increased Brownian motion and, therefore, be recognized by most methods

by their hydrodynamic diameter rather than the actual shape. Therefore, the methods of Section 3.3 can,

in many cases, be applied for the physical characterization of irregular subµ- and nanoplastic samples

(e.g.25–27).

If the sample is polydisperse or suffers contaminations, laser scattering methods like DLS will lose

accuracy. This emphasizes the need for a combined analysis with different techniques. Separation

techniques like AF4, especially when coupled online, would alleviate the polydispersity and contamination

problem by providing a monodisperse particle fractions at the moment of passage through the detector.

To characterize the morphology of the irregularly shaped particles, an imaging technique should comple-

ment the characterization. It should also be noted that, if possible, a preliminary imaging before deciding

on a preconcentration and separation step could be well advised, because the morphology of secondary

subµ- and nanoplastic can impact the efficiency of the individual methods (see Figure 3.3).

These methods for particle characterization and imaging, however, cannot provide information on polymer

type. Finally, to obtain the chemical identification of the particle with respect to polymeric composition,

single particle analysis or bulk measurements of a fraction can be performed, for which we presented

spectroscopic and mass spectrometric methods (Section 3.4). Therein, depending on the analytical

question, it is possible to obtain different information. Aside chemical identification of the polymer

type, additives (e.g. stabilizer and pigments), as well as ageing can be determined. Most usually,

though, a simple and fast distinction between polymer and natural particle is the core requirement of the
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methods. Here, the thermoanalytical methods (Section 3.4.2) are currently the faster ones, considering

that the microspectroscopic techniques perform single particle identification (on MP), which increases

measurement time. When entering the realm of subµ- and nanoplastic, however, particle characterization

can be performed by other, better suited, techniques (Section 3.3). This can make it sufficient to

perform a spectroscopic bulk analysis on a plastic particle fraction, thereby reducing the measuring from

thousands of spectra to a few, possibly making the time requirement equal to thermoanalytical methods.

This directs the criteria for the choice of the method for chemical identification away from measurement

time and towards the information, which the specific method can provide and its ability to be coupled to

other techniques.

One such instance has been published by Mintenig et al. in which MP, subµ- and nanoplastic particles

in aquatic samples can be detected and quantified. This framework connects the analysis of MP

(by sieving/filtration and FT-IR) with the analysis of subµ- and nanoplastic, which is performed by

preconcentrated with cross-flow UF and analyzed with AF4-MALS and Py-GC-MS41. The size limit for

the change from FT-IR detection to AF4 and Py-GC-MS detection is 20 µm, which results the AF4 being

in inversion mode down to ca. 1 µm, at which level another filtration is performed. This approach has

the advantage of a fast FT-IR imaging, but requires two AF4 separations and Py-GC-MS identifications.

Another protocol could be based on RM (Figure 3.3), which can perform MP analysis down to 1 µm, and,

thus, would be more time consuming but could eliminate the AF4 separation in steric mode and also

provide information on the single particle level for the entire MP range. This indicates that for the diverse

analytical questions of subµ- and nanoplastic analysis, a versatile toolset will be of the essence.

3.6 Conclusion

Subµ- and nanoplastic pose new challenges to the methodology of environmental plastic analysis. In the

chapters above, we discussed methods for the analysis of subµ- and nanoplastic, which have already

been applied. In addition, from the field of environmental ENP analysis and from MP analysis, we

discussed techniques, which have the potential to be transferred to plastic particles in the nanometer

range. We emphasized the need to adapt the analytical protocol to the sample and the required

information by selecting the appropriate techniques (Figure 3.2). This is important since subµ- and

nanoplastic particles can be characterized by many different parameters, which influence their behavior,

and it is unlikely to have one technique that gives a sufficient characterization.

Environmental analysis requires cost efficient and fast methods, which can handle a large number of

samples in order to facilitate the evaluation of contamination and risk assessment. This emphasizes

the need for optimized protocols that are tailored to quickly providing the required information on each

sample, unless an academic interest warrants a full (and, therefore, time-consuming) characterization of

a sample. It is, however, necessary to select and combine techniques that provide the minimal amount

of data to answer the analytical question. This road to routine analysis will benefit from on-line coupling

(e.g. AF4-UV-MALS, combined with a chemical identification) to enable reliability and high throughput.
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3.6 Conclusion

For this, we presented various techniques that have the potential for subµ- and nanoplastic analysis and

projected a roadmap for the whole analytical process.
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Abbreviations

AF4 Asymmetric Flow Field-Flow Fractionation

AFM Atomic Force Microscopy

ATR-FT-IR Attenuated Total Reflection FT-IR

AUC Analytical Ultracentrifugation

CE Capillary Electrophoresis

CLSM Confocal Laser Scanning Microscope

dg gyration diameter

dh hydrodynamic diameter

DLS Dynamic Light Scattering

EDS Energy Dispersive Spectroscopy

ELS Electrophoretic Light Scattering

EM Electron Microscopy

ENP Engineered Nanoparticle

ESEM Environmental Scanning Electron Microscopy

FFF Field-Flow Fractionation

FPA-FT-IR Focal Plane Array FT-IR

FT-IR Fourier-Transform Infrared Spectroscopy

HDC Hydrodynamic Chromatography

HPLC High Performance Liquid Chromatography

LD Laser Diffraction

LOD Limit of Detection

MALS Multi Angle Light Scattering

MP Microplastic (1 µm – 5 mm)

Nanoplastic 1 – 100 nm

NOM Natural Organic Matter

NSOM Near-field Scanning Optical Microscopy

NTA Nanoparticle Tracking Analysis

PE Polyethylene

PS Polystyrene

PSD Particle Size Distribution

Py-GC-MS Pyrolysis Gas Chromatography Mass Spectrometry

RM Raman Microspectroscopy

SEC Size Exclusion Chromatography

SEM Scanning Electron Microscopy

SPM Scanning Probe Microscopy

STM Scanning Tunneling Microscopy

Subµ-plastic Submicrometer-plastic (0.1 µm – 1 µm)

TED-GC-MS Thermal Extraction Desorption Gas Chromatography Mass Spectrometry

TEM Transmission Electron Microscopy
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TERS Tip-enhanced Raman Spectroscopy

UC Ultracentrifugation

UF Ultrafiltration

XPS X-ray Photoelectron Spectroscopy
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Chapter 4

Raman Microspectroscopy and Scanning Electron

Microscopy for Primary and Secondary

Nanoplastic

4.1 Introduction

One approach to close the methodological gap for nanoplastic (Section 1.2.2) is to start with established

techniques for MP particle analysis and optimize measurement approaches with the objective of pushing

analysis to lower size limits (Section 1.2.4). Since RM incorporates an optical microscope, its size range

is determined by the numerical aperture and the wavelength. From that follows a limit for the resolution

at ca. 250 nm. This could allow the analysis of subµ-plastic particles, however the morphological

characterization would be insufficient this close to the diffraction limit. Thus, in this thesis RM was

combined with scanning electron microscopy (SEM) to provide high-resolution imaging of the investigated

particles. To this end, a suitable substrate and sample preparation was developed and, subsequently the

applicability on primary and secondary nanoplastic was shown.

4.2 Coupling of RM and SEM

4.2.1 Theoretical Resolution

The feasible limit of single particle analysis is determined by the Airy disc of the laser and the governing

criterion for the distinction of two separate points, as discussed in Chapter 2. Briefly, the size of the Airy

disc is dLaser = 1.22λ
N.A. , with the wavelength λ and the numerical aperture N.A.. For the present study, a

green laser of λ = 532 nm and a 100× magnification objective with a numerical aperture of N.A. = 0.9

has been used. Thus, the laser spot size equates to dLaser = 0.72 µm and with the different criteria the

resolution will result in rRayleigh = 0.31 µm, r80% = 0.25 µm and rSparrow = 0.20 µm, respectively1.

Furthermore, as the definition of the Airy disc implies, this resolution could, theoretically, be improved by
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Fig. 4.1: Substrates that were tested for the coupling of RM and SEM. Cu tape showed an insufficiently smooth surface and
background Raman signal. Al foil had no background but was still too rough. Si is perfectly smoot but has an obstructive
spectrum. Hence, Al coated slides were the optimal choice for the nanoplastic analysis.

increasing the numerical aperture (e.g. with an oil immersion objective, which is, however, impractical for

dried particles on a substrate) or using a shorter wavelength (i.e. ultra-violet) laser.

From these values, it seems reasonable to project 0.25 µm as lower particle size, which should be

possible to analyze in RM single particle analysis. As the following characterization will show, this

theoretical limit can be achieved. It needs, however, to be kept in mind that the theoretical definition of

resolution remains an optimal case. The application of real nanoplastic single particle analysis, may,

of course, see detrimental effects due to sample treatment or the fragmented nature of the particles.

As the nanoplastic particles will be smaller than the laser spot, the RM analysis needs to be done on

separately placed particles. If two nanoplastic particles lay next to each other, it will be impossible to

target the individual particle. Consequently, if the light of the laser spot interacts with adjacent particles,

the resulting chemical identification can become ambiguous.
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4.2.2 Sample Preparation

Implementing a combined analysis with RM and SEM of subµ-plastic particles requires an adequately

smooth surface due to the small particle size, which is in the size range of visible light. Further, the

sample carrier should be electrically conducting to provide an electron sink for visualization by SEM.

For this application, we have evaluated copper tape, aluminum foil, aluminum coated glass slides and

silicon wafers (Figure 4.1). Copper tape proved to be too rough and inappropriate for the visualization

of 500 nm particles and it produced a fluorescence background, which impeded RM. To reduce the

obstructing fluorescence, an aluminum substrate was used, but a standard aluminum foil is too uneven

for subµ-plastic particles. For greater smoothness, we tested a silicon wafer, which gave an optimal

surface for subµ-particles. However it is Raman active and produces strong peaks that overlap with the

comparably low intensity signals of the small plastic particles (Figure 4.2). Eventually, an aluminium-

coated object slide has proved optimal, because it combined smoothness comparable to silicon wafers,

electrical conductivity allowing SEM imaging, and lack of Raman background. This is in agreement

with the other studies: Sarau et al. used Al-coated polycarbonate filters2, Sobhani et al. prepared their

samples for RM measurement on glass slides and for SEM analysis on gold-coated silicon wafers3, and

Hernandez et al. used silicon wafers for SEM analysis4.

Fig. 4.2: The Si wafer has an own spectrum, which is much more intense than the signal of the nanometer sized particles and,
thus, interferes with the signal of e.g. polystyrene.

For RM and SEM analysis, 1 µL of the particle suspension was dropped on the respective substrates

and was left to dry. This treatment showed to be sufficient for both RM and SEM. For the latter analysis

type, it might be necessary to coat the sample with metal or to switch to low vacuum mode if the plastic

particles are too large and exhibit charging effects. Nanoplastic, however, experienced no detrimental

effects in SEM visualization. Although, in some cases the electron irradiation in the SEM prevented RM

analysis so that the otherwise stable particles only showed amorphous carbon signals in the spectrum.

Thus, RM analysis has to be performed before the SEM imaging. Caution has also to be advised
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on finding the same area of interest for SEM analysis, where the RM inspection has been performed

before. Although high-end instruments that correlate RM and SEM2 (see Chapter 2) are available, in this

study, the samples were transferred between the instruments manually. Thus, the position needs to be

located by reference to characteristic „landmarks“ in the dried sample spot, or, alternatively, to special

non-symmetric markings in the substrate. Here, to facilitate this, images of different magnification were

documented so that the location can easily be found. This is exemplified in Figure 4.3.

Fig. 4.3: Documenting images of different magnification helps in orienting and finding the region of interest when transferring
the sample from RM to SEM.

4.2.3 RM-SEM

The coupling of RM and SEM was demonstrated on two systems. First, well-characterized PS Latices

were used to establish the coupling and perform size characterization. Second, fragmented PS particles

were used to show the applicability for nanoplastic samples.

4.2.3.1 500 nm Polystyrene Particles

First, RM-SEM has been performed on 500 nm polystyrene particles (PS500), the data of which can be

seen in Figure 4.4. These particles can easily be recognized and targeted with the optical microscope

due to their uniform, spherical form and the smoothness of the Al-coated slide. Individual spectra confirm

the polymer identity and demonstrate the ability of the technique to analyze unknown environmental

samples. The chemical identification is illustrated here with a 2D Raman map displaying the precision

of the applied DuoScan stage, which measures with 0.05 µm steps. In Figure 4.4 this is depicted in a

height profile, plotting the intensity of the 1000 cm-1 band. Here, the diameter of the 500 nm spheres

appears much larger (∼ 2 µm), which is caused by the fact that the laser spot has a diameter of ∼ 0.7 µm

and, therefore, increases the effective range of interaction. From this sample, it can be further seen

that directly adjacent particles cannot be distinguished by the Raman map, which is the case for the

three adjacent particles. However, the other two close particles can indeed be distinguished by the

Raman intensity profile. Finally, the optical and Raman information are complemented by the SEM image

wherein the morphology of the particles is clearly visible and sizes can be acquired.
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Fig. 4.4: RM-SEM of 500 nm PS particles. The microscope image shows the particles and permits targeting for single particle
analysis and the SEM image augments the high-resolution morphology of the particles. The 3D Raman map of the 1000 cm-1

band illustrates that, on this sample, each point with a 0.05 µm step size can be investigated by Raman spectroscopy, giving
precise chemical information.

4.2.3.2 250 nm Polystyrene Particles

In a next step, PS particles with a diameter of 250 nm (their labelled size was 226 nm, although the

SEM sizing showed them to be closer to 250 nm, thus, this denomination was chosen) were tested

with RM-SEM. The respective data can be seen in Figure 4.5. Here, again the particles can be seen,

however barely, since they are at the theoretical size limitation, due to the smoothness of the Al-coated

object slide. The correlated SEM image complements the morphology of the particles. RM enables the

spectral identification of each particle, however the precise targeting could only be achieved manually.

To illustrate the resolution a line scan was performed over two close particles. This choice was due to

the instability of the particles against the thermal stress of the prolonged irradiation during a 2D map

acquisition (which took 18h in the case of Figure 4.4). This line scan shows the resolution of the two
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particles roughly according to the Rayleigh criterion and, furthermore, demonstrates the possibility of

RM-SEM to visualize and chemically identify particles of 250 nm.

Fig. 4.5: RM-SEM of 250 nm PS particles. The microscope image shows the particles and permits targeting for single particle
analysis and the SEM image augments the high-resolution morphology of the particles. The Raman line scan at the 1000 cm-1

band illustrates the resolution of two distinct particles at the theoretical limit and Raman spectroscopy, giving precise chemical
information.

4.2.3.3 100 nm Polystyrene Particles

Using this RM-SEM setup, the next limit was attempted by analyzing 100 nm PS particles, however

here is was no longer possible to see the particles with the optical microscope, hence targeting for RM

identification could not be performed. This allows to delineate the limit of practical single particle analysis

at 250 nm, which is in accordance with the theoretical considerations (Section 4.2.1).

4.2.3.4 Fragmented Polystyrene Particles

Subsequent to the size characterization with PS latices, secondary nanoplastic, i.e. fragmented particles

were analyzed by RM-SEM. These were produced in accordance with the method of von der Esch et

al.5 by ultrasonication followed by filtration through a 1 µm filter membrane to separate larger particles.

Figure 4.6 depicts the data of such an analysis. Here the optical microscope image can show the particle

location only roughly, which is sufficient for the targeting of individual particles (a – e). In the SEM

image these particles can be characterized by their morphology and size, which was in the range of

387 nm – 770 nm. This is an agreement with the sizes of the primary nanoplastic, considering that

irregular particles delineate from the homogeneous shape of the spheres. Therefore, the lower limit of

250 nm seems to be challenging to be achieved. However, the spectra permit the chemical identification

of secondary nanoplastic, as well as the primary, and the Raman map, principally, shows the spatial

distribution of the particles. However, in this sample the particles were too closely adjacent to each other

to be distinguished.
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Fig. 4.6: RM-SEM of fragmented PS particles. The microscope image shows the particle cluster and permits targeting for
single particle analysis and the SEM image augments the high-resolution morphology and sizes of the particles a — e. The 2D
Raman map of the 1000 cm-1 band illustrates that, on this sample, each point with a 0.05 µm step size can be investigated by
Raman spectroscopy, it the particles lay separately on the Al-coated slide. The individual spectra of the particles a – e show
their respective chemical identity.

4.3 Discussion

In this work, a practical measurement approach for the analysis of subµ-plastic particles by RM and SEM

has been explored. To this end, Aluminium coated object slides were found to be optimal substrates

and a suitable sample preparation was performed, which enabled the investigation of the same particles

of the sample. At first, primary nanoplastic (500 nm, 250 nm, 100 nm) was used to find the lowest

particle size, which could be targeted. This was 250 nm, which is in agreement with the theoretical limit.

Subsequently, secondary nanoplastic, which had been produced by fragmentation through ultrasonic

treatment5, was analyzed chemically and morphologically. Thus, it could be shown that the present

coupling of RM and SEM is able to perform particle identification by Raman spectroscopy and to provide

visual characterization by SEM.

Parallel to this work, Sobhani et al. published the application of Raman imaging for primary nanoplastic

down to 100 nm3. Subsequent studies of this group extended the Raman imaging to particles smaller than
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the diffraction limit by correlating the Raman emission intensity profile to the original particle size6 They

also improved the signal-to-noise ratio by analyzing multiple images of the same particle7. Furthermore,

Valsesia et al. analyzed nanoplastic, which was first extracted by enzymatic digestion/filtering from

mussel tissue and that was collected on a nano-structured surface comprising a microcavity array

(capillary forces) by RM8. This can have the potential to accelerate the analysis, if the cavities are in

precisely defined positions.

Thses results and the present thesis both document the applicability of RM for nanoplastic. Sobhani et

al. used Raman imaging, which enabled the detection of smaller particles, depending on the small size

of the pixels for the chemical image. The present approach aimed at a particle-by-particle analysis and,

thus, relied on the optical targeting of the particles, which could not be performed on 100 nm particles.

Nonetheless, both approaches seem to be limited to the analysis of only few selected particles, due to

the relatively long measurement times.

Using the same approach as projected for this thesis, several reports on correlated SEM and RM

analysis have appeared recently demonstrating the identification and visualization of different primary

MP (especially aggregates)2, nanoplastic (PS 200 nm) in different solvents (distilled water, sea salt,

human amniotic fluid)9, and irregular and heterogeneous (i.e. polymeric and inorganic) nanoplastic (>

360 nm)10. Those studies, however, used integrated systems that had the RM directly in the sample

chamber of the SEM. Our work shows the applicability with two separate systems. This will be important

for laboratories and applications where such an integrated system is not available or economically

feasible.

In addition to the classical RM-based approaches, which might be hindered by low signal intensities due

to the small mass of the nanoplastic particles, some studies used surface-enhanced Raman scattering

(SERS) to enable nanoplastic analysis. Here, the use of Ag nanoparticles has been shown for chemical

imaging of PS nanoplastic as small as 50 nm11 or to identify primary PS, PE, PP nanoplastic (100

nm, 500 nm and 10 µm; concentrations down to 40 mg/L) in pure and sea water by using a handheld

Raman spectrometer12. Secondly, nanostructured surfaces were used to analyze primary nanoplastic

and collected atmospheric particles (< 2.5 µm; down to 450 nm)13.

4.4 Conclusion

The method presented here, together with the recent advances towards RM analysis of nanoplastic,

highlight the great interest in new Raman-based techniques for this new analyte. This interest is based

on the theoretical capability of RM for the subµ size range, as well as the established processes for

RM-based chemical identification in MP analysis. Thus, it remains important to establish RM in this

size range and to push the limit further down and towards the application on particulate matrix (e.g.

inorganic particles). Furthermore, the question of quantification needs to be addressed, which means

that decisions need to be made on how many particles need to be selected and analyzed for the

measurement to be representative. Hence, an optimized automated analysis process is required or
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the transition to bulk analysis needs to be evaluated. Nonetheless, the applicability of RM-SEM for

subµ-plastic particles has proved to be promising for the investigation of the nanoplastic size range. It

also offers the possibility to provide valuable information on specific analytical questions which focus on

single-particle analysis.

4.5 Materials and Methods

4.5.1 Particles and Chemicals

Spherical PS particles with 100 nm, 250 nm, 500 nm, 1.4 µm, and 10 µm suspended in ethanol, were

provided by BS-Partikel GmbH, Germany, PMMA 500 nm was purchased from microParticles GmbH,

Germany, and SiO2 500 nm from NanoComposix, San Diego, CA, USA. Novachem (Postnova Analytics

GmbH, Germany) was used as surfactant. Suspensions were prepared with ultrapure water (MilliQ

Integral 5, Merck Millipore, Germany, resistance 18.2 MΩ). Fragmented particles were produced in

accordance to a procedure by von der Esch et al5 by cutting down PS objects (spatulas, Carl Roth GmbH

& Co KG, Germany) and putting them in an aqueous solution in an ultrasonic bath for 15 h. Then, the

suspension was filtrated over a 1 µm polycarbonate filter to separate the nanoplastic particle-containing

suspension.

4.5.2 Substrates

The copper tape and silicon wafers were purchased from Plano GmbH, Germany. Aluminium foil was

purchased from Carl Roth GmbH & Co KG, Germany, and the Al-coated object slides were purchased

from Dynasil EMF, Ithaca, NY, USA.

4.5.3 Raman Microspectroscope

Raman measurements for the RM-SEM coupling (Section 4.2) were performed on an LabRAM HR

Raman microscope (Horiba Scientific, France), which was equipped with the DuoScan module for precise

mapping of the sample. It moves the laser spot by piezo-electrically controlled mirrors instead of sample

stage movement. This allows step sizes down to 0.05 µm. The Raman maps acquired in this way had

sizes of 12 µm × 12 µm with 0.05 µm steps, equating to 58081 pixels with acquisition times of 1 s and 1

accumulation. Of the PS particle spectra, the 1000 cm-1 band was plotted.
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4.5.4 Scanning Electron Microscope

SEM imaging was performed on a Zeiss Sigma VP FE-SEM (Carl Zeiss Microscopy GmbH, Germany),

which was equipped with an EDS Quantax XFlash 6l60 Detector (Bruker Nano GmbH, Germany).

Images were taken with a SE detector at acceleration voltages of 3.0 – 5.0 kV.
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Abstract

Micro- and nanoplastic contamination is becoming a growing concern for environmental protection

and food safety. Therefore, analytical techniques need to produce reliable quantification to ensure

proper risk assessment. Raman microspectroscopy (RM) offers identification of single particles, but to

ensure that the results are reliable, a certain number of particles has to be analyzed. For larger MP, all

particles on the Raman filter can be detected, errors can be quantified, and the minimal sample size

can be calculated easily by random sampling. In contrast, very small particles might not all be detected,

demanding a window-based analysis of the filter. A bootstrap method is presented to provide an error

quantification with confidence intervals from the available window data. In this context, different window

selection schemes are evaluated and there is a clear recommendation to employ random (rather than
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systematically placed) window locations with many small rather than few larger windows. Ultimately,

these results are united in a proposed RM measurement algorithm that computes confidence intervals

on-the-fly during the analysis and, by checking whether given precision requirements are already met,

automatically stops if an appropriate number of particles are identified, thus, improving efficiency.

5.1 Introduction

The ubiquitous plastic contamination in the environment, especially Microplastic (MP, 1 µm – 1 mm)

and, more recently, Nanoplastic (< 1 µm) is of great concern and has spawned many efforts to assess

the highly diverse aspects of this topic, ranging from its quantity in environmental systems1 or food

(e.g., drinking water2) to its toxicity3. All of these investigations, however, depend on harmonized

analytical methods4 for which thorough validation is essential. Thus, there are many advances for the

several established techniques for MP analysis, which comprise sampling, sample processing, chemical

identification, quantification & data processing/reporting5,6. Most of them fall in two main groups:

thermoanalytical and spectroscopic methods. The former are based on the analysis of the thermal

decomposition products of the polymer by gas-chromatography-mass-spectrometry (GC-MS). Two

realizations thereof are pyrolysis-GC-MS7–10 and theromoextraxtion-desorption-GC-MS11,12, which give

the mass content of different polymers but cannot provide information on the number, size distribution,

and morphology of the (plastic) particles. Spectroscopic techniques, on the other hand, comprise

mainly Fourier-Transform-Infrared spectroscopy13,14 and Raman microspectroscopy (RM)15–17. Here,

the particles are identified by characteristic vibrational “fingerprint” spectra. This paper focusses on

RM, which has been established for the analysis of MP due to the specific data (size distribution,

shape, morphology), which are provided by the analysis of individual particles down to 1 µm (and even

below)15.

RM analysis of MP is very time consuming and, until recently, has been also very labour intensive,

since the particles had to be measured manually18. Hence, substantial advances in its automation

have been made, so that there are now several open source19–21 and commercial19,22,23 softwares.

Currently they are applicable down to the low µm range and are dependent of the maximum image

resolution of the RM that was used (von der Esch et al.: 10 µm19, Brandt et al.: 2-3 µm21, Ossmann et

al.: 1 µm22). These automated programs follow the workflow of acquiring an optical image of the filter,

particle recognition, RM measurement at resulting coordinates, database matching and result output,

where some can control the RM directly21–23 and others output the coordinates that have to be passed

to the RM control software19,20. There are some applications of Raman imaging, i.e. spectral imaging of

entire areas24, however, the particle-by-particle approach seems to be preferable19,21. This progress has

effected an increase in measured particle numbers in more recent studies (up to several thousand)16,25.

Furthermore, the automatic particle recognition removes the operator bias when deciding on which

particle to measure and also provides the ratio of MP/non-MP which is an important quantity as opposed

to absolute MP number16.
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Parallel to the advances of automated MP quantification, the lower µm range has been targeted. Since

the particle number increases exponentially26, it will become nearly impossible to analyze all particles

below a certain size. Thus a subset of the complete sample has to be selected, which in itself is another

sampling. This subsampling – as any sampling – has to satisfy the requirements for correct sampling as

laid out by the Theory of Sampling (TOS), demanding that each particle has the same probability to be

selected and is not altered27–29, and thus, enables a bias-free quality control.

The automated routines make it possible to acquire a microscope image of the whole filter and detect all

particles (assuming perfect image recognition), thereby the whole sample can be subjected to a random

sampling. This equalizes the probability of a particle being selected and makes the spatial structure

of the particles on the filter irrelevant. Ergo, this random sampling is a correct sampling and can be

modelled statistically (urn model without replacement) to provide an error quantification (via confidence

intervals (CI)) and to calculate a minimal sample size such that a certain precision requirement is met16

(see box in Figure 5.1 and the appendix in Section 5.6.1.).

For MP, the random sampling is well applicable down to 10 µm19. However, for very small MP and

especially nanoplastic30–33, the complete filter cannot be imaged in a practical manner and the total

particle number is not accessible, thus, another subsampling method has to be found. Of course, this

problem is not restricted to MP analysis or a specific size range, it is rather universal and relevant

whenever particles (points) have to be selected from a two-dimensional surface.

For very small MP (ca. < 10 µm) and even subµ-plastic we expect that random sampling may not be

feasible due to the following technical concerns.

The measurement time and the computational resources to process the resulting amount of data34,35

will increase substantially, due to the fact that smaller particles demand the use of higher magnification

objectives (such as 50×). For the optical imaging of the complete filter, this leads to a very high number

of images that have to be stitched together (our RM would need around 12100 images for a filter with

22 mm diameter, not including image overlap for stitching). It might even be impossible to generate such

large images with some commercial RM software, such that some workaround has to be found.

The automated particle measurement critically depends on the RM’s ability to target the particles at their

calculated locations. This may become difficult for decreasing particle size, as the deviations by the

microscope stage become more and more detrimental. There are multiple parameters that characterize

the quality of the microscope stage, which are normed by ISO36. From these, there are three, that will

inhibit the particle identification: accuracy, repeatability and drift. Accuracy describes the discrepancy

of the target and the actual position after motion. Repeatability is the accuracy when sequentially

positioning. Drift describes the slow temporal component of the position stability. It is usually attributed

to temperature fluctuations.

In this application, repeatability37 is the most pertinent source for deviations, where the positioning

system has to be fit to accurately target particles with diameters down to ∼ 1 µm. For MP samples

with up to 10000 measurement points, this deviation can accumulate to a substantial amount (several

µm). Position accuracy and drift over a measurement duration of 2–3 days may, too, be in the same
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Sample size and confidence interval in random sampling (urn model without replacement):
From all N particles on the filter a subset with S particles is selected randomly (each particle has the same
probability to be selected) and identified with RM, yielding Sp plastic particles. The ratio r =

Np

N of plastic
particles Np on the filter can be estimated from the corresponding ratio in the subset: r̂ = Sp/S. This
estimate r̂ might be erroneous, which can be accounted for by a confidence interval.
For a given error probability α one is willing to accept, a (1 − α) confidence interval (CI) is an interval of
values around the estimate r̂ which covers the true value r with probability (1 − α):

CI(r̂) = [r̂ ± e] = [r̂ ± z · sd(r̂)] , (5.1.1)

where e = z · sd(r̂) denotes the absolute error margin and can be calculated with the (1 − α
2 )-quantile z of

the normal distribution (frequently used values are z0.95 = 1.64 for α = 0.10 and z0.975 = 1.96 for α = 0.05).
When reporting the number of plastic particles on the filter N̂p = N · r̂, the CI can be transformed into

CI
(
N̂p

)
= N · CI(r̂). The (estimated) standard deviation of the ratio estimate is:

sd(r̂) =

√
r̂ · (1 − r̂)

S
· N − S

N − 1
. (5.1.2)

By knowing N , assuming a plausible ratio r, and specifying requirements on α and e (only an error probability
of α should be accepted that the ratio estimate r̂ deviates more than e from the true ratio r) the minimal
number S of particles to identify with RM can be obtained by

S ≥
r · (1 − r)

e2

z2
+
r · (1 − r)

N

. (5.1.3)

Frequently, the requirement on e is instead expressed by a relative error erel, which needs to be transferred
to the absolute error margin e = r · erel beforehand.
A comprehensive, step-by-step formalization of this calculation is given in the appendix in Section 5.6.1.

Fig. 5.1: Box containing a summary of sample size and confidence interval calculation in random sampling on a completely
imaged filter (urn model without replacement).

order of magnitude as the particles of concern in this study. Aside the precision of the microscope stage,

mosaicking mismatch may also introduce a deviation, since the image stitching is dependent on the

availability and recognition of common features in the margins of the single images34. The sum of these

influences on the deviation is neglible for larger particles (> 10 µm), but prohibits the targeting of very

small particles for RM identification, when the images are all taken at once and only then the spectra are

acquired.

The acceptable overall positioning error derr depends on the particle diameter d and the laser spot

size dlaser = 1.22·λ
N.A. , where λ is the wavelength of the laser and N.A. is the numerical aperture of the

objective. Its upper bound is derr < 1
2(d+ 1.22·λ

N.A. ), which implies that the laser barely touches the particle.

As example, a particle with d = 1µm, measured with a green laser of λ = 532nm and a 50× objective

with N.A. = 0.7 equates to derr = 0.96µm.

With sub-nanometer applications of e.g. scanning probe microscopy in mind, it is obvious that the quality

of high-end positioning systems exceeds the requirement for this problem in some aspects. However,

for high-throughput and cost efficient analysis, such high-end technical instrumentation may not be

economically feasible.
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In this work, we consider the case in which the complete filter cannot be imaged (e.g. in the context

of very small MP) and present a window subsampling strategy. Window sampling schemes, although

common in MP analysis22,38–41, have the risk of sampling particles incorrectly (cf. TOS) and, furthermore,

lack the information on the total particle number, such that corresponding confidence intervals are not

analytically accessible. To solve this problem, we describe a bootstrap method to estimate confidence

intervals in window sampling schemes and outline that the preferable window scheme uses random

window locations. This allows to correctly subsample on the filter and to provide error quantifications via

estimated confidence intervals. In the future, this approach can be implemented in the RM measurement

process to adjust the sample size with the acquired data on-the-fly.

5.2 Window Selection Schemes

If complete optical imaging of the filter is not feasible (Section 5.1), RM analysis needs to be restricted

to a set of selected windows on the filter. Indeed, this approach is used by many MP laboratories

in different varieties (instead of random sampling of all particles). Some studies choose a number

of windows (with differing area ratios of the filter) at fixed, arbitrary positions (although referred to as

“random”, no randomization was reported and positions seem to be fixed)22,38,39. There are other window

placements that follow a specific arrangement, such as a cross with five40 and with 19 windows42. Other

approaches use a spiral41 or a stratified random window placement43. These patterns aim to incorporate

potential information about the spatial structure into the window pattern. Thaysen et al.43 demonstrated

the importance of taking the spatial structure of the particles on the filter into account. The resulting

information was used to derive a stratified sampling in rings to account for the radial pattern of the

particles. However, it is extremely difficult to assess the spatial structure in its entirety, since each

statistical analysis only highlights one aspect of the spatial structure.

Systematic window placement, especially with very few windows, as our example will show, is a critical

source of bias (Figure 5.3a). Thus, we evaluate these two options: A random window scheme, in which

each segment of the filter has equal probability of being investigated, and a systematic scheme with

similar distances to the next windows, such that the whole filter is covered by the uniform systematic

pattern. We, further, investigate the effect of the window size by comparing windows with a size of 1 and

4 fields of view (FOV), as it might be technically difficult to perform RM on an exceedingly large amount of

windows. These will be referred to as 1-FOV sampling and 4-FOV sampling, respectively. FOV denotes

the size of the microscope image at the respective magnification, which is dependent on the individual

microscope (e.g. the RM at the authors lab gives images, i.e. 1-FOV, of 222 µm × 139 µm at 50 ×
magnification). Consequently, 4-FOV is a 2×2 rectangle of microscope images (444 µm × 278 µm).

Adapting the terminology of Minkkinen et al.44, we denote random vs. systematic windows as sampling

modus and many small (1-FOV ) vs. few large windows (4-FOV ) as sampling type. Elaborations within

this section serve mainly as illustration for the two-dimensional sampling case depicted here and as basis

for further elaborations in the subsequent sections. For the general treatment of sampling see27–29.
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5.2.1 Estimation of the Number of Plastic Particles

5.2.1.1 Formalization

Formally, the number Np of plastic particles of the filter is of interest and can be calculated by considering

the number N of all particles on the filter and the ratio r of plastic particles on the filter: Np = N · r. Both

N and r are unknown and need to be estimated from the window data consisting of k windows in total

with W particles, of which Wp are plastic particles. It is assumed that all particles in the windows will be

subjected to RM identification (such that W corresponds to the previously used S, see Figure 5.1), as

the number of particles per window is expected to be very low (around 1.6 in the illustrating simulation

described below, with 20 000 particles, multiplied by the ratio of window area to filter area). The ratio

estimate r̂ = Wp/W (compare Box in Figure 5.1) is obtained directly from the window data and the

number of particles on the filter can be extrapolated by considering the area a(F ) of the filter in relation

to the area a(W ) of the set of windows:

N̂ = W · a(F )

a(W )
. (5.2.1)

Together, the number Np of plastic particles on the filter can be estimated as

N̂p = N̂ · r̂ = W · a(F )

a(W )
· Wp

W
= Wp ·

a(F )

a(W )
. (5.2.2)

5.2.1.2 Window Edge Issues

There are some issues if particles overlap with the window edges and are cut off. In this case they will

give a false particle size and a distortion in the particles number. Consider Figure 5.2, in which many

particles overlap the inner window border. Since some are cut off, the 8 recognized particles would truly

belong in a slightly larger (outer) window with a larger area, resulting in a lower final estimate for Np

according to equation (5.2.2). It is even conceivable that a particle is counted twice, if it laps into two

closely put windows.

However, a solution to these issues can be achieved by restricting the window-based RM measurement

to particles smaller than a certain limit (e.g. 10 µm) and cutting off the radius (i.e. 5 µm) of this limit

diameter of each window border (similar to overlap regions in image stitching34). Only particles that

have their center within this smaller window are of interest. The number of all particles that have their

centers within this smaller window, but are completely contained within the larger window (e.g. 3 in the

example in Figure 5.2) and the area of the smaller window in equation (5.2.2) will give an unbiased final

estimate.

With regard to our target size range, the window size of an image with 50× magnification is 222 µm ×
139 µm, the smaller window would be 212 µm × 129 µm which is still large compared to the size of the

particles and should not lead to other serious issues. Should the analysis target larger particles, a larger
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window would need to be applied (4-FOV sampling), since edge issues are smaller with larger windows.

In that, edge issues need not be a reason to resign from 1-FOV sampling when measuring very small

microplastic particles.

Fig. 5.2: Schematic filter section to illustrate window edge issues: To avoid bias in particle number due to cut off particles,
one should only use an inner window of the whole FOV, in which only particles that have their center (magenta) within the
inner window, but are contained completely within the outer window (FOV), are counted. So, instead of 8 particles with too low
diameter only three particles with correct diameter would be counted.

5.2.1.3 Bias and Standard Deviation

The final estimate N̂p is a random variable and might be erroneous. Potential errors might be systematic

or statistical (random), which can be described by the bias

bias
(
N̂p

)
= E

(
N̂p

)
−Np (5.2.3)

and the standard deviation sd
(
N̂p

)
, respectively. The bias of N̂p is the deviation of its expected value

E
(
N̂p

)
from the true value Np, and should ideally be zero. In that case the estimate N̂p is unbiased,

and if not there is a systematic error that can hardly be controlled in real applications. In fact, the

confidence calculation as outlined in Figure 5.1 assumes that the estimate N̂p is unbiased, which is the

case if random sampling is used.

By assessing both systematic and statistical error for different window sampling schemes, the quality of

these schemes can be assessed. However, bias and standard deviation of the final estimate N̂p depend

on the spatial influences on the particles on the filter, which are hardly ever fully known, such that explicit

formulas cannot be provided. Consequently, obtaining confidence intervals and performing sample size

calculations require computational statistical methods.
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5.2.2 Simulation Details

To illustrate and elaborate on the questions about sampling modus and type in the next sections,

we generated artificial filters, which aimed to resemble a typical preprocessed sample. Since these

elaborations target the subsampling on the filter, the other critical aspects of the MP analysis by RM, i.e.

particle recognition, or Raman identification, are assumed to be ideal. Method development on these

aspects of the analysis is critical to ensure that these assumptions are met and potential error is avoided.

A total of N = 20000 circular particles, having diameters from 1 µm to 200 µm that follow the power law

distribution as reported by Kooi et al.26, were randomly placed on a circular surface with 22 mm diameter

(similar to an Au-coated polycarbonate filter, as used in our laboratory), such that no particles overlap

with each other. Out of these particles r = 0.2 (20 %) were labeled as plastic, resulting in Np = 4000

plastic particles. This particle number has been chosen with regard to typical filters in the authors’ lab,

onto which an appropriate aliquot has to be filtrated such that the filter is not overloaded.

Different influences on the spatial structure of the particles on the filter can be classified as internal

and external. Internal influences are interactions between the particles themselves irrespective of their

locations on the filter, such as clustering (particles attract each other) or regularity (particles repulse each

other), and external influences affect particle (or cluster) locations in general irrespective of potential

particle interactions, e.g. particles might tend towards the margin or the center of the filter (for a more

comprehensive view on spatial structures see Supplementary Information Section 5.6.2). Naturally,

particles on the filter express regularity as they cannot be in the same place. This is called a hard core

and signifies an area, in which other particles cannot be located. For the illustration of the external

influences, two types of spatial probability distributions were applied in the simulation: a uniform, resulting

in a regular reference filter without external influence (Supplementary Information Figure S.5.2, left),

and a Gaussian distribution, resulting in a filter with external influence that collects the particles in the

center45 (Supplementary Information Figure S.5.2, right), similar to the filters by Thaysen et al.43. In

this manner, 5000 filters have been generated. Window sizes were 222 µm × 139 µm as obtained with

the 50× magnification of our alpha 300R Raman microspectroscope (Witec GmbH, Germany) (and

444 µm × 278 µm for evaluating 4-FOV sampling, see Section 5.2.4) and windows were not allowed to

overlap with each other.

For each window sampling scheme of interest, the final estimate N̂p was calculated within each of the

5000 simulated filters. All of them (together) allow to estimate its bias bias
(
N̂p

)
and standard deviation

sd
(
N̂p

)
as well as to illustrate effects of external influences on the minimal required sample size W ,

and, thus, the required minimal number k of windows. Technical information about the simulation is

provided within the supplementary material (Section 5.6.3).

5.2.3 Sampling Modus – Random vs. Systematic Windows

The impact of the sampling modus (random windows vs. systematic windows) on the bias and the

standard deviation of the final estimate depends on the number of windows and the actual spatial
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structure of the particles. Random window locations were allowed such that windows might exceed the

margin of the filter, as long as at least some part of the window was still contained within the filter. This

ensures that each part of the filter has the same probability to be contained within a window. In contrast,

if (random) windows were restricted to be completely within the filter, the outer parts of the filter are

underrepresented within the windows, leading to an estimation bias (exemplified and elaborated on in

the Supplementary Information in Section 5.6.4). For systematic windows, a sunflower seed pattern was

used, such that the k (systematic) windows fill the complete filter with similar distances to their neighbors,

trying to cover the area of the filter as uniformly as possible.

Both types of artificial filters (regular & Gaussian) were analyzed using random windows and systematic

windows, respectively, for varying numbers of windows k. Figure 5.3a depicts the expected value

E
(
N̂p

)
, which, if unbiased, should equal to Np = 4000, and Figure 5.3b depicts the standard deviation

sd
(
N̂p

)
.

Regarding the bias, Figure 5.3a shows that the estimate N̂p is unbiased (the true value is Np = 4000)

in three cases: both of the regular filters and the random windows on the Gaussian filter. The strong

oscillation of those lines for small k reflects only the simulation variance and will diminish with increasing

number of filters analyzed (not just 5000). Only systematic windows on the Gaussian filters lead to

a biased estimate. This underestimation is caused by the centralized external influence, which is not

adequately represented by the systematic windows. To illustrate this point, imagine a square positioning

of 9 windows on the filter. Of these, one lies on the center and 8 lie toward the border. For our centralized,

Gaussian particle pattern, this would result in only one window covering a large amount of particles but

8 covering very few, causing an underestimation of the particle number. Similarly, if a spatial structure

was present that accumulates particles on the border (as could occur during filtration due to adhesion on

the glasswares), this misrepresentation would cause an overestimation of the result.

In general, the strength of this bias depends on the match between the spatial structure of the particles

and the pattern of systematic windows used. Within our simulation, this match (Gaussian, centralized

structure and sunflower seed arrangement) gets better with increasing number k of windows, even

nullifying the bias for a certain value of k (somewhere between 500 and 1000 windows). This, however,

need not be the case in general, and considerable thought should be given to the pattern of window

locations, if systematic windows are used. Without any prior information about the spatial structure of

the particles, it is difficult to justify the choice of systematic window pattern. In the application of RM

analysis of MP, it might however be conceivable to use the spatial information that is gained from the

complete filter optical image (for larger MP particles) for the generation of a systematic window scheme

for the small size range. Of course, this incorporates the assumption that the small particles behave the

same as the large particles. To check this assumption, one might employ an overlap of the size ranges

(e.g. complete filter: 10 µm – 500 µm and window sampling: 1 µm – 50 µm) and compare the results.

It might seem peculiar, that even for Gaussian filters random windows will yield an unbiased estimate.

This is because, with random window locations every part of the filter has the same probability to be

covered by a window. No matter what the spatial structure looks like and which external influences

99



Chapter 5 Subsampling Methods for Raman Microspectroscopic Analysis of Very Small Microplastic

Fig. 5.3: Sampling Modus. Artificial filters with regular (black line) and Gaussian (blue line) spatial structure have been analyzed
with a random (solid line) and systematic (dotted line) window scheme. Thus, the black and solid line represents random
windows on the regular filter. a) Bias plot: k vs. E(N̂p). Only systematic windows on the Gaussian filters have a bias (deviation
from the true value Np = 4000 (horizontal black line)). b) Plot of standard deviation: k vs. sd(N̂p). Random windows on the
Gaussian filter have increased standard deviation. The horizontal black line at sd(N̂p) = 243.2 corresponds to the precision
requirement erel = 0.1 and α = 0.1. These are met for k = 800 and k = 1300 windows for regular and Gaussian filters,
respectively.
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are present, each characteristic of the spatial structure will be observed with equal probability and no

spatial characteristic is systematically missed. This also extends to the case, where plastic particles and

non-plastic particles have different characteristics, i.e. if the ratio r is not spatially uniform on the filter.

The unbiasedness of random windows, however, comes with an increase in the standard deviation of

the estimate. Figure 5.3b shows that – as expected – the standard deviation decreases with increasing

number k of windows. This decrease is, again, comparable in three cases: both regular filters and

the systematic windows on the Gaussian filter. Only for random windows on the Gaussian filters, the

standard deviation is higher, because the procedure of selecting window locations at random introduces

additional randomness on the final estimate. The increase in standard deviation for random windows

becomes apparent when using the plot to derive a minimal sample size according to predefined precision

requirements for the Gaussian filters, as shown in Figure 5.3b. Here, precision requirements were

specified as erel = 0.1 and α = 0.1. For N = 20000 and r = 0.2 this demands the absolute error

margin to be smaller than e = N · r · erel = 400 and, thus, the standard deviation to be smaller than

sd(N̂p) = e/z = 243.2 (with z = 1.64, compare box in Figure 5.1). In order to obtain this standard

deviation (y-value) with the Gaussian filters, random windows require k = 1300 windows, containing

W = 2065 particles to identify in total, and systematic windows requires k = 800 windows, containing

W = 1295 particles to identify in total.

Considering systematic windows on the Gaussian filters, it can also be seen that the standard deviation is

not affected by the potential bias (see Figure 5.3a), emphasizing that both quantities (bias and standard

deviation) behave independently and a bias in the data cannot be detected by data processing, as it was

laid out in Section 5.2.1.3.

In summary, two characteristics for the sampling modus were observed in this simulation analysis: In the

presence of external influences, random windows have an increased standard deviation and systematic

windows might yield biased estimates. Although the former increases the probability to obtain a more

unrepresentative window sample (due to the increased randomness), this issue can be tackled by

increasing the number k of windows, however, the latter might introduce a systematic error of unknown

size that impairs the representativity of the window sample, which is not controllable in real RM analyses.

In that, systematic windows should only be used if their pattern matches well with the spatial structure

of the particles. However, as the spatial structures are expected to differ depending on sample origins

(marine or limnic waters, drinking waters, processed biota, etc.) and different laboratories with different

filtration setups/procedures, such a match needs to be evaluated for each new study. Besides, in contrast

to random windows, systematic windows do not allow for an easy way to increase the number of windows

adaptively during the analysis, such that a match of the pattern with the spatial structure of the particles

can be guaranteed for all numbers of windows.

5.2.4 Sampling Type – Smaller vs. Larger Windows

The impact of the sampling type (1-FOV sampling vs. 4-FOV sampling) on the bias and the standard

deviation of the final estimate depends on the number of windows, the actual spatial structure of the
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particles, and the sampling modus.

As described above (Section 5.2.2), window sizes were 222 µm × 139 µm as obtained with 50×
magnification for 1-FOV sampling, and 444 µm × 278 µm for 4-FOV sampling, in order to realistically

implement using four smaller windows with 50× magnification to obtain one larger window. For comparing

both sampling types, the number of windows k denotes the number of small windows needed to obtain

all larger windows in 4-FOV sampling. As there is no external influence within the regular filters, every

window - no matter how its location was determined - has the same distribution of particles or plastic

particles. In that, there is no difference between 1-FOV and 4-FOV sampling on regular filters, such that

results (Figure 5.4) focus on the Gaussian filters only. Those were analyzed using both sampling modi

(random vs. systematic) and both sampling types (1-FOV vs. 4-FOV sampling) for an increasing number

k of windows. Again, the figures depict the expected value E
(
N̂p

)
(Figure 5.4a) and the standard

deviation sd
(
N̂p

)
(Figure 5.4b). Lines for 1-FOV sampling (dark blue) are the same as in Figs. 5.3a

and 5.3b.

Figure 5.4a shows that the bias (deviation from the true value of Np = 4000) inherent to systematic

windows (compare Section 5.2.3) is larger for 4-FOV sampling than for 1-FOV sampling. This is because,

1-FOV sampling is able to capture the external influence better than 4-FOV sampling, as more different

locations of the filter can be observed. This allows a more comprehensive picture of the different

characteristics of external influences, leading to the lower bias in 1-FOV sampling. Random sampling is

still unbiased, independent of the sampling type.

Analogously, Figure 5.4b shows that the increase in standard deviation inherent to random windows

(compare Section 5.2.3) is even higher if 4-FOV sampling is used compared to 1-FOV sampling. Again,

this can be explained because 4-FOV sampling uses fewer window locations than 1-FOV sampling,

impeding a comprehensive picture of the different characteristics of the external influences.

In summary, 4-FOV sampling amplifies the problems inherent to random or systematic windows, respec-

tively, in comparison to 1-FOV sampling, and its effect depends on the strength of the external influences.

Therefore, 1-FOV sampling (i.e. maximizing the number of different window locations) is to be preferred.

However, window sizes need also consider the particle size range of interest (compare Section 5.2.1.2)

as well as processing times, which might be longer for a larger number of smaller windows. Yet, when

employing 4-FOV sampling to reduce processing time, technical limitations for image stitching have to be

taken into account (Section 5.1), and the overall number of particles to identify with RM might be larger

than with 1-FOV sampling, due to the increase in variance, which increases the measurement time.
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Fig. 5.4: Sampling Type. Artificial filters with Gaussian spatial structure have been analyzed with a random and systematic
window scheme for both 1-FOV (dark blue) and 4-FOV sampling (light blue). The solid line denotes random windows, the
dotted line denotes systematic windows. For 4-FOV sampling, k denotes the number of smaller windows needed to obtain
the large windows. a) Bias plot: k vs. E(N̂p). For systematic windows the bias is more pronounced with 4-FOV sampling
than with 1-FOV sampling. b) Plot of standard deviation: k vs. sd(N̂p). The standard deviation of random windows is higher
for 4-FOV sampling than for 1-FOV sampling. Analogue to Figure 5.3, the black line at sd(N̂p) = 243.2 corresponds to the
precision requirements erel = 0.1 and α = 0.1.
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Fig. 5.5: Scheme of Bootstrap Analysis. From one original window data of the filter (left), B samples of the same size are
drawn with replacement, each providing a final bootstrap-sample estimate for the number of plastic particles N̂b

p , b = 1, ..., B
(middle). These are used to calculate a bootstrap standard deviation sd∗(Np) (right), which – together with the final estimate
N̂p (bottom left) – can be used to estimate a confidence interval CI∗ (bottom right).

5.3 Confidence Interval via Bootstrap

5.3.1 Theory

If a certain number of windows on the filter were observed, their particles identified, and the final estimate

calculated (equation (5.2.2)), the standard deviation of the final estimate is of interest to calculate a

confidence interval. As this depends on the spatial structure of the particles, which is typically not fully

known (due to influences of e.g. the filtration setup, characteristics of the sample or sample treatment), it

cannot be obtained analytically (i.e. exactly with a formula). However, bootstrap methods offer a way to

estimate this standard deviation and thus the confidence interval.

In bootstrap methods (see Figure 5.5) new window samples are drawn from the original window sample

with replacement (such that in a new sample some original windows might occur more often and other

original windows might not occur at all). In a new bootstrap sample, the final estimate might also be

calculated (equation (5.2.2)), thereafter referred to as final bootstrap-sample estimate.

Such a bootstrap sample might be drawn many times (e.g. B = 5000 times) from the original sample,

leading to many final bootstrap-sample estimates. The standard deviation of these many final bootstrap-
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sample estimates might then be used as proxy (i.e. a bootstrap-estimate) for the standard deviation of

the final estimate, in order to calculate a (bootstrap-based) confidence interval.

Formally, denote the b-th (b = 1, . . . , B) final bootstrap-sample estimate as N̂ b
p . Their mean and

standard deviation are (with ∗ indicating the reference to the bootstrap samples)

N∗
p =

1

B

B∑
b=1

N̂ b
p (5.3.1)

and

sd∗
(
N̂p

)
=

√√√√ 1

B

B∑
b=1

(
N̂ b
p −N∗

p

)2
, (5.3.2)

respectively. The latter can be used as proxy for the standard deviation sd
(
N̂p

)
= sd∗

(
N̂p

)
of the final

estimate, leading to the bootstrap-based confidence interval

CI∗
(
N̂p

)
=
[
N̂p ± z · sd∗

(
N̂p

)]
. (5.3.3)

In every bootstrap method, the representativity of the original (window) sample for the population (filter)

is of fundamental importance. Assume e.g. a Gaussian filter and that all windows are located near

the margin of the filter, such that there is hardly any particle in any window. Of course, this window

data does not represent the filter well and any bootstrap method might not yield useful results. If the

original window sample is less representative for the complete filter, then the bootstrap confidence

interval might be longer or shorter than the true confidence interval. While longer confidence intervals

provide a conservative error quantification (i.e. the true error probability is smaller than required), smaller

confidence intervals provide liberal error quantifications (i.e. the true error probability is larger than

required). Typically, the latter is considered far worse than the former, as there is no guarantee that the

required limit on the error probability can be kept. As outlined above (Section 5.2.3), systematic windows

might suffer from a bias, impairing the representativity of the window sample in an uncontrollable manner,

and random windows express greater variation in the window samples (increasing the likelihood of

randomly getting less representative window data), which, however, can be controlled by increasing the

number k of windows.

5.3.2 Assessment

A simulation analysis was done to assess the performance of the bootstrap-based confidence interval

estimation w.r.t. potential impairments due to a lack of representativity and the additional error introduced

by bootstrap estimation. Three conditions were evaluated: random windows for both types of filters

(regular and Gaussian) and systematic windows for Gaussian filters (the fourth condition was omitted to

save computational resources). Within each condition, for each of the 5000 simulated filters, a varying

number k of windows were selected. Each of those window data (original sample) were used to estimate
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a bootstrap-based confidence interval as outlined above, using a given error probability α = 0.10. So,

for each value of k and each condition, 5000 bootstrap-based confidence intervals were obtained (each

with B = 5000 bootstrap samples), and Figure 5.6 shows the 90%-bands of the corresponding absolute

error margins (these bands include 90% of these error margin values and exclude the 5% lowest and 5%

largest values). Figure 5.6 also plots the expected absolute error margin obtained with the simulation of

Section 5.2.3 (compare Figure 5.3b; values of the absolute error margin relate to those of the standard

deviation by e = z · sd
(
N̂p

)
). This band illustrates the extra variation that is introduced by using a

bootstrap method, which - as expected - decreases with increasing number k of windows (the band

narrows down).

Bootstrap based confidence intervals tend to be longer than the true confidence interval that was

obtained with the previous simulation (the band deviates upwards from the line), especially for increasing

number k of windows. In that, these bootstrap-based confidence intervals tend to be conservative, such

that the true error probability might be smaller than the previously specified maximal error probability

α. Within the Gaussian filters, obtaining a liberal confidence interval becomes unlikely for larger, but

reasonable (compare Supplementary Information Section 5.6.5), numbers of windows k > 1300 (the

lower limits of the 90%-bands surpass the blue line). Although corresponding numbers of particles to

identify might be larger with these bootstrap intervals, their conservativeness is a very advantageous

property, as it reduces the risk of not being able to meet the requirement on the error probability α, which

is inherent to a bootstrap method if the original sample is less representative. An analysis of the true

error probability of the bootstrap confidence intervals shows that the given error probability α could be

kept for reasonable numbers k of windows (see Figure S.5.4 in the Supplementary Information).

The 90%-bands for random and systematic windows are quite similar. This illustrates an important

characteristic of bootstrap methods: New bootstrap window-samples are treated as a random window-

sample of the filter, even if the original window locations were selected according to a systematic

window scheme. Although systematic windows yield a smaller standard deviation than random windows

(compare Section 5.2.3), this is not the case for the bootstrap-estimated standard deviation. In that,

when using bootstrap methods to estimate confidence intervals, systematic windows are expected to

have no benefit as the standard deviation caused by random windows now compares to systematic

windows, and only their downside of generating a potential bias remains.

In summary, bootstrap methods allow to estimate a confidence interval and, thus, to assess the error

within the final estimate (which is not possible with formulas), at the cost of introducing an additional

source of error. This error, however, seems to shift results in a conservative direction, such that the true

error rate might be lower than implied by the results. As a consequence, this might increase the number

of particles to identify, but tackle potential representativity issues inherent to bootstrap methods.

Most importantly, a bootstrap confidence interval is only an estimate of the actual (analytically inaccessi-

ble) confidence interval and might also be erroneous. It should also be noted that bootstrap methods are

not free of critique (for a first overview about bootstrap in general, see46). However, in the present case,

they might offer a way to check whether the required error margin is roughly reached.
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Fig. 5.6: Bootstrap Confidence Intervals. Plots depict lengths of the confidence intervals (absolute error margin e) for varying
numbers k of windows. While the thick lines depict the “true” length of the confidence intervals as obtained by the simulation
(see Section 5.2.3 and Figure 5.3b), the bands depict estimates of the absolute error margins obtained by the bootstrap
methods: For each condition and each number k of windows, 5000 bootstrap confidence intervals were estimated and
the bands include 90% of the corresponding error margin values, excluding the 5% lowest and 5% largest values. These
90%-bands illustrate the additional variation introduced via bootstrap. a) For both Gaussian (blue) and regular (black) filters,
bootstrap confidence intervals tend to be longer, i.e. more conservative, than the “true” confidence interval, especially for
larger number k of windows (the band deviates upwards from the line). b) Bootstrap confidence intervals tend to be similar for
random (solid lines) and systematic (dashed lines) windows (both bands are similar), although the “true” confidence interval
with systematic windows is shorter than with random windows (see Section 5.2.3 and Figure 5.3b), illustrating that bootstrap
samples are treated as random representation of the filter, even if the original windows were placed systematically.
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5.4 On-The-Fly Raman Microspectroscopy for Very Small Microplastic

Traditional sample size calculations (if the complete filter is known, see Box in Figure 5.1) require

specifications of the number N of particles on the filter and the ratio r of plastic particles. The latter is not

known prior to the analysis and the former is unknown if window methods are employed. Therefore, those

sample size calculations require initial guesses for these values. If those deviate from the true values,

then the number of identified particles is too low or too high. Thus, we want to outline an on-the-fly

algorithm that solves this issue and provides an optimal number of windows. Here, the RM data is

analyzed during the measurement by computing a bootstrap confidence interval and assessing whether

given precision requirements are already met. If so, the measurement would stop. This avoids having an

eventually insufficient sample size or measuring more particles than actually needed.

5.4.1 Procedure

Aside the precision requirements α and e, an initial number kini of windows should be chosen as

starting point for the first bootstrap confidence interval calculation. This is necessary, as mathematical

peculiarities might erroneously lead to stop the procedure prematurely, if only few windows were used.

In our simulation setup, the average number of particles per window was around 1.6, such that using

100 windows (for 1-FOV or 4-FOV ) initially might be a reasonable choice. With regard to Section 5.2.4,

the window size should be chosen as small as possible. This number is influenced by N and r, thus,

the sample size calculation of the large particles (random sampling Box in Figure 5.1) can inform this

choice, as this is an optimistic “best case” of the window sampling and displays a lower limit of particles

to identify.

After identifying the particles in the kini windows, if the precision requirements were not met, the number

of windows should be increased by an increment k+ of windows. In theory, it is possible to choose

k+ = 1, but performing too many bootstrap estimations yields the risk of erroneously reaching the

stopping criterion (because of the additional randomness inherent to bootstrap methods), especially

when approaching the stopping criterion. For the examples in this paper, k+ = 50 was used. Examples

are depicted in Figure 5.7.

The total number B of bootstrap samples to estimate a confidence interval should be sufficiently large.

Within our simulation, we used B = 5000, which is comparatively small, to reduce simulation times. In a

real application, values as B = 10000 or even higher should be easily manageable.

With these specifications, the on-the-fly procedure is as follows:

1. As initialization, select kini window locations randomly (allowing windows to exceed the filter

borders, compare Section 5.2.3).

2. Detect (consider window edge issues, Supplementary Information Section 5.2.1.2) and analyze all

particles within the (newly) chosen windows with RM.
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3. Using the complete data set, estimate the number N̂p of microplastic particles on the filter using

formula (5.2.2).

4. Estimate the standard deviation sd∗
(
N̂p

)
of this estimate via bootstrap:

a) For b = 1, ..., B:

• Draw a bootstrap sample by drawing k windows from the original sample (consisting of

the original k windows) with replacement.

• Calculate the final bootstrap-sample estimate N b
p within this bootstrap sample using

formula (5.2.2).

b) Use all B final bootstrap-sample estimates to calculate their standard deviation sd∗
(
N̂p

)
(equation (5.3.2)).

5. For the given significance level α, calculate the bootstrap confidence interval (equation (5.3.3))

and determine the (absolute or relative) error margin.

6. If this (absolute or relative) error margin is larger than the desired (absolute or relative) error

margin, select another k+ windows randomly and return to step 2, else stop the RM analysis.

Within the application of the on-the-fly procedure, random windows were used. In theory, it is possible to

use systematic windows as well, however, it might be difficult to find a pattern of windows that allows to

increase the number of windows sequentially, such that the structure of the systematic windows stays

the same. Further, even if such a pattern was found and employed, the benefit in reducing the standard

deviation (see Section 5.2.3 and Figure 5.3b) is mitigated by using bootstrap methods for estimating

confidence intervals (see Section 5.3.2). Nevertheless, a potential and uncontrollable bias might be

introduced by systematic windows, compared to random windows, that might impair the representativity

of the window samples in an unknown manner and cannot be controlled by (subsequently) increasing

the number of windows. Moreover, it is conceivable that the ratio of MP r also exhibits a spatial structure,

whose influence is easily circumvented by the random window sampling.

Sample size considerations depend on N and r, and when using window based sampling or bootstrap

estimation methods this number will be even higher, compared to the random sampling. Our simulation-

based illustration uses N = 20000 and r = 0.20, however, values in real applications cover a very

wide range. If the plastic ratios r is smaller or the particle number N is larger, the sample size may be

exceedingly large, such that it may not be possible to identify this amount of particles in reasonable

time. In this case, the on-the-fly procedure should have a predefined stopping point. Then, of course, it

would not meet the precision requirements and it should be considered if some other, less strict precision

requirements are agreeable. Furthermore, the experimentator can opt to perform an enrichment step

(e.g. density separation) to increase the ratio of MP r or, ultimately, decide on a different technique (e.g.

thermoanalytical), which of course will trade off the in-depth information of RM for measurement speed

(see Section 5.1).
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5.4.2 Examples and Assessment

Figure 5.7 shows three different runs of the on-the-fly procedure on the Gaussian filters using kini = 100,

k+ = 50, and B = 5000. For each iteration, the estimate (point) and its bootstrap-estimated confidence

interval (with α = 0.10) are depicted in relation to the true value Np = 4000 (black horizontal line). The

last confidence interval that was estimated (in blue) is characterized by a relative error lower than the

prespecified requirement of erel = 0.10, leading to stop the procedure. Figure 5.7a depicts a case, in

which the final result (estimate plus confidence interval) does not cover the true value, representing an

error which might be caused randomly by an unrepresentative window placement. Figure 5.7b shows an

example, where N̂p falls too low but recovers and yields a correct result and Figure 5.7c depicts a run

that arrives at the true value directly.

In order to assess the performance of the on-the-fly procedure, all 5000 filters (of each type) were

analyzed (with differing increment sizes to reduce computation time: k+ = 50 for k < 1000 and

k+ = 100 for k > 1000). For a significance level of α = 0.10, the first k with a confidence interval with

erel < 0.10 was used as result.

The resulting number of windows for regular filters ranged from 650 to 1100 with a mean of 872 ± 108

and for Gaussian filters from 1300 to 2100 with a mean of 1665 ± 69 (respective distributions are

depicted in the Supplementary Information Figure S.5.5). This tends to be higher than the minimal

number of windows as obtained by the simulation (800 and 1300, respectively, see Section 5.2.3), which

might result from the tendency of the bootstrap estimation to extend confidence intervals in this setup

(see Section 5.2.3).

Of all on-the-fly runs on regular and Gaussian filters, only 8.58 % and 5.2 % yielded confidence intervals

that do not cover the true value Np = 4000, respectively, indicating the conservativeness of bootstrap-

based on-the-fly results, as an error probability of α = 0.1 was allowed in this simulation. In that,

the higher window number of bootstrap is counterbalanced by the profit of reducing the true error

probability.

In summary, the on-the-fly procedure with the bootstrap-based confidence interval provides an algorithmic

implementation of error quantification and sample size considerations into window-based RM analyses.

By its nature, this adaptive procedure tackles typical specification issues inherent to classic sample

size calculations (Box in Figure 5.1), however, still tending towards conservative results, which, in turn,

counteracts potential representativity issues of bootstrap methods. Here, the question about sampling

modus is clearly answered: Random windows should be employed, as the only benefit of systematic

windows (lower standard deviation) seems to get lost by using bootstrap methods.

5.5 Conclusion

Microplastic assessment demands reliable quantification from the analytical techniques, among which

RM is able to cover very small particles. Providing quality control to its data has previously been enabled
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Fig. 5.7: On-The-Fly Procedure: Exemplary Runs. For each number k of windows, with kini = 100 and k+ = 50, the point
represents the final estimate with the vertical bar depicting the bootstrap confidence interval (with B = 5000, and α = 0.10).
The procedure is stopped after the relative error margin (numbers below each confidence interval) fell below erel = 0.1,
after which the subsequent confidence interval would not be available in a real application but is depicted here for illustrative
purposes (greyed out). The black line depicts the true value Np = 4000. a) The on-the-fly procedure misses the true value of
Np (due to the statistical error). b) and c) The algorithm yields a correct result.
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for particles > 10 µm, where random sampling can be applied19. Since the smaller particles are more

difficult to analyze, a new window-based selection scheme is proposed, for which - as for random

sampling - confidence intervals can be obtained. This approach is illustrated on two kinds of spatial

structures on the filter: a random distribution with the only stipulation that particles cannot lie within each

other, and a Gaussian structure where the particles tend towards the center of the filter. Comparing

random and systematic window placement, it is demonstrated that systematic windows are prone to bias,

random windows, however, pay for the unbiasedness with increased variance (i.e. standard deviation)

and, in turn, number of particles to identify. Further, the importance of using as many small windows

as possible rather than few large windows is shown, since the latter amplifies the bias of systematic

windows and the variance of random windows, respectively. To achieve a confidence interval for the

estimate of the plastic particle number, a bootstrap method was used. Here, the representativity of

the sample taken is essential, and random windows are clearly to be preferred. Moreover, due to the

random resampling in the bootstrap method, the variance benefit of systematic windows compared

to the random windows is lost, nullifying its advantage for this application. Finally, these results were

unified in the projection of an on-the-fly RM measurement protocol, in which increments of particles are

selected, identified and the result instantly subjected to a bootstrap calculation. Its resulting confidence

interval then informs the decision to either stop or continue the measurement. This iterative approach

solves the problem that an initial sample size calculation requires information on the particle number and

MP content, which are only available after the analysis. Therefore, an automated RM analysis could

generate MP quantification within a required precision for particles in this very low size range, while also

being efficient with measurement time by stopping after the required precision has been reached.
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5.6 Supplementary Information

5.6.1 Random Sampling on the Complete Filter

If every particle is known, then the spatial structure is irrelevant, only the set of particles is relevant. By

using random sampling, the error can be controlled and minimized16. Thus, random sampling has to be

preferred, whenever the possibility. The following section will lay out the formal theory of the confidence

interval and sample size calculation for the random sampling. A brief summary has been given in the Box

in Figure 5.1. In the statistical treatment of this problem, a perfect technical implementation of Raman

measurement and particle detection shall be assumed – although it still is a current topic, on which

diligent work is being performed.

5.6.1.1 Formalizing the Estimation

Denote the number of particles and of plastic particles on the filter asN andNp, respectively. Accordingly,

the ratio of plastic particles over all particles on the filter is

r =
Np

N
. (5.6.1)

Only the total number N of particles on the filter is available, but the number Np of plastic particles on

the filter is of interest, which can be calculated by

Np = N · r . (5.6.2)

The ratio r is unknown and usually it is not possible to identify the type of every particle on the filter.

Therefore, a subset of all particles on the filter should be selected for RM. Denote the number of particles

and plastic particles within this subset as S and Sp, respectively. Both of these quantities are known after

RM analysis and the ratio of plastic particles over all particles within this subset can be calculated:

rS =
Sp
S
. (5.6.3)

This ratio rS can then be used as an estimate for the ratio r on the filter. In that, we denote the estimate

as (an estimate will always be indicated with a hat ˆ within this section)

r̂ = rS . (5.6.4)

By selecting the subset randomly, this estimate r̂ is a random variable, and by plugging in this estimate

into equation (5.6.2), also the quantity of interest becomes a random variable:

N̂p = N · r̂ = N · rS . (5.6.5)
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5.6.1.2 Confidence Interval - Theory

Naturally, this estimate N̂p might be erroneous and its error can be quantified by considering its standard

deviation sd
(
N̂p

)
, which in turn can be derived from the standard deviation sd(r̂) of the (random) ratio

estimate:

sd
(
N̂p

)
= N · sd(r̂) . (5.6.6)

In that, it suffices to assess the standard deviation of the ratio estimate r̂ in order to then quantify the

error of the final estimate N̂p.

This standard deviation depends on N , Np, S, and on the selection scheme of the subset (i.e. which

kind of randomness).

The obvious question to ask here is which sampling scheme is the best (i.e. resulting in the lowest

standard deviation). Universally agreed on27,29 and already elaborated on in the field of microplastic16,

this selection should be “completely random”, in a sense that each particle on the filter should have the

same probability to be selected for RM identification.

By using this random sampling, the selection of particles for RM can be represented by a classical urn

model without replacement and the formula for the standard deviation is:

sd(r̂) =

√
r · (1 − r)

S
· N − S

N − 1
. (5.6.7)

So, after selecting the subset, doing the RM analysis and calculating the ratio estimate r̂ (equation

(5.6.4)), the standard deviation sd(r̂) can be used to determine a confidence interval around the ratio

estimate r̂. This confidence interval specifies a range of the most plausible values for the ratio estimate

r̂ and therefore accounts for the estimation uncertainty (in contrast to the point estimate r̂ alone).

A confidence interval always refers to a given confidence level (1−α) (where α is the error probability or

significance level), such that the probability of the interval covering the true value r is (1 − α). Although

typical choices are 80%, 90%, 95%, or 99%, the confidence level should be specified according to the

actual requirements of the applied context.

The estimate r̂ (random variable) is approximately normally distributed (central limit theorem), such that

the confidence interval of r̂ can be calculated as

CI(r̂) =
[
r̂ − z1−α

2
· sd(r̂) , r̂ + z1−α

2
· sd(r̂)

]
, (5.6.8)

where z1−α
2

is the (1 − α
2 )-quantile of the normal distribution (referring to the given confidence level

(1 − α)). Frequently used values are z0.90 = 1.28, z0.95 = 1.64, z0.975 = 1.96, and z0.995 = 2.58 for the

four α-values mentioned above.
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This (1 − α) confidence interval of the ratio estimate r̂ can then be used to calculate the (1 − α)

confidence interval of the final estimate (of the number of plastic particles on the filter)

CI
(
N̂p

)
= N · CI(r̂) . (5.6.9)

This confidence interval is then interpreted as being the range of values for N̂p that covers the true value

Np with probability (1 − α), which means that if this procedure of random sampling would be repeated

infinitely and confidence intervals would be calculated analogously, then only α of these confidence

intervals do not contain the true value Np.

5.6.1.3 Confidence Interval - Estimation

Unfortunately, these confidence intervals cannot be calculated as the true ratio r in the formula for sd(r̂)

(equation (5.6.7)) is unknown. Instead, the confidence intervals can only be estimated by using the

estimate r̂. In that, the estimated standard deviation is

ŝd(r̂) =

√
rS · (1 − rS)

S
· N − S

N − 1
(5.6.10)

and the estimated confidence interval of r̂ becomes

ĈI(r̂) =
[
r̂ − z1−α

2
· ŝd(r̂) , r̂ + z1−α

2
· ŝd(r̂)

]
, (5.6.11)

leading to the estimated confidence interval of the final estimate

ĈI
(
N̂p

)
= N · ĈI(r̂) . (5.6.12)

Instead of reporting solely the point estimate N̂p, this estimated confidence interval ĈI
(
N̂p

)
should be

provided in every microplastic analysis.

5.6.1.4 Sample Size Calculation

In addition, these considerations about confidence intervals can be used to calculate the required size S

of the subset, such that a confidence interval of a given length can be obtained.

As can be seen in equation (5.6.8), the confidence interval ĈI(r̂) of the ratio estimate r̂ is a symmetric

interval around the point estimate r̂ with “radius”

e = z1−α
2
· ŝd(r̂) , (5.6.13)

which is frequently denoted by e and referred to as absolute error margin.
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In contrast, the relative error margin erel relates the absolute error margin e to the ratio estimate r̂:

erel =
e

r̂
. (5.6.14)

For example, assume two different confidence intervals around the point estimates r̂ = 0.5 and

r̂ = 0.1, respectively, both with a relative error of erel = 0.1. In that, the absolute error margins are

e = erel · r̂ = 0.05 and e = erel · r̂ = 0.01, yielding the confidence intervals [0.45, 0.55] and [0.09, 0.11],

respectively.

In order to calculate the required number S of particles that should be subjected to RM identification,

one needs the following quantities: N , r, (1 − α), and e. The first is known, the second is unknown

(and no estimate r̂ is available prior to the RM identification analysis), and the remaining two should be

specified according to the “precision requirements” of the analysis, in a sense that one should state the

error probability α, one is willing to accept, that the ratio estimate r̂ deviates more than e (absolute error

margin) from the true ratio value r. The usual handling of the unknown ratio r is to assume a plausible

value and use this assumed ratio.

The required minimum size S can then be calculated as16:

S ≥ r · (1 − r)
e2

(z1−α
2

)2 + r·(1−r)
N

(5.6.15)

Of course, the assumed ratio r used in this calculation prior to the RM identification process might differ

from the estimate r̂ (i.e. rS) that is obtained after RM identification. This might explain that the estimated

confidence interval (equation (5.6.11)), which is calculated with the ratio estimate r̂, might not keep the

previously specified “precision requirements” (α and e), which are based on the assumed ratio r.

Nevertheless, it is highly recommended to perform an own sample size calculation prior to RM analysis,

as each RM analysis has its own characteristics and requirements. This can be done easily with the

following steps:

• Determine the total number N of particles on the filter that might be subjected to RM identification.

• Assume a plausible value for the ratio r of plastic particles among all particles on the filter. If it

is too difficult to decide on one single value, try different plausible values. Applying a smaller r

increases the sample size but increases the chances that the precision requirements are met.

• State the “precision requirements” (α and e): Only an error probability of α should be accepted

that the ratio estimate r̂ deviates more than e from the true ratio r. Frequently, the precision

requirement is expressed by a relative error erel, which needs to be transferred to the absolute

margin of error e = r · erel.

• Determine the z1−α
2

-quantile for the desired maximal error probability α.

• Calculate the minimum sample size S using equation (5.1.3).
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Of course, all S particles that should be subjected to RM identification have to be selected randomly

from all N particles, else the error calculations as outlined above do not hold.

As illustration, table S.5.1 contains results of the sample size calculation for a specific set of precision

requirements, i.e. α = 0.1 and erel = 0.1. Note that for decreasing r and increasing N the sample size

increases, respectively.

Tab. S.5.1: Exemplary values of S for different precision requirements. Columns are N and rows are r.
α = 0.1

erel = 0.1 1000 2000 5000 10000 20000 50000 100000 200000 500000 1000000
0.5000 213 239 257 264 267 270 270 271 271 271
0.4000 289 338 376 391 398 403 405 406 406 406
0.3000 387 480 561 594 612 624 628 630 631 631
0.2000 520 703 890 977 1027 1060 1071 1077 1080 1082
0.1000 709 1099 1638 1959 2171 2322 2378 2406 2424 2430
0.0500 838 1440 2535 3396 4090 4662 4890 5012 5089 5115
0.0050 982 1929 4576 8434 14583 25925 34998 42421 48607 51090
0.0005 999 1993 4955 9819 19287 45769 84396 146008 259809 351003

5.6.2 Spatial Structure of Particle Locations

In many MP laboratories, window sampling is necessary and especially when approaching very small

MP it will be mandatory. Here, the influence of the spatial structure of the particles can no longer be

evaded by random sampling. This section will discuss the fundamental concepts of spatial structures

(especially different types of influences), as laid out in the field of spatial statistics45.

In principle, there is a so called random point process that can generate spatial structures, which are

said to be realizations of this point process. In that, we assume that our observed spatial structure on the

filter (e.g. in Figure S.5.2) belongs to a certain, but unknown point process. In the case of MP filtration,

the point process would be characterized by the properties of the particles (e.g. propensity for clustering)

and the filtration setup (e.g. vacuum pump, fluid dynamic) and the spatial structure would be the actual

arrangement of the particles on this one specific filter. Hypothetically, filtering the particle suspension

(water sample) again, would give another spatial structure, which is another realization of the same point

process.

In spatial statistics different point processes are discerned45. The stereotypical and idealized point

process is characterized by complete spatial randomness (CSR), such that the location of every point

(i.e. particle) is uniformly distributed in the area of interest (i.e. on the filter), which means that every

location on the filter has the same probability to be selected as location for a particle (see Figure S.5.1a).

With CSR different points might be arbitrarily close to each other.

In general, there are two different types of influences on the spatial structure that deviate it from CSR.

• First, there might be an interaction between the points (particles) themselves (irrespective of their

locations on the filter). In that, two different interactions might be distinguished:
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Fig. S.5.1: Influences on Spatial Structures. a) Complete Spatial Randomness: the particle locations have a uniform probability
distribution. b) Regularity: particles repulse each other, so that they are less likely to appear close to each other. c) Clustering:
particles attract each other, so that they are more likely to appear close to each other. d) External influence: an influence that
directs particles to certain locations (here upper right). e) Regular particle distribution with external influence. f) Clustering
particles with external influence.

– Regularity. In a regular point process, the points repulse each other, such that it is unlikely or

impossible for points to be close to other points (Figure S.5.1b). Points or particles are said

to have a hard core, if it is impossible for other particles to be located within its core (i.e. near

surrounding).

– Clustering. When particles attract each other, clusters of particles occur. Cluster locations,

however, might still be uniformly distributed on the filter (Figure S.5.1c) or influenced by

external influences (Figure S.5.1f).

• Second, point locations might be influenced by external influences (irrespective of the interactions

between the points), e.g. points (or cluster locations) might tend towards the margin or the center

of the area of interest (see Figure S.5.1d–f).

Having these different types of influences on spatial structures in mind, it appears obvious that spatial

structures might be quite complex and their characterization cannot be summarized in one single quantity.

In fact, the field of spatial statistics offers a range of different functions, each one only being able to

describe a single aspect of a spatial structure45. In that, comprehensively describing or even modeling

spatial structures is a very difficult task. “Practically”, Pitard even “conclude[s] that the sampling of
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two-dimensional lots (...) is an unsolvable problem” [29, p. 589].

Interactions between particles influence only the standard deviation of the final estimate, with regularity

reducing it and clustering increasing it. Consider the following:

• If particles express regularity (which they do as they have a hard core), it is less likely that in

one single window there would be extremely many or extremely few particles compared to when

particles would not express regularity. In that, the standard deviation of the number of particles in

this window (and therefore also the standard deviation of the final estimate) is lower with regularity

compared to without regularity.

• If particles cluster (with random cluster locations), it is more likely that in a single window there

would be extremely many (if the window is on a cluster) or extremely few particles (of the window

is not on a cluster) compared to when particles do not cluster. Thus, the standard deviation of the

number of particles in this window (and therefore the standard deviation of the final estimate) is

higher with clustering than without.

A bias would arise if characteristics of the spatial structure would be systematically missed within the

observed windows. This is not the case with regularity or clustering per se, as particle locations or

cluster locations would still follow a random pattern. Only with an external influence (that affects the

locations of particles or cluster, e.g. a vacuum pump vortex) a bias might arise in dependence of the

window selection scheme, as illustrated in the paper in Section 5.2).

Furthermore, concerning the use of the term “homo-/heterogeneity”, it seems that those terms are used

with strongly differing meanings. In analytical chemistry they can refer to the spatial structure of particles,

but also to chemical composition. Spatial statistics uses the term homogeneity in a sense of CSR

(Figure S.5.1a) where particle locations have a uniform probability distribution45. It, however, appeared

to the authors that in analytical chemical texts a “homogeneous” spatial structure typically refers to a

regular point process as in Figure S.5.1b. This discrepancy might result from the observation that the

distances between the points in the regular spatial structure are relatively similar, thus “homogeneous”.

Due to this multitude of meanings, we urge for studies to clearly and explicitly denominate the concept of

“homo-/heterogeneity” that is employed and we want to emphasize that care has to be taken with those

terms in interdisciplinary communication.

5.6.3 Simulation Details

Exemplary realizations of the artificial filters (regular and Gaussian) are depicted in Figure S.5.2.

Simulations and analyses were performed in R (version 4.0.0) and the code is accessible in an online

repository at https://doi.org/10.14459/2021mp1596628. Used packages were boot (version 1.3.24),

spatstat (version 1.63.3), ggplot2 (version 3.3.0), ggforce (version 0.3.1), and stringr (version 1.4.0).
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Fig. S.5.2: Example Filters in Simulation. Left: regular filter with particles with hard-core property a uniform probability
distribution. Right: Gaussian filter with a Gaussian-like external influence that directs particles to the center. Each filter contains
N = 20000 particles of which r = 0.20 are plastic particles (black). Particle sizes range from 1 µm to 20 µm and follow a
power law as reported by Kooi et al.26.

5.6.4 Filter Edge Issues

With the random window scheme it is important that the windows are allowed to overlap the border of

the filter. Otherwise, there would be parts of the outer filter that are not properly represented within the

windows. This effects an underrepresentation of the border, which can lead to a bias in the final estimate.

This is exemplified in Figure S.5.3, where windows did not overlap and, in the presence of an external

influence (Gaussian filter), the true value Np = 4000 was overestimated by ∼ 80 particles.

5.6.5 Conservativeness in Bootstrap Estimates

By its definition, the (1 − α)-confidence interval should cover the true value Np with probability (1 − α),

i.e. out of all confidence intervals (using the same setup, but different filters with the same external

influences), only a ratio of α should be allowed to miss the true value Np. Figure S.5.4 depicts for

different numbers k of windows the ratio of all 5000 bootstrap confidence intervals that do not cover

the true value. It shows that for a low number k of windows the bootstrap confidence intervals do not

keep the given limit of α = 0.10 (black horizontal line), but are conservative for a larger number k of

windows.
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Fig. S.5.3: Filter Edge Issues. Random windows not overlapping the filter border causes an underrepresentation of this part of
the filter in the windows. On the two cases of this paper, i.e. regular and Gaussian filters, this effects a bias for the Gaussian
filter (blue) that overestimates the true value Np = 4000.

5.6.6 Distribution of Window Number in on-the-fly

Within the simulation, actual window numbers after termination of the on-the-fly procedure with erel = 0.1

and α = 0.1 are depicted in Figure S.5.5 for both regular and Gaussian filters.
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Fig. S.5.4: Conservativeness of Bootstrap Confidence Intervals. The plot depicts the ratio of all 5000 bootstrap confidence
interval (with α = 0.1) that do not cover the true value of Np = 4000, which estimates the actual error probability α, for both
regular and Gaussian filters. For typical numbers of windows (in the on-the-fly procedure on Gaussian filters: 1300− 2100, see
Figure S.5.5) bootstrap confidence intervals are conservative, as their actual error probability is below the nominated α = 0.1.

Fig. S.5.5: On-The-Fly Procedure: Actual Sample Sizes. Of the 5000 simulated filter, the stopping points k range from 650
to 1100 with m± sd = 1665± 69 for regular filters and from 1300 to 2100 with m± sd = 872± 108 for Gaussian filters.
Window numbers were investigated in increments of 50 for k ≤ 1000 and 100 for k ≥ 1000.
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Abstract

Nanoplastic pollution is of emerging environmental concern, but current analytical approaches are

facing limitations in this size range. However, the coupling of nanoparticle separation with chemical

characterization bears potential to close this gap. Here, we realize the hyphenation of particle separation

/ characterization (field-flow fractionation (FFF), UV and multi angle light scattering (MALS)) with

subsequent chemical identification by online Raman microspectroscopy (RM). The problem of low

Raman scattering was overcome by trapping particles with 2D optical tweezers. This setup enabled

RM to identify particles of different materials (polymers and inorganic) in the size range from 200 nm

to 5 µm, with concentrations in the order of 1 mg/L (109 particles L-1). The hyphenation was realized

for asymmetric flow FFF (AF4) and centrifugal FFF (CF3), which separate particles based on different

properties. This technique shows potential for application in nanoplastic analysis, as well as many other

fields of nanomaterials.
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Chapter 6 Online Coupling of Raman and FFF

6.1 Introduction

Nanoplastic particles are formed by fragmentation of ubiquitous plastic waste contaminations (secondary

nanoplastic) or are produced for specific applications (primary nanoplastic)1,2. It can, therefore, be

expected in the aquatic3,4 and terrestrial environment5 and may have detrimental effects on biota6,7.

Analytical data, however, are still very scarce8, and approaches are challenged by various problems.

Specifically, aquatic nanoplastic will occur very diluted9 and, just as microplastic (MP)10,11, it will have to

be analyzed in highly differing matrices12–14 and alongside with natural colloids. Especially the chemical

identification of plastic is a challenge, since a mere elemental analysis cannot confirm the presence of

carbon-based synthetic polymers in an organic matrix. To overcome this problem, MP identification relies

on vibrational spectroscopy (IR spectroscopy and Raman microspectroscopy (RM)) or thermoanalytical

methods coupled with mass spectrometry10,15,16. However, these methods are not easily adapted to

nanoplastic, because particle sizes fall below optical resolution, and small mass-per-particle ratios make

it difficult to gather sufficient sample for thermoanalytics / mass spectrometry17.

Field-Flow Fractionation (FFF) belongs to the flow-based separation techniques, where separation takes

place in a small, ribbon-like channel under laminar flow conditions in absence of a stationary phase18. In

FFF, separation is generally induced by counteraction of dissolved or suspended sample constituents with

an external force field that acts perpendicular to the laminar channel flow (Figure S.6.1). Based on the

nature of the applied force field, FFF can be divided into different sub-techniques of which Asymmetrical

Flow Field-Flow Fractionation (AF4) and Centrifugal Field-Flow Fractionation (CF3) are among the

most prominent representatives19. In AF4, separation is induced by a second flow (cross-flow), which

pushes the sample constituents towards the lower, semipermeable channel wall (accumulation wall)

and forces them to align in different channel heights depending on their different diffusion coefficients

and thus hydrodynamic sizes (Figure S.6.2). In CF3, rotating the channel creates a centrifugal field,

which forces the sample constituents to align depending on their different buoyant masses and densities

(Figure S.6.3). Since the laminar channel flow exhibits a parabolic flow profile with the highest flow

velocities towards the center of the channel, this alignment leads to a common elution order from smaller

to larger hydrodynamic size (AF4) or mass and density (CF3), respectively, with a typical application

range from 1 nm – 10 µm (AF4) and 10 nm – 20 µm (CF3, density-dependent)20.

FFF is a prime technique for nanoplastic because it is able to separate particles in the whole nm-

range9,17,21,22 and can deliver physical information, like particle sizes through routinely used detectors

(UV, multi angle light scattering (MALS)) even without visual recognition. Chemical characterization

may be conducted based on elemental analysis, e.g. by inductively coupled plasma-mass spectrometry

(ICP-MS)23,24. However, this approach does not suffice if the chemical structure is of interest, such

as in the case of polymer particles, metal oxides or other nanominerals. Specifically, while ICP-MS25

as well as an organic carbon detector (OCD)26 were used as elemental carbon detectors for particles,

they could not provide information about the nature of the measured carbon. For nanoplastic, FFF has

been demonstrated to be well-suited because it can be applied to polydisperse samples21, separate

nanoplastic from digested biota samples13 and has been combined with pyrolysis-gas chromatography-
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mass spectrometry (Py-GC-MS) for polymer identification and its quantification by mass9. The sensitivity

of this approach, however, is dependent on the polymer type and limited to the materials that have been

validated. Furthermore, until now, the coupling has only been realized offline, meaning that fractions

from the FFF effluent were collected and processed by Py-GC-MS at a later stage. This approach

disregards the great advantage of FFF-online coupling and the possibility for automation. Raman

spectroscopy, on the other hand, is in principle well-suited for an online detection of nanoplastic in an

aqueous flow due to its spectroscopic insensitivity to water (as opposed to IR spectroscopy). It is also

able to unambiguously identify any plastic particles via characteristic fingerprint spectra, which makes

Raman spectroscopy, in combination with optical microscopy (i.e. Raman microspectroscopy, RM) a

commonly used technique for analysis of MP10,27. Since the particle sizes of nanoplastic fall below the

optical resolution and due to their great numbers, the traditional single-particle approach of RM may not

be feasible for nanoplastic particles17. Here, the hyphenation of RM to FFF could, therefore, close a blind

spot – the size characterization would be performed by FFF-MALS, rather than the diffraction-limited

optical microscope and chemical identification would subsequently be achieved by RM. This would offer a

fast and automatable analysis for nanoplastic that delivers size information and chemical characterization

at the same time.

Numerous designs exist for Raman flow-cells, which have been reviewed elsewhere28,29. All of them

aim to overcome a main problem with Raman flow cells, viz. the low signal intensity due to low Raman

scattering efficiencies. To solve this, enhancement effects like surface-enhanced Raman scattering30–32

or resonance Raman scattering33,34 have been exploited. On the other hand, instrumental approaches,

like liquid wave cores to maximize the light-sample interaction35–37 or high laser powers38, have been

tested. Those approaches, however, require more elaborate flow-cell setups and limit analysis to

specific molecules for which the enhancement effects are viable. Raman-based flow-cells with no

further enhancement are, thus, limited to more concentrated samples (> 0.25 g/L)39–41. This is also

true for microfluidic lab-on-a-chip applications, which use RM for concentrated samples, e.g. in reaction

monitoring42–44, or have to, again, employ similar enhancement effects as the hyphenation interfaces, like

SERS29 or resonance Raman45. The abovementioned setups are, additionally, conceived for dissolved

molecules. There is only one report of a Raman flow cell for MP particles for the on-line analysis

of tap water, which is restricted to large MP (> 100 µm)46 due to the low Raman efficiency. These

limitations currently preclude the analysis of nanoplastic in the prospected low concentrations. Thus,

viable approaches for the hyphenation of Raman spectroscopy to separation techniques for the online

detection of nanoplastic particles are still lacking.

To overcome the sensitivity problem, which results from the very short interaction of the particle with the

Raman light source, in this study we employ an optical trap to retain the particles for sufficient spectra

collection. Different types of trapping are a common tool in microfluidics47, where optical tweezers,

are readily used for the manipulation of particles and microorganisms48. When a laser-based particle

trapping is combined with Raman spectroscopy, it is called Raman Tweezers (RT). This technique has

been used for the analysis of single cells, cell sorting as well as studies on nanoparticles (see49 and

references therein). Although the applicability of RT for micro- and nanoplastic has been demonstrated for

individual particles in suspension49, a hyphenation to flow techniques has not yet been demonstrated.
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Here, we present a solution for the sensitivity problem of Raman flow-cells. This allows, for the first time,

the online coupling of particle separation techniques, like field-flow fractionation (FFF), to RM with a 2D

optical trapping-based particle retention. In addition, the separated particles can be subjected to online

chemical and physical analysis as provided by the series of coupled detectors (FFF-UV-MALS-RM). This

setup is shown to be suitable for the analysis of primary and secondary nanoplastic particles.

6.2 Experimental Section

6.2.1 Particles and Chemicals

Spherical PS particles with 100 nm, 2000 nm, 350 nm and, 600 nm for this study were obtained from

Duke Standards, Thermo Fisher Scientific. PS 500 nm and 1.4 µm, suspended in ethanol, were provided

by BS-Partikel GmbH, Germany, PS 5 µm was purchased from Interfacial Dynamics Corporation IDC

(white surface latex), PMMA 500 nm was purchased from microParticles GmbH, Germany, and SiO2

500 nm from NanoComposix, San Diego, CA, USA. As surfactant, Novachem (Postnova Analytics GmbH,

Germany) and SDS (Carl Roth GmbH, Germany) was used. Eluents were prepared with ultrapure water

(MilliQ Integral 5, Merck Millipore, Germany, resistance 18.2 MΩ). Particle number concentrations were

calculated with the volume of spheres and densities of 1.05 g/mL, 1.18 g/mL and 2.65 g/mL for PS,

PMMA and SiO2, respectively.

6.2.2 Flow Cell Design

The RM flow cell was produced on a metal block with a gold-coated surface that would provide the area

for the trapped particles. The flow channel with a length of 1.3 cm and a width of 1.5 mm was confined

by a polymeric spacer with a height of 350 µm and topped with a glass cover slip. Flow in- and outlet

was conducted through the bottom metal block (Figure 6.1). For this rectangular channel geometry, the

Reynolds number was calculated using the hydraulic diameter, dh = 4A
U = 2ab

(a+b) , with A, the channel

cross-section’s area and U , its circumference, to accommodate for the rectangular geometry of the flow

channel. Thus, the Reynold’s number, Re, was given by Re = (vm·dh)
(ηρ−1)

with vm, the flow rate averaged

over the cross-section and ηρ−1, the kinematic viscosity. In our setup, the parameters are a = 1.5 mm,

b = 350 µm, dh = 0.57 mm, ηw = 0.89 mPa · s, ρw = 997 kgm-3 (pure water) and vm = 6.36 mms-1

derived from 0.2 mL/min. This calculates to Re = 4.1, indicating that the flow is laminar (turbulence

would occur at Re ≥ 2300, which corresponds to a flow velocity of vm = 3602 mms-1 = 113.5 mL/min),

which is needed to preserve the separation of the particles and to ensure lower flow velocities at the cell

bottom. This value is in the expected range for microfluidic devices50.
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Fig. 6.1: Schematic of the hyphenated devices. The sample is injected into the solvent stream, which passes the FFF separation
channel, where the particles are separated. Then the fractions pass a UV detector to indicate their presence in the stream,
followed by the MALS detector, which gives the particle sizes. Finally, the particles pass the optical trapping-based flow cell,
where a Raman spectrum is acquired. Particle flow is indicated by red arrows.

6.2.3 Instruments

Raman measurements were performed on an alpha300 access confocal Raman microscope (Witec

GmbH, Germany), equipped with a 532 nm diode laser and water immersion objectives (20×, 40×,

60×, 100×; LumPlanFL series; Olympus, Japan). For all measurements a 600 lines/mm grating was

used, the laser power was measured through an open microscope channel with a PM160T handheld

power meter (ThorLabs Inc., USA). Data acquisition was done in time series of 10 s spectrum integration,

each, at 20 mW (unless stated otherwise) over the whole time of particle injection and separation.

Spectra were baseline-corrected with a rolling ball algorithm (150 pixel). The AF4 (AF2000 MT, Postnova

Analytics GmbH, Germany), operated with a 350 µm spacer, a 10 kDa regenerated cellulose membrane,

and the CF3, (CF2000, Postnova Analytics GmbH, Germany) were equipped with a UV (254 nm,

Postnova PN3211 UV) and a MALS detector (Postnova PN3621 MALS). The AF4 flows were: injection

with 0.2 mL/min at a cross-flow of 2 mL/min for 7 min and the cross-flow profile for the elution was

(i) exponential decay from 2 mL/min to 0.01 mL/min with an exponent of 0.1 for 30 min, (ii) linear decrease

from 0.01 mL/min to 0 mL/min for 20 min and (iii) constant flow with 0 mL/min cross-flow for 5 min.

The channel outlet flow was set to 0.2 mL/min and the slot-outlet was 0.3 mL/min. The eluent was

ultrapure water containing 0.0125 % of the surfactant NovaChem. Samples were injected with a 100 µL

injection loop and measurements were performed in triplicate. For the validation of the RM flow cell, the

suspensions were injected using the same instrument, however, the separation channel was omitted;
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hence, the suspension only passed the detectors.

6.3 Results and Discussion

6.3.1 Design of the Optical Trapping Raman Flow Cell

Optical forces result from the interaction of light with particles, wherein the electrical field gradient of

a highly focused light source induces a dipole in the particle, which causes a force directing it to the

center of the beam (depending on the refractive index). There are several models for the calculation of

the optical forces. Those that provide simple correlations are either based on approximating Rayleigh

scattering for particles with d � λ or ray optics for d � λ. In the intermediate range with d ∼= λ the

model requires a more detailed description of the electrical field of the laser beam to calculate the

scattering interactions sufficiently well49.

Optical trapping51 requires a microscope objective of high numerical aperture (N.A.), which, for RT, is

already provided by the Raman microscope. Therefore, in order to enable access for the RM, the flow

cell comprises an optically transparent top, as well as a rectangular cross section and a gold-coated

cell bottom to reduce heating (through enhanced reflection and thermal dissipation) and to improve the

visualization of the particles (see Materials and Methods). In this setup the microscope optics of the

RM accomplishes both: (1) focusing the laser for particle trapping and (2) collecting Raman-scattered

photons that provide the characteristic vibrational spectra to inform about particle identity. It was observed

that the 20× and 100× magnification objective produces less Raman signal than the 40× and 60×
(Figure S.6.4). This is due to the weaker trapping efficiency of lower magnifications and the smaller

focal volume of high magnification objectives, which retain less particles that consequently produce

less Raman signal. Therefore, the 40× water immersion objective with a N.A. = 0.6 was chosen due to

reduced signal loss by refraction on the air-glass surface, representing a compromise between trapping

(only 2D trapping will occur) and Raman signal intensity.

In this flow cell, a cluster of particles will be retained in the focal point due to an equilibrium of various

forces (Figure 6.2). Microscopic investigation shows that for 1.4 µm and 5 µm particles, there are 5

and 1 particles in the focal volume, respectively. Thus the focal volume sphere/ellipsoid can be derived

geometrically to be roughly 3-4 µm in diameter. The optical scattering force (Fscatter) in the direction

of light transition pushes the particles towards the cell bottom, creating the 2D trap. This restriction

to the cell bottom has been confirmed by varying the z-axis position of the focal point, which stopped

the ability to acquire a Raman signal when diverging the focus by more than ∼ 3 µm from the surface

(Figure S.6.5). The second force that is generated by the focused laser is the optical gradient force

(Fgrad) that is directed towards the point of highest light intensity, i.e. the center of the focal point. This

force is opposed by the shear force (Fflow) due to the laminar flow, which pulls the particles out of the

laser focus. The laminar flow produces a parabolic flow profile, which has smallest forces at the cell

bottom, thus, facilitating particle retention at the surface. The impact of the shear force was observed

when varying the flow rates, where higher flow rates reduced the Raman signal (Figure S.6.6). This
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Fig. 6.2: Model of the optical trap in the subsequent flow cell. The focal point at the cell bottom generates a 2D trap that
accumulates particles (the representation of the focal volume is enlarged). The forces are (i) optical scattering (Fscatter), that
pushes the particles to the cell bottom, (ii) optical gradient force (Fgrad) that is directed towards the maximum intensity of the
laser, i.e. the center, (iii) shear forces (Fflow) that drag the particles away from the laser, (iv) thermal effects (Ftherm) that add
additional destabilization, i.e. outward of the 2D trap. To illustrate, the forces are centered on a particle (dark blue) on the outer
part of the focal point. The sum of all forces directs the particle back to the center of the focal point.

correlation is in agreement with the model, according to which higher shear forces have to be met with

higher optical gradient forces to stabilize the trap. Those are, however, limited to the very center of the

trap thereby reducing the available particles for Raman analysis and, consequently, the signal.

Another destabilizing effect can be observed at higher laser powers, which causes a local heating due to

remaining absorption and heating of the solvent in close proximity, and, consequently, a thermophoretic

force (Ftherm) out of the heated spot52,53. This is evident when observing the critical flow velocities, i.e.

the flow rates for which no Raman signal could be observed anymore because the particles were all

pulled out of the focus (Figure 6.3). This experiment shows that greater flow velocities could be realized

when the laser power was increased (up to 10 mW), reflecting the effect of the increased trapping force.

For higher laser powers, however, a decrease was observed, which was attributed to a thermophoretic

effect that moved the particles out of the focal volume. If the optical gradient force is strong enough, the
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Fig. 6.3: Dependency of critical velocity of polystyrene 600 nm particles (10 mg/L) on the laser power. Increased laser power,
i.e. trapping force, enabled higher flow rates before all particles were eliminated by shear forces from the trap. On the other
hand, for even higher laser power an increasing thermal effect drove the particles out of the trap.

sum of all forces directs the particles to the center of the focal point, which creates a stable optical trap

(Figure 6.2).

6.3.2 Validation of the Flow Cell

Before using the flow cell to couple RM to FFF, the cell was validated with direct injections using spherical

particles. A laser power of 20 mW was found to be optimal for Raman spectra acquisition and, hence,

was chosen for the experiments. Raman data were acquired continuously over the whole injection time.

A series of vibrational spectra with 10 s integration time, each, was stored to give a time profile (as can

be seen in Figure 6.4 where a time series of spectra is plotted).

First, the working range with respect to the particle size was investigated for polystyrene (PS) particles

with diameters of 200 nm, 350 nm, 500 nm, 600 nm, 1.4 µm and 5 µm. The 5 µm particles experienced

greatest shear forces due to their size and higher mass, so that an increased trapping power (30 mW)

was needed. The 100 nm particles, on the other hand, did not produce a Raman signal, most likely due

to the more pronounced particle mobility, which makes trapping very challenging49. This was also shown

in an experiment, where a mixture of PS 100 nm and poly(methyl methacrylate) (PMMA) 500 nm was

injected in the flow cell and the spectra only indicated PMMA (Figure S.6.7). Ergo, good applicability

was obtained for particles between 200 nm – 5 µm, which lies in the upper working range of FFF. And
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Fig. 6.4: 3D plot of an AF4 separation of PS 350 nm (red) and PMMA 500 nm (green) particles. It shows a section that
illustrates the different Raman bands for each polymer. The particles that have been separated by AF4 elute after each other
(t = 32 min & t = 36 min) as seen here by the Raman signals.

further, three 500 nm particle systems of different materials, i.e. PS, PMMA, SiO2 (Table 6.1) were tested,

thus, enabling the analysis of organic and inorganic particles. Each particle type was identified by its

characteristic spectrum and a prominent band was chosen for the temporal plots (1000 cm-1, 812 cm-1

and 488 cm-1 for PS, PMMA and SiO2 (Figure S.6.16), respectively).

Subsequently, the sensitivity of the setup was investigated. It has to be noted, however, that the Raman

intensity mainly depends on the focal volume and is subject to fluctuations, which is caused by particle

material properties (refractive index, crystallinity), ageing or coating that can affect the trapping and

will be difficult to control in environmental samples. Hence, no linear correlation of signal intensity and

particle concentration can be assumed. Quantification solely via the Raman flow cell will be challenging,

thus, the quantification will have to be performed by the other detectors, such as e.g. UV or MALS.

Therefore, the sensitivity is given in terms of the minimal particle concentration of suspensions that can be

injected in the flow cell and will give a detectable Raman signal. This means that at lower concentrations,

particles can no longer be efficiently accumulated in the laser for sufficient signal acquisition. Here, a

better particle collection would further improve sensitivity.

These minimal particle concentrations are listed in Table 6.1. It is apparent that, for most particles, the

135



Chapter 6 Online Coupling of Raman and FFF

Particle Minimal concentration Particle number

PS 200 nm 200 mg/L 4.5 ·1013 L-1

PS 350 nm 100 µg/L 4.2 ·109 L-1

PS 500 nm 1 mg/L 1.5 ·1010 L-1

PS 600 nm 10 µg/L 8.4 ·107 L-1

PMMA 500 nm 500 µg/L 6.5 ·109 L-1

SiO2 500 nm 1 mg/L 5.8 ·109 L-1

Tab. 6.1: Minimal particle concentration for the evaluated particle systems.

suspension mass contents are below 1 mg/L (109 L-1) with the lowest value being 10 µg/L for PS 600 nm

(8.4 · 107 L-1). When approaching the size limit of 200 nm particles, the required particle concentration

drastically increases. Similar to the Raman intensities, these limits show a fluctuation that is likely

connected to the slight changes in surface properties due to different surfactants in the commercial

particles from different suppliers.

The observed sensitivity lies around 1 mg/L, which is comparable with other techniques for nanoplastic

analysis. Mintenig et al. report a LOD of 4 mg/L for their offline coupling of AF4 and Py-GC-MS9. Gagné

et al. employed the hypsochromic shift of Nile red fluorescence to detect nanoplastic with a LOD of

0.1 mg/L and 0.3 mg/L54, and Lin et al. demonstrated the applicability of MALDI-TOF-MS for nanoplastic

with a sensitivity of 25 mg/L55. Real samples will, however, be more diluted, as observed by TerHalle et al.

who found the marine colloidal fraction to be below the detection limit of their DLS instrument of 20 µg/L,

which necessitated a preconcentration8. Thus, most current techniques will require a preconcentration

such as cross-flow ultrafiltration, as described by Mintenig et al.9.

6.3.3 Periodic Controlled Release of Trapped Particles

In the next step, i.e. the online coupling of the RM flow cell to FFF, initial experiments showed that

the effectivity of trapping varied strongly with different particle systems, i.e. PS particles were only

shortly retained, whereas PMMA and SiO2 particles could be trapped for at least 20 minutes. (Figure 6.5

and Figures S.6.8 – S.6.12). However, a situation in which particles were trapped for a very long time

would compromise the separation of the FFF. Therefore, we implemented a periodic interruption of the

laser beam at regular intervals (30 s) so that the particles were released in a controlled manner and

new particles could accumulate in the next time window. This approach allowed us to collect particles

for detection while maintaining the required temporal resolution. Figure 6.5 shows the effect of laser

interruption for PMMA 500 nm particles that passed the AF4. Instead of being trapped for more than

20 minutes, the particles were detected by a Raman signal that followed the actual elution peak profile.

This resulted in a „comb-like“ time profile (Figure 6.5, bottom) because after each interruption it took

several seconds to fill the focal volume again.
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Fig. 6.5: AF4-Raman data of PMMA 500 nm particles. The lower panel has been zoomed to 30 min – 50 min. The upper panel
shows the outcome of a constant laser irradiation that causes the particles to reside indefinitely in the focal volume and to
produce constant signal. The lower panel shows the signal when the laser was interrupted at regular intervals (30 s), thereby
preserving the temporal elution profile.

6.3.4 Hyphenation of RM and AF4

When proceeding with the online coupling of the RM flow cell as a „chemical“ detector to an FFF-UV-

MALS system, two variants of FFF (AF4 and CF3) were chosen. In a first step, the hyphenation was

realized with AF4. After tests with monodisperse particles (Figures S.6.13 – S.6.16), a separation of

a mixture of PS 350 nm and PMMA 500 nm (25 mg/L and 100 mg/L, respectively, to account for the

different Raman cross-sections) was performed to demonstrate the identification capabilities of the

RM flow cell for the AF4 fractions. The three detectors of AF4-UV-MALS-RM produce complementary

information that is plotted in one graph, as represented in Figure 6.6. In this plot, the separation of PS

350 nm and PMMA 500 nm particles is displayed by the UV signal that indicates the particle separation

as a main peak, representing PS 350 nm with a shoulder of the PMMA 500 nm particles. But the

MALS signal, which is converted into the geometric diameter (see supporting information) shows the two

distinct fractions by their different sizes. Additionally, the Raman signal that identifies the two polymers by

characteristic wavenumbers (PS: 1000 cm-1, PMMA: 812 cm-1) matches the elution of first PS followed

by PMMA (Figure 6.6).

For another mixture of PS 500 nm and PMMA 500 nm, it was shown that even with particles of almost

equal size, it is possible to provide an identification of the components with the Raman spectrum of

the combined particle systems, even when the other detectors cannot distinguish between the two

(Figure S.6.17). In the experiments with this mixture, a competition of the particles for the limited space

in the trapping volume can be seen in the Raman intensities, when either the PS band or the PMMA

bands were of high intensity and caused a decrease of the other (Figure S.6.18).
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Fig. 6.6: AF4-UV-MALS-RM data. The mix of PS 350 nm and PMMA 500 nm particles is separated by AF4. The two fractions
appear as a peak with a shoulder in the UV signal (black line, left axis). The geometric diameter (black dots, right axis) gives
size information and shows the successful separation. The Raman intensity of the 812 cm-1 band for PMMA (dotted green line,
left axis) and the 1000 cm-1 band for PS (red line, left axis) identify the polymer for each fraction. The laser was interrupted at
30 s intervals, UV and Raman intensities were normalized, the Raman plot was adjusted for time shift and smoothed (10 point
average) for visibility, for original data see Figure S.6.11.
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Fig. 6.7: CF3-UV-MALS-RM data. The mix of PS 350 nm, PS 500 nm and PMMA 500 nm particles is separated by CF3. The
three separated fractions are illustrated by UV signal (black line, left axis). The geometric diameter (black dots, right axis)
gives size information of the individual particles. The Raman intensity of the 812 cm-1 band for PMMA (dotted green line, left
axis) and the 1000 cm-1 band for PS (red line, left axis) identify the polymer for each fraction. The laser was interrupted at
30 s intervals, UV intensities were normalized, for Raman, peak areas were plotted, normalized, adjusted for time shift and
smoothed (10 point average) for visibility (for original data see Figure S.6.19).

6.3.5 Centrifugal Field-Flow Fractionation

The close proximity of the two fractions of the mix PS 350 nm and PMMA 500 nm is in accordance with

literature, which states a decreased resolution for particles larger than 200 nm in AF421. Even though

our results show that co-eluting fractions can still be identified by the hyphenation to RM, a FFF variant

that has a better resolution in the validated size range of the flow cell could be preferable. In a next

step, we therefore tested coupling of CF3 instead of AF4 (for a more detailed comparison of the two

techniques for particle analysis see Ref.56) to RM. The resulting separation and characterization of a

mixture of PS 350 nm, PS 500 nm and PMMA 500 nm (25 mg/L, 25 mg/L and 100 mg/L, respectively)

with CF3-UV-MALS-RM is plotted in Figure 6.7. Here, the UV signal shows three clearly separated

fractions to which the MALS detector provides size information. These are, in order of elution: PS

350 nm, PS 500 nm (which are slightly larger than labelled) and finally PMMA 500 nm. The latter two

are separated due to their different densities (PS: 1.05 g/mL, PMMA: 1.18 g/mL) that have a stronger

effect in the gravity-based separation field of the CF320, even though the PS particles are slightly larger.

Furthermore, in conjunction with the UV and MALS data, the RM detector provides spectra that can

identify the fractions. The time profile of two characteristic bands is also plotted in Figure 6.7.

This impact of density makes CF3-UV-MALS-RM especially suited for nanoplastic analysis because it

does not only facilitate the separation of polymers from sediments, but may also serve to fractionate
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different polymer types. Furthermore, the CF3 has a larger size range (10 nm – 20 µm)20 than the AF4

and may, thus, better serve to cover the gap of established techniques for MP analysis (i.e. FT-IR or

Raman microspectroscopy), viz. very small MP and nanoplastic analysis9,17.

6.4 Conclusion

To satisfy the emerging demand for nanoplastic analysis, we developed an optical trap-based flow cell

for the hyphenation of FFF with RM, wherein the particles were focused and retained sufficiently long

to enable spectrum acquisition. With this setup, we are able to analyze particles of different material

(polymer and inorganic) in the size range of 200 nm and 5 µm and a minimal concentration around

1 mg/L (109 L-1). For the coupling to FFF we implemented a periodic particle release, to conserve the

separation information. The hyphenation has been realized, first, with AF4 for single, monodisperse

particles and for mixtures to demonstrate the advantages of the Raman detector. The approach was

able to provide spectral information on each fraction even when it was not possible to achieve a full

separation of the particles. Subsequently, CF3 was hyphenated to RM to illustrate the applicability of the

RM flow cell to multiple variants of particle separation techniques. As CF3 allows for the separation of

particles not only by size but also by densities, fractionation of polymers with higher resolution could be

achieved and combined with chemical RM analysis.

To proceed with the presented online coupling, for environmental or food samples, however, it has to

be regarded that nanoplastic particles can be expected to be polydisperse and irregularly shaped and

to occur most likely in aggregates12,57. This is reflected by the various methods brought forward to

produce such environmentally relevant particles23,24,58,59. The capability of RT to optically trap micro and

nanoplastic particles of different shapes has recently been demonstrated49, indicating that the RM flow

cell can also be applied to irregularly shaped particles that represent real samples, like PET fragments

from drinking water bottles, as our preliminary results, indeed, suggest. Thus, FFF UV MALS RM offers

a great potential to cover a methodological gap and enables online particle identification and, more

specifically, in the environmental field of plastic particle contamination that ranges from very small MP

to nanoplastic. With the goal to enable a systematic contamination assessment, it will be necessary to

validate the application range of the technique to preprocessed samples and demonstrate its applicability

for real-world samples. This will include a – in many cases vital – preconcentration step to provide a

sufficiently high particle number. Also, improvements in terms of analyzable particles (opaque, metallic),

the size range, the dependence of the optical trapping of the particle, and automation should enable a

broad application in a wide variety of scientific fields that transcend environmental plastic analysis. This

new hyphenation can be of interest for nanomaterial characterization in general because it can provide

the structural insight that Raman (i.e. vibrational) spectroscopy supports.
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6.5 Supporting Information

6.5.1 Working Principles of FFF, AF4 and CF3

Fig. S.6.1: Working principle of FFF. Particle suspension passes a ribbon-like channel in laminar flow. Simultaneously, a
perpendicular separation field (e.g. cross-flow or centrifugal force) is applied that causes the particles to be retained at the
channel bottom, where they experience less flow velocity. According to their properties they are more or less well retained at
the bottom and, thus, elute faster or slower.

Fig. S.6.2: Working principle of Asymmetrical Flow Field-Flow Fractionation. The perpendicular force is generated via a
cross-flow that is generated by a second pump below a porous membrane on the channel bottom. Thus, the separation is
determined by hydrodynamic diffusivity.

Fig. S.6.3: Working principle of Centrifugal Field-Flow Fractionation: The perpendicular force is generated by a centrifuge, in
which the flow channel is placed. The separation depends on mass and particle density.
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6.5.2 Comparison of Objectives

A light source with a Gaussian intensity profile (TEM00) and water immersion objectives were aimed

to be used as readily available equipment. However, they turned out to have numerical apertures that

do not suffice for stable 3D trapping and can only provide a 2D trap at the bottom of the flow cell. A

comparison of 20×, 40×, 60× and 100× magnification water immersion objectives was performed to

find an optimal setup for Raman signal acquisition and particle trapping.

This was done by investigating the intensity of the PS band at 1000 cm-1 for 1.4 µm and 350 nm PS

particles. Where a maximal Raman signal yield was obtained for the 40× objective. This is reasoned to

result from the fact that higher magnification objectives have higher N.A. and, therefore, provide stronger

trapping. For even higher magnification, however, the focal volume decreases, hence, reducing the

number of particles to produce Raman signal.

Fig. S.6.4: Relative intensities of the 1000 cm-1 band of polystyrene for two particle systems: 350 nm (1000 mg/L) and 1.4 µm
(100 mg/L), showing the 40× water immersion objective to yield the highest Raman intensities.
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6.5.3 Distance to Surface

The particles are trapped 2 dimensionally, strictly bound to the surface. This was observed, when varying

the height position of the focal point, wherein for distances larger than ca. 3 µm, the Raman signal drops

to 0.

Fig. S.6.5: Measurements of PS 1.4 µm, 100 mg/L, 20x WI objective in different distances to the surface of the cell bottom
show that the signal quickly drops to 0.
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6.5.4 Dependency on Flow Rate

The optical trapping force is in an equilibrium with the shear forces of the flow that pull the particles out

of the confocal volume. Ergo, higher flow rates mean less particles which generate less Raman signal.

This can be seen in an experiment where particles (PS 600 nm, 10 mg/L) are injected with different flow

rates.

Fig. S.6.6: Variation of flow rates for the particle system PS 600 nm, 10 mg/L, 20 mW shows a decrease in intensity for the
1000 cm-1 band.
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6.5.5 Particle Size Limit

We performed the experiment with the mix PS100/PMMA500 to show that no PS signal appears,

indicating that 100 nm particles can, in principle, not be measured.

Fig. S.6.7: Spectra of a mix of PS 100 nm and PMMA 500 nm (50 mg/L each) illustrate that only PMMA can be measured.
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6.5.6 Periodic Controlled Particle Release

To retain the particle separation, a periodic interruption of the laser has been implemented

Fig. S.6.8: AF4-Raman data of PS 350 nm without (left) and with (right) interruption of the laser.

Fig. S.6.9: AF4-Raman data of PS 500 nm without (left) and with (right) interruption of the laser.
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Fig. S.6.10: AF4-Raman data of SiO2 500 nm without (left) and with (right) interruption of the laser.

Fig. S.6.11: AF4-Raman data of the mix of PS 350 nm and PMMA 500 nm without (left) and with (right) interruption of the laser.

Fig. S.6.12: AF4-Raman data of the mix of PS 500 nm and PMMA 500 nm without (left) and with (right) interruption of the laser.
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6.5.7 Calculation of Geometric Diameter from MALS Signal

The MALS signal is processed with 20 (of 21) active angles and a sphere algorithm to obtain the gyration

diameter which is multiplied by 2/0.775 to give the geometric diameters of the latices.

This formula derives as follows: Assuming a homogeneous sphere of a geometrical radius rgeo and a

density of ρ, which center of mass is at its geometrical center and its volume is 4
3 ·π · r

3
geo, the correlation

between gyration size r and geometrical size rgeo can be simplified to the following equation:∫ a

0
r4dr =

4π

5
· r5
geo

Solving this integral leads to

r2 =
3

5
· r2
geo

and thus

r =

√
3

5
· rgeo = 0.775 · rgeo

For more in-depth information on the mathematical correlation between gyration size and geometrical

size also for other particle shapes, the interested reader is referred to M. Kerker, Scattering of Light and

other electromagnetic radiation. 1969, Academic Press Inc. New York, ISBN: 978-0-12-404550-760.
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6.5.8 AF4 Validation with Monodisperse Particles

Before separating mixtures, the coupling was investigated with four monodisperse particle systems of

different size and material, i.e. polymeric and inorganic, namely PS 350 nm, PS 500 nm, PMMA 500 nm

and SiO2 500 nm. As shown in the Figures S.6.13 – S.6.16, the AF4 fractionation produced one elution

peak in each case that could be characterized online with the UV, MALS and the Raman detector.

The UV signals are Gauss-like, which indicates the elution of a monodisperse fraction. It is possible to

obtain the elution times from the UV signal. They can be obtained from all detectors, with a systematic

offset in elution times that is attributable to the fact that the detectors are passed in sequence.

PS 350 nm 29 min

PS 500 nm 32 min

PMMA 500 nm 31 min

SiO2 500 nm 34.5 min

Tab. S.6.1: AF4 elution times of four monodisperse particles.

The values for the elution times fit the expected results from an AF4 fractionation, where the smallest

PS 350 nm particles elute first, followed by the larger polymeric 500 nm particles. This difference can

be attributed to the fact that the PS 500 nm particles are larger than nominated with a dgeo around

580 nm (Figure S.6.14) and, therefore, elute slightly later. The SiO2 500 nm particles have the longest

elution time, which is attributable to their higher density, which is about twice as high as the density of

the polymers.

The MALS detector confirms the diameters of the particles, which is (more or less) constant over the

elution of the fraction confirming the monodispersity. It can be seen that the PS 500 nm particles are

slightly larger than labelled and the SiO2 500 nm particles are rather poly- than monodisperse.

The RM flow cell produces full spectra over the whole AF4 elution (60 min), from which particles can be

identified and characteristic bands are selected and plotted over time. Signal intensity of SiO2 is much

weaker, due to its lower Raman cross-section and also less reproducible. These intensities match the

elution peaks of the UV detector and identify the material of the particles. SiO2 and PMMA show the

ability to be trapped relatively long, as opposed to PS.
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Fig. S.6.13: AF4-UV-MALS-Raman data of PS 350 nm. Raman intensity of 1000 cm-1 band, laser not interrupted. UV and
Raman intensities have been normalized. Raman plot has been smoothed for visibility.
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Fig. S.6.14: AF4-UV-MALS-Raman data of PS 500 nm. Raman intensity of 1000 cm-1 band, laser not interrupted. UV and
Raman intensities have been normalized. Raman plot has been smoothed for visibility.
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Fig. S.6.15: AF4-UV-MALS-Raman data of PMMA 500 nm. Raman intensity of 812 cm-1 band, laser interrupted. UV and
Raman intensities have been normalized. Raman plot has been smoothed for visibility.
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Fig. S.6.16: AF4-UV-MALS-Raman data of SiO2 500 nm. Raman intensity of 488 cm-1 band, laser interrupted. Raman plot has
been smoothed for visibility.
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6.5.9 AF4-UV-MALS-RM of PS 500 nm and PMMA 500 nm

Fig. S.6.17: AF4-UV-MALS-Raman data of the mix of PS 500 nm and PMMA 500 nm (5 mg/L and 50 mg/L, respectively).
Raman intensity of the 812 cm-1 band for PMMA and the 1000 cm-1 band for PS, laser interrupted. UV and Raman intensities
have been normalized. Raman plot has been smoothed (10 point average) for visibility.
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6.5.10 Capacity of the Focal Volume

The AF4-RM data from the monodisperse PMMA 500 nm particles (Figure 6.5) show that there is a

maximum signal intensity, which corresponds to a completely filled focal volume. This is further illustrated

within the data from the mixture of PS 500 nm and PMMA 500 nm, where a competition for the spots in

the focal volume can be seen. At t = 41 min the signal of PS shows a spike, while PMMA shows a short

dip.

Fig. S.6.18: Raman intensities of the AF4 elution of PMMA 500 nm and PS 500 nm.
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6.5.11 CF3-UV-MALS-RM of PS 350 nm, PS 500 nm and PMMA 500 nm

Fig. S.6.19: Original, unsmoothed CF3-Raman data including the comb-like structure. Red: PS at 1000 cm-1; Green: PMMA at
812 cm-1
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Chapter 7

Discussion and Conclusion of the Thesis

The objective of this thesis has been to enable nanoplastic analysis by closing the methodological

gap between microplastic (MP) techniques on the one hand, which have been lacking suffiently low

size limits of detection, and nanoparticle techniques on the other hand, which have (mostly) not been

able to chemically identify the polymeric nature of the particles (Section 1.2.2). To overcome these

limitations, advances were made in the application of Raman microspectroscopy (RM), which was

combined with scanning electron microscopy (SEM), field-flow fractionation (FFF), and chemometrics for

the identification, physical characterization, and quantification of micro- and nanoplastic particles.

To this end, three topics were pursued in this thesis. First, RM in combination with SEM was evaluated

for the use on primary and secondary nanoplastic particles. The lower limit of the application range was

established to be at the theoretical limit of ca. 250 nm. Secondly, a chemometric algorithm based on

window sampling and bootstrap was developed to enable a robust quantification. It enables the selection

of particles to be analyzed on the Raman filter so that very small MP and potentially nanoplastic can be

analyzed by automated RM. Finally, the online-coupling of FFF to RM (FFF-Raman) was implemented by

a flow-cell based on an optical trap, which provides the size analysis by FFF-UV-MALS (multi-angle light

scattering) and the chemical identification by RM. In this overarching discussion, the works of the thesis

will be contextualized and put in relation to the advances in the research of nanoplastic analysis.

7.1 Progress in the Field of Nanoplastic

The nanoplastic issue was a newly emerging topic, which posed (and still poses) special challenges to

the analytical methods (Section 1.2.2). The following paragraphs will briefly display the recent advances

in this field and relate them to the works presented in this thesis as illustrated in Figure 7.1. For a

comprehensive overview of the current state of nanoplastic analysis, the reader is referred to recent

reviews1,2.

Initially, proper methodologies and knowledge were very scarce (see State of the Art, Section 1.2.3).

Thus, a critical review of the current state of the art, including a selection of possible techniques that can

be transferred from related fields, has been brought forward in this thesis (Chapter 3). It concluded with a
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projected roadmap (Figure 3.3, Section 3.5) for the future developments toward nanoplastic identification

and quantification. In essence, the earliest papers hypothesized on the presence and properties of

nanoplastic3,4, demonstrated that plastic debris fragmentation indeed generates nanoplastic5–7, and

provided the first detections of primary and secondary nanoplastic8,9 (Figure 7.1a). The methods applied

in those studies were adapted from engineered nanoparticle and MP research, respectively.

Fig. 7.1: Progress in nanoplastic analysis. General overview illustrating the recent developments in nanoplastic analysis.
Moving forward from the initial reports, a great effort on the production of suitable reference materials has been made. This
accelerated and enabled the method development, which has seen progress on a multitude of techniques. This thesis is
focused on RM-based innovations on the particle-by-particle approach (green) and the online-coupling of FFF and RM (blue).
These new methods enable the assessment of relevant environmental systems.

In the following years, there has been substantial progress in the field of nanoplastic, which can be

put in distinct phases. Here, topics like (i) the development of reference materials, (ii) new method

development, and (iii) applications of the new methods can (in general terms) be distinguished. Exempt

from this are toxicological studies, which were mainly performed with standardized polystyrene (PS) latex

beads, which are commercially available, and are not the focus of this, instrumentation-oriented, thesis

and discussion.

The first step towards new method developments for nanoplastic analysis was the production of suitable

reference materials to adequately emulate the environmental contamination (i.e. polydisperse, and

irregular10). These also need to be free of toxic additives, surfactants, or biocides, which could strongly

affect the studies in which they are employed11. Thus, there are many publicationsa which have sought

to solve this demand either by fragmenting larger plastic pieces12–17 (top-down), or by specifically

aTop down particle generation can be performed by various impacts. Of note are an ultrasonic treatment for the generation
of suspendable, polydisperse secondary MP and nanoplastic, of different materials12, or mechanical fragmentation by blade
grinding13, in some cases combined with ball milling14. Other studies used cryo-milling15,16. Furthermore, the use of laser
ablation of polyethylene terephthalate (PET) has been used to form ∼ 100 nm polydisperse particles with oxidized surfaces17.
Those protocols usually produce a broad range of sizes, hence, the resulting suspensions are filtered for the nanoplastic, and
can, in principle, be used for many different polymer types. Bottom-up methods synthesize the particles specifically, which
could limit the use to certain polymers, depending on their chemical properties. Here, polyethylene particles (200 nm – 800 nm)
were created by precipitation from toluene18 and PET particles (∼ 200 nm) by precipitation from trifluoroacetic acid (TFA)19.
Further emulsion polymerization of polypropylene (80 nm – 350 nm)20 or copolymerization of PS-Polyacrylate (∼ 400 nm)21

were reported. Some of those protocols were designed to omit hazardous surfactants18,20,21.
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synthesizing the particles18–21 (bottom-up). This research impacted subsequent method development,

as it enables the optimization and validation with more realistic nanoplastic particles (Figure 7.1b).

Alongside of the development of reference materials, the methodology for nanoplastic analysis has

seen great progress. Equal to MP analysis, the main goal was to enable the chemical identification to

distinguish plastic from natural particles. For nanoplastic, this is even more important, since nanoscale

particles can only be identified by suitable techniques; the issues with visual identification (Section 1.1.3)

of MP do not occur.

The sample treatment (Figure 7.1e) of nanoplastic faces new challenges compared to MP (Section 1.1.3),

since the colloidal particles have an increased tendency to agglomerate with natural organic matter

and leach additives. Thus, new methods need to be suited to preserve the properties of the complex

nanoplastic analyte. The critical review in this thesis (Chapter 3) discusses those differences and suitable

methods. One of the most important steps is the preconcentration of the particles, as the particle content

(especially by mass) may be very small. Here, ultrafiltration9,22, rotavap treatment17, or lyophilization13

can be employed. Recently, also cloud point extraction (CPE)23–25 has been tested for nanoplastic with

an enrichment factor of 500 and a subsequent chemical identificationb by pyrolysis-gas-chromatography-

mass-spectrometry (Py-GC-MS)23,24 or single particle ICP-MS(spICP-MS)25. Ultracentrifugation has

been used for the preconcentration of nanoplastic as well27.

In terms of chemical identification, RM is well established for the analysis of MP (Section 1.1.3) due to its

ability to provide an unambiguous identification on single particles1. And, based on its theoretical size

limit in the subµ range, an application for nanoplastic seemed possible as well (Section 1.2.4). The results

of this thesis contributed to the method development of RM for nanoplastic in two conceptually different

aspects: On the one hand, improvements on the particle-by-particle analysis (Figure 7.1c) were made,

in which single particles are analyzed individually. Here, the lowest size limits for RM in combination with

SEM was investigated (Chapter 4). To complement this qualitative approach, a chemometric method was

devised for the optimized particle selection in RM for very small MP and nanoplastic in order to enable a

reliable quantification (Chapter 5). On the other hand, Raman analysis of nanoplastic particles in bulk

(Figure 7.1d) was pursued, in which a greater amount of particles is identified, which loses the single

particle information, but gains greatly improved measurement times. Thus, the bulk approach needs

to be combined with other techniques that provide this physical characterization, which was done with

FFF in this thesis (Chapter 6). These advances will be discussed below in their respective paragraphs

(Section 7.2 and 7.3).

A further branch of techniques for chemical identification of plastic particles is the thermoanalytical

mass-spectrometry (MS) of characteristic pyrolytic fragments. It is an established technique for MP

(Chapter 1), which also shows the potential to be transferred to the topic of nanoplastic, provided

sufficient preconcentration is performed (Section 1.2.3). In recent years, this approach has seen further

bZhou et al. showed the use of Py-GC-MS on nanoplastic extracted by CPE23. Recently, this group also showed the analysis
of nanoplastic by Py-GC-MS (LODs: 0.03 µg/g for PS and 0.09 µg/g for PMMA) after alkaline digestion of matrix (aquatic
animals) and particle precipitation by bovine serum albumin (BSA) corona formation followed by increasing the salinity26.
Similarly, Li et al.24 showed Py-GC-MS analysis of nanoplastic obtained by CPE (LOD: 0.05 – 1.9 µg/L). Further, CPE was
used with subsequent spICP-MS analysis25.
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progress with improved limits of detection (LOD) (< 1 ng for PS (1 µm))28. Py-GC-MS analyzes plastic

particles in bulk as well. Thus, it could be used complementary to the FFF-Raman flow-cell and could

provide cross-validation in their respective method developments, especially since the offline-coupling of

Py-GC-MS and asymmetric-flow FFF (AF4) has already been shown22. Besides the thermoanalytical

methods, developments with other MS techniques, such as spICP-MSc (sp-ICP-MS) or matrix-assisted

laser desorption/ionization time-of-flight mass spectrometryd (MALDI-TOF-MS) were also explored

(Figure 7.1f).

Recently, new approaches aside RM and Py-GC-MS have been tested and discussed for the analysis of

nanoplastic as well (Figure 7.1g). Many of these incorporate the visualization of the particle, which is an

important information on this morphologically diverse analyte (Chapter 3). These microspectroscopic

techniques have the appeal of providing both the shape and chemical characterization. Of note are

dark-field hyperspectral microscopy33,34, fluorescence lifetime microscopy (FLIM)35, optical photothermal

Infrared and simultaneous Raman spectroscopy (O-PTIR)36,37, and AFM-IR (nano-FTIR)38–40. Fur-

thermore, metal-doped (e.g. Pd41) nanoplastic particles have been developed to track the transport

and distribution in specific systems (recently for the assessment of uptake and effects on Gammarus

pulex42). Similarly, tracking and quantification has also been achieved with radioisotope-labelled (C-14)

particles43,44 or positron emission tomography (Zr-89)45 (Figure 7.1b). An advantage of the techniques

with doped particles is that they can be analyzed with established elemental identification techniques

such as ICP-MS41. Such labels, however, will not occur in environmental nanoplastic.

The advancement of analytical methods for nanoplastic allows the next step, i.e. investigation of environ-

mental samples (Figure 7.1h-j). To this end, some studies have recently been published extending the

initial knowledge of 2017 (Figure 7.1a). One study found nanoplastic in alpine snow using Py-GC-MS28.

Their results show the presence of PET, PVC, and polycarbonate in the MP range but only PET in the

nanoplastic range (filtration < 0.2 µm), which is in agreement with the findings of the earlier reports on

marine systems9. Furthermore, Raman tweezers (RT) were used to identify very small MP (> 2.5 µm)

in marine surface waters46 and AFM-IR was used to detect PET nanoplastic particles down to 20 nm

in deep ocean waters (5000 m)40. These efforts are the starting point for the necessary assessments

of the various systems (e.g. marine and limnic waters, food, or organisms), which have been shown to

contain MP. New knowledge on the plastic particle contamination will extend the known size range to

comprise the nanoplastic range, as well.

cBolea-Fernandez et al. demonstrated the application of sp-ICP-MS for spherical polystyrene microspheres of 1 and 2.5
µm29 and Jimenez et al. showed its applicability for nanoplastic (PS with negatively charged carboxylate groups of up to 1 µm),
which was labelled with small Au nanoparticles (17±3 nm), at low concentrations (LOQ 8.4×105 L–1, lowest size detectable:
135 nm)30. Further, spICP-MS was used to identify in-situ Au-NP labelled nanoplastic (50 nm – 1200 nm, LOD: 4.6×108 L–1),
which was concentrated by CPE25.

dMALDI-TOF-MS was used to identify and quantify MP and nanoplastic demonstrating its simple and quick applicability31.
Also, nanostructured laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOF-MS) with in-laboratory built
nanostructures (zinc oxide, titanium oxide and cobalt) was evaluated for the analysis of micro/nanoplastic in water and snow
matrices, without sample pre-treatment (LOD: ∼ 5 pg in ambient snow)32.
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7.2 Particle-by-Particle Raman Microspectroscopy

The particle-by-particle approach in the analysis by RM has to provide both qualitative and quantitative

information – which is true for most of the analytical chemical discipline. The works of the thesis address

both of these aspects. For the qualitative part, i.e. the identification, one of the main challenges is to

push down the lower size limit to achieve nanoplastic analysis. For the quantification, the issue is a

matter of analyzing sufficient particles in a feasible way, which will establish the reliability of the results.

Thus, with regard to the qualitative analysis, the RM identification of MP particles was limited to particle

sizes in the range of 1 – 10 µm47. Hence, the challenge was to push this size limit down to the nanometer

range. A solution was pursued in this thesis using RM, which has a theoretical size limit at ca. 0.25 µm

(Section 4.2.1). Furthermore, as the optical microscopic visualization of the particles close to the

diffraction limit lacks the resolution required for a proper morphological characterization, the RM analysis

is combined with SEM (RM-SEM). This provides both spectroscopic information and high-resolution

visualization. Thus, one key achievement of this thesis is the development of a suitable RM-SEM

method and the demonstration of its applicability to primary (down to 250 nm) and secondary nanoplastic

(Chapter 4).

Subsequent to this development, there were more recent efforts by other groups, who pushed the size

limit even further down (< 100 nm)48–50. This was achieved by using Raman imaging, however at the

cost of longer measurement times compared to the single particle approach. Nonetheless, this provides

new methods in the analysts’ toolkit for different investigations. Furthermore, the RM-SEM method

described was advanced in recent papers on the analysis of nanoplastic by correlated RM and SEM51–53

using integrated, commercial systems. This could enable higher sample throughput. The method of

this thesis, however, can be used when such an instrument is not available or economically not feasible

(Section 4.3). Third, surface-enhanced Raman scattering (SERS) was shown to be applicable for MP

and nanoplastic26,54,55. This development holds potential for future developments, as the enhanced

signals can permit faster spectrum acquisition, hence, substantially accelerate the measurements (see

Figure 7.2).

With regard to the quantitative aspects of subµ-plastic analysis, the particle-by-particle approach will

face the problem of very high particle numbers, as the distribution of particle number by particle size was

seen to be exponential56. Hence, a proper subsampling for the very small MP and subµ-plastic, which

are to be analyzed by RM, needs to be performed. In general, proper subsampling has become relevant

with the advancing automatization of the RM particle analysis and first considerations on the issues of

random sampling for larger MP particles were published by Anger and von der Esch et al.57 in 2018

(Figure 7.2). This topic is also addressed and properly formalized in the present work (Section 5.6.1).

For larger particles above a threshold of ca. 10 µm58,59, it is feasible to acquire an optical microscope

image of the whole filter and detect all the particles on it by image recognition. With that, an automated

Raman identification of selected particles can be performed58–62. When all particles are detected, a

random sampling of these particles can be performed, which ensures an equal probability for each
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Fig. 7.2: Timeline depicting the progress and outlook of RM-based analysis of MP and nanoplastic. The development moves
from automation and random sampling for large MP to smaller particle sizes, new approaches (RM-SEM, SERS), and window
sampling. The outlook aims for the technical implementation of window sampling for nanoplastic, the closure of the knowledge
gap with regard to the full plastic particle size range, and routine analysis.

particle to be selected. This, in turn, makes the results independent of the spatial structure of the

particles on the filter and, thus, representative of the sample. For random sampling it is easy to calculate

the confidence interval (CI) and derive a minimal subsample size to satisfy a given precision requirement

(urn model without replacement)57.

However, for smaller particles, it is no longer feasible to image the whole filter, because the precision of

the microscope stage of common RMs is in the same order of magnitude (or larger) as the size of the

investigated particles (Section 5.1). Consequently, random sampling is no longer available, since the total

particle number is now unknown. Hence, a window sampling strategy in combination with a bootstrap

method is presented in this thesis (Chapter 5) to enable particle selection and a CI estimation for error

quantification. Errors of systematic window sampling and random window sampling are compared and a

preference for the use of random windows, especially in view of the subsequent use of the bootstrap

method, can be derived. Ultimately, both window sampling and the bootstrap method are included in a

proposed on-the-fly measurement algorithm (Section 5.4), which instantly and automatically calculates

the CI of small increments of particles by bootstrap and decides whether the measurement process can

be stopped. Otherwise, the next increment would be analyzed.

This on-the-fly algorithm is a key achievement of the results presented in Chapter 5, as it offers a solution

for the particle-by-particle analysis of such small particles and, furthermore, removes the requirement

for the preemptive knowledge of the MP ratio, making the analysis less prone to error. In addition,

the measurement times could be reduced, as the analysis would stop at an optimal point instead of

identifying a fixed number of particles. Finally, the projected subsampling is discussed in general terms

and, thus, can be of interest for any subsampling, in which particles have to be selected from a 2D

surface.

Preceding the development of the on-the-fly algorithm, there were reports that also propose subsampling

strategies. Thaysen et al.e demonstrated the importance of taking the spatial structure of the particles

eThaysen et al. investigated the particle distribution on the filter by light microscopy of artificial samples. They calculated the
coefficient of variation between windows (with an arbitrary 10 % threshold) and used a distance-to-center plot identifying that
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on the filter into account and recommended a stratified sampling in rings to account for the radial pattern

of the particle distribution63. However, it is very difficult to give a complete or, most often, even adequate

description of the spatial pattern. The spatial pattern will vary for each laboratory and sample type as well.

This becomes apparent in comparing their results to the spatial structures observed by Brandt et al.65,

which differed substantially. Contrary to this approach, the subsampling in this thesis has the advantage

that it is based on randomness, which entirely avoids the dependency on preemptive knowledge of the

spatial structure.

Brandt et al.65 evaluated common subsampling strategies in microscopy-based MP identification (i.e.

µFT-IR & RM)f and reported an exponential decrease of the error with increasing fraction of particles

or area, respectively. It was further seen that none of the subsampling methods outperformed the

others, except for edge scenarios, e.g. low particle numbers. Additionally, the results show that the

sampling errors are > 50 % if less than 5 % of the filter is measured. This is an important result, since

early studies were often restricted to areas far below that percentage66,67. Mintenig et al. performed an

investigationg on the impact of sample size in the case of a river water study, which is in agreement with

this requirement for sufficient sample size68. From these reports, two things should be concluded: (i)

Previous studies with small sample sizes should be critically assessed, as performed e.g. by Koelmans

et al.69, if they are used for any conclusions. And if the uncertainty is too large, the results of these

studies should be treated with caution. (ii) Future studies should include a solid quality assurance

protocol to produce reliable data.

The window sampling method of this thesis improves these studies, as the on-the-fly algorithm is aimed

at finding an optimal particle subset for the individual sample. Furthermore, is it based on precision

parameters (margin of error, error probability), which can be predefined to suit the quality control of the

respective study. This makes it more general than the recommendations of the abovementioned studies,

which were only applied on samples with MP ratios and particle numbers in a certain range.

These new RM-based methods close critical methodological gaps of subµ- and nanoplastic analyses.

To advance the technique and bring the scientific field forward to establishing analytical routines, there

are still some open challenges. Among these are the application on different (in)organic matrices and

the particles had a „starburst“ pattern, i.e. the particles tended to the center63. It has to be noted that this kind of plot disregards
any non-radial influences on the pattern, since only the distance to the center is taken into account. Furthermore, there are
much more such methods, which all provide different aspects of the spatial structure64.

fBrandt et al. subjected a dataset of 27 fully analyzed MP samples from previous studies to the different subsampling
strategies (i.e. random particle sampling, stratified random particle sampling, a cross and a spiral of windows, random windows
over the whole filter, and random sampling over a quarter filter) with varying fractions of particle number/area. By comparing
the extrapolated MP number to the MP number of the full analysis, an error was quantified. From the analyzed samples, it was
concluded that with a maximal error of 20 %, 50 % of the total particle number or 7000 particles need to be analyzed, which is in
agreement with von der Esch et al.58. A similar threshold for window sampling was given, in which the maximal error of 20 % is
achieved by analyzing 50 % of the area of the filter. Further, a decreasing error with increasing MP content is observed, which
is as expected by the theoretical error description, which was laid out by Anger and von der Esch et al.57 and further elaborated
on in Chapter 5. From that, the need to increase the MP ratio, e.g. by an enrichment step, like density separation, is highlighted.

gMintenig et al.68 compared the reliability of reducing the investigated filter area of the µ-FT-IR analysis. The subsampling
was deemed acceptable by the criterion of the coefficient of variation being ≤ 1. It was concluded that at least 50 % of the
filter area needs to be analyzed in order to accurately identify the particles of the sample by particle number and polymer type.
This percentage can be reduced, if the MP number on the filter was very large. Further, the MP type analysis of very common
polymers (PE, PP, natural rubber) can be achieved by lower subsections of at least 5 % of the filter. Conversely, very rare
polymers need higher percentages (75 %).
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different systems, including biota. Further, the many possibilities of SEM imaging (such as energy

dispersive spectroscopy, EDS) should be explored with regard to their use in RM-SEM on nanoplastic.

An improved automation that incorporates the smaller particle fractions should also be one of the central

future goals (Figure 7.2).

Thus, the subsequent work for the automation of RM for very small MP and nanoplastic is the technical

implementation of the projected on-the-fly algorithm. This would require an improved control software

expanding the functionality of the TUM-ParticleTyper58, which would have a more frequent communica-

tion with the RM. To perform this implementation, some technical answers are necessary. On the one

hand, the image recognition for the very small particles using higher-magnification objectives needs to

be validated. Further, the targeting and proper chemical identification of the smaller particles, especially

in the z-axis, needs to be validated as well. On the other hand, application tests are needed to obtain

information on the time consumption by the individual steps of the on-the-fly algorithm, like interfacing,

data processing, microscope stage movement, or the bootstrap calculations. In addition, the optimal size

range correlating to specific microscope objectives needs to be found and, possibly, a cross-check of

the accuracy with particle detection/identification by random sampling in an overlap size range should

give insight in the quality of the analysis in the new, small size range. Finally, the lower bounds for the

applicability need to be tested, since the image recognition can, in principle, process any image (e.g. the

TUM-ParticleTyper could detect particles on SEM images).

With this technical improvement, it will be possible to enlarge the size range of future plastic particle

research studying micro- and nanoplastic. This, of course, would need a reevaluation of the various

systems that are relevant for the MP issue. Nonetheless, a major knowledge gap can be envisioned to

be closed and answers to the presence and fate of the smallest size fraction of plastic particles can be

obtained. This is especially critical as the assessment of toxicological effects is not yet conclusive, but is

speculated to bear bigger risks with smaller particle sizes (Section 1.2.1). Down the road, this knowledge

and the developed techniques will enable a suitable routine analysis, surveillance, and prevention of the

plastic particle contamination issue.

7.3 Bulk Raman Spectroscopy coupled to Field-Flow Fractionation

The particle-by-particle approach based on RM was shown in Chapters 4 and 5 and the section above,

providing chemical identification and quantification with a great degree of information on individual

particles. This will, however, in most cases be accompanied by long measurement times. Thus, a

complementary approach, as portrayed in the roadmap (Figure 7.1), is devised in this thesis. There,

the particles are separated first by FFF and, subsequently, are chemically identified with Raman

spectroscopy in bulk. This bulk approach shows promise, as the physical characterization can be

performed by established techniques. To this end, FFF, and especially AF4, is most promising, as it is

a versatile method for the analysis of nanoparticles2,70,71. Indeed, a first proof-of-principle study has

shown that AF4 is well suited for the separation and size characterization of secondary nanoplastic72

(Figure 7.3).
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Fig. 7.3: Timeline depicting the progress and outlook of flow- and suspension-based Raman spectroscopy of nanoplastic in the
environment. With proof-of-principle studies for AF4 and RT for nanoplastic in place, FFF-Raman was the next step in method
development. Subsequently, first applications of RT were reported. In the future, applications of FFF-Raman, its validation for
quantification, and routine analysis, could be expected.

However, there was a methodological gap concerning the chemical identification of the nanoplastic

particles. The available detectors for FFF only provided elemental analysis (e.g. ICP-MS) that cannot

identify the polymer type of plastic particles (Section 6.1). The presented study has solved this problem,

utilizing Raman spectroscopy, as it is well suited for the application in aqueous samples. This is due

to its insensitivity to water, which is based on the low absorption of water in the visible spectrum and

its low Raman cross-section73. In this thesis, a flow-cell for the online-coupling to FFF was developed.

However, when constructing Raman flow-cells, one needs to solve problems with low signal intensities

due to low ratios of sample to eluent and short interaction times with the laser. Over the last 40 years,

many designs for RM flow-cells have been developed for dissolved analytes, which essentially either

employ high laser powers or a Raman enhancement effect (see Chapter 6).

In recent years, several groups presented new Raman flow-cell designs for the analysis of micro- and

nanoplastic in the bulk approach (Figure 7.3). Kniggendorf et al. have developed a flow-cell, which

enables Raman spectroscopy of MP in tap water with (relatively) high flow rates (1 L/h)74. This cell

does not rely on a particle focussing and simply uses high laser powers. Thus, it is limited to large MP

particles > 100 µm, which are analyzed individually nonetheless. In some other studies, flow cytometry

was combined with Raman spectroscopy and acoustic focussing75,76 for the identification of cells and

particles (ca. 10 µm)h. In these applications, however, the size range is still limited to micrometer sized

particles.

Furthermore, RTs, i.e. optical trapping and Raman spectroscopy, were used for the analysis of suspended

plastic particles. Here, the targeted subµ size range was achieved. The first identification of suspended

plastic particles in the nanometer range (down to 50 nm) using RTi was performed by Gillibert et al.77.

hZhang et al. described a stimulated Raman scattering (SRS) flow cell for flow cytometry75. This approach was later extended
by Suzuki et al. to SRS microscopy enabling a label-free chemical imaging. In this flow-cell, acoustic focussing is used to
position the particles76. This SRS flow-cytometry was validated with polymer particles (PS, PMMA, 10 µm; size limit > 1 µm)
and applied to the distinction of adipose cell-differentiation states75. Additionally, microalgal and cancer cells were analyzed76.

iGIllibert et al. employed an inverted microscope and a Raman spectrometer setup, equipped either with a 633 nm or a
785 nm laser to identify plastic particles in the range of 50 nm – 20 µm, with different shapes (beads, fragments, and fibers)
and different ageing. This application to particle sizes as low as 50 nm is enabled by the use of a 100× oil immersion objective
with with N.A. = 1.377.

171



Chapter 7 Discussion and Conclusion of the Thesis

This technique, however, works on single particles and is, thus, limited to low numbers of analyzed

particles.

By that, two important proof-of-principles were presented: The use of AF4 on nanoplastic72 was

demonstrated, as well as the optical trapping to manipulate and identify nanoplastic77. Hence, the logical

next advance is to combine the two in an optical trapping-based flow-cell to solve the sensitivity problems

of Raman flow-cells for particulate analytes.

This development is a key achievement of this thesis, in which the online-coupling of FFF (AF4 and CF3)

to RM, enabled by an optical tweezer-based flow cell. The approach was developed and its applicability

was shown for nanoplastic in the size range of 200 nm to 5 µm (Chapter 6). With FFF-Raman, a new

method for the bulk analysis of nanoplastic is therefore available, which can also provide size information

on the separated particles (Figure 7.3). In the past, this combined information required the time-intensive

individual analysis of a very large number of individual particles in the particle-by-particle approach.

Other bulk methods (e.g. Py-GC-MS) could only give the total mass without size information. This opens

the possibility to characterize nanoplastic with a great amount of detail in a high-throughput manner.

Hence, new perspectives for the analysis of nanoplastic particles have opened up (Figure 7.3). As suitable

methods for the detection of nanoplastic particles are now available, initial studies on the presence of

nanoplastic are an immediate goal. In fact, in 2021, RT was applied for environmental studies, which

aimed to detect MP (1 µm – 20 µm) in crabs and fish78 and for marine surface waters46 (> 2.5 µm)j.

These studies were, however, still performed on single MP in the low µm-range. Consequently, analyzing

particles < 1 µm is of great interest, since reports on the detection of nanoplastic are still very rare.

Knowledge is currently limited to nanoplastic in cosmetics8, the Atlantic ocean9, deep ocean waters40,

and Alpine snow28,80. Here, the online-coupling of FFF-Raman has the potential to fill this need, as it

can better provide size information and possibly quantification of nanoplastic particles. By the method

development and validation performed in this thesis, FFF-Raman is ready for first applications on such

systems to demonstrate its ability to detect nanoplastic in real samples.

Furthermore, a development and validation of FFF-Raman towards reliable quantification needs to be

followed, as it constitutes an important aspect of the required information on contamination assessmentk.

This would also include the development of a preconcentration methodl to account for the often very low

particle contents in large volumes of sample (Chapter 3). By this advance, FFF-Raman can play a major

part in the assessment of the various systems that are relevant in MP research, for which information

jGillibert et al. also gave a proof-of-principle for the analysis of tire wear (> 600 nm) by RT79.
kThe MALS detector (at 90° angle) has been used for the quantification of poly(DL-lactide-co-glycolide) (PLGA) subµ-

particles81, SiO2 nanoparticles82, or Influenza A virusses83. The UV detector was used on Au nanoparticles84 or liposomes85.
However, it is difficult to use the UV detector for quantification of particulate matter, since the signal is not only affected by
absorption, but also by the turbidity and light scattering. Hence, only well characterized and monodisperse particles can be
calibrated for quantification. This is similar for the MALS signal (90°), where the reports were restrained to monodisperse
samples. Analyzing polydisperse and irregular secondary nanoplastic particles will be difficult, since the light scattering at
certain angles is dependent on the size and shape of the particles. Further, staining with marker substances (Rhodamine
phosphatidylethanolamine or Sudan Red) has shown to facilitate quantification of liposomes with UV85, as well as MP on filters
for RM86.

lFor example by ultrafiltration9,22, in-channel-focussing87 or the slot-outlet technique88 of the AF4, cloud point extraction, which
has been performed on ENPs89,90 and nanoplastic23,24, or solid-phase extraction91.
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on nanoplastic occurrence is equally important. Among those are marine92, limnic93, and terrestrial94

systems, as well as drinking water69,95 and the ingestion by wildlife96. These assessments would enable

regulatory steps for this contaminant and FFF-Raman could be part of the routine analysis for monitoring

nanoplastic.

Finally, FFF-Raman has the potential to be used in a broader set of particle analytes than just nanoplastic.

For instance, organic and inorganic environmental colloids97 could be analyzed, since RM can give

insight into functional groups and is also capable of identifying minerals and polymorphs. Moreover, as

the demonstrated size range is in the same order as microorganisms98,99, those cells could be of interest

for further studies, e.g. in the context of biomedical applications100,101.
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