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Abstract

To study the universe at the microscopic level, the particles created in the collisions of
high-energy hadrons at accelerators such as LHC are registered by dedicated detector
facilities. The obtained data are utilised to reconstruct the structure of the underlying
collision event. As the rate of collisions and the amount of simultaneously occurring
interactions will be increased in the future experiments in order to observe rare events,
the computational efficiency of the current event reconstruction algorithms will become
a limiting factor for the research. In this thesis the requirements for particle track recon-
struction and simulation algorithms in the High Luminosity-LHC era are investigated
using the ATLAS detector as an example. As an outcome of the dedicated studies and
implementation of an advanced track reconstruction workflow, a speed-up factor of up
to approximately 8 was achieved in the track reconstruction procedure of the ATLAS
experiment, while the physics performance experienced only minor losses. In the future,
to reach even greater performance, these improvements can be combined with other
approaches such as exploitation of more performant hardware not available today.

This thesis focuses on developments for the ACTS software project, which is a detector-
independent framework for track reconstruction and simulation. The development of a
generalised track reconstruction software requires a deep understanding of the underlying
problem and a well-developed mathematical and physical model. Within the context of
this thesis, a theoretical model for track reconstruction based on Bayes’ theorem was
derived. The description of the developed model in this thesis provides an insight in
commonly applied approximations in this field and discusses the resulting limitations
and constraints for algorithmic developments.

Furthermore, this thesis presents the development and implementation of a detector
independent extrapolation of particle trajectories. Namely, it was demonstrated how
a single algorithm is capable to incorporate a large variety of different effects affecting
particle trajectories with a minor amount of changes. Additionally, for the first time,
the tracking formalism was extended to include time as a parameter of the particle
trajectory. This formalism allows for a generalisation of the Kalman filter track recon-
struction algorithm to utilise data from e.g. gas detectors without further constraints.
The corresponding adaptions of the algorithm are discussed and the track reconstruction
performance in a test setup is compared to the classical Kalman filter approach.

Finally, a fast simulation utilising the ACTS software is presented. An overview
of the major physical effects and their implementation is shown. A focus is set on a
parametrisation of nuclear interactions, derived within the context of this thesis. This
parametrisation relies on histogram sampling and is designed to allow for improving the
simulation accuracy without the re-parametrizing former histograms. The later property
is important for an efficient tuning of the simulation parameters.
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Zusammenfassung

Die in den Kollisionen von hochenergetischen Hadronen an Beschleunigern wie dem
LHC erzeugten Teilchen benötigen spezielle Detektoren, welche die Teilchenkollisionen
aufgezeichnet, damit diese ausgewertet werden können. Ziel dieser Experimente ist
die Untersuchung der Wirkungsweise von fundamentalen Kräften und physikalischen
Prozessen des Universums. Die aufgezeichneten Daten dienen der Rekonstruktion der
zugrundeliegenden Ereignisstruktur. Da die Kollisionsrate und die Anzahl gleichzeitig
stattfindender Ereignisse in der Zukunft steigen wird, um auch sehr seltene Ereignisse
aufzeichnen zu können, wird die rechnerische Effizienz der heutigen Rekonstruktion-
salgorithmen zu einem limitierenden Faktor. In dieser Dissertation wurden die An-
forderungen für die Algorithmen der Teilchenspurrekonstruktion und -simulation in der
High Luminosity-LHC Ära am Beispiel des ATLAS Detektors untersucht. Als Ergeb-
nis der Studien und Implementierung des fortgeschrittenen Spurrekonstruktionsablaufs
wurde ein bis zu 8-facher Geschwindigkeitsanstieg im Spurrekonstruktionsablauf des AT-
LAS Experiments erreicht, während die physikalischen Ergebnisse nur kleinere Einbußen
verzeichneten. Um einen weiteren Leistungsanstieg zu erzielen können diese Verbesserun-
gen in der Zukunft mit anderen Ansätzen wie der Nutzung von performanterer Hardware
kombiniert werden, welche heutzutage nicht verfügbar ist.

Diese Dissertation ist fokussiert auf Entwicklungen für das ACTS Softwareprojekt,
welches ein detektorunabhängiges Framework zur Spurrekonstruktion und -simulation
ist. Die Entwicklung einer verallgemeinerten Spurrekonstruktionssoftware benötigt ein
tiefes Verständnis des zugrundeliegenden Problems und ein gut entwickeltes mathematis-
ches und physikalisches Modell. Im Rahmen dieser Dissertation wurde ein theoretisches
Modell für die Spurrekonstruktion, basierend auf dem Satz von Bayes hergeleitet. Die
Beschreibung des in dieser Dissertation hergeleiteten Modells bietet einen Einblick in
gewöhnlich angewandte Näherungen und diskutiert die daraus resultierenden Grenzen
und Einschränkungen für algorithmische Entwicklungen.

Zudem präsentiert diese Dissertation die Entwicklung und Implementierung eines Al-
gorithmus zur detektorunabhängigen Extrapolation von Teilchentrajektorien. Es wurde
demonstriert wie ein einziger Algorithmus in der Lage ist, eine große Vielfalt an un-
terschiedlichen Effekten zu berücksichtigen, welche die Teilchentrajektorie beeinflussen,
während nur geringe Änderungen notwendig sind. Zusätzlich wurde zum ersten Mal der
Spurrekonstruktionsformalismus erweitert um die Zeit als Parameter der Teilchentrajek-
torie hinzuzufügen. Dieser Formalismus erlaubt es den Kalman-Filter Spurrekonstruk-
tionsalgorithmus zu verallgemeinern um Daten aus beispielweise Gasdetektoren ohne
weitere Bedingungen zu verwenden. Die zugehörigen Anpassungen des Algorithmus
werden diskutiert und das Spurrekonstruktionsergebnis innerhalb eines Testaufbaus mit
dem klassischen Kalman-Filter Ansatz verglichen.
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Zusammenfassung

Im letzten Teil wird eine schnelle Simulation unter Verwendung von ACTS präsen-
tiert. Eine Übersicht über die wichtigsten physikalischen Effekte und deren Implemen-
tierung wird dargestellt. Ein Fokus liegt dabei auf der Parametrisierung der hadronis-
chen Wechselwirkung, welche im Rahmen dieser Dissertation konstruiert wurde. Diese
Parametrisierung basiert auf dem Nehmen von Stichproben aus Histogrammen und
ist konzipiert um die Simulationsgenauigkeit zu verbessern ohne die Parametrisierung
früherer Histogramme erneut auszuführen.
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1 Introduction

A philosophical question in the era of ancient Greece was around what happens if one
takes e.g. a piece of wood and cuts it in halves, takes one half, cuts it again into halves
and so on. If this procedure is repeated often enough then does one still have wood or
is there an elementary, indestructible component out of which the wood is composed?
The Greek philosopher Democritus favoured the latter one and called this elementary
component ἄτομος (engl. uncuttable, indivisible) [1].

In ancient Greece this remained a purely philosophical discussion without any possi-
bility to prove or falsify this concept. The idea of Democritus was revived in the modern
age and during the 20th century evidence for the existence of atoms were provided [2].
The term is thereby derived from Democritus term. Afterwards, it was observed that the
atom itself is not an elementary particle but consists of smaller particles: electrons [3],
protons [4] and neutrons [5]. Although the atom itself is not an elementary particle, the
name was kept.

During the 21st century more and more particles were discovered. In the 1960s, the
huge amount of particles was then called a particle zoo [6] which raised the question of
whether these particles consist themselves of particles. The solution became the Standard
Model of particle physics (SM) [7]. It is aimed to describe a set of elementary particles,
including their possible interactions and transformations.

During the early 20th century the role of theoretical physics grew [8]. Originally,
the theoretical physics had little to no impact upon the physics society. This changed
due to the prediction possibilities in quantum mechanics with key figures like A. Som-
merfeld [9]. As the provided predictions could be proven later on by experiments, the
benefit of theoretical physics became obvious. The SM has a similar history. After a
first theoretical framework was built, experimental results either confirmed the theory
or required an extension of the model. On the other hand, the model was able to predict
possible observations. An overview over the SM and remaining open question are given
in Chapter 2.

Since the SM enables the prediction of the existence of elementary particles and possi-
ble interactions, experimental setups are required for testing the hypotheses. In order to
test a given hypothesis from the SM, it is necessary to provide an observable. According
to the relation between energy E and a particles mass m at rest [10]

E = mc2

it is thus possible to produce a particle with mass m. The energy is thereby not the only
condition that needs to be fulfilled but it allows to derive a first concept for investigating
the correctness of the SM: If particles have a sufficient high energy then it is possible to
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1 Introduction

test a hypothesis. Obtaining particles with a certain energy(-regime) is done by particle
accelerators. They can be divided into two different kinds: cosmic and earth-bound
accelerators. The former is the result of processes outside earth (e.g. supernovae) and
can provide the highest observable particle energies. On the other hand, these processes
are not repeatable. The earth-bound accelerators, on the contrary, reach lower energies
but provide repeatable interactions with similar energies. Therefore, the earth-bound
accelerators provide more control over the investigation. Additionally, for fulfilling the
conditions to obtain an observable, the process under investigation is a stochastic process.
Hence, it is beneficial if experiments are repeatable.

Alongside the possibility to produce a particle, a process etc. predicted by a theoretical
model, it is mandatory to observe it. Since every observation relies on interaction, a
setup is required that registers certain interactions. Furthermore, processes in particle
physics occur on a very short timescale, so that it is almost impossible to observe a
certain process of interest itself but rather measure result of the process. In Chapter 3
an overview of the earth-bound accelerator Large Hadron Collider (LHC) is provided
together with a description of the ATLAS detector, one of the four major detectors
located at the LHC. Within that chapter, the current state of these two are presented
and future updates and experimental challenges are shown.

Since a hypothesis is usually tested by observing products of a particle collision rather
than the process itself, it is mandatory to utilise the data obtained from the detector
and reconstruct the processes that occurred. A part of this procedure that deals with
the charged particles is called track reconstruction or tracking. As the data are the only
hint to the underlying processes, the statistical treatment is crucial for further analysis
and therefore hypothesis testing. A derivation of the usage of data for utilising the
measurements and reconstruct the trajectories of particles alongside their properties is
presented in Chapter 4.

In order to perform tracking, dedicated hardware or software based implementations
are required. In Chapter 5 the tracking software ACTS (A Common Tracking Software)
is presented as an example for a software based solution. Within this chapter the initial
state for the tracking workflow from Chapter 4 and the utilisation of the results from
the tracks are presented.

In the future, tracking has to encounter multiple challenges. While Chapter 3 shows
that more data per time will be provided and hence increases the complexity, the compu-
tational requirements of the software needs to be lowered without the loss of precision of
the stated results. A dedicated study for addressing this issue is presented in Chapter 6.

In Chapter 7 the extrapolation of particle properties along its trajectory and its re-
quired components is presented. Starting from modern concepts in the first part of this
chapter, the second part is focused upon generalising the concept to allow tracking in
future detector setups involving additional information of the particle properties. As
the software is intended to be kept detector independent a general scheme for dynamic
extrapolation is presented.

While the reconstruction theory in Chapter 4 is centred around discrete and static
points at which data can be provided. Chapter 8 generalises this concept. Within this

2



chapter the location of measurements are considered everywhere leading to generalised
formalism of track reconstruction in the context of Chapter 7. The underlying theory
from Chapter 4 is thereby considered as a special case.

Besides the reconstruction of tracks, track extrapolation can be utilised for simulating
tracks. This allows for investigate detector responses upon certain particles and its
properties or to study the sensitivity of an observable with respect to its definition and
the detector. The simulation of tracks can be performed with high granularity. This level
of granularity is not mandatory for some studies. An implementation for a simplified
simulation is presented in Chapter 9.

A summary is presented in Chapter 10.
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2 Theory

The description of the smallest constituents of matter and their interactions on the
smallest scale are combined in the Standard Model of particle physics (SM). This model
was developed during 20th century [11]. It is the result of the combined effort of theorists
and experimentalists who questioned and predicted many individual components of the
model over time. This development process led to a deeper understanding of the nature
of elementary particles. An overview over this model is given in Sec. 2.1. Since this
is a model, it depends on several model parameters which cannot be derived from first
principles. Hence, the theory of the SM has still open question that remain unanswered
up to now and rely on further data and experiments. Beside open questions within the
SM, there exist concepts of expanding the model motivated by various observations that
are not covered by the SM. A selection over some prominent theoretical challenges of
the SM are given in Sec. 2.2.

2.1 Standard Model of Particle Physics

The theory of the SM describes the elementary particles and their interactions. Since the
completion of the theory the agreement between theoretical predictions and experiments
was very successful. With the discovery of the Higgs boson1, announced in a seminar on
July 4th 2012 [12], the existence of all mandatory components was confirmed.

In order to overcome difficulties in the explanation of a growing number of particles
discovered in the first half of the 20th century, in 1964 Gell-Mann and Zweig [13, 14]
suggested a substructure, the so-called quark model for several particles, the hadrons.
Hence, these hadrons itself would not be considered as elementary particles but would
rather consist out of elementary particles. Establishing this new theory provided a
consistent explanation of the Bjorken Scaling [15, 16]. Similar to this example, the SM
has many free parameters, like particle masses that cannot be derived from the theory
itself but need to be measured. This motivates an ongoing research for a more general
model that provides constraints upon these parameters while providing the same results
as the SM. The SM is in this context considered as a special case. Up to now, no particle
predicted by extensions of the SM has been directly detected in experiments.

The SM can be divided into particles as constituents of matter and interaction-
mediating gauge bosons. The latter ones allow interactions between the former but
also between the mediators itself. A summary of the SM particles is shown in Tab. 2.1.
The fermions2, quarks and leptons, are grouped into generations. Ordinary matter,

1The term boson denotes in general particles with an integer spin.
2The term fermion denotes in general particles with a half odd integer spin.
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Type Name Spin Electric charge [e]

Quark
u, c, t 1/2 +2/3
d, s, b 1/2 −1/3

Lepton
e−, µ−, τ− 1/2 −1
νe, νµ, ντ 1/2 0

Mediator
gi, i = 1, 2, . . . , 8 1 0

γ 1 0
W+, W−, Z0 1 +1,−1, 0

Higgs H 0 0

Table 2.1: Summary of particles contained in the SM [17].

i.e. matter that is observable in everyday life, consists out of u, d and e−. Expanding
this set by the νe then forms the first generation. The second and third generation con-
sists of (c, s, µ−, νµ) and (t, b, τ−, ντ ) respectively. The masses of the charged fermions
of each generation is higher compared to the fermions of the previous generation.

Additionally to the fermions shown in Tab. 2.1, each particle has a corresponding
anti-particle. These anti-particle have the same mass as the particle but opposite sign
in the quantum numbers.

The SM is a theory that describes the electromagnetic, weak and strong interaction
between point-like fermions and bosons. It is a quantum field theory with gauge invariant
operators with four dimensions. The corresponding gauge group of the SM is a SU(3)C×
SU(2)L ×U(1)Y symmetry group [18].

The SU(3)C is the symmetry group of the strong interaction. Strong interacting
particles, quarks and gluons carry a degree of freedom called colour charge (indicated
by the C). Colours are named red, blue and green, anti-particles carry an anti-colour
(e.g. anti-red). Gluons carry a colour and an anti-colour. Since the underlying symmetry
group has eight generators, there exist eight different colour-anti-colour combinations
and therewith eight different gluons.

The unified symmetry group SU(2)L×U(1)Y represents the weak and electromagnetic
interaction. These interactions are the result of the combined theory of electroweak inter-
actions. The subscript L and Y refer to left-handed chirality and the weak hypercharge
respectively. In order to provide a relation between these terms, the chirality is required.
From the Dirac-equation one obtains the spinor(

ψL
ψR

)
with the left-handed spinor ψL and the right-handed spinor ψR. Both spinors are in-
dependent of each other and represent the left and right chirality of a fermion. Within
each generation of particles in the SM the left-handed leptons form an SU(2)L doublet
whereas the right-handed leptons form a singlet. The weak isospin can be calculated
and be put in relation to the weak hypercharge via

Q = T3 +
1

2
YW (2.1)
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2.1 Standard Model of Particle Physics

Type Chirality Name Weak isospin T3 Weak hypercharge YW

Lepton
Left-handed

e−, µ−, τ− -1/2 -1
νe, νµ, ντ 1/2 -1

Right-handed
e−, µ−, τ− 0 -2

No neutrinos observed 0

Quark
Left-handed

u, c, t 1/2 1/3
d, s, b -1/2 1/3

Right-handed
u, c, t 0 4/3
d, s, b 0 -2/3

Table 2.2: Summary of weak isospin and weak hypercharge of particles in the SM [17].

with the electric charge of a particle Q, the weak isospin T3 and the weak hypercharge
YW . This leads to the values summarised in Tab. 2.2. The doublets are thereby linked
to the charged weak interaction, the W± bosons with T3 = ±1 and YW = 0. These
bosons allow the transitions within the doublets. In nature this transition is covert
by the observation that quark mass eigenstates are different from the weak eigenstates.
This phenomenon is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This
matrix is a unitary 3× 3 matrix V with

d′s′
b′

 = V

ds
b

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 .

The vector (d′, s′, b′) represents the weak eigenstates, (d, s, b) the mass eigenstates. If
both eigenstates would be identical, V would be diagonal. However it was observed that
there are nonzero off-diagonal entries.

A similar observation was done for neutrinos. The corresponding transition matrix
is called Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. Since this matrix is not
diagonal [19], it implies nonzero neutrino masses [20].

2.1.1 Lagrangian of the Standard Model

An isolated, mechanical system in classical mechanics can be described by a Lagrange
function L(q, q̇, t) with the generalised coordinates q, q̇ = dq/dt and time t [21]. An

7
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evolution of a physical system is then given by the minimisation of the action S:

δS = δ

∫ t2

t1

dtL(q(t), q̇(t)) = 0

=

∫ t2

t1

dt

[
∂L

∂q
δq +

∂L

∂q̇
δ(q̇)

]
=

∫ t2

t1

dt

[
∂L

∂q
δq +

∂L

∂q̇

(
d

dt
δq

)]
=

∫ t2

t1

dt

[
∂L

∂q
− d

dt

∂L

∂q̇

]
δq

A consequence of this principle is that the physical system, i.e. the system with respect
to small variations by δq has to satisfy the Euler-Lagrange equation

∂L

∂q
=

d

dt

(
∂L

∂q̇

)
.

In quantum field theory the generalised coordinates are replaced by fields φ(x, y, z, t)
depending on the space-time coordinates (t, x, y, z). The Lagrange function thereby
becomes a Lagrange density or Lagrangian with the relation

L =

∫
d3rdtL =

∫∫∫∫
dxdydzdtL

(
φ,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
,
∂φ

∂t

)
.

With µ ∈ [0, 3] the derivatives can be written as dφ/dxµ = ∂µφ. The equation of motion
in terms of the Lagrangian then becomes

dL
dφ

= ∂µ
dL

(∂µφ)

following the Einstein notation.
In the SM the electroweak Lagrangian consists out of several parts:

LEW = LMatter + LGauge + LHiggs + LYukawa (2.2)

The matter Lagrangian LMatter describes the evolution with time as well as the interac-
tion between the fermions of the SM and the electroweak gauge bosons:

LMatter = i
3∑
j=1

ψ̄jγµDµψj

The index j represents thereby the three generations, ψj is the spinor field, γµ the Dirac
gamma-matrix and Dµ the covariant derivative

Dµ = ∂µ − igW a
µ

T a

2
− ig′Bµ

Y

2
.
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2.1 Standard Model of Particle Physics

For a = 1, 2, 3 the generators of the SU(2)L are denoted as W a, the generator of the
U(1)Y as B. The parameters g and g′ denote the coupling strength of the weak and elec-
tromagnetic interaction respectively. Y is the weak hypercharge and T a the components
of the weak isospin. The relation between g and g′ is given by

tan (θW ) = g′/g (2.3)

with the Weinberg-angle θW .

The second term LGauge in the electroweak Lagrangian LEW describes the kinetic
components of gauge bosons and the interaction between the generators of the SU(2)L×
U(1)Y , W a

µ and Bµ itself:

LGauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν

where the tensors W a
µν and Bµν are thereby given as

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν

Bµν = ∂µBν − ∂νBµ

with a, b, c = 1, 2, 3 and the SU(2)L structure constant εabc.

The third term of the Lagrangian, LHiggs is related to the Higgs mechanism. This
mechanism is the result of the requirement that the SM has to be gauge invariant. The
explicit introduction of Dirac mass terms, of the form mψ̄ψ, would break the gauge
invariance. In order to overcome this issue and to preserve the gauge invariance of the
theory an additional complex field of the form

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
was introduced [22]. This ansatz is known as Englert–Brout–Higgs–Guralnik–Hagen–Kibble
mechanism [23] or Higgs mechanism in short. The corresponding Lagrangian is given by

LHiggs = (DµΦ)†(DµΦ)− V (Φ) (2.4)

with the potential

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2.

With λ ≥ 0 the potential V (Φ) has a minimum. For −µ2 < 0 the minimum will be
displaced from 0. This is necessary in order to provide the spontaneous breaking of the
symmetry. Since only contributions of the type Φ†Φ are present in the potential, the
minimum is located on the surface of a sphere with radius

〈Φ〉 =

√
µ2

2λ
.
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A consequence of the Higgs mechanism is that after the symmetry breaking the genera-
tors from SU(2)L and U(1)Y , W a and B will become

W± =
1√
2

(
W 1 ∓ iW 2

)
[
γ
Z0

]
=

[
cos (θW ) sin (θW )
−sin (θW ) cos (θW )

] [
B0

W 0

]
with the three massive bosons, W± and Z0 and one massless boson γ. Similar to Eq. (2.3)
the mixing angles are thereby directly linked to the coupling parameters g and g′ via

cos (θW ) =
g√

g2 + g′2
sin (θW ) =

g′√
g2 + g′2

.

The last term in Eq. (2.2) is the Yukawa interaction. This term describes analogously
to LHiggs the interaction between the Higgs field and the SM fermions. The Lagrangian
is given by

LYukawa =
3∑
i=1

(
f li l̄iLΦeiR + fui q̄iLΦ̃uiR + fdi q̄iLΦdiR

)
with the coupling strengths f li , f

u
i and fdi for leptons, positively charged quarks and

negatively charged quarks respectively. The left-handed doublets are given by liL for
leptons and qiL for quarks. Right-handed particles are denoted as singlets eiR, uiR and
diR for leptons and quarks. The index i represents the generation. The field Φ̃ is defined
as Φ̃i = εijΦ

∗
j .

Compared to the electroweak interactions the strong interaction has no additional
Higgs terms since the mediators are assumed to be massless [24]. Noteworthy is a differ-
ent aspect in strong interaction compared to the electroweak interactions: The coupling
parameter in the latter interaction depends on and increases with the energy regime.
The value of the strong coupling parameter αs on the other hand strongly depends on
the energy regime Q as shown in Fig. 2.1. Known by the term confinement [26] quarks
cannot be observed as free particles in contrary to leptons but only bound by gluons
to a colour neutral object. These combinations are the hadrons that are observable by
particle detectors. This plot on the other hand reveals that for higher energies the cou-
pling gets weaker. This phenomenon is called asymptotic freedom [27]. A consequence
of this effect is that high energy quarks and gluons will asymptotically behave like free
particles. The particle radiates bosonic particles and its energy is reduced in this way.
Consequently, the coupling becomes stronger and at some point hadrons are formed.
This process is called hadronisation.

2.2 Theoretical Challenges of the Standard Model

An ideal theoretical model describes all elementary particles, their interactions and all
corresponding properties and parameters such that all measured physical observables
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αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05
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 0.15

 0.2
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 0.3

 0.35
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Figure 2.1: Summary of measurements of αs as a function of the energy scale Q. The re-
spective degree of QCD perturbation theory used in the extraction of αs is in-
dicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to-leading
order; NNLO+res.: NNLO matched to a resummed calculation; N3LO: next-to-
NNLO) [25].

agree with predictions from the model. The SM parameters like the coupling strengths
are free parameters. Their values rely on experimental measurements.

Beside the missing model intrinsic constraints on such model parameters, the SM
describes the electroweak and strong interaction but not the gravity. The absence of
this fundamental force in the model is the most obvious limitation but not the only one.
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The phenomenological prediction power of the SM is tested by HEP experiments but
also by other fields in physics such as cosmological experiments. Many different aspects
of the SM are under ongoing investigation. Since most rely on explanations that are
beyond the scope of this thesis, two recent measurements are presented that motivate
future research. Afterwards, a short overview of current theoretical modelling efforts are
shown.

Lepton Flavour Universality

In March 2021, the LHCb collaboration published results of the branching ratio in B-
decays [28]. One of the processes investigated is shown in Fig. 2.2 (left).

Figure 2.2: Left: Feynman diagram displaying the decay B+ → K+l+l− with the leptons
l = e, µ. Right: Comparison of Rk from BaBar, Belle and LHCb. The dotted line
represents the SM prediction. Both figures are taken from Reference [28].

The final state leptons produced in the decay of a B-meson into a kaon can be either
an e+e− or a µ+µ− pair. The quantity of interest within the analysis is the ratio

RK =
B(B → Kµ+µ−)

B(B → Ke+e−)

with B = B+, B0, B0
s ,Λ

0
b and K = K+,K∗0. The function B describes the transition

probability of its argument, according to Fermi’s golden rule [29]. The SM assumes
implicitly that the couplings of leptons to gauge bosons is independent of the lepton
flavour (lepton flavour universality). For sufficiently large momenta, the SM predicts that
RH ' 1. Fig. 2.2 (right) shows the latest result from the LHCb collaboration together
with the previous results from BaBar and Belle. In comparison of the obtained result to
the prediction of the SM, the data show that the SM does not describe the observation
properly. Considering the uncertainty of RK , the result is currently interpreted as a hint
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2.2 Theoretical Challenges of the Standard Model

for new physics. The collaboration stated in this context a 3.1σ [28] deviation from the
SM prediction3.

Anomalous Magnetic Moment of Muons

The magnetic moment ~µ of muons is given by

~µµ = gµ

(
q

2mµ

)
~s = (1 + aµ)

q

mµ
~s

with the charge q, the muon mass mµ, the spin ~s and the anomalous magnetic moment of
the muon aµ [30]. The parameter gµ = 2(1 + aµ) describes the strength of the magnetic
moment. his factor can be derived simply from the Dirac equation and is predicted to
be equal to 2 at leading order. Quantum corrections to the muon interaction vertex
with an external magnetic field lead to a small deviation from this value. The current
best theoretical prediction from the SM, which includes QED, EW, hadronic vacuum
polarisation and hadronic light-by-light loop corrections, yields a value of aµ(SM) =
116591810(43) · 10−11 [31].

The anomalous magnetic moment describes the variety of effects and their impact on
the magnetic moment. A schematic overview of the different effects considered by the
Muon g-2 collaboration is shown in Fig. 2.3 (left). In 2006, the Brookhaven National

Figure 2.3: Left: Feynman diagrams displaying the SM corrections to the magnetic moment of
the muon. From left to right: QED and weak processes, hadronic vacuum polari-
sation and light-by-light contributions. Right: Comparison between the measured
anomalous magnetic moment and the SM prediction. Both figures are taken from
Reference [30].

3A common definition for a hint or a discovery is given in terms of standard deviations σ. For a
multiple n of σ, the probability 1−

∫ µ+nσ

µ−nσ G(x|µ, σ)dx with the normal distribution G and the mean
of the distribution µ, a probability for a null hypothesis can be stated. A common choice for a null
hypothesis is the absence of an observation. A hint or a discovery are then stated if this probability
becomes smaller than a certain threshold or equivalently a sufficient large n. It is obvious that the
threshold for a hint is at a larger probability than the actual observation. One choice is thereby 3σ
and 5σ respectively.
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Laboratory (BNL) published a measurement of aµ [32]. The obtained value showed devi-
ation from the SM prediction by 3.7σ. In order to obtain an independent measurement of
this quantity, the Muon g-2 collaboration, located at the Fermilab National Accelerator
Laboratory (FNAL) repeated the experiment. In April 2021, the collaboration published
the results of their measurement [30]. As shown in Fig. 2.3 (right), the FNAL result
confirms the prior observation. The combination of the BNL and FNAL measurements
shows a 4.2σ deviation between the experimental data and the SM predictions.

Beyond the Standard Model

Certain phenomena such as gravity are not described by the SM, others such as the
measured Higgs mass lead to questions concerning naturalness and the fine-tuning of
the SM parameters. While e.g. on a cosmological scale dark matter and energy play a
significant role in certain observations, the SM is incapable of describing their origin.
Utilising this as an example, although the SM is considered completed since the discovery
of the Higgs boson, physics beyond the SM (BSM) is researched. The prediction power
of the SM for a large variety of physical effects as well as the experimental validations
provide tight constraints on a BSM model succeeding the SM. Additionally, the new
model has to be compatible with data and constraints from observations that are not
part of the SM.

In the past century, many BSMs like the string theory were developed. One par-
ticular field currently under investigation, both theoretically and at the LHC, is the
so-called Supersymmetry (SUSY). SUSY is an extension of the SM which introduces a
symmetry operator relating bosons and fermions. This in turn implies the existence of
corresponding mirror particles, called superpartners, to the existing SM particles [33].
The superpartners of SM fermions are scalar bosons, of SM bosons are fermions. The
additional symmetry in SUSY models introduce further a conversion mechanism be-
tween fermions and bosons. While this is a very simplified representation of SUSY, the
general message intended is that BSMs treat the SM as a special case of a more general
theory. SUSY is in the field of BSMs a, compared to other theories, small modification
of the SM, appearing more natural. Among the variety of SM extensions, the minimal
supersymmetric SM (MSSM) is of special interest since it represents the smallest set of
supersymmetric particles necessary to obtain a SUSY theory.

Although a large variety of different theories exist with the intention of describing
observations and phenomena, their validation relies on unique observations predicted by
a particular model, i.e. an experimental validation due to observables that are not part
of the SM. Up to the time of writing this thesis, no experimental evidence has been
found for any BSM theory.
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The quantum mechanical nature of elementary particles as shown in Chapter 2 means
that the deterministic predictions for microscopic processes are impossible. Hence, in
order to investigate probabilistic processes repetitions of an experiment are mandatory.
This involves the chance for the observation itself as well as the statistical confidence
in the observation. Beside this requirement for an experimental setup it is necessary
to consider conditions and boundaries given by nature. The most obvious is thereby
the energy. If a process involves a particle of a certain mass then there exists a lower
threshold for the energy of a particle.

Within this chapter two aspects will be considered. In the first half of this chapter
the particle accelerator LHC will be presented. This machine is responsible for both,
the energy of the particles and the generation of interactions. Furthermore, a preview
for the future of the machine is given. In the second part of this chapter the principle
of measuring the products of interactions with the LHC detector ATLAS are presented.
Since this detector is a general purpose detector, it provides many aspects that are
common among detectors in particle physics. Corresponding to the future of the LHC,
an overview of the future of the ATLAS detector is explained.

3.1 CERN Accelerator Complex

The Large Hadron Collider (LHC) [34] is a hadron accelerator and collider located in
the area of Geneva. Fig. 3.1 shows that different accelerators are needed for different
experiments and additionally that the LHC is not the only accelerator in this complex.
The reason for the existence of multiple accelerators is historically motivated. The
CERN was established in 1954 and hence before the SM was formulated. Beside the
missing components in the theory many constituents of the SM were neither measured
nor constrained. Over the years more and more predictions from the SM were confirmed,
starting from the lightest particles and most probable processes to heavier and rarer
ones. Along this historical development the accelerator complex grew as higher energies
or more precise and frequent measurements became necessary. The older ones often
became pre-accelerators of their successor.

3.1.1 Pre-accelerators

For the usage of the LHC only a subset of pre-accelerators are used. Those under-
went multiple modifications and upgrades over the years. In the following an overview
restricted to the current specifications and to the acceleration of protons is presented:
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Figure 3.1: Schematic visualisation of the CERN accelerator and experiment complex [35].

Linac4

The Linear Accelerator 4 (Linac4) [36] is the first acceleration stage for the LHC. An
overview of the individual components of the Linac4 is shown in Fig. 3.2. Starting from

Figure 3.2: Schematic overview of the individual modules of the Linac4. Starting from the
H− source on the the left, the individual acceleration steps are shown with the
corresponding exit energies of the ion bunches [36].

a H− source delivering 100 µs pulses of 40 mA with a frequency of 5 Hz, the hydrogen
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ions leave this source with 95 keV1 and are transported through the Low-Energy Beam
Transport (LEBT) to the Radio-Frequency Quadrupole (RFQ). The RFQ groups the
ions into bunches and accelerates the bunches to 3 MeV over a length of approximately
6 m. These bunches are then guided to the Medium Energy Beam Transport (MEBT) or
”chopper line”. By using an electrostatic beam deflector this device is capable of stopping
and dumping selected sequences of bunches. A bunch thereby receives a kick using a
±400 V field that performs a deflection of the bunch by 5.7 mrad. This dumping system
allows to remove low-quality bunches already in an early stage of the acceleration process
that otherwise would be dumped in a later stage of the acceleration. An estimation for
the dropping rate of bunches in the current scheme is about 37.5%. After the chopping
and rejecting the bunches enter the Drift Tube Linac (DTL). This component consists
out of three tanks with voltage gradients of 3.3 MV/m, 3.5 MV/m and 3.5 MV/m
respectively. The bunches leave the tanks with the energies 9.8 MeV, 25.0 MeV and
finally 39.9 MeV. During the acceleration the beam is under the influence of a magnetic
field provided by Permanent Magnet Quadrupoles (PMQ) instead of electromagnetic
ones. This decision is due to the radiation hardness of the PMQ, the smaller size of the
magnets and higher shunt impedance.

Since the bunch energy inside the DTL is rather small, the alignment of the compo-
nents of the DTL are very demanding. With an exit energy of 40 MeV from the module
a less strict drift tube linac system can be used: the Cell-coupled DTL (CCDTL). Com-
pared to the DTL the CCDTL is an alternating setup of drift tubes and quadrupoles
as shown in Fig. 3.3. Compared to the DTL the magnets in the CCDTL are electro-

Figure 3.3: Overview over the components in a CCDTL module [36].

magnetic quadrupoles. The entire CCDTL setup consists of 24 tanks grouped into eight
modules. Each tank consists out of three gaps with a field gradient of up to 3.9 MV/m.
Over the length of the CCDTL of 25.2 m the bunches are accelerated from 40 MeV
up to 91.7 MeV. This output is the entrance energy to the last module of the Linac4,
the Side-coupled linac (SCL). Compared to previous parts that operate at 352 MHz,

1The exit energy of the ions is actually 35 keV. In order to match the requirements of the RFQ a
post-acceleration is performed.
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the SCL operates with 70.4 MHz. The alternation between acceleration and focusing is
similar to the CCDTL layout. The SCL consists of four modules with five tanks each.
Each tank has thereby eleven gaps that operate with a gradient of 4 MV/m. Therewith
the bunches are accelerated over a distance of 28 m up to 160.1 MeV.

After the bunches exit the Linac4, the H− ions pass a stripping foil that removes all
electrons from the atoms. If an atom is afterwards neutral or negatively charged the
individual atom will be dumped by magnetic deflection.

Proton Synchrotron Booster

Before the year 1972 the former linear accelerator Linac1 fed the Proton Synchrotron
(PS) with 50 MeV protons directly. The therewith maximum number of protons per
pulse (ppp) was limited to 1010 [37]. This value was insufficient when plans for a new
accelerator, the Super Proton Synchrotron were in development. In order to solve this
issue a new synchrotron was proposed between the linear accelerator and the PS: The
Proton Synchrotron Booster (PSB).

The PSB is a synchrotron with a radius of 25 m that accelerates the originally 50 MeV
protons from the Linac1 up to 800 MeV. It consists of 16 groups of components, each
containing two dipole and three quadrupole magnets. Furthermore it contains five re-
gions without magnetic deflection. These straight subsections allow for beam diagnostics
and corrections.

Although the radius of the PSB is just a quarter of the PS, the intensity limitations
due to space-charge could be solved by splitting the incoming beam into four rings as
shown in Fig. 3.4. By utilising several dipole magnets, the bunches are kicked vertically

Figure 3.4: Schematic visualisation of the beam splitting (left) and guidance (right) during
the Proton Synchrotron Booster injection from the linear accelerator. Left: The
incoming beam is split into six different beams using five dipole magnets with
different polar angles with respect to the beam axis. Right: The vertically arranged
four rings of the synchrotron are filled top to bottom, i.e. starting with Ring 4,
finishing with Ring 1. The head and tail of the beam is dumped above Ring 4 and
below Ring 1 respectively. The figures were taken from Reference [37].
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and guided into the rings starting from top to bottom. In order to guarantee a sufficient
beam quality the head and tail of the beam pulse provided by the linear accelerator are
dumped.

As the beam is accelerated in each ring individually, the phases between the bunches of
the rings are arbitrary. In order to provide an optimal filling for the PS, a synchronisation
is required. Shown as red dots at t0 in Fig. 3.5, after the synchronisation all bunches
in the rings have the same phase immediately before the beam extraction. The bunches

Figure 3.5: Beam extraction scheme from Proton Synchrotron Booster. The phases of individ-
ual bunches from the four rings are synchronised until the time t0. Afterwards one
ring after another is emptied starting with Ring 3, then 4, 2 and 1. This figure is
taken from Reference [37]

from each ring are then emptied one after another and transported to the PS.

The PSB as intermediate stage between the Linac1 and the PS allowed to lift the
ppp up to 1013 by 1974. Up to today this value was increased by a factor of four.
Additionally, the initial output energy of the PSB was lifted up to 1.4 GeV. For the
Linac4 it is planned to stretch it further to 2 GeV.

Proton Synchrotron

The Proton Synchrotron [38] (PS) or CERN Proton Synchrotron (CPS) was commis-
sioned in 1959 [39] and is therewith one of the oldest accelerators at the CERN accel-
erator complex. The PS is a synchrotron located at ground level. By using 101 dipole
magnets with up to 1.26 T, the particles are forced on a circular path with a circumfer-
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ence of 628 m. During the circulations the particles are accelerated up to 26 GeV in 24
accelerating cavities.

Along the acceleration process the PS splits the bunches. The first splittings occurs
at 2.5 GeV [40] and splits two bunches into three as shown in Fig. 3.6. After reaching

Figure 3.6: Beam splitting in the Proton Synchrotron using the Batch Compression Merging
and Splitting (BCMS). The abscissa allows the identification of individual bunches
while the time evolution is is shown on the ordinate axis [41].

the output energy two subsequent splitting occur. This time each bunch is split into two
bunches. Hence the PS is capable to deliver a range of bunches ranging from 12 to 72.
Also a variable spacing of 25, 50, 75 and 150 ns between the bunches can be obtained
from the machine. In the beginning of the LHC era the PS provided 36 bunches with
a spacing of 50 ns. Since mid-July 2015 the spacing was reduced to 25 ns and the
number of bunches was increased to 72 with 1.15 · 1011 protons per bunch. With the
implementation of the Batch Compression Merging and Splitting (BCMS) in mid 2016
the number of bunches was reduced to 48 with 1.3 · 1011 protons per bunch.
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Super Proton Synchrotron

The last pre-accelerator for the LHC is the Super Proton Synchrotron (SPS). This syn-
chrotron was commissioned in July 1976 [42] to the CERN accelerator complex and led
to the discovery of the weak bosons (Nobelprize 1984 [43]). With up to 2 T magnetic
fields provided by 744 dipole magnets, the particles are deflected to move along the ring
with a circumference of around 6.9 km. The 26 GeV particles from the PS are acceler-
ated inside the SPS up to 450 GeV in four cavities. Together with the last acceleration
process before the injection into the LHC, the SPS builds the bunch train consisting of
288 bunches [44] which is four times the number of bunches provided by the PS.

3.1.2 Large Electron-Positron Collider

As these accelerator complex grew historically due to new challenges and based upon
the knowledge obtained about the SM from earlier experiments the LHC itself is no
exception to its pre-accelerators. In fact, the approximately 27 km long tunnel used for
the LHC was built initially for the Large Electron-Positron Collider (LEP) [45]. This
accelerator was operating from 1989-2000. The LEP was running on a range of centre-of-
mass energies

√
s from approximately 91 GeV from 1989-1995 and afterwards with 130-

209 GeV [46]. The results obtained from this accelerator can be seen as motivation for
the construction of the LHC and to constrain the required parameters for the accelerator.

Although the SM has a variety of model parameters that would benefit from more pre-
cise measurements, the probably most famous motivation for a new generation of particle
accelerators at the end of the last century was the missing Higgs boson. As it was shown
in Sec. 2.1.1 the Higgs mechanism itself is crucial for preserving the gauge invariance
of the SM. Since the former searches for particles and processes predicted by the SM
were successful, a dedicated search for this missing particle was reasonable. Although
its discovery happened in the LHC era [12] LEP provided already some constraints to
its mass as shown in Fig. 3.7 (left). As the plot already indicates it was possible to
cover higher regions with LEP at the higher centre-of-mass energies. Considering on the
other hand the cross-section σ for a Higgs boson production channel as shown in Fig. 3.7
(right), the process is very rare. Although the centre-of-mass energy grew over time, it
was limited. Due to synchrotron radiation [50] the leptons radiate the power

P ∝ E4

r2m4
.

Hence, the acceleration of e± compared to hadrons is due their small mass m stronger
affected from this energy loss. The loss is even enhanced for higher energies E. In order
to compensate this energy loss, the particles need to be accelerated, though the possible
acceleration is limited. Given a technical limitation, the possible particle energies are
limited. Additionally, due to to the power law, the fraction of power consumption for
compensating the synchrotron radiation becomes a major economical factor.

Since the LEP ring is considered to be static and cannot be changed, the magnetic
field B needs to be adapted when varying the particle’s energy. Higher particle energies
are going along with stronger magnetic fields. Also the magnetic field strength is limited.

21



3 Experiment

Figure 3.7: Left: ∆χ2 = χ2 − χ2
min versus the mass of the Higgs boson mH from the year

2000 [47]. The black line is the fit using all data including the LEP data. The cyan
band represents the theoretical uncertainty due to missing corrections. The yellow
area is the 95% CL exclusions limit for the mH as a result from direct search. The
red line is the result using ∆α

(5)
had(m2

Z) from Reference [48]. Right: Cross-sections
of electroweak SM processes versus centre-of-mass energy

√
s from the year 2013.

The black curves show the theoretical predictions of the SM. The dots and its error
bars show the measurements. The red dashed line shows the HZ production cross-
section under the assumption of a Higgs boson mass mH = 115 GeV. This plot is
taken from Reference [49].

The low production probability of the Higgs boson made it difficult for the LEP
experiments to proof its existence and measure the Higgs boson properties. With a
continuously rising interaction rate dN/dt and thus luminosity [51]

L =
1

σ

dN

dt
(3.1)

as shown in Fig. 3.8 the data recording rate as well as the amount of available date grew
over time.

Furthermore, the Higgs boson production cross-section grew as a function of the
centre-of-mass energy. Though, despite a higher data rate and

√
s, a certain amount

of data is required in order to claim a hint to or even a discovery of the Higgs boson.
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Figure 3.8: centre-of-mass energy and luminosity provided by LEP per year. This plot is taken
from Reference [52].

As this was insufficient for LEP, the existence of the boson was not resolved by this
accelerator.

In the context of the search for the Higgs boson, the result of the issues mentioned
above was to replace the LEP by the LHC.

3.1.3 The Large Hadron Collider

The LHC is a hadron collider that reuses the tunnels from LEP. It is designed for the
acceleration and collision of protons and various heavy ions. As the latter is more specific,
the following description is focused upon the proton acceleration. While the LHC started
with

√
s = 7 TeV, it is designed to be capable of delivering centre-of-mass energies of

14 TeV. Before the acceleration of the particles from the 450 GeV particles provided by
the SPS up to its collision energy, the ring is filled with 2808 bunches with 1.15 · 1011

protons per bunch. Similar to the filling of the SPS from the PS, multiple injections into
the LHC are performed. The bunches are stored in the ring using 1232 dipole magnets.
In order to provide the highest possible energies, the magnetic fields need to provide
the corresponding bending power. Therefore, these magnets are superconducting Nb-Ti
magnets cooled by superfluid helium below 2 K. The temperature allows to increase the
magnetic field strength further, i.e. for 1.9 K this corresponds to a beam energy increase
of ≈20% compared to temperatures above 2 K [34].
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Once the ring is filled the particles are accelerated by an RF system that provides
an energy gain of 485 keV per turn. Hence it takes around 20 min to reach the lowest
design values of

√
s.

After the acceleration the beams will be focused in the four interaction points, shown as
yellow dots in Fig. 3.1. These are the locations of the four experiments ALICE, ATLAS,
CMS, and LHCb. The main driving parameter for data acquisition is the luminosity L.
Under the assumption of normal distributed bunches, Eq. (3.1) can be written as

L =
N1N2fNb

4πσxσy
(3.2)

with the number of particles N1, N2 in each bunch, their standard deviations σx and σy
in both transverse axes, the revolution frequency f and the number of bunches in the
ring Nb. Parameters that can be modified in order to provide a higher luminosity are
the standard deviations. Hence the bunches need to be as small as possible. In these
overlap regions, the around 8 cm long bunches [34] cross each other at an angle of around
300 µrad. By utilising quadrupole magnets the beam is focused in that region.

As shown in Fig. 3.9(left) the centre-of-mass energy rose over time up to 13 TeV.
Furthermore, the annually delivered luminosity was increased over the years. This pa-
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Figure 3.9: Left: Delivered luminosity versus the time of a year. This plot shows the luminosity
for Run-1 and Run-2 measured by the ATLAS detector [53]. Right: Recorded
luminosity versus the number of interaction per bunch crossing. This plot show the
data for the period 2015-2018 recorded by the ATLAS detector [54].

rameter is shown here as the integrated luminosity

Lint =

∫ t′

0
Ldt

for the abscissa value t′. Thus, the instantaneous luminosity L is the slope of each graph.
The data was collected more rapidly over the years. A clear improvement is observable
after the second half of 2015. As mentioned in the previous section the spacing between
the bunches then was reduced from 50 ns to 25 ns. From Eq. (3.2) this would correspond
to a doubled luminosity.
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A larger luminosity means not just a higher probability for an interaction as Eq. (3.1)
suggests but can also increase the number of interactions that occur in a bunch crossing.
The recorded luminosity per number of interactions is shown in Fig. 3.9 (right). The
interaction multiplicity is called pile-up µ.

3.1.4 High luminosity LHC

In the previous section and in Reference [34] a long term upgrade plan for the LHC was
designed together with the accelerator itself. An overview of this schedule is shown in
Fig. 3.10. The periods between the long shutdowns (LS) are referred to as Run. During

Figure 3.10: Timeline of the LHC including the centre-of-mass energy and a schematic visuali-
sation of the delivered luminosity. Also the shutdown schedule is presented. This
plot is taken from Reference [55].

the LSs the upgrades of the LHC and the experiments can be installed and the hardware
be maintained.

Despite the increasing luminosity shown in Fig. 3.9 (left), in 2010 plans were made
for a future upgrade of the LHC: The High-Luminosity LHC (HL-LHC) [56]. The idea
of this project is to maximise the knowledge gain through data per time. It can be
understood as improvement of the statistical accuracy per time and thus as acceleration
of scientific progress.

While the concept of the HL-LHC is keeping the spacing between the bunches and
the centre-of-mass energy at a constant level, the luminosity is planned to be increased
by a factor of five, the integrated luminosity by ten compared to the initial design goals,
i.e. the HL-LHC is thought of delivering an integrated luminosity of 250 fb−1 per year
and 3000 fb−1 in a decade. This requires some changes in the beam parameters in order
to achieve this goal.

Eq. (3.2) states an increasing luminosity for smaller transverse beam sizes. This is
achieved by a stronger beam focus β∗. The parameter is related to the envelope of the
oscillating beam β(s) via

β(s) = β∗ +
s2

β∗

for the distance parameter s along the beam direction [57]. For the HL-LHC β∗ is
planned to be reduced from 0.55 to 0.15. Thus, the beam diameter at the focal plane
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gets smaller but grows more rapidly afterwards. The consequences for the magnets
involve that the interaction angle between both beams in the interaction point gets
larger. At the same time so-called crab cavities are required to ensure a sufficient high
level of overlap between both bunches in the context of luminosity. These cavities cause
a torque upon the bunches for a heads-on overlap during the bunch crossing as shown in
Fig. 3.11. The net result is a larger overlap in the interaction region, therewith a higher

Figure 3.11: Illustration of a bunch crossing under an interaction angle. The bunches are
shown as red and blue ellipses, the black arrows indicate their direction. Left:
Unmodified bunch crossing. Right: Bunch crossing with crab cavities rotating the
ellipses. This figure is taken from Reference [58].

interaction probability and thus luminosity.

Furthermore the number of protons per bunch shall be increased to 2.2 ·1011 while the
number of bunches in the HL-LHC shall be slightly reduced. Hence, the bunch crossing
rate get slightly reduced while the pile-up shall rise. For the LHC the pile-up is operating
above the original design goal of 〈µ〉 = 19 as shown in Fig. 3.9(right). Considering all
required modifications to the beam guidance for the HL-LHC the expected pile-up is
between 140 and 200 [56].

The installation of the alterations are planned for the LS3 period.

3.2 The ATLAS Detector

Processes that occur in a particle collision, the thereby involved particles and their
properties are not directly measurable. As mentioned in Sec. 2.1.1 quarks appear always
in a bound state due to confinement. Furthermore, some particles can decay. The top-
quark for example has a mean lifetime of ≈ 0.5·10−24 s [17] which corresponds to a travel
distance of ≈ 1.4·10−16 m from the creation to its decay. Hence, only the products of the
these processes are measurable, i.e. leptons and hadrons that are stable2 (final state).
These observable particles are studied since a long time and therefore their properties
are usually well known. This means that these particles need to be measured in order
to obtain knowledge about the underlying event structure.

Beside the fact that particles and processes of interest, i.e. the ones that are not di-
rectly observable are only measurable indirectly, the principle of measuring needs special

2Stable in the sense that they do either not decay at all or with a lifetime that is long enough in order
to not decay inside detector.
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considerations. A particle detector is a device that measures particle properties with the
purpose to reconstruct from the given data the processes that occurred since the beam
particles collided. The detector consists of several, different components. Each com-
ponent measures some properties of the final state particles as precisely as possible.
This allows to determine and to distinguish the processes that happened since the beam
particles collided together with conservation laws and the underlying theory of the SM.

As a description of the general working principle of a particle detector, the ATLAS
detector [59], shown in Fig. 3.12 will be presented in the following. This detector is

Figure 3.12: Cutaway overview of the ATLAS detector and the individual components [60].

located in one of the four interaction points of the LHC. It is a general purpose detec-
tor, i.e. a detector capable of measuring a broad variety of physics processes designed
for the LHC parameters of about

√
s = 14 TeV centre-of-mass energy, a luminosity

of 1034 cm−1s−1 with 25 ns between collisions and a pile-up of up to 23 [59]. A brief
overview over the particle types measurable by the individual components in the ATLAS
barrel is shown in Fig. 3.13. The Tracking Detector or Inner Detector is the part closest
to the beam collision and provides information primary about electrically charged par-
ticles. It is surrounded by a solenoid magnetic field. The Electromagnetic Calorimeter
provides detailed information about the energy of electrons, positrons and photons, the
Hadronic Calorimeter about hadrons. Both calorimeters have the purpose to stop the
particle inside the respective component. Muons traverse all these components and can
be measured outside in the Muon Spectrometer. Neutrinos will exit the detector without
being measured at all. These particles can be reconstructed by utilising conservation
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Figure 3.13: Cutaway overview of different particles traversing the barrel of the ATLAS detec-
tor in radial direction. The beam pipe is shown as white circle at the bottom [61].

laws, leading to missing momentum or energy. The density of particles in a detector
component and the stopping of particles in the detector pre-define an order of the detec-
tor components. In the following these components of the detector, the trigger and the
data acquisition are presented in more detail. For a better understanding the thereby
used coordinate system is explained first.

3.2.1 Coordinate System and Conventions

The coordinate system used for the description is a right-handed Cartesian coordinate
system with the origin located at the nominal centre of the detector. The counterclock-
wise centre of the beam pipe defines the +z-axis, the horizontal axis is the +x-axis,
pointing towards the centre of the LHC ring and the +y-axis upwards. The origin of
the coordinate system is the nominal centre of the particle collision. Additionally, two
angles θ and φ are used. θ is the polar angle of a spherical coordinate system measured
from the positive z-axis in an interval θ ∈ [0, π). φ is the azimuthal angle defined in the
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x-y-plane. This angle is defined such that φ = 0 rad corresponds to the x-axis. The
range of this parameter is in the interval φ ∈ [−π, π). Both angles are related to the
underlying Cartesian coordinate system by

tan(θ) = r/z tan(φ) = y/x (3.3)

with the radius r =
√
x2 + y2. An equivalent description is obtained for a momentum

vector p = (px, py, pz). The equivalent parameter to the radius for the momentum is

given by by transverse momentum pT =
√
p2
x + p2

y. Thus, the direction along the z-

axis is defined as the longitudinal direction. The same accounts for the longitudinal
component of the momentum pL = pz.

The produced particles per θ interval is not constant and the polar angle is not in-
variant under Lorentz boost. That is why another quantity is preferred: The rapidity

y =
1

2
ln

(
E + pL
E − pL

)
is shifted by a constant factor under Lorentz transformations and therefore better suited
for descriptions in particle physics. Considering high energy particles with negligible
masses compared to their momenta, i.e. |p| � m, then the energy E can be approx-
imated as E =

√
p2 +m2 ≈ |p|. Within this limit the rapidity is equivalent to the

pseudorapidity

η =
1

2
ln

(
|p|+ pL
|p| − pL

)
= −ln

(
tan

(
θ

2

))
.

Since η is a function of θ and therefore directly connected to the underlying coordinate
system of the detector, it is a handier parameter than the rapidity and often the favoured
parameter over the rapidity.

3.2.2 Inner Detector

The Inner Detector (ID) [62] is the part of the ATLAS detector closest to the beam-pipe.
This part is designed to allow precise measurements in a covered region in pseudorapidity
of ±2.5. The goal is to achieve the reconstruction of vertices including the association
of corresponding particles for heavy-flavour and τ -tagging. For secondary vertices it is
necessary to detect outgoing particles as close as possible to the primary interaction from
the beam particles. This requires a minimisation of the radii of the detector components.

The surrounding solenoid constraints the outer radius of the ID in the radial direction.
Due to the end-cap of the Electromagnetic Calorimeter the length of the ID is about 7 m
long. The solenoid magnet has a length of 5.3 m. This leads to a non-constant magnetic
field inside the ID as shown in Fig. 3.14. As consequence of these deviations from a
uniform magnetic field of 2 T is a distortion from a helical trajectory of charged particles
raising more difficulties in the event reconstruction and resolution. Furthermore, the
Lorentz angle (see Sec. 3.2.2.1) especially in the end-caps becomes position dependent.
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Figure 3.14: Solenoidal magnetic field strength in longitudinal direction (left) and radial direc-
tion (right) as a function of the position in the r-z-plane [62].

The ID itself consists of three different units: A barrel that covers a region of ±80 cm
and two identical end-caps. An overview over the units in the barrel is shown in Fig. 3.15.
This detector utilises two different techniques. One is based on silicon semiconductors,

Figure 3.15: Schematic overview of the ID components in the barrel (left) and the end-caps
(right) and their nominal distance to the centre of the beam-pipe [63, 64].

the other one is based on transition radiation.

Starting with the semiconductors, two different layouts are used: Pixels and Strips.
The innermost part of the Silicon Detectors and also the ID is the Pixel Detector.
This part will be described in the next section. The surrounding parts are presented
afterwards.
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Item Radial Extension [mm] Length [mm] Modules Megapixels Pixel Size [µm2]

IBL 〈R〉 = 33.25 |z| < 332 224 6.02 50×250
B-Layer 〈R〉 = 50.5 |z| < 400.5 286 13.2 50×400
Layer 1 〈R〉 = 88.5 |z| < 400.5 494 22.8 50×400
Layer 2 〈R〉 = 122.5 |z| < 400.5 676 31.2 50×400
Disc 1 88.8 < R < 149.6 〈z〉 = 495 48×2 4.4 50×400
Disc 2 88.8 < R < 149.6 〈z〉 = 580 48×2 4.4 50×400
Disc 3 88.8 < R < 149.6 〈z〉 = 650 48×2 4.4 50×400

Table 3.1: Parameters of the Pixel Detector layers in the barrel and end-caps [59, 65].

3.2.2.1 Pixel Detector

The pixel detector consists of originally three layers in the barrel. In 2014 the Insertable
B-Layer (IBL) [65] was added as the new innermost layer. Along the beam-pipe four
end-cap discs are placed perpendicular to the z-axis symmetrically placed at both ends
of the Pixel Detector. An overview of the nominal positions and the number of pixels is
given in Tab. 3.1. In total approximately 1500 modules are placed in the barrel and 700
in the discs. The modules itself are identical in both parts. A module is 60.8 mm long,
16.4 mm wide and approximately 250 µm thick [66]. Each module contains 47232 pixels
arranged in a 18×164 array per readout chip. The readout chips are arranged such that
a module consists of 144 columns and 328 rows. In 16 columns the size is 50×600 µm2.
Additionally eight pairs of pixels per column near the centre lines are ganged, i.e. read-
out together. This leads to an ambiguous read-out of the pixels. Overall around 80
million readout channels are therewith given by the pixel detector. For the IBL smaller
modules are used with an area of 20.2 × 18.8 mm2 [67]. A module has a thickness of
150 µm. The pixels on the IBL are arranged in a 80×336 matrix. Since the pixels in
the pixel system do not cover the entire area of the module, the modules are rotated to
each other and placed with an overlap to ensure a hermetic layer of sensitive material.

A single pixel is thereby a semiconductor diode with a bias voltage applied which leads
to a depletion zone. Traversing charged particles with sufficient energy can interact with
the atoms in the depletion zone. The interaction itself can lead to ionisation of an atom
as shown in Fig. 3.16 (left). In other terms, a pair of an electron and a so-called hole
was created. A hole is in first approximation the positively charged atom. Due to the
electric field inside the diode the charges move towards the borders of the diode. Due
to induction the moving charges can be measured and read-out. For the pixel cells an
analogue readout allows the estimation of the signal amplitude by using the Time-over-
Threshold method. With this method, the time is measured for which a signal is above
a given threshold. The measured time is related to the shape of the signal and hence,
a charge sensitive signal is measurable. Compared to a digital readout a better spatial
resolution can therewith be obtained in cases of incidence angles larger than 0◦ [66].

Since the electrons and holes drift inside the semiconductor, the magnetic field from
the solenoid will deflect them as shown in Fig. 3.16 (right). The deflection angle is called
Lorentz angle and leads to displaced signals in the pixel modules. If the material and
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Figure 3.16: Left: Sketch of a hybrid pixel detector. A particle track ionises atoms in the sensor
volume [66]. Right: Sketch of the deflection of electrons by the Lorentz angle ΘL

in a semiconductor due to the magnetic field B [68].

magnetic field are known the Lorentz angle can be calculated and the position of the
electron-hole-pair creation can be corrected.

A measurement obtained from the pixel detector allows to estimate the position of
a particle along its trajectory. Such a statement is linked to an uncertainty of the
estimate. As an individual pixel provides only the information whether the collected
charge is above a threshold or not means that no preferences for the actual position
of the track can be stated. Hence, the probability distribution for the track position
is a uniform distribution and therewith the standard deviation or resolution in x- or y
direction for a single pixel is given by

σx/y =
Lx/y√

12
(3.4)

with the length Lx/y. If multiple, neighbouring pixels send a signal from either a single or
multiple collinear particles then all pixels are combined to a cluster. The corresponding
uncertainty is then smaller than the actual size of the cluster due to the analogue readout
and charge interpolation between pixels.
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3.2.2.2 Semiconductor Tracker

The Semiconductor Tracker (SCT) surrounds the pixel detector. In the 1492 mm long
barrel it consists of eight cylindrical layers located pairwise on the four different radii
of 29.9, 37.1, 44.3 and 51.4 cm [69]. The end-cap modules are mounted on nine discs
containing three rings with various sizes at both ends of the barrel [70]. These discs are
located in the range 847.5 mm< |z| < 2727 mm covering up to |η| < 2.5.

Since the distances of the SCT modules to the nominal centre of the interaction is
larger compared to the pixel detector, the particle density is lower. Thus the required
granularity of the SCT is lower than for the pixel detector. This requirement allows to
use a different concept which comes along with less passive material and therefore less
disturbance of the particle trajectory.

The SCT consists of 2112 modules in the barrel. The modules are pairwise glued
back-to-back to each other under a stereo angle of 40 mrad. While the modules in the
barrel region have the same properties, the ring arrangement in the end-caps require a
trapezoidal module shape resulting in different sensor properties. A module consists of
768 semiconductor strips with a resolution of 17 µm in the rφ-direction, 580 µm in the
z-direction (r-direction for the end-caps) for a module pair and a 80 µm pitch.

Compared to the pixel detector, the underlying semiconductor physics and therefore
the measurement creation process is similar. The same accounts for the uncertainty of
the measurement. However, the readout in the SCT provides a digital binary signal [69].
Hence, the information content of a strip is either hit or no hit.

The applied pairing of strip modules under an angle allows to calculate three-dimensional
space-points from the measurements. This is of special importance for the initial esti-
mation of a particle trajectory, the so-called seeding.

3.2.2.3 Transition Radiation Tracker

The outermost part of the ID is the Transition Radiation Tracker (TRT). Compared
to the semiconductors in the Pixel Detector and the SCT, the working principle of the
TRT is based upon a different technique: Transition radiation. This phenomenon af-
fects charged particles traversing boundaries between materials of different dielectric or
magnetic properties [71]. In these cases photons are emitted in the forward direction of
the particles trajectory. For ultra-relativistic particles, the opening angle of the emit-
ted photons becomes close to zero. In this case the emitted photons are in the x-ray
regime [71]. The emission of a charged particle with energy E and mass m is thereby
dependent upon the Lorentz factor γ = E/m. Given that the energy or momentum is
known, the transition radiation allows to identify the particle type.

It consists out of 298304 kapton straws, reinforced with carbon fibre [72]. Each straw
has a diameter of 4 mm and 70 µm thick walls that are held at a potential of −1530 V in
comparison to the gold-plated tungsten wire at the centre of the straw on ground level.
These wires have a diameter of 31 µm. The straws are filled with a gas mixture. During
Run-1 it was a mixture of Xe, CO2 and O2. For Run-2 straws with gas leaks were filled
with Ar instead of Xe. Compared to the surrounding polypropylene or polyethylene,
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a charged particle emits transition radiation when it enters a straw. Ionisation of the
gas mixture in the straw from the charged particle leads, due to the inhomogeneous
electric field inside the straw to an acceleration of the ionisation-electrons. This leads
to an avalanche effect which is measurable. The transition radiation provides thereby
additional primary ionisations and enhances the signal. A typical energy deposit is
around 2.5 keV in the gas producing 5-6 primary ionisations per mm. The surrounding
material supports thereby the electron identification.

In the barrel 52544 straws are aligned with the beam axis and cover a region of
560 mm< r < 1080 mm and |z| < 712 mm [73]. In each end-cap region 122880 straws
are aligned perpendicular to the beam axis, pointing in radial direction. The straws
sectioned into two identical, independent wheels cover a region of 644 mm< r <1004 mm
and 827 mm< |z| < 2744 mm [74]. The overall coverage of the TRT is |η| < 2.0.

The straws in the barrel are, except for the innermost layers 142.4 cm long. The
innermost straws are 34 cm long. In the end-caps 36 cm long straws are used. Based
upon the drift time of the electrons the distance of the track to the wire can be estimated.
This leads to a spatial resolution of about 110 µm for a mean pile-up of 〈µ〉 = 5 − 10.
The barrel straws are arranged in 73 layers, in each end-cap in 160 layers. Therewith
many measurements can be produced by a single charged particle allowing a precise
reconstruction of the trajectory. However, the TRT was designed for the LHC pile-up of
〈µ〉 . 23. For higher pile-up the straws are not suitable anymore as too many particles
produce signals per straw and in too many straws. As too many straws produce a signal,
the complexity in associating measurements and particles becomes larger. At a certain
occupation level in the TRT, the association can not be performed anymore and hence,
the data can not be utilised anymore. The most extreme case is when all straws produce
a signal.

3.2.3 Calorimeters

After particles exit the TRT and the solenoid magnet they enter the calorimeters. In the
ATLAS experiment this component covers a range of |η| < 4.9 [59]. The calorimeters
can be separated into two different types: Electromagnetic Calorimeter (ECAL) and
Hadronic Calorimeter (HCAL). An ECAL is used to measure the energy of leptons and
photons, a HCAL measures the energy of hadrons. The general principle for measuring
a particle’s energy in a calorimeter is given by particle interactions. Due to interaction a
particle transfers a portion of its energy until it stops. The thereby transferred energy is
measured. The measured energy E is linked to the calorimeter specific energy resolution
σ which is parametrised [75] as

σ

E
=

s√
E
⊕ b

E
⊕ c.

with the ⊕ operator denoting the quadratic sum. The parameter s denotes a stochastic
contribution to the measurement, b denotes a noise term related to e.g. electronic noise
and c denotes a constant contribution from e.g. calibration uncertainties, dead cells or
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non-uniformities. By correcting for the noise, the dependency of the resolution upon the
b can be removed from the equation above.

An overview over the ATLAS calorimeters is shown in Fig. 3.17. In the barrel, the

Figure 3.17: Cutaway overview over the ATLAS LAr and Tile Calorimeter [76].

inner calorimeter is the LAr Electromagnetic Calorimeter, the outer the Tile Hadronic
Calorimeter. Additionally calorimeters denoted as forward calorimeters are added for
additional coverage of |η|. In the following the components are described.

3.2.3.1 LAr Electromagnetic Calorimeter

The ECAL is split into a barrel that covers |η| < 1.475 and end-cap regions located
at 1.375 < |η| < 3.2. The barrel is separated into two half-barrels with a 4 mm gap
at z = 0. The end-caps consists out of two coaxial wheels. The outer wheel covers
1.375 < |η| < 2.5, the inner one covers 2.5 < |η| < 3.2. In the region |η| < 1.8 an active
LAr presampler is located to correct for energy losses.

A design goal of the ATLAS ECAL is a high granularity for precision measurements of
electron and photons [59]. As detector material a lead-liquid argon (LAr) combination
is used with accordion-shaped kapton electrodes and lead absorbers.

The used material defines thereby the required thickness of the calorimeter itself.
High-energy electrons lose their energy mostly via bremsstrahlung. This energy loss per
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path length x can be described with the material dependent radiation length X0 as

E(x) = E0e
− x
X0 (3.5)

for electrons with initial energy E0. For high-energy photons the main interaction process
is pair-production. Due to a different cross-section, the intensity I of a photon beam
after the path length x is given by

I(x) = I0e
− 7

9
x
X0 (3.6)

with the initial intensity I0. As bremsstrahlung and pair-production produces secondary
particles with less energy, a sufficiently thick detector in terms of X0 is required in order
to stop the shower evolution. Hence, the ATLAS ECAL thickness is > 22X0 in the
barrel and > 24X0 in the end-caps.

The achieved spatial resolution ranges in the barrel for pseudorapidity intervals η from
0.025/8 up to 0.025 and for the azimuthal intervals ∆φ from 0.025 to 0.1. In the end-caps
the resolution in η is between 0.025/8 and 0.050, the resolution in ∆φ is between 0.025
and 0.1. The achieved energy resolution is σ/E = 10%/

√
E ⊕ 170 MeV/E ⊕ 0.7% [77].

3.2.3.2 Tile Calorimeter

The HCAL in the ATLAS experiment is divided into a barrel and an extended barrel part.
The former covers a region of |η| < 1.0, the latter 0.8 < |η| < 1.7 [59]. It is a sampling
calorimeter3 consisting of a steel absorber and scintillator tiles with photomultiplier
tubes used as readout.

The dimensions of a HCAL is defined by the utilised materials. This is characterised by
the nuclear interaction length λ which is usually longer in HCALs thanX0 in an ECAL. It
can be shown that a similar description for a hadron beam can be derived as for photons.
In comparison to the purely material dependent parameter X0, the nuclear interaction
length is also dependent upon the hadron type [75]. As hadron interactions are more
complicated, the shower becomes wider and longer than for electrons or photons. Hence,
HCALs are usually thicker compared to ECALs.

The ATLAS HCAL is designed to have a thickness of 9.7λ in the barrel region whereas
the end-caps have a thickness of 10λ. As shown in Fig. 3.13 the ideal goal is to capture
all hadrons (also electrons and photons) inside the calorimeter such that only muons
and neutrions can pass these detector parts. The HCAL is enclosed by an outer support
structure that adds further 1.3λ to the stopping power of the HCAL.

Compared to the demanded precision in the LAr ECAL the Tile Calorimeter has a
coarser granularity which is sufficient for physics requirements in jet reconstruction and
Emiss
T measurements. Per interval in ∆η the HCAL has a resolution of 0.1 in all parts

except the outermost layer (∆η = 0.2). The angular resolution ∆φ is everywhere 0.1.
The achieved energy resolution is σ/E ≈ 50%/

√
E ⊕ 6% for pions [77].

3A sampling calorimeter consists of two components: passive and active. The passive component is
responsible for creation of the particle shower. The active component measures the constituents of
the shower. A typical arrangement is an alternating order of both components.
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3.2.3.3 LAr End-Cap and Forward Calorimeter

In the higher |η|-regions behind the ECAL two additional calorimeters are placed: the
LAr hadronic end-cap calorimeter (HEC) and the LAr Forward Calorimeters (FCal).
The HEC covers thereby a region of 1.5 < |η| < 3.2, the FCal covers 3.1 < |η| < 4.9 [59].

The HEC consists of two independent wheels per end-cap. Considering the pseudora-
pidity interval, an overlap with the Tile Calorimeter and the FCal is given in the most
centrally covered and most forward covered region respectively. Therewith, the material
density is kept steady in the transition region. The HEC itself consists of copper plates
(25 mm for the innermost, 50 mm for all others) that are interleaved with 8.5 mm LAr
gaps representing the active area of the sampling calorimeter.

The HEC has a spatial resolution ∆η × ∆φ of 0.1 × 0.1 for 1.5 < |η| < 2.5 and
0.2 × 0.2 for 2.5 < |η| < 3.2. The energy resolution for pions is thereby around σ/E =
70%/

√
E⊕6% [59]. The FCal is located close to the beam-pipe and reduces with a length

of approximately 10X0 the radiation background in the muon spectrometer. The length
is thereby limited in order to reduce the neutron albedo that would otherwise travel
from the FCal back into the inner detector. In order to reduce it, the FCal is recessed
by about 1.2 m away from the centre of the interaction point. The detector consists out
three layers: In the first layer a copper matrix is installed, the other two have a tungsten
matrix. Thereby the first layer is mainly for electromagnetic calorimetry, the other
two for hadronic. Inside the layers concentric rods and tubes as electrodes are placed
regularly spaced. LAr between the rods and tubes is thereby the sensitive medium.

The spatial resolution of the FCal varies a lot depending on the pseudorapidity in-
terval and the considered layer. The energy resolution is thereby for electrons around
σ/E = 29%/

√
E ⊕ 4%. For pions a resolution of around σ/E = 70%/

√
E ⊕ 3% can be

achieved [59].

3.2.4 Muon System

The outermost part of the ATLAS detector is the Muon System. Since particles are either
stopped in the calorimeters (electrons, photons and hadrons) or traverse the detector
without interacting often enough for their reconstruction (neutrinos) the only remaining
particles are muons. The Muon System serves thereby as a long lever in combination
with the data obtained from the ID improving the estimation of the muon properties in
the track reconstruction. Compared to the strict conditions in the ID, the track density
in the Muon System is by far lower allowing for a larger system with coarser granularity.

The Muons System itself consists of a Muon Spectrometer and a magnetic field. The
magnetic field is independent of the solenoidal field from Sec. 3.2.2. In this configuration
the magnets are superconducting toroid magnets with an air-core. It is divided into
three different parts: A barrel part in the region |η| < 1.4 which is given by the barrel
toroids, two smaller end-cap magnets are located in the region 1.6 < |η| < 2.7 and the
transition region 1.4 < |η| < 1.6 where the magnetic field is given by a superposition
of the barrel and end-cap magnets. The spectrometer can also be divided into three
parts following the regions defined by the magnets. An overview of the entire system is
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shown in Fig. 3.19. The components shown in this figure are described in the following,

Figure 3.18: Cutaway overview of the ATLAS Muon Spectrometer [78].

starting with the magnetic field.

3.2.4.1 Toroid Magnets

The magnetic field is designed such that it is orthogonal to the trajectories of a muon.
Additionally, the material is intended to minimise the impact upon the particle trajectory
and therefore preserve the best resolution in the muon spectrometer.

The barrel and both end-cap magnetic fields are provided by eight, radially and sym-
metrically assembled coils around the beam axis. Both end-caps are lined up with the
barrel coils. Additionally, the end-cap coils are rotated by 22.5◦ with respect to the bar-
rel toroid. Therewith, the overlap of the magnetic fields is improved. The magnetic field
in this configuration is shown in Fig. 3.19. As these plots already show the magnetic
field produced by the coils is not constant in the muon system but strongly depends
upon the position.

A parameter for summarising the magnetic field strength is the bending power. This
parameter is defined as

∫
Bdl with the magnetic field component B defined as orthogonal

to the muon direction. The integral is evaluated along the path l of a muon with infinite
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Figure 3.19: Magnetic field map of the ATLAS experiment in x-y-direction (left) and z-x-
direction (right) [79].

momentum. For the barrel region values between 1.5 Tm and 5.5 Tm are achieved, in
the end-caps the values vary between 1 Tm and 7.5 Tm [59]. In the transition area
1.4 < |η| < 1.6 the magnetic field is only provided by the superposition of the barrel and
the end-cap toroid. The bending power in this region is shown in Fig. 3.20. Although
the barrel and end-cap magnetic fields are not constant, in the transition region large
bending power gradients are observable demanding a very careful treatment of muon
positions inside the magnetic field.

3.2.4.2 Muon Spectrometer

The muon spectrometer fulfils two different tasks: it serves as a separate trigger and
allows for high-precision tracking measurements of muons. The tracking elements in
the barrel region are chambers which are arranged in three cylindrical layers around
the beam axis. In the transition and end-cap region the chambers are also arranged in
three layers but perpendicular to the beam axis which gives the ATLAS detector the
characteristic wheels in the forward direction.

One of the main technologies used in this part of the detector are Monitored Drift
Tubes (MDT). While in the innermost layer they cover a region of |η| < 2.0, they are used
in the other layers in a region of |η| < 2.7. In order to handle the rate and background
in the large |η| range, the innermost layer in the region 2.0 < |η| < 2.7 is built with
Cathode Strip Chambers (CSC). The wires of these segmented multiwire proportional
chambers are placed orthogonal to the MDT tubes.

Over 1000 MDTs are used in total with a hit position resolution in z-direction of
about 35 µm. In the large pseudorapidity region beside the MDT measurements 32
CSCs provide measurements with a resolution of 40 µm in r-direction and 5 mm in
φ-direction each [59]. These resolutions are neglecting alignment uncertainties, though.

39



3 Experiment

Figure 3.20: Bending power in the toroidal magnetic field versus |η| [59].

In total about 20 MDT measurements and (where present) four CSC measurements
enhance the reconstruction accuracy of muons similarly to the concept of the TRT.

The trigger system in the spectrometer covers the range |η| < 2.4 and consists of
Resistive Plate Chambers (RPC) in the region |η| < 1.05 and Thin Gap Chambers
(TGC) in the region 1.05 < |η| < 2.7. Though only the region |η| < 2.4 is used. The
purpose of this system is first of all a bunch-crossing identification. Furthermore, the
installed components provide a well-defined pT threshold for the spectrometer. Also the
chambers measure the spatial muon coordinate in the orthogonal direction with respect
to the MDTs and CSCs. Under neglect of alignment uncertainties the RPCs measure
with a resolution of 10 mm in z- and φ-direction, the TGCs with 2-6 mm in r- and
3-7 mm in φ-direction.

3.2.5 Trigger and Data Acquisition

An event measured by the ATLAS detector requires approximately 1.3 MByte. The
bunch-crossing in the LHC occurs in 25 ns intervals. This corresponds to an event
rate of 40 MHz. Recording the provided data without any pre-selection would lead to
approximately 520 TByte per second. As this would involve expensive data storage
hardware while a large fraction of events are not of interest, a veto and conditional
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data storage system for physically interesting events is required: The Trigger and Data
Acquisition (TDAQ).

The TDAQ systems consist of logical components and building blocks that are par-
titioned into sub-systems. These sub-systems are usually associated with specific parts
of the detector. For the trigger system three different levels are used in ATLAS. These
levels are called L1, L2 and event filter and operate in this order. While the Data Ac-
quisition system receives the data from the detector and buffers them, the trigger system
decides whether to store the event or not. Considering the data taking rate predefined
by the LHC bunch-crossing rate and the pile-up per bunch crossing, the time window for
the decision is very short. For the L1 trigger, a time window of 2.5 µs is available for the
response. The adherence of this time window is achieved by utilising only a subset of the
total data provided by the detector, implying a loose argument for the data acquisition.
For the decision process data from the Muon System trigger chambers and from the
calorimeters with reduced granularity are used.

The L1 decision is given in a trigger menu. This is a set of individual conditions
defined on a low level. In ATLAS the menu includes searches for high pT leptons and
jets, hadrons from τ -lepton decays and large missing ET . Therewith, the initial 40 MHz
data rate is reduced to 75 kHz.

The L2 trigger then operates on the result of the L1 trigger, i.e. the fulfilled conditions
from the menu and the corresponding Regions-of-Interest (ROI’s) in η and φ. The L2
menu is designed for utilising the full granularity and precision from the full detector
data within the ROI’s. This corresponds to approximately 2% of the total event data.
The processing takes thereby on average 40 ms with an output rate of approximately
3.5 kHz.

The event filter afterwards acts on the results of both predecessors. At each step
additional data from the detector is incorporated leading to stricter and more detailed
selection based on additional selection criteria where applicable. In the event filter
offline analysis procedures are used. Hereby the event processing time is on average four
seconds. The final output rate is about 200 Hz.

During the decision process the data is moved. After the L1 trigger accepted the
event, data from the pipe-line is transferred off from the detector to the Readout Drivers
(ROD’s). These drivers are detector-specific functional elements for the front-end sys-
tems. Compared to the sub-detector front-end systems, the ROD’s are standardised.
This standard involves interfaces to the DAQ system as well as data formatting rules.

The digitised signals are formatted as raw data and transferred to the DAQ system.
In the first DAQ stage, the readout system buffers the data and provides parts to the
L2 trigger as required for the L2 menu in the given ROI’s. The L2 trigger transfers the
data to the event-building system and from there to the event filter. Events that passed
the event filter are permanently stored.

Additionally, the DAQ enables to control and correct the detector hardware via the
Detector Control System (DCS). This communication is bi-directional allowing synchro-
nisation between data taking and detector state. The DCS is also capable to communi-
cate with other systems like LHC or the ATLAS magnets.
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For the software based data processing the ATLAS experiment [80] uses the framework
Athena. This framework is based on the LHCb framework Gaudi. Athena is designed
to allow to perform a broad spectrum of tasks from online event reconstruction as for
triggering to event reconstruction and physics analysis. For the purpose as a long time
application, the possibility to replace individual algorithms is provided in the design of
the software itself. The data accepted by the TDAQ system is distributed through mul-
tiple levels of computing facilities named Tier-0 to Tier-3. While the Tier-0 is located
on-site, the other facilities are distributed around the globe. Hence, the data processing
performed within the Athena framework has to be capable of handling distributed data.
Furthermore, as the luminosity grew since the start of operation of the LHC, the soft-
ware framework is under continuous maintenance to optimise the data handling during
the detector operation and for offline processing. Although the upcoming computing
situation was already published in 2005, the software and thus the computing landscape
is up to today not frozen but is in permanent change.

3.3 ATLAS Detector Upgrades for the HL-LHC

The ATLAS detector is operating since 2011. Due to the traversing of high energy
particles through the detector and their interaction with the detector material, radiation
damage affects its sensitivity. As shown in Fig. 3.21 the damage depends on the distance
to the interaction point and hence to the particle trajectory density. As this indicates,
radiation damage affects the innermost part the most. Although measures can be taken
in order to regulate the effects, the lifetime of the detector components is limited.

Additionally the expected pile-up in the HL-LHC era is expected to be in the range
of 140 to 200. Such a high particle flux would imply a high occupancy in the TRT. The
high track density will also lead to a more complex reconstruction of the trajectories.
The ROD’s, especially in the tracking detector operate already in Run-2 pile-up at its
bandwidth limit. Hence, HL-LHC pile-up would exceed the bandwidth and would lead
to data losses.

In order to provide an optimal performance in the HL-LHC era the issues from radi-
ation damage and the high pile-up must be considered. Therefore the ATLAS detector
will receive several upgrades and replacements. Some major changes in the scope of this
thesis are described in the following.

3.3.1 Inner Tracker

The innermost part of the detector, the ID will be replaced entirely by the Inner Tracker
(ITk) [82, 83]. Compared to the ID, the ITk will only utilise silicon semiconductors as
sensitive devices. Hence, the concept of the gas-detector TRT wont be a part of this
detector.

The ITk is comprised of two parts: Pixel and Strip detector. An overview of the
layout of the ITk is shown in Fig. 3.22 (left). Compared to the ID that covers a range
of |η| < 2.5, the ITk coverage is extended up to |η| < 4.0, allowing high tracking
performance over the entire pseudorapidity range. An indication of tracking performance
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Figure 3.21: Simulated prediction of a 1 MeV neutron-equivalent flux per fb−1 in the silicon de-
tectors of the ATLAS ID. The plot shows a one-quarter slice (z > 0 cm and above
the beam) of the radial distance from the geometrical centre of the detector [81].

can be stated in the number of measurements (hits) along the trajectory. For the ITk this
is shown in Fig. 3.22 (right). Due to the increased number of hits per track compared to
the ID, it allows for stricter requirements for tracks. Furthermore it takes into account
the technological progress in the meantime in order to maximise the performance while
minimising the costs for detector material. The design parameters were chosen such
that the required offline performance for track reconstruction gets maximised. A more
detailed description of the individual parts is given in the following.

3.3.1.1 Inner Tracker Pixel Detector

The Pixel Detector [82] of the ITk consists of a barrel and an end-cap region that covers
altogether a region of |η| < 4. This detector is enclosed by the Pixel Support Tube
(PST). In the barrel part five layers of pixel detector modules are arranged. Due to
radiation damage it is expected to replace the innermost layers. Hence, the inner two
pixel layers are separated from the other layers by an Inner Support Tube (IST). The
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Figure 3.22: Left: Layout of the ITk. The location and radial distance of sensitive modules
are shown versus z. Only the half z > 0 mm is shown. The red elements belong
to the pixel detector, the blue elements to the strip detector. Right: Number of
hits obtained from the ITk versus pseudorapidity η. Both plots are taken from
Reference [84].

Barrel Layer Radius [mm] Rows of sensors Flat sensors Inclined sensors
per row per row

0 34 12 12 -
1 99 20 6 -
2 160 32 9 6
3 228 44 9 8
4 291 56 9 9

Table 3.2: Nominal parameters of the ITk barrel. The number of sensors per row refer to the
half z > 0 mm. The term flat refers to sensor modules arranged parallel to the beam
axis whereas inclined refers to angles differing from the flat sensors [84].

IST allows an easy replacement of the inner two layers. An overview of the current4

barrel design is given in Tab. 3.2. Due to a novel staving concept modules in the outer
region of the barrel are inclined allowing a better coverage while reducing the required
material. Therewith the number of hits per interval in η can be regularised.

The ITk utilises read-out chips with an active area of 19.2 mm × 20 mm. A module
in the barrel consists of two (duals) chips in the innermost layer and four (quads) in the
other four. A single chip consists of 384 × 400 pixels. The size of a single pixel will be
either 50 × 50 µm2 or 25 × 100 µm2. Up to the time of writing this thesis, the final
decision of the size is not made. The read-out chip is planned to be the RD53B [85].
This chip allows to read-out multiple pixels simultaneously and strongly compress the
data. This allows to read clusters of pixels. For particles originating from z = +15 cm
it is thereby expected that one hit is created per layer.

4The ITk is not installed yet. Therefore the stated parameters are based upon the current design and
simulation. The final version may vary from these numbers.
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Ring Layer Radius [mm] |z| [mm] Rings Sensors per Ring Hits

Barrel 33.20 263-1142 15 18 2-4
End-cap 58.70 1103-1846 6 30 3-4
End-cap 80.00 1272-2621 23 20 2-4
End-cap 154.50 1145.5-2850 11 32 1-2
End-cap 214.55 1145.5-2850 8 44 1
End-cap 274.60 1145.5-2850 9 52 1

Table 3.3: Nominal parameters of the ITk end-caps. The radii refer to the innermost point of
the sensors of a ring. The stated number of hits refer to the number of hits that are
created per layer for a particle originating from z = +15 cm [84].

Barrel Layer Number of Staves Radius [mm] |z| [mm] Tilt Angle [degree]

0 27 399 0-1372 13
1 40 562 0-1372 12
2 56 762 0-1372 12
3 72 1000 0-1372 11

Table 3.4: Nominal parameters of the ITk Strip Detector barrel layers [86].

Compared to a common end-cap design for a tracking detector that utilises sensitive
discs, the ITk end-cap modules are attached to a ring system. Each ring can thereby be
placed individually. This allows for an optimisation of the coverage but also to provide
enough and stable hits per pseudorapidity. Thus a high tracking performance can be
achieved over the full range of the ITk. Additionally the flexible ring design allows
to reduce material in the detector and therefore disturbances of the particle trajectory
which affects the tracking resolution.

The Pixel Detector end-cap rings are grouped into six layers. Their current design
parameters are summarised in Tab. 3.3. While the barrel layer and the innermost end-
cap layer use a single chip (singles) per module, all other modules utilise quads.

3.3.1.2 Inner Tracker Strip Detector

The ITk Strip Detector encloses the PST. It consists of four barrel layers and six end-
cap discs in both directions. The entire Strip Detector covers a range of |η| < 2.7.
Comparable to the ID SCT the strip modules are paired with a small stereo angle in
order to provide z- or r-resolution for the barrel or end-cap region respectively.

The barrel utilises two different strip lengths. The strips in the inner two layers are
about 24.1 mm long (short-strips). The other two layers use 48.2 mm long strips (long-
strips). All strips have thereby a pitch of 75.5 µm. The arrangement of the strips
is summarised in Tab. 3.4. The number of staves allows the installation of the strip
modules and serve for alignment purposes in order to preserve hermeticity [86]. On each
stave 28 modules are attached with 1280 channels each [83]. In the short-strips a sensor
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Disc Radius [mm] |z| [mm]

0 385 1512
1 385 1702
2 385 1952
3 385 2237
4 385 2532
5 385 2850

Table 3.5: Nominal parameters of the ITk Strip Detector end-cap discs [86].

is connected to four modules, in the long-strips to two. The denoted angles are per
module, a pair has consequently a stereo angle of about 22-26 degree.

In the end-cap petal-design discs the modules are radially arranged, pointing to the
centre of the beam axis. Driven by demanding a strip occupancy of below 1%, the strip
sizes are, different to the barrel layers not of uniform size per disc. In addition, the
placement of the strips needs to be taken into account. A summary is given in Tab. 3.5.
As the particle track density is larger near the beam axis, the inner strips are shorter
compared to the outer ones. The same accounts for the pitch of the strips. The strip
lengths vary from 19.0 mm to 60.1 mm with pitches from 69.9 µm to 80.7 µm [83]. The
explicit dimension of each module thereby depends on the disc and the radius. For each
disc 32 petals are used with nine modules each.

3.3.2 High Granularity Timing Detector

The HL-LHC will provide an expected pile-up of up to 〈µ〉 = 200. It is estimated that
the interactions will occur with a Gaussian spread of 30 to 60 mm. The underlying
probabilistic nature of the interactions lead to a primary vertex density distribution as
shown in Fig. 3.23 (left). This distribution shows the expected fluctuation in pile-up
density compared to earlier LHC pile-up.

In order to preserve a high tracking and vertex reconstruction performance, the High-
Granularity Timing Detector (HGTD) [87] will be installed for the ATLAS Phase-II
upgrade. This detector component will complement the ITk in the forward direction.
As Fig. 3.23 (right) shows, the vertex density in longitudinal z-direction can be reduced
by extending the measurements from the ITk by a time component t. While pure
spatial measurements would lead to a projection of all vertices on the abscissa, the time
component provides additional information about the vertices. Thus, the local vertex
density in the z-t-plane is lower than in the marginalised case from Fig. 3.23 (left). A
reduced complexity of the track-to-vertex association by using timing information allows
in addition a more precise measurement of the bunch-by-bunch pile-up and the beam-
spot characteristics. This knowledge is also beneficial for the estimation of the online
luminosity as well as the offline integrated luminosity. For the HL-LHC era it is expected
that the interaction region spreads in time from 175 ps to 260 ps.

The HGTD will be located at ±3.5 m from the nominal centre of the detector and
covers a region of 2.4 < |η| < 4.0. This detector will be located just outside the ITk and

46



3.3 ATLAS Detector Upgrades for the HL-LHC

-

1 
C 

" 
" 

:::::, 
.. '' 

'' 

� ' ''
' ' ' 

nl ' ' 
,._ 

0.8 
,' '

- ' '
' 

.0 
' '' 
' 

<( 
' 
. 
' 
' 
' 

0.6 
'
' '

0.2 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' ' ' 
' 
', •

0.5 1 1.5 2 

ATLAS

..... <µ> = 30 

-<µ> = 200 

2.5 3 3.5 4 4.5 5 

pileup density [vertices/mm] 

ATLAS Simulation

Truth Interaction z [mm]
100− 50− 0 50 100

T
ru

th
 In

te
ra

ct
io

n 
tim

e 
[n

s]

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

ATLAS Simulation

PU interaction

HS interaction

Figure 3.23: Left: Distribution of the vertex density for a pile-up of 〈µ〉 = 30 (blue) and 200
(red). Right: Distribution of z-coordinates versus time of primary vertices in an
event with 〈µ〉 = 200. The red marker indicates the hard scattering event and
the black markers the pile-up interactions. The vertices are sampled from random
samples with a standard deviation of 50 mm and 175 ps in z-direction and time
respectively to mimic the ATLAS interaction point. Both plots are taken from
Reference [87].

with an envelope of a radial extend from 110 mm to 1000 mm, the detector reaches up
to the gap between the barrel and the end-cap of the LAr calorimeter. The envelope in
z-direction is about 125 mm including a 50 mm-thick neutron moderator at the front
and rear end for reducing neutron back-scattering from the LAr calorimeter.

As the HGTD will be located in the forward direction, the timing information of the
particle trajectory is only provided in this direction, supporting hereby the ITk in the
large pseudorapidity regime. This allows to restore the reconstruction performance in
the forward direction to levels similar to the central direction of the detector. As shown
in Fig. 3.24 the vertex parameters of the ITk is worse compared to the regions of small
psuedorapidity. Within this forward region the HGTD is intended to support the ITk

Figure 3.24: Transverse d0 (left) and longitudinal z0 (right) parameter resolution as a function
of |η| single muons with pT = 1, 10, 100 GeV [88].
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in the track reconstruction and track-to-vertex association.

The HGTD working principle itself is centred around measuring minimum-ionising
charged particles (MIP’s) with a time resolution from 30 ps (beginning of the HL-LHC
operation) to 50 ps (end of HL-LHC operation). It is intended to achieve the resolution
by utilising Low Gain Avalanche Detector (LGAD) pads. A single pad is planned to
have an area of 1.3×1.3 mm2 and an active thickness of 50 µm. In total about 3.6
million pads are arranged in two rotated, double-sided layers per end-cap such that
each end-cap forms a hermitic vessel. Therewith it is foreseen to record in the region
120 mm< r <230 mm, 230 mm< r <470 mm and 470 mm< r <640 mm per track 2.6,
2.4 and 2.0 hits respectively.

Since the timing information was not handled in the ATLAS experiment before, a
special consideration of this parameter is required. For the HGTD, it is planned to
associate the hits in the individual pads via extrapolation from the outermost layer of the
ITk using a progressive Kalman filter (see Chapters 4 and 7). Compatible measurements
from the HGTD pads allow therewith the assignment of timing information upon the
particle’s trajectory. The measurement of the additional time parameter allows to reduce
the complexity of the track reconstruction and to suppress the rate of reconstruction
errors.

3.3.3 Trigger and Data Acquisition

The HL-LHC is expected to provide seven times the original LHC design peak instanta-
neous luminosity. With up to 〈µ〉 = 200 inelastic proton-proton collisions every 25 ns, the
data volume provided by the detector gets drastically increased. Hence, the TDAQ [89]
system needs to be adapted for the upcoming scenario in order to fully exploit the physics
potential offered by the HL-LHC. The physics menu covers thereby a broad range of stud-
ies including the electroweak symmetry breaking, rare processes and searches for new
particles. In order to achieve a proper triggering and data acquisition for the ambitious
physics program it is expected that a ten times higher rate is needed.

The workflow compared to Phase-I will be modified. Beside the pure requirements due
to the luminosity during Phase-II, the TDAQ system needs to be adapted for the mod-
ified ATLAS detector. An overview of the Phase-II workflow is shown in Fig. 3.25. The
system will be grouped into three stages: Level-0, DAQ and EF System. For the Level-0
triggering only data from the calorimeters (L0Calo) and the muon system (L0Muon)
are used. Both sub-systems operate on a subset of the corresponding detector data. For
the calorimeters this is divided into different Feature EXtraction (FEX) schemes, either
electron (e), jet (j), global (g) or forward (f). For the L0Muon the different parts of
the muon system are the relevant sections: Barrel, Endcap, New Small Wheel (NSW)
or MDT. The result is then further processed in the Global Trigger. At that stage the
full granularity of the calorimeters are utilised and event-level quantities are evaluated.
The Global Trigger applies thereby offline-like algorithms. As final trigger stage in the
Level-0 system, the Central Trigger Processor (CTP) decides upon the results from the
Global Trigger and the provided detector data. Furthermore the CTP is capable of
introducing dead times in order to avoid a saturation in the front-end systems of the

48



3.3 ATLAS Detector Upgrades for the HL-LHC

detector or the readout systems. This dead time is given by an algorithm that depends
on the current trigger rate, the estimated data that would be read-out and the status of
subsequent components in the TDAQ workflow. If the event is accepted by the CTP and
therewith by the Level-0 in total, the processor steers the Trigger, Timing and Control
system (TTC) to start with the readout process of the ATLAS detector systems. This
entire decision chain operates with a maximal latency of 10 µs.

Triggered by the TTC, the decision is transmitted to all detectors and the data is
read-out with a rate of 1 MHz. The Front-End LInk EXchange (FELIX) and Data
Handlers drive the readout. The Dataflow subsystem builds and aggregates therewith
the events and manages the storage.

The last storage decision in the ATLAS Phase-II TDAQ is done by the Event Filter
(EF). This system consists of a CPU farm with custom designed Hardware-based Track-
ing for the Trigger (HTT) as co-processor. The purpose of the EF is to reduce the final
event output rate by refining the trigger objects. Once the EF accepts an event, the
Dataflow writes it to the permanent storage with up to 10 kHz.

As the HL-LHC challenges for the TDAQ have been encountered before, the expected
data rates can vary. It is therefore foreseen to evolve the TDAQ system into a dual-level
hardware trigger with a 2-4 MHz Level-0 and a 600-800 kHz Level-1. While the Level-0
latency would be unchanged, the Level-1 latency is estimated with up to 35 µs. The
Level-1 would thereby already perform hardware-based track reconstruction and thus
the HTT would need to be reconfigured.

3.3.4 Phase-II Computing

The initial design report for the required computing in order to operate the ATLAS
experiment was published in 2005 [80]. This plan considered that raw data is processed
in the lower levels whereas Tier-2 starts utilising derived data. This kind of data is
meant to contain data for physics analyses and hence computing processes in between.
The initial schedule foresaw that the luminosity would grow during the lifetime of the
LHC and thus the data rate.

Beside the ongoing challenge for the computing facilities hardware due to the growing
data rate, the software itself requires a certain flexibility in order to be adaptable for
upcoming task and to improve the current tasks. The menu of tasks reaches thereby from
high-level trigger tasks to physics analyses. For the purpose of continuous performance,
the ATLAS software framework Athena is designed around the demanded tasks and the
underlying computing landscape.

However, the expected requirements for computing software and hardware changed
when the HL-LHC was commissioned in 2010 [56].

While the HL-LHC is planned to provide a large amount of data and the TDAQ
for the ATLAS Phase-II is intended to store as much data as possible related to the
ambitious physics program of the ATLAS Collaboration, the amount of data is closely
linked with computational requirements. Therefore it is mandatory to closely monitor
the required computing and to point out open questions before the start of Run-4. For
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that purpose a summary of the current requirements and an extrapolation based upon
different assumptions for the future was performed [90].

The requirements can be categorised into computing hardware such as CPUs and
GPUs and storage media like disks or tapes. While the ATLAS software is mainly built
and optimised for CPU application, an ongoing effort is taken in order to investigate
application possibilities for GPUs. Up to now, the computing in ATLAS is dominated by
utilising CPUs. An overview of the expected requirements for CPU and disk storage is
shown in Fig. 3.26. While the blue markers consider a scenario with a maximal pile-up of
140 during Run-4 and afterwards 200, the red markers consider the case of reaching the
upper limit already in 2028. In both predictions three different scenarios are considered.
The Baseline scenario assumes a modified analysis model planned for Run-3, a multi-
threaded execution of the ATLAS software and updates of the tracking code. Beside
these changes it is assumed to be mostly similar to the Run-2 software.

The Conservative R&D scenario instead assumes that additional developments for
Run-3 are successful. This involves a per-request data transfer from tape to disk (data
carousel), the application of a fast track reconstruction, lossy compression of data and
a broader usage of a simplified simulation (fast simulation).

As third scenario the Aggressive R&D is shown in Fig. 3.26. Within this scenario
it is assumed that further and significant improvements in data compression and speed
compared to the Conservative R&D are achieved. This involves e.g. a wide execution
on GPUs and a high-precision fast simulation that is capable of replacing a detailed full
simulation in almost all cases.

The sustained budget model from Fig. 3.26 (black line) indicates for CPU and disk
usage an over-consumption of resources around the start of Phase-II. Given that the
Aggressive R&D scenario is the achievable, the expected resources are sufficient if the
+20% annual capacity model is fulfilled for a certain period of time. For the CPU
capacity the requirements are a bit lower. However, this is still an extrapolation based
on the present estimations and require therefore constant monitoring and updates.

The extrapolation summarises all CPU and disk contributions in a single marker. In
Fig. 3.27 the CPU contributions are itemised by category. During 2018 the main con-
tribution for the CPU consumption was given by the simulation of events (Monte Carlo
or MC) and their reconstruction. The largest contribution in MC related consumption
was given by the event simulation (38%), followed by the reconstruction (18%) and the
event generation (11%). Already this branch of consumers emphasises the investment
in simulation and reconstruction R&D, as given by the prediction scenarios. The MC
event generation on the other hand is usually driven by small teams that are primary
concerned about precise predictions rather than an optimised utilisation of computing
hardware [90].

Currently half of the events are generated using the full simulation provided by
Geant45 [92, 93]. As this contributes around 40% to the total consumption, ongoing
efforts are taken in order to replace wherever possible the full by a fast simulation. As-

5Geant4 is a framework for the detailed simulation of particle trajectories and the interaction of particles
with materials.
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suming the replacement of full simulations by a certain percentage with fast simulations
leads to the split in MC contributions in the pie chart shown in Fig. 3.27 (right). An
according separation of the reconstruction can be done, too.

In both cases, the 2018 summary and the Baseline prediction for 2030 MC is the
main contributor. This would be even the case when the objects specified in the Ag-
gressive R&D scenario are achieved. For that purpose a more detailed investigation for
a fast track reconstruction is given within this thesis in Chapter 6. A fast simulation
implementation is discussed in Chapter 9.
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Figure 3.25: ATLAS Phase-II TDAQ design showing the sub-systems involved and their con-
nection among each other as well as the connection to the detector systems. For
simplicity the connection between components of a system are not drawn [89].
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Figure 3.26: Estimated CPU and disk resources consumption needed for the ATLAS experi-
ment for the years 2020 to 2034 in MHS06·years [91] and EB respectively. The
black solid line represents the estimated available resources under the assumption
of an annual improvement of 10% and 20%. The blue markers with brown lines
indicate different scenarios for future computing requirements (see text). The red
markers indicate the conservative R&D scenario assuming 〈µ〉 = 200 by 2028 [90].
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Figure 3.27: ATLAS CPU hours used by various activities in 2018 (left) and predicted for 2030
(right) based on the Baseline model [90].
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4 Theory of Model Based Track
Reconstruction

Any detector in particle physics has to provide data from particle collisions (events),
such that the properties of produced particles can be reconstructed. In the very begin-
ning of nuclear and particle physics, these data were provided by producing pictures in
bubble and cloud chambers as exemplary shown in Fig. 4.1. Although this allowed to vi-

Figure 4.1: Photography of 16 GeV charged pions entering CERN’s first liquid hydrogen bubble
chamber in 1960 [94].

sualise particle physics, the analysis of the obtained measurements had to be performed
manually. Beside being error-prone, the achievable data rate was limited.

Nowadays the data for the reconstruction provided by the detector is given by electrical
signals, either digital or analogue. In both ways, the picture and the electronic based
read-out, any data refers to interactions of the particles with sensitive components of
the detector. Therewith, the data give hints to the structure of the event. Of special

55



4 Theory of Model Based Track Reconstruction

interest in the event structure is thereby the hard interaction process, i.e. the primary
particle interaction (primary vertex). The data is thereby utilised to reconstruct the
outgoing particles from this vertex as well as the location of the vertex itself. Thus, the
underlying processes can be studied.

While the trajectory of the outgoing particles could be estimated in the bubble cham-
ber visually, a modern particle detector requires further processing. In comparison with
Fig. 4.1, the ID and ITk as shown in Sec. 3.2.2 and 3.3.1 respectively provide data only
at discrete points along the particle’s trajectory. Thereby, the workflow from electronic
signals to an estimation of particle properties at the vertex consists of multiple steps.
Starting from interpreting the signals source and the contained information, triggers
can estimate whether the underlying event structure could be of interest and therefore
further processed or rejected. In case of further processing the individual signals are
combined to clusters and space-points. Latter ones are used to produce a first estimate
of potential trajectories in the detector, the so-called seeds.

The particle properties or parameters after the seeding step are constrained by the
triggers and the seeds. In order to obtain the best estimation of the parameters at the
vertex position, the information contained in the measured clusters (measurements) need
to be combined with the initial parameter estimation, the seeds, and evaluated at the
vertex position.

As the reconstruction consists of several steps relying on the interpretation of data, a
statistically consistent formulation of the problem is crucial. Especially a further usage
of the results, e.g. for SM analyses rely thereby on the statistical correctness and the
corresponding uncertainty. Up to today the track reconstruction workflow is treated as
a sequence of consecutive steps. This is partially grown step-wise by new technological
advance, e.g. in computing or mathematical discoveries and became a ”fixed workflow”
due to its successful application in the first place and due to historical reasons afterwards.

In the context of Sec. 3.3.4, any improvement which is not related to plain code-
optimisation requires a fundamental understanding of the problem. Up to today, the
track reconstruction steps were never considered as parts of a statistical reasoning. As
part of this this thesis, a theoretical ansatz to track reconstruction is formulated within
this chapter. A theoretical formulation provides a total picture of the field. A formal
description of this workflow can be derived from Bayes’ theorem [95]. Starting from
a general introduction of the theorem and corresponding properties, the modelling of
individual properties is discussed and applied. This is done in ascending complexity of
the problem. In Sec. 4.2 Bayes’ theorem is applied for a single measurement and the
influence of a measurement upon the particle parameter estimation is shown. In Sec. 4.3
the derived expressions are generalised for a general track and event reconstruction.

4.1 Bayes’ Theorem

In this section a derivation of Bayes’ theorem is presented alongside an introduction of
the nomenclature that will be used afterwards. Both parts are based on Reference [96].
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4.1 Bayes’ Theorem

In the second part of the section some statistical properties related to the theorem but
also to the subsequent discussion are presented.

This theorem of Bayes can be derived from axioms of probability theory proposed by
Andrei Kolmogorow [97]. The axioms allow the description of the conditional probability
P (B|A) for an event B to happen under the circumstance that an event A occurred:

P (B|A) =
P (A ∩B)

P (A)

with the probability P (A ∩ B) that A and B occurred and the probability P (A) that
event A occurs. This equation can be transformed under the assumption that P (A∩B) =
P (B ∩A) to the Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
.

Since the description of events A and B is very abstract, these will be replaced in the
following by model parameters λ and data m respectively:

P (λ|m) =
P (m|λ)P (λ)

P (m)
(4.1)

For discrete distributions the individual terms are probability functions, in the contin-
uous case they represent probability density functions (pdfs). For simplicity, the focus
will be on treating pdfs. Furthermore, each term is labelled differently. A description of
them is given in the following:

• Prior P (λ)
The prior is an initial distribution reflecting the belief in the values of λ before
any data is considered, i.e. this distribution may not rely on any data at all. It
can also reflect knowledge gained from former measurements of parameters. The
priors can be classified as hard and soft ones. The former describes a distribution
that excludes certain parameter values. For example that would refer to negative
values of the particles energy. The soft prior disfavours certain values but does not
exclude these.

• Likelihood P (m|λ)
The likelihood represents how likely it is to obtain the measured data with respect
to fixed model parameters. It is not mandatory to restrict the data to a single
measurement. For two measurements m1,m2, the likelihood can be written as

P (m|λ) = P (m1,m2|λ) = P (m2|m1, λ)P (m1|λ)

=
m1,m2 independent

P (m2|λ)P (m1|λ). (4.2)

The pdf P (m2|m1, λ) denotes hereby the correlation between m1 and m2. Addi-
tionally, both measurements are interchangeable without affecting the result.
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• Evidence P (m)
The evidence denotes the probability of the measurements itself. As the underlying
model for the data is usually unknown, the law of total probability

P (m) =

∫
P (m|λ)P (λ)dλ. (4.3)

is utilised. Thus, the underlying distribution can be expressed in terms of the given
model that refers to λ. By integrating over all possible values of λ, the evidence
itself is a number, such that a proper normalisation of the pdfs is preserved.

• Posterior P (λ|m)
Compared to the likelihood, the posterior is a function of the model parameters it-
self. As it depends upon the prior assumption and the measurements, the posterior
represents a learning procedure, achieved by the data.

The properties and the role of the four terms allow to consider general properties of
the Bayes’ theorem and the introduction of further terminology. A selection of those is
presented in the following:

• Iterative learning
Eq. (4.2) suggests that the posterior does not have to be calculated using all
measurements in the likelihood. A progressive learning with a posterior considering
only m1 and serving afterwards as prior for an iteration that only considers m2

provides the same final posterior. Furthermore, this iterative learning demonstrates
that precise data as well as a large amount of data allow to suppress the impact
of the prior. However, parameter values excluded by a hard prior are not affected
by this property.

• Posterior likelihood
The numerator is referred to as posterior likelihood

L(λ|m) = P (m|λ)P (λ) ∝ P (λ|m). (4.4)

The proportionality is given by the fact that the evidence is a number that just
scales the posterior. Hence, quantiles of the underlying model remain unchanged.
For simplicity reasons, the posterior likelihood is often favoured. This invokes on
the other hand the condition that a proper normalisation is granted.

• Identity likelihood
For a given finite volume V a special likelihood with m ∈ V is given by the uniform
distribution

P (m|λ) =
1∫
dV

. (4.5)

As this likelihood is a constant number and independent of λ, it scales the pos-
terior likelihood without changing any quantiles. For the posterior, the relation
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P (λ|m) = P (λ) shows the identity property, i.e. the prior and the posterior pdf
are identical. Hence, this identity refers to the absence of any information about
the model parameters. This construction is helpful in the following to express a
conditional inclusion of data.

• Conjugate prior
The prior reflects a prior belief in certain values of the model parameters. This
belief is reflected in the moments characterising the pdf. If the shapes of the
prior and likelihood pdf are provided then the distribution of the posterior pdf can
be evaluated. As the likelihood pdf is predefined by the experimental setup, the
shape of the posterior pdf depends on the chosen prior. If applicable, the prior
can be chosen such that the posterior has the same shape as the prior. Hence,
the posterior pdf consists of the moments of the prior, modified by the likelihood.
If the parameters are updated multiple times with likelihoods of the same shape
and if such a conjugate prior can be found and is applicable for the underlying
problem, then the shapes of the posterior pdf are foreseeable. This consequently
simplifies the problem.

4.2 Kalman Filter

In this section a description of measurements and therefore of the likelihood is discussed.
Based on the results of this description, a discussion about the corresponding prior is
presented. For both factors of the posterior likelihood from Eq. (4.4), approximations
are derived and applied. In the last part of this section, the simplest case of a single
measurement produced by a single particle is considered and the posterior likelihood
evaluated with respect to the applied approximations.

4.2.1 Measurement Description

In Sec. 3.2 multiple different measurement principles are presented. Considering the
silicon based detectors1 in Sec. 3.2.2.1, 3.2.2.2 and 3.3.1, the measurements are created
based on the same physical property of semiconductors. Although all three differ in
detail, the common procedure of producing electron-hole-pairs that are registered on
one end is identical. The exact position inside the semiconductor where the pair was
created and therefore the trajectory of the particle through the material is unknown.
Since these detectors are arranged hermetic, the particle has to penetrate the read-out
layer. The data obtained from these detectors can therefore be interpreted as a position
of the particle along its trajectory. Also, just the read-out plane needs to be considered
in describing the measurement.

Since a pixel or a strip has a finite pitch and width, the measurement has an uncer-
tainty. Correcting for the Lorentz angle narrows the uncertainty. Depending upon the

1A similar concept for the measurement description can be applied for other working principles. Though,
the description is less intuitive and therefore neglected.
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corrected cluster size2, the simplest pdf describing the measurement is a flat distribution
in the measurement plane A ⊆ R2 given by

p(x, y) =

{
1/|C|, (x, y) ∈ C
0, else

for a cluster C ⊆ A and the vector (x, y) ∈ A. This expression corresponds to the least
amount of information that can be provided. Due to analogue read-out as in the ID pixel
detector, the collected charge allows to weight the individual pixels that are interpolated
afterwards. After invoking this information, the resulting pdf is not demanded to be flat
anymore. For the used strip modules the distributions are flat. Additionally, for the
long-strip modules the relation y /∈ C ⇒ y /∈ A holds.

Central Limit Theorem

In order to simplify the measurement description and to avoid the handling of multiple
different likelihoods, the central limit theorem (CLT) can be considered. For understand-
ing the applicability of this theorem, the conditions and the limitations, a derivation
based on Reference [98] is given in the following.

For the derivation of the CLT, the characteristic function φ(k) is required. This
function is related to the pdf p(x) via the Fourier transform

φ(k) =

∫ ∞
−∞

eikxp(x)dx, (4.6)

the inverse transformation is given by

p(x) =
1

2π

∫ π

−π
e−ikxφ(k)dk. (4.7)

This function is introduced due to its properties. Considering a variable z = x + y,
defined as the sum of two variables x and y. The pdf of x is given by px(x), the pdf of
y by py(y). Under the assumption that x and y are sampled independently leads to the
combined pdf pz(z) = p(x, y) = px(x)py(y). The characteristic function of z, φz(k) is
then given by

φz(k) =

∫
eikzpz(z)dz (4.8)

=

∫
eikz

[∫
δ(z − x− y)p(x, y)dxdy

]
dz

=

∫ [∫
eikzδ(z − x− y)dz

]
px(x)py(y)dxdy

=

∫
eikxpx(x)dx

∫
eikypy(y)dy

= φx(k)φy(k) (4.9)

2The size is defined by neighbouring pixels or strips that produced a signal.
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with the characteristic functions φx(k) and φy(k) of px(x) and py(y) respectively. In the
context of the definition z, the characteristic function of pz(z) is given by the product
of the characteristic functions given by the pdfs of the corresponding addends of z.

This result can be expanded to n ∈ N independent variables xi with i = 1, ..., n. It is
assumed that each xi is a variable from the pdf pxi(xi) = p(xi) = p(x), i.e. each variable
is sampled from the same pdf. It is assumed that for the pdf a finite mean x = 1

n

∑n
i=1 xi

exists. The corresponding expectation value E[x] of x is then given by

E[x] =

∫
xp(x)dx =

∫
1

n

n∑
i=1

xp(x)dx =
1

n
nµ = µ

with the mean µ of p(x). This parameter is assumed to be also finite. Furthermore, the
corresponding variance σ2 = E[(x−E[x])2] of p(x) is assumed to exist and to be finite.

Considering the difference ξ =
√
n(x − µ) =

∑n
i=1

xi−µ√
n

with the corresponding pdf

pξ(ξ) leads under utilisation of the Eqs. (4.8), (4.6) and (4.9) to

φξ(k) =
n∏
i=1

φxi−µ√
n

(k) =
n∏
i=1

∫
e
ik x−µ√

n p (x) dx. (4.10)

By expanding the exponential function in the last expression in a Taylor series around
x0 = µ leads to

φξ(k) =

n∏
i=1

∫ (
e
ik√
n

(x−µ)
)∣∣∣
x0=µ

p(x)dx

=

n∏
i=1

∫ (
1 +

ik√
n

(x− µ)− k2

2n
(x− µ)2 +O

(
(x− µ)3

n
3
2

)
+ ...

)
p(x)dx.

Considering the last expression in the limit n → ∞ with the assumption that terms of
third and higher order can be neglected leads to

lim
n→∞

φξ(k) = lim
n→∞

n∏
i=1

(
1 +

ik√
n
E[x− µ]− k2

2n
E[(x− µ)2]

)
(4.11)

= lim
n→∞

n∏
i=1

(
1− k2

2n
σ2

)
= lim

n→∞

(
1− k2

2n
σ2

)n
= e−

k2

2
σ2
.

Hereby the properties E[x] = µ and σ2 = E[(x− E[x])2] were used. Thus, the pdf

pξ(ξ) =
1√

2πσξ
e
− 1

2
ξ2

σ2
ξ (4.12)

can be calculated using Eq. (4.7). The standard deviation σξ =
√
σ2
ξ is thereby related

to σ via σξ =
√
nσ.
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The approximations applied for the mean of a sample {xi} to be normal distributed
around the mean of the underlying distribution p(x) is the CLT. The strength of the
theorem is due to the loose conditions it depends on, which is for the pdf the existence
of a finite mean and variance.

Statistical Model of Measurements

In the context of a silicon detector, a particle penetrating the read-out layer and pro-
ducing electron-hole-pairs is equivalent to the production of a sample {(xi, yi)}3 from an
underlying pdf. After correcting for the Lorentz angle, the cluster mean is thereby given
by the true position µparticle

true of the particle. The covariance matrix Σdet on the other hand
is dominated by the sizes of the pixels/strips. An additional contribution is given by the
semiconductor material and the read-out electronics. Therewith additional noise con-
tributions are added while thresholds cut the signal. Further techniques such as charge
collection and interpolation between channels re-weights the impact of individual tuples
wherever applicable. Invoking these additional information can be interpreted as a mod-
ification of the underlying sampling pdf. Hence, under the assumption that the sample
size n is sufficiently large and each sample is independent of each other, the probability
density of the cluster position can be summarised as m = (x, y)T = 1

n

∑n
i=1(xi, yi)

T by
the multivariate normal distribution

G
(
m|µparticle

true ,Σdet

)
=

1√
(2π)dim(m)det(Σdet)

e
− 1

2

(
m−µparticle

true

)T
Σ−1

det

(
m−µparticle

true

)
(4.13)

with the dimension dim(m). This generalisation of the CLT to higher dimensions relies
on the requirement that Σdet is a regular matrix.

Under the assumption that the clusters fulfil the required conditions, the approxima-
tion for the pdf for the cluster mean allows the same functional shape for each measure-
ment while encapsulating the detector properties in the covariance matrix. The mean
on the other hand relies on the knowledge of the particle and is therefore unknown. On
the other hand the application of Eq. (4.13) as likelihood as given in Eq. (4.1) leads to

P (m|λ) = G (m|λ,Σdet) (4.14)

with the given mean λ. The given covariance matrix is thereby only depending on
the detector and may vary for different modules but also inside the module, e.g. due
to damaged individual pixels/strips. Consequently, for a module mod, the covariance
matrix is itself given by Σdet(λ,mod).

Another aspect worthy of mention in the context of this likelihood is that the param-
eters λ can be different from µparticle

true . The CLT on the other hand relies on the usage

3In general, a restriction to spatial information is not mandatory and can be extended to further or
replaced by other parameters. Since stating only spatial information is more intuitive and other
dimensions can be considered analogously, the generalisation is not treated here for simplicity.
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4.2 Kalman Filter

of the mean λ as implied by Eq. (4.14) while m is distributed around to µparticle
true . Thus,

the term on the right hand side of Eq. (4.11) becomes

lim
n→∞

n∏
i=1

(
1 +

ik√
n
E[x− λ]− k2

2n
E[(x− λ)2]

)

= lim
n→∞

n∏
i=1

(
1− ik√

n
∆µ− k2

2n

(
σ2 + 2E[2µ∆µ− x∆µ+ ∆µ2]

))

= lim
n→∞

n∏
i=1

(
1− ik√

n
∆µ− k2

2n
(σ2 + ∆µ2)

)
(4.15)

with ∆µ = λ−µparticle
true . If ∆µ cannot be neglected the resulting pdf, if it exists, deviates

from the form in Eq. (4.12). The resulting pdf remains unchanged in the special case of
∆µ = 0. Starting from the latter scenario and Eq. (4.12), the occurrence of likelihoods
with ∆µ 6= 0 can be excluded or their impact suppressed by using a proper prior. This
will be the item of discussion in the next section.

4.2.2 Prior Description

In the Bayes’ theorem, the prior is a subjective distribution that can be modelled under
constraints. The model parameters λ reflect particle properties. It is intended to learn
about these parameters by utilising the data from the detector. Hence, the parameters
are (partially) physical quantities that are measurable. Consequently, the prior distri-
bution of some parameters is restricted to certain values, e.g. the energy of a particle
cannot be negative. Depending on the considered properties, a hard prior is therefore
given by nature without any modelling.

Beside the exclusion of certain values, the most conservative choice of priors would be
flat. However, up to the stage of reconstructing tracks, additional stages provide infor-
mation. By considering the applied detection principles, particles such as neutrino may
exit the detector without producing measurements. This can be considered as exclusion
of the property particle type. Furthermore, particles traverse a magnetic field. Charged
particles with a momentum under a certain threshold will not reach any sensitive mate-
rial. Such quantities are therefore further restricted.

Beside the pure detector properties, the TDAQ utilises (parts) of the detector data
in order to deduce ROI’s, therewith kinematic constraints and due to the utilisation of
calorimeters and the muon system estimations about the particle type. Further process-
ing of the data provides even more information about possible particle parameters. As
last stage before the actual track reconstruction starts, seeds are formed for charged par-
ticles from the space-points in the tracking detector (see Sec. 5.3.1). Although taking the
detector data already into account, it emphasises or suppresses the track reconstruction
in certain model parameter regions, similar to a soft prior.

Considering the entire list of detector properties and pre-processing steps that provide
actual prior information is mandatory for optimal treatment of the data but out scope
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4 Theory of Model Based Track Reconstruction

of the current consideration. On the other hand, the incorporation of any information
into the prior distribution is not crucial but simplifies the upcoming problem.

Eq. (4.14) showed that the likelihood for the measurements can be described as (mul-
tivariate) normal distributed under the assumption of fulfilled requirements in and the
approximations applied for the CLT. However, it was shown in Eq. (4.15), that this

requires that λ is sufficient close to µparticle
true . This motivates the incorporation of as

much information as possible from the detector and the pre-processing. In the context
of the numerator of Eq. (4.1), the prior is intended to favour values of λ ≈ µparticle

true while
suppressing large deviations. It should be considered that this is only the case for the
CLT based modelling of the likelihood. Hence, the prior can be soft in λ. The learning
procedure can also be formulated and summarised in a bayesian learning process as

P (λ|S, T ,P) = P (S|λ, T ,P)P (T |λ,P)P (P|λ)P (λ) (4.16)

with the information from physics P, from TDAQ T and the seeding S. For simplicity
reasons, the contributions will not be mentioned in the following. The prior will be
denoted hereinafter as P (λ).

The distribution of the prior itself is partially driven by the mathematical and thus,
the computational complexity. For that purpose, a conjugate prior is a common choice.
For the (multivariate) normal distribution likelihood, the conjugate prior is also a (mul-
tivariate) normal distribution

G (λ|µλ,Σλ) =
1√

(2π)dim(λ)det(Σλ)
e−

1
2

(λ−µλ)TΣ−1
λ (λ−µλ) (4.17)

for the considered parameters λ with the mean µλ and the covariance matrix Σλ. The
mean and covariance matrix reflect the knowledge gained from the trigger and the seed-
ing. Although the model parameters can be chosen freely, a bijective mapping has to
exist between λ and the measurement coordinate system (see Sec. 5.2) in order to be
the conjugate prior.

As the application of a (multivariate) normal distribution is a soft prior, the constraints
are not rejected, i.e. negative energies are possible. The rejected values correspond to a
region R ⊆ P in the parameter space P . Although hard cuts can be applied upon the
distribution, it affects the distribution itself. Under the assumption that

∫
R P (λ)dλ is

small, the effect can be neglected.

4.2.3 Posterior Likelihood

Within this section, the normal distributed approximation from Eq. (4.14) is used for
the likelihood, the prior is used as given in Eq. (4.17). For the reason of simplicity, it
is assumed in the following that only a single measurement exists on a read-out surface
that was created by a single particle.

The particle properties are described in an n ∈ N dimensional vector λ ∈ Λn ⊆
Rn. The subset Λn denotes the constraints applied from Eq. (4.16). Furthermore, a
d-dimensional geometrical object O ⊆ Rd with d ≤ n is considered, with a unique
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4.2 Kalman Filter

description of each point pO of the object via a base {o1, ..., od} ∈ Rd, i.e. a unique
solution of

d∑
i=1

αioi = pO

exists for α1, ..., αd ∈ R. It is assumed that ∀λ a unique solution for a projection matrix
HO ∈ Rd×n with

d∑
i=1

αioi = h(λ) = HOλ (4.18)

as the linear formulation of a projection function h : Λn → O exists. Therewith the
particle properties are described in the context of the object and thus the coordinate
vectors {oi} by the vector λO = {αi} ∈ O. The corresponding mean and covariance
matrix in this coordinate system are denoted as µλ,O and Σλ,O respectively.

For the measurements a surface is considered in which the measurement is represented.
Since it is considered to be a read-out plane, it corresponds to the recording of spatial
data. This concept could be generalised to a set of additional dimensions but would just
add further complexity to following descriptions. Hence, this possibility is neglected in
the following. Additionally, the recorded information is not restricted to only spatial
data. The corresponding surface is denoted as A ⊆ Rs+e with the spatial dimension 0 <
s ≤ 2 4 and the additional, non-spatial dimension 0 ≤ e ≤ n−s. As the surface provides
a constraint only in spatial parameters, the additional information can be considered
as an unconstrained sample except for physical reasons. Since the data contained in
the measurement can be separated into spatial and other dimensions, the corresponding
subspace A with base {a1, ..., as+e} can be split into two spaces As and Ae with bases
{as1, ..., ass} and {ae1, ..., aee} respectively. Due to the property

(∀ps ∈ As ⇒ ps /∈ Ae) ∧ (∀pe ∈ Ae ⇒ pe /∈ As) (4.19)

a point pA ∈ A can be described as linear combination

pA =
s+e∑
i=1

αiai =
s∑
i=1

βia
s
i +

e∑
i=1

γia
e
i = ps + pe = HspA +HepA (4.20)

with the projection matrices Hs ∈ Rs×n : Λn → As, He ∈ Re×n : Λn → Ae and a unique
solution for α1, ..., αs+e ∈ R or β1, ..., βs, γ1, ..., γe ∈ R. The therewith projected vectors
are denoted as ps and pe for the sub-spaces As and Ae respectively. As these two vectors
do not interfere with each other, they can be treated individually. Since pe is considered
as unconstrained sample, no further treatment is required and Eq. (4.14) can be utilised
for the description of the likelihood in the context of Ae. ps on the other hand requires
additional considerations due to the underlying surface constraint.

With the particle properties described in the context of a geometrical object O as
in Eq. (4.18), two cases for s ≤ d can be distinguished: As ⊆ O and As * O5. The

4In theory a surface with s = 0 could be considered but due to the location of the surface, a signal
from the surface indirectly delivers spatial data.

5For example: As is a pixel module in a tracking detector. If O is the pixel detector system then
As ⊂ O. If O is the calorimeter then As * O.
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latter case describes a surface that can not be described by parametrisation. With
Eqs. (4.4), (4.14) and (4.19) this leads to a scenario with λO /∈ As and hence to a
contradiction of the normal distributed modelling of the likelihood P (m|λ). In such a
case, the information contained in the measurement m ∈ A is not taken into account
and the likelihood becomes an identity as in Eq. (4.5).

For the case of As ⊆ O one finds that ∃λs ∈ O, {βi} ∈ R :
∑s

i=1 βiHOH̃sa
s
i = λs

with the projection matrix H̃s ∈ Rn×s : As → Λn. Hence, the set {λs} is a subset of
{λO}. The disjoint set {λO}\{λs} leads thereby to the same ill-definition of the normal
distributed likelihood6 and is treated as identity.

The prior in Eq. (4.17) allows the expression of a λ as µλ + λv = λ with a finite
variation λv from the mean µλ. The expectation of both sides of the equation yields
E[µλ] + E[λv] = E[λ] ⇔ µλ + 0 = µλ. Since only {λs} is considered in the context of
the surface-related likelihood, the mean E[λs] = µλ + ∆µλ is on the surface. Hence,
if µλ /∈ {λs}, the expectation value of λs would be biased by ∆µλ. Additionally, the
covariance matrix Σλ = E[(λs − µλ)(λs − µλ)T ] is allowed to spread λs only across As
in order to be unbiased7.

In summary, the prior parametrisation is required to be the same as the measure-
ments object. Hence, the corresponding mean Hsµλ,O = µλ,As ∈ As and covariance
HsΣλ,OH

T
s = Σλ,As can be expressed as normal distribution analogously to Eq. (4.17)

with λAs ∈ As. These considerations can be formulated for the s-dimensional measure-
ment in terms of the likelihoods as

P (m|λ) =

{
1∫
A dv

= 1
VA

HOλ /∈ {λs} ∨HOE[P (λO)] /∈ {λs}

G(m|HAλ,Σdet) else
(4.21)

with the prior from Eq. (4.17) and the identity from Eq. (4.5). This expression can also
be formulated as a single function

P (m|λ) =
1

VA
+

∫
As

δ(HOH̃sv −H0λ)

[
G(m|HAλ,Σdet)−

1

VA

]
dv

·
∫
As

δ

(∫
O
λOP (λO)dλO −HOH̃sv

)
dv

(4.22)

with the Dirac-delta δ and the prior P (λO) restricted to the subspace O ⊆ Λn. This
summary shows that the constraint provided by the surface is thereby the only limita-
tion that steers whether the measurement leads to a parameter update or not. Hence,
parameters from Ae can be neglected in the steering but are treated in the posterior
evaluation.

6In this case the data is normal distributed exclusively in As but it would be required that the mean
of the distribution is not in As.

7Bayes’ theorem can be interpreted as an iterative learning about the parameter distributions in the
posterior pdf. Under the assumption of a correct model and an infinite amount of measurements, the
only non-zero value should then become the value of the underlying truth. This limit is described by
the term unbiased.
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Evaluation of the Posterior Likelihood

In order to evaluate the posterior likelihood, Eq. (4.22) indicates two scenarios as given in
Eq. (4.5) and (4.14). While the former is a trivial solution P (λ|m) = P (λ), it is assumed
in the following that the integrals in Eq. (4.22) evaluate to non-zero. Therewith, the
posterior likelihood with Eq. (4.17) is given by

P (λ|m) = G(m|HAλ,Σdet)G(λ|µλ,Σλ)

∝ exp

(
−1

2
(m−HAλ)T Σ−1

det (m−HAλ)

)
· exp

(
−1

2
(λ− µλ)T Σ−1

λ (λ− µλ)

)
(4.23)

under the assumption that d|Σdet|/dλ = 0 and d|Σλ|/dλ = 0. As the likelihood is
measured in s+ e ≤ n dimensions, the parameters in the remaining n− s− e dimensions
will be treated like an identity likelihood. In order to consider this behaviour, the prior
can be modified by introducing the disjoint projection matrix HA ∈ Rn×(n−s−e) : Λn →
Λn\A. Therewith the parameters can be written as

λ = HT
AHAλ+HA

T
HAλ. (4.24)

The application HTH projects the components from the subspace into Λn. The same
accounts for the µλ and Σλ.

As mentioned in Sec. 4.2.2, the utilisation of the conjugate prior allows the prediction
of the function of the posterior. In this case it is given by a multivariate normal distri-
bution. Hence, the posterior pdf is known if its mean µ′λ and covariance matrix Σ′λ are
known. Hence, the mean of Eq. (4.23) expressed with Eq. (4.24) becomes

µ′λ =E[λ] =

∫
Λn
λP (λ|m)dλ

∝
∫

Λn
λexp

(
−1

2
(m−HAλ)T Σ−1

det (m−HAλ)

)
· exp

(
−1

2
(λ− µλ)T Σ−1

λ (λ− µλ)

)
dλ

=

∫
Λn

(HT
AHAλ+HA

T
HAλ)exp

(
−1

2
(m−HAλ)T Σ−1

det (m−HAλ)

)
· exp

(
−1

2

[
(HA +HA)(λ− µλ)

]T
(HA +HA)Σ−1

λ (HA +HA)T
[
(HA +HA)(λ− µλ)

])
dλ.

(4.25)
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Since the spaces A = Λn∩A and Λn\A are disjoint, there is no mixing between elements
of the spaces. Thus, Eq. (4.25) can be rephrased:∫

Λn
(HT

AHAλ+HA
T
HAλ)exp

(
−1

2
(m−HAλ)T Σ−1

det (m−HAλ)

)
· exp

(
−1

2
(λ− µλ)THT

AHAΣ−1
λ HT

AHA(λ− µλ)

)
· exp

(
−1

2
(λ− µλ)THA

T
HAΣ−1

λ HA
T
HA(λ− µλ)

)
dλ

=

∫
A
HT
AHAλexp

(
−1

2
(m−HAλ)T Σ−1

det (m−HAλ)

)
· exp

(
−1

2
(λ− µλ)THT

AHAΣ−1
λ HT

AHA(λ− µλ)

)
d(HAλ)

+

∫
Λn\A

HA
T
HAλexp

(
−1

2
(λ− µλ)THA

T
HAΣ−1

λ HA
T
HA(λ− µλ)

)
d(HAλ)

(4.26)

=HT
AE[HAλ] +HA

T
E[HAλ]

For Eq. (4.26) the properties of the linear operation of the expectation value were ex-
ploited and the by-definition disjoint spaces. The first addend leads to updated param-
eters due to the measurement, the second to the unaffected parameters. Thus, it is
obvious that E[HAλ] = HAµλ. For the first one a product of two multivariate normal
distributions can be identified, which leads to [99]

HAΣ′λH
T
A =

(
(HAΣ−1

λ HT
A) + Σ−1

det

)−1
(4.27)

HAµ
′
λ = Σ′λ

(
(HAΣ−1

λ HT
A)HAµλ + Σ−1

detm
)
. (4.28)

In summary, the posterior mean and covariance matrix are then given by

µ′λ =E[λ] = HT
AE[HAλ] +HA

T
E[HAλ]

=HT
AΣ′λ

(
(HAΣ−1

λ HT
A)HAµλ + Σ−1

detm
)

+HA
T
HAµλ (4.29)

Σ′λ =E[(λ− µ′λ)(λ− µ′λ)T ]

=HT
AE[HA(λ− µ′λ)(λ− µ′λ)THT

A ]HA +HA
T
E[HA(λ− µ′λ)(λ− µ′λ)THA

T
]HA

=HT
A

(
(HAΣ−1

λ HT
A) + Σ−1

det

)−1
HA +HA

T
HAΣλHA

T
HA. (4.30)

The matrix HA and HA were not considered any further yet. If it can be assumed that
a base B1 = {êi} exists that describes λ =

∑
i λiêi and a base B2 = {êj} that describes

m =
∑

jmj êj with ∀êj ∈ B2 : ∃êi ∈ B1 with êj = êi then both projection matrices
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become sparse matrices with

(HA)i,j =

{
1, êi ∈ B2, êj ∈ B1 : êi = êj

0, else

1 = HA
T
HA +HT

AHA.

(4.31)

Thus the addends of Eqs. (4.29) and (4.30) do not interfere with each other.

In the non-interfering case of HA and HA, it becomes obvious that the term HA
T
HAµλ

from Eq. (4.29) and HA
T
HAΣλHA

T
HA from Eq. (4.30) describe a status quo, i.e. the

corresponding components of λ remain unchanged. The other contributions to the ex-
pectation value and the covariance matrix of the posterior are given by Eqs. (4.28) and
(4.27). This allows to re-write µ′λ and Σ′λ as

Σ′λ =
(
Σ−1
λ +HT

AΣ−1
detHA

)−1

µ′λ = Σ′λ
(
Σ−1
λ µλ + (HT

AΣ−1
detHA)HT

Am
) (4.32)

which encapsulates both contributions.

Since the calculation of µ′λ and Σ′λ rely on inverted matrices which are computationally
expensive, an alternative but equivalent formulation can be used:

Σ′λ
(
Σ−1
λ µλ + (HT

AΣ−1
detHA)HT

Am
)

= µλ + ΣλH
T
A

(
HAΣλH

T
A + Σdet

)−1
(m−HAµλ)

(4.33)
A similar transformation of the expression of Σ′λ is possible:

(Σ−1
λ +HT

AΣ−1
detHA)−1 = (1− ΣλH

T
A(HAΣλH

T
A + Σdet)

−1HA)Σλ (4.34)

The equality of both statements is shown in Sec. A.

Beside the fact that the right side of Eq. (A.1) and the right side of Eq. (A.2) require
less inversions, another detail can be found: SubstitutingK = ΣλH

T
A(HAΣλH

T
A+Σdet)

−1

gives

µ′λ = µλ +K(m−HAµλ) (4.35)

Σ′λ = (1−KHA)Σλ (4.36)

which is commonly known as the Kalman filter formalism8.

8The original derivation of filtering algorithm developed by R.E. Kalman [100] was performed by
minimising a quadratic loss function. As an opposite to that, in this thesis, the derivation is based on
the bayesian, distribution-oriented approach. The original derivation from by R.E. Kalman assumed
the measured vectors of states were sums of the true states and randomly distributed noise terms.
The derivation in this thesis makes no assumptions on the relation between the measurements and
the true states, considering the most general case via the usage of pdfs.
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4.3 Track and Event Reconstruction

In Sec. 4.2 the normal distributed approximation of measurements and the application
of a conjugate prior for a single measurement was discussed. This approximation with
the same prior will be extended in this section to multiple measurements in three stages
with increasing complexity. Starting with a given order of measurements from a single
particle, then an arbitrary order is considered and finally an arbitrary ordered set of
measurements produced by multiple particles.

4.3.1 Track Reconstruction

In this section a set of k independent measurements mi with i = 1, ..., k is considered.
As described in Sec. 4.2.3, each measurement is assigned to a surface Ai ⊆ Rsi+ei .
In the normal distributed approximation scenario, the likelihood of each measurement
P (mi|λ,Σi

det) is then given according to Eq. (4.22). As the covariance matrix Σdet can
vary for each surface, it also depends on it. The simplest case is then Ai = Aj∀i, j =
1, ..., k, i.e. all surfaces are identical, with the posterior likelihood

P (λ|m1, ...,mk) ∝
k∏
i=1

P (mi|λ,Σdet)P (λ) (4.37)

as the direct formulation of the iterative learning of Bayes theorem from Sec. 4.1. Due to
combination of each measurement on the surface to a single measurement, the problem
can be reduced to Eq. (4.23) and is therewith solved by Eqs. (4.35) and (4.36).

In the following it is assumed that i 6= j ⇒ Ai 6= Aj∀i, j, i.e. different measurements
are present and each measurement is associated to a different surface. From a given prior
P (λ) expressed in the context of an object O, Eq. (4.22) allows up to one parameter
update. In order to consider multiple measurements, the likelihoods needs to be extended
by a parameter extrapolation. The necessary condition for the likelihood to become non-
trivial is that µλ is given on the surface itself. From a given point, an extrapolation over
a length s ∈ R is required. Along the extrapolation physical effects upon the particle
trajectory need to be considered in order to preserve the unbiased requirement of the
parameter update. The extrapolation will be denoted as S(s|λ). As the parameter
ordering indicates, this can be considered as likelihood-like. Compared to the likelihood
described in Eq. (4.1), the extrapolation does not depend on a static, external input
as for the measurement and the detector response but on the inclusion of effects on
the prior parametrisation, steered by s. Furthermore, the extrapolation relies on the
knowledge of the posterior in order to be evaluated. Hence, the general formulation for
the extrapolation is given by

S(s|λ) =
P (λ|s)
P (λ)

(4.38)
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and thus modifies the prior. In this form, it is w.l.o.g assumed that P (λ|0) = P (λ).
Furthermore, the chain of two successive extrapolations can be considered

P (λ|s1, s2) = S(s2|λ, s1)S(s1|λ)P (λ)

=
P (λ|s2, s1)

P (λ|s1)

P (λ|s1)

P (λ)
P (λ)

=
P (λ|s2, s1)

P (λ)
P (λ)

= S(s2, s1|λ)P (λ) = S(s2 + s1|λ)P (λ) (4.39)

which corresponds to the independence from Eq. (4.2). Also a unification of multiple
extrapolations to a single is demanded, especially for s1 = −s2 one obtains the prior
itself. The extrapolation is therefore invertible. A discussion about the extrapolation
under a continuous parameter is given in Chapter 7.

In order to update the prior with the data from a measurement m on the surface
A ⊆ O, the likelihood P (m|λ,Σdet) from Eq. (4.22) gets extended by two extrapolations:

P (m|λ) =
1

VA
+

∫ ∞
−∞

S(s′|λ, s)
∫
As

δ(HOH̃sv −HOλ)

[
G(m|HAλ,Σdet)−

1

VA

]
dv

·
∫
As

δ

(∫
O
λOS(s|λO)P (λO)dλO −HOH̃sv

)
dvS(s|λ)ds (4.40)

While in theory s is unrestricted, the assumption that the particle is at least in a detector
restricts the integral to finite limits. Furthermore, the second extrapolation S(s′|λ, s)
allows to describe the posterior pdf independent of any extrapolation, e.g. for a fixed
starting surface A0 ⊆ O as constraint, the parametrisation would be at the same object
afterwards with at most updated parameters. This could be the innermost sensitive layer
for example, since the combined information at that point can be utilised to estimate
the corresponding vertex. Due to the update of the parameters, it is not mandatory
that s′ = −s. In this case an additional evaluation of s′ is necessary. For simplicity
it is assumed in the following that the approximation s′ ' −s is sufficient. As the
posterior is independent on the extrapolation of a previously considered likelihood, their
combination using Eq. (4.40) can be written as given in Eq. (4.37).

Given that the measurements are ordered, i.e. for the required extrapolation lengths
si and sj for two measurements mi and mj in order to become a non-identity likelihood,
si ≤ sj for ∀i, j = 1, ..., k : i ≤ j, then Eq. (4.37) applies them in the same ordering.
It is further observable from Eq. (4.39) for subsequent non-trivial treated likelihoods,
that the backwards extrapolation over si ≤ 0 from Ai and the forward extrapolation
over si+1 ≥ 0 to Ai+1 leads to a net extrapolation distance of si+1 − si ≥ 0. Hence, the
ordered formalism provides the minimal extrapolation distance in order to perform all
parameter updates while ending at a given (constrained) object.

4.3.1.1 Discrete Extrapolation Effects

Within the formulation of the likelihood in Eq. (4.40), an extrapolation is performed
based on the existence of a measurement. Beside the continuous effects like deflection
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due to magnetic fields, discrete effects from e.g. detector material may affect the prior
pdf under extrapolation. Such effects can be treated by describing discrete effects in
Eq. (4.38) explicitly. Since a discrete manipulation of the prior is identical to Eq. (4.1)
and moreover independent as denoted in Eq. (4.2), the natural formulation of discrete
effects is given by formulating the contributions as a likelihood. In order to preserve the
conjugate prior of the measurements, the individual effects require either a normal dis-
tributed approximation similar to Eq. (4.14) or to just modify the model parameters µλ
and Σλ as in Eq. (4.38). In both cases, the contribution is, similar to the extrapolation,
not a measurement and therefore expressed by evaluation of previous posterior pdfs. In
contrast to the extrapolation, the effect does not depend on a scalar but is associated
with an object AM ⊆ Rs+e. AM can thereby be decomposed as in Eq. (4.19) and (4.20)
for AMs and AMe . In order to preserve an analogy to a likelihood expression, discrete
effects may trigger an extrapolation as in Eq. (4.40). On the other hand discrete effects
may be treated like an additive extrapolation from Eq. (4.39). Hence, the second case
can be expressed as

Mf (sf |λ) =
1

VAMs
+

∫ sf

0

∫
AMs

δ(HOH̃M
s v −H0λ)

[
P (λ|µ̃λ, Σ̃λ)

P (λ|µλ,Σλ)
− 1

VAM

]
dv

·
∫
AMs

δ

(∫
O
λOS(s|λO)P (λO)dλO −HOH̃M

s v

)
dvS(s|λ)ds (4.41)

with the modified mean µ̃λ and covariance matrix Σ̃µ due to the material interaction.
Furthermore, the triggered extrapolation is not reverted in comparison to (4.40) since
Mf (sf |λ) can be considered as the extrapolation itself. The subscript f denotes thereby
a forward extrapolation and thus restricts sf ≥ 0. A corresponding reverse discrete effect
Mb(sb|λ) is restricted to sb ≤ 0 with the property Mb(sb|λ)Mf (sf |λ)P (λ) = P (λ), i.e. the
pdf parameter manipulation is undone in the backward direction with an additional
extrapolation over sb ≤ 0. Eq. (4.41) can be utilised in order to describe e.g. energy loss
of charged particles in material. In Fig. 4.2 the per unit path length mean energy loss
µλ − µ̃λ is shown. Thereby the mean energy loss depends on the current mean energy.
Therefore the knowledge about the posterior allows to express Mf (sf |λ).

Beside the preservation of the conjugate prior by utilising P (λ|µ̃λ, Σ̃λ)/P (λ|µλ,Σλ)
from Eq. (4.41), for a normal distributed effect, a more explicit formulation can be
found. Starting from the Eqs. (4.35) and (4.36), it is assumed that the posterior mean
and covariance matrix can be expressed as µ′λ = µλ +µq and Σ′λ = Σλ + Σq respectively.
The parameters µq and Σq denote the manipulation of µλ and Σλ respectively due to
interactions. Furthermore, both need to be known prior and may depend on µλ and Σλ

as well. Hence, it is necessary to evaluate these parameters when the parameter mod-
ification occurs, while the measurements are independent of the prior parametrisation.
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4.3 Track and Event Reconstruction

Figure 4.2: Dependency of the mean energy loss per path length of a µ+ in copper on the
Lorentz factor βγ [17].

One obtains thereby for a given Σq

Σλ + Σq = (1−KHM )Σλ

⇔Σq = KHMΣλ

⇔HMΣqH
MT = HMΣλH

MT (HMΣλH
MT + Σm)−1HMΣλH

MT

⇔HMΣqH
MT (HMΣλH

MT )−1(HMΣλH
MT + Σm) = HMΣλH

MT

⇔HMΣqH
MT (HMΣλH

MT )−1Σm = HMΣλH
MT −HMΣqH

MT

⇔Σm = HMΣλH
MT

[
(HMΣqH

MT )−1HMΣλH
MT − 1

]
(4.42)

that there exists a covariance matrix Σm which can be understood as the covariance
matrix of a measurement but with the same effect as the addition of Σq. The utilised
gain matrix K is used as defined for a regular measurement with Σm. The matrix Σm

exists under the assumption that rg(HMΣλH
MT ) = rg(HMΣqH

MT ) = s + e. While a
measurement is associated with the learning in the context of the Bayes’ theorem this
matrix represents a forgetting due to material interaction.
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For the mean one obtains from a given µq

µλ + µq = µλ +K(m−HMµλ)

⇔µq = ΣλH
MT (HMΣλH

MT )−1HMΣqH
MT (HMΣλH

MT )−1(m−HMµλ)

⇔HMΣλH
MT (HMΣqH

MT )−1HMµq +HMµλ = m (4.43)

utilising the result from Eq. (4.42). Therewith, a discrete, linear manipulation of the
prior parameterisation can be expressed as likelihood from Eq. (4.40) with Σm and m
as given in Eq. (4.42) and (4.43).

As the discrete contributions can be modelled analogously to the likelihood of a mea-
surement, the extrapolation S(s|λ) in Eq. (4.40) can also be expressed in terms of those
interactions. Given n ∈ N discrete interactions along the extrapolation for 0 ≤ s < ∞
and an ordering of the individual lengths with

∑i
j=1 sj ≤

∑i+1
j=1 sj for i = 1, ..., n− 1 for

each interaction in order to provide a non-trivial solution, the following expression can
be utilised:

Sf

(
s =

n∑
i=1

si + s̃|λ

)
= S

(
s̃ = s−

n∑
i=1

si|λ

)
·
n∏
i=1

Mf,i(si|λ) (4.44)

While si contributes with discrete lengths, the remainder is covered by a plain prop-
agation. Since µ̃λ = µλ and Σ̃λ = Σλ are possible, the expression can be considered
generic and provides the extrapolation including discrete effects up to the surface A.
The corresponding backward extrapolation then becomes

Sb

(
s′ =

n∑
i=1

si + s̃|λ

)
=

n∏
i=1

Mb,i(si|λ) · S

(
s̃ = s′ −

n∑
i=1

si|λ

)
. (4.45)

Due to the formulation of the extrapolation in terms of subsequent interactions, a natural
loop through interactions originates.

4.3.1.2 Smoothing

The likelihood of measurements from Eq. (4.40) with Eq. (4.37) leads to a posterior
pdf that encapsulates the information of all measurements produced by the particle
represented at a (conditional) starting position. After the outermost measurement was
utilised for updating the parameters the parameterisation at the surface Ak carries the
information of all measurements. Therefore the best knowledge about the particle prop-
erties is given at that point so far. As the parametrisation at starting position is usually
the point of interest for further processing, e.g. for vertexing, the knowledge of other
measurements is required at that point instead. Hence, the information needs to be
propagated to that point. Although this is carried out by the backward propagation, a
better performance can be achieved. While the inversion property in Eq. (4.38) is de-
manded, due to subsequent parameter updates, the information from previously utilised
measurements provide less impact on even closer ones to the starting point. Considering
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4.3 Track and Event Reconstruction

the mean update (u) of the ith measurement mi, a forward extrapolation to the (i+1)th
measurement ti+1

i , update there and extrapolate back

µiλ =u(µλ,mi)

µi+1
λ =u(ti+1

i (u(µλ,mi)),mi+1)

µiλ =tii+1(u(ti+1
i (u(µλ,mi)),mi+1)).

Comparing this with the direct update order

µiλ = u(tii+1(u(µλ,mi+1)),mi)

the information contained in the measurement mi of the first case is ”burried” deeper in
the filter process. Therefore, the impact of mi on mi−1 is therefore suppressed, similar
to a larger distance between both. Thus, the extrapolation distance of each information
should be kept to a minimum given the underlying extrapolation effects. Considering
furthermore errors from numerical evaluations may enhance this argument.

Eq. (4.37) additionally implies a single long-distance backward extrapolation from the
last measurement to the starting point. Since all measurements are already used for
filtering the parametrisation, those can not be used anymore. Otherwise the double-
counting would bias the parametrisation. This is the same issue for the seeding. A
more precise and stable solution is obtained if all measurements are taken into account
at each measurement or surface during the finalising extrapolation. The problem is a
linear sequence of measurements, therefore the optimal utilisation of measurements while
fulfilling both conditions is given by the combination of two independent extrapolations
as shown in Fig. 4.3 (top). The combination of all information at each measurement is
called smoothing and allows the optimal estimation at the starting position [102] as shown
in Fig. 4.3 (bottom). As the last forward filtered point indicates, it is identical to the
smoothed result. However, the consequent smoothing leads to an improvement at s = 0.
The suppressed error in the forward filtering is thereby driven by the measurements
while the backward extrapolation error gets smaller as closer as the parametrisation is
to s = 0 due to the backward extrapolation and therewith the removal of physical effects
on the trajectory and due to repetitive combination with a forward filter.

The combination scheme leads to the conclusion that the final posterior pdf is ob-
tained once the backward filter reached the starting position. However this leads to two
problems: What is the prior of the backward filter and how to minimise the computa-
tional complexity for the forward filter evaluation. In order to resolve both issue, the
simplest case considerable is a prior P (λ) for a forward extrapolation located at A0 and
single measurement located at a surface A1. The posterior pdf P (λ|m) from Eq. (4.37)
after applying Eq. (4.40) is independent of the prior due to the additional information
obtained from the measurement and given at A0. Hence, the combination of both pdfs
would resolve in the best posterior pdf at A0. This workflow is visualised in Fig. 4.4.
Although a measurement can not be treated as a particle state λ and can therefore not
be extrapolated, this utilisation of a second, independent prior allows a ”transport” of
the measurement to another object. Thus, the problem becomes identical to Eq. (4.1)
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4 Theory of Model Based Track Reconstruction

Figure 4.3: Top: Schematic illustration of two independent extrapolations starting at s = 0 in
forward and from s =

∑k
i=1 si in backward direction. The information is combined

in a point in between. Bottom: Schematic illustration of the uncertainties of each
extrapolation as a function of the distance to s = 0. Also the combination, called
smoothing is shown. Both figures are taken from Reference [101] and modified to
match the this chapters notation.

with a non-trivial measurement expressed at the same object as the prior

Psmoothed(λ|m) ∝ [S(−s|λ)P (m|λ,Σdet)S(s|λ)P (λ)] · P (λ) = Pb(m|λ)P (λ). (4.46)
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4.3 Track and Event Reconstruction

Figure 4.4: Filtering and smoothing for a single measurement m with two surfaces A0 and A1

(blue lines). The mean of the distributions is shown as yellow dots, the width
of the distributions is indicated in different colours around the points. The ini-
tial parametrisation (red) is extrapolated from A0 to A1, filtered using the data
(orange). The resulting distribution (green) is extrapolated backwards to A0 and
combined with the initial parameters (lime).

Consequently, the parameter update is again following the Kalman filter formalism from
Eq. (4.35) and (4.36). Compared to the regular filter, in this case an entire state given by
the additional prior is available. Therefore the projections in the Kalman filter becomes
an identity matrix and thus, the entire state is updated in the smoothing. So, the
smoothing can be considered as a measurement of λ itself.

In order to generalise this procedure to n measurements mi for i = 1, ..., n, a recursive
formulation can be found:

Psmoothed(λ|m1, ...,mn) ∝
[
Sb(s

′|λ)Pb(m2, ...,mn|λ)G(m1, λ,Σ
1
det)Sf (s|λ)P (λ)

]
· P (λ)

=
[
Sb(s

′|λ)Psmoothed(m2, ...,mn|λ)
]
· P (λ)

=Pb(m1, ...,mn|λ)P (λ). (4.47)

with the smoothed result Pb(m1, ...,mn|λ) according to Eq. (4.46) at the surface A0.
The term Psmoothed(mi, ...,mn|λ) for 1 ≤ i ≤ n describes the posterior pdf obtained at
Ai−1 used as likelihood. In order to evaluate the posterior pdf Psmoothed(λ|m2, ...,mn),
a recursive calculation is required. The termination condition of this recursion is given
at the outermost surface. Unrolling leads to a forward filtering up to the (n − 1)th
surface. Starting with Eq. (4.46) for obtaining the smoothed result at the (n − 1)th
surface, a backward loop from surface to surface occurs until A0 is reached. Eq. (4.47)
then delivers the final result. In summary, at least one entire forward and one entire
backward extrapolation and filtering is required.
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4.3.2 Combinatorial Kalman Filter

In Sec. 4.3.1 the posterior pdf evaluation is discussed under the assumption of a distance
ordering. The presented concept will be extended in the following by allowing an ar-
bitrary ordering, leading to a more general formulation. This affects the extrapolation
and the filtering. Since the smoothing is an unrolling of a linear sequence of utilised
measurements, the formalism remain unchanged. While the first part of this section still
considers a single particle, in the second part the formulation is generalised to many
particles.

4.3.2.1 Extrapolation

A general description of an extrapolation is given in Eq. (4.38) with the main property in
Eq. (4.39). The considerations in Sec. 4.3.1.1 allow to formulate extrapolation in terms
of an object loop in order to reach a destination.

In the following it is assumed that a starting surface A0 and a single target surface A1

with a measurement exists. Due to Eq. (4.40), the likelihood demands an extrapolation
in forward and backward direction. Assuming n ∈ N discrete effects on the trajectory
due to the detector associated to surface AMi with i = 1, ..., n. The entire extrapolation
can be described following the concept of Eqs. (4.44) and (4.45). Unlike in this case, the
order of the discrete interactions Mf,i and Mb,i are not given but must be derived based
on the demanding measurement. Furthermore, the prior may restricts due to the mean
the contribution of surfaces as shown in Eq. (4.41), only a subset will be considered.
Therefore, the prior is the second selection criteria.

A path for the surface loop is necessary and the natural approach is thereby given
by starting from the prior parametrisation rather than from the target surface. As the
plain extrapolation S(s|λ) in the absence of additional discrete effects is considered to be
deterministic and therefore identical for each Mf,i or Mb,i, the shortest distance needs to
be selected. Using the interpretation from Eqs. (4.43) and (4.42), the requirement of the
shortest information transport distance as considered in Sec. 4.3.1.2 becomes mandatory.

The function

αf (sl|λ) =

∫ sl

0

n∑
i=1

Mf,i(sf |λ)dsf (4.48)

has up to k ≤ n extrema over the domain of the function sl ∈ [0,∞). These extrema,
denoted as αf (sjl |λ) form a finite set of parameters sjl . The minimum

smin
l = min

(
{s1
l , ..., s

k
l }
)

(4.49)

provides the minimal extrapolation distance in order to reach a discrete interaction.
Since the trajectory can be translated to a sequence of extrapolations in the surface
loop, the extrapolation of Eq. (4.44) becomes

Sf,α

(
s =

k∑
i=1

sil + s̃|λ

)
= S

(
s̃ = s−

k∑
i=1

sil|λ

)
·
k∏
i=1

αf (sil = smin,i
l |λ) (4.50)
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in the unordered case. An analogous solution Sb,α can be found for Eq. (4.45).

4.3.2.2 Single Track Reconstruction

The utilisation of the generalised extrapolation from Eq. (4.50) for the likelihood (4.40)
allows to apply the best extrapolation to the surface associated to a measurement. For
p ∈ N measurements associated to surfaces A1, ..., Ap with Ai ⊆ Rsi+ei , up to q ≤ p
filter steps are required in order to fit the track parametrisation provided by the prior
to the obtained measurements. In the simplification of a single particle which produced
the measurements, it can be assumed that each measurement demands an extrapolation
since it was produced by that particle.

The extrapolation due to the likelihood is thereby conceptually identical to the discrete
interactions. Hence, a similar formalism can be utilised for the likelihood constrained to
forward extrapolated

P (mi, sr|λ) =
1

VAi
+

∫ sr

0
Sb,α(s′|λ, s)

∫
Ai,s

δ(HOH̃i,sv −H0λ)

[
G(mi|HAiλ,Σ

i
det)−

1

VAi

]
dv

·
∫
Ai,s

δ

(∫
O
λOS(s|λO)P (λO)dλO −HOH̃i,sv

)
dvSf,α(s|λ)ds (4.51)

with the extrema function β and minimum distance smin
r

β(sr|λ) =

∫ sr

0

p∑
i=1

P (mi, sr|λ)dsr (4.52)

smin
r = min>0

(
{s1
r , ..., s

q
r}
)

(4.53)

based on Eqs. (4.48) and (4.49). For convenience reasons smin
r = 0 is excluded. This

prevents multi-counting of measurements, when defining the track fitting as

Psmoothed(λ|m1, ...,mq) ∝

[
Sb,α(s′|λ)Pb(m1, ...,mn|λ)

(
p∏
i=1

P (mi, 0|λ)

)
· Sf,α(smin

r |λ)P (λ)
]
· P (λ)

=
[
Sb,α(s′|λ)Psmoothed(m1, ...,mq|λ)

]
· P (λ)

=Pb(m1, ...,mq|λ)P (λ). (4.54)

as generalised workflow of Eq. (4.47). While p measurements are available, due to the
parameter manipulations from Eqs. (4.35), (4.36), (4.43), (4.42) and (4.46), a surface
may become unreachable and is therefore not part of the smoothed parametrisation.

4.3.2.3 Multi Track Reconstruction

The last stage of generalisation is to consider an entire event consisting of n ∈ N parti-
cles. From those particles n′ ≤ n particles produce measurements in the detector that
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4 Theory of Model Based Track Reconstruction

allow the reconstruction of their tracks. Furthermore, the ith particle produces ki mea-
surements. The jth measurements mi

j of the ith particle is thereby associated to the

surfaces Aij . In difference to Sec. 4.3.2.2, the association of a particle to its produced

measurements is not assumed. Hence, it is assumed that Aij = Ai
′
j′ is even possible for

i 6= i′ ∨ j 6= j′. It is therefore convenient to utilise the p surfaces that contain q ≥ 1
measurements.

A further difference is the amount of particles considered. After forming the prior as
given in Eq. (4.16), each particle r can be considered to be modelled in a multivariate
normal distribution Pr(λ). The full (unnormalised) prior then becomes

P (λ) = G(λ|µλ,Σλ) ∝
n∑
r=1

G(λ|µrλ,Σr
λ) =

n∑
r=1

Pr(λ). (4.55)

The rightmost expression is thereby given under the assumption that particles in the
processing of trigger and seeding are distinguishable. Following the decomposition of
the prior into a sum of priors allows to express Eq. (4.4) as

L(λ|{mi
j}) = P ({mi

j}|λ)P (λ) =

n∑
r=1

P ({mi
j}|λ)Pr(λ) =

n∑
r=1

Lr(λ|{mi
j}) (4.56)

with the short notation {mi
j} = {m1

1, ...,m
1
k1
, ...,mn

1 , ...,m
n
kn
}. Thus, although multiple

particles are considered, the prior separation allows for the reconstruction of single tracks.
Compared to Eq. (4.51), the likelihood in this scenario is for convenience grouped by

surfaces and therefore indirectly to the associated measurements

P (Ai, sr|λ) =
1

VAi
+

∫ sr

0
Sb,α(s′|λ, s)

∫
Ai,s

δ(HOH̃i,sv −H0λ)

·

1

c

∑
j

G(mAi
j |HAiλ,Σ

i
det)−

1

VAi

 dv
·
∫
Ai,s

δ

(∫
O
λOS(s|λO)P (λO)dλO −HOH̃i,sv

)
dvSf,α(s|λ)ds (4.57)

with the normalisation factor c =
∑

j

∫∞
−∞ G(mAi

j |HAiλ,Σ
i
det)dm

Ai
j and the measure-

ments mAi
j that are associated to the surface Ai. The covariance matrix Σi

det describes
thereby a function of λ as the covariance matrix may depend upon the considered mean
an hence may differ for the individual measurements mAi

j . The grouping of measure-
ments associated to the same surfaces leads in this formalism consequently to a Kalman
filter update of a single prior Pr(λ) with multiple measurements. Although it can be
assumed that a particle produced at most a single measurement, since the association
of measurements to particles is not given, each measurement is a theoretical candidate9.
Before this issue is discussed, the reconstruction of the entire tracks is considered.

9The validity of the CLT is assumed to be granted in the following.
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Eq. (4.54) describes the track fit using Kalman filtering and smoothing. Equivalent to
the likelihood in the general case, the surfaces containing measurements are favoured in
the formalism rather than the measurements itself. Thus, the extrema function β from
Eq. (4.52) becomes

β′(sr|λ) =

∫ sr

0

p∑
i=1

P (Ai, sr|λ)dsr

and finally, the final track parameters for a single prior Pr(λ) are given by

P rsmoothed(λ|{mj
i}) ∝

[
Sb,α(s′|λ)Pb({mj

i}|λ)

(
p∏
i=1

P (Ai, 0|λ)

)
· Sf,α(smin

r |λ)Pr(λ)
]
· Pr(λ)

=Pb({mj
i}|λ)Pr(λ).

The combination from Eq. (4.56) then delivers the global posterior likelihood. Although
this expression is very compact, it encapsulates many details and thus requires further
discussion.

After a filter step utilising the expression 1
c

∑
j G(mAi

j |HAiλ,Σ
i
det) from Eq. (4.57),

the prior becomes a sum of normal distributions. Therefore, the posterior pdf can be
handled as a sum, equivalent to Eq. (4.55). Considering each addend independently is
equivalent to a measurement-particle association performed at each surface. Therewith,
each addend can be extrapolated independently afterwards. Repeating this procedure
for multiple surfaces leads to an iterative branching of the prior. Furthermore this
implies that multiple branches may be filtered using the same measurements. This
leads to a combinatorial problem as the correct assignment for all surfaces are required.
On a higher level, this needs to be fulfilled for all addends in Eq. (4.56). From a
computational point of view, this problem needs to be handled using a suppression of the
branch production at each surface. A per surface suppression, e.g. by a weighted distance
between extrapolated mean and the measurement can be utilised in order to enhance the
chance to pick the correct measurement. Given multiple candidates, the decision of the
correct must be postponed. Given that a addend has picked the correct measurement
for the filtering then subsequent surfaces are likely to provide further measurements
that fulfil a suppression expression. A filter using the wrong measurement will lead to
a deflection of the particle trajectory away from the underlying true trajectory. Hence,
it becomes less likely to find subsequent measurements and finally the posterior pdf
will disperse. This feature allows for a second suppression of branch production at a
later stage. A third level is given by the combination of the posterior pdf of individual
seeds. As multiple seeds could be produced by the same particle, the redundancy in the
posterior pdfs can reduce the complexity. Additionally, if a measurement was produced
by a single particle then it can be assigned to at most one addend in the posterior pdf.

This procedure of parameter estimation allows due to the step-wise update of the
parameters an early rejection of measurement candidates. Accepted measurements on
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the other hand enhance the rejection possibilities for further measurements. Therewith
the total complexity of the event reconstruction can minimised. Beside this approach,
other concepts exist, e.g. based on a global χ2-minimisation. The expressions derived
above will thereby remain valid but tend to consider the entire event10 simultaneously
rather than utilising a sequence of measurements.

10For a single particle, the measurements reachable by extrapolation are sufficient. By considering the
entire event, all seeds can be treated simultaneously.
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To obtain a meaningful physical information from a detector in particle collisions the
data have to be processed. The processing involves the reconstruction of the particles
and their tracks, produced within the event. Since electronic detector read-outs are used,
the data can be provided digitally and can be easily processed with a dedicated software.

Throughout the years different particle detectors were designed and built in order to
answer different questions. Although the underlying problem of reconstruction remains
the same, the software based track reconstruction had to be performed for these de-
tectors. As the hardware architectures and programming languages evolved constantly
during this period, the best fitting software for a detector was in a permanent change.
The limitation of computing resources demanded optimisations for a particular detec-
tor layout. As a result of this progress, similar or even the same problems were solved
multiple times by different collaborations. This was even enhanced due to the fact that
track reconstruction is rather considered as a black box, necessary to answer the physical
questions rather than a field in particle physics. Hence, it is a branch of science with a
small community.

Out of the given limitations in person power, the repetitive (similar) implementation
of the same problem solutions and the future challenges in particle physics (e.g. see Sec.
3.3.4), the project A Common Tracking Software (ACTS) [103, 104] was born. The
general goal is to build an open source software framework that is capable of operat-
ing independent of the detector layout by finding a description that is valid in general.
As multi-threaded executions of software are the standard modus operandi, the soft-
ware is designed as explicit thread-local data handling (currently1) using the C++17
standard [105].

The project is planned to be a long term maintainable and portable framework. Hence,
the set of dependencies is kept at a minimum. The baseline of the project is provided by
the ATLAS common tracking. Since the required components necessary for a tracking
software and their interplay are known, the design of a detector independent framework
gets simpler. Therewith, an entirely modular design was constructed with a computation
workflow using template classes which are resolved at compile time. As a specific collab-
oration may rely on certain optimisations and specifications that can not be implemented
in general, the design allows replacements and extensions wherever necessary.

Within this chapter several key components of ACTS as a specific solution to the
track reconstruction problem are presented. The description is restricted to parts that
are discussed in the context of this thesis. In the first part of this chapter, the detec-
tor geometry and the material are described. Afterwards, the parametrisation of the

1This standard is used at the time of writing this thesis and may change in the future.
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trajectory are mentioned alongside the parametrisation of measurements and the stor-
age concept. As part of this thesis, various contributions were added to the first two
parts. In the last part of this chapter the pre- and post-processing of the reconstructed
tracks, the seeding and vertexing procedures are briefly described. Thereby, the data
pre-processing for the seeding, the space point formation was implemented into ACTS
as part of this thesis.

5.1 Detector Description

In Chapter 4 it was implied that the extrapolation describes the trajectory of a particle
with a given parametrisation by modifying the parameters under influence of the exter-
nal environment. Furthermore, the extrapolation of the parametrisation occurs between
detector components. Hence, a digital representation of the detector and its environ-
mental conditions is necessary. Within this section the detector geometry, the magnetic
field and material description in ACTS is presented.

5.1.1 Detector Geometry

As shown in Sec. 3.2 and 3.3 a particle detector contains a large variety of different
components. Besides the sensitive components like pixel modules, the detector requires
staves, cables, pipes etc. for the arrangement, powering and cooling of the compo-
nents. Hence, a detailed description of the detector is rather complex. In the context of
Sec. 3.3.4, it is obvious that reasonable simplifications are necessary in order to provide
a sufficient large throughput.

A common structure as simplification and also the structure within ACTS is based
on the geometry concepts surface, layer and volume. Those concepts are arranged hi-
erarchically. The concept is also intended to simplify the sorting problem of detector
components from Sec. 4.3. This will be further discussed in Sec. 7.7.

As these three geometrical concepts are entangled, a first overview of all components
is shown in Fig. 5.1. In the following the surface, layer and volume are presented in more
detail.

Surfaces

The core component of the detector geometry is the concept of a surface. A surface is
in general a two-dimensional area of various shapes. As a large variety of surfaces is
possible, the description in the following will be centred around the most common and
simplest surfaces as shown in Fig. 5.2.

The defining parameters describing their dimensions are treated independently of the
placement of the surface in space. For the placement an additional transformation is
required for translation and rotation of the object by defining an affine transformation.

Furthermore, a surface can be declared as active or passive surface. The former
denotes a surface that represents a detector module and hence is capable of producing
a measurement. For e.g. a pixel module, this would be represented as the green plane
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Figure 4.6.: Sketch of theway a fully detailed simulation geometry (a)models passive elements,
in addition to the sensitive elements shown in green. (b) shows a simplified
version, where all non-sensitive elements are approximated.

section 4.3). Moreover, the fully detailed geometry comes at the disadvantage of introducing
significant overhead during navigation. In this process, an algorithm attempts to figure out
which elements the particle propagation needs to target, as the trajectory is likely to intersect
them. With a geometry description this precise, the navigation process becomes a significant
performance bottleneck.

r1
r2

r3

Figure 4.7.: Sketch of the way sensitive elements are grouped into layers. Shown is an xz-view
of a number of sensors, arranged as in the ATLAS silicon detector barrels. They
are grouped into three layers based on their mounting radius. The layers are
indicated in different colors.

As a compromise between modelling accuracy and performance, the ATLAS tracking uses
a simplified geometry model [150]. It focusses on the sensitive elements, which are strictly
needed, while passive elements are discarded from the explicit description and approximated.
Figure 4.6b shows such a simplified geometry. Here, the sensitive elements are still shown in
green, and other elements are greyed out, indicating that they are discarded. The sensitive
elements are then grouped into layers, as sketched in figure 4.7. How exactly the grouping
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Figure 5.1: Illustration of a layer geometry in a common tracking detector. The shown part
represents a cut-out segment of e.g. a pixel detector. (a) shows the schematically
the composition of the different elements in the detector, involving both sensitive
and passive ones. (b) shows the simplified version, where all passive elements are
discarded (grayed out). The detector components is represented by a set of objects
from the geometry concepts with different specifications (see text). The figure is
based on Reference [103].

Figure 5.2: Overview of the most common surface shapes and the defining parameters.

surface in Fig. 5.1. A passive surface is e.g. given by a cylinder surface that represents
the beam pipe. These kind of surfaces measure nothing but either disturb the trajectory
(see Sec. 5.1.3) or represent a logical component (e.g. for layer and volumes). Finally, a
disc surface can be utilised to describe end-caps as in Secs. 3.2.2.1, 3.2.2.2, 3.2.4.2, 3.3.1
or 3.3.2.

Layers

While the general formulation of the track reconsutruction in Sec. 4.3 required an order-
ing on a surface to surface level, the complexity can be reduced by adding higher level
sorting concepts. The first concept is the layer. By considering the arrangement of the
detector components e.g. in Figs. 3.15 and 3.22, it is a natural approach to group the
surfaces in terms of r- and z-direction. Consequently, a range for those parameters has
to be defined.

A layer in ACTS can be considered as three dimensional body. It follows the shape
definitions from the surfaces but has an additional thickness parameter. This leads to
the construction shown in Fig. 5.1 (b). The representing surface at the centre can be
understood as a cylindrical surface. The thickness then defines the approach surfaces.
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The approach surfaces define the boundaries of the layer. As the name already suggests,
the layer itself is built by a set of surfaces.

Inside the layer surfaces may be stored. If the layer contains sensitive surfaces, the
layer is labelled as sensitive layer, if passive surfaces are stored as passive layer and
without any surfaces as navigation-layer2. The storage itself is organised in an array.
A sorting of the array allows to estimate possible subsequent surfaces that the particle
trajectory may intersect. Hence, for a given particle position, surfaces on the opposite
side of the detector are not taken into account. By requiring that the particle trajectory
intersects the approach surface, the surface content is considered only after the particle
entered the volume defined by the layer and ignored as soon as the particle leaves it.
The representing surface on the other hand allows a fast navigation to find possible
layers along the trajectory. Surfaces contained in a layer are only considered when the
trajectory intersects the layer. This simplifies the surface finding complexity drastically
but requires a search for suitable layers.

Volumes

The volumes represent the highest level in the geometry hierarchy. The definition of
the volume shape and dimensions is equivalent to the layer. The main idea behind this
geometry object is to further reduce the complexity. Similar to the idea of grouping
pixel or SCT modules within a certain range into a layer, the entire pixel detector or the
SCT can be grouped into a volume. Hence, a volume is meant to contain a set of layers.
In comparison to the surface array for the layers, the layers contained in a volume have
a non-zero thickness. Thus, it is possible to fill the entire volume with different types
of layers. While the sensitive and passive layers are provided by the detector geometry,
the space in between can be filled up with navigation-layers. Consequently, the volume
manages an ordered navigation from layer to layer. Hence, the naming of the navigation-
layer is given by the concept to navigate from one layer to another through this empty
layer.

The composition of a volume is slightly different from a layer. Compared to the latter,
a volume does not contain a representative surface. Although it can also be considered
as set of volumes, the approach surfaces of the layer are called boundary surfaces for the
volume. While the approach surface indicates whether the contained surfaces should be
resolved or not, the order is pre-defined by the sorting of the layers inside the volume. For
the volume as the top level geometry concept, this requires a different logic. This logic
is encapsulated in the boundary surface itself. In addition to the general information
about the surface (shape, dimension, position, orientation), these surfaces store the next
volume. Hence, whenever the trajectory intersects a boundary surface, the next volume
can be resolved and thus all subordinate objects in the geometry hierarchy.

Following the boundary surface logic, the possibility to store volumes inside the volume
was added. As this just provides boundary surface in addition inside the volume, a cut-
out volume can be constructed. The additional surfaces are then treated the same way

2The naming of this type of layer will be described together with the volume concept.
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as the original boundaries of the volume. By expanding the concept even further and
allowing to store surfaces in a volume and sorting them in an array, the similarity to the
layer gets larger. Finally, since the layers are arranged such that the volume is filled,
the same approach is possible using volumes. Thereby the top level navigation can be
replaced by the boundary surface portals. Hence, the layer concept is about to become
deprecated. Since at the time of writing of this thesis this concept is still in use, it was
presented for completeness.

The last property of a volume noteworthy is the possibility to attach material. This
feature allows to describe components such as calorimeters. The material will be intro-
duced in Sec. 5.1.3 and further discussed in Chapter 7.

Detector composition

In order to construct a detector, the geometry hierarchy is utilised. Starting from world
volume, a volume is constructed such that the entire detector is inside the volume. Inside
this volume, the different volumes of the detector components and the corresponding
contents are produced. Finally, the world volume has the possibility to find a certain
geometry object from a given position due to a hierarchical search. This allows e.g. an
initialisation of the start volume, layer and surface for an extrapolation. Each component
is thereby associated with a unique geometry identification (geoID). Hence, the next
objects can be resolved automatically. Once the geometry construction is finished, the
detector becomes immutable.

As the alignment of the detector components may change over time, the positioning
and orientation of the components need to be adjusted accordingly. While the nominal
detector is immutable, a special interface allows to handle the alignment with respect to
the nominal transformation. The so-called geometry context is an object that is moved
through the hierarchy and accessed whenever accesses to the position and orientation
of an object3 is requested. The nominal detector geometry is shared among multiple
threads. As the context itself may change between events, it has to be stored thread-
locally.

A detector consists of many different objects and relies consequently on an appropri-
ate way to write, store and read the geometry data as well as the relation between the
constituents. For ACTS different tools such as DD4hep [106] or TGeo [107] are sup-
ported on top a ACTS-standalone implementation. Thus, as the chosen modelling tool
is experiment specific, the access of the ACTS framework gets simplified.

5.1.2 Magnetic Fields

A detector utilises a magnetic field to provide momentum and charge information about
the particle from the curvature of the trajectory. Although, this is a property provided
by the detector, the field is for the software application decoupled from the underlying

3The objects are restricted to the representation of detector components, since logical structures can
be defined such that the detector components have to remain inside for all reasonable alignment
conditions.
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detector geometry and is treated independently from the detector. This design allows
to define an arbitrary field setup.

Within ACTS two different major types of magnetic field models are implemented:
Constant and interpolated. The former represents a field with the property B(r) = const,
i.e. it is independent of the position r. Although this is a strong simplification of the true
description with respect to Figs. 3.14 and 3.19, this configuration offers an opportunity
for debugging. Furthermore, the absence of a magnetic field, B(r) = 0 T can be easily
described by this model.

The other magnetic field type represents a more realistic description. This represen-
tation is based on a three dimensional grid as shown in Fig. 5.3. For each grid point,
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Figure 6.5.: Illustration of the magnetic field cell implementation. This example is for a two-
dimensional field map in the xy-plane. The colored circles represent propagation
steps where a magnetic field lookup is performed. Before crossing the boundary
into the next cell, each step can reuse the previously retrieved field cell.

One approach to provide magnetic field data is to interpolate between a grid of known field
vectors. This is implemented in ACTS in the InterpolatedBFieldMap class. The class can
calculate the magnetic field at any given point inside the grid by retrieving the surrounding
grid points, and interpolating between them. The set of surrounding grid points is referred
to as a field cell. It is possible to use symmetries, for example a radial symmetry around the
z-axis, to reduce the size of the required grid.

To speed up field access, magnetic field providers are able to use caching. Depending on
the concrete type of the field source, the way a cache works can vary. For the case of the
interpolated magnetic field, the cache contains a field cell. As illustrated in figure 6.5, the idea
is based on the observation that consecutive field requests will very often only move a small
amount and end up in the same grid cell as the previous call. The figure shows consecutive
positions, at which the magnetic field needs to be retrieved by the numerical integration. For
positions of the same color, the field cell retrieval will return the same call as previously. By
caching this field cell and only retrieving a new one if the current position is outside of it, field
access performance can be significantly improved.

Other magnetic field providers are free to implement a suitable method of caching. How-
ever, the providers need to conform to a certain interface, and need to expose a Cache type.
An example for a pseudo-field-provider is listed in listing 6.5. The struct FieldProvider

implements the getField method which accepts a position, and an instance of the nested
struct Cache. The client is supposed to instantiate this cache type and provide the instance
to every field request. The cache is assumed to be thread-local by the field provider. In the
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Figure 5.3: Overview of a two dimensional grid structure providing discrete values of the mag-
netic field and defining the area of a cell. The black arrow indicates a trajectory
in the x-y-plane. The coloured dots represent individual magnetic field accesses for
the trajectory estimation. The colour code refers to the cell that provides the field
values [103].
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the magnetic field is measured and provided by a map. The continuity of this field is
built with a polynomial interpolation between grid points. As the search for a polyno-
mial function describing the entire magnetic field is computationally too complex, the
description is reduced to a smaller, local volume, the so-called cells. This volume is
defined by the surrounding grid points as shown as black lines in Fig. 5.3. Hence, for a
map in dim(Map) dimensions, only the 2dim(Map) points are utilised for the construction
of the polynomial of first order. The polynomial is evaluated for all points inside a cell
and thus calculated once per cell.

Similar to the detector geometry, the magnetic field may change over time. For that
purpose, a second context object is required and passed around to all components ac-
cessing the field. This allows for utilising per event the corresponding description of the
magnetic field.

5.1.3 Detector Materials

The detector geometry in ACTS applies the simplification of surfaces, layers and volumes
as representation of the detector geometry. While the detailed geometry allows for
interactions in air and passive components of the detector, a similar description has to
be utilised in the simplified approach. By considering the layer as a pure logical concept,
the surfaces and volumes have to provide a material description that is comparable to a
detailed description.

However, before the attachment of material to the geometrical objects can be dis-
cussed, the question about how material can be described needs to be considered first.
As shown in Fig. 5.1, the detector components can be thought of as squashed. Further-
more, the material interaction at a single point along the particles trajectory has to be
similar to the sum of interactions that occur in the detailed description. By attaching
material to these components, it is obvious that the material properties in ACTS do not
refer to real materials but have to be a meaningful combination. The materials attached
to the components, do not reproduce all the macroscopic properties of the detector,
however should resemble the properties of the real materials that are relevant for the
tracking.

In Chapter 7 and 9 the material interaction of a particle are discussed from the per-
spective of reconstruction and simulation respectively. The considered properties are the
radiation length X0, the nuclear interaction length L0, the atomic mass A, the nuclear
charge number Z and the molar density ρ. Those numbers can be utilised to describe
the material effects of a particles trajectory.

The construction of effective material numbers for the particle interactions will be
considered initially for surfaces such as shown in Fig. 5.1. The underlying principle
relies on side-by-side comparison between the two geometry representations. While
the right hand side is used in ACTS, the left one can be modelled in Geant4. Since
the latter relies on the detailed description, it is capable of providing the individual
materials. Furthermore, the Geant4 simulation extrapolates a particle in steps through
the detector. Hence, it delivers the material at many positions along the trajectory.
Alongside the material properties, the length of a step in the material is recorded.
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The Geant4 framework performs usually a detailed simulation of particles and their
interaction. In order to avoid any kind of interactions, the concept of the geantino is
used. This special Geant4 uncharged particle does not interact with any material. Thus,
the straight line trajectory is comparable with the ACTS pendant.

For a single track in Geant4, for each step the ACTS surface next to its position is
searched and assigned to a matrix of bins. This matrix allows for a non-homogeneous
description of the squashed detector elements. Since the trajectory is a straight line,
a Geant4 track will populate at most a single bin on a surface. This particular bin
may obtain multiple steps assigned. Hence, the average of all assigned steps has to
be calculated. The individual material properties are weighted depending on the step
length through a particular material.

As for the magnetic field, the matrix defines a grid attached to the surface. Hence,
the same interpolation strategy can be applied as before. Analogously, a homogeneous
material can be defined.

The other type of material map necessary is for volumes. Thus, the description of
e.g. calorimeters becomes possible. This variant of a material map was added in the
context of this thesis as a consequence of the implementation the corresponding extrap-
olation procedure (see Sec. 7.4). By drawing parallels to magnetic field constructions, it
becomes obvious that the volume material follows the same concept. The grid, cell and
interpolation concept can be also utilised for a volume oriented material. In comparison
to the surface material, the projection does not occur to individual surfaces and hence to
different two dimensional grids but to a three dimensional grid as in the case of magnetic
fields. While the latter can be expressed everywhere, the volume material is restricted
to positions inside the volume. Hence, the grid is resolved only if the position is within
the volume.

Again, the collection of tracks and the averaging of material properties as in the surface
material mapping has to be performed. While the straight line intersects the surface at a
single bin, the same trajectory may intersect multiple bins inside the volume. Hence, the
plain collection of material and the corresponding thickness, denoted by the step length,
in a certain interval around the surface is insufficient. For a given grid, the simplest
approach is a selection of (random) positions in the volume, evaluating the material and
accumulating it on the grid points. However, in order to be compatible with the surface
material mapping, the straight line concept is favoured in this scenario. For a volume,
a step in the same volume is divided into multiple steps. Although this remains an
approximation, it allows the association of individual positions to different grid points.

5.2 Event Data Model

In Chapter 4 the parametrisation of particle properties and measurements were intro-
duced. While this concept was kept general with the only restriction to continuous
parameters, in the following the set of parameters used in ACTS will be introduced
together with the main properties and required calculations. In Chapter 7 a derivation
of the parametrisations will be presented, providing an additional reasoning for the used
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parameters. In the second part of this section, additional requirements for measurements
are presented.

5.2.1 Track Parametrisation

Throughout the Chapter 4 the parametrisation was projected between different coordi-
nate systems using the projection matrices H. Since the detector geometry in ACTS is
simplified to volumes and surfaces, the logical consequence is that two different repre-
sentations are required. Furthermore, as Eq. (4.31) shows, the chosen parametrisation
benefits from being the same as for the measurements. As both are defined to be iden-
tical, only the particle parametrisation will be considered in the following.

Starting with the volumes, a particle is located inside the three dimensional space and
may move through this volume. Therefore, the position and the direction vector are
required. Furthermore, the curvature, denoted by the momentum p and the charge q, is
required. The vector describing a particles trajectory is given by

λglobal =



x
y
z
[t]
T x

T y

T z
q
p


(5.1)

with the Cartesian coordinates x, y, z of the particles position as defined in Sec. 3.2.1.
The directions T x, T y, T z are used in Cartesian coordinates with the property

d(x y z)
ds∣∣∣d(x y z)
ds

∣∣∣ = (T x T y T z).

Due to the combination q/p a continuous parameter is constructed. For a neutral parti-
cle the parameter is replaced by 1/p. The last parameter in this vector is the time t. The
square brackets denote that this parameter is not mandatory to describe the trajectory
but beneficial for the complexity of track reconstruction. This parameter is extrapolated
among the others and hence mentioned here. In addition to the extrapolated param-
eters there are parameters such as the particle type and its mass that manipulate the
trajectory. However, those parameters are discrete and hence not a part of the manipu-
lation due to extrapolation but fixed initially. Since the parameterisation is given in the
coordinate system of the entire detector, it is called a global parametrisation.

Another common term is free parametrisation. The latter one refers to the property
that the parametrisation is expressed free from surface constraints. Consequently, a
parametrisation expressed in the coordinate system of a surface is called bound or local
parametrisation. Since the parameters are defined in the context of a surface, the set of
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required parameters can be smaller compared to the global parametrisations. In ACTS
the parameter vector

λlocal =



l0
l1
φ
θ
q
p

[t]

 (5.2)

is used. The angles φ and θ are used as defined in Eq. (3.3) and thus replace the Cartesian
direction vector. For q/p and t the same statements as for the global parametrisation
are used. The position is denoted in the parameter l0 and l1. These two parameters
are not defined in general but depend on the underlying surface type or convention. As
Fig. 5.2 implies, for a plane surface a Cartesian coordinate system is used and for discs
polar coordinates. For a cylinder surface, a point on the surface is identified by rφ- and
z-coordinates.

In addition to the different surface shapes, a special surface type has to be mentioned.
The curvilinear surface is defined as an unbound, plane surface with the normal vector
parallel to the direction vector of the global parametrisation. The local position is set to
the origin of the coordinate system. Thus, it is possible to define a local parametrisation
at any point along the trajectory.

5.2.2 Coordinate Transformations

Between the global and local representation of the parametrisation, the transformation
is required. While time and q/p are treated independent of the underlying parametri-
sation, the other parameters have to be transformed. Since the surface shapes can be
arbitrary and the utilised coordinate system per shape is not unique, only the three types
from Fig. 5.2 as the most important ones in the context of this thesis are considered.
The required transformations are restricted to a local to global transformation and vice
versa. A local to local transformation can be considered as a combination with global
parameters as intermediate state.

For any surface, the direction vector from Eq. (5.1) is transformed to an angular
representation as given in Eq. (5.2). The relation between those representations is given
by the spherical coordinates on a unit sphere

Tx = cos(φ)sin(θ)

Ty = sin(φ)sin(θ)

Tz = cos(θ).

(5.3)

Consequently, the inverse transformation is given by

θ = arccos

 Tz√
T 2
x + T 2

y + T 2
z


φ = atan2 (Ty, Tx) .
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with atan2, the piece-wise defined extension of the inverse of the tangent.
The spatial components on the other hand depend on the surface type. Hence, ad-

ditional considerations are required. The position and orientation of each surface is
defined by an affine transformation of the geometrical centre. For a plane surface, the
geometrical centre is on the surface. From the orientation, the normalised normal vector
T can be obtained. The Cartesian coordinate axes U and V are then defined as

U =

{
X × T, for T ‖ Z
Z × T, else

V = T × U

with the unit vectors X and Z along the x- and z-axis respectively. Thus, any global
point on the surface can be expressed as linear combination of the vector to the centre
and the base vectors U and V .

For a disc surface, a similar procedure is performed with an additional transformation
from the local Cartesian to polar coordinates given by

x = rcos(φ)

y = rsin(φ)

and the inverse

r =
√
x2 + y2

φ = atan2(y, x)

with the coordinates x and y expressed in the local coordinate system of the disc. The
l1 on a cylinder surface is given by the z-components of the global parameters. The l0 is
given by the predefined radius of the cylinder multiplied with the azimuthal angle from
the polar coordinates equivalent of the global (x y) vector. The inverse transformation
for all surface types is given by the transformation in reverse order.

A surface that represents e.g. a detector module has a limited size. This size is
defined by the parameters shown in Fig. 5.2. Although the vectors defining a point on a
surface would lead to a reasonable result, the point is not within the bounds. Hence, an
additional step is required for the transformation to local coordinates by testing whether
a global point is within the bounds of the surface or not. For an unbound surface that
is not representing a real object like the curvilinear surface, this test is not performed.
The inverse transformation does not rely on such constraints.

5.2.3 Measurement Description

A particle trajectory relies on the parameter vectors from Eq. (5.1) and (5.2) in order to
perform the extrapolation. A sensitive surface on the other hand may measure a subset
of those parameters. Hence, the vector representing the measured parameters is not
just usually smaller but may also vary between different detector principles. For that
purpose, the ACTS measurements store in addition to the value of the parameters the
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information which parameter the value represents. Since the surface coordinate systems
are defined prior and the measured indices are known from the detector architecture,
the projection matrices H can be expressed as sparse matrices from Eq. (4.31).

As mentioned in Sec. 4.2.1, the parameters describing a measurement are given by the
mean and covariance matrix. In order to obtain those values, the data pre-processing step
clusterisation is required. Due to the finite pitch of e.g. a semiconductor, multiple bins
(pixels or strips) may produce a signal. After correcting for the Lorentz-angle, Eq. (3.4)
shows the uncertainty obtained from a single bin. The combination of multiple bins then
provides the required parameters. For the combination itself, a weighted geometrical
mean is used on the surface with the weights being either uniform distributed among
the bins (digital readout) or utilise additional information about the particles trajectory
(analogue readout).

As the measurement parameters do not necessarily constitute a full parameters vec-
tor, a global transformation is not applicable in general. As it relies on the information
about the measuring surface, the corresponding geoID is stored withing the measure-
ment object. This also allows to trigger the extrapolation to the corresponding surface.
Another purpose of the storage of the corresponding surface is the calibration. After the
extrapolation of the particles parameters to the surface and before the Kalman filter up-
date is performed, the position on the surface allows to correct the measurement. Since
the measuring components e.g. the wires in the TRT or MS are sagging at the centre,
the measurement position can be corrected.

Since ACTS can be used in different experiments, the interface between the measure-
ments and the experiment specific implementation may differ. In order to overcome
this issue, the linkage of the parameters to the corresponding surface and the related
methods is templated with the requirement of a certain API.

5.3 Prior Generation and Posterior Utilisation

In Sec. 4.2.2 the model of a prior was introduced. As the only software related part of
its construction is the seeding, the general idea is shown in Sec. 5.3.1. In Sec. 5.3.2 the
reconstruction of the vertices using the found tracks is presented.

5.3.1 Seeding

The seeding in ACTS is based on algorithms from the ATLAS software [108]. By combin-
ing measurements, an initial guess for the prior is produced. Compared to the Kalman
filter in Chapter 4, the seeding does not rely on an accurate treatment of the data.
Thus, the calculation can become faster and a double counting of measurements due to
the filter is prevented. Furthermore, the seeding combines space points (SPs) instead of
measurements. In the context of this thesis, the calculation of SPs were translated from
the ATLAS software into ACTS. A derivation can be found in Appendix B. The SPs
are three dimensional points (four dimensional if the time is also measured) in global
coordinates. Hence, the obtained representations of the measurements are expressed
spatially independent from the measuring surface. Since SPs are usually formed from
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pixel and strip detector data, the transformed spatial information describes the entire
measured parameter space.

Starting with the initial assumption that a track originates from a point near the
z-axis, multiple SPs have to be combined in order to obtain a prior estimate. From
parameters in Eq. (5.1) or (5.2) at least three points are required: a single provides
the spatial information, a second the direction additionally, the third the curvature and
hence q/p. Due to this minimum requirement, the number of layers in a tracking detector
are fixed.

The seeding algorithm in ACTS is independent of the extrapolation function from
Eq. (4.38). This is achieved due to the assumption of an almost homogeneous magnetic
field, directed in z-direction. Hence, the trajectory becomes a helix. Within this model
SPs from three layers are used and combined to a helix. In order to obtain reasonable
seeds afterwards, the combinations have to fulfil angular conditions in order to be valid.
This combination occurs using multiple iterators. The middle layer is iterated once.
For each middle layer SP, a fitting inner layer SP and an outer layer SP is searched
independently.

Thus, two sets of doublets are obtained per middle layer SP as the common point. In a
second iteration, the doublets are combined under weights depending on the direction of
the curvature and the minimum distance to the z-axis. Additionally, experiment specific
cuts can be performed in order to increase the purity of the seeds. The purity in terms
of seeding is given by requiring that per particle that traversed the detector a seed exists
whereas seeds from different particles or noise have to be suppressed. The number of
seeds from the same particle should be reduced to ideally one.

5.3.2 Vertexing

The particles traversing the detector have their origin in so-called vertices. After the
tracks and their parameters are obtained from the reconstruction, the data are utilised to
find the vertices. For this search all reconstructed particles are utilised, independent of
their charge. The vertices are categorised as primary and secondary vertices. Primaries
are directly related to the pp-collisions in the beam pipe whereas secondaries consider
e.g. particle decays. The former vertices are usually close to the z-axis, the latter spread
over a large radial region. Depending on the process, secondary vertices may be found
inside the detector and between the sensitive surfaces. While the beam pipe can be con-
sidered as constraint for primary vertex locations, for the secondary vertices additional
degrees of freedom are present. Hence, the secondary vertexing is more complex and
thus out of scope of this thesis. In the following, just primary vertices are considered.

To simplify the presentation of the physics processes that take place during the particle
collision event a concept of vertex is introduced. The vertex can be seen as a space point
at which one or several particles were produced. During the event reconstruction the
vertices are located as the most probable origin point of selected particles assuming
these came from the same point. This is usually at smaller radii than the first pixel
layer. As a representation helper of the track parameters at the vertex, the concept of
perigee surfaces are utilised. This special kind of surface serves as standalone expression
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of the parametrisation, i.e. the reduction of necessary parameters is not obtained by the
additional storage of surface information. In order to achieve this reduction, the perigee
surface is defined as a line pointing in the z-direction. Furthermore, the trajectory has
to be expressed at the so-called point of closest approach (PCA). This point along the
trajectory is defined as the point minimising the distance between the trajectory and
the z-axis. The parameters l0 and l1 are called d0 and z0 respectively. While the latter
parameter is the z-coordinate in global coordinates, the radial position is encrypted in
d0. At the PCA, the relation x

y
0

 ⊥
 T x

T y

T z

 ∧
 x

y
0

 ⊥
 0

0
z0


allows the construction of the vector c with

c ≡

 0
0
z0

×
 T x

T y

T z

 ‖
 x

y
0


which by construction points at the same direction as the radial distance to the PCA
with respect to the z-axis. Hence, d0 is defined as

√
x2 + y2. The orientation of the

local position vector is obtained from a dot product of c and (x, y, 0), leading to a sign
flip of d0 if its smaller than zero. The construction allows to uniquely reconstruct the
global position using the provided information.

The location of the perigee surface, i.e. the location of the line itself is related to the
position of the vertex. Hence, re-calculations of the track parameters may occur. With
the track parameters expressed in perigee parameters, the goal of vertexing is to find the
position and if available the time of the vertex. By combining the means and covariance
matrices of the tracks with respect to an estimated SP of the vertex allows an iterative
adaption [109] of the vertex parameters based on a χ2-minimisation. For interactions
with pile-up, more advanced methods like the Adaptive Multi-Vertex Fitting [110] are
necessary as it is not prior known which track belongs to which vertex. The particles are
then assigned with a certain weight to a vertex and the final assignment is performed
iteratively on the entire set of vertices. In the context of the bayesian smoothing from
Chapter 4, the combination of multiple tracks in the context of vertexing is linked to the
utilisation of data encapsulated in the track parametrisation for the parametrisation of
another.
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The ATLAS detector recorded during Run-2 data from up to 〈µ〉 ≈ 70 pp-collisions per
bunch-crossing as shown in Fig. 3.9. With the beginning of HL-LHC era it is expected
to obtain a pile-up of 140 to 200. In order to estimate the computational requirements
for the high pile-up track reconstruction, a high-µ run was performed in 2017. The
dependency of the reconstruction time on the pile-up is shown in Fig. 6.1. It is observable

Figure 6.1: Reconstruction time as a function of the mean pile-up of the ATLAS Run-2 detec-
tor [111].

that the reconstruction time grows exponentially with the pile-up. While this pile-up is
still below the expected HL-LHC pile-up, it can be concluded that tracking will become
a challenge in Phase-II. The fraction of track reconstruction contributing to the total
CPU requirements of the ATLAS experiment is shown in Fig. 3.27. As it is one of the
major components in the total consumption, any computational improvement in this
category would provide a large benefit to the overall consumption. Furthermore, the
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predictions for the future demands of CPU resources of the ATLAS experiment, shown
in Fig. 3.26, imply that the CPU consumption has to be reduced drastically1.

The high pile-up run from 2017 was performed with the Run-2 ATLAS detector.
This detector was designed for a pile-up scenario of 〈µ〉 . 23 and hence, this run was
performed at up to ≈4 times this design value. Furthermore, the software used for
the track reconstruction was applied unchanged in this environment. For the HL-LHC,
the detector will receive several hardware upgrades. Additionally, the tracking software
also needs to be optimised for those conditions. While the high pile-up run provides
a baseline of the required tracking CPU consumption, R&D has to be performed in
order to optimise the software. For that purpose, several initiatives dedicated to achieve
this goal were taken. An overview of the optimisation of the current tracking software
is shown in the following together with the resulting CPU requirements. Afterwards,
the fast track reconstruction [112, 113], a study for further CPU utilisation reduction
that was created in the context of this thesis, is presented and compared to the initial
optimisation.

6.1 ATLAS Phase-II Tracking

The ATLAS Inner Detector will be replaced by the Inner Tracker for Phase-II. Its re-
placement is motivated by several aspects. One aspect is that the Inner Detector will
reach the end of its lifetime due to radiation damage. On the other hand, the ID operates
already above the design pile-up conditions and thus at its bandwidth limit. The high
pile-up is especially problematic for the TRT. At a pile-up of 〈µ〉 = 70, the occupancy
in this detector part is up to 50% [113]. In order to provide the optimal tracking per-
formance in the HL-LHC era, the ITk is designed to handle the upcoming conditions
and to assist the tracking CPU requirements. Furthermore, the range in pseudorapidity
becomes larger compared to the ID and the amount of sensitive layers gets increased
as shown in Fig. 3.22 (left). The material in the detector and the required bandwidth
is designed to be kept at a minimum in order to provide ideal tracking conditions. At
the same time the average amount of hits per track is increased to at least nine hits as
shown in Fig. 3.22 (right). As a consequence of the optimised detector hardware, the
cuts applied to the track reconstruction for the ITk can become tighter compared to the
ID [114]. An overview of the applied cuts is shown in Tab. 6.1.

The track selection together with the expected number of hits per track results in high
and stable tracking efficiency for the entire range of |η| < 4 while the reconstruction of
fake tracks gets reduced. A comparison is shown in Fig. 6.2. These plots imply the
potential benefit of the ITk in comparison to the ID detector layout for Phase-II.

1Although this motivation for this chapter remains valid, it has to be noted that the study presented
within this chapter was performed before the latest computing requirements extrapolations from [90]
were created. Consequently, the considerations in that report already incorporate the results of this
chapter.
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6.1 ATLAS Phase-II Tracking

Requirement Pseudorapidity interval
|η| < 2.0 2.0 < |η| < 2.6 2.6 < |η| < 4.0

Pixel+Strip hits ≥ 9 ≥ 8 ≥ 7
Pixel hits ≥ 1 ≥ 1 ≥ 1

Holes ≤ 2 ≤ 2 ≤ 2
pT [MeV] > 900 > 400 > 400
|d0| [mm] ≤ 2 ≤ 2 ≤ 10
|z0| [cm] ≤ 20 ≤ 20 ≤ 20

Table 6.1: Set of cuts applied for the ITk default track reconstruction from Reference [86].
Holes are counted as missing hits on active sensors for track candidates. d0 and z0
are defined with respect to the mean position of the beam spot.

Figure 6.2: Comparison of the efficiencies (left) and fake rate (right) between the ID at 〈µ〉 = 20
and the ITk at 〈µ〉 = 200 as a function of |η| [88].

6.1.1 Computing Requirements

The ITk will be installed in the ATLAS detector for Run-4 and thus, all considerations
are related to simulations. While the detector is currently designed and constructed,
the same holds for the tracking software. The track reconstruction simulations of the
ITk are performed utilising the Run-2 software. Within this environment, the major
contributors to the event reconstruction time are given by the (Silicon) Track Finding
and the Ambiguity Resolution as shown in Tab. 6.2 in units of HS06s2. The former
refers to the combinatorial measurement-track association. The latter term refers to the
association of multiple tracks to a single measurement and the reconstruction of the same
track from multiple seeds. In addition, a major contribution to the CPU consumption
just present in the ID is given by the TRT and Back Tracking3.

Track reconstruction aims to provide the most accurate results of the tracks produced
in an event under the circumstances of the data provided by the detector. The same

2This unit represents a CPU independent measure of the required computing [91].
3This terms refers to the extension of track segments in the TRT into the silicon detectors of the ID.
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Detector 〈µ〉 Cluster Space Si Track Ambiguity TRT+Back Primary Total
Finding Points Finding Resolution Tracking Vertex ITk/ID

ITk Layout 200 22 6.5 78 97 - 6 219
Run-2 20 1.5 0.7 23 15 19 0.5 64

Table 6.2: Averaged CPU requirements per event for the individual stages of track reconstruc-
tion together with the total requirements. The table displays the requirements of
the ITk at 〈µ〉 = 200 and the ID at 〈µ〉 = 20. Both setups use the Run-2 software.
The numbers are given in units of HS06s. The table is taken from Reference [82].

holds for the configuration of the software. Here, additionally the computing budget has
to be taken into account. The CPU requirements shown in Fig. 6.3 shows the Run-2
software applied for different pile-up values using the ID and ITk. The latter utilised

Figure 6.3: Comparison of the CPU requirements for track reconstruction of tt̄ events between
the ID and ITk as a function of 〈µ〉. The contributions of the Track Finding and
Ambiguity Resolution are drawn separately [114].

the adapted set of track selection cuts from Tab. 6.1. This plot shows that the ITk
tracking CPU performance at 〈µ〉 = 200 is better than the Run-2 ID at 〈µ〉 = 60.
This improvement is obtained from replacing the detector architecture and adapting the
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current software accordingly. This setup at a more recent stage is used to extrapolate
the CPU requirements for the future of the ATLAS experiment [90]. This setup, labelled
as Baseline is shown in Fig. 3.26 (left) and consumes ≈ 45% of the total CPU resources.
Although the new detector will reduce the tracking time drastically, it is still far above
the estimated amount of available CPU resources4.

The tracking speed has to be improved with respect to the expected HL-LHC condi-
tions. This can be achieved in two ways: improving hardware and software performance.
The former is given by the detector layout and already covered in the design of the ITk.
Also the utilised computing hardware is a variable that can be considered. Beside im-
provements in the CPU performance, other hardware architecture such as FPGAs and
GPUs can be considered. The ATLAS software framework Athena is optimised for the
usage of CPUs. The reconstruction time from a hardware point of view is mostly lim-
ited by the number of available CPUs, and thus essentially by the financial budget.
This situation is different for other hardware architectures. As FPGA or GPU archi-
tectures rely rather on a dedicated software design, Athena has to be adapted. This
leads to the second possibility to speed-up the Phase-II tracking. The required R&D
in this category can be split again into two different fields. On the one hand dedicated
exploration of new architectures and new algorithms can be performed. As an example,
the TrackML challenge [115], a public competition in tracking speed and accuracy is
mentioned here. Another example is this thesis itself. The other possibility to speed-up
tracking is optimising the existing code. The second one is the item of the following
discussion.

6.2 Fast Track Reconstruction Strategy

In the process of designing the Phase-II TDAQ system for the ATLAS experiment, the
question came up whether a high level software based trigger would be viable. Within
this progress the fast track reconstruction was motivated. Object of study is the modi-
fication of the ATLAS track reconstruction workflow and tuning its parameters in order
to achieve a throughput sufficient for the expected HL-LHC conditions. The study was
performed using the ITk detector geometry with the expected lower and upper bound
of the HL-LHC mean pile-up, 140 and 200. This study was focused upon decreasing
the CPU requirements for the reconstruction. Compared to a common tuning of track-
ing, a loss in physics performance was acceptable in this study but should be kept at a
minimum.

The starting point is the unmodified workflow of the default ITk track reconstruction
as shown in Fig. 6.4. This workflow can be considered as three subsequent stages,
pre-processing, combinatorial track finder and ambiguity resolution. In the context of
the study the workflow was successively modified and the event processing time was
monitored.

The largest contribution to the event reconstruction time in Tab. 6.3 is the ambi-
guity resolution. The tasks performed within this stage grew historically. As a first

4The extrapolation is a snapshot in time and hence may change in the future.
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Figure 6.4: Default track reconstruction workflow used with ITk geometry [113].

modification, this stage was disabled. Within the ambiguity resolution a precise track
fit is performed that was disabled alongside. Additionally, it is expected to reduce the
b-tagging efficiency due to the missing neural network cluster splitting in jets performed
in this stage.

Since the ambiguity resolution is the last stage in the track reconstruction, built
tracks that are rejected at that point can be considered as a waste of time. On the
other hand, the resolving the ambiguities is mandatory. In order to preserve the track
quality without the ambiguity resolution, the workload is partially moved from this stage
to the combinatorial track finder. The moving is manifested in the track finding as a
suppression of the creation of ambiguities. It is achieved by tightening the track cuts
in the Silicon Track Finder. That way, tracks are built with a higher purity and earlier
in the workflow. It is expected that the reduction of number of track candidates and
the tightening of their constrains would decrease the reconstruction time. Furthermore,
the disabling of the ambiguity resolution implies that the combinatorial track finder
estimates the final track parameters. An overview of the applied track finder cuts is
given in Tab. 6.3. The number of required hits within this stage is identical to the final

Requirement Pseudorapidity interval
|η| < 2.0 2.0 < |η| < 2.6 2.6 < |η| < 4.0

Pixel+Strip hits ≥ 9 (7) ≥ 8 (7) ≥ 7 (7)
unique hits ≥ 7 (1) ≥ 6 (1) ≥ 5 (1)
shared hits ≤ 2 (no cut) ≤ 2 (no cut) ≤ 2 (no cut)
pT [MeV] > 1000 (900) > 400 (400) > 400 (400)
|z0| [cm] ≤ 15 (20) ≤ 15 (20) ≤ 15 (20)

Table 6.3: Applied tracking cuts in the track finder of the fast track reconstruction [112]. The
default values are given in brackets. z0 is defined with respect to the mean position
of the beam spot.

selection from Tab. 6.1. Due to the number of unique hits is drastically increased while
the number of shared hits gets an upper limit, the creation of ambiguities is expected
to be suppressed. In addition to the cuts, an approximated material model and cluster
correction was applied. The cluster calibration on the other hand was not changed. As
these approximations reduce the description accuracy of measurements and disturbance
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contributions, the lower threshold for pT in the central region was increased while the
vertex position in z0 became tighter.

The second step in modifying the reconstruction workflow considers the seeding. Dur-
ing Run-2 this consumed approximately 20% of the CPU time. It is expected that this
increases up to 50% under HL-LHC conditions [112]. The seeds are built from space
points that are located either in the pixel layers or the strip layers. Their individ-
ual contribution to the overall set of seeds per interval of pseudorapidity is shown in
Fig. 6.5. The five pixel layers in the ITk provide the major amount of seeds. Compared

Figure 6.5: Mean number of accepted seeds in the ITk pixel and strip detector together with
the sum of both as a function of |η| [82].

to the coverage of the strip detector of |η| < 2.7, the pixel detector covers the full range
of |η| < 4. Consequently, a goal was to increase the pixel seed purity, covered by the
cuts in Tab. 6.3, such that the strip seeds can be disabled from the workflow. As a side
effect of an increased purity, the combinatorial complexity due to selecting measurement
candidates is further reduced, speeding up the subsequent components of the workflow.
The last modification in the combinatorial track finder is a temporary disabling of the
recovery strategy from bremsstrahlung (c.f. [116]) within this study.

The last stage to modify is the pre-processing. In order to speed this stage up, sev-
eral code optimisations of the pixel and strip detector clusterisation were performed.
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Additionally, the strip space point formation is a very CPU consuming fraction of the
pre-processing while pixel space points are obtained from a plain deep-copy. As the space
points are only required for the seeding but the seeds in the fast track reconstruction are
obtained only from the pixel detector, the strip space point formation is disabled. While
the strip detector read-out provides already clusters, the 2D pixel clustering is compu-
tationally more complex. The pixel detector front-end chip RD53B allows to read-out
multiple pixels simultaneously in a tree-like and strongly compressed byte-coding. This
feature allows to read pixel clusters directly from the detector. Additionally, the data
compression leads to comparable event sizes in the pixel and strip detector. At the time
of the study, no software existed for decoding the byte-stream. The behaviour of the
RD53B was emulated in this study by measuring the Run-2 raw data decoding time and
scaling to the expected ITk event size. For events generated by Monte Carlo simulations,
the decoding of simulated hits from ROOT files was utilised.

6.3 CPU and Physics Performance

Due to the modification of the tracking workflow for the fast track reconstruction, two
performance fields are affected: the event reconstruction time and the physics perfor-
mance.

6.3.1 CPU Performance

In order to measure the CPU performance of the fast track reconstruction, MC generated
samples with tt̄ events with a pile-up of 140 and 200 were used. The time measurements
were performed using a dedicated machine with two Intel Xeon E5-2620v2 CPUs with
approximately 17.8 HS06 per physical core and single threaded execution [112]. The
performance is compared to the default ITk track reconstruction workflow from Refer-
ence [86]. The obtained timings for both workflows and pile-up conditions are shown in
Tab. 6.4. The fast track reconstruction achieves in the Silicon Track Finding a speed-up

〈µ〉 Tracking Byte Stream Cluster Space Si Track Ambiguity Total
Decoding Finding Points Finding Resolution ITk

140
default

1.2(∗) 17.1 6.0 41.1 58.2 123.6
fast 4.5 0.9 12.4 - 19.0

200
default

1.6(∗) 26.3 8.6 85.8 92.0 214.3
fast 6.3 1.2 22.6 - 31.7

(∗)Scaled from Run-2, see text.

Table 6.4: Comparison of CPU requirements in HS06s between default and fast track recon-
struction for 〈µ〉 of 140 and 200 split into individual parts of the workflow [112].

of approximately a factor eight compared to the default configuration with the addi-
tional ambiguity resolution. The additional modifications in the workflow for the cluster
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finding and space point formation lead to a total speed-up of approximately a factor
six with 〈µ〉 = 140 and approximately eight for 〈µ〉 = 200. The obtained results are
summarised graphically in Fig. 6.6. The stated CPU requirements are evaluated on the

Figure 6.6: Reconstruction time for ID Run-2, default and fast ITk track reconstruction [112].

dedicated machine after the publication of Reference [86]. Hence, the numbers slightly
vary compare to Tab. 6.2.

6.3.2 Physics Performance

The default ITk track reconstruction is optimised for CPU and physics performance.
This balance is shifted for the fast track reconstruction to favour the former. Within
this section the physics performance is compared between both workflows. For that
purpose, reconstructed tracks over the full range of |η| < 4 are considered for particles
with pT > 2 GeV. The minimum pT was increased in order to avoid turn-on effects.

The first observable which will be considered is the reconstruction efficiency. The
obtained results for MC generated single muons and tt̄ events are shown in Fig. 6.7.
Within all pseudorapidity bins a slight degradation of the reconstruction efficiency is
observable for the muons as well as for the tt̄ events. This observation is smaller for
100 GeV muons and the tt̄ events with 〈µ〉 = 140 compared to the 2 GeV muons and the
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Figure 6.7: Track reconstruction efficiency for single µ (top row) with a pT of 2 GeV (left) and
100 GeV (right) versus η and for tt̄ events versus η (middle row) and pT (bottom
row) with 〈µ〉 of 140 (left column) and 200 (right column). The figures are taken
from Reference [112].

tt̄ events with 〈µ〉 = 200. The deviation for low-pT muons is an expected result due to
the momentum dependency of multiple scattering upon the trajectory and the applied
approximations in the material model. Additionally, in all four distributions versus η a
more significant deviation from the fast track reconstruction to the default settings is
observable in the transition region between barrel and end-cap and at the very forward
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Figure 6.8: Mean number of reconstructed tracks (top row) in tt̄ events with 〈µ〉 of 140 (left)
and 200 (right). The bottom row shows the associated hits in the pixel (left) and
strip detector (right) versus η. The figures are taken from Reference [112].

region. These artefacts may be the result of the preliminary tuning imperfections within
this study and remain tasks for future studies. Considering the pT dependency, the track
reconstruction efficiency is lower for low-pT particles in the fast track reconstruction but
becomes more similar to the default setup for higher pT . Furthermore, no strong pile-up
dependency is observable.

A reduced track reconstruction efficiency leads to a smaller set of final tracks. This is
shown for the tt̄ events in Fig. 6.8 (top row). Although the number of tracks is lower in
the fast track reconstruction due to the reduced efficiency, it also shows that workflow
modifications do not result in a significantly enhanced fake-rate. Despite the disabled
ambiguity resolution and track re-fitting, the selected tracks have an almost identical
amount of hits in the pixel and strip detector as shown in Fig. 6.8.

Beside the obtained tracks, the track parameters at the perigee surface are of interest.
The parameter resolutions for single muons are shown in Fig. 8.16. For most of the
distributions the fast track reconstruction is in good agreement with the default track
reconstruction. However, the momentum resolution for low momentum particles shows
a more significant loss of approximately 20% for 2 GeV muons. This deviation is a
consequence of the approximations in the material model. As the energy loss fraction is
larger for low momentum particles, the 100 GeV muons do not show this deviation. On
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Figure 6.9: Resolution of d0 (top row), z0 (middle row) and the relative pT (bottom row) for
single muons with 2 (left column) and 100 GeV (right column) versus η. The figures
are taken from Reference [112].

the other hand, the 100 GeV muons show a loss of approximately 50% in z0 in the region
of |η| around 2. This is a result of the approximations applied in the cluster correction.

These observables for tt̄ events are shown in Fig. 6.10. While the spatial parameters d0

and z0 remain overall in good agreement between both setup, the momentum resolution
shows an approximately 30% worse resolution for the fast track reconstruction. This is
again a result originating from low momentum particles as shown for 2 GeV muons.

In total, the deviations resulting from the fast track reconstruction are well understood
and remain objects for future study. As the goal of this study was to obtain a speed-up

108



6.3 CPU and Physics Performance

50

100

150

200

250m
]

µ
) 

[
0

 (
d

σ

4− 3− 2− 1− 0 1 2 3 4
true

η

0.8

1

R
at

io
 4− 3− 2− 1− 0 1 2 3 4

true
η

50

100

150

200

250m
]

µ
) 

[
0

 (
d

σ

ATLAS Simulation Preliminary

Default ITk Reconstruction
Fast Track Reconstruction (ITk)

>2GeVreco

T
 = 200, p〉µ〈, tt

500
1000
1500
2000
2500
3000
3500
4000m

]
µ

) 
[

0
 (

z
σ

4− 3− 2− 1− 0 1 2 3 4
true

η

0.8

1

R
at

io
 4− 3− 2− 1− 0 1 2 3 4

true
η

500

1000

1500

2000

2500

3000

3500

4000m
]

µ
) 

[
0

 (
z

σ

ATLAS Simulation Preliminary

Default ITk Reconstruction
Fast Track Reconstruction (ITk)

>2GeVreco

T
 = 200, p〉µ〈, tt

2−10

1−10

)
T

(q
/p

σ 
Tp

4− 3− 2− 1− 0 1 2 3 4
true

η

1
1.2R

at
io

 4− 3− 2− 1− 0 1 2 3 4

true
η

2−10

1−10

)
T

(q
/p

σ 
Tp

ATLAS Simulation Preliminary

Default ITk Reconstruction
Fast Track Reconstruction (ITk)

>2GeVreco

T
 = 200, p〉µ〈, tt

Figure 6.10: Resolution of d0 (left), z0 (right) and the relative pT (bottom) for tt̄ events with
〈µ〉 = 200. The figures are taken from Reference [112].

of the tracking code, which was measured to be up to a factor of approximately eight, a
significant reduction was achieved. With respect to the physics performance, the trigger
requirements are reachable as the demanded accuracy of the reconstruction is lower. For
offline tracking the situation is more strict. Within this study certain approximations
were applied and algorithms disabled to reduce the execution time. In order to obtain
a comparable physics performance in the fast track reconstruction compared to the
default configuration, the deviations coming from the modifications have to vanish. This
encourages the need for a fast tracking software or a software that provides an improved
physics performance in order to meet the expected HL-LHC requirements. The time
measurements presented in Sec. 6.3.1 are preliminary and may change due to future
code optimisations. Beside this optimisation branch, R&D is performed for different
hardware architectures and algorithms. This provides an additional motivation for the
ACTS project and for this thesis in particular as detailed modelling of the underlying
problem.
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The data recorded by the detector consist of clusters that measure particle properties
at a point or region. In order to measure the underlying physics quantities, track re-
construction is required. In terms of track reconstruction, each measurement needs to
be assigned to the particle which produced it. A denser measurement environment in-
creases the complexity of reconstruction and demands more precise solutions to perform
the correct measurement-particle assignment. That issue becomes more important in
the HL-LHC environment and its expected pile-up of up to 200.

This chapter describes the baseline components of the track reconstruction, the ex-
trapolation, by using an initial parametrisation of the final state, given at a surface
and extrapolating the estimation along the trajectory. The focus of this chapter is a
derivation of an explicit expression of the extrapolation from Eq. (4.38) with respect to
Eq. (4.39).

In order to make the underlying ideas for the estimation of the trajectory understand-
able, this chapter starts with simplest case, the so-called straight line approximation.
Within this model the trajectory is assumed to be a straight line as given for neutral par-
ticles or in the absence of a magnetic field. Afterwards the deflection by a magnetic field
is handled. Both scenarios are thereby considered in vacuum. Alongside both scenarios
the parameters from Sec. 5.2.1 are reasoned as explicit formulation of λ from Chapter 4.

In Sec. 7.3 the behaviour of the covariance matrix under the extrapolation is investi-
gated. Afterwards the influence of material upon the track parametrisation is considered.
Those parts are a combination of previous works, mainly based on References [117–120]
but the individual parts are streamlined into a consistent notation and reasoning and
were implemented in ACTS as part of this thesis. The concepts are extended in the
second part of this chapter. Firstly, within this thesis the lab time is introduced as addi-
tional parameter. With the main components presented, a broader perspective upon the
extrapolation is considered. Thereby, a detector independent formulation of the different
scenarios is formulated as part of this thesis and a top level management environment,
the so-called Propagator is introduced. By combining both parts, a general implemen-
tation of Sec. 4.3 can be achieved. In the last part of this chapter, the found concepts
and expressions for the extrapolation are compared with Geant4 [92, 93] simulations.

7.1 Straight Line Extrapolation

The extrapolation of a particles trajectory over a distance s can be understood as the
modification of the model parameters λ. The chosen parameters of λ are thereby not
uniquely defined. Hence, in HEP communities and collaborations there exist multiple
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interchangeable parametrisations. For the purpose of consistency, only the parametrisa-
tion of the ATLAS collaboration is considered in the following.

The choice of parameters have to cover initially the parameters that can be measured
by the detector, either with or without a coordinate transformation. Also, parameters
may exist that influence the trajectory but are not measured. Those parameters can be
linked to the measured parameters indirectly. Hence, the accuracy of these parameters
may profit from the information in measurements. Also, parameters may be required that
remain constant during the extrapolation, i.e. parameters that are not linked to measured
parameters but affect the parametrisations behaviour during the extrapolation. Finally,
the chosen parametrisation is not required to consist of the minimal set of parameters
that achieve the objectives mentioned above and depend on the extrapolation model.

The simplest case for track parametrisation is the simplified model of a particle that
moves in a straight line through the detector, without deflections by magnetic fields or
material interactions. Such a track can be parametrised by

r ≡

 x
y
z

 T ≡

 T x

T y

T z

 λ ≡
(

r
T

)
(7.1)

with the Cartesian coordinates x, y, z and the directions T x, T y, T z in the corresponding
dimensions. The vector r represents the position of the particle and T is the (normalised)
direction vector in which the particle moves. λ represents the entire parametrisation. r
and T are thereby related with each other by

dr

ds
= T = const (7.2)

along a path length s. A classical silicon detector measures spatial coordinates. Thus,
r is measured directly in those cases whereas T is connected indirectly to the measured
parameters via the derivative in Eq. (7.2). Since the underlying model assumes a straight
line, an extrapolation over the distance h can be expressed as

r(h) = r0 + h · T0 (7.3)

from the initial parametrisation r0 and T0. Splitting the total distance s into n extrapola-
tion steps with length hi for i = {1, ..., n}, then the parametrisation under extrapolation
can be expressed as

λ(s) =

(
r(s)
T (s)

)
=

(
r0 +

∑n
i=1 hi · T0

T0

)
using the property from Eq. (7.2) and the iterative expression implied by Eq. (7.3).
Hence, the property from Eq. (4.39) is fulfilled and the total distance s can be treated as
tuple of multiple distances hi. These parameters are able to describe the entire straight
line trajectory in a global frame and the absence of magnetic and material effects.

Since it was found in Sec. 4.2.3 that the parametrisation is needed in the same coordi-
nate system as the measurement, the corresponding local parameters in the measurement
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frame need to be expressed. If the particle is represented at the surface, the (fixed) lo-
cation of the surface in space provides geometrical data which can be used to reduce the
amount of dimensions. In the straight line scenario the vectors become

rlocal ≡
(
l0
l1

)
Tlocal ≡

(
φ
θ

)
λlocal ≡

(
rlocal

Tlocal

)
(7.4)

with the azimuthal angle φ, the polar angle θ and the spatial coordinates l0 and l1 which
are constrained to the surface. The angles are connected to the global parameters via
Eq. (5.3). The spatial coordinates on the other hand depend on the underlying surface
geometry as shown in Sec. 5.2.2.

With the appropriate transformation between the two track representations λ and
λlocal an extrapolation of local parameters between surfaces and therefore from measure-
ment to measurement is possible. Since the global parameters are not constrained by the
requirement of a surface, it serves as an intermediate parametrisation. Consequently,
the mean of the stepper function S(s|λ) from Eq. (4.38) can be expressed as

µlocal
λ (s) = Hµλ(s) = H

(
µλ(0) + s

dµλ(0)

ds

)
= H

HTµlocal
λ,0 + s

d
(
HTµlocal

λ,0

)
ds

 (7.5)

with the projection matrix H ∈ R4×6 that performs the coordinate transformations.
In comparison to HA from Chapter 4, this matrix is not considered to be restricted to
the measured parameters, though the projection into the measurement frame is possible
afterwards. Thus, the entire parametrisation is transformed at surfaces allowing a con-
sistent description from local parameters on one surface to local parameters on another
surface. In addition, this expression demonstrates that only the global parametrisation
needs to be considered during the extrapolation while the constraints due to the surfaces
can be neglected. Those constraints are treated at both end points by an appropriate
coordinate transformation. This observation will also be utilised in the following section.

7.2 Propagation of Charged Particle

The next step in the derivation of a general parameter extrapolation formalism can be
obtained by considering an electrically charged particle in a magnetic field. The general
expression of the trajectory of a particle is given by the Lorentz force [117]

F = m
d2r

dt2
= q (v ×B(r))

⇔m|v|2d
2r

ds2
= q|v|

(
v

|v|
×B(r)

)
⇔d2r

ds2
=
q

p
(T ×B(r)) (7.6)

with the magnetic field vector B(r), the electric charge q and the absolute value of the
particles momentum p. Thereby, the relation between the path length and the time
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ds = vdt and the expression for the direction vector T = v/|v| were utilised. q/p can
be understood as a curvature parameter since the value of q defines the direction of the
deflection and the inverse momentum represents the radius of the trajectory. In the case
of p → ∞ eV, q = 0 C or B(r) = 0 T, the second derivative becomes d2r/ds2 = 0
which reproduces the straight line case1. Hence, the straight line can be understood as
a special case of deflection under the Lorentz force.

Eq. (7.6) implies that the parameter q/p is important for the shape of the trajectory.
Even if this parameter is never measured in the detector, its relation to r and T via
the differential equation suggests an indirect learning about this parameter and thus an
indirect affection of r and T on the other hand. Noteworthy are also the values of q. For
the simplicity of notation it is presumed that q ∈ {−1, 0, 1}. Otherwise q/p has to be
separated into two variables. In order to preserve the momentum information for neutral
particles the parameter is stored as 1/p. This is convenient to express both parameters
in the units of an inverse energy. In summary, the parametrisation becomes in this case

λcharged ≡

 r
T
q/p

 λneutral ≡

 r
T

1/p

 (7.7)

for charged and neutral particles respectively.
In simplified detector setups (e.g. for constant magnetic fields), the differential equa-

tion (7.6) has an analytical solution leading to a helical trajectory but has no analytical
solution in a general case. As Fig. 3.14 shows for the ATLAS solenoid magnet and
Sec. 3.2.4.1 for the toroid magnets, the magnetic field is inhomogeneous in the detector.
In order to solve this problem, a numerical integration of the differential equation has
to be performed.

7.2.1 Runge-Kutta-Nyström Integration of Fourth Order

The trajectory of charged particles in a magnetic field and in vacuum can be expressed
by the differential equation from Eq. (7.6). As this is the physical description of the
underlying behaviour, the solving of the differential equation is inevitable. If B(r) is
considered non-constant then the solution must be obtained from numerical integration.

For solving a differential equation many different algorithms exist that are specialised
on aspects such as computational speed or accuracy. Since track reconstruction relies
on both, an optimal mixture of both aspects needs to be found. While the form of
Eq. (7.6) is given by nature, the choice of the integration method is eligible. A common
choice to achieve both criteria and also the choice for ACTS is the Runge-Kutta-Nyström
integration of fourth order [121] (RKN4).

The RKN4 method is a numerical integration method which allows the step-wise
integration of a differential equation, i.e. the solution of the nth step is used to evaluate
the (n + 1)th parameters which are the distance h along the trajectory away from the

1The straight line would be also given in principle in the case of T ‖ B(r) but a common magnetic
field in a HEP detector geometry is designed to avoid this case since in this case the q/p information
cannot be obtained.
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nth point. Based on the parametrisation of Eq. (7.1), the Eq. (7.6) can be formulated
as

d

ds

(
r
T

)
=

( dr
ds
d2r
ds2

)
=

(
r′

q
p (T ×B(r))

)
≡
(
f1(s, r, T )
f2(s, r, T )

)
(7.8)

and therewith as twice as many differential equations of first order2. The parameter q/p
is considered to remain constant in the vacuum case and can therefore be neglected in
the expression above. While in the continuous case the identity r′ = dr/ds = T is valid,
in the discrete case the separation becomes important.

The RKN4 formalism requires the evaluation of four sub-steps or stages, which allow
the evaluation of the the next. These sub-steps are given by [117]

kj1 = fj(sn, rn, Tn)

kj2 = fj(sn +
h

2
, rn +

h

2
Tn +

h2

8
k2

1, Tn +
h

2
k2

1)

kj3 = fj(sn +
h

2
, rn +

h

2
Tn +

h2

8
k2

1, Tn +
h

2
k2

2)

kj4 = fj(sn + h, rn + hTn +
h2

2
k2

3, Tn + hk2
3)

(7.9)

and provide therewith an iterative evaluation process since each component depends on
the previous one. Since in general the functions f1 and f2 are coupled, the solutions for
rn+1 and Tn+1 would depend on each other. By expressing the positions in kj2, k

j
3 and kj4

using the second order Taylor expansion around rn and identifying the second derivative
d2rn/ds

2 as the corresponding k2
i a decoupling of the two functions is achieved. As all

kji therewith depend on f2, the order of evaluation is predefined.

The four expressions in Eq. (7.9) can be visualised as shown in Fig. 7.1. Based on the
previous knowledge, the estimation of the underlying trajectory becomes more precise
with each sub-step. In other terms, the method can be understood as an iterative
application of corrections of the trajectory estimate. In order to obtain the parameters
at the (n+ 1)th step, the equations

Tn+1 = Tn +
h

6

(
k2

1 + 2k2
2 + 2k2

3 + k2
4

)
rn+1 = rn + hTn +

h2

6

(
k2

1 + k2
2 + k2

3

) (7.10)

need to be evaluated. Considering only the calculations of f1 and therewith the solution
for rn+1 the individual sub-steps of that extrapolation can be formulated in terms of
the same ki calculated for the extrapolation of Tn+1. This can be understood as an
indirect modification of rn+1 based on the deflection affecting the direction. Moreover,
the solution shows that for k2

i = 0 for i = 1, 2, 3, 4, the solution is identical to Eqs. (7.2)

2Although this might look like a bad trade, this can be compared to the solving of differential equations
in classical mechanics using either Newton- or Lagrange-formalism. Hence, the problem becomes
easier to solve.
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Figure 7.1: Step evaluation in the RKN4 formalism from the given nth point, parametrised
by rn and Tn, to the approximated (n + 1)th result via the evaluation of each
component ki at three different positions in parameter space. The black line shows
the true trajectory for comparison [117].

and (7.3). This empathises the argument of a generalised solution of the straight line
extrapolation for the case of absence of the Lorentz force in vacuum. On the other hand,
the straight line would be also obtained using a Runge-Kutta-Nyström integration of first
order. While the former case is linked to the underlying physical deflection, the latter
case would enforce a straight line extrapolation for any trajectory by construction. As
mentioned in the beginning of this section, the physical problem is fixed but the numerical
integration method is chosen. Hence, the deciding criteria for choosing the method or
as in this case the order of the integration is driven by the corresponding error related
to the numerical integration. This will be discussed in the following.

7.2.2 Integration Error

Since the presented RKN4 method is a step-wise solution of the Eq. (7.6) by applying a
numerical approach, there exists an intrinsic error on the results of each step. A common
local error description is given by [117]

ε ≡ λn+1 − λ̂n+1 (7.11)

with the obtained parameter vector λ = (r, T, q/p)T and the vector λ̂ obtained from
third order calculations. While the goal would be a comparison to the true result, this
idealised description is not applicable in real conditions since the true parameters are
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unknown3 and thus need to be approximated. Based on the Runge-Kutta-Fehlberg
method [122], the step error can be approximated by comparison with a higher order
solution. Although the estimated error is skewed to larger values, it has become the
standard to utilise the lower order error estimation as error estimation of the higher
order integration [117]. Furthermore, the lower order is fixed to three.

A common approach for the estimation is given by considering the Taylor expansions

λn+1 = λ (sn + h) = λn + hλ′(sn) +
h2

2
λ′′(sn) +

h3

6
λ(3)(sn) +

h4

24
λ(4)(sn) +O(h5)

around λn = λ(sn). This series is truncated in the RKN4 formalism at fourth order. All
higher order terms consequently contribute to the error of the integration.

The Taylor expansion relies on the numerical evaluation of derivatives with the central
difference quotient

λ′(sn) ≈ λ(sn + h̃)− λ(sn − h̃)

2h̃
(7.12)

is used with the distance h̃4. Higher order derivatives can be calculated recursively. The
usage of the central derivative allows the statement of a symmetric error around the
evaluated point. Since the difference quotient delivers the correct derivative in the case

λ′(sn) = lim
h̃→0

λ(sn + h̃)− λ(sn − h̃)

2h̃

the used finite derivative from Eq. (7.12) is again associated with an error. Therefore the
integration error of the RKN4 based on the Taylor expansion will be just an estimation
of the true numerical error.

Assuming that the contributing terms can be treated in a descending order, i.e. higher
order terms can be neglected, the fourth order term is treated as the error estimation
term [117]

ε ≈ h4

24
λ(4)(sn +

h

2
)

with the error estimation at the centre of the step due to the symmetric error of the
derivatives in Eq. (7.12). Its evaluation [117] provides the error estimation

ε ≈ h2(k2
1 − k2

2 − k2
3 + k2

4). (7.13)

A remarkable feature of this estimation for the RKN4 is that the local error only depends
on the step-size h (which is also the only free parameter of the kji ). In other terms,
changing h reduces or increases the numerical integration error. While ε 6= 0 can be
expected for charged particles with finite momentum in magnetic fields, a certain error

3This is also valid if measurements are taken into account. The measurements give a hint to a set of
true parameters but the underlying uncertainties make this inapplicable for a reliable estimation of
ε.

4The notation was chosen to indicate that h̃ may be different from h, which is used as the extrapolation
step-size.
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tolerance τ has to be applied above which an adjustment is necessary. If the step size is
modified, except for kj1 all sub-steps need to be re-evaluated. In order to minimise the
computational requirement, the adjustment has to be performed with the least amount
of trials. On the other hand, the largest possible step-size below the error tolerance has
to be taken to reduce the number of steps. A common solution for the adjustment from
the step-size hn to hn+1 is given by [117]

hn+1 = hn

(
τ

[2] |ε|

) 1
ξ+1

(7.14)

with the order ξ of the λ̂ integration. The factor two in square brackets was added in
order to reduce the error within less trials. For a fixed ξ, the error estimation from
Eq. (7.11) is fixed. Thus, τ is the main parameter steering the step-size adjustment. As
the fraction τ/|ε| can lead to strong modifications step-wise while the external conditions
usually change rather smoothly, an additional restriction is applied. A trimming for ξ = 3
provides as the next step-size a value in

1

ξ + 1
hn =

1

4
hn ≤ hn+1 ≤ (ξ + 1)hn = 4hn. (7.15)

This iterative adjustment ends as soon as the error estimation is below the tolerance.
While the adjustment is performed as given in Eq. (7.14) and hence gets reduced steeper
due to the additional scaling by the factor of two. Once the error is below the threshold,
it can be assumed that there is a certain stretching of h possible without crossing the
threshold as additionally, the accepted step size would be smaller or equal to the previ-
ously accepted step size, the steps get shorter while extrapolating. For that purpose, the
step size is scaled one more time after the step is evaluated. This step size adjustment
is then performed without the additional scaling factor and serves as initial guess for
the next step. Thus, longer steps are possible and following the assumption that the
environmental conditions change sufficiently slowly, the error estimate can be assumed
to be valid for the next step.

The error calculations above assume fixed order calculations for the step evaluation as
well as for the comparison step λ̂. Additionally to the mentioned degrees of freedom for
the step evaluation and error estimation, the distances for the kji in Eq. (7.9) and the
coefficients in Eqs. (7.10) and (7.13) are not fixed for a given order. Also the amount
of kji necessary for the step evaluation is flexible. These coefficients are described by

a Butcher tableau [123]. The chosen coefficients allow due to the same position at kj2
and kj3 less accesses to the magnetic field B(r). It is noteworthy that other conventions
are possible, including different orders as mentioned in the previous section. This is
however linked to the error estimation. Hence, beside the adjustment of h, the order of
integration could be considered as additional adjustment parameter. With a convenient
Butcher tableau, the required calculations in case of |ε| > τ can be performed using a
higher order integration. Therewith, two parameters can be theoretically adapted in
order to obtain the optimal results. However, this is a more complex system as different
computational complexities and error contributions have to be considered.
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7.3 Covariance Transport

Beside the mean extrapolation as described in Secs. 7.1 and 7.2.1, the covariance matrix
needs to be extrapolated. This will be considered within this section.

The extrapolation of the pdf is performed in general by Eq. (4.38). The modifications
of the parameters under extrapolation will be denoted as S′(λ|s) with dim(S′(λ|s)) =
dim(λ(s)). For a given s the extrapolation of a parametrisation λ can be expressed in a
Taylor series around the mean µλ:

S′(λ|s) = λ(s) = S′(λ|s)|λ=µλ +
∂S′(λ|s)
∂λ

∣∣∣∣
λ=µλ

(λ− µλ) +O(λ2)

≈ µλ(s) + J (λ− µλ) (7.16)

Thereby the short notation Jij = ∂S′(λ|s)i/∂λj |λ=µλ was used. By multiplying this
equation with its transpose one obtains

(λ(s)− µλ(s)) (λ(s)− µλ(s))T = J (λ− µλ) (λ− µλ)T JT

⇒Σfinal = JΣinitialJ
T (7.17)

with the covariance matrices Σinitial and Σfinal before and after the extrapolation respec-
tively. The matrix J can be identified as the Jacobian matrix. Thus, the extrapolation
of the covariance matrix relies only on the calculation of said matrix. Furthermore, the
transport via Jacobian matrices shows that the individual uncertainties can be related
with each other. This relationship in terms of the Kalman filter allows to learn about
parameters, even though they are not measured, indirectly through others parameters.

In order to obtain the Jacobian different concepts can be used. For ACTS two different
concepts were implemented: Ridders algorithm and transport matrix formalism. While
the former provides by design more robust results and relies on less assumptions than
the transport matrix formalism it serves as verification algorithm for the latter one. The
transport matrix formalism on the other hand is intended to be the main algorithm in
the track reconstruction. Those two algorithms are described in the following.

7.3.1 Transport Matrix Formalism

Within this section the covariance matrix under extrapolation is described by the trans-
port matrix formalism. The underlying concept is thereby based on Ref. [118].

The goal of the covariance transport is to obtain the final covariance matrix Σfinal

at a given surface. It is related to the initial covariance matrix Σinitial via Eq. (7.17).
Since the covariance matrix is expressed in the same coordinate system as the mean and
the extrapolation occurs from surface to surface, the initial and final parametrisation is,
based on Eq. (7.4) given by

λlocal ≡


l0
l1
φ
θ

q
p or 1

p

 (7.18)
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with the last entry depending on the particles charge. For simplicity q/p will be used in
the following. The formalism is analogous for neutral particles. Additionally, since the
extrapolation is considered to occur in vacuum, q/p is a constant.

The Jacobian is the matrix that needs to be calculated. Expressing the Jacobian by
its definition from Eq. (7.16) with the parametrisation from Eq. (7.18) leads to

J =


∂lfinal

0

∂linitial
0

· · · ∂lfinal
0

∂ q
p

initial

...
. . .

...
∂ q
p

final

∂linitial
0

· · ·
∂ q
p

final

∂ q
p

initial


∣∣∣∣∣∣∣∣∣∣
λ=µλ

=
∂λlocal

final

∂λlocal
initial

∣∣∣∣
λ=µλ

. (7.19)

Here the short notation for the point of evaluation λ = λlocal
initial and µλ = µlocal

λ,initial was used.

The parameters λglobal
final are linked to the initial parameters through the extrapolation

function.

This formalism is just based on the local parametrisation while the RKN4 track pa-
rameter extrapolation is formulated in global parameters. Since the extrapolation of the
covariance matrix in a coordinate system different from the extrapolation of the mean
provides additional complexity, the Jacobian needs to be treated in global parameters.
A global treatment allows a direct application in the RKN4 formalism. Therefore, the
local 5×5 Jacobian needs to be projected into the global 7×7 frame given by Eq. (7.7).
This frame can treat the variation of the covariance matrix in a global parametrisation.
This implies the application of coordinate transformations between the parametrisations
similar to Eq. (7.5).

The transformation from local to global parameters can be considered by defining
S′(λlocal|0) = λglobal. From Eq. (7.16) and the definition of the Jacobian in Eq. (7.19)
one obtains the local to global Jacobian

Jg←l =
∂λglobal

∂λlocal

∣∣∣∣
λ=µλ

. (7.20)

Using this expression allows to define a Jacobian as

J ′ =
∂λglobal

final

∂λlocal
initial

∣∣∣∣∣
λ=µλ

=

(
∂λglobal

final

∂λglobal
initial

·
∂λglobal

initial

∂λlocal
initial

)∣∣∣∣∣
λ=µλ

that expresses the dependency of the final, global parameter on the initial, local param-
eters. Before describing the second coordinate transformation for obtaining the final,
local parameters dependency on the initial, local parameters, this matrix allows for a
further discussion.

The form of the matrix ∂λglobal
initial/∂λ

local
initial depends only on the surface type. This

dictates the required coordinate transformations in order to obtain the global parameters.
Finally, the derivations of the transformations lead to this Jacobian.
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7.3 Covariance Transport

The other matrix, ∂λglobal
final /∂λ

global
initial is entirely given in global parameters. As the

RKN4 method leads to a step-wise extrapolation of the parameters, the same separation
can be done here. Therewith one obtains

J ′ =

(
∂λglobal

final=n

∂λglobal
n−1

· ... · ∂λ
global
1

∂λglobal
initial

·
∂λglobal

initial

∂λlocal
initial

)∣∣∣∣∣
λ=µλ

≡ Jn · ... · J1 · Jg←l (7.21)

The step-wise transport of the Jacobian follows therewith the steps evaluated for the
mean. For the (n + 1)th step the matrix Jn+1 has to be calculated. An additional
matrix-matrix multiplication then delivers the updated Jacobian J ′. The evaluation of
Jn+1 will be considered in the following. For its calculation, the step evaluations from
Eq. (7.10) are used. By direct calculation one obtains the derivatives

Fn ≡
∂rn+1

∂rn
=

∂

∂rn

(
rn + hTn +

h2

6

(
k2

1 + k2
2 + k2

3

))
= 1 +

h2

6

(
∂k2

1

∂rn
+
∂k2

2

∂rn
+
∂k2

3

∂rn

)
F ′n ≡

∂rn+1

∂Tn
=

∂

∂Tn

(
rn + hTn +

h2

6

(
k2

1 + k2
2 + k2

3

))
= h1 +

h2

6

(
∂k2

1

∂Tn
+
∂k2

2

∂Tn
+
∂k2

3

∂Tn

)
Gn ≡

∂Tn+1

∂rn
=

∂

∂rn

(
Tn +

h

6

(
k2

1 + 2k2
2 + 2k2

3 + k2
4

))
=
h

6

(
∂k2

1

∂rn
+ 2

∂k2
2

∂rn
+ 2

∂k2
3

∂rn
+
∂k2

4

∂rn

)
G′n ≡

∂Tn+1

∂Tn
=

∂

∂Tn

(
Tn +

h

6

(
k2

1 + 2k2
2 + 2k2

3 + k2
4

))
= 1 +

h

6

(
∂k2

1

∂Tn
+ 2

∂k2
2

∂Tn
+ 2

∂k2
3

∂Tn
+
∂k2

4

∂Tn

)
with the kji as defined in Eq. (7.9). Those matrices form the Jacobian

Jn+1 =

 Fn F ′n 0
Gn G′n 0
0 0 1

 . (7.22)

The last row and last column are thereby defined by the constant q/p. Therewith the
necessary calculations can be combined in the matrices

Ai ≡
∂k2

i

∂Tn
Ci ≡

∂k2
i

∂rn
(7.23)

As shown in Sec. 7.2.1, the vectors k2
i can be expressed by the second derivatives of rn

or by the first derivatives of Tn = drn/ds. Using Eq. (7.8), the system that needs to be
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evaluated is therefore

k2
i

∣∣
i∈[1,4]

=

 x′′i
y′′i
z′′i

∣∣∣∣∣∣
i∈[1,4]

=

 T x′i
T y′i
T z′i

∣∣∣∣∣∣
i∈[1,4]

=


q
p (T yi Bz (ri)− T zi By (ri))
q
p (T zi Bx (ri)− T xi Bz (ri))
q
p (T xi By (ri)− T yi Bx (ri))


∣∣∣∣∣∣∣
i∈[1,4]

with the subscription i for the parameters denoting the evaluation according to the right
hand side of Eq. (7.9) at the points

ri = rn + hiTn +
h2
i

2
k2
i−1 (7.24)

Ti = Tn + hik
2
i−1. (7.25)

The coefficients are thereby defined through the utilised Butcher tableau as hi ∈ {0, h/2, h/2, h}.
The vector k2

0 is considered arbitrary. The derivative of the resulting vectors provide the
matrices

Ai =


∂x′′i
∂Txn

∂x′′i
∂T yn

∂x′′i
∂T zn

∂y′′i
∂Txn

∂y′′i
∂T yn

∂y′′i
∂T zn

∂z′′i
∂Txn

∂z′′i
∂T yn

∂z′′i
∂T zn



=


0 q

p
∂T yi
∂T yn

Bz (ri) − q
p
∂T zi
∂T zn

By (ri)

− q
p
∂Txi
∂Txn

Bz (ri) 0 q
p
∂T zi
∂T zn

Bx (ri)
q
p
∂Txi
∂Txn

By (ri) − q
p
∂T yi
∂T yn

Bx (ri) 0


and

Ci =


∂x′′i
∂xn

∂x′′i
∂yn

∂x′′i
∂zn

∂y′′i
∂xn

∂y′′i
∂yn

∂y′′i
∂zn

∂z′′i
∂xn

∂z′′i
∂yn

∂z′′i
∂zn



=


q
p

(
∂Bz(ri)
∂xn

T yi −
∂By(ri)
∂xn

T zi

)
q
p

(
∂Bz(ri)
∂yn

T yi −
∂By(ri)
∂yn

T zi

)
q
p

(
∂Bz(ri)
∂zn

T yi −
∂By(ri)
∂zn

T zi

)
q
p

(
∂Bx(ri)
∂xn

T zi −
∂Bz(ri)
∂xn

T xi

)
q
p

(
∂Bx(ri)
∂yn

T zi −
∂Bz(ri)
∂yn

T xi

)
q
p

(
∂Bx(ri)
∂zn

T zi −
∂Bz(ri)
∂zn

T xi

)
q
p

(
∂By(ri)
∂xn

T xi −
∂Bx(ri)
∂xn

T yi

)
q
p

(
∂By(ri)
∂yn

T xi −
∂Bx(ri)
∂yn

T yi

)
q
p

(
∂By(ri)
∂zn

T xi −
∂Bx(ri)
∂zn

T yi

)


without the explicit evaluations of the derivatives of some components whose terms are
very oblong and therefore skipped at this point to keep it readable.

One can see that many calculations reoccur in the evaluation of Ai and Ci. Therefore,
the overview indicates performance optimisation possibilities. Especially if one considers
that these components need to be calculated iteratively for each i and combined for the
transport Jacobian Jn+1. Additionally, the matrix Ci contains several components of
the gradient ∇rnB (ri) which appear multiple times. Under the assumption that the
magnetic field does not change too rapidly within a single step, it can be approximated
that Ci ≈ 0 for i ∈ [1, 4].
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7.3 Covariance Transport

Beside the consideration of the charged particle covariance transport, the straight
line can be considered. As mentioned in Sec. 7.2.1, the straight line extrapolation is
obtained from the charged particle RKN4 integration for q = 0. This leads to kji = 0
and consequently to a simpler Jacobian Jn+1 compared to Eq. (7.22) but based on the
same calculations:

Jn+1 =



1 0 0 h 0 0 0
0 1 0 0 h 0 0
0 0 1 0 0 h 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


While the Jg←l are identical to the charged particle case, the same formalism is appli-
cable for the straight line scenario. If applicable, the computational complexity can be
drastically reduced. Consequently, the strict separation between the charged particle
and straight line extrapolation is motivated through this complexity argument despite
both calculations would lead to the same result for a straight line trajectory.

The result of the considerations above are that the necessary calculations required for
the modification of the covariance matrix under extrapolation can be transformed into
smaller problems denoted by Eq. (7.23). The components of the Jacobian within this
section are given by Eq. (7.21).

7.3.1.1 Jacobian to Curvilinear and Bound Parameters

In the last section the transport of the covariance matrix in the extrapolation of the
track parameters was introduced. It was shown that an initial, local covariance matrix
is transported by calculating the Jacobian from Eq. (7.19). While the last section de-
scribed the separation of the Jacobian into multiple matrices as shown in Eq. (7.21), the
therewith obtained result would be given in global parameters. Within this section the
Jacobian for the dependency of the final, local parameters on the final, global parameters
is considered. By thinking of the covariance matrix as a cone around the mean during
the extrapolation, the last missing connection between J and J ′ becomes a projection
of the cone on the surface.

Two major projection types have to be considered. Both can be understood as a cut
of the target surface through this cone in order to obtain the result. The first type is
given by the curvilinear surface, the second by other surfaces. While the former is a
plane surface which is by definition orthogonal to the particle direction at any point
along the trajectory and therewith definable for any value of s, the latter one refers to
a surface that is fixed in space and shape. Since both projections are a onto a surface,
the requirements for the Jacobian are fulfilled for both. Those two types are presented
in the following.
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7 Track Parameter Propagation

Curvilinear surfaces

This section will consider the transport Jacobian of a local track parametrisation to a
point in parameter space which then will be expressed in curvilinear parameters. Given
that J ′ is already calculated, the final, global mean µglobal

λ is considered as a point on
the curvilinear surface. The connection between parameter vectors λglobal and λlocal is
given by a coordinate transformation, if λglobal is at the surface corresponding to the
transformation. Additionally, as just the mean is considered to be at the surface, this
is not guaranteed for λglobal 6= µglobal

λ . This means that for a given s that fulfils the

requirements set for µglobal
λ an additional extrapolation for other parameter vectors are

required. From Eq. (7.10) with the corresponding coordinate transformations to obtain
λlocal, the local, final parameter vector can be expressed as Taylor series expansion
around s. This leads to

λlocal(s̃ = s+ ds) = λlocal(s′)
∣∣∣
s′=s

+
∂λlocal(s′)

∂s′

∣∣∣∣
s′=s

(s̃− s) +O
(
s2
)

≈ λlocal(s) +
∂λlocal(s′)

∂s′

∣∣∣∣
s′=s

ds. (7.26)

Noteworthy is for this expression the definition of the curvilinear surface itself. Although
it is not assumed that λglobal(s) is at the target surface, an equivalent surface can be
defined for all values of s. Therewith it allows the expression of the first addend. Another
justification of this addend is given by following the application in the Jacobian as it
involves the evaluation at λ = µλ which is a point at the target surface by definition.

Compared to the considerations required for Jg←l in Eq. (7.20), Eq. (7.26) has an
additional path length dependency. Putting this together with Eq. (7.19) and Eq. (7.21)
leads to

J =
∂λlocal

final

∂λlocal
initial

∣∣∣∣
λ=µλ

=

(
∂λlocal(s)

∂λlocal
initial

+
∂λlocal(s′)

∂s′

∣∣∣∣
s′=s

∂s

∂λlocal
initial

)∣∣∣∣
λ=µλ

=

(
∂λlocal(s)

∂λglobal
n

)∣∣∣∣
λ=µλ

· Jn · ... · J1 · Jg←l +

(
∂λlocal(s′)

∂s′

∣∣∣∣
s′=s

∂s

∂λlocal
initial

)∣∣∣∣
λ=µλ

= Jl←gJ
′ + Jprojection (7.27)

with the required number of steps n to reach the target surface and the Jacobians

Jl←g ≡
(
∂λlocal(s)/∂λglobal

n

)∣∣∣
λ=µλ

, J ′ = Jn · ... · J1 · Jg←l and

Jprojection ≡
((
∂λlocal(s′)/∂s′

)∣∣
s′=s

∂s/∂λlocal
initial

)∣∣
λ=µλ

. Analogous to Jg←l, the matrix

Jl←g is defined by the coordinate transformations from the specific surface.

The matrix J ′ is discussed in the previous section but the matrix Jprojection on the
other hand requires further explanations.
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The expression can be transformed by taking the corresponding global parameters
into account:(

∂λlocal(s′)

∂s′

∣∣∣∣
s′=s

∂s

∂λlocal
initial

)∣∣∣∣
λ=µλ

=

(
∂λlocal(s)

∂λglobal(s)

∂λglobal(s′)

∂s′

∣∣∣∣
s′=s

∂s

∂λlocal
initial

)∣∣∣∣
λ=µλ

= Jl←g

 r′n
T ′n
q
p
′

∣∣∣∣∣∣
λ=µλ

∂s

∂λlocalinitial

= Jl←g

 Tn
k2

4,n−1

0

∣∣∣∣∣∣
λ=µλ

∂s

∂λlocalinitial
(7.28)

with the derivatives r′n and T ′n of the global parameters after n steps. By definition
r′n = Tn and with the fourth sub-step of the (n− 1)th step k2

4,n−1, T ′n can be calculated
through the definition. This sub-step can be evaluated directly from the constructions
of the RKN4 step. Since q/p is assumed to be constant, its derivative is zero.

The last factor that is missing here is an expression for the remaining path length ds
onto the surface. In order to derive an expression, the total differential of the global,
final position mean r(s), can be considered based on [120]

dr(s) =
∂r(s)

∂λlocal
initial

dλlocal
initial +

∂r(s)

∂s
ds =

∂r(s)

∂λlocal
initial

dλlocal
initial + T (s)ds (7.29)

⇔T T (s)dr(s) = T T (s)
∂r(s)

∂λlocal
initial

dλlocal
initial + T T (s)T (s)ds

⇔0 = T T (s)
∂r(s)

∂λlocal
initial

dλlocal
initial + ds (7.30)

⇔ ∂s

∂λlocal
initial

= −T T (s)
∂r(s)

∂λlocal
initial

(7.31)

with the global, final direction mean T (s). Due to the definition of the curvilinear surface
to be orthogonal to the direction vector and since every position variation of the mean
dr(s) has to be on the surface by definition, the dot product T T (s)dr(s) becomes zero.
Due to the normalisation of the direction vector, the dot product T T (s)T (s) is one.

The right hand side of Eq. (7.31) becomes under this transformation an expression of
the path length dependency on the initial, local parameters. By combining this result
with Eq. (7.28) the second addend of Eq. (7.27) becomes

Jprojection = Jl←g ·


∂xglobal(s)

∂s T (s) ∂r(s)

∂xlocal
initial

· · · ∂xglobal(s)
∂s T (s) ∂r(s)

∂λlocal
initial

...
. . .

...
∂ q
p global

(s)

∂s T (s) ∂r(s)

∂xlocal
initial

· · ·
∂ q
p global

(s)

∂s T (s) ∂r(s)

∂λlocal
initial

 .

Therewith, all components required for the Jacobian are present and the covariance
matrix modifications under extrapolation can be calculated using the initial formalism
from Eq. (7.17).
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7 Track Parameter Propagation

Bound surfaces

For bound surfaces the approach is similar to curvilinear surfaces. Since the Jacobians
Jl←gJ

′ from Eq. (7.27) only depends on the coordinate transformations related to the
underlying surface, no further considerations are required. For Jprojection the conceptual
differences between the curvilinear and the bound surface have to be considered. While
the former is definable for any s and is by definition orthogonal to the direction vector
mean, the bound surface is considered fixed in shape, position and orientation. This
has on the one hand the effect that λlocal(s) from Eq. (7.26) is theoretically just valid

for λglobal(s) = µglobal
λ . However, a surface similar to the target surface can be defined

for the sole purpose of a coordinate transformation. Again as in the curvilinear case,
the justification for this approach is given posterior by the evaluation parameters of the
matrix Jl←g.

The other difference to the former scenario is given by the derivation of ∂s/∂λlocal
initial.

While the orthogonality criterion of the curvilinear surface simplified the problem and led
to the final expression in Eq. (7.31), the handling of a bound surface is more complicated.
In order to obtain the left hand side of Eq. (7.30), the vector orthogonal to dr(s) has to
be utilised. This vector is given by the normal vector on the surface at r(s). Denoting
this vector as I, leads to the modified equation

⇔ITdr(s) = IT
∂r(s)

∂λlocal
initial

dλlocal
initial + ITT (s)ds

⇔0 = IT
∂r(s)

∂λlocal
initial

dλlocal
initial + ITT (s)ds

⇔ ∂s

∂λlocal
initial

= − IT

ITT (s)

∂r(s)

∂λlocal
initial

and hence to a generalised formulation of the curvilinear case with I = T (s).
Noteworthy is thereby that the transport of the covariance matrix as defined in

Eq. (7.17) is a first order solution of the problem. Since a bound surface is, other than
the curvilinear surface not restricted to a certain shape the conic section performed by
the projection does not have to provide a symmetric uncertainty interval. Also a surface
boundary could be considered which leads to a partial intersection of the uncertainty
cone and the target surface. Within ACTS the surfaces are assumed to be sufficiently
planar at the intersection region, such that they can be approximated by a plane. By
neglecting the boundaries during the projection, the normal distributed feature of the
track parametrisation can be conserved. This approximation is not taken into account
for the intersection of the mean. In addition, the coordinate system related to a certain
surface type remains applicable despite the approximations.

7.3.2 Ridders Algorithm

The covariance matrix gets modified during extrapolation according to Eq. (7.17). This
requires the calculations of the Jacobian as shown in Eq. (7.19). While Sec. 7.3.1 demon-
strated a computational efficient way for the calculation of the Jacobian, its correctness
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requires validation. For that purpose an alternative has been implemented in ACTS.
Based on a concept [124] named within ACTS after the author C.F.J. Ridders, the
entries of the Jacobian can be evaluated by multiple extrapolations.

The general idea on Eq. (7.16) for λ = µλ + ∆λ is leading to

∂S′(λ|s)
∂λ

∣∣∣∣
λ=µλ

≈ S′(µλ + ∆λ|s)− S′(µλ|s)
∆λ

. (7.32)

The approximative nature of the solutions is given by neglecting the higher order terms of
the series. While the left hand side corresponds to the required Jacobian matrix, the right
hand side depends only on the extrapolation of the mean. Hence, multiple extrapolations
with different initial parameters lead to an approximation of the correct result. While the
problem addressed by Ridders for calculating the derivative of a function with increasing
accuracy, the implementation for ACTS is centred around a lower accuracy. The goal
remains thereby to obtain a reference value for the transport matrix formalism. Hence,
although the name for the procedure is kept, the actual workflow is simplified compared
to [124].

As λ is a vector and the Jacobian entries are defined as component-wise derivatives,
additional structure is required. The structure of the Jacobian is such that the jth
column is given by

Jj =
∂S′(λ|s)
∂λj

.

As the extrapolated result is derived by a single component, ∆λ has to be restricted to
a single non-zero entry. This also involves that a variation of the initial parameters will
provide derivatives of a single column in the Jacobian. Hence, the variation has to be
performed for all parameters in λ independently.

The dimensionality of the parametrisation leads to a higher computational complexity.
Rather than aiming for a single high precision evaluation of the Jacobian, multiple finite
differences are calculated, symmetrically and component-wise spread around µλ. This
leads to a set of derivatives according to Eq. (7.32). As this is a first order derivative of
an unknown and hence arbitrary complicated distribution, a mixture between variations
and numerical stability have to be found. It was found that variations for numerical
values of ±4 · 10−4 and ±2 · 10−4 around µλ provide, independent of the considered
parameter, suitable results. This generalisation of variations for all parameters in λ
is possible due to the underlying system of units. Thus, the order of magnitude of
parameters is equalised.

As the extrapolation distance and end-point surfaces are not fixed, the Ridders ex-
trapolation provides a flexible tool for comparing and validating the covariance matrix
extrapolation. The extrapolation of the mean as underlying mechanism shows to be,
despite the underlying approximations, a robust algorithm that can be applied using
existing features in ACTS.
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7.4 Extrapolation in Magnetic Fields with Material Interactions

In the previous sections, the track parameter extrapolation for the mean and the co-
variance matrix were introduced. The required modifications of the parameters were
considered in the context of a straight line trajectory as well as a trajectory under the
influence of magnetic field deflections. It was furthermore shown that the former case
can be considered a special scenario of the latter one for kji = 0 with j = 1, 2 and
i = 1, 2, 3, 4. For the underlying equation of motion in Eq. (7.6) the parameter q/p was
introduced. This parameter was treated as a constant along the extrapolation, i.e. the
extrapolations were assumed to occur in vacuum. Although this is true for q, the ab-
solute value of the momentum p is usually not constant along the propagation due to
interactions with the detector material, e.g. for the production of measurements. In this
section a changeable momentum will be treated. For this purpose the extrapolation of
the particle parameters will be considered in the following for two different cases:

1. In an environment with discrete detector material

2. In a continuous material

7.4.1 Discrete Material Interaction

In a tracking detector, the dominant fraction of material is located at discrete locations
described by surfaces. Due to the material mapping the effect of the air in the detector
is mapped onto the surfaces. Therewith it is assumed that between the surfaces just
vacuum is present. This simplification allows the application of the previously derived
formalism between the surfaces. Furthermore this chapter considers the extrapolation of
track parameters while the particle is not effected by inelastic interactions and decay. As
the occurrence of such effects are not deterministically predictable, a data driven han-
dling is required, including potential re-processing of the measurements. Additionally,
minor effects upon the track parameters are neglected.

The first effect considered on the particles momentum is given by the energy loss
due to excitation and ionisation of lattice atoms. A charged particle in matter loses
energy along the propagation through it. Although it is a discrete procedure, it can be
approximated as a continuous interaction. Additionally, the individual energy loss is a
statistical quantity. Consequently the interaction is described by the mean of the energy
losses, denoted by the mean operator 〈·〉. The stopping power is thereby described in
multiple regions as shown in Fig. 4.2. In an intermediate momentum region the mean
energy loss 〈dE/ds〉 per path length s is described by the Bethe-Bloch formula [17]. In
natural units it is given by

〈dE
ds
〉BB = −Kq2 Zρ

Aβ2

(
1

2
ln

(
2meβ

2γ2Tmax

I2

)
− β2 − δ

2

)
. (7.33)

An explanation of the used variables can be found in Tab. C.1.
Based on [119] additional terms have to be considered, starting with the energy loss

due to bremsstrahlung. The Bethe-Heitler equation [125] provides an expression for the
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mean energy loss of charged, relativistic particles due to bremsstrahlung in matter

〈dE
ds
〉BH = − E

X0

(me

m

)2
(7.34)

with the radiation length X0 and the particles mass m. Additionally, energy loss effects
for muons are considered. As described in [119], a µ± may lose energy due to direct
e+e− pair production (PP) and photonuclear interaction (PI). This is parametrised for
two different intervals of energy, E ∈ (8GeV, 1TeV) and E ≥ 1TeV by the functions

〈dE
ds
〉E∈(8GeV,1TeV)
PP+PI = 0.5345

1

X0
MeV − 6.803 · 10−5 E

X0

− 2.2278 · 10−11E
2

X0
MeV−1

+ 9.899 · 10−18E
3

X0
MeV−2

〈dE
ds
〉E≥1TeV
PP+PI = 2.986

1

X0
MeV − 9.253 · 10−5 E

X0

(7.35)

An illustration of the individual impact of the radiative contributions to the total
energy loss are shown in Fig. 7.2.

As all these effects may occur concurrently and continuously in material, they are
combined as

g ≡ 〈dE
ds
〉BB + 〈dE

ds
〉BH + 〈dE

ds
〉PP+PI (7.36)

denoting the case sensitive5 total differential energy loss per unit path length. Hence,
the overall energy loss in matter is described by the sum of all effects. Although each
component has a certain distribution, it is usually a sufficient good approximation to
just consider their combined mean in order to take the effects into account. For that
reason only g will be considered in the following.

As this energy loss is a statistical process, beside the modification of the q/p mean via
the energy loss, a contribution to the covariance matrix has to be considered.

The energy loss and thus the momentum loss in material is not normal distributed.
In the context of the Kalman filter, especially in Sec. 4.3.1.1 measurements are modelled
using multivariate normal distributions. As the material can be mapped onto surfaces
like in a common tracking detector, the impact of the detector material on the particle
properties can be considered as small. This includes that a detector element is as thin
as possible in terms of interaction lengths which the particle has to traverse in order to
minimise the energy loss. Therewith the disturbance of the trajectory is minimised. On
the other hand the detector element requires a certain thickness in order to produce a
measurement. The mixture between both issues is a commonly thin detector element
with a small radiation length X0. In the case of the ATLAS pixel detector, a planar
module is 300 µm thick [126]. As shown in Fig. 7.3, the energy loss can be approximated
by a Landau-Vavilov function. By utilising the full width at half maximum (fwhm) in

5This refers to the differences in the energy loss depending on the particle type and the energy regime.
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Figure 7.2: Composition of the radiative mechanisms of muons in iron as a function of the
muon energy. The function b(E) denotes the mean energy loss per path length [17].

order to approximate the standard deviation σ of a normal distribution as

fwhm = 2
√

2ln(2)σE

⇔σE =
4(K/2)(Z/A)ρ∆s(q2/β2)

2
√

2ln(2)

using the physical description of the fwhm from [17]. The term ∆s describes the thickness
of the material. As the parameter vector from Eq. (7.7) describes q/p, the found standard
deviation has to be transformed:

σ2
q/p =

(
d qp
dE

)2

σ2
E =

(
d

dE

q√
E2 −m2

)2

σ2
E =

q2

β2p4
σ2
E . (7.37)

In addition to the energy loss, the particle scattering within the material has to be
considered. It is assumed that those interactions are fully elastic and hence only change
the particles direction. As this (multiple) scattering is again a statistical quantity, the
mean and covariance matrix have to be considered. While the mean of the energy
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Figure 7.3: Distribution of electronic energy deposit for a 10 GeV muon traversing 1.7 mm
of silicon. The dot-dashed line shows the Landau-Vavilov function using an ap-
proximated Rutherford cross-section. The solid curve was calculated using the
Bethe-Fano theory. M0(∆) and M1(∆) are the corresponding cumulative 0th mo-
ment (mean number of collisions) and first moment (mean energy loss) respectively.
∆p shows the mode of the energy loss pdf and 〈∆〉 shows 〈dEds 〉BB · s [17].

loss provides a value of ≤ 0 eV, for the scattering no special direction can be stated.
Therewith the mean of the scattering angle pdfs is identical to the track angle means.
The per-layer covariance matrix for the local parameters λlocal = (l0, l1, φ, θ, q/p) on the
other hand is given by [119]

ΣScattering = σ2
θ



∆s2

3 + ∆sd+ d2 0 ∆s
2sin(θ) + d

sin(θ) 0 0

0 ∆s2

3 + ∆sd+ d2 0 −∆s
2 − d 0

∆s
2sin(θ) + d

sin(θ) 0 1
sin2(θ)

0 0

0 −∆s
2 − d 0 1 0

0 0 0 0 3∆s2

(
d q
p

ds

)2

σ2
θ


(7.38)

with the distance d between the end of the layer and the target surface. Due to the
material mapping, the entire material contribution is approximately performed at a
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single point. Hence the length ∆s can be considered as zero and the interaction becomes
point-like at the surface. Furthermore the d dependency describes the effect upon the
final covariance matrix at the target surface. Due to the measurement-like description of
the interaction from Sec. 4.3.1.1 and the therewith linked implicit transport through the
extrapolation, the contributions from d are encapsulated in ACTS within the transport
matrix formalism. After removing both contributions ΣScattering is simplified to the only
non-zero entries for σ2

φ and σ2
θ .

Both entries depend on σ2
θ . This term is evaluated for electrons using the Rossi-Greisen

scattering formula [127]

σRGS
θ = 17.5MeV

√
∆s
X0

q2

β2

p

1 +
log10

(
10∆s

X0

)
8

 (7.39)

and for other particles by using the Highland scattering formula [128]

σHS
θ = 13.6MeV

√
∆s
X0

q2

β2

p

(
1 + 0.074ln

(√
∆s

X0

q2

β2

))
(7.40)

Following the notation from Sec. 4.3.1.1, the discrete material interaction is given by

µq =



0
0
0
0
q

min

(√
〈 dE
ds
〉2BB−m2,p

)



Σq =


0 0 0 0 0
0 0 0 0 0

0 0
σ2
θ

sin2(θ)
0 0

0 0 0 σ2
θ 0

0 0 0 0 σ2
q/p


with the mean of the parametrised trajectory q, p, θ. The min-function for the mean picks
the smaller of both arguments and restricts the parameters values to physical values.

Within this section the mass appeared. This parameter plays a special role in the
track parameter extrapolation. While all other parameters are continuous parameters,
the particle rest masses are discrete values dictated by nature and can not be described by
a normal distribution as presumed by the underlying conceptions from Sec. 5.2.1. Since
the particle type may be assigned with certain probabilities, the corresponding masses
can be considered as a multinomial distribution. Furthermore, for a given particle type
this value is a constant that is independent of the extrapolation. Hence, this parameter
can be neglected in the RKN4 integration of λtotal. This scenario is similar to the role
of q/p in vacuum. Considering in addition that a particle detector does not measure
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7.4 Extrapolation in Magnetic Fields with Material Interactions

the particles mass, the underlying pdf will remain unchanged under extrapolation. The
absence of knowledge gathering for this parameter from the detector data and the discrete
nature of the particle masses result in an extrapolation performed for each particle mass
independently. As this parameter depends on the particle identification technique of the
detector or is deducible from scanning through various particle types, it is for the reason
of simplicity assumed within the ACTS framework that this parameter is fixed prior to
the extrapolation.

In summary, the approximation of discrete interactions within a step-wise extrapola-
tion does not interfere with the found expressions of the previous sections of this chapter
but rely on the particle type identification.

7.4.2 Continuous Material

In the previous section the material interaction of a particle was introduced and was
approximated for the special case of discrete, thin material which is traversed. Also it
was shown that in this case another parameter, the momentum, beside the parameters
r and T are not constant along the propagation. Within this section it will be assumed
that the surface material mapping is an insufficient approximation. This is equivalent
to a thick material layer or volume. The environment is denoted as dense, i.e. it is
assumed that the material is everywhere inside the volume. This section considers the
consequences for the extrapolation of parameters under these conditions.

The function g from Eq. (7.36) is a differential function depending on the step size
h. As in a dense environment the energy loss occurs continuously, the position r and
the direction T are affected by this energy loss, leading to a step size dependent bias.
Consequently, the modifications for q/p have to be treated equivalently.

Starting with the formulation of the equation of motion, analogous to Eq. (7.8) leads
to

d qp
ds

= − q

p2

dp

dE

dE

ds
= − q

p2

E

p
g = −

(
q
p

)3
Eg

q2
(7.41)

As the integration of this expression also affects the kji , a simultaneous integration of all
components is required. This can be achieved by the STEP (Simultaneous Track and
Error Propagation) algorithm [118]. This formalism introduces the additional variable
Λ defined as dΛ/ds = q/p. This allows the definition of

r̃ ≡


x
y
z
Λ

 T̃ ≡


T x

T y

T z
q
p

 (7.42)
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and hence preserve the feature dr/ds = T . Due to this formulation Eq. (7.8) becomes

d

ds

(
r̃

T̃

)
=


(
r′

Λ′

)
 q

p (T ×B(r̃))

−
(
q
p

)3
Eg

q2


 ≡

(
f̃1(s, r̃, T̃ )

f̃2(s, r̃, T̃ )

)
.

While the entire usage of Λ is restricted to the symmetry of the vacuum extrapolation,
only the single integrations of q/p have to be evaluated. This is equivalent to the direction
step in Eq. (7.10). From the symmetry to the function f1 and f2, the RKN4 integration
by evaluation of Eq. (7.9) is directly applicable for f̃1 and f̃2. In order to denote the
difference between fi and f̃i, the sub-steps for the latter will be named k̃ji .

The sub-steps for q/p are given by

k̃2
1,q/p = −

(
q
pn

)3
E
(
q
pn

)
g1

q2

k̃2
2,q/p = −

(
q
pn

+ h
2 k̃1,q/p

)3
E
(
q
pn

+ h
2 k̃1,q/p

)
g2

q2

k̃2
3,q/p = −

(
q
pn

+ h
2 k̃2,q/p

)3
E
(
q
pn

+ h
2 k̃2,q/p

)
g3

q2

k̃2
4,q/p = −

(
q
pn

+ hk̃3,q/p

)3
E
(
q
pn

+ hk̃3,q/p

)
g4

q2

with the energy evaluated with the q/p value at the sub-step E(q/pn). The terms g1 to
g4 are thereby the evaluations of g for the momenta at the sub-steps and the material at
ri. The evaluation of each gi is computationally expensive and if the step size is adjusted
a re-evaluation of g2 to g4 becomes necessary. As the momentum also contributes to the
integration error ε, another degree of freedom is present and hence it may become more
likely that the adjustment is necessary. Since therewith the step size tends to become
smaller than in vacuum it can be assumed that all gi have values close to each other.
Since the material is an interpolated function mapped from a highly granular detector
simulation, the individual values will be similar. As a consequence, only the first element
g1 is evaluated and used for all other sub-steps. Thus, it is not affected by the step-size
adjustment.

With this adaption, the mean of q/p can be extrapolated. Additionally the covariance
matrix entries have to be treated under extrapolation. Due to the symmetry from
Eq. (7.42), the concept of Sec. 7.3 remains valid. Hence only the entries of the Jacobian
provided by Ai and Ci from Eq. (7.23) have to consider the correct q/pi. Those are
defined equivalent to Ti in Eq. (7.25). Furthermore the last row and the last column
from Eq. (7.22) will be modified. This involves from the definition of F ′n, Gn and G′n
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while using r and T̃ the additional terms

∂rn+1

∂ qpn
=

∂

∂ qpn

(
rn + hTn +

h2

6

(
k̃2

1,T + k̃2
2,T + k̃2

3,T

))

=
h2

6

(
∂k̃2

1,T

∂ qpn
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2,T

∂ qpn
+
∂k̃2

3,T

∂ qpn

)
∂ qpn+1
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∂
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(
q

pn
+
h

6

(
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1,q/p + 2k̃2
2,q/p + 2k̃2
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4,q/p

))
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(
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1,q/p

∂rn
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2,q/p

∂rn
+ 2

∂k̃2
3,q/p

∂rn
+
∂k̃2

4,q/p

∂rn

)
∂ qpn+1

∂T̃n
=

∂
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(
q
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h

6

(
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2,q/p + 2k̃2
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h

6

(
∂k̃2

1,q/p
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)
.

The first equation thereby defines the last column except for the element in the last
row from Eq. (7.22). The second equation defines the left part, the third the right part
of the last row. This leads to the modified Ai and Ci matrices, denoted by Ãi and C̃i
respectively. Those are then defined as

Ãi =



∂x′′i
∂Txn

∂x′′i
∂T yn

∂x′′i
∂T zn

∂x′′i
∂ q
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and

C̃i =


∂x′′i
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.

The matrix C contains non-zero contributions if the gradient of the magnetic field of
the material is non-zero. Thus, environmental requirements have to be fulfilled. Hence,
for constant magnetic fields and/or materials, the evaluation is skipped. On the other
hand, the evaluation of this matrix provides additional computational costs. That is
another reason to skip the evaluation. Although this matrix affects the precision of the
covariance matrix transport, the benefit is negligible in some cases6.

Beside the energy loss, the scattering has to be considered that occurs continuously
within the material. While the discrete material case allowed for a simplification of
Eq. (7.38), the finite distance does not allow this form anymore. The general description
relies on the given thickness of the material ∆s that has to be utilised. The distance to
target d implies that the matrix is added after the extrapolation to the target occurred.
Since the matrix can be applied at the boundary surface of a layer, this implementation
for ACTS leads to d = 0 mm. The consequence of this approach is that the scattering
will be transported afterwards as part of the covariance matrix. As a dense volume can
be treated as a set of layers of variable sizes, the definition of a layer thickness and thus,
∆s is variable. For ACTS, the path length in the material is monitored and the matrix
is applied whenever the volume changes or a covariance matrix transport is required
(e.g. due to the inclusion of a measurement). Since the material composition can be
arbitrary along ∆s, a finite difference ∆q/p between the momentum at the entrance of
the layer or the point of the previous evaluation and the point of current evaluation is
used instead of a derivative. Thus, the used scattering matrix from Eq. (7.38) becomes

ΣVolumescattering
q = σ2

θ



∆s2

3 0 ∆s
2sin(θ) 0 0

0 ∆s2

3 0 −∆s
2 0

∆s
2sin(θ) 0 1

sin2(θ)
0 0

0 −∆s
2 0 1 0

0 0 0 0 3∆ q
p

2σ2
θ

 (7.43)

6This matrix is not used within ACTS but expressed here for completeness and expanded in the
following sections.
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By comparison with the previous sections of this chapter the modular construction of
this formalism becomes obvious. For g = 0 the presented calculations become identical
to the extrapolation in Sec. 7.2.1 and 7.3, without deflection the same as in Sec. 7.1.
The case sensitivity is thereby provided for all scenarios within the contribution of envi-
ronmental variables such as B(r) and g. Consequently, the found expressions from this
section can be considered as another generalisation of the previous sections.

7.5 Time Propagation

It is planned that for the HL-LHC the mean of the pile-up grows by a factor 2-3 com-
pared to the current state. As discussed in Chapter 4, the corresponding number of
measurements lead to an additional complexity for the track reconstruction. In order
to regulate the reconstruction complexity, all available data have to be utilised. For
that purpose, in the last years the measurement of timestamps in addition to the other
parameters became technically precise enough to allow a sufficient suppression of the
pile-up induced complexity (see Sec. 3.3.2). For the ATLAS detector, the HGTD [87]
represents an application of the time measurement. Since the measurements are thereby
concentrated in a spatial region, the major benefit of this detector part is given for the
vertexing (see Fig. 3.23). As it can be assumed that similar technological applications
will be present in future particle detectors, the time parameter has to become a part of
the ACTS track parametrisation. This issue will be discussed within this section.

In Sec. 7.4 the expansion of the extrapolated parameters by an additional degree of
freedom was discussed. Following the same thoughts allows the inclusion of the time.
As Eq. (7.6) presented the relation between the lab time t and the path length s, the
equation of motion can be expressed as

dt

ds
=

1

v
=

1

β
=
E

p
=

√
m2 + p2

p
=

√
m2

p2
+ 1. (7.44)

As this equation shows, the time only depends on the momentum p and the particles
rest mass m. While in the Secs. 7.2.1 and 7.4 the parameter q/p is extrapolated under
external influences, its value is a part of the track parametrisation. However, since
Λ 6= t, i.e. dt/ds 6= q/p the time has to be treated as additional parameter under the
assumption that the time is measured explicitly. On the other hand, a replacement of
q/p by

√
m2/p2 + 1 is computationally not reasonable due to Eq. (7.6).

Another aspect is the appearance of the mass term in the equation of motion. By
considering the time window of a bunch crossing in a particle collider, the time differences
between the first and last collisions are very small. The additional finite time resolution
of the detector components demand a very precise handling of this parameter. While
the mass dependency in Eq. (7.34) provides a minor contribution to the overall track
parametrisation after a certain extrapolation distance s in dense environment, the impact
of the mass on the time evolution under extrapolation is a major factor upon the result.
Hence, beside the time as additional parameter, the mass becomes a parameter, too. So,
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the overall track parametrisation vector gets extended to

λtotal ≡


r

T̃
t

[m]

 =

 r
≈
T

[m]

 . (7.45)

The square brackets around the mass is meant to denote the special role of the mass in
the track parametrisation.

Following the thoughts from Sec. 7.4 for extending the parametrisation by an addi-
tional parameter, the analogous considerations for the mean extrapolation of the time
are given by the sub-steps

≈
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(
q

pn

)2

+ 1
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+ hk̃3,q/p

)2

+ 1.

The double-tilde is used to denote the utilisation of λtotal. The time is, like T̃ a parameter
that is integrated once. Hence, the time step is evaluated as in Eq. (7.10). Given that the
extrapolation occurs in vacuum, k̃2

i,q/p becomes zero and the step evaluation is simplified
to

tn+1 = tn + h

√
m2

p2
+ 1.

As the time evolution only depends on q/p, the modifications for the Jacobian in terms

of
≈
Ai and

≈
Ci, the analogous expressions of Ãi and C̃i but for λtotal are rather simple.

The only non-zero contributions are given by the derivatives
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−1

with the definition of ti analogous to Ti in Eq. (7.25). For the Jacobian the additional
term ∂tn+1/∂tn = 1 has to be used.
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Similar to the momentum in the previous section, the scattering in a dense environment
affects the variance of the time parameter. From the derivation of the contribution from
Eq. (7.43) for σq/p which can be found in [119], an analogous expression can be found for
the time. The derivation is based on the additional momentum loss due to an extended
path length from scattering in the material. For the time this leads to adding 3∆t2σ4

θ to
the covariance matrix entry σ2

t . ∆t is thereby defined as the difference in time between
the entrance of the layer and the point of evaluation of the scattering matrix.

The dependency of the time parameter on the other parameters and vice versa shows
that measuring the time affects the other parameters indirectly. Due to the only ex-
plicit coupling between time and momentum, the latter parameter is affected by these
measurements. The thereby obtained information about the particles trajectory are
then, represented in Eq. (7.17) forwarded through matrix multiplications to the direc-
tion and the position parameters. The same accounts in the opposite direction. Thus,
the measurement of the time under the assumption of the parameter resolution achiev-
able nowadays has a minor effect on other parameter resolutions. The main impact
provided by this parameter though is given by the suppression possibilities of track re-
construction complexity induced by pile-up events and the therewith linked reduction of
computational complexity and computing resource consumption.

7.6 Auctioneer Formalism

The formulations for extrapolating the mean and the covariance matrix of a track
parametrisation from Sec. 7.2.1 can be considered as a general expression. Secs. 7.4
and 7.5 added more functionality to the extrapolation by including special conditions.
The former expansion of the formalism is thereby driven by environmental conditions of
the detector. Moreover, the existence of volume material depends on the current step
during the extrapolation. Extrapolating the time parameter on the other hand either
has to be considered throughout the entire detector if time measurements are present or
not. A similar consideration can be performed for the straight line extrapolation from
Sec. 7.1. While it is known prior to an extrapolation whether the detector measures
time, it is also known from the seed whether a particle is charged or has a sufficiently
high momentum to be treated as particle with a straight line trajectory. If the straight
line case is applicable then the RKN4 formalism is not required, i.e. Eq. (7.13) becomes
zero. Furthermore, the RKN4 step evaluation is computationally more expensive. Hence
the existence of the straight line and RKN4 based extrapolations are implemented both
for ACTS and have to be utilised based on the initial conditions.

While the time and dense environment extrapolation are either present depending on
the detector architecture and the current state of the extrapolation, a user definable
interface is required. Therewith the design goal of the detector independence of ACTS
can be preserved. Additionally, the dense environment step extrapolation adds further
computational complexity. Hence these calculations should be performed only when
volume material is present. The combination of the requirements and the implementa-
tion for ACTS is shown in Fig. 7.4. Given a state, denoted by λn = λ(s), the RKN4
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Figure 7.4: Flow chart showing the individual components of an extrapolation step from λn to
λn+1 using the RKN4 integration [129].

integration performs the required calculations with a given step size hi. Thereby the
formalism evaluates the magnetic field at the positions ri from Eq. (7.10). By evaluating
the numerical error as given in Eq. (7.13) and comparing it to a given tolerance, the
performed calculations are either accepted or require an adjustment. In the former case
the (n+ 1)th state gets evaluated, in the latter case the step size is modified according
to Eqs. (7.14) and (7.15).

As the RKN4 integration is just the method applied to solve a differential equation,
the set of differential equations for the parameters in λn can be arbitrary. For ACTS
a grouping mechanism was developed. Based on the underlying environment, the con-
siderable effects and parameters, the differential equations may change. As the RKN4
step evaluation relies on the calculation of the sub-steps k1 to k4, a set of differential
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equations just has to provide those results. In ACTS a set of differential equations is
called an extension. In order to cover a range of different cases, multiple extensions can
be handed over. Those are stored in the StepperExtensionsList. As the extensions may
be dependent on the environmental conditions and are thus not applicable in general, a
selection mechanism is required. This mechanism is called Auctioneer. Before a step is
evaluated, all extensions obtain the environmental data. Based on the provided informa-
tion each extension calculates a so-called bid. The auctioneer mechanism then evaluates
all bids and declares which extension(s) will calculate the next step. As the StepperEx-
tensionList is user defined, the implemented physical effects can be considered arbitrary.
Additionally, the amount of required extensions for a certain step are unpredictable for
an ACTS implementation. The auctioneer itself is user defined. Since the production of
the bids as well as the overseeing auctioneer are user defined, the actual implementation
flexibility is granted.

For the ACTS software the extrapolation following Sec. 7.2.1 and 7.4 are implemented
as two separated lists. Both include the time parameter extrapolation per default. In
addition, an auctioneer is implemented that prefers the latter expressions whenever
volume material is present. Otherwise the vacuum extrapolation is considered.

Beside the argument of flexibility for custom user applications and the therewith linked
utilisation for future experiments, the auctioneer formalism provides another benefit:
This architecture allows to address an arbitrary number of different physical scenarios.
Thereby unnecessary calculations are skipped on a step-by-step evaluation. This provides
a reduction of the necessary computational complexity to a minimum in the context of
the RKN4 integration. Furthermore additional effects can be included when necessary.
This leads to the possibility to perform an entire track extrapolation through the detector
within a single class. As this involves that a single state object is required in order to
store all necessary data defining the state, there is no necessity to move data between
extrapolation classes or to convert the data structures.

In summary, this formalism allows a flexible and detector independent solution of an
extrapolation problem within a single class. The design of the auctioneer was created
and implemented into ACTS within the context of this thesis.

7.7 Propagator

The previous sections within this chapter discussed the requirements in order to extrap-
olate a track parametrisation. Various conditions affecting the trajectory and conse-
quently the parametrisation itself were considered. Thereby, the extrapolation itself is
calculated step-wise. This section utilises the found expressions and discusses the ex-
trapolation on a global scope. The top-level manager concept is called Propagator, in
ACTS this is represented as a class. The propagator starts and ends an extrapolation,
provides the environmental data and allows state accesses and manipulations between
individual steps. In order to perform these tasks, three more concepts, a Navigator,
Actionlist and Abortlist are required. As the extrapolation occurs step-wise, the Prop-
agator demands certain tasks from all these components iteratively. The conditions are
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provided to the stepper and the evaluated step can be further processed in the other
components. These components, their tasks and interplay with the Propagator are ex-
plained in the following. At first the Navigator will be described, afterwards the Action-
and Abortlist.

Navigator

The Navigator is a concept responsible for handling the detector geometry. It is capa-
ble of accessing the individual components and provide information about the volume,
layer and surface that corresponds to the current position of the trajectory. Due to the
hierarchical architecture of the detector geometry, the lookup is performed at the lowest
possible level. After an initial lookup, the Navigator knows all three components. The
other task the Navigator fulfils is targeting the next geometry object along the trajec-
tory. As this task requires knowledge about the trajectory beyond the current position,
the track parametrisation itself has to be extrapolated. Since this would involve many
additional extrapolations and thus computational resources, the trajectory is approxi-
mated by a straight line. Beside the justification of the separation between straight line
and charged particle extrapolation within the previous sections, the (potentially) sim-
plified extrapolation is applied here. Since the trajectory diverges for charged particles
in magnetic fields between the RKN4 extrapolation and the straight line approximation,
the Navigator tests for the next geometrical objects before each step. Thus, a different
object can be targeted if the curvature of the trajectory disfavours the initial target
reachability. Furthermore, the extrapolation distance from the straight line allows to
estimate the step size h. In addition to the integration error driven step size adjustment
from Sec. 7.2.2, the detector geometry provides an additional constraint. In order to
resolve the concurrent assignment, the smallest step size is chosen.

As the current position inside the geometry and the target are resolved, the extrapo-
lation will modify the current position of the particle. Thus, the current surface, layer
and volume might need to be updated. This is performed in the Navigator by utilising
the hierarchy of the detector geometry. It also allows to access the current geometry
objects at any time and to obtain environmental variables such as material parameters.

As this approach aims to reduce the set of candidates and perform status modifications
on the lowest level of the hierarchy, the complexity can be reduced. The Propagator
requires the Navigator to evaluate the current status in the hierarchy before each step
and before the target can be evaluated. On the other hand the volumes are encapsulated
in a world volume to allow an initial evaluation of the volume, layer and surface.

Action- and AbortList

The Action- and AbortList are two sets which can be defined and extended by the
user. The underlying concept is comparable to the Auctioneer formalism from Sec. 7.6.
The major difference is that the lists in this case are not moderated by an Auctioneer
instance, i.e. each element of the Action- and AbortList, called actor and aborter is
evaluated when called. The call itself occurs before each step.
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The aborter allows to terminate the extrapolation. This occurs as soon as one aborter
in the list requests it. The judgment itself is only based on the current state of the
Propagator, the Navigator and the extrapolation stepper. This concept is kept generally
to cover a large range of conditions. The standard conditions cover the exiting of the
world volume, a maximum total path length s and a reached predefined surface.

While the aborters utilise the state, the actors are capable of manipulating the state.
Compared to the Auctioneer formalism, the manipulation does not occur during the
step evaluation within the extrapolation but between the steps. This allows to perform
material interactions or to manipulate the state in general. As the track parameter
modification due to the Kalman filter can be treated similar to discrete material effects,
a design of the actors is the implementation of this formalism. Beside the plain up-
date of the mean and the covariance matrix, the state manipulation also allows for the
smoothing.

Both lists can require a certain step size for their purpose. Since the step sizes may
differ, each list controls an independent step size. The applied step size is the minimum
of four different values along the extrapolation direction.

7.8 Results

Within this section the calculations and concepts are investigated for their correctness.
Since the straight line extrapolation is a special case that is not affected by most of the
concepts introduced here for the track extrapolation, it will be ignored in this section.
The material interaction though affecting the straight line is considered in the follow-
ing. The analogous validity is given by definition. All other concepts are based on the
numerical transport of a track parametrisation through the parameter space under the
influence of different effects by using the RKN4 integration. Thus, the items of investi-
gation are the extrapolation through vacuum and material. The material is considered
in both categories: surface and volume material. As for all extrapolation steps the mean
and the covariance matrix of a parametrisation are the only quantities that have to be
considered, the focus relies on those two. While this section is focused upon the accuracy
of the extrapolation, a timing study can be found in [103].

In order to cover the different aspects, a setup for a proper comparison is required.
This will be described in Sec. 7.8.1. Afterwards, the different extrapolation scenarios
will be presented. In a last step the Ridders algorithm is used for further investigation
of the covariance matrix transport.

7.8.1 Simulation Setup

In order to test the extrapolation quality, a reliable algorithm is mandatory. This is
achieved by utilising the Geant4 framework as a reference. As it provides detailed models
of interactions, it is the most trustworthy software for the purpose. The level of detail
is hereby centred on accuracy. Hence, the material effects from Sec. 7.4 represent just
a fraction of possible interactions but the major effects affecting the particle trajectory.
Furthermore, Geant4 simulates individual particles instead of statistical quantities. As
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the extrapolation from the previous sections are extrapolating means and covariance
matrices, a corresponding adaption has to be performed in order to reflect the stochastic
nature of interactions. If the extrapolated mean and covariance matrix are correct then
the mean and covariance matrix of multiple Geant4 extrapolation should lead to the
same result. Under this premise, a sampling setup is required.

The initial parameter means for the stepper extrapolation are sampling from the
uniform distributions. Those are defined as µφ ∈ [0, 2π), µη ∈ [−2.5, 2.5]7, µz ∈
[−10, 10] mm and µp ∈ [1, 100] GeV. The starting time and the two other spatial pa-
rameters are without loss of generality set to zero. With the sampled parameters a
curvilinear surface can be defined. The initial parameters are given in this coordinate
system. Additionally, uncertainties are defined as σl0 = σl1 = 100 µm, σθ = σφ = 1◦,
σp = 100 MeV and σt = 100 ps. As the sampled parameters define the centre of the
surface and the uncertainties the 1σ region of the multivariate normal distribution, the
Geant4 start parameters are sampled from this pdf.

In order to compare the different aspects of the extrapolation, a detector geometry is
required. The described components can be found in the ATLAS ID together with the
Calorimeters. While the pixel detector and the SCT represent an extrapolation region
mostly filled with air, it can be approximated to have a comparable effect as vacuum.
Approximating the sensitive components as a set of surfaces with a corresponding mate-
rial map provides a scenario with discrete material interactions. The architecture of the
TRT, the LAr calorimeter and the tile calorimeter allow for testing the application in a
dense environment. Therefore, the volume of those components is mapped into material
volumes8.

The particles that are simulated within this detector setup are muons. This shows the
influence of different charges on the particles trajectory. Furthermore, muons are affected
by the entire set of interaction processes that are treated and are capable of traversing
the entire detector. For each configuration of initial parameters, 1000 Geant4 particles
are simulated. In total 800 different configurations are used. The Geant4 simulation is
restricted to the simulation of the initial particle, i.e. secondaries are ignored within the
simulation.

During the extrapolation of the ACTS stepper and the Geant4 simulation, the free
parameters are recorded after each step. By setting the Geant4 initial parameters in one
iteration on the mean values from the sample, the step-wise positions and parameters
define the target surface for the ACTS extrapolation. The obtained data are used to
investigate the behaviour. Since the Geant4 steps do not necessarily correspond to the
ACTS steps, an approximation is required. By constructing a curvilinear surface for each
step of the extrapolation, a bound parametrisation can be provided. For each Geant4
simulation, the parameters closest to the surface are searched. This is performed by a
straight line intersection.

7For the extrapolation, the sampled pseudorapidity is converted into θ.
8As this is a simplified representation of the detector geometry, the detector components require a

proper translation. Up to today the MS is missing and hence can not be included in the setup.
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7.8.2 Vacuum Extrapolation with Discrete Material

As a first step the behaviour of the particles during extrapolation in vacuum with discrete
material effects between the steps is investigated up to a radial distance of 550 mm. This
covers the pixel detector and the SCT. The distribution of differences between the initial
parameters obtained from a sample in ACTS and the calculated mean from the sampled
initial parameters for Geant4 is shown as black dots in Fig. 7.5. As the initial parameters

Figure 7.5: Difference between the mean values of parameters obtained from ACTS and from
Geant4. The initial distribution of parameters is shown as dots. The lines repre-
sent the distribution of parameters obtained at each surface, split into momentum
intervals.
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are distributed around zero, the construction of the initial sample works properly. The
width of these distribution is given due to the limited sample size in Geant4. Due to
a sample in terms of momenta instead of q/p, the corresponding distribution is centred
around zero but has a skew slightly different from a normal distribution.

The three lines represent a superposition of all 800 muons used for the extrapolation,
evaluated parameter-wise at each surface. Hence, in each distribution a correlation
between the individual points is present. As the means of the initial parameters for
Geant4 vary around the mean used for ACTS, the kinematics vary, too. This leads to a
progressive deviation during the extrapolation between the two models. This deviation
can be seen in spatial parameters in the top row of Fig. 7.5. However, the deviation is
enhanced due to the underlying projection of the Geant4 particles onto the curvilinear
surface. The further the bin is away from the initial parameters the longer it takes to
be filled with values as the deviation occurs step-wise.

Noteworthy is in this set of plots the q/p distribution. It can be seen that the distribu-
tion is skewed towards negative values for the low momentum particles. This corresponds
to smaller momenta in the Geant4 simulations compared to the ACTS extrapolation.
As the material interaction is simulated only at certain surface in the latter case, the
cumulative effect applied at these points has to be same as for the Geant4 simulation.
The step-wise momentum change is shown in Fig. 7.6 (left). This plot shows the mo-

Figure 7.6: Left: Step-wise momentum difference for the Geant4 and ACTS extrapolation.
Right: Relative momentum difference between the Geant4 and ACTS extrapola-
tion.

mentum difference for each simulated Geant4 particle and each ACTS extrapolation.
While during the Geant4 simulation the particles momentum gets reduced at each step
due to the full simulation of the detector geometry and thus a distributed material, the
momentum loss for ACTS is restricted to the pixel and strip surfaces. These contribu-
tions are visible for radii below 200 mm (pixel detector) and above 300 mm (SCT) with
value between 10−3− 10−2 GeV. The momentum differences for ACTS below 10−4 GeV
are numerical noise.

In addition to the discrete interaction, the underlying energy loss mechanisms, de-
noted in g from Eq.(7.36), are naturally Landau distributed as shown in Fig. 7.3. As
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explained in the corresponding section and in Chapter 4, the applied statistical models
are restricted to (multivariate) normal distributions. Hence, the approximation does
not describe the tail of the Landau distribution well. Consequently, the Geant4 sim-
ulations that perform the proper sampling have a higher probability for larger energy
losses compared to the models used for the track reconstruction. As a result of this
enhanced momentum loss, the q/p distribution in Fig. 7.5 tend towards smaller values.
Additionally, the impact of the energy loss mechanism depends on the momentum of the
particle as shown in Fig. 7.6 (right). This plot shows the step-wise relative deviation
between Geant4 and ACTS. Although the values spread over four orders of magnitude
(blue), a clearly stronger deviation is obtained for low momentum particles (red) com-
pared to higher momenta (green). This plot also shows a small slope for each category
that displays the impact of the approximation of the underlying pdf. Furthermore, this
gets visible in the φ values as shown in Fig. 7.5. As the magnetic field is directed perpen-
dicular to the radial vector, the azimuthal angle is mostly affected, again mostly for low
momentum particles. The probability difference in the tail region between the Landau
distribution and a normal distribution can be seen at the small probability for larger ab-
solute φ values. Considering additionally the correlation of the histogram entries shows
that even in the absence of measurements and hence parameter regulation mechanisms,
the impact is small but not negligible.

Beside the mean the uncertainty of the parameters are of interest. The corresponding
distributions are shown in Fig. 7.7. These distributions utilise the same conventions as
in Fig. 7.5. As for the means, the difference of the uncertainties are centred around
zero except for q/p due to the sampling procedure. Again as in the former set of plots,
the spatial parameters show the step-wise growing deviation for the spatial parameters
in the top row. Also the normal distributed approximation of the underlying energy
loss mechanism leads to a skew in the q/p distribution. Here, the dependency on the
particles momentum and the energy loss modelling gets visible. While a low momen-
tum particle may lose a larger fraction of its momentum due to the underlying model,
the higher momentum particles are less affected. As the individual uncertainties for
the Geant4 simulation parameters are affected by the individual outliers of the low mo-
mentum particles, the uncertainties in φ tend towards larger values. This produces an
enhanced region for negative values in the azimuthal angle plot in Fig. 7.7. As the mo-
mentum may reach smaller values than a normal distributed energy loss would predict,
the material interaction described by Eqs. (7.40) and (7.39) leads to larger variations.
As a consequence, the σl0 parameter for Geant4 becomes larger than in ACTS, hence
the corresponding plot tends to negative values.

The presented distributions for the mean and the covariance matrix difference between
ACTS and Geant4 show that the extrapolation methods for vacuum extrapolation with
discrete material interaction in the comparison with projected Geant4 simulation deliv-
ers reasonable results but reveals limitations for low momentum particles in the applied
energy loss approximations. However, as the extrapolation in the context of track re-
construction occurs along with measurements that provide additional information about
the particle properties along the extrapolation, the application of this implementation
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Figure 7.7: Difference between the uncertainty values of parameters obtained from ACTS and
from Geant4. The initial distribution of parameters is shown as dots. The lines rep-
resent the distribution of parameters obtained at each surface, split into momentum
intervals.

will provide more accurate results for the required task. This includes the recovery from
the energy loss pdf and the material model.
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7.8.3 Extrapolation in Dense Environment

After the particles traversed the silicon detectors, they enter the TRT and the calorime-
ters. The material in these detector parts is described by volume materials, resulting in
a continuous energy loss of traversing charged particles. Thus, the situation is different
compared to the pixel detector and SCT detector and requires further treatments.

The mean and covariance matrix of the Geant4 simulations are derived by a projection
of nearby points onto the curvilinear surface defined by the ACTS extrapolation. While
the previous section considered only surface material, the projection of individual points
next to the surface in vacuum is close to the actual value in space, momentum and hence
the entire phase space of the parametrisation. Since the ACTS implementation requires
an actor call for handling the material at the surface in between the vacuum regions,
a step has to end at the surface. A similar treatment occurs by Geant4. Hence, both
implementations deliver parameters at the same phase space region by design.

When dealing with volume material, more complicated situations may occur. As the
individual detector parts have a certain spacing between them, those regions cause less
(in case of Geant4) to no (in case of ACTS) energy loss compared to the TRT and
calorimeters. Hence, the evaluation of the mean and covariance matrix at those points
lead to values that are close in space but not close in momentum. The latter parameter
can be understood as the mixing of Geant4 steps inside and outside the detector material.
While the first ones are rather constant in terms of momentum, the second ones are
decreasing as a function of the distance in the material. Similar situations exist in
various places within the detector components, enhancing the conceptual projection
error from the comparison. For that purpose different projections are utilised in the
following. For the momentum and time parameters estimation, a straight line distance
of less than 1 mm from the Geant4 step to the curvilinear surface is required per particle.
For the other components the tight constraint is not necessary, especially outside the
solenoid magnet. Since the deflection by the magnetic field is small compared to the ID,
a projection of spatial components over a longer distance with straight lines is possible
without causing too large errors. Due to the reduced deflection, the direction vector is
assumed to change less rapidly as in the ID, too.

Compared to the previous section, the frequent occurrence of transition regions along
the extrapolation leading to artefacts in the parameter distributions arising just from
the underlying concept, in the following the final parameters are presented rather than
the parameters at each step. From the particles simulated in the previous section, the
mean parameter distributions at the entrance of the radial region are shown as dots
in Fig. 7.8. These correspond to the parameters at the end of the silicon region. The
final spatial parameters in the top and middle row are affected by the same effects as in
the previous section during the extrapolation, projection and statistical limitation. This
leads to a broadening in those parameters. Again, the effect is larger for low momentum
particles. As the magnetic field is mainly directed in z-direction, the distributions of
〈θACTS〉 are less affected by these effects compared to 〈φACTS〉.

The bottom row plots require further investigation. The momentum distribution is
again affected by the modelling of the energy loss. The time distribution is a result of
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Figure 7.8: Difference between the mean values of parameters obtained from ACTS and from
Geant4. The initial distribution of parameters (IP) is shown as dots. The lines
represent the distribution of parameters obtained after traversing the TRT and
calorimeters (FP), split into momentum intervals.

the momentum distribution. Compared to Fig. 7.6, the material interaction occurs here
at almost all steps. Hence, the previous presentation of the energy loss in Fig. 7.6 is
not suitable here. The relative, step-wise momentum loss due to material interaction
is shown in Fig. 7.9. For this plot the steps for both, ACTS and Geant4, in which
the ACTS particle had no energy loss, were removed as these steps correspond to the
spacing region between the detector components. As this plot shows, the probability of
the momentum loss due to material interaction tends towards larger values in Geant4
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Figure 7.9: Momentum loss per step between the nth and (n−1)th step for Geant4 and ACTS.
Steps with pn = pn−1 are removed. Sorted in the momentum regimes, the dots
represent the Geant4 momentum loss, the lines the ACTS momentum loss.

compared to ACTS in all considered momentum regimes. This is again a direct conse-
quence of modelling of parametrisation modification using normal distributions instead
of Landau distributions. Since it occurs on many steps, the deviation between 〈q/pACTS〉
and 〈q/pG4〉 gets larger over the entire distance in this case, as shown in Fig. 7.8 (bottom
left), compared to the surface material case shown in Fig. 7.5 (bottom left). Due to the
tendentious lower momentum of particles in Geant4, the mean lab time of the particles
becomes larger than for Geant4. While the general shape of the differences of the means
in Fig. 7.8 (bottom right) for the entrance and final parameters remains similar, a slight
shift towards negative values of the entire distribution can be observed.

The distributions of the uncertainties corresponding to the dense environment extrap-
olation is shown in Fig. 7.10. The plots rely on the same conventions as the means. It
is observable that partially the same energy loss fluctuation behaviour is present as in
the discrete material case. The momentum range of the Geant4 particles remains stable
for the low momenta. For higher momenta, the situation is different. Due to the more
frequent material interaction, the material modelling effects become visible. However,
in comparison to the former case, the interaction occurs continuously and hence has a
larger impact on the distributions of q/p. On the other hand, the impact of the broad-
ening of the q/p standard deviation has a negligible impact on the standard deviation
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Figure 7.10: Difference between the uncertainty values of parameters obtained from ACTS and
from Geant4. The initial distribution of parameters (IP) is shown as dots. The
lines represent the distribution of parameters obtained after traversing the TRT
and calorimeters (FP), split into momentum intervals.

of the time, showing that the impact of the momentum change on the time evolution is
low compared to the intrinsic evolution from the Jacobian term ∂tfinal/∂tentrance.

The azimuthal angle and the polar angle are more skewed towards negative values the
lower the particles momentum is. As the momentum of the particles in Geant4 is rather
smaller than in ACTS and the scattering contribution θ depends reciprocal on p and β,
the variance of the polar angle gets larger. Since according to Eq. (7.43) the scattering
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contribution is proportional to this variance, a systematic underestimation is observable
mainly for the angular distributions in Fig. 7.10.

In summary, the comparison of ACTS with Geant4 shows that the implementation
of the extrapolation as it was done for ACTS shows in most cases a good agreement
for a sufficiently large momentum with respect to projection and statistical errors. The
major deviation between both algorithms is driven by momentum loss due to material
interaction. This is a consequence of the used model of the interaction impact. While the
silicon detector provided just issues related to the material interaction at a few points
along the trajectory, in the dense environment the problem is more complicated. In
addition to the energy loss, the scattering requires a careful treatment. This emphasises
a careful construction and application of a material map.

Although the formalism allows a flexible application for various scenarios, the plots
show that the environment provided for the Propagator defines the similarity of the
extrapolation and the Geant4 simulation and thus the reliability of the reconstructed
tracks. By considering the absence of any measurements that would reduce the uncer-
tainty and regulate the mean parameters, the results shown in this chapter are worse
than in the track reconstruction. Since a common particle detector consists of several
sensitive layers, the momentum drift gets damped after a certain extrapolation distance.
Hence, it can concluded that the extrapolation of the track parametrisation is applicable
for track reconstruction.

7.8.4 Ridders Algorithm

The Geant4 simulation provides the results that are intended to be reproducible by
other software. As shown in the previous sections, a comparison between ACTS and
Geant4 is rather complicated while certain error sources remain due to the different
approach to things such as material. Since the covariance matrix is error prone with
the applied approximations, the Ridders algorithm is used in the following. As this was
implemented for the ACTS, the entire application is executable without the external
dependency on Geant4. Furthermore, the material and magnetic field description as well
as the detector geometry is identical. Hence, a direct comparison between algorithms
is possible. However, considering the Geant4 extrapolation as the true trajectory in
simulation, the following section focuses on the comparison of algorithms while the truth
connection relies on Geant4.

As in the previous sections, the covariance transport will be considered in two different
scenarios: Vacuum and dense environment. For both scenarios, the covariance transport
using different, random initial parameters is considered. The spatial parameters are
sampled from normal distributions with a mean of zero. For x and y a standard deviation
of 50 mm, for z of 100 mm was used. The angles φ and θ are sampled uniformly from
their entire domain. For the particles momentum uniform values between 50 MeV and
100 GeV are used. The charge is set randomly to −1, 0 or 1 and the extrapolation
distance is drawn randomly between zero and 5 m. For both cases a constant magnetic
field of 2 T in z-direction is applied, for the dense environment constant volume material
consisting of Beryllium is used. While the extrapolation from a surface to another surface
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through vacuum is by definition performed without scattering, for the volume material
case it had to be disabled explicitly. Since the Ridders algorithm extrapolates multiple
times, the algorithm is incapable of treating these effects. Although they could be added
afterwards, the effect would be identical as for the covariance matrix transport and thus
negligible. The mean of the start parameters and from the end parameters define the
curvilinear surface at which the covariance matrices are associated to.

While the different initial parameters are also considered in the comparison to Geant4,
the distance was given by the detector geometry. The component-wise entries of the
uncertainties and the determinants versus the extrapolation distance as obtained from
the Ridders algorithm and the covariance transport are shown in Fig. 7.11 for vacuum
and in Fig. 7.12 for volume material. For both scenarios, both algorithms provide
almost identical results over the entire range. The observable small, bin-wise deviation
is thereby a result of the performed linear regression in the Ridders algorithm with the
given finite precision and variations.

The results emphasise the point from the previous section: The description of the
underlying detector geometry and its components is a crucial part for a precise ex-
trapolation. As the only difference between the two methods are the evaluation of the
covariance matrix, it shows that the Ridders algorithm will produce the same deviations
as the covariance transport formalism. Furthermore, there is no improvement visible
compared to the covariance transport. This can be interpreted as a correct extrapola-
tion of the covariance under the given circumstances of environmental information and
the material interaction model.

Although the Ridders algorithm strengthens the confidence in the covariance trans-
port method, the underlying physical effects and environmental conditions are identical
for both scenarios. Hence, the comparison between the two algorithms rely on a cor-
rect extrapolation of the mean. Though, under this assumption, the algorithm serves
for ACTS as a possibility of continuously testing9 the correctness of the extrapolation
without additional external dependencies. As this part is one of the major components
in the track reconstruction, it is crucial to provide a continuous integration (CI)10 of
these elements.

The shown distributions are a projection of the sampled parameters on a single param-
eter. For completeness, the projections on the other parameters are shown in Sec. C.1.

9Any code development is tested for correctness before it becomes a part of the code base. In this case
a comparison between the algorithms is performed and it is required that the results are sufficiently
similar.

10This term describes the continuous combination of software parts for compilation, testing etc. to
ensure and improve the software quality.
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Figure 7.11: Comparison of the diagonal terms of the covariance matrix and the determinant
for an extrapolation from curvilinear to curvilinear parameters in vacuum between
the Ridders algorithm and the covariance transport as function of the distance.
The bin centres are shifted for readability.
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Figure 7.12: Comparison of the diagonal terms of the covariance matrix and the determinant
for an extrapolation from curvilinear to curvilinear parameters in matter between
the Ridders algorithm and the covariance transport as function of the distance.
The bin centres are shifted for readability.
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8 Track Reconstruction with Volume
Bound Measurements

In Sec. 3.2.2.1, 3.2.2.2 and 3.3.1 different semiconductor tracking detectors are introduced
that follow the working principle shown in Fig. 3.16. Due to the modules arrangement,
a charged particle will traverse a well-defined plane at the centre of a module, in the
following referred to as read-out plane. Although the electron-hole pairs, created during
the particles transition, produce the actual measurement that is read-out, it can be
considered as a sample of the true trajectory. At the read-out plane itself, the sample
can be expressed as given in Eq. (4.13). Thereby, the mean µparticle

truth and the sample
parameters are given at the read-out plane, projected into the subspace of measured
parameters. In tracking detectors, those parameters are usually spatial parameters.

In contrast to the semiconducting detectors, the TRT and also the MDTs are gas
detectors. In both detector components, the electron-ion pairs created by the incident
particle in the gas volume are registered by the wire at the centre of the drift tube.
Hence, the particle trajectory does not need to traverse the read-out wire. This corre-
sponds to a displacement of the actual measurement origin in the gas and registration
of the measurement at the wire. Thus, for such measurements the mean µparticle

truth of the
sample at the wire does not exist. Due to information about the distance travelled by
the ionisation electrons, the origin of the ionisation can be reconstructed. For those
reconstructed measurement origins, Eq. (4.13) can be utilised. Here, Σdet also needs to
take the uncertainty due to the reconstruction into account.

Within this chapter detectors with a displacement between the origin and the regis-
tration of a measurement are considered. In Sec. 8.1 a typical type of gas detectors is
presented. This type provides the same displacement by principle but is easier to grasp
from the underlying geometry in comparison to the tube design of the TRT and MDT.
In Sec. 8.2 the description of the measurement and in Sec. 8.3 the description of the ex-
trapolation is considered. Both parts will be used in Sec. 8.4 in order to reconstruct the
particles trajectory. The last section then compares the found result with the different
approximations. While the first two sections describe the scenario, the other sections
were developed and applied as part of this thesis.

8.1 Time Projection Chamber

In 1978 the so-called Time Projection Chamber [130] (TPC), a gas detector principle was
proposed. An overview of the TPC concept is shown in Fig. 8.1. The entire volume is
filled with a gas mixture consisting of a noble gas and a quenching gas. The atoms of the
noble gas X are thereby the ones intended to be ionised by the incident particle. Hence,
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Figure 8.1: Schematic illustration of the TPC detection principle [131].

the choice of gas is thereby driven by the required ionisation energy and the ionisation
cross-section as shown in Fig. 8.2 (left). As the atom can be in an excited state X∗ after
the interaction, a photon would be emitted. Due to photoelectric effect, this can lead to
sparks in the sensitive components of the detector [134]. In order to prevent this from
happening, the quenching gas is utilised. Due to the Penning effect [135], the photon
is transferred to quenching gas which emits an electron instead. The charged ions then
drift in an electric field to the cathode and get neutralised. As shown in Fig. 8.2, the
quenching gas can thereby be just a small fraction in the mixture.

The measurement is created by the ionisation electrons. Under the influence of an
electric field, those drift towards the anode. In order to optimise the measurement
precision, the electric field is built such that it is parallel to the magnetic field inside
the TPC. This leads to an acceleration of the electrons parallel to the direction of
the magnetic field and thus to a vanishing of the Lorentz force. While cathode and
anode provide a plate capacitor, the field is supported by the field cage. Therewith the
homogeneity is enhanced. This field leads to an even acceleration of the electron. As
the electron drifts through the gas towards the anode, diffusion and other interactions
like distortions of the particles trajectory due to the presence of space charge in the
gas mixture occur. These effects affect the overall resolution and the enhancing of the
signal production. In order to suppress the effect from diffusion, high electrical fields
are required. The choice of gas mixture influences thereby the applicable field strength
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8.2 Measurement Description

Figure 8.2: Left: Ionisation cross-section of the five lightest noble gases versus the energy of
an incident electron. Heavier atoms have a larger cross section for a given electron
energy [132]. Right: Electron drift velocity in argon-isobutane for different concen-
trations versus the external electric field. Even a small fraction of quenching gas
modifies the shape of the graph significantly leading to higher drift velocities for
smaller electric field [133].

regime. While the operation in proportional mode is intended, the transition point to
Geiger mode can be pushed towards stronger field strengths by the mixture.

The pads at the anode measure the incoming electrons. For the layout of the de-
tector multiple different concepts are used. Common designs utilise gas detectors such
as Multi-Wire Proportional Chambers (MWPC’s), Gas Electron Multipliers (GEM’s)
and Micro-MEsh Gaseous Structures (MicroMegas) or silicon detectors. Therewith a
position measurement in r-φ-direction can be provided. For the reconstruction of the
measurements origin, the z-position needs to be determined. This requires an external
input from other detector components such as additional tracking detectors. The there-
with provided information about the third spatial coordinate then allows the extrapolate
the measurements back to its hypothetical origin. Although the measurement is not re-
stricted to only spatial information, without loss of generality the focus in the following
relies on reconstructed measurements with only three spatial coordinates.

8.2 Measurement Description

A measurement obtained in the TPC can be stored using the same container concept as
described in Sec. 5.2.3. While the concept itself is centred around surface bound mea-
surements, some modifications are required. Both, the concept and the implementation
are discussed in the following. Classes related to the implementation from Chapter 5
are printed in small caps within this section.

The measurement of a particles trajectory is registered at the anode of the TPC.
Since the data storage is closely linked to the track reconstruction and fitting workflow,
the concept of the source link is required which provides a linkage between the mea-
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surement and the measuring geometry object. Eq. (4.40) can be understood as the
sensitive surface that triggers the extrapolation. Inside the TPC, the sensitive sur-
face is given by the pads. However, a trigger to extrapolate to this surface assumes
that the trajectory intersects with the anode. In this case, the volume of the TPC
is the only considerable object for the source of the measurement and the trigger of
an extrapolation, since the particle traversed the TPC. Furthermore, the pads can be
considered as part of the boundary surface of the TPC and hence are a part of the
associated geometry object. Since the data storage in ACTS is centred around the
storage of surfaces as source of measurements, this concept needs to be extended to
include volumes, too. Both have in common that they are geometrical objects
identified via a geometry identification number (geoID). Therewith, the underly-
ing object type gets generalised, as an arbitrary geometry object can be stored but
requires a type deduction in order to be applicable.

Besides the association of a measurement to a geometrical object, the source
link also provides the parameters of the measurement itself. The pads register two
dimensional measurements. By utilising the external provided z-position information,
the three dimensional position information can be obtained. Although the source is just
the two dimensional measurement at the anode, the Kalman filter relies on updating the
parameters at a certain point along the trajectory and thus requires an uncalibrated
output along the trajectory. Therefore, the reconstruction of the two dimensional mea-
surement is required in order to obtain the origin of the measurement. As this procedure
is related to the underlying detector, including the electrical field and the external z-
position information, a back propagation of the measured electrons to the location of
the ionisation needs to be performed. Thus, this will be considered as an experiment
specific detail that is not treated in ACTS. Consequently, it is assumed in the following
that the source link produces internally and provides the access to a reconstructed,
calibrated measurement at its origin.

In the context of a surface bound measurement, the required parameters are reduced
due to the knowledge of the surface parameters. This allows to store at maximum two
instead of three spatial parameters while the information contained in the measurement
is preserved. As shown in Sec. 5.2.1 the maximum of stored parameters in this case is
five parameters, if time information is present six. As the measurements of the TPC are
bound to a volume, the data reduction is not applicable in this case. Since three spatial
parameters are required and Chapter 7 already considered a parametrisation free from
a surface constraint, the exact same parametrisation allows the storage of the TPC
measurements. As the data storage requires more memory for volume bound measure-
ments than for surface bound ones, a careful treatment is mandatory in this case. This
is even more important since a TPC can produce more measurements per particle than
a tracking detector. Another difference is given by the indices of the coordinates. Com-
paring the parameters in Eq. (7.18) with the free parameters in Eq. (7.45) shows that the
spatial, direction, q/p and time indices differ between both vectors. Differing between
the access patterns allows thereby the identification of the underlying parametrisation
and thus also the identification of the stored geometry object type.
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8.3 Free Parameter Propagation

8.3 Free Parameter Propagation

The extrapolation shown in Chapter 7 is conceptionally designed to start and end at
a surface. Between both points an arbitrary amount of steps can occur, driven by
external conditions and constraints such as the integration error, described in Sec. 7.2.2.
While the start and end point are described in the coordinate system bound to the
surface, the steps in between use the global coordinate from Eq. (7.45). Hence, the
mean of the extrapolation is already provided in global coordinates by construction.
As the measurement is provided inside the volume without any surface constraint, the
simplest choice of its parametrisation is given by the one used for the extrapolation.
In comparison to the bound measurements, this parametrisation, as it is also used for
the global representation of the extrapolation, would then be in a global frame, i.e. the
provided parameters are not mandatory inside the volume itself.

Given that both, the mean and the measurement use the same parametrisation, the
required extrapolation distance s can be derived without any parameter conversions.
Furthermore, since the mean is extrapolated in global parameters, the extrapolation end
point can be chosen arbitrarily along the trajectory, i.e. it does not depend on a surface
intersection or requires the creation of a (curvilinear) surface.

Considering the extrapolation itself, the formalism in Chapter 7 is driven by the
differential Eq. (7.6). This equation describes the influence of a magnetic field on the
particles trajectory. As described in Sec. 8.1, due to ionisation electrons and charged
ions in the TPC drift towards the end-caps under the influence of an applied electrical
field. Hence, the differential equation needs to be extended by this in general position
dependent field E(r) ∈ R3. Therewith the general equation of the Lorentz force

d2r

ds2
=
q

p

(
dr

ds
×B(r)

)
+
qm

p2
E(r) = λ (T ×B(r)) + λ2m

q
E(r) (8.1)

prescribe the trajectory of a particle with momentum p, charge q and relativistic mass
m = γm0 through the geometry. The last equality assumes thereby q 6= 0. The addition
of the electric field will consequently modify Eq. (7.8) such that the direction vector T
is now given by

d

ds
T = λ (T ×B(r)) + λ2m

q
E(r).

The position is thereby indirectly affected by the modification of the direction vector.
Also momentum and time are just indirectly affected. Consequently, modifying the
differential equation for the direction vector will automatically lead to the corrected
step evaluation in the RKN4 integration. Under the assumption that the electric field
is constant inside the TPC, i.e. E(r) = E0 the contribution of the electric field to a step
through vacuum following Eq. (7.10) is given by

Tn+1 = Tn +
h

6
(k1 + 2k2 + 2k3 + k4) + hλ2m

q
E0

rn+1 = rn + hTn +
h2

6
(k1 + k2 + k3) +

h2

2
λ2m

q
E0
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with k1, k2, k3 and k4 as defined in Eq. (7.9). Due to the magnetic field the consid-
erable momenta need to be sufficiently large. As electric fields for such setups are of
O(100) V/m, the contribution of this addend to the particles trajectory will be a small
correction, especially due to the lower momentum threshold and hence usually negligible.
In addition, the interaction of the particle and the gas and hence the momentum loss
as described in Sec. 7.4 has to be considered. The form of the integration error remains
due to the additional addend unchanged.

Beside the mean, the covariance matrix needs to be represented at the end point of
the extrapolation. This will be considered in the following Section, starting with the
modifications of the Ridders algorithm. Afterwards the modifications of the numerical
covariance transport are described.

8.3.1 Ridders Propagator

While the extrapolation of the mean between a start and an end point is always per-
formed in global coordinates, the target coordinate system requires at most a single co-
ordinate transformation. This transformation is just necessary if the target coordinate
system is bound to a surface. The transformation of the initial coordinates to the global
frame is thereby mandatory in order to initiate the extrapolation itself. While this is a
rather simple problem for the mean, the covariance matrix requires more considerations.

The Ridders algorithm provides a semi-analytical solution for the covariance transport
by repetitive extrapolation of the mean and a component-wise wiggling of the start
parameters. As in this case the start and end parameters can be either bound to a
surface or free from such constraint, four different scenarios exist. The wiggling is thereby
defined by the start parameters. The bound parametrisation is covered in Sec. 7.3.2. For
the global start parameters as defined in Eq. (7.45), the spatial, momentum and time
parameters can be modified independently as in the bound case. The direction T ∈ R3

on the other hand with |T | = 1 is a Cartesian representation of a point on a unit sphere
with three parameters. Hence, a component T i of the vector has to satisfy the condition

T i =
√
T j2 + T k2 − 1

with i, j, k ∈ {1, 2, 3} and i 6= j, j 6= k and k 6= i. An independent variation of any
of those parameters is consequently impossible. Although this is a more complicated
situation for the Ridders algorithm, the utilisation of the direction vector itself in the
parametrisation is beneficial due to the Lorentz force. In order to vary the direction
components, a coordinate transformation is required to decouple the interdependencies
of T using Eq. (5.3). The parameters vector used inside the Ridders algorithm is then
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given by

yR =



x
y
z
t
φ
θ
q/p


(8.2)

and thus component-wise independent. The obtained variation can afterwards be trans-
formed back into the global parametrisation and used for the extrapolation.

The Ridders algorithm itself just needs to calculate the Jacobian J in order to obtain
the final covariance matrix. The general workflow compared to the scenario described in
Sec. 7.3.2 remains unchanged. Noteworthy is thereby that the covariance matrices Σinitial

and Σfinal can be six or eight dimensional, depending on the start and end parametrisa-
tion. The variation of the start parameters have to provide the corresponding dimensions
in the Jacobian. For the case from and to bound parametrisation the Jacobians are ob-
tained by the formalism in Sec. 7.3.2. A similar complexity is required for the bound to
free parametrisation case. However, both scenarios starting in free parameters, free to
bound and free to free parametrisation, utilise the parametrisation from Eq. (8.2). As
this leads to a 6× 7 or 8× 7 Jacobian, an additional transformation is required:

J =
∂yfinal

∂yinitial
=
∂yfinal

∂yR
∂yR

∂yinitial
(8.3)

While ∂yfinal/∂y
R is the output of the Ridders algorithm, the second term is not calcu-

lated by default. Since this additional transformation ∂yR/∂yinitial is just required for
extrapolations starting in free parameters, yinitial is given in free parameters. Therewith,
the matrix can be calculated directly as

∂yR

∂yinitial
=

∂(x, y, z, φ, θ, q/p)

∂(x, y, z, T x, T y, T z, q/p)

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 −T y
Tx2+T y2

−Tx
Tx2+T y2 0 0

0 0 0 0 TxT z√
Tx2+T y2

T yT z√
Tx2+T y2

√
T x2 + T y2 0

0 0 0 0 0 0 0 1


using the relations between spherical and Cartesian coordinates

θ = arccos

(
T z√

T x2 + T y2 + T z2

)
φ = atan2(T y, T x).

Although the Ridders algorithm allows the transport of the covariance matrix, due to the
required calculations the algorithm itself only delivers results for comparisons. There-
fore, the additional matrix calculation is unproblematic. While the application of the
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parametrisation in ACTS optimises the step evaluation of the Lorentz force, a drawback
can be found in the generalisation of start parametrisations.

8.3.2 Covariance Transport

The covariance transport formalism has to handle all four cases of bound and free start
and end parametrisations, too. Furthermore, the required end parametrisation is known
as soon as the covariance transport is initiated. While the extrapolation of the mean only
requires at most one single coordinate transformation at the end point, the situation for
the covariance transport is more complex since a combination of Jacobians is required.
Within this section the three missing cases that involve free parameters are discussed.

As discussed in Sec. 7.3 the Jacobian consists of

J = Jq←gJtransportJg←p + Jprojection

=
∂yqf
∂yqi

+
∂yqf
∂s

∂s

∂ypi

=
∂yqf
∂ygf

∂ygf
∂ygi

∂ygi
∂ypi

+
∂yqf
∂ygf

∂ygf
∂s

∂s

∂ypi

=
∂yqf
∂ygf

(
∂ygf
∂ygi

∂ygi
∂ypi

+
∂ygf
∂s

∂s

∂ypi

)
with the global parametrisation g and the start and end parametrisations p and q.
The indices i and f denote the initial and final position of the extrapolation respec-
tively. Within this form Jtransport is independent from the outer conditions of the used
parametrisations p and q. Hence, this part is remain unchanged in all scenarios. The
coordinate transformation Jacobians for bound parameters of p and q are already dis-
cussed in Sec. 7.3. It is therefore assumed in the following that at least one of these
parametrisations is given in free parameters.

Starting with the case of free to bound parameters, i.e. p = g. This scenario leads to
Jg←p = ∂ygi /∂y

p
i = 1. The derivative ∂s/∂ypi can be derived using the same idea as in

Eq. (7.31). One obtains therewith for the curvilinear case

drf =
∂rf
∂ypi

dypi +
∂rf
∂s

ds⇒ ∂s

∂ypi
= −Tf

∂rf
∂ypi

.

As described in Sec. 7.3.1.1 the first factor on the right hand side will change for the
non-curvilinear case. Since the start parameters are assumed to be given in the global
frame, the dimension of the matrix ∂rf/∂y

p
i will be larger in comparison to the local

parametrisation considered in Chapter 7.
Beside the changes in the two matrices mentioned above, as the propagation start

in free parameters, the same consideration as in Sec. 8.3.1 regarding the direction T
need to be performed. In the pure bound case, any variation of the start parameters is
performed using the bound parameters and therewith the angular representation of the
direction. Thus, all Jacobians obtain the correlation between the individual direction
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vector components due to the ∂ygi /∂y
p
i Jacobian. Since this component is missing in

the free parametrisation, the correlation terms ∂T i/∂T j for i, j = 1, 2, 3 and i 6= j
vanish. While the calculations above remain valid for an independent parametrisation,
the utilised direction vector demands an additional transformation analogue to Eq. (8.3).

The Ridders algorithm allows the direct construction of the Jacobian using an arbi-
trary initial parametrisation. Since the covariance transport formalism is closely linked
to the used parametrisations of the mean in the construction of the transport Jacobian,
the Jacobian ∂yfinal/∂y

R in the Ridders algorithm is not constructible. However, by
introducing an additional Jacobian of the form

∂ygi
∂yRi

=
∂(x, y, z, T x, T y, T z, q/p)

∂(x, y, z, φ, θ, q/p)

=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −sin(θ)sin(φ) cos(θ)cos(φ) 0
0 0 0 0 sin(θ)cos(φ) cos(θ)sin(φ) 0
0 0 0 0 0 −sin(θ) 0
0 0 0 0 0 0 1


the required transport Jacobian can be obtained afterwards. The derivatives are thereby
obtained from the coordinate transformations in Eq. (5.3) from Cartesian to spherical
coordinates. Applying the back transformation as in Eq. (8.3) leads to the Jacobian
from a free to a bound representation

Jb←f =
∂yqf
∂ygf

(
∂ygf

∂yRi

∂yRi
∂ygi

+
∂ygf
∂s

∂s

∂ygi

)

=
∂yqf
∂ygf

(
∂ygf
∂ygi

∂ygi
∂yRi

∂yRi
∂ygi

+
∂ygf
∂s

T Tf
∂rf
∂ygi

)

=
∂yqf
∂ygf

(
∂ygf
∂ygi

∂ygi
∂yRi

+
∂ygf
∂s

T Tf
∂rf
∂ygi

∂ygi
∂yRi

)
∂yRi
∂ygi

in the used free parametrisation. The last transformation is given by identifying ∂rf/∂y
g
i

as part of the transport Jacobians. The factor ∂yRi /∂y
g
i is added in order to preserve

the correct denominator in the Jacobian. Noteworthy is here that within this coordinate
transformation the product ∂ygi /∂y

R
i · ∂yRi /∂y

g
i is not an identity matrix.

The second scenario that will be considered is the Jacobian from a bound to a free
representation. In this case the final coordinate transformation by ∂yqf/∂y

g
f becomes an

identity matrix due to q = g. Furthermore, as the extrapolation ends in free parame-
ters, a projection onto a surface is not required in this case. Thus, the cone defined by
the covariance matrix around the mean remains unchanged as soon as the propagation
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terminates, i.e. no path length variations occur. In the context of Eq. (7.26), any varia-
tion ds would then correspond to an additional step in the extrapolation but not to an
in-place modification around the current position. Therewith, ∂ygf/∂s becomes a zero
vector and finally the projection Jacobian Jprojection becomes a zero matrix. The leads
to the total Jacobian

Jf←b =
∂ygf
∂ygi

∂ygi
∂ypi

.

The last case is the transport from and to free parameters, i.e. p = q = g. Within this
setup a mixture of the previous considerations has to be applied. Firstly, ∂yqf/∂y

g
f is

again an identity matrix and using the same argument as before, the projection Jacobian
vanishes. Since the extrapolation starts in free parameters, the correlation between the
direction components need to be treated. As also in this case the transport Jacobian is
provided alongside the parametrisation of the mean, the same additional Jacobians need
the applied. This leads to the total Jacobian

Jf←f =
∂ygf
∂ygi

∂ygi
∂yRi

∂yRi
∂ygi

.

While the Jacobians of all four scenarios are different, the explicit application cannot be
foreseen. Given the knowledge that the start of the extrapolation is given in a certain
parametrisation allows to deduce several components required in the following such as
Jg←l, ∂y

g
i /∂y

R
i or ∂yRi /∂y

g
i .

8.3.3 Comparison between Covariance Transport Formalism and Ridders
Algorithm

In Sec. 7.8 the extrapolation starts and ends at a surface. From that point the mean
of the extrapolation with the three other combinations can be compared. This is done
by starting an extrapolation at the origin using curvilinear or free parameters. The
end parametrisation is then given in either curvilinear of free parameters. Thereby the
curvilinear to curvilinear case serves as reference for the assumable correct solution.

Over the entire extrapolation distance a constant magnetic field of 2 T in z-direction is
present. In the presence of magnetic deflection a comparison of the final positions mean
is sufficient, since any difference in direction or momentum would lead to a different
position.

For each extrapolation the initial parameters and the extrapolation distance are drawn
from uniform distributions. An overview of the obtained differences is shown in Fig. 8.3.
Considering the difference for the curvilinear to free parameters, the results are in all
projected variations zero. For the other two cases one can see in all projections a certain
deviation from the curvilinear to curvilinear case. As the underlying difference is given
here by the different initial parametrisation, a coordinate transformation is missing in
the extrapolations starting in free parameters. In comparison to the former case, the
impact of a coordinate transformation before the extrapolation occurs is a larger impact
than the transformation when finalising the extrapolation. This argument is supported
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Figure 8.3: Comparison of the mean of the spatial distance between an extrapolation from and
to curvilinear parameters (cc) and free to curvilinear (fc), curvilinear to free (cf)
and free to free (ff) parameters. The plots show the deviation versus a variation of
the total extrapolation distance (top left), initial momentum (top right), azimuthal
angle (middle left), polar angle (middle right) and the electric charge (bottom).
The bin centres are shifted for visibility.

by the observation that in all cases the deviation is almost identical in these two cases.
Noteworthy are also the obtained ordinate values. As all of them are very small, the
difference reaches the order of machine precision. This leads to the conclusion that the
difference has its origin in the numerical accuracy of the applied transformation. Espe-
cially the distance dependency of the deviation supports the argument as the deviation
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gets larger for longer extrapolations. Furthermore, a dependency of the initial angles on
the final deviations can be found. As trigonometric functions are required for the coordi-
nate transformations, the precision of their evaluation affects the final parametrisation.
In total, the mean obtained from the three modifications are in good agreement with the
former case. Stating a proper extrapolation in all scenarios by considering the difference
in the final position leads to the conclusion that the path length of the trajectory is
equivalent. Hence, the contribution of material is identical in all cases and thus can be
neglected.

Beside the mean, the covariance matrix needs to be investigated, too. The same
extrapolation setup is used as for the mean. Assuming that the extrapolation of the mean
works properly, the Ridders algorithm allows to calculate the final covariance matrix
from extrapolations of the mean. A validation of the correctness of the mean values
relied on the similarity of the surface bound and unbound parametrisation. The Ridders
algorithm on the other hand allows for a direct comparison to the covariance matrix
transport technique by using the same parametrisation for start and end parameters in
both cases. The covariance matrix has more entries that need to be compared. As a
summary parameter the determinant of the covariance matrices are used. That way,
the volume of the base vectors spanning up the space of the covariance matrix can be
compared in a single number. The obtained results for the curvilinear to free parameters
are shown Fig. 8.4, for free to free in Fig. 8.5 and for free to curvilinear in Fig. 8.6. The
first two sets show very similar shapes in all parameters. For both distributions a very
good agreement with the results obtained from the Ridders algorithm can be observed.
A similar observation can be done for the third set for the extrapolation from free to
curvilinear parameters. In this case the additional Jacobian for the projection of the
covariance matrix onto the target surface is utilised. As the eight dimensional matrix
is projected to the lower dimension, the distribution shapes become different. Except
for the polar angle the distributions are flat. For this angle the projected ellipsoid
of the determinant of the covariance matrix forms a parabola. This is the result of
the uncertainties in the initial spatial components. Again, the transported covariance
matrix is in all distributions in a very good agreement with the result from the Ridders
algorithm.

Although the determinants do not exclude situations of unlucky compositions of ma-
trix entries such that the determinant appear in good agreement while e.g. matrix el-
ements are swapped. In order to strengthen the confidence in the shown results, in
Sec. D.1 the distributions for the diagonal terms of each covariance matrix is shown. In
summary, it can be considered that the extrapolation including free parameters as start
or end point provides reliable results for the mean and the covariance matrix.

8.4 Free Kalman Formalism

In case of a surface bound measurement, the Kalman filter updates the parameters
according to Eq. (4.35) and (4.36). As denoted in Eq. (4.21) an unbiased update required
the mean of the extrapolation to be represented at the same surface. In order to achieve
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Figure 8.4: Determinant of the covariance matrix obtained from covariance transport and the
Ridders algorithms in an extrapolation from curvilinear to free parameters versus
the extrapolation distance (top left), initial momentum (top right), azimuthal angle
(middle left), polar angle (middle right) and particle charge (bottom). The bin
centres are shifted for visibility.

this update, the measurement itself triggers an extrapolation over the distance s as
shown in Eq. (4.40).

While the surface bound measurement case has a single solution for s, a certain in-
terval of extrapolation parameters lead to representations of the parametrisation inside
the volume. Furthermore, the surface bound measurement case allows a workflow that
separates the extrapolation to the surface and the measurement lookup. For volume
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Figure 8.5: Determinant of the covariance matrix obtained from covariance transport and the
Ridders algorithms in an extrapolation from free to free parameters versus the
extrapolation distance (top left), initial momentum (top right), azimuthal angle
(middle left), polar angle (middle right) and particle charge (bottom). The bin
centres are shifted for visibility.

bound measurements, the location of the measurement has to trigger the extrapolation
while the trajectory is inside the volume. The Kalman filter updates the parameters at
a certain point along the trajectory. Hence, the measurement does not just trigger the
extrapolation in this case but also has to dictate the update position. As a first step the
update position will be treated. The update formalism will be derived afterwards.
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Figure 8.6: Determinant of the covariance matrix obtained from covariance transport and the
Ridders algorithms in an extrapolation from free to curvilinear parameters versus
the extrapolation distance (top left), initial momentum (top right), azimuthal angle
(middle left), polar angle (middle right) and particle charge (bottom). The bin
centres are shifted for visibility.

The predicted parameters (before the parameter update) at the point of the Kalman
filter update is given by an extrapolation of the filtered parameters (after the parameter
update) from a previous measurement. If no previous measurement was utilised the prior
is used instead. In order to investigate the position for an unbiased parameter update,
the predicted parameters for the kth measurement will be treated as a free parameter
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depending on the filtered parameters of the (k − 1)th measurement such that

µpredicted
k (s) = f

(
s, µfiltered

k−1

)
= E

[
S
(
s|λ, µfiltered

k−1 ,Σfiltered
k−1

)
P
(
λ|µfiltered

k−1 ,Σfiltered
k−1

)]
is a function of s. According to the extrapolation likelihood in Eq. (4.38) this can be
expressed as the expectation value of posterior pdf obtained from the extrapolation.
This mean can be considered as a sum of the true parameters λtrue

k and some deviation

λ̃predicted
k (s) [101]. An analogous statement can be built for the filtered mean µfiltered

k and
the mean of the measurement mk. One obtains therewith the relations

µpredicted
k (s) = λtrue

k + λ̃predicted
k (s)

µfiltered
k (s) = λtrue

k + λ̃filtered
k (s) (8.4)

mk = Hkλ
true
k + vk

of each component to the underlying truth. λ̃filtered
k (s) and vk denote thereby the de-

viation term of the filtered parameters and the measurement respectively. As the kth
measurement can be a subset of the particles state, the matrix Hk denotes the projec-
tion into the measured subset. The parameter s for the filtered mean and its deviation
denote that the filtered parameters are a consequence of used predicted position.

The parameters of the filtered state in the Kalman filter can be considered as a linear
combination of the prediction and the measurement

µfiltered
k (s) = K ′kµ

predicted
k (s) +Kkmk (8.5)

with the linear maps K ′k and Kk. For the surface bound measurements it can be found
that Kk is the gain matrix used in Eqs. (4.35) and (4.36). K ′k is thereby given by
K ′k = 1 − KkHk. Under the assumption that the deviation terms in Eq. (8.4) are in
the case of volume bound measurements normal distributed as in the case of surface
bound measurements, the linear combination will also lead to the optimal filter [100].
The validity of the normal distribution is assumed in the following.

By inserting Eq. (8.4) into Eq. (8.5) one obtains

λ̃filtered
k (s) =

(
K ′k +KkHk − 1

)
λtrue
k +K ′kλ̃

predicted
k (s) +Kkvk. (8.6)

The expectation value of this expression is then given by

E
[
λ̃filtered
k (s)

]
= E

[(
K ′k +KkHk − 1

)
λtrue
k

]
+ E

[
K ′kλ̃

predicted
k (s)

]
+ E [Kkvk]

0 =
(
K ′k +KkHk − 1

)
λtrue
k + E

[
K ′kλ̃

predicted
k (s)

]
!

=
(
K ′k +KkHk − 1

)
λtrue
k . (8.7)

The expectation value E
[
λ̃filtered
k (s)

]
has to become zero in order to provide an unbiased

filtered state. As the deviation term of the measurement E [vk] is assumed to be normal

172



8.4 Free Kalman Formalism

distributed, the expectation value is by assumption zero. The addend related to the
true particle parameters does not vanish in general. Using the same argument as for
the filtered state, the predicted deviation term has to have a zero mean. Since this
expression can be written as

E
[
K ′kλ̃

predicted
k (s)

]
= K ′kE

[
µpredicted
k (s)− λtrue

k

]
= K ′k

(
E
[
µpredicted
k (s)

]
− λtrue

k

)
by using Eq. (8.4), the extrapolation parameter s is given such that the expectation
value of the extrapolated mean is the truth itself. Given that this is fulfilled, Eq. (8.7)
leads to K ′ = KkHk− 1 and therewith to the formalism of surface bound measurements
as well as to an unbiased formalism of the Kalman filter.

While for the surface bound measurement case the position of the true parameters
is known to be at the same surface as where the update occurs the volume bound
measurement case has this additional degree of freedom in s. The former scenario would
be obtained here in case of extrapolations to the true position over a distance strue

k .
However, since this just needs to be fulfilled for the mean of s, the actual distance can
be strue

k + s̃k with E [s̃k] = 0.
The most general scenario for a measurement in a gas detector is given by assuming

that the true position is unknown but only the position of the measurement is available.
In this case, the only special position along the extrapolation is given by the position of
the measurement. Thus, using the position closest to the measurement as the parameter
update position, the update is biased by construction due to an additional extrapolation
distance s̃k from the true position. This distance is related to the fluctuation of the
measurement position vk and therewith itself a statistical quantity as required. While the
fluctuations of the other terms are given by the underlying parametrisation as discussed
in Sec. 4.2, the distribution of s̃k needs further modelling.

In order to derive a distribution one can use four different major models with increasing
complexity but a more accurate description. These are described in the following:

1. Straight line and spherical uncertainty approximation
This scenario represents the simplest case. Assuming a high-momentum particle
or a sufficiently weak magnetic field leads to an approximately straight line of
the particles trajectory in short distances around a certain position. In addition,
the uncertainty vector vk can be used to approximate the uncertainty region for
the true measurement by a sphere with radius |vk| as shown in Fig. 8.7. As the
position closest to the true position as well as to the measurement is defined by
a line between the mean of the extrapolation and one of the other two, with the
requirement that the particle direction is orthogonal to this line, the extrapolation
distance deviation is given by s̃k = |vk| and consequently, the position of the
trajectory is biased by

λ̃bias
k = f(strue

k + s̃k|λk−1)− f(strue
k |λk−1) = |vk|T filtered

k−1 (8.8)

with the direction vector T filtered
k−1 after the extrapolation and the spatial extrapo-

lation expression for straight lines.
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Figure 8.7: Illustration of the extrapolation distance bias using a straight line trajectory and a
spherical uncertainty around the measurement. The particles trajectory is shown
as blue arrows. Its direction defines the closest points to the truth and the measure-
ment (meas) due to orthogonality. The spherical approximation shows an region
dependent overestimation of the uncertainty.

2. Straight line approximation and ellipsoidal uncertainty
While the spherical approximation simplifies the calculation but potentially overes-
timates its contribution, a more precise treatment is given by handling the actual
uncertainty ellipsoid as shown as black ellipse in Fig. 8.7. As for the spherical
case, the bias contribution is defined by a point on the surface of the body. For an
ellipsoid centred at the origin of the coordinate system this is given by the equation

x2
s

v2
x

+
y2
s

v2
y

+
z2
s

v2
z

= 1

with the spatial parameters xs, ys, zs on the surface of the ellipsoid. For the reason
of simplicity it is assumed here that the components of the measurement uncer-
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tainty align with the global coordinate system. In this case a point on the surface
is given by

xs = vxksin(θ)cos(φ)

ys = vyksin(θ)sin(φ)

zs = vzkcos(θ).

Since the direction vector T is related to the angles θ and φ via Eq. (5.3) and these
define the bias direction, the bias contribution becomes with s̃k = |(xs, ys, zs)T |

λ̃bias
k = f(strue

k + s̃k|λk−1)− f(strue
k |λk−1)

=

√(
vxkT

filtered
x,k−1

)2
+
(
vykT

filtered
y,k−1

)2
+
(
vzkT

filtered
z,k−1

)2
T filtered
k−1 .

Although this expression is more accurate, the bias term would need to be cal-
culated for each measurement independently whereas the spherical approximation
allows for re-usage of results while the uncertainty remains unchanged or even to
perform the calculations before the track reconstruction.

3. Helical trajectory and ellipsoidal uncertainty
The two previous concepts used the approximation of a straight line trajectory.
While this holds in the high-momentum or low magnetic field case, a more general
description is given by considering the trajectory as actual helix. The uncertainty
ellipsoid is treated thereby as in the previous case1. The main difference that
is encountered in this scenario is that due to the helical trajectory of the lines
connecting the extrapolated mean at strue

k with the truth and at strue
k + s̃k with

the measurement are not parallel anymore to each other.

In order to find the point of the parameter update, the particle trajectory need to
be parametrised. For a helix in z-direction the point closest to the truth will be
denoted as

µpredicted,true
k =

 rcos(2πt0k)
rsin(2πt0k)
ht0k + c

 (8.9)

with the radius of the helix r, an iteration step-length h and offset c. The parameter
t0k is defined by the minimal distance |µtrue − µpredicted

k (s)|. With a measurement
located at mk = Hkλ

true
k + vk, the point of the parameter update

µpredicted
k = µpredicted,true

k +

 rcos(2πtk)
rsin(2πtk)

htk

 (8.10)

1For completeness, a considerable step in between would be a helical trajectory with a spherical uncer-
tainty approximation.
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is defined via

∂|µpredicted
k −mk|

∂tk
= 0

⇔ 4πr(mx
ksin(2πtk)−my

kcos(2πtk) + 4πr2(sin(2πt0k)cos(2πtk)

− cos(2πt0k)sin(2πtk)) + 2h2tk − 2mz
kh+ 2h2t0k + 2hc = 0.

Assuming that the deviation due to vk leads to a path length that is way smaller
that than a turnaround, the trigonometric functions can be approximated such
that sin(2πtk) ≈ 2πtk and cos(2πtk) ≈ 1− 2π2t2k. Therewith, one obtains

t2k +
8π2r(mx

k − rcos(2πt0k)) + 2h2

8π3r(my
k − rsin(2πt0k))

tk +
−2mz

kh+ 2h2t0k + 2hc

8π3r(my
k − rsin(2πt0k))

= 0

⇔t2k +
4π2rvxk + h2

4π3rvyk
tk −

vzkh

4π3rvyk
= 0

which is a quadratic equation solvable for tk. From the difference of Eq. (8.10) and
Eq. (8.9) one obtains the bias term

λ̃bias
k =

 rcos(2πtk)
rsin(2πtk)

htk


with the found solution for tk. The corresponding arc length of the helix is then
given by

s̃k(tk) = 2πr

√
1 +

(
h

2πr

)2

tk.

4. General case
The most general case considerable is given as soon as the helical approximation
does not hold anymore. This is given in case of non-uniform magnetic fields or the
consideration of interactions with the gas inside the detector such as scattering,
ionisation or space-charge distortion. Also, if the electric field contribution cannot
be neglected and its non-uniform strength gets taken into account, the situation
gets more complicated. If this is the case then no analytical solution can be found
anymore. Hence, the bias term needs to be estimated using the extrapolation
from Sec. 7.4, potentially with the additional consideration of the electric field as
given in Eq. (8.1). Therewith the difference between the update position and the
intersection of the trajectory with the ellipsoid and thus the bias can be estimated.

The parameters mean along the particles trajectory is given by

µ
predicted/filtered
k = λtrue

k + λ̃
predicted/filtered
k + λ̃bias

k (8.11)
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before and after the kth measurement is used for updating the parameter estimation2.
Using the result for K ′ found in Eq. (8.7) together with Eq. (8.6) and (8.4) leads to

µfiltered
k = (1−KkHk)µ

predicted
k +Kkmk

⇔λtrue
k + λ̃filtered

k + λ̃bias
k = (1−KkHk)

(
λtrue
k + λ̃predicted

k + λ̃bias
k

)
+Kk

(
Hkλ

true
k + vk

)
⇔λ̃filtered

k + λ̃bias
k = (1−KkHk)

(
λ̃predicted
k + λ̃bias

k

)
+Kkvk.

From the definition of the covariance matrix one obtains therewith

Σfiltered,biased
k = E

[(
µfiltered
k − λtrue

k

)(
µfiltered
k − λtrue

k

)T]
(8.12)

= E

[(
λ̃filtered
k + λ̃bias

k

)(
λ̃filtered
k + λ̃bias

k

)T]
(8.13)

= E
[(

(1−KkHk)
(
λ̃predicted
k + λ̃bias

k

)
+Kkvk

)
((

λ̃predicted
k + λ̃bias

k

)T
(1−KkHk)

T + vTkK
T
k

)]
= E

[
(1−KkHk)

(
λ̃predicted
k + λ̃bias

k

)(
λ̃predicted
k + λ̃bias

k

)T
(1−KkHk)

T

]
+ E

[
(1−KkHk)

(
λ̃predicted
k + λ̃bias

k

)
vTkK

T
k

]
+ E

[
Kkvk

(
λ̃predicted
k + λ̃bias

k

)T
(1−KkHk)

T

]
+ E

[
Kkvkv

T
kK

T
k

]
.

Since Kk and Hk are considered as constants with respect to the expectation value
operator E [·], these factors do not require further treatment. Utilising further that

λ̃predicted
k is independent from λ̃bias

k and vk one obtains

Σfiltered,biased
k = (1−KkHk)

(
Σpredicted
k + Σbias

k

)
(1−KkHk)

T

+ (1−KkHk)QkK
T
k +KkQ

T
k (1−KkHk)

T +KkΣ
det
k KT

k (8.14)

with the definition of Σdet
k as given in Eq. (4.13), Σpredicted = E

[
λ̃predicted
k λ̃predicted,T

k

]
,

Σbias
k = E

[
λ̃bias
k λ̃bias,T

k

]
and Q = E

[
λ̃bias
k vTk

]
.

This matrix Q has thereby a special behaviour. Although it is associated to the posi-
tion of the mean of the trajectory it is linked via the used bias model to the uncertainty

2Depending on the used model for the description of the bias term and the measured parameters, λ̃bias
k

might be different for the predicted and the filtered state. An example would be a different momentum
changing the curvature of the trajectory. In this case the bias terms need to be distinguished. For
the reason of simplicity it is assumed in the following that both are identical.
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of the measurement. Calculating this matrix explicitly for the straight line and spherical
uncertainty approximation from Eq. (8.8) leads to

E
[
λ̃bias
k vTk

]
= E

[
|vk|TkvTk

]
= µT,kE

[
|vk|2v̂Tk

]
= µT,k

∫
V
|vk|2v̂Tk G (vk|0,Σdet,k) dV

= µT,k

∫
V

|vk|2v̂Tk√
(2π)dim(vk)det(Σdet,k)

e−
1
2
vTk Σ−1

det,kvkdV

=
µT,k√

(2π)dim(vk)det(Σdet,k)

∫ √
πv̂Tk

2
(

1
2 v̂

T
k Σ−1

det,kv̂k

) 3
2

dξ (8.15)

with the mean direction vector µT,k, the normalised measurement uncertainty vector v̂k
and the integral with dV = d|vk|dξ using the n-sphere coordinates representation of the
uncertainty vector. ξ is thereby used as short notation for the angular components. The
underlying normal distribution has thereby a zero mean by definition.

Assuming a three dimensional measurement with the diagonal matrix Σdet leads to

v̂Tk Σ−1
det,kv̂k = sin2(θ)cos2(φ)Σ−1

det,k,(1,1) + sin2(θ)sin2(φ)Σ−1
det,k,(2,2) + cos2(θ)Σ−1

det,k,(3,3)

with the entry Σ−1
det,k,(i,j) in the ith row and jth column of the precision matrix. In

the case of Σ−1
det,k,(1,1) = Σ−1

det,k,(2,2j) this expression leads due to Eq. (8.15) to Q = 0.
However, as this result was obtained using several assumptions, a general statement
can not be formed for Q. Since in the following the measurements inside the TPC
are assumed to just contain three dimensional spatial information with no favoured
uncertainty direction, i.e. the measurement uncertainty in x- and y-direction is identical,
Q will be considered as zero matrix.

Based on the definition of the filtered covariance matrix in Eq. (8.12) the maximal
knowledge from a measurement is obtained if the diagonal elements become as small
as possible. Since the only free parameter is thereby given by the gain matrix Kk, the
optimal choice [101] of this matrix is given for

∂tr
(

Σfiltered,biased
k

)
∂Kk(i, j)


i,j

=
∂tr
(

Σfiltered,biased
k

)
∂Kk

= 0

with the trace operator tr(·) and the matrix element Kk(i, j). By applying the proper-
ties ∂tr(ABAT )/∂A = 2AB [101] for the matrices A, B with B being symmetric and
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∂tr(AB)/∂A = BT [136] one obtains using Eq. (8.14) in the case of Q = 0 for Kk:

∂tr
(

Σfiltered,biased
k

)
∂Kk

= 0

⇔ −2(1−KkHk)
(

Σpredicted
k + Σbias

k

)
HT
k + 2KkΣ

det
k = 0

⇔ Kk =
(

Σpredicted
k + Σbias

k

)
HT
k

(
Hk

(
Σpredicted
k + Σbias

k

)
HT
k + Σdet

k

)−1
(8.16)

The form of the gain matrix Kk shows that due to the bias term, the learning rate is
suppressed compared to the surface bound measurement case as it can be interpret as
additional contribution to the measurement uncertainty.

With this matrix the filtered mean from Eq. (8.5) with K ′k can be calculated. For the
corresponding covariance matrix however, additional steps can be taken. The covariance
matrix Σfiltered,biased

k as defined in Eq. (8.13) can be written as

Σfiltered,biased
k = E

[
λ̃filtered
k λ̃filtered,T

k

]
+ E

[
λ̃bias
k λ̃bias,T

k

]
+ E

[
λ̃filtered
k λ̃bias,T

k

]
+ E

[
λ̃bias
k λ̃filtered,T

k

]
(8.17)

exploiting the fact that λ̃filtered
k and λ̃bias

k are independent. While Eq. (8.14) denotes a
general update of the covariance matrix, this equation can be understood as learning
about the covariance matrix of the track parameters but also about the bias term itself.
Since only the former one is of interest, Eqs. (8.11), (8.14), (8.16) and (8.17) are used to
formulate a pure track parameter update:

E
[
λ̃filtered
k λ̃filtered,T

k

]
+ E

[
λ̃bias
k λ̃bias,T

k

]
+ E

[
λ̃filtered
k λ̃bias,T

k

]
+ E

[
λ̃bias
k λ̃filtered,T

k

]
= Σfiltered

k + Σbias
k −KkHkΣ

bias
k − Σbias

k HT
k K

T
k

= (1−KkHk)
(

Σpredicted
k + Σbias

k

)
(1−KkHk)

T +KkΣ
det
k KT

k

⇔ Σfiltered
k = (1−KkHk)Σ

predicted
k (1−KkHk)

T +KkΣ
det
k KT

k +KkHkΣ
bias
k HT

k K
T
k

= (1−KkHk)Σ
predicted
k + Σbias

k HT
k K

T
k

In comparison to Eq. (4.36) the filtered covariance has the additional addend Σbias
k HT

k K
T
k

and a modified gain matrix. As both are related to the bias term, in case of its absence,
the Kalman filter formalism for surface bound measurements from literature is obtained.
Hence, this can be thought of as a generalisation of the Kalman filter, applicable in a
broader range of problems.

Beside the formulation of Kalman filter for the volume bound measurements, further
conceptional differences can be considered in comparison to the application for surface
bound measurements. In the latter case, it can be assumed that if the particle trajectory
intersects with a surface, the particle produced up to one measurement on the surface.
In a TPC the situation is a bit different as a particle can produce multiple measurements
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while traversing the gas volume. Hence, as soon as the volume is entered, all measure-
ments associated to the volume can be considered as candidates in the first place. By
parameter space selection and distance ordering the next measurement candidate can be
chosen. However, this requires a step-wise re-evaluation of possible candidates, providing
a more complicated scenario than in the surface scenario that requires the measurement
lookup just in case the mean of the particle trajectory is at the surface itself.

Another difference is given by the combinatorial complexity given in the described sce-
nario. A set of surfaces provide a set of discrete points along the trajectory that require
a decision whether a measurement belongs to a track or not. In the most general case of
arbitrary points with measurements inside a volume, already two nearby measurements
lead to four possible, different assignments to a track. Hence, a proper track isolation
needs to be present in order to avoid an excessive combinatorial problem. Since this is
an experiment specific issue, it is just mentioned here for completeness.

A further aspect obtained from this formalism is that while surface bound measure-
ments, e.g. in a tracking detector occur at discrete points, being capable of updating
the track parameters in the global frame while having the measurements distributed
anywhere inside a volume leads to the natural limit of infinite measurements along the
trajectory. By identifying Eq. (7.10) as linear mapping of the track parameters as well as
the measurements, dependent on the continuous parameter h and considering the case
of the continuous Kalman filter as discussed in [101], the formalism found in this chapter
can be transformed accordingly.

8.5 Application of the Free Kalman Filter

In order to investigate the found formalism for the Kalman filter for gas detectors a sim-
ulation setup is required. As the underlying detector geometry a simplified version of the
sPhenix experiment [137] is used in a preliminary version. A schematic overview of the
detector layout is shown in Fig. 8.8. From the geometry only the tracking detector and
the TPC was used as the focus of this chapter is the latter. While this detector consists
of pixel and strip detectors, it was chosen to have five layer of pixel detectors instead
with a resolution 25 µm in local x- and 100 µm in local y-direction. Within the simula-
tion the uncertainty for all measurements is identical. The surrounding TPC utilises 48
rows of read-out pads in radial direction aligned concentric around the beam pipe. It is
simplified that each pad produces a single measurement when the particle traverses the
corresponding region in the volume. The thereby created volume bound measurements
are assigned with an uncertainty of 175 µm in the global x- and y-direction and with
750 µm in the global z-direction. Again, each measurement is assigned with the same
uncertainty. In the case of the TPC the reconstruction of the registered measurements at
the pads is not performed but taken into account by the uncertainties. Inside the entire
setup a constant magnetic field of 1.4 T in z-direction is applied. The entire detector
material is disabled. As the material add additional smearing to the reconstruction pa-
rameters, observable effects and differences caused by the reconstruction formalism may
vanish in the presence of material.
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Figure 8.8: Schematic overview of the sPhenix detector. The interaction point lies in the centre
of the detector. The figure is taken from Reference [138].

This detector setup is used for simulation and track reconstruction. The former is de-
scribed in Sec. 8.5.1, the latter in Sec. 8.5.2. The results are then compared in Sec. 8.5.3.

8.5.1 Simulation Setup

As the combinatorial problem of the track reconstruction is too specific and the formalism
of the track fitting is the major component of investigation, a particle gun for a single
muon event is utilised for the simulation rather than a Monte Carlo event generator.
The vertex position of the gun is fixed at the origin of the coordinate system defined
at the centre of the detector. The gun direction is picked randomly per event over the
full azimuthal range and within η ∈ [−1, 1]. The initial transverse momentum of the
particle was used with fixed values of 1,5,10 and 100 GeV per run. The uneven spacing
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between the intervals is motivated by the increasing curvature of the particles track for
low momenta and the therewith increasing complexity of extrapolation.

The event simulation as well as the track reconstruction are performed with ACTS.
Thus, as both utilise the same extrapolation algorithms the underlying equation of mo-
tion can be controlled altogether. Since the electric field in the TPC has a minor impact
on the particle trajectories in case of a sufficiently high momentum, it is neglected for
both cases. Additionally, the absence of material causes in this scenario no additional
energy loss due to interactions with the gas. Finally, since simulation and reconstruction
undergo the lack of its influence, the absence is unimportant for the intended investiga-
tion. A consequence of the neglected electric field and the absence of material is that
according to Eq. (8.1) the variation of the particles initial momentum is equivalent to a
variation of the magnetic field.

The measurements are created in the tracker on the surfaces intersected by the extrap-
olated particle trajectory from the particle gun. Using the mean of the extrapolation
as the truth position, the mean of the measurements is obtained from smearing this
position using a normal distributed sample with the widths defined by the uncertainty
of the measurement. The uncertainty is then assigned to the measurement. Due to the
normal distribution the symmetry P (λtruth|m,Σ) = P (m|λtruth,Σ) is guaranteed. While
the truth information is stored for comparison, the track fitting utilises only the smeared
measurement parameters. For the TPC the situation is more complex. For each radial
pad row a cylindrical surface is added to the geometry with the radius of the surface
defined by the centre of the pad. The length of the cylinder is defined by the length
of the TPC. These surfaces are only used for the event generation and do not modify
the trajectory. Therewith, it is possible to assure that each pad has at most a single
measurement. Whenever the trajectory is at the surface a measurement is created by
smearing the global parameters as described before. The utilisation of the produced
measurements is discussed in Sec. 8.5.2.

8.5.2 Reconstruction Models

For the reconstruction four different models are considered. One utilises the volume
bound measurements whereas the three others are intended to allow for a comparison
to the found expressions. Each of the models utilises the same propagation algorithm
with smeared initial parameters around the nominal particle gun position. As for the
measurement creation, the smearing also defines the initial uncertainties upon the pa-
rameters. Thus, the result of a seeding is emulated. In curvilinear parameters, the

182



8.5 Application of the Free Kalman Filter

smearing is defined as

σx =
(

20 + 30e−0.3pTGeV−1
)
µm

σy =
(

20 + 30e−0.3pTGeV−1

sin(θ)
)
µm

σφ = 1◦

σθ = 1◦

σq/p =
0.2

p
.

The difference between these models is how the data is handled. An overview of the
used models is described in the following.

The first model utilises only data obtained from the tracking detector. This model is
labelled as Baseline. Therewith the effect of the measurements obtained from the TPC
can be estimated. Furthermore, it provides a threshold for the considerable resolution
and uncertainty of the track parameters.

The remaining models utilise data from the tracking detector and the TPC. The first
one described here is the Kalman filter (KF) utilising volume bound measurements as
well as tracking detector data. Since it utilises measurements free from the surface
constrained it is labelled as Free KF. In the absence of material and an electric field as
well as a constant magnetic field, the straight line and spherical approximation is used for
the bias term. As the uncertainties of the TPC measurements are chosen to be constant
and identical in x- and y-direction, the symmetry of the measurement with respect to
the chosen bias model is granted. Hence, the Q = 0 is obtained. In order to obtain
a comparable amount of measurements, the surfaces drawn through the TPC are used
as the points where the measurement is created. From the nominal position obtained
from the particle gun at the surface, the smearing by the corresponding uncertainty in
global parameters is performed as shown in Fig. 8.9 (left). Therewith, measurements
are created in similar distance but smeared in the volume.

In comparison to the Free KF, the remaining two models utilise a concept with surface
bound measurements. The first one is labelled as Projected KF. As shown in Fig. 8.9
(middle), for this model the measurements are produced in an interval corresponding
to the radial length of the pad around the central surface. The obtained measurement
is then mapped onto the central surface. As the measurement is produced in a certain
interval, the possible particle states are not fixed. Due to the projection, this results
in a larger range of possible locations of the mean around the particle trajectory at
the surface. The corresponding uncertainty assigned to the measurement is kept at the
values stated above except for the marginalised dimension.

As last model, a mixture of the two former is used. This model is labelled as Curvilin-
ear KF. Within this model the measurements are created and stored as for the Free KF.
As shown in Fig. 8.9, once the point of closest approach is reached, the measurement is
projected onto a curvilinear surface defined by the position and direction of the particles
mean.
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8 Track Reconstruction with Volume Bound Measurements

Figure 8.9: Schematic illustration as r-z-projection for the reconstruction utilising TPC data.
The Free KF (left) produces at the centre of a pad a measurement smeared around
this position in the volume. The Projected KF (middle) produces in a certain in-
terval a measurement. The produced measurement is, independent of its actual
position, projected onto the surface at the centre of the pad. The Curvilinear KF
(right) measurement production is identical to the Free KF. Hereby, the measure-
ment is mapped on a curvilinear surface at the point of closest approach.

Other than the backwards extrapolation in Eq. (4.47), for the smoothing an equivalent
expression exist [139]. Although the alternative expression tends to perform better in
terms of computational speed and is therefore widely used, the backwards extrapolation
will be used. This has two different reasons: On the one hand, this relies on the Jacobian
stored during the forward filtering. Since the Free and Curvilinear KF are not fixed
to a surface, the Jacobian may be wrong. On the other hand, the covariance matrix
is projected on the surfaces in the tracker to update the track parameters. As the
transport of the covariance happens due to multiplication of Jacobians, the rang of the
covariance matrix remains six. Although due to material effects and volume bound
measurements in the TPC, the rang can be increased eventually up to seven, at most a
mixture of smoothing formalisms can be applied. As a consequence, only the backwards
extrapolation is used in the following for all models.

Another aspect for the Kalman filter is that due to the applied simplifications of the
detector geometry and the measurement creation, the track parameters along the filtering
but mostly for the smoothing are found to be very precisely. While Eq. (4.47) allows for a
combination of the entire forward and backward state, the precision of the state together
with the high amount of the measurements in the TPC led to parameter uncertainties
in the order of the floating point precision and thus eventually to ill-defined covariance
matrices. In order to avoid these issues, the utilised information in the smoothing is
restricted to the spatial information in the entire detector setup.

The last issue related to the smoothing is the position of the smoothing itself. Due to
Eq. (4.39), the smoothing position along the trajectory between two measurements is in
principle arbitrary. For the Free and Curvilinear KF, the position closest to the filtered
track state is chosen in the TPC. In the tracking detector the surface that created the
filtered state is used. For the Curvilinear KF the smoothing formalism is intended to
remain purely oriented around surface bound measurements. In the smoothing phase
however, two entire states need to be combined. It was chosen to define the surface
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based on the filtered position and direction. While the Free KF requires the bias term
in order to take the displacement of the update into account, during the smoothing this
term is not required since the true position is irrelevant. Since all measurements of the
Projected KF are bound to surfaces, those are used for the smoothing.

8.5.3 Results

Within this section the different models are compared with each other in the context of
the simulation and reconstruction workflow. As the working point the 10 GeV initial
momentum simulation is used. The other initial momenta are picked to monitor the
behaviour for different conditions. For completeness, the distributions for different mo-
menta or the remaining plots of a certain set that are not shown in this section can be
found in Sec. D.2.

In order to compare the four models with each other, the fitting can be split into differ-
ent steps. Starting at the origin with the initial parameters, the extrapolated track will
traverse the tracking detector first. The key term is thereby the unbiased extrapolation
and parameter update along the trajectory. A parameter capable of judging this term is
given by the pull distribution [140]. These distributions consider in the one dimensional
case that if a random variable x is drawn from a normal distribution with mean µ and
standard deviation σ then the distribution of the parameter

g =
x− µ
σ

is a random variable from the distribution G(g|0, 1). Considering x as a true parameter
leads to the inverse statement that µ and σ need to be chosen such that the distribution
of g remains unchanged. While during the track extrapolation and filtering the true
parameters are fixed, the estimation of the mean and covariance matrix of the particle
trajectory, since it is modelled according to Sec. 4.2, need to fulfil this property.

The situation here is more complicated than mentioned above due to two reasons:
The presence of a measurement and the dimensionality of the parameters. The former
can be considered as an additional constraint to the track parameters and vice versa.
By construction the true parameter follows the distribution G(λtrue

k |mk,Σ
det
k ). In ad-

dition, the predicted state at that point can be considered as the constraint provided
from knowledge about the truth gathered at earlier filter steps. Consequently, the true
parameters have to follow

G(λtrue
k |HT

k mk, H
T
k ΣdetHk)G(λtrue

k |λk,Σpredicted
k + Σbias

k ) = G(λtrue
k |µ′λ,k,Σ′λ,k) (8.18)

= G(λtrue
k |µfiltered,biased

k ,Σfiltered,biased
k ) (8.19)

with the µ′λ,k and Σ′λ,k as defined in Eq. (4.32) using Σpredicted
k + Σbias

k as covariance
matrix of the track parametrisation. Hk denotes the projection matrix between free
parameters and the measurement frame. The last equality is hereby a direct consequence
of Eqs. (4.35) and (4.36).

The other object that needs to be discussed is based on the dimensionality of the
parameters. While the pull distribution is designed to express the exponent of the
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normal distribution proportional to g2, the underlying multivariate normal distributions
do not allow this method for a general covariance matrix. However, for a diagonal
covariance matrix the exponent of the distribution becomes

− 1

2

(
λk − µ

filtered,biased
k

)T
Σfiltered,biased,−1
k

(
λk − µ

filtered,biased
k

)
= −1

2

∑
i

(
λk,i − µ

filtered,biased
k,i

)2

Σfiltered,biased
k (i, i)

and thus a dimension-wise product of one dimensional normal distributions. In order
to utilise the pull distributions as defined, the covariance matrix needs to diagonalised.
Hence, the distribution from Eqs. (8.18) and (8.19) is transformed in the eigenspace
defined by the covariance matrix.

For the data in the tracking detector with λbias
k = 0 by construction, the application of

this concept leads to the distribution shown in Fig. 8.10. While the prediction refers to
the expression in Eq. (8.18), the filtered state refers to Eq. (8.19). With respect to the
statistics, the spatial coordinates show the expected behaviour. For the angles slightly
enhanced oscillations are observable. This is even more visible for the q/p distribution.
The reason lies in the provided data itself. While the data of the tracking detector
provides only spatial information, the learning rate is dominant in those parameters.
Due to dr/ds = T and Eq. (5.3), any angular information is provided indirectly. A
similar argument can be built for q/p as the knowledge of this parameter gets improved
due to Eq. (7.6). Considering additionally the rather small distances between the start
of the extrapolation and the surfaces as well as the amount of surfaces then fluctuations
become reasonable.

As the distributions show the expected behaviour, it can be deduced that the pre-
diction and filtering are performed unbiased. More explicitly, the distributions of the
predictions show that the extrapolation is performed without producing a bias between
the surfaces. The distributions of the filtered states that due to applying the Kalman
filter formalism no bias is introduced into the parametrisation.

After the last tracking detector layer, the TPC is reached. Here, only the Projected,
Curvilinear and Free KF utilise any data and are therefore the only considerable mod-
els. Starting with the Projected KF, the corresponding pull distributions are shown in
Fig. 8.11. For these distributions the underlying truth of the measurement was also
projected on the surface. While the left column and the q/p pull distribution look as ex-
pected, the right column shows too broad distributions. In those distributions the effect
of the projection becomes visible. While the obtained measurement is projected onto
the surface at the centre of the pad, the actual area of one standard deviation defined by
the all trajectory states in the range of the pad are not considered. This effect becomes
stronger for slower particles and becomes also visible in other parameters as shown in
Fig. 8.12. Beside too broad pull distributions one can see a small difference between the
predicted and filtered state around φ = 0 due to the transformation in the eigenspace.

Furthermore, the projection itself marginalises the radial uncertainty of the mea-
surement. Consequently, the KF handles a measurement with an underlying perfect
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Figure 8.10: Pull distributions of predicted and filtered parameters at the corresponding mea-
surement surfaces in the tracking detector with 10 GeV initial momentum. The
statistics refer to the filtered distributions.

knowledge of the radial position of the measurement, leading to underestimated filtered
uncertainties.

While this is obviously also the case for the Curvilinear KF, this model does not rely on
the projection. Hence, the width of the measurement does not require any adjustments.
However, another aspect is thereby important: λbias

k . Compared to the Projected KF,
this model has the additional degrees of freedom due to the placement of the curvilinear
surface leading on the other hand to a KF formalism that is identical to the one from
the tracking detector. The model has therewith the same flexibility as the Free KF of
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8 Track Reconstruction with Volume Bound Measurements

Figure 8.11: Pull distributions of predicted and filtered parameters obtained for the Projected
KF at the point of filtering in the TPC with 10 GeV initial momentum. The
statistics refer to the filtered distributions.

parameter updates that occur before or after the true measurement. An overview of
the obtained distances in relation to the true position is shown in Fig. 8.13. Although
the curvature varies a lot between the 1 GeV and 100 GeV initial momentum and
therewith the state density in the one standard deviation of the measurement, no strong
deviation of the ratio was found across neither in the collection of all tracks nor in the
mean of a single event. The latter one has due to the limited amount of measurements
some small deviations per event but show in total that the effect due to the bias is less
important. In addition, a slight broadening of the variance can be observed for both
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Figure 8.12: Pull distributions of predicted and filtered parameters obtained for the Projected
KF at the point of filtering in the TPC with 1 GeV initial momentum. The
statistics refer to the filtered distributions.

cases as a function of the distance. This can be explained with the deflection from the
magnetic field leading to different entry and exit points of the uncertainty ellipsoid of
the measurement compared to the inner measurements.

While the 100 GeV particle can be considered as trajectory with a rather low curvature,
the situation is different for the 1 GeV particle. Since nevertheless the distributions in
the top row of Fig. 8.13 are symmetric in both cases, the obtained bias can be treated in
a simplified way. As it was chosen to use the simplest model for the bias term evaluation,
the observation strengthens the confidence that it is sufficient for describing the bias.
With this model, the resulting pull distributions of the Free KF are shown in Fig. 8.14.
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Figure 8.13: Step length distributions for 100 GeV (left) and 1 GeV (right) muons. The top
row shows the probability distribution of the ratio between smeas = struek + s̃k
and struek for all tracks and measurements. The middle row shows the mean of
this ratio per track. The bottom row shows the interval of a standard deviation
(green) and the interval of the maximal deviations (blue) versus the extrapolation
distance.
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Figure 8.14: Pull distributions of predicted and filtered parameters obtained for the Free KF
at the point of filtering in the TPC with 10 GeV initial momentum. The statistics
refer to the filtered distributions.
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For those distributions non-zero contribution of the bias in the KF formalism is
present. The prediction covariance matrix is then given by Σpredicted

k + Σbias
k and the

filtered covariance matrix is given by Σfiltered,biased
k . As the pull distributions for all free

parameters are within the statistics centred around zero with a standard deviation of
about one, the extrapolation to free parameters as well as the KF formalism derived
in Sec. 8.4 provide the desired behaviour. In addition, these plots show that the bias
contributions to the covariance matrix before and after filtering remain unchanged. The
limitation for the range of validity for the applied bias term approximation becomes
visible in Fig. 8.15. Although the parameters are measured indirectly, on sees slightly

Figure 8.15: Pull distributions of predicted and filtered parameters obtained for the Free KF
at the point of filtering in the TPC with 1 GeV initial momentum. The statistics
refer to the filtered distributions.

too broad pull distributions. These are a consequence of a more complicated trajectory
than a straight line.

Beside the filtering, the smoothing needs to be considered. Thereby the innermost
layer in the tracking detector is a special point of interest as this point is the last location
in backward direction that carries data. Further extrapolation would consequently just
lead to broader variances. The obtained resolutions are shown in Fig. 8.16. The almost
identical results obtained for the L0 resolution present the dominance of the tracking
detector with the resolution of 25 µm upon the spatial coordinates in that direction.
This accuracy also leads to a very comparable result in the φ resolution. Hence, no
significant gain in resolution can be observed in these parameters compared to the TPC
data utilising models, given the prior described setup. For the L1 resolution a similar
impact of the tracking detector is visible with the exception of the Curvilinear KF. The
reason for the deviation from the other three models is due to the smoothing procedure.
This concept provides additional degrees of freedom by the surface placement for the
parameter filtering and smoothing. While for the filtering the surface properties are
predefined by the particles trajectory, for the smoothing two trajectories need to be
combined. Thereby, the same surface is used and two different trajectories get combined
in the spatial parameters. The surface itself defines then the degree of freedom for
possible smoothed or shifted spatial parameters. Considering on top that the backwards
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Figure 8.16: Smoothed resolution at the innermost surface of the tracking detector for 10 GeV
initial momentum particles.

extrapolated trajectory is more precise w.r.t. the forward extrapolation then leads to
large deviations per surface. Using the backwards extrapolated trajectory instead leads
to a smoothing that is unregulated by the truth position. While the filtered state is placed
normal distributed around the truth, the trajectory of the backwards extrapolation treats
only the closest distance to the filtered state. Hence, a surface built from the former
trajectory will consequently ignore any spatial regulation. For the same reason no other
dynamically built orientation of the surface that is based on both trajectories provides
a more reliable stability.
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As the surfaces from the filtered state itself have per treated measurement a different
orientation then leads to larger oscillations around the true parameters. Since thereby
the L1 resolution was chosen to be worse in comparison to L0, the effect becomes visi-
ble. The long lever of many data points considered in this model alongside correlations
between the parameters allow on the other hand to partially improve the resolutions for
θ and q/p.

For the θ resolution the combination of pure indirect learning about the direction
and the projections performed in the Projected KF becomes visible. Although this
model underestimates the uncertainties, the L1 residuals are very similar to the Free
KF. While this model also utilises surfaces, the orientation is fixed in comparison to the
Curvilinear KF. Due to this stabilisation for the entire fitting procedure, the impact of
the approximations gets suppressed, for L1 even almost negligible.

In the θ and q/p residuals, the effect of the TPC upon the smoothed residual becomes
visible. For both parameters Baseline provides worse results than the Free and Projected
KF, for the latter even than the Curvilinear KF.

Effects for the Curvilinear KF from different initial momenta upon the resolution are
shown in Fig. 8.17. For a lower momentum, the curvature gets larger, hence the forward

Figure 8.17: Smoothed resolution at the innermost surface of the tracking detector for 5 GeV
(left) and 100 GeV (right) initial momentum particles.

and backward extrapolations tend to have larger variations when the smoothing is eval-
uated. This leads to deviations in L0 and also in φ compared to the other models. At
that point it cannot be compensated by the detector resolution for L0 in the tracking
detector. For high momentum the extrapolations have less curvature. While the com-
bination is still from different states and the effects upon the L1 and θ distributions are
still worse compared to the other models, as Fig. 8.17 shows the Curvilinear KF is in
good agreement with the other models.

In addition to the resolution, the uncertainties of the smoothed parameters on the
innermost tracking detector surface are of interest. The results are shown in Fig. 8.18.
For all parameters, the utilisation of TPC show an improvement of the uncertainties.
Especially for the spatial parameters, the TPC data utilising models show a shift of
the Baseline distribution towards smaller values. The different absolute shift in σL0
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Figure 8.18: Smoothed uncertainty at the innermost surface of the tracking detector for 10 GeV
initial momentum particles.

and σL1 are again a direct consequence of the tracking detector resolution. Since the
azimuthal angle uncertainty is linked to σL0, a similar effect is visible here. For θ and
q/p the scenario is a bit different. While those parameters are measured indirectly, the
lever represented by the extrapolation distance to the measurements have a significant
impact upon the parameter uncertainties.

Furthermore the Free, Projected and Curvilinear KF have almost identical uncertain-
ties for each parameter and initial momentum. The last one has even slightly better σθ
values. In comparison to the Projected KF and considering the chosen TPC measure-
ment uncertainties, the Curvilinear KF uses different projections of Σdet compared to
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the projection. This leads to smaller ellipses during the filtering. The better uncertainty
and simultaneously worse resolution of the Curvilinear KF for the polar angle can be
explained due to the non-interference of parameters update from Eq. (4.35) on the co-
variance matrix in Eq. (4.36). Since the Free KF bias term is given by the spherical
approximation, the shown uncertainties are the lower bound.

Noteworthy is a combined consideration of the resolutions and uncertainties for the
Projected KF with respect to the chosen measurement uncertainties. While the sys-
tematical underestimation leads to comparable uncertainties of the Free and Curvilinear
KF, the resolution of the Projected KF is similar or worse compared to the Free KF. If
the uncertainty attached to the measurement would be adjusted, the resolution would
be improved at the cost of the uncertainties since the information in each measurement
is drastically reduced.

Considering the detector, simulation and reconstruction setup, the obtained smoothed
parameters are ideal values that tend to worse values in a more realistic setup. This
includes material interaction in the tracking detector and the TPC or inhomogeneities
in the magnetic field. At this stage smaller differences get covered by those effects
leading to more similarities between the TPC data utilising models. Furthermore, the
found results within the used setup show that the Free KF concept serves as a reliable
alternative to the KF concepts utilising surface bound measurements.
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In high-energy particle physics the simulation of particles and their trajectories and in-
teractions with the detector play a major role in the understanding of the underlying
physics and the behaviour of the detector itself. Primary interactions are covered by
Monte Carlo generators and occur close to the interaction point itself. For the purpose
of the extrapolation and material interaction the Geant4 toolkit provides a high pre-
cision simulation (full simulation) of interactions of particles and material. The CPU
consumption of full simulations is usually too high to allow for processing all Monte
Carlo data sets. Fast simulation techniques are often used instead in order to augment
the full simulation setup. Evidently, there is a trade-off in play: a fast simulation usu-
ally approximates the underlying geometry and physics processes even further than the
full simulation already does and hence, the simulation response is in general worse. A
common approach is to reduce the simulated interactions to a limited set that cover the
most relevant interactions for the final state particles used for physics analyses. The
general idea of selection of the interaction processes and their modelling is driven by the
requirement of producing events that look similar1 to the full simulated ones but are
calculated more quickly.

The fast track simulation for tracking detectors of the ATLAS experiment is called
Fatras (Fast Atlas TRAck Simulation) [141]. Due to historical reasons, the name is also
used in ACTS. Since ACTS provides the possibility to extrapolate a particle parame-
terisation along its trajectory, the formalism found in Chapter 7 can be re-interpreted
and used for the simulation. Within a simulation context, the extrapolation of the co-
variance matrix is ignored and the mean is considered as the truth parameters. While
the initial parameters for the track reconstruction have to be estimated, the simulation
is initialised with the truth parameters. In the ACTS model of a tracking detector, all
material is attached to surfaces, restricting the material interactions to the ActionList
and simplifying the extrapolation formalism.

Within the context of this thesis, various contributions to the structure of the ACTS
Fatras were implemented and a list of major physical effects was implemented. The
formulation of a subset of physical effects is the main content of this chapter. The
implementation of most effects is either based on code from Geant4 and Athena or on
textbook formulas. While those kinds of effects are part of the first part of this chapter,
the second half describes the formulation of the nuclear interaction in the context of the
fast simulation. This parametrisation method was developed and implemented as part
of this thesis. A detailed study of the ACTS Fatras performance will be executed by the
ATLAS collaboration in the future.

1The similarity between full and fast simulation depends on the choice of observables and of the applied
metric. The term is kept purposely general.
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9.1 Physical Effects

Unlike a full simulation, the set of considered physics effects is restricted in a fast sim-
ulation. Those are given by major electromagnetic interactions, (in-)elastic or multiple
scattering and particle decays. Exclusively for hadrons, the nuclear interaction called
inelastic process can occur additionally. Since all effects occur on surfaces, a single actor
class is used in ACTS to handle all effects, the so-called Interactor.

However, not all effects are applicable to all particles. As suggested in Chapter 7
a simplified extrapolation formalism can be utilised for neutral particles. This splits
the per-particle extrapolation into two distinct Propagators, depending on the particles
charge. Also a different list of physical effects is in use for neutral than for charged
particles. The lists themselves are extendable in order to allow for dedicated simulation
including more detailed effects which are not covered by the set of effects implemented
in ACTS. The top-level simulation workflow extrapolates one particle after another until
the particle dies or exits the detector. The particles produced during the extrapolation
are stored and extrapolated afterwards.

The actor is called before and after each step within the extrapolation. While the
charge of the particle allows to distinguish the general set of effects, not all effects
are applicable for charged or neutral particles. This requires a per-effect selection of
the input particle based on e.g. the particle type or its momentum. An additional
selection is applicable to the eventually produced particles in an effect. In addition to
the selection criteria, the Interactor handles per-effect properties. The applied selections
and properties are presented in the following alongside the corresponding effect.

Continuous Effects

The first set of effects are those that influence charged particles whenever material is
present but do not kill the particle. Since those effects are applied on each surface with
material, the effects are grouped by the term continuous effects. The concept of ap-
plying those effects by utilising an actor is also performed in the context of the track
reconstruction. Compared to the former scenario, the considered truth parameters ex-
trapolated within ACTS Fatras are modified randomly by sampling from the underlying
distributions. The continuous effects implemented in ACTS Fatras are scattering, atom
excitation and ionisation and bremsstrahlung.

• Scattering
Scattering is a process that symmetrically manipulates the parameters centred
around the direction before the interaction occurred. The Highland formula from
Eq. (7.40) and the Rossi-Greisen formula from Eq. (7.39) describe the width in θ.
Together with a zero mean, a normal distribution can be formed and the scattering
angle can be sampled. θ can be understood as the opening angle between the di-
rection before and after the scattering. Hence, the width is scaled by an additional
factor of

√
2 [17]. While the opening angle follows these distributions, the cor-

responding azimuthal angle is expected to be uniform over its domain. As these
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models utilise normal distributions, large opening angles are suppressed by the
distribution. That disfavours back-scattering of particles at the material stronger
than observed. By modifying the underlying distribution to improve the large an-
gle description, so-called Gaussian mixtures are formed. Since the implemented
set in ACTS Fatras is intended to provide the minimal set of common effects, no
mixture distribution is utilised. The scattering is independent of any kinematic
constraints. The only selection is whether an e± is simulated or not in order to
pick the corresponding distribution.

• Atom excitation and ionisation
Charged particles traversing a material excites and ionises the atom. While the
track reconstruction utilises the mean, given by the Bethe-Bloch formula in Eq. (7.33),
the simulation utilises the most probable value. An approximation to obtain the
mode of the energy loss from the mean is given by reducing the latter parameter
by 10% [119]. The energy loss in ACTS Fatras is obtained from sampling from a
normal distribution with the mode of the energy loss as mean and the standard
deviation as given in Eq. (7.37). This effect upon charged particles is restricted to
a minimum velocity of βγ ≈ 0.1 as shown in Fig. 4.2.

• Bremsstrahlung
Bremsstrahlung affects all charged particles. In the context of a fast simulation,
the effect is restricted to e± as this effect mainly affects their trajectories. The
energy loss fraction of the total energy z ∈ (0, 1) due to bremsstrahlung is given
by [142]

z = e−Γ(t/ln(2))

with the thickness t expressed in radiation lengths. While a sample from the
Gamma distribution leads to the energy of the photon, the corresponding angular
distributions of the e± and the photon are extracted from the Geant4 parameterisa-
tion following the parameterisation from L. Urban. This parameterisation samples
the polar angle of the produced photon around the central value θ0 = me/E [125]
with the electron mass me and the energy of the e± before the radiation E. The
approximation provides the polar angle with respect to the e± direction as

θ =

{
−θ0

8ln(u1u2)
15 , u3 ≥ 0.25

−θ0
8ln(u1u2)

5 , u3 < 0.25

with the three random numbers u1, u2, u3 sampled from a uniform distribution in
[0, 1]. The azimuthal angle is sampled uniformly in [0, 2π). The obtained photon
energy and direction allow to modify the initial e± direction from momentum
conservation2. After the direction is set, the energy loss to the lepton is applied.
This order follows the steps occurring during bremsstrahlung as introduced by
[125].

2The application of momentum conservation implies that any recoil with the material is neglected.

199



9 Fast Track Simulation

Those effects can be applied whenever a surface with material is intersected by the
trajectory and the selection criteria are met. Furthermore, none of these effects kill the
extrapolated particle.

Point-like Effects

In addition to the continuous effects, interaction may occur (randomly) at a certain point
along the trajectory. The point of interaction is characterised by certain parameters
steering the point of interaction. Within the ACTS Fatras, the point of interaction per
parameter is sampled at the beginning of the extrapolation. The effect is applied as
soon as the condition associated to the parameter is fulfilled. In ACTS Fatras, these so-
called point-like effects cover the photon conversion, the particle decay and the nuclear
interaction.

• Photon Conversion
The photon conversion γ → e+e− has been ported from the Athena and Geant4
implementations into ACTS. In order to adapt the workflow for ACTS Fatras,
modifications were performed. Starting with the interaction point, the photon
conversion is driven by the radiation length X0. Based on [143], the distance in
X0 at which the photon conversion occurs can be sampled from

X0 = −9

7

ln (1− u)

1− ξ

with the uniform distribution random number u ∈ [0, 1]. The parameter ξ denotes
the momentum dependent photon conversion cross section. This parameter is
obtained from a fit in Athena. The fit relies on the aluminium data from [143] and
is given by

ξ = −7.01612 · 10−3 + 7.69040 · 10−2p−0.607682GeV −1

with the photon momentum p. Since material effects are only considered between
the steps, the Interactor has to accumulate and monitor the passed material in
X0. As soon as enough material was passed, the conversion is triggered. The
conversion itself utilises the Geant4 implementation. Although the Geant4 module
is not applicable as standalone, the kinematic parameterisation was extracted and
implemented in ACTS. As the underlying calculations are lengthy and mostly
transcribed, their mentioning is skipped here in favour of the general workflow. The
idea is to sample the momentum fraction of a single lepton depending on the photon
momentum. Analogue to the bremsstrahlung, the angular distribution is obtained
for the first lepton with respect to the photon. The kinematic properties of the
second lepton are obtained from four momentum conservation. The lepton charges
are assigned randomly. The photon is killed after the process. The produced
particles put a constraint on the input selection of E ≥ 2me for the energy of the
photon E and the electron mass me.
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• Particle Decay
The particle decay depends in ACTS Fatras directly on Geant4. Compared to
the photon conversion, no parameterisation of the lifetime and the decay products
exists. However, the Geant4 decay modules are rather independently applicable.
This allows to utilise the Geant4 tables in order to sample the particle lifetime.
The table provides the decay constant τ , the sampled lifetime is then given by

t = −τ ln(u)

with the uniformly distributed random number u ∈ [0, 1]. t is the proper lifetime
of the particle and has to be monitored by the Interactor. Compared to the photon
conversion, the decay does not rely on material interactions. Hence, without any
restrictions, the sampled proper lifetime may be passed within an extrapolation
step. In order to regulate the decay point, a step size limitation is applied. Since the
particle never gains additional momentum within a step, the maximal proper time
that can elapse can be estimated from the last known momentum. By constraining
the step size, the next evaluation of the elapsed proper time is shorter or equal
to the set limit. In order to overcome floating point comparisons for the decay
triggering and to avoid additional, tiny steps, a relative acceptance region of 10−3

around t is set. Once the decay is triggered, the particle properties are passed to the
corresponding Geant4 module that builds the decay products and its properties.
The initial particle is killed after this process. The application of this effect is
not constrained by kinematic parameters but is driven by the lifetime provided by
Geant4.

While the photon conversion and the particle decay either utilise Geant4 or are tran-
scribed from Geant4, their presentation for the implementation in ACTS was kept short.
The last point-like effect, the nuclear interaction on the other hand requires more expla-
nation. Its parameterisation will be the content of the next section.

9.2 Parameterisation of Nuclear Interaction

While the previously mentioned effects in ACTS Fatras rely on Geant4 or are expressed in
textbook formulas, for the nuclear interaction the situation is different and a parameter-
isation has to be built. There exists a previously built parameterisation in Athena [141]
which serves as starting point for the following considerations. Within this section the
derivation of the parameterisation is presented, starting with data generation, event
selection and categorisation. Afterwards the properties of the parameterisation are dis-
cussed.

9.2.1 Event Simulation and Selection

The parameterisation of the earlier nuclear interaction in Athena Fatras is based on the
simulation of charged pions with energies between 15 and 50 GeV, sampled from a flat
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distribution in η and φ. The interpolation region is very small in the context of centre-
of-mass energies

√
s in the pp system of 13 or 14 TeV at the LHC. The extrapolation is

further limited to a 1 GeV lower threshold for a nuclear interaction3.

The parameterisation method which will be presented also uses Geant4 to generate
reference data for its derivation. In order to provide a broad range of applications the
momentum range has to be extendable. Within this study various particle momenta are
used and the simulation is performed in certain steps using fixed initial momenta. As
the initial direction is not relevant for the interaction but only for the slightly different
amount of penetrated material by the particle, no special treatment of η or φ regions is
considered.

The simulations are performed using the OpenData Detector (ODD) [144], a realistic
but non-existing tracking detector which is described in DD4hep [106]. The description
language allows a translation of the geometry into a Geant4 based full simulation as well
as a fast simulation using the ACTS algorithms.

Geant4 is used to simulate single particles and the interaction of the particles with
detector material has been recorded. The produced collection of outgoing particles are
registered for further analysis. For the event record, the library HepMC3 [145] was used.
In order to use this event recording library together with ACTS and Geant4 (inside
ACTS), an interface was created that allows the translation between the individual
objects. Additionally, the library allows to attach additional information to the record
that eases the parameterisation afterwards. Since the content in the event record is under
full control within ACTS, it can be selected which events are written to file, depending
on certain criteria.

The events fulfilling the following criteria have been used for the parameterisation of
the the nuclear interaction: The first criterion is a selection whether a nuclear inter-
action occurred in the event. The interaction vertex in the HepMC3 record is tagged
accordingly. As the events without nuclear interaction are not considered any further,
these are not stored but are used to model the nuclear interaction probability. The
events with a nuclear interaction are categorised and the participating particles selected.
A first selection criterion is a lower momentum threshold of 50 MeV for outgoing parti-
cles. This is performed since the curvature of charged particles below the threshold are
computationally complex and the interaction models are less accurate.

Geant4 does not perform nuclear interaction simulations exclusively. This requires a
filtering of the final state particles collection. As second step, only final state hadrons
are considered in order to suppress minor contributions from leptons, nuclei from the
detector material or particles that occur too rarely. The considered hadrons are p, n,
K+, K0

S , π+, K0
L, π−, K−, n̄, p̄. Finally, it is mandatory that the initial particle performs

the interaction.

The received final state particles are split into two different types of events: The first
considers a soft interaction that preserves the initial hadron (X → X+Y ) and a second,
hard interaction due to which the initial hadron gets destroyed (X → Y ). The distin-

3In many analyses a minimum momentum cut of 1 GeV is considered for particles, and hence the focus
has been put on particles with higher momenta than this threshold.
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guishing is done due to a major change in the final state kinematics. A soft interacting
initial particle preserves almost all its initial momentum after the interaction while the
momentum distribution in hard interactions are spread wider among the final state par-
ticles. Since Geant4 describes both types using the same process name, this selection is
performed afterwards using the recorded data. For that purpose all inelastic events are
tested for the conditions that a final state particle is of the same particle type as the
initial one and that this final state particle (leading particle) has a higher momentum
than all other final state particles. These events are tagged as soft interactions. How-
ever, this allows to include several hard interactions which fulfil these conditions. An
event could actually look like an event from the other kind and as the parameterisation
is required to describe the phenomena rather than the underlying physics processes it is
associated to the type of which the criteria are fulfilled.

In order to remove hard interactions with low momentum leading particles from the
collection of soft labelled events the transverse momentum of the sum of final state
particles is considered. It seems convenient to just label soft events as soft in the case
that this value is at least as big as the initial particles transverse momentum. The impact
of the additional classification is shown in Fig. 9.1. The two particles final state using an

Figure 9.1: Comparison between the pT of the leading particle and the non-leading particle
within a soft (blue) and hard (red) two particle final state event with 10 GeV
initial momentum π+. The left plot shows a 2D representation of the pT values.
The right plot shows the fraction of the non-leading particles pT and the leading
pT .

initial π+ with a momentum of 10 GeV shows in the two dimensional representation of
the particles (left) a clear overlay of two different shapes. Using this third criterion on top
allows a sharp distinction between the two interaction types. Another argument for the
usage of this criterion instead of demanding a certain momentum of the leading particle
compared to the others is given by the Fig. 9.1 (right). Any applied threshold for the
leading particles momentum would not allow to separate the two partially overlapping
distributions but mostly assign events to a certain type by a fixed value border in this
plot. However, higher multiplicity final states show that the strict boarder between
soft and hard interactions show a final state multiplicity dependent mixing as shown in
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Figure 9.2: Representation of the final state pT of 10 GeV initial momentum π+ with the
corresponding label as soft (blue) and hard (red). The transverse momentum of
the leading particle and the sum of transverse momenta of all other final state
particles is shown for a final state multiplicity of three (left) and six (right).

Fig. 9.2. Since this is a comparison of a single particle with all other final state particles
instead of particle-to-particle comparison, this observation is reasonable and expected.

After adding this third criterion to the classification procedure, denoting the types soft
or hard may not refer to the actual selection process anymore. Though, this terminology
will be kept in the following to distinguish two different event shapes. This observed
distinction between the event types was not considered in the former parameterisation
but a superposition was described. The recorded, selected and tagged data set serves as
input for the parameterisation.

9.2.2 Parameterisation of Fixed Initial Momenta

A parameterisation should describe the final state given a certain initial state with
respect to the recorded reference data. The term state requires further specification as
it describes the target properties of interest and the required input parameters. In the
former parameterisation the process was split into several steps which can be processed
in sequential order:

1. Evaluation whether a nuclear interaction occurs

2. Evaluation of the final state multiplicity

3. Evaluation of the final state particle composition

4. Evaluation of the particle momenta and directions

The required properties which have to be evaluated define the term state. Furthermore,
the order of evaluation will be kept and the components are described in this section.

As a first attempt, these steps and the corresponding fit functions from [141] are used.
The function serves as a first prototype for the parameterisation. However, the repro-
duction of the accuracy of the former fitting functions was not possible. Small variations

204



9.2 Parameterisation of Nuclear Interaction

to the used models were introduced and further corrections were applied to produce a
simulated result similar to the recorded data. The resulting fitting model became very
complex while it was very unstable and sensitive to changing initial conditions. As a
consequence, the ansatz of fitting the distributions has been rejected and a refinement
of the parameterisation has been performed. The focus moved to considering the distri-
butions of each initial momentum value (working point) directly and for each working
point independently. Finally, an interpolation is developed that utilises the parameteri-
sations obtained per working point. As central working point, π+ particles with 10 GeV
initial momentum are used for constructing and testing. The obtained concepts are then
applied to higher and lower initial momenta to investigate conceptional stability.

9.2.2.1 Nuclear Interaction Probability

The probability for a nuclear interaction to occur depends on the penetrated material.
This is summarised by the nuclear interaction length λ. While this parameter steers the
nuclear interaction distance pdf as

P (d|λ) =
1

λ
exp(−d/λ). (9.1)

with the traversed distance d, the ACTS Fatras concept would sample d instead of a
repetitive sampling from this pdf. Beside this dependency, for a fixed initial momentum,
pseudorapidity and azimuthal angle, Fig. 9.3 shows the interaction probability within
the ODD as a function of the initial momentum. This implies the requirement of a

Figure 9.3: Dependency of the nuclear interaction probability on the initial momentum of the
particle (red) and the dependency of the probability of a soft nuclear interaction in
the case of a nuclear interaction on the initial momentum.
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scaling of the nuclear interaction probability to treat the exponentially shaped decrease
of the probability.

The ODD is a tracking detector with the material concentrated on detector modules
which are placed in discrete steps along the trajectory with air (which is treated as
vacuum) in between. The traversed length through the material is therefore given by
the modules thickness scaled by the angle of incidence of the particle. In order to consider
that the particle will traverse multiple material layers the total length is accumulated. A
reasonable choice for the travelled distance is the accumulation of di/λi in the ith layer.

Since the initial momenta are treated independently during the parameterisation of
the working points, the momentum dependency is negligible. In order to sample the
interaction distance, the recorded distances are stored in a histogram. The histogram
is normalised by the total number of generated events. The sampling has to follow the
distribution. In order to fulfil this condition, inverse transform sampling is applied using
the cumulative probability distribution of the interaction distances. By sampling random
numbers in [0, 1] a bin look-up in the cumulative distribution is performed rather than
relying on fitting the distribution. Since the binning introduces a level of granularity,
the number of bins has to be set such that (optimally) at most a single entry is in
each bin. The for the inverse transform method provided granularity serves to avoid
binning artefacts such as sampling multiple times the same value. However artefacts are
unavoidable due to the limited statistics. In order to smooth the cumulative probability
distribution neighbouring bins are interpolated linearly to provide intermediate values
and to partially compensate the lack of available statistics.

In the case of a nuclear interaction the type of the interaction needs to be evaluated.
The probability for a soft event P (soft|nuclear interaction) is shown in Fig. 9.3 as func-
tion of the momentum. The current momentum is in this case the only dependency.
A hard event is given by the probability 1-P (soft|nuclear interaction). Thus, the soft
interaction probability is a single number. While the interaction distance is sampled
prior to the extrapolation, the interaction type is decided when the interaction occurs.

9.2.2.2 Multiplicity

In case of a nuclear interaction the multiplicity is the next quantity that needs to be
evaluated. The multiplicity distributions of the final state can be extracted immediately
from the record as shown in Fig. 9.4. The multiplicity distributions differ visibly between
soft and hard interactions and need to be treated as such. The shown distributions are
based on the filtered and tagged reference data set. A consequence of the filter is the
dominant amount of one particle final states in hard nuclear interactions. Considering
furthermore that only in a small amount of the events a nuclear interaction occurred,
the available statistics for higher multiplicities is rather low. Hence only up to ten final
state particles are considered.

Analogue to the nuclear interaction distance sampling, an inverse sampling is per-
formed with the multiplicity distributions after the interaction type is sampled. Com-
pared to the former situation, the multiplicity is an integer and thus, no interpolation
between bins is necessary.
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Figure 9.4: Soft and hard final state multiplicity distribution for 10 GeV initial momentum π+.
Only common hadrons with sufficient momentum were considered in the distribu-
tions.

9.2.2.3 Particle Kinematics

For each outgoing particle, the particle kinematics has to be sampled. As a first starting
point the absolute momentum is treated. The corresponding momentum distribution
needs to be split up between the interaction types in order to provide sufficiently ac-
curate simulation results. Especially for soft interactions the leading particle obtains
most of the initial momentum while all non-leading particles have rather low momenta.
Consequently, each category is split up further into further sub-categories, which all have
dedicated parameterisations. In order to derive a reasonable pattern for the splitting,
the multiplicity provides a further separation possibility as the phase space of the final
state momenta changes dramatically dependent on the multiplicity. In order to allow a
structured sampling per multiplicity bin, the outgoing particles are ordered by their mo-
menta. Depending on their position in that order (production generation), the particle
properties from the event record are assigned to different histograms.

Using the set of distributions of a given initial momentum, interaction type and cor-
responding multiplicity to perform a sampling without constraints would lead to an
arbitrary momentum composition of the final state. The required constraint will be
considered by adding to each set of distributions the distribution of psum =

∑
i pi/pinitial

of all per event created particle momenta pi and the initial momentum pinitial. In order
to provide all other distributions of a set in a similar value range along the abscissa,
the values are re-scaled to pi/pinitial. That way, all distributions are in a similar range.
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The final momenta are then evaluated by re-scaling each individual momentum by the
fraction psum/

∑
i pi with the individual samples pi.

The histograms are intended to be utilised analogously to the nuclear interaction dis-
tance sampling using an inverse sampling method with additional interpolation. How-
ever, if the sampling is performed independently from each distribution the correlation
between the generations is not considered. As a consequence the simulation would pro-
duce a correct sum of momenta but the individual values per event look very different
compared to Geant4. This is compensated by correlating the sampling.

In the context of the inverse transform method all samples are uniform distributed
values U(0, 1) which are then associated to quantities by the corresponding cumulative
probability distribution. As the cumulative distribution is invertible the used input data
can be projected uniformly in the interval [0, 1] by calculating for each generation i of
type t and multiplicity j with the given momentum pi and the corresponding probability
density function Pijt(p)

Uijt(pi) ≡
∫ pi

0
Pijt(p)dp ∼ U(0, 1).

The obtained uniform distribution is transformed into a normal distribution G(0, 1) with
mean 0 and standard deviation 1 by using the inverse error function

Gijt(pi) ≡ erf−1(2Uijt(pi)− 1)
!∼ G(0, 1) (9.2)

with the mapping of Uijt(pi) onto the domain of erf−1. As a result of transforming
each event, the combination pjt,G ≡ {G1jt(p1),G2jt(p2), . . . ,G(j+1)jt(pj+1)} is distributed
according to the multivariate normal distribution

G(pjt,G |µjt,Σjt) =
1√

(2π)dim(pjt,G)det(Σjt)
exp

(
−1

2
(pjt,G − µjt)TΣ−1

jt (pjt,G − µjt)
)

with dim(pjt,G) = j+1. In the case that the covariance matrix Σjt is sufficient to describe
the correlation between the elements of pjt,G the mean µjt becomes a zero vector and ∀k :
1 ≤ k ≤ j+1,Σjt,kk = 1. This is the behaviour expected by Eq. (9.2). As examples of the
results two different two-dimensional projections are shown in Fig. 9.5. Considering the
correlation pairwise between certain parameters in different sets of distributions, some
become a two-dimensional normal distributions as expected. In the case of the right
plot, it becomes visible that the distribution is clinched on one side and not normal
distributed. This can indicate that in such cases a more complicated and non-linear
correlation or boundary is present. This phenomenon is especially strong pronounced in
low final state multiplicity cases. With increasing multiplicity more final states become
possible which brings the pairwise comparison closer to a normal distributed shape. As
these non-normal distributed cases would require a more complicated evaluation it is
not further treated at this point.

Beside the possible insight into the systems behaviour the evaluation of all pjt,G for
a fixed j and t from the reference data allows the estimation of µjt and Σjt. The idea
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Figure 9.5: Left: First versus third generation from a soft four particle final state of 10 GeV
initial momentum π+ in the normal distributed representation. Right: First versus
second generation from a soft two particle final state of 10 GeV initial momentum
π+ in the normal distributed representation.

is to diagonalise the covariance matrix to sample independent random numbers. This
requires a change of basis into the eigenspace of Σjt. The obtained matrix Σjt,ES is
assumed to be diagonal containing the eigenvalues λk. The representation of µjt in this
space will be denoted as µjt,ES.

As the covariance matrix might not describe the correlation between the generations
perfectly, a similar result is obtained for the representation in the eigenspace. As a
consequence, an independent sampling from normal distributions in this space is not
guaranteed to provide reasonable results but as the individual momenta get re-scaled
afterwards a normal distributed sampling from a clinched or correlated distribution in
the eigenspace gets partially compensated.

In the process of sampling for the simulation the required calculations are performed
in inverse order:

1. Sample of independent normal distributed values Eijt(pi) ∼ G(µjt,ES,i|
√
λi) to

obtain the vector pjt,ES = {E0jt(p0), E1jt(p1), . . . , E(j+1)jt(pj+1)} in the eigenspace.

2. Transform pjt,ES to the normal space to obtain pjt,G .

3. Transform pjt,G to the dimension-wise flat distribution using Uijt(pi) = (erf(Gijt(pi)+
1)/2.

4. Extract the corresponding cumulative probability distribution as the abscissa value
that belongs to the ordinate value Uijt(pi).

As this is processed per event the resulting vector obtained is

psample =

{
p1

pinitial
,

p2

pinitial
, . . . ,

pn
pinitial

,
psum

pinitial

}
(9.3)

for the final state multiplicity n. In order to constrain the individual momenta p1, p2, . . . , pn
to reasonable values each value is re-scaled by the factor psum/

∑n
i=1 pi. However, this
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process is only required for multiple final state particles. The special case of a single
final state particle requires no further constraints and can be sampled directly from the
corresponding cumulative probability distribution using a uniform distributed value and
evaluating the momentum.

The obtained absolute value of the momenta will be used in the following the provide
directions for the particles. The directions are defined by two angles in spherical coor-
dinates, the polar angle θ and the azimuthal angle φ. The evaluation of these angles
is designed to follow the same approach as done for the absolute momenta. Since the
angles are a result of the underlying kinematics, a direct sampling from the angular
distributions as performed for the momenta would lead to artefacts like back-to-back
emitted particles with large momenta. This will be avoided by considering the pairwise
invariant masses

M0i =
√

(E0 + Ei)2 − (p0 + pi)2 =
√

2p0pi(1− cos(θ0i)) (9.4)

with the particle energy E and its momentum vector p, using the approximation that
all particles are mass-less in this context. A pair consists thereby of the ith final state
and the initial particle (indicated with index 0). This parameter allows the calculation
of the opening angle θ0i dependent on the absolute momentum of the produced particle.

For the sampling, the distributions are again split into their type, multiplicity and
generation. The generation is defined by the index received from the momentum ordering
of the data. Though, a distribution for normalisation as used for the momenta is not
added. The workflow to obtain the sampled invariant masses is identical to the procedure
for the momenta. The angle θ0i is obtained from Eq. (9.4) as

θ0i = cos−1

(
1− M2

0i

2p0pi

)
. (9.5)

Since the set of momenta is sampled independently from the set of invariant masses it
can lead to the point that M2

0i/(p0pi) > 4 and to no possible solution for θ0i. This
occurs preferably for low momentum final state particles. Hence, the total impact on
observables is small. However, in order to handle this scenario the sample must be
modified. This affects either the momentum pi or the invariant mass M0i. No value for
any of both values is forbidden by the sampling method but for some value regions the
density of possible combinations is low. This is especially the case for higher invariant
masses. It was decided to produce a new momentum sample in these cases. That way an
under-population of the invariant mass distributions is prevented. On the other hand,
the questionable pi cannot be sampled independently but this requires a full re-evaluation
of psample to avoid inconsistencies within the set due to their correlation. A new sample
implies a re-evaluation of all θ0i and also that either all these angles can be evaluated or
a new momentum sample is required. Depending on the final state multiplicity and the
type of the interaction approximately 10-25% of events can be affected by this case. An
alternative approach would be a combined sample of the momenta and invariant masses.
Since this requires much more computational operations without receiving a guaranteed
fitting set of parameters it is not performed here.
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The polar angle θ0i obtained with this method is given relative to the initial particles
angle and defines the opening angle of a cone. The corresponding relative azimuthal
angle φ0i is sampled from a uniform distribution in [0,2π). By rotating accordingly the
angles in the global coordinate system are obtained.

9.2.2.4 Particle Decomposition

The last property to be parametrised is the particle type. Since the outgoing particles are
ordered according to their momenta, the order of the produced particles is shuffled, too.
In order to structure the particle creation it is assumed that the initial particle produces
in the nuclear interaction just a single particle, the leading particle. This particle then
creates again a single particle and so on. The sequence ends when the target multiplicity
is reached. Consequently, the created particle type only depends on the particle type of
the previous one. Since the order of the particle production is interchanged, the particles
that may be produced from a given one needs to be derived explicitly for each particle
type by counting. Thus, the resulting branching is not related to real physics processes.
As a consequence, the particles are produced plainly on certain probabilities based on
the observation.

The production lists are only produced for the reduced set of hadrons which are treated
in the parameterisation. From all recorded nuclear interactions per initial momentum
a single production table was created. Since the production of the leading final state
particle in soft interactions is already covered by the corresponding probability, these
were not taken into account in order to avoid double counting and a biased result.
Additionally, the data record showed that some particles do not have any particles
they produce. In such cases a flat distribution among all considered hadrons is assigned.
Heavier hadrons like protons are not produced from low momentum particles. For higher
initial momenta the branching possibilities get broader. In total, a single table for
all momenta is not possible but must be treated individually depending on the initial
momentum.

Another aspect that is related to the way of massless particle type association is the
simplification that was used in Eq. (9.4). It was shown that the sampling of two indepen-
dent sets of absolute values of momenta could lead to unsolvable equations for the open-
ing angle θ0i. Based on Eq. (9.4) the angle is given as a function θ0i(M0i,mi, pi|m0, p0)
with the fixed initial particles mass m0 and the corresponding momentum p0. An addi-
tional dependency upon the opening angle by the mass would aggravate the evaluation.
Since it was seen that the individual generations of each final state multiplicity leads to
different distributions for the momenta and the invariant masses, this would split further
up into different pairs of particles. Besides the struggle that the individual statistics for
each distribution would be very low, the tracking detector treats it indifferently. The
only important property for the particles trajectory is the charge of the particle as shown
in Eq. (7.6) and it is reproduced by this procedure.
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9.2.3 Parameterisation Performance

In the following the performance of the parameterisation is investigated. The first step
will be the investigation of 10 GeV initial momentum π+. Afterwards other initial
momenta will be considered.

Only inelastic nuclear interactions are considered within this section. The selection of
soft and hard nuclear interactions is thereby used as shown for 10 GeV π+ in Fig. 9.3.
Since the inverse sampling method allows a reproduction of a given distribution using
a sufficient amount of uniform distributed values the multiplicity distributions can be
reproduced by this method and do not require any further testing. The same accounts
for a single particle final state as this does not depend on any correlations but only on
one input histogram. Therefore it is not considered in the following but only higher mul-
tiplicities. The focus relies hereby on the elements that are necessary for the trajectory:
momentum, direction and charge. Since the categorisations used to split up each distri-
bution is a custom labelling, the combination of all distributions will be used. For that
purpose, for each multiplicity and interaction type 10000 events were generated. The
distributions of each type are then combined using the probability of the corresponding
multiplicity as shown in Fig. 9.4. Finally, the hard and soft interactions are combined
with the respective probability as shown in Fig. 9.3. Hence an effective distribution can
be considered.

The first distribution of interest is the sum of final state absolute values of momenta.
The result for π+ with initial momentum of 10 GeV is shown in Fig. 9.6. This serves as

Figure 9.6: Sum of absolute values of final state particles momenta originated from 10 GeV π+.

a control plot of the correlated sampling method. As was shown Fig. 9.5 the expected
multivariate normal distribution is not fulfilled for all scenarios. Also the re-sampling
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in the case of non-fitting combinations of invariant masses and momenta could enhance
artefacts. That way it is possible to see whether the collective sample leads to reasonable
results. For the working point of 10 GeV initial momentum the simulation mostly
reproduces the target distribution. The only visible differences are at the shoulders
around 10 and 10.7 GeV. In total the approach using the correlated sampling leads to
reasonable results in the parameter.

The second distributions of interest is the invariant mass of the sum of the final state
particles which is shown in Fig. 9.7. In this case any deviation originated from the

Figure 9.7: Invariant mass of the sum of final state particles originated from 10 GeV π+.

sampling of momenta will partially propagate to the evaluation of the opening angles.
The plot shows that while for some points the fast and the full simulation fit very well,
there is a slight tendency towards smaller values in the fast simulation compared to
Geant4. However the general shape is in good agreement with the full simulation. This
justifies that the applied re-sampling approach leads to reasonable results.

The third distribution of interest is the transverse momentum of the final state par-
ticles. This observable allows an insight into the event shape as it is the result of a
composition of absolute values of momenta and angles in a global frame. It therefore
propagates sampling errors over multiple levels. The result is shown in Fig. 9.8. The
shapes of the samples have a similar structure compared to the Geant4 simulation. How-
ever is visible that the ACTS Fatras distribution is too broad. This is a result of the
slightly too low invariant masses from Fig. 9.7 leading to too high transverse momenta.

Finally the particle type assignment for 10 GeV π+ is investigated. The comparison
between the fast and the full simulation is shown in Fig. 9.9. For the main final state
particle types p, n, π+ and π− some deviations are visible. For the rare appearing
kaons, p̄ and n̄ the probability fits very well. The decreased production rate of π+ could
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Figure 9.8: Transverse momentum of the sum of final state particles originated from 10 GeV
π+.

hereby be a result of a non-ideal separation between soft and hard processes. However
the general tendency of the individual particles compared to the Geant4 data is very
similar. As the table of the branching probabilities are derived from the recorded data
and a limited data set is used a strong bias due to the approach is not visible.

The comparison performed for the π+ with 10 GeV initial momentum will be repeated
in the following with different momenta. Since the sampling of the sum of absolute
values of momenta works conceptually as shown for 10 GeV, it will not be treated in the
following. The first one will be towards higher momenta. As a simulation point 100 GeV
initial momentum is chosen. The resulting observables are shown in Fig. 9.10. Again
the invariant masses of the sum produce slightly too low values but in total the result is
closer to the Geant4 result than in the 10 GeV case. This improvement can be observed
in the transverse momentum plot on the right. In summary the approach produces more
precise results for simulations with higher initial momentum.

Looking towards lower momenta the same simulation procedure was repeated for
1 GeV initial momentum. The results are shown in Fig. 9.11. Both distributions show
the effects which were already described in Fig. 9.7 and 9.8 but with a higher impact. As
this selection procedure performed in Sec. 9.2.1 filters events with nuclear interactions
but does not purifies the selected and categorised events from other effects but only sup-
presses them to a certain amount, effects like multiple scattering play a more and more
dominant role as the initial momentum decreases. Therefore without an explicit treat-
ment within the parameterisation these effects became a part of the parameterisation
enhancing deviations between fast and full simulation.
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Figure 9.9: Final state particle types originated from 10 GeV π+.

However since Fatras chains up multiple effects in a list and evaluates one after the
other the deviations will become smeared out as a combination of nuclear interaction,
multiple scattering etc. are applied on the particles. Additionally, in these momen-
tum regimes the kinematics derived from the nuclear interaction become sub-dominant
compared to other effects.

The last parameter that is treated for different initial momenta is the particle type
association. The obtained distributions are shown in Fig. 9.12. Both distributions show
a similar effect as seen in Fig. 9.9. The overall shape of both is very similar compared
to the Geant4 simulation. Therewith the distributions of the most important hadrons

Figure 9.10: Invariant mass (left) and transverse momentum (right) of the sum of final state
particles originated from 100 GeV pi+.
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Figure 9.11: Invariant mass (left) and transverse momentum (right) of the sum of final state
particles originated from 1 GeV pi+.

Figure 9.12: Final state particle types originated from 1 GeV (left) and 100 GeV (right) π+.

can be reproduced. However an excess of π+ is also visible for the 1 GeV case which
affects the multiplicity of other hadron types. For the 100 GeV case too few π+ were
found causing the same effect. Both deviations can be an effect of the association to soft
and hard nuclear interactions. Furthermore the method is able to allow only final state
particles that were recorded and so the 1 GeV case shows that p̄ and n̄ are not present
as required. For the more rare kaons the excess of the π+ do not affect their multiplicity
much and the result is very similar.

9.2.4 Interpolation

Beside the reproduction of distributions from a Geant4 simulation using the parame-
terisation at the working points, the key element is the interpolation using the different
parametrised points in order to cover the range of possible states in the event simulation.
The interpolation demands to fulfil the same four points described in the beginning of
Sec. 9.2.2. To achieve this the obtained data and the thereby derived parameterisations
are used to estimate the corresponding distributions at a certain point. The strategy
is to perform the same procedure as before but use a suitable combination of multiple
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parametrised points. In the following only the two neighbours in terms of initial mo-
mentum will be considered. This means that the closest parameterisations with less
momentum and with more momentum than the target momentum are picked. In order
to construct an interpolation from these two it is assumed that the distribution shapes
are (beside a scaling factor) similar to each other. Hence the target momentum dis-
tributions in between should be similar to both. The second assumption is that these
shapes change slower with increasing momentum. The similarity assumption will be
the origin of two different interpolation approaches presented in the following. In this
section two different interpolation ansatzes based on the similarity of the parameterisa-
tions are presented. Since these originated from each other, they will be presented in
the corresponding order. The second assumptions allows to justify the spacings between
the parameterisations as will be discussed alongside.

9.2.4.1 First Interpolation Ansatz

For reasons of guidance through the interpolation concept the final state kinematics
are considered firstly, starting with the absolute values of momenta. As described in
Sec. 9.2.2.3 the actual sampling happens in the eigenspace of the mapped pdfs. The
independently sampled normal values are then transformed into the normal space which
produces a correlated, normal distributed sample. Afterwards, it is mapped onto a
uniform distribution and finally using the cumulative distribution function back into the
momentum representation. This workflow provides several challenges as many different
parameters and distributions would need to be combined although the combination does
not have to reproduce the observed distribution. In order to avoid this difficult and error-
prone situation a sample will be processed through both chains of the used neighbours
and combined afterwards.

As sampled sets of momenta of multiple events might look very differently a constraint
is required that allows to derive a similar set of momenta from both neighbours. The in
Sec. 9.2.2.3 introduced normalisation of the momenta, allows to receive values that are
in a similar range for different momenta. In order to sample a similar set of values it is
convenient to produce a single set of values, considered in the eigenspace and process it
further in both neighbours independently. In order to produce such a set of values the
key assumption is that the spectrum of eigenvalues between the neighbouring covariance
matrices is approximately similar. The same accounts for the mean of the normal dis-
tributions but since these are rather small the issue will not be further investigated but
applied.

A weighted combination of the individual eigenvalues is calculated and used for sam-
pling. For the weighting scheme different simple models were tested, based on the
development of distribution shapes for various target momenta. It was observed that
the shape of the momentum distribution looks rapidly similar to the higher momen-
tum neighbour as the target momentum is increased. Additionally, as the simulation
is required to produce final state particles within a small time frame and the sampled
momenta and invariant masses have to match such that the opening angle θ0i is calcula-
ble by Eq. (9.5), a sufficient small re-sampling rate is required. This is partially steered
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by the weighting scheme. In order to involve these observations into the weighting each
combined eigenvalue etarget is calculated by

etarget =
1

√
p0,target − p0,lower

elower+

(
1− 1
√
p0,target − p0,lower

)
eupper = welower+(1−w)eupper

with the eigenvalue of the lower neighbour elower and the upper one eupper. The neigh-
bouring eigenvalues are both sorted by their value. The same approach is applied for
the mean of the normal distributions and for all following required combinations except
the invariant masses. In order to conserve a normalisation of the weights, it is assumed
that a sample looks similar to the neighbour such that it only requires a scaling to the
target momentum.

As the received sample is used independently in both neighbouring chains in order
to receive the values in the momentum representation, these need to be combined as
well. It was found that the scaling factor for the momenta from Eq. (9.3) is the most
sensitive parameter upon the weighting scheme. In order to weaken its effect on the
combined sample, the scaling is applied individually for both neighbours prior to the
combination. Furthermore, at that stage all values are scaled to the target momentum.
The combination is performed after the scaling to the target momentum.

Since the invariant masses do not rely on a normalisation, the individual values of
such a sample can be combined immediately after the projection. The critical part of
the procedure is the evaluation of the opening angle. As neither the sample of momenta
nor the invariant masses are directly sampled from a simulated distribution, the efficiency
of fitting associations can drop very much depending on the phase-space density of this
artificial parameterisation. Taking the observation into account that these parameter
change slower as the momentum is increased, the linear weighting model

Minv,target =
p0,upper − p0,target

p0,upper − p0,lower
Minv,lower +

p0,target − p0,lower

p0,upper − p0,lower
Minv,upper (9.6)

is applied. Using this weighting scheme a fitting rate within the first iteration was
observed to be comparable to sampling from simulated histograms. However, for some
values many iterations of momentum sampling are required. As a consequence, after a
certain number of iterations both samples, the momenta and the invariant masses, are
re-sampled.

The remaining components are the nuclear interaction distance, type multiplicity and
the particle decomposition. As these attributes can be sampled independent from the
kinematics the method for combining does not need to be the same as for the kinematics.
Additionally, all those parts do not rely on the correlated sampling method but on the
inverse transform method. Furthermore, as the number of nuclear interactions of any
kind as well as the total amount of produced particles vary between the neighbouring
samples, the total numbers recorded from the simulations are used. After the combi-
nation the normalisation is applied. For the weighting no tight constraining pattern
exists as in the kinematics part. Using the observation how events evolve as the target
momentum is increased, it is a reasonable assumption that the previously introduced
weighting scheme for eigenvalues applies to these parameters component-wise, too.
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9.2.4.2 Interpolation Performance of the First Ansatz

In order to test the performance of the interpolation a dedicated value for the initial
momentum is chosen and simulated using the same setup as before to provide a suffi-
cient sample size. Since the momentum is thereby known prior, no dynamic neighbour
selection is needed. While Geant4 is used to simulate the final state particles, the ACTS
Fatras distributions are obtained from a direct function call to produce final state parti-
cles of a certain interaction type. The individual distributions are combined afterwards,
weighted by their probability.

The first points for evaluating the interpolation are chosen between 10 and 100 GeV
initial momentum. For the first target momentum 50 GeV was chosen to visualise the
interpolation over a long distance between the neighbouring points. A second point will
be 25 GeV. The reason for the second point is the in Sec. 9.2.4 described behaviour of
the development of kinematic shapes: a point closer to the lower momentum neighbour
was chosen.

The first property to investigate is the multiplicity, shown in Fig. 9.13. The multi-

Figure 9.13: Multiplicity distribution for 50 GeV (left) and 25 GeV (right) initial momentum
π+ obtained from simulation and interpolation. The upper row shows the multi-
plicity distributions for hard interactions, the lower row for soft interactions.

plicity distributions show a stable behaviour along the different target momenta. The
hard interactions show slight deviations in regions of lower multiplicity while it describes
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higher multiplicities more accurate. The differences between the interpolation and sim-
ulation for soft interactions are smaller compared to the hard interactions. In total the
multiplicity distributions are similarly shaped as the Geant4 simulation.

The combined kinematic distributions are shown in Fig. 9.14. Considering the sum

Figure 9.14: Kinematic distributions for 50 GeV (left) and 25 GeV (right) initial momentum
π+ obtained from simulation and interpolation. The top row shows the sum of
absolute values of final state momenta, the middle row the invariant mass of the
final state, the bottom row the transverse momentum of the final state.

of the absolute values of final state momenta the result of the interpolation is almost
as precise as the initial sampling shown in Fig. 9.6. This shows that for both cases, 25
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and 50 GeV initial momentum, the weighting scheme introduced in Sec. 9.2.4 provides
a reliable method to combine the samples obtained from the neighbours. Furthermore,
the spectrum of eigenvalues changes sufficient slow to allow a combined sample without
the introduction of major artefacts.

The final states invariant mass on the other hand shows obvious deviations between
the interpolation and the simulation. The general shape is similar to the simulation but
for both target momenta too narrow. This leads on the other side to a too high peak near
5 GeV (left) and 4 GeV (right). This observable is the most sensitive upon the applied
weighting scheme. Since the fitting of the sampled momenta and the invariant masses
needs to fulfil Eq. (9.5), the achieved rate of finding matches was found to be comparable
to the direct sampling from histograms at a working point. Remarkable is the stability of
the sum of momenta considering the mentioned constraint by the invariant mass, though
this affects the invariant mass distribution on the other hand.

While the invariant masses are too narrow and produce smaller peak values, the
transverse momenta tend to become too large. The width of the transverse momenta
is very similar to the simulated distribution for both target momenta. Although these
distributions encapsulate an error propagation from the invariant mass, this observable
hides the prior deviations mostly.

The last distribution of interest is the distribution of particle types. The final state
particle types are shown in Fig. 9.15. Both distributions show a similar structure as in

Figure 9.15: Particle type distribution for 50 GeV (left) and 25 GeV (right) initial momentum
π+ obtained from simulation and interpolation.

Fig. 9.9 and 9.12. Most of the different particle types are reproduced very well except
for the π+ and n probability. Though, this effect is already observed for the individual
distributions and rather enhanced due to the combination. However, the combination
method does not introduce new artefacts.

9.2.4.3 Second Interpolation Ansatz

The previously presented method led to a second ansatz to perform the interpolation
based on the observed issues. It seems reasonable that the interpolation is possible by
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just applying a fitting weighting scheme in order to obtain a combination. However,
it is also visible that the result strongly depends on the scheme itself. Another issue
was the low rate of finding fitting momenta and invariant masses such that multiple re-
samplings were required. This results in the creation of deviations as shown in Fig. 9.14
and an increased run-time. Since the acceptance rate was significantly higher in the
parameterisation step in Sec. 9.2.2, it is reasonable to use the full workflow of random
sampling and transformation from a single neighbour instead of combining the results of
both. The obtained result is then scaled to the target momentum afterwards. This allows
the removal of constructing distributions that may look like the ones from the target
momentum. Keeping the neighbour selection as before, a selection of the neighbour used
for the sample is required. This is performed randomly, using the weighting scheme from
Eq. (9.6) as neighbour selector.

This ansatz simplifies the considerations from Sec. 9.2.4 but needs additional treat-
ment, too. In the first ansatz it was shown that different distributions require different
weighting schemes to provide sufficient high quality results. Moreover, the target distri-
butions are very sensitive upon the chosen scheme. Within this second ansatz it will be
reduced to a single weighting scheme that requires to cover all aspects. In order to cover
this up the similarity aspect from Sec. 9.2.4 can be taken into account. As it was ini-
tially assumed that the parametrised neighbours should look similar, this needs further
investigation using the presented simplifications. Within this context the performance
will be investigated in the following for different spacings between the parameterisations.

9.2.4.4 Interpolation Performance of the Second Ansatz

The first interpolation ansatz encountered several issues with the simulation of kinematic
properties. Therefore, this section is focused on investigating the effect of the second
ansatz on these observables. Firstly, the kinematic interpolation will be considered. The
momenta and invariant mass distributions using the same neighbours as in the first
ansatz are shown in Fig. 9.16. Both distributions show a superposition of two different

Figure 9.16: Sum of the absolute final state momenta (left) and the invariant mass of the final
state (right) for a 25 GeV pi+. These distributions are based on the interpolation
using the parameterisations at 10 and 100 GeV.
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distributions, leading to two peaks. The origin lies in the used neighbours. Additionally,
a shift is visible. In summary this ansatz does not reproduce the target distributions at
all but need further investigation.

It is assumed that both neighbouring distributions look shape-wise similar to each
other. Within this ansatz the target distributions are obtained only by scaling the
sampled values. Comparing Fig. 9.6 and 9.7 with Fig. 9.10 shows that this is roughly
the case. An additional scaling of the parameters by a significant factor, in case of
25 GeV it is 2.5 and 0.25 respectively, any deviation between the parameterisation and
the Geant4 simulation gets enhanced. In order to improve the reproduction of the target
momentum, the spacing between the neighbouring distributions needs to be adapted to
fulfil the similarity condition. Additionally, if the distributions become more similar then
the impact of the applied weighting scheme upon the target distributions gets reduced.
In Fig. 9.17 the effect of the spacing upon the target distribution is shown. The distance
between the neighbours as well as their distance to the target momentum gets reduced
from the top to bottom row while the weighting scheme is applied as before. For both,
the sum of momenta and the final state invariant mass distributions, become closer
to the target distribution. The double peak merges to a single one and the shifts are
more and more suppressed. Therewith, the assumption of the similarity is supported
and the interpolation accuracy can be further enhanced by reducing the spacing. As
this construction allows to invoke additional parameterisations afterwards without the
need of re-parametrizing earlier samples, it can be adapted to different target momenta
(ranges) in order to achieve a sufficient accuracy.

Using this interpolation for a target momentum of 25 GeV with the parameterisations
at 16 and 32 GeV, the corresponding multiplicity distributions and particle compositions
of the final states are shown in Fig. 9.18. Compared to the Geant4 results, the multi-
plicity distributions from the interpolation are in very good agreement. Concerning the
produced final state particle types the deviations from the parameterisations are still
present without any new artefacts.

In total, the second ansatz provides a higher rate of finding fitting momenta and invari-
ant masses. As a single weighting scheme is applied, the level of necessary fine-tuning
is reduced compared to the first ansatz. With this simplification and the possibility
and to extend an existing parameterisation afterwards using additional working points
and parameters, the concept provides the required flexibility to be applicable in HEP
simulations in general.

9.2.5 Conclusion

A new method was introduced for the parameterisation of nuclear interactions. This
method is based on sampling random numbers from common normal distributions spec-
ified by the covariance matrix of transformed histograms. Using this method allows the
evaluation of properties based on the input histograms without the requirement of fit-
ting these distributions. Thus, the final state of a nuclear interaction can be computed
in a stable way, allowing the exchange and addition of histograms without modifying
an existing parameterisation. Since the evaluation of final state properties is performed
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Figure 9.17: Sum of the absolute final state momenta (left) and the invariant mass of the final
state (right) for a 25 GeV pi+. These distributions are based on the interpolation
using the parameterisations at 10 and 64 GeV (top row), 10 and 32 GeV (middle
row) and 16 and 32 GeV (bottom row).

directly on the histograms, a high level of insight is granted which allows improving and
extending the method and the obtained results. Especially for low momentum particles
and final state particle type compositions, further investigations could improve the pa-
rameterisation process. Additionally, a larger sample quantity would allow to include
higher multiplicities which rarely occur and therefore were neglected within this study.
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Figure 9.18: Multiplicity distributions (top row) for soft (left) and hard (right) nuclear interac-
tions using the interpolation method from Sec. 9.2.4.3 with the parameterisations
at 16 and 32 GeV π+ for 25 GeV target momentum of π+. The bottom plot shows
the corresponding final state particles.

The presented interpolation methods are based on a weighted combination of neigh-
bouring parameterisations. It was observed that the spacing between the parameteri-
sations and the weighting are the only dependencies that steer the interpolation qual-
ity. Furthermore the importance of the weighting gets suppressed by smaller spacings
between the parameterisations. As a consequence of this observation, the amount of
parameterisations and the therewith related memory consumption is in direct trade-off
with the impact on the applied weights. For the interpolation, two different ansatzes
were shown based on the weighted combination of distributions. While the first ansatz
allowed for a larger set of weightings and therefore a higher granularity, the second ansatz
requires a single scheme. Within this study the weights were chosen heuristically and
are meant as a starting point for further investigations. The same accounts for choos-
ing only two neighbouring parameterisations. The design of an appropriate weighting
scheme might be an application scenario for a neural network.

Since the number of parameterisations can be increased while, compared to a fit based
approach, the former produced ones can remain untouched. This allows to improve or
adapt the accuracy for the required performance. In summary, the method provides a
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reliable and controllable formulation for parametrizing the nuclear interaction in particle
detectors. The parameterisation and interpolation method itself can be applied due to
its generality on other problems with similar structure and complexity.
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The detectors utilised in HEP measure the properties of (quasi-)stable particles. A
reliable reconstruction of their trajectories is crucial for certain observables and the
understanding of the underlying event structure. As a reconstruction algorithm has
a combinatorial complexity, an increasing centre-of-mass energy, bunch crossing rate
and pile-up will require more and more computing power. Using the example of the
ATLAS detector, a prediction of the expected, required CPU performance and disc space
consumption during the HL-LHC era were shown (see Sec. 3.3.4). In order to estimate
the seriousness of the extrapolation into the future, the fast track reconstruction was
introduced within this thesis (see Chapter 6). This modification of the existing ATLAS
track reconstruction workflow and the proper adaption of cuts led to a speed-up of
approximately a factor six to eight for the expected HL-LHC pile-up while only a minor
loss in the physics performance was observed. The aggressive manipulation showed
that the CPU requirements for tracking are less constraining than initially predicted.
However, this study also implies that further R&D is required to match the expected
computing performance without losses in the physics performance.

R&D can be performed in different ways, e.g. by exploiting a certain hardware archi-
tecture or by optimising the code performance. Those fields are a part of the ACTS
project. This project is intended to become a detector-independent collection of tools
for track reconstruction and simulation. As this project is flexible R&D platform, the
work presented within this thesis is performed in this context.

In order to optimise software for a certain problem, it has to be understood. It was
shown that the entire tracking workflow can be derived from Bayes’ theorem with a few
assumptions and approximations (see Chapter 4). The consequences as well as the limi-
tations of the assumptions were shown. Compared to the common approach of treating
the individual components of track reconstruction independently, this theoretical con-
sideration of the underlying problem shows the interconnection between all the parts.
The statistical treatment of tracking points out the degrees of freedom for modelling and
performance gains.

While the modelling of measurements and the prior lead to the (combinatorial) Kalman
filter formalism, the parametrisation of the particle and the extrapolation of the param-
eters are neither unique nor fixed. It was shown that two types of parametrisations,
one bound to surfaces and an unbound, are necessary to describe the particle during
the extrapolation (see Chapter 7). The parametrisation was extended by treating the
time as additional parameter. Furthermore, it was shown that the extrapolation can
be split into continuous and discrete effects affecting the trajectory. With methods,
the ActionList and the RKN4, that are independent of the underlying problem, both
parts can be decoupled. The design of the Auctioneer was introduced within this the-
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sis as an environment-dependent selector of continuous effects that are solved by the
RKN4. While the RKN4 is commonly used for these kinds of problems, the theoretical
consideration shows that it is not mandatory. By comparing the accuracy of the extrap-
olation under the applied approximations with a detailed simulation using Geant4, the
limitations of the model were pointed out.

Since ACTS is intended to be applicable for any detector layout, a detector layout
from the sPhenix experiment was considered (see Chapter 8). Within this context a
generalised expression for the extrapolation was found that allows to switch between
the parametrisations. By considering a special arrangement of measurements in the
detector, a generalisation of the Kalman filter formalism was found. This formalism
does not rely on the relation between measurements and surfaces but treats this classical
case as a special case. By comparing the found formalism with two different classical
tracking designs, it was found that the extended Kalman filter formalism behaves less
aggressive but may provide more accurate results than the classical approaches. Beside
the consideration of the problem, this solution shows that further R&D can be performed
close to the already found formalism.

As the fast track reconstruction would allow to reduce the CPU demands of tracking
drastically, the fraction spent in simulation becomes larger. While some analyses re-
quire detailed, computational expensive simulations, it is sufficient for others to utilise
approximated results that can be calculated in a fraction of the time needed for full
simulation. Denoted by the term fast simulation, it was shown how the ACTS track
reconstruction formalism can be modified to perform such an approximated simulation
by covering a minimal but expandable set of physical effects (see Chapter 9). While
most of the effects can be transcribed from other sources, the derivation of a flexible
parametrisation describing the nuclear interaction was presented in detail. Since the
fast simulation relies on algorithms from track reconstruction, any performance gain in
these algorithms is beneficial for the reconstruction and the simulation.

In summary, the upcoming challenges for track reconstruction and simulation can be
encountered in many different ways. While code optimisation and hardware exploitation
are common performance gains, this thesis introduces a theoretical approach to the field
by generalising the underlying problems and deriving their interplay as future chances
for optimisations beyond the current formalism.
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In the second line the definition of Σ′λ from Eq. (4.32) was applied. In the third line,
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The second line is obtained by multiplying the equation with (Σ−1
λ +HT

AΣ−1
detHA). The

third line is obtained by rearranging the terms and the fourth line by dropping ΣT
A

.

Finally, by multiplying the fourth line with (HAΣλH
T
A + Σdet) shows the equality in the

fifth line.
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B.1 Space Point Formation

A space point (SP) is a point in global coordinates with three spatial coordinates (x y z)
and if applicable, the time t. SPs are built from the pixel and strip clusters. While the
former contain local x− y-information, the strip detector measures just one dimensional
spatial clusters. For pixel clusters, r is obtained from the inverse transformation from
the surface to global coordinates (see Sec. 5.2.2). The time does not require an additional
transformation. The situation is different for a strip detector.

A single strip measures precisely in one dimension but due to its length the other
direction does not allow to provide a reasonable global position. For that purpose, strip
detectors with the intention to form SPs are built in two layers with a certain angle
between the layers. This angle allows to obtain data in a different direction and defines
together with the distance between the layers the resolution. The general problem of
SP formation from strip measurements is a geometrical problem. As the distribution of
the data over two layers require additional computation, the complexity depends on the
distance and the angle.

Before the SP formation is expressed, the cluster needs a few more explanation. A strip
cluster consists of neighbouring strips that produced a signal. Due to the dimensions of
a strip, it can be assumed that for a cluster the relation between the cluster width w
and its height h is

w � h

with the convention that additional strips contributing to the cluster size expand the
width. The centre in the width direction can be obtained from a weighted mean of all
strips that are part of the cluster. Since the SP formation is intended to give a first hint
of a potential track, the statistical correctness can be approximated and uncertainties ne-
glected. In case of a shared cluster, i.e. a cluster that was produced by multiple particles,
additional processing steps are required in order to refine the cluster description.

By considering two strip layers, denoted as 1 and 2 with one cluster on each layer, the
first question that has to be resolved is whether both clusters can be produced by a single
track. Under the assumption that the particle comes from the beam line, the distance of
the cluster centre vectors c1 and c2 have to be sufficiently close together. Additionally,
the azimuthal angles φ1 and φ2 and the polar angles θ1 and θ2 are calculated from the
line connecting the position of the origin (0 0 0)T with the centres. This constraint
allows to filter combinations based on the angular deviation between the centres. With
additional time measurements, the constraint can become tighter.
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The result of these tests is a set of cluster pair candidates. In a second step, the SP
formation for each pair is performed with three different setups. For each setup, the
vectors r and q for the first and second cluster respectively are required. These vectors
are defined along each cluster height and point from the bottom β to the top τ :

r = τ1 − β1 q = τ2 − β2.

As first setup the general combination is considered. The final result is a point on the
inner strip layer. With |c1| < |c2| this point x is located along r. The location of x can
be parametrised as

2x = (1 +m)τ1 + (1−m)β1 (B.1)

with m ∈ [−1, 1]. The limits of m imply that x in on the strip module. As the particle
also produced a cluster on the second strip and the assumption that both strip modules
are close to each other, a straight line from the origin can be constructed and thus, the
point y with

y = k · x

with k ∈ R can be constructed on the second layer. Again, y has be located on the line
q, analogue to x and r. The assumption that y is a point on q can be expressed as

y · (τ2 × β2) = kx · (τ2 × β2) = 0.

The right hand side is the result of the zero volume of the parallelepiped formed by three
vectors on a line. By replacing x with Eq. (B.1), an expression for m can be found that
only depends on the end points of the strips. Finally, the SP x can be obtained. An
equivalent formalism can be found for a parametrised point y.

Since the consideration was built on a geometrical combination of two clusters, a
neglected statistical uncertainty, a straight line trajectory between both clusters and a
vertex position at the origin of the coordinate system, it is possible that a SP formation
fails under the above constraints. For that purpose, tolerances may be used to recover
from this scenario. The tolerances allow to stretch r and q or to obtain |m| > 1. Also
different vertex positions can used. The explicit tolerance depend on the tolerances
depend on the expected particles and the detector architecture and hence, remain as
configurable parameters in ACTS.

The last setup considers vertices that do not originate from particle accelerator. This
configurations use case allows to form SPs from cosmic particles. Hence, the line con-
struction from a given vertex position is not applicable in this scenario. In order to
obtain a SP, the parametrisation is modified as

x = τ1 + λ1r y = τ2 + λ2q

with λ1/2 ∈ R The SP is then obtained from solving for the shortest distance |x − y|
between the two skew lines.
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C Track parameter propagation

Variable Meaning

m Incident particles mass
v Incident particles velocity
re Classical electron radius
NA Avogadro’s number
K 4πNAr

2
emec

2

Z Atomic number of absorber
A Atomic mass of absorber
ρ Density
me Electron mass
β v/c

γ 1/
√

1− β2

Tmax
2meβ2γ2

1+2γme/m+(me/m)2

I Mean excitation energy
δ Density effect correction to ionisation energy loss

Table C.1: Overview of parameters required by the Bethe-Bloch equation, introduced in
Eq. (7.33). The explanation is extracted from Reference [17]

C.1 Comparison between Covariance Transport Formalism and
Ridders Algorithm
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C Track parameter propagation

Figure C.1: Comparison of the diagonal terms of the covariance matrix and the determinant for
an extrapolation from curvilinear to curvilinear parameters in vacuum between the
Ridders algorithm and the covariance transport as function of the initial azimuthal
angle. The bin centres are shifted for visibility.
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C.1 Comparison between Covariance Transport Formalism and Ridders Algorithm

Figure C.2: Comparison of the diagonal terms of the covariance matrix and the determinant
for an extrapolation from curvilinear to curvilinear parameters in vacuum between
the Ridders algorithm and the covariance transport as function of the initial polar
angle. The bin centres are shifted for visibility.
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C Track parameter propagation

Figure C.3: Comparison of the diagonal terms of the covariance matrix and the determinant
for an extrapolation from curvilinear to curvilinear parameters in vacuum between
the Ridders algorithm and the covariance transport as function of the initial mo-
mentum. The bin centres are shifted for visibility.
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C.1 Comparison between Covariance Transport Formalism and Ridders Algorithm

Figure C.4: Comparison of the diagonal terms of the covariance matrix and the determinant
for an extrapolation from curvilinear to curvilinear parameters in vacuum between
the Ridders algorithm and the covariance transport as function of the charge. The
bin centres are shifted for visibility.
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C Track parameter propagation

Figure C.5: Comparison of the diagonal terms of the covariance matrix and the determinant for
an extrapolation from curvilinear to curvilinear parameters in matter between the
Ridders algorithm and the covariance transport as function of the initial azimuthal
angle. The bin centres are shifted for visibility.
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C.1 Comparison between Covariance Transport Formalism and Ridders Algorithm

Figure C.6: Comparison of the diagonal terms of the covariance matrix and the determinant
for an extrapolation from curvilinear to curvilinear parameters in matter between
the Ridders algorithm and the covariance transport as function of the initial polar
angle. The bin centres are shifted for visibility.
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C Track parameter propagation

Figure C.7: Comparison of the diagonal terms of the covariance matrix and the determinant
for an extrapolation from curvilinear to curvilinear parameters in matter between
the Ridders algorithm and the covariance transport as function of the initial mo-
mentum. The bin centres are shifted for visibility.
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C.1 Comparison between Covariance Transport Formalism and Ridders Algorithm

Figure C.8: Comparison of the diagonal terms of the covariance matrix and the determinant
for an extrapolation from curvilinear to curvilinear parameters in matter between
the Ridders algorithm and the covariance transport as function of the charge. The
bin centres are shifted for visibility.
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D Track reconstruction with displaced
measurements

D.1 Covariance Transport
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D.1 Covariance Transport

Figure D.1: Comparison of the diagonal terms of the covariance matrix from curvilinear to
free parameters between the Ridders algorithm and the covariance transport as
function of the distance. The bin centres are shifted for visibility.
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D Track reconstruction with displaced measurements

Figure D.2: Comparison of the diagonal terms of the covariance matrix from curvilinear to
free parameters between the Ridders algorithm and the covariance transport as
function of the initial momentum. The bin centres are shifted for visibility.
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D.1 Covariance Transport

Figure D.3: Comparison of the diagonal terms of the covariance matrix from curvilinear to
free parameters between the Ridders algorithm and the covariance transport as
function of the initial azimuthal angle. The bin centres are shifted for visibility.
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D Track reconstruction with displaced measurements

Figure D.4: Comparison of the diagonal terms of the covariance matrix from curvilinear to
free parameters between the Ridders algorithm and the covariance transport as
function of the initial polar. The bin centres are shifted for visibility.
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D.1 Covariance Transport

Figure D.5: Comparison of the diagonal terms of the covariance matrix from curvilinear to
free parameters between the Ridders algorithm and the covariance transport as
function of the particles charge. The bin centres are shifted for visibility.
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D Track reconstruction with displaced measurements

Figure D.6: Comparison of the diagonal terms of the covariance matrix from free to free pa-
rameters between the Ridders algorithm and the covariance transport as function
of the distance. The bin centres are shifted for visibility.
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D.1 Covariance Transport

Figure D.7: Comparison of the diagonal terms of the covariance matrix from free to free pa-
rameters between the Ridders algorithm and the covariance transport as function
of the initial momentum. The bin centres are shifted for visibility.

251



D Track reconstruction with displaced measurements

Figure D.8: Comparison of the diagonal terms of the covariance matrix from free to free pa-
rameters between the Ridders algorithm and the covariance transport as function
of the initial azimuthal angle. The bin centres are shifted for visibility.
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D.1 Covariance Transport

Figure D.9: Comparison of the diagonal terms of the covariance matrix from free to free pa-
rameters between the Ridders algorithm and the covariance transport as function
of the initial polar angle. The bin centres are shifted for visibility.
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D Track reconstruction with displaced measurements

Figure D.10: Comparison of the diagonal terms of the covariance matrix from free to free pa-
rameters between the Ridders algorithm and the covariance transport as function
of the particles charge. The bin centres are shifted for visibility.
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D.1 Covariance Transport

Figure D.11: Comparison of the diagonal terms of the covariance matrix from free to curvilin-
ear parameters between the Ridders algorithm and the covariance transport as
function of the distance. The bin centres are shifted for visibility.
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D Track reconstruction with displaced measurements

Figure D.12: Comparison of the diagonal terms of the covariance matrix from free to curvilin-
ear parameters between the Ridders algorithm and the covariance transport as
function of the initial momentum. The bin centres are shifted for visibility.
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D.1 Covariance Transport

Figure D.13: Comparison of the diagonal terms of the covariance matrix from free to curvilin-
ear parameters between the Ridders algorithm and the covariance transport as
function of the initial azimuthal angle. The bin centres are shifted for visibility.
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D Track reconstruction with displaced measurements

Figure D.14: Comparison of the diagonal terms of the covariance matrix from free to curvilin-
ear parameters between the Ridders algorithm and the covariance transport as
function of the initial polar angle. The bin centres are shifted for visibility.
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D.1 Covariance Transport

Figure D.15: Comparison of the diagonal terms of the covariance matrix from free to curvilin-
ear parameters between the Ridders algorithm and the covariance transport as
function of the particles charge. The bin centres are shifted for visibility.
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D Track reconstruction with displaced measurements

D.2 Simulation Results

Figure D.16: Pull distributions of predicted and filtered parameters at the corresponding mea-
surement surfaces in the tracking detector with 1 GeV initial momentum. The
statistics refer to the filtered distributions.
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D.2 Simulation Results

Figure D.17: Pull distributions of predicted and filtered parameters at the corresponding mea-
surement surfaces in the tracking detector with 5 GeV initial momentum. The
statistics refer to the filtered distributions.
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D Track reconstruction with displaced measurements

Figure D.18: Pull distributions of predicted and filtered parameters at the corresponding mea-
surement surfaces in the tracking detector with 100 GeV initial momentum. The
statistics refer to the filtered distributions.
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D.2 Simulation Results

Figure D.19: Pull distributions of predicted and filtered parameters obtained for the Projected
KF at the point of filtering in the TPC with 1 GeV initial momentum. The
statistics refer to the filtered distributions.
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D Track reconstruction with displaced measurements

Figure D.20: Pull distributions of predicted and filtered parameters obtained for the Projected
KF at the point of filtering in the TPC with 5 GeV initial momentum. The
statistics refer to the filtered distributions.
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D.2 Simulation Results

Figure D.21: Pull distributions of predicted and filtered parameters obtained for the Projected
KF at the point of filtering in the TPC with 100 GeV initial momentum. The
statistics refer to the filtered distributions.
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D Track reconstruction with displaced measurements

Figure D.22: Step length distributions for 5 GeV (left) and 10 GeV (right) muons. The top
row shows the probability distribution of the ratio between struek + s̃k and struek

for all tracks and measurements. The middle row shows the mean of this ratio
per track. The bottom row shows the interval of a standard deviation (green) and
the interval of the maximal deviations (blue) versus the extrapolation distance.
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D.2 Simulation Results

Figure D.23: Pull distributions of predicted and filtered parameters obtained for the Free KF
at the point of filtering in the TPC with 1 GeV initial momentum. The statistics
refer to the filtered distributions.
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D Track reconstruction with displaced measurements

Figure D.24: Pull distributions of predicted and filtered parameters obtained for the Free KF
at the point of filtering in the TPC with 5 GeV initial momentum. The statistics
refer to the filtered distributions.
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D.2 Simulation Results

Figure D.25: Pull distributions of predicted and filtered parameters obtained for the Free KF at
the point of filtering in the TPC with 100 GeV initial momentum. The statistics
refer to the filtered distributions.
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D Track reconstruction with displaced measurements

Figure D.26: Smoothed resolution of the models in Sec. 8.5.2 at the innermost surface of the
tracking detector for 1 GeV initial momentum particles.
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D.2 Simulation Results

Figure D.27: Smoothed resolution of the models in Sec. 8.5.2 at the innermost surface of the
tracking detector for 5 GeV initial momentum particles.
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D Track reconstruction with displaced measurements

Figure D.28: Smoothed resolution of the models in Sec. 8.5.2 at the innermost surface of the
tracking detector for 100 GeV initial momentum particles.
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D.2 Simulation Results

Figure D.29: Smoothed uncertainty of the models in Sec. 8.5.2 at the innermost surface of the
tracking detector for 1 GeV initial momentum particles.
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D Track reconstruction with displaced measurements

Figure D.30: Smoothed uncertainty of the models in Sec. 8.5.2 at the innermost surface of the
tracking detector for 5 GeV initial momentum particles.
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D.2 Simulation Results

Figure D.31: Smoothed uncertainty of the models in Sec. 8.5.2 at the innermost surface of the
tracking detector for 100 GeV initial momentum particles.
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