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Abstract 

This study explores a refined method for performing spatial autocorrelation analysis with 

spatial datasets processed for dasymetric mapping, or what is pertinently termed here as 

“dasymetrically disaggregated spatial data”. Conceptually, the refined method applies a 

spatial weight assignment method where neighborhood weights are assigned based on 

the area units’ spatial configuration, as well as the parent choroplethic zones from where 

the area units originate. This method is mathematically carried out by algebraically 

combining two spatial weight matrices: one coming from the conventional, spatial-

neighborhood-based spatial weight matrix; and the other from a custom weight matrix 

based on similarity of choroplethic origins. 

Using Siquijor Island, an island province in the Philippines, as test area for conducting a 

case study, it was affirmatively shown that the revised spatial weight assignment method 

can yield substantially distinct spatial autocorrelation analysis results. In particular, two 

different effects were identified, depending on the type of input spatial variable used from 

the dasymetrically disaggregated spatial data. When the spatial variable used is in the form 

of raw counts, the refined method produces a filtering effect, resulting in lowered levels of 

spatial autocorrelation detected in the analysis output. On the other hand, when the spatial 

variable is in the form of densities, the method oppositely gives an amplifying effect, where 

intensified spatial autocorrelation levels are instead observed. These two opposite effects 

are consistently observed whether spatial autocorrelation analysis is measured at the 

global level, i.e. in terms of the global Moran’s I, or the Geary’s C index; or at the local 

level, i.e. in terms of the local Moran’s I, or the Getis-Ord Gi* index. 

 

 

Keywords:     spatial analysis | spatial autocorrelation | dasymetric mapping | spatial weight matrix |  

cluster and outlier analysis | hotspot analysis | Moran’s | Geary’s | Getis-Ord | spatial statistics 
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1. Introduction 

 Motivation and research problem 

Dasymetric mapping is a cartographic technique that is originally conceptualized to accurately depict 

the distribution of population across geography on a map (Petrov, 2012). The technique attempts to 

deterministically delineate portions within discretely defined area units that are considered populated, 

and consequently, where the values of a given population related variable is to be redistributed (de 

Greer, 1926; and Wright, 1936 as cited by Mennis, 2009). To achieve this, the original area units are 

initially disaggregated into smaller subareas, followed by disproportionately reallocating the value of the 

area unit’s population values among the resulting subareas (Dorling, 1993; Langford & Unwin, 1994; 

Langford, 2003 as cited by Petrov, 2012). This results in a less distorted depiction of population data 

across space, a positive feature that choropleth mapping, a more popularly used cartographic 

technique, lacks due to issues related to the “modifiable area unit problem” and “ecological fallacy” in 

mapping quantities (Crampton, 2011; Langford & Unwin, 1994). Because of this comparative 

advantage, dasymetric mapping can be considered as a better alternative method to choropleth 

mapping in order to accurately depict population-based variables across space. 

Figure 1 shows an example of a dasymetric map of population for the island province of Guimaras in 

the Philippines. Here, population data that is originally recorded at the municipal level is disaggregated 

into smaller subareas based on the varying landcover across the province’s land area. 

 

Figure 1. Dasymetric population map of Guimaras Island, Philippines. 
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Aside from its primary application in cartographic visualization, the underlying spatial data derived from 

the dasymetric mapping process can also be used as input data for various spatial analysis techniques. 

One such techniques is spatial autocorrelation analysis, a spatiostatistical technique that measures the 

degree of a quantitative variable’s spatial segregation based on the spatial configuration of area units 

in the data. This analysis technique can be readily performed with any quantitative variable associated 

to an area-based spatial data, including those that are dasymetrically disaggregated. However, one 

probable caveat on the reliability of the analysis is its inability to factor in the possible influence of the 

prior data disaggregation process in the analysis process. In particular, the disaggregated area units 

are being treated in the analysis as if they are originally disjoint, when on the contrary, these 

disaggregated units are just a spatially granular form of their formerly aggregated parent units. This 

poses the possibility of disregarding statistical relationships among area units when performing the 

analysis in its current form with dasymetrically disaggregated spatial data. Because of this identified 

gap in the current method, this study explores the possibility of refining the spatial autocorrelation 

analysis in order to enhance its appropriateness when using spatial data derived from the dasymetric 

mapping process, or what is formally refers to as “dasymetrically disaggregated spatial data”. 

 Research objectives 

This study is driven by the following objectives: 

 Identify and set conditions when spatial autocorrelation analysis can possibly be recalibrated 

when using dasymetrically disaggregated spatial data; 

 Implement computational enhancements in the spatial autocorrelation analysis when using 

dasymetrically disaggregated spatial data; and 

 Specify differences in the analysis results when running spatial autocorrelation analysis with 

and without the said computational enhancements. 

 Research questions 

The research objectives stated above are addressed respectively by answering the following questions: 

 For research objective 1: 

 Which applicable spatial autocorrelation measures can possibly utilize dasymetrically 

disaggregated spatial data? 
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 Which parameter(s) in the mathematical computation of spatial autocorrelation measures can 

possibly be modified when using dasymetrically disaggregated spatial data? 

For research objective 2: 

 What modification(s) in the mathematical computation parameters of spatial autocorrelation 

measures can be made when using dasymetrically disaggregated spatial data? 

For research objective 3: 

 How do these modifications differ from each other in terms of results returned in the spatial 

autocorrelation analysis? 

 How do the results of the modified spatial autocorrelation analysis differ from those of the 

original spatial autocorrelation analysis measures? 

 Significance of the study 

As further elaborated in the succeeding chapter, many studies have already demonstrated the use of 

dasymetric spatial data in analyzing the spatial autocorrelation of population-based variables. In these 

studies, different measures of spatial autocorrelation are used in their conventional form. However, what 

this study aims to produce is a reformulated procedure for spatial autocorrelation analysis when the 

input spatial dataset being used is dasymetrically disaggregated in nature. Furthermore, this study 

presents a novel approach where the nature of the spatial data (in this case, dasymetric) can prompt 

changes on how the spatial autocorrelation analysis can be performed. 

The results of this study can be of interest to practitioners and professionals involved in analyzing the 

spatial distribution of populations or any quantitative geographic data. This includes spatial statisticians, 

demographers, crime analysts, ecologists, epidemiologists, and practitioners of location analytics. 

 Hypothesis 

In relation to the research questions stated above, it is hypothesized that a substantial difference can 

be observed when using the modified version of spatial autocorrelation analysis for dasymetrically 

disaggregated spatial data as proposed in this study. This substantial difference can be quantified in 

terms of change in the type of detected spatial patterns, the number of occurrences, and the reported 

statistical significance vis-à-vis when running the conventional form of spatial autocorrelation analysis. 
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 Scope and limitations 

It should be emphasized that though this study highlights the use of dasymetrically disaggregated 

spatial data, this study does not in any way aim to develop improvements in the existing dasymetric 

mapping methods nor compare these methods with one another in terms of their accuracy and 

performance. Commonly used dasymetric mapping methods are identified from the existing body of 

literature and are adapted in this study’s methodology in their original form. 

In the aspect of spatial autocorrelation analysis, existing spatiostatistical methods are also reviewed 

and adapted from the existing literature. Since this study focuses on the refinement of spatial 

autocorrelation analysis, specific attention is given on retrofitting these existing spatial autocorrelation 

methods when using dasymetrically disaggregated spatial data as input in the analysis. Moreover, this 

study does not attempt to compare the spatial autocorrelation methods with one another in terms of 

their accuracy and performance. 

Finally, it must be reiterated that the analytical improvements developed in this study are not directed 

towards improving the reliability of the dasymetric mapping methods, which in fact covers another area 

of research that is not tackled here. 

 Thesis structure 

This manuscript elaborates on the various details of this study through the following chapters: 

▪ Chapter 1 (this section) gives an overview of the research motivation and the problem being 

addressed; the guiding objectives, questions, scope, and hypotheses of this research; and its 

foreseen significance in research performed in various related fields. 

▪ Chapter 2 provides a brief discussion of the key concepts revolving around this research, 

particularly spatial autocorrelation and dasymetrically mapping; as well as the most relevant 

and recently conducted studies directly related to this study’s research problem. 

▪ Chapters 3 and 4 detail the formulated research framework designed for this study based on 

the objectives that are set and information gathered from the related studies. This section also 

describes the actual analysis methods and techniques to be undertaken for operationalizing 

the research framework and applies them using actual data from a selected case study area. 
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▪ Chapter 5 details the outputs of the analysis methods and techniques performed using the case 

study data. 

▪ Chapter 6 gives an interpretation of the results produced and compares if these results are 

consistent with the hypotheses that were put in place prior to the analysis.  

▪ Chapter 7 synthesizes the results of the study and translates it to a solution statement aligned 

with the original research problem and set of objectives. 

▪ Chapter 8 lists down the list of bibliographic references cited in this study. 

▪ Chapter 9 contains detailed supplementary information on certain technical aspects of the 

analysis techniques applied.  
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2. Review of spatial autocorrelation and dasymetric mapping 

 Spatial autocorrelation 

The term “spatial autocorrelation” refers to the property or tendency of a spatial variable to exhibit 

systematic segregation or dispersion over space. A spatial variable is said to be spatially autocorrelated 

when neighboring locations or nearby areas exhibit similarity in terms of characteristics or magnitudes 

for a particular attribute or variable of interest (Anselin, 1995). Despite being a naturally observable 

characteristic in many geographic processes as embodied in Tobler’s First Law of Geography (Tobler, 

1979), spatial autocorrelation generally poses complications in many statistical methods, such as in 

linear regression, where the assumption of independence among observations is a requirement for 

analytical stability. However, many statistical methods, such as those within the domain of spatial 

statistics, are developed, not just to accommodate the presence of, but to also measure the degree of 

spatial autocorrelation present in the data (Dizon, 2018). 

Measuring the degree of spatial autocorrelation is equivalent to measuring the presence and the 

intensity of spatial segregation, i.e. clustering or dispersion, of the variable in question. It can be 

measured either globally, i.e. to singly characterize the nature of autocorrelation within an entire study 

area; or locally, i.e. to detect “local pockets of dependence” and describe the spatial autocorrelation of 

nearby area units (Getis & Ord, 2010). Figure 2 illustrates how global spatial autocorrelation is 

characterized. In the figure, an increasing global spatial autocorrelation indicates that similar values 

(visualized as similarly colored hexagonal tiles) tend to bind together spatially over the entire extent of 

the study area; whereas a decreasing global spatial autocorrelation indicates the opposite tendency of 

similar values to repel spatially. When values neither tend to spatially bind nor repel, it can be concluded 

that no spatial autocorrelation is present and there instead is complete spatial randomness. To quantify 

the level of global spatial autocorrelation, two measures that can be used are the global Moran’s I index, 

and the Geary’s C index. 

Figure 3 on the other hand illustrates the characterization of local spatial autocorrelation. Here, an 

increasing local spatial autocorrelation indicates that an area unit is surrounded by either similarly high 

or similarly low values; whereas a decreasing local spatial autocorrelation indicates that a particular 

area unit is surrounded by completely dissimilar values. For measuring local spatial autocorrelation, 

common indices used are the local Moran’s I index, and the Getis-Ord Gi* index. 
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Figure 2. Visualizing global spatial autocorrelation. 

 

Figure 3. Visualizing local spatial autocorrelation. 

One of the measures of global spatial autocorrelation is given by the global Moran’s I index. The formula 

(Getis & Ord, 2010) for computing the said index is: 

𝐼 =  (
𝑁

∑ ∑ W𝑁
𝑗=1

𝑁
𝑖=1

)(
∑ ∑ W𝑧𝑖𝑧𝑗

𝑁
𝑗=1

𝑁
𝑖=1

∑ 𝑧𝑖
2𝑁

𝑖=1

) 

Equation 1. Global Moran's I index. 

where zi and zj are the values (expressed as deviations from the mean) of the spatial variable of interest 

for every pair of area units (indexed as i and j); N (or n for sample-based datasets) is the number of 

area units in the dataset; and W is a spatial weight matrix, serving as an indicator defining of which 

pairs of areas i and j are considered neighbors, and thus will be factored in the index’s computation 

(Esri, Inc., 2018d). The computed global Moran’s I index can assume a value ranging from +1 to -1 

(Esri, Inc., 2018d). A positive global Moran’s I value indicates spatial clustering at the overall level. A 

negative global Moran’s I value on the other hand, indicates spatial dispersion. Finally, a value equal to 

or closely around 0 suggests complete spatial randomness. The resulting index’s statistical significance 
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can be evaluated by standardizing the values in terms of z-scores, and eventually deriving its associated 

p-value (Mitchel, 2005). 

Apart from the global Moran’s I index, another commonly used global spatial autocorrelation measure 

is the Geary’s C index (Geary, 1954). The mathematical structure on how it is computed is generally 

similar with global Moran’s I index. However, instead of using the product of mean deviations between 

neighboring area units, Geary's C uses the sum of their squared differences (Zhou & Lin, 2008). This 

can be seen by comparing the Geary’s C index’s formula (Cliff & Ord, 1970) below with the previous 

one (notations used in the formula are similar with that of the global Moran’s I index): 

𝐶 =  (
𝑁 − 1

2∑ ∑ W𝑁
𝑗=1

𝑁
𝑖=1

)(
∑ ∑ W(𝑥𝑖 − 𝑥𝑗)

𝑁
𝑗=1

𝑁
𝑖=1

∑ 𝑧𝑖
2𝑁

𝑖=1

) 

Equation 2. Geary's C index. 

Despite their seemingly slight difference in computation, the ranges in values and their corresponding 

interpretation differ greatly between the two global spatial autocorrelation measures. In the case of 

Geary’s C index, values center around 1 instead of 0, where values less than 1 indicate positive spatial 

autocorrelation, and values greater than 1 suggest negative spatial autocorrelation (Rodrigues & 

Tenedório, 2016). Another notable difference between the two global autocorrelation measures is that 

the Geary’s C index tends to become more sensitive to local differences among neighboring values 

than the global Moran’s I index (Lembo, n.d.; Unwin, 1996). Because of this property, it is possible that 

the values reported by these two indices specify differing patterns, where one may report positive spatial 

autocorrelation while the other reports a negative one. Such effects can be addressed by the use of 

local spatial autocorrelation statistics, which gives more detailed insight on the type of spatial pattern 

present in each area unit’s neighborhood. 

The localized counterpart of the global Moran’s I index, called the local Moran’s I index, provides a 

“local indicator of spatial association” (Anselin, 1995), or synonymously, a measure of local spatial 

autocorrelation. The formula (Anselin, 1995)  for computing the said index is: 

𝐼𝑖 = (
𝑧𝑖

∑ (𝑧𝑗)
2𝑁

𝑖=1 𝑁 − 1⁄
)(∑ W𝑧𝑗

𝑁

𝑗=1
) 

Equation 3. Local Moran's I index. 
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The local Moran’s I index decomposes global spatial autocorrelation down to the level of the area units, 

resulting in the measurement of every area unit’s contribution to the spatial segregation of the entire 

variable. In other words, it can identify area “pockets” where localized spatial clusters and/or spatial 

outliers of the spatial variable exist (Anselin, 1995). 

Unlike the resulting values for global Moran’s I index which are bounded within the range of +1 and -1, 

the local Moran’s I index can assume any positive or negative value. A positive value designates an 

area as a spatial cluster, i.e. an area unit with a value that is similarly high or similarly low with respect 

to its neighbors (Esri, Inc., 2018b). In contrast, a negative value suggests that the area unit is a spatial 

outlier, i.e. its value is dissimilar with respect to its neighbors (Esri, Inc., 2018b). Once the type of local 

spatial autocorrelation is determined (cluster or outlier, or neither) for every area unit, the intensity and 

significance of local spatial segregation is measured through a permutation-based significance test 

(Anselin, 1995). One characteristic of the local Moran’s I index is that it does not readily describe the 

nature of the spatial cluster or the spatial outlier (Anselin, 1995; Mitchel, 2005). To determine this, the 

formula is decomposed and the sign of its two components are identified. These components are zi and 

∑ W𝑧𝑗
𝑁
𝑗=1 . When both these components are positive, the area unit is identified as a high-value cluster, 

termed as a hotspot (Anselin, 1995). When both these components however are negative, the area unit 

is identified as a low-value cluster, or what is called a cold spot (Anselin, 1995). Conversely, having 

differing signs for these two components in an area unit corresponds to that area unit being a spatial 

outlier, where a negative zi indicates a low-valued area unit surrounded by high-valued neighbors, and 

a negative ∑ W𝑧𝑗
𝑁
𝑗=1  indicates a high-valued area unit surrounded by low-valued neighbors. These two 

types of outliers are termed as low-high outlier, and high-low outlier, respectively. 

As an alternative to the local Moran’s I index in determining the type of spatial cluster, i.e. hotspot or 

cold spot; another measure, called the Getis-Ord Gi* index can be used. The computational formula 

(Getis & Ord, 2010) for the index (notations are similar with previous formulae) is given by: 

𝐺𝑖
∗ =

∑ W𝑥𝑗 −
∑ 𝑥𝑗
𝑁
𝑗=1

𝑁 − 1
(∑ W𝑁

𝑗=1 )𝑁
𝑗=1

√(
∑ 𝑥𝑗

2𝑁
𝑗=1

𝑁 − 1
−
∑ 𝑥𝑗
𝑁
𝑗=1

𝑁 − 1
)(

[𝑁∑ W2𝑁
𝑗=1 − (∑ W𝑁

𝑗=1 )
2
]

𝑁 − 1
)

 

Equation 4. Getis-Ord Gi
* index. 
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Positive values of the index indicate the presence of hotspots, while negative values indicate the 

presence of cold spots (Esri, Inc., 2018c). Unlike the local Moran’s I index, the Getis-Ord Gi* index 

computed for each area unit is readily expressed in terms of z-scores (Mitchel, 2005), thus allowing for 

a more direct interpretation for statistical significance. 

Table 1 summarizes and compares the four spatial autocorrelation measures described above in terms 

of their type (global or local), the spatial pattern aspect they measure, their respective value ranges, 

and the corresponding values’ interpretation. 

Measure Type What is measured Range Interpretation 

Global Moran’s I 

Global 

Spatial clustering (or 

dispersion) of a spatial variable 

for the whole set of area units 

-∞ to +∞ 

Negative values suggest spatial 

clustering; positive values 

suggest spatial dispersion 

Geary’s C 0 to +∞ 

Values below 1 suggest spatial 

dispersion; value above 1 

suggest spatial clustering 

Local Moran’s I 

Local 

Spatial clustering (or 

dispersion) of a spatial variable 

for an area unit’s 

neighborhood 

-∞ to +∞ 

Negative values suggest spatial 

clustering; positive values 

suggest spatial dispersion 

Getis-Ord Gi* 

Presence and type (hotspot or 

cold spot) of spatial clustering 

of a spatial variable for an area 

unit’s neighborhood 

-∞ to +∞ 

Negative values suggest 

presence of a cold spot; 

positive values suggest 

presence of a hotspot 

     

Table 1. Comparison of spatial autocorrelation measures. 

 Spatial weight matrices 

Aside from deciding which index to use in measuring spatial autocorrelation, an important component 

that must be defined in spatial autocorrelation analysis is the spatial weight matrix. This component 

plays a crucial role in any spatial autocorrelation analysis as it provides a mathematical model for 

defining the neighborhood configuration for the area units in the input spatial dataset (Getis & Aldstadt, 

2004). A spatial weight matrix (consistently denoted as W in the spatial autocorrelation formulae given 

above) is formally specified as an N-by-N matrix of spatial weights, where N is the total number of area 

units being analyzed. A spatial weight is a numerical value quantifying the type or intensity of 
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neighborhood between all pairs of area units. Equation 5 shows the typical structure of a spatial weight 

matrix (Anselin, 2018a). 

W = 

[
 
 
 
 
 
 
𝑤11 𝑤12 ⋯ 𝑤1𝑁

𝑤21 𝑤22 ⋯ 𝑤2𝑁

⋮ ⋮ ⋱ ⋮

𝑤N1 𝑤N2 ⋯ 𝑤𝑁𝑁]
 
 
 
 
 
 

 

Equation 5. Structure of a spatial weight matrix. 

Each matrix element wij corresponds to a spatial weight assigned to a given pair of area units i and j, 

where j is an area unit in i’s vicinity that is potentially part of its neighborhood (Anselin, 2018a). Spatial 

weights are assigned to each matrix element to exhaustively define whether area unit pairs are 

neighbors (thus, a positive number), or not (thus, a value of 0). Commonly, the diagonal matrix 

elements, which represent spatial weights of individual area units with respect to themselves, are 

automatically assigned with a spatial weight of 0 (Getis & Aldstadt, 2004). 

There are various schemes on how spatial weights are assigned to elements in the spatial weight 

matrix. Many of these spatial weight matrices are based on the geometric configuration of the area 

units, or the proximity of the area units with respect to each other (Getis & Aldstadt, 2004). For instance, 

certain schemes only allow binary spatial weight values of 1 or 0 to be assigned, where the assignment 

of such values are based on the contiguity of area units. Others, on the other hand, assign spatial 

weights within the continuous range of 0 to 1 based on the proximity of area units. These various weight 

assignment schemes represent the different ways on how neighborhood relationships can be defined 

and quantified across the area units being analyzed for spatial autocorrelation. This idea of using 

different spatial weight configurations in spatial autocorrelation analysis introduces an area of 

exploration for this study, which is the identification, and eventually, the formulation of an appropriate 

spatial weight matrix when analyzing dasymetrically aggregated data. 

Below are the conventional spatial weight assignment schemes being used in spatial statistics. The 

comparison of the different schemes is adopted from the discussion of Dizon (2018), where the island 

of Marinduque, an island province in the Philippines, is used as an example for illustration. 
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2.2.1. Contiguity scheme 

In the contiguity-based spatial weight assignment scheme, area units i and j are considered neighbors 

if they share a portion of their boundaries (Getis & Aldstadt, 2004). This translates to spatial weight 

matrix elements having either a value of 1, if there is boundary sharing between i and j; or 0, if otherwise. 

The scheme can be further refined by specifying whether the “queen” type of contiguity, i.e. when area 

units share at least an edge or a node; or the “rook” contiguity, i.e. when area units must strictly share 

at least an edges and not just a node or nodes, is considered between the area units (Getis & Aldstadt, 

2004; Anselin, 2018a). 

In the illustration by Dizon (2018) shown in Figure 4, the six municipalities of Marinduque Island are 

indexed as area units 1 to 6, matching with the six rows and six columns in the spatial weight matrix. 

As illustrated, the contiguity-based scheme assigns spatial weight values of 1 to the matrix elements 

representing boundary-contiguous area unit pairs, while a value of 0 is given to the rest. It must be 

highlighted that the same spatial weight matrix will be produced regardless whether the rook or the 

queen type of contiguity is used in this example. 

 

2.2.2. Nearest neighbors scheme 

In the nearest neighbors spatial weight assignment scheme, neighborhood is established if j belongs to 

the k number of neighbors that are nearest to i (Getis & Aldstadt, 2004; Anselin, 2018b). Unlike in the 

contiguity-based scheme which defines neighborhood based on sharing of boundaries, this scheme 

finds the k nearest neighbors of every area unit i based on geometric centroidal proximity and by ranking 

the centroidal distances of all surrounding area units j from area unit i (Anselin, 2018b). This scheme is 

[
 
 
 
 
 
 
 
 
 
 
0 1 1 0 0 0

1 0 1 1 0 0

1 1 0 1 1 1

0 1 1 0 0 1

0 0 1 0 0 1

0 0 1 1 1 0]
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Contiguity-based spatial weight assignment scheme (Dizon, 2018). 
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comparatively more appropriate if the phenomenon being analyzed has spatial autocorrelation 

characteristics that is significantly influenced by areas “outside its contiguous neighborhood” (Dizon, 

2018). Furthermore, this neighborhood scheme ensures that all area units have the same number of 

neighbors regardless of their size and adjacency (Esri, Inc., 2018e). 

Figure 5 from Dizon (2018) shows how the nearest neighbor scheme (k = 3) produces the spatial weight 

matrix for the same area units of Marinduque Island. 

 

2.2.3. Distance scheme 

The distance-based spatial weight assignment scheme uniquely defines neighborhood as a function of 

the area unit’s distances with respect to other area units. Here, the values of the spatial weights are 

computed based on the distance-decay function, where spatial weights are equal to the inverse of the 

squared distance between area units i and j (Getis & Aldstadt, 2004). This translates to the formula 

(Getis & Aldstadt, 2004): 

𝑤𝑖𝑗 =

{
 

 
1

𝑑𝑖𝑗
2 , 𝑑𝑖𝑗 ≤ 𝛿

0, 𝑑𝑖𝑗 > 𝛿

 

Equation 6. Function for computing spatial weights in the distance-based scheme. 

where dij is the centroidal distance between area units i and j, and δ is the threshold distance, which 

marks the maximum limit up to where neighborhood is only established (Getis & Aldstadt, 2004; Anselin, 

2018b). This function produces spatial weights that can assume any decimal value between 0 and 1. 

[
 
 
 
 
 
 
 
 
 
 
0 1 1 1 0 0

1 0 1 1 0 0

1 1 0 0 1 0

0 1 0 0 1 1

0 0 1 1 0 1

0 0 1 1 1 0]
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Nearest neighbors-based (k = 3) spatial weight assignment scheme (Dizon, 2018). 
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The distance-based scheme is demonstrated in Figure 6 from Dizon's (2018) same example of 

Marinduque Island, with δ = 20 kilometers. 

 

Table 2 summarizes and compares the three spatial weight assignment schemes described above in 

terms of their neighborhood configuration, spatial weight values, and their corresponding interpretation. 

Scheme Neighborhood configuration 
Weight 

values 
Interpretation 

Contiguity Based on sharing of boundaries 

0 or 1 

For rook contiguity: Area unit 

pairings i and j with a spatial weight 

of 1 share a boundary segment; 

otherwise, spatial weight is 0. 

For queen contiguity: Area unit 

pairings i and j with a spatial weight 

of 1 share a boundary segment or 

node; otherwise, spatial weight is 0. 

Nearest neighbors Based on proximity ranking 

Area unit pairings i and j with a 

spatial weight of 1 indicate that j is 

part of i’s k nearest neighbors; 

otherwise, spatial weight is 0. 

Distance Based on distance (Euclidean) 0 to 1 

Area unit pairings i and j with 

distance that is less than or equal to 

the threshold distance δ has a 

spatial weight equal to the inverse 

of their squared distance; otherwise, 

spatial weight is 0. 

    

Table 2. Comparison of spatial weight assignment schemes. 

[
 
 
 
 
 
 
 
 
 
 

0 0.004 0.010 0 0.003 0

0.004 0 0.004 0.005 0.002 0.002

0.010 0.004 0 0 0 0.003

0 0.005 0 0 0.003 0.007

0.003 0.002 0 0.003 0 0.007

0 0.002 0.003 0.007 0.007 0 ]
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Figure 6. Distance-based (δ = 20 km) spatial weight assignment scheme (Dizon, 2018). 
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 Dasymetric mapping 

Despite being around for more than a century (Petrov, 2012), dasymetric mapping is considered less 

popular among cartographers, partly due to the higher level of simplicity and availability of choropleth 

mapping tools in most geographic information systems (GIS) software applications (M. Langford & 

Unwin, 1994; Crampton, 2011). In the recent decades however, dasymetric mapping has slowly 

regained its popularity within the mapping community with the advent and continuing progress in the 

fields of GIS and remote sensing (Mennis, 2009). Many case studies recently exemplified the 

effectiveness of dasymetric mapping in mapping various spatial phenomena. For instance, Poulsen & 

Kennedy (2004) showed how dasymetric mapping was applied to estimate the spatial distribution of 

residential burglary, while Mitsova et al. (2012) used variations of dasymetric mapping in a study related 

to shore zone conservation. In addition, two separate studies, respectively by Bajat et al. (2011) and 

Garcia et al. (2016), show how dasymetric mapping was used in disaster risk management and 

mitigation, specifically on mapping out the population at risk of flood hazard, and of landslides, 

respectively. An application of dasymetric mapping in the domain of health and medicine is also 

demonstrated as shown by Cleckner and Allen (2014) in their study involving the mapping of mosquito-

borne-disease-vulnerable populations. Lastly, a unique study by Brehme et al. (2015), shows 

dasymetric mapping being used in marine resource management, which notably deviates from the 

commonly taken trajectory of applying dasymetric mapping on human populations. 

In principle, the dasymetric mapping process can be divided into two steps. First, a set of geographic 

area units, called “choropleth zones” are disaggregated into smaller component subareas, called 

“dasymetric (or sub-choropleth) zones”; and second, the value of a quantitative attribute or “any 

statistical surface data” associated to the choropleth zones, e.g. population, is allocated into the 

resulting dasymetric zones (Mennis, 2009). The details of each of the two steps are described below: 

2.3.1. Disaggregation 

In this initial step of the dasymetric mapping process, the disaggregation of the choropleth zones into 

dasymetric zones is performed by overlaying it with a second dataset called the “ancillary data” (Mennis, 

2009). Figure 7 below illustrates this process. 
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Any polygon-based or cell-based spatial dataset can be used as ancillary data so long as it can provide 

information to the cartographer as to how the attribute can be logically redistributed from the choropleth 

zones to the dasymetric zones. For instance, landcover data is a widely used ancillary dataset in the 

dasymetric mapping of human populations since it provides useful information as to how populations 

can be spatially distributed across an area (Mennis, 2009). However, spatial datasets other than 

landcover are also used, such as topography, i.e. slope, elevation, curvature (Leyk, Ruther, et al., 2013); 

soil sealing (Krunić et al., 2015); cadastral boundaries (Maantay et al., 2008; Strode & Mesev, 2013; 

Jia & Gaughan, 2016); and building clusters (Mans, 2011). Because of its important role in the 

disaggregation of choropleth zones, the choice and quality of the ancillary dataset is considered 

essential for the overall accuracy of the dasymetric mapping process (Pavía & Cantarino, 2017). 

2.3.2. Allocation 

Once the disaggregation of the choropleth zone based on the chosen ancillary dataset is done, the 

allocation of the quantitative attribute to the dasymetric zones can already be proceed. Though studies 

on dasymetric mapping have heavily focused on the use of population-related attributes, any 

quantitative statistical attribute can be used and subjected in the dasymetric allocation process (Mennis, 

2009). There are many different methods proposed on how the allocation of the quantitative attribute is 

done, depending on the geometric algorithm to be applied, and more importantly, the cartographer’s 

Figure 7. Disaggregation of choropleth zones into dasymetric zones using ancillary data. 
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knowledge regarding the “functional relationship” between the quantitative attribute and the ancillary 

data (Mennis, 2009). Two of the most commonly used methods which are of interest in this study, are 

the “binary method”, and the “three-class” method (Mennis, 2009). 

The binary allocation method is mainly performed by identifying the dasymetric zones that are 

considered inhabited, thus, where the value of the quantitative attribute is to be exclusively allocated 

(de Greer, 1926; and Wright, 1936 as cited by Mennis, 2009). An example is shown in Figure 8 to 

illustrate this method. In the example, the original choropleth zone has a population of 200 and is 

disaggregated into five dasymetric zones based on landcover. To allocate the choropleth zone’s 

population value of 200 to the dasymetric zones using the binary method, the dasymetric zones are 

categorized into either inhabited, or uninhabited areas (labeled as 1 and 0, respectively on the figure). 

Three out of the five dasymetric zones are considered inhabited, with corresponding landcover classes 

of agricultural land (agriland), urban, and brush as provided in the ancillary data. The population value 

of 200 is then finally apportioned among these three inhabited dasymetric zones by basis of the 

percentage of land area over the whole inhabited area (land areas are specified in the figure beside the 

ancillary data). The expected result of the allocation using the binary method is shown in the figure, 

where the urban and brush zones, which individually occupies 3/8 of the total area are each allocated 

with a population of 75 (3/8 of 200); while the agricultural zone, which occupies 2/8 (or 1/4) of the total 

land area is allocated with a population of 50 (1/4 of 200). 

 

 Figure 8. The binary allocation method. 
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Alternatively, the allocation of values to the dasymetric zones can also be performed using the three-

class method. An illustration for the method is shown in Figure 9. In this method, the dasymetric zones 

defined with the ancillary data are assigned with varying weights depending on the landcover class 

assigned for the dasymetric zone (Mennis, 2009). The name “three-class” implies that the weight 

assignment for the allocation is typically done on just three landcover classes, e.g. urban, agriculture, 

and forest; although any number and set of landcover classes can be used (Mennis, 2009) depending 

on the cartographer’s assessment. The weight values assigned to the landcover classes is 

characteristically subjective but must closely reflect the supposed percentage of population present for 

each landcover class. In the example given in Figure 9 for instance, weights of 0,80 for urban class, 

0,10 for brush, 0,05 each for agricultural land and forest, and 0,00 for river are specifically assigned. 

With the weights assigned per landcover class, the original population value from the choropleth zone 

is already allocated to the dasymetric zones based on these weights. Furthermore, in cases when 

multiple dasymetric zones fall in the same landcover class, further allocation is done by again dividing 

the population value for each landcover proportionately among its corresponding dasymetric zones 

based on the land area they individually occupy. 

 

 

After the disaggregation and allocation of the quantitative attribute, the resulting dasymetrically 

disaggregate spatial data can be already be visualized cartographically in the form or a dasymetric map; 

or be subjected to further statistical data processing and analysis. If a dasymetric map is to be prepared, 

Figure 9. The three-class allocation method. 
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it is imperative that the attribute be presented in terms of another normalizing attribute. A classic 

example of this is the population attribute, which can be normalized by land area such that population 

density instead of the raw population counts becomes the basis for cartographic visualization. On the 

other hand, if the resulting dasymetrically disaggregated spatial data is to be subjected to statistical 

data processing such as spatial autocorrelation analysis, it is possible for either the normalized, density-

based form (Boo et al., 2015; Choi et al., 2011; Hu et al., 2007; Mosley, 2012; Parenteau & Sawada, 

2012; Weeks, 2010); or the raw, absolute form (Eicher & Brewer, 2001; Jia & Gaughan, 2016; 

Rodrigues & Tenedório, 2016) of the allocated attribute to be used as the analysis input. 

The use of dasymetric mapping at various geographic scales has been sufficiently demonstrated in 

many works provided that the necessary ancillary dataset, and the quantitative attribute for the source 

data are concurrently available for the chosen area of interest. At the city level for instance, Barrozo et 

al., (2011) demonstrated this when they mapped out the elderly population in the city of Sao Paulo, 

Brazil. Exemplifying dasymetric mapping at the county and provincial mapping levels, Bielecka (2005) 

dasymetrically mapped the population in the Podlasie Voivodship in Poland, and so did Sleeter (2004) 

for Alameda County, California in the United States. And finally, at the continental level, Batista e Silva 

et al. (2013) came up with an improved high-resolution population grid map for the entire Europe using 

the dasymetric method involving continent-wide landcover data. 

Aside from cartographers, many scientists have also been making contributions towards further 

innovate the original dasymetric mapping process to extend its application outside of mapping. These 

innovations have been infused to tailor many applications, turning dasymetric mapping from a simple 

cartographic visualization technique into a spatially oriented tool for modeling population distribution 

(Mennis, 2009). Statistical procedures comprise most of the enhancements applied into the traditional 

dasymetric mapping technique in the recent years, most of which are focused on small area estimation 

(Mennis, 2009; Zandbergen & Ignizio, 2010). Langford (2006) for instance, introduced the use of 

polycategorical- and regional-regression-based models into the method for performing zone-based 

population estimations, while Mennis & Hultgren (2005) innovated the population estimation method 

through the inclusion of sampled statistical data into the dasymetric-based estimation process. In 

addition, Comber et al. (2008) and Kim & Choi (2011) proposed the use of pycnophylactic interpolation; 

and others by Leyk, Nagle, et al., (2013), Leyk, Ruther, et al., (2013), and Cockx & Canters (2015) 

incorporated the assumptions of population heterogeneity and non-stationarity into their method. 
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 Related studies on spatial autocorrelation analysis of dasymetric data 

Many studies have affirmed the usability of dasymetrically disaggregated spatial data in the spatial 

autocorrelation analysis. Most of these studies employ dasymetric mapping in modeling and estimating 

population-based data. Boo et al. (2015) for instance, performed small area estimation of dog tumor 

incidents in Switzerland using dasymetrically disaggregated municipal-level data. In addition, Mosley 

(2012) performed regression modeling of various health indicators in rural Ottawa using dasymetrically 

disaggregated census tract-level data. Parenteau and Sawada (2012) also used dasymetrically 

disaggregated data in the land use regression-based modeling of nitrogen dioxide concentrations in 

Ottawa. While Hu et al. (2007) used dasymetrically disaggregated spatial data to explore relationship 

between asthma and air pollution in the Pensacola metropolitan region of Florida. These four studies 

consistently used spatial autocorrelation analysis to assess the spatial autocorrelation of model 

residuals, a commonly used spatiostatistical method to quantify modeling and estimation accuracy. 

Aside from using spatial autocorrelation to quantify modeling and estimation accuracy, other studies 

also opted for a more direct and descriptive approach to spatial autocorrelation analysis of 

dasymetrically disaggregated data. Choi et al. (2011) for example, used Moran’s global and local I 

indices, and the Getis-Ord Gi* index to detect the presence of clusters, hotspots, and cold spots in the 

resulting dasymetrically disaggregated small area estimates of longevity populations in Gangwon-do, 

South Korea. Similarly, Weeks (2010) employed the same approach in analyzing the spatial distribution 

of fertility in rural Egypt using Getis-Ord Gi* index to detect the presence of hotspots and cold spots in 

fertility and model spatial dependence. 

Aside from the above studies where spatial autocorrelation analysis is directly used in its original form, 

other closely related works focusing on dasymetrically disaggregated data are also seen to potentially 

give hints to this study regarding how the spatial autocorrelation analysis can be refined. Rodrigues & 

Tenedório (2016) for instance, looked at the effect of spatial aggregation (instead of spatial 

disaggregation) on global spatial autocorrelation statistics. Using global Moran’s I index and the Geary’s 

C index as spatial autocorrelation measures, their work showed that the geographic shape, size, and 

scale of aggregation reflects different effects on the intensity of global spatial autocorrelation. However, 

a notable finding that is considered of great importance to this study is that the parameter of 

neighborhood configuration is shown to have a direct effect on the intensity of spatial autocorrelation 
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detected. This finding gives possible clues as to which parameters can possibly be manipulated when 

using dasymetrically disaggregated data. In addition, the work of Reynolds (2011), also points to 

another useful finding for this study, where spatial autocorrelation (measured in terms of level of 

aggregation as a proxy measure) is found to increase with the number of dasymetrically disaggregated 

features. The latter also looked at how spatial autocorrelation’s relationships with other relevant 

properties of dasymetric maps, such as the total number of original features involved, and percent of 

dasymetric over original features. The study, however, did not look at how originally neighboring 

dasymetric features affect spatial autocorrelation, something which is of great interest for this current 

research. Factoring in the results produced by the two latter studies, this study is led to focus on the 

effect of the neighborhood configuration, expressed in terms of spatial weight matrices (Getis & 

Aldstadt, 2004), as the important parameter that can be manipulated in the spatial autocorrelation 

analysis involving dasymetrically disaggregated data. 

To sum up, the related literature cited above leads to the conclusion that spatial autocorrelation analysis 

has ubiquitously been applied to dasymetrically disaggregated datasets. However, it can also be drawn 

that there is a potential of further improving the said analysis technique by recalibrating certain analytical 

aspects, particularly those related to neighborhood configuration and spatial weight matrices. 
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3. Implementing the refined spatial autocorrelation analysis  

 Conceptual framework 

The conceptual framework illustrated in Figure 10 highlights the two central concepts covered in this 

study: dasymetric mapping and spatial autocorrelation; together with their conjectured relationship. 

 

Figure 10. Conceptual relationship of dasymetric mapping and spatial autocorrelation. 

As previously described in the preceding chapters, dasymetric mapping entails the process of 

disaggregating and reallocating a chosen quantitative variable from coarser choropleth zones into finer 

dasymetric zones, or what this study aptly refers to as “dasymetrically disaggregated (spatial) data”. 

The resulting data can then be subjected to spatial autocorrelation analysis to characterize the spatial 

segregation either of the variable itself, or some other data derived from it such as model residuals 

when the variable is being modeled using linear regression. This is the typical approach that has been 

copiously applied in many works, particularly the ones cited in the previous section. However, it is 

postulated here that processing the dasymetric zones directly in this manner disregards certain 

neighborhood relationships that may exist among dasymetric zones originating from the same parent 

choropleth zones. The spatial weight matrix (represented by the hexagon labelled W in the figure), is 

specially highlighted in this study’s conceptual framework because of its potential function in accounting 

for dasymetrically disaggregated data’s distinct property as a derivative data processed from choropleth 

zones.  

To further illustrate the relationship between the choropleth zones and the spatial weight matrix, Figure 

11 shows a hypothetical set of dasymetric zones, shaded into either light green or dark green to 

categorize them according to their respective parent choropleth zones. The same set of dasymetric 

zones is used to compare the resulting spatial weight assignment among the three neighborhood 
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schemes: contiguity-based, nearest neighbors-based, and distance-based. The dasymetric zone 

labeled D is used as the reference area unit, while the dasymetric zones surrounding D are labeled with 

white numbers indicating their assigned spatial weights. 

 

Figure 11. Differences in spatial weight assignment by neighborhood configuration. 

In the contiguity- and nearest neighbors-based scheme, some dark green dasymetric zones in the 

southern area (two in the contiguity scheme, and one in the nearest neighbors scheme) are assigned 

with a spatial weight of 0, therefore not tagged as neighbors of D. On the other hand, one dasymetric 

zone (the northernmost one) belonging to the light green group is assigned a spatial weight of 1, thus 

considered as a neighbor of D due of its proximity with the latter. A consistent observation can also be 

seen with the distance-based scheme, where the northernmost dasymetric zone is assigned with a 

higher spatial weight value of 0,4 than to those located to the south of D, which has values of 0,1 and 

0,3, respectively. This illustration shows that D bears a stronger neighborhood relationship with the 

nearby dasymetric zone along its northern border than with those located at the southern area, which 

paradoxically belong to the same parent choropleth zone as does D. This neighborhood assignment 

may be considered flawed since it can be argued that dasymetric zones belonging to the same parent 

choropleth zones must suitably be more related at the statistical sense than those which are proximate 

but originating from a different choropleth zone. This argument is further reinforced when we consider 

the fact that dasymetric mapping strongly works under the assumption that the real underlying spatial 

distribution of the quantitative attribute is unknown, and that this missing information is merely estimated 

by the attribute encoded in the choropleth zones (Mennis, 2009). Because of the limiting behavior on 

the assignment of spatial weights by pure basis of spatial relationship, it is therefore proposed that 

information regarding the lineage of dasymetric zones with respect to their antecedent choropleth zones 

be supplied into the spatial weight assignment process. In other words, the proposed spatial weight 

assignment process when using dasymetrically disaggregated spatial data must simultaneously take 



  

25 

into account the spatial, as well as the original choroplethic configuration of the dasymetric zones. This 

idea is highlighted in Figure 12 as part of the conceptual framework originally shown in Figure 10. 

 

Figure 12. A proposed spatial weight assignment based on choroplethic and spatial configuration. 

The revised spatial weight matrix for dasymetrically disaggregated data can be implemented in a 

hierarchy-based approach, where the spatial configuration and the choroplethic configuration of the 

dasymetric zones are ranked based on which configuration is to be prioritized. Explicitly, the options for 

this prioritization can be any of the following: 

 The spatial configuration is prioritized over the choroplethic configuration. 

 The spatial and choropleth configurations are equally prioritized. 

 The choroplethic configuration is prioritized over the spatial configuration. 

 Operation 

The operation of the conceptual framework is translated into a three-staged workflow. The workflow is 

shown in Figure 13, and each of the stages are described in further detail below. 

 

Figure 13. Operation workflow. 
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3.2.1. Preparing the dasymetrically disaggregated data 

In this initial stage of the workflow, the binary and the three-class dasymetric mapping methods are 

both applied to produce the dasymetrically disaggregated spatial datasets for this study. Vector-based 

data on administrative geographic units, e.g. city land areas, with population encoded per unit is used 

as the input choropleth zones. In addition, vector-based data showing areas by landcover type is used 

as the ancillary dataset. Both datasets are stored as polygon-based vector spatial datasets. Using GIS 

software, the choropleth zones are to be disaggregated to dasymetric zones by running a spatial 

intersection between the choropleth zones and the ancillary dataset. 

After the disaggregation process, the allocation of the population attribute is applied separately in the 

two dasymetric mapping methods. For the binary method, the population value is exclusively allocated 

to the dasymetric zones representing intersections between the city land areas and the urban and 

agricultural landcover types, leaving all the other landcover areas, such as water, unallocated with any 

population value (Eicher & Brewer, 2001). On the other hand, for the three-class method, population is 

allocated disproportionately based on landcover type, such as what was implemented by Holloway et 

al. (1996, as cited by Eicher & Brewer, 2001), where 70% of a city’s population preferentially allocated 

to urban dasymetric zones, 20% to agricultural and woodland zones, 10% to forested zones, and 0% 

to zones corresponding to all other landcover types, such as water. Once the population variable is 

derived, it can then be expressed per dasymetric zone either in terms of raw population counts, or in 

terms of population densities. At the end of this stage, two sets of dasymetric zones, each respectively 

having population variables expressed as raw counts and as densities, are readily available for spatial 

autocorrelation analysis. Comparison can then be made on the output after running the spatial 

autocorrelation analysis in parallel for both sets of dasymetric zones and population-related variables. 

3.2.2. Formulating the revised spatial weight matrix 

After preparing the dasymetrically disaggregated datasets, the next stage involves the construction of 

revised spatial weight matrices which are to be tested and evaluated as part of the spatial 

autocorrelation analysis. As previously stated in the conceptual framework, this revised spatial weight 

matrix must simultaneously define the spatial and the choroplethic configurations of the dasymetric 

zones, while defining the relative prioritization between these two properties. To accomplish this, two 

spatial weight matrices, each defining the spatial configuration and the choroplethic configuration of the 
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dasymetric zones, are first created separately. This is then followed by fusing the two spatial weight 

matrices together to form the revised spatial weight matrix incorporating both configurations. Letting WS 

be the spatial-configuration-based spatial weight matrix, i.e. any of the conventional spatial weight 

matrices described in section 2.2; and WC as the choroplethic-configuration-based spatial weight matrix, 

the revised spatial weight matrix denoted WD can be constructed as a linear combination of matrices 

WS and WC, expressed mathematically as: 

W𝐷 = 𝑝𝑆W𝑆 + 𝑝𝐶W𝐶 

Equation 7. Linear combination of spatial weight matrices. 

where pS and pC are the scalars representing weight values between WS and WC. The scalars pS and 

pC define the prioritization between the spatial and the choroplethic configurations, respectively. Their 

values should sum up to 1 to conveniently express the weights as a proportion value and to facilitate 

their interpretation and nominalization during analysis. Also, maintaining the weights to sum up to 1 

ensures that the range of spatial weight values produced is maintained within the original expected 

range of 0 to 1. 

Figure 14 demonstrates how spatial weight assignment works on a purely choroplethic-based scheme. 

For such spatial weight matrices denoted WC, spatial weight assignment is purely based on the similarity 

of choroplethic origins, such that matrix elements bearing a value of 1 represent dasymetric zones with 

common parent choroplethic zones, while the rest are given a value of 0. Furthermore, just like how it 

is done in the conventional spatial weight matrices, the diagonal matrix elements representing spatial 

weights of individual dasymetric zones with respect to themselves, are consistently assigned with a 

spatial weight of 0 (Getis & Aldstadt, 2004). 

 

[
 
 
 
 
 
 
 
 
0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 0 0 1

0 0 0 1 0]
 
 
 
 
 
 
 
 

 

Figure 14. Choroplethic-based spatial weight assignment scheme. 
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Table 3 shows sample sets of values for pS and pC that can be used to perform the linear combination 

of WS and WC to construct WD, using the possible prioritizations that can be specified between the 

spatial and the choroplethic configurations previously described in the conceptual framework. Three 

revised spatial weight matrices, WD1, WD2, and WD3; which correspond to each prioritization option 

shown in Table 3, are to be constructed. The spatial-configuration-based component, WS, can be based 

from any of the three conventional neighborhood schemes, e.g. contiguity scheme, provided that the 

same neighborhood scheme is consistently used in constructing the three revised spatial weight 

matrices. 

Prioritization Linear combination 

1. The spatial configuration is prioritized over the choroplethic configuration. W𝐷1 = 0,7W𝑆 + 0,3W𝐶 

2. The spatial and choropleth configurations are equally prioritized. W𝐷2 = 0,5W𝑆 + 0,5W𝐶  

3. The choroplethic configuration is prioritized over the spatial configuration. W𝐷3 = 0,3W𝑆 + 0,7W𝐶  

  

Table 3. Sample linear combinations based on preferred prioritization of configurations. 

Figure 15 shows an example of the expected spatial weight matrices for the revised spatial weight 

matrix WD. In this example, the linear combination formula for WD1 = 0,7WS + 0,3WC is used, where the 

spatial-configuration-based component WS is based on the contiguity scheme. As previously noted, the 

matrix elements contain values falling within the range of 0 to 1, where values 0,3 and 0,7 are assigned 

for area unit pairings that are considered partially neighbors in both the spatial and the choroplethic 

aspects. 

 

[
 
 
 
 
 
 
 
 

0 1 0,3 0,7 0,7

1 0 1 0,7 0

0,3 1 0 0,7 0

0,7 0,7 0,7 0 1

0,7 0 0 1 0 ]
 
 
 
 
 
 
 
 

 

Figure 15. Revised (choroplethic- and spatial-based) spatial weight assignment scheme. 
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3.2.3. Running the spatial autocorrelation analysis 

In this final stage, the revised spatial weight matrices and the population-based variables, i.e. raw 

counts and densities, derived for both dasymetrically disaggregated datasets are processed together 

for spatial autocorrelation analysis. As presented in the literature review, both of the raw counts and 

densities can be utilized separately for spatial autocorrelation analysis. Different spatial autocorrelation 

measures are also identified from the related literature and these measures are run using different 

combinations of inputs, i.e. the revised spatial weight matrix, and the dasymetrically disaggregated 

datasets. The measures which are utilized in the related studies and to be adopted here again are 1) 

the Moran’s local I index; 2) the Moran’s global I index; 3) the Getis-Ord Gi* index; and 4) the Geary’s 

C index. Considering that there are 2 dasymetrically disaggregated datasets, 2 population-based 

variable inputs (raw counts vs. densities), 3 revised spatial weight matrices, and 4 spatial 

autocorrelation measures, a total of (2 * 2 * 3 * 4) = 48 possible input combinations is to be processed 

and later compared. In addition to these 48 input combinations, the spatial autocorrelation analysis 

stage shall also include using the spatial weight matrix WS based on the conventional neighborhood 

configuration chosen for the construction of the revised spatial weight matrices. This shall serve the 

purpose of validating the spatial autocorrelation results when using the revised spatial weight matrices 

as opposed to merely using the conventional spatial neighborhood configurations. This validation yields 

an additional 16 possible input combinations, i.e. 2 dasymetrically disaggregated datasets, 2 

population-based variable inputs, 1 conventional spatial weight matrix, and 4 spatial autocorrelation 

measures). All in all then, this stage of the workflow entails the running of spatial autocorrelation 

analysis for 64 runs to cover all the possible input combinations. 

Table 4 presents a matrix of all the 64 possible input combinations for the spatial autocorrelation 

analysis to be run. The 64 input combinations are presented as the matrix cells enclosed in the bold 

black-outlined box, while the set of possible inputs in the spatial autocorrelation analysis are color-

coded for each parameter, i.e. green for the dasymetric mapping methods, blue for the spatial weight 

matrices, and orange for the spatial autocorrelation measures. The resulting indices for all input 

combinations are to be reported and compared to describe and characterize how spatial autocorrelation 

differs in response to changes in these three input parameters. 
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Spatial weight matrices 

Spatial autocorrelation measures 

Global Local 

Global Moran’s I Geary’s C Local Moran’s I Getis-Ord Gi* 

Revised 

WD1 Binary 3-class binary 3-class binary 3-class Binary 3-class 

WD2 Binary 3-class binary 3-class binary 3-class Binary 3-class 

WD3 Binary 3-class binary 3-class binary 3-class Binary 3-class 

Conventional WS Binary 3-class binary 3-class binary 3-class Binary 3-class 

Input: Raw counts Dasymetric mapping methods 

Spatial weight matrices 

Spatial autocorrelation measures 

Global Local 

Global Moran’s I Geary’s C Local Moran’s I Getis-Ord Gi* 

Revised 

WD1 Binary 3-class binary 3-class binary 3-class Binary 3-class 

WD2 Binary 3-class binary 3-class binary 3-class Binary 3-class 

WD3 Binary 3-class binary 3-class binary 3-class Binary 3-class 

Conventional WS Binary 3-class binary 3-class binary 3-class Binary 3-class 

Input: Densities Dasymetric mapping methods 

Table 4. Input combinations for the spatial autocorrelation analysis stage. 

After assessing the spatial autocorrelation for each of the input combinations listed in Table 4, the 

spatial autocorrelation results are then compared to ultimately determine if there are substantial 

differences in spatial autocorrelation analysis when using the proposed spatial weight matrix as 

hypothesized in this study. The comparison is to be compartmentalized within each spatial 

autocorrelation measure and within each variable (raw counts and densities). In the context of Table 4, 

this translates to the comparison being done within each of the 16 columns (8 columns per table) to 

detect any consistent behavior when shifting from the conventional to the revised spatial weight 

matrices. When comparing the global spatial autocorrelation statistics, comparison can be made directly 

on the index’s values, or in terms of their standardized units (z-scores). In this study, comparison is to 

be based on z-scores instead of the index’s values since two sets of population variables with differing 

measurement units are analyzed. Also, the z-scores are useful in readily deriving the p-values in order 

to assess the attained statistical significance for the analysis. Furthermore, when comparing the local 

spatial autocorrelation statistics, comparison is to be made based on the number of statistically 

significant spatial clusters, spatial outliers, hotspots and cold spots. 
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4. Applying the refined spatial autocorrelation analysis 

 Areas of interest 

Two areas of interest (AOIs) are set for the actual implementation of the data processing and analysis 

workflow of this study. One AOI serves as the extent for the training dataset, while the other AOI covers 

the extent for the test dataset. The training dataset is used for the computational development and 

refinement of the data processing and analysis procedure before getting applied to the larger test 

dataset, which is considered as the main dataset for analysis in this study, and from which the analysis 

results are reported and interpreted. Both AOIs are located in the country of the Philippines (see Figure 

16). 

 

Figure 16. Areas of interest for the case study. 

The first AOI is Poro, an island located in the central Philippines with a land area of about 100 square 

kilometers. Poro Island is chosen as the AOI for the training dataset, primarily because of its compact 

insular configuration. This compact configuration is favorable for this case study because this ensures 

that all dasymetric zones have neighbors assigned to them regardless of the spatial configuration used, 

especially with the contiguity-based scheme, where isolated area units end up having no assigned 

neighbors. Furthermore, its small land area is seen to facilitate the initial development of the training 

dasymetric data and spatial weight matrices due to least number of choropleth zones and dasymetric 

Phi l ipp ines  

Poro Is land  

Siqu i jo r  I s land  
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zones to be processed. For the second AOI, Siquijor, which is an island province also located in the 

central Philippines and having a land area of about 321 square kilometers, is selected for the test 

dataset also because of its compact and regular insular configuration as Poro Island. Also, the island 

province’s land area, which is approximately three times that of Poro Island, is another characteristic 

which is favorable for being chosen as the test dataset AOI. 

 Data and analysis parameters 

The dasymetrically disaggregated spatial datasets for the case study are prepared using ArcGIS Pro. 

The spatial datasets used for this are: 

 Municipal land areas for the choropleth zones; and 

 Landcover areas for the ancillary data 

Both these datasets are sourced from the National Mapping and Resource Information Authority 

(NAMRIA), the national mapping agency of the Philippines. Figure 17 shows a map view of these input 

spatial datasets for Poro Island (left) and Siquijor Island (right). 

 

 

 

Figure 17. Municipal land areas as dasymetric zones, and landcover as ancillary dataset. 
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NAMRIA uses a specific set of landcover classification suitable for the Philippines. In order to convert 

this to what can be used for dasymetric mapping, the landcover classification from the NAMRIA data is 

reassigned to the reclassification applied by Eicher & Brewer (2001) in their landcover ancillary dataset. 

Table 5 shows how this reclassification is made for both the binary and the three-class methods. 

NAMRIA’s landcover 

classification 

Landcover classes for dasymetric mapping 

Binary Three-class 

Built-up 

Inhabited 

Urban area 

Annual crop 

Agricultural / woodland 
Brush / shrubs 

Grassland 

Perennial crop 

Closed forest 

Uninhabited 

Forested land Mangrove forest 

Open forest 

Fishpond 

Water / barren 
Inland water 

Marshland / swamp 

Open / barren 

   
Table 5. Reclassification of landcover types from the ancillary dataset. 

For the three-class method, the weighting used for the allocation of the registered voters per 

municipality is adapted from Holloway et al. (1996, as cited by Eicher & Brewer, 2001), where 70% is 

allocated to urban areas, 20% to agricultural and woodland areas, 10% to forested areas, and 0% to 

water and barren areas. 

Adapting the methods of the different case studies cited in the literature review, the case study analyzes 

the registered voters variable both in terms of raw counts and as densities. By doing this, it can be 

determined if the revised spatial weight matrices yield the same effect whether the variable used from 

the dasymetrically disaggregated spatial data is normalized or not. Because of the difference in units 

and nature of the variables to be compared, comparison of the global spatial autocorrelation measures 

between the raw counts and the densities is to be based on their standardized values, i.e. in terms of 

z-scores. Local spatial autocorrelation measures on the other hand shall be compared based on the 
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number of clusters and outliers detected. Statistical significance is to be considered established at a 

maximum attained p-value of 0,05. 

The actual attribute data to be used here are the municipalities’ registered voters population, which is 

sourced from the Commission of Elections (Comelec) of the Philippines. Election data for the years 

2013 (for Poro Island) and 2016 (for Siquijor Island) are to be used. For the spatial component of the 

three revised spatial weight matrices – WD1, WD2, and WD3; as well as the conventional spatial weight 

matrix WS, the queen contiguity-based scheme is preferentially used because of the compact insular 

configuration of both AOIs, resulting in all dasymetric zones sharing a portion of its boundary with at 

least one neighboring zone. Otherwise, if the study areas had non-compact configurations, e.g. 

elongated, fragmented, or perforated; the two other spatial configurations (nearest-neighbors-based, or 

distance-based) can be alternately used, since these schemes ensure that non-zero spatial weights are 

assigned across all dasymetric zones despite them not being totally interconnected. 

The construction of the revised and the conventional spatial weight matrices, and the computation of 

the spatial autocorrelation indices are to be performed using geoprocessing and modeling tools 

available in ArcGIS Pro. The functionality to directly compute for the Geary’s C index is not directly 

available in the said software application. However, since the computational formula for the Geary’s C 

index is closely identical to that of the global Moran’s I index (compare Equation 1 and Equation 2), the 

script-based geoprocessing tool in ArcGIS Pro for the latter is modified in a separate script in order to 

be able to compute the Geary’s C index. The modification applied in the script is guided by the full 

computational specifications of the two indices as described in Bivand & Wong (2018) and Esri, Inc. 

(2018a).
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5. Results 

Using the training dataset, which covers the smaller area of Poro Island, the following models and 

scripts were successfully completed, and eventually run for the larger test dataset: 

 Binary Dasymetric Model – a geoprocessing model that automates the process of creating a 

dasymetrically disaggregated dataset in ArcGIS Pro through the binary dasymetric method. 

 Three-Class Dasymetric Model – a geoprocessing model that automates the process of 

creating a dasymetrically disaggregated dataset in ArcGIS Pro through the three-class 

dasymetric method. 

 Revised Spatial Weight Matrix Model – a geoprocessing model that automates the process of 

constructing a revised spatial weight matrix in ArcGIS Pro based on the method described in 

section 3.2.2. 

 Spatial Autocorrelation (Geary's C) – a script-based geoprocessing that computes the Geary's 

C index of an input dataset to determine spatial autocorrelation. This script is modified from the 

original Global Moran's I tool available in ArcGIS Pro. 

A copy of the abovementioned models and scripts are available in the media attachment of this thesis 

manuscript. Also, in the case of the Spatial Autocorrelation (Geary's C) script, the computational 

modifications applied to the global Moran’s I’s geoprocessing script to enable its computation for the 

Geary’s C index is detailed in Appendix 9.1. 

The actual analysis results using the above models and scripts, with the Siquijor Island test dataset as 

input are all detailed below. 

 Dasymetric disaggregation 

The disaggregation process for the Siquijor Island dataset produced a total of 1 886 dasymetric zones, 

with allocated values for the estimated number of registered voters ranging from 0 to 10 192. Figure 18 

displays the result of the dasymetric disaggregation process of the municipal boundaries as the input 

choropleth zones, and the allocation of the registered voters count variable for Siquijor Island. The raw 

count of the registered voters variable in both dasymetric datasets (binary and three-class) is 

symbolized using the proportional symbolization method. The raw counts variable is illustrated in the 
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said manner to have an initial visual assessment of the raw counts’ spatial segregation, which can then 

be confirmed later in the spatial autocorrelation analysis.  

 

Figure 18. Dasymetric disaggregation of registered voters as raw counts. 

The visualization in Figure 18 shows that the resulting raw count variable for the binary method exhibits 

sharper changes from one neighboring dasymetric zone to another, compared in the three-class method 

where there is a smoother spatial transition in the dasymetrically disaggregated values. In terms of 

spatial extent, higher values of registered voters population occupy a larger portion of the study area in 

the binarily disaggregated dataset than in the three-class dataset. This in return increases the number 

of adjoining high-valued dasymetric zones in the binary dataset, as well as the number of low-valued 

dasymetric zones surrounding higher-valued zones. These visually verifiable characteristics point to the 

possibility of detecting spatial clusters of high values, and spatial outliers of low values in the resulting 

dasymetrically disaggregated datasets. 

On the other hand, Figure 19 displays the disaggregated raw count variable as an actual dasymetric 

map, where the registered voters variable is displayed in terms of density per square kilometer. The 

densities in both dasymetric datasets is symbolized using a two-hued color gradient where yellow 

represents lower density values and blue for the higher density values. In contrast to what is observed 

in the raw counts variable, there are generally less abrupt changes in the density values of nearby 

dasymetric zones as shown in the dasymetric map, except in the coastal areas of Siquijor where built-

up areas surrounded by less densely populated zones are remarkably highlighted. This is particularly 

observable in the three-class dasymetric dataset, suggesting that higher levels of spatial segregation 

can be expected here than in the binary dataset.  

Binary method Three-class method 
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Figure 19. Dasymetric disaggregation of registered voters as densities. 

 Spatial weight matrix construction 

Since there are a total of 1 885 dasymetric zones derived from the dasymetric disaggregation process, 

each of the four constructed spatial weight matrices, WS, WD1, WD2, and WD3, then contains a total of  

(1 885)2 or 3 553 225 matrix elements. This number may be reduced to just 3 551 340 if the 1 885 

diagonal matrix elements is not anymore considered due to the de facto zero weight assignment of the 

area unit pairings where i = i. Nonetheless, the original matrix element count is used in determining and 

reporting the proportion of neighboring area units by neighborhood configuration type in the three spatial 

weight matrices. These proportions are computed upon construction of the four spatial weight matrix., 

and Figure 20 shows an Euler diagram (Larsson, 2020) illustrating the comparison of these proportions. 

The diagram shows that 82,1% of the 3 553 225 matrix elements represent non-neighboring area unit 

pairings in neither the spatial nor choroplethic sense. This means that at least 82,1%, or majority of the 

area pairings will not be considered once the spatial autocorrelation analysis is performed using the 

four spatial weight matrices. Although this relatively large proportion of non-neighboring area unit 

pairings is expected for large number of dasymetric zones, this would have been higher if the purely 

contiguity-based spatial weight matrix, WS, is merely considered, with the said proportion increasing to 

99,7%, or correspondingly, a proportion of just 0,3% for neighboring area unit pairings. However, after 

incorporating the choroplethic configuration into the WD spatial weight matrices, 17,6% from the original 

99,7% is deducted and reassigned as neighboring area unit pairings. This translates to a sixtyfold 

Binary method Three-class method 
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increase in the proportion of neighboring area unit pairings, from just 0,3% (when using just WS) to 

17,9%. In Figure 20, this 17,9% can be seen as composed of three components: 17,6% for the area 

unit pairings representing choroplethic neighbors, 0,1% for spatial neighbors, and 0,2% for jointly 

choroplethic and spatial neighbors. 

 

Figure 20. Neighborhood type among area unit pairings. 

An alternative visualization in the form of a bar chart in Figure 21 compares these reported differences 

in the proportion of neighboring and non-neighboring area units between WS and WD. From these 

proportions, it can be expected that the revised spatial weight matrices WD are to return substantially 

different results in the spatial autocorrelation analysis compared to when just using WS. Moreover, 

differences in the prioritization values for ps and pc are expected to also differentiate results among the 

three revised spatial weight matrices. 
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Figure 21. Proportion of neighboring and non-neighboring area unit pairings between WS and WD. 

 Spatial autocorrelation analysis of raw counts 

5.3.1. Global Moran’s I 

Figure 22 summarizes the computed global Moran’s I z-scores for the raw count of registered voters 

using the four spatial weight matrices and the two dasymetric datasets as pairwise inputs which are 

summarized in Table 4. Comparison of the derived values definitively shows a steep decline in spatial 

autocorrelation when using the WD spatial weight matrices instead of WS. Specifically, the global 

Moran’s I z-score decreases from 24,179 and 3,845 for WS; to at least -0,598 in all the three revised 

spatial weight matrices. Negative (albeit small) global Moran’s I z-score values (shown as the bars 

below the horizontal axis in the figure) are also seen for all the three WD matrices using the three-class 

dasymetric dataset and the WD3 matrix using the binary dasymetric dataset. These negative values are 

initially suggestive of an overall spatial dispersion in the data. 
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Figure 22. Global Moran’s I z-scores for raw counts by spatial weight matrix. 

In terms of statistical significance, p-values of ≤0,05 are attained for the global Moran’s I z-scores 

associated to WS; and to WD1 when using the binary dasymetric dataset. This applies as well to all the 

negative global Moran’s I z-scores found under the three revised spatial weight matrices. Collectively, 

these values suggest that as far as the global Moran’s z-score is concerned, statistically significant 

overall spatial clustering is only detectable in the dasymetric datasets when using the purely spatial-

based weight matrix, and that overall spatial randomness is observed when using all the three revised 

spatial weight matrices (with exception to WD1 when used with the binary dasymetric dataset). 

The complete set of computed global Moran’s I index values and z-scores are organized and tabulated 

per input combination in Table 6 found in the Appendix. 

5.3.2. Geary’s C 

Figure 23 summarizes the computed Geary’s C z-scores using the same set of input combinations. A 

similar steep decline in z-score values is again observed as the computation of the index shifts from 

using the WS to the WD matrices. For instance, in the three-class dasymetric dataset, the highest value 

for the index is recorded at 30,415 when using WS, and sharply decreased to at least 1,013 when using 

the three revised spatial weight matrices. In the aspect of statistical significance, p-values of ≤0,05 are 

again attained for the all input combinations involving WS; and to WD1 when using the three-class 

dasymetric dataset. 
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Figure 23. Geary’s C z-scores for raw counts by spatial weight matrix. 

Unlike in the global Moran’s index, there is no shifting in signs that occurred in the Geary’s C z-score, 

which remains positive across all the input combinations. However, one notable observation that can 

be made is that the computed Geary’s C z-scores are all found to be positive. Such set of values signify 

overall spatial dispersion in both dasymetric datasets, which is contrary to what is concluded from the 

analysis using global Moran’s I. As discussed previously in the theoretical background, this contrast in 

spatial autocorrelation patterns as reported by the two indices can be explained by the latter’s greater 

sensitivity to high differences in values among neighboring dasymetric zones than the former (Lembo, 

n.d.; Unwin, 1996). This happens when there is strong local negative spatial autocorrelation or local 

spatial dispersion in the data. This is consistent with what is previously manifested in the map 

visualization of the dasymetric datasets provided in Figure 18, but this possible presence of local spatial 

dispersion can only be ascertained in the analysis of local spatial autocorrelation analysis. 

The complete set of computed Geary’s C index values and z-scores are organized and tabulated per 

input combination in Table 7 found in the Appendix. 

5.3.3. Local Moran’s I 

Figure 24 summarizes the number of dasymetric zones identified as statistically significant spatial 

clusters (left) and outliers (right) in raw counts using the local Moran’s I index per set of input 

combinations. Just like the trend already seen in the global spatial autocorrelation results, the graphs 

likewise show a consistent yet gradual (not steep) decrease in number of localized clusters and outliers 
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when shifting from the WS to the three WD spatial weight matrices. More than half of the dasymetric 

zones initially identified as clusters and outliers are eliminated upon using the WD1 matrix, with the 

decrease ranging from 57% to 69% among the four input combinations involving WS. This reduction 

further progresses when the WD3 matrix is used, where only 3% to 23% of the originally identified 

clusters and outliers are retained, until just 1 spatial cluster remains when using WD3. 

 

Figure 24. Local Moran’s I clusters and outliers for raw counts by spatial weight matrix. 

The number of spatial clusters and outliers based on the local Moran’s I values are tabulated per input 

combination found in Table 8 in the Appendix. 

A map view showing the distribution of spatial clusters and outliers is presented in Figure 25 and Figure 

26. Figure 25 shows the results for the binary dasymetric dataset while Figure 26 shows the results for 

the three-class dasymetric dataset. Each figure contains 4 maps, each corresponding to the result 

produced for each of the four spatial weight matrices. Again, both sets of maps consistently show the 

declining number of localized clusters and outliers when using the revised spatial weight matrices. 

However, aside from the declining number, the maps also highlight the area covered by the remaining 

clusters and outliers, where most of the remaining ones are located along the edges of the choropleth 

zones (cf. Figure 17, which shows Siquijor Island’s municipal boundaries as choropleth zones). The 

maps also further support the previous remark made in the preceding spatial autocorrelation indices 

where the binary dasymetric datasets report higher degrees of spatial autocorrelation than its three-

class counterpart, this time in terms of the number of localized clusters and outliers detected. 
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To determine the nature of the spatial outliers, the dasymetric zones tagged as such are further 

classified into either a low-high outlier, where a low-valued zone is surrounded by high-valued zones; 

or a high-low outlier, where a high-valued dasymetric zone is surrounded by low-valued zones. In both 

input dasymetric datasets, all except for 2 of the spatial outliers identified are classified as low-high 

spatial outliers. These low-high outliers represent 99,8% of all the identified spatial outliers, obfuscating 

the presence of the mere 2 (or 0,2%) high-low outliers in the study area. This outcome reconciles with 

the visual pattern of the dasymetric zones shown in Figure 18 where lower-valued zones are enclosed 

by high-valued zones, as well as with the prior finding in the analysis of Geary’s C z-scores where local 

spatial dispersion is present in the data. 

 

Figure 25. Local Moran’s I clusters and outliers for raw counts from the binary dasymetric dataset. 

WS WD1 

WD3 WD2 
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Figure 26. Local Moran’s I clusters and outliers for raw counts from the three-class dasymetric dataset. 

5.3.4. Getis-Ord Gi* 

For the same purpose of determining the types of the clusters detected in the local Moran’s I analysis, 

the Getis-Ord Gi* z-score is also computed to determine whether the spatial clusters detected are either 

hotspots, which are clusters of high values; or cold spots, which are of low values. Figure 27 

summarizes the number of identified hotspots using the said index per set of input combinations. There 

are no graphs created for reporting the number of cold spots simply because no cold spots are detected 

at all in any of the input combinations used. This means that based on the Getis-Ord Gi* index, the 

observed localized spatial clustering in the study area is purely characterized by clustering of similarly 

high-valued neighboring zones. The familiar decreasing trend is again seen in the number of hotspots 

when shifting from the WS matrix until they dissipate into complete spatial randomness when using WD3.  
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Figure 27. Getis-Ord Gi* hotspots for raw counts by spatial weight matrix. 

The number of hotspots and cold spots based on the local Moran’s I values are tabulated per input 

combination in Table 9 found in the Appendix. 

A multi-map view similar to what is presented previously is also shown in Figure 28 to illustrate the 

distribution of the hotspots. Although the Getis-Ord Gi* index and local Moran’s I index are different, 

both maps show the same spatial pattern of decreasing number of clusters when using the revised 

spatial weight matrices. The maps also again exhibit higher degrees of spatial autocorrelation for the 

binary than in the three-class dasymetric dataset, especially along the choropleth zone edges (cf. Figure 

17, which shows Siquijor Island’s municipal boundaries as choropleth zones).



 

 

      

 
 
 

Figure 28. Getis-Ord Gi* hotspots for raw counts from the binary (left) and three-class (right) dasymetric datasets. 
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 Spatial autocorrelation analysis of densities 

5.4.1. Global Moran’s I 

Figure 29 summarizes the computed global Moran’s I z-scores for population density of registered 

voters using the four spatial weight matrices. In contrast to the decreasing trend seen in the spatial 

autocorrelation analysis of raw counts, the global Moran’s I z-scores for the analysis of densities show 

a steep and plateauing increase in spatial autocorrelation when shifting from the WS to the WD spatial 

weight matrices. This trend suggests an intensified and sustained overall spatial clustering in the density 

values. 

 

Figure 29. Global Moran’s I z-scores for densities by spatial weight matrix. 

The complete set of computed global Moran’s I values and z-scores are organized and tabulated per 

input combination in Table 10 found in the Appendix. 

5.4.2. Geary’s C 

Figure 30 summarizes the computed Geary’s C z-scores for the same set of input combinations. Unlike 

for the global Moran’s I measure, the computed z-scores for the Geary’s C index are all negative. 

However, the absolute values of the z-scores for the said dataset are all increasing and plateauing as 

well, again indicating a sustained intensification in global spatial clustering when the revised spatial 

weight matrices are used. This observation is still consistent with the global spatial autocorrelation of 

the density variable using the global Moran’s I index. Furthermore, when the two dasymetric datasets 
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are compared, only the binary dataset exhibited statistically significant results, leaving the three-class 

results negligible since its corresponding z-scores only yield statistically insignificant p-values. 

 

Figure 30. Geary’s C z-scores for densities by spatial weight matrix. 

The complete set of computed Geary’s C values are organized and tabulated per input combination in 

Table 11 found in the Appendix. 

5.4.3. Local Moran’s I 

Figure 31 shows the number of dasymetric zones identified as statistically significant spatial clusters 

(left) and outliers (right) in the population densities using the local Moran’s I index. The legend in Figure 

30 still applies to this graph. 

 

Figure 31. Local Moran’s I clusters and outliers for densities by spatial weight matrix. 
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Just like the trend already seen previously in the global spatial autocorrelation, the graphs show a steep 

and plateauing increase in number of localized clusters and outliers when shifting from the WS to the 

three WD spatial weight matrices. Also, unlike in the raw counts where there is a clear progression in 

the decrease of values, the changes in the number of spatial clusters and outliers for the densities 

plateaus for both the binary and the three-class dasymetric datasets when using the revised spatial 

weight matrices. In terms of the dasymetric dataset type, the difference in counts is more pronounced 

for the spatial clusters than for the spatial outliers. 

The number of spatial clusters and outliers based on the local Moran’s I values are tabulated per input 

combination in Table 12 in the Appendix. The map view shown in Figure 32 and Figure 33 again 

reinforces the increased number of localized clusters and outliers when using the revised spatial weight 

matrices. 

 

Figure 32. Local Moran’s I clusters and outliers for densities from the binary dasymetric dataset. 
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Figure 33. Local Moran’s I clusters and outliers for raw counts from the three-class dasymetric dataset. 

5.4.4. Getis-Ord Gi* 

Figure 34 shows the number of identified hotspots and cold spots per input combination using the Getis-

Ord Gi* index. It can be recalled from the spatial autocorrelation analysis of raw counts that no cold 

spots are detected at all in any of the input combinations used. Here however, a considerable number 

of cold spots are being detected for the voters’ density of the dasymetric zones. More importantly, the 

increasing trend is again reflected here for the number of hotspots and cold spots detected when shifting 

from the WS matrix. 
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Figure 34. Getis-Ord Gi* hotspots and cold spots for densities by spatial weight matrix. 

The number of hotspots and cold spots based on the local Moran’s I values are tabulated per input 

combination in Table 13 found in the Appendix. 

The map view illustrating the spatial distribution of the hotspots and cold spots is also shown in Figure 

35. Although the Getis-Ord Gi* index and local Moran’s I index are different, both maps show the same 

spatial pattern of increasing number of clusters when using the revised spatial weight matrices. The 

maps also again exhibit higher degrees of spatial autocorrelation for the binary than in the three-class 

dasymetric dataset.



 

 

      

 
 
 

Figure 35. Getis-Ord Gi* hotspots for densities from the binary (left) and three-class (right) dasymetric datasets. 
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6. Discussion 

Based on the results of the literature review and the case study that was conducted, the research 

questions initially slated in Chapter 1 are finally addressed and answered below. 

 Which applicable spatial autocorrelation measures can possibly utilize dasymetrically 

disaggregated spatial data? 

The related literature points to four commonly used spatial autocorrelation measures in the 

spatial autocorrelation analysis of dasymetrically disaggregated spatial data. Two of these are for 

assessing global spatial autocorrelation: global Moran’s I, and Geary’s C; and two are for assessing 

local spatial autocorrelation: local Moran’s I, and Getis-Ord Gi*. The decision on which measure to use 

mainly depends on two factors. The first factor is the extent by which the spatial segregation of the 

variable must be characterized, whether it is overall (thus, global) or granular (thus, local); and second, 

which is especially true for the local spatial autocorrelation, is the type of spatial segregation pattern(s) 

of interest, such as clusters, outliers, hotspots, and cold spots. 

 Which parameter(s) in the mathematical computation of spatial autocorrelation measures can 

possibly be modified when using dasymetrically disaggregated spatial data? 

The computational formulae for the four spatial autocorrelation measures cited above 

commonly share a fundamental parameter which is the spatial weight matrix. Mathematically denoted 

as W in the formulae, the spatial weight matrix serves the important function of defining subsets in the 

input area units whose combined values are assessed to gauge whether the data exhibits positive, 

negative, or zero spatial autocorrelation. Because of this function, the modification of this parameter is 

seen to influence the spatial autocorrelation analysis of dasymetrically disaggregated spatial data since 

the input dasymetric zones can properly be organized into neighborhoods based on their spatial 

configuration and, as introduced in this study, on their choroplethic configuration. 

 What modification(s) in the mathematical computation parameters of spatial autocorrelation 

measures can be made when using dasymetrically disaggregated spatial data? 

The spatial weight matrix can be modified and refined through the use of a priority-based spatial 

weight assignment method, where the spatial weight value of the dasymetric zones is jointly based on 

their spatial and choroplethic configurations, as well as the relative weighting of these two 
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configurations. In particular, dasymetric zone pairs are given greater spatial weight values when they 

are treated as neighbors based simultaneously on their spatial and choroplethic configurations, 

compared to those which are merely spatial neighbors or sharing common choroplethic origins. 

Furthermore, aside from the intrinsic configuration of the dasymetric zones, the spatial weight value is 

also determined by the relative weighting set for the two configurations. In general, the weights can be 

set by disproportionately increasing (or decreasing) the weight of the spatial configuration over the 

choroplethic configuration, or vice versa. For the case study, three types of modifications are tested and 

compared. These are 1) higher priority given to spatial over choroplethic configuration; 2) equal priority 

given to spatial and choroplethic configurations; and 3) higher priority given to choroplethic over spatial 

configuration. 

 How do these modifications differ from each other in terms of results returned in the spatial 

autocorrelation analysis? 

On the basis of the results derived from the case study, the modifications described above is 

shown to possibly return contrasting effects in the spatial autocorrelation analysis results, depending 

on the input spatial variable used from the dasymetrically disaggregated data. When raw counts are 

analyzed, results show that an increasing priority in favor of the choroplethic configuration corresponds 

to decreasing levels of detectable spatial clustering or dispersion, reflected both on the spatial 

autocorrelation index’s value, and the number of statistically significant local spatial clusters and 

outliers. In other words, setting a higher priority for choroplethic configurations results in the dampening 

of the spatial autocorrelation present in the data towards complete spatial randomness. On the other 

hand, when densities are analyzed instead, the same increasing priority in the choroplethic 

configuration contrarily yields increasing levels of detected spatial clustering. This manifests as 

increasing absolute values in the global spatial autocorrelation indices, and the steep increase and 

abrupt plateauing in the number of statistically significant local spatial clusters and outliers detected in 

the data. 

 How do the results of the modified spatial autocorrelation analysis differ from those of the 

original spatial autocorrelation analysis measures? 

The modified spatial autocorrelation analysis presented in this study differs from the original 

method in two aspects. The first aspect is on the identification of neighboring area units among the 
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dasymetric zones, where an increase in the degree of neighborhood in the data is attained when the 

modified spatial autocorrelation analysis is implemented. The second and more prominent aspect is on 

the degree of detected spatial segregation. In comparison to just using the spatial configuration, using 

the revised spatial matrix is seen to either diminish or intensify the level of spatial clustering or dispersion 

detected in the variable. In other words, the introduction of the choroplethic configuration in the modified 

spatial autocorrelation analysis differs from the original method by applying either a filtering effect or an 

amplifying effect on the spatial autocorrelation analysis of dasymetrically disaggregated spatial data, 

depending on the type of variable being analyzed. 

Certain aspects of the differences noted above remarkably coincides with the findings of Rodrigues & 

Tenedório (2016), where the original spatial autocorrelation analysis method is used. They found in 

their study that the level of detected spatial autocorrelation in population, a raw count variable, rises 

when its less disaggregated geometric configuration is considered, and alternately decreases when its 

aggregated form is used instead. This finding is consistent with this case study’s where it is shown that 

changes in measured spatial autocorrelation is influenced by whether the aggregated or the 

disaggregated versions of the spatial datasets is used in spatial autocorrelation analysis. Another 

aspect in their finding that is deemed consistent with this study is the observed decrease in spatial 

autocorrelation as the number of neighbors assigned per area unit increases, particularly when using 

the nearest neighbors spatial scheme. As mentioned previously, one effect of introducing the 

choroplethic configuration in the spatial weight matrix is the increase in the attained level of 

neighborhood among the dasymetric zones. This increase in number of neighboring area unit pairs then 

spontaneously results in decreasing levels of spatial autocorrelation in the case of raw counts, 

describing a recognizable consistency between the two studies’ findings. These consistencies found 

between Rodrigues & Tenedório's (2016) and this study recapitulate the direct effect of modifying 

neighborhood configuration on spatial autocorrelation analysis, further bolstering the need of using a 

choroplethic-configuration-based spatial weight matrix when analyzing dasymetrically disaggregated 

spatial datasets. 
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7. Conclusion 

This study positively demonstrated that spatial autocorrelation analysis can be further refined when 

using dasymetrically disaggregated spatial data as input area units, producing substantially different 

results when compared to the original analysis method. The refinement in the analysis is done by using 

a revised spatial weight assignment method where the neighborhood configuration of the input area 

units is dually defined by the spatial configuration, as well as the choroplethic configuration of the 

dasymetric zones. This is mathematically implemented through a linear combination of two spatial 

weight matrices, one being the conventional spatial weight matrix based on a spatial neighborhood 

scheme, and another being a spatial weight matrix based on similarity in choroplethic origins. The 

refined analysis method is tested through a case study using population data for Siquijor Island’s 

registered voters for the election year 2016. Drawing from the evidences found in the case study results, 

three conclusions can be made regarding this proposed method for the spatial autocorrelation analysis 

of dasymetrically disaggregated spatial data. 

First, this study confirms that all previously used global and local spatial autocorrelation measures in 

the analysis of dasymetrically disaggregated data can be refined in the manner described here since 

they all use spatial weight matrices as a fundamental parameter in their respective computational 

formulae. This means that the only limiting factor in order to apply the refined spatial autocorrelation 

analysis proposed here is the type of the input spatial data involved, which must be dasymetrically 

disaggregated in nature. 

Secondly, this study proves that substantial differences can be observed in the analysis output when 

applying the refined spatial autocorrelation analysis proposed here. Specifically, the revised spatial 

weight matrix produces two distinct effects depending on the variable in the spatial data being analyzed. 

When dealing with raw counts, a filtered version of spatial autocorrelation analysis result is produced 

when using the revised spatial weight matrix, resulting in lowered levels of detected spatial 

autocorrelation in the output. Conversely, when dealing with densities, an opposite effect is seen, where 

an intensified version of spatial autocorrelation analysis results is returned, resulting in increased levels 

of detected spatial autocorrelation levels either in the form of higher levels of global spatial clustering, 

or greater occurrences of local spatial clusters and outliers. 
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Finally, since the revised spatial weight matrix is dually composed of the spatial and the choroplethic 

neighborhood configurations of the dasymetrically disaggregated spatial data, the relative weighting or 

priority between the spatial and the choroplethic configuration can be variably defined. However, as 

manifested in the results, it is considered to be optimal for the refined spatial autocorrelation analysis if 

the relative weights are set in such a way that the dasymetric zones’ spatial configuration is either 

equally, or more prioritized than the dasymetric zones’ choroplethic configuration. This relative 

weighting approach is recommended here in order to avoid dampening the spatial autocorrelation 

present in the data into complete spatial randomness when analyzing raw counts; or exaggerating the 

presence of spatial clustering and outliers when analyzing raw counts. 

Motivated by the findings produced in this study, follow-up research related to spatial autocorrelation 

analysis and dasymetric mapping may be undertaken in the areas of spatial statistics, cartography, 

demography, and other related domains. Case studies similar to those exhibited in this study’s literature 

review can test the usability of the refined spatial autocorrelation analysis proposed here in various real-

world applications, such as in crime analysis, epidemiology, and business analytics among others. 

Moreover, it will also be worthy to determine if the analysis results observed here can be consistently 

replicated with other dasymetrically disaggregated datasets. In the occasion that such differences are 

observed, further analysis can then be conducted to determine factors or properties in the datasets that 

can contribute to such differences. 

Aside from the direct application of the technique, studies aimed at further exploring and developing 

this novel method may also be done. Specific topics include the detailed comparison of the effects of 

the revised spatial weight matrix on different spatial neighborhood schemes; using the revised spatial 

weight assignment method in other spatiostatistical techniques, such as spatial crossregression 

analysis and spatial autoregressive modeling; and the combining of different spatial weight matrices 

using the linear combination technique demonstrated in this study. Because of the fundamental role of 

spatial weight matrices in these topics, this study opens up prospects for further inquiry and discussion 

in the areas of spatial statistics, cartography, demography, as well as other geosciences in general 

where the statistical analysis of spatial segregation is a topic of interest. ∎ 
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9. Appendix 

 Geary’s C and Global Moran’s I computational specifications 

The geoprocessing tool in ArcGIS named Spatial Autocorrelation (Global Moran’s I) is a ready-to-use, 

Python-script-based tool used to compute Global Moran’s I indices for a given spatial attribute stored 

in an area-based spatial dataset. This script-based tool is copied and modified in this study to create a 

separate script-based tool for computing Geary’s C indices within ArcGIS. 

The script for the Spatial Autocorrelation (Global Moran’s I) geoprocessing tool can be accessed in the 

following ArcGIS system directory, together with the other out-of-the-box script-based geoprocessing 

tools that come with the software. 

▪ For ArcMap: 

C:\Program Files (x86)\ArcGIS\Desktop10.6\ArcToolbox\Scripts 

▪ For ArcGIS Pro: 

C:\Program Files\ArcGIS\Pro\Resources\ArcToolBox\Scripts 

The file name of the script is MoransI.py. 

In order to enable the original Spatial Autocorrelation (Global Moran’s I) script to compute Geary’s C 

indices instead, the following lines of code (lines 309 to 369) in the original script are modified: 

def processRow(self, orderID, yiDev, nhIDs, nhVals, weights): 

        """Processes a features contribution to the Moran's I statistic. 

         

        INPUTS: 

        orderID (int): order in corresponding numpy value arrays 

        yiVal (float): value for given feature 

        nhIDs (array, nn): neighbor order in corresponding numpy value arrays 

        nhVals (array, nn): values for neighboring features (1) 

        weights (array, nn): weight values for neighboring features (1) 

 

        NOTES: 

        (1)  nn is equal to the number of neighboring features 

        """ 

 

        #### Numerator Calculation #### 

        sumW = weights.sum() 

        self.s0 += sumW 
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        self.numer += NUM.sum(nhVals * weights) * yiDev 

 

        #### Weights Characteristics Update #### 

        c = 0 

        for neighID in nhIDs: 

            ij = (orderID, neighID) 

            ji = (neighID, orderID) 

            w = weights[c]  

            self.s1 += w**2.0 

            try: 

                self.s1 += 2.0 * w * self.wij.pop(ji) 

            except: 

                self.wij[ij] = w 

            self.rowSum[orderID] += w 

            self.colSum[neighID] += w 

            c += 1 

 

    def calculate(self): 

        """Calculate Moran's I Statistic.""" 

 

        s0 = self.s0 

        s1 = self.s1 

        n = len(self.rowSum) * 1.0 

        s2 = NUM.sum( (self.rowSum + self.colSum)**2.0 ) 

        self.s2 = s2 

        self.ei = -1. / (n - 1) 

        self.squareExpectedI = self.ei**2 

        self.n = n 

        scale = n / s0 

        s02 = s0 * s0 

        n2 = n * n 

        n2s1 = n2 * s1 

        ns2 = n * s2 

        self.gi = (scale * (self.numer/self.denom)) 

        yDev4Sum = NUM.sum(self.yDev**4) / n 

        yDevsqsq = (self.denom / n)**2 

        b2 = yDev4Sum / yDevsqsq 

        self.b2 = b2 

        left = n * ((n2 - (3*n) + 3) * s1 - (n*s2) + 3 * (s02)) 

        right = b2 * ((n2 - n) * s1 - (2*n*s2) + 6 * (s02)) 

        denom = (n-1) * (n-2) * (n-3) * s02 

        num = (left - right) / denom 

        self.expectedSquaredI = num  

        self.vi = self.expectedSquaredI - self.squareExpectedI 
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The above lines of code are modified in a separate file copy of the original script as follows: 

def processRow(self, orderID, yiVal, nhIDs, nhVals, weights): 

        """Processes a features contribution to the Geary's C statistic. 

         

        INPUTS: 

        orderID (int): order in corresponding numpy value arrays 

        yiVal (float): value for given feature 

        nhIDs (array, nn): neighbor order in corresponding numpy value arrays 

        nhVals (array, nn): values for neighboring feature (1) 

        weights (array, nn): weight values for neighboring features (1) 

 

        NOTES: 

        (1)  nn is equal to the number of neighboring features 

        """ 

 

        #### Numerator Calculation #### 

        sumW = weights.sum() 

        self.s0 += sumW 

        self.numer += NUM.sum(((nhVals - yiVal)**2) * weights) 

 

        #### Weights Charactersitics Update #### 

        c = 0 

        for neighID in nhIDs: 

            ij = (orderID, neighID) 

            ji = (neighID, orderID) 

            w = weights[c]  

            self.s1 += w**2.0 

            try: 

                self.s1 += 2.0 * w * self.wij.pop(ji) 

            except: 

                self.wij[ij] = w 

            self.rowSum[orderID] += w 

            self.colSum[neighID] += w 

            c += 1 

 

    def calculate(self): 

        """Calculate Geary's C Statistic.""" 

 

        s0 = self.s0 

        s1 = self.s1 

        n = len(self.rowSum) * 1.0 

        s2 = NUM.sum( (self.rowSum + self.colSum)**2.0 ) 

        self.s2 = s2 

        self.ei = 1. 
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        self.squareExpectedI = self.ei**2 

        self.n = n 

        scale = (n-1) / (2.0 * s0) 

        s02 = s0 * s0 

        n2 = n * n 

        n2s1 = n2 * s1 

        ns2 = n * s2 

        self.gc = (scale * (self.numer/self.denom)) 

        yDev4Sum = NUM.sum(self.yDev**4) / n 

        yDevsqsq = (self.denom / n)**2 

        b2 = yDev4Sum / yDevsqsq 

        self.b2 = b2 

        left = ((n-1) * s1 * (n2 - (3*n) + 3 - b2 * (n - 1))) / ((n-1) * (n-2) * 

(n-3) * s02) 

        middle = (n2 - 3 - (b2 * ((n - 1)**2))) / ( n * (n - 2) * (n - 3)) 

        right = ((n-1) * s2 * (n2 + (3*n) - 6 - b2 * (n2 - n + 2))) / ((4*n) * 

(n-2) * (n-3) * s02) 

        num = left + middle - right 

        self.vi = num 

 

The mathematical specifications for the Geary’s C and global Moran’s I indices that are used as guide 

in modifying the script as specified above are provided in Bivand & Wong (2018) and Esri, Inc. (2018a). 

Aside from the computational modification described above, other modifications to supports proper 

display of outputs and messaging in the ArcGIS interface are also applied. A copy of the fully modified 

script is available in the supplementary files provided in this manuscript, together with the associated 

setup instructions.  
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 Spatial autocorrelation analysis outputs 

Dataset Binary Three-class 

Spatial weight matrix Index z-score p-value Index z-score p-value 

WS 0,292013 24,178506 0,000000 0,056290 3,844595 0,000121 

WD1 0,005644 4,878344 0,000001 -0,000499 -0,020487 0,983655 

WD2 0,000956 1,208462 0,226870 -0,001429 -0,598079 0,549787 

WD3 -0,001100 -0,465083 0,641872 -0,001836 -0,874240 0,381988 

      

Table 6. Computed global Moran's I value for raw counts by input combination. 

 

 

Dataset Binary Three-class 

Spatial weight matrix Index z-score p-value Index z-score p-value 

WS 45,838864 30,414689 0,000000 8,883227 9,951823 0,000000 

WD1 1,165298 1,013367 0,310885 1,271933 3,102685 0,001918 

WD2 1,177362 1,099669 0,271476 1,147349 1,700296 0,089075 

WD3 1,182655 1,130514 0,258260 1,092698 1,067808 0,285607 

      

Table 7. Computed Geary’s C value for raw counts by input combination. 
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Dataset Spatial weight matrix Clusters Outliers 

Binary 

WS 163 1 188 

WD1 70 371 

WD2 38 190 

WD3 0 0 

Three-class 

WS 109 791 

WD1 35 251 

WD2 9 26 

WD3 1 0 

    

Table 8. Number of local Moran’s I spatial clusters and outliers for raw counts by input combination. 

 

Dataset Spatial weight matrix Hotspots Cold spots 

Binary 

WS 831 0 

WD1 408 0 

WD2 229 0 

WD3 1 0 

Three-class 

WS 628 0 

WD1 18 0 

WD2 1 0 

WD3 0 0 

    

Table 9. Number of Getis-Ord Gi* hotspots and cold spots for raw counts by input combination. 
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Dataset Binary Three-class 

Spatial weight matrix Index z-score p-value Index z-score p-value 

WS 0,544900 -3,152076 0.001621 0,544900 -3,152076 0,001621 

WD1 0,846922 -9,588395 0,000000 0,846922 -9,588395 0,000000 

WD2 0,851866 -9,385744 0,000000 0,851866 -9,385744 0,000000 

WD3 0,854035 -9,232933 0,000000 0,854035 -9,232933 0,000000 

      

Table 10. Computed global Moran's I value for densities by input combination. 

 

 

Dataset Binary Three-class 

Spatial weight matrix Index z-score p-value Index z-score p-value 

WS 0,544900 -3,152076 0.001621 0,806329 -1,376410 0,000000 

WD1 2,445148 8,859509 0,000000 1,271938 3,102721 0,001918 

WD2 1,734848 4,556142 0,000000 1,147350 1,700313 0,089072 

WD3 1,423265 2,619735 0,008800 1,092698 1,067816 0,285604 

      

Table 11. Computed Geary’s C value for densities by input combination. 
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Dataset Spatial weight matrix Clusters Outliers 

Binary 

WS 403 44 

WD1 1 552 312 

WD2 1 553 327 

WD3 1 550 329 

Three-class 

WS 110 91 

WD1 388 381 

WD2 371 363 

WD3 361 352 

    

Table 12. Number of local Moran’s I spatial clusters and outliers for densities by input combination. 

 

Dataset Spatial weight matrix Hotspots Cold spots 

Binary 

WS 36 183 

WD1 1 157 502 

WD2 1 161 510 

WD3 1 161 688 

Three-class 

WS 51 10 

WD1 372 338 

WD2 372 338 

WD3 372 336 

    

Table 13. Number of Getis-Ord Gi* hotspots and cold spots for densities by input combination. 


