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Abstract

Highly automated systems in the transportation and industrial domains face significant
challenges during the design phase of their embedded computing platforms and control
systems. First and foremost, certification is challenging, because they will require substan-
tially more computational power for extensive automation. Prohibitive costs for tailored
components require the use of off-the-shelf, highly complex system-on-chip devices with-
out specific safety evidence or support by the manufacturer. As of today, the system
and component architecture design for very high performance, coupled with stringent
safety goals is not well covered and fails to address the rising challenges in industrial and
transportation markets. Also, system functions which were previously allocated to a hu-
man operator are now gradually automated. These new system functions are considered
highly critical in terms of certification and must be implemented with adequate levels of
redundancy and fault detection.

To support and enable future generations of highly automated systems, this work pro-
vides three important building blocks and introduces an effective approach for certification
under current standards and guidelines. We first propose a set of system requirements
for future computing cluster generations considering changing requirements and market
preconditions. We derived a classification scheme to distribute, allocate, and analyze
critical / non-critical system functions by their safety impact level on the physical sys-
tem. Three different levels are introduced, which can be reused in different application
domains, in conjunction with the already existing safety or assurance levels. Second, we
contribute two cluster unit architectures, suitable for any system and all criticality levels,
and show the integration of proven concepts for software determinism into our novel ar-
chitectures. The unit and system level concepts address the need for a highly integrated,
high-performance platform. They employ varying degrees of redundancy and dissimi-
larity to support even the highest safety claims in the aerospace domain efficiently and
scale down for cost sensitive industrial applications. While our architectures are based
on off-the-shelf devices, added architectural safety nets with inherent dissimilarity ensure
certification under current guidance and standards. The architectures are analyzed from
the aerospace and industrial certification perspective. To this end, we use fault-tree and
Markov analyses and a walk-through through current certification processes. A conclusive
application example is given, which enables key industries to drive their designs forward.





Zusammenfassung

Hochautomatisierte Systeme im Transport- und Luftfahrtsektor stehen hinsichtlich ihrer
Rechnerplattformen für Steuerungs- und Automatisierungsfunktionen vor großen Heraus-
forderungen. Die Zulassung dieser Systeme wird Zusehens aufwendiger, da der enorm
steigende Bedarf an Rechenleistung nach immer komplexeren Prozessoren verlangt. Da
aus Kostengründen keine anwendungsspezifischen Komponenten zum Einsatz kommen
können, ist man gezwungen, auf Standardkomponenten auszuweichen, bei denen die
Hersteller keine Sicherheitsanalysen oder die notwendige Dokumentationskette liefern.
Heutige Konzepte für die Geräte- und Systemarchitektur bilden dies nicht ab und sind
für zukünftige Systemgenerationen ungeeignet. Zudem werden Systemfunktionen, die
aktuell als reine Unterstützungssysteme mit niedriger Kritikalität konzipiert sind, durch
den Wegfall der menschlichen Eingriffsmöglichkeit und dem steigenden Automatisierungs-
grad ebenfalls sicherheitsrelevant, weshalb auch sie mit entsprechenden Redundanzen und
Fehlererkennungsmechanismen implementiert werden müssen.

Um zukünftige Steuerungsplattformen für hochautomatisierte Systeme zu ermöglichen,
trägt diese Arbeit drei entscheidende Bestandteile dazu bei und zeigt gleichzeitig einen
effektiven Weg der Zulassung auf aktuellen Normen und Richtlinien. Wir definieren
wiederverwendbare Anforderungen für zukünftige, leistungsstarke Verbund- und Geräte-
Architekturen, unter Berücksichtigung der domänenspezifischen Besonderheiten. Zudem
führen wir ein neues Klassifizierungsschema für kritische und unkritische Systemfunk-
tionen ein, basierend auf ihrem Einfluss auf das Gesamtsystem. Dazu definieren wir
drei Klassen, die in vielen Anwendungsdomänen wiederverwendet werden können, zusam-
men mit den bereits existierenden Sicherheits- und Assurance Klassen. Weiterhin en-
twickeln wir zwei Gerätearchitekturen, die auf beliebige Systemgrößen und Sicherheit-
sklassen skalieren und zeigen die Integration von bestehenden Konzepten für Softwarede-
terminismus in unsere Architekturen. Diese bestehen hauptsächlich aus leistungsstarken
Standard-Mehrkern-Prozessoren, verfügen über verschiedene und mehrschichtige Redun-
danzen mit gezielter Dissimilarität und können von kostensensiblen Industrieanwendun-
gen bis hochkritischen Luftfahrtanwendungen eingesetzt werden. Wir analysieren die
Architekturen nach gängigen Methoden in der funktionalen Sicherheit, wie Fehlerbäume
und Markov-Analyse und klären die marktspezifischen Besonderheiten bei der Zulassung.
Abschließend diskutieren wir Anwendungsbeispiele.
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1

Introduction

1.1 Motivation: A shift in safe system design method-
ology

When Gordon E. Moore, back in 1965, projected that the number of transistors and like-
wise the density and complexity in integrated circuits will double every two years, nobody
could have foreseen the tremendous impact on the daily life of millions of people by the
following generations of microprocessors. The vast increase of computational resources
not only gave rise to many new forms of communication, such as mobile phones or the
internet, but also empowered the control of embedded systems. Over the decades, me-
chanical control systems were, and still are, replaced by electric and electronic units in the
form of sensors, actuators, and control units. They augment, secure, protect and connect
more and more physical systems, transforming them into cyber-physical systems, see for
example [Lee08].
Among those systems are a special sub-category, forcing the highest requirements on
both engineering and development processes. The safety-critical systems. They cover
many entirely different application domains, such as aviation, automotive, medical equip-
ment, infrastructure or automation of machinery. Specific standards and guidelines guard
these domains, with regulatory agencies overseeing the development activities, leading to
a strongly regulated, difficult, but also fascinating and prestigious market.
Since their first appearance almost 50 years ago, safety critical embedded systems were
subject to specialized components, custom designed or selected to fit the purpose. Elec-
tronic parts and integrated circuits, especially microprocessor units (MPUs), were always
selected conservatively. Since the absence of component design errors, stability of a man-
ufacturing process and the long term failure modes are hard to prove during design time,
the common practice is to either rely on the service history or a device in other safety
applications, or special (and costly) long term experiments to collect statistically relevant
data on error and complete failure rates. As a consequence, the technology actually used
in most safety applications is lacking 5 to 15 years behind the current state of MPU
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development, depending on the criticality of the application and the openness of the cer-
tification authority for new technology. For example, a still used, high-end processor in
some applications in the aerospace domain, the NXP Semiconductor MPC8349, already
left the extended 10-year availability program the manufacturer offers.
Up until now, this practice was fine for safety related equipment in many application
domains. The application specific, highly specialized workloads required little computa-
tional resources, resulting in old and proven technology satisfying the needs with some
headroom. Each (safety-related) system function is allocated to a special piece of equip-
ment, like mechanical components, that serve a specific purpose. Such units are being
named, for example, a “flight control computer”, “autopilot control unit”, “surface control
computer”, “flight management computer”, etc. to clearly state the specific function they
execute. As a consequence, the individual computational resources required on each line
replaceable unit (LRU) are low, however, when the whole system is considered, a sub-
stantial amount of computing power is needed to compute all system functions in parallel,
with the required degrees of redundancy. The employed system architectures are classic,
multi-layer sensor-computer-manual bypass-actor designs. They are based upon the hu-
man as the primary system controller and augment the human beyond the limitations
of his motion apparatus (speed, precision and repeatability of movements) and sensory
capabilities (vision, acceleration). In the past years, however, one can observe several
changes in the environment of safety critical systems and at the electronic component
level:

• Growing demand by industrial customers for higher degrees of automation to reduce
the costly workforce required to operate those systems or provide better service for
their customers.

• Small unmanned aerial systems are a large future market to monitor for many ap-
plication scenarios, starting from recreational use, over farming, monitoring of con-
struction work and infrastructure, public safety all the way to agile logistic delivery
systems.

• Highly automated or autonomous systems in the aerospace, automotive, industrial,
naval, or even land moving equipment where the human executes only very high
level control and supervision tasks.

• Academic advancements gave rise to lots of (complex) algorithms to mimic human
cognitive functions such as planning or complex decision-making based on certain
constraints, allowing to substitute the human as the main system controller

• Complexity, integration and compute power of even the smallest MPUs expanded
significantly with smaller feature sizes while reducing thermal design power. This
results in a very strong discrepancy between the classical certification approach,
where safety analysis was executed down into the MPUs, and the complexity and

2
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effort required to conduct these analyses. With new generations of devices, even
small microcontroller will be considered highly complex devices with enormous ef-
forts required to justify their use with classical certification approaches.

• Safety application specific MPUs will remain a niche product 1, due to the tremen-
dous development cost involved in designing branch specific solutions, when quan-
tities are low to almost non-existing compared to non-regulated markets such as
networking/telecommunication, consumer devices. One must acknowledge the fact
that the business case for most semiconductor manufacturers is hard to make, and
will result in a reduced portfolio over the years, lacking behind in technology.

• Driven by the continuous manufacturing advancements in the semiconductor in-
dustry, the classic, small and simple microprocessor will effectively no longer exist.
Instead, one is faced with highly complex, densely integrated, difficult to deal with
system-on-a-chip (SoC) devices. Manufacturers integrate more and more function
units to cover as many application domains as possible with their devices to increase
the return on the costly development process. As the name SoC already indicates,
we are dealing with a system in the system, with limited insight due to lots of con-
fidential intellectual property (IP). As a result, a purely hardware or ASIC driven
certification approach might no longer be the best suited option for certification.

Because of these new constraints, future system architectures and embedded comput-
ing equipment must change in many ways. While offering more computational resources
than what is currently considered high-end to accommodate increasingly complex algo-
rithms, they must also be lighter, draw less power (electrical, battery powered systems),
stay within certain limits of power dissipation (active cooling may not always be an op-
tion) be highly modular and expendable and offer lots of flexibility in terms of interfaces.
The removal of the human fallback layer in unmanned or highly automated systems im-
plies, that system functions that are currently rated with low criticality levels will rise
in their criticality, requiring redundancy and special unit designs where up to this point
simple, non-redundant configurations are being used.
Also, a swift change in the mindset of many safety engineers is needed to in cooperate new
technologies in system designs with slow changing regulation and well established devel-
opment processes. The redundancy explosion with current system architectures would be
a showstopper in future development efforts, introduced by the common misconception
that safe systems must be build out of safe parts (proven to be error free and only pro-
ducing limited, environment introduced failures at known rates during lifetime or failing
completely), instead of deriving a system or unit architecture, that is explicitly capable
of mitigating any single, or even multi-device failures at the system level.
New system architectures for safety critical systems must be compatible with upcoming
generations of commercial-off-the-shelf (COTS) devices that are not tailor made for the

1compared to standard devices, from networking, general computing, or small embedded MCUs
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embedded safety market to keep up with rising computational demands and minimize
the gap between the current state of technology and the components used in safety rated
equipment at the moment. Likewise, the total cost for electronic control equipment in
the overall system must not be affected by taking the next step towards more computing
power and new generations of devices. The risk of not achieving certification, or sub-
stantial project delays due to an unclear certification workflow for current development
projects must be minimized, to raise the technology readiness level for future real-world
projects.
One way of solving these issues, is the use of COTS multicore MPUs (Multicore Processor,
MCP) as the main computation elements, together with a new board level architecture
within the LRU. Offering multiple central processing unit (CPU) cores per physical de-
vice, MCPs can execute different computational tasks in parallel. Unlike in the desktop
or server environment, where applications itself are executed in parallel over multiple
cores, embedded safety applications target running many system functions in parallel,
each spanning only a single physical core. Physical LRUs can be combined into one single
unit, which in turn can be part of a redundancy cluster. This not only reduces the number
of physical LRUs by a significant amount, but also the interfaces required to connect and
power those LRUs. Besides the low price point of COTS MCPs, they offer outstanding
performance per watt figures and are quickly moving to even higher integration densities,
with more and more cores being integrated. Today, typical designs may offer from two,
up to 16 physical cores for typical embedded COTS MCPs. These benefits however come
at a cost. While single core devices can be predictable and, up to certain degree, behave
deterministic, the interference and cross-coupling between multiple cores with equal rights
and permissions in the SoC pose great risks for a successful certification effort. Consider
the following examples:

• The internal function blocks of the SoC must be supplied with a clock source to
execute their functions. This also holds for the different cores. Usually, a clock tree
is used to supply the core clock, which may be fixed for all cores, or offer per-core
dividers to permit clock gating for power saving reasons. For certification, can it
be shown, that a single-event latch-up in one core’s clock tree does not affect other
parts of the clock tree? Will a latch-up in one core propagate to other cores, the
common bus matrix or other SoC parts? These questions can only be addressed
with manufacturer level knowledge, and even if the vendor is willing to share this
information, which is at very heart of his IP, it is highly unlikely that special circuitry
has been added to the device to prevent error propagation, because these circuits are
complex, require space and power and are not required in the actual target market
the device was designed for.

• Imagine a multicore device executing software of different criticality levels concur-
rently on different cores, core 1 and core 2. Suppose the software on core 2 exhibits
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a severe design error, due to its criticality level being rather low, and the testing
effort was therefore legitimately reduced, resulting in a failed loop-end statement
in a memory copy routine for a large data array. The added memory transactions
of core 2 effectively reduce the available memory bandwidth of core 1 in the shared
memory controller. Core 1, executing highly critical software, exhibits a prolonged
execution time, resulting in a deadline miss. An easy solution would be to introduce
per-core memory priority systems into the SoC, which no device, core architecture
or memory controller peripheral currently offers. Priority levels exist for multi-bus-
master devices with other high bandwidth masters like graphic or special signal
processing accelerators, but not on a per-core basis. In addition, suppose the above
failure mode was not triggered by a design error, but a single-event upset in the
register file, the pipeline or a function unit if the core. Just like in the first example,
a per core priority scheme is useless for the server workloads present in the primarily
targeted application domains of MCPs. It is unlikely that a device manufacturer
will spend the DIE area and development effort in such a feature.

• A single event upset in the memory controller, the shared bus matrix or other vital
peripherals such as clock generation, power management, etc. results in a changed
configuration and renders the MCP inoperative, greatly reduces the speed of the
device or results in false data present in the device’s memories. The shared periph-
erals inside the SoC each present a single point of failure when used during normal
operation. How can a failure at the bus matrix be detected and/or mitigated, when
it affects all cores? Will a single event effect in the memory target a specific core, all
cores or a subset of the available cores? Not all, but many telecommunication MCPs
offer some degree of memory error protection via error correcting codes (ECC), but
the memory controller and the common bus matrix remain as a single source of
error in those devices.

• A core exhibits a single event upset in its pipeline, resulting in a false target address
for a store operation. It overwrites certain critical configuration sections of shared
memory, or inter-core-communication scratchpads. Can the other cores detect the
failure of said core, or will it remain hidden until the error manifests in wrong, and
potentially dangerous output data? Will the error lead to a wrong timing of another
core, executing critical software?

• Can true electrical independence of the cores be justified? Each core will likely be
constructed with independent seas-of-gates for its core functionality, but does this
also hold for the electrical interconnect layers? From discussions with semiconductor
manufacturers, it is unlikely that they are able to show true electrical independence
of different cores on the same silicon DIE, without electrical isolation barriers as
they are found in special safety microprocessors based on lockstep-architectures.
The usage of such barriers greatly reduces the overall achievable clock speeds due
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to added signal lengths and gates, which is again neither useful nor desired by
customers in the primarily targeted application domains of MCPs.

Solving problems like those stated in the above examples, must be done on the system
level. The lack of very detailed insight into those types of devices, due to confidential IP
blocks at critical SoC levels make it virtually impossible to successfully conduct most types
of classical certification related verification or validation activities. Examples include, but
are not limited to, the shared bus, the memory controller(s), the cache and different pro-
tection and rights management function units as well as virtual memory subsystems,
clocking, power and physical silicone features like interconnect spacing or electrical in-
terference between adjacent circuits. Certification legislature and standard definition are
adapting slowly, and cannot be transferred easily to new technology. Therefore, a solu-
tion for using MCPs in safety critical equipment must consider the current state of safety
standards and guidelines and define new ways, to adapt proven, stable development and
validation processes at the system and LRU level. This not only holds true for MCPs,
but also for many other upcoming COTS devices, for example high-speed bus transceivers
and peripherals (like Ethernet Switches or Physical Layer Interfaces), which must also be
considered highly complex in the certification context with the above constraints holding
for certification.

1.2 Mission Statement and Scope of Work
The overall goal of this work is, to design a high integrity, high performance embedded
computing platform, based on COTS MCPs. A certification strategy must be worked
out, in order to demonstrate the systematic capability for given certification levels in the
aerospace and industrial to domain, and to justify the use of the COTS MCP in these
application domains. The concept must be suitable for future system architectures, in
highly automated or autonomous systems. During the course of this work, requirements
will be defined for an LRU architecture, which fit into a defined set of system architectures.
Next, multiple LRU architectures shall be derived from these requirements, based on at
least one MCP as the main processing element. Industry-Standard safety verification
techniques must be applied coupled with an analysis of current regulatory frameworks to
justify the applicability and analyze the suitability for certification. Lastly, an application
example will be shown, in order to illustrate certain design features to support the claims
made in the design and safety analysis. Overall, this works follows to some degree the
V-Model approach (see [Cla09] or [MM10]) as required in most relevant standards.

While many MCP architectures exist today, this work will focus on COTS devices
only. Application Specific Integrated Circuits (ASICs) are therefore not within the scope
of this work. Configurable logic, in the form of SRAM- or flash-based FPGAs may be
employed where necessary, to accomplish certain interface tasks, but not to implement
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any form of custom processor or hardware device that is beyond the scope of data bus
communication, interface- or glue-logic. Therefore, custom on-chip hardware units, that
permit to execute certain functions in hardware which monitor or supervise the SoC, are
also out of scope. Such devices may be better suited to accomplish certain certification
goals, but are generally not an option for real-world development projects, due to their ex-
tensive development costs (when considering highly complex, high performance devices),
long development time, and project risk. We center our scope of usable devices on com-
mon processors, found in the telecommunication, mobile computing, or non-certification
critical application areas, where MCPs have been employed for years. This thesis is nei-
ther focused on a specific family of devices, nor on a specific manufacturer, but rather
on a general, n-core microprocessor with no special features included on purpose for cer-
tification within a special application domain. However, certain constraints like power
consumption or thermal power dissipation still apply, which narrows the scope of appli-
cable COTS devices.
Likewise, lockstep architectures are explicitly not considered a MCP in this thesis. Al-
though this is technically not correct (a lockstep microprocessor already contains at least
two cores), the fact that the cores are used to validate one another does not permit ben-
efiting from the inclusion of a second core, reducing the available computational power
to that of a single core device. Also, these architectures are yet again domain specific
designs, mainly designed for the automotive industry to fulfill a special use case in some
applications. One may use these devices at some point in the design, but they do generally
not fulfill the performance requirements of a high performance platform and only offer a
small benefit as the central processing element.
Beyond the system and hardware perspective, the software executing in the LRU plays
a major role in overall system safety. Therefore, a software architecture, and special
considerations regarding mixed criticality, separation of critical- and non-critical software
functions, etc., shall be within the scope of this work. We will not consider low-level
software aspects, as they are highly device, programming language and tool specific, but
rather address a high-level, more general perspective on certain software functions and
the software architecture necessary for successful certification. Whenever possible, the
designs shall not be reliant on specific, in-depth design data by the semiconductor manu-
facturer. Such information is not only hard, or in some cases impossible to obtain, but is
also an indicator for a failed system architecture, that does not manage to mitigate cer-
tain type of device failures, but instead tries to claim that they are either nonexistent or
internally mitigated. We will try hard to overcome this design philosophy for the benefit
and simplicity of future generations of safe systems.
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1.3 State of the Art and Related Work

The state of the art can be divided into three main categories, e.g. architectures on the
system level and hardware- or software-centric publications. In the past, several large scale
joint research projects tried to address the issue of multicore certification, like ARAMIS
[BB18], RECOMP [PTV+13] or EMC2 [Web17] under the EU ARTEMIS initiative, with
minor success for practical applications. None of these projects succeeded in providing a
viable path for real-world certification. Back in 2012, a study conducted for the European
Aviation Safety Agency, see [JXM12], examined the current technology readiness level, as
well as system, hardware and software related topics surrounding the use of multicore de-
vices in aerospace applications. The study evaluated different multicore architectures and
identified potential pitfalls for certification, like lack of determinism due to contention,
common-mode failures, lack of insight into the complex devices, etc.
Examining the current state of system architectures and design principles applied in the
industry is difficult. One is faced with closed system designs, subject to non-disclosure
agreements due to the fact that company internal or product specific intellectual property
is closely related with the overall safe system architecture of embedded electronic equip-
ment. Publicly available information is often only illustrative, like [Yeh96] or [Gou11]. In
several discussions with industrial certification authorities, it was found that currently no
certified system is using multicore processors with more than one core activated at run-
time (mainly x86 machines, SIL4 triplex railway systems use x86 multicore devices with all
but one core deactivated with efforts being made to argue for a second core). For general
system architectures, not addressing multicore processors but design patterns in general,
contributions from academia can be found in [Arm10] or [JG11]. A promising board
level architecture, focused on multicore processors, was presented in the MUSE project
[FOK]. It was primarily targeted at space applications and did not address industry and
aerospace related certification issues. In aerospace applications, some manufacturers offer
rugged computing equipment based on multicore processors for non-critical applications
like mission and flight management, for example [Gmb]. Currently, two major movements
can be identified in terms of certification with complex COTS components. The first one
advocates to continue the long-serving approach of using custom safety parts. While these
devices offer lower performance and less features, with a very bad cost/performance ra-
tio, they make certification straight-forward with manufacturer level support and a rich,
tailored documentation. The second movement is abandoning the “safe system by safe
parts” philosophy and moves the argument for safety entirely to the system level and into
a gray area in current standards. In this approach, is up to the applicant to demonstrate
to the authorizes that sufficient architectural mitigation is included on the system and
equipment level, together with some device specific safety precautions, to mitigate per-
manent and transient faults on the individual components. This implies a much stronger
relationship between the individual unit architecture and the higher-level system architec-
tures, leading to a much stronger entanglement between OEM and subcontractors or even
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bringing the design and engineering of equipment back in-house due to the level of system
knowledge required to engineer the individual unit. Up to this point, no architectural
concepts exist to lower the dependency on SoC internal device function units in terms of
certification by suitable system level safety argumentation.
While the industry started to engage certification authorities in the aerospace and fac-
tory automation domain to define a practical methodology for using multicore processors,
academia is investigating hardware and software solutions to overcome the determinism
and core-separation issues with current device generations. Albeit being valuable contri-
butions, the literature referenced in the following does not address specific certification
topic, nor analyze their concepts in terms of certification within a certain application
domain. Custom on-chip hardware units together with certain software functions, special
fault tolerant cores or rather SoC function blocks are employed for example by [PGN+14],
[DBG10], [MHPS96], [LPO15], or [MDB+12], to ensure device level determinism and fault
detection. Although this related work is slightly out of scope, since it will result in ASICs,
it is of importance since it might lead to future COTS devices featuring special function
units to aid in the process of spatial and temporal isolation of different cores on the de-
vice. The interference of multiple bus-masters, operating on shared resources, results for
example in contented SoC busses, that are extremely difficult to analyze and validate (rel-
evant for certification). Timing analysis and prediction has been subject to many works,
trying to provide software solutions for worst-case execution time (WCET) analysis meth-
ods for multicore devices or use existing device features together with operating system
level measures for mitigation. See [SBM+08], [NPH+14], [NPB+14], [AE10], [DNA11]
or [NP12]. An outstanding concept for spatial and temporal isolation has been devel-
oped by Caccamo, Mancuso, Chen, Yun, et. Al, with their “PALLOC”, “MEMGUARD”
and, most notably, “Single Core Equivalence” approaches, see [YMWP14], [YYP+13] and
[MPC+15], with additional work presented in [Man17]. The main drawback to their con-
cept, in terms of certification, is the usage of special tracing units at the SoC level to
monitor memory transaction. These on-chip units are not developed according to a certi-
fied process. Therefore, they do not provide test, fault-injection or other means to ensure
their correct behavior at run-time and cannot be loaded for justifying certification claims.
We will provide system level measures in this work, to aid in this respect.
Since the promising “Single Core Equivalence” concept on the software side has just been
published at the time of writing this thesis, the support by commercial operating system
vendors is currently non-existing. Most pre-certified real-time operating systems (RTOS)
do currently not provide adequate measures for spatial and temporal isolation on the mul-
ticore device and may not be available as an asymmetric multiprocessing (AMP) port,
which is able to execute multiple fully isolated instances on each core or distribute tasks
in an isolated fashion to slave cores. The lack of proper software support is one of the
major project risks for future development projects in cooperating multicore processors.
In summary, the current state of the art is very promising in terms of software level con-
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cepts for multicore processors, as well as in terms of concepts for safe multicore ASICs.
However, the applicability of these concepts to real world projects is limited to some
extent, since currently no overall system and board level architectural strategies exist,
allowing to demonstrate the systematic capability for equipment based on multicore SoCs
in various application scenarios.
We already published parts of this work in a working paper [Ste15], and presented the
work at the safe.tech conference in 2016 held by the TÜV SÜD Rail GmbH together
with Matthias Ramold, TÜV SÜD Rail GmbH and an industry forum (Safety and Secu-
rity Forum 2016, Munich by WEKA FACHMEDIEN GmbH). Both presentations can be
obtained from the conference owners.

1.4 Contributions
This work contributes to the ongoing efforts to use COTS devices in safe embedded
applications in several ways:

• (C1) High performance LRU cluster requirements for highly automated systems

Currently, no set of generalized high level requirements exists as a common base-
line for complex control systems based on high-performance processors. This work
provides a substantial set of requirement aiding in the general design process. The
requirements are also used to prove the real world applicability of the derived ar-
chitectures.

• (C2) Novel system function classification scheme

System functions need to be classified in many ways during the development process.
Not only with respect to technical, business and project management aspects, but
also in terms of their criticality and safety attributes. This work introduces a novel
fault impact level classification scheme, derived during the course of this work in
order to cope with functional degradation paths and different redundancy strategies.

• (C3) Low internal redundancy LRU Architecture (fail-safe) for less critical or highly
physically redundant applications

The main contribution of this work is the development of a novel system architec-
ture and certification approach for electronic hardware based on COTS complex,
multicore SoCs. Due to the diverse nature of real-world applications, this work
presents two architectures. The first, low internal redundancy architecture is either
suitable for larger systems with high degrees of physical redundancy or less critical
applications with lower certification levels. The software level is also covered as well
as system function allocation schemes.

• (C4) High LRU-internal redundancy Architecture (fail-operational) for critical or
low physically redundant applications
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The second architecture is specifically designed with a high internal degree of fault
tolerance. It is by design at least single fault tolerant and sustains even certain multi-
point faults. It is mainly applicable to high certification levels with low physical
redundancy possible due to cost or size constraints. Like the first architecture, it is
discussed thoroughly. Both architectures support a vast set of legacy and high-speed
interfaces for current and future communication architectures.

• (C5) Certification path for industrial and aerospace applications

Both architectures are examined in the context of industrial and aerospace certifi-
cation standards and analyzed for their suitability in the respective context. This
work then provides a stable path to actual certification up to the highest safety
levels based on the current issues of relevant standards and guidelines.

• (C6) Application Example

A prototype example forms a possible real-world implementation and concludes
this work based on currently available high performance SoC devices. To prove the
practical feasibility of the presented concepts.

1.5 Structure of this Thesis
This work is divided in four main chapters. First, we discuss possible future system
architectures, focused on automated and autonomous systems and derive requirements
for the individual LRU within the context of these architectures. In the second chapter,
we present the LRU architecture designs, their inner workings and interface behavior.
Afterwards, in the third chapter, the LRU architectures are being analyzed in terms of
safety, employing fault-tree and Markov analysis. We will also discuss certain standard
and domain specific aspects for certification which are necessary to comply with certain
safety levels in different domains. Topics like multi-point faults or common mode failures
will also be addressed in the third chapter. In chapter four, we discuss practical architec-
tures for different domains based on currently available hard- and software. Finally, we
summarize this thesis and conclude its findings.
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2

System- and Board-Level
Architecture

In this chapter, we will be focusing on deriving new system-level architectures for safety
critical systems to enable the usage of COTS multicore processors. We will therefore
first look at current and future cyber-physical system architectures for safety critical
systems and define system requirements for an individual LRU in these contexts. Based on
these requirements, two different LRU, or board-level architectures will be derived which
address the use-cases in different types of systems. After presenting the system design
and system architecture (alongside with some common hardware aspects), we focus on the
software aspects inside the multicore processor subsystem and the concepts for achieving
determinism and proper isolation of critical functions on the device.

2.1 LRU Requirements

Deriving requirements for generic, safe compute systems is a hard task. When this thesis
started, it was mainly driven by future aerospace application with small and medium-
sized autonomous vehicles in mind. With recent developments in the industrial market,
namely the efforts for more intelligent, more efficient and fully connected machinery and
infrastructure, the requirements expanded to also include those application domains with
the according regulatory frameworks for safe machinery. Looking at these domains, which
at first seem like entirely different disciplines with their own mindsets, one may find that
the current development standards are closely related and almost lead to identical de-
velopment processes and technical solutions for system safety. The level of verification
and validation however differs between those two domains, except for the highest certifi-
cation levels where the time and effort which has to be spent in both domains is almost
identical. We will nevertheless rely on aerospace examples of current and possible future
architectures, since they clearly reflect the ongoing shift from functionality-based LRUs
in classical system architectures to federated, modular and highly integrated designs. The
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same shift can be observed in industrial applications where more powerful and centralized
control units, alongside with smart actuation and sensor nodes are brought to the market
by different vendors.

2.1.1 Targeted Future System Architectures

Today’s system architectures for safe systems can best be described by a classical multi-
layer architecture. Multiple independent layers form dedicated safety nets, aided by layer
internal redundancy (with dissimilar components) and zonal safety of the whole control
system. However, a slightly different system topology can be found on the most re-
cent multi-role fighter aircraft F-35 (Joint-Strike-Fighter, JSF) by Lockheed Martin. The
innovative JSF program introduced not only flight-worthy high speed data bus commu-
nication via a particular physical layer adaption of the commercial FireWire standard, a
comprehensive and highly appreciated C++ coding standard [Cor05] to cope with grow-
ing software complexity and maintainability by using an object-oriented programming
language, but also a modern, non-layered avionics architecture.

As shown in figure 2.1, the JSF uses three fully redundant branches, each consisting
of a central Vehicle Management Computer, connected to independent data bus groups
(three per unit). A cross-channel data link connects the three branches only via the
management computers which also carry out all processing related to flight control and
vehicle management. In each data bus group, input and output elements, as well as
mission management equipment is connected via dedicated interfaces and forms in this
particular example, with the IEEE-1394 “FireWire” bus used, a self-reconfiguring tree
network which is tolerant to leaf failures due to the self-reconfiguration capability of the
IEEE-1394 standard [Bai07]. For example, the FADECs (Full Authority Digital Engine
Control) are redundant for this single-engine aircraft and each unit is connected to all
three management computer branches via their individual data bus group one. This al-
lows to tolerate up to two full branch failures before the control augmentation by the
management computers (executing the flight control algorithms) is lost. Likewise, ac-
tuation control, sensors, external communication equipment and mission equipment is
also connected redundantly. The mission system integrated core processor is nevertheless
separated from the vehicle management computer.

Although being very innovative and future proven, the JSF design should be regarded
as an intermediate step between the classical “one-unit-per-function” federated architec-
tures of today’s systems and future fully integrated designs. The designers of the JSF
introduced the term “integrated-federated”, see [WJKLMC, Slide 12], to describe their
vehicle system architecture, which best describes the intermediate nature of this approach.
A full integration of computing LRUs is not yet achieved, as multiple large processing sys-
tems still exist. As stated in the introduction, this leads to an unnecessary high number of
LRUs in the system, especially when more and more former non-critical functions become
critical due to the lack of human oversight in autonomous systems (see figure 2.1, mission
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Figure 2.1: JSF High-Level Vehicle System “Integrate-Federated” Architecture
[WJKLMC, Slide 19]

equipment is replicated at least three times, dedicated bus trees for mission equipment).
This also implies that in order to provide somewhat reliable mission computer function-
ality (not even considering autonomous navigation and complex data fusion) three times
the cabling, connectors, physical LRUs, storage spaces, power wiring, battery backup and
power generation, development effort (interface definitions, designs, requirements, V&V,
etc.), not to mention the overall added maintenance due to added units which might fail
over time, or the total system cost and complexity. It is clear, that with current architec-
tures (even considering the modern, rather radical approach of the JSF), the introduction
of certified small/medium-sized autonomous vehicles is not possible, due to evident size,
weight and development/certification cost issues.

To overcome these issues, one must completely abandon these classical design ap-
proaches for a new system architecture design philosophy, which provides adequate levels
of safety and availability. Since the needed computational resources in those systems will
grow significantly in the next decade, as stated in the introduction, highly capable indi-
vidual LRUs are a practical solution to combine the currently distributed physical units
into one single LRU. Usually, combining many safety functions of a system, together with
non-critical or mission critical functions in a single device, is no wise idea. But, pro-
vided the individual units can ensure adequate determinism and isolation between those
functions and a particular, defined failure behavior, a redundant cluster of such LRUs is

15



2.1 LRU Requirements

capable of providing multiple independent layers of safety (even diversity by-design with
equal LRUs as we will see later on) in a small and cost-effective form factor which can be
easily scaled with the physical system. Beside the redundant compute clusters, other key
points in these new architectures shall include:

• Redundant communication paths

Interconnects between a centralized compute cluster and its inputs and outputs, or
other system elements, are and will be one of the most critical system components.
It is vital to provide modern, redundant data paths within the system which are
truly single fault tolerant, or even multi fault tolerant with added zonal safety.
This not only holds for the physical cabling and connects but also for the data flow
itself. Given the enormous amounts of sensor data required for autonomous systems
(vision, radar, optical measurements like light detection and raging, high frequency
inertial and global navigation satellite system (GNSS) data, etc.) there is also a
strong need for bandwidth and minimal transmission delay. We will discuss this
point later when we examine some architectural examples.

• Smart Sensors and Actuation Elements

Innovation must not stop at the computing platforms. In recent years, manufactur-
ers of electro-mechanical actuators and sensing equipment already integrated more
and more functionality into their devices. This trend must give rise to new device
generations, featuring not only the same high speed interconnects as the comput-
ing platform itself, but also complex algorithms to precisely determine the devices
health and trustworthiness. Voting of multiple redundant input data sources can
be carried out in a distributed fashion on those elements, without the need for
centralized voters or intermediate layers 1.

Since overall control system architectures are closely tied with the physical system itself
and the intended use case, finding a common and abstract design architecture is difficult.
It is clear that the avionics architecture of an Airbus A380 would not be suitable to be
used inside a 10kg UAV, nor inside the powertrain system for a bullet train. In order
to still provide some examples at this point, which will be used later to derive our set
of high-level LRU requirements on which the LRU design itself is based on, we will now
discuss two different system architectures. In general, the first architecture is suitable for
small and medium-sized (Small System Use Case), the second one targets mostly large
or highly critical use cases with very high certification requirements (Large System Use
Case). We will discuss possible use cases and constraints for each architecture individually
in the following. Note that these examples are explicitly kept at an abstract level, since
the details of each system and application domain pose very specific implications in real-
world applications which must be considered very carefully to not over-complicate the final

1Centralized voters are tough in certification and result in very high assurance levels for those devices
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system design or miss the chance to achieve safety and availability by simpler or more
efficient means (for example, secondary cut-off paths in industrial systems, or emergency
stabilization followed by remote control in autonomous systems).

2.1.1.1 Small System Use Case (UC1)

Small and medium-sized systems are driven by strong size/weight and cost constraints.
The first use case is therefore intended to be used in these types of systems, with the
aim to minimize the total number of physical units. Zonal safety or high degrees of
redundancy are either not emphasized by cost constraints or not physically possible.
However, a certain degree of redundancy and low failure probability must be present in
order to guarantee certification up to a medium level. Single fault tolerance is also an
issue that must be addressed, especially in the industrial context for current machine
safety regulation (e.g. IEC13849).

As shown in figure 2.2, the computing cluster consists of two equal units (Channel A
and Channel B), interconnected via a cross channel data link (CCDL). The CCDL in this
figure is drawn as a single line, implying a non-redundant connection. Depending on the
physical design of the unit, for example, if a back-plane is used to interconnect the units in
or if they are physically separated at different system location or in a common electronics
bay, the CCDL can be enhanced to a redundant interconnect to offer a single fault tolerant
connection between the two units if needed by the system design. This brings us directly
to the sensor and actuation elements. External communication interfaces (Data Links,
either line of sight, beyond line of sight, or other types current in a particular application
domain) and sensor units, like inertial measurement units, air-data measurement systems,
etc. are connected to both units via redundant data busses. If dissimilarity is required, a
secondary emergency data bus can be added in case both busses exhibit a common mode
failure. The depicted configuration protects from single hardware failures on the physical
layer only. The same arguments hold for the output elements, which also feature redun-
dant data bus connection to the computing cluster. These actuator control electronics
(ACE) are internally redundant, smart actuation elements in order to further reduce the
need for redundant physical units. Since adequate computing performance is present in
those systems, each ACE can perform the voting between the set of redundant output
data generated by the computing cluster in each discrete system time step. This negates
the need for a dedicated voting layer between the compute cluster and the actuation ele-
ments, or complex, time-consuming distributed voting strategies. Due to the bidirectional
communication between the smart actuators and the cluster, the current health status,
as well as voting results and further real-time data like actuator position, is fed back and
can be considered in vehicle management algorithms. Driven by the autonomous system
background, an emergency control system is present with dedicated external data links,
data busses and sensor units to allow for human intervention in case a severe system
failure renders the computing cluster inoperative. Note that this abstract overview ne-
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Figure 2.2: Example architecture for small and medium-sized autonomous systems or
industrial use-cases

glected some aspects and thereby electronic units that may be present in a real system like
power distribution and management units, battery management units, gear and engine
management units (although they can be regarded as actuation elements), etc.

A computing cluster LRU consists of a safe and secure 2 multicore subsystem and the
usual hardware components to provide redundant power and bus interface connections
with domain specific protection against the environment like electromagnetic interference
(EMI) or under/over-voltage events and lightning strikes. Being comprised of two equal
units, common-cause failures are critical in this configuration, such that internal mecha-
nisms must be implemented for dissimilarity and fault tolerance to offer intrinsic common

2Safety and security already go hand in hand in many projects, although we will not address security
actively in this work
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mode failure protection. This also holds for the bus interfaces (data and power). We will
address these points later on in the LRU requirements.

The redundant data bus interconnects on system level are not strict bus topologies.
The designer is free to choose an appropriate communication channel for critical data
that suits the real system application best, might also be point-to-point-, star- or ring-
bus topologies according to the actual physical and link layer employed.

The failure mode of the compute cluster LRUs is either fail-silent or a fail-degraded
failure mode where a failed unit does either no longer communicate over the attached data
busses or enters a degraded operating mode where minimal, and but still trustworthy
output data is send in order to still provide additional data for the distributed voting
on the actuation elements in the system. Note that the fail-degraded mode is somewhat
special and might not be suited for all types of systems, but may provide additional
operational capabilities, for example, to safely return to a predefined location or to bring
the system into a safe state through a series of complex state transitions where redundant
output data to execute some degree of voting is still valuable. When a unit flags itself
as degraded depends on the internal design of the secured multicore subsystem. The
same holds for the trustworthiness of output data in the degraded state which will be
discussed later on in the safety analysis of our derived LRU architectures alongside with
the functional degradation scheme proposed in this work.

2.1.1.2 Large System Use Case (UC2)

For larger systems, the simple duplex architecture presented in the last section will not
able to achieve the desired failure rates, nor a high degree of fault tolerance. After a
single unit failure, the duplex architecture is in a degraded state — and while still able
to guarantee safe control the system, the availability is limited by the single LRU failure
rate for nominal operation. In order to greatly expand the availability of the cluster and
tolerate single (or multiple) compute LRU failures without losing the capability to provide
multiple, independent output data results for voting 3, the large system architecture
features an expanded cluster with at least three units and zonal safety.

As shown in figure 2.3, the remainder of the architecture is equal to the small system
use case, with the aforementioned smart sensors and actuators. The CCDL internal to the
compute cluster has been expanded to multiple point to point interconnects. While this
is a viable option for three units, interconnecting four units already requires three high
speed interfaces, which might lead to a redundant bus-type interface in order to reduce
the number of physical interfaces required back to two. Note the network gateway and
routing units, which build a dual-redundant network to the sensor, actor and computing
ressources spread throughout the system for zonal safety. The cluster can directly interface
with the redundant backbone network in the vehicle.

3to guarantee safe operation regarding possible single event effects during the computation of these
results
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Figure 2.3: Architecture for large sized autonomous systems or industrial use-cases

The computing cluster itself can be composed out of entirely separated physical units.
But it is also possible to employ a backplane-based solution to further cut down the
physical size of the cluster, by using smaller sized individual LRUs and inter-LRU routing
moved to the backplane, as well as the protection measures against the potentially harsh
environment. Such solutions are currently widely adopted in the industry, and are labeled
as an "Integrated Avionics Rack" [New94, p. 16]. On one hand, physical units tend to
provide better isolation against zonal failures in the cluster, for example when single
units fail spectacularly (single unit fire, burning/melting electronics components), since
their housing provides some degree of containment. On the other hand, backplane based
solutions are generally more flexible and can scale with minimal space requirements (if
the individual units are of responsible size) and offer the possibility to easily be duplicated
within large systems for zonal safety. However, the fault containment, especially when
considering failure modes that involve potential fire hazards, may not be an issue overall
due to the required flammability rating in most regulated markets, which require burnable
substances to either have self-extinguishing or highly flame retardant properties while not
producing gasses for example (like demanded by application domain specific standards,
like CS 23.2325 in [EAS17]). As every so often in the field of safety critical systems,

20



Chapter 2: System- and Board-Level Architecture

there are seldom true black and white comparisons or recommendations that truly hold
for real world applications. Final solutions are mostly application specific. It is therefore
hard to make general statements about the suitability for a wide variety of different
application scenarios, even in a single application domain like the aerospace or industrial
field. Nevertheless, we will address the high level hardware architecture of the cluster
again in 4, with further considerations for modularity or reuse for cost-effectiveness in
possible hardware architectures.

2.1.1.3 Additions and Common Topics

The two exemplary architectures described above can be used in future autonomous sys-
tems, where computer vision is heavily employed for context and environment detection
and classification. The digital pixel data of one or multiple camera systems (with or
without internal preprocessing and filtering in the camera LRU), which must be fed into
the main compute cluster, requires very high bandwidth data busses. Unlike other sensor
types with very limited output data per time step, like inertial measurement units or sim-
ple distance sensors (optical-, ultrasonic- or radar-based via time of flight measurements),
they produce massive amounts of raw input data at a high input rate. This leads to very
specific data bus solutions, and often times special physical layer implementations, par-
ticular for this application. One major issue is the presence of single points of failure with
the point-to-point interconnects for camera data. This can either be solved by redundant
connections to multiple LRUs within the compute cluster from a single camera LRU, but
this requires numerous high speed interfaces, especially when multiple camera systems
are employed for stereo or surround-view applications, leading to an unreasonably high
number of high speed interfaces for a single sensor group. One possible solution might be
to develop new multi-drop, bus-like interfaces for direct camera LRU connections or to
tunnel the camera data over other data bus standards, for example standard or industrial
Ethernet variants. Over other link-layer standards, one can employ the already existing
physical and link layer protocols to enable multi-drop communication to broadcast to
multiple receiving compute cluster LRUs or to connect a larger number of cameras via
a single data bus. For better error detection and system level redundancy, a redundant
connection may be employed in order to form redundant networks of high-speed sensor
input data, which offers a lot of flexibility but does not require an extensively high number
of high speed interfaces at each compute cluster LRU which are solely allocated to a single
sensor input. The same argument holds for the back-channel from the cluster LRU to
a camera, or more general high-bandwidth data LRU for control data, acknowledgments
or status data. The high bandwidth cross channel data link within the compute cluster
should not be used to interchange high bandwidth sensor data, in order to keep the actual
bandwidth during runtime low, leading to very short response times over a lightly used
high speed link. However, if the cross channel link features very high bandwidth, beyond
several 10 or 100GBit/s, it may also be considered to move high bandwidth sensor data.
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We will however not focus on such interconnects in this work, due to the current lack of
appropriate standardization efforts on such interconnects in the industrial and aerospace
domain. The high speed data bus interfaces will be discussed during the LRU architecture
presentation with greater detail.

When combining many system functions, each with their own safety criticality rating,
we are inevitably faced with a mixed criticality scenario on the compute cluster LRU.
In current designs, system architects try to avoid the combination of different criticality
levels in one device, especially for the software, since it leads to a whole new set of
requirements for the spatial and temporal separation of system functions with different
criticality levels. Since we are targeting multicore COTS parts as the main computing
element of a cluster LRU, we are faced with the partitioning issue for a different reason.
As stated in the introduction, the individual cores cannot be regarded as truly electrically
independent of each other, and thus guarantee an interference-free operation of individual
system functions running in parallel on different cores. Thus, proper spatial and temporal
isolation must be provided anyway, to ensure that a sufficient degree of independence, or
freedom of interference can be provided between the different cores on a multicore COTS
device. This also guarantees a certain degree of determinism alongside with worst case
execution times of the system functions allocated to software that are being executed in
parallel on each core. It is therefore clear that space and time partitioning is a necessary
must-have on those devices for safety critical applications. But having adequate means
for isolation system function also enables us to explicitly use this new degree of freedom,
which is to execute all those functions in parallel on one device, to make the next move
and combine all system functions allocated to software in one central compute cluster,
as shown in the two architectural examples from the previous section. The presence of a
redundant computing cluster offers further possibilities and a large flexibility to allocate
different software functions, and offer on-unit or cluster-based redundancy for each critical
system function according to their required criticality level and desired availability figures.

On one hand, while offering lots of possibilities, the explicit mixed-criticality scenario
also results in added cost and complexity at the device level. As with single core systems,
validating the strict requirements to ensure complete function isolation, with respect to
shared device resources, is difficult during software low-level and software integration
tests. This is mainly driven by the low-level, highly platform specific implementations of
partitioning solutions which quickly reach high complexity levels due to software solutions
for cache, memory, bus bar, or shared peripheral unit spatial and temporal partitioning.
In addition, these codebases require very in depth programming language knowledge,
compiler expertise, a great level of hardware knowledge from the software designer and
software architect and can therefore only be designed by true experts which are hard to find
for a specific platform or must be trained specifically for a dedicated platform. Overall,
the development effort significantly increases whenever mixed-criticality is involved in an
equipment design, especially in the lower software layers where an operating system or
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embedded hypervisor may reside.

On the other hand, the total cost in the integration phase on the top system level is
lower. This is achieved by the greatly reduced number of physical units and integrating
them into the high-integrity cluster, for which early integration hardware-in-the-loop tests
offer the potential to pass integration tests on top system level effortlessly. The integra-
tion of real physical units is always difficult and time-consuming, due to nearly endless
sources of design errors which are hard to track down, since they may reside in the hard-
ware, data busses, data bus protocol implementations, operating system configurations
etc. In addition, the specification effort for system function interfaces is shifted from real
physical interface and communication protocol specifications into the compute cluster and
the cluster LRU. There, they are handled by software-driven inter-task communication
functions (via memory, inter-core-communication, or inter-LRU protocols within the clus-
ter), which are more flexible, easier to adapt (no hardware changes needed) and easier
to integrate, due to the lack of actual physical communication interfaces. The actual re-
maining integration work on top system level is reduced down to the cluster, and the real
physical sensor and actuation units, which were simulated in the hardware-in-the-loop
environment beforehand.

Besides technical implications, there are also impacts on project planning and the
general business strategy. The lapse of physical units results in a shift from specifying
and allocating real physical units to subcontractors, testing and integrating them, to
specifying purely software-defined system functionality fitting into a defined scheduling
pattern inside the cluster. This basically busts all previously established subcontractor
structures for large cyber-physical systems and shifts most attention to the high-integrity
platform and the software function providers, which might be tier 1 suppliers, but also
the OEM itself, due to the very high business criticality of the computing cluster and the
software functions. These functions directly include very sensitive and valuable system
level knowledge and will directly represent the core competence of an OEM in the years
to come.

While the presented architectures were designed and justified with small and medium-
sized autonomous air vehicles in mind, they can also be adapted for industrial application
scenarios. In the industrial context, a true fully fail-operational, high-availability system
design is seldom required in classic applications like factory automation, or machinery in
general terms. In order to comply to current regulatory frameworks, a safe state must be
defined in any case for a certifiable system, which can be entered by a defined, timely and
deterministic series of mode transitions. This also holds for ground-based transportation
systems which can be brought to a safe stop condition where a severe control system
failure is no longer critical. In turn, most applications will most likely not require an n-
times redundant, high-availability cluster for these applications. However, this statement
only holds, if the single compute LRU offers a distinct failure mode behavior, as we
will see in the next sub-chapters, in order to guarantee a certain failure mode behavior
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for different categories of system functions. A reduction of redundancy in the top level
system architecture is especially desirable, where tight cost constraints are involved. Since
we will not discuss further domains, like railway or automotive applications, it is up to
the experienced reader to transfer the presented high-level concepts to his or hers specific
physical system configuration. It should be clear however, that the architecture fully scales
from a single unit up to large redundant, distributed clusters easily, when the individual
computing LRU fully complies to the LRU requirements we will define in section chapter
2.1.3 . Note that the presented architecture and the core contribution of this work, the
internal LRU architecture for COTS multicore processors, are closely tied and cannot be
discussed independently, since board and even hard- and software considerations directly
affect the top level architectural structure due to safety and reliability considerations (see
chapter 3).

In order to sum up this part, one must note the implications in the top level system
architecture when taking the human as a control element out of the loop. The result-
ing redundancy explosion with classic, function-based LRU architectures for previously
non- or semi-critical system functions strongly contradicts the use cases in small, yet
certifiable autonomous systems. One possible solution, when COTS multicore proces-
sors can be used in a certified LRU, is to combine large numbers of currently dedicated
LRUs into a single high-integrity cluster. This computing cluster can easily be scaled
to application requirements and top-level system function criticality levels, in order to
support the desired safety claim and platform availability. Alongside with smart sensors
and smart actuation elements, a highly integrated architecture is formed, with central-
ized high-availability computing, but also distributed redundancy elements by shifting
some system functions (like output data voting or emergency stabilization and control),
as well as the integrity monitoring to the distributed, smart final elements and sensor
units. The number of redundant cluster LRUs is driven by the actual application. This
design decision is driven mainly, but not only, by size, weight, power and cost constraints,
as well as the desired availability for the computing platform. Also, considerations like
zonal safety or the choice between separated physical units and a backplane-based solution
for the high-integrity computing cluster will affect the realization in real world systems
significantly and will directly impact certification arguments. In order to continue the
development for autonomous systems with certification in mind, one must acknowledge
the very different application context without the human fallback layer. The need for
more and more computing power at the higher level system functions will certainly affect
LRU design and as a result, also the top level system architectures needed to cope with
the different design approach employed for new COTS device generations.

2.1.2 System Function Classification by Impact Level

System functions in cyber-physical systems can be classified and categorized in various
different ways. When considering certification, the classification as a safety function is
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certainly among the most important ones. Along with the classification itself, usually
comes a further graduation in different levels of criticality, driven by safety and risk
assessments, which are defined in the applicable standards, certification specifications
and assessment guidelines. Parallel to these existing classifications, one can derive further
system function attributes based on the observation of current system functions and
architectures and future autonomous system considerations. As previously stated, system
level functions which are currently evaluated at a low or medium criticality level, must be
considered to be highly critical when moving from semi-automated (human-in-the-loop)
to fully autonomous or unmanned. We will present examples for these types of functions
shortly with the impact level definition (Contribution C2). The possible failure mode for
each type of system function, leads to a classification based on the system-level impact of
an incorrect output result (either fed into lower-level system functions in the hierarchy or
into actuation elements) and the impact of the full loss of a function. Considering today’s
common failure and degradation mode and the common nomenclature Fail − Mode1... −
Moden (where Moden denotes the resulting mode of a system function after n failures
occurred 4, which is ensured by the underlying system architecture, system design and
LRU design) classifying system functions according to their failure mode behaviour can
be beneficial in many ways. We will rely on the following classes of system functions,
for later on distributing system functions within the individual compute cluster LRU and
the cluster itself, while ensuring that the desired failure mode of a system function is met
and the standardized criticality levels satisfied by adequate per-function monitoring and
per-function redundancy. Note that the primary application of this classification are the
system functions allocated to the compute cluster. It may also be used in the context of
smart actuation elements and sensors, which is not directly the scope of this work. We
define three impact levels (IL), starting from IL0 up to IL2, implying different system
function failure modes:

• Impact Level 0, IL0 =⇒ Fail − Fail

Definition: A system function that is a comfort function, add-on or payload func-
tionality. A wrong, untimely or unavailable output result has no impact on system
safety.

Examples: Passenger entertainment systems, active payload subsystems like optical
measurement systems or other sensor units not involved in system control loops,
data links solely serving live mission payload data.

Failure Mode / Safety Measures: A failure leads to a wrong output result / behavior
or failure of the system function.

• Impact Level 1, IL1 =⇒ Fail − Safe/Silent

4The final condition for the last failure leading to a loss of function is usually omitted.
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Definition: A system function, part of higher level control functions, which serves
lower level control functions. A wrong output result is critical, whereas an untimely
or fully unavailable output result shall be mitigated by depending on lower level
system functions.

Examples: On-line mission planning and optimization, Path planning and opti-
mization, autopilot and autopilot mode transition logic, status, control and mission
data links, advanced environment perception with detection and classification of
surrounding scenery and objects.

Failure Mode / Safety Measures: All single failures are detected by at least one
redundant instance of the system function. A mismatch between comparing units
results in a transition to the safe state of the system function, which is either a
safe output state or the shutdown (silencing) of the system function. Depending
on the nature of the function, an acknowledgment-based output verification might
be adequate (e.g. Data links). Common cause errors resulting in multiple failures
render the function unavailable immediately.

• Impact Level 2, IL2 =⇒ (Fail − Operational − Safe/Silent) ∨ (Fail −
Operational − Degraded − Safe/Silent)

Definition: A system function providing low-level control to directly control or
stabilize a physical system, who’s outputs are interpreted by actuation elements. A
wrong output result, as well as a loss of function is critical and directly leads to
a catastrophic failure mode of the physical system, resulting in an unpredictable,
uncontrolled and therefore uncontrolled state.

Examples: N-degree of freedom control functions which provide actuation element
set-points while observing sensors distributed in the physical system, state machines
or mode control logic for critical function elements, supervision and monitoring
systems which protect the system from critical conditions based on sensor readouts.

Failure Mode / Safety Measures: After a single failure, which must be detected in
all operating conditions, the system function is still fully operational. The failure is
indicated to an operator or other system functions which may perform adequate ac-
tions. After a second independent failure, the function enters a safe state, by either
remaining silent (no further output results provided) or defaulting to a predeter-
mined safe state. If this cannot be tolerated (like in airborne systems, or nuclear
power plants), a degraded operating mode is entered after a second independent
failure. This ensures that the system function is able to transition the physical
system into a safe state through a series of complex state transitions by focusing on
the essential functions to ensure system safety and correct actuation element set-
points (fly to safe crash site, return to base for operator hand-off, orderly reactor
shutdown). This can be described as a degraded operating mode, which effectively
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must require three independent critical failures in the same window of operation. 5

Common cause failures must be considered at design time, with adequate measures
of dissimilarity in hardware and software elements involved in the execution of a
system function.

The impact level classification aids the design process, especially the distribution of
system functions with respect to their physical computing location within a specific com-
pute cluster LRU or multiple LRUs which are part of a cluster. Due to the diversity of
the different application scenarios, there is neither a single nor an off the shelf solution
for the distribution of functions with different impact levels. Modularity is key in this
regard, with distribution solutions offering as many degrees of freedom as possible, while
still being able to be tailored to a specific certification effort. The high availability cluster
offers a multitude of possible system function distribution scenarios. Even if there are
enough computing resources on one single LRU, due to the high-performance multicore
processor as the core processing element, fault tolerance can (or must, depending on the
impact level) be accomplished by distributing multiple instances within and even outside
the cluster. The latter is possible via the aforementioned smart sensor and smart actua-
tion elements. Since redundant computing channels in form of the internal cores cannot
successfully be claimed in a certification process for the multicore device, the execution
on processing units other than the multicore processor itself is necessary.

As a result, the desired fault tolerance and failure mode behavior, as stated above
in the impact level definition, is not bound to the compute cluster LRU itself. Consider
for example an IL2 system function, with a Fail-Operational-Safe failure mode. Since a
single failure shall not render the function inoperative, a single execution of the function
on a cluster LRU would not be sufficient since a failure of this LRU renders the function
inoperative. Therefore, one must provide at least one additional instance of the IL2 system
function on a physically different cluster LRU. On the individual LRU, the function may
now fail silently, since another redundant instance continues operation. I n order to
satisfy the fail-safe requirement in case of an additional failure, at least three instances
throughout the system are required.

A reduction in the criticality level, or in this case the impact level, of an allocated
system function is common to many certification standards. The applicant is allowed to
reduce the assurance rating by one step (SIL3 to SIL2, DAL B to DAL C) if a safety func-
tion is composed of two parallel subsystems, given sufficient redundancy (function-wise),
a common cause failure analysis is provided and sufficient independence in verification/-
validation, internal component choices, etc. is given. This also holds true for the impact
level classification:

5In aerospace, no single failure or likely combination of failures may lead to a catastrophic condition
(see [EAS17]), same holds for industrial applications, but latent faults have to be considered starting
from SIL3.
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The impact level of a subdivided system function may be reduced by one on an individual
subsystem providing the functionality, if and only if architectural mitigation is provided
on higher system levels to ensure the failure mode to be mitigated does not manifest in the
overall (physical) system.

To continue the above example, note that the impact level on each individual cluster
LRU executing the IL2 system function is reduced to IL1. This leads to a Fail-Safe or
Fail-Silent behavior, which can easily be reached with simple cross comparison means on
the individual LRU itself. On the level of the computing cluster we can still guarantee
that no false output result is provided, and that the Fail-Operational character of the
system function is preserved. A common cause failure mode analysis is still necessary,
especially in case the compute cluster LRUs are not hardware dissimilar. We will address
this issue later on in the LRU architectures with intrinsic hardware dissimilarity for com-
plex components. As we will discuss later on, a higher order of redundancy and multiple
degradation strategies of IL2 functions can be established with a particular LRU architec-
ture, which also aids to reduce the number of compute cluster LRUs required to perform
the IL2 system functions. This in turn frees resources, required for highly intense IL1
functions, like image processing, adaptive and non-linear algorithms, or knowledge-based
/ artificial intelligence decision systems or additional IL1/IL2 functions.

Also note that the impact level classification is not (per definition) related to a safety
or design assurance level defined in the applicable standard. There is however an obvious
relationship for IL0 (non-critical) and IL2 (high/very high criticality) classes with safety
criticality due to their definition, which might lead to the belief that this relationship
can also be easily established for IL1 functions. IL1 functions are difficult to classify due
to their strong dependency on other IL1 functions, IL2 functions, and a large variety of
ways to strike the argument for a particular safety level based on architectural mitigation
strategies and particular implementation details. When we consider today’s systems in
general, IL1 functions own a medium safety level (SIL1/2, DAL D/C) due to the human
as the monitoring and cross-checking instance. In future autonomous systems, most IL1
functions will own a higher (or the highest) safety level, due to the lack of the human
monitoring. A full functional monitoring for these functions is certainly possible, which is
already a possible architectural mitigation scheme to be executed within the high avail-
ability computing cluster. Therefore, if a relationship between criticality and impact level
can be established, it should be considered particular and for a given, very specific system
or design as an exception to the general rule that there is no such relation in order to
prevent false conclusions.

We will address further possibilities and future work regarding the impact level clas-
sification at the end of this work, see chapter 5.2.
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2.1.3 Derived LRU Requirements

After the intended system level configurations and the notion of impact levels just pre-
sented, we will now define the set of high level system requirements for the individual
compute cluster LRU (Contribution C1). To designate the origin of each requirement, we
will refer to the small system use case presented in chapter 2.1.1.1 as Use-Case 1 (UC1)
and the large system use case, see chapter 2.1.1.2, as Use-Case 2 (UC2). Each requirement
is identified by a numeric ID, given in table 2.1 along with the requirement description.

ID UC1 UC2 Description Domain
RQ1 x The compute platform shall satisfy a safety claim of

up to SIL2 / KAT3 (Pl.a-d) with a single LRU, Safety
Claim of SIL3-4/KAT4 (Pl.d-e) depending on system
architecture and other failure mitigation means on
system level

Industrial

RQ2 x x The compute platform shall satisfy a safety claim of
SIL4/KAT.4 (Pl.e) with two LRUs or more

Industrial

RQ3 x The compute platform shall be certifiable in accor-
dance with DAL C using one single LRU

Aerospace

RQ4 x The compute platform shall be certifiable in accor-
dance with DAL B with two LRUs maximum

Aerospace

RQ5 x The compute platform shall be certifiable in accor-
dance with DAL A with at least three or four LRUs
(1oo3/1oo4/2oo5/ etc.)

Aerospace

RQ6 x x The LRU shall provide on-board fault detection / di-
agnosis / functional monitoring to detect wrong re-
sults of IL2 functions. A faulty computation result
of any IL2 function shall not be distributed by the
LRU.

Industrial
and
Aerospace

RQ7 x The LRU shall provide a fail-passive / fail-silent safe
state in a redundant configuration.

Industrial
and
Aerospace

RQ8 x The LRU shall provide means to reach a safe state via
separate system mode transitions requiring complex
actions.

Industrial

RQ9 x x The LRU shall be able to maintain the safe state. Industrial
and
Aerospace
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ID UC1 UC2 Description Domain
RQ10 x The LRU shall provide a fail-operational fallback op-

erating mode, in order to execute complex system
mode transitions required to reach a system safe
state.

Industrial

RQ11 x The LRU shall satisfy ISO13849 KAT3 single fault
tolerance.

Industrial

RQ12 x x The LRU shall detect latent faults in its nominal com-
pute channels by online monitoring or cross compar-
ison.

Industrial
and
Aerospace

RQ13 x x Fault accumulation may only lead to a unsafe LRU
state if multiple, physically independent subsystems
of the LRU are subject to failures (nominal and mon-
itoring failing at the same time).

Industrial
and
Aerospace

RQ14 x x Complex, multi failure scenarios which disrupt the
nominal and monitoring compute channels of an LRU
shall be mitigated on the system level via redundancy.

Industrial

RQ15 x x The LRU shall be designed such that system func-
tions of different criticality and impact level can be
executed side by side on the multi-core platform
safely. The partitioning of different functions must
be guaranteed at all times.

Industrial
and
Aerospace

RQ16 x x The LRU shall provide legacy interfaces such as CAN,
RS232/485, ARINC429 or similar data-bus commu-
nication interfaces to support existing infrastructure,
sensors or actors.

Industrial
and
Aerospace

RQ17 x x The LRU shall provide at least two pairs of re-
dundant modern high-speed interfaces such as Eth-
ernet (AFDX, EtherCAT, Powerlink, etc.), TTP,
SpaceWire, with at least 50Mbit/s average through-
put per interface, as well as a redundant, high-speed
cross channel interconnect with at least 100Mbit/s
average throughput per interface.

Industrial
and
Aerospace

RQ18 x x The LRU shall be designed to mitigate common mode
failure, with regards to common complex COTS parts
used within the LRU.

Industrial
and
Aerospace

Table 2.1: High-Level System Requirement for the individual compute cluster LRU in
the context of industrial and aerospace certification
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In the following, we will discuss the origins (use cases, certification background, etc) and
give some descriptive examples as well as possible implications on the requirements in
table 2.1:

• RQ1-RQ5

The requirements originate from the certification levels to fulfill in common appli-
cation scenarios. Basically, a single multicore-based LRU should be able to achieve
the same rating as today’s safe LRU designs, which is usually around SIL2 and DAL
C. SIL3 may be reachable by appropriate top level system architectural precautions,
such as secondary, dissimilar shutdown paths for industrial applications. Two units,
shall be usable in the highest possible level for small systems, which is DAL B up
to the CS-23 aircraft class and SIL3 for industrial applications. As the system size
and moving mass and danger for passengers and personnel increases, SIL4 and DAL
A is necessary, which can no longer be fulfilled by just two units, let alone by the
required dangerous failure rate of at least 10−8 (industrial) and 10−9 (aerospace), as
well as multi-point and common cause failure considerations.

This will lead to small systems with a two-unit compute cluster, where size and
weight are precious. Larger systems, with higher requirements and special consid-
eration at the top-level system architecture for the given application domain, will
at least feature a three-unit cluster which permits full operation capability after
one LRU failure. A reduced-capability, or emergency operation mode may be es-
tablished with one LRU left, in order to transition the physical system into a safe,
controlled low-energy state.

• RQ6, RQ7

In order to claim the SIL2 / DAL C rating, the LRU must at least feature on-
board fault detection during runtime, to detect single failures with high levels of
confidence, since the multicore itself cannot perform such monitoring tasks while
also executing the nominal IL2 system functions. In addition, we explicitly deny
the transmission of faulty compute results via external data busses. This basically
resembles a Fail-Safe or Fail-Silent failure mode behavior. On the top system level,
the fail-silent mode implies that whenever a result is emitted by an LRU, it can
be trusted because it has already been independently validated by a second party
in the LRU itself. Thus, the top level voting, or the voting performed via smart
actuation elements, is eased and no further error detection on the logical signal level
is necessary.

While IL2 functions are covered inside the LRU, no checks are performed for IL1
functions. Since IL1 functions will be extremely compute-heavy, we will present
an adequate redundancy and monitoring scheme in the next section along with the
LRU architecture. IL0 functions are not monitored and may fail at will.
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• RQ8, RQ9

In case of a single failure inside the LRU, the safe state must be reachable. In
some situations, the transition to a safe state requires several steps, for example,
to execute a controlled breaking operation or to indicate a failure visually/audibly
while executing an appropriate action to ensure machine operator safety. Larger,
more critical systems (e.g. aerospace, reactors) involve even more complex state
transitions and control to reach the safe state and may require emergency operating
capabilities. Performance may be reduced during in this operating mode, but the
ability to control the system is essential. In a redundant cluster, the remaining
LRU(s) fulfill this task, or do not require the safe state transition at all when
enough LRUs remain to guarantee safe operation until maintenance.

When the safe state is reached, a failed component or function inside the LRU shall
not be able to compromise the safe state, by issuing faulty, dangerous commands
via external interfaces. This basically maps to the fail-passive/silent behavior, but
requires a different set of countermeasures at the board level to ensure that failed
components remain unpowered or reset until maintenance can be performed. The
LRU itself may be operating in an emergency state during this time. Also, a con-
trolled reset of a component inside the LRU may be performed to clear transient
failures (mainly due to single event effects) and resume nominal operation after
internally ensuring that the reset device performs as intended.

• RQ10

Ensuring that RQ8 and RQ9 can be fulfilled with a minimum number of LRUs, the
single compute cluster LRU effectively needs a fail-operation-silent failure behavior,
with degraded operational capabilities after a single failure inside the LRU. In large
systems, with a larger compute cluster or multiple clusters due to zonal safety
requirements, this may be not necessary given the number of available physical
units. Cost sensitive or space constraint applications, however, may require that
for example IL2 or some IL1 functions are still available to ensure that the system
remains controllable or can still determine its surroundings with only one or two
LRUs in the compute cluster. It may also be required that the single fault is fully
mitigated in order to reach the desired dangerous failure occurrence rate required
with a minimal set of physical units. For example, most industrial systems may
only be allowed to require two units due to commercial requirements, like localized
stock size, overall cost for the customer or similarity to current solutions where only
two units were required to achieve a medium safety level.

• RQ11

Like in the aerospace domain (starting from DALB), from KAT3 onward in the
context of ISO 13849, a single fault shall not lead to a catastrophic system failure.
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This entails, that sufficient redundancy and monitoring at the system or LRU level
must be present, to ensure that a single event (or root cause, originating from fault
tree analysis, see [ADC96]), triggers a failure path through various layers of the
system eventually leading to catastrophic failure of the entire system. While a large
variety of countermeasures may be performed at the top system level, we want to
provide an architecture, that fits into a new era of systems which are inherently single
fault tolerant, without special considerations other than using COTS equipment as
intended. We will discuss this topic during the architecture presentation in sections
2.2, 2.3 and later on the safety analysis in chapter 3.

• RQ12, RQ13

As previously stated, the individual compute cluster LRU shall not emit wrong
results for IL2 functions. This requires at least a full monitoring of IL2 functions,
which, if possible, may also be present for IL1 functions. As such, the internal, nom-
inal compute channel (most likely at least one multicore processor) is accompanied
by at least one additional compute channel (physically separated microprocessor)
to execute the functional monitoring.

If faults accumulate inside one channel, they may not lead to an unsafe state, mean-
ing that the safe state shall be reachable and maintained if only one channel has
failed. If both channels fail independently at the same time, despite being hardware-
dissimilar for example, then the LRU will exhibit a catastrophic failure condition
where wrong output results are emitted. Those scenarios however, are sufficiently
unlikely that most standards to not require an analysis of them up until the highest
criticality level. But since large systems requiring such high criticality levels will
feature at least two units in a cluster (likely more than 3), a catastrophic LRU
failure is mitigated at the compute cluster level.

• RQ14

If all LRU-internal means fail, the redundant compute cluster will provide fault
detection and mitigation. The failed LRU remains silent. This is only relevant if
the certification context requires measures against multi-point and common-cause
failure modes.

• RQ15

A very important requirement. If we do not manage to find an architectural, hard-
ware and software solution, that enables us to execute software in a mixed-criticality
scenario on the multicore processor, the entire concept and use-case of the multicore
device is no longer valid.

• RQ16, RQ17
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To ensure a smooth transition to the new top level system architectures based on
the compute cluster, legacy low-speed interfaces must be supported. This is more
or less a commercial requirement. In addition, the architecture shall provide enough
throughput to enable the use of high-speed data bus standards for future system
generations. The architecture itself shall not limit the bus bandwidth (within reason-
able technical and financial limits of course) available on all interfaces. To support
the single point of failure mitigation on the top system level, all interconnects should
be redundant.

• RQ18

To ease the argument in high criticality levels (KAT4, SIL4, DALA), where a
common-cause failure analysis is mandatory, we shall design the nominal and moni-
toring channels with hardware-dissimilarity where possible. Depending on the LRU
architecture, hardware dissimilarity may be given by design (if different devices
are used in the nominal and monitoring channel in the LRU) but this requirement
ensures nevertheless that the compute cluster LRU is not just 10 equal devices
forming a high availability structure but complies to good design practice to in
cooperate different technologies, manufacturers or architectural mitigation to deal
with common-mode failures as much as possible.

With this small set of only 18 requirements, we already constrained the final board-
level LRU architecture considerably. Most of these requirements are very familiar to the
safe system designer but force us, to design a reliable embedded computing platform which
is, by design, adequate for light, medium and high certification scenarios. Some of these
requirements did not arise before the architectural design, but we introduced after the
first design iterations as an implicit result of the components and strategies used.

2.2 Centralized Monitor Architecture

In the last sections, we concluded that most requirements can not be addressed on the
complex multi-core processor alone and that architectural mitigation side the LRU and
on the LRU cluster level are necessary. Our set of measures allows the use of multi-
core processors in safety critical applications, despite being COTS and high complexity
devices. After defining the surrounding top level system context, the high-availability
compute cluster and a set of high-level requirements for the individual cluster LRU,
we will now step into the cluster LRU. In the following two subsections, we will define
two possible board-level architectural configurations, in order to meet our requirements
and also discuss possible design choices for the individual board-level components and
board-level subsystems involved (Contribution C3). While we present the technical point
of view, the reader is referred to chapter 3 for the certification perspective. However,
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some aspects for certification will be briefly addressed, due to their close relation with
component choices, interconnects, or data-flow between the individual parties.

2.2.1 General Architecture

Figure 2.4: Single monitor cluster LRU architecture high level block diagram

The first architecture offers a single, centralized monitoring to the nominal compute
channel. As shown in figure 2.4, a nominal compute channel (NOM) is the primary
processing element. It is based on a multicore processor with its surrounding components
like RAM, ROM, local power management, and required circuitry for operating the device.
The NOM is monitored by a single on-board monitoring channel (SMON). The device
used to monitor may be a less complex device, like a single-core microprocessor, but a
multicore processor may also be used regardless of the component choices in the NOM. In
any case, NOM and SMON must be hardware dissimilar to avoid common-cause failure
scenarios in terms of hardware devices. The input data and interface processing is carried
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out by redundant interface elements, here shown as FPGA-based bus interface controllers.
Microprocessor or FPGA-Soc based interface controllers are possible alternatives, if the
required interfaces and processing capabilities are met. The outside-world interfaces are
split in two redundant data bus groups. Along with the system architectures presented
earlier, this offers a fully redundant input path, starting from the top-level interconnects
(cabling, connectors, etc.) right down to the lowest level inside the cluster LRUs (bus-
transceiver, processing elements, PCB traces, etc.). By eliminating all possible single
points of failure along the interfaces, true input and output data redundancy can be
claimed. After some degree of preprocessing, like protocol decoding or error detection
and correction, the input data is forwarded unmodified (Store-Forward-Element) by the
bus interface controllers, via dedicated data busses to the NOM and SMON. Therefore,
the input data is available by both independent sources (e.g. the bus interface controller)
at the NOM and SMON. A cross comparison data bus link between the NOM and SMON
is used to interchange output data and execute a cross comparison of the computed results
on a per time step basis. The internal interconnects between the individual subsystems
NOM, SMON and bus interface controllers must be capable of handling all input and
output data, as well as the cross comparison data exchange in a timely fashion, such that
they do not dominate the input processing delay. As a result, we choose standard Ethernet
in a one-to-one, non-switched configuration as the physical layer in this architecture –
simply by the fact that it is readily available in almost any current SoC or microprocessor
with at least one interface (some offer up to 16 dedicated peripheral units), its speed
(100Mbit/s or 1GBit/s nominal), good software support and COTS higher level safety
protocol stacks like openSafety, EtherCat, Powerlink, AFDX, etc.

The nominal information flow and processing sequence is shown in appendix A.2. At
first, a challenge-response signature watchdog check is executed between all parties. This
ensures that every component is still operative and able to process further requests. Note
that the watchdog check does not make any statement on the correct functioning of any
device involved. Asynchronously to the regular, fixed system cycle in the computing
elements (NOM and SMON), the input stages collect all incoming data packets and store
them for retrieval. After the watchdog check, but still at the beginning of each time cycle
(also called time step, or system time step in this work), the NOM requests the input
data collected. An adequate time offset may be required by design to allow for all sensors
to stream their input data to the cluster LRU. The input stages consecutively forward all
collected data to the NOM and SMON. This aspect is important, because if and only if the
input data is available to both parties in the nominal / monitor configuration (information
redundancy), can true independent monitoring be claimed which is by definition in today’s
standards already a form of hardware fault tolerance or systematic fault tolerance. Based
on the input values, both the NOM and the SMON compute their set of result for the
critical system functions. The result of each computation is exchanged and compared
between the two, which may happen at a defined handover point in time, or also in an
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asynchronous fashion. The latter would most likely be the adequate choice if the SMON
is also based on a multicore processor. If the comparison is successful (bit-perfect for
discrete states, range comparison for continuous output variables), the results are packed
into the appropriate data bus messages and signals, and transferred to the output stages.
If the check fails, an appropriate action is carried out, based on the desired failure mode
of the device and other criteria, like the criticality of the false output result (see chapter
3). In order to secure the transfer to the output stages and avoid double transmission,
either the SMON or the NOM could only provide a higher order checksum of the output
data stream (simple cyclic redundancy checks or others, see [HP10] or more sophisticated,
cryptographic checksums like SHA, WHIRLPOOL, etc. see [2718]) which is compared at
the bus interface controller to the checksum he computes for the output data stream. If
double transmission is permissible in terms of bandwidth and timing, a simple bit-wise
comparison may be employed to detect erroneous data streams from the NOM or SMON.
The time step ends with the transmission of the computed output results by the bus
interface controllers.

2.2.2 Board-Level Function Allocation

Based in the impact level classification introduced in section 2.1.2, we now distribute the
IL0 to IL2 functions on the board level. Since we discuss the individual LRU here, which is
part of a cluster, a certain set of IL0, IL1 and IL2 functions have been allocated beforehand
to this specific LRU. Note that in most cases, IL2 functions will be executed on all cluster
LRUs to reach a high level of fault tolerance and availability. An IL1 function might
be allocated to a subset of units within the cluster, depending on the desired degree of
redundancy for a specific function. IL0 functions could be allocated based on remaining
free computing capability (after allocating IL2 and IL1 functions) without any special
constraints.

IL2 function allocation is driven by the requirements for fault detection, single fault
tolerance and application domain specific certification aspects which we will discuss later
in chapter 3. As shown in figure 2.5, we allocate the IL2 functions to both the NOM and
SMON. Together with the input data being available for both the NOM and SMON, this
already provides true dissimilar hardware fault tolerance. We did choose this allocation
specifically for several reasons:

• Re-use of algorithms for nominal and monitoring channels. This avoids the develop-
ment of monitoring algorithms. Usual methods for software dissimilarity should be
applied when demanded by the applicable certification standards to claim freedom
of common mode errors related to software.

• A hardware fault tolerance based configuration is stronger than a monitoring based
configuration for industrial certification. One of the major problems of certification
in the industrial domain is to determine the diagnostic coverage provided by a
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Figure 2.5: Single monitor cluster LRU function allocation and distribution

monitoring solution for a highly complex COTS device with limited/none design
data access. When providing hardware fault tolerance with information redundancy,
we avoid this pitfall. See chapter 3 for more details.

• Straight-forward monitoring information flow. NOM and SMON follow the same
basic timing cycle of input, compute, cross-compare, and output. This results in a
less complex configuration and better maintainability over the unit’s lifetime.

• Either the NOM or the SMON is able to provide a functional degradation path, when
one of the two units failed transiently or permanently. The permissible degradation
scheme is dependent on the overall redundancy and availability concept of the high-
availability cluster. The SMON could, for example, continue to provide output data
when the NOM has failed or is about to restart due to a transient fault, flagging the
data as “low trust” for the smart actuation elements or actively drive the system
into a safe state. Holding up one channel when the other one has failed aids in
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re-synchronization with the cluster, which is faster on a board-local level when only
the restarting NOM or SMON needs to resync to the LRU internal cycle of the
remaining second channel (either NOM or SMON, depending on which one has
been restarted). This reduces downtime or the time in a degraded state, which in
turn raises the availability of the whole cluster.

• The IL2 functions are replicated throughout the cluster. This results in a high-
availability configuration, with numerous output results per function in each time
step for cluster-wide voting or voting at the smart actuation elements in the system.
If the number of LRUs within the cluster (or multiple clusters) is large enough, the
cluster may be divided into several IL2 function pools, resulting different sets of IL2
functions allocated to a pool and the cluster LRUs participating in each pool.

IL1 are quite different to IL2 functions and therefore require special care in terms of
allocation and distribution within the cluster. Il1 functions can be very resource heavy
(consider mission algorithms, algorithms that involve map data, environment detection
with object classification, etc.) which make it very difficult to provide on-board redun-
dancy for IL1 functions. Doing so would result in very high resource demands on the
SMON. So far, the only functions allocated to the SMON are the IL2 functions, which
are functions predominantly in the form of control algorithms and state machines with
limited demands. This permits a low-power or small processor solution for the SMON,
depending on only the IL2 computing demands as the main driver (and of course protocol
decoding and the monitoring we will cover shortly). We therefore decided to not move
any IL1 functions onto the internal monitoring path, resulting in:

• Monitoring and redundancy of IL1 functions is provided via the cluster, not the
individual compute cluster LRU. Note that the single LRU is able to run multiple
IL1 functions, depending on the processing capabilities of the NOM (e.g. number
of cores, memory bandwidth, interface bandwidth, etc.). The compute cluster then
provides multiple instances of a critical IL1 function, resulting in redundant output
results for cross comparison or voting within the lower level IL2 functions which
depend on the output results of the IL1 functions. This already applies to a cluster
of only two units (cross comparison only) and scales well up to high numbers of
LRUs in a cluster for large, complex systems.

• Asynchronous compute path, without involving the internal monitoring. IL1 func-
tions are usually less time sensitive, with higher cycle times compared to the high
frequency, hard real time IL2 functions. Separating the IL2 and IL1 in terms of
monitoring allows for the SMON to feature a smaller, more deterministic software
architecture with less overhead, resulting in a simpler and less costly monitoring
solution. This is especially true when considering the safety analysis and safety
requirement specification.
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• IL1 functions are offered advanced degradation strategies by the cluster. If for
example, the number of LRUs in the cluster is reduced to failed compute cluster
LRUs, some IL1 functions could be shut down or being executed in a degraded mode
with voting downgraded to cross comparison, while other, more essential functions,
are still allowed to be executed redundantly with voting. IL1 functions can also be
scheduled dynamically within the cluster by activating or deactivating them on the
individual cluster LRUs, effectively moving the physical computing location of IL1
functions within the cluster (common in distributed systems, see [Gho14]).

• While IL2 functions are mostly single core applications, with diminishing returns
when executing them over multiple cores 6, IL1 might benefit from a multicore
scenario. This is another reason for not moving any IL1 functions to the monitor,
to keep resource demands on the SMON as low as possible. Another aspect here is
the usage of non-certifiable operating systems for IL1 functions in a hyper-vised or
virtualized environment on the NOM for future applications which provide a better
infrastructure and COTS algorithm suites for many applications like machine vision
or knowledge-based decision-making.

Lastly, IL0 functions are not part of any monitoring or redundancy strategy and are
scheduled as needed to fill up remaining computing resources in the NOM. They may fail
at will when the NOM of a specific compute cluster LRU fails. This is tolerable, since
IL0 functions are non-critical, comfort functions. Alternatively, IL0 can be executed on
a different set of LRUs throughout the system to remove their workload completely from
the high-availability cluster. But in the spirit of canceling out as much LRUs throughout
the physical system as possible by the compute cluster, we allocated the IL0 functions on
the NOM.

The monitoring functions, also shown in figure 2.5, are part of all programmable
components in the LRU and split up into the LRU supervision and inter-device monitoring
and the internal device monitoring. As mentioned in the previous section, a signature
challenge-response watchdog test is executed in each time step. This holds for all devices,
in order to verify that each major system component is alive at the beginning of each
time step. The system supervision is distributed among the NOM, SMON and the bus
interface controllers, and will be detailed in section 2.4, together with the internal device
monitoring, as part of the software architecture description.

Not depicted in figure 2.5 are all device internal function modules, like the RTOS or
the important IO processing modules, whose allocation and distribution in the multicore

6The scheduling and operating system overhead vs. performance gain (with a more complicated cache
and memory management in a certified setup) might consume the speed gain, especially since modern
pipeline architectures already include the possibility to execute more than one instruction in parallel on a
single core, even in small ARM Cortex-M devices like the Cortex-M7 micro-architecture implementation.
Distributing a high criticality application over multiple cores can also imply certification issues with new
failure modes and added complexity for their mitigation.
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will be discussed in section 2.4 as well. As far as the implementation on a possible FPGA-
based bus controller interface is concerned, they will be treated as black-boxes, since many
possible solutions already exist as COTS code solutions for many industrial and aerospace
bus interface standards.

2.2.3 Coverage of Requirements

The centralized (single) monitor architecture complies to many of the requirements defined
in section 2.1.3. In table 2.2, we discuss the compliance. The design can be fully compliant
(FC), partially compliant (PC) or not compliant (NC):

ID Compliance Rationale
RQ1-RQ5 FC/PC/NC Will be discussed in chapter 3. SIL2 / DALC possible, higher levels

depending on the surrounding system and the cluster.
RQ6 FC IL2 functions are subject to on-board cross comparison and are

executed redundantly within the cluster. The output result is only
emitted if the cross comparison is successful. IL1 functions however
might produce wrong results since they are compared / voted on
the cluster level.

RQ7 FC The LRU can passivate itself if a cross comparison error is detected
or if the internal monitoring in the NOM or SMON flags an error.

RQ8 PC Only possible via the cluster with multiple units. The unit is only
able to provide a silent failure mode with one processing channel
remaining, and only single, non-checked output results. If this is
permissible on the top system level (safety assessment), a single
LRU may initiate state transitions into a safe state.

RQ9 FC LRU is able to shut down safely after a severe fault has been de-
tected in one of the processing channels or trigger a restart of the
failed channel while maintaining the safe state with the second
channel.

RQ10 NC The single monitor architecture cannot provide a true fail-
operational failure mode, since no cross comparison can be car-
ried out with only one processing channel remaining. The output
results are therefore no longer trustworthy after a single failed in-
ternal channel.

RQ11 PC In essence the architecture is compliant, but only with certain en-
vironment considerations. See chapter 3.

RQ12 FC Full monitoring for IL2 present, internal monitoring for error de-
tection as far as possible by the COTS device.
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ID Compliance Rationale
RQ13 FC Hardware dissimilar NOM and SMON reduce common mode failure

probability.
RQ14 FC Provided by the compute cluster when multiple units are present.
RQ15 FC See section 2.4.
RQ16 FC Flexible bus interface controllers can provide large numbers of

legacy interfaces.
RQ17 FC Flexible bus interface controllers can provide many high speed in-

terfaces, depending on their capabilities. Modern FPGAs and even
microcontrollers already offer enough resources.

RQ18 PC This is only fully fulfilled, if not only the NOM and SMON are
dissimilar, but also the redundant bus controller input stages (dif-
ferent manufacturers for FPGAs, different Toolsuites, etc.).

Table 2.2: Single Monitor Architecture Requirements Compliance Matrix. Compliance
denoted with: fully compliant (FC), partially compliant (PC) or not compliant (NC)

In order to finalize the discussion of the centralized monitor architecture, one should note
that this minimalist approach is intended to be used in large cluster scenarios. Due to
the inherent fail-safe/passive failure mode behavior, this architecture does not provide
sophisticated on-board degradation paths for IL2 functions. For large systems, with more
than four compute cluster LRUs or even multiple clusters due to zonal safety consider-
ations, this is absolutely acceptable and already provides a very high resilience against
single component failures. A single failure might be tolerable if the system-wide voting
strategies can cope with less trustworthy sources, for example in a distributed scenario
with smart actuation elements. Most transient errors can be resolved by a controlled
reboot, further enhancing the availability due to a reduced downtime of the single cluster
LRU because of the second channel (either NOM or SMON) issuing a reboot command
for the failed channel and maintaining a safe state until the failed channel is back on-line.

We already covered most of the requirements with this architecture as shown in table
2.2, but nevertheless, this architecture is not suitable for small, space constraint or cost
sensitive applications where huge high-availability clusters are not feasible. The single
monitor approach lacks the feature of a fail-operational failure mode behavior, which is
necessary to guarantee a very low dangerous failure rate in configurations with only two
to three LRUs in a single cluster.
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2.3 De-Centralized Monitor Architecture

The second board-level architecture is focused around a fully fail-operational failure mode
behavior, where a failed single element has no effect, and double failures mostly result in a
degraded operating mode (Contribution C4). Raising the failure mode of the independent
compute cluster LRU to become fail-operational allows us to reduce the number of LRUs
required in a high-availability cluster. The overall failure mode is not affected in this case,
since each unit has to exhibit multiple failures in hardware dissimilar internal channels,
to render the LRU inoperative. While large clusters with more than three units do not
need this high on-board fault tolerance (and should use the single monitor architecture
from section 2.2), space, weight and power constrained applications will greatly benefit
from the reduced number of LRUs required to justify a certain safety level. Note that
for most applications with no secondary safety path or additional safety nets, we need at
least two units in a cluster to overcome common mode failures introduced by the printed
circuit boards (board cracks, broken tracks and vias, de-lamination, etc.), the physical
enclosure, and environmental effects.

2.3.1 General Architecture

In order to provide the required fail-operational behavior for IL2 functions (RQ10), the
architecture has to provide at least three independent sources of output results per time
step for these functions. If only two sources are present, checking of output results is no
longer possible with a single failed computing channel on the unit. For a sophisticated on-
board fail-operational mode however, verified output results are a must, especially after
a single fault has occurred. When looking back at the single monitor architecture from
section 2.2.1, one should note that it features four independent computing devices: the
multicore-based NOM, the monitoring channel (SMON), and two (likely) FPGA-based
output stages. From there on, we perform the natural conversion from a single monitoring
channel, to a distributed monitoring on all independent computing devices (with sufficient
computational resources) on the platform. This cancels out the dedicated monitoring
channel, and provides a hardware fault tolerance equal to the number of channels, which
execute the IL2 functions besides the NOM. Depending on the application environment,
and considering current developments in SoC integration (especially FPGA-based SoCs
with a hard multi-core cluster) we propose the architectures depicted in figure 2.6 and
figure 2.7.

Note that the second DMON architecture is more future oriented, and offers outstand-
ing modularity due to the FPGA fabric used for implementing bus interfaces inside the
distributed monitors, alongside with the dedicated hard IP cores for board-internal data
links.

As shown in figure 2.6 and figure 2.7, the nominal compute channel (NOM) is pro-
vided by a multicore processor (along with its volatile and non-volatile memory, power
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Figure 2.6: Distributed monitoring architecture high level block diagram, based on COTS
microcontrollers and optional high-speed interfaces

management circuitry, etc.). Instead of a single, dedicated monitoring channel, we moved
the processing of the redundant output results into the bus interface units. This leverages
the fact that future microprocessor generations and also FPGA-based SoCs already offer
enough computational resources for the system functions we will allocate to them. While
they still provide the bus interface characteristics, like protocol decoding and the store-
forward behavior of input data, we transformed them into distributed monitors (DMON)
for the nominal channel. In order to be able to interface with legacy equipment and cur-
rent top level system designs, they offer various low-speed interfaces (like CAN, low speed
serial busses, special legacy busses like different ARINC flavors for example, via dedicated
on-chip units). The LRU internal busses are dedicated high speed links, established be-
tween each DMON and the NOM. A cross-link between the two DMONs ensures that IO
data can be exchanged, in case the NOM becomes unavailable or one of the interconnects
to the NOM is lost.

The major difference between figure 2.6 and 2.7 lies in the way the external high-
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Figure 2.7: Distributed monitoring architecture based on re-programmable SoCs

speed interfaces are handled, which also impacts the data-links between the NOM and
the DMONs, and between the DMONs itself. The addition of redundant FPGA-based
high-speed interface controllers is driven by the fact that today’s solutions either offer a
lot of legacy field bus interfaces 7 or large numbers of high speed interfaces 8, but not a
considerable combination of both in a single package. In addition, processing (floating
point) control algorithms on an FPGA is not an ideal device usage, and considering
the substantial efforts for the certification of configurable logic in various application
domains (namely the aerospace industry), we consider a hard-IP solution in the form of a
COTS microprocessor a better choice for this task. Additional topics like maintainability,
modification costs should also be considered. Therefore, we split the high-speed interface
processing from the legacy field bus interface and functional monitoring.

However, the architecture presented in figure 2.6 is somewhat depending on the in-
terface between the DMONs and the redundant FPGA output stages in order to be a

7Those devices originate from the automotive or industrial domain where high integration with many
lower speed field bus interfaces is required to lower cost.

8High counts of on-device Ethernet and other high speed busses are found in networking/telecommu-
nication processors where typical field bus interfaces are not needed.
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practical choice for real world applications. If the DMONs offer only one high-speed bus
interface as depicted, the interface between the DMONs, potentially via the high-speed
output stages) becomes critical, in the sense that it limits the capability of the LRU
to fully operate all external high-speed interconnects (which may transfer safety critical
data) in case of a NOM failure. Connecting the DMONs and the FPGAs via interfaces
which do not feature enough bandwidth requires a functional degradation strategy (or
emergency operating mode), which either limits the bandwidth on the external interfaces,
neglects non-critical traffic, or triggers a shutdown of certain high-speed interfaces while
the unit is in a degraded state. The exact nature of the DMON-DMON interconnect
required and the possible choices for the high-speed interface controllers is strongly de-
pendent on the application context and will result in some trade-offs. However, if the
DMON microcontroller offers enough high speed peripherals, this issue might not arise
after all. Note that the addition of further complex devices (more complex monitoring
devices, and still two FPGAs for external interfaces), effectively lowers the mean time
between failures (MTBF) of the architecture by design. Also note that the architecture
does not impose restrictions on the processor choice within the DMONs. COTS multi-
core processors, COTS safety specific processors, or simple microcontrollers are all valid
choices depending on the application context and processing requirements for the function
allocation described in section 2.3.2.

One way to overcome the internal interconnect issue is to fuse the DMONs and the
external high-speed interfaces, as shown in figure 2.7. SoC with dedicated hard IP-
cores (fixed, non-modifiable logic) coupled with a medium to large SRAM FPGA fabric
began to show on the market around 2010, and have since then evolved in performance.
These devices are commonly used for tasks like image processing, embedded networking
applications or sensor fusion applications, where the integrated (multi-)core cluster fetches
data from the FPGA fabric which provides the physical interfaces and preprocessing like
decoding, filtering or transcoding. The beauty of these devices lies in their configurability
in terms of interfaces, while also offering the fixed core cluster (mostly based on application
cores like the ARM Cortex-A architecture) for higher level operating systems and vastly
improved software support. As an addition, they also offer hard-IP peripherals, like
Ethernet, serial ports and DRAM/ROM interfaces directly connected to the hard core
subsystem. This internal architecture allows plenty of possible board-level architectural
configurations. As shown in figure 2.7, the NOM and DMONs are now connected via
dedicated high-speed interconnects, which are not constrained by the DMONs and can be
chosen based on application requirements in terms of bandwidth and complexity. Note
that we encourage to use hard-IP peripherals for the board-internal interconnects, since
the fabric may be disabled or its configuration erased in order to remain in a safe state
(true fail-silent by erasing the logic required to communicate). If only hard-IP peripherals
are used, the connection between the NOM and the DMONs may still be kept alive in
order to perform orderly resets or conduct for example internal fault logging. The external
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interfaces, either high-speed or legacy field busses, are connected in two redundant data
bus groups like in the centralized monitor architecture (see section 2.3.2) via the SRAM
FPGA fabric. In programmable logic, the particular interfaces for each required data bus
standard can be implemented and is often times already available as COTS pre-certified
soft IP-cores (solutions exist for example for AFDX, EtherCAT, Ethernet, CAN, etc.).
When the overall system architecture is centered around Ethernet-based switched busses,
one could also opt for only COTS SoCs with numerous on-board Ethernet interfaces. See
chapter 4 for an implementation example.

Note that some critical board-level modules, like the power supply, clock generation
or interface protection circuitry, is not shown in the general overview figures. In order to
not compromise the function allocation and functional degradation strategies described
in section 2.3.2 and to overcome added single-point of failures, these shared modules shall
be redundant as well. The NOM and DMON modules already include the necessary
auxiliary circuitry for their processor to operate, for example the local power regulation
(core supply, SoC domain specific supplies) via dedicated integrated power management
controllers, clock oscillators or local DRAM and ROM, resulting in zero overlap between
the three functional modules in these respects. As a result, off-the-self modules are likely
available and offer a convenient solution and true modularization of the final LRU hard-
ware platform. Using System-On-A-Modules (SOMs) for the NOM and DMONs also
significantly reduces the complexity of the underlying carrier-board which holds these
modules, since it merely contains routing, the carrier power supply (to divide the input
power from higher bus voltages down to reasonable logic levels), external bus interface
physical transceiver circuits, as well as hardware supervision logic like watchdogs or volt-
age supervisors with glue-logic. Adding redundancy to the carrier power supply finally
reduces the remaining single failure points down to the carrier PCB-laminate and copper
itself and is easily achieved by duplicating the input power supply (along with protection,
filtering and input connector pins) with power OR’ing (hot-standby) or a fail-over logic
(cold-standby). We concluded at this point, that the remaining common-mode failure
source, the carrier PCB, should be compensated in the computing cluster and not in the
individual LRU itself. Despite the high redundancy in the cluster (with at least two units
in the small configuration, and likely more than 4 in larger systems), the PCB should
be designed with proper design rules and common defensive layout strategies in order to
offer some degree of resistance against laminate cracks, broken vias or de-laminated or
broken tracks.

Also note that we do not recommend scaling this architecture by adding more DMONs.
Increasing the number of monitoring and interface channels in this design should only be
considered when more than two, physically independent and dissimilar external high-
speed or field bus groups exist in the top-level system architecture. If this is the case
(for example, due to zonal safety constraints) a third DMON might offer additional fault
tolerance and functional degradation possibilities which could lead to better overall system

47



2.3 De-Centralized Monitor Architecture

fault tree cut sets. However, one has to consider the trade-off between LRU complexity
and complexity, LRU internal communication overhead, LRU component MTBF (also
consider the common carrier PCB) and the complexity of the functional degradation
schemes. We strongly believe, that the LRU architecture should be kept as simple as
possible, with added fault tolerance provided by the computing cluster which scales very
well with top-level system architectures and required dangerous failure probabilities. The
same recommendation holds for the NOM. If more computing resources are needed, a
higher-end multicore processor with more cores or higher clock frequencies should be
used. Our architecture offers all possible freedoms in this regard, as long as the internal
interfaces are provided by the implementers’ SoC of choice and cooling/power constraints
are met with respect to the surrounding environment context.

2.3.2 Board-Level Function Allocation

With the cluster-wide IL2 and IL1 system function allocation over the whole cluster and
the basic allocation scheme presented for the single monitor architecture (both discussed
in section 2.3.1), we now move on and allocate the system functions with different impact
levels to the on-board units of the distributed architecture.

As shown in Figure 2.8, the allocation is very similar to the single monitor archi-
tecture. Only IL2 functions are distributed among the DMONs and the NOM, while
IL1 functions are redundant via the compute cluster and no redundancy is present for
IL0 functions. In section 2.2.2, the main drivers for not allocating the IL1 functions to
the internal monitoring are lower performance requirements on the single monitor chan-
nel and better utilization of the numerous multicore NOMs within the compute cluster.
While these two arguments still hold (also influencing the decision) the workload for the
DMONs in the distributed monitoring architecture is slightly different than for the SMON
in the single monitoring architecture. In addition to the allocated system functions, the
DMONs also process all data transfers via the legacy field bus interfaces and, considering
the FPGA-SoC variant, the high-speed bus interfaces. Depending on the actual bus load
and the interface speed, the I/O packet processing may consume significant resources
at the DMONs, which in turn reduces the remaining compute time (within each system
time step) for allocated system functions and their internal voting. Even in the light
of future FPGA-based SoCs with a powerful multicore subsystem, it is not beneficial
to explicitly force the usage of very high-powered (computational wise, but also power
wise) for most applications, since the effective tripling of the thermal design power of
the involved processing elements makes passive cooling almost impossible in harsh en-
vironments. When considering the more conservative variant with dedicated FPGAs for
handling the high-speed external interfaces, this problem persists. The DMONs employed
in this case must feature lots of dedicated legacy field bus interfaces, which reduces the
COTS microcontrollers available on the market quite significantly. The only devices on
the market at the point of writing this work are domain specific safety controllers, mostly
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Figure 2.8: Distributed monitoring cluster LRU function allocation and distribution
(COTS FPGA-SoC variant)

designed for automotive drive-train and motor control applications. These devices offer
lots of features, especially in terms of reliability and inherent safety features, but offer
very limited computing power (in the 200-500MHz domain) and are generally very re-
source constrained in terms of RAM and ROM. The expandability of these devices with
external memories is very limited, since these features are not explicitly demanded by the
automotive customers of chip manufacturers. Future expandability, upgrade paths and
modularity is reduced, since one binds to a specific family of devices with an ecosystem
attached, like safety enabled power management controllers (also called “System Basis
Chips” or “SBCs”). In this constraint environment, IL2 function allocation is also not
possible, given the workload on the microcontroller DMONs due to the IL1 functions and
the interface handling. Another issue is the I/O and communication data link between
the microcontrollers and the dedicated FPGAs, as discussed in section 2.3.1. Note that

49



2.3 De-Centralized Monitor Architecture

the FPGAs should not process any system functions, since the type of processing involved
is generally better suited for microprocessors and the certification effort (especially in the
aerospace domain) for complex FPGA designs is extremely time and cost consuming. The
FPGAs should only contain a minimum set of functions required to serve the high-speed
interface, with package decoding executed at the NOM and the DMONs.

While the microcontroller plus FPGA variant offers a temporary solution, and might
introduce some reuse of microcontroller or FPGA software from previous system genera-
tions, we advocate for the FPGA-SoC based variant and will focus on it for remainder of
this section and the rest of this thesis.

Alongside the regular system functions, the obligatory internal monitoring tasks for
each computational device are executed locally. This includes device specific configuration
and validity checks (configuration of peripherals, status register monitoring, etc.) as
well as RAM and ROM checks carried out periodically to identify silent corruption and
upsets, as well as persistent defects in the devices. Also, part of the monitoring tasks is
an inter-device, windowed, challenge response watchdog, which is executed at least once
per time step to verify that all devices are responsive and can be addressed. Note that
the quality of a watchdog does not permit checking further device functions in the sense
of certification, even if a complex interaction between device internal peripherals, bus
matrices, a processing core, memories and software is needed to successfully complete the
check.

Not depicted in Figure 2.8 are the additional I/O-tasks, which are allocated at the
DMONs for interface data preprocessing and lower OSI layers. While each device, also
the NOM, will execute some form of interface data processing 9, most the work is shifted
to the DMONs since their direct connection allows for faster cycle times in the I/O
processing. Some parts can also be shifted towards the FPGA fabric, depending on
the actual field busses used. Hard coded frame decoding in the FPGA fabrics should be
avoided whenever possible (this does not include support functions, for example data error
detection and correction offloading (CRC, forward error corrections) or restructuring into
meaningful data structures for the processing cores). A fixed implementation prohibits
easy maintainability (future expansions or slight frame modification on the field bus) and
reuse of the LRU in other application contexts. In addition, the verification effort and
re-certification costs (due to the modification in the FPGA logic) may be higher a result
in larger deltas compared to a simple software adaption of decoding routines executed in
the processor core subsystem of the FPGA SoC.

Since the distributed monitoring architecture inherently offers multiple output results
for IL2 functions in each time step, some form of voting must be executed in the system.
Dependent on the top-level system topology, the degree of redundancy by the LRU cluster
and possible smart actuation, one may perform the IL2 output result voting as following:

9To claim a simpler store-forward scheme for the input and output data at the DMONs, which in turn
decode the input data themselves for their allocated IL2 functions
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• Intra-LRU voting, resulting in a single output result per LRU

Voting is executed locally in the individual LRU by evaluating a voting algorithm
on the DMONs. The NOM passes the output results to the DMONs. The DMONs
exchange their IL2 output results. Based on these three values, a single output
value is computed based on the individual needs of the specific IL2 function. The
DMONs again exchange their voting results, and check whether the results fall
into a specific validity window. If the check is positive, each DMONs transmits its
computed voting results independently via the external interfaces. If a mismatch is
detected, no output result is transmitted. The mismatch is handled internally and
may eventually result in a reboot of one device (NOM or DMON) or the whole LRU.
One should consider the high communication overhead in the final DMON voting
stage and only use this method if very little redundancy is given by the cluster (for
example only two cluster LRUs) or if the top-level system architecture demands
one single output result per redundant communication channel. Note that there
are still two independent results transmitted over the redundant external data links
(hot redundancy).

• Intra-cluster voting, resulting in a single output result from the cluster

After the NOM results are passed to the DMONs, each DMON compares the NOM
result against its own result. If both values fall into a specified valid window, the
DMON calculates an application specific average of the value pair and transmits
its output results via the CCDL to the remaining cluster LRUs. If a mismatch is
detected, the DMONs exchange their output results and again perform the valid
windows check plus averaging. If a valid combination is possible, the averaged
result is transmitted to the remaining LRUs in the cluster. Each LRU in the cluster
repeats this process, resulting in the exchange of output results between all LRUs.
After a second check and averaging phase over the LRU results, a single LRU in the
cluster is assigned in a deterministic way (fixed IDs, deterministic rotating scheme)
to transmit the final pair of output results via the redundant external data bus
interfaces to the actuation elements.

• Voting on smart final elements

The individual cluster LRU does not execute any voting of output results. The
NOM results are passed down to the DMONs, where the individual DMON checks
the result against its own IL2 functions output results. If the check is successful,
the result is passed on to the external bus interface. If the comparison does not
fit in a specified validity window, the DMONs exchange output results to identify
the false result and transmit their averaged output value (over the correct results)
via the external interfaces. No voting is executed in the cluster, where each LRU
also transmits their output results to the actuation elements. In each time step, the
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current internal status is exchanged between all cluster LRUs, including origins of
false results, internal error counters, etc. to provide premature failure warnings and
cluster-wide status availability in case of sudden LRU failures. The smart actuation
elements itself collect all available output results from the cluster and perform an
application specific voting or averaging.

The voting on smart final elements offers the advantage that no distributed voting scheme
is required and synchronization/data exchange delays within the cluster and the LRU are
minimized. Note that the number of output results can reach from six (cluster of two LRUs
with distributed monitoring, producing three results each) up to 10 (cluster of five LRUs
with single monitoring, producing two results each) or even more when clusters are made
up of distributed monitoring LRUs. Building large clusters out of single monitoring LRUs
is currently the better option in terms of component cost and thermal considerations. The
trend towards FPGA-based SoCs is promising and will surely enable future solutions based
on the distributed monitoring solution for large clusters, however. While we established
a solid base for IL2 functions, IL1 functions offer no onboard-redundancy at all. Instead,
they employ a simplified intra-cluster voting scheme, where in each time step, output
data is exchanged between the cluster LRUs via the cross channel data link, followed by
a suitable compare algorithm leading to validated and maybe consolidated results.

2.3.3 Coverage of Requirements

The distributed monitor architecture complies to all the requirements defined in section
2.1.3. In 2.3, we discuss the compliance. The design can be fully compliant (FC), partially
compliant (PC) or not compliant (NC):

ID Compliance Rationale
RQ1-RQ5 FC/PC Will be discussed in chapter 3. SIL2 / DALC possible, higher levels

depending on the surrounding system and the cluster.
RQ6 FC Full on-board fault tolerance, which offers at least single fault tol-

erance, and up to dual fault tolerance with degradation for IL2
functions. IL1 functions are redundant in the cluster. No unveri-
fied IL2 results are emitted by the LRU in any case.

RQ7 FC After multiple errors, the LRU passivates itself with the remaining
good processor when the two other processing elements have failed.

RQ8 FC Single faults do not affect the ability of the LRU to execute IL2
functions and check output result validity. After a second consecu-
tive fault, the remaining processing element is able to serve output
values for a safe state transition before passivating the LRU or
maintaining the safe state.
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ID Compliance Rationale
RQ9 FC See RQ8.
RQ10 FC The operational capability of IL2 functions are fully retained in case

of single/dual failures and permit to maintain a safe state, even if
operating in a single LRU environment in case all other cluster
LRUs have failed catastrophically.

RQ11 FC The unit offers at least single fault tolerance, in certain scenarios
even higher degrees of fault tolerance. See chapter 3.

RQ12 FC Full hardware and functional redundancy for IL2 function allows for
enhanced on-board fault detection. Monitoring between processing
elements, and on each individual element, ensures premature error
detection.

RQ13 FC At least two subsystems must fail until the LRU can no longer op-
erate. DMONs are fully independent and can be designed hardware
dissimilar without major efforts.

RQ14 FC Provided by the compute cluster when multiple units are present.
Only two LRUs provide adequate protection for most applications.

RQ15 FC See section 2.4.
RQ16 FC Full modularity given by FPGA-based output stages with COTS

IP cores for legacy field bus interfaces.
RQ17 FC High speed connection between the NOM and DMONs, as well

as fast and direct FPGA based IOs (Gigabit SerDes Lines) provide
enough bandwidth for lots of interfaces, even if cost-effective COTS
devices are used – higher-end devices provide an easy upgrade path
for large amounts of interfaces.

RQ18 FC NOM and DMON are inherently hardware dissimilar. To fully can-
cel common mode failures, the DMONs should be hardware dis-
similar as well. Since the current COTS devices on the market, at
the point of writing this thesis, offer similar feature sets and capa-
bilities between manufacturers, we consider this absolutely feasible
with reasonable efforts.

Table 2.3: Distributed Monitor Architecture Requirements Compliance Matrix. Compli-
ance denoted with: fully compliant (FC), partially compliant (PC) or not compliant (NC)

In order to finalize the distributed monitoring architecture, one should note that this
approach was in the first place intended for small and medium systems. The ability to
operate in a high availability scheme with only two units permits the use in most au-
tonomous applications where the cost, weight and power footprint should be minimal.
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Nevertheless, the exceptional modularity of the distributed architecture allows for easy
future upgrades, as well as the usage in larger clusters for highly critical system architec-
tures with three or four units. The on-board IL2 function crosschecks enable advanced
functional degradation methods and follow our approach of known-good output results
from each cluster LRU for IL2 functions. The allocation and distribution of IL2 functions
within the cluster remains open for the system designer and does not restrict the design
freedom in any way, while offering multi-fault tolerance by design. The modular output
stages are not bloated by large IL1 functions, which are only executed on the NOM. They
can be scaled by adapting the NOM to the needs of the specific application scenario to
provide the resources needed for more or less complex algorithms.

Future designs based on the distributed monitoring architecture may be more suitable
for larger clusters due to the expected price drop for higher-end SoCs (both standard
and FPGA-based) and the decrease in fabrication sizes on the DIE, resulting in lower
thermal design power and lower LRU power consumption. The added flexibility when the
DMONs feature FPGA-based SoCs is especially useful for the future upgradeability and
flexibility in terms of interfaces. With wise component choices on the board, the design is
also inherently hardware dissimilar, eliminating most common-cause failure paths in the
LRUs itself.

2.4 Software Aspects

In the previous two sections 2.2 and 2.3 we presented the high-level system architectures of
the centralized and distributed monitoring approach, along with some advices on possible
hardware choices. We will address further hardware topics later with the exemplary
prototype in chapter 4 and focus on software aspects in the following.

Both presented architectures are included in the software discussion, because most
software architecture aspects are not directly related to one of the two board level archi-
tectures. This is especially true for the nominal channel (always realized by a multicore
processor), on which will in the focus in this section. We will not discuss high-level archi-
tecture aspects for single core processors, since we consider this to be state of the art for
many decades in various application domains. On the multicore devices, will address the
high-level software architecture and modules involved, however. This also includes oper-
ating system specific topics, like multiprocessing strategy (asynchronous / synchronous),
inter-core communication, as well as internal device monitoring and interface data pro-
cessing (section 2.4.1). In section 2.4.2, we will discuss the mixed-criticality scenario with
possible ways to spatially isolate system functions (which we will refer to as “processes”
for the remainder of this section) with different impact or criticality levels and build a
temporal isolation between them to establish a known-interference scenario. Instead of
claiming interference-free operation, which is not possible with COTS components, we ac-
cept the contention and conflict scenario inherent to the multicore and discuss solutions
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based on commonly available internal units. The basis of this discussion is provided by
Mancuso et. Al. [MPC+15], who developed a promising approach for de-conflicting the
multicore from a software perspective. The software aspects will be finalized in section
2.4.3 by discussing the board-level system supervision (the only centralized / decentralized
monitoring specific subsection) and inter-processor software modules. The implications on
certification in conjunction with the system architecture will be discussed later in chapter
3.

2.4.1 High Level Software Architecture

As previously pointed out in section 2.1, the only reasonable application of multicore-
based LRUs lies in the combination and centralization of many system functions on a
single computing channel. The inherent mixed-criticality character, given by the side-by-
side execution of these functions, has certain implications on the software level. From
a certification and engineering standpoint, the high-level software architecture should
therefore address:

• The general processing scheme – Asking for a decision between symmetric and asym-
metric processing on the multicore SoCs, including the individual rights and privi-
leges, as well as the allocated function set and the execution of RTOS kernels (single
vs. distributed vs. master/slave kernel instance(s), see 2.4.1.4),

• The nature of inter-core communication – Defining what and how data is exchanged
between cores and consequently between different system functions as well as the
outside world via the external interfaces,

• Interface handling – Defining where and how the interface handling is implemented.
Is a single core or RTOS instance handling the full I/O workload, or is the interface
processing allocated to each individual system function resulting in a distributed
I/O processing?

• Internal monitoring and local integrity checks - Defining what device-internal checks
can be executed on a regular basis to ensure the integrity of certain configuration
registers, memory areas in the ROM and RAM and proper functioning of shared
and core-local function units with on-line tests.

Addressing the above points, we propose the high-level software architecture depicted
in Figure 2.9. The figure shows an abstract multicore with n usable cores Cn. The cores
are connected to shared resources (bus matrices, memories, intermediate multi-processing
supervision units, etc.) and shared peripherals (high and low speed interfaces). Each
processing core is controlled by a dedicated RTOS instance. Included in each instance is
a defined set of tasks which are scheduled by the RTOS core, for example on a priority,
deadline or time division basis. We suggest an asymmetric multiprocessing scheme (AMP,
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Figure 2.9: Proposed multicore high-level software architecture for mixed-criticality sys-
tems; SMON configuration

see [Mit16]), where not all RTOS instances can access the shared peripherals. Instead,
the cores are divided in three functional groups:

1. Supervision/Management/Monitoring

2. IO-Processing

3. Application Core (Execution of System Functions)

As depicted, groups one and two have been merged on C0. Depending on the effec-
tive number of cores which must be supervised and the workload generated by internal
monitoring tasks, as well as the total interface bandwidth and number of data packages
to be processed by the IO-Tasks, it may be necessary to distribute the first and second
functional groups to separate cores to guarantee timely I/O processing. In Figure 2.9, the
remaining cores execute only system functions (user applications, with different critical-
ity levels). Splitting the application, IO and supervision workloads on different cores has
several implications from an architectural and performance perspective:

56



Chapter 2: System- and Board-Level Architecture

• Better Determinism due to interrupt offloading

Cores executing primarily application code are not interrupted by interface inter-
rupt processing. This results in a more predictable and deterministic execution of
application tasks

• Seperation of Task sets

Each core can be assigned a clearly defined task set at design time. Assignment
and scheduling of tasks can be further grouped and analyzed, in order to minimize
for example inter-core communication overhead (execute small control algorithms
which heavily exchange data locally on a single core, move higher system control
functions to a different set of cores).

• Core Utilization

Individual cores (or core-subgroups) can execute different tasks in parallel. Despite
the nature of classic real-time embedded systems with their "reception, data process-
ing (computations, filtering, extractions. . . ) and transmission" [EAS18a, Footnote
6, p. 38] behaviour, the monitoring, IO-processing and application tasks can be ex-
ecuted in parallel on different cores. This is especially suitable, since these three
functional groups can easily be designed with dedicated data transfer and synchro-
nization barriers. For example, when the initial IO-phase is finished and critical
control loops are executing on different cores, C0 is free to conduct internal checks
and tests. Untouched by the hard-real-time cycle time is an environment detection
and classification suite executing on a different core which exchanges data at a much
lower frequency with the functionally underlying control loops.

• Clear and pre-definable privilege levels

As shown in Figure 2.9, the RTOS instances on each core can be tailored for the
specific function group allocated to a core. If no peripheral access is needed, driver
modules can be removed. This inherently hardens the architecture against some
failure scenarios, for example when a faulty application software illegally calls RTOS
or peripheral functions, leading to a misconfiguration or wrong output data being
sent. In addition, the allowed memory ranges on the shared RAM and ROM can
further be narrowed down, with access to critical configuration data (peripherals,
shared units, etc.) explicitly removed. Since today’s devices offer sophisticated
memory management, it is non-trivial to prove that a SEE or design error in an
application software leads to a privilege elevation in the memory management, when
the respective memory management unit (MMU) mapping tables have not been
configured for critical memory regions.

• Interface Abstraction and Isolation
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Dedicating the interface data handling to a dedicated core (or the local management
core without applications) allows to fully abstract the interface handling from the
cores which only execute applications. The communication with external interfaces,
as well as the decoding of the actual protocol used, is centralized, resulting in less
overhead in the individual application and a stronger separation between system-
specific data bus implementations. Bus specifications often differ significantly from
system to system and disqualify some application modules from being fully reused
over different system configurations. The central IO handling might also be allocated
to several cores, instead of one single core, when large numbers of cores exist (many-
core devices). In addition, the access to all external peripherals can be restricted to
only allow modification by the actual IO processing cores. This isolation is highly
preferred from the certification perspective and provides another layer of safety and
insurance, that sensitive configuration data within the SoC cannot be inadvertently
modified by a rouge application core (Single Event Effects, Programming Errors,
etc.). This includes the memory regions allocated to certain peripherals, as well
as access to the peripherals itself, which can be controlled by so-called system or
platform management units on a core and privilege-level basis (see for example
[Sem16, Section 6.4]).

If a single system function can be paralleled (thus make use of more than one core due
to its internal algorithms), it is possible to distribute certain sub-functions over multiple
cores by creating separate light-weight tasks on different cores which are synchronized by
inter-core signals or barriers. The RTOS should provide these synchronization primitives
within the inter-core communication framework, based on core-to-core interrupts which
trigger rescheduling within the RTOS. Note that we effectively declared C0 to behave like
a local master core (hence the asymmetric multiprocessing classification) in the multicore
SoC, overseeing other cores and handling the I/O communication.

2.4.1.1 Inter-Core Communication

The inter-core communication is an important aspect, not only performance wise, but also
for ensuring proper core separation and safe communication between the cores. When the
same basic principles defined on the upper physical system levels for data bus communi-
cation between different LRUs are applied to the inter-core communication, one can easily
establish a simple yet sophisticated data transfer mechanism. The basic properties of an
adequate solution are related to the common principles of black-channel communication
10 and basically consist of:

• Known Data Frame Layout - Well defined identification fields to differentiate be-
tween different types of data frames, as well as the source and destination

10In the IEC 61508 context, a black-channel is an unsafe communication channel which must be secured
by an overlaid safe communication protocol.
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• Replay Protection – Special purpose fields in the header or footer of a message
ensure that a certain message is only processed once and no old data is constantly
replayed to the receiver

• Data Integrity Protection – Checksums or forward error correction are used to ver-
ify the integrity of the message. The quality of the integrity verification depends
on the complexity of possible alteration scenarios (single/multi/burst errors), the
payload amount and the performance / detection trade off (Are special hardware
units available for checksum/error detection and correction offloading?)

Hence, the effective payload or cross-core RTOS system calls must be wrapped in a
proper frame structure, addressing the above points. The fastest possible way to exchange
data locally within the SoC between cores is the use of shared memory regions between
cores. Certain core architectures also offer means to directly transfer data payloads with
special interrupt request between cores [FS13, Section 3.4.11.4]. However, these means
should be used with caution, since the underlying hardware does usually not provide spe-
cial means to protect or check the given payload (and if so, these hardware units then
become safety relevant. See chapter 3. Transmitting explicit links to a valid memory lo-
cation where a properly secured inter-core communication frame is located via interrupts
should be permissible in terms of certification, since the downstream interrupt processing
functions can verify the identity and validity before conduction further steps. Note that
the inter-core-communication can be supervised by the master core, if required regard-
ing failed transmission, replays, etc., to provide premature failure metrics for functional
degradation strategies resulting in core or device restarts to prevent dangerous failures.

Figure 2.10: Software Architecture, focused on the master and one computing core with
system modules

Figure 2.10 shows the high-level system architecture under a different light, with the
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local master core C0 and a slave core Ci. Like in Figure 2.9, each owns a local RTOS
instance, which is driven by a core-local timer, sending time-tick interrupts to the instance
(primarily intended for scheduling, but also timekeeping or time-stamping, depending on
the use case). The inter-core communication takes place via a per-core shared memory
region with the local master core. To serve the inter-core communication, the master
possesses an ICC-master module, while the slaves handles communication via a client
module. The difference between the two module lies in the supervision and configuration
functionality added to the master. Both need to verify the correctness (integrity) of data
packages for incoming transfers. A second shared memory region transfers watchdog and
resource monitoring data from the slave to the master core. The data (see sections 2.4.2.2
for resource monitoring for temporal isolation) is processed by the watchdog master and
resource monitor master modules on C0 to not disturb task execution on the individual
slave and allow central logging, as well as central handling of abnormal conditions. The
on-device watchdog detects when slave RTOS instances become unresponsive or are unable
to process interrupts (due to failures in the interrupt controller or associated core logic),
a major issue when relying on distributed timing mechanisms to ensure proper hard real-
time behavior. Especially the periodic time tick interrupt is crucial for orderly scheduling
of the task set. For the resource monitoring, the back-channel from the master to the
slave instances is provided via the bidirectional inter-core communication channel. As
shown, the application tasks and the scheduling is controlled by an allocated task list for
each individual slave core. All lists are managed by C0 and can be changed, swapped or
updated during runtime. Since the application tasks can run on any core, one can establish
fail-operation degradation schemes where task lists are loaded dynamically based on slave
core status. For example, a whole task set of critical tasks can be swapped from one slave
to another to restart a failed or abnormal core, or to disable unneeded system functions
when operating in emergency conditions with focus on impact level 2 functions with a
reduced subset of impact level 1 functionality. The application tasks can access I/O
data via virtual channels provided by the inter-core communication. The I/O access is
transparent to the application and could be implemented per pre-existing standards which
use software-defined ports, providing fast (cyclic) or slow changing data (configuration,
status), for example [AEE10]. However, this could be undesirable for some application
scenarios (for example, if existing software should be reused). In this case, one should
consider implementing the optional peripheral extensions as shown in gray in Figure
2.10, and redirect the data access to the inter-core communication as a semi-virtualized
peripheral stub. The control of the respective peripheral remains with C0. Status data
could also be forwarded if required by the application (link status, error counter, etc.)
via the inter-core communication. In addition to the internal monitoring and supervision,
C0 also handles all incoming peripheral interrupts 11. Besides the obligatory time tick
interrupt required by the RTOS and, if required by the processing core architecture, inter-

11For higher core count devices, multiple cores can share the IO interrupt load
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core interrupts for notifications between the cores (new data in shared memory, special
events), the slave cores are freed from the I/O-interrupt load. Lastly, one should note
that all internal supervision is coordinated by C0, which in turn can be checked externally
for its alive-status by other on-board processors, see section 2.4.3 for more. Note that
depending on the board-level architecture of choice (SMON or DMON), the interface
handling, for example polling sensor values or sending output frames to actuators at a
specific point in time, can be handled by the interface units. Especially in the DMON
architecture, the frames could be finally assembled at the DMONs themselves to reduce
on-board round-trip delays, caused by circulating data messages before a store-forward
stage at the DMONs emits the messages to the external equipment via the data busses.

2.4.1.2 Internal Monitoring

Albeit the sophisticated board-level architecture lifts a lot of certification weight from the
multi-core device itself, we still must provide internal fault detection to some degree. This
is mainly due to current regulation, but it is in general very advisable, since the internal
monitoring and supervision can be executed at a much higher frequency (due to the local
access) and has access to lower-level configuration settings within the SoC which is not
possible by external monitoring.

The general goal with device-internal monitoring is on one hand a premature failure
mitigation, which detects configuration, memory or other errors before they manifest as
failures in the form of wrong or missing output data. This adds a layer of safety and helps
to improve availability of the individual on-board channel (NOM, SMON or DMON) by
reducing channel reboots or LRU reboots to clear a pending fault. The internal monitor-
ing is usually specific to the individual device used, along with its hardware characteristics
for detecting internal failures, protecting configurations during runtime (via register pro-
tections) or power, clock and memory error detection units.

On the other hand, internal monitoring is required by most standards for latent fault
detection or as one mean to provide enough evidence to use certain on-chip units for
safety related purposes (ensuring that one or more device characteristic is still met during
runtime). In conjunction with an on-line monitoring, a startup/boot test is mandatory in
almost any standards, which is part of the built-in self-test (BIST) or power-on self-test
(POST). Depending on the nature of the peripheral and its complexity, power on-line and
startup tests greatly vary in their complexity and significance. While configuration checks
are rather simple to implement 12, verifying the correct behavior of transparent units on
the device can be hard at times. For example, complex communication controllers, such as
Ethernet MACs or internal accelerators, like GPUs or neural network accelerators require
a distinct self-test strategy to conduct start-up tests. Some peripherals feature internal

12Memory mapped configuration registers of device peripherals can be compared at run-time against a
set of expected values or can be check-summed (assisted by hardware) and also compared with a stored,
pre-computed known-good value.
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and/or external loop-back-test circuitry that may aid in these tests, or can be stimulated
with special test patterns that verify basic functionality.

A special role is allocated to the RAM and its associated memory controller in most
systems. In terms of hardware, today’s devices feature a highly-integrated memory con-
troller with dedicated transceivers to connect high-speed memory devices. The external
memory devices are located off-device (either on the circuit board, or via package-on-
package designs) and are not only simple memory cells in an array, but also feature
configuration registers to configure the physical interface of the respective device (I/O
drive strength, termination) and timing parameters like clock speed and a large set of
protocol specific time delay values for data transmission and reception, as well as in-
ternal timings of the device. Most controllers do not feature special diagnostic features
for connected memory devices, but rather include forward error correction and detection
logic (ECC), also called single error correction dual error detection (SECDED). The ECC
feature originates from the ever-growing server or high-performance computing market,
where memory related errors (due to SEE or device failures) become relevant due to the
amount of hardware installed. Since ECC memory is one of the key features for transpar-
ently mitigating sparse memory errors, one should in any case opt for proper hardware
support in this regard, especially since the shrink in fabrication technology for SoCs and
memory devices lead to a slightly higher upset rate than previous memory generations
(see [HGG+11], [GHG+12], [KGB12]). If the chosen multi-core SoC does not support
memory ECC, a triple modular redundancy scheme in software could help to mitigate
memory related errors, but introduces a significant performance penalty due to the multi-
ple stores, loads and compare operations involved with critical data stored in the memory.
If the device does however support build in ECC and one relies on integrated hardware
support, those units become relevant for certification.

Thus, the applicant must demonstrate that the integrated unit was designed in an
appropriate process, execute on-line tests to ensure proper operation. Note that our
board-level system design effectively mitigates per-channel errors on the board level, which
also considers catastrophic memory errors and modified data in the individual channel.
This does however not lead to a blank approval but rather significantly lowers the effort
needed on the device level. Internal self-test measures become less critical in the sense
of certification which helps in justifying the measures taken when the concrete hardware
design of the SoC is unknown. For example, claiming a significant on-line test of the
memory subsystem of a complex SoC is nearly impossible without deep design data access
(not feasible in practice), resulting in a lot of assumptions about on-line test coverage and
quality of an on-line test. Without system level mitigation, these assumptions do not stand
up to certification and lead to tremendous project delays and cost increases in the past.
During a certification eff:ort, the applicant could for example face the following questions:
What integrated self-test features does the memory controller of the device come with? Do
we want to use these features and rely on the process of the semiconductor manufacturer
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and his ability to provide in depth evidence on request? If so, what costs are associated
with the evidence? Can the included error detection and correction measures be disabled
temporarily during runtime to introduce known errors in a certain memory region for an
on-line test of this feature? These and further questions arising when in the process of
evaluating potential SoC candidates should be answered as soon as possible in the design
process. The availability and usability, not only in the technical sense but also in terms of
certification, is one of the major pitfalls for future projects working with multi-core SoC
technology. Software can only partially provide solutions for testing the critical function
units associated with executing itself and storing data. After all, if false program code or
data is loaded from the COTS memory, the question if software is under any foreseeable
operating conditions able to detect and react is very hard to answer in general.

Luckily, our system level solution helps to effectively mitigate those types of errors
where they manifest – resulting in added design freedom in terms of software and less
stringent requirements for on-device error detection in general. This makes the software
and hardware choice largely independent of the system-level safety assessment. But not
all hardware features are irrelevant, especially for proper core and impact level based
system function isolation in software, as we will discuss later in section 2.4.2.

2.4.1.3 Internal Supervision

C0 internally supervises the remaining cores with different means. First, the status of each
slave instance, or worker, is checked in each time step. As shown in Figure 2.10, each slave
RTOS instance executes a watchdog client. Multiple data words are updated in a shared
memory region, which serves as the back channel to the master core (in addition to the
standard inter-core communication). The feedback consists of a multi-byte word (likely
register width for convenience, 64bit in today’s devices) which holds a pseudo-random
number 13. Each slave works on a different seed value for the pseudo-random number
which generates a unique, but predictable sequence of digits, different for each slave core.
This allows us to conveniently detect not updated values (replays), malicious overwrites
(for example, when core n overwrites the region of core n − 1, due to a design error or
upset), as well as wrong updates due to program or memory corruption. The update
can for example be driven by the RTOS time tick interrupt handler. While on-device
software watchdogs cannot be considered a high-quality test in terms of certification,
we can however guarantee, if the periodic check succeeds, that the slave instance was
capable of serving the RTOS time tick interrupt (positive interrupt controller test) and
was thus able to schedule accordingly since the time tick is the only trigger for the RTOS
scheduler besides special task calls like yielding, or pending on a semaphore, spin-lock or
barriers which are common to most RTOSs. The instance can therefore be said to be
alive in terms of the RTOS. Note that an additional inter-core communication framework

13Since security is a minor concern at this stage, a simple generator can be used like a linear congruence
generator [Rot60]
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is likely to be able to detect missing output data when an RTOS scheduler gets stuck,
providing additional detection means when the scheduler fails but is nonetheless able to
serve the time tick interrupt handler. The monitoring via the very high-frequency time
tick interrupt however allows us to execute the alive-monitoring at scheduler frequency
( 1kHz to 100kHz, depending on the RTOS and core used, trade-off between overhead
and scheduler tick resolution needs). We are therefore able to prematurely detect instance
failures within a time tick and respond timely when IL2 functions are concerned. The
verification, executed on C0, can be statically scheduled when the time shift between the
slave and the master cores are known and consist of simple random number generations
and checks or be served by the local time tick of C0, if so desired. The pseudo random
number generator must be simple and not computationally expensive to reduce the load
generated on C0. We will address the internal watchdog later in chapter 3, when discussing
its value for certain certification cases.

Secondly, all critical SoC configurations and states are supervised by the master core,
as mentioned earlier, with the help of checksums or reference copies of relevant register
arrays. This also accounts for the task lists of the slave cores (Figure 2.10), which have
to be accessible by C0 but not between the slaves themselves. The master can then
periodically verify the integrity of each task set, without interfering with the slaves in any
way or disturbing running applications on the slaves. The task set can be viewed as a set
of scheduler parameters, including pointers to tasks, parameters or arguments, as well as
scheduling parameters like priority, time slot numbers, etc. As with the internal watchdog,
the significance of the periodic configuration and parameter checks is also limited in the
sense of diagnostic coverage for certification, especially for higher criticality levels. Based
on our proposed board-level architecture however, the need for strong on-device tests is
dramatically deduced for both industrial and aerospace applications, where they serve as
a premature failure detection and add-on to the already strong system level measures.
Architectural mitigation on the board level already detects the manifestation in wrong,
missing, or untimely output results of complex electronic devices. On-device measures are
also required by certain standards which justifies their presence. The abstract concept in
our case is, that the internal master oversees the relevant shared resources and ensures
that malicious actions by slave cores, due to transient or permanent errors, are discovered
rapidly. A shared resource in this case is either defined as a function unit shared by
multiple cores or data residing in the shared memory. Unfortunately, we cannot claim
high confidence in these tests, due to the lack of hardware support. In theory, the core-
local memory management units and system-wide management units (called Platform
Management Units, or IO Management Units in some architectures) would solve the
problem in its entirety, but they are not backed by sufficient evidence by the device
manufacturer to justify claims based purely on them without additional tests. We will
use them later in section 2.4.2.1 for spatial isolation, but their usability for certification
claims is limited, and results in on-line checks of each unit (positive and negative tests
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required) and periodic configuration checks. While system-wide units can be checked
by the master core, core-local units can only be addressed by the individual slave itself.
This leaves us with periodic checks on the slave for its memory management unit, cache
management (for local caches) and local function units, like timers and other architecture
specific function blocks. We will discuss the implications and claims possible with these
“untrustworthy” internal units later in chapter 3 in greater detail, with the resulting
implications to complete the picture why certain design decisions were made. Since the
slave must report its internal check results back to the master core, the dedicated back-
channel helps to consolidate the status indicators from all slave cores at the master. Based
on them, we can introduce further layers of functional degradation and fault mitigation
schemes, besides the strategies already discussed in 2.2 and 2.3, when a core has been
detected as faulty:

• Core shutdown (and restart), without task reallocation

A faulty core is shut down, and optionally restarted, and its tasks are lost. This also
includes potential IL2 functions allocated to the core. This results in permanent
(temporary) unavailability of these functions, which must be mitigated at board
level alone, effectively resulting in a failed device on the board level.

• Core shutdown and restart with temporary reallocation

A faulty core is shut down, followed by an immediate restart. Upon detection that a
core has temporarily failed, its tasks are relocated. The relocation only takes place if
at least one IL2 function, or depending on the cluster design, a critical IL1 function
is scheduled on the core. The task set is relocated to one of the remaining tasks, if
and only if the relocation target itself does not contain any IL2 or IL1 functions in
its task list. This approach requires at least one spare core which executes only IL0
function in the nominal case, which could be impractical for smaller devices with
limited core counts. After a successful restart of the failed core, and probably a
small delay to regain confidence and execute the on-core diagnostics for some time
steps, the original task set is reassigned and the relocation target also returns to
its original task set. If a core cannot successfully execute a successful restart or if
diagnostic measures fail, it remains shut down and the devices remain in a degraded
state, focusing on IL2 (and IL1 if enough resources are available) functions solely.

• Core shutdown and restart with permanent reallocation

Same as temporary relocation in general. However, the task set which has been
relocated upon failure remains on the core targeted by the relocation. The task list
of the relocation target is permanently assigned to the recovered core. This saves
one task list transfer, but breaks the originally assigned task allocation, which might
be an issue for certifying authorities if only a single task allocation is permissible
by regulation. From a purely technical point of view however, the permanent and

65



2.4 Software Aspects

temporary allocation are functionally equivalent on symmetric multi-core devices.
Asymmetric devices require elevated validation and verification efforts to prove that
the desired reassignment can be scheduled on cores with less performance or a
different core architecture.

• Core shutdown and reallocation A faulted core is disabled and not restarted. Its
task set is permanently relocated to a spare core or a core with enough headroom
to host its functions. The multicore device is now degraded, possibly resulting in
an overall degraded state of the individual LRU. This might lead to disabling IL0
and certain IL1 functions, to free up resources for relocated IL2 functions. Since
no IL2 functions are lost, they can still be provided to the LRU cluster and are
checked for consistency by the LRU internal, on-board cross comparison. Operating
in degraded states and still providing output results can be considered where the
system can not be easily maintained (low repair rates in the sense of a Markov
model, difficult or costly repair) or where the system has to operate for extended
periods of time without maintenance (long mission times). A full power cycle can
remove certain types of errors (for example, memory errors, see [HGG+11] and
[GHG+12]), which can be an option for larger LRU clusters, where an individual
LRU can safely be fully power-cycled without compromising the overall safety of
the LRU cluster. Note that a full power-cycle of the unit is required, which might
entail external power-management units to cycle the unit or special measures inside
the unit’s power input / supply stage to do so.

Depending on the application context, control of a possible reallocation mitigation scheme
right down to the individual task could be desirable, to provide a finer graded control
mechanism. The resulting scheduling problem, how to redistribute the vital IL2 and
IL1 tasks on the remaining slaves, is not necessary solvable in real-time. And in terms of
certifiability (static defined task allocation, tested), the question arises if it is more suitable
to pre-determine emergency task lists. These lists, based on design time scheduling for k
out of n remaining cores, can then be scheduled as needed to provide a deterministic and
predefined system behavior for the functional degradation paths. With large core counts,
proper tool support with validation and traceability throughout the process is crucial for
real-world projects.

2.4.1.4 Task allocation and Scheduling

This turns us to the general problem of multi-core task or process scheduling in general,
for the nominal case. Scheduling of program tasks in hard and soft real-time environments
is already well covered, see [Deu11] for an introduction and further references. Which spe-
cific scheduling mechanism (rate-monotonic, deadline-based, time sliced, etc.) is not at
least depending on the capabilities of the RTOS selected for the individual use case. Em-
ploying the proposed asymmetric multiprocessing architecture, with less-privileged worker
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instances, we are however in the comfortable position of adapting existing single-core only
RTOS solutions. If the RTOS itself supports the targeted core architecture (of the in-
dividual core the RTOS is supposed to be executed on, could be different architectures
in a heterogeneous multi-core device), knowledge of the other cores is not needed for the
instantiated scheduler core. The only coupling in the kernel space is given by the inter-
core communication module, which is fully independent and transparent for the kernel,
since it only operates on shared memory and notification interrupts (if available on the
selected device). C0 includes further routines for initializing, monitoring and supervision
of the slave cores on the device, but even these software functions do not entail a kernel
or scheduler modification, since they operate only on special purpose function units or
registers in the SoC, which is comparable to a standard device driver for controlling an
on-device peripheral (state-of-the-art). The access to core-local function units, namely
timers and memory management units, is fully equal to a single core device, and does
not require any further modification, besides the design time definition of shared and
core-local (private) memory regions. The high reusability of existing solutions provides
a distinct advantage for project risk and up-front invest, a major issue for many early
adopters of new technology in regulated market environments.

Fully SMP-capable operating systems on the other hand do not offer this advantage.
When opting for an SMP operating system, one should at least consider and clarify ahead:

• Kernel complexity

SMP kernels are inherently more complex than RTOS “scheduler-only” operating
systems. Since one kernel instance manages the whole SoC, a single fault in the
scheduler disrupts all tasks. The same holds for the interrupt controller which is
coupled to the core executing the kernel. The central task and process management
allows for easy core affinity management, but this is not required in most stati-
cally defined embedded systems. Does the application really require dynamic task
reallocation? What other features of a complex monolithic kernel are required?

• Slave core management

Depending on the implementation in the specific SMP kernel, is the operating system
able to deal with core failures, lockups or misbehaving cores? How is the inter-
core communication handled and how is the cross-core system call infrastructure
implemented? Does the OS employ any sort of worker on a core to implement time
slicing remotely or is the entire scheduling handled at a central location?

• Mixing of multiple operating systems and use of legacy software

Core-local instances allow different RTOSs on individual cores, as long as they
support the internal monitoring, supervision and inter-core communication. This is
especially useful for large, legacy software based on a special purpose RTOS, which is
common in many application domains. SMP operating systems usually require the
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need for hardware virtualization to execute different kernels side by side, since they
are built to execute exclusively on a device and reserve resources such as interrupt
management or memory management for themselves.

• Certification cost

Due to the added complexity and code size, certification cost for new features and
modifications on large, complex SMP operating systems is a major showstopper.

Note that, at the time of writing this thesis, no commercially available (real-time)
operating system with SMP support does offer the necessary features for spatial and
temporal isolation, nor does it support most of the architectural aspects described in this
chapter. Due to the enormous cost associated with modifying already certified RTOS-
solutions, most vendors currently fear to invest until they can copy from proven solutions.
There are many possible solutions, which are highly specific to the targeted application
domain and the special requirements of the physical system there.

2.4.2 Mixed Criticality and Determinism

One of our main design requirements, defined in section 2.1, was the call for a mixed-
criticality platform. The requirement was driven by the use case to concurrently execute
tasks of different criticality (and impact) levels on the individual cores inside the COTS
multi-core device. On one hand, this allows us to combine previously separated LRUs on
the system level, into one single high-performance platform. On the other hand, since
we operate on non-safety COTS devices, we cannot claim that the individual cores are
sufficiently electrically independent. In consequence, we are not able to claim sound
evidence for the internal core independence when a single system function is executed on
multiple cores at the same time for redundancy. One could either disable all other cores
while a critical function is executed, or provide means to spatially and temporally isolate
the individual cores on the device, which finally leads to the mixed-criticality scenario.
The problem of proper core isolation is closely tied to the SoC device architecture. See
Figure 2.11 for an example of prominent device architectures, abstracted to a reasonable
level.

Shown in Figure 2.11 are two multi-core device configurations found in today’s devices.
They both consist of a core complex, with n physical cores. Each core features its own
instruction pipeline, function units, floating point units, memory management unit and at
least one cache level (at least L1 14, L2 possible for complex core architectures). The cores
may also contain further peripherals, for example local timers and a local interrupt con-
troller. To interface with the outside world, certain peripherals allow access to common

14Different cache locations in a device are named after their proximity to the processing pipeline. L1
being the closest, followed by L2 (per core or shared between cores) and L3 (usually shared between cores
or not present).
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data bus interfaces, while others provide power management, clock management, secu-
rity and platform management, or interfacing with memory devices. The main difference
between the two architectures is the location of the core (cache) coherency management
and the location of the second cache level (or third level, if the device has two core-local
cache levels). The upper architecture implements the second cache level as a shared cache,
inside a central coherency unit. The coherency unit handles core interfacing, cache co-
herency management, as well as access to the primary interconnect fabric on the device.
It also manages the cores in terms of power and frequency settings and interrupt routing.
The lower architecture on the other hand features a so-called local backside-cache, which
is local to the individual core. Coherency management is provided by the primary inter-
connect fabric, which notifies neighboring cores when common data values in the shared
data memory change and a new value must be re-fetched by the local backside-cache. A
possible third cache level cannot be implemented in a central unit (because there is none)
an is connected to the switch matrix instead. Note that architectures are moving more
towards shared cache architectures.

Shown as well in Figure 2.11 are the function units, where cores with equal rights and
priorities in an SMP multi-core system interfere with each other during normal opera-
tion. The bandwidth of shared function units must be shared among the accessing cores.
This leaves the door wide open for non-critical software, to effectively block or slow down
critical software when two, or more, cores interfere on shared function units. Since this
fact is unacceptable in classical single core systems, where functional separation is also
mandatory for certification if a mixed-criticality system is anticipated, it is likewise one
of the major issues for a successful certification of COTS multi-core devices. By design,
our high-level software architecture already deconflicts the shared data bus peripherals,
by dedicating a single core to each interface unit. This removes conflict potential and
redirects interface-interrupts to the “I/O-core”, which does not execute application tasks.
The main interconnect matrix usually offers more than enough bandwidth to handle the
connected cores and peripherals concurrently and is therefore not relevant for core to
core interference. However, one should evaluate this claim with the device manufacturer
beforehand when in doubt, although most high-performance devices are sufficiently op-
timized to not provide performance bottlenecks in their originally targeted applications
(networking, high-performance computing) 15. Remaining for a software-based deconflict-
ing solution are therefore the shared cache (if existent) and the shared memory, namely
the DRAM where data and program code is stored during runtime.

The interference on the cache and DRAM have different origins in the design of the
two units. In the shared cache, which usually operates based on cache lines and cache
ways (which point to certain locations in memory and cache the content, see for example

15Information on the internal bus matrix is spare and usually confidential. However, a manufacturer
of networking processors presented evidence under NDA that their internal bus matrix is not a limiting
factor.
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Figure 2.11: Common multi-core SoC architecture example with core local cache (top)
and shared cache (bottom)
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[Hol19, Section B2.3.1]), cores allocate lines when they access data in the DRAM. Old
data is moved out of the cache, for example, after a certain timeout or when it has not
been addressed for a certain amount of cycles and the cores demands access to new data
which is not yet caches (this is a simplified description). Now consider for example: core
1 executes critical software, and actively uses about 256kByte of 2MB total shared cache.
Core 2 executes non-critical software, which usually works on about 512kByte cache by
its accesses. Due to a design error in the non-critical software, a memory-copy loop does
not terminate properly and operates out-of-bounds. The second core now allocates more
and more cache, since its continuously addressing new, uncached memory regions. Once
a specific threshold is reached (this is highly architectural dependent), the cache flushes
parts of the content of core 1, which usually remains cached, due to the requests by
core 2. This breaks the determinism for core 1 and the critical function, when it tries
to access memory addresses which are now flushed and no longer cached, resulting in
non-deterministic execution times of core 1 due to the cache pollution by the second core.
The scenario gets even worse with more than two cores, and the general question arises,
if it is possible to partition or allocate a specific amount of cache per core. Note that the
exact behavior of the cache is highly specific to the SoC architecture (ARM, PowerPC,
x86, etc.), and even different between device generations and families. Also, the cache
is highly configurable in his eviction, flushing, update, etc. behavior, which must be
considered in the software architecture and the software requirements stage. A proper
cache configuration for the given application scenario is vital for deterministic and high
performance.

The shared DRAM does not suffer from the same type of interference as the shared
caches, but adds to the problem due to its limited bandwidth. Let’s first consider de-
vices with one single DRAM memory port at first, since they make up most low-power
embedded devices used today. With a single controller, the total DRAM bandwidth is
shared among all cores and other bus-master peripherals (such as network controllers,
GPUs, DMAs, etc.). As shown in Figure 2.12, the effective memory access speed per
bus master dramatically decreases as more transaction requests reach the memory con-
troller concurrently. Depending on the memory controller architecture, each bus master
is usually allocated a fair share of the available bandwidth, which is achieved based on
memory transaction queues inside the DRAM peripheral. From there on, the memory
controller physically accesses the external DRAM ICs to load/store data words. The fi-
nite bandwidth and time delays to address, store and load data bytes is one of the major
timing factors which influence the maximum memory bandwidth achievable. In current
devices, there is no priority scheme to raise or lower the priority of an individual core with
respect to its emitted memory transactions (in real systems, it is the last level cache emit-
ting the memory transactions due to the cache miss, not the core itself, this is however
fully transparent to the core). The fair bandwidth sharing results in a non-deterministic
bandwidth reduction for critical software, when another core executes memory-intensive
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software concurrently. Some devices implement a priority scheme based on the master
port accessing the memory controller, in order to prioritize peripherals such as GPUs,
which suffer even more than classical cpu cores when they stall due to limited memory
throughput.

Figure 2.12: Queued transactions from multiple bus masters leading to congestion and
added latency in a shared memory controller

Since we can realistically not hope for hardware support for COTS devices (full core
priority settings, right to the memory controller via the interconnect matrix), and the fact
that already existing on-chip units may be risky or very costly to certify (due to limited
design data availability by the vendor or the cost associated when certifying on-chip units,
as well as limited self-test capabilities, systematic capability of the development process of
the semiconductor manufacturer, etc.), we have to develop a software solution, which pro-
vides effective and efficient deconflicting of shared resources with minimal on-chip function
unit dependencies. For all units, the problem can be divided in spatial isolation, which
provides separation of locality, and temporal isolation, providing deterministic bounds
and low jitter for execution times. The resulting solution executes during run-time of
the system and ensures that the clear separation is maintained, detects anomalies and
constrains cores when they violate a certain boundary.
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Our high-level software architecture (see section 2.4.1) and board-level mitigation
strategies work closely with the following isolation strategies and are one building block
in a sound safety case for low to very high criticality systems. Without proper system
level mitigation, even the strongest separation, even with hardware support, would be
useless since the non-present electrical isolation of the individual cores is still a major is-
sue for COTS multi-core certification. In an imaginary certified system, spatial isolation
software establishes a well-defined memory (and memory-mapped function unit) isolation
by constraining individual cores to a set of bounded memory regions. Full temporal isola-
tion of cores with equal bus matrix transaction priority is not possible without dedicated
hardware support. The key in this regard is not to provide a fully deterministic system
by hardware design, but to introduce sound monitoring and mitigation strategies which
only permit a limited amount of transactions of a core in a specified time slot. This re-
introduces maximum upper bounds for worst-case execution times and ensures run-time
determinism. Note that certain hardware features offer clear benefits for certification, like
a local backside-cache (as found on the e5500 PowerPC core [FS13]), but are in general
not necessary for the concepts we present in the following. The specific implementations
of these concepts will be device specific for real-world projects and must take the precise
inner working of the device into account to be effective. Portability and reuse for other
device families or other SoC architectures may not always be possible.

2.4.2.1 Spatial Isolation

In the following, we will discuss the spatial isolation with respect to the goals, hardware
support and the proposed concept in relation to our board-level system architecture and
consequences for it.

Goals The main goal we must achieve is to isolate individual cores at shared on-chip
resources in terms of the locality of their write accesses. This leads to a spatial contain-
ment, where one core cannot modify another core’s resources, if not explicitly allowed and
specified. The relevant peripherals are the shared cache and the shared DRAM. Inter-
face peripherals are deconflicted by the software architecture, however further hardware
support is required to enforce the separation.

The concepts described in the following are based on [MPC+15], especially the cache
lock-down as described in [MDB+13], which we rather included in the spatial isolation
section than in the temporal isolation section. However, improper cache separation also
leads to temporal cross-couplings between cores. We do not directly contribute to those
principles, but rather use their work and put it into perspective in the overall certification
effort, as one important building block for deterministic and conflict-free execution of
different concurrent software tasks on a multi-core SoC.

Modern devices use memory-mapped peripherals. All resources on the SoC that can
be addressed, possess a specific physical memory address (we will not use virtual address
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space here, but rather physical address space). Software can write to a specific register
of a device or a memory location by issuing a write operation to a specific address (e.g.
“write register 3 to address 0xABCD”, encoded in the respective instruction set of the
machine). The request is than translated, cached and finally issued via the bus matrix
to the respective peripheral as a read or write request. To deny the access to a specific
location, a hardware unit is usually used to check the requested read/write address and
either permits further traversal through the cache and the interconnect, or denies the
request with some form of feedback to the software.

Hardware Support The mentioned hardware support is usually provided in the
form of memory management units, local to each core. They process the emitted address
by the core and decide based on specific MMU entries, whether the core is permitted
to read/write from the address. Also, associated with a specific access region (set of
memory) are additional flags, which specify if the region can be cached, which cache
write-back strategy is used for that region, whether other cores should be notified that a
write operation modified the content of that region (coherency), etc.

Most devices also provide platform management units which provide additional and
finer graded control over special purpose registers and peripheral configurations, usually
coupled to certain privilege or hypervisor extensions the core architecture offers. They
are usually employed for security reasons in common operating systems, to deny a specific
task access to a resource if it is not executing in a privileged (root or administrator) mode.
On complex architectures, this concept extends beyond the device itself and includes for
example devices connected via PCIe, which can be dedicated to certain virtualization and
hypervisor levels (like the x86 IOMMU system).

While the MMUs manage memory very well, they usually have little influence on
the locality of data in the cache and the allocation/deallocation of entries in the cache.
Being transparent, the cache acts as a homogeneous memory pool for properly attributed
memory regions (cache-able regions). To virtually partition a shared cache, hardware
support is vital and software can not alone accomplish this task, even if virtual memory
address space is used to hide actual physical addresses to the application software. Luckily,
some architectures offer special cache instructions (or special purpose registers) to lock
parts of cache. They operate either on the cache lines. When a certain memory location
is cached, it can be marked as locked, which freezes the association of a cache entry to
a memory location, even if the memory region or the entire cache is flushed, forcing the
memory location to remain cached at any case. The respective line is then no longer
available for other memory locations and can only be evicted when it has been unlocked
again. Cache lockdown has been part of almost all architectures in recent years, but
has been dropped in current ARM architectures for no obvious reason (see chapter 4 for
an evaluation of current devices for our prototype). Since the cache is transparent and
the upstream memory management and address translation has no direct access to the

74



Chapter 2: System- and Board-Level Architecture

address tags of the cache, the application software is not able to determine if a cache
line currently points to a specific memory address or not. When no locking support is
available, there is however the possibility that the cache might be execution level and
hypervisor-aware, which can be used to provide a very coarse but working pseudo-locking
when for example hypervisor lines remain cached or prefetch hints might be useful to
guide the cache behavior, see [Hol19, Sections B2.3.5, D4] or [PS19], which is a subject
for possible future work. The real-time operating system vendor DDCi Inc. has patented
a different method which uses the memory management unit to allocate cache to specific
memory regions by utilizing the virtual to physical memory mapping, see Patents [LRM11]
and [HM15].

Possible Solutions and Consequences The different parts of SoC require individ-
ual measures for spatial isolation. First, the peripherals are isolated by shifting the access
to a single core which handles the I/O access. Architectural features, such as IOMMUs,
System-MMUs or Platform-MMUs should be used to further enforce the access-rights
separation. Second, the read and, more importantly from the safety standpoint, the write
access to the shared data and program memory must be isolated. This is only possible
on a per-core basis by employing the local MMUs at each core. The MMUs of larger
devices operate based on lookup-lists in defined memory locations. Since the maximum
number of entries in these lists is usually finite and quite constrained, a lookup miss trig-
gers a memory protection exception which is handled by the RTOS. All major RTOS on
the market today support the use of the integrated memory management and protection
features, and provide adequate configuration means. The granularity is adequate, and
can be set per task (or process), which is a desired feature not only for a safety appli-
cation. However, by stressing the MMUs in terms of safety, we are forced by regulation
to provide certain process and runtime measures to ensure the correct operation of the
MMUs, as well as to detect a failed unit during runtime. Since the COTS SoCs do not
provide hardware fault-injection for memory management units (not required by appli-
cations other than safety), we can only provide weak on-line and development-time error
detection measures. For example, the MMUs can be tested during runtime by injecting
accesses to denied areas and checking for an appropriate memory access exception (this
must be repeated for entries in the current MMU table and entries not present to check
the reaction not only for the latter). Likewise, positive access must be tested by issuing
requests for permitted regions, which should not trigger an exception (this must be tested
for entries in the lookup table which result in no memory management exception, but
results in an exception for an entry not present in the current lookup table where the
correctness of the address causing the violation in the MMU registers must be checked).
The maximum diagnostic coverage or credit for the certification effort must be clarified
upfront with the individual authorities. Test frequency and the time slot of the tests
with respect to other cores are application specific. Some applications may require a
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high test frequency (multiple times per time step, to ensure fast detection within a short
time period) or that the test is triggered by the master core. It is also possible that the
master core modifies the MMU table of slave cores and thereby triggers a violation which
must be caught by the respective slave and reported back to the master for the test to
be successful. During design time, proper device tests should include testing the MMUs
for desired operation to detect hidden device errata, as well as high-rigor 16 automated
testing of the MMUs for as many use-cases as possible.

Third, the cache levels on the device, shared by multiple cores. Depending on the cache
architecture, the core complex holds at least one shared cache level. Special architectures
might offer only core-local caches, for example as a local backside second level cache,
like the e5500 PowerPC architecture. If the caches are local to each core, no further
deconflicting measures are necessary. If, however, shared cache is involved, we must
provide a clear separation of the cache allocated to each core to prevent important (safety
critical) data from being evicted in favor of less important (uncritical) data. This might
happen when cores compete on the cache, and a non-critical software operates on large
amounts of memory, while a critical program has a small set of working memory. To
provide this separation, the cache must support a feature called cache locking or lockdown.
Cache lockdown works by freezing a certain subset of the cache to a memory region,
or individual cache lines (or ways) to a certain memory address. The granularity for
the locking instructions is architecture dependent, but equals the size of a cache line in
most architectures, since the locking is done by freezing the association via a cache way
lockdown. If the hardware supports cache lockdown, Mancuso and Yun et. Al. provided
a practically useful method called colored cache lockdown (see [MDB+13], [YYP+13] and
[YMWP14]). The colored lockdown principle works by first analyzing the cache utilization
of a task or process (either via RTOS-level support or special debug tools with memory
tracing), followed by classifying the accessed memory regions by their access frequency
(“coloring”). Once the often-accessed memory regions are known, they are locked in cache
once the task is executed by the RTOS, to prevent other cores from forcing these regions
out of the cache. This greatly benefits the determinism and WCET estimation, as stated in
[MPC+15]. Runtime jitter is minimized and further spatial isolation between competing
cores is achieved. In conjunction with a lockdown strategy, all modern architectures
offer configuration options for exclusive or inclusive cache levels. When the data (and
program) cache is set to behave exclusively, data is only cached by one level at a time.
An inclusive cache would cache data at different cache levels simultaneously, leading to
redundant caching over the different levels. The exclusiveness usually configures the L1
and L2 cache behavior, or more general from the last core local cache level to the first
shared cache among multiple cores. In this case, data is only present in the upper cache

16In many standards, different "rigor levels" are defined which imply a certain set of validation and
verification activities from very basic to complex and costly procedures; this is mostly dependent on the
design assurance / safety integrity level
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levels, which is especially useful for small functions or algorithms where the local data
fits inside the core-local cache. In this case, the data is fully kept locally to the core
and does not require space in the shared cache and is not subject to a potential removal
by memory requests of an adjacent core. Cache exclusiveness should be considered as a
potential optimization strategy to further reduce jitter for small routines and algorithms
which fit inside the first cache level(s), but does not entail a fully core-local caching of
program data. Note that, while the colored cache lockdown is a well-engineered strategy
to deconflict the shared cache, it is fully dependent on proper hardware cache lockdown
support. Since the cache operates fully transparent and cannot be addressed directly by
software, there is no other mean to divide the cache or ensure that critical data remains
cached over the runtime of an application. The lack thereof has serious consequences for
the usability of a given architecture in a safety-critical context. Many architectures still
provide special instructions to lockdown cache, like the x86 and the PowerPC architecture,
but today’s most commonly used embedded SoC architectures, the ARMv7 and ARMv8
architectures, silently dropped support for cache locking after the ARM Cortex-A9 multi-
core. If the underwriting authority demands a conservative WCET analysis, one is forced
to determine the WCET with an always-cold cache, in order to demonstrate that the
deadlines of critical applications can be met under all foreseeable conditions (which is,
that the data is permanently removed from the cache by memory requests of other cores),
leading to the only reasonable conservative assumption of an always-cold cache. Since
the memory bandwidth is reduced by several times (see for example appendix B), it may
be difficult to meet these deadlines for certain critical applications with many memory
accesses. To overcome this issue, we investigated the possibility to use modern hypervisor
and security extensions (for example, ARM TrustZone) to effectively divide the cache
into multiple sections or ensure that certain mappings persist due to different security
and access right level flags present in modern cache designs. However, after discussions
with chip designers and architecture specialists, we found that neither hypervisor nor
security extensions have an impact on the behavior of the cache 17. It is not possible to
lock, or rather reserve, certain lines or ways to pseudo-lock them. ARM devices, with
core-clusters other than the ARM Cortex-A9 MPCore should therefore be avoided when
possible.

Last are optimization strategies at the DRAM level which lead to higher memory
address speeds and make use of the physical construction and connection of the external
DRAM ICs to the SoC DRAM memory controller. If applied correctly, these measures
boost overall memory bandwidth when multiple cores access different sections of the
DRAM. DRAM ICs are organized in ranks, banks, rows and columns, see [JWN10].
While the chip array connected to the SoC memory controller can only serve one request
at a time, it is possible to minimize the latency between subsequent accesses and address
banks in parallel. With the principles defined in [MPC+15], critical and non-critical

17Based on information obtainable under NDA from NXP Semiconductor
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cores can be assigned different banks to spatially isolate the memory access requests and
make use of the parallel addressability, which results in higher overall throughput and
improved latency, as described in [YMWP14]. An ideal solution to the spatial separation
of different criticality sets in DRAM is to use a multi-core SoC with more than one
DRAM memory controller. In practical devices, the number of physical compute cores
will be larger than the number of memory controllers. The cores are therefore grouped per
criticality or impact level (actual grouping depends on application context and authority
requirements) and each set of cores is then allocated to one memory controller. Note
that multiple memory controllers not only isolate the cores in terms of memory access
contention, but also provide true physical isolation of critical and uncritical data in the
DRAM. Note that multiple memory controllers are often found in very high performance
and high-power consumer-grade or server processors, but can also be found in embedded-
devices like the NXP LS2088/84A or the NXP T4080/4160/4240 as well as the older NXP
P4080/4040 and P5040.

2.4.2.2 Temporal Isolation

In the following, we will discuss the temporal isolation with respect to the goals, hardware
support and the proposed concept in relation to our board-level system architecture and
consequences for it.

Goals The required temporal isolation scheme should provide means to monitor and
control the individual cores on a multicore SoC regarding their timing behavior, which
produces contention and interference when software runs on more than one core. The main
goal is therefore to develop a strategy to constrain each core to a specified timing behavior.
In section 2.4.2.1, we discussed several spatial isolation methods to deconflict the shared
peripherals. While these methods provide effective mitigation for fault or contention issues
arising from the physical locality of data and program code, they do not address the time-
varying behavior of software executing in parallel on multiple cores in the SoC. The latter
must be constrained by a temporal isolation architecture which ensures that concurrent
tasks, with their non-constant access to shared peripherals, do not conflict with each
other, leading to nondeterministic deadline violations of critical tasks. Furthermore, the
resulting system behavior when the temporal isolation mechanism is in place should be
deterministic and predictable, up to a degree where certain upper bounds for the execution
time for critical tasks can be guaranteed and determined. Determining upper bounds for
WCET in multicore systems is a non-trivial task, see for example [NPB+14], [NPH+14]
and [DNA11]. The main issue when trying to determine the WCET for a given task in
a multicore system, with multiple cores executing software concurrently, arises from an
unknown interference produced by the remaining cores producing interference (leading to
stalls and delays in the software under analysis) which is not bound. The main driver of
interference, when the shared peripherals are already deconflicted, and the cache has been
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managed, is the shared DRAM memory and its internal controller. There, transactions
are queued and issued sequentially to the external DRAM ICs, leading to severe delays
when multiple cores fight over the available bandwidth. The bandwidth on the external
DRAM interface itself is also rather limited, compared to internal caches (see appendix B
for measurements with a e5500 quad-core and a more recent Cortex-A72 core). Note that
is not only the nominal contention scenario causing unpredictable execution times and
nondeterministic behavior. Especially if fault scenarios, where one (or even multiple) cores
exhibit single-event effects during execution, this may eventually cause the faulty core to
emit far more memory transactions, which in turn delays execution of critical software
on other cores and undermines deterministic side-by-side execution in mixed-criticality
systems.

Task Execution Deadline
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Figure 2.13: Memory transactions graphen bild für tasks und so weiter

Figure 2.13 depicts the aforementioned behavior as an example. Shown in green is
the cumulative nominal number of emitted memory transaction by the last level cache
mechanism (L2 in this example). The amount grows steadily and is always less or equal to
the predetermined maximum worst-case transaction bound. After a certain time tend, the
task is scheduled out and terminated. As shown in the figure, a failed task may behave
nominally at fist, but escapes the worst-case bound at tviolation once, for example, an upset
caused a malfunction in the execution or the task’s data leading to an undefined state.
Note that the violation does not immediately occur after the upset, but only after the
task has passed the worst-case bound. Only then, it causes untested resource conflicts
with other processes running on the same device. Without mitigation mechanisms, the
task terminates when the it is scheduled out, after the task deadline has ended. Note that
this assumes a scheduler where tasks can not yield unused time budgets.
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This gears us towards our goals for a temporal isolation mechanism. To guarantee a
certain degree of determinism, and certainly to comply with current and future regulation
and guidelines, we must prioritize one core over another, or limit the usage of the shared
memory bandwidth. At design time, the core complex in the SoC can then be set-up
(priorities) or analyzed and confined (bandwidth allocation). This provides a guaranteed
and testable timing behavior for the nominal run-state, which is also resilient against
malicious behavior of cores, because critical cores are either not influenced due to their
higher priority, or penalized malicious cores which are stopped or slowed down 18 and
therefore do not affect deterministic operation on the remaining cores of the SoC.

Demonstrating that units of different criticality levels do not affect each other 19 is
a vital part, already to be discussed on rather high system requirement levels in current
certification projects. Often times, applicants fail to realize the importance of proper sep-
aration and isolation of function units, leading to very late architectural design changes in
many projects, when issues are discovered at the hard- or software level. In the multicore
device, the problems are amplified and are one of the major concerns with highly complex
SoCs for certifying and authorized bodies. The following strategies integrate tightly with
our board-level system architecture, and are not alone usable to justify a certain safety
integrity or design assurance level. They provide however effective means to ensure de-
terminism (but not fault detection or mitigation) and prevent overly pessimistic WCET
assumptions resulting from the interference on the device.

Hardware Support (Low-Level) Management of memory transactions, emitted
from the last-level cache via the shared bus matrix towards the memory controller, requires
hardware support.

An ideal hardware could feature full transaction prioritization. Whenever a memory
transaction is generated by a core, triggered by a miss in the last local cache level, it is as-
signed a dynamic priority. A core-local configuration or special purpose register could be
used to hold the currently assigned priority level for the core. A local-only configuration
could lead to potential safety issues, which can be avoided by adding special protection
and check logic for these register(s), like ECC, hardware checksums, or transparent time-
modular-redundancy (3 effective registers + voting, reads and writes are delayed by one
or more clock cycles to counteract common mode effects by clock upsets). Each trans-
action is than flagged with the currently configurable priority, which can be assigned
dynamically by an RTOS for each running task (per-function priority) or pseudo-static
at boot time for a core (per-core priority). When the transaction enters the shared cache
levels, the flags are preserved and remain present in bus matrix transactions emitted by

18Most modern SoCs employ frequency scaling or other mechanisms to control the per-core clock
frequency for power savings and power/heat limitation. These features are driven by a combination of
hardware (hard limits) and software (power saving).

19The simple workaround of disabling unused units can not be considered safe since their configuration
might change due to SEU, therefore monitoring is needed
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the shared cache levels for memory reads or writes. The priority is considered on the
central bus matrix, where low-priority transactions are enqueued (therefore delayed) in
favor of high-priority transactions of (safety-)critical routines, which resembles a classic
quality of service feature. Once the transactions reach the shared memory controller, the
priority tags are stripped and each transaction is enqueued. The memory controller either
features multiple queues for different service quality (priority groups) levels, one queue
for each core with re-assignable priority (this requires that also the core ID is included as
a tag) driven by the transaction flag, or a highly efficient single queue with priority based
insertion. Semi-fair transaction queues must still be provided, since we do not intent
to stall a non-critical core for extended periods. A useful implementation could offer a
per queue (or per priority level) configurable wait timeout, which bounds the maximum
waiting time for lower priority messages when many high priority transactions are issued.
The entire memory access flow can then be fully configured to specific application require-
ments. Sadly, no devices on the market today do offer any kind of transaction priority
system. Implementations based on a master port priority quality-of-service on the bus
matrix, like the CCI by ARM, offer the possibility to increase responsiveness when mul-
tiple high-bandwidth masters issue large numbers of transactions simultaneously. This is
useful for devices with powerful integrated GPUs or additional accelerators sharing the
same bus matrix as the core-cluster towards the memory controller. However, these pri-
orities are not granular enough and are equal for all cores inside a core cluster connected
to a single master port. Any future COTS SoC which implements a well-documented pri-
ority system would be of great value for system designers and the system safety case and
solve the issue of temporal separation for the shared memory all together. But until such
devices become reality, one is relying solely on present monitoring facilitates in current
SoC devices.

One of these monitoring features are the integrated performance counters. All major
modern core architectures (x86, PowerPC, ARM, etc.) offer per-core counters for events
generated at different levels of the core and the shared and non-shared cache levels. They
can be configured at runtime to count events generated by these units, like processed
instruction count, or a cache miss event in a specific cache level. The latter is of special
importance, because a miss in the last cache level directly translates to a memory trans-
action being generated by the cache, which we eventually want to track in a specific time
window. Events which can be counted are architecture or device specific, to include spe-
cial sub-units inside the core (like special vector processing units, or other accelerators),
but general events, like the mentioned cache miss, are generally available. It may not be
given that an event is generated on the other way around, when a value is written from
cache to memory (eviction, or policy based - for example write-through), which must be
considered in a monitoring and partitioning algorithm. To determine the number of events
in each time slot, the timer is started (reset) and counts all events without disturbing the
function units. One can then determine the number of events by a simple register read

81



2.4 Software Aspects

and store the result.
In summary, one of two features must be offered by the SoC of choice. The device

must either provide the mentioned priority feature for temporal isolation, or performance
counters for counting generated events. The latter entails a monitoring solution, which
enforces bandwidth allocation on the shared memory controller when one core emits
more transactions than allowed in a narrow time window. If none of the two features
is present, the SoC is not suitable for a safety application and should be avoided. Note
that some device families, like the QoriQ or Layerscape Series by NXP Semiconductor,
offers additional counters for SoC-wide events on peripherals, the bus matrix, etc., which
might be helpful in monitoring the temporal behavior of these units for mixed-criticality
applications. Also, special debug units may be present which might offer additional
metrics and control possibilities. Information on these units in complex SoCs is under
NDAs, since they in theory allow some degree of reverse engineering.

On devices with more than one shared memory controller, each core or group of cores
(cores with critical vs. cores with non-critical software) can be statically assigned to
the individual memory controllers. The resulting isolation is then given between critical
and non-critical functions, but not between the cores itself, unless the device has as
many controllers as cores, which is an extremely unlikely combination. Multiple memory
controllers offer better and more deterministic performance and fault isolation, because
they provide individual hardware units for different criticality (or impact) levels, but do
solve the temporal isolation puzzle.

Possible Solutions and Consequences Since no device available today features
proper hardware priority support, we must opt for the monitoring-based approach. This
implies that memory transactions are monitored for each core, with per-core boundaries.
A viable approach for this scenario has been defined by in [MPC+15] and [YYP+13].
Their approach employs the previously mentioned performance counters for each core, to
monitor the last level cache misses. The monitoring and boundary enforcement is tightly
integrated into the operating system kernel (Linux in this case), coupled to the currently
running task. At design time, one measures the effective transaction throughput, which
enables the designer to define an upper bound for the respective application on a single
core, which can be guaranteed at runtime. The guarantee is given by not over-allocating
the memory controller bandwidth with the set of tasks running in parallel on all cores in
the SoC. As defined in [MPC+15], this enables the designer to re-define the WCET as a
function of active cores with interference.

Depending on platform-level design decisions on the fault behavior when cores perform
abnormally, a task or core can be temporarily or permanently disabled once the upper
boundary for its nominal memory transactions has been hit. See 2.4.1.2, and Figure 2.14,
which depicts the case where a task has hit his upper transaction boundary, is temporarily
disabled and re-enabled once it is back inside the valid transaction budget and has hit a
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lower hysteresis limit. Note that this behavior should only be implemented for non-critical
application (IL1), since the task will no longer be able to meet stringent, hard real-time
boundaries once it is scheduled out. For critical tasks, it is more appropriate to disable
the task, and communicate its failure accordingly, since we provide sufficient on-board
fault tolerance by our board-level system architecture to compensate for failed system
functions. The failed critical function (IL2 and IL3) can then be properly restarted.
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Figure 2.14: Failed task handling when memory transaction boundaries are violated to
ensure deterministic platform behaviour

The SCE approach by Mancuso et. Al. allows us to re-establish a testable WCET
boundary in the contention scenario, which is practically feasible in real-world develop-
ment projects and fits nicely into our system- and board-level architectural concepts. SCE
provides important software and determinism building blocks on the multicore devices,
to comply to current regulatory requirements for aerospace certification, and higher in-
dustrial certification levels. Despite the needed performance counters, the concept is not
depending on special hardware features, and can be extended when further monitoring
facilities are present on a SoC. Note that, since SCE uses these performance counters,
they are part of a monitoring function for a safety critical function. This implies that
the performance counters must be periodically tested at runtime to detect latent faults
in these units.

Both spatial and temporal isolation strategies are closely tied together, and, when
correctly implemented for the respective device, are one corner stone for a successful
mixed-criticality safety case. Our board-level architecture already provides strong mit-
igation for all possible failure modes, however, in the light of current regulation, these
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on-device measures are still very important for successful real-world certification efforts.
Only when sufficient isolation, in the context of these guidelines and standards can be
demonstrated, one can provide the evidence for determinism (mainly the WCET) and free-
dom of interference between the individual criticality and impact levels. Albeit guidance
is given in all application domains, the suitability of certain concepts is always subject to
the discretion of certifying agencies and technical bodies. A singe approach, discussed in
isolation, will never met the goals declared by those entities. Only a holistic approach,
which directly connects the system-, board- and device-level can provide enough resilience
against the critical technical reviews based on today’s regulation.

2.4.3 System Supervision and on-board module interaction

After the short dive into the multicore SoCs, we now shift our perspective back to the
board-level with our single and distributed monitoring architectures.

To supervise the board-level components (nominal channel, single or distributed mon-
itoring channel(s)), we employ a layered diagnosis scheme. Within each layer, we address
either specific features, starting from the device level (for example, checking RTOS in-
stances on slave cores or SoC peripheral configurations at a high frequency) right to the
highest board-level (for example, checking that a device is responding to a query or testing
redundant system power paths). Each processing device executes local runtime diagnos-
tic checks and build-in-self-tests at startup, which are overseen on the board-level by two
different measures:

• Multiple sets of output data for each system function, which are compared for
consistency or equality before leaving the LRU, or voted on the top system level at
the smart actuation elements

• Distributed watchdog for internal check functions, ensuring that device-internal di-
agnostic checks are being executed

We will focus on the second point in the following, since we already discussed the first
point in section 2.3.2. Figure 2.15 shows an example for the layered supervision scheme.
On the bottom, the NOM and each DMON executes internal checks locally, which include
for example the measures described in 2.4.1.2, 2.4.1.3, 2.4.2.1 and 2.4.2.2. These internal
checks provide a reasonable detection level in the light of current standards, but do not
fully protect against all possible internal failure modes. When the internal diagnostics
fail however, we lose this capability. Even in a multi-core device, we need some external
entity to ensure that at least the internal master core can respond to external queries.
Given our board-level architecture, we can readily execute the periodic external check via
the SMON or the DMONs, to gain the confidence that the device is in a specific state.
What holds for the multi-core NOM, must also be true for a possible multi-core SMON or
DMONs, which have to complete the periodic external check too, as shown in Figure 2.15.
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For the check itself, we reuse the signature-based challenge-response watchdog discussed
in section 2.4.1.3.

Figure 2.15: Levels of monitoring, from inside the SoC and its memories (orange),
inter-LRU (between NOM and MONs, green) and cluster wide (between LRUs, blue)

In conjunction with the granularity of the self-tests and supervision, which decreases
from the bottom to the top level, the frequency of the diagnostics likewise decreases.
The distributed watchdog authentication between each device should only be executed
once per cycle (location of the watchdog time-slots within a system time step depends on
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the timing requirements of the critical functions 20), whereas parts of the device internal
monitoring execute at a much higher frequency (for example, with the RTOS kernel time
tick). This is reasonable, in order to reduce the overhead involved with the cross-device
communication and the occupation of the device-master-cores. After all, since we lack
any hardware support for executing on-device diagnostic measures in discrete logic, we are
not able to provide strong detection measures for latent faults inside the complex SoCs
from a conservative perspective. However, when combining our board-level architecture,
with its inherent resilience against any kind of wrong or untimely output result (including
common-cause failures, if NOM and MONs are dissimilar), the measures proposed up
to this point suffice to guarantee that stringent timing requirements for detecting failed
(unresponsive) devices are met. Some errors (due to SEE, like memory upsets or rogue
cores) on the device level can be detected before they lead to a critical board state. The
simple, layered watchdog approach with added on-device diagnostics is lightweight and
easy to implement and test, not only in terms of the actual software implementation, but
also from a conceptual standpoint on the system level. Complex measures, relying on some
(non-common) unique device properties, only present in a special variant of family would
defy the purpose of integrating any COTS multicore processor with an acceptable level of
process maturity and quality assurance. Note that special processors may nonetheless be
used, especially when they offer internal error detection. The S32 Automotive Application
Processor Series from NXP Semiconductor for example includes some features from past
automotive powertrain processors, which included well-defined build-in-self-test measures
and fault collection units with externally routed error outputs. The watchdog scheme
can then be enhanced by monitoring these error outputs and forcing a device power cycle
when they indicate an internal fault.

The interaction between the different board-level components for single and distributed
monitoring architecture is detailed and described in appendix A.2 by message-sequence
diagrams. The appendix A.3 includes examples for fault mitigation, in case one or multiple
components fail. Appendix A.1 shows the on-device monitoring flows.

In this chapter, we discussed our board-level architectural concepts, along with a brief
dive into the inner workings of today’s multicore processors. First, we defined a set of
LRU requirements based on two possible use-case scenarios. We concluded that a central-
ized, high-performance platform is best suited to exploit the characteristics of multicore
devices. The resulting set of LRU requirements reflects not only an aerospace, but also
an industrial application, up to the highest certification levels from a system perspective.
We also defined a novel system function classification scheme based on impact levels,
which can be used alongside classic safety integrity levels or design assurance levels. The
concept takes specific properties for different classes of system functions into account, and

20Latency sensitive applications like control loops might not allow introducing additional dead time
due to multiple authentication steps; however, this is highly application dependent and less sensitive
functions may not be affected.
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divides them into three impact levels. Based on the LRU requirements, we derived two
board-level architectures. The centralized (or single) monitoring architecture features a
nominal channel and one single monitoring channel, as well as output stages. The de-
centralized monitoring architecture includes at least three devices, with one nominal and
two monitoring channels. All channels can be based on complex multicore SoCs without
compromising system-level safety. For each architecture, we discussed the coverage of our
LRU requirement set. After finishing the board-level architectural aspects, we shifted
perspective towards the software (or behavioral) perspective and discussed the inter- and
intra-device communication between different cores, system functions, monitoring func-
tions and operating system parts. Next, we discussed mixed-criticality and determinism
aspects on the multi-core device, which are essential for future applications. Based on
prior work on the software side regarding WCET, we defined the integration with our
system and board-level concept, as well as alternatives and desirable features on the SoC
level to provide spatial and temporal isolation for system functions of different impact
and criticality levels. Lastly, we revisited the different diagnostic measure levels, which
are present on the device, channel, and board-level, as well as their interaction.
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3

Safety Analysis

In the previous chapter, we discussed our board-level concept with some complex COTS
SoC specific aspects from a mostly technical standpoint (with certification in mind, how-
ever). We will now focus on the actual safety analysis of the presented architecture and
dive deeper into aerospace and industrial certification topics to prove, that the presented
concepts hold in a real-world certification process and permit the applicant to justify the
use of highly-complex COTS devices (Contribution C5). First, we will discuss system level
and COTS certification in general, with aspects common to most application domains.
Next, we will conduct a fault-tree analysis and a Markov analysis for the centralized
and decentralized monitoring architecture and show, that even with overly pessimistic
assumptions, safety goals are well met and even exceeded with our architectural designs.
Lastly, we will discuss domain specific aspects and shine light on the application of cur-
rent standards and guidelines from the industrial and aerospace domain, namely in the
IEC 61508 (industrial) and CS/ARP/DO context (aerospace). Note that no actual certi-
fication has been conducted within this thesis. However, the early involvement and very
positive feedback from notified bodies leave us optimistic that an actual certification is
possible, at least in the industrial domain.

3.1 System Level and COTS Device Certification

Certification of critical technical systems has a long-lasting legacy in many application
domains and has ensured operational safety for many decades in the past. When applying
the current set of standards, one ensures that the risk of a catastrophic event, harming
operators, third parties, the system itself or infrastructure is reduced to a certain level.
More importantly, the risk is controlled and predictable - an essential argument for the
acceptance of any technology within our society. The acceptable risk by the general popu-
lation for a catastrophic event for any class of systems dictates the acceptable occurrence
rate and has been determined by industrial committees or public authorities for each ap-
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plication domain 1. But the topic is even more complex, as even more parties have special
interest whenever technical systems pose the risk of harm to people, such as employer’s
liability insurance associations, insurance (as well as reinsurance companies) and last but
not least the legislative and executive governmental branches. On top, we have to deal
with economic constrains and company politics, which try to force safety standards into
a certain direction to support their portfolio and internal standards for obvious reasons.
As a result, a good technical solution might not always be feasible and may fall short
due to a lot of special interests involved, which were not taken into account during the
design. We invested heavily into many discussions with industry partners, committee
work 2 and public talks with leading certifying agencies to harden the concepts presented
in this thesis to maximize its readiness level.

We found that newcomers often times mistake safety for availability. In short terms,
a system which is safe does not need to be available in most applications (we will address
fail-operational shortly). This statement implies that it is in general safe for a system to
become inoperative whenever a failure is detected. The quality of the detection and the
remaining risk for undetected, dangerous failures is subject to the certification level of a
system, and is lowered at higher certification levels. In order to allow said behavior, a safe
state must exist which the system can enter and maintain until the fault is removed or the
system is repaired by a technician. However, there are (sub-) systems, where this safe state
can not easily be established, maintained, or does not exist during normal operation, for
example, in airborne aircraft, train braking systems, power plants or automotive steering
systems. For these class of physical systems, the control systems (regardless if mechanical,
hydraulic, electrical or electronic) need to operate safely and with a very high availability
to guarantee an overall safe operation. This differentiation leads to terms like Fail-Safe and
Fail-Operational, which indicate whether the control system (or subsystem) in question
has a safe state (and may simply traverse into it in case of a failure) or if the system
function must be maintained at any cost, to protect from hazardous or catastrophic
events. Often times, only few subsystems of the full control system are subject to a Fail-
Operational failure mode, especially in moving systems (usually for controlling certain
degrees of freedom).

The governing standards we targeted our concepts at are the IEC61508 [65A10] (to-
gether with the ISO 13849 [ISO15] and IEC 62061 [4421] for industrial applications) and
the various aerospace guidelines in the form of the ARP4754 [ADC10] and APR4761
[ADC96], as well as the DO-178C [SC-11] and DO-254 [SC-00] with the CS-23 [EAS17]
as the referencing certification specification. We did explicitly choose to not include the
ISO26262 in the main focus of this work, due to its similarities to the IEC61508 and some

1Comparing the highest levels: Aerospace DAL A ≤ 10−9 for catastrophic failures per flight hour;
Industrial based on the EN ISO 13849: PLe/SIL3 ]10−8, 10−7] dangerous occurrences per usage hours,
often 8760h per year.

2In the German committee working groups DKE AK914.0.3 and AK914.0.4 which mirror parts of
TC65 on a national level for IEC 61508 associated work
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domain specific aspects within the standard. The same holds for the EN 50126 (process
aspects), EN 50128 (software aspects)and EN 50129 (system and hardware aspects) rail-
way standards, which we do not address directly, but might fulfil due to the similarity
to the IEC 61508 basic safety standard . Not all parts of the IEC61508 are applicable
(also not normative) in the scope of this work, for which reason we only address sub parts
IEC61508-1 to IEC61508-3 (IEC61508-4 is still normative but contains abbreviations and
definitions), where IEC61508-1 plays a minor role due to its focus on the safety life-cycle
process, project structures and roles. On the system level, the IEC61508-2, as well as
the CS-23 and ARP4754A/APR4761 govern the assessment, safety process and general
system level requirements. Below, on the hardware level, the IEC61508-2 and DO-254
are applicable 3. On the software-side, IEC61508-3 and DO-178C are applicable. The
certification agencies have both issued relevant Memorandums and Memos targeted at
multicore processors or complex SoCs in general, which we will discuss later on in section
3.4.2. Note that every application domain has numerous other normative standards for
environment definitions, EMI emissions and susceptibility, wiring and mounting, equip-
ment sub-classes for specific applications, etc. Not also that it is not within the scope
of this thesis to provide a guide on the application of said standards, nor any official
explanation or interpretation. We expect the reader to be familiar with these standards
in detail and its implications.

Developing system- and hardware-level safety solutions is fairly straight-forward when
pre-certified elements, or elements with a certain legacy in critical applications (in-service
or product service experience, to prove the maturity, quality, stability and experience
with element failure modes), are used as the basic building blocks throughout the design.
All standards detail the process and metrics required, and sometimes even provide exam-
ples, like [65A10]. When unsafe 4 commercial-off-the-shelf (COTS) elements are used, all
normative standards start to become slightly vague, leaving room for innovation but also
possible pitfalls and higher project risk. In some cases, for example, expert judgment or
architectural mitigation are valid means to compensate missing evidence and device data
by the COTS manufacturer. Current standards and past rulings of certifying agencies,
however, make it clear that a single COTS element is currently not allowed to fulfill a
higher-level safety function (larger than SIL1, or DAL D, for example) without special
system level precautions, redundancies, or additional hardware aiding in the mitigation of
potential faults in the safety function. The lack of detailed knowledge about the nature
and occurrence rates of internal failures within the element, and the quality of monitor-
ing facilities, either within a device or external, further complicates the usage of COTS

3The DO-254 primarily addresses complex programmable semiconductors and ASIC development, but
the general process outlined in the guideline is applicable to general hardware development as well.

4Unsafe according to the relevant standard or guideline, where sufficient evidence from the device
manufacturer can not be presented by the applicant to the certification authorities or notified bodies
and the device qualification is therefore subject to the process and verification/validation activities of the
applicant.
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elements in safety paths. Our board-level analysis, presented in the next sections, will
therefore provide base failure events, for example random and permanent device failures
(based on pessimistic assumptions) and combine them in a fault tree and Markov analysis.
The board-level results are propagated to the cluster level, to support our initial claim
of fault tolerance and an architecture which is suitable up to the highest safety levels
by providing architectural safety nets and mitigation paths. By the time of writing this
thesis, a new school is slowly developing in the functional safety domain, focusing more
on system-level fault mitigation than fully qualified safety elements. This philosophy
breaks with the legacy mindset, where a "safe system is build out of safe parts in a safe
combination", which was practical for low or medium complexity systems build by large
cooperation in a protected, controllable ecosystem/environment. SOTIF [3219] drives this
concept even further. For generations of legacy systems, safety functions had been real-
ized, in many cases, by simple electro-mechanical or electronic systems. The increasing
complexity, connectivity and high degree of automation in recent development projects
leads to a new, very different kind of safety case. Many components are not qualified
(meaning that no special precautions were taken for safety, and the manufacturer does
not implement a compliant process) and their failure modes and failure rates are rarely
known. Instead of controlling local failures in the elements themselves, we counteract on
the system level with active fault mitigation techniques and selective redundancy, com-
bined with dissimilarity in a flexible architecture. These new generations of safe systems
do not only offer far more safety-critical computing resources than their predecessors in
a fail-safe configuration, but are easily extensible to fail-operational capabilities as sys-
tems grow or use-cases change. The latter provides a significant benefit for overall risk
reduction when interacting with these systems and raising the level of thrust for highly
automated (and autonomous) technical systems to a new level.

This new trend has far-reaching implications for upcoming editions of normative stan-
dards. While it makes immediate sense to compensate the shortcoming of individual
elements on multiple, system-wide safety nets, these kinds of systems are significantly
harder to develop. They span multiple disciplines, groups within an organization or sub-
contractors and require deep technological insight into the technologies used by the system
and safety engineers. For example, fault trees, spanning from the highest system level
right down into individual computing units, are not yet fully established in the indus-
try and must be tightly coordinated. Furthermore, this change in the very fundamental
system design process emphasizes a holistic risk and safety management, centered on sys-
tem functions rather than components (which can be made or bought). Do we really
need to build safe systems out of safe components? Can we build safer, more reliable,
highly available systems with multi-fault tolerance with a simple design? These questions
came up early in the process of developing our architectural concepts and in discussions
with certifying bodies, triggered by systems-of-systems nature of today’s very complex
SoC semiconductor devices. They are closely tied with the effort to use multiple internal

92



Chapter 3: Safety Analysis

cores, to form an internally redundant SoC with COTS devices available on the market.
The short answer to the above questions is: no. Due to the device internals required
to achieve high levels of integration and clock speeds in the gigahertz domain, a lot of
internal logic is reused, shared or electrically depending on one another, such that the
freedom of interference (required by the standards) or electrical independence is not given
(in COTS devices). This in turn defies, from a technical standpoint, any argument for
redundancy which might be claimed by using for example two or three cores (in a single
SoC), to compute the same critical function in parallel to provide fault tolerance due to
common mode failures. This simple, yet intriguing fact has far-reaching implications on
the possible use-cases, as well as the entire system level architecture for safe systems,
requiring the usage of COTS devices. A single, highly-complex, COTS SoC is not able
to provide single fault tolerance by itself. For low safety levels (up to DAL C, SIL2), this
is no issue at all, since these levels do currently not require fault tolerance or very low
failure rates. If sufficient failure mode and effects data can be generated, the applicant is
free to use such devices without many issue in real-world projects. But for higher safety
levels, only system- and board-level measures allow the usage of more capable devices in
future systems. This in turn has implications on every part of the system architecture,
since additional requirements, like mixed-criticality or fail-operational behavior for certain
functions, which finally lead to our proposed architecture. The reduced diagnostic cov-
erage for internal function units and software-based monitoring algorithms on untrusted
silicon also lead towards multiple physical devices per board, eventually resulting in the
more complex (and preferred) three device configuration. In large scale manufacturing,
the increased cost for the individual boards can be easily compensated by the system-
wide reduction of control units associated with the availability of a high-performance,
mixed-criticality cluster. And from a certification point of view, it is no longer possible
to disqualify the use of complex COTS devices, due to the dissimilarity by design and the
high order of hardware and information redundancy with fault tolerance, which can be
leveraged for the most critical system functions.

3.2 Fault Tree Analysis

Fault Tree Analysis (FTA) [ADC96], [SVD+02] has been used in the industry for many
decades mainly on the system level. In recent years, it has been extended into the LRU-
level with the aim to provide full system fault trees for upcoming generations of safe
systems. Starting the FTA process, one must identify the basic failure events of all relevant
internal parts of the equipment, along with the statistical occurrence rates (and function).
The base events are then combined by and/or/M-out-of-N and other combinatorial blocks
to form a tree which finally leads to the catastrophic/hazardous events identified in the
functional hazard analysis (FHA). The resulting failure paths must satisfy certain goals
depending on the criticality level of the top event. It may, for example, not be adequate
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that a single event leads to a hazardous/catastrophic failure, or that certain intermediate
events (wrong output vs. no output) must not exceed certain rates. Minimal cut set
analysis (see [SVD+02] Section 10.2) can be employed to identify critical failure paths or
even single events leading to a top level event, to test for adequate levels of redundancy
or architectural mitigation for certain events. The results are fed back into the system
design process, which adapts the system/equipment architecture until a certain failure rate
budget is met and all additional goals, imposed by standards or system requirements, are
met.

For our single and distributed monitoring architectures, we identified the base events
stated in table 3.1 (Failure Mode Effects Analysis). The distributed monitoring architec-
ture considered in the following is based on two monitoring devices and two additional
programmable logic devices as a worst-case scenario for the failure rate and fault trees
(maximum device count). Note that the overall failure rate of a unit may be reduced by
using the second distributed monitoring architecture based on FPGA-based SoCs with a
hard-coded processing subsystem. Note also that the underlying information for almost all
random failure rates (due to device SEU) might be subject to non-disclosure agreements
with the respective manufacturer. Each basic event is either non-repairable (permanent)
or repairable (transient) and has been modeled based on the Weibull distribution in the
"Functional Safety Suite" software [Bru], which was also used to compile the resulting fault
trees and Markov charts. Accordingly, the events listed in table 3.1 specify the operating
failure rate λop [1/h], test interval tchk [h] and the repair time trep [h] for transient errors.

For a non-repairable event, only λop is of relevance. Using the Weibull distribution
given by its density function f(t) and cumulative distribution function F (t) from [PP02,
p.162] with t >= 0 and β = λ−k as

f(t) = λ · k · (λ · t)k−1e−(λ·t)k (3.1)

and

F (t) = 1 − e−(λ·t)k (3.2)

we assume the special case of a constant failure rate with k = 1.5 The special case
transforms the Weibull into the exponential distribution. In the software used, λ is further
split up into

λ = D · λop + (1 − D) · λsb (3.3)

5Reliable failure rate data is hard to obtain for any complex device and testing by the manufacturer
is usually carried out on limited device numbers. They offer a failure in time rate, but not a distribution
when failures occurred during their testing. If more adequate data is required, very costly in-house
qualification by the applicant is the only way to generate more data, if sufficient field data is not yet
available
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according to its documentation, with the operating duty cycle 0 < D ≤ 1 [1] (non-
continous usage of the unit) and the standby failure rate λsb. For our calculations, we
assumed the most challenging case with D = 1 for continuous operation. The failure
rate is thereby equal to λop. The Functional Safety Suite evaluates the unavailability Q

conservatively at the end of the component lifetime T with

Q(T ) = 1 − e−(λop∗T )k (3.4)

which, in the special case of k = 1, is equal to the steady state unavailability Q̄ by
definition.

For repairable events, the software defines the occurrence rate w as

w̄ = w(t) = D · λop + (1 − D)λsb (3.5)

In contrast to the non-repairable event, which models component failures, the repairable
model includes the check and repair time intervals tchk and trep. This results in the mean
unavailability Q̄ of

Q̄ = w̄ · 0.5(tchk + trep) (3.6)

since the event falls in between two checks for the steady state, constant rate.
A failure in one of the LRU subsystems (NOM, S- or D-MON or additional interface

FPGA) is defined as a fault or error, leading to a failed program execution (no or untimely
output result) or a wrong, but seemingly correct, output value exiting the subsystem.
Repairable failures are removed by restarting the failed subsystem (soft reset or power
cycle) upon detection of the failure condition. A failure of one subsystem is always
detected on-board for IL2 functions, which is represented in the first set of fault trees.
Later in this section, we will discuss additional fault trees for IL1 functions. A non-
repairable failure (permanent), triggered by a non-functional subsystem (for example due
to ageing or permanent damage by SEE), requires physical maintenance of the LRU to
remove the fault. Note that transient and permanent failures are treated as exclusive in
the following and a failure in time (FIT) resembles one failure per 109 hours. The failure
rates have been estimated at an altitude of 60kft, resulting in very high transient failure
rates which are not applicable to most ground based applications (despite mining where
alpha radiation might be of importance).

For each subsystem, the root events presented in table 3.1 are further aggregated
into subtrees in section 3.2.1, before the full LRU and cluster analysis is performed and
analyzed in section 3.2.2.
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Name Model λop [1/h] trep [h] tchk [h] Notes
NOM
transient
failure

Repairable 5.2 · 10−4 2.78 · 10−4 2.78 · 10−6 Upset estimation, based on NXP QoriQ T1042 (C28HPM process)
data, with 415 [FIT] total soft error rate (SER, based on neutron
and alpha particles) at NYC sea level. [Wil] suggests a flux scal-
ing factor of 1258 at 60kft with 50% solar activity, which we apply
linearly. We ignore the associated DRAM, since Gurmann et. Al.
concludes that post correction, the word error rate can be approxi-
mated to 2.8 · 10−20 [word/day] [GHG+12, Table IV] at an 800km
orbit, which can therefore be neglected even after scaling to full
memory size compared to the possible processor upsets.

NOM per-
manent
failure

Non-repairable 1.5 · 10−8 - - Averaged, based on manufacturer FIT estimates at 105◦C junction
temperature (worst case) over multiple devices, families and man-
ufacturers (NDA data).

SMON
transient
failure

Repairable 1.0 · 10−4 2.78 · 10−4 2.78 · 10−6 Estimation, based on analysis of the NOM device, with slightly
reduced complexity due to less cores and/or less memory attached.

SMON
permanent
failure

Non-repairable 1.5 · 10−8 - - Averaged, based on manufacturer FIT estimates at 105◦C junction
temperature (worst case) over multiple devices and families (NDA
data)

DMON
transient
failure

Repairable 1.0 · 10−4 2.78 · 10−4 2.78 · 10−6 Estimation, based on analysis of the NOM device, with slightly
reduced complexity due to less cores and/or less memory attached.

DMON
permanent
failure

Non-repairable 1.5 · 10−8 - - Averaged, based on manufacturer FIT estimates at 105◦C junction
temperature (worst case) over multiple devices, families and manu-
facturers (NDA data). Devices typically range from 5-20 FIT over
their operating temperature range.
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Name Model λop [1/h] trep [h] tchk [h] Notes
FPGA
transient
failure

Repairable 4.6 · 10−3 2.78 · 10−4 2.78 · 10−6 Estimation, based on Xilinx XCKU060 UltraScale 20nm device,
30% essential bits with full BRAM utilization. Single Event Miti-
gation IP enabled at 200MHz. 60kft above New York at 50% solar
activity. Junction Temperature 85◦C. Lower rates are expected for
newer generation FinFet devices (UltraScale+) already in prepro-
duction.

FPGA
permanent
failure

Non-repairable 1.1 · 10−8 - - see [Inc20] and the SEU estimator offered by the manufacturer.
Predicted FIT Rate of Xilinx UltraScale-Series 20nm devices at
55◦C junction temperature.

Table 3.1: Subsystem Failure Modes (Fault Tree Base Events)
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3.2.1 Subsystem Fault Trees

The subsystem fault trees, presented in figure 3.1 to 3.4, were generated in the Functional
Safety Suite v5.1.0 software based on the previously shown tables. The system lifetime
(mission time, T ) is defined as 30 years, 100% duty cycle (262800 hours) and is taken into
account in the occurrence number N(T ) calculation (upper left-hand corner). The steady-
state results, mean occurrence rate h̄, mean unavailability Q̄, as well as the unreliability,
evaluated at the end of the system lifetime F (T ) are also shown at the upper left-hand
corner. Each base event includes the event name (matching the definitions in table 3.1),
steady state occurrence rate h̄ and event unavailability Q̄. The Functional Safety Suite
employs the standard logic gate notion as defined in [SVD+02] Section 4.1. Preventive
maintenance has not been included, yielding a more conservative analysis. The top event
of each tree does not affect the analysis and is used as a transfer event to the LRU fault
tree to link the two.

Figure 3.1: Subsystem Fault Tree for one NOM channel
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Figure 3.2: Subsystem Fault Tree for one interface FPGA

Figure 3.3: Subsystem Fault Tree for one monitor as a SMON channel
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Figure 3.4: Subsystem Fault Tree for one monitor as a DMON channel
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3.2.2 LRU and Cluster Fault Trees

A LRU based on the single monitor architecture fails, when either the NOM, or the SMON
fail. This includes either a "no output result" condition, or a "wrong output result" (which
is handled internally by cross comparison). The failure of both internal processing element
is detected by the output stage (interface FPGAs), which enters a fail-silent state. If both
FPGAs have failed, no more data transmission is possible, and the unit has failed silently.
One FPGA failure is not critical, since the transmission path is fully redundant. The
fault tree in figure 3.5 yields a mean failure rate of 6.6 · 10−4. Note that the unit always
enters a safe state (no dangerous failures for fail-safe conditions), but is unsuited for
single operation in fail-operational environments, due to its high failure rate (when a
silent failure or unavailability of the LRU is dangerous).

Figure 3.5: Fault Tree for a single monitor architecture LRU

The distributed monitoring architecture improves the per-unit failure rate by almost
two orders of magnitude, see figure 3.6. Instead of the direct coupling to the subsystem
failure events, a LRU failure is only triggered by combined failures of at least two sub-
systems. For the distributed monitoring architecture, this is the case when either the
two monitors 6 fail at once, or the NOM and one MON fail. A working unit requires

6We focus on a design with two monitors. Additional monitoring devices are possible and would
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internal monitoring, a failure is thereby given even if an unchecked output result can still
be provided, although the cluster design may permit a degraded LRU without internal
monitoring. We do not consider the latter case for a more conservative analysis. If both
additional FPGA output states fail, the LRU fails as well, as shown in figure 3.6. De-
spite our high subsystem (and component base event) failure rates, the LRU performs
exceptionally well with a total failure rate of 3.9 · 10−5.

Figure 3.6: Fault Tree for a distributed monitor architecture LRU

We will use the NooM-notation in the following. In this work, NooM implies that IF
N out of M units have FAILED, the control system is no longer available. For example,
a 3oo4 architecture consists of four units, where a single LRU is not sufficient to keep
the cluster operative and leads to a full loss of the control system. A 4oo4 configuration
remains operative until the last LRU has failed. Based on the cluster fault trees for both
architectures shown in annex C, the failure rates for IL2 functions for different cluster
topologies and both LRU architectures are shown in table 3.2. It lists different degrees
of redundancy (total units, minimum numbers of units required in large configurations).
When single LRU operation is permissible after a already large number of LRU has
failed, both architectural configurations are suitable for small clusters and require two
(DMON, 2oo2) or three (SMON, 3oo3) units for medium safety levels (dangerous failure
rates between 10−6 to 10−9). The distributed monitoring architecture already exceeds
the minimum failure rate required for even the highest levels in all relevant standards.
It is however required by typical system designs to provide at least one or two orders
of magnitude headroom for further components (associated mechanics and electronics,
actuation elements and sensors). Large systems with additional requirements like zonal
safety, operating on larger clusters, show a significantly lower failure rate, especially when
the distributed monitoring LRU is considered. There, failure rates drop below the usual
cut-off point for the aerospace domain (10−16) for 4oo4 and 4oo6 configurations. The latter

reliability. However, the cost offset would hardly justify this decision since common mode failures remain
and multiple have to be present in any case to mitigate those.
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still provides a fully redundant system for continued operation, even if the cluster exhibits
major failures (for example one zone failed and one failed unit in another). Emergency
single unit operation either reduces the number of required cluster LRUs or lowers the
failure rate well below 10−20 without considerations for application specific, common-
cause failure modes. LRUs based on the single monitoring architecture perform less well,
but may provide equally low cluster failure rates in two-zone 4oo4 configurations (not
shown here). For less stringent operating environments, the single monitor architecture
in medium cluster sizes (two to four units) may already provide adequate metrics for
most ground-based systems. While IL2 functions are covered by the internal monitoring,
IL1 functions are only computed redundantly at the cluster level. Their failure rate can
be directly obtained by evaluating the NOM total failure rate (transient and permanent)
in the desired cluster configuration. Scaling and different redundancy configurations are
also possible for IL1 functions in a single topology, by varying the degree of redundancy
within the cluster for each function or IL1 function group, for example, some functions
are provided by all LRUs, while others are only computed in a dual-redundant or triple-
redundant fashion, for example in a 5oo6 cluster.
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LRUs failed Architecture λcluster [1/h] Notes

1oo1
SMON 6.6 · 10−4

Single LRU base failure rate
DMON 3.9 · 10−5

2oo2
SMON 1.0 · 10−5

duplex, no remaining units
DMON 3.7 · 10−9

2oo3
SMON 3.1 · 10−5 triplex, single LRU operation

permittedDMON 1.1 · 10−8

3oo3
SMON 1.2 · 10−7

triplex, no remaining units
DMON 2.6 · 10−13

3oo4
SMON 4.8 · 10−7 quadruplex, single LRU operation

permittedDMON 1.0 · 10−12

4oo4
SMON 1.3 · 10−9

quadruplex, no remaining units
DMON 1.6 · 10−17

3oo5
SMON 1.2 · 10−6 pentaplex, at least two LRUs

operational at all timesDMON 2.6 · 10−12

4oo5
SMON 6.3 · 10−9 pentaplex, single LRU operation

permittedDMON 7.9 · 10−17

5oo5
SMON 1.3 · 10−11

pentaplex, no remaining LRU
DMON 9.2 · 10−22

4oo6
SMON 1.9 · 10−8 hexaplex, dual LRU operation at all

timesDMON 2.4 · 10−16

5oo6
SMON 7.5 · 10−11 hexaplex, single LRU operation

permittedDMON 5.5 · 10−21

Table 3.2: Failure rates for IL2 functions over different cluster topologies and LRU
architectures

3.3 Markov Analysis

The Markov analysis and models in this work are using the terms and definitions from
[ADC96], Appendix F. The repair of transient errors (resolvable by soft/hard reset of a
device) are modeled by the return rates defined by the basic events defined in table 3.1.
The resulting states are deduced from the previous fault tree analysis. Figure 3.7 and
3.8 show the resulting state models (IL2 function perspective) from the Functional Safety
Suite Software. Since the transitions are very convoluted, the reader should focus on the
computed state probabilities. The states are color-coded-coded, where

• green signifies a zero failures state,
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• purple signifies a degraded operating state, where operation is still possible but may
not be adviced due to multiple failures, and

• red signifies a non-functional operating state, where too many internal subsystems
have failed.

w̄ (named h̄ in the software used and in the figures) and Q̄ are shown in the upper
left hand corner. Only DU-states (shown as red, IEC 61508 nomenclature, dangerous
undetected - a safety-compromising failure mode which can not be detected by system-
atic measures or the safety function is lost entirely) and DD-states (shown as purple,
IEC 61508 nomenclature, dangerous detected - a safety-compromising failure mode which
can be detected by systematic measures) contribute to the LRU failure occurrence rate
and unavailability of the unit, where either no internal monitoring (or redundancy for
IL2 functions) or a loss of the data interfaces is present. SD-states (shown as blue, IEC
61508 nomenclature, safe detected - a failure mode which does not compromise safety and
can be detected by systematic measures) result in a degraded system, which may still be
operated depending on the cluster. They do not contribute to the LRU failure occurrence
rate but are accounted for in the unavailability calculation, since a the unit is not fully
functional. Note that a true dangerous undetected failure can only be introduced by the
interface element (DMON, FPGA, FPGA-SoC DMON), when output data is internally
corrupted before the final packet for data bus transmission is assembled with added check-
sums or forward error correction data. We assume that all LRU-internal data transfers
are properly secured and provide sufficient error correction mechanisms for the respective
application domain. Furthermore, if at least a two-unit cluster is considered, dangerous
undetected failures (wrong or no LRU output result) are mitigated at the cluster level
and no longer remain undetected in the scope of the cluster. We omitted the final failure
states of the DMON architecture (more than three independent faults), due to the already
low probabilities and improved readability of the diagrams. DMON-based LRUs without
additional interface FPGAs exhibit a slightly lower occurrence rate and unavailability due
to the reduced component count. The repair rates in the following figures are approxima-
tions for power cycle and warm reset conditions, or a unit replacement after a permanent
failure.
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Figure 3.7: Markov state space model for the SMON architecture
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Figure 3.8: Markov state space model for the DMON architecture
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3.4 Domain-Specific Certification Considerations

To finish this chapter, we will turn towards a domain specific discussion of certification
aspects in the following sections. 3.4.1 is devoted to the industrial domain, in the scope of
the IEC 61508 / EN ISO 13849. The preferred system architecture in this domain is fail-
safe, due to cost/complexity constraints and less stringent application requirements. Note
that special cases, like for example customer requirements for high availability or hot-swap
support, or the highest certification levels may also lead to fail-operational architectures.
In 3.4.2, we will discuss certification in the aerospace domain with a strong focus on
fail-operational platforms for flight-critical applications.

3.4.1 Industrial Certification

The IEC 61508 [65A10] serves as the governing safety standard for general industrial
machinery. Related standards, either for specialized domains such as chemical, nuclear
or railway or regional standards have been harmonized since its introduction (or are
in an ongoing harmonization process) to minimize development efforts between these
domains. The standard is divided into seven major subparts. Parts one to three define
the safety lifecycle (1), system-level requirements (including hardware) (2) and software
requirements (3). Parts four to seven include definitions, examples and guidelines, as
well as tables referenced by parts one to three. We will therefore focus on parts two
and three. The second relevant standard for controlling industrial machinery is the EN
ISO 13849. It is divided in two parts (requirements [ISO15] and validation [ISO12]) and
defines for example risk assessment strategies, equipment classes with certification levels,
preferred architectures, and many other machinery-related safety figures. The EN ISO
13849 will be of interest during the discussion due to its demand for single fault tolerance
in higher certification levels, paired with very low occurrence rates. Since it does not
address electronic hardware or software certification in great detail, the IEC 61508 is used
in most projects to cover these aspects. We expect the reader to be familiar with the IEC
61508 and EN ISO 13849 for the upcoming sections, since quoting from the standard is
prohibited by copyright and this work does not intent to provide a exhaustive introduction
to both standards.

A well-defined development and lifecycle process is the cornerstone of every safety
related development. Establishing such a process in grown company structures is not
an easy, nor an inexpensive task and requires significant planning and resources. The
latter also involves significant cost for the corporation seeking the relevant approvals by
certifying bodies, hence they tend to only provide the bare minimum required for a given
domain. The IEC 61508-1 therefore defines the minimum requirements for a compliant
safety lifecycle, including process phases with their objectives and some requirements.
The interested technical reader should consider sections one to four (of part one) for the
scope, structure and how to demonstrate conformance. We will not further address part
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one since the general development process is not our primary focus, even if this work was
strongly influenced by existing certification processes around the industry to maximize
real-world usability of the concepts already presented and the following considerations for
certification.

Together with the EN ISO 13489-1, the IEC 61508-2 is the primary standard used on
the system level for safety critical systems in industrial applications. In section 2.1.3, we
defined that a single LRU based on our proposed system architecture must be certifiable
up to SIL3 / KAT3(PL.d) while supporting a SIL4/KAT4 claim starting from two distinct
LRUs (RQ1 and RQ2, see Table 2.1). RQ1 and RQ2 were driven by the fact that SIL1
requirements are fairly low and can be achieved with high-quality hardware in a controlled
process - therefore a SIL1-only rating (or KAT1 in the EN ISO 13849 sense) for a single
LRU would neither improve the state of the art nor future system designs (limited prac-
ticality for real-world projects). Reaching categories SIL3/KAT3 with a single physical
LRU is difficult/impractical from multiple reasons:

• On a single printed circuit board, the design and verification effort is quite sub-
stantial to prove that PCB failures do not affect redundant topologies on the same
physical circuit board and are tolerable up to a certain degree (channel isolation).

• Very few system functions in industrial applications actually require a SIL3/KAT3
(and beyond) level. The trade-off between cost and usability and the actual use-
cases where a single board SIL3/KAT3 design would be beneficial is limited.

• Since I/O interfaces and are required to be independent for multiple on-board chan-
nels (13849 KAT.3 single fault tolerance - a single fault may not disrupt the safety
function and is mostly detected), one would only gain the benefit of eliminating
one LRU housing. The latter can even be achieved when it is possible to combine
multiple units in a single housing with adequate separation.

• Availability of a non-redundant SIL3 LRU is questionable (or even below limits
required by the standards, 13849 PL.d for example is hard to reach with a single
unit), due to the inherently higher failure rates as designs get bigger and more
complex. Note that a high-performance SoC requires extensive support circuitry,
memory, etc.

We therefore conclude that the ideal certification level for the single LRU is SIL2/KAT3,
since we’re at least able to meet SIL2 with the SMON and DMON architecture. KAT3 is
also possible, since, on a logical level, we’re able to detect failures in safety functions accu-
rately and are able to trigger a reaction even in the presence of latent faults (not only true
for the DMON architecture, but also for SMON when proper cross-device monitoring is in
place). If more availability is required by the application (customer will not tolerate that
a single LRU failure leads to the unavailability of the whole system) or functions which
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require SIL3/KAT3 (or higher) are present, one is easily able to include a second LRU.
A high-availability system with very limited failure modes is possible with three or more
LRUs, making an ideal fit for SIL4/KAT4 applications which can not be fulfilled with a
1oo2 or 2oo2 DMON architecture. The result is a very scalable, highly modular solution
which even supports retrofitting and in-field expansion when requirements change over
the lifecycle of a system or due to changed laws and regulation. By not relying on an in-
dividual part with extensive evidence and field-proven reliability at the core of our design,
but rather the system-level approach of detection all possible failures due to their effects
on the element level (element in the sense of IEC 61508), we claim that the amount of
per-component evidence needed for a successful certification is drastically reduced. Since
we lack this evidence anyway for our complex SoCs, moving the justification for a given
safety case to the correct level in the system hierarchy is vital for any future certification
effort.

If we look closer at the EN ISO 13849 KAT3, we notice the aforementioned single fault
tolerance requirement which differentiates KAT3 from SIL3. Although SIL3 indirectly im-
plies a redundant architecture (or ar least partial redundancy with high quality on-line
tests) by lowering the MTTFd compared to SIL2, it does not explicitly force that the
safety functions must still be operative after a single fault in the elements providing the
safety function. Furthermore, the EN ISO 13849 also proposes a designated architecture
for each class defined in the standard. For KAT2, a non-redundant approach is pre-
ferred with a dedicated monitoring unit alongside the main compute path (see Figure 10,
[ISO15]). For KAT3, the authors of the standard envisioned that, in order to cope with all
possible component failures, a fully redundant architecture is required. Note that KAT3
does only require fault detection where effort is reasonable, due to the redundant nature
of the system, whereas KAT2 must detect that a safety function is no longer available.
Although this apparent loosening of fault detection requirements might seem odd at the
first look, it is adequate since the argumentation for system safety changes from KAT2 to
KAT3. KAT2 follows a "safety by evidence and high-quality fault detection" (diagnostic
coverage) approach, while KAT3 shifts towards redundancy and logical, per-channel fault
detection with the added benefit of a second control mechanism, still capable to uphold
the safety function even if one failure (or a series of failures) has disrupted one compute
channel (also accounts for sensors and final elements, since the full chain should be re-
dundant for KAT3). Successfully arguing for a KAT3 systematic capability claim with
only a single logical channel (or information flow) is nearly impossible, since failures of
connectors, cabling, circuit boards, etc. are also discussed during certification and do lead
to undetected, unrecoverable failures of an channel without redundancy. It is certainly
possible to duplicate all internal part on an LRU in one single housing with redundant
physical interfaces, but cost and complexity constraints often don’t permit these designs
outside very special (and most likely not cost and space constraint) use-cases. Further-
more, establishing a safety claim for SIL3/KAT3 on modern, highly complex SoC devices
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is very unlikely to be successful due to the level of diagnostic coverage required at these
levels, if only one single compute channel (without further hardware measures taken) is
used in a design. The architectures proposed in this work therefore follow an on-board,
"mixed-redundancy" and diagnostic coverage approach, combining the best of both worlds
into a semi-redundant, yet fault tolerant architecture with duplicated information flows
and fall-back strategies. The diagnostic coverage is at a medium level for the individual
SoC in the SMON and DMON architecture, but when combined with the additional com-
pute channel with information redundancy, the overall result on the board level is already
single fault tolerant (SMON) and, with the extension to the DMON architecture, tolerant
of latent and multi-point faults anywhere in the LRU’s flow of information. The levels
of diagnostic coverage, as defined by the EN ISO 13849, are "none", "medium" (≥ 60%),
"high" (≥ 90%) and "very high" (≥ 99%), whereas the ISO 61508 defines the levels "low"
(≥ 60%), "medium" (≥ 90%) and "high" (≥ 99%). Both standards use the same basic
definition of diagnostic coverage, which is defined as the ration between detected and
undetected dangerous failures see [65A10, Annex C, C.1, G] and [ISO15, Annex E, E.2].
In order to claim a high diagnostic coverage for a measure undertaken by the designer
or a COTS element (with documentation provided by the vendor), one must ensure that
(either continuously at runtime, or at a specified interval) it is able to detect at least 90%
(better 99%) of all failures determined in the FME(D)A analysis for a given element. For
example: The DRAM of a processor is protected by error correcting codes (ECC, single
error correction, double error detection in most cases) built into the memory controller
of the processor. Does the ECC-logic support online/offline self-tests (undetected latent
faults in the ECC logic might lead to undetected real memory errors not being discov-
ered)? If not, is an adequate software mitigation strategy in place, where the ECC logic
can be tested at runtime or in fixed intervals (if permitted by the use-case of the system)?
Are there memory error scenarios not detected at all by the ECC logic (due to the poly-
nomials used)? Due to the complex nature of most on-device peripherals and the usual
lack of safety related features in device families originally designed for other application
domains, the diagnostic coverage may be limited to only "medium" (EN ISO 13849) or
"low" (IEC 61508) without further software countermeasures to detect latent faults at run-
time. From experience, a "high" or "medium" (EN ISO 13849 and IEC 61508) diagnostic
coverage value is usually reachable with additional efforts in the software and hardware
design, which permits even complex SoCs in designs up to SIL2 with a corresponding
safety analysis. With our SMON and DMON architecture, we lift parts of this process
burden and shift it towards the architecture itself, which is by design inherently resilient
against latent faults manifesting into true failures (when dangerous errors and failures
are no longer detected due to a failed diagnostic measure or a systematic shortcoming
of the diagnosis). By removing the constraint of proven-in-use components to achieve
state-of-the-art performance for upcoming designs, we are fixed to Route 1s according to
the IEC 61508-2 Section 7.4.2.2, leading to the demand for systematic, software and hard-
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ware measures to control faults in these categories. Furthermore, we enter Route 1H and
choose a hardware fault-tolerance (HFT) approach and do only rely as much as needed
on the failure rate and freedom of errors of the individual element (Annex E and F of
the IEC 61508-2 are out of context for this work, since we work with COTS components
only). This choice then requires a system-level argumentation based on the safe failure
fraction of each element (and the associated SIL level) while discussing the decomposition
of these elements who make up the top-level system architecture on a block level together
with common-cause, mixed-criticality and other analysis to support the claims made. If
we again choose the pessimistic estimate that only SIL1 can be achieved per element
(a NOM channel, MON channel, etc.) since we are working with Type B elements 7,
the maximum level which can be reached (without any diagnostic measures, functional
degradation paths and other system level measures, etc.) is limited to SIL2 for a single
DMON/SMON LRU. Since we substantially lower the single element’s (inside the LRU or
its subsystems) dangerous undetected fault rate, the safe failure fraction of these elements
will in most cases be high enough to reach SIL2, effectively raising the upper, per-LRU
certification level to SIL3 in the DMON and SIL2 in the SMON case (SMON is limited
due to the HFT=1 8, while DMON can be classified as HFT=2 or even HFT=3 when im-
plemented to the full extend described in this thesis). With the constraints from Sections
7.4.3.2 to 7.4.3.4 from the IEC 61508-2, and the assumption that a Systematic Capability
(SC) of SC 1 can be demonstrated, a single DMON LRU is able to reach SC 2 when both
MONs are similar. With hardware dissimilarity in the MONs, SC 3 is possible. Since
multiple physical LRUs are likely to be used in a system (to increase MTBF, redundancy
or zonal safety), it is sufficient to achieve a systematic capability of 2 for the individual
unit to accomplish SIL3 with smart actuators and sensors on the top system level. With
multiple units and zonal safety, multiple LRUs greatly enhance the availability and raise
the SFF even further.

From the hardware safety integrity perspective, the concept takes route 1H (hardware
fault tolerance, route 2H is based on component reliability data), since reliability data is
not available in general for the rather new, high-performance multicore devices present
in the NOM (and also possibly the MONs) in both the SMON and DMON architecture.
These devices will be classified as type B elements, because they lack an in-depth failure
mode definition on the silicon level and dependable failure data for both detectable and
undetectable failures. Since on-chip diagnostics (if present) can not be regarded as a
high quality failure detection measure in general, we assume that the safe failure fraction
of the individual element (NOM, MON) will be low, and only suffice to comply to a
low SIL / SC level. However, with the inherent hardware fault tolerance of 1 or 2 (for

7Type B elements are unsafe COTS components in the sense of the IEC 61508, where failure modes,
fault condition behavior or failure rate data/evidence is not well-defined or lacking.

8In the IEC 61508 context, HFT=1 implies one degree of hardware fault tolerance, e.g. redundancy
or (dissimilar) backup system. HFT=2 implies the system can tolerate two losses or dangerous failures
before they manifest as a loss of the safety function.
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DMON, in case both MONs are dissimilar), even a safe failure fraction of less than 60%
is adequate to reach SIL 2 with HFT 2 and SIL 1 with HFT 1 according to Table 3,
IEC 61508-2. With further investment in the analysis of the nominal and monitoring
channel devices, and a safe failure fraction above 60%, SIL 2 and SIL 3 are reachable with
HFT=1 and HFT=2. Since the individual LRU does not contain a serial combination
of those higher-risk components, a higher per-element SFF and SC directly improves the
whole LRU safety rating. Note that Annex E and F of the IEC 61508-2 do not apply,
since we do not claim evidence based on on-chip redundancy or custom ASICs. Also note
that internal, on-chip diagnostic measures are only regarded as a possible way to detect
internal device failures in the COTS multi-core devices faster, but are not directly related
to system safety. Fault detection, mitigation and fault tolerance is accomplished by the
combination on the LRU and system level and with the architecture presented in chapter
2. Full information redundancy over all processing elements within the LRU ensures that
all faults (also random, like single event upsets or other radiation and environment effects)
leading to a wrong, untimely or missing computational result are discovered internally and
do not leave the LRU.

One additional topic of importance in the presented architectures is the combination
of safe and non-safety functions. All standards require that a non-safety function shall not
interfere with a safe function and cause dangerous failures, see for example sections 7.4.2.3
to 7.4.2.5 IEC 61508-2. We already discussed several measures in hard- and software in
chapters 2.2, 2.3 and 2.4. When properly implemented, they provide adequate separation
as well as spacial and temporal independence. Multi-point faults may, however, lead to
a loss of this separation, especially when internal hardware units in the NOM or MON
fail undetected and additional errors in the remaining on-board channels fail to detect
a wrong output result. These multi-point faults require that at least two independent,
hardware dissimilar elements exhibit the same or different faults leading to the same
wrong output result. As shown in 3.2 and 3.3, even under pessimistic assumptions, the
remaining dangerous failure probability is exceptionally low and only exists as a theoretical
possibility for most use cases. Furthermore, since multiple LRUs are present in a real-
world scenario, these remaining dangerous undetected failures of a single LRU can be
discovered easily by redundant units and do therefore not pose a real thread in an actual
implementation. Note that the loss of isolation between safe and unsafe functions does
only impact the NOM, not the MON. In both the SMON and DMON architecture, only
the NOM is executing non-safety functions alongside safety functions.

3.4.2 Aerospace Certification

The certification of aerial vehicles on the top level is governed by different certification
specifications (CS), usually issued by a some type of government agency with a given
scope. Depending on the usage type, number of passengers, maximum speed, etc. the
CS defines certain requirements and characteristics the aircraft must achieve in order to
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be flown in a particular airspace. For this work, we will only focus on the aspects for
on-board electronics. There, the CS define acceptable means of compliance (AMC) and
alternate means of compliance (AltMOC). An applicant can for example show that he
adhered to a special set of guidelines (CS among others reference guidelines issued by the
Radio Technical Commission for Aeronautics, RTCA) which in turn define a special set
of requirements depending on certain environment conditions, equipment type, the power
system used on the aircraft, etc. The most relevant standards for developing airborne
electronic components are by far the RTCA DO-160 [SC-12] (environment qualification,
e.g. mechanical shock and vibration, EMI, voltage injection, lightning strike), the RTCA
DO-178 [SC-11] (software qualification, microprocessors and complex electronic hardware)
and the RTCA DO-254 [SC-00] (complex electronic hardware, programmable hardware).
But besides those specialized guidelines, general process standards exist, usually defined in
the CS by referencing for example the SAE ARP4761 [ADC96] for how safety assessments
should be conducted on different system levels, right down to the individual unit, and the
more overall process-centric SAE ARP4754A [ADC10]. The ARP guidelines also define
the design assurance level (DAL, highest DAL A, lowest DAL E) which can then be used
in the scope of the CS to establish a certain dangerous failure rate goal for each subsystem
or LRU. Note that, due to copyright reasons, direct citations form the standard are not
possible in this work, like with the industrial certification standards. This section is not
intended to provide an introduction to those standards.

For each function the system must perform in order to stay operative or to complete
a certain mission, a functional hazard analysis (FHA) must be performed, together with
a fault-tree analysis (FTA) or Markov-analysis (MA). These analyses lead to a function-
based design assurance level (FDAL) which is focused on the function level, not on LRUs
or software. Once all system functions are known and categorized by their criticality and
failure mode (fail-op, fail-safe/silent), each system function is then allocated to hardware
and/or software. This allocation is not strictly a one-to-one relationship (e.g. one LRU per
function). Prominent examples are primary flight control (PFC) or a full-authority digital
engine control (FADEC) where the loss of functionality inevitably leads to a catastrophic
scenario (which directly implies the highest DAL for the respective class of aircraft).
Alongside the FDAL allocation, further aspects like zonal safety and common-cause fail-
ures must be taken into account in the FTA and MA. Once the FDAL assignment is
finished, each resulting piece of electronic equipment (like a LRU) is assigned an equip-
ment DAL (IDAL), based on the functions to be executed on this unit. The ARPs define
allowed methods to compute the resulting IDAL based on the FDAL, degree of redun-
dancy, dissimilarity between redundant channels, etc. Once the IDAL is known, each
unit can be developed in a well-defined and strict process in terms of hard- and software,
accompanied by a safety process to compile the necessary certification evidence for the
targeted IDAL. This evidence is eventually presented to the certifying agency and is part
of the type approval process of each aircraft. Later modifications to this specific aircraft
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type then require supplemental type certificates, based on units which have been devel-
oped to a certain IDAL based on a technical standard (resulting in a technical standard
order, TSO, approval) and have been integration-tested on this type.

On the equipment level, this process basically repeats for internal sub-assemblies and
even individual parts which play a vital role in the design of the unit. The approved
method of FTA and MA is used to compute the failure rates of all critical functions, where
the designer shows that a failure is less probable than x per usage hour or event. Note
that this is final evaluation is done on a functional level. To support these numbers, the
FTA’s base events originate from FMEAs, FMEDAs or FMECAs which directly translate
right down to the hardware design of the unit. The software IDAL is achieved by the
development process, which guarantees certain freedom from errors based on requirements
based testing with coverage. The type of coverage needed highly depends on the IDAL.

On the level of a cluster, comprised of LRUs based on either the SMON or DMON
architecture, different system functions are allocated. Each of these functions holds a
certain FDAL, which results in an IDAL once the allocation to the cluster is done. Based
on this FDAL/IDAL, the resulting software function and physical flow of input and output
information for this particular function is evaluated. If the allocation is done correctly
(dependent on the FDAL, on the NOM and MON, or only the NOM), one can show with
the cluster fault tree presented earlier and the top level system FTA and FHA, that a
single unit failure/loss within the cluster is no longer catastrophic, if the unit meets a
specific IDAL. The failure of a certain function is mostly tied to element executing the
function, which will be the NOM in most cases. In a classic LRU design, the processor
in the NOM would be a well-tested, fully understood, very simple MCU in order to
conduct a detailed FMEA to support the claim for a high IDAL. However, in our LRU
the NOM is a low-trust, highly-complex, multi-core device, where an FMEA can only be
conducted by the manufacturer of the device, and a lot of complex, coupled failure modes
complicate a safety claim even further. With the SMON and DMON architecture, and
the software concept presented earlier, the dependency on a trustworthy microprocessor is
fully canceled, by applying architectural, systematic mitigation. Since each architecture
is inherently hardware-dissimilar, critical functions (equal to or higher than DAL B) are
at least once duplicated inside each unit on dissimilar hardware. Once a mismatch is
detected, the fault mitigation strategy depends on the cluster and the architecture used
(SMON or DMON). While most failures can be mitigated effectively, one common-case
failure mode remains in the special case, when in a SMON cluster with similar NOM and
similar MON devices in each LRU. There, a common-cause failure of all NOM devices
renders all cluster units inoperative, if the wrong fault mitigation strategy has been chosen.
Instead of the immediate fail-silent strategy, it is vital to first evaluate the state of all
other cluster elements first, in order to decide whether the cluster should stay operative
and use the results of the MON while all the NOM carry out a controlled reset.

Under the assumption that the units within a cluster do not share a common-case
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failure mode (impossible with DMON, SMON requires a special mitigation strategy), we
can based on the size of the cluster (which is relevant to reach the desired cluster failure
rate if the individual LRU failure rate is too high) determine the maximum FDAL level
allowed on the LRUs: If it is possible to show DAL C compliance for the NOM and
MON (which is possible even with complex hardware), the internal architecture and FTA
analysis easily permits a DAL C approval which has no single points of failure. The
combination of these units in a cluster, combined with the degree of zonal safety required
for the application, then allows for at least FDAL B to be executed. If enhanced functional
degradation and fault mitigation strategies are employed, it is possible to further raise
the individual unit’s DAL to B, because only multi-point failures, at the same time on
dissimilar devices can render a function inoperative. Zonal safety, used to decouple the
environment to some degree of redundant units, can then be used to argument of a DAL
A classification. The DMON architecture inherently offers this capability and only fails-
silent in a trivial fault mitigation scheme after two dissimilar devices have failed.

Note that the voting of function output results can either be executed on smart final
elements, or inside the cluster. The latter requires a more sophisticated approach on
channel synchronization and the voting algorithm. Output result voting on the final
elements further reduces the coupling between the NOM and the MON, while easing fault
mitigation. The distributed monitoring/supervision between the nominal and monitoring
channels in both the DMON and SMON architecture accelerate the on-board failure
detection to support the claim for a true fail-silent LRU design. These actions aid in a
safety case based on architectural mitigation, which we will discuss in the remainder of
this chapter.

Also note that in the DMON architecture, a classification of the single computing
channel failure (either NOM or MON) as Minor or even "no safety effect" would be pos-
sible, since it allows for a full detection of all possible channel output result faults if at
least two good devices remain. Coupled with the fast detection of a channel failure and
a proper, application specific degradation and mitigation scheme, the failure of a NOM
or MON does no longer play a relevant role in the LRU’s fault tree. If NOM and MON
devices are similar in each LRU within a cluster, the common-cause failure of all NOMs
at the same time (even if zonal safety decouples the environments between LRUs, but
still, this failure mode might be a concern) is negligible if the degradation and mitigation
scheme allows the cluster to continue operation. For example, if the cluster operated
nominal, the cluster votes by itself and only sends one known-good actuator command
set to the final elements. In a degraded state, the actuators are being send a set of com-
mand values and carry out the voting by itself, since the cluster is now degraded and can
no longer decide in the individual LRU which results are valid without significant com-
munication and algorithmic overhead. The hardware independence for higher criticality
functions is vitally important in both the SMON and DMON architecture. By estab-
lishing fully redundant information paths right down to the computational devices inside
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each LRU, we decouple the non-trustworthy microprocessors (in terms of certification,
not enough evidence) and given the hardware dissimilarity, the base events in the LRU
fault tree analysis do no longer suffer from a single root cause which leads to unit and
cluster failure. The redundant flow of information through the LRU and the cluster is
essential in both architectural concepts and requires fully redundant data bus interfaces,
in order to maintain the independence and dissimilarity of each channel inside the cluster
LRU. In extreme scenarios, or when degradation paths can not be established, additional
dissimilarity between the cluster LRUs NOM can be established (different manufacturers,
instruction set architectures, etc.) to harden the cluster against common-cause failures at
device or software level (the latter requires dissimilar software, which is implicitly given
when different core architectures are used).

While the FDAL and resulting IDAL of the system functions allocated to a cluster
along with its fault tree dictate the level required for the individual LRU, the software
responsible for the strict separation of software functions on the multicore NOM or MON
must always be certified to the highest level required by any system function. It may for
example be possible to limit the overall unit LRU to DAL B or even DAL C depending
on the application, while the spatial and temporal isolation software must be certified to
one or two levels higher, as required by the RTCA DO-178 for any multitasking operating
system or function scheduler. We extend the spacial and temporal isolation between
the individual cores in the NOM and MON by a high-rate, cross-device monitoring in
order to significantly reduce the time to repair in case a catastrophic software failure
renders one of these devices inoperative. The goal is to detect and indicate an error even
before the set of actuator command values is due, restart the violating device or LRU
and always continue operation for high criticality functions. The fail-op behavior is either
inherited by dissimilarity between the NOM within the cluster or by a degradation path.
Upholding also the lesser or non-critical functions when failures occur is possible when the
MON channels offer sufficient computational resources. Levering software dissimilarity in
a cluster made out of similar LRUs with dissimilar NOM and MON channels or DMON
LRUs is another way of adding additional resilience and harden the cluster even further.

Both major certification authorities in the aerospace industry, the Federal Aviation
Administration (FAA) and the European Aviation Safety Agency (EASA) have issued
relevant information material for complex off-the-self hardware components, namely the
Position Paper CAST-32A [Tea18] and the CM-SW-CEH-001 [EAS18a]. Both documents
define a set of tasks/actions which have do be carried out depending on the IDAL involved.
We will now discuss the these items in order to show either direct compliance or the
alternate means of compliance for the SMON and DMON architecture given by it’s design.
Note that we assume a IDAL B LRU in a cluster serving FDAL A functions.
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3.4.2.1 EASA Certification Memorandum SW-CEH-001 Activities

Activity numbering and description from [EAS18a], chapter 9.3, see reference for full
activity text.

• (1) - Device Classification

The NOM and MON devices are both highly complex microcontrollers since they
have more than one core on the same bus with a shared memory controller. Sev-
eral complex peripherals are used for data bus communications which operate on
microcode or dedicated accelerators.

• (2) and (3) - Device and Manufacturer Data

For all complex devices used, the usual documentation including manuals, errata
sheets, etc. is usually available. For some devices, dedicated NDAs which are
required for further reaching documentation on internal function units or errata
documents. All manufacturers that the author worked with in the past have a
strictly controlled, very formal development process due to the complexity and cost
of semiconductor manufacturing today. Especially the AEC Q-100 [Com14] auto-
motive component quality standard offers the needed quality documents to justify
the use of complex COTS microprocessors. One should not seek the availability of
design data from the manufacturer, since this information will not be available.

• (4) and (5) - Usage domain aspects

The final application dictates the used/unused internal units of the NOM and MON.
Unused functions are deactivated on most of today’s devices by power and clock
gating. The clock and power distribution inside the SoC for the respective peripheral
is disabled in order to save both power and thermal dissipation budget. This is vital
for many application fields (mobile, industrial, small scale rack devices, etc.) and
fully disables the unit. The management of such functions is usually controlled by a
dedicated platform controller inside the SoC or per peripheral in a bus interface unit.
We check periodically at a very high frequency that the units are still disabled. All
vital static device configurations are periodically read and compared against their
desired values. This is easily done by simply computing strong cryptographic hash
functions over the register contents and comparing the outcome to a known good
hash value.

We heavily discussed the usage of internal function units, as well as shared resources
throughout this thesis with the goal to demonstrate the decoupling of internal and
LRU failure modes. Internal function units usually can not be fault-injection tested
nor can they be otherwise sufficiently verified. We do explicitly not rely on those
units to provide the overall LRU or cluster-wide low failure rate. We do however
use some internal units to provide the spatial and temporal independence within
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in the SoC (like memory management units, performance counters, etc.) which
are checked dynamically at run-time. Failures which translate to failures of certain
critical functions are fully mitigated by the LRU and cluster architecture.

As discussed in section 2.4, the single core equivalence framework provides the pos-
sibility to still conduct WCET analysis in a non-interference free SoC by establish-
ing upper bounds through memory and shared cache partitioning. The concept also
helps to provide additional determinism. Our general multi-processing concept does
only support static resource allocation without dynamic task reallocation (which is
possible for degradation paths to compensate failed cores, but not during nominal
operation). We therefore advocate a pseudo-AMP approach on the SMP hardware,
to dedicate one or more cores to certain functions to aid system verification and
determinism validation during functional testing. Since the processing platform of-
fers a significant boost in computational performance while most control algorithms
remain fairly light-weight, the issues with computing time and WCET from old, low
performance platforms will vanish. They are replaced by the difficulties in allocat-
ing the software functions within the complex cluster and ensuring that the true
information redundancy and degradation paths are well engineered and validated.

• (6), (7), (8) - Errata, Past Experience

These points are per default covered by a compliant errata management process as
already required by the DO-254. This also includes the errata safety impact assess-
ment. Additional experience during the development process and prototype phase,
hardware-in-the-loop testing, etc. is beneficial and also counts towards product
service experience.

• (9) and (10) - Configuration Management

From previous experience with several semiconductor manufacturers, all device
changes are adequately documented and distributed in a formal and controlled man-
ner via product change notifications ahead of all new die revisions. The die revision
is always directly readable on the device with special match-codes.

• (11) and (12) - Hardware and Hardware/Software Integration

As shown in this chapter, the device failure modes do not play a significant role in
overall system safety once the SMON and DMON architecture is applied. The indi-
vidual failure does not lead to dangerous failure scenario. The hardware strapping
used to select initial boot modes until a first stage bootloader or initial parameter
section in the program memory configures the device can be directly tested during
prototyping. The loaded device configuration by a predefined data structure in the
program memory which gets loaded first (usually for memory, clocks, power, etc.)
can be dynamically verified at run-time by hashing the configuration registers as
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described before. A simple development time test is also possible without special
instrumentation.

• (13) and (14) - Product Service Experience

Product service experience is usually very difficult to obtain, if not generated by
the applicant himself. Even if the device has been used in safety or aerospace
applications before, it is unlikely that a competitor hands out delicate information
about unit in-field runtime estimates, logged errors and returned units, since these
figures are also business critical. In other, non-safety related fields, the exact use
case and environment is often not known or not representative. It is best to produce
sufficient service hours in a controlled hardware-in-the-loop environment with many
units in parallel. For example, with two clusters of 5 units each in a test setup, it
only requires around 13 months with 24/7 simulation runtime to claim "Sufficient
Product Service Experience (PSE)" for a IDAL B according to the certification
memorandum". The required test time can be significantly lowered if some data of
non-safety applications can be obtained (down to around 42 days for the described
setup).

• (15) Architectural Mitigation

Our SMON and DMON architectures are essentially architectural mitigation mea-
sures to compensate for the low-trust COTS multicore device. Instead of the strict
reliance on manufacturer information or deep fault injection in the devices, we actu-
ally gain additional confidence way beyond the level currently possible in a technical
sense (today’s confidence is often carried by process assurance). This is due to the
"it will fail" attribute for each sufficiently complex, combined hardware and software
building blocks of the NOM and MONs, which is mitigated on the LRU and finally
the cluster level. The end result is a true single fault tolerant LRU with a multi-fault
tolerant cluster.

• (16) Partitioning

As discussed in 2.4, software partitioning is present at both the NOM and MON.
In addition, the cross-device monitoring hardens the LRU architecture and provides
additional error detection facilities. Since the MON only computes a limited function
set dissimilar to the NOM, additional decoupling can be claimed by the mentioned
external mitigation to the COTS component in the certification memorandum.
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3.4.2.2 FAA Position Paper CAST-32A Objectives

Objective naming and description from [Tea18], chapter 7, see reference for full Objective
text. The objectives align with the SW-CEH-001 Activities.

• "MCP Planning 1"

The system uses the architecture described in chapter 2.4, an asymmetric mul-
tiprocessing approach, with a wide set of mixed-criticality software components.
The cluster can not be characterized as an IMA platform, since we execute similar
software on all cluster LRUs and do not support dynamic reallocation inside the
cluster by default. The spatial and temporal partitioning as described in chapter
2.4 provides adequate isolation.

• "MCP Resource Usage 1" and "MCP Resource Usage 2"

As in regular systems, the configuration parameters and settings are documented
and tested. Periodic checks at run-time ensure that the relevant configurations are
not altered.

• "MCP Planning 2" and "MCP Resource Usage 3"

See discussion of "Usage domain aspects" from the SW-CEH-001.

• "MCP Software 1" and "MCP Software 2"

Chapter 2.4 discussed the aspects of interference channels, WCET and mitigation
measures. The data and control coupling needs to be verified on a per-application
basis.

• "MCP Error Handling 1" and "MCP Accomplishment Summary 1"

This objective is fulfilled by our SMON and DMON architecture. The accomplish-
ment summary needs to be compiled in the individual project.

In this chapter, we analyzed our proposed architectures in the light of industrial and
aerospace certification. We first discussed COTS device certification in the light of our
concepts and presented fault tree and Markov analysis. The final domain-specific consid-
erations complete the picture and show, how we intend to bring our concepts into new
generations of safe systems while being compliant to current standards and guidelines. The
reader should take away that the SMON and DMON architecture enable well-designed
safety systems, where the individual failure of the individual complex COTS devices used
in the NOM and MON does not lead to a catastrophic LRU failure. Both architectures do
not violate today’s standards and can be applied to future system architectures in highly
automated industrial, aerospace and transportation systems. Future architectures can no
longer suffer from the strong bond to a specific manufacturer or device, like in many com-
mercial systems today, due to the system level measures we translate into the hardware
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and software safety process. The shift in the mindset from proven parts, towards more
fault tolerant and redundant system architectures is actively discussed in many applica-
tion areas and might be reflected in future standard revisions. It will ultimately lead to
very resilient, low-failure rate systems which are desperately needed for future industrial
and mass transportation systems, where the sheer number of systems in the field requires
even lower risk factors than current architectures can provide.
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4

Practical Board-Level
Implementations

In this chapter, we will discuss four implementations (two DMON, two SMON) based
on actual COTS hardware components (Contribution C6). These designs can be used
immediately in upcoming LRU designs featuring the DMON or SMON architecture. All
four designs are based upon the findings from previous chapters and are directly suited
for certification. All COTS devices are state-of-the-art with long term support, built
by companies with a significant certification heritage. The application domains for the
implementations we will show are not constrained and include for example industrial,
railway or aerospace. Domain specific certification aspects apply when used in a real-
world project, see the previous chapter. We will focus on the components used at the
board level with their specific interconnects and also address external interfaces. The
surrounding system architectures showcase possible future designs in transportation and
industrial systems based on high-speed interconnects and legacy data busses. The overall
goal for this chapter is to show that both the DMON and the SMON architecture are
feasible and ready to deploy with the COTS devices available today, leading to future
proof and also backwards compatible LRUs for a high-performance central computing
cluster, running highly critical system functions in a mixed criticality environment.

We will start discussing the SMON variants in the first section and continue with the
DMON variants in the second section of this chapter.

4.1 SMON Implementations

The architecture of most embedded systems, especially when controlling vital system
functions, is always very closely tied to the full system architecture, e.g. its surroundings,
interfaces, sensors, final elements, etc. We developed the SMON board-level architecture
for larger systems with higher degrees of redundancy, due to domain specific aspects like
zonal safety, very low failure rates or fail-operational characteristics. Hence the architec-
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ture shown in figure 4.1.

Figure 4.1: Fictive example architecture for a large scale system integration with SMON-
based LRUs as the central control cluster. Zonal redundancy partially shown.

The system context in which the two architecture variant we will discuss next is shown
in figure 4.1. Information about the physical system state is obtained from sensors on the
left-hand side and fed into a centralized computing cluster which computes new set point
values for the final elements (right-hand side) in a cyclic fashion. In most actual projects,
the sensors and input devices will be standard off-the-self components which only offer
legacy, low-speed interfaces (like RS232/422, CAN, ARINC429, Flexray, etc.) since they
have been in the market for some time and reduce project risk due to certification evidence
and in-service experience hours. If newer input devices are used or specially developed,
they will most likely feature the same I/O structure as the final elements, e.g. modern
high-speed interconnects which come in either point-to-point or switched networks. The
latter is not depicted in figure 4.1 since we also want to show the possibility to integrate
our new architectures in systems with a relevant legacy, e.g. where overhauls are carried
out step-by-step over multiple design generations. If modern interconnects are used, it
might be possible to join the sensor and final element network into one large complex, if
possible in the application domain and under other system design aspects. For example:
How many ports do COTS network switches offer? Are redundancy concepts too complex
if sensors and actors are connected on the same physical network? Is fault tolerance and
functional degradation for fail-operational use-cases still given, etc.? Note, while depicted
as single interconnects, it is likely that physical medium redundancy is given for sensors
and final elements, as well as for vital networking elements (switches, couplers, etc.) and
yield even more required interfaces on the cluster side. For small numbers of final elements
in a switched networking topology, it could be advantageous to move redundant switches
into the cluster to save physical units and reduce cabling. However, as we do not want
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to discuss very specific full system architectures in this work, which vary vastly even
within application domains, we will not engage in further explanations at this point and
shift focus towards the cluster, where the example from figure 4.1 defines some interface
requirements for the needed I/O.

As far as the interface requirements for our SMON LRU are concerned, we need to
address legacy interfaces as well as modern high-speed interconnects. From the example
architecture, it can be seen that each LRU shall offer at least four (2 with physical layer
redundancy) legacy interfaces. We will settle for CAN and ARINC429 (substitute AR-
INC429 by RS422/485 or even RS232 for industrial and by LIN or Flexray for automotive
applications) in this example. We will also discuss scaling possibilities for more interfaces.
Note that we assume that it is safe to combine multiple input interfaces into one I/O han-
dling device inside the LRU, but not redundant hardware interfaces. This will result in at
least two fully decoupled input paths, keeping the true hardware and logical redundancy
right to the computing element for maximum separation, coverage of possible faults (fault
mitigation by redundancy) and freedom of interference (which is always difficult to ac-
complish). For the final elements, the LRU shall offer at least four 1GBase-T interfaces
to connect to a redundantly switched Ethernet network via a duplicated physical layer.
Aside from digital data bus interfaces, the LRU is supplied by two redundant and inde-
pendently generated power rails. For the sake of argument, we assume a 24VDC supply,
since different supply voltages (e.g. 12VDC, 28VDC, etc.) do not significantly impact the
structure of the power supplies of the LRU. Internally, a stabilized intermediate voltage
(either highest voltage needed by components or slightly higher to power localized second-
or third-tier regulators). Further requirements, which we will address further when dis-
cussing component choices, are for example: Industrial temperature nominal operating
range (−40◦C to +85◦C), passively cooled unit, LRU certification to SIL 2 / DAL C, and
many more which we will be important in a real-world design like connectors or housing
(sealing, pressure resistance, salt/humidity, etc.) but are not addressed here since they
are too application specific and can not easily be generalized.

Within the board-level architecture, the most important aspects are the components
used, the data paths between them and additional hardware aspects which greatly influ-
ence safety aspects such as power and clock domains or component supervision circuitry.

Shown in figure 4.2 is the first implementation variant for the SMON architecture
based on COTS multicore SoCs and a re-configurable MPSoC. See the next example for
another version without FPGA-based components. Depicted are several parts and sub-
assemblies which we will discuss in the following including their interconnects. Note that
we are not promoting devices or manufacturers - if a specific device is mentioned, it should
be seen as an example for a range of devices from different manufacturers.

• (1) NOM Processor Subsystem

The nominal channel processor subsystem consists of several components, required
for the NOM processor to function. First is the processor itself (1.1), a local power
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Figure 4.2: Board-Level Implementation and power domains of the SMON architecture
with shared interface processor

supply (1.2) to generate the voltages / local power domains required to drive the
processor core supply, I/O supplies and memories. Various manufacturers offer in-
tegrated solution for such tasks in a single package, but designs may also feature
separate down-converters for each supply rail. A power and processor supervisor
is required for the closely-coupled monitoring of the internal supervision and man-
agement core in the MPSoc (1.1). The supervisor could be an integrated micro-
controller, conducting the voltage rail monitoring (checking for valid voltage levels)
which must be connected via a digital interface to 1.1 in order to perform the high-
frequency challenge-response watchdog. For the power rail supervision alone, a pro-
grammable controller is not required and different integrated solutions are offered by
renown manufacturers. For the challenge-response watchdog functionality however,
special power-management-integrated-controllers are necessary, which are rare and
mostly intended for special automotive controllers. We therefore strongly advocate
the use of a dedicated, low-complexity microcontroller with limited software. Most
modern processors also require a precisely timed reset and power sequence to start
into operation, where the microcontroller also offers a benefit and allows for a com-
plete coverage of all supervisor tasks in an easily controllable subsystem. In order
to store persistent / non-persistent data, the processor subsystem also includes a
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volatile DRAM (1.4) and non-volatile flash memory block (1.4). Note that the ex-
act type of memory is highly dependent on the processor decision. Modern devices,
at the time of writing, support third and fourth generation dual data rate (DDR)
interfaces for non-volatile memory where run-time data and program code is stored
1. The program code as well as non-volatile data (configurations, parameter sets,
tables and databases, historical data on states and faults, etc.) is stored on either
controller-less memories or integrated flash memory solutions. Numerous memory
types exist today, which are at the time of writing available as flash-based solutions
for larger storage sizes. When a pure flash device is used without an integrated
controller, the software must take tremendous care of the flash device, since writes
and also reads wear out the flash cells over the lifetime of the system. Defective
cells must be detected and avoided / repaired by moving data to functioning cells.
An over-provision-management is therefore needed. Memory solutions with inte-
grated flash controllers, often sold as eMMC devices (the board-level variant of an
SD-Card), include the very challenging cell management and also feature on-line
error correction and bad cell management. This does not free the implementer from
program code verification via additional image checks, like cyclic, hash-based or
cryptographic (authenticity + correctness) checks, since the implementation of the
flash supervision is often not known and can therefore not provide sufficient evidence
for certification in higher assurance levels.

One possible choice for the main processor in 1.1 are the Layerscape Processor
series from NXP Semiconductor. They offer either A53 or A72 ARM Cortex IP-
Cores based on the ARMv8 64bit architecture. More importantly, these devices are
long-term available (at least 10 years according to the manufacturer) and contain
many high-speed interfaces, most prominently the proprietary Ethernet accelerator
IP, the data path accelerator architecture (DPAA) in different revisions. Since the
processor series has a significant legacy in aerospace, military, industrial and rail-
way applications, they are ideal for critical units. Since the DPAA is microcode
driven, custom Ethernet implementations like ARINC-664 [ITC19] or support for
the recent time-sensitive network standard additions to regular Ethernet are pos-
sible.2 Furthermore, the Layerscape SoCs (and their predecessors, PowerPC-based
SoCs) are supported by all major vendors of pre-certified real-time operating sys-
tems with support for time- and space-partitioning, like DDCi DEOS or Windriver
VXWorks-Cert. The processor series offers, among others, high-speed SGMII (serial
gigabit media independent interface) interfaces, ranging from single up to QSGMII

1Even though modern flash has progressed in terms of operating speed, executing programs from flash
results in a penalty on program execution time. Therefore, program code is loaded into RAM before/while
executing a program.

2Both the FAA and EASA are discussing that device microcode may fall under the COTS manufacturer
responsibility and is out of scope for DO-178/254 certification, see EASA AMC 20-152A [EAS18b]. The
FAA plans AC 00-72 (similar to AMC 20-152A) for 2020
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(quad serial gigabit media independent interface), standard RGMII (reduced giga-
bit media independent interface) and also other high-speed serialized interfaces like
PCIe or SATA. The SGMII and QSGMII interfaces are especially useful, as they
introduce less electromagnetic interference as standard RGMII interfaces and can
be directly connected to most modern physical layer interface ICs (PHYs) or Eth-
ernet switches. From a single, low-power NXP LS1046 processor (see [Sem16] and
[Sem19] for further details), we can directly generate for example 6 dedicated Ether-
net channels by using one QSGMII PHY and two SGMII PHYs without intermediate
circuitry required. Most MPSoCs offer so called high-speed serializer/deserializer
(SERDES) lanes, which can be reconfigured in terms of internal routing to different
backends (Ethernet, PCIe, SATA, etc.) as needed. To recall the LS1046, at least
one PCIe x1 interface is still possible after the described Ethernet assignment on
the SERDES lanes. This leaves us with a possibility to either connect even more
Ethernet-Peripherals, or for example an accelerator device (2) as depicted in Figure
4.2.

• (2) Optional NOM Accelerator

In order to meet very special requirements of certain applications, a specific accel-
erator device may be added as an optional addition to the NOM. Depending on
the application this device could for example handle sensor data processing from
raw radar or other rf-sensors or provide a direct connection to GNSS or data link
communications, as well as satellite uplinks for remote health, status and operations
monitoring. Also recent neural network accelerators, or FPGA-based solutions can
be attached.

• (3) MON Processor Subsystem

The monitoring submodule features an equally powerful multicore SoC, compared
to the NOM. As before in (1), the subsystem features the same building blocks
to supply the processor and its memories, as well as supervising the SoC supply
voltages and the internal program flow of the monitoring core with an external
watchdog supervisor. There are numerous possible choices for the MON channel.
The choice set here for a hardware dissimilar solution is not strictly required for
low to medium certification levels, but necessary to reduce the overall number of
required LRU on the system level for higher criticalities, starting from SIL3/DALB
when fail-operational behavior is required. One possible choice for the monitoring
channel are the programmable MPSoC families from Xillinx and Intel Programmable
Solutions, which feature not only a hard-ip subsystem with multiple cores and fixed
hardware IP cores, but also a large re-programmable FPGA inside a single device.
The added cost is rater low in larger quantities for these devices, compared to a
host processor + I/O device solution and lowers the overall component count on the
monitoring channel. In addition, to entirely different fabrication process, technology
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and also the hardware dissimilarity in the I/O modules implemented in the FPGA
lead to a truly dissimilar solution in all aspects. Here, the legacy data bus interfaces
are implemented inside the re-programmable MPSoC as needed for the application.
Additional high speed interfaces (Ethernet in this case) can also be implemented in
the FPGA, as far as the MAC-layer or an additional third layer switch is concerned.
Most devices also feature some hard IP cores for Ethernet, can or serial data busses
which reduce the number of interfaces to be implemented via the FPGA fabric.
The variable I/O portion allows for future upgrades to the connecting external data
busses which make these devices very flexible and future proof. Fast SerDes lanes
are also available in variable numbers through the device families, allowing for direct
SGMII or even XFI (10GBase) to internal and external interconnects which benefits
the overall system design (no physical layer interfaces required for direct connection
MAC-To-MAC) and radiated emission budget.

• (4) Legacy Interface Gateway Processor

Besides higher speed serial interfaces, low speed legacy links are required to interface
to existing (qualified) equipment such as sensor or interface platforms. Since the
complex MPSoCs used in the design do not support large amounts of the required
simple asynchronous or synchronous interfaces (like SPI or UART) and can not ef-
fectively handle them (due to for example the high interrupt overhead compared to
smaller MCUs) we added an intermediate gateway layer in form of a dedicated MCU.
For today’s automotive and industrial embedded system markets, a number of man-
ufacturers already offer pre-qualified devices which are intended to be used in safety
applications up to SIL3 or ASIL D. They are, in most cases, lockstep-processors
with protected memories and a large suite of supporting evidence such as chip-level
FMEDAs, detailed safety manuals and quality evidence regarding the manufactur-
ing. Examples which can be used in the depicted architecture are for example the
MPC5748G/MPC5777 (NXP Semiconductor), the TMS/RM-Series (Texas Instru-
ments) or the Aurix-Family (Infineon). They all can be connected via standard
ethernet to the NOM and MON processor (for information redundancy). Interfaces
such as ARINC-429 are typically connected via special integrated transceivers via
serial and parallel chip-level interfaces or are directly implemented in the device,
such as ARINC-825 and only require a physical layer transceiver. The example de-
vice families feature modern core architectures in the 200-600MHz range, enabling
them to handle many concurrent interfaces at once. Since they are not needed for
computational tasks in the SMON architecture, all of these families are capable of
handling the interface tasks. From a certification perspective, they can be black box
tested since they only store and forward information without modification.

• (5) Ethernet Interface

Ethernet based data busses are the defacto standard in many application domains,
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and have also taken over safety applications with adaptions like (Safety Over) Ether-
cat or ARINC-664. The physical layer, up to 100GBit/s by now, is mostly equal
over many application domains, and has been enriched lately by the automotive
domain, driving a lower-cost, single twisted pair interface for autonomous driving
applications. This new physical layer, while not being galvanically isolated like the
100 / 1000 Base-T standard common before, offers the advantage of reduced wiring
cost/weight. Standardization of connectors and cabling is ongoing at the time of
writing, but the underlying specification, 100Base-T1 [Com15] and 1000Base-T1
[Com17] is final with speeds up to 10GBit/s in the standardization, see [Com20].
The common MAC interface allows for a flexible connection to the host processor.
Our processor choice can either be connected via the parallel media-independent
interfaces (MII) or via the more modern serialized interfaces, where the MII com-
munication is modulated on a differential receive/transmit path (SGMII). This in-
terface is especially welcome in industrial and aerospace applications since it greatly
reduces radio frequency (RF) emissions originating from high-clocked, parallel inter-
faces. Furthermore, with higher-end processors one has the opportunity to leverage
faster transceivers which allow modulating more than one physical interface on one
serialized/deserialized (SERDES) pair, resulting in interface standards like QSGMII
or even faster standards for 25, 40 or 100GBit over a single or multiple SERDES
pairs. Special quad-port physical layer transceivers are readily available in an in-
dustrial temperature range from several manufacturers. Note that, however, the
coupling to a single host interface as well as the shared transceiver may not be
desirable for some applications which require independence between the individ-
ual interfaces. For these use-cases, we recommend the usage of single industrial
transceivers. These parts often feature enhanced internal built-in tests and proper
loop-back-test means which include the whole front-end up until the external inter-
face. Also note that serialized interfaces require a protocol/speed negotiation phase
at power-up, which has to be considered during software and system design. Our
board-level architecture allows the use of multi-port transceivers, since the moni-
toring channel is used as a fully redundant and independent external path. Couples
with a redundant switching architecture on the system level, the high-speed inter-
connect between units to final elements, sensors or interface units is no longer a
single point of failure. Especially with classic 100/1000Base-T signaling, with full
galvanic isolation by design, a very robust, fully decoupled and very resilient data
transmission can be accomplished with COTS components.

• (6) Legacy Interfaces Physical Layer

This block contains all legacy interfaces which have to be supported for a stand-
alone usage. Still common over the industries are simple serial connections like
RS232/RS422/RS485 and others, as well as CAN, FlexRay (mostly automotive)
and of course aerospace specific low-speed serial links like ARINC-429 or 1588. Care
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should be taken to ensure the interference paths between the individual interfaces
are kept low, by employing single-string transceivers for each interface, coupled with
separated protection circuitry per channel. Otherwise, physical effects like voltage
spikes or lightning might traverse interfaces and impact data communication over the
whole system. A dedicated MCU is necessary to bridge the gap between the MPSoC
and the legacy interfaces, since these processors do usually not offer the amount of
serial interfaces required to drive the transceivers. Also, the interrupt-driven nature
of these interfaces disrupts the efficient execution on complex processor cores and is
best executed on smaller microcontrollers with a much shorter processing pipeline
or field-programmable gate arrays. Very suitable microcontrollers can be found in
the automotive line-up of several manufacturers which are either ARM or PowerPC
based, with a decent amount of serial and parallel interfaces and an Ethernet (mostly
RMII) uplink to the NOM/MON processor. They also offer programmable timer
units (for example the TPU in NXP processors or the HPET in Texas Instruments
MCUs) which can be used to implement custom handling for interfaces like ARINC-
429. The choice between a microcontroller and a field-programmable gate array
(FPGA) is mostly up to the implementer and the available resources in terms of
established development processes and tooling. Both solutions are equally valid
and offer great performance for a large amount of slow legacy interfaces. Note that,
depending on the full system architecture, legacy interfaces in the computing cluster
may not be necessary, since dedicated gateway or data interface units connected to
the high-speed network can abstract the legacy interfaces and provide the protocol
traversal. We integrated them nonetheless, so showcase the completeness of our
solution, even in the light of legacy requirements.

• (7) Redundant System Power Supply

The power supply of a combined unit with internal monitoring is of vital impor-
tance for the overall design. To properly decouple the failure modes of the NOM
and MON, the power and voltage domains of either one must be decoupled, such
that a single component failure in one of the domains does not immediately bring
the whole system down catastrophically. This can either be reached by a fully re-
dundant design or local point-of-load regulation, with localized small (integrated)
power supply solutions. Most modern devices require multiple power rails at dif-
ferent voltages (for the internal core logic, IOs, high-speed interfaces, etc.) so the
localized point-of-load concept is elegant and decouples the different domains of the
design. These can be found not only between the NOM and MON side, but also
within each channel considering the high-speed and legacy interfaces as well as sup-
port logic like level translation and the required voltage domain isolation buffering.
The whole unit should be supplied by two independent power inputs, originating
from different (even better, dissimilar) power sources. This is not only required
on the level of the SMON unit, but also to power redundant switches and data
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bus gateways or data concentrators throughout the system, to safeguard against a
common-mode failure scenario originating from a common, failed power bus. De-
pending on the quality of the bus and the cabling and connectors used, the two
inputs can also be combined onto a single bus without compromising the internal
single fault tolerance provided by two input paths for specific applications within
a well-known environment. Both power inputs are combined internally by simply
or’ing them through adequate means (either diodes or special MOSFET-based de-
signs) after providing common and differential mode decoupling and filtering. This
establishes one common internal rail per channel, which is then fed into the local
regulators. Care must be taken to provide protection against shorts occurring lo-
cally, so intelligent fusing with modern electronic fuses (which measure the current
and disable a pass element once a fault has been detected) may be required to satisfy
the safety goals. Another way of reducing the complexity and power supply require-
ments is the usage of COTS processor modules which integrate the NOM/MON
along with its memories and power regulators on a small PCB with board-to-board
connectors. There, the routing, power capacitors and regulators are fully decoupled
from the carrier and isolate failure modes originating from the complex power re-
quirements of modern MPSoCs and memory devices from a simpler, reduced carrier
power design. The filtering and protection circuitry at the redundant power inputs
is highly dependent on the application domain, but can be seen as a modular block
which can be easily redesigned and adopted to different scenarios without modifying
the overall design. Short power loss protection is also required for most safety ap-
plications and can be accomplished by a providing storage capacitance at the or’ed
internal rails. To reduce the size of these capacitors (since batteries often can not
be used to temperature, ambient pressure or maintenance constraints), the voltage
can be stepped up to dramatically decrease the amount of capacitance required,
leading to a smaller sized solution. With processors like the aforementioned LS1046
or FPGA-based MPSoCs, the power budget for the processor assembly should be in
the range of 10-15W maximum, while a quad-port QSGMII Ethernet PHY requires
around 4-5W max. With additional budget for the legacy interfaces, we end up at
around 50W absolute maximum for the whole assembly of an SMON unit. Note
that this power usage (also generating heat, which has to be dissipated) is a max-
imum value which will not be present at long duty cycles since modern processors
feature precise power/thermal management and the power draw in the interfaces is
highly dependent on the length of wiring, bus load and other factors like number
of nodes on a shared bus. Cooling with peak values around 50W of heat generated
can be challenging, especially in a fully passive design. The size and type of heat
sinking required is dependent on the application domain, and can be augmented
by heat-pipes and vapor chambers to provide better heat spreading across a large,
finned’ area.
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• Interconnects and Intra-LRU Data Communication

As shown in figure 4.2, the different function blocks are interconnected by dedicated
links. Between (1) and (5), multiple SGMII or QSGMII links can be used to establish
a low-EMI solution for Ethernet connectivity. The accelerator (2) can be connected
via PCIe. PCIe is a complex one-to-one data bus with many features, such as link
training and speed negotiation, with data transfers established by the master root
complex down to peripherals (slaves). Most PCIe root complex implementations
feature internal microcode, which made them difficult to certify in aerospace appli-
cations in the past. We can therefore not directly recommend the use of PCIe based
communication in these applications, if the chip vendor (NXP in our example) is not
willing to share implementation details. In industrial and other domains however,
the black-channel approach allows using PCIe when a suitable higher-level safety
protocol is in place to catch possible transmission errors or loss of communication.
It is more likely that higher level system functions implemented with artificial in-
telligence algorithms will be (or are) implemented in the automotive and industrial
domain first, so current accelerators based on GPUs or FPGAs, as well as special-
ized ASIC accelerators such as the Myriad X or Hailo-8 can readily be connected for
AI acceleration with either PCIe or other serial busses such as USB from protocol
level 3.0 onwards. The interconnect to the legacy gateway processor (4) is dictated
mostly be the safety MCU. Ethernet based solutions are highly proffered, in order
to reduce the interface diversity in the final implementation. Even small microcon-
trollers already offer at least a 100MBit/s interface, which offers low enough latency
with minimum sized Ethernet frames. From a latency standpoint, gigabit Ethernet
would be preferred, but we have not come across a device supporting more than two
100MBit/s links in the MCU class of devices yet. As a last resort, if only few legacy
interfaces are needed, the implementer can resort to UART- or SPI-based commu-
nication. The same as above is applicable to the links between the MON (3) and his
PHYs (5), with the exception that the legacy IO controllers are connected internally
in the re-configurable SoC. The monitoring/redundant connection to (4) can also
be established via Ethernet (a switch can be used, since the safety MCU is already
a single failure point in the NOM channel and does only suffer from a MTBF per-
spective) or lower speed UART/SPI communication. Note that it might be required
to electrically decouple these signals from the NOM to the MON power domain via
galvanic or functional isolation, to prevent power sequencing or fault propagation
effects. The cross processor link between (1) and (3) should ideally be as serialized
(multi-)gigabit Ethernet link, which is especially suitable due to its packet-based
nature and low latency. The serial links in the MII interface family can be easily
decoupled and isolated with simple capacitive coupling, which not only helps to
simplify the isolation between (1) and (3) but also reduces possible failure modes at
this point. The interconnect speed and exact type of transceiver standard is mostly
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dictated by the interface availability at both ends. Possible candidates are SGMII
or for example X-Base-K (backplane Ethernet). Note that, not included in the
drawing are possible connections to supporting circuitry such as power controllers
or system supervision processors in the power supply. These can be necessary to
ease voltage or power monitoring or provide supply sequencing. From a software
perspective, our choice of proven and long available Ethernet technology results in
a large reuse between the different interconnects and reduces certification risk. The
latter is possible since the Ethernet-based interfaces share a common software stack
which can be reused throughout the implementation. The packet-based nature of
Ethernet allows an easy integration with tailored safety protocols in higher levels of
the stack to further ensure data integrity, or encryption to satisfy security goals.

The presented example for a practical high-level architecture is build upon a re-
configurable MPSoC for the monitor channel. This results in additional certification
effort, especially in the aerospace domain, where this implies the DO-254 for the pro-
grammable logic part of the MON. We could also have chosen to use a re-configurable
part for the NOM instead of the MON, but monitoring functions can, depending on the
exact use case, sometimes be reduced in the criticality level which might lead to a more
realistic effort of the MON side. The now following architecture, presented in figure 4.3,
avoids programmable logic devices.

Our second SMON example is very similar to the first one, with one notable difference.
The MON channel does no longer feature a SoC with a programmable logic portion. This
reflects the fact that developments with the added verification and validation activities for
programmable logic devices in the aerospace domain may be impractical from a cost/effort
standpoint. Instead, a second, dissimilar multicore processor is used. As a result, the
MON is no longer able to address the legacy interfaces on its own and a second legacy
gateway microcontroller has to be added in order to satisfy the information redundancy
goal for these interfaces. Since the internal information redundancy claim implies that
both processors have access to both legacy input paths, the gateway MCUs need to be
connected to both the MON and the NOM. All other internal and external interconnects,
as well as the power supply considerations are not affected from this design decision.
The added gateway MCU with its interface transceivers can be part of the NOM power
domain. If the legacy gateway features only one Ethernet-based uplink, the interface to
both host processors can be established via a dedicated switch per gateway, since higher
level safety protocols ensure data integrity over the internal black channel link.

4.2 DMON Implementations
The system context for the following DMON implementations is very similar to figure
4.1, presented for the SMON implementation. For the DMON case, once should consider
only two units, since we already showed in chapter 3 that very low dangerous failure
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Figure 4.3: Board-Level Implementation and power domains of the SMON architecture
with dedicated legacy IO processors

rates can be obtained starting from two redundant units. More units can be deployed for
zonal safety requirements or availability reasons, but we will skip these considerations at
this point, since they only affect the port count of the switched network. All inter-LRU
transfer (like cross-channel communication or voting traffic) is routed via the switched
high-bandwidth network, resulting in no special cross-channel communication links be-
tween the DMON LRUs. All relevant links should be physically redundant in a real world
system, which is easily achieved due to the fully redundant high-speed I/O portion of the
DMON architecture. This leaves us with at least four high speed connections required
to build up two physically redundant, independent links to the redundant network at the
LRU. The number of legacy interfaces is very application specific, so we will again present
different implementations of the DMON architecture to cope with the high variability.

The first DMON implementation, shown in figure 4.4, is split in three internal sections
which also resemble the larger internal power domains of the LRU: One NOM and two
duplicated DMON sections. For the internals of the individual building blocks, refer to
the above discussion of the SMON architecture, since we will only discuss the differences
and specifics for the DMON architecture in the following.

As with the SMON architecture, we focused on standard Ethernet interconnects as the
high-speed/high-bandwidth network. Internally, the NOM and DMONs are connected via
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Figure 4.4: Board-Level Implementation and power domains of the DMON architecture
with optional links and programmable SoC DMONs

dedicated links, which can offer up to 2.5GBit/s depending on the SERDES lane speed
of the processors used. A processor like the aforementioned LS1046 is a good choice for
the NOM offering sufficient high speed connectivity and a good core count and power
efficiency. In larger deployments, SoCs as the LX2160, a 16 core device with eight dual-
core clusters is the ideal choice and offers the possibility the memory controller contention
(the device offers two dedicated memory controllers) for different impact levels. For the
DMON, a LS1028 for NXP Semiconductor would fit into to design and has some unique
advantages. It offers very high per-core performance due to the Cortex A72 cores used,
and has sufficient cores (two) to have one dedicated I/O and management core, while
leaving one free for computing according to our function allocation discussed in chapter
2. It offers four external Ethernet ports, internally switched, with IEEE time sensitive
networking support, including recently added features like frame preemption. These ports
can be connected to a single four port PHY via QSGMII, leaving additional SERDES
lanes open. The second DMON can therefore be interfaced by either PCIe (which offers
an easy memory mapped path between the two devices) or SGMII Ethernet, if PCIe is
not desirable. The NOM is connected to both DMONs via dedicated, PHY-less links to
provide galvanic isolation between the power domains and reduced component count. The
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optional accelerator port is also present. As an option, additional Ethernet PHYs can be
connected to the NOM, to provide an independent output path to the external network in
case both DMONs fail. This is only relevant if functional degradation permits this reduced
capability, degraded mode, where only the NOM in a LRU is left, while the remaining
LRU is still fully functional. It could then still participate in cluster voting actions, based
on the redundant input data of the second LRU. The interface to legacy data busses is
provided in each DMON section via a safety MCU (see SMON above). As before, a single
100MBit link easily satisfies the bandwidth needs of the legacy interfaces and is available
as a separate peripheral on the LS1028. Since the two DMONs do not share any parts of
the I/O path and operate on separated power domains, the interfaces are fully independent
(they still reside on the same PCB, but are electrically isolated). The redundant input
supply provides stable power to all domains from at least two input sources. If the safety
features of the legacy gateway MCU are not needed for a given application, one can
choose from a very broad (and also low-cost) portfolio from different manufacturers, since
we require only a single Ethernet uplink. Due to the eight external Ethernet interfaces
(optionally ten), the unit can be connected in a dual-redundant fashion to the switched
network, while still leaving four ports free for future extension, or a dedicated cross-
channel link (also physically redundant, and connected to both DMON for internal fault
protection and redundancy) to remove load from the interfaces, leaving more bandwidth
and lowering latencies for I/O messaging. If the optional direct Ethernet interfaces to the
NOM are used, it is wise to connect them directly to one of the free DMON interfaces
each. Together with a physically redundant cross channel link, all four interfaces are then
occupied on both LRUs.

Shown in figure 4.5 is the second architecture variant for DMON, based on re-configurable
FPGA SoCs. Notable differences compared to the first DMON architecture are of course
the DMON subsystems. As before with the SMON, the FPGA SoCs offer the advantage
of combining the I/O portion which was previously externally to the devices into the
monitoring channels. The integrated Ethernet peripheral can either be a managed switch
(we depicted a four-port switch, but this is only limited by the logic resources of the de-
vice and I/O pins) or application specific IP for standards like EtherCAT, ARINC-664 or
Time-Sensitive-Networking (TSN). Since most re-configurable SoCs also feature hard-IP
peripherals (in silicon, not in the FPGA portion of the device) associated to the hard-IP
multicore section, we routed two Ethernet connections from the NOM to each DMON.
One connection is mandatory, the second one, attached to the soft IP Ethernet section,
is optional and can also be replaced with dedicated Ethernet channels connected to the
NOM as before in the first implementation variant. This second link offers the possibil-
ity to bypass the DMONs and establish a direct path to the NOM for NOM-to-NOM
inter-LRU traffic. Note that the FPGA-fabric might not be available in case the hard-
IP section reboots or the device power-cycles. Redundancy claims based on the second
downlink might therefore not be an option. For these considerations, the independent
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Figure 4.5: Board-Level Implementation and power domains of the DMON architecture
with non-programmable DMON devices

output path via dedicated PHYs from the NOM should be the preferred solution if addi-
tional functional degradation paths need to be established in the system. Note that, as
with the first DMON architecture, we still only need three power domains. Separating
the I/O portion (bus specific PHYs) would not yield additional failure resilience, since a
failure in the DMON computing side would also render the interfaces useless and vice-
versa. We therefore only electrically separated the NOM and DMONs via the convenient
SGMII interfaces which can be decoupled via simple capacitive coupling on the data lines.
Also note that this second implementation might be worse from a cost perspective than
the first DMON implementation, since re-configurable FPGA SoCs tend to be expen-
sive compared to standard MPUs and MCUs, while only offering a slight reduction of
MTBF when the additional interface gateway MCU can be removed compared to the first
DMON implementation. Especially the Ethernet soft-IP cores might drive FPGA size.
Aside from these specifics, this implementation is largely equal to the first DMON variant
with the building blocks already explained in greater detail at the SMON implementation
descriptions. Refer to the above sections for additional information.
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4.3 Common Considerations for SMON and DMON
In both implementation examples we mentioned the possibility of so-called System-on-
Modules (SoM) for both the MON and NOM sub-assemblies in the design. These COTS
components with the MPSoC, volatile and non-volatile memories, localized power supplies
(in the form of integrated power management controllers or dedicated solutions) offer
some advantages but also disadvantages compared to a more traditional flat design with
all components integrated on a single PCB:

• Partial Fault Isolation

As the SoM is lifted from the main PCB with one or more board-to-board con-
nectors, the localized power domains required for the SoC, Memories, etc. are
physically separated from the main PCB, together with the traces between the SoM
components. This provides some degree of fault isolation against localized shorts or
supply failures, in the case the base board design can cope with a shorted module
and disable it or limit the current safely. The component count around the SoC and
also the memories is very high, which is mainly driven by decoupling capacitors and
support circuitry required by the complex semiconductors. 300-400 components on
a 60x80mm area are not uncommon in today’s designs and drive reliability figures
due to the amount of capacitors and resistors required, while the complex semi-
conductors are only in rare cases the source of low MTBF figures. In the event
of such a catastrophic failure on the SoM, the base board may continue operation
unaffected and still operate the remaining NOM/MON with it’s interfaces for ad-
ditional availability (if permitted by the application and system design). A faulty
module can also be swapped during maintenance, which saves the base board and
other (expensive) components which reduces waste and maintenance cost.

• Ability to Up/Downgrade

If a certain module family or standard has been chosen with different SoCs in the
same physical form-factor and connector pinout, the module can be used to up- or
downgrade the processor sub-assembly. This is especially useful during development,
where the base board can be designed and manufactured while the final processing
platform or the memory requirements are unknown for new platforms. The project
can then start on a larger, memory rich platform and later scale down to meet the
application requirements with a simpler or more cost-effective SoM. Likewise, the
platform can be upgraded during its life-cycle with more computing power and/or
increased memory when application demands change or the LRU is used in a differ-
ent vehicle. Note that these up/downgrades always require re-qualification of the
LRU as a whole, but these regressions are limited to the interaction between carrier
and SoM, when the SoM is already qualified or COTS with adequate documenta-
tion. The re-certification efforts limit the usefulness of such hardware changes in
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the life-cycle of the unit, but may also be necessary due to component obsolescence
or supplier changes. The latter may be a positive aspect for itself, when different
suppliers can be qualified as second sources for a standardized module.

• Thermal Decoupling

If the SoC is the main heat dissipating component in the design, a SoM provides an
easy measure to thermally decouple the remainder of the base board from this heat
source. While the SoC can be thermally connected to a cooling solution, this might
not be necessary for other devices on the base board which either use the PCB as
a heat spreader (and heat sink) or require no cooling at all over the temperature
envelope. The reduced thermal stress on other components may lead to higher
MTBF figures and reduces the overall stress on the PCB and all components. Note
that this only applies with a sufficient air gap between the base board and the SoM,
as it is the case with most today’s module standards. Nevertheless, some modules,
especially integrated sensor units or RF transceiver units are sold on modules which
are directly soldered to the carrier PCB. In these cases, a limited thermal decoupling
is the result of the direct contact between the module PCB and the carrier board.

• PCB technology decoupling

Modern SoCs are available in ball-grid-array (BGA) packages or land-grid-array
(LGA) packages which are very fine pitched components. The required circuit board
tolerances are therefore very elevated and might in some instances require laser
drilled micro vias or via-in-pad technology. This not only drives cost of the PCB
if the area is large and a mixed design (with lots of different matched impedance
also for external interfaces such as CAN and Ethernet and the intermediate PHYs
are required) but also failure rate, manufacturing yield and design complexity as
well was quality assurance cost. Constraining the complexity in routing to the SoM
enables a much simpler carrier board, since all other components are available in
more forgiving packages with larger ball pitch (in case of BGAs) and reduced pad
density.

• Module Connector(s)

Since the module is COTS, the carrier must include a suitable connector, for either
a mating part or an edge-card connection. The additional connector has a negative
impact on signal integrity and may lead to signal degradation on higher speed
interfaces such as PCIe or SERDES driven Ethernet or other high speed / parallel
interfaces.

• Additional Cost

As with most electronic COTS components and assemblies, their pricing drastically
increases in small production volumes. This might not be noteworthy for aerospace
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applications which always have to deal with high per-unit prices due to low order
volumes, but especially in larger scale industrial projects the additional cost of a
module-based solution is often unbearable and a single-board flat design is proffered
for better cost scalability and reduced cost/manufacturing effort in high volume
scenarios.

• Increased mechanical complexity and assembly height

In the light of a high-vibration environment, the stacked board-to-board construc-
tion may be undesirable. Board-to-Board connectors are usually not tested against
special requirements found in some domains (like rotary wing or other high vibration
and shock applications like earth moving machinery) and require project-by-project
qualification. This increases cost and project risk. If raised vibration requirements
have not been taken into account during the design phase of the SoM, the physical
mounting may not be sufficient and lead to physical damage to the SoM and/or the
carrier board. Increased height resulting from the stacked SoM may be impractical
in space constrained applications. However, in most designs, the external connectors
drive LRU height and size in at least one (or even two) dimensions.

Whether a SoM is employed as the NOM or MON sub-assembly, the monitoring and
supervision functions inside the LRU are import for the overall safety of the design.
From a hardware-related safety perspective, localized monitoring of all power rails of
the NOM and MON processor, as well as their supporting circuitry (DRAM voltages,
I/O voltages, etc.) ensures that nominal operating conditions are met. Combined with
a watchdog circuit, a monitoring device (either a dedicated microcontroller, system base
chip or integrated power management controller) can trigger a local reset for the subsystem
violating its operating conditions. Note that such devices should also address safety and
offer a safety manual or at least quality data for failure rates and manufacturing process
in order to support a certification effort of the software executing on them. Certification
levels of these monitoring functions can be lower than the actual safety function, since
they represent diagnostic functions only and do not actively participate in the safety
function. In practice, a single small microcontroller (plenty of options exist, automotive
qualification is preferred as stated before) or even a programmable gate array device (when
reset and power sequencing requires very stringent timing) is located close to each larger
SoC or on the integrated module, using mostly digital I/O, analog conversion channels
and one or two communication interfaces for exchanging status information with the host
processor or in-field firmware updates. While the local point-of-load rails for each major
computing element are monitored in proximity, a global LRU supervisor function should
be implemented. It controls the start-up, restart and shutdown process of the different
sub-assemblies, monitors the external power input or manages redundant LRU power
supplies. If for example the NOM has failed and should be taken offline or restarted,
the MON would flag a restart request to the supervisor which then carries out the steps
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required for a controlled restart or shutdown. Due to the degree of redundancy on the
system level, a failed supervisor restarting good devices is an availability issue, but does
not afflict safety. Nonetheless, the software and functions in the supervisor should be
kept lean, to ease certification. Whether the supervisor function is allocated to a single
device or distributed over the different local management MCUs is a design decision. If
no central supervisor is used, all localized supervisors (including one for the LRU power
supply) can be connected via a common bus (like CAN, I2C, RS485, etc.) with the
SoCs in order to facilitate the required functions. If a dedicated MCU is included, it
can control the local supervisors by simple digital I/Os or UART/I2C connections in
more sophisticated designs. From a failure-mode point of view, the distributed approach
should be preferred, since it does not introduce a single point of failure for the LRU (which
should not be critical due to system architecture, but might introduce availability issues).
If a single device shall nonetheless be used, we urge for a safety MCU with dedicated
safety documentation or pre-qualification, in order to present accurate quantitative data
for device failures and failure modes for the LRU FMEDA. Note that one could also
hot-restart the supervisor in operation which leads to a brief unavailability of diagnostic
measures if the LRU design permits such a behavior (e.g. when only digital interfaces
are used for downstream connectivity and communication watchdog windows are long
enough). Only permanent hardware failures can then lead to supervision failure which
are more rare than random hardware or software faults. Also note that in designs where
a safety-rated MCU is already present as a legacy-gateway processor, one can reuse this
asset for LRU supervision, which is, by design, already redundant for NOM/MON and
therefore optimal for such a task.

One additional design consideration, more relevant for the SMON than for the DMON
architecture, is the physical separation of the NOM and MON channels. If each channel
is self-contained, e.g. includes all local supervision and relevant I/O circuitry as well
as a full power supply, one can fully split both channels into two dedicated circuit board
assemblies. These "fat channels" (in comparison to "slim channels" where both are logically
independent but physically located on the same board for common power supply, etc.) can
be located in the same housing or even further isolated in dedicated boxes. This allows
for an increased degree of zonal safety and fault isolation in large scale systems with
hazards such as fire or high EMI concerns. In most applications however, the additional
cost and system complexity might contradict the benefits and lead to a single, integrated
unit for space and cost savings. LRUs based on the DMON architecture are hard to split,
due to the internal triplex design and should be handled as a single physical unit in one
enclosure.
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Conclusion

In order to conclude this work, we will first provide a summary regarding the main
contributions and finish with an outlook for future work.

5.1 Summary
• Requirements

As a solid base for this whole work, we first derived a set of requirements for our
unit (line replaceable unit) architectures, given a small and large system use case
and additional considerations for future system generations. For current systems
operated by humans with a mild degree of automation, these requirements are very
ambitious. However, they will be present in future systems, where human operators
become only system users, without the deep knowledge or skill set to operate the
system or mitigate critical failure scenarios.

• Function Classification

Next, we developed a novel system function classification scheme based on the safety
or failure impact. The approach is domain agnostic and can therefore be applied in
many application fields. It is vital for future generations of safety critical, cyber-
physical systems and removes the cut between the system and hardware and soft-
ware level that previously existed in most safety projects. While the impact level
does not directly translate to the currently used safety integrity or design assurance
level notation, it does not break current certification work flows but rather extends
them substantially, in order to provide the means necessary to allocate critical func-
tions into future high performance system architectures with many possible physical
compute locations spread over many physical devices.

• Unit architectures

Another core contribution of this work are two novel unit architectures centered
around multicore system on chip devices. Since real world systems differ greatly
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in their requirements and constraints like space and weight, two architectures were
necessary to cover most use cases for future highly automated or autonomous sys-
tems with elevated computational needs. Both architectures lead to a unified, ho-
mogeneous computing platform, which is able to integrate legacy components and
communication standards, as well as address current and future high performance
needs in terms of compute performance, communication bandwidth and latency re-
quirements. The centralized monitoring architecture is close to current designs with
a single monitoring facility with information redundancy to cancel failure modes as-
sociated with highly complex commercial-off-the-shelf devices without prior safety
evidence. Therefore, any processor may be used as the nominal or monitoring
channel, with some constraints addressed in the safety discussion. The distributed
monitoring architecture enhances the centralized monitor with multiple monitoring
and gateway devices, and make it suitable for stand-alone or small cluster opera-
tion. Both architectures scale well for different application needs and reach very
low residual critical failure modes with moderate degrees of redundancy. Especially
the second architecture is ideal for very high integrity systems, which rely on a fail-
operational control system to prevent catastrophic events. For both architectures,
we also covered possible function allocation schemes based on our impact level ap-
proach and discussed how our initial requirements were met by the architecture, as
well as their possible use case in many scenarios. The unique mixture of inter and
intra-device monitoring builds a very strong defense against known and unknown
failure modes (due to the device complexity, hidden features and the unknown inter-
nal design). The software aspect also plays a significant role in both architectures,
since every aspect of the system, from top level requirements down to the operat-
ing system memory management have to work hand in hand and can no longer be
treated as separate entities like in classical unit architectures. We matched existing
work which addresses major software shortcomings in the management of complex
multicore system on chip devices to our architectures and integrated these remark-
able concepts together with our novel system level and architecture design. Parts
of the high level software architecture reflect all major parts, like system functions,
communication stacks, monitoring facilities (and their interaction with the rest of
the system) as well as isolation and separation concerns and hardware supervision
by software.

• Certification

In the third chapter, we conducted a safety analysis of both architectures and de-
rived commonly used fault tree and Markov models, in order to justify the design
decisions made. Along with special, domain dependent considerations for the usage
of complex off the shelf devices without (or with very little) design evidence asso-
ciated, we provided a path to certification for aerospace and industrial applications
based on their current applicable standards and guidelines. This work is therefore a
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strong contribution to the ongoing efforts for new ways to handle the ever increasing
complexity of off the shelf components in safety critical applications.

• Example Implementations

Lastly, we provided example implementations for each architecture. Based on actual
devices available today, these implementation examples can be directly translated
to real units which comply to our stated requirements. We show that real-world
units are feasible today and also discuss additional topics like thermal management
and mechanical integration variants to provide the full picture for future develop-
ment projects. The technology readiness level can be seen as very high. While
the availability of a pre-certified software solution which implements the required
architecture and components is not yet given, this work has addressed most system,
hardware and certification efforts to a great extent.

5.2 Future Work

For future activities derived from this work, we identified the following topics and activi-
ties:

• Prototype Platform

Start to work on a prototype platform based on currently available devices and estab-
lish a research prototype for software development and platform integration tasks.
The prototype should be built around the distributed monitoring architecture, since
it is more suitable for small scale use cases and also possible other application do-
mains not touched in this work like automotive or railway. It should be coupled to
a real world application or seriously funded research project, due to the substantial
cost and effort involved.

• Development of a unified software platform

Another possibility could consist of developing the concepts and architectures for a
unified software platform to handle the board management and operating system
interface in the form of a middleware or redundancy framework. This framework
could control the software defined system functions while respecting their impact
level and fulfill the relocation and redundancy management tasks required, as well
as managing redundancy resources throughout the full system with a distributed
algorithm.

• SOTIF and Certification of preexisting complex software or operating systems

In recent time, a new theory of system certification arose called "Safety Of The
Intended Functionality (SOTIF)" [3219, Abstract] with the goal to provide means
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5.2 Future Work

to certify complex algorithms and system functions where not every possible per-
mutation of input/output data can be tested beforehand (as is true for AI-based
functions). Future work could study the implications of SOTIF for the concepts
presented in this work, for commercial-off-the-shelf devices, and implications on
software certification of the operating system involved. This could entail the usage
of COTS operating systems such as GNU/Linux in safety critical applications under
this new form of handling residual uncertainties and failure modes.

• Impact level classification

During discussions with certification experts and notified bodies, the impact level
classification was seen as an important building block for future systems. With a
future work, one could establish this theory well enough to be included in future
standards and guidelines for general use in industry.
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Sequence Diagrams
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A.1 On-Device Monitoring

A.1 On-Device Monitoring

Figure A.1: Overview of the device internal validation on the COTS multicore NOM Or
MON
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Chapter A: Sequence Diagrams

Figure A.2: Inter-core watchdog flow for master core 0, periodic task in the local RTOS
instance
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A.1 On-Device Monitoring

Figure A.3: Inter-core resource monitoring master on core 0, periodic task in the local
RTOS instance to validate resource bounds
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Figure A.4: Internal device monitoring client flow running on each non-master core in
the COTS device

V



A.2 NOM/MON Communication

A.2 NOM/MON Communication

Figure A.5: Nominal board-level interaction for one system time step of a SMON cluster
LRU with FPGA-based IO stages
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Figure A.6: Nominal board-level interaction for one system time step of a DMON cluster
LRU with FPGA-based IO stages - figure is split for readability, part 1 of 2
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A.2 NOM/MON Communication

Figure A.7: Nominal board-level interaction for one system time step of a DMON cluster
LRU with FPGA-based IO stages - part 2 of 2
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A.3 NOM/MON Fault Mitigation

Figure A.8: Example for fault unmasking and reaction in a SMON cluster LRU - figure
is split for readability, part 1 of 2
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A.3 NOM/MON Fault Mitigation

Figure A.9: Example for fault unmasking and reaction in a SMON cluster LRU - part
2 of 2
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Figure A.10: Example for fault unmasking and reaction in a DMON cluster LRU -
figure is split for readability, part 1 of 2
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A.3 NOM/MON Fault Mitigation

Figure A.11: Example for fault unmasking and reaction in a DMON cluster LRU - part
2 of 2
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Appendix B

Memory and Cache Throughput
Measurements
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The following measurements shown in table B.1 were conducted on a NXP Semiconductor
T1042, in a custom system with DDR3-1600 (800MHz Transfer Speed, 1600MT/s, 72bit
wide bus with ECC, CL11) in a custom system provided by MicroSys Electronics GmbH
for reference equipped with the 1200MHz core clock speed grade of the T1042. For
minimal overhead, measurements were conducted in OS-9 V6.1 using the tool "memspeed"
developed by Kei Thomsen 1 as 32-bit wide reads and writes in variable sized memory
regions in order to traverse the different cache levels. A single core instance of OS-9
was used with memory regions setup as write-back cacheable on both platforms. The
measurements shown in table B.2 were conducted on a more recent NXP Semiconductor
LS1046A with DDR4-1600 (72bit wide bus with ECC, CL11) and 1200MHz core speed.
The LS1046 features the ARM prefetch and prediction units and a newer generation
memory controller, which leads to significant improvements compared to older platforms.

1Contact MicroSys Electronics GmbH, Mühlweg 1, 82054 Sauerlach, Germany for a copy of the source
code and further information on OS-9.
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Chapter B: Memory and Cache Throughput Measurements

Bytes Runs Mbyte/sec. Comment
Write 256 10485760 3545 L1 Cache

512 5242880 4044 L1 Cache
1024 2621440 4259 L2 Cache
2048 1310720 4383 L2 Cache
4096 655360 4444 L2 Cache
8192 327680 4475 L2 Cache
16384 163840 4491 L2 Cache
32768 81920 4499 L2 Cache
65536 40960 3018 L2 Cache
131072 20480 3018 L2 Cache
262144 10240 3018 L2 Cache
524288 5120 1570 DRAM
1048576 2560 1320 DRAM
2097152 1280 1320 DRAM
4194304 640 1320 DRAM
8388608 320 1320 DRAM
16777216 160 1320 DRAM
33554432 80 1320 DRAM

Read 256 10485760 4129 L1 Cache
512 5242880 4037 L1 Cache
1024 2621440 4259 L2 Cache
2048 1310720 4383 L2 Cache
4096 655360 4444 L2 Cache
8192 327680 4475 L2 Cache
16384 163840 4491 L2 Cache
32768 81920 4444 L2 Cache
65536 40960 2925 L2 Cache
131072 20480 2929 L2 Cache
262144 10240 2919 L2 Cache
524288 5120 918 DRAM
1048576 2560 758 DRAM
2097152 1280 718 DRAM
4194304 640 710 DRAM
8388608 320 708 DRAM
16777216 160 708 DRAM
33554432 80 708 DRAM

Table B.1: T1042 (NXP Semiconductor) memory bandwidth measurements with DDR3-
1600 at 1200MHz core frequency over different memory levels (cache and DRAM)
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Chapter B: Memory and Cache Throughput Measurements

Bytes Runs Mbyte/sec. Comment
Write 256 524288 4571 L1 Cache

512 262144 4571 L1 Cache
1024 131072 4571 L1 Cache
2048 65536 4571 L1 Cache
4096 32768 4571 L1 Cache
8192 16384 4571 L1 Cache
16384 8192 4571 L1 Cache
32768 4096 4571 L1 Cache
65536 2048 4571 L2 Cache
131072 1024 4571 L2 Cache
262144 512 4571 L2 Cache
524288 256 4571 L2 Cache
1048576 128 4571 L2 Cache
2097152 64 4571 L2 Cache
4194304 32 4571 DRAM
8388608 16 4571 DRAM
16777216 8 4571 DRAM
33554432 1 4571 DRAM

Read 256 524288 4571 L1 Cache
512 262144 4571 L1 Cache
1024 131072 4571 L1 Cache
2048 65536 4571 L1 Cache
4096 32768 4571 L1 Cache
8192 16384 4571 L1 Cache
16384 8192 4571 L1 Cache
32768 4096 4571 L1 Cache
65536 2048 4413 L2 Cache
131072 1024 4413 L2 Cache
262144 512 4413 L2 Cache
524288 256 4413 L2 Cache
1048576 128 4413 L2 Cache
2097152 64 3764 L2 Cache
4194304 32 4129 DRAM
8388608 16 4129 DRAM
16777216 8 4129 DRAM
33554432 1 4129 DRAM

Table B.2: LS1046A (NXP Semiconductor) memory bandwidth measurements with
DDR4-1600 at 1200MHz core frequency over different memory levels (cache and DRAM)
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Appendix C

Additional Cluster Fault Trees
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C.1 SMON Cluster Fault Trees

C.1 SMON Cluster Fault Trees

Figure C.1: Fault tree for small clusters based on the SMON architecture
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Figure C.2: Fault tree for large clusters based on the SMON architecture
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C.2 DMON Cluster Fault Trees

C.2 DMON Cluster Fault Trees

Figure C.3: Fault tree for small clusters based on the DMON architecture
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Chapter C: Additional Cluster Fault Trees

Figure C.4: Fault tree for large clusters based on the DMON architecture
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