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Abstract. The growing demand for complex computations in edge
devices requires the development of algorithms and hardware acceler-
ators that are powerful while remaining energy-efficient. A possible solu-
tion are spiking neural networks, as they have been demonstrated to be
energy-efficient in several data processing and classification tasks when
executed on specialized neuromorphic hardware. In the field of speech
processing, they are especially suited for the online classification of audio
streams due to their strong temporal affinity. However, so far, there has
been a lack of emphasis on small-scale networks that will ultimately
fit into restricted neuromorphic implementations. We propose the use
of resonating neurons as an input layer to spiking neural networks for
online audio classification to enable an end-to-end solution. We compare
different architectures to the established method of using mel-frequency-
based spectral features. With our approach, spiking neural networks can
be directly used without additional preprocessing, thereby making them
suitable for simple continuous low-power analysis of audio streams. We
compare the classification accuracy of different network architectures
with ours in a keyword spotting benchmark to demonstrate the per-
formance of our approach.

Keywords: Spiking neural networks - Speech processing - Keyword
detection

1 Introduction

Keyword spotting, as part of speech recognition, is widely used in embedded
systems for a wide range of voice-activated assistants. A detector for this purpose
can be operated in an always-on mode; therefore, in addition to the recognition
rate, energy efficiency is a decisive factor for evaluating a detection system.
Another consideration is the detector’s ability to perform the desired action in
real-time.
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Current implementations consist of multiple cascaded detectors of increasing
complexity to cope with these requirements. Such detectors range from sim-
ple threshold switches over classical algorithmic signal processing to complex
neural networks. The growing demand for smart devices and their capabilities
expects even better performance with further improved energy efficiency. Many
embedded artificial neural network (ANN) architectures have been proposed to
resolve this [3,26]. Ideally, also large-scale speech recognition should be per-
formed directly in the edge device. Due to high complexity, this task is currently
offloaded to cloud servers.

Recently, researchers have demonstrated promising results in efficient signal
processing and speech recognition using spiking neural networks (SNNs) [18,23].
SNNs, which can be operated on dedicated neuromorphic hardware, show a
significantly lower energy consumption than comparable classical ANNs [5,8,17].
They do so by exchanging short pulses in the time domain, “spikes”, instead
of static continuous-valued activations. Accordingly, energy is consumed only
during the update of a neuron whenever a spike arrives at its input.

In this work, we compare different modeling approaches for simulating SNN
behavior. Simultaneously, we use different neuron behaviors and connectivity
strategies to identify the most suitable network for an end-to-end keyword spot-
ting on restricted hardware. Therefore, we demonstrate resonating neurons as
input layer to transform an audio signal into a frequency selective spatiotem-
poral spike representation. Thus, the network can perform keyword detection
solely with spiking neurons without using digital signal processing such as mel-
frequency cepstral coefficients (MFCC). In a neuromorphic realization, an ana-
log electrical signal of a microphone can be directly fed into resonating neurons.
This solution not only saves energy by turning off the digital logic, including the
analog-to-digital converter, until a keyword is recognized by the neural circuit,
but it also adds an extra layer of privacy for an end-user.

2 Related Work

Most modern speech recognition systems are based on non-spiking ANNs. They
use recurrent or convolutional network architectures to detect spoken words in
audio signals [1,10]. For this purpose, the input signal is divided into windowed
blocks and a short-time Fourier transform is applied, resulting in a spectrum
that changes over time. Typically, the spectrum is then projected to the mel-
frequency scale and serves, along with its first and second temporal derivative,
as the input feature vector.

Other neural network-based approaches exist, which directly analyze an audio
stream without prior feature generation. The network learns feature extraction
from the ground up while still operating on fixed-sized windows of input data.
The proposed deep and convolutional architectures, therefore, exceed millions of
trainable parameters and result in large networks [12-14,20].

Early works on biologically plausible audio processing solutions based on
SNNs demonstrated small, energy-efficient networks, that show stimulus-specific
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network activities when stimulated with simple stimuli [21]. Then, an artificial
cochlea [7] was used to transform the audio signal into a spiking representation.

With recent advances in supervised gradient descent-based learning algo-
rithms for SNNs [4,16], spiking networks that perform keyword spotting in
the spiking domain have been proposed [18]. Especially, Blouw and Eliasmith
[5,6] focus on potential energy savings during this task using these biologically
inspired networks on specialized neuromorphic hardware. They report up to
10x energy savings using low-energy neural network accelerators on the Loihi
chip [8] or the upcoming SpiNNaker2 chip [15] compared to current ANN-based
approaches. For the representation of input data as a sequence of events/spikes,
different encoding methods can be applied. The calculated MFCC can be inter-
preted as the amplitude of a current that can be used to excite an input neuron
[23,24]. Another similar approach is to interpret the amplitudes as a spike rate,
which is commonly used for converting an ANN to an SNN [5].

3 Methods

Spiking neurons exchange information in the form of short all-or-nothing action
potentials. Each neuron emits a spike as soon as the value of its hidden variable
V reaches a certain firing threshold . In analogy to their biological counterpart,
this hidden value is called membrane voltage. The membrane is charged whenever
an action potential reaches the neuron via a connection between two neurons
called a synapse. Similar to classical ANNs, these connections have a specific
weight, which can be adapted during training to fit the desired behavior.

3.1 Spike Encoding

For a spiking network to process data, the input has to be translated into spike
events. In a recent study, it has been shown that resonating neurons can be
used to perform a spectral analysis on analog input data [2]. Multiple frequency-
tuned resonate-and-fire [11] neurons can be used as a filter bank that emits spikes
with a rate proportional to the power density of the analyzed frequencies. With
that, spectral analysis and conversion into spikes are performed simultaneously.
In addition, we achieve a high temporal resolution since no sliding window is
needed, as opposed to a fixed-length Fourier transform.
The differential equations describing the resonating neuron are given by

y=—yd—2nfov+i(t) (1)

v=—vd+2nfyy. (2)

This specialized neuron comprises of two coupled membranes y and v to enable
the resonating behavior. Here, y and v describe the voltage and current-like
variables of the neuron with its resonant frequency fy. d is a damping value which
leads to an exponential decay of the state variables over time. The input of the
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system is given by the current i(¢), which can be any arbitrary time-dependent
signal or spike train, as initially proposed by Izhikevich [11]. An output spike z
is generated as soon as the voltage-like variable v surpasses its firing threshold
UVth-

L fv>vm —y=0,v=0,vn = v + v 3
T 0, otherwise. )
After each output spike, the state variables are reset and the threshold is
increased to achieve a spike rate adaption depending on the amplitude of the
signal’s spectral components. The threshold can be adapted linearly or exponen-
tially, but an exponential adaption, as shown in Eq. 3, showed the best results
in this application. The firing threshold itself also experiences an exponential
damping

Vih = (Vth,0 — Vsn) d, (4)

which ensures a weak upper boundary and a reset over time. With that, the
neuron can adapt to a large range of signal amplitudes (see Fig. 1).
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Fig. 1. Simulation of the resonating input layer using an exemplary audio sample.
(a) The waveform of the audio sample. (b) Spike events generated by 40 resonating
neurons. Their resonance frequencies are linearly spaced between 0 and 2,000 Hz. (c,
d) Membrane voltage and threshold adaption of one resonating neuron.

As a result, a spike emitted by a resonating neuron contains a combination
of different information: The spike signalizes the presence of the associated reso-
nance frequency within the signal. In addition, the number and exact timing of
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the spikes encodes the amplitude of the spectral component and its development
over time. With the precise interaction of input stream, membrane resonance,
spike emission, and threshold adaption, a unique spatiotemporal spike train is
created which is analyzed by the succeeding populations of spiking neurons.

3.2 Neuron Models

So far, a variety of neuron models have been proposed for the use in SNNs in the
literature. They range from highly realistic models, which can replicate complex
biological behavior of single neurons, to the simplest models, which offer only
an abstraction of the biological inspiration but are suited for simulating large
networks of neurons.

The base model used in this work is the leaky-integrate-and-fire (LIF) neuron
with the membrane potential

Vitn] = aVtn_1] + (1 — @) I[tn] — Treses- (5)

The parameter o = e~ /7 describes the exponential decay of the membrane

voltage over time, whereas 7 describes the time constant of the neuron. The
input charge current I consists of the sum of weighted spike inputs .S;:

Li[t,] = ZWiij[tn—1]~ (6)

The reset current
Ireset = Z[tn—l} 0 (7)

is subtracted if the neuron emitted an output spike

] = 1, ifV[t,] >0 (8)
e 0, otherwise

in the previous time step. By achieving the reset-by-subtraction of the threshold
voltage, the information of an extremely high activation is preserved for the next
time steps. Therefore, it is highly probable that a further spike will be emitted
soon. A reset of the membrane potential to zero, on the other hand, would
discard this information, potentially resulting in a higher ability to generalize.
In our experiments, however, we consistently achieved higher performances using
the reset-by-subtraction scheme.

To enable further communication within a neuron population, recurrent con-
nections can be established. The index k indicates a presynaptic neuron within
the same population as neuron ¢. By introducing the recurrent weight matrix R,
the charging current of each neuron can, therefore, be extended to

Iz[tn] = Z Wiij[tn—l] + ZRikSk[tn—l]- (9)
Fi k

With that, the membrane potential of a neuron depends on the activations within
the same neuron population, which can also be viewed as lateral connections.
Thus, the potential memorization capability of the population is increased.
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3.3 Learning

Surrogate Gradient Descent: The spike emission operation shown in Eq. 8 is not
differentiable and is, therefore, not suited for gradient descent-based learning
methods. However, the use of surrogate gradients to enable learning is being
consolidated in the development of SNNs [4,16]. The surrogate gradient ) used
in this work is

¢:max(lf’§fl‘,0>.

On this basis, the gradient is determined by the relationship between the mem-
brane potential and the threshold voltage, rather than the spike event.

To apply this gradient and backpropagate the error through the network
and time, the network has to be simulated in discrete time steps. Therefore, we
separate the input layer from the rest of the network. For the input layer, it
is crucial to exactly calculate the differential equations. The following layers in
contrast need to be discretized in time to apply the learning algorithm. Since
there is no recurrent connection to the input of the network, the layers can
be separated and simulated independently. This, however, is only a limitation
during learning.

Time Constant Learning: In addition to the synaptic weights, the time constant
7 (see Eq. 5) can be adapted to tune the temporal behavior of the network [25]. Tt
controls the neuron’s membrane voltage leakage over time. A large time constant
leads to a small voltage leakage, enabling the long retention of information about
past input spikes. A small time constant, on the other hand, enables short-term
coincidence detectors, without being biased by the recent input spike history.

4 Experiments

Different network architectures are evaluated using the Speech Commands
dataset [22] consisting of 65,000 audio recordings of known commands, unknown
words, and silence. In a preprocessing step described by the author of the dataset,
the recordings are superimposed with background noise at random volume levels.

The raw audio stream is encoded into a spike representation using resonating
neurons. Following the standard of using 40 MFCC, we encode the input with
40 resonating neurons. This is simulated using exact solving of the coupled dif-
ferential equations describing the resonating neurons. The resulting spikes serve
as the input to the next stage of the network, which is simulated in discrete time
steps to enable backpropagation learning. This part of the network is subject to
optimization and architecture search. The output layer consists of non-spiking
integrators — one for each class — which are evaluated after each training exam-
ple to calculate the respective loss and accuracy values. The resulting abstract
network architecture is shown in Fig. 2. In additions, we implement a standard
MFCC-based preprocessing similar to [18] and compare it with our approach. In
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this case, mel-frequency features are directly applied to the first hidden layer of
the network.

During the experiments, we examine the performance of three main architec-
tures: simple feedforward networks, networks with recurrent neuron populations,
and convolutional networks. In the former two cases, we also distinguish between
models with one or two hidden layers. The architecture based on convolutional
networks uses only one-dimensional convolutions along the frequency axis of the
input. By omitting a convolution along the temporal dimension, we emphasize
the inherent temporal properties of spiking neurons.

resonating spiking

input network
silence
't‘nl ;‘p \ unknown
TSN ‘ u\\ e ,
off
stop
go
continuous discrete

Fig. 2. Architecture of the evaluated system. The waveform is directly fed into the
network without preprocessing. The resulting spikes produced by the input layer are
propagated through the network. The output neuron with the highest membrane volt-
age selects the inferred class.

4.1 Results

In the first setup, we evaluate the relationship between the classification accu-
racy and the number of tunable variables. An exemplary extract of the neuron
activity during the evaluation of both networks is depicted in Fig. 3. The sparse-
ness of spike activations in the input and hidden layer can be seen. For better
comparability, we chose networks consisting of only one population to avoid
ambiguous distributions of the limited number of connections between multiple
populations. Figure4a shows the achieved accuracies for a simple feedforward
population and a population with recurrent connections, both using RF neurons
as input encoders. Note that due to the different connection schemes, the two
populations do not share the same total number of neurons involved at equal
numbers of variables. When the number of variables exceeds 20,000, the achieved
accuracy begins to saturate. Nontheless, the difference of 10% points between the
two architectures remains constant. Figure 4b depicts a confusion matrix show-
ing the classification results of a network with recurrent neurons and a total of
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40,000 tunable parameters. Class labels 0 to 11 correspond in ascending order to
{silence, unknown, yes, no, up, down, left, right, on, off, stop, go}. The matrix
shows a high misclassification rate for the unknown class and between word pairs

{up, off} and {no, go}.

(@)
x
o)
©
£ -
c
o -
5 ——
] =
z - . .
O 1 1 1 1 1 (b)
x = — — —
S _ 1001 _ _
= 200 -_— == - - - = —
C
= g 3004 e —=— _— _— _ -
B 400 —
© T 500 _— _ -
85600~ —— —_— = — — = - —
700 - — == = - = — -
Z 800 . = = = —— = = .
(c)

Class
probability

Membrane
voltage

—-0.14

20 30 40 50 60 70
Timestep

Fig. 3. Exemplary evaluation of a command. (a) Spike encoding of the audio stream
using resonating neurons. (b) Spikes emitted by neurons in the hidden layer. (¢) Mem-
brane voltage of the output layer indicating the classification. (d) Membrane poten-
tial of one exemplary hidden neuron. The horizontal dashed line represents the firing
threshold, the vertical lines the time instances of the spike emission.

Based on the results of the preceding experiment, we chose 40,000 trainable
parameters as the common parameters of the following simulations. With that
the results remain comparable while providing the intended insights about the
relations between the classification accuracy, the chosen input, and the com-
plexity of possible neuromorphic realizations. Table 1 shows the results of the
evaluated architectures.

The densely connected feedforward architectures demonstrate a basic ability
to solve the keyword recognition task. The better performance of multi-layered
networks also underlines the common conception of the importance of deep struc-
tures [9]. In our experiments, however, increasing the number of layers further
did not improve performance.
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Fig.4. (a) Classification accuracy of networks with different sizes and connectivity
rules. The x-axis describes the number of tuneable parameters in the network. The
networks consist of a single hidden population. (b) Confusion matrix for a network
with 40,000 parameters with recurrent connections.

Table 1. Network architectures tested with inputs consisting of mel cepstral coefficients
or spikes generated by resonate-and-fire neurons. Each network consists of 40k trainable
parameters.

Connection type | Architecture MFCC | RF

Feedforward 780 neurons 72.1% |70.4%
Feedforward 175 x 175 neurons 84.1% | 72.9%
Recurrent 178 neurons 84.7% |80.2%
Recurrent 105 x 105 neurons 86.7% |80.7%
Convolutional Kernel size: 5,10; kernels: 35 x 40 | 86.2% | 80.5%
Recurrent conv. | Kernel size: 5,10; kernels: 30 x 40 | 84.8% | 85.5%

Among the evaluated networks with recurrent populations, the MFCC-based
approaches are superior to the networks with resonating input neurons. Thus,
the recurrently connected neurons can extract the temporal information present
in the spectral input signal.

Networks with convolutional populations achieved the highest classification
accuracies in our tests. Due to the shared weights of the convolutional kernels, it
is possible to define a large number of kernels within the defined restricted num-
ber of trainable parameters. The actual size of the resulting network is signifi-
cantly larger since the kernels need to be unrolled to enable parallel asynchronous
processing. Including recurrent connections to the convolutional network further
improved the classification accuracy.

In comparison to the evaluation results reported in the literature, our app-
roach shows an inferior classification performance with a maximum accuracy of
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approximately 80%. Studies based on SNNs report error rates as low as 5.5%
[18], whereas ANN-based approaches undercut this number even further [19,26].
The main differences between these works and ours are the sizes of the consid-
ered networks, their architectural design choices, and the degree of preprocessing
of the analyzed data.

5 Conclusion

Our work demonstrates the successful use of small-scale SNNs with surrogate
gradient descent learning and a new type of spike encoding, especially suited for
online speech recognition.

Resonating neurons may be a more energy-efficient alternative to the digital
processing chain used in modern speech recognition systems. Using these neu-
rons, analog-to-digital converters, digital filters, fast Fourier transform blocks,
and the MFCC feature generation can be omitted. In this work, we demonstrated
that these neurons generate feature-rich spike trains that can be analyzed by the
following network structures. The set of hyperparameters such as the number of
resonating neurons, the choice of their resonance frequencies, or the threshold
adaption characteristic leaves room for improvement and the adaption to other
applications. However, the energy efficiency of this method using specialized elec-
trical circuits remains to be proven. In addition, the classification accuracy of
this approach needs to be improved to be comparable with established methods.

The network architectures considered in the experiments are particularly
suitable for real-time acceleration with neuromorphic hardware since no data
are buffered at any point in time, and time dependencies are represented solely
by the hidden variables of neuron models or recurrent connections. Particularly,
embedded systems can profit from this solution, along with the low energy con-
sumption of SNNs on specialized hardware reported in the literature. In a hybrid
realization, an SNN can serve as a low-energy always-on detector, activating a
more elaborate ANN for further processing when the required activation pattern
is detected.
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