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Abstract
Intriguing electronic and magnetic phenomena arise in solids hosting correlated
electron systems, making such materials interesting to both fundamental research
and for novel technological applications. A comprehensive understanding of their
characteristics is key to the development of reliable methods for controlling and
tailoring electronic correlations to the needs of devices. In this thesis, we employ
cantilever magnetometry to study the properties of two intermetallic compounds
hosting electronic correlations. In the following, we outline the main results.
We investigate the de Haas-van Alphen (dHvA) effect in single-crystal chromium
diboride (CrB2) at temperatures down to 60mK and magnetic fields up to 35T.
Studies of the angular and temperature evolution allow us to determine eleven distinct
dHvA components and eight effective masses. A variety of vague further frequencies
is observed. Electronic structure calculations yield a Fermi surface comprising five
sheets resulting in an abundance of possible dHvA components. The comparison of
experiment and theory leads to ambivalent conclusions, indicating the need for an
extension of the theoretical picture.
We further study the magnetic anisotropy of bulk manganese silicide (MnSi). The ex-
cellent agreement of torque data with an analytical description of magnetocrystalline
anisotropies allows us to report the first comprehensive set of anisotropy constants in
the field-polarized state of MnSi. Both leading and next-to-leading order anisotropy
constants exhibit non-monotonic dependences on temperature and field magnitude
which reflects subtle changes of the multi-sheet Fermi surface. Measurements in the
modulated phases reveal two competing mechanisms contributing to the anisotropy
of non-collinear magnetic order. We further observe large hysteresis, hinting at the
presence of (meta-)stable topological defects.
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Inhaltsangabe
Faszinierende elektronische und magnetische Phänomene, die in Festkörpern mit
korrelierten Elektronensystemen auftreten, machen solche Materialien interessant
sowohl für die Grundlagenforschung als auch für neuartige technologische Anwen-
dungen. Ein umfassendes Verständnis ihrer Charakteristika ist entscheidend für die
Entwicklung verlässlicher Methoden zu Kontrolle und Maßschneidern elektronischer
Korrelationen für die Bedürfnisse von Apparaturen. In dieser Arbeit nutzen wir
Biegebalkenmagnetometrie, um die Eigenschaften zweier intermetallischer Verbin-
dungen mit elektronischen Korrelationen zu studieren. Im Folgenden umreißen wir
die Hauptergebnisse.
Wir untersuchen den de Haas-van Alphen-Effekt (dHvA-Effekt) in einkristallinem
Chromdiborid bei Temperaturen bis hinunter zu 60mK und magnetischen Feldern
bis zu 35T. Untersuchungen der Winkel- und Temperaturentwicklung erlauben uns
die Bestimmung von elf deutlichen dHvA-Komponenten und acht effektiven Massen.
Eine Vielzahl undeutlicher weiterer Frequenzen ist zu beobachten. Berechnungen
der elektronischen Struktur ergeben eine Fermifläche, die fünf Schichten umschließt
und somit eine Fülle an möglichen dHvA-Komponenten zur Folge hat. Der Vergleich
von Experiment und Theorie führt zu ambivalenten Rückschlüssen, was auf die
Notwendigkeit hindeutet, die theoretische Darstellung zu erweitern.
Weiterhin untersuchen wir die magnetische Anisotropie von Mangansilizium (MnSi).
Die exzellente Übereinstimmung der Drehmomentdaten mit einer analytischen Be-
schreibung der magnetokristallinen Anisotropien ermöglicht es uns, die erste um-
fassende Bestimmung von Anisotropiekonstanten im feldpolarisierten Zustand von
MnSi zu vermelden. Sowohl die führende wie auch die an zweiter Stelle stehende
Anisotropiekonstante zeigen nicht-monotone Abhängigkeiten von Temperatur und
magnetischer Feldstärke, was geringfügige Veränderungen der vielschichtigen Fer-
mifläche widerspiegelt. Messungen in den modulierten Phasen zeigen, dass zwei
konkurrierende Mechanismen zur Anisotropie von nicht-kollinearer magnetischer Ord-
nung beitragen. Wir beobachten darüberhinaus große Hysteresen, was die Existenz
(meta-)stabiler topologischer Defekte andeutet.
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1 Introduction

Modern everyday life is influenced to an overwhelming extent by the omnipresence
of microelectronic devices. Since the invention of the first germanium transistor
in 1948 [Bar48], the field of semiconductors has permanently grown both as an
active research area and, more importantly, in the form of technological applications.
The expansion as a research field was crucially facilitated by development of new
growth techniques such as, e.g., molecular beam epitaxy [Cho75] or the discovery
of novel effects as, e.g., the quantum Hall effect [Kli80]. The technological progress
was driven by a continuous spread to more and more areas of application. Early
implementations in radios and computers were soon followed by applications in cars
and phones. Nowadays, even mundane devices such as refrigerators or washing
machines are controlled by microelectronic units. This technological spread benefited
from drastic improvements regarding the abilities to manipulate materials’ properties
and to tailor physical characteristics of different materials into one device.
Technological progress further allowed for constant miniaturization of components.
According to the famous law of Moore [Moo65], the number of transistors on inte-
grated circuits doubles every two years. While this prediction has proven true for
more than 50 years, we are rapidly approaching an end of the miniaturization era.
With current transistor sizes ranging down below 10 nm [Hui17], manufacturers face
both technological limits as the resolution of lithography methods as well as physical
limits imposed, e.g., by the onset of tunneling processes [Key01].
The semiconductor industry has declared the necessity to explore alternatives regard-
ing both materials and computing architectures more than a decade ago [Ard06].
One possible direction for such investigations is the exploitation of new degrees
of freedom. Conventional semiconductor devices rely exclusively on the electric
charge of electrons or holes. Novel applications may feature functionalities based on
electrons’ spin or orbital angular moment. Concepts for both logic as well as memory
devices making use of these properties have been proposed [Dat90, Par08], but so
far they have not been able to prove commercially viable.
For the successful implementation of novel computational concepts, a new material
basis may be indispensable. In this context, materials exhibiting electronic cor-
relations are promising. The term “correlation” describes substantial interactions
between electrons, i.e. the single-particle picture commonly used for silicon and
similar materials cannot account for the behavior of the electron system. Instead, a
description of the material’s properties is only possible when the mutual influence
of electrons on each other is considered. Strong electronic correlations can lead to
drastic changes of the macroscopic properties of the material. For instance, these
interactions may induce superconductivity or stabilize novel ground states of complex
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1 Introduction

magnetic order. Thus it appears natural to look for novel functionality arising from
such correlation phenomena.
A detailed understanding of the phenomenology is a prerequisite for the sustainable
implementation of device applications. The majority of materials known to host
correlated electron systems are compounds of complex composition, often involving
transition metals, rare earths or oxygen, which impedes straightforward compre-
hension. The key to conceiving the macroscopic properties of such a material is a
profound knowledge of its electronic structure. In particular, many properties are
defined predominantly by the electronic states close to the Fermi energy. The Fermi
surface, i.e. the electronic states located at the Fermi energy may be probed in
several ways. A powerful tool is the de Haas-van Alphen (dHvA) effect, i.e. quantum
oscillations of the magnetization. For temperature and field regime not accessible
by the dHvA effect, information on the electronic structure may be obtained, e.g.,
from measurements of the magnetocrystalline anisotropy (MCA). In this thesis, we
employ torque magnetometry to investigate both dHvA effect and MCAs on two
intermetallic compounds exhibiting electronic correlations. More precisely, we study
the dHvA effect in the antiferromagnetic chromium diboride (CrB2) and MCAs in
the helimagnet manganese silicide (MnSi).
Transition metal diborides comprise a surprising variety of ground states in the
same crystallographic structure. In particular, the highest transition temperature
for phonon-mediated superconductivity to date has been found in MgB2 [Nag01]. In
this material, a detailed investigation of the electronic properties revealed the origins
of the two-band superconductivity with a high Tc in the electronic structure [Xi08].
In contrast, CrB2 exhibits an antiferromagnetic ground state and does not show a
superconducting transition at ambient pressure despite its close similarity to MgB2.
We aim to extend earlier investigations of the electronic structure in CrB2 [Bra13b]
in order to shed light on the origin of this strongly different behavior.
The phase diagram of MnSi exhibits several states of different magnetic order at
low temperatures and fields. In particular, MnSi is the first material in which the
formation of magnetic vortices known as skyrmions could be observed. The emergent
electrodynamics arising due to this phenomenon [Sch12] makes helimagnets highly
interesting regarding the search for novel functionalities and applications. Still, the
MCAs in MnSi have not been measured directly despite their crucial importance
for a variety of phenomena being studied intensely. We aim to fill this gap with the
experiments presented in this work.
The thesis is organized as follows: In Ch. 2, we provide the theoretical fundamentals
relevant for our experiments. We address magnetic anisotropy considering collinear
and non-collinear magnetic order. Further, we introduce the dHvA effect for bulk
materials and the concept of electronic structure calculations based on density func-
tional theory. Chapter 3 is dedicated to the experimental setups used in this work.
We particularly address experimental shortcomings such as inhomogeneous magnetic
fields and misalignment. In Ch. 4, we present measurements of magnetic quantum
oscillations in CrB2 at various angles and temperatures in combination with electronic
structure calculations and discuss the results in terms of the Fermi surface. We report
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investigations of magnetic anisotropy in MnSi in Chapter 5. We explore the field and
temperature dependence of anisotropy constants inferred from measurements in the
field-polarized state and pronounced hysteretic behavior observed during experiments
in the modulated phases indicating the presence of long-lived topological defects.
Finally, we conclude with a summary and a brief outlook in Ch. 6.
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2 Theoretical concepts
In this chapter, we introduce the theoretical fundamentals relevant to our experimen-
tal work. We address the concept of magnetic anisotropy in Sec. 2.1. In particular,
we consider collinear as well as non-collinear magnetic order in cubic chiral helimag-
nets. After that, we review the Landau diamagnetism of an electron gas in Sec. 2.2.
Quantization in high magnetic fields leads to the de Haas-van Alphen effect. We
consider finite temperature and disorder in terms of the Lifshitz-Kosevich formalism.
Finally, we briefly discuss the concept of density functional theory in 2.3.

2.1 Magnetic anisotropy
This section is dedicated to the phenomenon of magnetic anisotropy. We introduce
the general concept in Sec. 2.1.1. Extensive descriptions of microscopic origin,
phenomenology and common models of magnetic anisotropy can be found in literature,
see e.g. Refs. [Kan63, Chi64, Bru93, Sko08]. Here, we restrict ourselves to basic
definitions and remarks. Following that, we address the specific case of cubic chiral
helimagnets in Sec. 2.1.2 including a consideration of non-collinear magnetic order.

2.1.1 General concept
The term magnetic anisotropy refers to the fact that the total energy of a magnetic
material depends on the direction of its magnetization M. As a consequence, a
spontaneous magnetization will align along preferential directions in the absence
of magnetic fields. Such directions representing local minima of the magnetic
anisotropy energy (MAE) are commonly referred to as easy axes. Conversely,
directions corresponding to local maxima of the MAE are denoted as hard axes. It
is commonly distinguished between intrinsic and extrinsic contributions to the MAE.
An intrinsic source of magnetic anisotropy can be provided, e.g., by the symmetry
of the host crystal. Such contributions are mediated by spin-orbit coupling and
commonly referred to as magnetocrystalline anisotropy (MCA). As an example of
extrinsic origin, stress exerted on the material can lead to magnetoelastic anisotropy.
Another standard example for the origin of magnetic anisotropy is the so-called
shape anisotropy. For anisotropic geometries, i.e. for any sample shape different
from a sphere, dipolar interactions also induce a contribution to the MAE. The
minimization of this energy contribution is primarily responsible for the formation of
magnetic domains.
The phenomenology of magnetic anisotropy is most commonly introduced by means
of its simplest form, i.e. an uniaxial anisotropy with a leading term of second order in
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2 Theoretical concepts

spin-orbit coupling. Within this thesis, we investigate the magnetic anisotropy of the
cubic chiral helimagnet manganese silicide (MnSi). Since second-order contributions
vanish for cubic systems, we omit the standard introduction and immediately move
on to the discussion of MCAs in cubic chiral helimagnets.

2.1.2 Magnetic anisotropy in cubic chiral helimagnets
A number of cubic chiral helimagnets with different crystallographic structures share
the space group P213. While the crystal structures exhibit simple cubic Bravais
lattices, the atomic basis is arranged such that the crystals lack inversion symmetry
and possess the tetrahedral point group T . The magnetic properties of cubic chiral
helimagnets are commonly described by means of an effective Ginzburg-Landau
functional for the free energy including ferromagnetic (FM) exchange, Dzyaloshinskii-
Moriya interaction (DMI), dipolar interaction and terms of higher order in spin
orbit coupling representing magnetocrystalline anisotropies [Gar16]. FM exchange
and DMI are invariant regarding rotations of M with respect to the crystal axes
[Eve12]. Anisotropic contributions from dipolar interactions vanish for cubic systems
[Joh96] and can thus be deemed negligible in cubic helimagnets. Thus, the intrinsic
anisotropy of a uniform magnetization is determined by the higher-order MCAs. The
corresponding Landau potential consistent with the tetrahedral point group T reads

VT = K1
(
M̂4

x + M̂4
y + M̂4

z

)
+K2

(
M̂2

xM̂
4
y + M̂2

y M̂
4
z + M̂2

z M̂
4
x

)
+ ... (2.1)

with the magnetization unit vector M̂ . The leading-order term is fourth order in
spin-orbit coupling. For K1 > 0, the easy and hard axes are 〈111〉- and 〈001〉-
directions, respectively, for K1 < 0 the situation is reversed. We note that a second
fourth-order term, M̂2

xM̂
2
y + M̂2

y M̂
2
z + M̂2

z M̂
2
x , is equivalent to the K1-term up to a

constant. Further, the K1-term preserves a fourfold rotation symmetry C4 that is not
contained in T . The same holds true for two next-to-leading-order terms M̂2

xM̂
2
y M̂

2
z

and M̂6
x + M̂6

y + M̂6
z which are therefore neglected in the following. In contrast, the

next-to-leading-order K2-term breaks the C4 symmetry. This term is sixth order
in spin-orbit coupling and reflects the chirality of the host crystal. In the shape
displayed in Eq. 2.1, it represents a right-handed enantiomer. For a left-handed
crystal, the term reads M̂2

y M̂
4
x + M̂2

xM̂
4
z + M̂2

z M̂
4
y . Terms of eighth and higher order

in spin-orbit coupling are neglected as indicated by the dots in Eq. 2.1.
The energies associated with the magnetic anisotropy described by Eq. 2.1 are
illustrated in Fig. 2.1. Here, the energy for a given orientation of the magnetization
is depicted as distance to the origin. All faces are shown in the same crystallographic
orientation as depicted in panel k). Red and blue shadings highlight large and low
energies, respectively. All finite anisotropy constants exhibit the same arbitrary
absolute value. Note that energy faces in different panels are not scaled equally.
From top to bottom, rows correspond to positive, zero and negative values of K2.
From left to right, the first three columns correspond to positive, zero and negative
values of K1. In panels a) - i), a right-handed crystals is described. For comparison,
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2.1 Magnetic anisotropy

Figure 2.1: Illustration of magnetic anisotropy energy according to Eq. 2.1. Energies in
different panels are not to scale. All finite anisotropy constants exhibit the same arbitrary
absolute value. Red and blue shading correspond to large and low energies, respectively.
a) - i) From left to right, columns correspond to K1 > 0, K1 = 0 and K1 < 0. From top to
bottom, rows correspond to K2 > 0, K2 = 0 and K2 < 0. k) shows the crystallographic
directions. j) and l) show the same situation as d) and f) but for a left-handed instead of a
right-handed crystal.

the energy faces displayed in panels d) and f) are depicted for a left-handed crystal
in panels j) and l).
For K1 = K2 = 0 in panel e), the crystal is completely isotropic which is represented
by a sphere. From the energy faces for finite K1 in panels a) - c) and g) - i), we can
infer that VT is dominated by K1 for comparable values of K1 and K2. As stated
above, positive values of K1 result in easy axes along 〈111〉-directions and hard axes
along 〈001〉-directions. This situation is found, e.g., in MnSi [Ish76]. Conversely,
a negative K1 leads to easy axes along 〈001〉-directions and hard axes along 〈111〉-
directions as has been reported, e.g., for the insulating helimagnet Cu2OSeO3 [Ada12].
Sign changes of K1 may occur during changes of environmental conditions. For
instance, K1 changes from positive to negative values with increasing temperature in
FeGe [Leb89].
In panels d) and f) where the energy is determined by the K2-term, we distinctly
recognize the absence of a fourfold rotation symmetry C4 as described above. While
this symmetry reduction is barely visible on the displayed energy faces for finite
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2 Theoretical concepts

values of K1, it is still reflected in the behavior of helimagnets as, e.g., at the
helical-to-conical phase transition in MnSi [Bau17]. The energy associated with
K2 > 0 (K2 < 0) exhibits minima (maxima) corresponding to easy (hard) axes along
〈001〉-directions. More interestingly, the maxima (minima) for K2 > 0 (K2 < 0) are
found for cyclic permutations of [±

√
2, 1, 0] for the right-handed crystal in panels

d) and f). For the left-handed enantiomer depicted in panels j) and l), we find
identical energy landscapes except for a reversed chirality with minima (maxima)
along 〈001〉-directions and maxima (minima) along cyclic permutations of [±1,

√
2, 0]

for K2 > 0 (K2 < 0).

Non-collinear order

Equation 2.1 in the preceding paragraph describes the anisotropy of a uniform
magnetization. In other words, VT reflects the anisotropy potential experienced
by each individual magnetic moment in a sample. In the case of collinear order of
microscopic moments, the potential of the resulting macroscopic moment is obviously
identical to VT . If microscopic moments order in a non-collinear fashion, the situation
becomes more delicate. The magnetic anisotropy is then determined by the sum over
the MAE of all individual moments pointing in various directions. The resulting
anisotropy potential for a macroscopic magnetization may deviate significantly from
the potential experienced by individual moments. In this thesis, we investigate MnSi
which exhibits a helimagnetic ground state, i.e. in the absence of magnetic fields the
microscopic moments order non-collinearly. In the following, we briefly recapitulate
the implications of such a spin structure for the magnetic anisotropy as discussed
in Ref. [Hal18]. With respect to the material investigated in this work, we consider
weak magnetic anisotropies compared to the mechanism stabilizing non-collinear
order.
Depending on the magnitude of an applied magnetic field, MnSi can exhibit three
different states of magnetic order at low temperatures T � Tc, i.e. a helical, a conical
or a field-polarized state. We treat the helical state and the field-polarized state as
limiting cases of a conical helix described by

M(r)/Ms = ê3 cosα + sinα (ê1 cos(kr) + ê2 sin(kr)) (2.2)

with the saturation magnetization Ms, the pitch vector k ‖ ê3 and the orthonormal
right-handed basis ê1 × ê2 = ê3. The cone angle α denotes the angle between
individual moments and the pitch vector. Consequently, the limits α = 0° and
α = 90° correspond to the field-polarized and the helical state, respectively. In the
absence of distortions of the conical helix, the macroscopic moment resulting from
such a structure points in the same directions as the pitch vector k. A variational
calculation reported in Ref. [Hal18] yields an effective anisotropy potential for the
orientation of the pitch vector given by

Vα(k̂) = Keff(α)
(
k̂4
x + k̂4

y + k̂4
z

)
. (2.3)
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2.1 Magnetic anisotropy

We note that for this calculation only the leading K1-term of the potential VT has
been considered. The potential Vα exhibits a shape identical to the K1-term of VT
but yields an effective anisotropy constant

Keff(α) = K1

64 (9 + 20 cos(2α) + 35 cos(4α)) (2.4)

which depends on the cone angle α. In the limit of the field-polarized state, i.e.
α = 0°, we obtain Keff = K1 consistent with our consideration above. In the limit
of the helical state, i.e. α = 90°, we obtain Keff = 3K1/8. While for an ideal spin
helix, the macroscopic magnetization vanishes, the effective anisotropy potential
still determines the direction of its pitch vector. The coincident sign of K1 and
Keff(90°) implies the coincidence of preferential directions for the pitch vector of an
ideal helix and an individual magnetic moment. Strikingly, this coincidence is not
maintained everywhere in the conical phase. As can be inferred from Eq. 2.4, the
effective anisotropy constant changes sign for angles between α ≈ 30° and α ≈ 70°
implying a commutation of hard and easy axes.
At temperatures T . Tc and small magnetic fields B, an additional phase pocket
exists in MnSi, i.e. the skyrmion lattice phase. Here, magnetic moments order in the
form of a hexagonal lattice of spin vortices in a plane perpendicular to B. Analogous
to the pitch vector of a helix, an effective anisotropy potential can be determined for
the normal vector of the hexagonal array. While it has been shown that this potential
exhibits, in leading order, the same shape as Vα, no expression has been reported
relating the respective effective anisotropy constant to the anisotropy constant K1
for an individual moment [Ada18].
We emphasize again that the above considerations neglect deviations of magnetic order
from its ideal structure. In particular, we will see in Ch. 5 that the magnetization
does not vanish in the helical state due to anharmonic effects. The presence of similar
deviations is expected for the conical and skyrmionic states. To the best of our
knowledge, no theoretical framework exists addressing the influence of anharmonic
distortions on the magnetic anisotropy potential.

Experimental implications

The magnetic anisotropy sets preferential directions for the magnetization of a
material. In the presence of a magnetic field deviating from the easy axis, the
magnetization is tilted away from its zero-field preferential direction towards the
field direction due to the Zeeman energy

EZ/V = −M ·B. (2.5)

We note that the Zeeman energy vanishes at B = 0 and is therefore not regarded
as an anisotropy energy in the classical sense. During our experiments, we measure
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2 Theoretical concepts

magnetic torque in dependence of the orientation of a finite magnetic field. In
principle, this torque can be simulated by minimizing the anisotropy energy density

Ea/V =−M ·B +K1
(
M̂4

x + M̂4
y + M̂4

z

)
+K2

(
M̂2

xM̂
4
y + M̂2

y M̂
4
z + M̂2

z M̂
4
x

) (2.6)

numerically and calculating the resulting torque. We present results of such simula-
tions in Sec. 5.3.3. With this procedure, the simulated curve needs to be adjusted to
experimental results “by hand” which is rather cumbersome given the large number of
measurements. A more convenient approach may be adopted for measurements in the
high-field limit, i.e. under the assumption that magnetization and field vector point
into the same direction. In this case, we can derive an analytical expression for the
torque expected due to the anisotropy potential in Eq. 2.1 via Γ/V = ∂VT/∂ϕ. Here,
the angle ϕ describes a rotation of B around a fixed axis. Numerical simulations
confirm that in the field-polarized state of MnSi the assumption of the high-field limit
is valid for rotations around a crystallographic 〈110〉-direction and an anisotropy
potential VT dominated by K1. This corresponds to our experimental situation and
we obtain

Γ(ϕ)
V

= ∂VT
∂ϕ

= K1

2 [1 + 3 cos (2ϕ)] sin (2ϕ)

− K2

32 [1 + 3 cos (2ϕ)]2 sin (2ϕ)
(2.7)

with the sample volume V . The analytical function allows for a simple fitting routine,
thus facilitating the extraction of anisotropy constants from experimental torque
curves.
We note that for rotations around a 〈111〉-direction a similar derivation yields
Γ(ϕ) = 0 when only the K1-term is considered. This is not confirmed by numerical
calculations due to considerable tilts of the magnetization vector M out of the
magnetic field rotation plane and the associated breakdown of the high-field limit
assumption.

2.2 The de Haas-van Alphen effect

The quantum oscillatory behavior of the magnetic susceptibility as a function of
magnetic field was first observed in bismuth in 1930 [Haa30]. Named after its
discoverers, it is nowadays known as the de Haas-van Alphen (dHvA) effect. Being a
pure quantum mechanical phenomenon, the dHvA effect provides valuable information
on the quantum mechanical ground state of the host and has thus been established
as a powerful method to determine the Fermi surface (FS) properties along with
effective masses and scattering rates of three dimensional electron systems. In this
section a brief overview of the underlying physical concepts is presented. We follow
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2.2 The de Haas-van Alphen effect

Ref. [Sho84] which comprises an extensive review on the dHvA effect in metals. Here,
we focus on the results which are important for our experiments.

2.2.1 Landau quantization of free electrons
In an external magnetic field, electrons are, in the classical picture, subjected to the
Lorentz force. Consequently, the motion perpendicular to the magnetic flux lines is
forced on circular orbits while the motion parallel to the field remains unaffected. A
quantum mechanical treatment results in the well-known Landau quantization found
in standard textbooks as, e.g., Ref. [Gro12]. Due to the crucial importance to our
experiments, we recapitulate the main steps below.
A free electron of charge −e and effective mass m∗ is considered. In a uniform
magnetic field of the form B = (0, 0, Bz), the Hamiltonian is given by

Ĥ = p̂+ e ·A
2m∗ (2.8)

with the momentum operator p̂ = −i~∇ and the vector potential A. In the Landau
gauge the latter is set to A = (0, x ·Bz, 0). The Schrödinger equation (SE) can then
be written as ∂2

∂x2 +
(
∂

∂y
− ieBz

~
· x
)2

+ ∂2

∂z2 + 2m∗
~2 · E

Ψ(x, y, z) = 0. (2.9)

and exhibits solutions of the form Ψ(x, y, z) = e[i(βy+kzz)]u(x). Inserting this solution
into the SE yields[

−~2

2m∗
∂2

∂x2 + m∗ω2
c

2 (x− x0)2
]
u(x) =

(
E − ~2k2

z

2m∗

)
u(x). (2.10)

This is the equation of a harmonic oscillator with the cyclotron frequency ωc = eB/m∗

and the guiding centre coordinate of a cyclotron orbit in real space x0 = −kyl2B.
Here, lB = (~/eB)1/2 denotes the magnetic length and ki is the i-th component of
the wavevector k. Equation 2.10 results in the eigenenergies

Ej =
(
j + 1

2

)
~ωc + ~2k2

z

2m∗ j = 0, 1, 2, .... (2.11)

Apparently, the motion within the (kx,ky)-plane, i.e. orthogonal to B, is quantized.
The allowed energy states follow circles in reciprocal space. The motion along kz,
i.e. parallel to the magnetic field, is unaffected and the parabolic dispersion of free
electrons is recovered. In sum the permitted states form concentric cylinders with
an axis parallel to the external field B. These so called Landau levels (LLs) are
schematically depicted in Fig. 2.2. A hypothetical Fermi surface is indicated by the
shaded sphere. At T = 0, only the states inside the sphere are occupied. For a solid
state system with arbitrary energy landscape, the tubes representing the LLs are not
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2 Theoretical concepts

Figure 2.2: Schematic sketch of Landau tubes for a free electron gas. The bright green
circle indicates an extremal cross section of the spherical Fermi surface.

necessarily cylindrical or parallel to B [Sho84].
The eigenenergies for a given kz are degenerate. For a sample area of A = Lx · Ly
parallel to the external magnetic field, the guiding centre coordinates of two neigh-
boring orbits is given by ∆x0 = ∆kyl2B =

(
2π
Ly

)
(~/eB). This results in a number of

states with constant energy N = Lx

∆x0
= LxLyeB/~ for any particular value of kz.

We obtain the degeneracy per unit area

NL = eB

~
· gs. (2.12)

with the spin degeneracy gs which equals 2 for spin degenerate systems. From
Eqs. 2.11 and 2.12 we see that both energy and degeneracy of Landau levels are
linear functions of the field magnitude. Consequently, the density-of-states (DOS) as
well as the magnetization of metals are affected by the quantization of the electron
motion. This ultimately leads to magnetic oscillations as described in following.
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2.2 The de Haas-van Alphen effect

2.2.2 Quantum oscillations

As a starting point for the derivation of the magnetization M , we introduce the
thermodynamic potential

Ω = F − χN = U − TS − χN (2.13)

with the chemical potential χ and the particle number N . Further, F = U − TS
denotes the free energy which depends on the internal energy U , the entropy S and
the temperature T . The differential of Ω is given by

dΩ = −SdT −MdB +Ndχ (2.14)

so that we can derive the magnetization from

M = −
(
∂Ω
∂B

)∣∣∣∣∣
T,χ

. (2.15)

Note that we have ignored the vector character of M and B above. In the following,
we assume B ‖ z without loss of generality. At zero temperature, the thermodynamic
potential for an ideal electron system of volume V is given by

Ω = −V eB
π2~

∑
j

∫ kj

0
(χ− Ej)dkz. (2.16)

Here, the sum includes all possible states Ej and the upper integration limit kj
equals the value of kz for which ~2k2

j/2m∗ = χ− (j + 1/2)~ωc is fulfilled. We assume
a FS of arbitrary shape and non-interacting electrons. The oscillatory part of the
thermodynamic potential is then obtained by execution of the integral and expression
in the form of a Fourier series

Ωosc = const× B5/2
√
P ′′

∞∑
p=1

1
p5/2 cos

[
2πp

(
~P

2πeB −
1
2

)
± π

4

]
. (2.17)

Here, P denotes the extremal cross sectional area of the FS perpendicular to the
external field. The average curvature of the FS along kz at the position of the
extremal cross section is denoted by P ′′.
For an intuitive interpretation of Eq. 2.17, we refer to Fig. 2.2. As stated above,
the energy of Landau levels grows with increasing field magnitude (cf. Eq. 2.11).
Regarding Fig. 2.2 this translates to increasing radii of Landau tubes. As a conse-
quence, the intersections with the spherical Fermi surface move up and down which
has little impact on the energy, i.e. the thermodynamic potential. However, when
the intersections reach the extremal cross section indicated by the bright green circle,
the Landau tube at once leaves the Fermi surface causing a significant change of the
energy. Adjacent Landau tubes with energies ~ωc subsequently leaving the Fermi
surface for steadily increasing field magnitude lead to periodic variations of the
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2 Theoretical concepts

thermodynamic potential which are reflected in Eq. 2.17 by the cosine-terms. The
periodicity of the first harmonic, i.e. p = 1, is described by

~P
eB

= 2π(n+ γ) (2.18)

with a phase correction γ and an integer n. Apparently, the variations are periodic
in 1/B. The oscillation frequency f is determined by the Onsager relation [Ons52]

Pi = 2πe
~
fi (2.19)

which relates f to the extremal Fermi surface cross section. A Fermi surface of
arbitrary shape may exhibit multiple extremal cross sections orthogonal to the
applied field each of which contributes to the magnetization with an oscillating term
described by Eq. 2.17.
As stated above, we can deduce M from Ω by derivation with respect to B (cf.
Eq. 2.15). For this operation, the vector character of M and B may no longer
be neglected. For convenience, we divide the oscillatory magnetization M into its
components parallel and perpendicular to the magnetic field. We denote these
components by M‖ and M⊥, respectively, and obtain

M0
‖ = const.× fB1/2

m∗
√
P ′′

∞∑
p=1

1
p3/2 sin

[
2πp

(
~P

2πeB −
1
2

)
± π

4

]
(2.20)

M0
⊥ = − 1

f

∂f

∂θ
M‖. (2.21)

In both components of the magnetization, the periodic variation of the thermodynamic
potential is reflected. We indicate the assumption of a disorder-free electron system
at zero temperature by the superscript 0. The factor ∂f

∂θ
in M0

⊥ accounts for the
anisotropy of the Fermi surface. Specifically, it denotes the partial derivative of
the oscillation frequency f with respect to the angle θ describing the orientation
of the magnetic field. Evidently, ∂f

∂θ
disappears for a spherical Fermi surface and,

consequently, M0
⊥ vanishes in this case.

Lifshitz-Kosevich formalism

The derivation of M0
‖ and M0

⊥ sketched above was performed assuming an ideal
electron gas at T = 0. For real electron systems, finite temperature and disorder
lead to amplitude reduction and phase smearing of dHvA oscillations. In order to
take these effects into account, the so-called Lifshitz-Kosevich formalism has been
established [Lif54, Lif55, Din52a, Din52b, Was96].
The occupation of accessible electronic states at finite temperature is determined by
the Fermi distribution

F(E,χ, T ) =
[
1 + exp

(
E − χ
kBT

)]−1
. (2.22)
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2.2 The de Haas-van Alphen effect

It has been shown that the resulting amplitude reduction of quantum oscillations
can be accounted for by including a factor of the form

RT = X

sinhX , with X = 2π2kBm
∗T

~eB
(2.23)

in Eq. 2.17. As a most beneficial consequence, measuring the oscillation amplitude at
various temperatures allows for the determination of the effective mass m∗ of charge
carriers on the corresponding orbits.
A similar reduction factor RD can be obtained to incorporate the effect of disorder.
The magnetization of an electron system with finite relaxation times and at finite
temperature is then given by

M‖ = M0
‖RTRD, (2.24)

M⊥ = M0
⊥RTRD. (2.25)

IncludingRD enables the determination of finite relaxation times from field magnitude-
dependent measurements. No such evaluation has been performed for the experi-
mental data presented in this work.

Magnetic breakdown

Fermi surfaces of complicated shape can arise from the electronic band structures
of real metals. If several bands cross the Fermi energy EF at similar positions in
reciprocal space, electrons can tunnel between adjacent orbits. This phenomenon
is known as magnetic breakdown [Coh61]. The probability of such a process is
described by the Blount criterion [Sho84]

~ωc &
E2

g

EF
(2.26)

where Eg is the energetic separation of the respective orbits. By connection of orbits
corresponding to extremal cross section of the Fermi surface perpendicular to the
magnetic field, magnetic breakdown can lead to additional frequencies in the dHvA
spectrum. From Eq. 2.26, we infer that observations of such frequencies are expected
in large magnetic fields. An exemplary illustration of magnetic breakdown orbits is
shown in Figs. 4.19 and 4.20.

2.2.3 Transforms between time and frequency domain
As described above, an abundance of dHvA frequencies can be observed in metals due
to complex multi-sheet Fermi surfaces and additional components being introduced
by magnetic breakdown. Therefore, it is convenient to transform the oscillating
signal to the frequency domain for evaluation. In the following, we briefly review the
various methods for such transformations that were employed in this work. For a
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graphic illustration of the different spectra resulting from a single set of data due to
different transformation techniques see Fig. 4.4.

Fourier transform

The most common approach to analyzing periodically varying data in the frequency
domain is considering the Fourier transform. Throughout literature, this wide-spread
standard technique is usually introduced in its integral form for continuous functions
[Kai94, Rah11]. During our measurements, we obtain discrete sets x of data points.
In this case, a discrete Fourier transform y can be calculated via

yk =
n∑
j=1

ω(j−1)(k−1)xj, with ω = e−2πi/n (2.27)

where n is the number of data points in x, and j and k are indices running from 1 to
n. The corresponding frequency data is deduced from the spacing between values
in the time domain. By definition, a uniform spacing of data points in the time
domain is required. The discrete Fourier transform is usually computed by efficient
algorithms subsumed under the name fast Fourier transform (FFT). Therefore, the
terms discrete Fourier transform and FFT are often treated as synonyms.
The resolution of a FFT spectrum is determined by the length of the observed
interval in the time domain. Consequently, one may improve the nominal resolution
by expanding the time interval with data points of value zero. This procedure is
called zero padding. The resulting spectrum represents an interpolation of the FFT
spectrum without zero padding rather than one with increased resolution, i.e., zero
padding may improve the accuracy of displayed maxima positions, but does not yield
any additional information [Smi10].

Lomb-Scargle algorithm

The Lomb-Scargle (LS) algorithm is a specific form of the least-squares spectral
analysis (LSSA) which is utilized most frequently in the field of astronomy. In general,
LSSA relies on least squares fits of sinusoids at various frequencies to the data set
under investigation. The LS method was developed by N. Lomb [Lom76] and further
elaborated by J. Scargle [Sca82] with the specific objective of treating unevenly
spaced data. A recent attempt to provide an intuitive approach to the Lomb-Scargle
periodogram is presented, e.g., in Ref. [Van18]. Here, we restrict ourselves to the
basic definition. We consider a discrete set x of n data points taken at times tj . The
LS estimate of the power spectral density is then given by

PLS(ω) = 1
2σ2


[∑n

j=1(xj − x̄) cos(ω(tj − τ))
]2

∑n
j=1 cos2(ω(tj − τ)) +

[∑n
j=1(xj − x̄) sin(ω(tj − τ))

]2
∑n
j=1 sin2(ω(tj − τ))


(2.28)
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with the mean

x̄ = 1
n

n∑
j=1

xj (2.29)

and the variance

σ2 = 1
n− 1

n∑
j=1

(xj − x̄)2 (2.30)

of the data set. The time delay τ defined by

tan(2ωτ) =
∑n
j=1 sin(2ωtj)∑n
j=1 cos(2ωtj)

. (2.31)

vanishes for data points taken at uniformly spaced tj . Instead of the circular frequency
ω, we discuss our experimental results in terms of the ordinary frequency f = ω/2π.

Welch algorithm

The algorithm proposed by P. D. Welch [Wel67] provides an estimate of the power
spectral density with strongly reduced variance at the cost of decreased resolution.
For this purpose, a discrete data set is divided into a variable number of segments
overlapping by a variable amount. The data in each segment is weighted with a
window function before the discrete Fourier transform is calculated. Note that the
data points must be spaced equally in time in order to enable computation of the
Fourier transform. The overlap of windows prevents information loss since most
window functions grant larger influence to the center of a segment than to its edge
regions. In a final step, the power spectral density is averaged over all segments.
The frequency spectrum obtained from the Welch algorithm is referred to as a
modified periodogram due to application of a weighting window function. During the
evaluation of data in Ch. 4, we employ a Hamming window function. The number of
windows as well as their overlap are varied as described in Sec. 4.2.2.

2.3 Density functional theory
The appreciation of experimental results prevalently requires comparison to predic-
tions derived from some form of theoretical model. For the experiments presented in
this work, the appropriate object of comparison is the calculated electronic structure
of the examined materials. For an exact computation, the stationary many-body
Schrödinger equation [Sho09]− ~2

2m

N∑
i=1
∇2
i +

N∑
i=1

V (ri) +
N∑
i=1

∑
j<i

U(ri, rj)
ψ = Eψ (2.32)

19



2 Theoretical concepts

must be solved. The first term including the electron mass m denotes the kinetic
energy of each electron, the second term describes the potential imposed on electrons
by the atomic nuclei. Note that the Born-Oppenheimer approximation has been
applied. The last term on the left side represents the interaction between different
electrons. The electronic wave function ψ depends on the spatial coordinates r1, ..., rN
and E is the ground state energy. For the moment, we disregard the electron spin.
The number of electrons N is on the order of 1021 for macroscopic samples of solid
materials rendering an exact solution of Eq. 2.32 impossible.
In the past decades, a technique known as density functional theory (DFT) allowed
for approximations to this solution at a staggering level of success. Instead of
the many-body wave function ψ(r1, ..., rN) depending on 3N spatial coordinates,
DFT considers the electron density n(r) which is a function of only three spatial
coordinates. For wave functions of individual electrons denoted by ψi(r), the electron
density can be expressed by [Sho09]

n(r) = 2
∑
i

ψ∗i (r)ψi(r). (2.33)

Here, the factor 2 represents spin degeneracy. In the following, we briefly review
the basic principles of DFT relevant for this work. For an extended account of the
technique, see, e.g., Ref. [Mar04], for a rather practical introduction, see Ref. [Sho09].

2.3.1 Hohenberg-Kohn theorems and Kohn-Sham equations

The concept of DFT is based on two theorems proven by Hohenberg and Kohn as
well as a set of equations derived by Kohn and Sham. The first Hohenberg-Kohn
theorem states that “the ground-state energy from Schrödinger’s equation is a unique
functional of the electron density” [Hoh64]. In other words, a unique ground-state
electron density exists which allows for unambiguous determination of ground-state
energy, wave function and further properties of the electron system. The second
Hohenberg-Kohn theorem states that “the electron density that minimizes the energy
of the overall functional is the true electron density corresponding to the full solution
of the Schrödinger equation” [Hoh64], i.e., one may identify the correct ground-state
electron density by minimizing the energy functional. We note that in this form the
Hohenberg-Kohn theorems are valid for non-degenerate ground states only but can
be extended for the degenerate case. Unfortunately, the shape of the ground-state
energy functional is not known. Moreover, the functional may still depend on the N
wave functions of individual electrons ψi making minimization an unfeasible task.
Kohn and Sham were able to show that the correct electron density can be obtained
from a set of equations each of which describes a single quasiparticle only [Koh65].
These Kohn-Sham equations read[

− ~
2m∇

2 + V (r) + VH(r) + VXC(r)
]
ψi(r) = εiψi(r) (2.34)
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which resembles Eq. 2.32 except for the lack of summations. Again, the first term
denotes the kinetic energy of the electron and the second term describes the potential
arising from atomic nuclei in the Born-Oppenheimer approximation. The third term
denotes the Hartree potential, i.e. the Coulomb repulsion [Sho09]

VH(r) = e2
∫ n(r)
|r− r′|

d3r′ (2.35)

between the individual electron considered in one equation and the electron density
resulting from all electrons. Finally, VXC denotes the exchange-correlation potential
which is defined to include all contributions not captured the other terms. In general,
this potential is a functional of n(r) of unknown shape.

2.3.2 Approximation of VXC and self-consistent solution of the
Kohn-Sham equations

Several ways have been established for the approximation of VXC. The approaches
most commonly used include, e.g., the local density approximation (LDA) or the
generalized gradient approximation (GGA). In the LDA, the exchange-correlation
functional is approximated as a function of the electron density at a specific position:

ELDA
XC [n] =

∫
d3r eXC(n(r)) · n(r). (2.36)

In the GGA, the gradient of the local electron density is additionally taken into
account by eXC = eXC(n(r), |∇n(r)|).
The approximation of VXC enables a self-consistent solution of the Kohn-Sham
equations. In a first step, an initial electron density ni(r) is guessed. This density
is then used to compute the potentials VH and VXC. Subsequently, the Kohn-Sham
equations are solved. For this purpose, the use of several basis sets for the ψi
has been established such as, e.g., linear combinations of atomic orbitals (LCAO),
linearized augmented plane wave (LAPW) functions or KKR functions. For the
calculation in this thesis, augmented plane waves plus local orbitals (APW+lo)
functions were employed which assume a localized behavior corresponding to a
muffin-tin potential close to atomic nuclei and plane-waves in interstitial regions.
From the solution of the Kohn-Sham equations, a final electron density nf(r) is
calculated. In subsequent cycles, the computation of potentials, solution of Kohn-
Sham equations and calculation of nf(r) is repeated while ni(r) is adjusted before
each iteration with respect to the previously obtained nf(r). This self-consistent
calculation is conducted until the difference between ni(r) and nf(r) within one cycle
falls below an arbitrarily defined convergence threshold.
Despite its tremendous success, there are several systematic shortcomings of DFT.
For instance, DFT as described above tackles the ground state of an electronic
system and thus yields little information on excited states. Another well-known
issue is the underestimation of band gaps in semiconductors and insulators. A
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drawback of particular interest for the band structure calculations in this work is
that LDA neglects spin fluctuation in the material. As a consequence, the calculated
magnetic moment may deviate strongly from experimental observations. There is no
standard solution to this problem, yet a number of methods have been established
allowing to adjust the calculated moment. Examples include the DFT+U method
where an additional Hubbard potential is introduced in the Hamiltonian, fixed-spin-
moment calculations which consider a fictitious magnetic field, or the spin scaling
approach which employs an additional free scaling parameter for the spin-density in
the Kohn-Sham equations. The latter method was applied in this thesis.

22



3 Experimental setups
In this chapter we present our experimental procedure. We first review the general
concepts of the method employed in our experiments in Sec. 3.1. Consequently, we
describe the specific setups for measurements of the de Haas-van Alphen effect and
magnetic anisotropy in Sec. 3.2 and Sec. 3.3, respectively.

3.1 Measurement method
The magnetization M of a material may be investigated in numerous ways. Natu-
rally, the method of choice depends on the purpose of the study. Throughout this
thesis, we performed experiments targeting magnetic quantum oscillations as well as
investigations of magnetic anisotropy. In this section, we describe our experimental
techniques.
The observation of magnetic quantum oscillations requires high-precision measure-
ments at low temperatures T and in high magnetic fields B. The well established
methods are (1) the modulation technique, (2) pulsed field techniques and (3) torque
techniques. The modulation technique consists in superimposing a small oscillating
magnetic field to the main slowly varying field and detecting the induced electromo-
tive force (EMF) due to the sample’s oscillating magnetization with a pick-up coil
[Sho64, Gol65, Win66, Sta68, Win68]. As a major advantage, the method allows for
phase sensitivity. A similar procedure is adopted in pulsed fields techniques, where
the EMF induced by a rapidly changing magnetization is picked up [Pri66]. The
utilization of pulses allows for magnetic field regimes not accessible by static fields.
In both techniques, not the magnetization but quantities related to its first and
higher-order derivatives dkM/dBk with respect to magnetic field are measured. In
contrast, torque techniques measure M statically.
Beside its suitability for the observation of magnetic quantum oscillations, torque
magnetometry is also found among the established techniques for experiments target-
ing magnetic anisotropy. Alternative methods comprise, e.g., ferromagnetic resonance
(FMR), vector vibrating sample magnetometers (VVSMs), magneto-optical Kerr
effect (MOKE) magnetometry or comparison of hysteresis loops of the isotropic
magnetization for different crystallographic directions. While the latter method may
require the least effort, it provides little accuracy and is rather suitable for preliminary
examinations [Ben06]. In contrast, MOKE magnetometry exhibits high sensitivity
but is only applicable for thin films [Qiu00]. VVSMs offer high sensitivity over a
wide parameter range but are difficult to implement and operate [Ben06]. Similar to
modulation and pulsed field techniques, a VVSM measures the induced EMF related
to dkM/dBk rather than the static magnetization. Ferromagnetic resonance offers
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3 Experimental setups

Figure 3.1: Working principle of the longitudinal cantilever magnetometer with capacitive
readout. The torque Γ acting on the sample deflects a thin beam. The deflection ∆d is
reflected in a capacitance change between cantilever paddle and counter electrode.

the advantage of detecting inhomogeneities of the anisotropy energy throughout
the specimen under investigation [Chi64]. Regarding magnetic anisotropy, FMR
measures the second order derivative of the anisotropy energy with respect to the
rotation angle, i.e. the first order derivative of the torque d2Ea/dφ2 = dΓ/dφ. Torque
magnetometry provides a more direct measure of anisotropy and, more importantly,
yields the highest accuracy among the established methods. Possible drawbacks such
as limited torque range and lack of information on longitudinal magnetization are of
minor importance to our anisotropy investigations.
Magnetic torque measurements divide into two methods, i.e. torsional balance and
cantilever magnetometer. The former was used during the first discovery of the
de Haas-van Alphen effect in bismuth [Haa30] and essentially consists in a wire or
fiber attached to the sample being twisted by a torque or force in a homogeneous or
inhomogeneous magnetic field. Several sophisticated concepts have been proposed
[Haa84, Eis85b, Eis85a, Tem88, Wie98, Mat04]. Throughout this thesis, cantilever
magnetometry has been employed. In this section, we give details on the general
concept of these techniques. The specific implementation in our various setups will
be presented in the following sections.
Cantilever magnetometers can be operated in a longitudinal bending mode and a
torsional mode. Our investigations of the de Haas-van Alphen effect rely solely on the
longitudinal bending option whereas we employed both variants for our anisotropy
measurements. Longitudinal operation is described in Sec. 3.1.1, the torsional method
is addressed in Sec. 3.1.2.

3.1.1 Longitudinal cantilever magnetometer

The working principle of a longitudinal cantilever magnetometer is schematically
shown in Fig. 3.1. The sample is attached to a paddle at the free end of a flexible,
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3.1 Measurement method

singly clamped beam. In a homogeneous magnetic field B, the magnetic moment m
of the sample results in a torque

Γ = m×B . (3.1)

As a consequence, the cantilever beam is deflected from its equilibrium position by
an angle η. For small deflections Hooke’s law holds true and Eq. 3.1 transforms to

Γ = kη = k
∆d
L

(3.2)

with the spring constant k and the effective length of the cantilever beam L. The
deflection ∆d is proportional to the exerted torque Γ. Various methods of measuring
the deflection have been established as, e.g., interferometric [Gib93, Spr06], piezore-
sistive [Wil98, Lup99] or capacitive readout schemes. We employ the capacitive
method sketched in Fig. 3.1. Before discussing the details of readout technique and
calibration procedure, we briefly consider some peculiarities of the experimental
method relevant for our experiments.

• As follows from Eq. 3.1, a non-zero component of the sample magnetization
perpendicular to B is a prerequisite for measuring a torque. Consequently,
the dHvA effect may only be observed in the torque signal in materials with
anisotropic Fermi surfaces as can be inferred from Eq. 2.21. For a fully isotropic
Fermi surface, the factor ∂f

∂θ
and thus M⊥ amounts to zero. Strictly speaking,

this is also the case for magnetic field applied along symmetry axes of the FS,
i.e. the high symmetry directions of the crystal. In practice, these blind spots
are a weak limitation since dHvA oscillations can usually be tracked up to field
directions very close to symmetry axes.

• Fig. 3.1 insinuates a torque pointing in y-direction as a result of external
field and magnetization both lying within the x-z-plane. In general, the
magnetization can point into any direction in 3D space and thus yield a non-
zero torque component in the x-z-plane which will result in a torsion of the
cantilever. Such a torque and its detection are suppressed by our cantilever
design and readout method as assessed in [Alb15]. A torque along the cantilever
beam yields only a capacitance change on the order of .1% compared to a
torque of identical magnitude in y-direction. As a consequence, we mainly
measure the projection of the actual magnetic torque onto the y-direction.
This insight is particularly important for the evaluation of our experiments
concerning magnetic anisotropy in Ch. 5.

• In the presence of a magnetic field gradient, an additional force

F = ∇(m ·B) (3.3)

acts on the sample. In the specific case of a uniform magnetization and a field
gradient pointing along the field direction, F is parallel to B and scales with
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the isotropic part of the magnetization M‖. Measuring both M⊥ and M‖ then
yields the full magnetization M1. However, collinearity of B and ∇B is not
warranted in our experiments. Throughout this thesis, we aim to investigate
solely the torque, i.e. the anisotropic part of the magnetization M⊥. The
influence of field gradients is discussed in detail for each of our setups in the
following sections.
Strictly speaking, a force as in Eq. 3.3 may also result from spatial variations of
the magnetization in a homogeneous magnetic field. We consider our samples
to be magnetized homogeneously on a macroscopic level so that we can neglect
such a situation.

Readout and calibration

The cantilever deflection can be measured, e.g., by interferometric [Gib93, Spr06],
piezoresistive [Wil98, Lup99] or capacitive [Gri73, Sch00] means. The advantages of
capacitive readout consist in easy wiring and fast integration of different cantilever
designs. Moreover, the achieved readout resolution is rarely a limiting factor in our
experiments. We thus employ the capacitive technique throughout the present work
as indicated in Fig. 3.1. For this purpose, the cantilever is placed on a printed circuit
board in such a way that the paddle and a counter electrode on the circuit board
form a plate capacitor. Assuming parallel plates, the equilibrium capacitance C0 is
given by

C0 = ε0A

d
(3.4)

with A the area of paddle and counter electrode and d the distance between them.
A change ∆d in the plate distance is thus reflected in the capacitance. For small
deflections ∆d

d
� 1 we can expand C as

C(d+ ∆d) = ε0A

d+ ∆d = ε0A

d

(
1 + ∆d

d

)−1

(3.5)

≈ C0

(
1− ∆d

d
+ ...

)
. (3.6)

Comparing the proportionality of capacitance change ∆C and deflection ∆d to
Eq. 3.2 yields a linear relation between a torque causing a cantilever deflection and
the resulting capacitance change:

Γ = K∆C . (3.7)

1Note that magnetic moment m and magnetization M = m/V are exchangeable since we know
the volumes V of our samples.
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Figure 3.2: a) Measured capacitance (black circles) as a function of applied voltage
between cantilever and counter electrode. The red line denotes a quadratic fit from which
κ is determined. Experimental error bars are smaller than symbols and relative errors of
the fit are smaller than 10−3. b) Calibration constant K as determined from electrostatic
calibrations (black circles) versus capacitance at zero voltage C0. The red line depicts a
linear fit from which the constants Ka and Kb for direct conversion of capacitance to torque
following Eq. 3.16 are determined. Error bars of data points are smaller than symbols,
relative errors of Ka and Kb amount to 0.103 and 0.034, respectively.

The proportionality constant K can be determined in situ by an electrostatic calibra-
tion routine. For this purpose an external dc voltage U is applied between cantilever
and counter electrode which results in an attractive force

|F | = C0U
2

2d0
. (3.8)

In turn, the electrostatic force exerts an effective torque

Γ = β|F |L = βC0LU
2

2d0
(3.9)

on the cantilever. The factor β accounts for the reduced mechanical response of the
cantilever to a force acting on the beam as compared to a torque [Sch00, Wil04]. It
depends on the material as well as on the dimensions of the cantilever. Equations
for calculation of this reduction factor can be found in appendix A.1. In this work,
β ranges from 0.68 to 0.80 as we will point out in detail in the following section on
cantilever design. Combining Eq. 3.9 with Eq. 3.7, we obtain

∆C = κU2 with κ = βC0L

2d0K
. (3.10)
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In order to determine κ, we measure C as a function of applied voltage. This is
exemplarily shown in Fig. 3.2 a) where the black circles represent measured data
and the red curve depicts a quadratic fit from which we can extract κ. We replace
d0 in Eq. 3.10 and obtain

K = βC2
0L

2ε0Aκ
. (3.11)

In Eqs. 3.8 to 3.11, C0 is the capacitance at U = 0. For small changes ∆C � C0
during the experiment, we can assume a constant K independent of the zero-
voltage capacitance. It is then sufficient to perform a single measurement of ∆C(U),
determine the corresponding K with Eq. 3.11 and calculate the torque via Eq. 3.7.
In the case of large capacitance changes, it is advisable to consider the dependence
of K on C0. We transform Eq. 3.7 to

K = Γ
∆C = Γd0

∆dC0
. (3.12)

With d0 ∝ 1/C0 and the fact that the deflection ∆d ∝ Γ is independent of the
capacitance, we can write

K ∝ 1
C2

0
(3.13)

and consequently
K(C) = Ka + Kb

C2 . (3.14)

The calibration parameters Ka and Kb are determined by extracting K from ∆C(U)
as described above at multiple points C0. An example is shown in Fig. 3.2 b), where
K is plotted versus 1/C2

0 (black circles). We use a linear fit (red curve) to obtain Ka
and Kb and employ the integral form of Eq. 3.7 to calculate the torque

Γ(C) =
∫ C

C0
K(C ′) dC ′ (3.15)

= Ka(C − C0) +Kb( 1
C0
− 1
C

) . (3.16)

Here, C0 is again the capacitance at Γ = 0 which is usually determined by starting
or ending each measurement at B = 0.

Cantilever design

Selecting proper dimensions is key in conducting a successful cantilever experiment.
While high resolution is usually the main objective, also robustness must be considered.
For measurements on low-dimensional electron systems, e.g., resolutions better than
10−15 J/T are accessible [Her15]. For the phenomena investigated in this work, a
resolution of 10−10 J/T is sufficient. However, our cantilevers must withstand larger
stress from samples’ weight und magnetization.
In the course of this thesis, two different types of longitudinal cantilevers were
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3.1 Measurement method

Figure 3.3: Shape and dimensions of the CuBe cantilevers used a) at TUM and b) at
HFML in Nijmegen. The beam width d is set to 0.2mm or 0.6mm for the TUM cantilever
design and 0.2mm or 0.8mm for the HFML cantilever design. The thickness is 50µm for
the TUM design and 80µm for the HFML design. c) and d) show photographs of the
cantilevers sketched in a) and b), respectively.

employed. Both types were fabricated from copper beryllium (CuBe) foil with
different manufacturing techniques as well as different shapes and dimensions. The
designs are sketched in Fig. 3.3 a)-b) and illustrated by photographs in Fig. 3.3 c)-d).
The cantilevers shown in a) and c) were used during experiments at TUM. The shape
was transferred to a 50 µm thick foil by optical lithography and released in a wet
chemical etching process. Due to poor precision during this process regarding the
control of tiny structures, the beam width d that was set to 0.2 or 0.6mm was less
uniform and up to 0.1mm smaller than targeted. Microscope pictures of wet-etched
CuBe cantilever beams are shown in appendix A.2. As we calibrate each of these
cantilevers in situ during the experiment, the decreased beam width merely affects
the reduction factor β for electrostatic calibration. We calculate β following [Wil04]
and obtain 0.785 for 0.2mm and 0.750 for 0.6mm, respectively. Both values increase
by less than 1.5% when the beam width is adjusted to the uncertainty limit.
The cantilevers shown in Fig. 3.3 b) and d) were employed during experiments at
the High Field Magnet Laboratory (HFML) in Nijmegen. The shape was laser-cut
from an 80 µm thick foil, the beam width d was set to 0.8 or 0.2mm. The reduction
factor β was not needed, since no calibration was performed with these cantilevers (cf.
Sec. 3.2.2). Moreover, the calculation of β following [Wil04] requires a rectangular
paddle. For the sake of comparison to the TUM design, we roughly estimate β for
the HFML design assuming a quadratic paddle of side length 3.5mm and uniform
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beams of length 4.5mm and obtain 0.684 for 0.8mm and 0.701 for 0.2mm beam
width, respectively.

3.1.2 Torsional cantilever magnetometer
The torsional cantilever magnetometer used in this work is part of a commercially
available setup sold by Quantum Design. This physical property measurement
system (PPMS) enables easy temperature and magnetic field control for exchangable
measurement options as, e.g., specific heat or ac and dc magnetic susceptibility.
For our experiments, we combined the horizontal rotator and torque magnetometer
options. We limit the discussion in this section to a brief depiction of working
principle and readout scheme followed by a description of the calibration routine.
Problematic issues of the setup will be discussed in Sec. 3.3.2.
Fig. 3.4 a) shows a photograph of the torque option chip including cantilever and
circuitry for calibration and readout. The general shape of the cantilever resembles
the levers shown in Fig. 3.3, but instead of a metallic material, chip and cantilever of
the torsional sensor are fabricated from silicon. According to the torque magnetometer
option user’s manual [Man17], two constantan piezoresistors are placed on the beams
for readout. The paddle further features a single copper coil loop for calibration. The
horizontal rotator option enables rotation of the whole chip around the x-axis with
the magnetic field applied in the PPMS pointing along the z-axis. Fig. 3.4 b) shows
the optional 3-leg modification of the sensor: A third beam connects the paddle to
the chip top plane on the side opposed to the two standard beams. This modification
prevents flexion of the cantilever and increases its torsional spring constant thus
allowing for higher torques to be measured.
The working principle of the magnetometer is illustrated in Fig. 3.4 c). Alike the
longitudinal case, the sample is mounted on the free-standing paddle of a flexible
beam. At zero field, the magnetization M points along the easy axis (ea) of the
material. When a magnetic field is applied, M is tilted away from the easy axis and
the resulting torque tilts the paddle by an angle η. In contrast to the longitudinal
case, the torsional cantilever is constructed to sense a torque in x-direction, i.e. along
the beam. For this purpose, a piezoresistive readout scheme is employed which
utilizes that any tilt of the cantilever paddle creates stress in the beams and is
therefore reflected by changes of the piezoresistors R1 and R2. Quantum Design
claims that the resistance changes are directly proportional to the exerted torque
[Man17]. We discuss the validity of this assumption in later sections.
As indicated in Fig. 3.4 a) and b), the piezoresistors on the cantilever beams are
incorporated into a Wheatstone bridge circuit that is integrated on the chip. The
two high-precision resistors R3 and R4 completing the bridge are located in close
vicinity to the cantilever. Placing all resistors in the same environment helps to
diminish measuring errors due to field and temperature dependent resistance changes.
The Wheatstone bridge is operated in constant current mode with an alternating dc
current. Fig. 3.4 d) shows a circuit diagram of the bridge. During fabrication, the
resistors are tuned to exhibit almost identical resistances so that the bridge is nearly
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Figure 3.4: Torsional cantilever magnetometer. a) Photograph of the chip with lever and
readout circuitry. b) 3-leg modification of the cantilever for higher moment. c) Working
principle: At B = 0 (upper sketch) the magnetization M points along the easy axis.
At finite field, the equilibrium direction of M points between B and easy axis and the
cantilever is twisted by a torque, resulting in different distortions of the two piezoresistors.
The deviation is measured via a Wheatstone bridge integrated on the chip. d) Circuit
diagram of the Wheatstone bridge where the resistors R1 and R2 are the piezoresistors on
the beams and R3 and R4 are high-precision resistors on the chip as marked in b).
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balanced, i.e., the bridge imbalance Rimb is close to zero without any torque applied.
At this point, Rimb is proportional to small changes of individual resistors and the
two arms of the bridge contribute to the imbalance with opposing signs [Sch07]:

Rimb ∝ ∆R1 −∆R2 . (3.17)

Consequently, a pure flexion of the lever, as shown in Fig. 3.1, does not contribute
to the imbalance since the identical distortion of both piezoresistors cancels out.
In contrast, when the cantilever is twisted by a magnetic torque as depicted in
Fig. 3.4 c), the piezoresistors on the beams are distorted in opposing directions. The
resulting bridge imbalance is proportional to the difference of both resistances and
the bridge ratio rb, i.e., the ratio of Rimb to the total resistance of the bridge Rtot
scales linearly with the exerted torque:

Γ ∝ ∆
(
Rimb

Rtot

)
= ∆rb . (3.18)

Here, ∆ denotes the difference from the zero-torque value which is usually finite
due to residual mismatch of the resistances or external influences as, e.g., distortion
by sample weight. In analogy to the capacitive readout of longitudinal operation,
the piezoresistive readout for torsional operation favors the detection of a torque
in x-direction over a torque in y-direction and we measure a projection of the full
magnetic torque.

Calibration

Equation 3.18 can be rewritten as

Γ = cτ ·
(
rb − r0

b

)
(3.19)

with the torque coefficient cτ and the bridge ratio at zero torque r0
b. The software

supplied with the torque option allows for an automated calibration routine which
aims to determine both cτ and r0

b over the full temperature range accessible by the
PPMS. In a first step, the temperature is set to its maximum and the horizontal
rotator is positioned such that the normal on the cantilever paddle is orthogonal to
the PPMS’ magnetic field direction. From this state, the bridge ratio at zero field
and zero current through the calibration coil is measured while the temperature is
lowered to its minimum. The resulting curve is shown as red solid line in Fig. 3.5 a)
and referred to as “baseline”. As no field is applied, it represents the bridge ratio at
zero torque r0

b(T ). The value measured during this process is subtracted from the
bridge ratio for every measurement before conversion to torque. Once the minimum
temperature is reached, the magnetic field is set to its maximum. An alternating dc
current I is sent through the calibration coil inducing a magnetic moment

m = I · A , (3.20)
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Figure 3.5: a) Bridge ratio measured during calibration procedure versus temperature.
The red curve is measured during cooldown, data depicted by symbols is measured during
warm-up. Magnetic field and current through the calibration coil are applied during
warm-up to determine the torque coefficient cτ . The inset shows a blow-up of the low
temperature regime. b) Torque coefficients calculated from the data shown in a). c) Low
temperature blow-up of b).
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where A is the area enclosed by the coil. Consequently, a torque

Γcoil = IAB sin θ (3.21)

acts on the cantilever where θ is the angle between field B and moment m. As stated
above, B points along the z-direction whereas m is orthogonal to the cantilever plane
and thus perpendicular to B. The torque coefficient is then given by

cτ = 2IAB
∆rb

, (3.22)

where ∆rb denotes the bridge ratio difference for positive and negative current. This
procedure is repeated at preselected temperature increments while the chip is warmed
up to maximum temperature. The bridge ratio values measured at positive, negative
and zero current during this phase are depicted as blue triangles, green triangles and
black circles in Fig. 3.5 a), respectively. While the overall shape follows the zero-field
curve closely, we observe a distinct deviation towards low temperatures. Fig. 3.5 b)
and c) show the torque coefficients calculated from the bridge ratio values in a). The
green solid lines depict a “best fit” applied by the PPMS software. Neither the fit
function nor the residuum of the fit are given by the software, yet the maximum
deviation of data points from the fit is smaller than 1.5%. Similar to rb(T ) in
Fig. 3.5 a), the slope of cτ (T ) appears to tend to zero in the low temperature regime.
This behavior is not reflected in the fit.

3.2 Setups for dHvA measurements
In order to probe the Fermi surface of a material via the dHvA effect, the prerequisites
of high sample quality, high magnetic fields and low temperatures need to be met.
Details on our samples will be provided in Sec. 4.1. Here we present the various
setups employed in order to meet the temperature and field requirements. Together
with technical details, we will also give estimates of the resolution for each setup.
The minimum detectable magnetic moment change δM is calculated via

δM = δΓ
B

= K · δC
B

, (3.23)

where K is the calibration constant and δC is the smallest detectable capacitance
change. As both K and δC depend on the angle of the sample stage, estimates are
given exemplary at specific angles and fields. For the extraction of dHvA frequencies,
the magnetic field resolution, i.e., the data point density during field sweeps must be
considered as well since it limits the observable frequency range.
We pursued investigations in three different experimental environments. All magnets
exhibit homogeneities sufficient to justify neglection of forces due to field gradients.
Moreover, the oscillations we aim to observe are present in M‖ as well (cf. Eq. 2.20)
so that contributions of M‖ tend to enlarge the oscillatory signal. In all setups, lon-
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3.2 Setups for dHvA measurements

gitudinal CuBe cantilevers with capacitive readout were utilized and the capacitance
was measured with an Andeen-Hagerling AH2700A capacitance bridge. We describe
the setups featuring superconducting magnets in Sec. 3.2.1 and the resistive Bitter
magnet setup in Sec. 3.2.2.

3.2.1 Superconducting magnet setups
For our investigations of the dHvA effect, we acquired data using two different
superconducting magnet setups. In both, the TUM cantilever design with rectangular
paddle shown in Fig. 3.3 a) was utilized. The beam width d was set to 0.2mm. The
cantilevers were calibrated at a single point C0 since the overall capacitance changes
were well below 10% (cf. Sec. 3.1.1).
In a first experiment we combined an ICE Oxford Ltd 3He-insert with a Cryogenic
Ltd 15T axial magnet. The insert allows for temperatures down to ∼280mK and is
equipped with a mechanically rotatable sample stage allowing for in situ rotation
of the cantilever with respect to the magnetic field. The current position of the
stage is monitored via a mechanical counter coupled to the rotation mechanism. A
calibrated Cernox temperature sensor was mounted on the stage. The homogeneity
of the magnet is specified to 5 · 10−5 within 1 cm3 around the field centre. In order to
minimize the noise level, the cryostat was suspended on an active vibration-damping
system. At B = 10T and an angle of 82° between magnetic field and cantilever
normal, we found a resolution of ∼5·10−12 J/T.
In a second setup we employed a Joule-Thomson (JT) 3He/4He dilution refrigerator
insert and a 14T axial magnet both fabricated by Oxford Instruments plc. The insert
allowed for temperatures down to ∼60mK. The sample stage was set to a fixed angle
and equipped with a batch-calibrated ruthenium oxide temperature sensor. The
resolution at B = 10T and an angle of 70° between magnetic field and cantilever
normal was estimated to ∼1 · 10−11 J/T.
Both magnets are superconducting solenoids immersed in liquid helium. As their
operation does not produce an appreciable amount of heat, the liquid helium boil-off
rate is low enough so that the magnets can maintain their maximum field for days
without disruption. Thus the setups allow for almost arbitrarily slow magnetic field
variation and, with regard to our experiments, for very high data point density. To
keep measurement duration at a reasonable scope, we recorded data at 1-5 points
per mT.

3.2.2 High magnetic field laboratory setup
In addition to our experiments with superconducting magnets, we performed a
number of measurements in the High Field Magnet Laboratory (HFML) in Nijmegen
in the Netherlands which provides access to Bitter type magnets. These resistive
solenoids are constructed of slotted copper plates separated by insulating layers
[Web16]. De-ionized water is pressed through the slits at high flow rates to dissipate
the enormous amounts of heat produced during operation. The high-throughput
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water-cooling results in high mechanical noise levels compared to typical laboratory
magnet setups. The magnet used for our measurements provides fields up to 35T at
a homogeneity of ∼1·10−3 within 1 cm3 around the field centre.
The cantilever design with circular shaped paddle shown in Fig. 3.3 b) was used
with beam widths d of 0.2 and 0.8mm. Cantilevers were mounted on a mechanically
rotatable stage equipped with a Cernox temperature sensor and a Hall sensor for
accurate angle determination. In addition, the Hall sensor was used to position the
sample exactly in the field centre. The rotation stage was mounted in a bespoke
sample-in-liquid 3He-system allowing for temperatures down to 300mK. We employed
an active damping suspension for the probe to counteract mechanical noise.
Due to limited time in the facility, no electrostatic calibration was performed. A
generic calibration for the HFML cantilevers can be found in appendix A.3. Using
the value given for d = 0.2mm, the resolution was estimated to ∼6·10−10 J/T at
30T and 85° between field and cantilever normal. Due to limitations of cooling, the
employed magnet can maintain fields above 25T for rather limited time periods only.
Consequently, the field range from 25 to 35T had to be covered within ∼45 minutes
limiting data point density to ∼0.13 points per millitesla.

3.3 Setup for anisotropy measurements
The most direct way to investigate the magnetic anisotropy of a material is to
measure the angular dependence of the magnetic torque Γ(ϕ). A well controlled
rotation of sample and magnetic field with respect to each other is essential for such
experiments. We pursued two different approaches to fulfill this requirement. In
Sec. 3.3.1 we describe our setup with magnetic field rotating around a fixed sample,
Sec. 3.3.2 is dedicated to the alternative approach of a rotating sample in a fixed
field. Finally, we give details on the alignment of magnets, cantilevers and samples
in Section 3.3.3.

3.3.1 Rotating field setup
Our experiments with rotating field employed longitudinal CuBe cantilevers with
capacitive readout. The cantilever design with rectangular paddle was used with
beam widths d of 0.2mm and 0.6mm (cf. Fig. 3.3 a)) and the capacitance was mea-
sured by an Andeen-Hagerling AH2700A capacitance bridge. During measurements,
the capacitance changed by up to 30%. We therefore determined K(C0) conducting
a number of electrostatic calibrations and assuming a linear relation between K
and C−2

0 (cf. Sec. 3.1.1). Resolutions were estimated in the manner described in
Sec. 3.2. At 1T and 0° between field and cantilever we obtain resolutions better
than ∼7 · 10−11 and ∼12 · 10−11 for d = 0.2mm and d = 0.6mm, respectively.
A 3He-insert fabricated by Oxford Instruments plc was utilized allowing for tempera-
tures from ∼280mK up to ∼50K. Earlier experiments using this probe and featuring
a calibrated temperature sensor mounted directly on the sample stage demonstrated
negligible temperature gradients between sample stage and 3He pot. Therefore, no
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temperature sensor was mounted on the sample stage for our experiment to reduce
electrical noise. Instead, the temperature was monitored by two sensors located
at the 3He pot roughly 11 cm above the sample. Temperatures down to 2K were
measured by a Cernox sensor, at temperatures below 2K a calibrated RuO2 sensor
was employed. Measuring head, i.e. the part of the probe below the 3He pot, and
sample stage were machined from copper. The angle of the stage was fixed without
the possibility of in situ rotation.
Additional measurements were performed using a different 3He insert. The informa-
tion given on the first probe holds true for the second insert except that measuring
head and sample stage were made of the machinable ceramic Macor. Unfortunately,
one of the capillaries necessary for low temperature operation turned out to be mag-
netic on this insert. Its magnetization was reflected in our measurements rendering
proper evaluation of data acquired with this system nearly unfeasible.
To generate the rotating magnetic field, we used a superconducting vector magnet
purchased from American Magnetics Inc. The system consists of a 9T solenoid for
vertical field fastened in the centre of a 4.5T split coil for horizontal field. The
specified homogeneities within a 1 cm diameter spherical volume (DSV) around the
field centre are 1 · 10−3 and 5 · 10−3 for solenoid and split coil, respectively. The joint
operation of both coils allows for an angular resolution of well below 1° at 100mT.

Hall probe investigation

Due to constructional adjustments on the cryostat, we conducted a Hall sensor
study of the magnet system prior to our experiments. The major objective of this
investigation was to determine the exact vertical distance of both magnet coils’
field centres to the cryostat top flange. As an additional benefit, the data yields a
possibility to estimate the field gradients along the vertical axis. In the following we
refer to the vertical direction, i.e. the field direction of the solenoid as z-direction
and the horizontal field direction of the split coil as y-direction.
In order to examine the magnet, a probe equipped with three Hall sensors was
inserted into the cryostat. The sensors were arranged orthogonal to each other
and, due to the design of the probe, at different distances to the probe end. As a
consequence, only one Hall sensor could be placed in the field centre at a time. By
construction, one Hall sensor was adjusted to sense magnetic field in the z-direction.
A second one was adjusted to sense field in y-direction by using its signal in a field
applied only by the split coil. The third Hall sensor thus monitored the x-direction,
i.e. the direction orthogonal to both y and z. During a full field rotation at 1T, the
x-sensor showed a maximum signal of 1% compared to the y-direction Hall sensor.
For a field aligned perfectly in y-direction, this corresponds to a misalignment of
the Hall probe of ∼0.6°. An angular error of this size is easily introduced during
our manual adjustment of the probe. We thus consider residual field components in
x-direction as negligible and dicuss data on y- and z-directions only.
To determine the field centre position, we changed the height of the probe within
the cryostat in steps of 1mm and measured the Hall resistance at each position.
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Figure 3.6: a)-b) Relative change of Hall voltage versus height z below cryostat top flange
for horizontal (left) and vertical (right) field. Black circles depict data points, red curves
display Gaussian fits. c)-d) Field gradients in z-direction as obtained from the Gaussian
fits’ first order derivatives.

This process was performed twice, once with a magnetic field in the z-coil and once
with magnetic field in the y-coil only. The data obtained is shown as black circles in
Fig. 3.6 a) for field and sensor in y-direction and Fig. 3.6 b) for field and sensor in
z-direction. The values are expressed as relative changes compared to the maximum
Hall resistance and the height is measured from the cryostat top flange. The data for
the horizontal y-direction exhibits significantly higher fluctuations. These may stem
from tiny rotations around the z-axis introduced during manual height adjustments.
In a phenomenological approach, Gaussian fits are applied to the data and depicted
as red curves in Fig. 3.6 a) and b). The field centres are determined from the fits’
minimum positions to be located at -1110mm for the y-coil and at -1112.5mm for
the z-coil. Strikingly, the field centres of solenoid and split coil are separated by
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more than 2mm.
In order to decide where to locate our sample during measurements, we consider the
impact of field gradients along z. For this purpose, the derivatives of the Gaussian
fits are depicted in Fig. 3.6 c) and d) for y-coil and z-coil, respectively. Here, they
are expressed in units of absolute field gradients, i.e. T/m, at the applied field of
B = 1T. Since these gradients grow proportional to the applied magnetic field, we
discuss their magnitudes in terms of gradient per field in the following, i.e. estimates
are given in units of (T/m)/T = m−1.
The field gradient of the y-coil grows more than twice as fast with distance from the
field centre compared to the z-coil. We consequently decide to locate our sample in
the centre of the y-coil for measurements and accept the smaller gradients imposed by
the distance to the z-coil field centre. This is illustrated by highlighted data points in
Fig. 3.6 c)-d). For the y-coil, the field centre and the targeted point of measurement,
i.e. the position of our sample, coincide (black and green circle). For a systematic
uncertainty of ±1mm in the location of our sample, we expect a maximum field
gradient of 0.15m−1 from the split coil (red circles). For the solenoid, the sample is
placed ∼2.5mm above the field centre (black and green circles). Together with the
height uncertainty, we expect a maximum field gradient of 0.17m−1 (red circle).
Apart from gradients along z, field gradients along x- and y-directions may influence
our measurements. As we have no position dependent Hall sensor data for these
directions, we assess their contributions based on the magnet specifications and
experimental conditions. For a rough estimate, we assume a linear decrease of the
field from its centre to the edge of the 1 cm DSV for which the homogeneity is specified.
Field changes of 0.5% and 0.1% for y-coil and z-coil then yield field gradients within
this volume of 1m−1 and 0.2m−1, respectively2. Our measurement geometry favors
the detection of forces in z-direction over forces along x and y by factors of ∼60 and
∼10, respectively (cf. Sec. 3.3.3 and Ch. 5). Consequently, horizontal gradients of
the z-coil are neglected since their contributions to the measurement signal are small
compared to the expected gradient in z-direction as well as to its uncertainty. The
same holds for x-directed gradients of the y-coil. The only relevant contribution from
horizontal gradients is thus the y-directed gradient of the split coil. A value of 1m−1

is a reasonable upper boundary considering that the assumptions used for estimation
hold for a gradient along z as well which according to the derivative of the fit shown
in Fig. 3.6 amounts to roughly 0.6m−1 at 5mm distance to the field centre.
In addition to the height dependent measurements of Hall resistances at fixed fields,
we recorded the Hall sensor signals of sweeps and rotations of the magnetic field as
applied during sample measurements. The results are shown in appendix A.4. For
the most part, the observed signals resembled the expected behavior. While the
curves exhibits some minor disturbances, we did not encounter any irregularities on
a scale relevant to our experimental results.

2A Gaussian bell shape as shown in Fig. 3.6 a) and b) is a more realistic shape for the field
decrease around its centre. While such a curve exhibits steeper slopes at the DSV edges, the slope
in the field centre is zero. A linear decrease is thus an acceptable assumption for a rough estimate
of the gradient.
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Figure 3.7: Torque signal of an empty 3-leg cantilever. a) Angular dependence measured
at T = 5K and in various magnetic fields. Note that data for different fields are not
“shifted for clarity”. b) Magnetic field dependence measured at different temperatures. Data
depicted as green and black circles has been recorded at ϕ = 90° during the calibration
process. The red circles represent the mean values of the rotation curves shown in a).

3.3.2 Rotating sample setup
Complementary to our experiments in the vector magnet, we performed anisotropy
measurements in an environment with fixed magnetic field and rotating sample. We
employed a commercially available Quantum Design PPMS equipped with horizontal
rotator and torque magnetometer options. The setup allows for temperatures from
1.9K up to 400K and magnetic fields up to 14T. The field is applied in vertical
direction and the homogeneity of the solenoid is specified to 10−3 within a 1 cm
DSV around the field centre. The torque magnetometer option utilizes the torsional
cantilever with piezoresistive readout described in Sec. 3.1.2. The magnetic moment
resolution at 14T is specified to 7 · 10−11 J/T. The chip is placed in the setup such
that the cantilever senses torque in a direction perpendicular to the magnetic field.
The horizontal rotator option enables rotation of the cantilever around this projection
axis. Possible deviations of projection axis and rotation axis are discussed in the
following section. An angular resolution of 0.005° is specified for the rotator.
For each deployed cantilever chip, we conducted the calibration routine described
in Sec. 3.1.2. A fault in the software incorrectly scaling the torque coefficients by
a factor of ∼1.38 could be corrected. Yet several conceptual drawbacks remain in
the setup. As sample and cantilever are rotated around a horizontal axis, gravity
effects may influence the measured signal during rotations. Further, a force due to a
field gradient may be superimposed to the magnetic torque. Both effects follow a
single-fold sine curve during rotation.
Further disturbances arise from resistance changes in the readout circuit due to
variations of temperature and magnetic field. We illustrate these issues with the
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aid of Fig. 3.7. Graph a) shows the torque as measured by the PPMS software
obtained from an empty 3-leg cantilever during rotation at 5K and various fields.
The angle ϕ denotes the angle between cantilever normal and magnetic field. We
immediately make two main observations: First, the torque varies distinctly with the
angle. Second, the mean value around which the angular dependency unfolds shifts
systematically with magnetic field magnitude. This second observation is illustrated
further in graph b) where the field dependence of torque is shown. The mean values
of the rotational measurements in a) are depicted as red circles. Here, we notice the
third important observation: The torque at zero field is not at or even near zero.
The green and black circles denote torque data from field sweeps at 90° between
field and cantilever normal and 350K resp. 1.9K. As denoted in the graph, the low
temperature field scan was measured before the field scan at 350K. The rotations
were recorded last. While the low temperature field scan exhibits a similar field
dependence compared to the mean values of the rotation scans, it is distinctly shifted.
The black curve begins at zero torque by construction, since the depicted field sweep
was recorded during the calibration routine and thus contains the exact value of the
baseline r0

b at zero field. The high temperature curve is almost constant over the
whole field range but has a non-zero value at zero field.
The main conclusion drawn from the above observations is that the concept of the
baseline r0

b described in Sec. 3.1.2 is inadequate. The idea of r0
b is to measure a zero-

torque reference for the bridge ratio rb. However, rb depends on angle and magnitude
of the magnetic field as well as on the temperature and its history. Consequently, we
need to renew the zero-torque reference after every temperature change. Moreover, it
is important to keep the empty-cantilever signal’s dependence on the field magnitude
and angle in mind when evaluating data from sample measurements.
In addition to the data shown in Fig. 3.7, we measured field dependent torque curves
in the same temperature state as the depicted rotations at several angles. All of them
showed a very similar field dependence in close coincidence with the mean values of
the rotation scans. The curves are not shown in the graph for the sake of clarity,
yet they clearly imply that the angular dependence of the empty-cantilever signal
develops evenly around the field-dependence. From the curves in Fig. 3.7 a) we infer
a two-fold rotation symmetry of the magnetoresistive contribution to our signal.So
far, we have discussed gravitational and field gradient forces, magnetoresistance and
thermal cycling as possible causes for measurement errors. The list is extended by
the uncertainty of the torque coefficients cτ discussed in Sec. 3.1.2. All in all, we may
expect a large systematic error for measurements in the PPMS. The systematics of
individual erroneous contributions still allows us to obtain a comprehensible set of
data. We discuss the data handling with respect to these errors in Sec. 5.2.1.

3.3.3 Orientations
During the experiments described in the foregoing sections, the alignment of sample,
cantilever and magnet with respect to each other is of paramount importance.
Following the experimental conditions, we address the alignment of sample and
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Figure 3.8: Definition of misalignment angles for longitudinal cantilevers in the rotating
field setup. a) Misalignment of sample and cantilever. Crystal directions are given
exemplary for the MnSi sphere. For the orientation of the cubic sample, see main text.
b) Misalignment of cantilever and magnet.

magnet not directly but in terms of a two-step process: First we discuss the orientation
of our sample’s crystallographic axes with respect to the cantilever. Then we turn to
the adjustment of the cantilever’s projection axis and magnetic field rotation axis.
In our anisotropy experiments, we employed samples with cubic and spherical shapes
all of which exhibit a cubic crystal structure. Samples of both shapes have been
used with both setups. We define the situation where the crystallographic [110]-
direction is parallel to both the cantilever projection axis P̂ and the rotation axis
R̂ as ideal alignment. In the following, we describe our efforts to determine and
minimize deviations from the ideal orientation for each combination of sample and
setup. Before giving details on the practical implementation, we define all potential
misalignment angles.
For ideal alignment, the [11̄0]-direction as well as the [001]-direction are orthogonal
to P̂. Deviations from this ideal are sketched in Fig. 3.8 a) for a spherical sample on
a longitudinal cantilever. The angles φr and θr describe rotations around the [001]-
and [11̄0]-directions, respectively. The sketch in Fig. 3.8 b) illustrates alignment
of a longitudinal cantilever in the vector magnet system. For ideal alignment, P̂
and R̂ are parallel to each other. Rotations around the vertical magnet axis Bz are
denoted by γr. A rotation around the projection axis is denoted by δr. While such
a tilt does not change the relative orientation of P̂ and R̂, it changes the rotation
plane with respect to the crystal unless γr is zero and must therefore be included
in our consideration. Rotation of the cantilever around an axis along its beams is
prohibited by construction of the sample stage.
The alignment of a sample on a torsional cantilever in the rotating sample setup
is represented in Fig. 3.9. The adjustment of the crystal axes with respect to P̂ is
depicted in sketch a) in full analogy to the longitudinal cantilever. An analog to δr

is prohibited by construction of the probe. Instead, a deviation of P̂ from R̂ around
an axis parallel to the cantilever normal is possible as shown in Fig. 3.9 b). We
denote this deviation by βr. A rotation around an axis perpendicular to P̂ and the
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Figure 3.9: Definition of misalignment angles for torsional cantilevers in the rotating
sample setup. a) Misalignment of sample and cantilever analogous to the longitudinal case.
b) Misalignment of cantilever projection axis and rotation axis. c) Longitudinal bending of
a torsional cantilever due to sample weight. The maximum misalignment angle is smaller
than 0.3°.

cantilever normal in Fig. 3.9 b) constitutes a misalignment of the cantilever chip
analogous to γr. While such a rotation is prohibited for the chip by construction,
longitudinal bending of the cantilever can introduce a deviation in this direction. We
used the formulas given in appendix A.1 to calculate the bending of our torsional
cantilever due to sample weight. The result is shown in Fig. 3.9 c) for our heaviest
sample of 31mg. According to the calculation, the paddle bends down no more than
∼12 µm and thus creates a maximum deviation of less than 0.3°. Estimates on the
magnitude of the other misalignment angles will be given for each specific sample
and setup in the following sections.

Alignment of samples on cantilevers

As stated above, we employed both spherical as well as cubic samples with both
longitudinal and torsional cantilevers. The potential misalignment is identical for
both cantilever types. The orientation of cubic samples on cantilevers was done
by hand aligning the cube edges parallel to the paddle edges by visual estimate.
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Figure 3.10: Laue camera setup for aligned attachment of spherical samples to cantilevers.

Microscope images show tilts φr and θr of less than 1° on a longitudinal and less than
2° on a torsional cantilever. We note that for the cubic sample on the longitudinal
cantilever the [001]- and [11̄0]-direction perpendicular to the projection axis were not
parallel to the cube’s edges. The cube mounted on a torsional cantilever was tilted
by ∼13° around an axis along the beam. Both changes merely introduce a linear
shift of the rotation angle to the data as long as the direction of R̂ with respect to P̂
is not considerably affected. We discuss such deviations in the next section.
The orientation of spherical samples represents a more challenging task. As no
crystallographic directions are noticeable by eye, we employed an x-ray setup to
visualize and adjust the crystal orientation. A photograph of the so-called Laue
camera is shown in Fig. 3.10 together with a description of its principal parts. The
ejection tip (2) directs an x-ray beam into the chamber, the detection screen (1)
collects photons scattered back from the sample. A rail (3) is fastened on an x-z-
translation stage (4) and aligned parallel to the x-ray beam. A three-axis goniometer
(7) allowing for arbitrary rotations is mounted on the rail. For our specific purpose,
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Figure 3.11: Schematic of the attaching process for spherical samples on cantilevers. a1)
The sample is mounted on a three-axes goniometer and aligned with respect to the x-ray
beam. a2) X-ray image of the well aligned sample on the goniometer. b1) The angles α,
β and γ are fixed on the goniometer and the cantilever is positioned with the x-, y- and
z-translation stages. b2) Blow-up of sample and cantilever in b1). c1) After the sample
is attached to the cantilever, the orientation is checked again. The corresponding x-ray
image is shown in c2).
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we utilize a vacuum pump (5) connected to a hollow sample holder (6) that carries
the sphere (9) and is fitted to the goniometer. We further constructed a bespoke
three-axis translation stage (8) that can be mounted on the rail. Different holders can
be installed on this positioning tool in order to carry torsional (10,11) or longitudinal
cantilevers (12).
The sample mounting process in sketched in Fig. 3.11. In a first step, the sample
is mounted on the goniometer. Instead of being glued to the sample holder, it is
held in place by the suction of the vacuum pump allowing for instantaneous and
complete detaching once the pipe is vented. This is of particular importance since our
mechanically sensitive cantilevers are easily damaged by the mechanical forces which
an adhesive on the sample holder might exert during separation. While the sphere
is mounted on the goniometer, the sample’s crystallographic axes are aligned with
respect to the x-ray beam as schematically depicted in Fig. 3.11 a1). An exemplary
x-ray image obtained during this process in shown in Fig. 3.11 a2) together with
the inferred crystallographic directions. Once the sample is adjusted as desired,
the x-rays are turned off and the goniometer angles are fixed. We then mount the
x-y-z-positioning tool carrying a cantilever on the rail. As depicted in Fig. 3.11 b1)
and b2), the translation stage is constructed such that the cantilever approaches
the sample exactly along the x-ray beam path. The cantilever paddle is adjusted to
meet the sample by x- and z-translations and glue is applied to the paddle surface
before the two parts are brought into contact. After the glue has dried, the vacuum
pipe is vented and cantilever and sample are carefully removed from the goniometer.
Finally, the correct orientation of the sample on the sensor is again probed with the
x-ray beam as depicted in Fig. 3.11 c1) and c2).
The described process was performed once for each a longitudinal and a torsional
cantilever. The corresponding x-ray images are shown together with inferred crystal
directions in appendix A.5. From the scattering pattern we can also extract the
misalignment angles φr and θr. On the longitudinal cantilever, both angles amount
to less than 0.5°. On the torsional cantilever, φr is similarly small while θr amounts
to ∼1°.

Cantilever and magnet

The orientation of the probe in the cryostat, i.e. the cantilever-to-magnet alignment
was accomplished in different ways for each setup configuration. In the PPMS setup,
height and orientation of the probe inside the cryostat are fixed by construction. As
stated above, no analog to δr is possible and the gravity induced γr is smaller than
0.3°. A misalignment around the cantilever normal βr can be realized by improper
mounting of the cantilever chip on the rotator platform. While a deviation of 4° is
the maximum possible value, careful handling of the chip implies an upper boundary
of .1°.
The alignment of longitudinal cantilevers in the vector magnet setup is less straight-
forward. In addition to γr and δr, the correct height of the probe has to be considered.
We employed the 3He insert with copper sample stage for measurements on a spherical
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Figure 3.12: Angle between sample stage and probe axis in the 3He system used for
measuring a) a spherical sample and b) a cubic sample. Following the definition of δr in
Fig. 3.8, the displayed angle is roughly 90°+δr in a) and 90°−δr in b).

sample and the insert with Macor stage for a cubic sample. The angle δr can be
inferred from photographs for both probes as depicted in Fig. 3.12. The picture
in a) shows the 3He insert with the copper sample stage, b) depicts the one made
from Macor. Following our definition, we obtain values for δr of ∼6° and ∼15°,
respectively. As stated before, at γr = 0 the deviation δr merely shifts the measured
data along the rotation angle. In contrast, γr can strongly distort our torque signal.
Therefore we did not attempt to minimize δr but focus on γr. For this purpose as well
as for the height adjustment, we pursued different approaches with the two probes.
Following the chronology of our experiments, we begin with the Macor probe used
for measuring a cube.
Our measurements on the cubic sample preceded the Hall probe investigation de-
scribed in Sec. 3.3.1. We attempted to infer the correct installation depth of the
insert as well as a position with minimal γr directly from torque measurements. The
graph in Fig. 3.13 a) shows typical torque data acquired during field rotation at a
temperature of 1.5K and magnetic field amplitude of 0.65T. The field was rotated
by 360° in both senses as indicated by the arrows. The angle ϕ is measured from the
positive field direction of the horizontal split coil, i.e. the y-direction towards the
positive field direction of the vertical solenoid, i.e. the z-direction. The green, black
and red lines denote measurements between which the probe was rotated around the
vertical field axis, i.e. γr was changed. We observe distinctly different amplitudes of
the minimum close to 0° and 180°, i.e. where the field approaches the horizontal axis.
The black line exhibit the largest signal at the minimum. The red and green lines
correspond to positions deviating from the position of the black curve in opposing
directions. We conclude that γr is minimal for the position yielding the largest signal
for horizontal field, i.e. the position corresponding to the black line.
In order to determine the position of the field centre, we measured the angular
dependence of the torque as shown in Fig. 3.13 a) at several installation depths
and evaluated the integral over full 360° rotations. While the integral of a pure
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Figure 3.13: a) Torque signal versus angle at 1.5K and 0.65T. The probe has been
rotated partly around its axis in the cryostat between measurements. The position with
the largest signal (black curve) is taken to be the one with the best alignment of cantilever
and magnet. b) Integral of the torque during a 360°-field rotation versus height over the
bottom position measured at 1.5K and 0.8T (green circles) resp. 2.5T (red squares). Solid
lines represent linear fits. Filled symbols depict positive rotation sense, empty symbols
depict negative rotation sense. The field centre is taken to coincide with the intersection of
all linear fits at zero.

magnetic torque signal is expected to amount to zero over a 360° rotation, forces due
to field gradients introduce asymmetric signals resulting in finite torque integrals.
Corresponding data is shown in Fig. 3.13 b) where the torque integral is plotted
versus the height of the probe above its lowest possible position. All data was
recorded at 1.5K. Red squares depict data from rotations with field magnitude of
2.5T, green circles depict measurements at 0.8T. Angular scans in positive and
negative rotation sense were recorded. Filled symbols in the graph depict positive
rotation sense, empty symbols depict negative rotation sense. All data sets were
fitted with a linear function. Field gradients are expected to be zero in the field
centre and increase their magnitude with opposing sign when moving away from the
field centre in opposing directions. We therefore conclude from Fig. 3.13 b) that the
field centre coincides with the height where the four linear fits intersect at zero. All
sample measurements were consequently performed at this height of ∼7mm.
While the described procedure appears as a comfortable method to adjust the probe
within the cryostat, it suffers from two major blind spots. The conducted process
neither allows any quantitative estimate of residual errors regarding γr and the
installation depth nor does it enable us to make an educated guess regarding the
influence of potential field gradients. Furthermore, it relies on our measurement
technique without considering possible disturbances. As we mentioned above, the
probe used during this process disturbed our measurements due to the magnetization
of a capillary. Thus both the minimization of γr and the height adjustment performed
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Figure 3.14: a) Hall resistance measured during rotation of the probe around its axis.
b)-d) are blow-ups of a) for clarity.

during this experiment are intrinsically flawed. We thus pursued a different approach
for measurements on a spherical sample.
The measurements using the 3He insert with copper stage were performed subsequent
to the Hall probe investigations so that the installation depth could be inferred from
measuring the distance of the sample to the top flange on the probe. As mentioned
before, we detected a vertical distance of more than 2mm between the field centres of
the magnet coils. The vertical gradient of the split coil’s horizontal field, i.e. dBy/dz,
grows considerably faster with increasing distance to the field centre compared to
the vertical gradient of the solenoid’s vertical field, i.e. dBz/dz (cf. Fig 3.6). We
thus decided to centre our sample in the split coil in order to minimize the vertical
field gradients. In order to determine γr, we attached a Hall sensor to the end of the
probe. The sensor is oriented to sense horizontal field and mounted such that the Hall
resistance is zero at γr = 0° and exhibits a maximum for γr = 90°. Unfortunately, this
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adjustment was made towards the end of our experiment. Thus most measurements
were performed at finite γr and only a small count of reference measurements was
recorded near γr = 0. However, the Hall sensor measurement enables us to accurately
determine the value of γr during the majority of our measurements which is a great
asset for the evaluation of our data.
The recorded Hall resistance is shown in Fig. 3.14. Graph a) displays the full mea-
surement, graphs b)-d) contain blow-ups of various parts. We start at zero field and
the system positioned as during the preceding measurements. In this stage, the Hall
sensor displays only a small zero offset (1). In a first step, the horizontal field is
ramped up to +1T resulting in the expected linear increase of the Hall resistance
(2). Next, we rotate the probe around the vertical axis in order to find the maximum
of the Hall resistance (3). We mark the position as γr = 90°, then we and ramp the
field down to -1T (4) and rotate the probe to find the maximum Hall resistance
again (5). This position is marked as γr = −90°. The horizontal field is ramped
back to +1T (6) and the insert is rotated back to its initial measuring position (7).
Finally, the probe is rotated such that the Hall resistance is reverted back to its zero
offset at the finite field of +1T (8). This position is marked as γr = 0° and used
for subsequent measurements. From the recorded Hall resistance, we calculate a
misalignment of γr ≈ 9° for the preceding measurements.
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4 De Haas-van Alphen effect in
single crystal CrB2

In this chapter we present our results on chromium diboride (CrB2). We employed
torque magnetometry to investigate the de Haas-van Alphen (dHvA) effect and
density functional theory (DFT) to perform electronic structure calculations. Parts
of the presented experimental and theoretical work have been carried out as part
of the Master theses of Matthias Dodenhöft and Arthur Niedermayr, respectively.
The chapter is organized as follows: In Sec. 4.1 we provide an introduction to CrB2
including a brief review of the previous state of work on its Fermi surface as well
as an outline of the work conducted in the course of this thesis. We describe the
experiment and the data evaluation process in Sec. 4.2. The main experimental
and theoretical results are presented in Sec. 4.3 and Sec. 4.4, respectively. This is
followed by a thorough comparison and discussion of both in Sec. 4.5. Conclusions
are drawn in Sec. 4.6.

4.1 Introduction to CrB2

Transition metal (TM) diborides have been studied for decades. Early investigations
were driven by their mechanical and thermal stability, chemical inertness and high
electrical and thermal conductivity [Kny76, Gor75] which make the materials suitable
for technical applications. More recently, large interest has been triggered by the
discovery of superconductivity in MgB2 [Nag01, Buz01]. This compound exhibits the
record-high transition temperature Tc ≈ 39K among conventional superconductors
and has become the prime example for two-band superconductivity. Like many TM
diborides, it crystallizes in the C32 structure introduced below. While so far none
of the TM diborides that are isostructural to MgB2 has shown superconductivity
at ambient conditions without doping, these materials exhibit a wide spectrum of
magnetic properties including non-magnetic ground states as well as ferro-, ferri- and
antiferromagnetism [Mor09, Nov07, Kas70, Avi03]. Thus, a variety of ground states
can be studied in an unmodified crystallographic environment.
In this work the itinerant antiferromagnet chromium diboride (CrB2) was investigated.
CrB2 crystallizes in the C32 structure with lattice constants a = 2.97Å and c = 3.07Å.
The hexagonal unit cell is shown in Fig. 4.1. Closest-packed chromium layers and
honeycomb boron layers alternate along the [001]-direction. The covalent B-B-bonds
are very strong compared to the rather ionic Cr-B-bonds giving the material a
somewhat two-dimensional character [Vaj01, Che01].
The CrB2 single crystal was prepared by optical float zoning. Since 10B is a strong

51



4 dHvA effect in single crystal CrB2

Figure 4.1: C32 crystal structure of CrB2. Closest-packed chromium layers and honeycomb
boron layers alternate along the [001]-direction.

neutron absorber [Ama36], 99% isotopically enriched 11B was used during growth
to allow for neutron scattering experiments. Details of the preparation process are
described in Ref. [Bau14b]. The authors further report an extensive characterization
by means of resistivity, Hall effect and specific heat. The results demonstrate an
excellent sample quality. The RRR values of 11 along [100] and 31 along [001] are
the highest reported to date. For temperatures approaching zero, the resistivity
drops to only a few µΩcm. In contrast to most earlier reports, no evidence for Fe
impurities was observed. For the experiments presented in this thesis, a cuboid with
dimensions of 2.45× 2.2× 0.8mm3 parallel to the [001]× [100]× [120]-directions was
cut from the ingot with a wire saw and oriented by Laue x-ray diffraction. The high
quality of the crystal is corroborated by the first observation of de Haas-van Alphen
oscillations in CrB2 [Bra13b]. The authors investigated the very same sample as used
in our experiments and report, to the best of our knowledge, the first experimental
attempt to determine the CrB2 Fermi surface properties prior to the present work.

4.1.1 Magnetic structure
Chromium diboride orders antiferromagnetically below TN = 88K [Bar69]. Early
NMR studies on powder samples claimed that CrB2 is located in the middle of the
local moment and the weakly antiferromagnetic limits [Kit78, Kit80]. In contrast,
more recent investigations carried out on single crystals describe CrB2 as “weak
itinerant antiferromagnet par excellence” [Bau14b]. The itinerant character was
inferred primarily from the remarkable stability of resistivity, specific heat and
magnetization in magnetic fields.
Although antiferromagnetic order in CrB2 has been established decades ago, the
microscopic details are still under debate. A first report suggested a spin density
wave along 0.26q001 [Liu75] where q001 is the reciprocal lattice vector along the
c-axis with |q001| = 2π/c. This idea was quickly rejected by Funahashi et al. who
proposed the formation of a spin cycloid [Fun77]. Based on single crystal neutron
diffraction, they inferred an ordered moment ms = 0.5± 0.1µB/Cr rotating in the
a-c-plane along 0.285q110. Here, q110 is the reciprocal lattice vector along [110],
hence |q110| = 2π/(a/2). For years, this suggestion has been widely accepted with
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4.1 Introduction to CrB2

only minor adjustments as, e.g., a tilting of the rotation plane out of the a-c-plane
by a few degrees [Kay09]. On the contrary, the results of NMR measurements on
CrB2 single crystals could not be accounted for by a simple cycloid [Mic07]. Recent
neutron diffraction experiments shed new light on the question of the microscopic
spin structure [Reg19]. Considering a number of single-k, double-k and triple-k
spin structures, an extensive magnetic structure refinement was performed. The
authors further report a representation analysis based on the nuclear structure of the
material. The best fit is obtained for a complex incommensurate triple-k state that
corresponds to a Z2 vortex lattice. This topologically non-trivial spin structure can
be understood as a superposition of three spin cycloids propagating along 0.286q110,
0.286q210 and 0.286q120, respectively. In contrast to the simple cycloid, the spins
rotate in three dimensions rather than within a 2D plane. Moreover, not only the
direction but also the magnitude of the moment changes when moving from one
Cr atom to another. The average moment size can be interpreted as the ordered
moment ms ≈ 0.59µB/Cr.
The single-k cycloid proposed by Funahashi et al. is not found among the primary
results of the analysis presented in [Reg19]. However, the authors stress that their
experimental data are consistent with such a structure and the proposed magnetic
multi-k state of CrB2 closely resembles simple cycloids along a-directions of the
crystal. Thus, for our electronic structure calculations presented in Sec. 4.4 we
considered a single-k cycloid, since the incorporation of incommensurate multi-k
states into DFT calculations is beyond the scope of this thesis.

4.1.2 Previous state of work and outline
Prior to this work, there has been one experimental study of the CrB2 Fermi sur-
face by Brasse et al. [Bra13b] which was conducted using torque magnetometry in
magnetic fields up to 14T and at temperatures down to 300mK. The very same
sample as investigated in the present work was used. The authors were able to
track three distinct dHvA frequencies around 300T, 1600T and 1950T in the basal
plane ([100]-[120]-plane), two of which showed a 60°-symmetry. The oscillation
at 1.6 kT was also observed in the [120]-[001]-plane where it exhibited a two-fold
symmetry. The authors further determined the effective masses of the corresponding
orbits to 1.22me, 0.86me and 1.07me. Band structure calculations were carried out
for a non-magnetic state as well as for a single-k spin cycloid. At a propagation
vector of q = 0.3 q110 the authors found three Fermi sheets and an ordered moment
of ms ≈ 1.3µB/Cr. Comparison of experiment and calculations yielded a mass
enhancement of 2 - 2.3 for B-px,y states. A more complex spin structure as discussed
in Sec. 4.1.1 was not considered.
Within the present work, the dHvA effect has been measured using torque mag-
netometry in magnetic fields up to 35T and temperatures down to 60mK. We
covered an angular range of 60° within the basal plane and observed up to 11 distinct
frequencies. The effective masses of 8 dHvA components were determined from
experiment. In addition, DFT calculations assuming both non-magnetic and single-k
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4 dHvA effect in single crystal CrB2

Figure 4.2: Orientation of the CrB2 single crystal on the cantilever. a) Microscope picture
of the sample on the cantilever at the HFML. The [120]-direction is pointing out of the
plane. b) Schematic side view of cantilever and sample. The measurement angle is enclosed
by the [100]-direction and the magnetic field.

spin cycloid states have been performed. We adjusted the propagation vector to
the experimentally observed value of q = 0.286 q110 and employed the spin scaling
approach [Ort12] to account for the reduced magnetic moment of ms ≈ 0.59µB/Cr.
As a result we obtained five Fermi surface sheets which were analyzed with respect
to our experimental findings. Calculations considering a multi-k spin structure are
beyond the scope of this thesis.

4.2 Experimental conditions and data evaluation
In the present work, torque magnetometry on a CrB2 single crystal was carried
out in three different experimental environments. Parts of these experiments were
performed by Matthias Dodenhöft as part of his Master thesis. First, measurements
at a single field direction in the basal plane were carried out in a superconducting
14T magnet at temperatures as low as 60mK. Second, measurements within a 60°
angular range in the basal plane were performed in a superconducting 15T magnet
at temperatures down to 280mK. Third, measurements in magnetic fields up to 35T
and temperatures down to 300mK were conducted in a resistive Bitter magnet at the
High Field Magnet Laboratory (HFML) in Nijmegen in the Netherlands. Since the
results from both superconducting magnet setups are fully and consistently contained
in those obtained at HFML, we will limit our discussion to the high field data in
the following. In this section we describe the experiment at HFML and the data
handling.

4.2.1 Experimental conditions at HFML
The HFML cantilever design with round paddle was used for the high field experi-
ments. Most measurements were carried out with a sensor with a beam width of
0.2mm, a few with a less sensitive sensor of 0.8mm beam width. As already stated
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4.2 Experimental conditions and data evaluation

in Sec. 3.2.2, we did not perform an electrostatic calibration due to time constraints.
Looking to investigate the dHvA effect, we are mainly interested in frequencies
and relative amplitudes of oscillating signals whereas the absolute torque value is
less important. Therefore we neither considered the generic calibration shown in
appendix A.3 for data evaluation, but directly analyzed the capacitance data. Since
the absolute capacitance changes were smaller than 3%, the approximation of direct
proportionality of capacitance and torque could be applied (cf. Sec. 3.1.1).
Figure 4.2 shows the orientation of the sample on the cantilever. The CrB2 cuboid
was oriented such that the [100]-direction pointed along the cantilever beams with
the [001]-direction pointing orthogonal to the beams lying in the cantilever plane.
This way, the magnetic field was applied within the hexagonal basal plane. The
measurement angle ϕ is defined as the angle enclosed by the [100]-direction and the
magnetic field. The highest measurement temperature was 4.2 K� TN, so that the
experiment exclusively addressed the antiferromagnetic phase of CrB2.

4.2.2 Data evaluation
The signal-to-noise ratio of the dHvA data taken at HFML was varying between dif-
ferent magnet runs. In order to consistently extract the dHvA oscillation frequencies
from the observed capacitance signal, it was found necessary to perform an extensive
evaluation process for each field sweep. Most of the process was automated, yet the
frequencies still had to be determined from the resulting diagrams “by hand”. In this
subsection, we describe the automated data preparation process and give examples
for our selection procedure.

Preparation process

The data preparation process was automated with MATLAB code. Starting from the
raw capacitance data for each field sweep, the code output consists of four types of
diagrams. From these diagrams we extract the oscillatory components of the signal.
The automated process is sketched in Fig. 4.3. In the first step, the non-oscillatory
part of the signal, i.e., the magnetic background, is removed from the capacitance raw
data. We model this background with two different methods: We either smooth the
raw data over a sufficiently large number of data points or we perform a polynomial
fit. In the latter case, the data at low field is cut off before the fit to improve the fit
accuracy, since at very low fields the signal often behaves non-polynomial or exhibits
excessive noise. The background obtained by smoothing or fitting is then subtracted
from the original signal to obtain the oscillating part of the signal ∆C.
After background subtraction, the low field part of the signal is cut off. Since the
dHvA oscillation amplitude grows with magnetic field, while the mechanical noise
in the signal becomes larger with decreasing field, it is handy to analyze the data
only above a certain field threshold. In the case of the polynomial fitting method, an
additional reason is to avoid the boundary of the fit region. Since dHvA oscillations
are periodic as a function of inverse field, the data is then transferred from field
dependence ∆C(B) to inverse field dependence ∆C(1/B).
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Figure 4.3: Sketch of the automated preparation process of our experimental data. The
raw capacitance data is turned into four types of diagrams. The main tasks are the removal
of the non-oscillatory magnetic background and the transformation of the oscillatory signal
to the frequency domain. The values of parameters used during the process are summarized
in Tab. 4.1.
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At this point, the data flow splits into four different paths. The most direct way is
to display the data in a ∆C-1/B-diagram. In principle, this representation contains
all relevant oscillations. In practice, it is very hard to determine all frequencies
and especially to distinguish oscillations with similar frequencies from such a plot.
Therefore we choose to additionally transform the data to the frequency domain.
This can be achieved with each of the three algorithms described in Sec. 2.2.3. The
Lomb-Scargle periodogram can be calculated directly from the capacitance and
inverse field data. For the FFT and Welch algorithms, the data first needs to be
interpolated to obtain evenly spaced field data. The number of interpolation points
is chosen such that the field data is spaced with the minimum increment present in
the original data. In the case of the FFT algorithm, we can optionally add the step
of zero padding discussed in Sec. 2.2.3. The code automatically generates several
versions of all four types of diagrams with different parameter sets. The choice of
parameters is described in the following section.

Parameters

The result of the preparation process can depend strongly on a number of parameters.
Concerning the smoothing method, the main parameter is the number of data points
over which the moving average is calculated. Since the data point density differs
between different measurements, we specify this parameter in terms of the field width
p covered by the respective number of data points. Parameter p determines a focus
frequency range, since for large p low frequency oscillations are well visible while
the signal-to-noise ratio is rather low at higher frequencies, whereas for small p low
frequency oscillations are smoothed away while higher frequency components may
appear much clearer in the frequency spectrum.
Regarding the polynomial fitting method, we have two parameters: the order of
the polynomial o and the low field threshold u at which the raw data is cut off
before the fit. Both parameters influence the accuracy of the fit. While a too low
order polynomial can prevent the fit from following the data well, a too high order

p [T] f [T]
2 2
1 5
0.75 7.5
0.5 10
0.4 15
0.3 20
0.2 25
0.1 30

o u [T] f [T]
2 4 8
3 8 10
4 X X
5
6
7
8
9

m [T−1] w1 w2 [%]
0.25 1 0
0.5 2 10
0.75 5 25
1 8 33
1.5 10 50
2 20 66
3 35 75
5 50 99

Table 4.1: Parameter values used in the preparation process.
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polynomial may oscillate around C(B). The latter would introduce low frequency
oscillations in ∆C that are not present in the actual signal. The low-field cut-off is
important to restrict the data to a regime where the noise is sufficiently low and the
background behaves sufficiently similar to a polynomial.
After background removal the low field portion of the data is cut off a second time at
a threshold f. This parameter is crucial, since, on the one hand, the larger the field
range covered by the data is, the higher the resolution of the resulting frequency
spectra becomes. On the other hand, a cut-off is still necessary to remove the noise-
dominated low field portion of the data. The right balance between signal-to-noise
ratio and data range is key to obtain a good frequency spectrum.
Zero padding before a FFT introduces an additional parameter m where the zero
padding window ranges from -m to +m. In the case of the Welch periodogram, we
can adjust two more parameters: w1 is the number of windows in which the signal is
split, w2 is the percentage of overlap between these windows.
The parameter values used in the automated process are given in Tab. 4.1. The left
part shows values for background modelling with the smoothing method. Values
for p range from 2T to 0.1T, values for f from 2T to 30T. All possible pairs of
the listed p and f values are applied. The values for the fitting method parameters
are given in the middle of Tab. 4.1. Polynomials of the orders o = 2 to 9 are used.
We apply fits of all orders for u = 4T and u = 8T. The X implies that, for some
sweeps, u is individually adjusted to improve the outcome. For the fitting method, f
is standardly set to 8T for u = 4T and to 10T for u = 8T. Again, the X implies
individual adjustments for a couple of measurements. Values for the parameters
m, w1 and w2 are given in the right part of Tab. 4.1. They are applied after the
smoothing method with p = 1T and f = 5T. For all versions of ∆C(1/B) resulting
from other background modeling parameters, we set m = 2, w1 = 5 and w2 = 50%.
A ∆C-1/B-diagram is automatically produced when applying the fitting method.
For all background models produced with the methods and parameters described
above, the code automatically generates a Lomb-Scargle and Welch periodogram as
well as FFT spectra with and without zero padding. In total, this data preparation
process leaves us with a couple of hundreds of plots resulting from one single field
sweep. To complete the evaluation, we assess these plots to determine the dHvA
frequencies in the signal.

Frequency selection

The evaluation process described above results in a manifold of frequency spectra
for each single field sweep. The final evaluation step is to extract frequency peaks
from these spectra and discriminate between dHvA signal and false peaks induced by
noise or the evaluation process. Since the transition from signal to noise is fluent, we
categorize the peaks present in the spectra instead of drawing one fixed line between
them. We illustrate this procedure on the example of a field sweep from 35T to 0T
at ϕ = 20° and T = 0.3K.
Figure 4.4 displays a selection of several frequency spectra obtained from this data
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Figure 4.4: Exemplary frequency spectra selection obtained from a field sweep from 35T
to 0T at ϕ = 20° and T = 0.3K. Black and green lines represent Fourier transforms
without and with zero padding, respectively, red and blue lines show Lomb-Scargle and
Welch periodograms, respectively. Green arrows mark obvious frequency peaks, yellow
arrows mark peaks that are less obvious but stable throughout parameter variation. Red
arrows mark less stable peaks which still appear regularly while black arrows mark peaks
appearing occasionally.
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set. Figure 4.4 a) shows the Lomb-Scargle diagram for p = 0.2T and f = 10T
over a large frequency range from 0 to 2.1 kT. Five frequency components marked
by the green arrows are clearly visible at frequencies of ∼300T, ∼430T, ∼1625T,
∼1777T and ∼1935T. They are similarly well recognizable in spectra resulting from
FFT and Welch’s methods. We consolidate such prominently pronounced peaks as
undoubtedly real dHvA signal in category A.
The remaining graphs on the left of Fig. 4.4 show a smaller section of the spectra
obtained with the same background model p = 0.2T and f = 10T for FFT without
zero padding in b), FFT with zero padding in c), the Lomb-Scargle method in d)
and the Welch method in e). While the spectra differ strongly in resolution and
signal-to-noise ratio, there are still common features. The three peaks marked by
yellow arrows at ∼800T, ∼985T and ∼1150T can be recognized in each of the four
spectra. They are also stable against variation of parameters p and f, which is not
shown here for clarity. In contrast to the large peaks in Fig. 4.4 a), these three peaks
are barely recognizable in the broader spectrum. Such peaks which are not obviously
recognizable in the full spectrum, but well visible in a smaller frequency region and
stable over a broad preparation parameter range are assessed as reliable signal and
consolidated in category B.
The red arrows in Fig. 4.4 b) - e) mark positions of less stable or less pronounced
peaks. This assessment is substantiated by the remaining graphs on the right of
Fig. 4.4. They contain spectra obtained with a different background model, namely
p = 0.75T and f = 10T, and again various transforms with FFT without zero
padding in f), FFT with zero padding in g), the Lomb-Scargle method in h) and the
Welch method in i). While the yellow marked peak at ∼1150T is well pronounced
in all spectra from b) to i), the spectra differ at the positions of the red arrows.
At ∼1270T, there is a peak visible in FFT and Lomb-Scargle spectra which is
considerably lower than the yellow marked peaks. In the Welch spectra, it is barely
recognizable. At ∼1430T we see a comparatively larger signal for Lomb-Scargle
spectra, similar signal strength in FFT spectra and in the Welch spectra, the peak
is visible, but shifted in frequency. These peaks, which exhibit a very weak signal
strength or are unstable against changing preparation parameters, are assessed as
unreliable, yet possibly real dHvA signal and consolidated in category C.
Finally, there are peaks which are both rather weak and very unstable against
parameter changes. An example is marked by the black arrows in Fig. 4.4 at ∼1360T.
While a signal clearly appears in graphs b), c) and g), there is no recognizable peak
in graphs d), f) and h). In the Welch spectra in graphs e) and i), the peak is shifted
and, with regard to the other spectra, is rather attributed to the signal marked by
the red arrow at ∼1430T. Such weak and apparently randomly appearing peaks are
not considered in the analysis.
At this point, it is worth noting that, while the nine graphs in Fig. 4.4 are supposed
to give an impression of the categorization process, the actual number of graphs
considered for each field sweep is ∼350. Moreover, at almost all measurement
angles, we have at least two field sweeps (up- and downsweep), for which we can
perform the whole analysis independently and then compare the results. Thus the
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stability of peaks against preparation parameters is tested much more rigorously
than the foregoing description may imply. No frequency components above 5 kT
were evaluated due to the limit imposed by the experimental data point density. In
the following, we will refer to categories A and B as reliable frequencies whereas
category C contains possibly complementing results.
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Figure 4.5: Exemplary experimental result at ϕ = 5° and T = 0.3K. a) Lomb-Scargle
periodogram after smoothing with p = 0.2T and f = 5T. Category A peaks are marked
with arrows and enumerated by greek letters. The corresponding frequency values are
given in Tab. 4.2. b) ∆C-1/B-diagram after fitting with o = 6, u = 4T and f = 5T. The
inverse field axis is scaled to match the period of a dHvA oscillation α with a frequency of
58T. c) Welch periodogram with w1 = 1 and w2 = 50% after smoothing with p = 1T and
f = 5T. Complementary to a), an additional peak corresponding to α is visible at 58T.

4.3 Experimental results

In this section we present our experimental findings. We investigated the dHvA
effect at various angles and temperatures. Concerning the angular dependence, we
covered the range from 0° to 60° in steps of 5° with additional measurements at 11°,
26°, 49° and 90°. All these measurements were performed at a base temperature of
∼0.3K. In addition, we performed measurements at seven temperatures from 0.35K
to 3.15K at an experimental angle ϕ = 5°.
Figure 4.5 displays the result for ϕ = 5° and T = 0.3K. The graph in Fig. 4.5 a)
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shows the Lomb-Scargle periodogram obtained with the smoothing method with
p = 0.2T and f = 5T. We observe eight category A frequency peaks which are
marked with arrows and enumerated by greek letters. As discussed in Sec. 2.2,
each of these frequencies corresponds to an extremal orbit on the Fermi surface
with a cross-sectional area of Pi = 2πe/~fi (cf. Eq. 2.19). There is no clear peak
recognizable for frequencies below the peak marked β at ∼305T.
In Fig. 4.5 b) we show the ∆C-1/B-diagram after a fit with o = 6 and u = 4T. Here
we can clearly observe a low frequency oscillation. The axis of the inverse field is
scaled to the period of a 58T oscillation which appears to match the oscillations in
the graph. In Fig. 4.5 c) we present the Welch periodogram with parameters p = 1T,
f = 5T, w1 = 1 and w2 = 50%. We can easily identify the peak α at 58T which
confirms our observation from the ∆C-1/B-diagram.
All dHvA frequencies observed at this angle are given in Tab. 4.2. In addition to the
nine category A frequencies shown in Fig. 4.5, we observe one category B frequency
which we enumerate as f with roman letters as indices and two category C frequency
which are enumerated as f with arabic numbers as indices.
Not all frequencies occuring at 5° can be tracked over the full angular regime. In
return, there are frequencies visible at several or individual other angles which are
not present at ϕ = 5°. As a full tabular list of all frequencies at all angles would lack
lucidity, we refer to Sec. 4.3.1 and Fig. 4.6 for this purpose.

Orbit Frequency (T) Category
α 58 A
β 305 A
f1 440 C
γ 760 A
fa 1130 B
δ 1280 A
ε 1580 A
ζ 1775 A
η1 1950 A
η2 1995 A
f2 2935 C
µ 3600 A
ν 3830 A

Table 4.2: Frequencies found experimentally at ϕ = 5° and T = 0.3K.
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Figure 4.6: Angular distribution of experimentally observed dHvA frequencies. Gray
lines are a guide to the eye.

4.3.1 Angular dependence

We studied the angular dependence of the dHvA effect over a 60° range in the basal
plane. Figure 4.6 shows the resulting frequency versus angle map. The large signals
of category A are represented by green squares, the stable peaks of category B are
displayed as yellow triangles and the possible frequency components of category C
are shown as red circles. The gray lines are a guide to the eye.
The most prominent feature in the graph is a cluster of three frequency branches
between 1.5 and 2 kT. These frequency components, labeled as ε, ζ and η, are visible
in practically all measurements and appear to change their frequencies only slightly.
For some angles, η splits up into a double peak. Two of these orbits, i.e. ε and η,
have already been observed in earlier experiments [Bra13b].
Similarly distinct branches are marked as β and γ. These branches are also visible
over the full investigated angular range and exhibit stable signal. The variation in
frequency is somewhat larger, reaching from ∼270T up to ∼930T. The branches
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Figure 4.7: Angular distribution of experimentally observed dHvA frequencies. Gray
dashed lines hint at possible but not verifiable frequency branches. The blue dashed line
indicates an assignment from an earlier work [Bra13b].

appear to be symmetric to each other with respect to ϕ = 30° and cross each other
at that angle.
Apart from these quite distinct features, the large angular step size makes it difficult
to follow an observed frequency. A lot of branches are thinkable to fit to our obser-
vations as we illustrate in Fig. 4.7. Here, several conceivable frequency branches are
indicated by hand-drawn lines. None of these are verifiable with our experimental
data alone. We particularly point to the hypothetical branch marked by the blue
dashed line. Similar to the orbits ε, ζ and η, experimentally observed frequencies that
could be attributed to this branch are visible in all measurements with only small
frequency changes. Together with ε and η, these frequencies have been observed in
earlier experiments and were attributed to one small closed Fermi surface pocket
[Bra13b]. In contrast, we regard this observation as being due to two symmetric
frequency branches crossing at 30° as discussed above.
In addition to the ambiguity of frequency branches, the small range covered by our
measurements prevents the observation of a specific symmetry as well as discrimina-
tion between open and closed Fermi surface sheets. A more elaborate discussion of
these results is postponed to the comparison with DFT calculations in Sec. 4.5.
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Figure 4.8: Temperature dependence of the dHvA signal in CrB2 at ϕ = 5°. a) FFT
spectra after smoothing with p = 1.15T and f = 20T and zero padding with m = 1
for all measured temperatures. Before the smoothing, the raw data were interpolated to
make evaluation of different sweeps more comparable. b) Normalized FFT amplitudes
versus temperature for the frequency component at 1580T. The Lifshitz-Kosevich fit yields
m∗ = (0.94±0.06)me. c) Normalized FFT amplitudes versus temperature for the frequency
component at 3830T. The Lifshitz-Kosevich fit yields m∗ = (3.32± 0.10)me.

4.3.2 Temperature dependence

We investigated the temperature dependence of dHvA oscillation amplitudes present
at an experimental angle of ϕ = 5°. For this purpose we measured the torque at
temperatures of 0.35K, 0.70K, 1.11K, 1.45K, 2.13K, 2.45K and 3.15K. From the
relative amplitude change of the oscillatory signal, the effective quasiparticle mass
can be determined (cf. Sec. 2.2.2). The individual measurements comprising a
temperature series must thus be evaluated on an equal footing, i.e., the influence
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of external parameters must be kept at a minimum. Unfortunately, the noise level
fluctuates strongly from one measurement to the other which hampers the precise
determination of effective masses. We estimate an upper bound for the error bar
due to systematic errors of 10%.
The amplitude I of the peak in a frequency spectrum can depend on experimental
parameters as, e.g., the magnetic field sweep rate as well as on preparation parameters
as, e.g., the low field cut-off f. We therefore need to control these parameters
very carefully and keep them as stable as possible during all measurements. As a
consequence, we only considered magnetic field upsweeps for evaluation, since the
experimental parameters during downsweeps could not be kept consistent between
single measurements. To keep the influence of the preparation process as small as
possible, we added an additional step before the background modeling which consists
of interpolation of the raw data. In this way, all data sets exhibit the same point
density. The data was then evaluated with the smoothing method with p = 1.15T
and f = 20T and transformed using FFT with zero padding and m = 1. The high
value for f was chosen to avoid the influence of sweep rate changes below 20T.
The FFT spectra obtained in this manner are shown in Fig. 4.8 a). We can clearly
see the peak amplitude decrease with rising temperature. As discussed in Sec. 2.2.2,
this decrease is described by the Lifshitz-Kosevich formalism and is commonly used
to determine the effective mass m∗ of charge carriers on the corresponding orbit.
Figure 4.8 b) and c) show the decrease of the peak amplitude with temperature
exemplarily for the peaks ε and ν at 1580T and 3830T, respectively. While the
signal of orbit ε is suppressed by less then 40% at T = 3.15K, the signal of orbit
ν vanishes completely at T = 2.5K. Since the absolute peak amplitude is not of
interest, the values have been normalized with respect to the lowest measurement
temperature. In this way, the data points can be fitted with a function of the form

I(T )
I(0.35 K) = M0

X

sinh(X) (4.1)

where I is the FFT peak amplitude and X = 2π2kBm
∗T/~eB contains the effective

mass m∗. Fits of this form are included in the graphs as red lines. We can see a
remarkable outlier for orbit ε at 1.1K. This substantiates the difficulties mentioned

Orbit eff. mass / me

β 1.17 ± 0.03
γ 2.10 ± 0.07
fa 1.95 ± 0.09
δ 2.54 ± 0.10

Orbit eff. mass / me

ε 0.94 ± 0.06
ζ 0.88 ± 0.03
η 0.88 ± 0.04
ν 3.32 ± 0.10

Table 4.3: Effective masses of orbits as obtained from the temperature dependence with
Lifshitz-Kosevich fits. The given uncertainties arise solely from the fit and do not include
any possible amplitude uncertainty due to differences in measurement or preparation
parameters.
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above in comparability of the individual measurements. On the other hand, the fit
appears to perfectly cut through all data points for orbit ν.
The fits shown in Fig. 4.8 b) and c) yield effective masses of (0.94± 0.06)me and
(3.32 ± 0.10)me for orbit ε and ν, respectively. They are listed together with the
other effective masses that could be determined in Tab. 4.3. The given uncertainties
originate only from the fit accuracy and do not reflect possible uncertainties in the
peak amplitude.
As stated before, the orbits we labeled as β, ε and η have already been observed
by Brasse et al. [Bra13b]. The authors also determined the effective masses for
these orbits. They obtain m∗β = (1.22 ± 0.12)me, m∗ε = (0.86 ± 0.07)me and
m∗η = (1.07± 0.06)me in good agreement with our results.

4.4 Electronic structure calculations
Band structures and Fermi surfaces for CrB2 were calculated to support and comple-
ment our experimental results. Parts of these calculations were carried out by Arthur
Niedermayr as part of his Master thesis. In this section we report the outcome of our
calculations. We briefly introduce the applied methods in Sec. 4.4.1 and discuss the
considered states in Sec. 4.4.2. In Sec. 4.4.3 we present the resulting Fermi surface
and compare it to that of Brasse et al. [Bra13b]. Finally, we analyze the implications
for the dHvA effect following from the calculated Fermi surface in Sec. 4.4.4.

4.4.1 Theoretical methods
The calculations performed in this work employed the Elk code1. In this software
package the full potential linearized augmented plane wave method is utilized to
solve the Kohn-Sham equations of density functional theory. The local spin density
approximation (LSDA) of Perdew-Wang/Ceperley-Alder [Per92] was used for the
exchange-correlation potential and the experimental lattice constants a = 2.969Å
and c = 3.066Å were supplied as input parameters.
We performed band structure calculations for a paramagnetic state as well as for
several cycloidal states with propagation vectors of different length along q110. Among
others, we considered q = 0 q110 and q = 0.5 q110 which are equivalent to collinear
ferromagnetic and antiferromagnetic order, respectively. For the non-collinear, but
single-k spin structures, the generalized Bloch theorem allows for implementation
without the need for large supercells [San91]. On the contrary, a multi-k spin structure
as the suggested Z2 vortex state (cf. Sec. 4.1.1) does not fulfil this condition and
could thus not be implemented within this work. Spin-orbit-coupling (SOC) could
not be considered in our calculations as a consequence of applying the generalized
Bloch theorem.
We note that instead of the experimentally observed spin cycloid, where the spin
rotation axis is slightly tilted out of the a-b-plane [Kay09], the Elk code assumes

1http://elk.sourceforge.net
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Figure 4.9: Total energy (red circles) and ordered magnetic moment per unit cell (blue
triangles) as a function of the propagation vector length along q110. The green dotted line
represents the total energy in the paramagnetic state.

a spin spiral with the rotation axis parallel to the c-direction. However, due to
the absence of spin-orbit-coupling in our calculations, the electronic structure is
identical for both states. The spin spiral with the experimental propagation vector
q = 0.286 q110 was additionally treated using the spin scaling approach [Ort12] to
match the ordered moment of 0.59µB/Cr found in experiments [Reg19].
We analyze the implications of the calculated band energies for the dHvA effect
using the SKEAF (Supercell K-space Extremal Area Finder) tool [Rou12]. For a
given field direction with respect to the crystal axis, this numerical algorithm returns
the expected dHvA frequencies together with band masses and curvatures of the
corresponding orbits. The code treats each band individually and is consequently
limited to orbits residing on a single band. Energetic degeneracies or magnetic
breakdown can allow extremal orbits to reside on FS sheets of multiple bands. DHvA
frequencies corresponding to such orbits are not included in the SKEAF output. We
defer a detailed discussion of further limitations of our calculation to the next section.

4.4.2 Magnetic state
The band structure of non-magnetic CrB2 was calculated in order to assess the
sensitivity of individual Fermi surface pockets to magnetic order. The results are
shown in appendix B.1. They match perfectly with those presented by Brasse
[Bra13a], substantiating the author’s two main statements: First, the four bands
crossing the Fermi energy have almost exclusively Cr-d character, with the exception
of two bands crossing EF close to the A-point which exhibit strong B-p character.
Second, these B-p-like pockets are merely spin-split and shifted in reciprocal space,
but hardly altered in shape and size by the introduction of magnetic order, while
Cr-d bands are highly sensitive to the spin structure.
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spin scaling parameter. The gray solid line displays a linear fit through the calculated
moments. The red dashed line represents the experimentally observed value of 0.59µB/Cr.

We further performed band structure calculations for single-k spin cycloids with
different propagation vector magnitudes along q110. We varied the length of q from
0q110, i.e., the ferromagnetic state, to 0.5q110, i.e., the collinear antiferromagnet.
The resulting total energies are shown as red circles in Fig. 4.9. The energy of the
paramagnetic state is included as green dashed line. According to our calculations, any
considered magnetic order is favorable over the non-magnetic state. The ferromagnetic
state is energetically much less favorable than antiferromagnetic order. The total
energy exhibits a minimum at 0.27q110 which is very close to the experimentally
observed propagation vector 0.286q110 [Reg19].
The ordered moments resulting from the calculations are shown in Fig. 4.9 as blue
triangles. For finite propagation vector, they vary between 0.90 and 1.12µB/Cr. In
particular, at the experimental length of q, the moment is as high as 1.02µB/Cr as
opposed to the experimentally observed value of 0.59µB/Cr. As a crucial advance
compared to previous work, we employed the concept of spin scaling [Ort12] in our
calculation in order to resolve this mismatch. Figure 4.10 displays the variation
of the ordered moment with changing spin scaling parameter. The dependence is
roughly linear, as illustrated by the fit. The experimental value is best matched for a
spin scaling parameter of 0.888. Consequently, we constrain our detailed discussion
of the electronic structure to the calculation with q = 0.286 q110 and spin scaling
parameter 0.888 representing the best fit to the real experimental situation.
Considering a single-k spin structure, the sixfold symmetry of the Brillouin zone
(BZ) is reduced. This is schematically depicted in Fig. 4.11. Here, e.g., the points
M and M' are no longer equivalent. The same holds for L and L'. The importance
of this consideration is illustrated by means of the band structure. Figure 4.12 a)
shows the band structure along the red path in Fig. 4.11, Fig. 4.12 b) contains the
band structure along the cyan path. Obviously, we obtain the identical picture for
the overlapping part of the paths between Γ and A. Interestingly, also the paths
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Figure 4.11: Brioullin zone of a
hexagonal Bravais lattice. The mag-
netic order with propagation vec-
tor q reduces the symmetry so that
points like M and M' oder L and L'
are no longer equivalent. The red
and cyan lines represent the paths
along which the band structure is
plotted in Fig. 4.12.

KH and K'H' are still identical, but moving away from the Brillouin zone boundary,
we observe different structures for ΓK' and ΓK resp. H'A and HA. In the band
structure shown in Fig. 4.12 a), only three bands cross the Fermi energy, namely the
blue, cyan and purple ones. The bands colored green and red come close to, but
never actually touch the Fermi level in this plot. On the contrary, in Fig. 4.12 b),
these bands both clearly cross the Fermi energy. Consequently, we have five bands
contributing to the Fermi surface. Following the naming convention of the Elk code,
we label them bands 19 (red) to 23 (green).
Before presenting the corresponding Fermi surface sheets, we discuss some of the
limitations of our theoretical approach. A natural issue is the limited resolution. In
numerical approaches, a trade off between calculation time and spatial resolution
is necessary. In our Fermi surface calculation, e.g., the energy eigenvalues were
calculated on a 50×50×50 k-mesh within the reciprocal unit cell (RUC). A limited
resolution can become critical, e.g., when a band exhibits an extremum very close to
the Fermi energy. This is the case for our band 23 about halfway between Γ and K
as marked by the magenta arrow in Fig. 4.12 a). According to our band structure
calculation, band 23 does not yield a Fermi surface pocket at this point. However,
the calculated band minimum resides less than 15meV above the Fermi energy while
the energetic difference between neighboring k-points around the minimum is on the
order of 15 - 20meV. In the band structure calculation, the path ΓK is covered by
∼170 k-points, whereas the Fermi surface calculation contains less than 30 k-points
on the same path. This is owed to the fact that computation time grows linearly with
the number of k-points per reciprocal length in the one-dimensional band structure
calculation but with the third power of that number for the three-dimensional FS
calculation. Consequently, for band extrema similarly close to EF that do cross the
Fermi energy, the corresponding FS pockets might not be correctly resolved.
The DFT code used in this work does not follow particular bands, but simply
enumerates the energy eigenvalues at each k-point. Thus, whenever bands cross, the
calculated bands switch numbers. The bands involved exhibit kinks at the crossing
point. The labeling thus corresponds to a situation where all band crossings are
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Figure 4.12: Band structure calculated for a cycloidal spin structure of CrB2. The
structure is calculated along the paths indicated in Fig. 4.11 with the red path in a) and
the cyan path in b). The orange straight line represents the Fermi energy. In a) only three
bands cross the Fermi energy, in b) five bands do.

avoided, regardless of whether or not they cross at a point of degeneracy. There are
many examples visible in Fig. 4.12 as, e.g., the minimum of band 23 close to EF
between Γ and K. In many cases, spin-orbit-coupling lifts the degeneracy at crossing
points since the SOC-induced mixing of bands promotes avoided crossings. As a
consequence, the calculated band structure and Fermi surface may look more similar
to reality than we can expect from our procedure. A quantitative assessment of the
gap sizes between FS sheets is only possible with high-resolution calculations including
SOC. Still, spin-orbit-coupling might alter the band dispersion and consequently the
shape of the Fermi surface also away from band crossing points.
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Finally, we considered a single-k cycloidal spin structure as suggested already by
early neutron scattering experiments. More recent work suggests that CrB2 might
actually have a more complex spin structure (cf. Sec. 4.1.1). As we stated above
and will again demonstrate below, the CrB2 Fermi surface is very sensitive to the
details of its magnetic structure. Thus, it is likely that the FS for such a multi-k
spin structure differs strongly from the result of our calculations.

4.4.3 Fermi surface
The Fermi surface obtained from our calculation is shown in Fig. 4.13 (i) to (v).
Sheets arising from different bands are plotted separately for clarity. The colors
correspond to the colors of the bands in Fig. 4.12. Directions and symmetry points
in the reciprocal unit cell are illustrated in Fig. 4.13 (ix). An illustration of all bands
within the same reciprocal unit cell as well as in the Brillouin zone is presented in
appendix B.2.
The bands 19 and 20, depicted in red and purple, are shown in Fig. 4.13 (i) and
(ii), respectively. They both yield a single large pocket centered around the L'-point.
While the red sheet has a rather smooth topography, the purple sheet exhibits several
pronounced extrusions. The cyan colored band 21 shown in Fig. 4.13 (iii) results
in a complicated Fermi surface sheet. There are two copies of a sphere located
between A and L', one flat, plus-sign shaped pocket centered around M' and a large,
multiply connected sheet spread through the whole reciprocal unit cell. The band 22
is depicted in blue and shown in Fig. 4.13 (iv). The reciprocal unit cell contains five
pockets. Alike band 21 in Fig. 4.13 (iii), there are two copies of a sphere between A
and L'. Further, two copies of a dumbbell shaped pocket are located between Γ and
M'. Last, there is one pocket around M' elongated along q110. The green band 23
is shown in Fig. 4.13 (v). It yields a single small pocket around M' which appears
almost planar in the q110-q001-plane.
Bands 19 and 20 are hole-like sheets, bands 22 and 23 are electron-like. Band 21 has
mixed character, yet the spherical pocket is clearly electron-like. As mentioned before,
the presented sheets are almost exclusively of Cr-d character. The only exceptions
are the spherical pockets in Fig. 4.13 (iii) and (iv) which exhibit predominantly B-p
character. As stated above, single copies of these pockets are present around the
A-point in a non-magnetic calculation. By introduction of magnetic order, they are
spin-split and shifted in reciprocal space, but not altered significantly in shape and
size. In contrast, the Cr-d-like sheets are sensitive to magnetic order.
We now compare our results to those presented by Brasse et al. [Bra13b]. The
authors employed the WIEN2k software package and presented results for a spin
cycloid with an ordering wave vector q = 0.3 q110. Their calculation yielded an
ordered moment of 1.3µB/Cr, i.e., more than twice the experimental value. The
Fermi surface resulting from their calculation is shown in Fig. 4.13 (vi) to (viii). In
contrast to our results, they only obtain sheets from three bands. The bands 19 and
23 in our description do not cross the Fermi energy in their calculation. The purple
colored sheet in Fig. 4.13 (vi) looks similar to our band 20 but misses some extrusions,
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Figure 4.13: Fermi surfaces calculated in this work ((i)-(v)) and previous work ((vi)-(viii))
[Bra13b]. Prominent differences are marked by the red, yellow and green circles. Our
calculation yields sheets from two more bands than previously reported. (ix) Symmetry
points in the reciprocal unit cell with respect to the propagation vector of the spin cycloid.
The reciprocal lattice vectors q100, q010 and q001 (red) are scaled to half their length with
respect to the cell for clarity.
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as marked by the red circle in Fig. 4.13 (ii). The cyan colored bands in Fig. 4.13 (iii)
and (vii) also look somewhat similar, but there are notable differences as, e.g.,
the connection of several pockets as marked by the yellow circles in Fig. 4.13 (iii).
Notably, the spherical pockets appear almost identical in both calculations. The
blue colored sheet in Fig. 4.13 (viii) consists of spheres and dumbbells like our band
22, but misses the M'-centered pocket as marked by the green circle in Fig. 4.13 (iv).
While the B-p-like spherical pockets look very similar in shape and size, the rather
Cr-d-like dumbbell-shaped pockets are notably altered between the two calculations.
The direct comparison presented above substantiates the sensitivity of Cr-d-like
Fermi surface sheets to the details of the magnetic structure. Compared to the
previous results, we significantly improved the adjustment of the calculation to the
experimental values of ordering wave vector and magnetic moment in the present
work.

4.4.4 Implications for the dHvA effect
In this section we discuss the implications of the calculated Fermi surface for our
experiment. We employed the SKEAF tool to extract the expected dHvA frequencies
for a given field direction as well as the effective masses and curvatures of the
corresponding orbits. Possible additional dHvA components due to orbits residing on
multiple bands are not discussed in this section. We address this issue in Sec. 4.5.1.
In Fig. 4.14 we show the frequencies obtained for magnetic fields in the (001)-plane
as a function of the experimental angle ϕ. In this representation, the field is parallel
to the ordering wave vector for ϕ = 0°. Again, we notice that the six-fold symmetry
of the crystal structure is lifted by the magnetic order. Since a two-fold symmetry
is preserved by the cycloidal structure, we only show the angular region from 0° to
180°.
The expected frequencies range from a few Tesla up to more than 30 kT. The
corresponding effective masses range from 0.21me up to over 12me. The topologically
and topographically simple Fermi sheets originating from bands 19 and 23 each result
in a single frequency branch present over the whole angular range. The Fermi surface
of band 20 is singly connected, but has a rich topography which leads to splitting of
the frequency branch for certain directions. Band 22 has several separated Fermi
pockets, resulting in one continuous branch for each pocket. The one arising from
the M'-centered sheet splits between 60° and 120°. Band 21 with its complex Fermi
surface sheet results in a manifold of possible extremal orbits. The branches differ
widely in frequency as well as their angular variation. Moreover, band 21 yields
a number of frequency branches that exist only on small segments of the angular
regime. Except for the split-offs of bands 20 and 22, the branches originating from
other bands are continuous through the whole angular regime.
The frequency spectrum presented in Fig. 4.14 assumes a magnetic state with a single
propagation vector in q110-direction. Due to the six-fold symmetry of the crystal,
the sample can exhibit further domains with the spin cycloid propagating along
vectors rotated by ±120° with respect to q110, i.e. along q120 and q210, respectively.
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Figure 4.14: Frequencies of dHvA oscillations as expected from our calculated Fermi
surfaces for magnetic fields applied in the (001)-plane. ϕ is the experimental angle defined
in Fig. 4.2 b). In this representation, the ordering wave vector is parallel to the field at
ϕ = 0°. Orbits crossing between multiple sheets are not considered.
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Figure 4.15: Frequencies expected in the dHvA effect from our calculations. The point
size resembles the relative expected amplitude. The frequencies from three magnetic
domains are included.

Considering three equally populated domains, the six-fold symmetry is restored in
the frequency spectrum. Adding the dHvA frequencies following from the additional
domains to Fig. 4.14 is equivalent to shifting the components displayed in the angular
ranges from 60° to 120° and from 120° to 180° to the regime between 0° and 60°.
Thus, the number of expected frequencies for a given field direction is drastically
increased. For a more elaborate estimate of what we expect to observe in experiment
according to our calculation, we additionally consider the strength of the oscillating
signal.
As described in Sec. 2.2, the amplitude of magnetic quantum oscillations depends on
effective mass m∗ and curvature P ′′ of the corresponding orbit. The resulting torque
additionally depends on the angular variation of the frequency. At finite temperature
T , the Lifshitz-Kosevich factor has to be considered. We calculated

S =
∣∣∣∣∣∂f∂ϕ · 1

m∗
√
P ′′
· X

sinhX

∣∣∣∣∣ , with X = 2π2kBT

~eB/m∗
(4.2)

to obtain a measure S for the expected signal strength of a particular frequency. For
this calculation we assumed an experimental temperature of 0.3K and a magnetic
field of 15T.
In Fig. 4.15 we show the calculated frequencies as circles. S is included as data point

77



4 dHvA effect in single crystal CrB2

size. For clarity, we only show frequencies in the range relevant for our experiment.
The graph includes the calculated frequency branches for all three domains. There
are roughly ∼30 frequencies present at each angle. While some of them are well
separated from other branches, there is a lot of overlap especially at frequencies below
1 kT. E.g., for angles close to 0°, several frequency branches approach each other
around f = 0.5 kT. In such a case, it is particularly hard to distinguish the individual
frequencies from experimental data. We find distinct differences in the expected
signal strengths. Band 21 yields the branches with the strongest, but also those with
the weakest signal. The expected signals of bands 22 and 23 are relatively small
compared to the strong band 21 branches. A more detailed discussion is presented
in the following section along comparison with experimental results.

4.5 Comparison of experiment and theory
In this section we combine the results from measurements and calculations presented
above. We begin with dHvA frequencies and their angular evolution. In Figs. 4.16
and 4.17 we show experimentally observed and calculated frequencies versus the
measurement angle ϕ. Figure 4.16 contains the calculated result for band 21, Fig. 4.17
shows the results for bands 22 and 23. Experimentally obtained frequencies are
depicted as squares. Large red squares show reliable frequencies whereas small
magenta squares represent the more uncertain results of category C (cf. Sec. 4.2.2).
Calculated frequencies are depicted as circles. The circle size is scaled with S, i.e.
proportional to the expected amplitude. Note that the colors of the calculated data
no longer refer to the FS sheet, but are intended to help to distinguish between
orbits around different pockets or in different locations in the RUC on the same
sheet. An exemplary illustration of extremal orbits on the CrB2 Fermi surface is
given in appendix B.3.
The plots are confined to the range covered experimentally. As stated above, we did
not evaluate any frequencies above 5 kT due to the limited data point density. We
can therefore not expect to observe any oscillations corresponding to orbits on bands
19 or 20. The experimental conditions also require a lower frequency limit which
in our case was ∼20T. Slower oscillations could not clearly be separated from the
non-oscillatory background. An angular range of 60° was covered in experiment. All
calculated frequencies are contained in this range due to the six-fold symmetry in
the three domain configuration.
In Fig. 4.16 we discriminate between three types of calculated orbits. The blue
circles represent the orbit around the spherical B-p-like pocket of band 21, the green
circles resemble an orbit centered around M on the multiply-connected sheet. The
gray colored data points represent a bunch of orbits on the same sheet located
alongside the connection of M and L. On first glance, there is a lot of overlap between
experiment and calculation. The detailed investigation given in the following shows,
however, that this does not result in unique assignments for the majority of observed
orbits.
Strikingly, there is no obvious experimental candidate for the branches with the
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Figure 4.16: Comparison of experimental results and calculation for band 21. Circles
represent calculated frequencies. The colors correspond to different locations in the
reciprocal unit cell, the point size illustrates the calculated relative amplitude. Squares
represent experimental data. Large red squares are reliable frequencies whereas small
magenta colored squares represent the more uncertain category C results.
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4 dHvA effect in single crystal CrB2

largest expected signal strength, namely the green colored component centered around
M which appears at 3 kT and quickly drops with ϕ. While there are good matches at
individual angles, we find no clear evolution of any measured frequency component
resembling the calculated behavior. In different domains, the same branches run
reasonably close to the experimental branches labeled β and γ in Fig. 4.6, but exhibit
distinctly smaller relative signal strength S.
The frequency components colored gray show a lot of overlap with experimental
data. Yet there is no obvious match of any particular branch leaping to the eye.
Above 0.6 kT, the overlap with experiment is rather occasional. Below that value,
several calculated branches overlap, hindering an unambiguous assignment. There is
additional overlap with band 23 shown in Fig. 4.17. The lowest branch in frequency
appears to be an exception. It runs fairly separate from the large frequency cluster
making it the candidate closest to the lowest measured frequencies. However, one
calculated frequency branch at 5 - 15T (cf. Fig. 4.14) is not included in the plot.
This additional branch arises from a rather flat part of the band close to the Fermi
energy, so that a tiny alteration to EF or the magnetic structure might easily shift it
closer to the experimental values than the gray branches shown in the plot. Also, this
low frequency branch has a much higher expected amplitude than the ones shown in
the graph. Still, we excluded this branch from the plot for two reasons. First, it lies
below the experimental low frequency threshold. Second, the calculated orbit is so
small that its appearance is governed by the strong interpolation performed within
the SKEAF algorithm rather than by the energy eigenvalues obtained from the FS
calculation. This is briefly illustrated in appendix B.4. We thus assess this orbit
as an unreliable result due to the limited resolution of our DFT calculation. Yet a
shift of less than 10meV in EF is sufficient to increase the calculated frequency to
match the lowest experimental values. Thus, while it is not reliably resolved in our
calculation, this additional orbit might represent a better candidate for the lowest
experimentally observed frequencies than the components presented in Fig. 4.16.
The frequency arising from the orbit around the sphere shows almost no variation
with changing angle. The closest experimental frequencies with similar stability are
found between 1.5 and 2 kT. While Brasse et al. allocated the experimental frequency
labeled η in our work to the spherical pocket of this band [Bra13b], we refrain from
such a statement for several reasons. The frequency mismatch is roughly 20%. We
showed that the B-p-like spheres are very stable against alteration of the magnetic
state. Thus the frequency mismatch is unlikely to be created by a misrepresentation
of the structure in our calculation. To account for the difference by the Fermi energy,
a shift as large as 100meV is necessary which lacks physical justification. Finally,
there are better candidates for the measured frequency as we will show below.
In Fig. 4.17 we discriminate between orbits arising from different FS pockets. The
green circles represent the orbits around the small band 23 pocket. The blue, yellow
and cyan colored circles correspond to the orbits around the sphere, the dumbbell
and the elongated M'-centered pocket of band 22, respectively. As pointed out for
the gray colored frequencies in Fig. 4.16, the calculated values for band 23 lie close
to a lot of experimental data points, yet due to the overlap of several branches, a
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Figure 4.17: Comparison of experimental results and calculation for bands 22 and 23.
Circles represent calculated frequencies. Different colors correspond to different FS pockets.
The point size illustrates the calculated relative amplitude. Squares represent experimental
data. Large red squares are reliable frequencies, small magenta colored squares represent
the more uncertain category C results.
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clear assignment cannot be made. For band 22, a more detailed look is necessary.
The branches with the largest signal strength S are the blue ones arising from the
elongated Fermi pocket around M'. In two domains, this pocket yields a single orbit
which alters its frequency from ∼1.7 kT to over 3.5 kT. Similar to the M-centered
orbits with large signal strength of band 21, there are occasionally good matches with
measured frequencies at individual angles, but the calculated behavior is not clearly
reflected in any measured frequency branch. In the third domain, the orbit splits
into two branches with considerably smaller signal strength and smaller frequency
variation. The lower-frequency branch extends from 1.2 to 1.7 kT. Although dHvA
frequencies close to this branch are observed at most experimental angles, a definite
assignment is not possible due to overlap with the branches calculated for band 21.
The higher-frequency split-off is almost constant in frequency around ∼1.5 kT.
The spherical and the dumbbell-shaped pocket of band 22 both yield frequencies in
the range from 1.7 to 2.2 kT which do not change much with ϕ. Together with the
split-off of the elongated pocket at ∼1.5 kT, they comprise a number of components
which are present over the whole angular regime with very little change in frequency.
These fit well to the experimental frequencies between 1.5 kT and 2 kT labeled ε, ζ
and η in Fig. 4.6. These experimental branches too are visible over the whole angular
range with almost no change in frequency. At individual angles, several of these
experimental values also match well with calculated branches of higher frequency
variation, but the remarkable stability in the experimental frequencies suggests that
they belong to rather isotropic Fermi pockets, i.e. that the calculated branch should
resemble the stability in frequency.
We emphasize the discrepancy between the experiment and the calculated signal
strength. The stable frequency components between 1.5 and 2.2 kT which match
the experimental data best have rather small signal strength in the calculation. In
contrast, the largest signal is expected for several orbits on bands 21 and 22 which
show a large frequency change. These orbits can not clearly be recognized in the
experimental data. Moreover, we observed several dHvA frequencies in experiment
which are nowhere near any calculated value.
Beside frequencies, charge carrier masses were both calculated and determined from
experiment. In Fig. 4.18 we show the calculated band masses (squares and triangles)
together with the effective masses obtained from measurements (red circles). The
symbol colors for calculated values help discriminate between values originating from
orbits around different FS pockets or in different locations in the RUC. Again, the
graph is constrained to the experimentally relevant frequency and mass regimes.
An intriguingly good match is found for two measured components between 1.5 and
2 kT. For the experimentally observed dHvA oscillation ε, both frequency and mass
match exceptionally well to a calculated orbit around the M'-centered Fermi pocket
of band 22 (blue squares) with a difference of less than 2%. For the dHvA oscillation
ζ, the experimental value is closely surrounded by the three orbits calculated for the
dumbbell-shaped pocket of band 22 (yellow squares) with a maximum mismatch of
less than 4% in frequency and less than 10% in mass. For the third experimental
component in this frequency range η, a comparison to the same pocket still yields
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Figure 4.18: Effective masses versus frequencies of extremal orbits. Red circles represent
experimental values, squares and triangles represent calculated values. Colors discriminate
between orbits around different FS pockets or in different locations in the RUC.

a good match with values differing by less than 7% in frequency and 10% in mass
for the closest calculated value. From the frequency-versus-angle map we rather
suggest an allocation of η to the spherical pocket of band 22 (cyan squares). Here,
the frequency differs by less than 8%, but the calculated mass amounts to only 44%
of the measured value. DFT is known to often underestimate effective masses due to
negligence of interactions between charge carriers and collective lattice excitations
such as, e.g., phonons or magnons. Thus, considering an allocation of η to the
spherical pocket of band 22 is still reasonable. We note that we do not observe an
obvious experimental candidate for the sphere arising from band 21 (blue triangles).
Regarding the frequency components below 1 kT, β and γ, there are several reasonable
candidates among the calculated orbits. For β, the closest candidates in frequency
originate from the band 23 FS (green squares). The frequencies are off by 10% and
20% and the mass is enhanced by factors of 2.2 and 1.6, respectively. Comparison
to orbits originating from band 21 (cyan and magenta triangles) yields a better
match of the mass at the cost of a larger frequency mismatch. Considering the
angular dependence in Fig. 4.16, β fits best to an M-centered orbit on band 21
(green triangles) for which frequency mismatch and mass enhancement are larger
than 60% and 2.4, respectively. For γ, the closest candidates arise from orbits along
the connection of M and L on the FS of band 21 (yellow triangles). They yield a
mass enhancement of 1.4 and 1.6 at frequency mismatches of less than 3 and 7%,
respectively. Again, with respect to Fig. 4.16, we also consider an orbit centered
around M on the same FS sheet (green triangles). Here, the frequency mismatch
and the mass enhancement amount to 20% and 2.3, respectively.
Between 1 and 1.5 kT, we observed two dHvA frequencies, but no theoretical values
are found in this range. The closest calculated frequencies to the experimental

83



4 dHvA effect in single crystal CrB2

components fa and δ correspond to the M-centered orbit on band 21 (green triangles).
The frequency mismatch amounts to 20% for both fa and δ, the masses are enhanced
by factors of 2.2 and 1.9, respectively. Above 3 kT there are only one observed dHvA
component ν and one calculated component arising from the M'-centered pocket of
band 22 (blue square). A comparison yields a frequency mismatch of less than 8%
and a mass enhancement of 2.8. Given that we observed another dHvA oscillation
much closer to the calculated value (cf. Fig. 4.17), we do not suggest an assignment of
ν to the elongated band 22 pocket despite the reasonably small frequency difference.

4.5.1 Discussion
So far, we considered frequency, angular dependence and charge carrier masses.
Another important criterion for assigning experimental observations to calculated
orbits is their uniqueness, i.e. the (non-)existence of other calculated values close to a
measured frequency. Unfortunately, this requirement is given for almost none of our
candidates. The only exception is the cluster of ε, ζ and η and the orbits on band 22
between 1.5 and 2.2 kT. While the frequencies and masses agree remarkably well,
the main argument for an allocation is the small variation of the frequency in the
investigated angle range found for all three experimental and calculated components.
Similar behavior is not found for any other calculated orbit in that frequency range.
We thus suggest an assignment of η to the spherical pocket, ζ to the dumbbell-shaped
pocket and ε to the elongated pocket of band 22.
Apart from these three components, no unique match is found. The comparison of
frequency branches is in particular hindered by the large experimental angle step
size which prohibits definite tracking of particular frequencies with changing angle.
The ambiguity is demonstrated by the example of the experimental branch β. The
angular dependence indicated in Fig. 4.6 resembles an M-centered orbit on band 21.
However, this orbit yields a frequency mismatch of >60% and a mass enhancement
of >2.4 at ϕ = 5°. In contrast, the frequency is matched with <11% deviation at a
mass enhancement of 2.2 for an orbit on band 23. Further, an orbit alongside ML on
band 21 matches the mass to less than 10% at a frequency mismatch of 56%. None of
the latter two orbits exhibits an angular dependence resembled by experimental data.
Similar difficulties are encountered for the other remaining experimental components.
We thus refrain from any definite assignment beside ε, ζ and η.
It appears odd that the mass is matched well for the allocations of ε and ζ whereas
a mass enhancement of 2.3 is found for η. We attribute this to the character of the
corresponding FS pockets. The spherical FS sheet originates from B-p states for
which strong mass enhancement has been reported [Bra13b]. The authors allocated,
following our nomenclature, component η to the spherical pocket of band 21 and ε to
the spherical pocket of band 22. By analogy with MgB2 where B-px,y electrons form
a superconducting condensate, strong electron-phonon coupling for these states was
inferred for CrB2 from the mass enhancement. In contrast, the dumbbell-shaped and
M'-centered pockets arise from Cr-d states where no similar enhancement has been
reported. While we suggest a different allocation than Ref. [Bra13b], the argument
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of strong electron-phonon coupling for B-p states still persists for η and the band 22
sphere.
No statement about the electron-phonon-coupling of Cr-d states has been made in
Ref. [Bra13b]. Considering our allocation of ε and ζ to orbits arising from such
states, we find an accurate match rather than an enhancement of the mass. This
is in contrast to the remaining experimental results. All calculated orbits with fre-
quencies below 2 kT arise from Cr-d states, yet the best candidates for the measured
frequencies below 1.5 kT yield mass enhancements of 1.4 - 2.3. These orbits arise
from the FS sheets of bands 21 and 23, whereas we allocated ε and ζ to band 22.
Differing strengths of electron-phonon-coupling for different bands may deliver an
explanation, but our investigations do not yield any indication of a physical origin of
such a difference. We note that, while an orbit residing on the band 23 FS is the
best frequency fit to β, all observed frequencies below 1.5 kT may be accounted for
by band 21. It is thus possible that the difference only persists between band 22 and
band 21. Yet the only apparent difference is that while band 22 and 23 give rise
to electron-like FS pockets, band 21 has a mixed character between electron- and
hole-like states.
An enhanced mass reduces the dHvA signal strength. Thus, an effect enhancing the
charge carrier masses of orbits on band 21 but not on band 22 could also deliver an
explanation for the discrepancy concerning the expected signal strengths addressed
above. However, at least a factor of ∼50 would be necessary to account for the
discrepancy which is about 20 times larger than an estimate of the potential mass
enhancement.
As stated before, we do not consider the only calculated orbit above 3 kT in Fig. 4.18
a good match for ν. Above, we argued that there are better experimental candidates
for the calculated value as can easily be seen in Fig. 4.17. The assessment is further
corroborated by the fact that the calculated orbit originates from the same FS pocket
for which we find the perfect match with ε. In contrast, a mass enhancement of
2.8 is found for an orbit around that pocket when compared to ν which appears
highly implausible. Given that, we do not find any candidate for our experimental
observation ν in the SKEAF results. In summary, we have experimentally observed
several orbits that cannot be accounted for in the calculations of single-sheet orbits
in terms of frequency value and dispersion, effective mass and relative signal strength.
We therefore consider orbits residing on multiple FS pockets which are not contained
in the SKEAF output in the following.
Figure 4.19 displays the Fermi surfaces of bands 21 and 22 in the Brillouin zone
cut open along the q110-direction. Four extremal orbits are shown. They reside in
the cutting plane for ϕ = 30°. The orbits depicted as green and red solid lines are
calculated by SKEAF for bands 21 and 22, respectively. The black and magenta
dashed lines illustrate orbits where charge carriers swap from one band to the other
and back. These orbits can not be found by SKEAF, since the code treats each band
individually. Yet both orbits may be physically valid when swapping charge carriers
from one band to another is allowed. In our calculation, the bands are actually
degenerate at the crossing point, but even when the band degeneracy is lifted, e.g., by
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Figure 4.19: Fermi surfaces of bands 21 (cyan/white) and 22 (blue/yellow) in the Brillouin
zone cut along q110 with selected extremal orbits for magnetic field along q110. The two
orbits on individual sheets (red and green solid lines) have been calculated by SKEAF.
The two orbits crossing between FS sheets (magenta and black dashed lines) cannot be
found by SKEAF.

the inclusion of spin-orbit-coupling, the dashed orbits may still exist due to magnetic
breakdown [Coh61]. Naturally, an occupation of these orbits decreases the number of
charge carriers running on and thus the signal strength of the single-sheet orbits. In
the limit where all charge carriers cross bands at all breakdown junctions, the orbits
depicted solid green and red vanish from the dHvA frequency spectrum. Instead,
the magenta and black dashed orbits would dominate the frequency spectrum in
this limit. The breakdown probability can be assessed via Eq. 2.26. Due to the
lack of spin-orbit-coupling in our calculation, we can neither state whether the band
degeneracy is lifted nor estimate the size of a potential energy gap. Therefore we are
limited to the qualitative statement that the real dHvA frequency spectrum of CrB2
might be altered by magnetic breakdown. The spectra presented in Sec. 4.4.4 may
both lack existing frequencies arising from multi-sheet orbits as well as display non-
existent frequencies suppressed by the depopulation of single-sheet orbits. Moreover,
the signal strengths of orbits involved in magnetic breakdown might be changed.
For the situation shown in Fig. 4.19, we can determine the dHvA frequencies corre-
sponding to the multi-sheet orbits. The black orbit results in a dHvA frequency of
6.57 kT which is well above our experimental limit. The magenta orbit encloses a
FS cross-section corresponding to 3.90 kT which is very close to ν. However, ν is
measured at ϕ = 5° whereas the situation in Fig. 4.19 corresponds to ϕ = 30°. The
angular dependence of the frequencies arising from breakdown orbits is unclear since
we could not trace the extremal orbit away from high symmetry planes. Looking
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Figure 4.20: 2D slices of selected FS sheets of bands 20 (purple), 21 (cyan), 22 (blue)
and 23 (green) in the planes containing M' and L' as well as a) K' and b) Γ. The orbits
along the plotted lines are extremal on single bands for magnetic field along a) q110 and b)
q110. The red lines indicate possible orbits on multiple bands.

at the Fermi sheets, it appears likely that, when rotating the field, the magenta
orbit will convert to an open orbit, causing the corresponding dHvA oscillation to
disappear.
Another candidate for multi-sheet orbits is given by the two spherical pockets of bands
21 and 22. As can be seen in Fig. 4.19, the spheres appear to touch at their highest
and lowest points in q001-direction, thus providing possible band crossing points for
any magnetic field direction in the basal plane. In the limit of constant band crossing,
only one frequency branch is expected instead of the two branches calculated by
SKEAF. This may explain the experimental observation of one spherical FS pocket
instead of two. The frequency and quasiparticle mass of the multi-sheet orbit would
reside in the middle of the single-sheet values. Regarding our assignment of η to
a spherical FS pocket, the frequency mismatch would consequently increase from
8 to 18% and the mass enhancement would decrease from 2.3 to 1.9. Considering
dispersion and uniqueness of the observed and calculated frequencies, we stand by
the assignment.
While the orbits displayed in Fig. 4.19 are rather easy to find at this particular
angle, there might be more hidden multi-sheet orbits not contained in our calculation.
Furthermore, we can not determine the corresponding frequencies, masses and signal
strengths at arbitrary angles for these orbits as we did for non-breakdown orbits.
Consequently, it is possible, that ν corresponds to a breakdown orbit that we have
not discovered. We stated that single-sheet orbits may be depopulated by magnetic
breakdown. In the particular case discussed on Fig. 4.19, one of these single-sheet
orbits runs around the dumbbell-shaped pocket of band 22 for which we found a
remarkably good match of theory and experiment. In a second example, we look at
possible breakdown orbits involving the M'-centered pocket of band 22 for which we
found the best agreement of calculation and measurement.
Figure 4.20 shows two-dimensional slices of selected FS sheets in two planes both con-
taining M'. The FSs are sliced perpendicular to q110 in Fig. 4.20 a) and perpendicular
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to q110 in Fig. 4.20 b). The purple, cyan, blue and green lines represent bands 20, 21,
22 and 23, respectively. The red lines indicate possible breakdown orbits involving
the elongated band 22 pocket. The configuration in Fig. 4.20 a) corresponds to
ϕ = 30° and the orbit along the blue line results in the lowest blue frequency branch
in Fig. 4.17. The suggested breakdown orbit resides on band 22 for the most part and
merely crosses to band 21 at the top and bottom. As a result, the frequency increases
from ∼1.23 kT to ∼1.39 kT. While this is a notable change, we can assume that in
this case the frequency branch is shifted uniformly and the frequency spectrum is
not altered fundamentally. This is not the case in Fig. 4.20 b) where ϕ = 0° and
the orbit along the blue line results in the highest blue frequency in Fig. 4.17. The
indicated orbit crosses from band 22 to band 21 and runs on to band 20 resulting in
an open orbit. Consequently, there is no dHvA oscillation corresponding to this orbit.
In the limit where all charge carriers cross bands, the calculated frequency around
that angle vanishes completely without another component appearing in return.

4.6 Conclusion
We have presented the results of torque magnetometry and DFT calculations on
CrB2. Experimentally, we observed up to 11 reliable dHvA frequencies for magnetic
field within the basal plane. The effective masses of 8 dHvA components were
determined. In addition, we observed a manifold of less distinct but possibly real
dHvA components. Theoretically, we obtained Fermi surface sheets from five bands
by closely matching the DFT calculations to the experimental values for the spiral
propagation vector and the size of the ordered moment. The calculated FS sheets
result in an abundance of expected dHvA frequencies.
The comparison of theory and experiment is ambivalent. On the one hand, we obtain
very well fitting candidates from our calculation for three experimentally observed fre-
quency branches between 1.5 and 2 kT. On the other hand, the large overlap among
calculated frequencies renders a clear allocation of further measured frequencies
unfeasible. Apart from that, several issues remain unresolved including (1) several
well pronounced frequencies found in experiment that can not be accounted for by
our calculation, especially above 2 kT, (2) the strong discrepancy in signal strength,
i.e., we clearly observe dHvA oscillations for which a small signal is expected whereas
we can not recover the branches in our experimental data for which the largest signal
is calculated, (3) the effect of magnetic breakdown; while this might account for some
experimental frequencies which can not be allocated to single-sheet orbits, it might
also diminish the appearance of the few orbits we obtained a good match for, and
(4) the differences in mass enhancement; while a strong electron-phonon-coupling for
B-p states, analogous to MgB2, appears reasonable, we have no physical explanation
for a mass enhancement ranging from 0 to 2.4 for orbits on Cr-d-like bands.
All in all, we improved both the experimental as well as the theoretical state of the
art with our approach to determine the CrB2 Fermi surface. While our investigations
suggest a partial agreement of the real Fermi surface with our theoretical result, the
number of open questions also points towards several distinct deviations. Further ex-
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perimental and theoretical efforts are necessary to resolve these issues. Theoretically,
DFT calculations including spin-orbit-coupling are crucial for a conclusive under-
standing of the Fermi surface. Moreover, the incorporation of the suggested triple-k
state in electronic structure calculations is essential for a comprehensive analysis.
Experimentally, measurements over a larger angle range and within symmetry planes
other than the basal plane can give a deeper insight into the dHvA spectrum and
the underlying Fermi surface. A combination of these theoretical and experimental
advances may help to resolve the question of the microscopic spin structure and yield
a clear picture of the CrB2 Fermi surface. This in turn will be helpful for the global
understanding of itinerant antiferromagnetism and related phenomena.
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5 Magnetic anisotropy of single
crystal MnSi

In this chapter we present our work on manganese silicide (MnSi). We performed
torque measurements in various setups and on different samples in order to thoroughly
investigate the magnetocrystalline anisotropy (MCA) of MnSi in the field-polarized
state as well as in its modulated magnetic phases. We begin the chapter with an
introduction to the material in Sec. 5.1 including a brief review of previous work
on its MCA as well as a short outline of our investigations. This is followed by
a description of the experimental conditions and data evaluation in Sec. 5.2. The
results of measurements in the field-polarized state are discussed in Sec. 5.3. We
include results of numerical simulations in order to compare our experimental findings
to theory. Measurements in the modulated phases of MnSi are presented in Sec 5.4.
We conclude the chapter with summary and outlook in Sec. 5.5.

5.1 Introduction to MnSi
Manganese silicide (MnSi) nowadays is the prime example for a cubic chiral helimag-
net. These compounds have been under investigation since the 1970s. Early studies
on MnSi targeted long-wavelength helimagnetism as subject of research [Ish76]. De-
spite the identification of its helical ground state, MnSi was widely regarded as a
weak itinerant ferromagnet and deemed of high importance in developing a self-
consistent renormalization theory for such systems [Jan08, Mor85]. In later decades,
interest in MnSi was renewed by the discovery of the additional A-phase [Leb95]
and a non-Fermi liquid state under moderate hydrostatic pressure [Pfl97]. The past
decade has probably been influenced most intensely by the first time experimental
observation of skyrmion lattice states in MnSi [Mü09].
Like many cubic chiral magnets, MnSi crystallizes in the B20 structure. The corre-
sponding space group P213 lacks inversion symmetry and allows for two enantiomers
with opposite chirality. The right-handed version of the crystal is exemplarily illus-
trated in Fig. 5.1 a). In the simple cubic Bravais lattice, atoms are positioned at
(u, u, u)a, (1

2 +u, 1
2 −u,−u)a, (1

2 −u,−u,
1
2 +u)a and (−u, 1

2 +u, 1
2 −u)a with lattice

constant a = 4.558Å and displacements uMn = 0.137 and uSi = 0.845 in right-handed
MnSi or uMn = 0.863 and uSi = 0.155 in left-handed MnSi [Gri10]. As indicated in
the figure, the configuration of each four Mn and Si atoms within the unit cell can
be regarded as two distorted tetrahedra opposed to each other. In this perception,
the structure resembles a distorted GaAs structure.
The magnetic phase diagram of MnSi has been studied extensively. Details can be
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Figure 5.1: a) B20 crystal structure of MnSi. In the simple cubic Bravais lattice, atoms are
positioned at (u, u, u)a, (1

2 +u, 1
2 −u,−u)a, (1

2 −u,−u,
1
2 +u)a and (−u, 1

2 +u, 1
2 −u)a with

the lattice constant a. In right-handed MnSi as shown here uMn = 0.137 and uSi = 0.845, in
left-handed MnSi uMn = 0.863 and uSi = 0.155 [Gri10]. b) Phase diagram of MnSi for field
along 〈100〉. The yellow dashed line denotes a crossover between the paramagnetic regime
at high temperatures and the field-polarized phase at high magnetic fields. The white
region between the black dashed line and the modulated phases (helical, conical, skyrmion
lattice) represents a fluctuation-dominated regime. Picture adapted from [Bau16c].

found, e.g., in Refs. [Bau12, Bau16c]. Here, we constrain ourselves to a brief review
of the low temperature phases. For magnetic field applied along the 〈100〉-direction,
the phase diagram is shown in Fig. 5.1 b). At zero field, the magnetic moments order
helically below Tc ≈ 29K with an ordered moment of ∼0.4µB/f.u. and a wavelength
of ∼180Å. The chirality of the helix is determined by the chirality of the atomic
crystal [Gri10, Dmi12] and the helix pitch vector points along 〈111〉-directions. At
a magnetic field of µ0Hc1 ≈ 0.1T, the system transitions into a conical state. The
pitch vector reorients to point along the field direction and the magnetic moments
cant towards the field while the periodicity of the helix remains almost unaltered.
With increasing field, the angle enclosed by moments and helix pitch vector decreases
until the transition to a field-polarized phase is reached at µ0Hc2 ≈ 0.6T.
The origin of long-range helical order in MnSi is commonly discussed in terms of a
specific hierarchy of contributions to the free energy. On the largest scale, ferromag-
netic exchange (FM) favors collinear alignment of moments. On an intermediate
scale, the Dzyaloshinskii-Moriya interaction (DMI) acts in favor of perpendicular spin
alignment [Dzy58, Mor60]. This rotationally invariant interaction arises from chiral
spin-orbit coupling due to the lack of inversion symmetry in the crystallographic
structure [Dzy64]. The competition of FM and DMI stabilizes the observed helix
[Bak80]. In addition to these interactions, cubic magnetocrystalline anisotropies
(MCAs) are present on the weakest scale. Regarding helical order, these higher order
spin-orbit coupling terms are responsible for pinning the pitch vector to preferred
crystal symmetry directions [Bau17].
The area colored red in Fig. 5.1 b) represents the skyrmion lattice phase where a
hexagonal array of spin vortices forms in a plane orthogonal to the external field. The
skyrmion phase pocket exists for fields applied along all major symmetry directions
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and has been shown to be stabilized by thermal fluctuations [Mü09, Buh13]. This
contrasts early predictions of magnetic skyrmions stabilized by strong anisotropies
[Bog89, Bog94]. As shown by Adams et al., the weak MCAs in MnSi cause small
deviations of the skyrmion lattice normal vector N̂ from the field direction and are
responsible for fixing the lattice regarding rotations around N̂ [Ada18].
Despite their minor relevance for the formation of non-collinear order, MCAs are
of great importance for the global understanding of helimagnets. Besides deter-
mining preferential directions of helix pitch or skyrmion lattice normal vectors
[Bau17, Ada18], they decisively influence, e.g., the anisotropy of temperature and
field range of skyrmion phases [Mü09, Ada11, Lam06, Bau13], the formation of
different skyrmion lattice morphologies [Kar16, Nak17] or dispersion and damping
of spin waves [Sch15, Sta17]. Further substantiation of the significance of MCAs has
been found in the magnetoelectric insulator Cu2OSeO3 (CSO). While it exhibits a
more complex crystal structure as compared to MnSi, CSO crystallizes in the same
space group P213. Its phase diagram qualitatively resembles that of MnSi shown in
Fig. 5.1 b) with a skyrmion pocket stabilized by thermal fluctuations found just below
Tc. As in MnSi, this phase pocket is isotropic in the sense that it exists for fields
applied along all major symmetry directions [Bau16c]. Recently, a second skyrmion
pocket has been discovered in this material in the low-temperature high-field corner of
the conical regime [Cha18, Hal18]. In contrast to the conventional high-temperature
skyrmion phase (HTS), this new low-temperature skyrmion phase (LTS) is found to
be stabilized by cubic anisotropies. As a remarkable consequence, the LTS is highly
anisotropic in that it exists for field along the 〈100〉-direction only.
Several phenomena closely connected to MCAs are subject of ongoing research.
Thus, proper interpretation of new experimental findings can depend crucially on
a precise quantitative knowledge of the weak cubic anisotropies. Still, little effort
has been expended in order to precisely determine their magnitudes. A first claim
to present “the anisotropy energy in the high-field ‘ferromagnetic’ state” inferred
from torque measurements was issued already in 1969 [Con69]. Yet up to the present
day no anisotropy constants have been reported for the field-polarized phase in bulk
MnSi to the best of our knowledge. Differently, effective anisotropy constants have
been reported rather recently for modulated phases in bulk MnSi as well as for
MnSi thin films. Bauer et al. employed small angle neutron scattering (SANS) as
well as magnetization and AC susceptibility measurements to determine first and
second order effective anisotropy constants for the pitch vector in the helical phase
[Bau17]. Adams et al. performed SANS measurements in the skyrmion phase and
reported a first order effective anisotropy constant for the skyrmion lattice normal
vector [Ada18]. As discussed in Sec. 2.1.2, these effective anisotropy constants result
from the orientation of a large number of non-collinear magnetic moments and
thus reflect the magnetocrystalline anisotropy only indirectly. Anisotropy constants
of field-polarized MnSi thin films have been determined by SQUID magnetome-
try [Kar12] and torque magnetometry [Bra13a]. The anisotropy of such films is
governed by uniaxial contributions arising from strain and sample shape so that
magnetocrystalline anisotropy was not addressed by these experiments. Further,

93



5 Magnetic anisotropy of MnSi

torque measurements on field-polarized bulk MnSi were carried out within our own
group [Wil20b]. However, these experiments targeted the dHvA effect and thus
measured the variation of magnetic torque with the applied field’s magnitude rather
than its orientation. The field magnitude dependent torque was also investigated
by Birkelbach for a single orientation and with a focus on the region of modulated
states [Bir09]. Field scans along the 〈001〉-direction featured hysteresis both above
and below Hc2. In the conical phase, this hysteresis mostly vanishes with increasing
temperature already below Tc.
In principle, magnetic anisotropy constants due to magnetocrystalline anisotropy can
also be obtained from ab initio band structure calculations. In MnSi, however, the
cubic anisotropies are too small to be calculated reliably [Kar12]. In turn, precise
measurements of anisotropy constants may serve as a benchmark for electronic
structure calculations and thus contribute to the development of a comprehensive
theoretical description of the electronic structure. This procedure has been pursued,
e.g., for the weak itinerant ferromagnet Ni3Al [Sig82, Mat85].
In this thesis, we aim to provide the high precision data for such an operation.
We employ torque magnetometry in order to investigate MCAs in bulk MnSi and
measure the angle-dependent torque in the field-polarized as well as modulated states.
Our measurements in the field-polarized state allow us to extract values for the
anisotropy constants in leading and next-to-leading order. We further investigate
their dependence on temperature and field magnitude as well as the influence of a
cubic shape anisotropy. Comparison with numerical simulations allows for a diligent
assessment of erroneous influences on our measurements.
We also perform field scans where the field magnitude is swept back and forth through
the modulated phases at fixed orientations, from one field-polarized state to the
opposing one. We observe hysteresis below as well as above Hc2 which exhibits severe
quantitave and qualitative changes with temperature. We discuss these observations
in the context of topological defects.

5.2 Experimental conditions and data evaluation
In this work, we performed measurements on three MnSi single crystals all pre-
pared via optical float zoning. We denote our samples by OFZ54, OFZ67 and
OFZ125 consistent with Ref. [Bau14a] where growth process and sample character-
ization methods are described. Further details on crystal growth can be found in
Refs. [Neu11, Bau16b, Bau16a], a study of the achieved sample quality is presented
in Ref. [Rei16]. Before discussing details of the investigated specimens, we note
that crystal orientations are presented in terms of equivalent directions of the cubic
Bravais lattice. While the cubic symmetry is reduced by the atomic basis of MnSi,
discriminating between, e.g., [100]-, [010]- and [001]-directions using Laue diffraction
is difficult in practice. Further, the chirality of our single crystals is unknown. The
influence of this property on the torque will be discussed in Sec. 5.3.3.
Sample OFZ54 exhibits a RRR of ∼300. Detailed magnetization and susceptibility
data on this crystal are presented in [Bau12]. For our experiments, the specimen
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Figure 5.2: Definition of measurement angles. a) The angles ϕ and θ are measured from
the crystallographic 〈001〉-direction at zero torque towards magnetic field and magnetization,
respectively. b) The angles ϕ′ and θ′ include changes of ϕ and θ due to rotation of the
sample caused by a finite torque.

was oriented with Laue x-ray diffraction and consecutively cut into cubic shape with
a side length of 1mm and edges aligned along 〈110〉-, 〈211〉- and 〈111〉-directions.
Sample OFZ67 was prepared with 1% manganese excess. It exhibits a RRR of
∼100 and was also oriented via Laue x-ray diffraction and cut with a wire saw to
a 1× 1× 1mm3 cube. For this specimen, the edges are aligned along 〈110〉-, 〈100〉-
and 〈010〉-directions. To allow for measurements unaffected by shape anisotropy,
sample OFZ125 with the lowest RRR of ∼80 was prepared in spherical shape with a
diameter of ∼2.1mm. The orientation process is described in Sec. 3.3.3.
Both longitudinal cantilevers in the rotating field setup and torsional cantilevers in
the rotating sample setup were used as described in Sec. 3.3. The spherical sample
OFZ125 was investigated in both setups. Measurements on cubic samples were
performed in the rotating field setup with OFZ54 and in the rotating sample setup
with OFZ67. The rotating field setup was employed mainly for rotation and field
scans through the modulated states. The rotating sample setup allowed for higher
fields and faster measurements and was employed mainly for rotation scans in the
field-polarized phase.
During the measurements, we record torque as a function of the angle ϕ enclosed by
the 〈001〉-direction of the crystal and the applied field B as illustrated in Fig. 5.2 a).
The relevant angle for investigations of magnetic anisotropy is enclosed by the
〈001〉-direction and magnetization M as denoted in the sketch by θ. Due to the
competition of Zeeman and anisotropy energy, the angles ϕ and θ are never identical
in practice except for the field vector pointing along a high symmetry axis. This
issue has frequently been addressed in literature [Cal60, Bur77, Sig82, Hub98]. For
known magnitudes of Γ, M and B, the angle θ can easily be calculated from ϕ.
Using torque magnetometry, we have to be aware of a second source of angular
distortion that has not been addressed as widely in literature. As the measurement
method relies on detecting the deviation of the sample from its initial position, this
deviation simultaneously changes the orientation of the sample with respect to the
external field. This is illustrated in Fig. 5.2 b) for the case of a longitudinal cantilever.
While the applied field B retains its orientation, the crystal directions are rotated
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by the torque and thus the angle between field and 〈001〉-direction changes from ϕ
to ϕ′. Due to this variation, the orientation of M also changes with respect to the
crystal axes, i.e. θ changes to θ′.
In our experiments, the difference between θ′ and ϕ′ is almost negligibly small. In
contrast, the difference between ϕ and ϕ′ can have substantial influence on our
results. Unfortunately, we lack the information necessary for the calculation of θ′.
Consequently, we stick to the angle ϕ as a reference when presenting our experimental
results. We discuss the spurious influence of angular distortion on the extraction of
anisotropy constants thoroughly in Sec. 5.3.4.
In the following, we present details on experimental procedure and data processing for
the various configurations employed in our anisotropy investigations. For convenience,
we will refer to the rotating sample setup and data as PPMS setup and data and to
the rotating field setup and data as AMI setup and data.

5.2.1 Rotating sample setup
The PPMS setup has been described in Secs. 3.1.2 and 3.3.2. Further details can be
found in the corresponding manuals [Man00, Man17, Man16]. Here we present the
procedure during our measurements and the consequent data treatment. Parts of
the experiments were carried out by Michelle Hollricher and Dr. Vivek Kumar.

Experimental procedure

The horizontal rotator option provides an angular range of 380°, i.e., accessible
angles φ reach from -10° to 370° where φ denotes the angle enclosed by cantilever
normal and magnetic field direction. Due to backlash of the rotation mechanism, the
cantilever normal typically points 5-6° away from the field direction at the nominal
position φ = 0°. Instead of φ, we use ϕ as a reference for our torque data as defined
in the foregoing section.
As stated above, we performed measurements on a cubic and a spherical sample.
The cubic sample was mounted on a standard 2-leg cantilever, the spherical sample
was mounted on a 3-leg modified cantilever due to its larger volume. Both sensors
were calibrated following the routine described in Sec. 3.1.2. For both samples,
we aimed to align the 〈110〉-direction along the cantilever projection axis and the
〈001〉-direction along the cantilever normal. As discussed in Sec. 3.3.3, all relevant
misalignment angles are estimated to be less than 2°. The influence of misalignment
on our measurements is assessed in Sec. 5.3.3.
Each measurement consists of a stepped and a swept rotation scan. During a
stepped scan, we change φ from -10° to 370° at a rate of ∼12.0°/s. At discrete
steps of 2°, rotation is halted and a torque value is recorded that is the result of an
internal averaging process in the PPMS software including 25 single measurements.
Measurements with different step sizes and angular rates were performed and yielded
identical results. After the stepped scan, φ is continuously swept back to -10° at a
rate of ∼4.8°/s while torque values are recorded without internal averaging. Again,
different sweep rates were tested and found not to influence the torque signal. Since
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stepped and swept scans yield identical results, we only present stepped scans which
provide better angular resolution.
In the PPMS setup, we performed rotation scans exclusively in collinear phases. We
recorded scans at field magnitudes from 0.65T to 14T and temperatures from 2K up
to 51K. Additionally, rotation scans at zero field were performed at each temperature
to account for gravity and the erroneous baseline calibration (cmp. Sec. 3.3.2). To
avoid influences of field and temperature history, all measurements were started from
well defined states, i.e. well outside the region of modulated phases in the phase
diagram. We pursued two different approaches relying either on high field or high
temperature to warrant this precondition. In most measurements, the sample was
heated up to 50K before approaching the measurement temperature at zero field.
Then a rotation scan was recorded at 0T followed by scans at finite fields in ascending
order. In some measurements on the cubic sample, measurement temperatures were
approached at 4T and scans were performed at fields in descending order, finishing
with a scan at 0T. The consistency of our data implies success for both alternatives.
We further performed a small number of field scans along high symmetry directions
of the samples. As their results are consistent with the field scans obtained in the
AMI setup, we do not discuss them separately.

Data evaluation

The PPMS data correction process is illustrated in Fig. 5.3. It consists of three
principal steps the first two of which are identical for all measurements whereas the
final step is different for data on spherical and cubic samples, respectively. In a first
step, we account for the impact of gravity and the erroneous calibration in terms of
the baseline. For this purpose, the torque curve measured at a given temperature
and finite field and that at zero field and identical temperature are interpolated in
the range from φ = 0° to φ = 359.5° with steps of 0.5°. Subsequently, the zero field
torque curve is subtracted from the data at finite field as illustrated in Fig. 5.3 a) for
a torque curve measured on the spherical sample at 2K and 1T. In a second step, we
remove a remaining non-zero mean value of the torque data1. Such an offset can be
induced by various effects such as, e.g., field gradients or magnetoresistance effects
in the readout circuitry. Without such disturbances, we expect the integral over the
torque during a full rotation to be zero in the absence of rotational hysteresis. As
illustrated in Fig. 5.3 b), this shift is usually small compared to both the overall
torque signal as well as the shift imposed in the first step.
The third step is illustrated in Fig. 5.3 c) and d) for the spherical and the cubic
sample, respectively. For the spherical sample, torque data acquired at temperatures
above 16.5K is scaled by a fixed factor of 7/8 in order to ensure consistency of the
temperature dependent data. Necessity and justification of this step are described in
appendix C.2.1. In the case of the cubic sample, we subtract a two-fold sine-shaped
signal from torque curves to account for the angular dependence induced by the

1Note that the mean value is identical to the torque integral over the full rotation as data is
beforehand interpolated on an evenly spaced set of angle values.
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Figure 5.3: Illustration of data processing for the rotating sample setup. a) The zero-field
torque is subtracted from the torque at 1T. b) The mean value is subtracted from the
resulting curve. c) Exemplary high-temperature torque curve measured on a spherical
sample before and after scaling. d) Exemplary torque curves measured on a cubic sample
before and after node-correction.

sensor (cf. Sec. 3.3.2 and Fig. 3.7). The procedure for estimating the size of this
contribution is described in appendix C.2.2. In principle, the same correction can
be performed for data on the spherical sample. Due to the larger volume of the
sphere and likewise larger absolute torque signal, the influence of the sensor’s angular
dependence can be neglected in this case.
Subsequent to the data correction described above, we extract the anisotropy con-
stants K1 and K2 from the torque curves by fitting. We adjust Eq. 2.7 to match our
experimental conditions and use

Γ =
[
K1

2 [1 + 3 cos(2φ− δr)] sin(2φ− δr)

−K2

32 [1 + 3 cos(2φ− δr)]2 sin(2φ− δr)
]
· V + Γoff

(5.1)

as a fit function. Here, V is the sample volume, δr accounts for the deviation of
ϕ from φ mainly due to backlash of the rotator and Γoff allows for a torque offset.
While we shift the curves’ mean values to zero in our correction process, this offset
can still be finite due to deformation of torque curves from the ideal shape. In
practice, we obtain values well below 10° for δr and 10−8 Nm for Γr.
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5.2.2 Rotating field setup
The AMI setup has been described in Sec. 3.3.1. We performed measurements on
a spherical and a cubic sample. As stated before, data on the cubic sample was
acquired with a probe featuring a magnetic capillary which strongly disturbed our
measurements. Moreover, the misalignment of cantilever and magnet as well as the
sample position relative to the field centre were poorly controlled (cf. Sec. 3.3.3). As a
consequence, we do not further consider data from these measurements for evaluation.
An example for the disturbances caused by magnetic capillary and misalignment can
be found in appendix C.3.1. In the following, we present our procedure and data
treatment for measurements on the spherical sample.

Experimental procedure

For measurements in the AMI setup, we employed longitudinal cantilevers with
rectangular paddles. A beam width of ∼0.6mm was chosen and the electrostatic
calibration routine described in Sec. 3.1.1 was carried out. Due to large capacitance
changes of up to 30%, a capacitance-dependent calibration constant K(C) was
determined. The temperature was monitored at the 3He-pot roughly 11 cm above
the sample. To avoid temperature drifts during measurements, the temperature was
allowed to settle for ∼30 minutes after each temperature change. In contrast to the
PPMS setup, we did not start our measurements in the AMI setup from well defined
states by heating the sample above Tc in advance.
The MnSi sphere was oriented with the 〈110〉-direction along the cantilever’s projec-
tion axis and the 〈001〉-direction parallel to the cantilever beams with a misalignment
of .0.5°. The alignment error of cantilever and magnet was larger and not equal
for all measurements. The misalignment angle δr (cf. Fig. 3.8) was fixed to ∼6°
whereas measurements were performed at γr = 9° as well as γr = 0°. All rotation
scans presented in this chapter were recorded at γr = 9° since only few rotation
scans at γr = 0° were performed. A brief comparison of both cases is presented
in appendix C.3.8. Field scans presented in this chapter were recorded at γr = 0°.
Similar measurements have been performed at γr = 9° with matching results.
We present rotation scans carried out in several magnetic phases at fields from 50mT
up to 4T and temperatures from 0.3K up to 50K. During rotation scans, the field
vector was continuously changed at a rate of 0.15T/min. First, the solenoid field
was ramped from zero to the desired magnitude. Consequently, the field was rotated
by 720° in one rotation sense, 720° in the opposite rotation sense and 720° in the
original rotation sense again. For convenience, we will refer to the initial rotation
sense as positive and the opposite as negative rotation sense. Finally, the field was
ramped to zero along the starting direction. Our procedure allowed us to ensure
reproducibility and check for rotational hysteresis.
We further present field scans between Bmax = ±1T along 〈001〉-, 〈110〉-, 〈111〉- and
〈111̄〉-directions at temperatures from 0.3K up to ∼33.3K. During field scans, the
field vector’s angle was kept constant while the magnitude was continuously changed
at 0.15T/min. The field was first swept from zero to Bmax > 0, then twice down to

99



5 Magnetic anisotropy of MnSi

−Bmax and back to +Bmax. Finally, the magnitude was ramped back to zero. This
procedure allowed us to ensure reproducibility and check for dependences on field
and temperature history.

Data evaluation

The capacitance raw data from all measurements was converted into torque via
Eq. 3.16. For rotation scans, the value C0 was obtained for each individual mea-
surement from the starting value at zero field. To check for capacitance drifts, C0
was compared to the final value at zero field which yielded satisfactory results. The
field direction of the solenoid where rotation starts and ends corresponds to ϕ ≈ 96°.
Rotations with different starting angles yielded identical results.
As stated in the foregoing section, our procedure for rotation scans allowed us to
check for reproducibility and rotational hysteresis. Except for minor disturbances in
individual measurements, our torque curves were well reproducible within the limits
of uncertainty. Examples of minor disturbances are presented in appendix C.3.2.
For field magnitudes below Hc2, we observe a large rotational hysteresis. Due to the
good reproducibility, we only present the last full rotations for each rotation sense.
Consistent with our nomenclature, we plot the positive rotation sense with increas-
ing and negative rotation sense with decreasing angle. At larger field magnitudes,
rotational hysteresis was small enough to be attributed to the magnet system as
shown in appendix C.3.3. We interpolate the last full rotation for each rotation sense
on angles from ϕ = 0 to ϕ = 359.5° with steps of 0.5° and average over both curves.
In order to extract anisotropy constants K1 and K2 from the resulting mean curve,
we extend Eq. 5.1 to

Γ =
[
K1

2 [1 + 3 cos(2φ− δr)] sin(2φ− δr)

−K2

32 [1 + 3 cos(2φ− δr)]2 sin(2φ− δr)
]
· V + Γoff

+ g1[1 + cos(2φ)] + g2 sin(2φ) + g3[1− cos(2φ)] .

(5.2)

The additional terms g1, g2 and g3 represent the influence of forces imposed by
magnetic field gradients ∂By/∂y, ∂By/∂z and ∂Bz/∂z, respectively. Equation 5.2 is
overdefined which allows for readjustment of g1, g3 and Γoff after fitting. We discuss
this in detail along with the fit results in Sec. 5.3.2 and appendix C.3.7.
For field scans, C0 was determined by interpolating the field magnitude dependent
capacitance raw data to B = 0 for each individual sweep. After conversion to torque,
the data is divided by the field magnitude to obtain the anisotropic magnetization
M⊥. We note that we only measure the projection of M⊥ on the plane orthogonal to
the cantilever projection axis P̂.
Our measurement procedure for field scans allows us to check for reproducibility and
history dependence. While the shape of the first upsweep and, in some cases, also
that of the first downsweep show a dependence on field and temperature history, the
following scans were in most cases perfectly reproducible. In the rare remaining cases,
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the measured capacitance exhibited discontinuous jumps pointing at a technical
rather than a sample-related explanation. Since temperature and field history before
field scans were not well controlled, an interpretation of the initial response during a
first upsweep is unfeasible within the scope of this thesis. Thus we only present well
reproducible consecutive up- and downsweeps.

5.3 Measurements in the field-polarized phase
In this section, we present our results on the field-polarized phase of MnSi. We
begin with measured data from the PPMS setup in Sec. 5.3.1. This is followed by
experimental data from the AMI setup in Sec. 5.3.2. We present numerical simulations
and assess the influence of misalignment on our measurements in Sec. 5.3.3. The
section ends with a thorough discussion of our findings in Sec. 5.3.4.

5.3.1 Rotating sample setup
In the following, we present experimental results acquired in the PPMS setup at fields
above Hc2. We investigate the dependence on field magnitude and temperature. In
the respective sections, we only present data acquired on the MnSi sphere. To assess
the influence of cubic shape anisotropy, we compare the results to measurements on
a cubic sample.

Field magnitude dependence

In order to investigate the magnetic field magnitude dependence, we conducted
rotation scans at the lowest possible temperature of T = 2K and field magnitudes of
0.65T, 0.8T and integer values from 1T up to 14T in steps of 1-2T. The correspond-
ing torque curves are shown in Fig. 5.4 a). We make three key observations: (i) all
curves exhibit the expected shape corresponding to Eq. 2.7, (ii) a small amplitude
modulation with high frequency is superimposed to this shape, and (iii) the evolution
of the torque with increasing field magnitude apparently can be divided into three
regimes.
The qualitative agreement with the expected shape allows us to extract quantitative
values for the anisotropy constants K1 and K2 by fitting as described in Sec. 5.2.1.
This is illustrated in Fig. 5.4 b) where the measured torque curve is shown for
T = 2K and B = 1T as orange solid line and the fitted curve is shown as black
dashed line. The fit matches the experimental data extremely well and yields values
of K1 ≈ 500 J/m3 and K2 ≈ −920 J/m3.
The high-frequency signal superimposed to the expected shape is ignored during eval-
uation. The amplitude of this disturbance is susceptible to changes of field magnitude
and temperature, yet remains unaltered for changes of the angular step size or sweep
rate. However, we found a similar modulation on torque curves recorded during
rotation scans on the ferromagnetic Heusler compound Cu2MnAl. While the origin
of the signal remains unresolved, we suggest a technical explanation owed to the
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Figure 5.4: Field dependence of torque and anisotropy constants. a) Processed torque
curves at T = 2K and magnetic fields from B = 0.65T to B = 14T. b) Torque at T = 2K
and B = 1T and fit according to Eq. 5.1. c)-d) Anisotropy constants K1 and K2 obtained
from the curves in a).

setup due to its kindred occurrence in measurements on two very different materials.
Fortunately, the phenomenon is only a minor disturbance to our experiments that
can readily be neglected.
We discuss the evolution of measured torque curves with field magnitude in terms of
low, intermediate and high field regimes. For fields up to 4T, the torque remains
almost unaltered around the 〈001〉-direction. In particular, the global extrema neither
increase nor decrease. In contrast, the torque around 〈110〉-direction changes both
size and shape. While the curve at 0.65T (red) looks almost linear between the local
extrema, it gradually approaches a sine-shape with increasing field while the local
extrema are increased. Simultaneously, the positions of the extrema shift towards the
〈110〉-direction. At higher fields, the torque curve increases rather homogeneously,
i.e. the shape remains intact while the torque signal continuously increases between
4T and 10T. This evolution is reversed with the local extrema decreasing again
above 10T and the global extrema decreasing from 12T to 14T.
The described evolution of the torque signal with field magnitude is reflected in the
anisotropy constants. The extracted values of K1 and K2 are shown as red circles
in Fig. 5.4 c) and d), respectively. Dashed lines are drawn by hand as a guide to
the eye. Error bars include the fits’ 95% confidence bounds, a relative error of 5%
and a static error of 5 J/m3 for K1 and 10% for K2, respectively. We consider these
error estimates to account for the minor uncertainties imposed by high-frequency
modulation, calibration uncertainty and errors during data evaluation. However,

102
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neither the influence of angle correction and misalignment nor the scaling effect
described in appendix C.2.1 are included. We defer a proper estimation of the full
error to the discussion of angle corrections in Sec. 5.3.4.
The intermediate and high field regimes described above are well notable in Fig. 5.4 c)
and d). Both K1 and K2 exhibit a strong increase at intermediate fields followed
by a smaller decrease at high fields. The correlation to the behavior described for
the low field regime is less evident. Here, K1 changes moderately from ∼ 510 J/m3

at 0.65T to ∼ 620 J/m3 at 4T while K2 is negative and shrinks by more than 75%
in the same field range. This corresponds to the observation that, for comparable
magnitudes of K1 and K2, a change of K1 rather scales the torque curve as a whole.
A change of K2 mainly alters the relative height of global and local extrema. Neither
a shift of the local extrema positions nor a change of shape can straighforwardly be
explained by a change in anisotropy constants. Thus, we regard the obtained values
as preliminary results. We discuss their reliability in more detail in Sec. 5.3.4.

Temperature dependence

We investigate the temperature evolution of the torque signal at six different magnetic
field magnitudes from B = 0.65T up to B = 4T. We carried out rotation scans at
temperatures from T = 2K up to T = 49K in steps of 1-2K. A representative set
of torque curves is shown in Fig. 5.5 a) at temperatures up to 35K and a magnetic
field of B = 1T. The curve at T = 2K is identical to that in Fig. 5.4 b). Apparently
the expected shape is preserved with increasing temperature. We again observe the
high frequency modulation which remains negligible for our evaluation. Similar to
the field magnitude dependence, the temperature evolution can be divided into three
regions of low, intermediate and high temperatures.
At low temperatures, the torque signal slightly increases with rising temperature.
Analogous to the low field regime of the field magnitude evolution, the torque around
the 〈110〉-direction transitions from an almost linear to a rather sine-shaped behavior
in this region. At temperatures above ∼8K, the amplitude of the angular torque
variation decreases drastically with increasing temperature. In this intermediate
temperature regime, the qualitative shape of the curves remains unchanged. Finally,
the torque is inverted at ∼25K in that maxima change into minima and vice versa.
This is further illustrated in Fig. 5.5 b) where the torque curves at B = 1T and
temperatures of T = 24K and T = 29K are shown as solid lines together with
corresponding fits depicted by dashed lines. We confirm that the measured torque
exhibits the expected shape also at elevated temperatures. Deformations from the
ideal are more salient as compared to low temperatures, yet the agreement of fits
and measured torque is still adequate. The torque curves observed at 24K and 29K
exhibit similar amplitudes but opposite signs.
The inversion of the torque signal corresponds to the sign change of an anisotropy
constant. The temperature evolution of K1 is presented in Fig. 5.5 c). The low and
intermediate temperature regimes are clearly reflected in K1 which for all investigated
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Figure 5.5: Temperature dependence of torque and anisotropy constants. a) Processed
torque curves at B = 1T and selected temperatures from T = 2K to T = 35K. b) Torque
at B = 1T and temperatures of T = 24K and T = 29K. Dashed lines represent fits
according to Eq. 5.1. c)-d) Anisotropy constants K1 and K2 at magnetic fields from
B = 0.65T to B = 4T versus temperature.

field magnitudes exhibits a slight increase at low temperatures followed by a strong
decrease. In contrast, the sign reversal at high temperatures is only observed for
fields up to 2T. At these lower fields, K1 passes a minimum and then approaches
zero at negative values. At 3T and 4T, K1 has no minimum and approaches zero
with the initial positive sign. In the low and intermediate temperature regimes,
K1 exhibits a similar evolution at different field magnitudes. As a tendency, the
low temperature values are larger and the decay is slightly slower at higher field
magnitudes.
The temperature evolution of K2 is shown in Fig. 5.5 d). The different temperature
regimes are not notably reflected. A slight increase of its magnitude at low tem-
peratures is only found at 4T. Beside that, K2 simply decreases to zero with rising
temperature. No sign change is observed in the investigated field range. As discussed
for the field magnitude dependence, K2 possesses larger magnitude at smaller fields
for low temperatures. As for K1, the decay of K2 is slower at higher field magnitudes.
In Fig. 5.5 c) and d), error bars have been left out for clarity. For the sake of
comparison to Fig. 5.4 c) and d), the respective graphs with error bars as well as
blow-ups of the high-temperature regime can be found in appendix C.2.3. As stated
before, we discuss the full error in Sec. 5.3.4.
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Figure 5.6: Comparison of anisotropy constants extracted from measurements on spherical
and cubic sample. a1)-a2) Field dependence of anisotropy constants K1 and K2 at T = 2K.
b1)-b2) Temperature dependence of K1 and K2 at B = 1T and B = 4T. c1)-c2) Blow-ups
of b1) for the low-temperature regime and the zero-transition regime of K1.

Sample shape

So far we have presented data on a spherical sample only. In this section, we investi-
gate the influence of cubic shape anisotropy. Similar to the measurements described
in the foregoing sections, we carried out rotation scans at various field magnitudes
from 0.65T up to 14T at T = 2K and various temperatures from 2K up to 51K at
field magnitudes of B = 1T and B = 4T. The torque data are not shown here for
readability and can be found in appendix C.2.4.
Analogous to the spherical sample, we extracted K1 and K2 from the measured
curves. The results are summarized in Fig. 5.6 together with corresponding results
from the spherical sample. In all graphs, cirlces represent data from the sphere and
squares depict data from the cube. Panels a1) and a2) show the field magnitude
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dependence of K1 and K2, respectively. Likewise, panels b1) and b2) illustrate the
temperature evolution of K1 and K2, respectively. In panels c1) and c2), blow-ups of
K1 in the low temperature and high temperature regimes are presented. As above,
error bars include the 95% fit confidence bounds, a 5% relative error and static
errors of 5 J/m3 and 10 J/m3 for K1 and K2, respectively.
The common finding from all graphs is that the agreement of both data sets is far
better than the uncertainty of our results. It seems natural to conclude that cubic
shape anisotropy is small compared to the magnetocrystalline anisotropy in MnSi.
However, this insight can not be extended to other shapes or materials offhand.
As an additional benefit of the comparison, our findings regarding field and tempera-
ture evolution of the magnetic anisotropy are reproduced with a second sample. For
further assessment, we consider data acquired in a different setup in the following.

5.3.2 Rotating field setup
In this section we present the results of our measurements in the AMI setup. Since
we applied no magnetic field higher than 4T, the field magnitude dependence is
of minor significance. We present field magnitude dependent anisotropy constants
extracted from AMI data in appendix C.3.4. Here, we focus on the temperature
evolution.
We carried out rotation scans at temperatures from T = 0.3K up to T = 35K at
magnetic fields of B = 1T and B = 4T. Torque curves recorded at B = 1T and
temperatures from T = 0.3K up to T = 35K are shown in Fig. 5.7 a). At first glance,
we observe the expected shape at low and intermediate temperatures. In particular,
the temperature evolution resembles the behavior described for the PPMS data. At
low temperatures, the torque slightly increases and the linear passage around 〈110〉
becomes sine-shaped. At intermediate temperatures, the overall amplitude strongly
decreases.
In contrast to this agreement, the torque signal appears to deviate severely from the
expected shape towards high temperatures. This is further illustrated in Fig. 5.7 b)
where torque curves recorded at T = 24K and T = 30K are shown as green and
orange solid lines, respectively. These curves no longer follow the expected shape
but rather resemble sinusoidal curves with small modulations. We attribute this
sinusoidal shape to the presence of substantial field gradients and assume that
only the contribution perceived as comparatively small modulation results from
magnetocrystalline anisotropy. If this contribution follows the expected shape, we
can fit the torque curves via Eq. 5.2. Respective fits are depicted as dashed lines in
Fig. 5.7 b) and yield good agreement with experimental data.
In order to validate our procedure, we subtract Γg, i.e. the part of the fit including
only the gradient terms g1, g2 and g3, from the measured torque. The resulting
curves are plotted as solid lines in Fig. 5.7 c). In agreement with our evaluation
approach, they exhibit the expected behavior described by Eq. 5.1. Respective fits
match the data very well as depicted by the dashed lines in Fig. 5.7 c).
Despite the good agreement of fit and measured torque, a closer look at Γg reveals
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Figure 5.7: Temperature dependence of torque and anisotropy constants. a) Torque
curves as measured in the rotating field setup at B = 1T and temperatures from T = 0.3K
to T = 35K. b) Torque as measured at B = 1T and T = 24K and T = 30K. Dashed lines
represent fits according to Eq. 5.2. c) Torque at B = 1T and T = 24K and T = 30K
after subtraction of fitted gradient contributions. Dashed lines represent fits according
to Eq. 5.1. d) Fitted gradient contributions to the torque at B = 1T and temperatures
from T = 0.3K to T = 35K. The dashed line represents the mean of four gradient torque
curves at high temperatures. e)-f) Anisotropy constants at K1 and K2 at magnetic fields
of B = 1T and B = 4T versus temperature.

a distinct flaw in our evaluation. The evolution of the applied magnetic field
is identical for measurements at different temperatures. Consequently, the field
gradients imposed to the sample must also be identical and Γg should only scale
with the ordered moment of the material. In order to check whether our procedure
fulfills this condition, we divide the contribution Γg obtained from fitting by the
magnetic moment M of the sample. For this purpose, we interpolate values of
M measured in a PPMS for field applied along a 〈001〉-direction at multiple field
magnitudes and temperatures [Bau10] to match our experimental conditions. The
normalized gradient contributions Γg/M are presented in Fig. 5.7 d) as a function of
the measurement angle ϕ. Strikingly, we find a manifold of different curves.
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The marked positions ±y and ±z in Fig. 5.7 d) correspond to the field directions
of the split coil and the solenoid, respectively. For a gradient dominated by one of
the magnets, the respective direction should be close to the extrema of the gradient
contribution. We expect the gradient contribution to be dominated by the split coil
(cf. Sec 3.3.1) and thus maxima of the gradient in vicinity of ±y. This appears to
be the case rather at high temperatures. Further, Γg/M varies only slightly above
25K. As an approach to model a fixed torque contribution resulting from a unique
set of field gradients, we average over the four best matching curves of Γg/M at high
temperature. The resulting mean gradient contribution per moment is depicted as
black dashed line in Fig. 5.7 d). We evaluate our experimental data on the basis of
this fixed gradient by scaling the mean contribution with the respective magnetic
moment and subtracting it from the measured torque at each temperature. The
resulting curves are fitted via Eq. 5.1. A second fixed field gradient was modeled based
on the data at B = 4T. The respective torque data are is shown in appendix C.3.5.
As field gradients scale linearly with applied field magnitude, the modeled fixed
gradients can easily be applied to measurements at different fields.
We now discuss the extracted anisotropy constants. As described above, we can
obtain K1 and K2 either by fitting the measured torque via Eq. 5.2 or by subtracting
a gradient contribution and employing Eq. 5.1 as a fit function. We have further
described three variants of gradient contributions for subtraction, i.e. Γg obtained
for each specific measurement or the two modeled fixed field gradients. All in all,
we obtain four sets of temperature dependent values for K1 and K2. For clarity, we
only include two of them in Fig. 5.7. A comparison of all four sets is presented in
appendix C.3.5.
Extracted values of K1 and K2 are shown in Fig. 5.7 e) and f), respectively. We
present the set where individually fitted gradient terms have been subtracted before
fitting (FGS) as upward pointing triangles and the set where the mean gradient
term modeled from data at B = 1T has been subtracted (MGS) as downward
pointing triangles. Dashed lines are drawn by hand as a guide to the eye. For
comparison, values obtained from the PPMS data are included as semi-transparent
circles. Symbols filled red correspond to data taken at B = 4T, black symbols
correspond to B = 1T.
The two sets of K1 obtained from the AMI setup are practically identical. The same
holds for the two sets that are not shown here (cf. appendix C.3.5). Qualitatively,
we observe the same behavior as described for the PPMS data. However, at low
temperatures the AMI data is larger by ∼30% compared to the PPMS data. At
high temperatures, both curves approach each other. In particular, K1 at B = 1T
changes sign at the same temperature for values from both setups.
We find large differences between the data sets obtained for K2 from the AMI setup.
At B = 1T, the curves show qualitatively the same behavior except for the lowest
temperature at which K2’s magnitude increases with the mean gradient method but
decreases with the fitted gradient method. The overall shape still resembles the
evolution found with the PPMS setup, yet the two AMI data sets are off by ∼30% in
opposite directions. At B = 4T, K2 starts large and positive with the mean gradient
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method and hesitates to drop to zero with increasing temperature. In contrast, it
starts close to zero and only briefly extends towards negative values before falling
back to zero with the fitted gradient method. Neither of both curves resembles the
behavior found with the PPMS setup other than that all curves eventually converge
to zero. The values obtained by fitting the torque as measured are not included in the
figure for clarity. They also differ from both presented data sets (cf. appendix C.3.5).
The large spread of values obtained for K2 with different evaluation methods points
towards poor reliability of the extracted data. The different gradient contributions
obtained from fits of various measurements hints at some additional perturbation
especially at low temperatures which is not considered by our evaluation. Moreover,
we obtain large values for the gradient parameters as well as for Γoff from our fits
which lack physical justification. For a detailed discussion of the fit parameters g1,
g2, g3 and Γoff see appendices C.3.6 and C.3.7.
The volatility of K2 suggest that uncertainties are larger than the actual values. K1
appears more stable, especially due to its qualitative agreement with the PPMS
data. Yet it must be viewed with caution due to the problems mentioned above. In
Fig. 5.7 e) and f), we did not present any error bars. That is mostly due to the fact
that the uncertainties are hard to estimate, one of the main reasons being that the
influence of substantial misalignment on our experiment is not accounted for during
the fitting process. In order to assess the impact of such misalignment, we turn to
numerical simulations of our experiments.

5.3.3 Numerical simulations
In the foregoing sections, we evaluated torque data by means of an analytic fitting
function that is derived in the high field limit for ideal alignment. Since the presented
measurements were performed in the field-polarized state, we can assume the condition
of collinear moments aligned along the external field direction to be fulfilled in our
experiments. In contrast, our alignment deviated significantly from the ideal situation.
In order to obtain an estimate of the measurement error introduced by misalignment,
we model our experiment in MATLAB code and simulate torque curves for various
experimental conditions. These simulations further allow us to investigate the role
of the sample’s unknown chirality as well as to quantitatively relate fit parameters
g1, g2 and g3 in Eq. 5.2 to physical quantities dBy/dy, dBy/dz and dBz/dz. We first
describe our procedure and the incorporated parameters. Then we discuss simulation
results with respect to our experiments.

Procedure

In a first step, we model the experimental geometry in the coordinate system of
the crystal. For this purpose, we define the unit vectors R̂ along the field rotation
axis, P̂ along the cantilever projection axis and field directions B̂y and B̂z along the
crystal’s 〈001〉- and 〈110〉-directions, respectively, for ideal alignment (cf. Figs. 3.8
and 3.9). Then we consecutively rotate these vectors to account for misalignment
angles δr and γr in the AMI setup or βr in the PPMS setup, followed by rotations
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reflecting φr and θr for both setups. The relative rotation of field and sample is then
simulated by defining the field vector

B = B ·
(
B̂y cos(φ) + B̂z sin(φ)

)
(5.3)

and setting the rotation angle φ to values from 0° to 359.5° in steps of 0.5°. At each
angle step, we minimize the energy density functional

Ea/V =−M ·B +K1
(
M̂4

x + M̂4
y + M̂4

z

)
+K2

(
M̂2

xM̂
4
y + M̂2

y M̂
4
z + M̂2

z M̂
4
x

)
+K3

(
M̂6

x + M̂6
y + M̂6

z

) (5.4)

with respect to the orientation of the magnetization vector M. The magnitude of
M is fixed during this process. As already described in Sec. 5.3.2, we utilize values
obtained from magnetization measurements in a PPMS setup for field along the
〈001〉-direction of a high-quality MnSi crystal [Bau10]. These reference values are
interpolated to match the desired field and temperature of our simulation. After the
minimizing direction is determined, we calculate the magnetic torque density (M×B)
and the force density ∇(M ·B) due to field gradients. For direct comparison with
measurements, both densities are multiplied with the sample volume and projected
on the respective axes, i.e. P̂ for the torque and the cantilever normal for the force.
Finally, the torque contribution due to the gradient force is calculated and added to
the magnetic torque.
Equation 5.4 describes a right-handed MnSi crystal. As discussed in Sec. 2.1.2, only
the K2-term exhibits chiral shape. For a left-handed crystal, it changes to

K2
(
M̂4

xM̂
2
y + M̂4

y M̂
2
z + M̂4

z M̂
2
x

)
. (5.5)

We further included an additional term K3 in Eq. 5.4 which has not been discussed
before. This term is presented here for the sake of completeness since it has been
implemented in our code. However, the torque contribution resulting from the
K3-term resembles that of the K1-term closely so that both contributions can not be
separated. We thus set K3 = 0 in our simulations and do not consider K3 during
our experimental data evaluation.

Parameters

Our simulations require a considerable number of input parameters. In the following,
we list them and briefly describe their purpose where necessary.

• The anisotropy constants K1, K2 and K3 determine the energy landscape
for the magnetization vector. As mentioned above, we set K3 = 0 in all
our simulations. K2 is the only term reflecting the chirality of the material.
For comparable values of K1 and K2, the contribution of K1 dominates the
observable torque.
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• The magnetic field magnitude B is directly required for minimization of
the energy and calculation of the magnetic torque. A further use is the
determination of the appropriate magnetization magnitude M .

• The temperature T is solely reflected in our simulations by means of the
magnetization magnitude. Reference values of M at various temperatures and
field magnitudes are interpolated to the desired conditions for our simulations.

• The misalignment angles θr and φr describing the alignment of sample and
cantilever are required as input parameters as well as the angles describing
misalignment of cantilever and magnet, i.e. γr and δr for the AMI setup and
βr for the PPMS setup.

• If applicable, the field gradients dBy/dy, dBy/dz and dBz/dz must be pro-
vided in units of gradient per applied field. If gradients are non-zero, the
reduction factor β is also required in order to calculate the torque contribu-
tion resulting from the gradient force (cf. Sec. 3.1.1).

• Finally, sample volume and chirality are required. The volume is necessary
to scale the torque density and enable comparison with measurements. The
chirality determines the shape of the K2-term.

Naturally, our simulation is a better model for our experimental situation compared
to our fit function, yet due to its complexity, a complete matching of simulation and
experiment is unfeasible. Further, not all parameters are known as, e.g., we do not
know the chirality of our crystal. We utilize simulations to assess the uncertainties of
extracted anisotropy constants due to effects not accounted for by the fitting routine.

Comparison of experiments and simulation

Several input parameters of the simulation are fixed by experimental conditions. In
particular, we know the values of φr, θr, δr and γr in our various experiments. For
βr we estimated a maximum value. For direct comparison with experiments, we
inserted the respective temperature and field magnitude as well as the anisotropy
constants obtained from fitting experimental data. For simulations not utilized for
direct comparison, we choose T = 2K and B = 1T. Other values were tested and
yielded consistent results. As stated above, our comparison of experimental and
simulated data has three objectives: i) assess the uncertainties of K1 and K2 due to
misalignment, ii) investigate the influence of chirality and iii) enable quantitative
interpretation of fitting parameters g1, g2 and g3.
We begin with the analysis of field gradient parameters. For the purpose of quantita-
tive interpretation, we simulate the torque at zero anisotropy, i.e. K1 = K2 = 0, but
finite gradients. Fitting the resulting torque curves via Eq. 5.2 yields appropriate
factors for conversion of g1, g2 and g3 into dBy/dy, dBy/dz and dBz/dz, respectively.
We note that it is crucial for this procedure to include the experimental misalign-
ment angles since the contribution to the measured torque depends strongly on γr
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Figure 5.8: Simulated torque curves at B = 1T and T = 2K. a) Torque for right-
handed and left-handed MnSi in the case of ideal alignment. b)-c) Comparison of torque
curves simulated for ideal alignment and experimental misalignment angles in our various
experiments in the case of right- and left-handed MnSi.

and δr. Field gradients obtained from the fitting routine are discussed in detail in
appendix C.3.7. They are not consistent with our maximum estimates in Sec. 3.3.1.
Next we discuss the influence of chirality. For perfect alignment of R̂ along 〈110〉,
we do not expect a difference of left- and right-handed MnSi. This is illustrated
in Fig. 5.8 a) where we show torque simulated for zero misalignment and zero
field gradients. Right-handed MnSi is represented by the black continuous line,
left-handed MnSi is depicted as red dashed line. No difference between both curves
can be observed. We review the situation at finite misalignment individually for
each experiment. The situation in the AMI setup is shown in Fig. 5.8 b). The
black line depicts torque simulated for perfect alignment, the red and green lines
represent simulations including experimental misalignment for right- and left-handed
MnSi, respectively. No field gradients are included. We observe distinct differences
between all three curves. Independent of chirality, the global extrema around 〈001〉
are decreased by misalignment. The local extrema around 〈110〉 both shift towards
negative (positive) values for right-handed (left-handed) MnSi when misalignment is
included. Finally, the whole curves are slightly shifted in horizontal direction due to
the finite δr. Further simulations show that for small φr and θr a change of chirality
alters the observed torque almost in the same way as a sign change of γr. As a
consequence, measurements at different angles γr could allow us to determine our
sample’s chirality. Unfortunately, this was not possible with our results. Respective
simulated and experimental data is presented in appendix C.3.8.
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In Fig. 5.8 c) and d) we present simulations of our experiments in the PPMS
setup with spherical and cubic sample, respectively. Again, black lines denote ideal
alignment, red and green lines represent experimental misalignment for right- and
left-handed crystals. The region of the global extrema around 〈001〉 remains almost
unaffected by misalignment. Small differences between the curves are visible around
〈110〉. Here, the local extrema are increased (decreased) by misalignment for a
right-handed (left-handed) crystal. Similar to γr in the AMI setup, a sign change of
βr has almost the same effect on the torque as a change of chirality for small φr and
θr. As the sign of βr is unknown, a determination of the sample’s chirality is still not
possible.
We now compare the anisotropy constants K1 and K2 extracted from experimental
and simulated data. For this purpose, we apply the fitting procedure described for
the evaluation of experimental data to simulated torque curves. For consistency,
we use the same convergence criteria as for experimental data. As a result, the
anisotropy constants obtained from the fitting routine deviate from those used for
simulation. Even for zero gradient and ideal alignment, we find differences of ∼1%
for K1 and ∼3.5% for K2.
Our experiments in the PPMS setup featured small misalignment and negligible field
gradients. The error introduced by misalignment amounts to ∼7% and ∼10% for K1
obtained from the spherical and the cubic sample, respectively. For K2, the respective
errors amount to ∼20% and ∼32%. Experiments in the AMI setup featured larger
misalignment, yet the introduced errors are comparable to the PPMS experiments
with ∼10% for K1 and ∼23% for K2. However, additional uncertainties may be
introduced by misjudgement of gradients.

5.3.4 Discussion
In this section, we appraise the presented results regarding magnetic anisotropy in the
field-polarized phase of MnSi. We begin with a consideration of angular distortion
of measured torque data. As stated in Sec. 5.2, a full angular correction needs to
account for two erroneous contributions, i.e. the rotation of the sample and the
angular mismatch of M and B. The correction procedure for the latter part is well
established. Following the nomenclature defined in Fig. 5.2, we use

θ′ = ϕ′ − arcsin
(

Γ(ϕ′)
mB

)
(5.6)

where m is the magnetic moment of the sample and B is the applied field magni-
tude. We employ the same method to find appropriate values of m as described
for our numerical simulations. In order to obtain Γ(ϕ′) from Γ(ϕ), we need to
determine the angle by which the sample is rotated by the magnetic torque. The
most straightforward approach is to calculate

ϕ′ = ϕ− Γ(ϕ)
κ

(5.7)
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where κ is a torsional spring constant relating torque and angular distortion. In
general, we do not know the spring constants of our sensors. The manufacturer
of our torsional cantilevers provides a value of κQD = 9.3 · 10−7 Nm/deg obtained
from a single-shot bench test measurement on a 2-leg sensor at room temperature.
No information is available regarding variability between different chips, changes
towards low temperatures or values for 3-leg sensors. Depending on the fabrication
process of the cantilevers, a variation of κ by a factor of ∼2 between individual
chips can be deemed realistic. Thus we consider half the bench test value, i.e.
κ = 4.65 · 10−7 Nm/deg, for our cubic sample on the 2-leg sensor in order to estimate
a maximum error. For our spherical sample on the 3-leg sensor, we scale that value
by the ratio of torque coefficients cτ obtained during the calibration routine for 3-leg
and 2-leg sensors. With a ratio of ∼3.6, we obtain κ = 16.75 · 10−7 Nm/deg.
For longitudinal cantilevers, we have no such experimental reference value of κ.
Instead, we utilize the formulas found in the appendix D of Ref. [Wil04] to calculate
the bending line due to the measured torque at each angle ϕ. From these bending
lines we determine the angular distortion ϕ′−ϕ. For torsional cantilevers, we lack an
equivalent mathematical framework and numeric simulations of the angular distortion
are beyond the scope of this work. Therefore a direct comparison of both approaches
is not possible.
We present torque curves before and after angular correction in Fig. 5.9 a) - c). Red
continuous lines represent data with no angular correction (AC), blue dashed lines
depict torque data after full AC. Graph a) shows a measurement in the AMI setup
at T = 5K and B = 0.65T. Almost no difference between the to curves can be
recognized. The maximum angular distortion found through all measurements in this
setup amounts to less than 1°. Consequently, the anisotropy constant K1 changes by
only .2%. Changes of K2 reach up to ∼25% which is still moderate compared to
variations between our different evaluation methods for AMI data.
Figure 5.9 b) and c) show measurements in the PPMS setup at T = 2K and B = 4T
on the spherical and cubic sample, respectively. As stated above, we employed spring
constants of κQD/2 for the 2-leg sensor and 3.6κQD/2 for the 3-leg sensor. Here, the
differences are more pronounced than in the AMI setup. While differences between
θ′ and ϕ′ are still less than half a degree, the presumed rotation of our samples due
to magnetic torque may amount up to ∼5°. As a consequence, extracted anisotropy
constants can change substantially. We illustrate this in Fig. 5.9 d) - g) where
anisotropy constants K1 and K2 are shown for B = 4T at various temperatures. Red
circles correspond to uncorrected curves, blue triangles depict values obtained from
torque curves after full angular correction with spring constant κQD/2 or 3.6κQD/2,
respectively. For comparison, we also include values obtained with the full bench test
value κQD resp. 3.6κQD as semi-transparent triangles. Graphs d) and e) show data
obtained from the spherical sample, graphs f) and g) correspond to data on the cubic
sample. In both cases, the qualitative behavior of K1 is maintained and we find that
values obtained from corrected torque data are larger by up to ∼8%. In contrast,
changes of K2 are on the order of ∼100%. In the case of the spherical sample, we
observe a sign change of K2 at low temperatures due to angular correction. Moreover,
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Figure 5.9: a)-c) Comparison of measured torque curves with and without AC from ϕ to
θ′ in our various experiments. For PPMS data, we employed κ = 16.75 · 10−7 Nm/deg for
the spherical sample and κ = 4.65 · 10−7 Nm/deg for the cubic sample. d)-g) Comparison
of anisotropy constants K1 and K2 obtained from fitting Eq. 5.1 to torque curves with and
without AC. For the full AC, half the values of the bench test have been used for κ as in
b) and c). Semi-transparent symbols correspond to the full bench test value of κ.

the values obtained from spherical and cubic sample no longer coincide. Performing
the angular correction with κQD yields only half the absolute shift for K1 and K2 as
compared to κQD/2.
As stated above, we regard the situation shown in Fig. 5.9 as an extreme case of
large angular distortion. The relative changes of K2 in Fig. 5.9 e) and g) are further
boosted by the fact that K2 is relatively small at B = 4T. For instance, K2 is larger
by a factor of 4−5 at B = 1T at low temperatures. Performing angular correction
with identical spring constants, we find similar absolute shifts of 200−300 J/m3

for both field magnitudes at low temperatures and consequently a smaller relative
change of 25−55% at B = 1T. The same holds true for K1 where we observe
shifts of 40−45 J/m3 at low temperatures. We infer that angular correction imposes
an absolute shift towards positive values on extracted anisotropy constants rather
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than a relative change. This is consistent with our observation that doubling the
spring constant yields half the absolute shift for anisotropy constants. With rising
temperature, the absolute changes diminish similarly fast as the respective anisotropy
constants.
The above discussion once again demonstrates how sensitive extracted values of
K2 are to details of experiment as well as data evaluation. We already showed in
Sec. 5.3.2 that K2 obtained from AMI data depends primarily on the method of
evaluation due to unexplained perturbations to the measured torque. For PPMS
data, we find a strong dependence of K2 on the unknown spring constant κ. We
further note that the good agreement of K2 extracted from data on spherical and
cubic samples shown in Fig. 5.6 may be coincidental. These observations yield
uncertainties of K2 that may range from less than 10% to more than 100%. In
particular, an error introduced by a poorly estimated spring constant κ may be
larger than that of disregarding angular correction altogether. While we suggest
that the actual behavior of K2 still resembles that shown in Figs. 5.4 and 5.5 with
values shifted towards positive values by up to ∼300 J/m3, our data is not sufficient
to reliably substantiate this presumption. Therefore, we refrain from a detailed
discussion of temperature and field evolution of K2. Still, we conclude that K2 is
negative at small fields and low temperatures and strives towards zero considerably
faster than K1 with increasing temperature.
In the following, we discuss uncertainty, temperature evolution and field magnitude
dependence of K1. AMI and PPMS setups yield qualitatively consistent results
especially regarding temperature evolution, but K1 extracted from PPMS data is
smaller by ∼30% at low temperatures. We attribute this quantitative discrepancy to
disturbances of unknown origin in the AMI setup. Field gradients and misalignment
are already included in our simulations. Further approaches coming into mind
include physical origins as, e.g., the de Haas-van Alphen effect or technical issues as,
e.g., temperature oscillations. However, none of them can account for the observed
perturbation. We thus suggest a thorough investigation of the AMI setup in the
future in order to identify the flaw disturbing our experiments. For the following
discussion, we focus on K1 as obtained from PPMS data.
In Figs. 5.4 c) and 5.6 c1) - c2), we presented error bars including the 95% confidence
bounds of the fits, a 5% relative error and a 5 J/m3 absolute error. As stated in
Sec. 5.3.1, these error estimates are expected to cover minor uncertainties imposed
by (i) the high-frequency modulation, (ii) inaccurate calibration and data evaluation,
(iii) influences of residual gradients and (iv) magneto-resistive effects in the readout
circuitry. As discussed above, our values of K1 further exhibit an error of ∼7%
due to misalignment and an error of .8% due to angular distortion. An additional
source of inaccuracy is the sample volume. During our evaluation, we calculated a
spherical volume from the measured diameter dsphere = 2.1mm. In comparison, the
volume obtained by dividing the measured sample weight msphere = 30.0mg by the
density of MnSi ρMnSi = 5.74mg/mm3 is larger by 7.8%.
Considering all uncertainties mentioned above, we find an overall error of .30% at
temperatures below 15K for all applied field magnitudes. At highest temperatures,
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K1 approaches zero and the uncertainty is governed by the static error of 5 J/m3. In
the intermediate temperature regime, the relative error becomes larger than 30% for
small K1 only where the absolute error is smaller than 20 J/m3. The actual errors
of our results may be smaller than our estimate since different contributions might
cancel each other. For example, an underestimated volume yields too large values of
K1 whereas omission of angular correction yields too low anisotropy constants.
During our discussion of uncertainties, we did not consider a contribution due to
the scaling effect discussed in appendix C.2.1 since the nature of its occurrence
clearly suggests a technical issue scaling all torque data by a fixed factor. The
excellent agreement of results from spherical and cubic samples for K1 which is rather
robust regarding details of experiment and evaluation implies that our procedure of
scaling high temperature data down to the level of low temperature measurements is
sufficient to account for this error.
Including this scaling of ∼14%, our overall error still remains smaller than 50% in
the low temperature regime where K1 is largest. We consider the maximal possible
value consistent with our measurements and error analysis to estimate the maximum
energy difference between two otherwise identical states with different directions
of magnetization. Even including a similar extreme value of K2 to increase the
difference, this maximum estimate lies far below 1µeV per unit cell which is a
lower boundary for typical resolutions in state-of-the-art DFT calculations. Our
experiments thus confirm the statement in Ref. [Kar12] that cubic anisotropies in
MnSi are too small to be calculated reliably from DFT.
As an adverse consequence, no theoretical work exists regarding not only the size
of these anisotropies but also their temperature dependence. We therefore turn
to the work on similar materials in order to find a suitable description. As we
mentioned in Sec. 5.1, magnetic anisotropy in the weak itinerant ferromagnet Ni3Al
has been addressed both experimentally and theoretically. Ni3Al shows a similar
decrease of K1 with temperature but neither an increase at low nor a sign change
at high temperatures [Sig82]. However, in the theoretical work the experimentally
obtained anisotropy was reproduced from band structure calculations by adjusting
Fermi energy and d-electron number per atom in order to match the experimental
findings [Mat85]. While we encourage similar calculations for MnSi, their realization
is beyond the scope of this thesis.
For a broader range of theoretical approaches, we turn to nickel as a prime example
of itinerant magnetism. In this material, K1 resembles our findings for MnSi in
that it decreases with temperature and changes sign before converging to zero, but
differs in that it does not increase at low temperatures [Boz51]. Several attempts
to calculate K1(T ) ab initio have been presented with varying degrees of success.
Most approaches do not yield analytical expressions and are therefore not applicable
for interpretations of our experiments [Mor69, Mor74, Szp84]. In a few papers, low
order polynomials are suggested [Ono77, Mit97]. However, these studies exclusively
address the low temperature regime where MnSi and Ni exhibit qualitatively different
behavior and are therefore not suitable for interpretation of our data either. Instead
of ab initio calculations, we consider a phenomenological approach.
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Figure 5.10: Temperature evolution of anisotropy constant K1 at a) B = 1T and b)
B = 4T. Red lines denote fits according to Eq. 5.8.

Throughout literature, the temperature dependence of magnetic anisotropy constants
is most commonly discussed in terms of a power law, i.e. K(T )/K(0) is supposed
to decrease proportional to [M(T )/M(0)]n. Several models exist that yield different
exponents n such as, e.g., the single-ion and two-ion models yielding n = 2 and n = 3
[Sko08, Kob16]. The decrease described by these models is distinctly slower than
observed for MnSi. The Zener model was initially developed for localized moments
and suggests n = l(l + 1)/2 where l is the respective anisotropy constant’s order
in spin-orbit coupling [Vle37, Zen54, Kef55]. We obtain n = 10 for a fourth-order
K1 which is the leading term also in the elemental ferromagnets iron, cobalt and
nickel. While K1(T ) in Fe is well described by this model, both Co and Ni exhibit
sign changes in K1(T ) which can not be accounted for by the simple power law. The
temperature evolution of anisotropy in Co could be modeled by extending the power
law by a prefactor (1− bT/Tc) where b could be derived from the thermal expansion
of the material [Car58]. A similar factor also allowed to model K1(T ) in Ni, but
the prefactor could neither be explained by thermal expansion nor was it justified
in a different fashion. However, adjusting a power law by terms of indeterminate
physical meaning in order to match experimental findings has been established as
common practice [Car58, Tat65, Bir77, Mer59]. For instance, Birss et al. proposed
a factor of exp[−(T/Tc)n] with no physical explanation [Bir77]. Merkle suggested
a prefactor linear in T despite obtaining a quadratic term in leading order from
calculations [Mer59]. Due to the similarity of K(T ) in MnSi and Ni, we stick to the
factor (1 − bT/Tc) proposed by Carr [Car58]. To account for the increase at low
temperatures, we add an additional factor of (1 + aT/Tc) and obtain

K1(T ) = K1(0) ·
(

1 + a
T

Tc

)(
1− b T

Tc

)[
M(T )
M(0)

]n
(5.8)

as a fit function with a, b ≥ 0. In Fig. 5.10, we present the temperature evolution of
K1 at B = 1T in panel a) and B = 4T in panel b). Black circles represent values
obtained from our experiments, red lines illustrate fits according to Eq. 5.8. The
overall temperature dependence of our experimental results is reproduced very well
by the fit. In particular, the function is capable of describing both the sign change
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Figure 5.11: Evolution of fit parameters a, b and n as a function of field magnitude.

and minimum at B = 1T as well as the monotonous decrease at B = 4T at high
temperatures. On the contrary, the low temperature increase is overstated by the fit.
Identical graphs for further field magnitudes are presented in appendix C.2.5.
Values obtained for the free fit parameters a, b, and n are shown in Fig. 5.11. We note
that a and b approach zero with increasing field which might result in a temperature
evolution strictly following a simple power law at higher fields. At the same time, n
increases at a progressive rate from ∼6.5 at B = 0.65T to more than 12 at B = 4T.
An exponent n� 10 at higher fields as implied by this behavior does not correspond
to any existing phenomenological model. Since we can link neither a and b nor n to
a physical explanation, a closer discussion is futile at this point.
Our error analysis shows that the sign change in K1(T ) at low fields does not
occur “within the margin of error” but with proper significance. Moreover, it is well
recognizable in the torque curves as shown in Fig. 5.5 c). We conclude that this part
of the evolution is indeed intrinsic to K1 and corresponds to a real alteration of the
anisotropy landscape in MnSi. We illustrate this in Fig. 5.12 where energy is plotted
as a function of magnetization direction as obtained from our data at B = 1T. Axes
and colorization are scaled identically throughout the figure and K2 as obtained from
our fits is included for consistency. Graph a) corresponds to the low temperature
situation at T = 24K. Here, K1 is positive and we find the lowest energy along
〈111〉- and highest energy along 〈001〉-directions. For comparison, graph b) shows the
anisotropy at K1 = K2 = 0 which is represented by a fully isotropic sphere. Graph c)
corresponds to the high temperature situation at T = 29K where K1 is negative
and we find the lowest energy along 〈001〉- and highest energy along 〈111〉-directions.
Similar changes of magnetic anisotropy have been observed in the ferromagnets Co
and Fe, but also in the helimagnet FeGe which is isostructual to MnSi [Leb89]. In
the case of FeGe, the change of the easy direction has been observed in the helical
state at zero field. For MnSi, we observe this change below Tc in the field-polarized
state and at lower temperatures for lower fields. Extrapolation to zero field suggests
a change of the easy direction in the helical phase at zero field as well. However, no
such shift has been observed in MnSi despite numerous studies (see [Bau17] and refs.
therein). Apparently, extrapolation of behavior studied in the field-polarized phase
to the region of modulated states is not warranted in MnSi. Unfortunately, neither
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Figure 5.12: Anisotropy energy around the zero-transition of K1. Axes and coloriza-
tion are scaled identically in all plots. a) Anisotropy energy with K1 = 18.19 J/m3

and K2 = 1.25 J/m3 as obtained from the torque at B = 1T and T = 24K. b) For
K1 = K2 = 0, the energy landscape is represented by a sphere. c) Anisotropy energy with
K1 = −18.81 J/m3 and K2 = −2.13 J/m3 as obtained from the torque at B = 1T and
T = 29K.

is the determination of anisotropy constants in non-collinear magnetic states from
torque measurements as we will discuss in Sec. 5.4.
Contrary to the sign change at high temperatures, the low temperature behavior of
K1 is somewhat ambiguous in that the observed increase is distinctly smaller than
the uncertainties of our experimental values. However, the major contributions to
these uncertainties are systematic shifts that affect the absolute values of K1 rather
than its evolution. Further, we observe an increase for all field magnitudes, on both
spherical and cubic samples and even in the AMI setup. It thus appears unlikely
that this observation is an artifact due to measurement or evaluation errors. Still, it
remains unclear whether the increase is intrinsic to K1. In the following, we suggest
an alternative explanation.
We reported a changing shape of measured torque curves around 〈110〉-directions in
the region of low temperatures and low fields. In this regime, the torque between
local extrema exhibits a rather linear behavior that becomes more sinusoidal with
increasing field magnitude or temperature. This linear behavior between two extrema
is reminiscent of a sawtooth shape which mathematically can be modeled by summing
up harmonics of sinusoidal oscillations. We thus suggest that the torque is significantly
influenced by higher order contributions to the anisotropy potential at low fields and
temperatures. Beside an alteration of the magnetic torque’s shape, a considerable
influence of higher order terms may also result in the perception of smaller K1. As
an example, we consider a sixth order term K3(M̂6

x + M̂6
y + M̂6

z ) as in Eq. 5.4. As
mentioned before, such a term in the anisotropy potential results in a torque signal
similar to that of the K1-term. Consequently, a negative K3 may be reflected in our
data evaluation as a reduction of K1.
Regarding temperature dependence, observations of K2 as well as the Zener model
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imply that higher order anisotropy constants decay much faster with increasing
temperature than the leading order term. Consequently, we expect the torque
signal to be increasingly dominated by the leading order K1-term with increasing
temperature. A higher order term decreasing our extracted values of K1 and decaying
quickly with temperature can thus be responsible for the observed increase of K1
at low temperatures. We emphasize that this scenario is a mere speculation at this
point that deserves further investigation.
We observe a similarly changing shape at low temperatures when increasing the
field magnitude. As for the temperature dependence, this change is accompanied
by a moderate increase of K1. Within the frame of our suggested explanation, this
implies that the dominance of K1 over higher order anisotropy constants grows with
increasing field magnitude as well. At larger field magnitudes, K1 grows by more than
90% between B = 2T and B = 10T and then decreases again. For this behavior
we can not present any explanation at this point. However, it has been suggested
that the anisotropy of metals may be dominated by degenerate or nearly degenerate
electronic states in the vicinity of EF [Kon74]. Band structure calculations reveal
that several such (near-)degeneracies exist close to EF in MnSi [Wil20a]. A proper
explanation of the field magnitude dependence of K1 may thus require extensive
investigations of the band structure and its alteration with increasing magnetic fields.

5.4 Measurements in modulated phases
In this section, we present our results concerning the non-collinear magnetic phases
of MnSi. We begin with rotation scans at constant field magnitude B < µ0Hc2 in
Sec. 5.4.1. Field scans at fixed orientations are addressed in Sec. 5.4.2. We discuss
the results of both in Sec. 5.4.3. All data presented in this section has been recorded
with the spherical MnSi sample in the rotating field setup. Rotation scans and field
scans were recorded at misalignment angles of γr = 9° and γr = 0°, respectively.
Measurements on a cubic sample as well as experiments in the rotating sample
setup yielded consistent results. Examples thereof are presented in appendix D.2.3.
Throughout this section, we discuss the anisotropic magnetizationM⊥ = Γ/B instead
of the measured torque Γ. This is particularly advantageous for field scans through
zero since, by its very nature, Γ vanishes at B = 0 whereas M⊥ does not.

5.4.1 Field rotations
In order to investigate the various modulated phases of MnSi, we performed rotation
scans at several temperatures and field magnitudes. In particular, measurements were
carried out at temperatures from T = 0.3K up to T = 35K for fixed field magnitudes
of B = 0.1T and B = 0.3T as well as for field magnitudes from B = 0.05T up to
B = 0.3T at the fixed temperature of T = 28.5K. As described in Sec. 5.2.2, we
present consecutive rotations. Since these scans do not include reorientation after
a reversal of the rotation sense, displayed curves may be completely disjoint due
to rotational hysteresis. A full set of rotation scan magnetization curves including
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Figure 5.13: Anisotropic magnetization M⊥ during field rotations at B = 0.3T and
temperatures from T = 0.3K up to T = 28.5K. Solid lines denote positive rotation sense,
dashed lines denote negative rotation sense.

regimes of reorientation after rotation sense reversal is shown in appendix D.1.1.
We present the anisotropic magnetization M⊥ measured at B = 0.3T and T = 0.3K
in Fig. 5.13 a). The continuous and dashed lines correspond to positive and negative
rotation sense, respectively. The most striking observation is a large rotational
hysteresis. The curve measured for positive rotation sense is entirely positive whereas
the curve recorded for negative rotation sense resides at strictly negative values.
Both curves closely resemble the shape described by Eq. 5.1 but with symmetry
lines shifted away from zero in opposite directions. Minor irregularities are visible,
especially between the local extrema around 〈110〉. On closer inspection, the rotation
hysteresis does not consist in a vertical translation of the same curve, but rather in
two shifted curves related by an inversion operation with respect to the origin. This is
best recognized by the local extrema. For positive rotation sense, the local maximum
is located roughly in the middle between 〈111〉- and 〈110〉-directions whereas the
local minimum much closer to the 〈111̄〉- than the 〈110〉-direction. For negative
rotation sense, we observe the inverted situation: The local maximum is positioned
close to the 〈111〉-direction whereas the local minimum resides in the middle of 〈110〉-
and 〈111̄〉-directions.
In Fig. 5.13 b) - d), we show rotation scans at B = 0.3T and elevated temperatures.
Again, continuous and dashed lines denote positive and negative rotation sense,
respectively. Up to the highest investigated temperature of T = 28.5K, the shape
described by Eq. 5.1 is maintained for all curves. The minor irregularities observed
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at T = 0.3K are no longer visible at temperatures of 5K and above. Further, the
hysteresis decreases drastically with increasing temperature. At T = 5K, M⊥ begins
to change sign during rotation. At T = 28.5K, the rotational hysteresis is small
enough to be attributed to the magnet hysteresis (cf. Sec. C.3.3).
The measurements presented above exclusively address the conical phase of MnSi.
In appendix D.1.2, we show rotation scans at a field magnitude of B = 0.1T which
further involve the helical state. We make similar observations regarding rotational
hysteresis at its temperature dependence as for B = 0.3T. However, the curves
strongly deviate from the shape described by Eq. 5.1. We attribute this in part to
phase transitions between helical and conical state during rotation due to anisotropy
of the critical field Hc1 ≈ 0.1T. Similarly, transitions between conical state and
skyrmion lattice phase may occur during rotation scans at a temperature of T = 28.5K
and various field magnitudes. Corresponding magnetization curves are presented
in appendix D.1.3. Consistent with the temperature dependent measurements at
fixed field magnitudes, we find only little rotational hysteresis. For field magnitudes
addressing solely the conical or skyrmion lattice phase, a behavior described by
Eq. 5.1 is observed. At intermediate field magnitudes, magnetization curves exhibit
distinct deviations from this shape. Measurements involving solely the helical state
show a drastically different behavior.

5.4.2 Field scans
We performed field scans between Bmax = ±1T for field vectors applied along 〈001〉-,
〈110〉-, 〈111〉-, and 〈111̄〉-directions at temperatures from T = 0.3K up to T = 33.3K.
As stated in Sec. 5.2.2, we omitted the step of heating the sample above Tc prior to
individual measurements. As a consequence, the shape of the initial magnetization
curve depends on a not well controlled temperature and field history and is therefore
not considered. Thus, we exclusively discuss magnetization curves corresponding to
a high-field cooling scenario in distinction from a situation after zero-field cooling (cf.
Ref. [Bau17]). As stated above, our measurement procedure for field scans features
six sweeps through the regime of non-collinear phases of which we only present the
last full scan for each direction. A full set of all six sweeps is shown in appendix D.2.1.
In the following, we refer to field values changing towards more positive values as
increasing field and field values changing towards more negative values as decreasing
field independent of the sign. Thus, e.g., decreasing field at negative field values
corresponds to an increasing field magnitude.
In Fig. 5.14, we present field scans at T = 0.3K along all major symmetry directions
of the crystal. Black and red lines denote increasing and decreasing field, respectively.
Signatures of critical fields Hc1 and Hc2 are labeled for each curve. The superscripts
↑ and ↓ correspond to increasing and decreasing field magnitude, respectively. Most
saliently, we observe a large hysteresis between B = ±µ0Hc2 for all field directions.
Further similarities are spike-like disturbances of the otherwise smooth curves. Such
irregularities spiking towards both positive and negative values are positioned at
zero field for all curves. This is an artifact of data evaluation since we divide the
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Figure 5.14: Anisotropic magnetization M⊥ during field scans between B = ±1T at
T = 0.3K and field vectors pointing along a) 〈001〉-, b) 〈110〉-, c) 〈111〉-, and d) 〈111̄〉-
directions. Black lines denote increasing field, red lines denote decreasing field. The
vertical arrows indicate positions of critical fields. Black and red asterisks mark spike-like
irregularities of unknown origin. The green asterisks in panel a) highlight slight kinks
which may represent a two-step transition at H〈001〉

c1,< and H〈001〉
c1,> .

measured torque Γ by the applied field B to obtain the anisotropic magnetization
M⊥. Further disturbances at finite field are marked by the red and black asterisks
in Fig. 5.14. They spike only towards zero magnetization and are found almost
exclusively for increasing field magnitude. These disturbances are present already in
the capacitance raw data.
The anisotropic magnetization for field along the 〈001〉-direction is depicted in
Fig. 5.14 a). For increasing field, M⊥ is nearly constant at a negative value between
B = −1T and −H↓c2 followed by a steady decrease to a sharp minimum at −H↓c1.
From there, M⊥ increases through zero field until it reaches roughly the same value
as at −H↓c2. At this point, M⊥ rapidly increases to a maximum at positive values at
+H↑c1. This increase exhibits a small kink as marked by the green asterisk. Above
+H↑c1, the magnetization quickly decreases back to negative values, passes a minimum
and then slowly advances to positive values again. At +H↑c2, a maximum is reached
from which M⊥ slightly decreases up to B = +1T. The curve for decreasing field
qualitatively matches the point mirror image of the described curve for increasing
fields, but both curves appear to be slightly distorted towards positive values between
±Hc2 which is best recognized by comparing the extrema at ±Hc1. This asymmetry
is more prominent in the torque data than in the magnetization and contrasts earlier
torque measurements on MnSi which found little asymmetry of field scans along 〈001〉
[Bir09]. We attribute this to misalignment in the earlier experiments as we argue in
appendix D.2.2. In our measurements, we further observe rather large hystereses at
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both critical fields as illustrated by the significantly different field positions of H↑c2
and H↓c2 as well as H↑c1 and H↓c1 at both positive and negative field values. Moreover,
we observe spike-like disturbances at decreasing field magnitude close to H↓c1 as well
as two discontinuous jumps (red asterisk). No such irregularities are present for fields
applied along other directions.
In Fig. 5.14 b) we present the anisotropic magnetization for field along the 〈110〉-
direction. For increasing field, M⊥ is nearly constant at small positive values between
B = −1T and −H↓c2. From there, it slowly increases until a maximum followed by a
rapid decrease is reached at −H↓c1. Between −H↓c1 and +H↑c1, the magnetization is
almost constant. After a rapid increase at +H↑c1, the curve passes a broad maximum
and then steadily decreases up to +H↑c2, only just changing towards negative values.
Up to B = +1T, M⊥ slightly increases at very small values. The anisotropic
magnetization observed for decreasing field agrees qualitatively with the point mirror
image of the described curve for increasing field, yet quantitatively the curves differ
by a factor of ∼2.5. Hystereses at Hc1 and Hc2 are present, but small compared to
the situation of field applied along the 〈001〉-direction.
The anisotropic magnetization for fields along 〈111〉- and 〈111̄〉-directions is shown
in Fig. 5.14 c) and d), respectively. Both situations are equal except for a reversal
of the sign of M⊥. We thus discuss the situation for field along 〈111〉 only. For
increasing field, M⊥ is negative and nearly constant between B = −1T and −H↓c2.
From there, the magnetization increases towards positive values and through zero
field until a broad maximum is reached at ∼0.2T. We find no signature of −H↓c1
and it is uncertain whether the observed maximum corresponds to +H↑c1. After
the maximum, M⊥ quickly decreases up to +H↑c2 from where it further decreases
slightly up to B = +1T. The magnetization at decreasing field matches the point
mirror image of the described curve for increasing field. Within the precision of our
measurements, no hysteresis is found at Hc2. We note that for fields applied along
the 〈111〉- or 〈111̄〉-directions, absolute values of the anisotropic magnetization are
substantially larger than for fields applied along the 〈110〉- or 〈001〉-directions. This
is particularly intriguing given that 〈111〉 and 〈001〉 represent the easy and hard
magnetic axes, respectively.
In Fig. 5.14 a), i.e. for field applied along the 〈001〉-direction, we observe hysteretic
behavior also at fields |B| > µ0Hc2. While it is not perceptible in Fig. 5.14 b) - d) due
to scaling, such a hysteresis in the field-polarized state is found for all investigated field
directions. Moreover, we observe equally hysteretic behavior in a second sample as
well as in a different setup where the effect persists up to the highest field magnitudes
studied, i.e. B = ±14T. The respective magnetization curves are presented in
appendix D.2.3.

Temperature evolution

We studied the evolution of the anisotropic magnetization during field scans with
temperatures increasing from T = 0.3K up to T = 33.3K. Selected magnetization
curves are presented in Fig. 5.15. Top and bottom graphs correspond to field vectors
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Figure 5.15: Temperature evolution of the anisotropic magnetization M⊥ during field
scans between B = ±1T and field vectors pointing along a1)-a2) 〈111〉- and b1)-b2)
〈111̄〉-directions. a1)-b1) Temperatures are set to T = 0.3T, T = 2K, T = 5K, T = 9.65K,
T = 14.2K, T = 19.15K, T = 23.75K, T = 26K, T = 28.5K, and T = 33.3K. a2)-b2)
Blow-ups of a1)-b1) to the low field regime and temperatures of 9.65K≤ T ≤28.5K.

applied along the 〈111〉- and 〈111̄〉-directions, respectively. From purple to red, the
temperatures in the left hand side panels are set to T = 0.3T, T = 2K, T = 5K,
T = 9.65K, T = 14.2K, T = 19.15K, T = 23.75K, T = 26K, T = 28.5K, and
T = 33.3K. Panels on the right hand side show blow-ups to the low field regime and
temperatures from T = 9.65K to T = 28.5K. As discussed above, the magnetization
curves obtained at T = 0.3K for field applied along 〈111〉 and 〈111̄〉 are equal up to a
sign change of M⊥. This observation essentially holds true at elevated temperatures.
We thus describe magnetization curves for field along 〈111〉 only and point out minor
differences where necessary. As further described for the low temperature curves,
the decreasing field magnetization curve matches the increasing field curve’s point
mirror image. This observation is maintained for all studied temperatures.
Most evidently, the size of the hysteresis loop observed between B = ±µ0Hc2 de-
creases steadily with increasing temperature up to T = 26K. During this evolution,
the loop shrinks not only regarding M⊥ but also along the field direction which
reflects the well established reduction of Hc2 with rising temperature (cf. Fig. 5.1 b)).
In addition to the decreasing hysteresis, a new pair of extrema evolves close to zero
field. While at temperatures up to T = 19.15K, merely a flattening of the increasing
magnetization curve is visible after passing through zero field, the increasing field
curves at temperatures from T = 23.75K upwards exhibit a distinct maximum right
after the applied field changes sign. This is followed by a minimum and another
maximum which appears to correspond to the maximum already present at lower
temperatures.
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At T = 28.5K, the new maximum after reversal of the field direction develops into a
spike that surmounts the maxima of all other magnetization curves while apart from
this narrow peak the magnetization is still lower when compared to that at lower
temperatures. The following minimum is lowered such that the magnetization reaches
zero. The transition from the minimum to the subsequent maximum is very rapid.
From there, the magnetization slowly decays as observed at lower temperatures. For
field applied along the 〈111̄〉-direction, both spike-like maximum and the subsequent
minimum are substantially more pronounced as compared to the situation with
field applied along the 〈111〉-direction. In order to discuss maxima and minima in
agreement with the preceding description, we address the decreasing field curve for
field along 〈111̄〉 due to the sign reversal. Here, the magnetization begins to grow
larger than that at lower temperatures already before the direction of the field is
reversed. Further, M⊥ changes sign back and forth whilst dropping to the following
minimum and rising back up to the subsequent maximum.
In Fig. 5.15, we do not recognize signatures associated with the skyrmion lattice
phase. This is owed to the scaling of the graphs. We observe signatures of the
upper and lower transition fields Ha1 and Ha2 between conical state and skyrmion
lattice phase during field scans along all major symmetry directions. Respective
magnetization curves are presented in appendix D.2.4.
At T = 33.3K, the anisotropic magnetization equals zero on the scale considered in
Fig. 5.15. This reflects the absence of long-range magnetic order in the paramagnetic
state at T > Tc.
The evolution of the anisotropic magnetization during field scans at elevated tem-
peratures for field vectors applied along the 〈001〉- and 〈110〉-directions is shown
in appendix D.2.5. Similar to the evolution described above, new extrema evolve
around zero field. In addition, the magnetization curves gradually change sign with
increasing temperature and the prominent features are altered drastically.

5.4.3 Discussion
In this section, we appraise the presented results regarding magnetic anisotropy in the
non-collinear phases of MnSi. We begin with general considerations on the origin of
anisotropic magnetization in these states, discriminating between two contributions
to M⊥. On the one hand, the helical pitch vector Q̂ or skyrmion lattice normal
vector N̂ of an ideal modulated spin structure is subject to an anisotropy potential.
As addressed in Sec. 2.1.2, these potentials result from the total magnetic anisotropy
energy of the full ensemble of magnetic moments. On the other hand, anharmonic
deformations of helices or skyrmions arise due to the magnetic anisotropy energy
of individual magnetic moments. Such distortions of the ideal structures may also
contribute to M⊥.
As stated before, the anisotropy potentials for Q̂ and N̂ in MnSi have been investigated
using neutron scattering techniques [Bau17, Ada18]. However, it is non-trivial to
infer the size of a contribution to M⊥ even from a known anisotropy potential. For a
pristine helix, the magnetic moments cancel each other so that no net magnetization
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is observed on a macroscopic scale, i.e. M⊥ is dominated by anharmonic effects in
the helical state. In the conical phase, the anisotropy potential for the pitch vector
depends strongly on the cone angle (cf. Sec. 2.1.2) which we do not know for a
given field and temperature. For a skyrmion lattice, modeling M⊥ requires extended
calculations which are beyond the scope of this thesis.
Several neutron scattering studies have stated that anharmonic distortions constitute
minor deviations from ideal spin structures which influence measurement results
on the order of a few percent only (see Refs. [Bau17, Hal18] and refs. therein). In
contrast, our experimental technique is highly sensitive to such deformations as
we infer from the large signal during measurements in the helical state where the
magnetization of an ideal helix vanishes. Again, modeling anharmonic effects and
the resulting anisotropic magnetization requires theoretical efforts beyond the scope
of the present work.
In addition to the intrinsic complexity of anisotropic magnetization and non-collinear
magnetic order, we need to consider angular distortion. As discussed in Sec. 5.2, two
effects are distinguished, namely the deviation of M from B and relative rotation
of sample and field due to cantilever bending caused by the magnetic torque. The
latter can in principle be estimated analogous to the procedure described for the
field-polarized phase. Since we perform no further quantitative analysis in non-
collinear phases, we omit such a correction estimate. For the former contribution,
it is disputable whether the desired reference is still M or rather the direction of
Q̂ or N̂ . We can no longer calculate an angular correction via Eq. 5.6 since we do
not know the magnitude m of the sample’s magnetic moment. Our measurements
yield no information on the direction of N̂ or Q̂. The question is therefore moot
since none of both deviations can be estimated quantitatively. Still, we suggest large
angles between M and B considering that we measure torque signals comparable
to those observed in the field-polarized state while we expect a significantly smaller
magnetization. In contrast, the deviation of Q̂ or N̂ from B is expected to be small
[Bau17, Ada18].
As shown in Sec. 5.3.4, angular distortion results in slight shearing of torque curves
recorded during rotation scans. The situation is more delicate for field scans. Here,
torque-dependent bending of the cantilever during measurements causes a varying
deviation of the magnetic field from the crystallographic direction under investigation.
As we show in appendix D.2.2, deviations on the order of ∼1° can suffice to impose
changes on the order of ∼100% to the measured torque. Unfortunately, a quantitative
estimate of these changes during our measurements is not feasible. Still, its potentially
large influence must be kept in mind during interpretation.
On top of the issues discussed above, we note that the measured torque reflects
only a projection of M⊥ on the plane perpendicular to the cantilever’s projection
axis. Moreover, measurements in the field-polarized state using the AMI setup have
shown significant disturbances of incomprehensible shape and origin. Given these
circumstances, a sound understanding of the presented data is difficult at best. In
particular, no quantitative analysis can be performed. We thus restrict ourselves to
a qualitative discussion.

128



5.4 Measurements in modulated phases

Rotation scans

For rotation scans involving only the skyrmion lattice phase, we observe magnetization
curves of the shape described by Eq. 5.1. The same holds true for rotation scans
addressing solely the conical state. This observation implies that, within these
phases, the anisotropic magnetization is dominated by the anisotropy potential for
the ordering vectors N̂ and Q̂ with only small contributions from anharmonicities.
The minor irregularities encountered at T = 0.3K and B = 300mT may represent
such corrections. As an alternative explanation, the irregularities may reflect the
importance of higher order anisotropy terms at low temperatures similar to our
discussion for the field-polarized state.
We observe no sign change of Keff corresponding to a change of the cone angle (cf.
Sec. 2.1.2). A tentative fitting procedure yields a value of Keff ≈ 370 J/m3 for the
conical state at T = 5K and B = 300mT. This is on the same order of magnitude
as the anisotropy constants found for the field-polarized phase as well as the value
Keff = 545 J/m3 reported at B . µ0Hc1 and T = 5K [Bau17]. A direct comparison
is not warranted since we do not know the cone angle α. Similarly, we obtain a value
of Keff ≈ 48 J/m3 for the skyrmion lattice phase at B = 200mT and T = 28.5K
which neither can be translated to a single-moment anisotropy constant K1.
In contrast to conical and skyrmion lattice states, the behavior of magnetization curves
differs distinctly from that described by Eq. 5.1 during measurements addressing
the helical phase. As stated above, we expect the magnetization of an ideal helix
to vanish and therefore M⊥ to be dominated by anharmonic distortions in the
helical state. This expectation is confirmed by the strong deviations from Eq. 5.1.
Intriguingly, we observe rotational hysteresis independent of which contribution
to M⊥ dominates. Moreover, the absolute values of M⊥ as well as its rotational
hysteresis are of comparable size in both cases. The observed hysteresis implies
that the magnetization vector “follows” the field vector with a certain lag during
rotation. At this point, we can not offer any suggestion as to the origin of this lag or
its decrease with rising temperature.
As stated above, our rotation scans at B = 100mT may include phase transitions
between helical and conical state due to the anisotropy of Hc1. The influence of
such transitions on the shape of the measured curves is unforeseeable and therefore
inhibits an unambiguous interpretation. For a closer look at rotation scans in the
helical phase, we refer to the measurement at T = 28.5K and B = 50mT illustrated
in Fig. D.3 a). As described in appendix D.1.3, we observe a sawtooth-like behavior
with an additional shoulder at 〈001〉 and a lack of the two-fold symmetry present in all
other rotation scans. Further, the point symmetry with respect to 〈110〉-directions for
magnetization curves recorded with opposing rotation senses is no longer maintained.
We interpret this by means of the lower symmetry of the tetrahedral point group T as
compared to cubic symmetry. In particular, the eight 〈111〉-directions which we treat
as equivalent throughout this chapter are split into two groups of four equivalent
directions. Strictly speaking, the [111]-direction is equivalent only to [11̄1̄], [1̄11̄] and
[1̄1̄1] whereas [1̄1̄1̄] is equivalent to [1̄11], [11̄1] and [111̄]. This symmetry reduction
is directly evident in Fig. D.3 a). Similarly, the difference between [001] and [001̄]
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reflects the missing inversion symmetry of the crystal structure.
In contrast to measurements in the conical phase, the helical pitch vector does
not follow the magnetic field vector in the helical state but remains pinned to a
〈111〉-direction. As reported in Ref. [Bau17], a field magnitude of B = 50mT applied
along 〈111〉 is just enough to depopulate unfavorable domains. We suggest rather
discontinuous switching between domains during field rotation at B = 50mT where
(un-)favorable domains are (de-)populated at once. This is consistent with the
sawtooth-like behavior as well as with the observation of a kink at 〈001〉-directions.
At this point, the field vector encloses identical angles with two pairs of equivalent
〈111〉-directions which results in a double-transition [Bau17]. At the larger field
of B = 100mT, we expect continuous variations of domain populations during
field rotations corresponding to the angle between field vector and equivalent 〈111〉-
directions. Consequently, the respective magnetization curves exhibit a less sharp
sawtooth-shape (cf. Fig. D.3 b)). Simultaneously, the two-fold symmetry consistent
with cubic symmetry is restored. Consistent with our expectation, the sawtooth-
shape sharpens and the kink at 〈001〉 is enhanced with lowering the temperature from
T = 28.5K towards T = 20K (cf. Fig. D.2). On the contrary, the kink gradually
disappears and the shape becomes smoother again with temperature decreasing
further from T = 20K down to T = 0.3K. At this point, we lack an explanation for
such behavior.

Field scans

As illustrated in Fig. 5.14, the magnetization curves recorded during field scans
at low temperatures exhibit signatures of almost all magnetic field-driven phase
transitions in MnSi. For fields along all major symmetry directions, the second
order transition from field-polarized to conical state is characterized by the onset
of a larger slope and a larger hysteresis. The large anisotropic magnetization below
Hc2 is barely surprising given that non-collinear order enforces large deviations of
individual magnetic moments from the field direction. This may explain the larger
signal for field along 〈111〉-directions where individual moments are forced to point
away from the easy axis whereas for field along 〈001〉, the moments are forced to
point away from the hard axis. On the contrary, the large hysteresis is not expected.
We address hysteretic behavior further below.
The transition between helical and conical state with changing field magnitude has
been described in great detail in Ref. [Bau17]. Along the 〈111〉- and 〈111̄〉-directions,
we observe no signatures of Hc1. This is consistent with the predicted crossover
transition for an anisotropy potential pinning Q̂ along 〈111〉-directions below Hc1.
Sharp features at Hc1 may be observed for field along 〈111〉-directions when starting
from a multi-domain state. As stated above, we do not address such a scenario
in our experiments. For field vectors along 〈110〉- and 〈001〉-directions, the pitch
vector reorients from the field direction towards the closest 〈111〉-directions at Hc1.
For 〈110〉, the field encloses identical angles with a 〈111〉- and a 〈111̄〉-direction
and we observe changes of M⊥ connected to a second order phase transition. For
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〈001〉, the field vector encloses identical angles with each a 〈111〉-, a 〈1̄11〉-, a 〈11̄1〉-
and a 〈1̄1̄1〉-direction which results in two subsequent second order transitions. For
increasing field magnitude, we observe a hint of such a double transition. For both
increasing and decreasing field, the low field side of the peak at H↑c1 exhibits a slight
kink as indicated by the green asterisks in Fig. 5.14. For decreasing field magnitude,
no such kink is observed. Instead, the extremum at H↓c1 is followed by a discontinuous
irregularity for both increasing and decreasing field. Such perturbations are otherwise
observed exclusively for increasing field magnitude. Their odd occurrence close to
H↓c1 may also hint at the specific quality of the transition.
Signatures of the first order transitions between conical and skyrmionic states are
well visible in our field scans as illustrated in Fig. D.11. With the exception of
decreasing field magnitude along 〈001〉, we observe distinct reductions of M⊥ for
all field and sweep directions. As stated in appendix D.2.4, this observation has
already been reported in Ref. [Bir09] and was attributed to a reduced pinning of the
skyrmionic spin structure to the crystal lattice as compared to the conical helix.
We can not explain the specific behavior of the anisotropic magnetization between
B = ±µ0Hc2 even on a qualitative level. We specifically note that we do not ob-
serve any features explicitly indicating a sign change of the effective anisotropy
constant Keff as expected for a continuous transformation from the pristine helix
to the field polarized limit (cf. Sec. 2.1.2). The main obstacle impeding qualitative
interpretation is the reduced dimensionality of the measured torque. As described
above, M⊥ crucially depends on unknown parameters such as the precise deviation
of Q̂ from B, the cone angle and the sum of anharmonic contributions of individual
magnetic moments. In particular, M may point in an arbitrary direction so that
even qualitative changes of our measured signal as, e.g., multiple sign changes in
Fig. 5.14 a) may result from only small angular variations of a magnetization vector
pointing mostly out of our experiment’s field rotation plane. In order to gain further
insights into the magnetization’s behavior under non-collinear order, a technique
capturing the full three-dimensional magnetization vector should be employed in
future investigations.
Our inability of reconstructing the behavior of M under non-collinear magnetic order
mostly prevents us from assessing its temperature dependence. The critical field Hc2
continuously decreases with rising temperature consistent with the well-known phase
diagram. For field along the 〈111〉- and 〈111̄〉-directions, the magnetization in the
conical phase also decreases with increasing temperature consistent with a decreasing
ordered moment. In contrast, several features grow substantially for fields along
〈110〉 and 〈001〉. The origin of these increases as well as the gradual sign changes
of magnetization curves remain unclear. The same holds true for the evolution of
additional extrema between Hc1 and zero field for field along 〈111〉 and 〈111̄〉. While
a connection to the transition between conical and helical phase may appear natural,
it remains speculative at this point.
In our field scans, we detect a hysteresis of critical fields that depends strongly on the
direction of the applied field and quickly fades with increasing temperature. A similar
hysteresis has been reported at Hc1 from SANS, magnetization and AC susceptibil-
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ity measurements [Bau17]. The authors suggest that the observed hysteresis is a
nonequilibrium effect due to large relaxation times caused by topologically protected
disclinations. Such defects are expected to emerge, e.g., from topologically nontrivial
domain walls [Li12]. Magnetic force microscopy (MFM) measurements on the cubic
helimagnet FeGe have shown that relaxation times related to such defects can be
on the order of hundreds to thousands of seconds [Dus16]. As described above, we
observe large hysteresis of Hc1 and Hc2 for field along the 〈001〉-direction where four
helical domains with pitch vectors Q̂ along different 〈111〉-directions are degenerate
with respect to the Zeeman energy. Smaller hystereses of Hc2 and Hc1 are found
for field along the 〈110〉-direction where only two such domains are energetically
favorable. For field along the 〈111〉-directions where a single domain is expected, we
observe no notable hysteresis of the critical fields. The indicated correlation between
critical field hysteresis and number of degenerate domains is only an ambiguous hint
towards a connection between our observation and topological defects.
Beside the hysteresis of critical fields, M⊥ exhibits a large hysteresis between
B = ±µ0Hc2 and a comparatively small hysteresis for |B| > µ0Hc2. These hys-
tereses are observed similarly for fields applied along all major symmetry directions
despite distinct differences in the behavior of M⊥ beside that. While the hysteresis
above Hc2 gradually decays with increasing temperature and vanishes well below
Tc, the hysteresis below Hc2 persists up to the critical temperature. This different
temperature dependence hints at different mechanism at the origin of the respec-
tive hysteresis. In particular, the hysteresis above Hc2 decays similarly fast with
temperature as the leading order anisotropy constants K1 extracted from rotation
scans at µ0Hc2 < B ≤ 1T. While this may seem suggestive, we are not aware of a
mechanism intrinsic to magnetocrystalline anisotropy that leads to a field hysteresis
of the magnetization.
For field along 〈001〉, similar hysteretic behavior has already been reported but
remains unexplained [Bir09]. For a defect-free magnetic system in equilibrium, no
such hysteresis is expected. It is therefore natural to suggest the topological defects
discussed above as a possible origin. However, as stated before, such defects are
expected to emerge from domain walls. For field scans along 〈111〉-directions, no
formation of domains is expected. Still, we observe large hysteresis up to highest
fields in this situation. This implies that, if topological defects are in fact at the
heart of our observations, they must be stable over periods on the order of 104 s and
in magnetic fields up to B = 14T. To the best of our knowledge, neither experimen-
tal nor theoretical groundwork exists regarding an estimate of the contribution of
topological defects to the anisotropic magnetization. Similar to undisturbed spin
structures of non-collinear order in MnSi, modeling such a contribution requires
theoretical efforts that are beyond the scope of the present thesis. We reinforce the
statement made in Ref. [Bau17] that topological defects and their properties deserve
further investigation.
Finally, we address the spike-like disturbances observed during field scans. It is
notable that the spikes are always directed towards zero in distinction from the
magnet-induced irregularities discussed in appendix C.3.2. Further, these pertur-
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bations occur exclusively for increasing field magnitudes with the exception of H↓c1
for field along 〈001〉 addressed above. Even more remarkably, spikes are in many
cases observed at nearly identical field magnitudes for field scans along identical field
directions but at different temperatures. This systematic behavior might indicate a
origin related to the magnetic properties of the sample. In the light of the above
discussion on defects and relaxation times, one may speculate whether the observed
perturbations are signatures of relaxation processes. In particular, MFM measure-
ments on FeGe have shown that magnetic edge dislocations can move through the
material [Dus16]. Similar dynamical processes could lead to spike-like signatures
in the torque as observed. However, further investigations are needed to rule out
technical issues as an origin of these perturbations.

5.5 Conclusion
In the previous sections, we have presented our work on the magnetic anisotropy
of MnSi. In this section, we give a short summary and provide a detailed outlook
on potential further studies. We begin with our investigations of the field-polarized
state followed by studies of modulated phases. Finally, we address possible technical
improvements.
Concerning the field-polarized state, we show experimental results obtained from
three samples in two setups and employ a bespoke fitting routine for extraction
of anisotropy constants. We investigate the evolution of these constants with field
magnitude and temperature and perform numerical calculations capturing the full
complexity of the experiments in order to assess the reliability of our results. For the
leading-order anisotropy constant K1, we obtain stable results for various samples,
setups and experimental uncertainties. The values exhibit a non-monotonic behavior
with both temperature and field magnitude. A sign change in the temperature evolu-
tion demonstrates that extrapolation towards the phase diagram region of modulated
states is not warranted. Similar to K1, the next-to-leading-order anisotropy constant
K2 shows a non-monotonic dependence on field magnitude and on temperature for
large fields. It appears likely that a sign change from positive no negative values
with increasing temperature will be observed at higher field magnitudes. In contrast
to K1, values of K2 exhibit significant fluctuations regarding setup, experimental
uncertainties and data evaluation procedures. We further investigate the influence of
cubic shape anisotropy. Within the precision of our measurements, we do not observe
severe differences to a spherical shape. However, we observe a two-fold sine-shaped
perturbation which, according to preliminary measurements on a cuboid of CSO,
may arise due to shape anisotropy.
Several shortcomings of our studies may be addressed in further investigations. For
instance, we discuss the temperature evolution of K1 in terms of a fit function that
does not represent a physical origin of the observed behavior. Theoretical efforts
providing a comprehensive explanation for the non-monotonic evolution are desirable.
Likewise, the behavior of K1 with increasing field magnitude may be understood
with the aid of sophisticated calculations considering subtle shifts of the multi-sheet
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Fermi surface. In this respect, we have fulfilled our aim of providing benchmark data
for an appropriate theoretical description of the electronic structure in MnSi. On
the experimental side, further studies may address higher-order anisotropy constants.
The importance of higher-order terms especially towards low temperatures and low
field magnitudes has been indicated in our measurements. Calculations suggest that
in the high-field limit the torque corresponding to K1 vanishes when rotating around
a 〈111〉-direction. While numerical simulations insinuate that the respective torque
contribution remains finite due to deviations from the assumed high-field limit, such
an experiment is still a promising opportunity to investigate K2 with a better preci-
sion and reliability. Aside from that, our simulation suggests that measurements at a
well-defined misalignment of rotation axis and a given high-symmetry direction may
yield information on the chirality of the crystal. As a further step, the temperature
evolution of anisotropy constants may be studied at larger field magnitudes. Finally,
further investigations regarding shape anisotropy may be conducted by measuring
cuboids and platelets. A profound knowledge of the influence of shape anisotropy
may substantially alleviate future experiments.
We now turn to our measurements targeting non-collinear magnetic order in MnSi.
We present experimental results of rotation scans and field scans. Rotation scans at
various fields and temperatures demonstrate the dominance of different contributions
to the anisotropic magnetization in different phases. Regardless of the dominant
mechanism, we observe large rotational hysteresis below Tc. In principle, rotation
scans addressing only the conical or the skyrmionic phase allow us to extract effective
anisotropy constants. Without precise microscopic knowledge of the underlying spin
structure, these values can not be related to single-moment anisotropy constants.
Rotation scans addressing solely the helical phase reflect the reduced symmetry of
the crystal structure as compared to the cubic symmetry of the Bravais lattice. Our
field scans exhibit distinct signatures of all field-driven magnetic phase transitions in
MnSi. We observe an asymmetry for opposing sweep directions and a hysteresis of
critical fields both strongly depending on the field direction. Further, we find large
hysteresis within modulated states as well as in the field-polarized state independent
of the field direction and spike-like irregularities exhibiting systematic behavior.
These observations hint at, but constitute no explicit evidence of the existence of
topological defects stable over long time periods and at high magnetic fields. The
specific behavior of the anisotropic magnetization in modulated states is subject to
drastic alterations with increasing temperature.
Again, future investigations may improve experiments and their interpretation in
various ways. Understanding our data addressing non-collinear magnetic order is
fairly delicate mostly due to the limitations of the experimental technique. While it is
possible to reconfigure the AMI setup such that magnetization components pointing
out of the rotation plane are detected, we rather suggest utilization of a technique
capturing the three-dimensional magnetization vector at once as proposed, e.g., in
Refs. [Duf00, Ben06]. Further experimental tasks are investigations of the initial
response of a spin helix to a small magnetic field in terms of anharmonic effects,
the reorientation of the pitch vector under reversal of the rotation sense or tempera-
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ture scans through the modulated phases. The latter has already been reported in
Ref. [Bir09], but, as stated in appendix D.2.2, the respective experiments may also
be improved. In addition to experimental efforts, theoretical studies are required in
order to facilitate an understanding of torque measurements on non-collinear spin
structures. Models of anharmonic perturbations as well as helical domain populations
could allow for numerical simulations of the corresponding anisotropic magnetiza-
tion. Finally, theoretical considerations on the emergence, magnetic signatures and
stability of topological defects are desired.
We conclude that our experimental and theoretical approaches are appropriate for in-
vestigations of collinear magnetic systems. For comprehensive studies of non-collinear
magnetic order, several theoretical and experimental improvements are required. A
thorough investigation of magnetic anisotropy in MnSi paves the way for extensive
studies on related compounds such as, e.g., CSO, FeGe or FexCo1−xSi. In the light
of these future endeavors, we address some technical issues limiting our experiments
that must be minded during or resolved prior to subsequent measurements.
We begin with the AMI setup. Here, the temperature is monitored and controlled on
the probe more than 10 cm above the sample position. While this was not a problem
for our experiments and procedures, monitoring the temperature directly on the
sample stage is crucial for potential future measurements such as temperature scans
through various magnetic phases, but also for temperature control utilized to create
well-defined starting conditions for measurements. In addition, our measurements
reveal the presence of substantial field gradients in the setup. A precise measurement
of these gradients similar to our Hall probe investigation might facilitate future data
evaluation. Finally, the analysis of AMI data indicates an additional perturbation
of unknown shape and origin. A thorough investigation of the setup is required to
identify and eliminate the source of this disturbance.
We now turn to the PPMS setup. Here, the torque data obtained from rotation
scans on various samples featured a small perturbation at high frequencies. A similar
observation during measurements on a different material points at a source related
to the setup. Resolving this issue may allow for higher precision measurements. A
particularly bad signal-to-noise ratio was observed during field scans in the PPMS
setup. Due to the opaque software used for measuring, it is unclear whether the large
noise is intrinsic to the cantilever or emerges from adverse operation or electronic con-
figuration. This may be figured out by directly monitoring the cantilevers response.
Finally, it is advisable to mind the shift observed between high- and low-temperature
data as described in Sec. C.2.1. While the origin remains unexplained, we point out
that such a shift may impose a quantitative error of ∼15%.
A common issue of both setups is the problem of angular distortion. In particular,
the unwanted rotation of the sample during measurements in the PPMS setup can
have substantial influence on experimental results. This might be overcome by imple-
mentation of a feedback loop keeping the sample orientation constant independent
of the exerted torque. As an alternative, one may measure the spring constants of
the cantilevers used in experiment. If none of both solutions is applicable, the spring
constants may be estimated, e.g., by means of finite element simulations.
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Despite all issues described in the foregoing paragraphs, our data represents the first
comprehensive set of anisotropy constants reported for the field-polarized state of
MnSi. We regard this as a starting point for sophisticated quantitative investigations
on the subtle role of magnetic anisotropy for a variety of phenomena in the context
of cubic chiral helimagnets.
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In this work, we investigated the anisotropic magnetization of two metallic compounds
hosting correlated electron systems. Specifically, we studied the Fermi surface
of the weak itinerant antiferromagnet CrB2 by means of the dHvA effect and
magnetocrystalline anisotropies in the archetypal helimagnet MnSi. We employed
cantilever magnetometry in various modes and setups optimized for our specific
measurement. In the following, we summarize the main results for each studied
material.

6.1 CrB2

Experiments on CrB2 relied on longitudinal operation of CuBe cantilevers. We
conducted measurements in three experimental setups. A dilution refrigerator
combined with an axial superconducting magnet allowed for temperatures down to
∼60mK in magnetic fields up to 14T. Further, 3He inserts providing temperatures
down to ∼0.3K were used in combination with a superconducting 15T axial magnet
and a resistive 35T Bitter magnet.
Our measurements focused on a rather narrow angular range of 60° with field
directions residing exclusively in the basal plane. We were able to identify 11 reliable
dHvA frequencies and determined the effective masses of 8 corresponding orbits.
The dHvA spectrum was complemented by an abundance of vague, but possibly real
components.
We further performed DFT calculations of the electronic structure in CrB2 taking
into account the experimentally observed values for the spin spiral propagation vector
and the size of the ordered moment. We found five bands to cross the Fermi energy
yielding five FS sheets and ultimately resulting in a manifold of observable dHvA
frequencies. Additionally, the expected signal strengths of frequency component were
estimated from our calculations.
Although several well matching candidates are found, the variety of options inhibits
an unambiguous allocation of experimentally observed frequencies to specific orbits
on calculated FS sheets. Despite its richness, the spectrum deduced from calculations
does not provide possible orbits for all experimentally observed frequencies. Moreover,
we find strong discrepancies regarding the signal strength of experimental and
theoretical orbits. While we did not observe the calculated frequency branches
yielding the largest signal strength estimate, we obtained well-matching candidates
for frequency components with a low signal strength estimate. Finally, the role of
magnetic breakdown as well as an apparent mass enhancement of orbits on Cr-d-like
bands raise questions that cannot be resolved within this work.
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The presented results constitute a considerable advance of the experimental and
theoretical state of the art regarding the determination of the CrB2 Fermi surface. Yet
there is plenty of room for further improvements. Our studies suggest that, compared
to previous work, the observation of additional dHvA components was enabled by
larger field magnitudes rather than by lower temperatures. Still, a combination
of fields above 15T with temperatures below 100mK may allow for observation of
further dHvA components. Moreover, the studied angular range should be extended
and dHvA components should be tracked along symmetry planes orthogonal to
the basal plane. The theoretical approach must be adjusted to include spin-orbit
interactions and, for direct comparison, electronic structure calculations for the case
of a triple-k spin arrangement should be carried out. A combination of the proposed
experimental and theoretical enhancements may provide a conclusive picture of the
real FS in CrB2 which will constitute a milestone on the road to a comprehensive
understanding of weak itinerant antiferromagnetism.

6.2 MnSi
For the investigation of MCAs in MnSi, we pursued two different experimental
approaches. First, longitudinal CuBe cantilevers and 3He-inserts allowing for tem-
peratures down to 0.3K were combined with a 2D vector magnet providing fields
up to 4.5T in all directions. A thorough Hall probe investigation was performed to
map out the field centre and to obtain an estimate of field gradients present in the
setup. Second, torsional silicon cantilevers incorporated in a commercially available
setup were employed at temperatures down to 2K and fields up to 14T. Several
issues regarding calibration, gravity and other spurious influences were resolved. We
further established a method for high-precision alignment of single crystals with
spherical shape on the cantilever sensors.
Rotation scans in the field-polarized state allowed us to extract anisotropy constants
in leading and next-to-leading order. Regarding their evolution with field and tem-
perature, we encountered surprising non-monotonic behavior even involving a sign
change of K1 at high temperatures and low field magnitudes. In order to assess
our experimental results, we incorporated misalignment, field gradients and the
unknown chirality of our samples in numerical simulations. Moreover, we estimated
the influence of angular distortion. While K1 is fairly robust against perturbations,
K2 exhibits large variations with respect to experimental uncertainties and data
evaluation. Within the precision of our measurements, a cubic shape anisotropy
showed no noticeable effect.
Our experiments confirm that torque magnetometry is a powerful tool for studies
of magnetocrystalline anisotropy in collinear spin systems. The reported results
constitute the first direct measurements of anisotropy constants in bulk MnSi. While
a direct comparison is not possible, the values are on the same order of magnitude as
those reported from indirect measurements. Still, we encounter a number of issues
that may be resolved in future studies. For instance, chirality and next-to-leading
or higher order anisotropy constants may be studied more precisely by measuring
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the torque during rotations in a different symmetry plane. The shape anisotropy
may be investigated by measuring cuboids and platelets. Further, the behavior at
elevated temperatures may be studied at larger field magnitudes. A comprehensive
understanding of the field and temperature evolution of anisotropy constants requires
theoretical efforts involving a consideration of subtle changes of the multi-sheet Fermi
surface.
Experiments in the non-collinear magnetic phases of MnSi comprised rotation and
field scans. In both types of measurements we observed large hysteresis which hints
at the presence of long-living topologial defects in the material. From rotation
scans, we inferred that the anisotropic magnetization is dominated by an effective
anisotropy potential for the helical pitch or lattice normal vector in the conical and
skyrmionic phases, while in the helical state M⊥ is dominated by anharmonic effects
and, close to Hc1, domain population effects. Moreover, rotation scans addressing
purely the helical phase reflected the low symmetry of the crystal structure. In
field scans, we observed signatures of all field-driven magnetic phase transitions in
MnSi. An asymmetry between opposing sweep directions is observed which’s origin
remains unresolved. The same holds true for remarkable alterations of the behavior
at elevated temperatures.
In contrast to the field-polarized phase, interpreting measurements in the modulated
phases is a more challenging task. In particular, huge theoretical efforts are necessary
to enable quantitative analysis of our data. We conclude that torque magnetometry
exhibits a rather limited capability for tackling the anisotropic magnetization in
non-collinear spin systems. Still, the information gained from torque measurements
may complement data obtained with other techniques in order to facilitate a full
comprehensive picture.
Aside from the improvements suggested above, several technical issues may be re-
solved in future studies, a most urgent problem being angular distortion which occurs
in both employed setups. Several possibilities to fix this issue have been proposed.
Given the good results as well as the prospects pointed at, the work presented in this
thesis may serve well as a groundwork for the thorough investigation of the subtle
role of magnetocrystalline anisotropies in the material class of helimagnets.
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alignment

This chapter is dedicated to additional information concerning the methodology
throughout our work. In Sec. A.1 we give the equations employed for the calculation
of longitudinal bending of a cantilever as well as the reduction factor for electrostatic
calibration. The beam width uncertainty of wet-etched CuBe cantilevers is discussed
in Sec. A.2. The generic calibration of the CuBe cantilevers utilized in the high field
magnet laboratory in Nijmegen is presented in Sec. A.3. We show further results of
the Hall probe investigation of the deployed vector magnet in Sec. A.4. Finally, we
present x-ray scattering patterns obtained in the Laue camera during the alignment
of spherical samples in Sec. A.5.

A.1 Calculation of cantilever bending lines and the
reduction factor β

In Sec. 3.1.1, we present numeric values of the reduction factor beta for electrostatic
calibration of longitudinal CuBe cantilevers. In Sec. 3.3.3, we estimate the maximum
misalignment angle γr of a torsional silicon cantilever by calculating its longitudinal
bending line. Both calculations were done following a mathematical framework
adapting elasticity theory in order to address micromechanical cantilevers. Here,
we briefly review the equations used for the purposes mentioned above. The full
deduction can be found in [Wil04].
The position dependent deflection D(x′) of a uniform beam due to a bending moment
M(x′) is given by

∂2D(x′)
∂x′2

= −M(x′)
EI

(A.1)

for small deviations. Here, E is the Young’s modulus of the material and I is the
areal moment of inertia. We consider a principal cantilever shape with rectangular
paddle and beams as depicted in Fig. 3.3 a). We denote width and length of the
beams by w and l, width and length of the paddle by W and L and the cantilever
thickness by t. The areal moment of inertia is then given by Ib = w · t3/12 for a
beam and Ip = W · t3/12 for the paddle. The two beams can be treated as one beam
with width 2w.
In order to determine the reduction factor β, we need to consider different bending of
the lever due to a force and due to a torque. In [Wil04], an additional differentiation
is made between a torque or force acting on a single point at the centre of the paddle
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and the same torque or force acting distributed over the whole paddle area. Here, we
restrict ourselves to the case of torques and forces acting on the paddle centre since
this best resembles our experimental situation. To obtain the bending lines, Eq. A.1
must be integrated twice. Thereby we must differentiate between the beams and
the parts of the paddle closer and farther away from the fixed end than the paddle
centre, i.e.

D(x) =


D1(x) , 0 ≤ x ≤ L/2
D2(x) , L/2 ≤ x ≤ L

D3(x) , L ≤ x ≤ L
(A.2)

where x is zero at the free end of the cantilever and L = L+ l is the total length of
the cantilever. For a force F acting only on the centre of the paddle we obtain

D1(x) = F

EIb

[
x3

6 −
Lx2

4 − Llx2 + L
3

3 −
LL2

4

]
, (A.3)

D2(x) = F

2EIp

[
x3

3 −
Lx2

2 + L3

6

]
+ F

2EIb

[
−lLx+ 2L3

3 − LL2

2 − L3

6

]
, (A.4)

D3(x) = F

2EIp

[
−L

2x

4 + 5L3

24

]
+ F

2EIb

[
−lLx+ 2L3

3 − LL2

2 − L3

6

]
. (A.5)

These equations have been used for the estimation of the angle γr in Sec. 3.3.3. From
the bending lines, an expression for the mean deflection can be derived. Comparing
the mean deviation resulting from a point force F and a point torque τ = F (l+L/2)
yields the expression for the reduction factor:

βp = 17IbL3 + 32Ipl(4L2 − 2LL+ L2)
8(L/2 + l)(24IplL+ 7IbL2) . (A.6)

In the case of distributed torque and force, β is given by

βd = 2(3IbL3 + 5Ipl(4L2 − 2LL+ L2))
15(L/2 + l)(4IplL+ IbL2) . (A.7)

For the cantilever dimensions employed in the present work, the maximum difference
between βp and βd is less than 2.5%.
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Figure A.1: Microscope images showing the beams of CuBe cantilevers prepared at TUM
via wet chemical etching. The displayed scales denote the targeted beam widths.

A.2 Beam widths of CuBe cantilevers prepared by
wet chemical etching

As mentioned in Sec. 3.1.1, the CuBe cantilevers employed in our experiments at
TUM were fabricated from a foil by wet chemical etching. This process allowed
poor control of the beam width d as shown in Fig. A.1. The microscope images
depict beams of cantilevers that have been used for anisotropy measurements. The
cantilever shown in a) has a targeted beam width of 600 µm, for the sensor in b) d
was set to 200µm. In both images we notice distinctly smaller widths of the finished
beams. According to calculations, the reduced beam widths change the reduction
factor β for electrostatic calibration by less than 1.5% in both cases.
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Figure A.2: Generic calibration for the cantilevers used at HFML. Change in capacitance
is plotted versus the square of the voltage applied to the plates. The x in the index of the
calibration constants K corresponds to the beam width d as defined in Fig. 3.3.

A.3 Generic calibration of cantilevers at HFML
Due to time constraints, no electrostatic calibration was performed during our
measurements at HFML. Fortunately, the absolute torque values are not important
for the interpretation of our experiments. Nevertheless, there is a generic calibration
for the HFML type of cantilever as shown in Fig. A.2. Following Eq. 3.10, the
deviation of capacitance C from its zero-voltage value C0 is plotted versus the square
of the applied voltage V . Black solid lines represent measured data, linear fits are
depicted as gray dashed lines. The calibration constants calculated from the fit
results are given in the figure. Here, x denotes the beam width of the respective
cantilever. As stated in the main text, the given values were not used for data
evaluation.
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A.4 Hall probe measurements within the AMI vector
magnet

During the Hall probe measurements described in Sec. 3.3.1, we performed rotations
and sweeps of the magnetic field as during our measurements. The results are
described in this chapter. None of the issues discussed in the following sections was
reflected to a notable level in our measurements.

A.4.1 Rotations
Hall resistances recorded during field rotations are shown in Fig. A.3. Graphs on the
left show data where the sensor for horizontal field was placed in the split coil field
centre, graphs on the right show data where the vertical field sensor was centered
in the solenoid field. Note that vertical and horizontal field centres are not at the
same position. The magnetic field magnitude was set to 0.5T, 1T and 4.5T in the
top, middle and bottom graphs, respectively. Alike our sample measurements, we
ramped the field up to the desired value, then rotated the field consecutively 720° in
positive sense, 720° in negative sense and 720° in positive sense again.
All recorded curves resemble the expected sine with a 90° phase shift between y-
and z-coil. The amplitudes scale linearly with the field magnitude. Amplitudes are
slightly decreased for sensors not located in the field centre. At B = 0.5T we observe
an angular offset of ∼7° on the y-coil, i.e. for horizontal field, between positive and
negative rotation sense. No such offset is visible at higher fields in Fig. A.3, yet
at 1T an offset of ∼3° is still present. However, an effect of this offset could not
be recognized in our measurements. At 4.5T slight irregularities on both coils are
vaguely visible around 0° and 180°. We review these deviations closer in the following
figures.
Figures A.4 and A.5 show several blow-ups of Fig. A.3 e) and f), respectively. Graphs
in a) cover the full range depicted in Fig. A.3, graphs b) to e) focus on smaller
segments as marked in a). All blow-ups illustrate deviations of the recorded Hall
resistances from the ideal sine shape in the region where the solenoid field is close to
zero and the split coil field is close to an extremum. The Hall sensor probing the split
coil field is depicted in Figs. A.4 b)-c) and A.5 b)-c). When centred in the split coil, it
displays a small hysteretic drop of the Hall resistance near the extremum. The drop
corresponds to a field drop of ∼100mT over an angular range of ∼10°. When the
sensor is not located in the field centre, we merely observe a drop in the shape of two
sharp peaks at the edges of the hysteretic region. The Hall sensor probing vertical
field is depicted in Figs. A.4 d)-e) (not field-centred) and A.5 d)-e) (field-centred).
In both cases it exhibits a small hysteresis near zero field. Both angular range and
the field gap of ∼100mT match the hysteretic drop of the split coil.
While the discussed observations imply a substantial deviation of the magnet system
from its ideal behavior, we find no signatures in our measured signal that could be
attributed to these deviations. We thus ignore the disturbances and assume ideal
magnet behavior in our data analysis.
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Figure A.3: Hall resistance measured during field rotations at various fields.
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Figure A.4: Hall resistance measured during field rotations. b)-e) show magnifications of
the sections marked in a).
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Figure A.5: Hall resistance measured during field rotations. b)-e) show magnifications of
the sections marked in a).
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Figure A.6: Hall resistance recorded during field sweeps in a) y-direction and b) z-direction.

A.4.2 Field sweeps

Field sweeps with both coils were performed while centering the Hall sensor for the
respective direction in the corresponding field centre. As for our sample measurements,
one measurement consists of six consecutive sweeps where the first one starts from
zero towards positive fields and the last one runs from positive fields to zero. In
between we sweep the field twice from positive to negative values and back. For the
Hall probe investigation, the full range of the split coil of 4.5T was exploited. The
results are shown in Fig. A.6 where the top graphs depict the Hall sensor located
in the respective field centre and the bottom graph illustrates the respective other
one. In the left graphs, the horizontal Hall sensor is centred, on the right the vertical
sensor is centred. The green lines in Fig. A.6 a) and b) represent linear fits to the
Hall resistance. While a slight deviations from perfect linearity may be recognized,
the overall shape of the Hall resistances is grasped very well by the fits for both coils.
From Fig. A.6 c) and d) we observe that both Hall sensors are also influenced by
a field perpendicular to their sensitive direction. However, the amplitude at 4.5T
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A Magnets, cantilevers and alignment

corresponds to a field of roughly 200mT. Considering contributions due to imperfect
alignment, the remaining signal may be deemed negligible.
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A.5 X-ray images of a spherical MnSi sample in the Laue camera

Figure A.7: X-ray images obtained in the Laue camera from the spherical MnSi sample.
Images on the left show the sample on the goniometer, images on the right the sample
on the cantilever. The top images correspond to the gluing process to the longitudinal
cantilever, the bottom images to the torsional one.

A.5 X-ray images of a spherical MnSi sample in the
Laue camera

As illustrated in Fig. 3.11, the sample was first oriented with respect to the x-ray
beam while being attached to the goniometer and then glued to a cantilever. X-ray
images were recorded in both situations as depicted in Fig. A.7. Images on the left
side correspond to samples mounted on the goniometer, images on the right show
samples glued to the cantilever. The top images were taken when mounting the
sample to a longitudinal CuBe cantilever, the bottom images refer to the usage of a
torsional cantilever. Due to the different projection axes of the two cantilever types,
the orientation on the goniometer was chosen differently. Slight deviations of the
scattering patterns on the right compared to the left ones are visible. In particular,
both samples appear to have tilted around the [11̄0]-direction during transfer from
goniometer to cantilever. However, the tilts amount to less than 1.5° in both cases
and are thus of minor significance for our measurements.
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B DFT calculations on CrB2

B.1 Electronic structure of non-magnetic CrB2

We performed electronic structure calculations for the paramagnetic state of CrB2 to
assess the sensitivity of the Fermi surface to magnetic order. The same software and
parameters as for calculations in the cycloidal state were used. Figure B.1 shows
the resulting density of states (DOS). The black line denotes the total DOS, the
red, green and blue lines represent the DOS arising from Cr-d, B-s and B-p states,
respectively. The results look fairly similar to earlier works [Bra13a, Liu75]. At the
Fermi level, set to zero in this plot, the largest contribution originates from Cr-d
states. While B-p states still make a notable contribution, the DOS due to B-s states
is negligible.
The band structure of the paramagnetic state is shown in Fig. B.2. The point size
represents the B-p character of the bands. In full agreement with Ref. [Bra13a], we
find that two bands crossing the Fermi level near the A-point exhibit dominant B-p
character, while in the rest of the Brillouin zone, bands exhibit mostly Cr-d character
near EF.
We present the Fermi surface sheets of all four contributing bands in Fig. B.3. The
pockets corresponding to the B-p-like bands are visible as spheres in Fig. B.3 c)
and d). Here, we find a single copy of this sphere centered around the A-point
for each band. In the spin spiral state reported above, we find two copies for each
band. These are shifted away from A along the q110-direction by ±|q|/2, i.e., in the
ferromagnetic state with |q| = 0, the spheres are still degenerate and centered on
the A-point, but with increasing length of the ordering wave vector, they are shifted
apart from each other. In the collinear antiferromagnetic state with |q| = 0.5 |q110|,
they reside close to the H-point, at |q| = 1 |q110| the spheres are again degenerate
and centered around M.
The B-p-like spheres are shifted, but not altered significantly in size or shape when
introducing magnetic order. In contrast, the remaining Fermi sheets in Fig. B.3 a)
and b) as well as the K-centered pocket in c) are of predominantly Cr-d character.
These pockets show no clear similarity to the Fermi surface sheets obtained for the
magnetically ordered state.
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Figure B.1: Density of states (DOS) of paramagnetic CrB2. The main contribution
stems from Cr-d states (red). B-p also contribute to a notable extent while B-s states are
negligible.
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Figure B.2: Band structure of non-magnetic CrB2. The point size resembles the B-p
character. In total, four bands cross the Fermi energy. Dominant B-p character is found
for two of them close to the A-point. The other bands have predominantly Cr-d character.
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B.1 Electronic structure of non-magnetic CrB2

Figure B.3: Fermi surface resulting from the non-magnetic band structure calculation
as separate bands in a) - d) and combined in e). The colors correspond to the bands
presented in Fig. B.2. The pockets with predominant B-p character are the spheres around
the A-points in c) and d). The FS sheets in e) are cut along q100 for clarity. f) Symmetry
points of the Brillouin zone.
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B DFT calculations on CrB2

Figure B.4: Fermi surface calculated for a simple spin cycloid in CrB2. The sheets arising
from all five contributing bands are included. Green arrows illustrate the direction of the
propagation vector. a) - b) FS sheets in the full RUC from different perspectives. c) FS
sheets are cut along q110. d) FS sheets are cut orthogonal to q110.

B.2 Alternative representation of the CrB2 Fermi
surface

In Ch. 4 the results of electronic structure calculations for a simple spin cycloidal
state of CrB2 have been presented. The Fermi surface sheets arising from individual
bands were plotted separately in Fig. 4.13 to allow for a thorough examination of
individual sheets. However, the interplay and possible contact points between the
sheets of separate bands was merely sketched by means of Figs. 4.19 and 4.20.
Here, further representations of the Fermi surface are shown for the sake of a more
complete picture. In Figs. B.4 and B.5 the Fermi surfaces originating from all
five bands are plotted together in the reciprocal unit cell and the Brillouin zone,
respectively. The sheet colors are chosen analogous to the representation in Fig. 4.13.
Green arrows represent q110/2. The sheets are plotted in the full cells from two
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B.2 Alternative representation of the CrB2 Fermi surface

Figure B.5: Fermi surface calculated for a simple spin cycloid in CrB2. The sheets arising
from all five contributing bands are included. Green arrows illustrate the direction of the
propagation vector. a) - b) FS sheets in the full BZ from different perspectives. c) FS
sheets are cut along q110. d) FS sheets are cut orthogonal to q110.

different perspectives in parts a) and b) of the respective figures. In parts c) and
d), the sheets only fill half the cell. They are cut along q110 in c) and orthogonal to
q110 in d). A representation of separate bands in the Brillouin zone appears useful
only for the complex FS sheets arising from band 21. A respective illustration is
presented in B.3.
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B.3 Extremal orbits on the CrB2 Fermi surface
In Sec. 4.4.4 we discussed the implications of the calculated CrB2 Fermi surface for
the dHvA effect. Observable oscillations in the magnetization arise from extremal
charge carrier orbits on single or multiple FS pockets. Some of the single sheet
orbits discussed in Sec. 4.4.4 are illustrated in Fig. B.6. The Fermi surface sheets
of individual bands are plotted separately for clarity with the same coloring as in
Fig. 4.13. The green arrows represent the direction of the propagation vector. In
Fig. B.6 a) - d) the yellow orbits correspond to ϕ = 0°. The green orbits correspond
to ϕ = 90° which in a three domain configuration discussed in Sec. 4.4.4 is mapped
back to ϕ = 30° with a propagation vector shifted by 120°. The same holds for the
red and blue orbits in Fig. B.6 e). In Fig. B.6 c), orbits yielding dHvA frequencies
above the experimental threshold of 5 kT were excluded for clarity.
For band 19 in Fig. B.6 a) and band 23 in Fig. B.6 e) we observe a single extremal
orbit as discussed by means of Fig. 4.14. Similarly, single extremal orbits run on
the spherical and dumbbell-shaped pockets of band 22 in Fig. B.6 d). For band 20
in Fig. B.6 b) we find a single extremal orbit in one direction and several, partly
degenerate orbits in another direction. This is reflected in Fig. 4.14 by the single
continuous frequency with several split-offs. Similarly, the elongated M'-centered
pocket of band 22 exhibits a single orbit in one direction but multiple orbits for the
orthogonal field direction. For band 21 in Fig. 4.13 c) we find a large number of orbits
for both displayed field directions. For a more lucid illustration of several orbits on
band 21 discussed with respect to Figs. 4.16 and 4.18, we turn to a representation in
the Brillouin zone.
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B.3 Extremal orbits on the CrB2 Fermi surface

Figure B.6: a)-e) Fermi surface sheets calculated for CrB2 in the RUC together with
extremal orbits. Green arrows represent q110/2. f) Directions (red arrows scaled to half
length) and symmetry points in the RUC.
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B DFT calculations on CrB2

Figure B.7: a) Fermi surface of band 21 in the BZ together with selected extremal orbits.
b) Symmetry points in the Brillouin zone. Green arrows indicate the direction of the
propagation vector.

In Fig. B.7 a) the FS sheet resulting from band 21 is shown within the Brillouin
zone. The green arrow depicts q110, i.e., the field direction for ϕ = 0°. Selected
extremal orbits are displayed for the experimental angle ϕ = 30°. The orbits depicted
in blue run around the spherical FS pockets. They correspond to the frequencies
colored blue in Fig. 4.16 and masses depicted as blue triangles in Fig. 4.18. The orbit
depicted in green is centered around M and results in frequencies colored green in
Fig. 4.16 and masses represented by the green triangles in Fig. 4.18. Note that said
values in Figs. 4.16 and 4.18 also include a copy of the green orbit centered on the
equivalent M-point on the left front BZ surface. The remaining orbits in Fig. B.7 a)
correspond to frequencies depicted gray in Fig. 4.16 and represented by triangles in
Fig. 4.18. The colors of the corresponding triangles match the colors of the orbits in
Fig. B.7 a) except for the red orbit which is colored cyan in Fig. 4.18. Again, several
copies of these orbits exist within the BZ which are not shown in the plot.
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B.4 Resolution limit of the DFT calculation

Figure B.8: Fermi surface sheet arising from band 21. a) Strong interpolation after FS
calculation. b) Magnification of a) with focus on a small, disconnected junction. c) No
interpolation after FS calculation. d) Magnification of c) with focus on the same junction
as in b).

B.4 Resolution limit of the DFT calculation
In Sec. 4.5 we argued that the low frequency branch at 5 - 15T contained in the
SKEAF output is not reliable due to the limited resolution of the FS calculation.
We illustrate this in Fig. B.8. The FS sheet of band 21 is displayed with strong
interpolation in a) and b) and without interpolation in c) and d). Comparing a) and
c), no pronounced difference is found in the overall shape of the FS sheets. However,
comparing the magnifications in b) and d) we note a distinct difference. Extremal
orbits around the narrow part of the FS pocket in b) can easily be constructed for
which there is no clear evidence in the original FS calculation.
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C Torque in the field-polarized phase
of MnSi

In this appendix we provide additional information on the torque investigations on
MnSi in the field-polarized state. Section C.1 covers general topics, Secs. C.2 and
C.3 are dedicated to specific information concerning rotating sample and rotating
field setups, respectively.

C.1 General
We briefly review the benefit of including the K2-term in our fit procedure in the
following section.

C.1.1 Benefit of including the K2-term in the fit function
In our discussion of rotation scans in the field-polarized phase, we reach the conclusion
that the second anisotropy K2 can not be determined reliably from our experiments.
For the determination of the high temperature scaling factor of PPMS data on the
MnSi sphere, we set K2 to zero manually to avoid unwanted effects due to this
parameter. Regarding AMI data, the behavior of K2 depends mainly on the choice
of evaluation method rather than on our experimental data. This raises the question
if including the K2-term in the fit function during evaluation is reasonable at all.
To address this question, we directly compare the result of a fit with K2 as free
parameter to that of a fit with K2 = 0. In Fig. C.1 we show the torque curve
measured at B = 1T and T = 2K as black line in both panels. The green line in
panel a) represents a fit including the K2-term as described in the main text. The
red line in panel b) depicts a fit where K2 has been fixed to zero. Evidently, the
inclusion of K2 remarkably improves the match of fit function and experimental data.
Due to this distinct improvement, we choose to stick with the evaluation procedure
including K2 as fit parameter.
Despite the excellent agreement of data and fit, we have to be aware that K2 may
actually differ substantially from our fitted values and the deviation of data and fit in
Fig. C.1 b) may be caused by some perturbation not related to magnetic anisotropy.
In particular, this imposes an additional uncertainty on the values obtained for K1.
We compare values for K1 obtained from fitting with and without the K2-term over
the full experimental temperature and field range and find substantial difference below
∼20K. Qualitatively, we observe that the low temperature values of K1 at different
field magnitudes lie substantially closer together when excluding the K2-term from
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Figure C.1: Torque data (black lines) measured at B = 1T and T = 2K together with
fits (red and green lines) according to Eq. 5.1. a) K2 is included as fit parameter. b) K2 is
fixed to zero for the fit.

the fit. Quantitatively, values of K1 are larger by up to 28% when neglecting the
K2-term during evaluation for fields up to 4T. At higher fields, K1 is larger by up
to 14% when including the K2-term. This observation relates to the sign change of
fitted values for K2 in the field magnitude dependence.

C.2 Rotating sample setup
In Sec. C.2.1 we discuss the mismatch of measurements at high and low temperature
measurements on the spherical sample and explain our approach to combine both
regimes. Section C.2.2 is dedicated to the additional curve correction performed for
data on the cubic sample. We present the measurement errors in the temperature
dependence of K1 and K2 in Sec. C.2.3 and the torque curves acquired on the cubic
sample in Sec. C.2.4.

C.2.1 Scaling of high-temperature data from the spherical
sample

During acquisition of torque data from the spherical sample, we encountered an
irregularity of unknown origin. While being completely consistent apart from that,
data acquired before and after a specific date differed from each other by a fixed
factor of ∼7/8. As a consequence, data acquired above and below 16.5K differed by
the same factor. This is illustrated in Fig. C.2 a) by means of K1 which exhibits
a distinct kink between 16K and 17K (arrows). As further illustration, the mean
curves of zero field rotation scans at all temperatures above and below 16.5K are
plotted in Fig. C.2 b) as gray and black line, respectively.
The red horizontal lines in Fig. C.2 b) denote our estimate ±ΓG of the maximum
torque exerted on the cantilever by the sample weight. This estimate is obtained via

Γ = r× FG (C.1)
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Figure C.2: a) Anisotropy constants K1 extracted from data on the spherical sample for
various fields plotted versus temperature. The arrows mark a distinct kink between the
data points at 16 and 17K. b) The black and gray lines represent the mean curves of all
zero-field measurements below and above 16.5K, respectively. The value ΓG marked by
the red lines corresponds to the maximum torque exerted on the cantilever due to the
sample weight. c) and d) show the derivative of K1 with respect to the temperature before
and after rescaling the high temperature data. While c) shows a distinct outlier between
16 and 17K, the derivatives in d) exhibit smooth curves for all fields. e) Temperature
evolution of anisotropy constants K1 at B = 1T and B = 4T. Faint lines and symbols
represent high-temperature data scaled to match low-temperature data.
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C Torque in the field-polarized phase of MnSi

where r is the vector from the point where the sample is glued to the cantilever to the
samples centre of mass and FG is the weight force acting on the sample. Obviously,
Γ is maximal at r ⊥ FG and thus

ΓG = |r| · |FG| ≈ rsphere ·msphere · g (C.2)

with mass msphere ≈ 30mg and radius rsphere ≈ 1.05mm of the sample. Strikingly,
the zero field torque curve exhibits extrema very close to ±ΓG for temperatures
below 16.5K. In addition, the low temperature data matches well with data obtained
on the cubic sample where no such irregularity occurred. We thus assume the low
temperature data to be measured correctly and scale the high temperature data to
achieve a consistent data set. However, as we have no explanation for the scaling, this
assumption remains somewhat doubtful and must be kept in mind for a conclusive
discussion of our data.
In order to determine the scaling factor, we considered the derivative of K1 with
respect to temperature while setting K2 = 0 during evaluation. This is in equal
shares due to the facts that K2 is not a reliable quantity and that it is about to
approach zero in the temperature region of interest. The discontinuity of K1 is well
visible in its derivative as illustrated in Fig. C.2 c) (arrow). By manual adjustment,
we find that the scaling factor 7/8 minimizes the discontinuity to a satisfying extent.
This is illustrated in Fig. C.2 d) where no discontinuity in the derivative of K1 can be
recognized by the bare eye. The same holds true for K1 which is shown in Fig. C.2 e).
The semi-transparent lines and symbols represent the scaled values which yield a
continuous temperature evolution.

C.2.2 Node-correction of data from the cubic sample
In Sec. 3.3.2 we reported that the rotating sample setup yields a finite torque signal
even for an empty cantilever. In Fig. 3.7 a) we showed a somewhat two-fold angular
variation of this signal. In principle, this angular dependence is spurios to our data
and should be removed if possible. In practice, its influence is small enough that it
can be neglected in the case of the spherical sample. However, the cubic sample’s
volume is smaller by a factor of ∼5 which makes it necessary to account for the
sensors angular dependence to be considered. In particular when the torque signal
is decreased by elevated temperatures, a proper separation of sample and sensor
induced torque is crucial. Here, we describe our procedure for the estimation of the
sensor’s contribution to our angle dependent torque signal.
Figure C.3 a) shows torque curves measured on the cubic sample at 1T and various
temperatures from 2K up to 23K. The zero field curves and the mean values have
already been subtracted as described in Sec. 5.2.1. For undisturbed measurements, the
torque curves of different temperatures are expected to intersect in nodes positioned
exactly at Γ = 0. A blowup of the area marked by the black rectangle in Fig. C.3 a)
is shown in panel b). Black circles denote nodes which are positioned at finite torque.
We attribute these finite torque values to the two-fold symmetric signal arising
already from the empty cantilever.
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Figure C.3: a) Torque curves measured on a cubic sample in the rotating sample setup
at B = 1T and various temperatures between T = 2K and T = 23K. The zero-field curve
and mean value have already been subtracted. b) Magnification of a). The black circles
denote nodal points of torque curves at various temperatures. c) Nodal points in the whole
angular regime. The red line represents a sine-shaped fit. d) Torque magnitude measured
at nodal point positions relative to the torque value of nodal points versus temperature.
The red line represents a fit (for function see main text).

Figure C.3 c) shows all nodes observed in the full angle range as black circles. Similar
to Fig. 3.7 a), their distribution implies a two-fold angular dependence. In order to
model the cantilevers contribution, we apply

Γnode(ϕ) = a1 · sin[2(ϕ− a2)] + a3 (C.3)

as a fit function to the nodes. The fit is shown as red line in Fig. C.3 c). Before
the resulting torque curve can be subtracted from our measurements, we need to
determine the temperature reduction factor R(T ) since the cantilever’s contribution
to the angular dependent torque decreases at high temperatures. In order to include
this decrease in our model, we interpolate the torque measured at a given temperature
to the node positions ϕnode. We divide the obtained values by the corresponding
torque values Γnode(ϕnode) of the fit to the nodes and form the average value of this
ratio for all nodes. The resulting values are plotted versus temperature in Fig. C.3 d)
as black circles. To estimate the reduction factor, we apply

R(T ) =
[
exp

(
T − b1

b2

)
+ 1

]−1

(C.4)
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Figure C.4: Anisotropy constants at magnetic fields from B = 0.65T to B = 4T versus
temperature. a) shows K1, b) shows K2. c) and d) show blow-ups of a) and b), respectively.

as a fit function. The fit is depicted by the red line in Fig. C.3 d). Finally, we
subtract Γnode(ϕ) ·R(T ) from our measured torque curves to account for the sensor’s
influence.
A look at Fig. 3.7 a) shows that the torque induced by the cantilever changes with
field magnitude. The described correction process was thus performed separately for
the temperature series at 1T and 4T. The series of measurements at 2K and various
magnetic fields was not corrected for the sensor’s influence since the sample’s torque
signal at this temperature is large enough to neglect the sensor’s contribution.

C.2.3 Measurement errors in the temperature dependence of K1
and K2

Error bars have been left out of the presentation of the temperature evolution of K1
and K2 in Fig. 5.5 c) and d) for clarity. To convey an impression of the temperature
dependence of the errors displayed in Fig. 5.4 c) and d), we present the respective
graphs including error bars in Fig. C.4 a) and b). Blow-ups of the high-temperature
regime are shown in Fig. C.4 c) and d). As described in the main text, these error
bars include fits’ 95% confidence bounds, a relative error of 5% and a static error of
5 J/m3 for K1 and 10 J/m3 for K2, respectively. The higher static error for K2 is owed
to the weaker influence of K2 on the measured torque compared to K1 (cf. Sec. 2.1.2).
Additional errors may arise from angular distortion (cf. Fig. 5.2), misalignment (cf.
Sec. 5.3.3) and unclarified events scaling the absolute values (cf. Sec. C.2.1). Due to
these influences and the complex shape of the fit function, outliers are still possible
as we see at B = 2T and T = 31K in Fig. C.4 d).
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Figure C.5: Torque curves measured on the cubic sample in the rotating sample setup.
a) Torque at T = 2K and magnetic fields from B = 0.65T to B = 14T. b) Torque at
T = 2K and B = 1T. The dashed black line denotes a fit yielding K1 and K2. c) Torque
at B = 1T and selected temperatures from T = 2K up to T = 35K. d) Torque at B = 1T
and temperatures of T = 24K and T = 29K. Dashed lines denote fits.

C.2.4 Torque data from the cubic sample
In Sec. 5.3.1, we show anisotropy constants K1 and K2 extracted from rotation
scans on a cubic sample. Here we present the underlying torque curves for various
fields and temperatures. In Fig. C.5 a) we show the field magnitude dependent
torque curves at T = 2K and fields from 0.65T up to 14T. The curve at B = 1T is
additionally shown in Fig. C.5 b) as solid line with the corresponding fit shown as
dashed line. Panels a) and b) constitute a cubic sample analogue to Fig. 5.4 a) and
b) in the main text and yield the same key observations as described in Sec. 5.3.1.
Likewise, Fig. C.5 c) and d) constitute the cubic sample analogue to Fig. 5.5 a)
and b). In Fig. C.5 c), a representative set of torque curves is shown at B = 1T
and temperatures from 2K up to 35K. The curves at T = 24K and T = 29K are
additionally shown as solid lines in Fig. C.5 d) together with the corresponding fits
depicted by dashed lines. The temperature dependent torque data on the cubic
sample reproduces the results obtained from the MnSi sphere and described in
Sec. 5.3.1.

C.2.5 Phenomenological fit to the temperature evolution of K1

In Fig. 5.10 we show fits to the temperature evolution of the anisotropy constant K1
experimentally obtained from the PPMS setup for B = 1T and B = 4T. Here, we
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Figure C.6: Temperature evolution of anisotropy constant K1 at a) B = 0.65T, b)
B = 0.8T, c) B = 1T, d) B = 2T, e) B = 3T and f) B = 4T. Solid lines denote fits
according to Eq. 5.8.

present the same graphs for all six field magnitudes at which temperature dependent
measurements were recorded. The graphs are shown in Fig. C.6. Fit function and
results are discussed in Sec. 5.3.4.

C.3 Rotating field setup

In this section we present some measurements on the MnSi sample acquired in
the rotating field setup. In Sec. C.3.1 we show exemplary measurements on a
cubic sample. Sections C.3.2 and C.3.3 are dedicated to flaws of the capacitive
readout and rotational hysteresis, respectively. We present additional data on the
temperature dependent torque in Sec. C.3.5 and the field magnitude dependent
anisotropy constants in Sec. C.3.4. The fit parameters related to field gradients are
presented in Sec. C.3.6 and physically interpreted in Sec. C.3.7. Finally, we compare
measurements and simulation at different misalignment angles γr in Sec. C.3.8.
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Figure C.7: Torque curves measured on the cubic sample in the rotating field setup at
T = 1.5K and magnetic fields of B = 1T and B = 4T.

C.3.1 Measurements on a cubic sample

As described in Sec. 3.3.3, the alignment of cantilever and magnet as well as the sample
position relative to the field centre were poorly controlled during our measurements
on the cubic MnSi sample in the rotating field setup. Moreover, the probe utilized
for these measurements featured a magnetic capillary as stated in Sec. 3.3.1. As a
result, torque curves recorded in this configuration were strongly deformed. This
is examplarily shown in Fig. C.7 for measurements at a temperature of T = 1.5K
and field magnitudes of B = 1T (black) and B = 4T (red). Solid lines represent
rotations in the positive rotation sense, dashed lines depict rotations in the negative
rotation sense.
The torque curves recorded at B = 1T distinctly deviate from the ideal shape. This
may stem from the poor position and orientation control of the sample. In particular,
a significant vertical distance between sample position and field centre may impose
severe field gradients on the sample. Yet the principal shape of the expected pattern
is still maintained at B = 1T. In contrast, the curve recorded at B = 4T is altered
to an extent that renders evaluation impossible. In particular, the minima at ∼160°
and ∼340° are lifted so much that they are no longer the global minima. These
are now represented by the minima at ∼80° and ∼260° which have been lowered.
However, the global maxima at ∼20° and ∼200° remain in place. As a consequence,
the sign changes between the global extrema and between the local extrema no longer
correspond to the [001]- and the [110]-directions. We suggest these deformations to
be caused by stronger vertical field gradients at this larger field magnitude.
In addition to the deformation of the principal shape, a hysteretic eye has opened up
in the region of the now local extrema. We find no evidence for such a large rotational
hysteresis in the field-polarized state with any of our other anisotropy measurement
configurations. Thus it appears natural to attribute the hysteresis to a technical issue
of the specific configuration. We suggest that the observed hysteresis is caused by
hysteretic magnetic switching of the capillary during rotation at fields above ∼1.5T.
In the picture of this suggestion, the probe is pulled from its free-hanging position
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Figure C.8: Torque curves measured on the spherical sample in the rotating field setup.
Blue arrows and green asterisks mark features we devote to readout errors due to magnetic
flux jumps rather than actual magnetic torque signal from the sample. a) Torque at
T = 30K and B = 1T. b) Torque at T = 35K and B = 4T.

in the middle of the magnet bore to the bore’s edges by the magnetic force acting
on the capillary. Depending on the capillary’s magnetization direction, the probe is
pulled to either one side of the bore or the other. A switching of this direction during
rotation thus changes the angle between cantilever and gravity, field direction and
field gradients’ directions. These changes can be sufficient to explain the observed
hysteresis. Due to the strong disturbances, a proper evaluation of the data obtained
on the cubic sample in the rotating field setup is out of question.

C.3.2 Spurious features in the capacitive readout induced by
magnetic flux jumps

The superconducting split coil providing horizontal field exhibited large flux jumps
during operation. As a consequence, capacitance readout was disturbed in the form
of individual spikes, discontinuous capacitance jumps or excessive noise. This is
illustrated in Fig. C.8. Panel a) shows the torque measured at B = 1T and T = 30K.
Green asterisks mark individual spikes, blue arrows mark discontinuous jumps. These
readout errors are easy to correct by scrapping individual points to remove a spike
or shifting the region between two discontinuous jumps.
Panel b) displays the torque measured at B = 4T and T = 35K. Again, an
individual spike is marked by the green asterisk. In the region between the blue
arrows the otherwise smooth torque curve appears rather scrawly during both up- and
downsweep. This may be caused by excessive noise smoothed out by the capacitance
bridge’s internal averaging. Such a readout error is harder to correct, but may be
overcome by appropriately smoothing the curve. If this is not possible, the error
may severely disturb our fitting procedure (cf. Fig. C.11 c)).
We note that all shown examples of erroneous readout appear close to ϕ = 0° or
ϕ = 180°, i.e. in the regime in which the field of the split coil is close to zero. Thus
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Figure C.9: Torque curves measured on the spherical sample in the rotating field setup
at B = 1T and temperatures of a) T = 0.3K and b) T = 35K. Black and red lines denote
opposite directions of rotation, green lines represent the mean between “up”- and “down”
rotations.

it appears reasonable to attribute such errors to flux jumps near sign reversal of the
split coil’s field.

C.3.3 Rotational hysteresis

During rotation scans in the AMI setup, we recorded the angular dependence of
torque with both rotation senses. At field magnitudes below Hc2 we observe a large
rotational hysteresis that results from the magnetic state of the sample (cf. Sec. 5.4.1).
Above Hc2, the sample is in a field-polarized state and we do not expect rotational
hysteresis from the sample.
In Fig. C.9 a) we present the torque measured at B = 1T and T = 0.3K for positive
(black) and negative (red) rotation sense. The rotational hysteresis is barely visible
by eye. The small angular deviation corresponds to the hysteresis of the magnet
system as discussed in Sec. A.4.1. We take the mean of both rotation sense curves
(green line) for evaluation.
In Fig. C.9 b) we present the torque measured at B = 1T and T = 35K for
both rotation senses as black and red lines. Here, a distinct rotational hysteresis is
observed that comprises a vertical rather than a horizontal shift. We suggest that
this hysteresis results from an altered evolution of the field gradient vector as a result
of differently pronounced hystereses in the solenoid and the split coil. The same
hysteresis is present but negligible at 0.3K where the absolute torque signal is two
orders of magnitude larger than at 35K. The method of taking the average of both
rotation senses is applied to high temperature measurements, too. As illustrated in
Fig. C.9 b), the mean curve (green line) is distinctly less distorted from the ideal
shape than the measured torque.

173



C Torque in the field-polarized phase of MnSi

6

8

6

8

6

8

0 2 4
0

2

- 8
- 4
0
4

- 8
- 4
0

- 4

0

0 2 4
- 3
0
3
6

K 1
 (1

02  J/m
3 )a 1 )

 P P M S  2  K
 A M I  0 . 3  K

K 1
 (1

02  J/m
3 )b 1 )

 P P M S  ~ 5  K

 A M I  5  K

K 1
 (1

02  J/m
3 )c 1 )

 P P M S  1 0  K

 A M I  1 0  K

M a g n e t i c  f i e l d  µ 0 H  ( T )

K 1
 (1

02  J/m
3 )d 1 )

 P P M S  2 5  K
 A M I  2 5  K

K 2
 (1

02  J/m
3 )a 2 )  P P M S  2  K

 A M I  0 . 3  K

K 2
 (1

02  J/m
3 )  P P M S  ~ 5  K

 A M I  5  K
b 2 )

K 2
 (1

02  J/m
3 )

 P P M S  1 0  K
 A M I  1 0  K

c 2 )

M a g n e t i c  f i e l d  µ 0 H  ( T )

K 2
 (1

0 J
/m

3 )  P P M S  2 5  K
 A M I  2 5  K

d 2 )

Figure C.10: Dependence of K1 and K2 on magnetic field magnitude at temperatures of
a) 0.3K, b) 5K, c) 10K and d) 25K.

C.3.4 Magnetic field dependence of torque and anisotropy
constants

We present anisotropy constants K1 and K2 extracted from AMI data with the
direct fitting method employing Eq. 5.2 in dependence of the applied field magnitude.
We carried out rotation scans at six field magnitudes from 0.65T up to 4T at
several temperatures. Regarding the evolution described along the PPMS data (cf.
Sec. 5.3.1), this covers the low field regime only. Thus an extended discussion of the
field dependence is inadequate.
Anisotropy constants extracted from AMI data are presented as triangles in Fig. C.10.
Graphs on the left hand side show K1, graphs on the right hand side depict K1.
From top to bottom, the data corresponds to temperatures at 0.3K, 5K, 10K and
25K. For comparison, PPMS data have been included as semi-transparent circles.
However, no PPMS data are available at 0.3K and 5K. In Fig. C.10 a1), we show
the lowest available temperature in the PPMS of 2K. In Fig. C.10 b1), we show the
arithmetic mean of the values extracted at 4K and 6K.
Similar to the temperature dependence presented in Sec. 5.3.2, K1 extracted from
AMI data resembles the behavior obtained from the PPMS data but yields values
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that are ∼30% larger especially at low temperatures. At 25K, we observe the sign
change at ∼1T in both data sets. For K2, we observe little agreement of AMI and
PPMS data. K2 derived from AMI data has a stronger tendency towards positive
values compared to K2 from PPMS data. At 25K, AMI and PPMS data exhibit
similar behaviors with opposite sign. The comparison of the anisotropy constants’
field magnitude evolution substantiates our conclusion that K1 can be determined
with an uncertainty of several tens of percent while K2 cannot be determined even
qualitatively from our experiments.

C.3.5 Additional temperature dependent torque data and
anisotropy constants

In this section we present the torque during rotation scans at B = 4T and a
comparison of our various data sets of K1 and K2 extracted from temperature
dependent AMI data. Torque curves at B = 4T and temperatures from T = 0.3K
up to T = 35K are presented in Fig. C.11 a). As for the data at B = 1T presented
in Fig. 5.7 a), we observe the expected shape due to magnetocrystalline anisotropy
at low temperatures and a simple sine-shape at high temperatures. As described in
Sec. 5.3.2, we can fit these curves via Eq. 5.2.
Figure C.11 b) shows the torque curves measured at T = 30K and T = 35K as solid
lines together with the respective fits as dashed lines in analogy to Fig. 5.7 b). We
find a good agreement of measurement and fit. Figure C.11 c) shows the same torque
curves after subtraction of Γg as solid lines together with fits according to Eq. 5.1 as
dashed lines in analogy to Fig. 5.7 c). Here, we still find a good agreement for the
measurement at T = 30K with only minor deviations around ϕ = 20° and ϕ = 200°.
In contrast, the curve at T = 35K exhibits large deviations from the ideal shape
resulting in a bad fit outcome. The observed deviations are caused by perturbations
described in appendix C.3.2. The good agreement of fit and measured torque at
T = 30K confirms that we can neglect such perturbations except for measurements
at highest temperatures and fields. Under these conditions, the error of K1 and K2
becomes larger than the value.
Figure C.11 d) shows the gradient contribution obtained from fitting and normalized
with respect to the sample’s magnetic moment M as solid lines. As described in
Sec. 5.3.2, we use interpolated values from an existing data set for the magnetic
moment M . In full analogy to Fig. 5.7 d), we obtain very different curves at different
temperatures but small variations between measurements at high temperatures. The
mean of the four high-temperature curves is depicted as dashed line. As described in
the main text, we used this mean as a fixed gradient model during evaluation.
All four sets of extracted values of K1 and K2 are presented in Fig. C.11 e) and
f), respectively. This includes the values extracted by direct fitting via Eq. 5.2
as circles, subtraction of individual gradients and fitting via Eq. 5.1 as upwards
pointing triangles, subtraction of the mean gradient derived at B = 1T and fitting
via Eq. 5.1 as downward pointing triangles and subtraction of the mean gradient
derived at B = 4T and fitting via Eq. 5.1 as squares. Dashed lines are drawn by
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Figure C.11: Temperature dependence of torque and anisotropy constants. a) Torque
curves as measured in the rotating field setup at B = 4T and temperatures from T = 0.3K
to T = 35K. b) Torque as measured at B = 1T and T = 30K and T = 35K. Dashed lines
represent fits according to Eq. 5.2. c) Torque at B = 4T and T = 30K and T = 35K
after subtraction of fitted gradient contributions. Dashed lines represent fits according
to Eq. 5.1. d) Fitted gradient contributions to the torque at B = 4T and temperatures
from T = 0.3K to T = 35K. The dashed line represents the mean of four gradient torque
curves at high temperatures. e)-f) Anisotropy constants at K1 and K2 at magnetic fields of
B = 1T and B = 4T versus temperature for different approaches to the gradient problem.

hand as a guide to the eye. We find excellent agreement of all data sets for K1 with
small outliers only at the lowest measured temperature. For K2 we obtain large
quantitative and qualitative differences. Only the data sets for the two fixed gradient
approaches coincide which is somewhat surprising since a distinct difference between
both gradient contributions is observed. The blatant inconsistency of the other data
sets once again substantiates our assessment that K2 is beneficial for our evaluation
yet not determinable as a physical quantity from our experiments.
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Figure C.12: Parameters a) Γoff , b) g1, c) g2 and d) g3 as obtained from fitting torque
data with Eq. 5.2.

C.3.6 Fit parameters gi and Γoff

We present values of the fit parameters g1, g2, g3 and Γoff obtained from fitting the
AMI torque data as measured via Eq. 5.2. For comparability, we normalize the
gradient parameters with respect to the applied field’s magnitude B and the sample’s
magnetic moment M . We use interpolated values from an existing data set for the
magnetic moment M as described in Sec. 5.3.2.
Values of g1, g2 and g3 obtained by fitting are shown in Fig. C.12 a), b) and c),
respectively. In agreement with Figs. 5.7 d) and C.11 d) and in contradiction to the
physical picture of a fixed gradient, we find values for the gradient parameters g1, g2
and g3 widely varying with field and temperature. While values for g1 remain nearly
constant at high temperatures, there is still a distinct difference between values for
B = 1T and B = 4T. This difference becomes small at high temperatures for g2 but
only after a sign change for both fields which precludes any physical interpretation.
g3 also contains sign changes and exhibits a large scatter.
Fitted values of the parameter Γoff are shown in Fig. C.12 d). We obtain values on
the order of 10−7 Nm which is large compared to values obtained by fitting Eq. 5.1
to PPMS data. We have no physical explanation for such a shift, but finite values of
Γoff may occur due to deformations of the torque curves from ideal shape. Further,
the presence of gradients shifts the symmetry line of a torque curve away from zero.
We discuss this in more detail in the following section.
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Figure C.13: a)-c) Magnitude of field gradients relevant to our experiments as obtained
from fitting. d) Linear torque offset Γoff as obtained from fitting. Gray dashed lines
represent maximum estimates for the respective gradient’s magnitudes. e) Linear torque
offset Γoff introduced by rescaling dBy/dy and dBz/dz. f) Magnitude of dBz/dz obtained
by rescaling dBy/dy to 1m−1. The gray dashed lines represents the maximum estimate
for the gradient’s magnitude.

C.3.7 Magnitude of field gradients in the AMI vector magnet

In this section, we discuss the magnitude of field gradients as inferred from fitting
parameters. With the help of numerical simulations, values of g1, g2 and g3 can be
interpreted as field gradients dBy/dy, dBy/dz and dBz/dz, respectively. We plot
the respective gradients per field magnitude in Fig. C.13 a), b) and c). The dashed
horizontal lines represent our maximum estimates for the gradients as discussed in
Sec. 3.3.1. We obtain values grossly exceeding these limits for the gradients of the
split coil field By.
Equation 5.2 is overdefined by the terms g1, g3 and Γoff since a cosine-term with
linear offset is fully defined by two parameters. As a consequence, we can rescale the
gradients shown in Fig. C.13 a) without altering the shape of the resulting torque by
simultaneously adjusting the vertical solenoid gradient dBz/dz and the offset Γoff
shown in Fig. C.13 d). In an attempt to create a gradient parameter set consistent
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with our considerations in Sec. 3.3.1, we scale all values of dBy/dy down to our
maximum estimate of 1m−1. The values of Γoff and dBz/dz necessary to keep the
torque unchanged are presented in Fig. C.13 e) and f), respectively. We obtain values
larger than 1 · 10−6 Nm for Γoff and values clearly exceeding our maximum estimate
for dBz/dz.
The variation of field gradients does not comply with our physical perception of a fixed
field gradient and their magnitude suggested by our fit results grossly exceeds our
maximum estimates which are based on experimental Hall sensor data. In addition,
values suggested by our fit results for Γoff are on the same order of magnitude as our
torque signals’ amplitudes which lacks physical explanation. All these observations
hint at the existence of large additional perturbations of our experiments. Within
the scope of this thesis, we were unable to identify their origin.

C.3.8 Measurements at different misalignment γr

We repeated some rotation scans performed at γr = 9° at otherwise identical con-
ditions and γr = 0°. Simulations suggest that the comparison of the respective
torque curves should allow to determine the sample’s chirality. Unfortunately, this
was not the case with our results. We illustrate this in Fig. C.14. Panels a1), b1)
and c1) display experimental torque curves, panels a2), b2) and c2) show simulated
torque. The field magnitude is B = 1T in all cases. The temperature is T = 0.3K
in a1) and a2) and T = 5K in b1), b2), c1) and c2). Simulated torque curves
include the experimental misalignment. Black lines denote torque curves at γr = 0°.
Red continuous lines represent torque measured at γr = 9°, red and green dashed
lines depict torque simulated for γr = 9° in right-handed and left-handed MnSi,
respectively.
The simulations show different alterations of the torque curve by introduction of
the misalignment for left- and right-handed MnSi. For left-handed crystals, the
local extrema both shift towards positive values whereas they move towards negative
values in right-handed MnSi. The global extrema decrease for both chiralities, yet
we observe a larger decrease of the maximum in left-handed and a larger decrease
of the minimum in right-handed crystals. Unfortunately, the experimental torque
shows a mixture of both alterations. The local extrema slightly shift towards positive
values as simulated for left-handed MnSi. At the same time, the change of the global
minimum is larger than that of the global maximum as simulated for right-handed
MnSi. Further, the global maximum does not decrease, but increases with finite
γr. This contradiction prohibits the determination of our sample’s chirality from
experimental data.
Beside the height of the extrema, also the angular position of the inflection point
between the global extrema shifts in different directions for right- and left-handed
MnSi. This is visible for simulated torque in Fig. C.14 a2), b2) and c2) and further
illustrated by the fitting parameter δr in Fig. C.14 d). Obviously, the inflection point
shifts to larger angles for left-handed and towards lower angles for right-handed
MnSi. According to the fit parameter δr, the inflection point of experimental torque
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Figure C.14: Comparison of data obtained at γr = 9° and γr = 0°. a)-c) Experimental
(left) and simulated (right) torque curves. d) Misalignment δr obtained from fits of
experimental torque curves and simulations for both left- and right-handed MnSi. e)
Derivative of torque curve fits around the extremum at 180°.
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C.3 Rotating field setup

curves shifts towards lower angles. This can not be recognized in Fig. C.14 a1), b1)
and c1) where the red line rather appears to be shifted to larger angles around 〈001〉.
However, this impression results from a vertical shift rather than a horizontal one.
For confirmation, we show the derivative of the fit to the measured torque curve in
Fig. C.14 e). Here, we note that the minimum moves towards lower angles when
changing γr from 0° to 9°. Due to the contradictory behavior of the extrema, we still
refrain from assigning a chirality.
The alteration of the experimental torque curve when changing γr is not consistent
with the simulated torque. This suggests that while changing γr, we inadvertently
change some other quantity as well. As an example, small changes of the horizontal
position of the sample may result in a different horizontal field gradient.
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D Anisotropic magnetization in the
modulated states of MnSi

In this appendix we provide additional information on the torque investigations in
the modulated states of MnSi. Analogous to Sec. 5.4, we discuss M⊥ = Γ/B instead
of the measured torque Γ. Section D.1 is dedicated to field rotations. In Sec. D.2,
we address field scans at fixed orientations.

D.1 Field rotations
In the following, we present additional data recorded during field rotations at field
magnitudes B < µ0Hc2. In Sec. D.1.1, we show a full set of magnetization curves
including six full rotations. Section D.1.2 is dedicated to the temperature evolution
of magnetization curves at B = 0.1T and Sec. D.1.3 addresses the evolution of
magnetization curves with increasing field magnitude at a fixed temperature of
T = 28.5K.

D.1.1 Full rotation measurement data
As described in Sec. 5.2.2, each rotation scan in the rotating field setup comprises
six full rotations of the magnetic field vector. In chronological order, we perform
two full rotations in the positive rotation sense followed by two full rotations in the
negative rotation sense and then two more rotations in the positive rotation sense.
This means that the rotation sense is reversed twice during a complete rotation scan.
As further stated, we show only the last full rotations for each rotation sense when
discussing the data in Sec. 5.4.1 and appendices D.1.2 and D.1.3. As a consequence,
the presented magnetization curves do not include regimes of reorientation after a
reversal of the rotation sense.
In this section, we present a full set of magnetization curves during six rotations.
Figure D.1 a) shows the first and second rotations in the positive rotation sense
as black continuous and red dashed lines, respectively, followed by first and second
rotations in the negative rotation sense depicted by a green continuous and a blue
dashed line, respectively. All curves begin and end at ϕ = 96°. It is evident that,
after a short period of reorientation, the first and second rotations yield identical
magnetization curves for each rotation sense. Figure D.1 b) shows the second rotation
in the negative rotation sense again for reference which is follow by a third and
fourth rotation in the positive rotation sense. These are depicted as solid magenta
and dashed cyan lines. Again, both rotations in the positive rotation sense yield
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Figure D.1: Anisotropic magnetization M⊥ measured during field rotations at B = 0.3T
and T = 0.3K. The curves are recorded in chronological order as indicated by the legend:
a) Two full rotations in the positive rotation sense (ϕ+ 1 and ϕ+ 2) are followed by two full
rotations in the negative rotation sense (ϕ− 1 and ϕ− 2). b) Then two more full rotations
are performed in the positive rotation sense (ϕ+ 3 and ϕ+ 4). The rotation labelled “ϕ+ 2”
is included in panel b) as gray continuous line. All rotations begin and end at ϕ = 96°.

identical results after a short period of reorientation. The second rotation in the
positive rotation sense is included in Fig. D.1 b) as gray solid line and coincides
perfectly with the fourth rotation in the positive rotation sense. The magnetization
curves shown as continuous and dashed lines in Fig. 5.13 a) of the main text are
identical to the cyan and blue dashed lines in Fig. D.1, respectively.

D.1.2 Temperature evolution at 0.1 T
In Sec. 5.4.1, we showed magnetization curves recorded during rotation scans at
B = 0.3T and temperatures from T = 0.3K up to T = 28.5K. In this section, we
provide additional data measured at B = 0.1T and temperatures from T = 0.3K
up to T = 35K. The corresponding magnetization curves are shown in Fig. D.2.
Panels are ordered such that the temperature increases from a) to h). Continuous
and dashed lines denote positive and negative rotation sense, respectively. Consistent
with the measurements at B = 0.3T, we observe a large rotational hysteresis at low
temperatures that decreases with increasing temperature and vanishes at Tc.
Temperatures above Tc are displayed in panel h). Here, we observe a very small
sin(2β)-shaped signal shifted towards positive values. We attribute this to the
presence of field gradients as discussed extensively for measurements in the field-
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Figure D.2: Temperature evolution of the anisotropic magnetization M⊥ during field
rotations at B = 0.1T. Continuous lines denote positive rotation sense, dashed lines denote
negative rotation sense.

polarized state. Temperatures just below Tc, i.e. T = 28.5K and T = 25K are
displayed in panels g) and f), respectively. The magnetization curves resemble to
some extent the shape described by Eq. 5.1 with global maxima and minima around
〈001〉-directions and local maxima and minima around 〈110〉-directions. However,
there are two distinct differences to that behavior: (i) There is an additional shoulder
between the global extrema around the 〈001〉-direction and (ii) between their extrema,
the curves resemble a smoothed sawtooth shape rather than a sinusoidal behavior.
As a tendency, these deviations are more pronounced at T = 25K compared to
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T = 28.5K. Towards lower temperatures, magnetization curves maintain four pairs
of maxima and minima as well as a two-fold symmetry, but the relative heights as
well as the positions of the extrema are shifted such that the shape described by
Eq. 5.1 is no longer resembled. The additional shoulder between the extrema around
the 〈001〉-direction decreases below T = 15K and vanishes below T = 10K.
As we argue in Sec. 5.4.3, a straightforward interpretation of anisotropic magnetization
data in non-collinear phases is difficult at best. For the measurements exclusively
involving the conical phase, we observe smooth curves following a known behavior
(cf. Sec. 5.4.1). Still, a quantitative evaluation is not possible within this thesis. For
the data presented in this section, we encounter two additional issues that impede
the understanding of our observations: (i) Due to the anisotropy of Hc1 ≈ 0.1T, the
phase boundary between helical and conical phase may be crossed during rotation. (ii)
In the helical phase, the pitch vector of the helix is pinned to 〈111〉-directions. While
the applied field may not be sufficient to reorient the pitch vector towards the field
direction as in the conical phase, it is significantly larger than the ∼50mT needed
to depopulate unfavorable domains. As a consequence, domains with helical pitch
vectors along different 〈111〉-directions may continuously be de- and repopulated
during field rotation. Understanding the anisotropic magnetization resulting from
such dynamics requires extensive efforts in the form of theoretical considerations and
numerical simulations and is therefore a task for future investigations.

D.1.3 Field dependence at 28.5K
In Secs. 5.4.1 and D.1.2, we showed rotation scans at fixed field magnitudes of
B = 100mT and B = 300mT and various temperatures that addressed helical and
conical states, but not the skyrmion lattice phase. In this section, we present rotation
scans at a fixed temperature of T = 28.5K and field magnitudes from B = 50mT
up to B = 300mT thus addressing all three states of non-collinear magnetic order in
MnSi. Magnetization curves are depicted in Fig. D.3. Panels are ordered such that
the field magnitude increases from a) to h). Continuous and dashed lines denote
positive and negative rotation sense, respectively. Consistent with rotation scans at
various temperatures, we observe only small rotational hystereses.
All magnetization curves presented in Fig. D.3 b) - h) exhibit four pairs of max-
ima and minima and a two-fold symmetry. Field magnitudes of B = 130mT and
B = 300mT are displayed in panels c) and d), respectively. Here, only the conical
phase is stabilized and the corresponding magnetization curves exhibit a shape
described by Eq. 5.1 in consistence with Sec. 5.4.1. As shown in panel f), the same
behavior is observed at B = 180mT and B = 200mT where solely the skyrmion
lattice phase is addressed. At the intermediate field magnitudes B = 165mT and
B = 250mT depicted in panels e) and g), respectively, the relative heights and
position of the extrema still resemble this shape, but we find distinct deviations
from the sinusoidal behavior around the 〈001〉-direction. At B = 150mT illustrated
in panel d), smaller deviations are observed around 〈110〉-directions. We suggest
that these deviations are caused by transitions between conical state and skyrmion
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Figure D.3: Anisotropic magnetization M⊥ during field rotations at T = 28.5K and field
magnitudes from B = 50mT up to B = 300mT. Continuous lines denote positive rotation
sense, dashed lines denote negative rotation sense.

lattice phase during rotation due to the anisotropy of the critical fields Ha1 and
Ha2. Similarly, the magnetic order may change between helical and conical state
during rotation at B = 100mT due to the anisotropy of Hc1. As already discussed
in Sec. D.1.2 and shown again in panel b), the magnetization at this field magnitude
resembles the behavior described by Eq. 5.1 with an additional shoulder at 〈001〉
and a tendency towards sawtooth-like behavior between its extrema.
At the lowest applied field magnitude of B = 50mT displayed in panel a), solely the
helical phase is present. However, the field magnitude may be sufficient to cause
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de- and repopulation of domains during rotation. We observe a more pronounced
sawtooth-like behavior as well as a more distinct shoulder at 〈001〉 as compared to
B = 100mT. In addition, the heights and positions of extrema are shifted such that
the well-known shape is no longer resembled. In particular, while 〈001〉-directions
still represent centres of point symmetry for the magnetization curves of positive and
negative rotation sense, this is no longer the case for 〈110〉-directions. More strikingly,
the two-fold symmetry of the magnetization curves is broken in that the extrema
around 〈001〉 are larger by a factor of ∼2 compared to the extrema around 〈001̄〉.
As stated in Sec. D.1.2, constructing a model capable of a sound and quantitative
explanation for our observations is a task for future investigations.

D.2 Field scans
In this section, we present additional data recorded during field scans at fixed
orientations. In Sec. D.2.1, we show a full set of field scans including six consecutive
sweeps. We address deviations of field vectors from high symmetry directions in
Sec. D.2.2 and hysteresis above Hc2 in Sec. D.2.3. Signatures of the skyrmion lattice
phase are presented in Sec. D.2.4. Section D.2.5 is dedicated to the temperature
evolution of field scans with field vectors along 〈001〉- and 〈110〉-directions.

D.2.1 Full field scan data
As described in Sec. 5.2.2, our measurement procedure for field scans included six
consecutive field sweeps. In chronological order, we first ramped the field up from
zero to B = +1T followed by two iterations of sweeping down to B = −1T and
back up to B = +1T. Finally, the field was ramped back to B = 0T. As further
stated, we only present the last full sweep for each direction when discussing our
data in Sec. 5.4.2 and appendices D.2.2, D.2.3, D.2.4 and D.2.5. In Fig. D.4, we
present a full set of magnetization curves obtained from all six sweeps of a field scan
at T = 5K and field applied along the 〈111〉-direction. Panel a) only includes the
first three sweeps for clarity. In panel b), all six sweeps are displayed.
The initial magnetization curve starting from zero field is displayed as black continuous
line. As stated in Sec. 5.2.2, we did not control field and temperature to provide a
well-defined starting point for our field scan measurements. Consequently, the shape
of the initial magnetization curve may depend on a poorly controlled starting point
and is not further considered for interpretation. The diverging values towards zero
field are an artifact of data evaluation owed to the fact that B = 0 is not crossed
during this sweep. Subsequent to this initial magnetization, the field is swept down
to B = −1T (red dashed line) and back up to B = +1T (dashed green line). We
observe the behavior described in the main text for the respective experimental
situation. After that, the field is once again ramped down to B = −1T (blue solid
line) and back up to B = +1T (magenta solid line). We observe ideal coincidence of
the first and second sweeps for increasing and decreasing field, respectively. The same
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Figure D.4: Anisotropic magnetization M⊥ during field scans between B = ±1T at
T = 5K and field along 〈111〉. The curves are recorded in chronological order as indicated
by the legend: a) The field is swept from 0T up to +1T (B+ 1), down to −1T (B− 1)
and back up to +1T (B+ 2). b) The consecutive sweeps down to −1T and back to +1T
(B− 2 and B+ 3) closely match the preceding curves. In a final sweep, the field is set back
to zero (B− 3).

holds true for the final sweep to B = 0T depicted as cyan dashed line. Again, the
divergence at zero field is an artifact of data evaluation due to the curve terminating
before reaching zero field.
The reproducibility of magnetization data during consecutive field sweeps in contrast
to the initial sweep confirms that the behavior in the non-collinear states depends
on field and temperature history and that we bring our sample into a well defined
state by applying a sufficiently large field. In this work, we only address situations
where we start from such a high-field state corresponding to a single domain with
a unique helical pitch vector. Studying the anisotropic magnetization during the
initial response of the material to an applied field in a situation of several equally
populated domains after zero-field cooling may yield further insights. This is a task
for future investigations.

D.2.2 Deviation from high symmetry directions
In Sec. 5.4.2, we stated that we observe a small asymmetry of the magnetization
curves measured for increasing and decreasing field for a field vector applied along
the 〈001〉-direction. We further stated that this asymmetry is more salient in the
torque than in the magnetization. We show this in Fig. D.5 a) where we present the
torque as measured during a field scan at T = 5K and field applied along 〈001〉. The
continuous and dashed lines denote increasing and decreasing field, respectively. Note
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Figure D.5: Torque as measured during field scans between B = ±1T at T = 5K and
field vector (nearly) along the 〈001〉-direction. Continuous lines denote increasing field,
dashed lines denote decreasing field. a) Ideal alignment of B and 〈001〉. b) B and 〈001〉
are off by 8°.

that a point symmetry with respect to the origin for the anisotropic magnetization
translates to a line symmetry with respect to zero field for the torque. In Fig. D.5 a),
we find a distinct deviation from such a symmetry.
The observed asymmetry contrasts the results of Ref. [Bir09] in which torque curves
obtained with an experimental approach similar to ours are presented. In this earlier
work, the torque observed during field scans for field nominally aligned along the
〈001〉-direction exhibits little to no asymmetry regarding an inversion of the field
direction. However, the relative orientation of field and sample has not been controlled
as well during these previous measurements as compared to the present work. In our
experiments, we investigated the evolution of the anisotropic magnetization for field
vectors increasingly deviating from the crystal’s high symmetry directions. For this
purpose, we denote the angle between the applied field vector and the 〈001〉-direction
for deviations along the rotation plane of our setup (cf. Sec 3.3.3) by ε. The sign
of ε corresponds to deviations following the positive and negative rotation sense as
defined in Sec. 5.2.2.
In Fig. D.5 b), we present the torque measured during a field scan at T = 5K and a
field vector deviating from the 〈001〉-directions by ε = −8°. No asymmetry regarding
an inversion of the field direction is observed. We further recognize that the absolute
values of the torque signal at fields |B| < µ0Hc2 are larger by a factor of ∼5 as
compared to ε = 0°. This poses the question whether the asymmetry present at
ε = 0° actually vanishes or is merely masked by superposition of a large symmetric
signal at field vectors deviating from 〈001〉. A closer look shows that the difference
between the maxima at ε = −8° is smaller by a factor of ∼9 compared to ε = 0°. We
suggest that the great symmetry of torque curves presented in Ref. [Bir09] is owed to
suboptimal alignment. The origin of the asymmetry observed in our measurements
remains unresolved.
We performed field scans for various deviations from the 〈001〉-direction between
ε = −8° and ε = +8°. For the sake of completeness, we show the evolution of
the magnetization curves in direct comparison to ε = 0° in Fig. D.6. Continuous
and dashed lines correspond to increasing and decreasing field, respectively. The
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Figure D.6: Evolution of the anisotropic magnetization M⊥ during field scans between
B = ±1T at T = 5K and increasing deviation angles ε between field vector and the
〈001〉-direction. Continuous lines denote increasing field, dashed lines denote decreasing
field.
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Figure D.7: Evolution of the anisotropic magnetization M⊥ during field scans between
B = ±1T at T = 5K and increasing deviation angles ε between field vector and the
〈110〉-direction. Continuous lines denote increasing field, dashed lines denote decreasing
field.

magnetization curves at ε = 0° are included in all graphs as gray lines. Panels are
ordered such that the deviation increases from top to bottom. Panels on the left
hand side correspond to negative values of ε, panels on the right hand side show
positive values of ε. We observe substantial differences in the magnetization already
for deviations of ε = ±1°. This may be important for the interpretation of our data
considering that the relative orientation of sample and field may change during field
scans due to sample rotation caused by the investigated torque (cf. Sec. 5.2). The
curves at ε = +8° appear to be symmetric to those at ε = −8° regarding a sign
change of M⊥. For both signs of ε, the large symmetric signal decreases towards
the small asymmetric shape with decreasing deviation. Intriguingly, the sign change
of the salient features in M⊥ does not occur at ε = 0° but rather around ε = +2°.
Similar to the origin of the asymmetry at ε = 0°, we can not present an explanation
of the observed behavior at this point.
As as described in Sec. 5.4.2, the observed asymmetry between increasing and
decreasing field magnetization curves was even more pronounced for field along the
〈110〉-direction than for field along 〈001〉. We therefore also investigated the evolution
of anisotropic magnetization with field vectors increasingly deviating from 〈110〉.
Again, we denote the deviation angle along the rotation plane by ε. The magnetization
curves are depicted in Fig. D.7. Continuous and dashed lines correspond to increasing
and decreasing field, respectively. The magnetization curves at ε = 0° are included
in all graphs as gray lines. Panels are ordered such that the deviation increases
from top to bottom. Panels on the left hand side correspond to negative values of
ε, panels on the right hand side show positive values of ε. At negative values of ε,
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Figure D.8: Anisotropic magnetization M⊥ during field scans between B = ±1T at
T = 0.3K and field vectors pointing along a) 〈001〉-, b) 〈110〉-, c) 〈111〉-, and d) 〈111̄〉-
directions. Black lines denote increasing field, red lines denote decreasing field.

we observe larger and more symmetric magnetization curves similar to the situation
around 〈001〉. At positive values of ε, the magnetization curves of increasing and
decreasing field coincide at ε = +6°. This may constitute a point of sign reversal
similar to that described for ε = +2° and the 〈001〉-direction.

D.2.3 Hysteresis above Hc2

In Sec. 5.4.2, we claim that we observe hysteretic behavior during field scans along
all major symmetry directions for |B| > µ0Hc2. To substantiate this statement, we
present a blow-up of Fig. 5.14 of the main text to the high field regime in Fig. D.8.
The magnetization curves at T = 0.3K and field vectors aligned along 〈001〉-, 〈110〉-,
〈111〉-, and 〈111̄〉-directions are depicted in panels a), b), c) and d), respectively.
Black and red lines denote increasing and decreasing fields, respectively. Field
hystereses at field magntiudes |B| > µ0Hc2 are well recognizable in all graphs. In
order to rule out technical issues connected to the setup or impurities of the sample as
possible origins of this hysteresis, we present anisotropic magnetization data obtained
with a different sample as well as in a different setup in the following. The evolution
of field hysteresis in the field-polarized state in briefly addressed in Sec. D.2.5.
In Fig. D.9, we show magnetization curves obtained with the cubic MnSi sample in the
rotating field setup. Continuous and dashed lines denote increasing and decreasing
field, respectively, during field scans at T = 1.5K and a deviation angle ε of less
than 2° between field vector and the 〈001〉-direction. Different colors correspond
to different fields ±Bmax at which the sweep direction is reversed. We observe field
hysteresis at |B| > µ0Hc2 up to the highest field magnitudes studied, i.e. B = ±3T.
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Figure D.9: Anisotropic magnetization M⊥ during field scans measured on the cubic
sample in the rotating field setup at T = 1.5K and field vector pointing less than 2° away
from the 〈001〉-direction. Different colors correspond to different turning points Bmax.
Continuous lines denote increasing field, dashed lines denote decreasing field.
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Figure D.10: Anisotropic magnetization M⊥ during field scans measured on the spherical
sample in the rotating sample setup at T = 2K and field vector along the 〈111〉-direction.
Different colors correspond to different turning points Bmax. Continuous lines denote
increasing field, dashed lines denote decreasing field.
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Figure D.11: Anisotropic magnetization M⊥ during field scans between B = ±1T at
temperatures of T = 28.1K (black) and T = 28.5K (red). Field is applied along the
a) 〈001〉-, b) 〈110〉-, c) 〈111〉-, and d) 〈111̄〉-directions. Continuous lines denote increasing
field, dashed lines denote decreasing field. From left to right, the red arrows in each panel
mark H↓a2, H

↓
a1, H

↑
a1 and H↑a2 of the increasing field curves at T = 28.5K. The asterisks in

panel a) highlight the ambiguity of the respective features.

In Fig. D.10, we show magnetization curves obtained with the spherical MnSi sample
in the rotating sample setup. Continuous and dashed lines denote increasing and
decreasing field, respectively, during field scans at T = 2K and a field vector applied
along the 〈111〉-direction. Again, different colors correspond to different fields ±Bmax
at which the sweep direction is reversed. We observe field hysteresis at |B| > µ0Hc2 up
to the highest field magnitudes studied, i.e. B = ±14T. The consistent observation
of field hysteresis in various measurement configurations rules out issues related to
specific samples or setups and thus strongly indicates an origin connected to the
magnetic properties of MnSi.

D.2.4 Field scans through the skyrmion lattice phase
In Sec. 5.4.2, we claim to observe signatures of the critical fields Ha1 and Ha2 at which
MnSi undergoes a transition from the conical state to the skyrmion lattice phase
and vice versa. In order to substantiate this statement, we present the respective
anisotropic magnetization data in Fig. D.11. Black and red lines correspond to
temperatures of T = 28.1K and T = 28.5K, respectively. Continuous and dashed
lines denote increasing and decreasing field, respectively. From a) to d), the graphs
depict situations with field vectors applied along the 〈001〉-, 〈110〉-, 〈111〉-, and
〈111̄〉-directions. Signatures of transitions between conical state and skyrmion lattice
phase are marked by red arrows for the increasing field curve at T = 28.5K. From
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left to right, the arrows in each panel denote H↓a2, H↓a1, H↑a1, and H↑a2. As in the
main text, the superscripts ↑ and ↓ denote increasing and decreasing field magnitude,
respectively.
In general, the anisotropic magnetization is reduced within the skyrmion lattice phase
as compared to the conical phase. This has already been observed in Ref. [Bir09] and
was attributed to a low pinning of the skyrmion lattice to the atomic lattice of MnSi.
For the 〈111〉- and 〈111̄〉-directions, such a reduction is well perceptible at T = 28.5K
for both increasing and decreasing field magnitude in both field sweep directions. In
contrast, the curves at T = 28.1K exhibit no notable sign of a transition between
conical and skyrmion lattice phase. We observe a hysteresis of critical fields which is
small enough to be attributed to the superconducting magnet’s hysteresis.
For field along the 〈110〉-direction, signatures at T = 28.5K are well visible for
both field sweep directions and increasing as well as decreasing field magnitude. In
addition, narrower minima are visible at T = 28.1K, again, for both field sweep
directions and increasing as well as decreasing field magnitude. This indicates that
the skyrmion lattice phase is stabilized over a smaller field range as compared to
T = 28.5K in consistence with the reported phase diagram [Bau12].
For field applied along 〈001〉, a distinct reduction of the anisotropic magnetization is
found for increasing field magnitude at both temperatures and for both sweep direc-
tions. For decreasing field magnitude, no unambiguous signatures of the investigated
phase transition are observed. The minimum and the slight kink marked by the red
arrows and asterisks may correspond to the transition, but since the torque between
these features is not notably reduced compared to its surrounding progression, we
refrain from an association to the skyrmion lattice phase.

D.2.5 Temperature evolution for field along 〈001〉- and
〈110〉-directions

In Sec. 5.4.2, we present the evolution of the anisotropic magnetization during field
scans with increasing temperature for field vectors applied along the 〈111〉- and
〈111̄〉-directions. In this section, we provide additional temperature dependent data
for field scans along the 〈001〉- and 〈110〉-directions.
The anisotropic magnetization during field scans for field along the 〈001〉-direction is
shown in Fig. D.12 for temperatures from T = 0.3K up to T = 33.3K. Continuous
and dashed lines denote increasing and decreasing field, respectively. In Sec. 5.4.2, we
stated that curves measured for increasing and decreasing field are point symmetric
to each other except for minor quantitative differences. Since this observation is
maintained for all investigated temperatures, we describe only the increasing field
curves. The behavior at T = 0.3K has been described in detail in the main text.
At slightly elevated temperatures, the minimum at negative values following the
sharp maximum at H↑c1 is lifted. At T = 0.75K, the minimum resides at positive
values, at T = 2K, the curve does no longer exhibit a minimum between H↑c1 and H↑c2.
Simultaneously, M⊥ develops a plateau at small negative values between zero field
and the beginning of the peak at H↑c1. At temperatures from T = 14.2K upwards, this
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Figure D.12: Temperature evolution of the anisotropic magnetization M⊥ during field
scans between B = ±1T for field along 〈001〉 and temperatures from T = 0.3K up to
T = 33.3K. Continuous lines denote increasing field, dashed lines denote decreasing field.

plateau evolves into a pair of extrema comprising a maximum around B = 0T and
a minimum right before the peak at H↑c1. With the temperature further increasing,
the maximum is lifted to larger positive values and becomes comparable to the peak
at H↑c1 at T = 28.5K. The subsequent minimum remains at small negative values up
to T = 26K. At T = 28.1K and T = 28.5K, the minimum is also lifted to larger
positive values.
The peak at H↑c1 steadily increases with rising temperature up to T = 21K from
where it slightly decreases again up to T = 28.5K. In contrast, the minimum at
−H↓c1 remains unaltered for most of the investigated temperature range. Only at
T = 23.75K and T = 26K, the minimum is strongly decreased to almost zero. At
temperatures of T = 28.1K and T = 28.5K, it is recovered with roughly half its size
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Figure D.13: Temperature evolution of the anisotropic magnetization M⊥ during field
scans between B = ±1T for field along 〈110〉 and temperatures from T = 0.3K up to
T = 33.3K. Continuous lines denote increasing field, dashed lines denote decreasing field.

at low temperatures. At T = 33.3K, the anisotropic magnetization is zero on the
scale shown in Fig. D.12. As stated in the main text, this behavior is expected due
to the absence of long-range magnetic order in the paramagnetic state at T > Tc.
The anisotropic magnetization during field scans for field along the 〈110〉-direction is
shown in Fig. D.13 for temperatures from T = 0.3K up to T = 33.3K. Continuous
and dashed lines denote increasing and decreasing field, respectively. In Sec. 5.4.2, we
stated that curves measured for increasing and decreasing field are point symmetric to
each other regarding only their qualitative behavior. This observation is maintained
for most of the investigated temperatures. Therefore, we describe only the increasing
field curves and address deviations of the decreasing field curve where appropriate.
The behavior at T = 0.3K has been described in detail in the main text. For mildly
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elevated temperatures of T = 2K and T = 5K, the only qualitative difference is
that the minimum at H↑c2 resides at positive values. At T = 9.65K, this evolution is
reversed. At the same temperature, the almost constant behavior between the rapid
decrease and increase at −H↓c1 and H↑c1, respectively, begins to evolve into a steady
increase replacing the rapid increase at H↑c1. With rising temperature, the minimum
at −H↓c1 is lowered reaching negative values at T = 19.15K. At temperatures of
T = 23.75K and above, the increase of the magnetization between −H↓c2 and −H↑c1
has vanished. The point of sign reversal and the minimum of M⊥ close to H↑c2
gradually shift towards H↑c1 between T = 9.65K and T = 19.15K. Simultaneously,
the minimum is lowered. This results in a rapid decrease between the maximum
at H↑c1 and the subsequent minimum followed by a slower increase up to H↑c2. Here,
the quantitative differences between increasing and decreasing field curves are most
pronounced in the form of the minimum (maximum) following ±H↑c1 for increasing
(decreasing) field which is substantially larger for decreasing field. In a final step,
the maximum at H↑c1 is lowered to almost zero at T = 28.1K. As for the other field
directions, the magnetization is basically zero at T = 33.3 K > Tc.
It is interesting to note that, for field along 〈001〉, the magnetization curve between
B = ±µ0Hc2 constantly resides at more positive values for decreasing field than
for increasing field at low temperatures whereas the opposite situation applies to
the high temperature limit. For field along 〈110〉, a similar turnaround is observed.
Here, the increasing field curves reside at more positive values at low temperatures
and at more negative values at high temperatures. A further pecularity is noted for
T = 26K and field along the 〈110〉-direction. Here, the increasing and decreasing
field curves coincide around zero field apparently resulting in two separate hysteresis
loops at purely positive and purely negative fields.
In Sec. D.2.3, we showed hysteretic behavior for field magnitudes |B| > µ0Hc2
during field scans at low temperatures. This phenomenon was observed for field
vectors applied along all major symmetry directions and persisted up to the highest
field magnitudes studied. In this work, we did not perform field scans to field
magnitudes larger than 1T at elevated temperatures. However, the data displayed
in Figs. 5.15, D.12, and D.13 shows that the hysteresis in the field-polarized state
gradually decays between T = 9.65K and T = 23.75K. This roughly corresponds to
the temperature range over which K1 decays from its low temperature value to zero
for field magnitudes B ≤ 1T.
We further highlighted hysteresis of critical fields at B = 0.3K and fields along 〈001〉
and 〈110〉 in Fig. 5.14 a) and b), respectively. This hysteresis quickly fades with
increasing temperature. At T . 5K, it is already small enough to be attributed to
the magnet’s hysteresis.
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