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Zusammenfassung 
Entdeckungen von Exoplaneten und kontinuierliche Technologiefortschritte im 
vergangenen Jahrzehnt lassen den Gedanken an interstellare Reisen und 
Forschungsmissionen weiter aufleben. Während bereits etliche Sondenkonzepte 
vorgeschlagen und geeignete Technologien diskutiert wurden, sind Studien zu 
geeigneten Erkundungsstrategien nur vereinzelt zu finden und mitunter lückenhaft. 

Die vorliegende Arbeit befasst sich mit der Entwicklung optimaler Strategien zur 
Erforschung nahegelegener Sterne. Hierfür wird die Strategieplanung interstellarer 
Erforschungsmissionen als bi-kriterielles Multi-Vehikel Open Routing Problem mit 
Profiten formuliert. Zur Lösung des resultierenden Optimierungsproblems wird ein 
angepasster hybrider multi-kriterieller genetischer Algorithmus verwendet. Im Rahmen 
der Missionsmodellierung wird eine konstante Reisegeschwindigkeit der Sonden von 
10 % der Lichtgeschwindigkeit angenommen. Ferner bewegen sich die Sonden auf 
geradlinigen Trajektorien und beschränken sich auf Flyby-Missionen. Die 
zugrundeliegenden Sternmodelle basieren auf Daten des zweiten Gaia Release (Gaia 
DR2) und umfassen bis zu 10,000 Sterne. Dies entspricht einem kugelförmigen 
Volumen mit einem Radius von 110 Lichtjahren um die Sonne. Im Kontext der 
Sternmodellierung wird ein allgemeines Konzept für eine Sternmetrik vorgeschlagen, 
die jedem Stern einen gewissen Wert zuweist, abhängig von seinem potentiellen 
Beitrag zum übergeordneten Missionsziel. Außerdem wird ein Testmodell mit einer 
exakt gleichmäßigen Sternverteilung generiert, um den Algorithmus zu validieren und 
einzustellen. 

Es zeigte sich eine erhebliche Verbesserung der Algorithmusperformance, wenn zu 
Beginn die Zeitbeschränkung vorübergehend aufgehoben wird, welche die maximalen 
Routenlänge begrenzt. Für das Testmodell generiert der Algorithmus dann Lösungen, 
die im Bereich einer Abweichung von 10 % zur theoretischen Ideallösung liegen. Eine 
qualitative Analyse der Gaia-basierten Sternmodelle ergab eine annähernd 
gleichmäßige räumliche Verteilung der Sterne, lässt man Effekte infolge von Binär- 
sowie Mehrfachsternsystemen außen vor.  

Für eine vorgegebene Sondenzahl ergibt sich ein weitestgehend linearer 
Zusammenhang zwischen Missionszeit und der Anzahl besuchter Sterne. Für eine 
bestimmte Missionszeit steigt die Anzahl besuchter Sterne mit zunehmender 
Sondenzahl 𝑚 gemäß ~𝑚0.6. Die Sondenzahl beeinflusst ferner die Sternauswahl und 
Routenstruktur: Für hohe Sondenzahlen werden bevorzugt nahegelegene Sterne 
ausgewählt, für niedrigere Sondenzahlen werden dagegen auch weiter entfernte 
Sterne berücksichtigt und kürzere Transferdistanzen ermöglicht. Dadurch ergeben 
sich folgende Schlussfolgerungen für mögliche interstellar Explorationsstrategien: Im 
Fall eines geringes Energiebudgets (bspw. begrenzte Treibstoffmenge) und zur 
Erforschung weiter entfernter Sterne bieten sich niedrige Sondenzahlen an. Im 
Gegensatz dazu ermöglichen hohe Sondenzahlen eine vergleichsweise schnelle 
Erforschung von Sternen in der unmittelbaren Sonnenumgebung auf Kosten einer 
weniger ressourcenoptimalen Routenwahl. Für eine solche Strategie würden sich 
daher eher kleinskalige Sondenkonzepte eignen, die keinen Treibstoff mitführen 
müssen. Im Fall hoher Sondenzahlen ist gemäß der hergeleiteten Beziehung zwischen 
Stern- und Sondenzahl der Einsatz schwarmbasierter Sondenkonzepte zu erwägen, 
um Ballungseffekte zu vermeiden. 
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Abstract 
Driven by exoplanet discoveries and the ongoing progress in related technologies, the 
idea of interstellar travel and exploration has gained momentum in the recent decade. 
While there are already various suggestions for probe concepts and considerations on 
relevant technologies, only few, limited research activities on suitable exploration 
strategies exist.  

This thesis derives optimal strategies for exploring near-by stars. The problem of 
interstellar exploration mission design is formulated as bi-objective multi-vehicle open 
routing problem with profits. The resulting optimization problem is addressed with an 
adapted hybrid multi-objective genetic algorithm. The underlying generic mission 
model assumes probes travelling at a constant velocity of 10 % of the speed of light 
along straight-lined trajectories with restriction to flybys. The used star models are 
based on the second Gaia data release (Gaia DR2) and contain a maximum of 10,000 
stars. This corresponds to a spherical domain around Sol with a radius of 110 light 
years. In the star modelling context, a stellar metric is suggested to assign each star a 
score according to its potential contribution to the entire mission return. Furthermore, 
a test model with an exact uniform star distribution is built to validate and adjust the 
algorithm.  

It is found that the algorithm performance can be improved significantly by means of 
an initial relaxation of the time constraint, which limits the maximum route length. 
Applied to the test model, the algorithm generates a solution with a deviation of 10 % 
to the ideal value. A qualitative analysis of the Gaia based star models revealed a 
uniform distribution of stars, excluding the effect of binary or multiple star systems. 

Assuming a constant probe number, a linear relation between mission duration and 
number of explored stars is observed. For a given mission duration, the number of 
explored stars increases with probe number 𝑚 according to ~ 𝑚0.6. Furthermore, star 
selection and route structure are found to differ with probe number: While high probe 
number missions focus on stars in the immediate solar neighborhood, low probe 
number missions include more distant stars, enabling shorter transfers along the route. 
From these observations, the following conclusions for interstellar exploration 
strategies are inferred: If the energy resources are limited (e. g. due to low fuel 
reserves) and the exploration mission is not restricted to very nearby stars, low probe 
numbers are more efficient. Contrarily, high probe numbers allow for a faster 
exploration of the nearest stars at the expense of less resource-optimal transfers, 
which represents a suitable strategy for small-scale, remotely propelled probe 
concepts. Given the derived scaling law characteristics it is recommended to consider 
swarm-based probe concepts to mitigate crowding effects when planning high probe 
number missions. 
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Preface 

How can one imagine interstellar exploration strategies? To provide a comfortable 
entry into this admittedly rather ambitious topic, the readers are invited to imagine their 
next, hopefully well-deserved holiday trip to a destination of their choice. We assume 
a safe and trouble-free travel before arriving and completing the check-in procedure at 
the hotel. Now plans want to be made for the next days or weeks, unless not already 
done in advance: Which are the most interesting spots, e. g. are there any museums, 
churches or other historical building that deserve a visit? Less culturally interested 
readers may look for stunning landscapes and pristine beaches, others for restaurants 
and bars to discover the local cuisine. However, as everyone can confirm by 
experience, holidays are generally too short: Hence, the number of destinations that 
can be visited during one trip is limited; furthermore, constraints are imposed due to 
monetary considerations. To satisfy a maximum of the tourist’s needs and ensure an 
enjoyable trip, a careful planning is required addressing several questions: What are 
the most interesting destinations and where are they located? Can I use any vehicle to 
go there? Is there special equipment required to enjoy a certain destination at its best 
(e. g. a camera for museums, a surfboard for the beach)?   

Based on these questions, one needs to prioritize and select suitable target 
destinations according to personal preferences. In some cases, trade-offs might be 
necessary: Is it worth travelling to the very fascinating but distant castle, when it is 
possible to visit the less interesting but nearby opera house and the neighboring 
museum at the same time? Can I even merge selected destinations, that are at least 
to some extend compatible concerning equipment and vehicle, into one route to save 
time? 

The result from above considerations is a travel plan or, keeping it more abstract and 
generic, a strategy, which is designed to guarantee the best travel experience with the 
given resources. However, in some cases, e. g. due to insufficient budget or travel 
restrictions, one needs to wait for the realization of his or her strategy and is limited to 
imaginary travels in the meantime. The good thing about imaginary travelling is that 
there are no restrictions on distances – so why not going a bit farther and imagining 
travelling across our galaxy and exploring stars? In fact, the considerations to develop 
a suitable exploration strategy are very similar to the planning of an enjoyable holiday 
trip as described above: By changing the wording from destinations to star systems, 
from equipment such as surfboards to scientific instrumentation such as telescopes 
and routes to trajectories, the holiday trip turns into an exploration strategy.  

Of course, it is not as simple as that; interstellar travel and exploration provide a lot 
more challenges which still need to be solved. Compared to an ordinary holiday travel 
(unless during a pandemic), its realization may appear at least ambitious, one might 
state that it is even unfeasible given the current, limited technological capabilities. But, 
in analogy to the holiday trip considerations under the present circumstances with 
travel restrictions: Why not starting to make plans now to be prepared once it is 
feasible? 
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1 Introduction  

1.1 Motivation and Context 

The idea of travelling to another star originates from the time when humanity became 
aware of stars as distant objects, which dates back to the 18th century [1]. Although by 
definition interstellar travel refers to space flight between stars [2], in most cases the 
primary objects of interests are the planets that are potentially hosted by the target star 
instead of the star itself, which is in particular driven by the search for habitable planets 
or even extraterrestrial life. Interstellar travel is differentiated from interplanetary travel, 
which considers travelling between planets within a certain star system, and 
intergalactic travel, which represents the hypothetical idea of visiting other galaxies. 
Compared to interplanetary travel, which has already been accomplished by humanity, 
interstellar travel involves much larger scales: The nearest star, Proxima Centauri, is 
located at a distance of roughly 270,000 AU [3], while the entire solar system has a 
radial extension of about 100 AU, taking the distance of the heliopause as reference 
[4].  

The comparably high distances between the stars entail very large travel times which 
are the reason why, up to the present, discussions on interstellar travel are dominated 
by theoretical concepts and ideas. There is a handful of existing probes (see Figure 
1-1), that have reached or are about to reach the interstellar medium, e. g. the Voyager 
1, which was launched 1977 and is currently the most distant human-made object from 
earth with a distance of about 150 AU [5]. However, all probes are still very far from 
approaching or even exploring a star system – literally far (in terms of distance) but 
also concerning the technology: None of these probes has been designed to perform 
an interstellar exploration mission; in fact, they have already accomplished their 
mission and now, left to themselves, continue their travel. Moreover, their velocity is 
not high enough to reach any other star in reasonable time: Considering again Voyager 
1, which is currently traveling at 3.5 AU/y [6], it would arrive at Proxima Centauri after 
more than 77,000 years. Hence, the realization of interstellar travel at reasonable 
timescales in its original idea, which is travelling to another star, appears to be reserved 
to future generations.  
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Figure 1-1: Overview of existing probes that have reached or are about to reach the interstellar 

medium (not to scale, trajectories not exact)  ([5], adapted) 

However, driven by exoplanet discoveries and the ongoing progress in related 
technologies, the traction for interstellar travel and exploration has gained momentum 
in the recent decade: As an example, consider the Breakthrough Starshot program 
which had been launched only few months before the detection of an exoplanet in the 
Alpha Centauri system in 2016 was announced [7] [8]. Being part of the Breakthrough 
Initiatives the Starshot concept consists of a gram-scale probe which is equipped with 
a laser propelled lightsail. Accelerated to a travel velocity of 20 % of the speed of light 
[9], the probe would reach its target, the Alpha Centauri system, after 20 years. 
Assuming further traction and extrapolating the current trends, it can be expected that 
the idea of interstellar travel may shed some of its very hypothetic and speculative 
nature within the next decades, at least regarding unmanned probes.  

On the path towards the feasibility of interstellar spaceflight, there are still var ious 
challenges waiting to be solved, ranging from the probe concept itself to the general 
strategy of the exploration mission. Some technological aspects are already addressed 
in existing literature, such as the propulsion system [10, 11], replicability [12, 13], the 
role of artificial intelligence [14], or the overall feasibility of interstellar travel [15]. 
Among the suggested probe concepts, huge differences in scale are found, ranging 
from nanoprobes weighting only few grams [16] to large-scale spacecrafts with weights 
of several [17] or even thousands of tons [18]. In some cases also roadmaps [19, 20] 
and missions to a single target are suggested, typically focusing regions beyond the 
heliopause [21] or near-by stars such as Tau Ceti [22], the Alpha Centauri star system 
[23–25] or Barnard’s star [18].  

However, only few studies derive strategies for exploring a large number of star 
systems or exploration sequences. Of those, most make rather simplistic assumptions 
in terms of type of spacecraft used [26], the type of star system [27, 28] and the 
optimization methods [28–30]: No further considerations on probe technology (e. g. 
propulsion system, probe mass) and mission architecture (e. g. rendezvous maneuver) 
with respect to the implications for the exploration strategy are made. Star systems are 
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not distinguished based on their characteristics (e. g. propensity to host planets) and 
typically assumed to follow a simple spatial distribution instead of using true data from 
observations. The optimization methods, which are applied to the problem to derive 
optimal exploration strategies, are mostly based on simple approaches such as 
nearest-neighbor heuristics: Apart from a simulated annealing algorithm no advanced 
optimization approaches are considered. Following a generic approach, this thesis 
attempts to extend existing work by making use of current knowledge of interstellar 
spacecraft and nearby star systems to derive trends for new interstellar exploration 
strategies based on optimization algorithms.  

1.2 Thesis Objectives and Research Questions 

The overarching objective of this thesis is to develop strategies for the exploration of 
star systems in the solar neighborhood (approximately 103 - 104 stars), based on 
optimization algorithms, taking advantage of current knowledge of exoplanets and 
interstellar spacecraft. From this main objective, the following subordinate goals and 
tasks can be derived, which address various research questions: 

• Identification and review of relevant literature: This task is required to identify 
parameters which are part of interstellar exploration approaches and strategies. 
Furthermore, data sources for the modelling and possible solution methods 
need to be found. It addresses the first research question, which asks for 
relevant parameters and variables in the interstellar exploration context, e. g. 
what are possible travel velocities of interstellar probes? 

• Definition of the optimization problem: Based on the previous results, the most 
relevant parameters need to be identified and used to define and formulate the 
optimization problem. Furthermore, the problem needs to be classified in order 
to identify suitable optimization methods. With this subgoal, the research 
question concerning the formulation of interstellar exploration strategies as 
optimization problem is answered, which is strongly linked to the question on 
the corresponding problem class.  

• Creation of an optimization model: The optimization model is required as part of 
the solution approach. It includes the star model, where current knowledge and 
recent observations on star systems can be incorporated. Hence, this step 
addresses two research questions: The first one, more generally, regarding the 
integration of recent stellar observations into the exploration strategy and the 
second one, more specific, concerning the value of a star system for a given 
mission. This includes questions on the structure of the solar neighborhood (are 
there any clusters?) and how the star distribution might affect the exploration 
strategy. 

• Application of an optimization algorithm: By means of the optimization algorithm 
a solution for the described problem will be found. It requires the selection of a 
suitable method and its adaption for the considered problem. Therefore, it 
answers the research question on the algorithm type which can be used to solve 
the described problem class.  
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• Deduction of exploration strategies based on the optimization results: This 
goal is expected to represent the main outcome of the thesis. It addresses the 
research question on the impact of mission design parameters on the 
exploration strategy and star selection. For instance, is there any dependency 
between the probe number and the optimum star exploration sequences?  

Figure 1-2 summarizes the objectives and addressed research questions.  

 
Figure 1-2: Overview of thesis objectives and how they address various research questions 

The objectives and tasks stated above will be refined and specified later based on the 
literature survey results.  
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1.3 Thesis Structure 

In Figure 1-3, the thesis concept is illustrated. From the beginning, the thesis is 
thematically divided into three cross-cutting areas of concern, which are recurring 
throughout the entire thesis: Interstellar exploration approaches, star systems in the 
solar neighborhood and related problems and relevant optimization algorithms.  

 
Figure 1-3: Thesis concept overview and structure 

From the highest-level perspective, the thesis can be structured into three main 
components which are addressed subsequently: It starts with the definition of the 
optimization problem, which is then encountered by suitable approaches to provide a 
solution to the previously stated problem. The problem definition, as indicated by the 
second layer, is composed of the literature survey and the problem framework. The 
solution approach contains the models, particularly mission and star model, and the 
algorithm which is used to generate the results that build the problem solution. Note 
the strict separation of optimization model (mission and star model) and optimization 
algorithm, which is adopted from [31], where the optimization model is independent 
from the optimization algorithm.  
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2 Literature Survey 

As already indicated during the presentation of the thesis structure, the literature 
survey consists of three parts:  

• Interstellar exploration approaches: This literature provides the main input 
for the optimization framework and the mission model. It contains a review of 
mission concepts, probe technologies and mission architectures that have been 
suggested in the literature with respect to interstellar exploration.  

• Star systems in the solar neighborhood: The review on nearby stars serves 
as basis for the star model, which is later used as part of the solution approach. 
It includes some astrophysical basics, e. g. star classification and 
characteristics, and an overview of star databases and catalogues. 

• Relevant optimization algorithms and related problems: The results of this 
survey are used to identify the problem class and to find a suitable optimization 
algorithm to solve the given problem. It starts with related problems and 
algorithms that are applied in interstellar exploration and settlement 
optimization, but later also other areas of application are included.  

Figure 2-1 provides an overview of the literature survey elements and its main 
contents. A brief explanation follows below.  

 
Figure 2-1: Overview of literature survey elements 

As shown in Figure 2-1, the first topic concerning interstellar exploration 
approaches is divided into several subtopics. The subtopics include general probe 
concepts for interstellar exploration, relevant technologies, and mission architecture 
concerns. The probe concepts are grouped according to the concept size into large-
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scale, single-probe concepts and small-scale, swarm-based concepts. With respect to 
technologies, self-replicability and the relevance of artificial intelligence in the 
interstellar exploration context is addressed. The survey on mission architecture focus 
on the challenges of rendezvous compared to flybys including considerations on the 
impacts from the unknown stellar medium.  

The second topic, star systems in the solar neighborhood, covers different fields: It 
starts with some basics on astrophysics, which includes the classification of stars, 
reference systems and stellar kinematics. Furthermore, stellar databases and 
catalogues are reviewed, also modelling approaches of the galaxy or galactic sections 
are investigated. Another aspect that is addressed in this topic are the scientific areas 
of interest regarding star systems.  

The third topic, concerning optimization algorithms, attempts to identify similar 
problems and suitable optimization methods. Therefore, it investigates optimization 
approaches in the interstellar exploration context and reviews methods from the Global 
Trajectory Optimization Competitions. Furthermore, related problems are considered, 
which includes multi-target rendezvous problems but also generic problems such as 
the Traveling Salesman Problem and suitable solution approaches.  

2.1 Interstellar Exploration Approaches 

As explained earlier, the topic of interstellar exploration approaches is divided into 
several subtopics. Due to the large differences in scale, suggested probe concepts are 
categorized into large-scale and small-scale approaches. The large-scale section 
covers probes weighting hundreds of kilograms and more, while the small-scale 
approaches include probes down to the gram-scale. Additionally, the large-scale 
concepts typically focus on single-probe missions, whereas the smaller probes often 
correspond to swarm-based mission concepts. Note that in some cases, both 
approaches are combined, i. e. when a large spacecraft transports a swarm of smaller 
exploration probes.  

2.1.1 Large-Scale and Single-Probe Concepts 

One of the first comprehensive studies addressing interstellar exploration has been the 
Project Daedalus [18]. The study considers a flyby mission to Barnard’s star using a 
two-staged vehicle with nuclear pulse propulsion. Assuming a coast velocity of about 
12 % of the speed of light, the vehicle would arrive after 50 years. Within the context 
of this thesis the vehicle itself can be considered as a large-scale concept, featuring 
an initial weight of 54,000 t and a length of 190 m. Three decades later, a successor 
study called Icarus was initiated [32], which aims to redesign the entire Daedalus 
systems and to reconsider some of the assumptions made in [18].  

A different propulsion system is suggested by Forward [17]: He considers two different 
unmanned exploration missions based on laser-pushed lightsails. The first one will be 
a flyby mission to Alpha Centauri using a 1000 kg lightsail with a diameter of 3.6 km, 
which accelerates the probe to 11 % of the speed of light. The successor mission, 
where discoveries from the flyby will be incorporated, includes a rendezvous at the 
target system. For that purpose, an additional lightsail section is required, which will  
be used to decelerate the main section (consisting of payload and smaller lightsail 
section) when approaching Alpha Centauri. Compared to the first flyby mission, the 
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system’s size and weight increase drastically (100 km diameter, more than 800 t 
weight). Although traveling at higher speed (21 % of the speed of light), the mission 
duration will be roughly the same, which is due to the deceleration process.  

In [33], Garrett et al. identify key requirements for long-lasting interstellar missions. As 
a best-case scenario, they propose a 40 to 50 year mission followed by rendezvous 
and entering an orbit near the target star instead of doing a flyby to enable further 
investigation. The required deceleration phase imposes significant constraints on the 
propulsion system, they conclude. Candidates for propulsion systems include nuclear 
based engines (such as nuclear fission and nuclear fusion), laser-driven sail and 
antimatter engines [34, pp. 45-57]. Among these, nuclear fusion propulsion is 
considered as optimal for automated exploration missions allowing for low mass ratios 
and due to its comparably high technological readiness. However, like conventional 
chemical propulsion-based systems, nuclear fusion requires additional systems for 
storage and reactions, leading to larger and more massive configurations, compared 
to directed energy approaches such as laser beams [35]. A review on solar sails, which 
gain momentum from solar radiation pressure and thus not require the transportation 
of fuel, is provided by Gong and Macdonald [11]. In a similar manner, electric solar 
wind sails make use of the solar winds to accelerate, allowing for travels to the solar 
system boundaries [36]. Cohen et al. [25] introduce a new method, designated as 
“Direct Fusion Drive”, allowing for an interstellar mission to the Centauri System with 
subsequent orbiting around a local planet. 

2.1.2 Swarm-Based and Small-Scale Concepts 

High energy requirements are one of the major problems of large-scale spacecraft. To 
save both cost and resources, Matloff [37, pp. 61-69] presents two options: The first 
one, lowering energy requirements by reducing velocity, would lead to unacceptable 
mission durations. Alternatively, he suggests minimizing the size of the spacecraft to 
micro scale by making use of nanotechnology, thus reducing weights from 1 ton to less 
than 1 kg. This also allows the deployment of multiple probes for swarm-based 
exploration, as suggested by Baumann [22]. He considers a hypothetical mission to 
Tau Ceti consisting of a swarm of unmanned exploration probes (see Figure 2-2).  
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Figure 2-2: Hypothetic Mission to Tau Ceti by swarm-based probes suggested by [22]. The scenario 

includes a reconnaissance mission at Kuiper Belt for in-space testing of the system 
operability 

The probes are assumed to travel about 100 years with 12 % of the speed of light using 
plasma and/or nuclear propulsion and power systems. These technologies have been 
tested successfully on small-scale but operability on larger scale has still to be shown. 
However, it seems questionable, whether speeds of that order are reachable by using 
the mentioned propulsion technologies. After arriving at the destination, the probes are 
planned to do a one-week lasting fly-through of the system to take measurements and 
acquire data, which will be sent back to earth. Decelerating the probes allowing for 
entering an orbit would double both mission time and vehicle mass. The advantage of 
such a swarm-based concept is the capability of investigating dispersed sites after 
being launched and transported to the destination within one common system. The 
probes operate independently but are also able to collaborate and support each other 
(e. g. by repair operations), if required. The capability of autonomous repair increases 
resilience and thus success probability of the mission. The challenge of self-repairing 
is also addressed by Moon et al. [38]. Considering nano-spacecrafts, they present a 
technology to heal space electronics from damage due to ionization radiation, hot 
carrier and tunnel stress. As a result, lifetime and reliability is increased.  

A similar concept to [22], amongst others, is suggested in [39], where different scales 
of spacecraft, from gram level (referred to as “WaferSats”) up to the 100 ton range are 
considered. As one option, a mother ship packed with several hundred WaferSats 
which will be dropped after reaching the target system is presented. The data collected 
by the WaferSats will be transmitted to the mother ship before send back to earth.  
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Decelerating the probes down to orbit speed (which is about 0.01 % of the speed of 
light) is identified as one major challenge and considered to be unsolvable with 
techniques such as magnetic coupling, using stellar wind or the stars photon pressure. 
Therefore, a flyby mission is suggested as a first scenario, enabling the development 
of braking strategies based on new findings on the stellar environment. The aspect of 
data transfer is also addressed by Messerschmitt et al. [40]. They suggest relaying 
swarms of low-mass probes to return scientific observational data back to earth.  

Another study which considers a small scale probe with 23 g total mass is presented 
by Hein et al. [23]. Propelled by a laser beam, the probe will travel to Alpha Centauri 
at 10 % of the speed of light and collect optical data during a flyby which will be send 
back to earth. Similarly, the Breakthrough Starshot Initiative suggests to deliver a 1 g 
scientific payload to the Centauri system [9]. Also beam-driven, the probe is planned 
to be accelerated up to 20 % of the speed of light. More than three decades earlier 
Forward [24] already presented his lightweight probe concept “Starwisp”. The Starwisp 
probe consists of a mesh sail (weighting 14 g) with microcircuits (4 g) and is powered 
by a microwave beam, which could be generated by solar-power satellite. Being 
accelerated at 115 g, the probe will reach a velocity of 20 % of the speed of light within 
one week. After 21 years, it will reach Alpha Centauri to do a flyby and send high-
resolution pictures back to earth. Matloff [41] rethinks the idea of solar-power satellites 
by introducing non-stationary power stations, which follow the probes to enable higher 
thrust rates. The concept of lightsails is also part of a study conducted by Kulkarni et 
al. [16], where they consider gram-scale spacecrafts that are accelerated up to 20 % 
of the speed of light. However, it is highlighted that this technology is not limited to 
small-scale spacecrafts. Another important outcome concerns the lightsail design, 
which turned out to be optimal (in terms of maximal spacecraft velocity) when its mass 
equals the spacecraft mass. The effect of photon recycling, which is discussed to 
maximize the energy transfer, is found to be stronger in case of low-speed missions 
compared to relativistic speeds.  

According to Crawford [42], small scale probes accelerated by earth-based lasers are 
the only feasible exploration approach in near-future, although having only limited 
scientific value due to their low mass. Larger probes, which would enable more 
sophisticated exploration tasks, require a space-based civilization being able to 
harvest material and energy resources of the solar system. His rather pessimistic 
estimation is supported by Millis [43]: By extrapolating trends from past space activities 
and energy considerations Millis expects a first interstellar exploration probe not to 
launch before 2500. As an example, he considers a 75-year lasting rendezvous 
mission to Alpha Centauri with a probe weighting about 10 t.   

2.1.3 Self-Replicating Probes 

The concept of self-replicating probes, also called von Neumann probes, is suggested 
recurrently when it comes to interstellar exploration or space exploration in general [12, 
13, 44–46], also with respect to the Fermi paradox [47, 48]. Being able to produce 
copies of themselves, they may reduce the time for interstellar exploration or even 
colonialization drastically. A prototype of an autonomous self-replicating robot has 
already been built and tested on earth [49], however, self-replicating probes are still 
rather theoretical. Freitas [45], for instance, describes a self-replicating probe concept 
based on the Daedalus vehicle presented in [18]. Compared to the original version, the 
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payload is assumed to double to enable reproduction. In addition, the mission profile 
changes, as the probe has to slow down to start reproduction activities when reaching 
its target star instead of doing a flyby as originally proposed. The deceleration of the 
probe is planned to be conducted by the configuration stage 1 and 2, hence an 
additional stage “0” is required for the acceleration, which will be larger than the 
Daedalus configuration itself. After entering a parking orbit around the target star, a 
smaller probe will be released and landed on a moon. Once landed, its main function 
is to build a manufacturing complex, which in turn will produce a new, self-replicating 
Daedalus probe every 500 years.  

Another, more recent example of a self-replicating probe concept is presented by 
Borgue and Hein [12]. They address the question of near-term feasibility of such a 
concept considering small spacecrafts based on technologies that are currently 
available or at least expected to be available soon. It is concluded, that within the next 
10 years a partially self-replicating, small-scale probe could be launched, which is 
capable of replicating 70 % of its mass. Complex electronic parts such as microchips 
are not produced and must be provided by the initial probe.  

In [13], Stephenson combines the self-replicability of the probes with an bio-inspired 
approach. Referred to as self-replicating, self-improving probes, his concept includes 
an evolutional process, where experiences and new information are included into the 
manufacturing process. Thus, instead of producing exact copies of themselves, the 
probes will develop continuously, which provides a certain degree of intelligence.  

2.1.4 The Role of Artificial Intelligence in the Interstellar Exploration Context 

A recurring topic in the field of interstellar travel or exploration is the application of  
artificial intelligence (AI) which also allows for autonomous operations. The capability 
to operate autonomously is required due to the large distance between earth and the 
probe. Drivers and a system architecture with respect to interstellar exploration or 
colonialization are described by Hein [50]. According to him, power requirements for 
the payload and the capabilities of power generation and heat rejection are the key 
challenges to be addressed. Given the high computational cost and power 
requirements, he proposes to place the probe in an orbit close to the star to provide 
sufficient power for computing before continuing with exploration. Considering a 2050-
2060 timeframe, a payload with computational power comparable to human brains 
would weight from dozens of tons up to 100 t, he concludes.  

An earlier study on the topic of artificial intelligence is provided by Freitas et al. [51]. 
They consider various space missions including an autonomous space exploration 
system. It was found that the three, traditional sequential stages of exploration (in 
particular: reconnaissance, exploration and intensive studies) can be merged into one 
single discovery phase to reduce mission time. For this purpose, the probes will be 
equipped with an advanced machine intelligence, enabling an automated hypothesis 
formation, which is regarded as essential for interstellar exploration.  

In [14], Hein and Baxter classify probe concepts according to their degree of 
intelligence. They present four types with different skills, two of them are relevant within 
the scope of this thesis; in particular, the “Explorer” probe, being able to perform a 
predefined mission within known environment (such as the Daedalus and Icarus 
concepts) and the more sophisticated “Philosopher”, which is capable of designing own 
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scientific missions in unexplored environment and doing in-situ manufacturing based 
on local resources. Özkural [52] introduces the concept of semi-autonomous agents to 
enable intelligent control of the spacecraft within a mission framework to Tau Ceti and 
Gliese 667C. He defines an AI agent as “abstraction of an intelligent animal, which acts 
in an environment in an intelligent manner”. A human-level AI technology is expected 
to be feasible by 2030, allowing for a probe launch in 2040 after ten years of training 
and simulation. Beside the communication latency, particularly the challenge of high 
uncertainty which demands for high adaption capabilities can be encountered by 
intelligent probes.  

With respect to agent modeling in the space exploration context, Graziano et al. [53] 
define the concept of artificial curiosity. Their concept addresses the question to decide 
autonomously, what to explore, by assessing the interestingness of observations. 
Sievers and Madni [54] address the need of autonomous, on-board decision making 
by presenting a contract-based approach, which is bio-inspired by immune system 
responses and reaction of attacked social insect colonies.  Being embedded into a 
swarm-based concept, it also yields higher resilience and reliability.  

2.1.5 Flyby vs. Rendezvous – The Problem with Decelerating and Unknown 
Stellar Medium Characteristics 

One major challenge for interstellar exploration missions is the deceleration of the 
probe before reaching its target system. By entering an orbit, the scientific value of the 
mission could be increased significantly, compared to conducting only a flyby. To 
encounter this problem, Andrews and Zubrin [55] suggests the use of magnetic sails. 
By making use of interplanetary or interstellar plasma winds, magnetic sails are 
considered as valuable addition to other propulsion systems such as fusion rockets or 
laser lightsails. The combination of lightsail and electric sail is also proposed by Perakis 
and Hein [56], as both technologies benefit mutually due to their different optimal 
velocity regimes: The efficiency of magnetic sails increase with velocity, whereas 
electric sails operate more efficiently at lower speeds. Decelerating from 5 % of the 
speed of light to interstellar velocities would take about 29 years when both sail 
technologies are used, 35 years with electric sails and 40 years with magnetic sails, 
they elaborate, assuming a constant spacecraft mass. Gros [57], however, argues that 
magnetic sails, which might be useful for deceleration, would increase the spacecraft 
weight significantly, which in turn lays down new requirements on the acceleration 
process. Hence, providing that mission duration is not a critical factor, which allows the 
probe to travel with comparably low speed (about 0.3 % of the speed of light), a 
deceleration with subsequent orbiting and exploration phase would be possible. 
Otherwise, he concludes, only flyby missions are realizable. Heller and Hippke [58] 
present an alternative approach to decelerate interstellar light sails based on a 
combination of gravitational assist and photon pressure. Assuming a maximal injection 
speed of about 4.6 % of the speed of light and a light sail carrying a 10-gram payload, 
this method enables multiple stellar flybys in the Alpha Centauri system with 
successive deceleration, followed by entering into an orbit around Proxima. The 
described method is modified and improved in [59], additionally a catalogue is 
presented, where results for rendezvous missions to other nearby stars are provided. 
Interestingly, a mission to Sirius A has the shortest trip time (69 years assuming 12.5 % 
of the speed of light), although being located roughly twice as far as Alpha Centauri. 
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This is due to the high luminosity of Sirius A, which is capable of absorbing more kinetic 
energy than other fainter stars and thus allows for comparably high arrival velocities.  

From a more general perspective, Lingam and Loeb [60] highlight that electric sails are 
superior to light sails for most star systems due to the higher stellar wind pressure. 
Near K- and M-dwarfs, speeds up to 500 km/s are reachable; on a longer time scale 
also relativistic speeds are possible by repeated encounters with the stellar systems. 
Deceleration is enabled by activating the electric sail within the interstellar medium. 

The local interstellar medium and its characteristics, which are not known in detail, are 
discussed by Crawford [61] as part of the Project Icarus study group. Given the high 
level of uncertainty, he concludes that first-generation probes should be designed 
rather conservatively with respect to assumptions on the interstellar medium. Hence, 
when considering decelerating systems, he recommends assuming the lowest 
plausible density whereas analyses on particle impacts should be conducted based on 
the highest plausible density. The danger of damage due to collision with particles and 
interaction with gas for relativistic probes is assessed by Hoang et al. [62]. As an 
example mission, they consider a journey to Alpha Centauri at 0.2 % of the speed of 
light. They found that interstellar gas and dust might damage the probe surface up to 
a depth of 0.1 mm or 0.5 mm, respectively. Gram-scale spacecrafts are expected to 
be destroyed completely when colliding with dust grains larger than 15 µm. To protect 
the spacecraft, they suggest using needle-like configurations, appropriate materials or 
shielding layers.  

2.1.6 Exploration Strategies and Comparison of Different Approaches, 

Concepts and Parameters 

From a high-level perspective Vulpetti [63] presents different scenarios for interstellar 
exploration by discussing the feasibility of interstellar travel: While fast round-trip 
travels are considered to be rather improbable in the near-future, one-way flights at 
relativistic speeds or slower expansions based on replicating robots are assumed to 
be more realistic. Valdes and Freitas [29] compare exploration strategies based on 
self-replicating probes and nonreproducing ones. The underlying exploration models, 
strategies and parameters are summarized in Table 2-1. 
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Table 2-1: Exploration scenarios for non-reproducing and reproducing probes described in [29] 

 
Non-reproducing 

probes 
Reproducing probes 

Model of the galaxy 
Large number of small, 

equal volume cells 
containing 𝑛 target stars 

Small number 𝑚 of large, 
equal volume cells 

Exploration strategy 

Each volume cell is 
explored by one single 

probe 

Each volume cell is assigned 
to one daughter probe, which 
may divide the cell further and 

assign each of them to her 
daughter probes or 

subsequent generations 

After completing the 
exploration of its cell, the 

probe stops operating 

Each probe explores only one 
single star system 

All probes are launched 
subsequently from origin 

Only one single reproducing 
probe is launched from origin 

Parameters  

Interstellar cruise 
velocity 

10 % of the speed of light 

Residence time 
(exploration time per 
star) 

1 year 

Time to produce 
probe at origin 

10 years 100 years 

Time to reproduce 
new probes in space 

- 500 (1+𝑚-1) years 

The reproducing probe concept is based on the approach described earlier by Freitas 
[45], accordingly probes do not replicate themselves directly but need to build a factory 
at the target system, which produces new probes. Regarding the non-reproducing 
approach, automated messenger probes are considered which are mentioned by 
Bracewell [64] within the context of extraterrestrial technologies for space exploration. 

Figure 2-3 shows the result of their analysis. In the diagram, the number of explored 
star systems (𝑁) is plotted as function of exploration time (𝑇). Two additional horizontal 
lines indicate distances of 100 and 1000 light years in the Galactic Disk. The dotted 
line refers to the exploration strategy based on self-replicating probes. For non-
replicating probes, several cases are considered depending on the number of stars 
which are visited by one probe. The dashed line indicates the optimum scenario for 
non-replicating probes, as there exists an optimal value for 𝑛 which corresponds to a 
certain exploration time 𝑇.  
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Figure 2-3: Number of explored stars vs. time for reproducing and non-reproducing probes (from [29], 

adapted) 

It is found that, considering short term exploration programs (𝑇 < 104  𝑦𝑒𝑎𝑟𝑠) with 
limited number of target systems (𝑁 < 103 𝑠𝑡𝑎𝑟𝑠), non-replicating probes are superior 
to those with self-replicating capabilities. With increasing mission time and number of 
stars, however, self-replicating probes perform better. As another outcome they show 
that self-replicating probes benefit from high stellar number density and high cruise 
velocities. Residence time is found to have only small impact, same holds for the 
number of self-replicating probes launched from origin.  

To minimize exploration time, they conclude that a combination of both approaches 
might be the most promising strategy. Generally, it is stated that for nearby systems 
non-reproducing probes are more effective than reproducing ones and vice versa. The 
threshold for cost-effectiveness varies from 10² - 106 stars, depending on the 
exploration strategy and effectiveness criteria.  

Limits of this study are the rather simple model of the galaxy assuming a homogenous 
star distribution and, particularly concerning the non-reproducing probe, the lack of 
information on the probe concept. Hence, some of the assumptions might be 
reconsidered and could bring different results.  

In [27], Bjørk describes an approach to explore the Milky Way using space probes that 
transport a swarm of smaller exploration subprobes to a destination star (similar to 
[22]). After arriving there, 4-8 subprobes are released and start to explore the nearest 
40,000 stars by traveling to the nearest star that has not been visited yet. After all 
40,000 stars are covered, the subprobes return to the destination star and couple to 
their host probe, which then will travel to a new star region for subsequent exploration. 
All probes are assumed to travel with 10 % of the speed of light, which is low enough 
to neglect relativity effects but still fast enough to enable reasonable interstellar travel 
time (order of years). The exploration of stars by the smaller subprobes is done via 
flybys to save energy and time. To avoid that stars are explored twice, each subprobe 
is assigned a certain corridor of height, where it is allowed to travel. Similarly, each 
host probe must stay within a predefined region defined by the angle with respect to 
the Galactic Center. Considering one quadrant of the galaxy, which has about 
65,000 systems with 40,000 stars each, exploration time would range in the orders of 
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108 to 109, depending on the number of host probes and subprobes. Although exposing 
some weaknesses (such as the assumption, all probes will operate without fails or 
defects over 108 years), his concept is revisited by Cotta and Morales [28]. 

In [65], Frisbee investigates the impact of mission parameters such as vehicle 
acceleration, maximum and cruise velocity on mission time, mass and power budget.  
It is found that mission parameters depend strongly on the propulsion technology: 
Mass, power, thrust and acceleration correlate strongly for antimatter rockets or fusion 
ramjets, whereas light sails allow for arbitrarily high power and thrust without a 
significant increase of vehicle mass. However, with increasing mission distance, light 
sail area and mass are growing with square, whereas ramjet or antimatter engines only 
require thicker shielding, which entails lower mass increase. When it comes to mission 
time, travelling to nearby stars might be less time efficient compared to longer travels, 
as due to the shorter acceleration and deceleration period the vehicle cannot reach its 
maximum velocity for cruising. Another outcome is, that the impact of acceleration on 
the entire mission time is comparably high for values smaller than 0.1 g and almost 
negligible from 1 g upwards, assuming a cruise velocity of 50 % of the speed of light. 
A similar result is obtained by Singh et al. [66], who describe an exploration mission to 
Luhman 16 based on an unmanned probe powered by gas core nuclear reactors: 
Under the assumption of constant terminal velocity, it is found, that travel duration does 
not depend on the acceleration rates (considering scenarios with constant acceleration 
of 1 g and 3 g, respectively). By taking account of relativistic effects they further show 
that with increasing flight velocity on-board travel time is reduced drastically. 

Cartin [26] examines the effect of parameters like cruise speed, success probability 
and number of target stars and launched probes on the exploration of the solar 
neighborhood. The probes are assumed to travel with a constant speed and use 
gravitational assist for trajectory deflection, resulting in hyperbolic orbits. Like other 
approaches described above, each probe is assigned one or more target systems at 
launch, which are visited subsequently without rendezvous. Concerning the probe 
concept itself, he decides for large-scale spacecrafts without self-replicating capability, 
which are stand-alone systems and more robust compared to smaller vehicles, but 
also more costly in terms of construction time and resources. Representing the more 
conservative approach, however, some of the results are also valid for small-scale 
systems.  

He found, that doubling the number of probes or cruise velocity reduces the mission 
time to complete the same exploration by half. Another outcome is the proportional 
correlation between number of target stars and mission time: Accordingly, doubling the 
targets also doubles the exploration time. Involving a success probability factor shows, 
that only up to a certain value a higher number of probes will increase the number of 
visited targets (see Figure 2-4).  
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Figure 2-4: Fraction of visited systems vs. probe success probability per parsec, considering a total 

number of 40 targets [26] 

For instance, assuming a success probability of 90 % per parsec and number of 
40 targets planned to be visited by eight probes, about five targets can be expected to 
be explored successfully. Doubling the number of probes would add four more 
explored targets, however, to obtain three more successful visits, 16 additional probes 
must be deployed. 

As most of the described exploration strategies omit orbit dynamics, Forgan et al. [30] 
suggest the use of slingshot maneuvers, which allow the spacecraft to gain velocity 
without fuel cost. Based on a single probe concept, he compares three different 
approaches: firstly, traveling from the origin star to nearest neighbor with delta v only 
depending on acceleration/deceleration of the engines (“powered” scenario); secondly, 
a slingshot assisted travel to nearest neighbor where the spacecraft only has to 
accelerate once to maximum velocity (“slingshot” scenario); and thirdly, a slingshot 
assisted travel to that star, which allows for the highest velocity boost (“maxspeed” 
scenario). He demonstrates that, taking the first scenario (“powered”) as reference, 
travel time can be cut by two orders of magnitude when using the “slingshot” scenario 
and by a factor of 2 considering the “maxspeed” scenario. However, total travel time 
remains large (order of 108 years for “slingshot” scenario), due to the comparably low 
maximum velocity (0.003 % of the speed of light) and the high number of target 
systems (106 stars). Another, earlier study on the effect of near flybys to accelerate 
space probes is done by Surdin [67]. According to his model, accelerating a probe to 
10,000 km/s in the solar neighborhood would take 100,000 years and 100 years at the 
Galactic Center.  
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2.2 Star Systems in the Solar Neighborhood 

This section presents the literature survey on star systems. It starts with some 
astrophysical basics concerning the classification of stars, followed by an introduction 
of reference systems and stellar kinematics. Afterwards, approaches for galactic 
models are investigated, before an overview of star catalogues and databases is 
provided. Finally, the scientific areas of interests concerning star systems and 
corresponding stellar characteristics are surveyed.    

2.2.1 Classification of Stars 

Commonly, stars are classified according to their spectral characteristics, as shown in 
Figure 2-5. 

 
Figure 2-5: Classification of stars according to spectral characteristics [3, p. 132] 

Roughly speaking, the effective temperature decreases from “O” class to “M” type 
stars. For each star class, a number of luminosity types are distinguished, indicated by 
roman numerals from 0 to VII, where 0 refers to the highest luminosity. A detailed 
description of each class can be found in literature [3, pp. 125-175, 68, pp. 327-337] 
and is thus omitted here. Plotting surface temperature against luminosity, yields the 
Hertzsprung-Russel Diagram, shown in Figure 2-6. Included are more than 4 million 
stars within 5,000 light years from the sun with data obtained from the Gaia Mission 
[69].  
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Figure 2-6: Hertzsprung-Russell Diagram obtained from Gaia Mission [69] 

As seen, stars are not distributed uniformly, but follow a certain pattern, such as the 
main sequence, which is a diagonal stripe from bottom right to upper left. Along the 
main sequence, which includes 90 % of all stars within the Milky Way Galaxy, mass 
and diameter increase with luminosity [3, pp. 189-190]. As there is a negative 
correlation between the star mass and its lifetime, highly massive stars are difficult to 
find and observe despite their high luminosity – it is assumed that the entire milky way 
contains only about 20,000 of O-type main sequence stars [3, p. 144]. Accordingly, M-
stars, with an average mass of about half a solar mass, are the most prevalent spectral 
star type. [3, p. 164] 
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2.2.2 Reference Systems and Stellar Kinematics 

Depending on the current problem and specific needs, various systems are common 
to define an object’s position. For the investigation and description of stellar 
distributions within the Milky Way, the galactic coordinate system can be used [68, pp. 
5-11], which is a spherical system. Like the geographic coordinate system on earth, 
the galactic coordinate system is composed of a galactic longitude 𝑙, which is in the 
plane of the galaxy, and a galactic latitude 𝑏 in the perpendicular direction, positive 
towards north and negative towards south (see Figure 2-7). [4, p. 389] 

 
Figure 2-7: Galactic Coordinate System with galactic longitude 𝑙 and galactic latitude 𝑏 (background 

image taken from [70]) 

As all measurements are done from the solar system, the origin is placed in Sol instead 
of the galactic center, hence the longitude 𝑙 = 0° gives the direction from Sol towards 
the galactic center. [71, p. 257] The distance, which is the third coordinate and required 
to define the position of an object, is mostly omitted in this context.  [68, p. 6] 

Alternatively, stellar objects can be located using the International Celestial Reference 
System (ICRS), which has its origin in barycenter of the solar system. Its axes are 
defined by 212 extragalactic radio sources (quasars and active galactic nuclei) without 
observable intrinsic angular motions. Accordingly, the system is space-fixed and not 
related with a certain epoch. Nevertheless, the ICRS is aligned closely with the Earth’s 
mean equator and equinox of J2000.0 (error of 0.02 arcsec). Note, that strictly 
speaking there is a difference between a reference system and a reference frame, as 
a system can be realized by several frames: For instance, the ICRS is realized by the 
International Reference Frame (ICRF) or, with less accuracy, by the Hipparcos 
Celestial Reference Frame. [72]  

The motion of stars is composed of a radial velocity component and the so-called 
proper motion. The radial velocity can be measured using the Doppler effect: Positive 
values (red shift) indicate that the star is moving away from the sun, while for negative 
values (blue shift) the star is approaching the sun. The proper motion describes the 
star motion on the celestial sphere and is typically given as angular velocity. The ratio 
of proper motion and parallax yields the tangential velocity, which is added to the radial 
velocity to obtain the spatial velocity of the star. [4, p. 176]  

The relative motion of the stars is visualized in Figure 2-8 which shows the relative 
distances between selected, nearby stars and Sol considering a timeframe of 
15,000 years.  
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Figure 2-8: Stellar distances from Sol with time obtained from the integration of the N-body equations 

of motion over 15,000 years [73] 

For instance, in roughly 8,000 years Barnard’s Star is expected to replace Proxima 
Centauri as nearest star temporarily (for a few hundred years), before Alpha Centauri 
will take over the position of the closest star.  

Beside the described, relative motion, stars are rotating around the galactic center. 
There is also an unknown number of so-called hypervelocity stars, which are unbound 
and travel across the galaxy at much higher speeds compared to the local escape 
velocity. However, the classification of an observed object as hypervelocity star is still 
part of current research and typically based on probabilities. Moreover, recent studies 
[74] utilizing data from the Gaia second release indicate, that most of the candidates 
previously assumed to be unbound turned out to be bound with high probability and 
thus no hypervelocity stars.  

The velocity of the bounded stars depends on the orbit and the distance from the 
galactic center. Due to the distributed galaxy mass, there exists no simple function for 
this correlation. Instead, an approximation is required, e. g. by decomposing the galaxy 
mass into its main components supermassive black hole (MBH), bulge, disk and halo. 
This has been done by Brown [75] (see Figure 2-9).  



Literature Survey 

 

 

Page 23 

 
Figure 2-9: Approximated orbital and escape velocity with distance from galactic center including the 

influence of major galaxy mass components (MBH = supermassive black hole), taken from 
[75] (adapted) 

From Figure 2-9 it can be derived, that the maximum orbital velocity occurs between 
disc and halo, within the region of the sun, which orbits at around 230 km/s around the 
galactic center. The escape velocity in that region is roughly about 550 km/s. These 
values are also valid in close solar proximity (say ±100 light years), which is the region 
of interest in this thesis.  

2.2.3 Galaxy Models in Interstellar Exploration Approaches 

Valdes and Freitas [29] use a very simple galactic model to analyze various exploration 
strategies. They assume a homogenous and infinite distribution of star systems 

defined by 4.3 ∙ 10−4  𝑠𝑡𝑎𝑟𝑠𝑙𝑦−3  in the Galactic Disk (considering 10 % of all stellar classes 

to be habitable). The model described in Bjørk [27] assumes an exponential decline of 
the stellar density with increasing distance from the Galactic Center, a similar model is 
used in [28] (see Figure 2-10). Only stars within the Galactic Habitable Zone are 
considered, which is defined by a thin annular area with distance from 3 – 11 kpc from 
the Galactic Center.  
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Figure 2-10: Simplified galaxy model (one quadrant) used in [28], a similar model is used in [27] 

Forgan et al. [30] assumes a uniform distribution of one million stars with a density of 
1 star per cubic parsec. The star position is fixed; however, each star possesses a 
certain velocity vector to calculate the slingshot dynamics. Contrarily, Cartin [26], who 
focus on a lower number of stars, uses real data for his model of the solar 
neighborhood. As the previous approaches he assumes all star systems to maintain a 
constant position.  

As seen, real data is only relied on when considering a low number of stellar systems 
[26], for higher count rather simple star distribution models are used instead [27, 29, 
30]. The motion of the stars is neglected in each model; even if the effect of slingshot 
maneuvers is investigated only a velocity vector for each star is included without having 
any impact on the star position.  



Literature Survey 

 

 

Page 25 

2.2.4 Stellar Databases and Catalogues  

From past until nowadays, it has been common practice to incorporate star data and 
information about stellar objects into catalogues or data archives. Those databases 
are updated regularly according to discoveries and new findings from space missions. 
One mission in the stellar categorization context was the Hipparcos space astrometry 
mission, launched 1989 and led by the ESA. Data generated from observations and 
calculations are incorporated in the Hipparcos Catalogue, which provides more than 
118,000 star positions with high precision and magnitudes up to 12.4. More than 
1,000,000 stars with less precise position data are listed in the Tycho Catalogue. The 
Tycho 2 Catalogue, which was published 2000, includes more than 2,500,000 stars, 
covering 99 % of all stars with magnitude up to 11. ([76], [77]) On their search for 
extraterrestrial intelligence, the SETI institute developed a catalog named “HabCat”. It 
contains more than 17,000 stars selected from the Hipparcos Catalogue, 75 % of them 
within 140 pc distance from sun. [78] 

FK 6 (Fundamentalkatalog 6), which is provided by the Astronomisches Rechen-
Institut (ARI) in Heidelberg, combines the results from 200 years of earth-based 
observations with data from the Hipparcos Catalogue. It contains data for more than 
4000 single stars. [79] Two further databases from the ARI are the ARIHIP, which is 
more extensive than FK6, and the ARICNS (Astronomisches Rechen-Institut Catalog 
of Nearby Stars), which focus on nearby stars in the solar neighborhood within up to 
25 parsecs distance from earth. [80] 

The solar neighborhood is also the subject of investigation of the Research Consortium 
On Nearby Stars (RECONS). Amongst others, they provide a list of the nearest 
100 stellar systems (status from 2012) [81]. [82, pp. 472-475] compiles a similar list 
with older status.  Another dataset of nearby stars with distances up to 150 parsecs is 
given in [83, pp. 24-38]. Knapp [84] describes double or multiple star systems within 
10 parsecs based on latest data (status from 2020).  

One of the most recent and extensive catalogues is the Gaia Archive, where 
observations from the ongoing Gaia mission by ESA are collected. The first release, 
Gaia Data Release 1 (Gaia DR1), has more than 1.1 billion entries, including results 
from Hipparcos and Tycho 2 Catalogue. [85] The second and latest release1, Gaia 
Data Release 2 (Gaia DR2), contains more than 1.6 billion objects, most of them 
(1.3 billion) including position on the sky, parallax and proper motion. Contrarily to the 
first release, data from Tycho 2 are not incorporated anymore, instead only observation 
from the Gaia mission are considered. However, there are still limits in terms of 
completeness of the catalogue: Bright stars of magnitude 𝐺 ≤ 7 are not covered 
completely, hence there is still a fraction of stars missing. Furthermore, 20 % of the 
stars with a proper motion ≥  0.6 𝑎𝑟𝑐𝑠𝑒𝑐𝑦𝑒𝑎𝑟  are not included. [87] Regarding fainter stars, 

Gaia DR2 is 99 % complete to a magnitude limit from 18.9 – 21.3 depending on the 
position on the sky, as stated by Boubert and Everall [88]. Based on the Gaia data, 
there are various approaches to derive further information on the objects: For instance, 
Bailer-Jones et al. [89] estimate the distance of the objects using primarily parallax 
data or Andrae et al. [90] derive further parameters such as effective temperature and 
radius for 77 million sources.  

 
1Note: An early, third Gaia Data Release (GAIA EDR3) was published in December 2020, a full release 
is planned for 2022 [86]. 
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Another, more specific mission to be named in this context is the Kepler mission, which 
was carried out by the NASA. While the Gaia mission follows a rather general 
investigation and observation approach, the Kepler mission focused on the discovery 
of habitable exoplanets and their hosting stars. Based on the observation of transits, it 
required a continuous monitoring of stars, which imposed restrictions on the field of 
view. Therefore, only a certain section of the galaxy could be considered. In order to 
maximize the number of stars (more than 150,000), a region of the Cygnus and Lyra 
constellations was selected for observation. After a technical issue, the Kepler mission 
was terminated and followed by K2, which allowed for a varying field of view. [91]  

The United States Naval Observatory (USNO) provides further catalogues, such as 
the UCAC2 (USNO CCD Astrograph Catalog, for stars with magnitudes between 8-16) 
or the USNO-B Catalog (more than 1 billion entries). They offer also a merged dataset 
referred to as NOMA (Naval Observatory Merged Astrometric Dataset) which includes 
data from Hipparcos, UCAC2, Tycho 2 and USNO-B. [92] The Sloan Digital Sky Survey 
is an ongoing project with the scope of mapping the universe, however, to date it covers 
only one third of the sky [93].  

2.2.5 Scientific Areas of Interests - Stars and their Propensity to Host 
(Habitable) Planets 

With respect to interstellar spaceflight, there exist mainly four different areas of 
scientific interest and potential explorations [94]: The first one is the interstellar medium 
encountered during the travel to a target star (can be investigated en route); secondly, 
the astrophysical characteristics of the target star; then studies on the planetary system 
(if existing) and finally, linked to the planetary studies but now from a biological 
perspective, the search for any life that may have evolved. Generally, most discussions 
on interstellar travel and exploration are driven by the search for habitable exoplanets 
or extraterrestrial life. Hence, in this thesis the scientific interest of a star system is 
assumed to be determined by the occurrence of exoplanets and their habitability with 
respect to the stellar characteristics.  

2.2.5.1 The Probability of a Star for Hosting Planets 

When assessing stellar systems with respect to the presence of exoplanets, some 
general tendencies can be derived: Von Braun and Boyajian [83] present an overview 
of nearby stars and, where known, their exoplanets. They incorporate any star with 
stellar radius smaller than 100 solar radii, determined interferometrically with random 
uncertainties smaller than 5 %, out to a distance of 150 pc from sun into a Hertzsprung-
Russel-Diagram (Figure 2-11). Stellar radii are represented by the diameter of each 
data point, based on a logarithmic scale. The data point color indicates the occurrence 
of exoplanets: Blue circles are exoplanet-hosting stars, grey circles not (or at least not 
known to do so).  
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Figure 2-11: Hertzsprung-Russel Diagram for stars within 150 pc from sun, with stellar radii less than 

100 solar radii which has been determined interferometrically with random uncertainties 
smaller than 5 % [83, p. 39] 

From Figure 2-11 it is concluded that there is no systematic difference between stars, 
which are hosting planets and stars without planets (or not known to host planets). This 
is due to the high level of uncertainty (does the star really host no planets or are they 
not discovered yet) but also expected, as planets only represent a small fraction of the 
entire system mass. [83, p. 54] A similar result is obtained by Fressin et al. [95]: 
Considering Kepler data, they state, that there is no functional dependence between 
the planet occurrence rate and the host star spectral type, mass or temperature. In 
contrast, Mulders et al. [96] found (also based on Kepler data) an increase in planet 
occurrence rate towards cooler stars: According to him, Planets around M stars are 
occurring twice as frequently compared to G stars and thrice compared to F stars.  

Based on Gaia and Kepler Data, Maliuk and Budaj [97] investigate the spatial 
distribution of exoplanet candidates in the solar neighborhood and near open clusters. 
After eliminating for gradients, which are assumed to result from single unobserved 
planets orbiting faint stars, they derive a homogeneous distribution of exoplanets within 
the considered regions, apart from a slight decline with distance for F stars. Within the 
closer solar neighborhood, several systems are expected to host exoplanets. Some 
examples including further characteristics are given in Table 2-2.  
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Table 2-2:  Stellar systems which are suggested as prime targets for interstellar exploration by [34, p. 
34] 

 

2.2.5.2 The Probability of a Star for Hosting Habitable Planets 

Beside the debate on stars and their propensity to host planets in general, another 
important aspect in this context is the probability of hosting habitable planets. Early 
work in this field was done by Dole [98], who calculated several probabilities of the 
occurrence of habitable planets for a given star more than half a century before. 
However, the question regarding the habitability of exoplanets is still discussed 
conversely and part of current research. In [99], relevant factors for habitable Earth-
like planets are reviewed, similar work is done by Meadows and Barnes [100]. One of 
the key drivers are the stellar characteristics, as shown in Figure 2-12. Due to the focus 
of this thesis, which is not on planetary science but on stellar exploration, they are 
regarded as the most relevant, other aspects are omitted. Most of these properties can 
be derived from observation (as indicated in Figure 2-12 by the blue font), a telescope 
with sufficient power provided. 
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Figure 2-12: Properties that possibly impact planetary habitability - Font color indicates directly 

observable characteristics (blue) and properties derived from theoretical modeling (orange) 
and modeling interpretation (green) (from [100], adapted) 

For instance, stellar spectrum affects particularly atmospheric escape and climate. The 
spectrum depends on the temperature of the stellar photosphere, which in turn 
correlates with stellar mass and radius. High massive stars (such as O, B and A stars) 
typically have a shorter lifetime, which may hamper the evolution of complex life: 
Taking Earth as an example, it took more than 2 billion years before oxygen began to 
appear in the atmosphere [101]. Conversely, very low mass stars (< 0.5-0.8 solar 
masses) may host only small, less habitable planets, which would exclude most of the 
M stars for habitability considerations. [102]  

To consider a planet as habitable, one traditional approach is to examine the planet 
with respect to the presence of liquid water on the surface. This leads to the concept 
of a habitable zone, which determines the distance from a hosting star where in theory 
the conditions for liquid water are given. Note, that habitability as such does not 
necessarily mean that the planet is inhabited. Figure 2-13 illustrates the relation 
between spectral star class and its habitable zone. 
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Figure 2-13: Habitable zones for different spectral star types [103] 

As shown, the habitable zone increases while moving outwards with higher surface 
temperatures of the host star.  Based on an empirical habitable zone definition, Cantrell 
et al. [104] derive a ranking for nearby stars depending on their spectral class. 
Representing a range of more than 30 light years from sun, they assessed a sample 
of 4 A stars, 6 F stars, 21 G stars, 35 K stars and 400 M stars. As the number of M 
stars is not completely known up to this distance, it was scaled based on known data 
from closer neighborhood. They conclude that M stars are most likely to host earth-like 
planets, which is mostly due to their large number, followed by K, A, G and F stars. 
Their analysis does not include O and B stars, as there are no examples within the 
next 30 light years. Conversely, Bignami and Sommariva [34, p. 34] argue that, 
considering M stars, habitable planets are only possible within orbits close to the star, 
which are less stable. Hence, closely orbiting planets may get tidally locked with one 
side permanently facing towards the star and thus less hospitable (Figure 2-14).  



Literature Survey 

 

 

Page 31 

 
Figure 2-14: The habitable zone (HZ) for different star classes and tidal locking threshold for the orbital 

distance [99] 

This issue is also addressed by other studies, such as Kopparapu et al. [105] or 
Lammer et al. [99] who emphasize the hostile effects of a tidal lock, which leads to a 
reduced magnetic field and thus a higher exposure to cosmic radiation. In addition, the 
slow rotation rate may result in a partial or complete loss of atmosphere with time.  

However, another, previous analysis by Kopparapu [106] states that there might exist 
more earth-like planets orbiting M stars than assumed, supporting the result from [104]. 
Similarly, Scalo et al. [107] perform a study on the habitability of planets orbiting M 
stars and suggest a more optimistic estimation regarding the viability near M stars.   

A recent study performed by Arney [108] finds K stars to be the most promising 
candidates for hosting habitable planets, as they represent a “sweet spot” between the 
smaller M stars and larger G stars: Compared to M stars, they emit less harmful 
radiation due to the lower stellar activity while featuring longer lifetimes than G stars 
(see Figure 2-15).  



Literature Survey 

 

 

Page 32 

 
Figure 2-15: K stars as “sweet spot” between M stars and G stars [109] 

The effect of stellar activity on the habitability of exoplanets is also addressed by Atri 
[110]. In accordance with [108] he states that the occurrence of flares on young, fast-
rotating M stars is up to 100 times more frequent compared to a G star.  

Extensive studies in the search for habitable exoplanets have also been performed by 
the SETI Institute. As one result, they developed a catalog of nearby habitable stellar 
systems which is based mainly on the Hipparcos Catalogue but also includes 
information from other catalogues [78]. Their habitability criteria used for selecting stars 
capture stellar properties like age, mass and variability but also the planetary capability 
of forming and supporting liquid water. In particular, they applied several filters and 
cuts on magnitude and spectral type, e. g. O, B and A stars and F stars earlier than F5 
are excluded.   
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2.3 Survey on Relevant Optimization Algorithms and Related 
Problems 

The last chapter of the literature survey is dedicated to optimization methods and 
related optimization problems. First, interstellar exploration strategies which have 
already been introduced in chapter 2.1 are reinvestigated, now with respect to the used 
optimization approach. Then, solution strategies and methods from the Global 
Trajectory Optimization Competitions are presented before further algorithms used in 
the context of interstellar or interplanetary travel are reviewed. Afterwards, a survey on 
multi-target rendezvous problems is conducted, followed by a short overview of other, 
nature-inspired global optimization approaches.  

2.3.1 Optimization Algorithms as Part of Interstellar Exploration Strategies  

The exploration approach suggested by Cotta and Morales [28], mentioned in chapter 
2.1.6,  uses a nearest-neighbor heuristic (NNH) with two local improvement strategies 
(l-opt and 2-opt) for the selection of the next star to be explored. The first one (l-opt) 
examines, whether the entire exploration time can be reduced by reassigning the last 
visited star to another probe. The 2-opt procedure modifies the planned route by 
removing two edges and reconnecting them in a different way. If this modification leads 
to a reduction of the tour length, the modification is adopted and the procedure is 
repeated. By using these two improvement approaches, the entire exploration time is 
reduced by 10 %. The nearest-neighbor method is also used by Bjørk [27] to maximize 
the number of explored stars as a function of time. However, as a result, some of the 
stars in the vicinity of the original star system are skipped and not visited.  

The exploration strategy in Cartin [26], is based on a simulated annealing algorithm. 
The underlying objective function calculates the Euclidean norm of the individual travel 
time of a single probe, which results in similar travel times for each probe. Contrarily to 
the NNH, the simulated annealing method also allows for a temporary worsening of a 
solution, which is necessary to find a better (global) minimum instead of only a local 
one. However, the acceptance of poor solutions decreases during the optimization 
process. To enable a comparison between different approaches, two further algorithms 
based on heuristics (“fastest speed” and “shortest time”) are implemented: According 
to the “fastest speed” method, the star, which maximizes the cruise velocity is selected 
for subsequent exploration. Basically, this is a function of the gravitational deflections, 
as the impact of the star’s gravity on the probe trajectory is considered. Using the 
shortest time approach, the next star to be visited is selected according to the shortest 
travel time, which is determined by both gravitational deflections and distance. The 
exact optimal solution for a simple case with one single probe exploring a low number 
of targets is obtained from a branch-and-bound algorithm. It is found that both heuristic 
approaches perform rather poor, however, they are much faster to compute compared 
to the simulated annealing algorithm, which was run for a number of 60 trials. Forgan 
[30] presents three different scenarios, two are based on a nearest-neighbor heuristic 
whereas the third one uses the “fastest speed” heuristic (as described in [26]). 
Considering the scenarios which allowed for slingshot maneuvers, the NNH was 
performing better than the “fastest speed” heuristic.  
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2.3.2 The Global Trajectory Optimization Competition 

The Global Trajectory Optimization Competition (GTOC) is a recurring contest to solve 
various complex trajectory problems. The most recent competition problem from 2019 
(GTOC X) addressed the colonialization of the galaxy [111]. One approach, submitted 
by the Advanced Concepts Team (ACT) from the European Space Agency (ESA), 
used a concurrent tree search algorithm [112]. A tree, within this context referred to as 
settlement tree, is grown from a root node, which represents the first settlement by  a 
spaceship. Subsequently settled stars add further nodes to the tree, which will grow 
continuously with time. In the beginning, a fleet of spacecrafts is launched to start the 
settlement process, hence various settlement trees are grown, which together form a 
settlement forest. Beside choosing favorable departure settlement stars (which defines 
the root node of each settlement tree), the selection process of subsequent star 
settlements determines the quality of the solution. For instance, naive greedy searches 
based on minimal transfer time or minimal thrust requirements result in clustering or 
reduces the number of settled stars. Furthermore, growing each tree individually bears 
the risk of overlapping, which leads to less efficiency in the settlement process. For 
that reason, a concurrent tree search approach was used, where all settlement trees 
are built simultaneously.  

The selection process of stars to be settled includes a filter to reduce the possible 
target stars, otherwise computation time would be excessive due to the high number 
of stars. Filter criteria are primarily derived from boundary conditions, which are 
incorporated in the merit function. In addition, stars are ranked according to a phasing 
value, indicating the quality of transfers more reliably than the Euclidean distance. To 
save further computation time, every calculated transfer is written into a look-up table, 
which can be used later instead of repeating the computation. After each settlement 
step, several strategies are applied to yield better results, such as lowering thrust 
(referred to as delta v – refinement or leaf stretching).  

Another solution on GTOC X is presented in [113], where set-covering problems are 
formulated within several zones of the galaxy to solve for the optimal distribution of 
settled stars, which is required to be uniform. Settlement trees are grown using a beam 
best-first search method and refined afterwards with a genetic algorithm for transfer 
time improvement. Zhang et al. [114] develop a solution to the settlement problem 
deploying a breadth first search algorithm. Conversely to the beam best-first search 
method, all neighbors of one node at its level are explored before extending the tree 
to the next, deeper level. As done in the other approaches described above, the 
derived settlement tree is refined afterwards for further optimization via local 
improvements, such as node replacements (settled stars are replaced by other, near-
by stars unless outer constraints are violated), branch reconstruction and delta v 
optimization. The best approach to solve the GTOC X problem was delivered by Luo 
et al. [115]. They split the optimization process into four subsequent steps where 
different optimization techniques are applied: At the beginning, settlements pods are 
created by using differential evolution before suitable target systems are selected by 
means of genetic algorithms. Then, selected target systems are connected to build 
settlement trees. The growth of settlement trees, which is considered to be similar to 
the minimum spanning tree problem, is based on ant colony optimization. Afterwards, 
the resulting trees are refined locally by reconfiguring single nodes and arrival times 
are improved, involving again differential evolution and sequential quadratic 
programming methods.  
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A review of optimization methodologies from past GTOCs and its Chinese equivalent 
(CTOC) is provided by Li et al. [116]. They present the competition topics of each year 
and the solution method of the winning team. Depending on the problem, which 
typically features large search spaces and complex objective functions, in most cases 
a combination of several algorithms turned out to deliver the best solution instead of 
relying on just one single method. A common approach to encounter the challenge of 
global optimization and high complexity is the use of a hierarchical optimization 
strategy: The entire optimization problem is split into two sub-problems, one focusing 
on the global search of optimal target sequences and the other on the local optimization 
of the trajectories. The global search problem itself is built from a search model, with 
simplifications regarding mission and dynamics to improve efficiency by reducing 
complexity, and an appropriate optimization algorithm. Algorithms used to solve the 
global search problem can be grouped according to three main categories: Branch-
and-bound algorithms, evolutionary algorithms and hybrid algorithms.  

Branch-and-bound algorithms form a sub-group of the tree search algorithm class 
already mentioned earlier. Being commonly used for sequence searching, they are 
less appropriate when multiple optimization problems, such as multiple spacecraft 
exploration, are considered. In those cases, evolutionary algorithms turned out to 
perform better. Within the field of evolutionary algorithms, mainly three different 
methods have been used in this context, namely genetic algorithms, particle swarm 
optimization (PSO) and ant colony optimization (ACO). Compared to tree searches, 
genetic algorithms can be more efficient in terms of computational effort, as less 
calculations are required. However, compared to other evolutionary methods, its 
computational efficiency is rather low. PSO algorithms are especially good at finding 
sequences with multiple targets and other optimization objects involved. Due to its poor 
local optimization characteristics, it should be combined with a local optimizer method 
for better convergence. The ant colony optimization shows good performance for 
problems structured similar to the traveling salesman problem with a large search 
space. Hybrid algorithms are approaches where methods from different algorithm 
families are combined; e. g. using a branch-and-bound method for sequence 
optimizing before deploying an evolutionary method for further refinement of the 
solution. 

Approaches to solve for the second sub-problem (concerning local trajectory 
optimization) are categorized according to the underlying propulsion principle into low-
thrust trajectory and multiple-impulse transfer optimization techniques. Low-thrust 
trajectory problems can be addressed with indirect or direct methods, also new 
approaches such as evolutionary neurocontrol have been developed. Multi-impulse 
transfers can be considered as nonlinear programming problem and as such are 
solvable via well-established tools.  

The explanations given above are summarized and structured in Figure 2-16, all 
information is taken from [116]. To keep the diagram concise, not all methods are 
included.  



Literature Survey 

 

 

Page 36 

 
Figure 2-16: Methodology and algorithms used in previous trajectory optimization competitions 

Another study to be named in this context is presented by Izzo et al. [117]. It introduces 
some basic approaches when encountering a GTOC problem in general, before 
becoming more specific by developing a solution on the 7 th GTOC (multiple-asteroid 
rendezvous mission).  

2.3.3 Other Algorithms used for Interstellar Exploration or Interplanetary 
Spaceflight 

An extension to heuristics such as NHH, which are typically problem-specific, are the 
meta-heuristics, that follow a more generic strategy. One popular, well-established 
method are genetic algorithms, which belong to the class of bio-inspired, evolutionary 
algorithms and are widely used for trajectory and orbit transfer optimization [118–120], 
including interstellar travel with relativistic rockets [121]. A common approach to 
increase the optimization performance is the combined use of different algorithms, also 
referred to as hybridization, as recommended by Vinkó and Izzo [122]. They 
demonstrate, that applying standard, standalone solvers on global trajectory 
optimization problems yields poor results compared to the collaborative use of different 
solver methods. Some of the reference problems proposed in [122] are addressed in 
[123] by involving a Basin Hopping scheme. Wagner and Wie [124] present a hybrid 
variant of genetic algorithms, where a gradient-based solver is integrated for local 
optimum search. The hybridization of genetic algorithms by including a local 
optimization technique is widely adopted, as done by Hartmann et al. [125] and 
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Selvaraj [126], both focusing on optimal Earth-Mars transfer and rendezvous 
trajectories. By hybridizing evolutionary algorithms with a systematic branching 
strategy, Vasile and De Pascale [127] present a novel technique addressing multiple 
gravity-assist trajectory design problems. In [128] the hybrid multiagent approach is 
formulated more generally for global trajectory optimization, considering also bi-
impulsive orbital transfers. 

Evolutionary neurocontrol is another field of hybrid algorithms to solve for low-thrust 
trajectory optimization problems [129–132]. Being a combination of genetic algorithms 
and neural networks, it is particularly useful for global optimization without initial guess 
to avoid entrapment in local optimums.  

Olympio [133] provides a detailed study on scenarios for the planet sequence design 
problem considering gravity-assisted low-thrust interplanetary transfers. In a similar 
manner to the earlier described, hierarchically strategy to solve trajectory optimization 
competition problems, the problem is approached from two different ways: At first, a 
global optimization problem is considered, where the optimum scenario is found by 
iterating on possible planet sequences. Trajectories are estimated by means of a low 
thrust model; impulsive interplanetary trajectories are considered separately. The 
second approach focuses on local optimization of the trajectory problem, particularly 
involving swing-by maneuvers. 

The optimization problem of multi-spacecraft trajectories, formulated as multi-
objective, multi-agent global optimization problem, is addressed by Napier et al. [134]. 
They present a novel technique based on a coupled approach instead of dividing the 
problem into subproblems which are solved separately for each spacecraft. Several 
constraints are investigated, such as sharing one launch vehicle, minimum number of 
identical flybys or minimum number of shared trajectory phases.  

Izzo et al. [135] provide an overview on recent developments of artificial intelligence 
methods applied to spacecraft guidance dynamics and control. They focus on 
evolutionary optimization, tree searches and machine learning, which includes deep 
learning and reinforcement learning. The basic idea behind each method is explained 
and, when available, relevant scenarios from literature are given. Evolutionary 
algorithms comprise several subgroups of mostly nature-inspired algorithms, such as 
the aforementioned genetic algorithms (representing Darwinian evolution) or ant 
colony optimization. They are used to tackle both single- and multiple-objective, 
continuous problems but also combinatorial problems with higher complexity, e. g. 
planning the sequence of planetary encounters. With increasing size of the search 
space, however, evolutionary algorithms suffer performance. In that case, and 
whenever it is possible to assemble the solution of the global problem from several 
smaller sub-problems, tree searches are the method of choice. A typical challenge 
addressed by tree searches are complex combinatorial problems, such as multiple fly-
bys or rendezvous, which involve two different optimization layers: An outer layer, 
which searches for the optimum sequence and an inner layer consisting of the 
trajectory optimization itself, while both layers influence each other. Machine learning 
represents a rather new class of optimization approaches in this context, compared to 
the well-established evolutionary algorithms. Generally, these methods require a large 
set of training data, which may be difficult to obtain in some cases. However, the 
capability of reinforcement learning to react on unexpected events is highly beneficial 
when operating in unknown environments. In [136] a machine learning method, more 
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precisely a deep artificial neural network, is studied with respect to interplanetary 
trajectory design, considering an Earth-Mars orbital transfer as test case.  

Another extensive study on tools for global optimization problems with respect to 
mission design and analysis is provided by Di Lizia et al. [137, 138]. Problem 
categories are identified according to propulsion system (two-impulse vs. low thrust) 
and the number of planetary bodies. A set of optimization algorithms is selected and 
applied to several test cases to evaluate their performance on the different problem 
classes. 

Myatt et al. [139] conduct a similar analysis, focusing on novel methods. Considered 
problems include planet transfers and multiple gravity assists, with and without deep 
space maneuvers. Among the tested algorithms, differential evolution turned out to be 
most efficient. Furthermore, a gravity assist space pruning algorithm is introduced, 
which is a new method adapted for the global optimization of multiple gravity assist 
trajectories (also described in [140]).  

2.3.4 Multi-Target Rendezvous Problems  

A typical application where multi-target rendezvous problems are encountered is 
during space debris removal missions. Yang et al. [141] present an autonomous 
planning tool based on a combination of genetic algorithm and back propagation neural 
network. While the genetic algorithm is used to obtain optimal rendezvous sequences 
and accurate transfer trajectory, the trained neural network provides approximations of 
the optimal trajectory parameters. Other approaches to achieve favorable target 
sequences include modified genetic algorithms [142], ant colony optimization [143, 
144], tree search techniques such as branch and bound algorithms [145, 146] and 
beam search [147], or reinforcement learning based methods [148]. A combination of 
genetic algorithm and ant colony optimization is also proposed, referred to as evolving 
elitist club algorithm [149]. Due to its similarity to the well-known Traveling Salesman 
Problem (TSP), the multi-target rendezvous problem is commonly formulated as 
dynamic TSP variant [150, 151] or as Vehicle Routing Problem  [152, 153]. Afterwards, 
techniques such as evolutionary algorithms [154, 155] are applied to obtain a solution 
to the former problem.  

Another typical space optimization problem, which has a problem structure very similar 
to the space debris removal problem, are multiple-asteroid rendezvous missions. Due 
to the strong analogy, optimization approaches are similar to the methods mentioned 
previously, e. g. genetic algorithms [156], search-and-prune algorithms [157], deep 
neural networks in conjunction with Monte Carlo Tree Search [158] or hybrid methods 
combining particle swarm optimization and differential evolution [159].  

Federici et al. [160] optimize an impulsive multi-rendezvous trajectory design problem 
based on a bi-level approach, which is similar to the hierarchical strategy described 
earlier. The outer-level, combinatorial problem comprises target sequence search and 
rough trajectory estimation and is solved by means of a genetic algorithm. The full 
transfer trajectory optimization defines the inner-level problem. Both problem levels go 
hand in hand and, in theory, require a simultaneous solving procedure. Practically, 
however, the solution from the outer-level problem serves as an initial guess for the 
inner-level, full trajectory optimization, which is solved subsequently.  
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Circling back to the TSP, a lot of research has been conducted and various algorithms 
has been developed and tested, as many real-world problems can be reduced to a 
TSP or TSP variant, reaching from 3D print trajectory planning [161] to DNA 
sequencing [162]. An extensive overview of TSP applications and relevant algorithms 
is given in [163], TSP variants and different solving approaches are provided by [164].  

The Vehicle Routing Problem (VRP), already mentioned previously, can be considered 
as generalization or extension of the traditional TSP. In its classical formulation, the 
VRP is defined by a set of arcs and vertices, which e. g. represent cities or customers 
to be served - analogously to the TSP. The first vertex, conversely to the TSP, is 
considered as a depot or base, which is the starting and ending point of each tour. As 
another slight difference to the TSP typically a fleet of vehicles is considered, which 
have a limited delivery capacity. As the TSP, it is extensively studied and there exist 
lots of different applications and variants, e. g. dynamic VRPs [165, 166] or multi-depot 
VRPs [167]. Nalepa [168] provides a rich survey on various VRPs and solving 
methods.  

Another TSP variant addressing multi-target rendezvous optimization is the class of 
orienteering problems. An overview on this problem class is provided by 
Vansteenwegen et al. [169]. Orienteering is an outdoor sport, where participants have 
to visit a set of targets which are distributed within a given area. Each target point is 
assigned with a certain score, which is earned by the participator once the target is 
visited. As the time is limited, it is not possible to visit each target, hence competitors 
need to find a route consisting of selected targets in order to maximize the overall 
score. [170] The classical orienteering problem is very similar to the VRP and thus 
sometimes also referred to as VRP with profits. Variants include additional constrains 
in form of time windows which restrict the accessibility of certain targets [171] or the 
team orienteering problem, where multiple participants or vehicles are considered 
[172]. In both cited papers, evolutionary algorithms are used to solve the optimization 
problem, however, also ant colony optimization approaches are common methods 
([173], [174]). An application example of the orienteering problem, in particular the 
variant with additional time window constraint, is the design of tourist trips: Similar to 
the original orienteering problem, from a given set of points of interests a subset must 
be selected and arranged as tour in order to maximize the tourist satisfaction. A survey 
on suitable algorithms addressing the tourist trip design problem is provided by 
Gavalas et al. [175].  

2.3.5 Other Global Optimization Approaches inspired by Nature 

Nature has served traditionally as extensive source for models and algorithms to solve 
complex problems, such as evolutionary algorithms. A selection of further nature-
inspired approaches that have not been mentioned yet is provided by Siddique and 
Adeli [176]. Elbeltagi et al. [177] compare five different evolutionary algorithms by 
testing them against two benchmark problems. They found Particle Swarm 
Optimization to perform best in terms of success rate and solution quality. PSO in 
combination with natural selection is proposed by [178] to encounter the challenge of 
multi-robot exploration in unknown environments. Generally, PSO is commonly used 
within hybridization schemes, e. g. together with genetic algorithms [179] (also referred 
to as Breeding Swarm algorithm [180]),  or by including a Kalman Filter [181] or a self-
organized criticality extension [182] to improve convergence. Hybridization in the 
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context of evolutionary algorithms has generated a subclass of so-called memetic 
algorithms, which are introduced by Moscato [183] and tested successfully against the 
TSP by Merz and Freisleben [184]. 

2.4 Summary Literature Survey 

Various concepts have been proposed in the context of unmanned interstellar travel, 
differing in scale (both time and size) and pursuing different strategies. Most of them 
consider a mission to a single star system, sequential explorations of multiple star 
systems are presented rather seldomly. Within the interaction of concept, technology 
and mission objectives several tradeoffs have to be made: Small-scale probes are less 
expensive in terms of manufacturing costs and propulsion/power requirements but 
provide only limited capacity for scientific payload, thus limiting the scientific value of a 
mission. Conversely, large-scale spaceships with extended investigation capabilities 
are associated with high-performance propulsion and power systems.  

Considering the mission itself, one has to decide between conducting a rendezvous 
maneuver at the target system or performing a simple flyby: A rendezvous increases 
complexity and mission time (due to the deceleration period) but allows for extensive 
exploration and investigation operations (yielding higher scientific return). Furthermore, 
it provides access to resources which can be used for reproducing. Flyby missions, 
contrarily, are less complex, faster and allow for slingshot maneuvers but offer limited 
exploration possibilities without access to resources apart from the interstellar medium. 
Regarding the propulsion technologies, it can be categorized between systems 
powered from remote sources (e. g. light sails) and integrated concepts, where the fuel 
has to be transported or produced aboard. Whereas integrated propulsion systems 
typically are part of large-scale spaceships, small-scale concepts are propelled 
remotely due to size and mass constraints. Swarm-based concepts describe a fleet of 
collaborative small-sized probes, which possibly, but not necessarily, are transported 
by a single, large-scale mothership. Like self-replicating probes, they gain relevance 
with increasing number of exploration targets and improve the mission success 
probability due to higher resilience and redundancy compared to single probe 
approaches.   

A map with some of the key mission drivers is provided in Figure 2-17. Arrows indicate 
correlations with the arrow direction representing the causal dependence.  
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Figure 2-17: Interaction and dependencies between different mission drivers from a high-level 

perspective 

Concerning star systems, a selection of star catalogues resulting from several 
observation missions has been presented and might serve as data source for the star 
models (e. g. Gaia DR2, which is the most recent and accurate). Considering modeling 
approaches, different strategies are found: With increasing number of stars, rather 
simple star distribution models are assumed (e. g. homogenous or exponential decline 
of stellar density). Only if the number of included stars is limited (e. g. by focusing on 
the immediate solar neighborhood), the underlying model relies on real star position 
data. The assignment of scientific values to a certain star system turns out to be 
challenging: Whereas it is possible to determine a habitable zone with respect to a 
certain star, the relation between stellar characteristics and the exoplanet occurrence 
rate is still discussed. The same holds for the aspect of habitability, where converse 
studies are found. Hence, there is still a need for further research and observation. 
Especially a better understanding of the planetary formation process and more data 
on exoplanets would increase the reliability of predictions on habitable planet 
occurrence. From what is known today, only trends can be derived, e. g. exoplanets 
are assumed to follow a homogenous spatial distribution and K stars are expected to 
support habitability in contrast to high-massive stars. Furthermore, it must be noted 
that many observations and estimations suffer from a selection bias, which results from 
the detection method and the observed objects. [185] 

To sum up the survey on optimization problems and algorithms, some general 
strategies can be derived: A common approach to reduce the complexity of multi-
objective rendezvous problems is the hierarchical division of the entire problem into 
two subproblems, specifically global search and local optimization. Both subproblems 
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are then treated differently, depending on technological boundary conditions (low-
thrust vs. impulse) and the optimization objectives. Among the algorithms, which are 
used for similar problems, hybrid variants typically perform better than standalone 
solvers. While the problem of interplanetary trajectory optimization has been studied 
extensively, there exists only few research on advanced interstellar exploration 
optimization, apart from approaches in the GTOCs framework or missions to close 
targets. Hence, the search for similar problems needs to be extended to further areas, 
that at first glance have nothing in common with interstellar exploration but from a more 
abstract perspective have a very similar problem structure. In particular, the TSP is a 
very suitable example of a well-established and extensively studied optimization 
problem with various applications in different areas. Hence, formulating a specific, 
novel scenario as a common, well-established problem opens access to a large pool 
of possible optimization approaches.  

2.5 Research Gaps and Refined Thesis Objectives  

Based on the literature survey, the main research gaps on interstellar exploration 
strategies can be identified and stated as follows:  

• Limitation to certain probe concept or simplistic assumptions on technology 
• Focus on low number of target stars, single-target missions or very large 

number of stars  
• Assumption of simplified star distribution model 
• Undefined optimization problem of interstellar exploration 
• Restriction to limited optimization methods 

The research gaps can be used to refine the thesis objectives from chapter 1.2: The 
overarching goal of this thesis is to derive optimal strategies for interstellar exploration 
missions, considering a number of 1,000-10,000 stars in the solar neighborhood. 
Conversely to other studies in this field, the analysis will be based on real star position 
data instead of using simple distribution models. Furthermore, the question regarding 
scientific values of stars and their systems will be addressed and included in the 
modelling procedure. 

Earlier work in the interstellar exploration context typically is limited to a certain 
technology and considers only few target stars. Those approaches will be extended by 
finding optimal sequences of numerous exploration targets and investigating the 
impact of mission-related parameters on the exploration strategy, e. g. the effect of 
number of probes on exploration sequence and selection of target stars. Following a 
generic approach, this thesis is not meant to identify new technologies or develop novel 
probe concepts, instead it is making use of the large pool of existing approaches and 
ideas to define framework and boundary conditions of a generic optimization problem. 
This ensures validity of the derived results across various concepts.  

The solution to this problem will be found via the application of suitable algorithms, 
which may stem from similar, space-related applications or other fields. In that context 
it remains interesting to observe, in which kind the problem class (and thus the 
selection of appropriate algorithms) is affected by the decision for a certain concept or 
mission parameter.  
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3 Definition of the Optimization Problem Framework 

In this section, the optimization framework is built based on the findings from the 
literature survey. The approach is visualized in Figure 3-1, starting from upper left.  

 
Figure 3-1: Procedure to build the optimization framework 

First, relevant problem parameters are derived, which are then used to find the 
minimum set of variables ℳ𝑚𝑖𝑛. In a subsequent step, each variable is classified 
according to its function within the optimization context. The resulting set ℳ𝑜𝑝𝑡 is then 
used to identify suitable approaches from the literature survey; the selection of an 
optimization algorithm requires further the identification of the problem class. Most of 
the described steps are performed under involvement of the literature survey results, 
as indicated in Figure 3-1.  

3.1 Analysis of Problem Structure and Reduction to Minimum Set 
of Variables 

In order to identify suitable solution approaches, the considered problem and its 
structure needs to be analyzed first. Similar to the concept map derived in chapter 2.4 
(see again Figure 2-17), the problem can be structured with respect to relevant 
parameters and variables. Figure 3-2 provides an overview of the relevant parameters 
and mission architecture considerations including the correlations, indicated by means 
of arrows. The elements are colored according to their subgroup of the problem, which 
are categorized similar to the literature survey:  

• Elements in orange represent the probe concept, focusing on the propulsion 
technology. This includes parameters which are directly related with the 
propulsion system (such as thrust 𝑇 and specific impulse 𝐼𝑠𝑝), but also variables 
which are indirectly affected by the propulsion technology, as the probe mass 𝑚𝑝𝑟𝑜𝑏𝑒 or the required acceleration time 𝑡𝑎𝑐𝑐 determined by the provided ∆𝑣𝑎𝑐𝑐.  

• Input corresponding to the star systems is indicated with black color. The 
relevant parameters of the star dataset can be reduced to the star position 𝑥𝑖 
and the value of a star system denoted with 𝑠𝑖.  
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• Mission parameters and architecture design considerations are indicated with 
blue color. The criterion of belonging to this subgroup is that the element either 
depends on parameters from more than one subgroup (e. g. the travel time 𝑡𝑡𝑟𝑎𝑣𝑒𝑙) or that it is a variable related with mission design (e. g. the exploration 
sequence of stars 𝑞𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛).  

 
Figure 3-2: Parameter map of the considered problem 

Given the problem complexity, the map is not intended to be a comprehensive and 
complete representation of all mission parameters: In particular, the possibility of 
slingshot maneuvers and the degree of probe intelligence, which is an important factor 
for mission return and replicability, are excluded a priori. Same holds for the arrows 
indicating the correlation, which are restricted to the most relevant ones (e. g.  𝑚𝑝𝑟𝑜𝑏𝑒 
has also an impact on the required replication time 𝑡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒). Furthermore, in some 
cases the separation between the subgroups is not clear, for instance the replicability 
is both part of probe concept and mission design. Nevertheless, the map serves as a 
first analysis of the considered problem structure and allows some early conclusions:  

Concerning the mission design variables, two sinks can be identified, where 
correlations are ending while there are no outgoing arrows, namely the mission 
duration 𝑡𝑚𝑖𝑠𝑠𝑖𝑜𝑛 and mission return 𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛. Hence, both elements can be interpreted 
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as central results determined by various parameters of the problem and as such 
represent suitable objective function candidates.  

Another observation is that the parameter 𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒, representing the average travel 
velocity of the probe, includes implicitly most of the concept parameters. This property 
allows a further simplification of the problem by eliminating the corresponding probe 
concept parameters. An additional simplification of the problem is done by restricting 
the mission architecture to flyby missions. This decision helps to further reduce 
complexity but is also justified by findings from literature: Though limiting the scientific 
return of the mission, flybys are still appropriate for initial reconnaissance of planets 
[94] and as such represent a valid contribution to the mission return. Due to the 
restriction to flybys, the applicability of self-replicating probes is limited; hence, the 
replicability element is eliminated from the map. Again, this reduces the problem 
complexity but is also in accordance with results from literature: Considering short-term 
missions within the solar neighborhood non-replicating probes are found to be more 
efficient than replicating ones. [29] 

Another important consequence of flyby-only missions is that there is no need to 
account for deceleration and acceleration periods, which are an essential element of 
rendezvous missions. Hence, the travel velocity of probes is assumed to be constant, 
which is a common practice in literature on interstellar exploration (for instance, see 
again Cartin [26]). By further neglecting the impact of probe mass on the mission 
return, the variable map from Figure 3-2 can be updated as shown in Figure 3-3. Now 
it contains the minimum set of variables required to describe the given problem in its 
simplest form. The parameters eliminated due to the reduction procedure and 
simplifications are greyed out.  
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Figure 3-3: Variable map after reduction to the minimum set of parameters; excluded elements are 

greyed out 

As indicated by Figure 3-3 the resulting problem structure and complexity has been 
simplified significantly. Still, each subgroup is represented by at least one variable. 

3.2 Variable Assignment and Problem Classification 

In this section the optimization variables are defined by means of the results from the 
previous subchapter. Furthermore, the class of the optimization problem is identified.  

3.2.1 Allocation of Variables to the Optimization Problem 

Based on the derived minimum set of variables, the optimization problem to be solved 
is constructed as follows: In accordance with the observations made already from 
Figure 3-2, the mission parameters 𝑡𝑚𝑖𝑠𝑠𝑖𝑜𝑛 and 𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 are selected as objectives. The 
probe number 𝑛𝑝𝑟𝑜𝑏𝑒𝑠 and average travel velocity 𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 are chosen as input 
parameters and need to be specified externally. Same holds for the stellar parameters 𝑠𝑖 and 𝑥𝑖. The travel time represents an internal variable, as it can be derived from 𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑑𝑡𝑟𝑎𝑣𝑒𝑙. 𝑑𝑡𝑟𝑎𝑣𝑒𝑙, in turn, depends on the star exploration sequence 𝑞𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛, and is thus also considered as internal variable. As remaining variable, 𝑞𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is chosen as decision variable and as such to be determined by the 
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algorithm. The final set of parameters is shown in Figure 3-4. Note that the color 
scheme is changed compared to the previous figures, as now the colors indicate each 
element’s role in the optimization context.  

 
Figure 3-4: Parameter set used within the optimization context, color scheme according to each 

element’s role in the optimization 

3.2.2 Identification of the Optimization Problem Class 

By dissociating the problem from the interstellar exploration context, a first abstraction 
level is obtained. On this level, the problem can be described as follows: From a set of 
locations, each assigned with a certain reward 𝑠𝑖, a subset shall be selected and then 
arranged in form of a route (see Figure 3-5). The route is evaluated based on two 
criteria: Its total reward, which is the sum of all rewards from locations that are included 
in the route and the time, which is required for passing the route. As optimization 
objectives, the total reward shall be maximized while keeping the route time minimal.  

 
Figure 3-5: Visualization of the problem: From a set of locations with reward 𝑠𝑖 a subset is selected 

which is connected via a route 
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Considering the abstract problem definitions above together with its visualization in 
Figure 3-5, the problem reveals strong similarities to the TSP and particularly to some 
of its variants, e. g. the selective TSP, tourist trip design problem, vehicle routing 
problem or orienteering problem.  

So far, the problem is restricted to a single route. Extending the given problem by 
allowing the construction of several routes that are passed simultaneously yields a 
slightly different problem class, which is very similar to the team-orienteering problem. 
It is visualized in Figure 3-6.   

 
Figure 3-6: Extension of the problem by allowing multiple routes (route 1 in red, route 2 in green) 

However, appearing to be very similar to the mentioned problems, there are two main 
differences:  

• In most of the classical approaches the time is not used as an objective but only 
as a constraint representing a time budget (e. g. the orienteering problem), 
yielding a single-objective problem. For those cases, the time required for 
completing a certain route is not involved in the route evaluation unless the time 
constraint is violated. Hence, two routes with the same profit but different time 
are considered as equal if both are completed within the given time budget. 
However, in the exploration context one would certainly prefer the route with 
shorter time. Therefore, the time is considered as second objective beside the 
profit, which leads to a bi-objective problem. Note that this does not exclude the 
possibility of applying a time constraint to limit the maximum route time.  

• A common constraint in routing problems (also for orienteering problems) is the 
prescription of a target destination or end position, commonly denoted as depot. 
Each participant or vehicle must return to this point after completing its route or 
arrange its route in a way that it ends at the given final target. For the problem 
considered here, this is assumed to be not required, therefore it is referred to 
as open routing problem.  

With the given explanations, the considered problem can be categorized as bi-
objective multi-vehicle open routing problem with profits. It consists of mainly two tasks, 
which are firstly the selection of a subset of targets to be visited and secondly the 
determination of a visit sequence by arranging the selected targets into a route.  

 
  

The considered problem can be categorized as bi-objective multi-vehicle 
open routing problem with profits.  
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3.3 Implications of Variable Selection and Problem Class for 
Literature Survey Results 

Based on the problem structure derived in the previous chapters, suitable approaches 
to solve for the given problem can be identified from the survey presented in chapter 
2. This includes considerations on probe concepts, star catalogues and optimization 
algorithms.  

3.3.1 Implications for Probe Concept and Technology  

Considerations on the first search field (chapter 2.1) are incorporated primarily by 
means of the input parameters 𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑛𝑝𝑟𝑜𝑏𝑒𝑠. Due to the strong simplifications 
and restriction to these two variables, the possibilities to distinguish between 
technologies or compare probe concepts are limited. Concerning 𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒, there is a 
natural limit defined by the speed of light. The velocity regime suggested in literature 
for interstellar flyby missions typically ranges from 10-20 % of the speed of light without 
being restricted to a certain technology or concept. However, considering mission 
architectures with a high number of probes it can be expected that small-scale probes 
are preferred over the very large-sized spaceships. An exception might be a “hybrid” 
concept, where one or few large mother ships are used to transport a swarm of small 
probes. Leaving this hybrid approach aside, suitable probe concepts are the Starwisp 
probe or the concept suggested by the Breakthrough Starshot Initiative, just to give 
two examples. Furthermore, as these concepts rely on remote propulsion technology, 
they are assumed to be more appropriate for long-term flyby-only missions. Concepts 
with integrated propulsion typically need to transport the fuel (adverse for long-term 
missions) or produce fuel aboard by harvesting resources (limited due to the restriction 
to flybys).  

To sum up, given the low number of variables, various probe concepts and 
technologies are compatible with the considered optimization problem. This entails the 
advantage that the results of the optimization are not restricted to a certain concept or 
technology but are valid for various approaches. 

3.3.2 Implications for Star Catalogue Selection 

The second search field, dedicated to nearby star systems, is represented by the input 
parameter star data, which provides the star values 𝑠𝑖  and positions 𝑥𝑖. The required 
stellar properties are provided by most of the catalogues presented in chapter 2.2.4 or 
at least can be derived from the published data. Hence, further criteria need to be 
involved in order to choose the most suitable source, such as completeness, accuracy 
and accessibility of the data. The Kepler mission, for instance, which focus on the 
search of exoplanets and their host stars, would serve as suitable source to identify 
interesting exploration targets, but lacks from completeness, as its observations are 
restricted to a certain sky region. Same holds for the ongoing Sloan Digital Sky Survey 
project, which to date covers only one third of the sky. Other catalogues with focus on 
nearby stars are limited to a certain range and thus do not contain enough stars, e. g. 
ARICNS or the list from RECONS. The Gaia DR2 outperforms the other catalogues in 
terms of completeness and accuracy. E. g., compared to the Hipparcos catalogue, 
which has a magnitude limit of 12.4 the Gaia DR2 covers also much more fainter stars. 
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Considering brighter stars, however, its completeness is limited, as shown in Figure 
3-7.  

 
Figure 3-7: Top: predicted probability that a source is detected by Gaia as function of magnitude, 

below: the completeness of the Gaia DR2 for given magnitudes (crowding effects not 
included) [88] 

As indicated by the plot in Figure 3-7, the Gaia DR2 can be considered as 
approximately complete across a large range of magnitudes. Another advantage of the 
Gaia DR2 is the accessibility, as it provides a Python interface which can be used to 
start user-defined queries and returns the results in processable data format. Given 
the described benefits of the Gaia DR2, it is regarded as most suitable for the 
considered problem and thus selected as star data source.  

 
  

The Gaia DR2 is regarded as most suitable star catalogue for the 
considered problem and selected as data source for the star model. 
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3.3.3 Implications for Optimization Algorithm Selection 

The third search field, concerning optimization algorithms, corresponds generally to 
the entire set of variables, but particularly to the objectives and decision variables. 
Together with the identified problem class they are used to find a suitable algorithm to 
solve the given problem.  

Given the large size of the problem, some of the algorithms and solution approaches 
presented in section 2.3 can be excluded a priori: Considering 𝑛 stars there are 𝑛! 
possibilities to arrange them in one route. By means of the binomial coefficient it can 

be further shown that there are 
𝑛!2(𝑛−2)! ways to group the stars in pairs, representing 

the number of possible transfers between stars under the assumption of symmetry 
(symmetry means, that the transfers from star A to B and from B to A are assumed to 
be equal in terms of travel cost). Hence, as there is a minimum number of 1,000 stars 
considered, any approach based on enumeration is not feasible, even though it would 
allow to determine the exact optimum. Same holds for branch and bound methods, as 
their runtime increases exponentially with problem size – in worst cast the runtime is 
equivalent to the enumeration approach.  

Based on these considerations, heuristics or meta-heuristic methods appear to be 
more suitable to deal with the problem size, even though they do not guarantee to find 
the optimum solution. Due to the lack of an appropriate growth metric, concurrent tree 
search algorithms, as suggested by the ESA with respect to GTOC X, are less 
appropriate: For instance, using a simple nearest neighbor heuristic to grow the tree 
would lead to clustering and poor ending sequences of a route, as with increasing route 
lengths the number of unvisited stars decreases. Given the bi-objectivity of the 
problem, population-based algorithms could help to analyze the relation between both 
objectives, e. g. by means of the Pareto front: They provide a set of solutions, which 
can be interpreted as different but equally valued strategies, instead of just one single 
solution.  

Considering approaches which are used to solve similar problems, such as team-
orienteering problems, different population-based algorithms are applied, e. g. particle 
swarm optimization, ant colony optimization or genetic algorithms. However, without 
any further information on the problem and due to the missing experience, it remains 
difficult to choose between these approaches. As it reveals a very strong similarity to 
the problem given here, finally a hybrid genetic algorithm described in [172] is selected. 
Note that any other population-based method, PSO or ACO, are considered as equally 
appropriate and thus might be used likewise – actually, it would be interesting to see if 
the results obtained from one of those approaches would differ, but this question is 
saved for further research.  

 

A hybrid genetic algorithm as presented in [172] is selected to solve the 
described optimization problem. 
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3.4 Mathematical Formulation of the Bi-Objective Multi-Vehicle 
Open Routing Problem with Profits  

By following, the optimization problem is formulated mathematically. Due to the 
similarity of the problems, most of the definitions and equations for the problem 
formulation are adopted from [172], however, in some cases a few modifications are 
necessary: For instance, in the original approach a fixed target destination is 
prescribed, where all vehicles must arrive after terminating their route. This constraint 
is eliminated in here, as there is no need to force all probes to end their route on a 
certain star. The two main differences between both formulations and affected 
equations are summarized in Table 3-1. 

Table 3-1: Differences in problem formulation to original approach and affected equations 

Original formulation [172] Algorithm presented here 
Affected 

equations 

Start from node 1 (“start 
depot”) 

Start from node 0 (solar 
system)  

Eq. ( 3-6 ) 

Eq. ( 3-7 ) 

Eq. ( 3-8 ) 

Eq. ( 3-9 ) 

Eq. ( 3-10 ) 

Eq. ( 3-11 ) 

Common final target 
destination 𝑛 (“arrival depot”) Open final target choice 

Optimization w.r.t. overall route 
times (sum of route times) 

Optimization w.r.t. maximum 
route time of a mission 

Eq. ( 3-13 ) 

Assume a connected graph 𝐺 = (𝑉, 𝐸) with a set of nodes 𝑉 = {1, … , 𝑛} and edges 𝐸, 
which represent the connections between each two nodes 𝑖 and 𝑗. In the considered 
context, the nodes are representing the stars while the edges are the travel routes 
between the stars. Each node 𝑖 provides a certain score 𝑠𝑖, which represents the value 
of the star system that will be added to the mission return if the star is visited. The 
travel time for a certain edge (𝑖, 𝑗) is denoted by 𝑡𝑖𝑗 and obtained from the distance 𝑑𝑖𝑗 
and travel velocity 𝑣: 𝑡𝑖𝑗 = 𝑑𝑖𝑗𝑣  Eq. ( 3-1 ) 

Furthermore, the binary decision variable 𝑥𝑖𝑗𝑝 is introduced, which equals 1 if the edge (𝑖, 𝑗) is crossed along a travel route 𝑝:  𝑥𝑖𝑗𝑝 = {1, 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑝0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  Eq. ( 3-2 ) 

Similarly, 𝑦𝑖𝑝 indicates, whether a star 𝑖 is visited along 𝑝: 𝑦𝑖𝑝 = {1, 𝑖𝑓 𝑠𝑡𝑎𝑟 𝑖 ∈ 𝑝0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  Eq. ( 3-3 ) 

The position of a star 𝑖 within a route is defined by 𝑢𝑖𝑝: 
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𝑢𝑖𝑝 = {𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑎𝑟 𝑖 𝑖𝑛 𝑝 𝑖𝑓 𝑖 ∈ 𝑝0, 𝑖𝑓 𝑠𝑡𝑎𝑟 𝑖 ∉ 𝑝  Eq. ( 3-4 ) 

 
The mathematical formulation of the optimization problem is then: 𝑍 = 𝑚𝑎𝑥 ( 𝐽1−𝐽2) Eq. ( 3-5 ) 

Subject to: ∑ ∑ 𝑥0𝑖𝑝 ≤ 𝑚𝑛
𝑖=1

𝑚
𝑝=1  Eq. ( 3-6 ) 

∑ 𝑦𝑘𝑝 ≤ 1 ∀ 𝑘 = 1, … , 𝑛𝑚
𝑝=1  Eq. ( 3-7 ) 

∑ 𝑥𝑖𝑗𝑝 = 𝑦𝑖𝑝 , 𝑖 = {1, … , 𝑛}   \  {𝑤} , 𝑝 = {1, … , 𝑚}𝑛
𝑗=1  Eq. ( 3-8 ) 

∑ 𝑥𝑗𝑖𝑝 = 𝑦𝑖𝑝 , 𝑖 = {1, … , 𝑛}, 𝑝 = {1, … , 𝑚}𝑛
𝑗=0  Eq. ( 3-9 ) 

∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑝 ≤ 𝑇𝑚𝑎𝑥𝑛
𝑗=1 , 𝑝 = {1, … , 𝑚}𝑛

𝑖=0  Eq. ( 3-10 ) 

𝑢𝑖𝑝 − 𝑢𝑗𝑝 + 1 ≤ 𝑛 (1 − 𝑥𝑖𝑗𝑝) , 𝑖, 𝑗 = {1, … , 𝑛}, 𝑝 = {1, … , 𝑚} Eq. ( 3-11 ) 

Eq. ( 3-6 ) ensures that a maximum number of 𝑚 probes is launched from the solar 
system. Eq. ( 3-7 ) guarantees that each star is visited not more than once. By Eq. 
( 3-8 ) and Eq. ( 3-9 ) a continuity check is implemented, ensuring that the number of 
vehicles arriving at a star is equal to the number of vehicles leaving that star, which 
excludes the possibility of replication. Note that continuity is not required, when the last 
star 𝑤 of a route is reached. This special case is accounted for by excluding 𝑤 from 
the input set of 𝑖 in  Eq. ( 3-8 ), which is different to the original formulation, where all 
routes are ending at the same target.  

Eq. ( 3-10 ) sets a time constraint, which limits the maximum total travel time of a single 
tour done by one probe. By means of Eq. ( 3-11 ) subcycles for a given probe are 
avoided.  

The objective function 𝐽1 represents the mission return and is obtained from:  𝐽1 = ∑ ∑ 𝑦𝑖𝑝𝑠𝑖𝑛
𝑖=1

𝑚
𝑝=1  Eq. ( 3-12 ) 

The objective function 𝐽2 represents the mission duration, which is defined as the 
maximum travel time for one route:  
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𝐽2 = 𝑚𝑎𝑥 (∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑝𝑛
𝑗=1

𝑛
𝑖=0 ) , 𝑝 = {1, … , 𝑚} Eq. ( 3-13 ) 

It is emphasized, that this is different to the definitions from [172], where the travel cost 
to be minimized is obtained from the sum of travel times. By means of the following 
example, this decision shall be justified: Assume two missions A and B, consisting of 
four probes, with the same mission return but different travel times, as shown in Figure 
3-8.  

 
Figure 3-8: Example of two missions A and B with same mission return but different mission duration 

During each mission, 16 stars are visited, which yields 𝐽1 = 16 (assuming 𝑠𝑖 = 1 ∀ 𝑖 ). 
The maximum travel time 𝐽2 for mission A is 180 years (probe 3) and 400 years for B 
(also probe 3). Hence, based on 𝐽1 and 𝐽2, mission A is to be preferred over mission B, 
as the same mission return is obtained within a shorter mission duration. Contrarily, 
when the sum of travel time ∑ 𝑇𝑚 is considered as cost (as originally done in [172]), 
mission B is superior to A. Comparing both approaches directly, mission A can be 
interpreted as resource-saving strategy, which tries to reduce the overall travel time by 
finding the shortest routes, while mission B is favoring time-optimal solutions. As such, 
it accepts even longer routes for a single probe, whenever it enables a reduction of the 
final mission time.  

Within the interstellar exploration context, it is expected that resources (particularly fuel 
costs) are less problematic to a mission (e. g. by using solar sails) compared to the 
time factor, which is determined by the physical limits of travel speed and large 
distances. For instance, a mission lasting 10,000 years will not be contemplated even 
if it is resource optimal. Therefore, the time-optimal approach as described in Eq. 
( 3-13 ) is used herein, which will produce solutions consisting of balanced route times 
(as mission A in Figure 3-8).   
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4 Creation of Mission and Star Models  
The final optimization model is composed of several components, which are presented 
in this section. Following the literature survey categorization, the focus is first on the 
mission model, which includes the probe concept, mission architecture and trajectory 
modelling. Afterwards, the star model is specified: It starts with introducing the 
reference frame and addressing the question, whether to model stellar motion or not. 
Subsequently, a clean dataset of stars is ensured by performing some filter operations, 
before a stellar metric defining the value of a star is developed. Finally, a simplified test 
model is built, which is used for algorithm testing and parameter adjustment.  

4.1 Description of the Mission Model 

In this section the mission model is specified. It comprises the probe model with the 
relevant parameters and the assumptions on the mission architecture. In a second 
subchapter considerations on the trajectory model are presented.  

4.1.1 Probe and Mission Architecture Model Specifications 

The probe and mission architecture model is based on the minimum set of parameters 
derived already before (see again section 3.1) and only summarized here: The mission 
architecture is restricted to flybys, rendezvous are not allowed. Probes are not capable 
of replicating; hence the probe number remains constant within one mission. However, 
between different simulation runs the probe number is varied. The probes are assumed 
to travel with an average velocity of 10 % of the speed of light which is in line with 
suggestions from literature (for instance, see again [27] or [29]). Limited to this value, 
the velocity is high enough to allow interstellar travel within a reasonable timescale but 
still low enough to omit relativistic effects on the trajectory: Given a Lorentz factor of 
about 1.005, time dilatation and length contraction effects are below 1 % [186] and 
thus negligible in the modeling context. However, even when considering this high 
velocity regime, timescales for interstellar travel remain comparably large. This is due 
to the resulting trajectories lengths, which are set by the large distances between stars. 
The aspect of trajectory modeling is another important aspect and addressed in a 
separate subchapter.  

 

Following the results from the reduction principle introduced previously, parameters 
and considerations on propulsion technology are not part of the model and 
optimization. Nevertheless, it must be noted, that the question of propulsion is a key 
driver and as such remains one of the greatest challenges to be solved to enable 
interstellar exploration. Being excluded from the variable set, the impact of probe mass 
on the mission return is also neglected. 
  

Probes are assumed to travel at a constant velocity of 10 % of the speed of 
light and are limited to flyby missions.  
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4.1.2 Considerations on Trajectory Modelling 

With respect to the gravitational potential impacting the space probe on its travel from 
star A to star B, the interstellar travel trajectory can be divided into two segments: Close 
to a star, or to be more precise within the corresponding Sphere of Influence (SOI), the 
individual stellar gravity characteristics is dominant and galactic potential can be 
neglected. In between (segment 2), the galactic potential must be considered (see 
Figure 4-1). Intersecting SOI are encountered rather seldomly and thus omitted here. 
[73]  

 
Figure 4-1: Interstellar trajectory segments according to the differing gravitational potential (principle 

sketch, not to scale) – blue: probe trajectory, grey: galactic potential, yellow: potential due to 
star A, red: potential due to star B 

Inside the SOI, which corresponds to segment 1 in Figure 4-1, the probe follows a 
hyperbolic orbit which is due to its high travel velocity that exceeds the local escape 
velocities of the star systems substantially: For instance, the escape velocity of the 
solar system which is about 600 km/s near Sol [187] differs by more than one order of 
magnitude from the travel velocity of the probe. Note that the departure trajectory inside 
the SOI of the Sol, where the probe needs to be accelerated first before entering a 
hyperbolic orbit, is not considered here. 

The resulting, hyperbolic flyby trajectory around the star is shown in Figure 4-2 (blue) 
together with a simplified, straight-line trajectory (green). The variable 𝑑𝑝 refers to the 
periastron distance, which corresponds to the closest encounter between star and 
probe. The semi-major axis is indicated by 𝑎, the impact parameter is denoted by ℎ. ∆𝑙 
refers to the length difference between one leg of the straight-line trajectory and the 
asymptote-based curve (grey).  
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Figure 4-2: Sketch of a flyby trajectory with actual hyperbolic orbit (blue) and assumption of a straight-

line trajectory (green), 𝑑𝑝 refers to the periastron distance, 𝑎 to the semi-major axis and ℎ to 
the impact parameter 

With increasing distance to the star, the probe trajectory approaches a straight line 
which is due to the hyperbolic nature of the orbit. Regarding the trajectory lengths, the 
actual, hyperbolic trajectory length (blue) can be assumed to range between the length 
of the simplified, straight-line trajectory (green) and the length of the two legs defined 
by the asymptotes (grey). As it is much easier to calculate, the asymptote-based curve 
which consists of the two straight legs is used for an estimation of the length 
differences.  

The difference in length between the straight-line trajectory (green) and the asymptote-
based curve (grey) can be calculated as follows: 𝑙𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 − 𝑙𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = 2 ∆𝑙 = 2 √(𝑎 + 𝑑𝑝)2 − ℎ2 Eq. ( 4-1 ) 

In [188] parameters for some example hyperbolic trajectories at lower speed are 
provided (considering Sol) which can be used here for a rough estimation of the length 
differences: The perihelion distance 𝑑𝑝 is in the range of few solar radii, the length of 
the semi-major axis 𝑎 is roughly 20 solar radii; the impact parameter is slightly lower 
(11 solar radii). Inserting these values in Eq. ( 4-1 ) yields a length difference of roughly 
40 solar radii. Given the transfer distances between the stars, which are in the range 
of light years (one light year equals roughly 107 solar radii), the error due to the straight-
line trajectory assumption inside the SOI is negligible.  

Outside the SOI (corresponding to segment 2 in Figure 4-1) the gravitational potential 
needs to be considered. Due to the high probe velocity, which is still higher than the 
local escape velocity of the Milky Way (which is about 550 km/s as shown in Figure 
2-9 in the literature survey), the probe can be assumed to behave like a hypervelocity 
star. As such, the acceleration due to the galactic potential can be expected to have 
no significant impact on the trajectory curvature, at least assuming reasonable mission 
timescales. This can be shown by considering a simple trajectory problem:  
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Assume a probe traveling at constant speed 𝑣 (in x-direction) within a gravitational field 
(see Figure 4-3). In proximity to the solar system, the acceleration 𝑎𝑔𝑟𝑎𝑣 due to the 
galactic potential is about 2*10-10 m/s² [189]. The most impact on the trajectory 
curvature (representing a worst-case scenario in this context) occurs when the 
acceleration acts perpendicularly to 𝑣 (in y-direction), as shown in Figure 4-3. 

 
Figure 4-3: Straight trajectory vs. curved trajectory, assuming constant acceleration and velocity 

The position of the probe with time 𝑡 is then described by  ( 𝑥𝑦 ) = ( 𝑣 ∙ 𝑡12 ∙ 𝑎 ∙ 𝑡² ) Eq. ( 4-2 ) 

The curved trajectory length 𝑙𝑐𝑢𝑟𝑣𝑒𝑑 after time 𝑇 can be derived from the integral 

𝑙𝑐𝑢𝑟𝑣𝑒𝑑(𝑡 = 𝑇) = ∫ √(𝑑𝑥𝑑𝑡 )2 + (𝑑𝑦𝑑𝑡 )2𝑇
0 𝑑𝑡 = ∫ √𝑣2 + 𝑎² ∙ 𝑡²𝑇

0 𝑑𝑡 Eq. ( 4-3 ) 

Conversely, the direct uncurved trajectory length is simply obtained by 𝑙𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑡 = 𝑇) = √𝑥(𝑡 = 𝑇)2 + 𝑦(𝑡 = 𝑇)² Eq. ( 4-4 ) 

The equations are evaluated for different probe velocities 𝑣, considering a maximum 
timeframe of 1000 years. Due to the low acceleration the deviation between curved 
trajectory and straight line turned out to be mostly negligible. The curvature effect 
becomes only significant (> 1 %) when considering probe velocities below 10 m/s, 
which is very much lower than the average travel velocity of the probe. 

Given the low curvature effect derived above, the probes can be assumed to travel 
along a straight trajectory. This model simplification is in accordance with [73], where 
it is stated that interstellar travel trajectories can be assumed to occur on rectilinear 
orbits. 

 
Probes are assumed to travel along straight-lined trajectories.  
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4.2 Building a Star Model of the Solar Neighborhood Based on 
Gaia Data 

In this section, the Gaia based star model used as part of the optimization problem is 
presented. Furthermore, a concept for a stellar metric is suggested, which can be used 
to assign each star a certain score according to its contribution to the mission return.  

4.2.1 Defining the Reference Frames 

The Gaia DR2 catalogue provides galactic coordinates (𝑙, 𝑏), which together with the 
distance estimates (𝑑) from [89] build a spheric coordinate system to define an object’s 
position in 3D space. However, in some cases, the usage of a cartesian reference 
system is more comfortable (see Figure 4-4). Compared to the spherical system, which 
is more common in astrophysics, it simplifies the distance calculations required later 
within the algorithm.  

 
Figure 4-4: Orientation of the Cartesian Reference System (x,y,z) (red) with respect to galactic 

coordinates (l,b) and object distance (d) 

The Cartesian coordinates (𝑥, 𝑦, 𝑧) are derived from (𝑙, 𝑏, 𝑑) via a coordinate 
transformation. Being well-known practice and basic mechanics, the transformation 
between the systems as well as the corresponding equations are omitted here. The 
technical implementation of the transformation is done by means of the Astropy Python 
library [190, 191]. Compared to the galactic coordinate system, the Cartesian system 
has the same origin, which is our solar system. Its x-axis is pointing towards the 
galactic center (corresponding to 𝑙 = 0°), the y-axis is aligned with 𝑙 = 90°. The z-axis 
is orientated towards galactic north (𝑏 = 90°).  

4.2.2 Investigating the Impact of Stellar Motion 

An important feature to be included in modeling considerations is the stellar motion, as 
stars are not fixed but typically rotate around the galactic center. As described during 
the literature survey (see again chapter 2.2.2) there exist also hypervelocity stars which 
are unbound and traversing the galaxy faster than the local escape velocity. However, 
given the high degree of uncertainty and – from current knowledge – presumable low 
fraction of the entire star number, the aspect of hypervelocity stars is omitted in the 
model.  

The velocity of the bounded stars depends on their orbits and distance from the galactic 
center. As derived by Brown [75] (see again Figure 2-9), the orbital velocity for nearby-
stars is about 230 km/s, the escape velocity is roughly about 550 km/s. Assuming an 
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average velocity of an interstellar space probe of about 10 % of the speed of light 
(30,000 km/s) the stellar velocities are comparably small (factor of 0.01). However, with 
increasing time scales the stellar motion gains relevance, as the star position changes 
significantly which yields new star constellations and thus may lead to other favorable 
exploring sequences. For instance, considering a 7,000-year timeframe, the star 
position will differ by about 5 ly compared to its original position, assuming an average 
orbit velocity of 230 km/s. Regarding the relative stellar motion a similar range in 
position difference can be observed: For instance, Barnard’s Star will reduce its 
distance to Sol by roughly 1.6 ly within the next 7,000 years (see again Figure 2-8). 
Hence, the assumption of fixed star position holds only for relatively short time scales.  

To enable an estimate, whether the stellar motion is significant and needs to be 
included in the model or not, the uncertainty of the distance estimation provided by [89] 
is considered: For each star, an upper bound 𝑟ℎ𝑖 and lower bound 𝑟𝑙𝑜 is given, which 
correspond to the highest density interval with probability 0.68. This means, that with 
a probability of 68 % the star distance estimation is within the interval defined by 𝑟ℎ𝑖 
and 𝑟𝑙𝑜. In Figure 4-5, a histogram is provided, where the stars are grouped according 
to their uncertainty interval size.  

 
Figure 4-5: Distribution of highest density interval for star position estimates 

As indicated by Figure 4-5, most of the estimations are related with highest density 
intervals smaller than 1 ly. In general, it can be derived, that the maximum uncertainty 
to be expected is in the order of a few light years. Reconsidering the above example 
of a 7,000-year timeframe, the effects of stellar motion on the star positions are similar 
in scale. Hence, the model simplification of fixed stars is considered to be valid as long 
as the mission timeframe remains below 7,000 years.  

 
  

Within a mission timeframe below 7,000 years stars are assumed to 
maintain constant positions.  
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4.2.3 Star Selection and Filtering Procedure 

The Gaia DR2 catalogue contains several reported spurious sources [192], e. g. there 
are 59 entries which are closer than Proxima Centauri, which is – to current knowledge 
– the closest star to the solar system. Accordingly, a filter procedure consisting of 
several steps is applied to obtain a clean dataset of stars. The filtering follows the 
approach suggested in [192], and is thus only summarized, for details it is referred to 
the relevant section and equations from the cited paper. The filtering process and its 
result is illustrated in Figure 4-6.  

 

 

 
Figure 4-6: Filtering procedure: 1.: Selection of nearest 25,000 stars from Gaia DR2, 2.: Applying filter 

steps 1 and 2 (15,856 stars left), 3.: Applying filter step 3 (11,981 stars left, from which the 
10,000 nearest stars are selected) 

In Figure 4-6, the first plot contains the initial, raw dataset with the nearest 25,000 stars 
which is obtained by using the distance estimates from [89]. The plot indicates the 
presence of dense regions, which is the result of spurious data and is eliminated by 
following. From the first to the second plot, a filtering based on parallax error (filter step 
1) and uncertainties in BP and RP fluxes (filter step 2) is applied (equivalent to 
equations (ii),(iii),(iv) for selection A in [192]), reducing the star number to roughly 
15,850. This already yields a more homogenous distribution (see second plot in Figure 
4-4), however, the denser regions are still apparent, which makes an additional filter 
operation necessary.  

The third filter operation consists of two separate steps: A first selection is made by 
checking the unit weight error against a criterion derived from the stellar magnitude 
(equation C.1 in [192]). Secondly, sources where the flux excess factor is beyond a 
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certain range, which is defined by a color index (calculated from the difference of BP 
and RP mean magnitude) are eliminated (equation (C.2) in [192]). After applying both 
filter steps, 11,981 stars are remaining. From this subset, the 10,000 nearest stars are 
selected (using again the distance estimates from [89]) in order to obtain the final 
dataset, which is shown in plot 3 from Figure 4-6. Compared to the first plot, the stars 
are now distributed almost homogenously. Furthermore, all entries with distances 
closer than Proxima Centauri have been removed through the filtering, as expected.    

Note that the described filter method is rather strict, which leads to the elimination of 
confirmed, actually true sources, particularly after applying the third filter operation 
[192]. However, as the thesis focus on general strategies and deriving possible 
patterns, the impact of excluding some true stars is considered as less adverse to the 
result than including spurious data points: Particularly the highly inhomogeneous star 
distribution (remember the dense regions from plot 1 and 2 in Figure 4-6) may mislead 
the optimization algorithm, resulting in clustered exploration patterns which in real are 
not feasible.  

 
  

 The Gaia based star model represents a spherical domain around Sol with 
a radius of 110 ly which contains 10,000 stars.  
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4.2.4 Star Mission Score - Developing a Stellar Metric 

In general, the value of a star or a star system depends strongly on the mission 
objective and the mission architecture. To ensure applicability for various missions, the 
concept is intended to follow a rather generic approach. 

The generic concept is illustrated Figure 4-7, an explanation on the relevant entries is 
given below. Note that the ellipses represent examples that may differ depending on 
the considered mission and objectives.  

 
Figure 4-7: Generic stellar score concept 

The stellar score is assumed to be determined by three factors that are described by 
following:  

• Attractiveness: This includes all the scientific potential which is provided by the 
star system. Being the key driver of any interstellar mission, the aspect of 
habitability is assumed to be the main subject of scientific interest. As described 
earlier (see again chapter 2.2.5) the star system habitability is determined by 
various factors, which are still discussed today, e. g. the metallicity or the 
spectral class of the star. However, depending on the mission objectives also 
other factors such as the galactic location might be relevant (e. g. when focusing 
a certain galactic region).  

• Mission Suitability: The mission suitability factor becomes relevant, when the 
considered mission (e. g. a reconnaissance mission) is part of an entire 
program, as it assesses the star system with respect to its suitability for 
subsequent missions. It is determined by two factors: 

o Exploitability: Here, the possibilities of resource harvesting are 
evaluated, e. g. for replication, repairing or fuel production.  

o Accessibility: This aspect tries to quantify how easy it is to reach a given 
star. The distance is an obvious example, as it determines not only the 
required travel time but also the communication latency when sending 
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data back to earth. Depending on the probe concept used in the 
subsequent mission, also the luminosity might be relevant, as it affects 
the deceleration period and thus overall trip time when using light sails 
(see again chapter 2.1.5)  

It is emphasized, that the mission suitability factor needs to be set based on 
the subsequent mission – for the current mission, the suitability is evaluated 
by the optimization algorithm.  

• Accuracy: The accuracy factor represents the reliability of the used database 
concerning the position and stellar properties. As the accuracy of the 
observation methods is limited, each data value is subject to a certain degree 
of uncertainty. Hence, by means of this factor, the uncertainty can be accounted 
for in the model. The effect of uncertainty on the stellar score can be defined 
according to the mission needs, as one might argue that a high degree of 
uncertainty makes a star system even more interesting.  

Note that, depending on the setting of the factors, there is the risk of systematically 
preferring a certain type of stars, which leads to a bias in the results. Hence, each 
factor needs to be selected carefully and included into the discussion and interpretation 
of the results. 

To determine the overall stellar score, the scores with respect to each selected 
category are calculated separately and then averaged. The stellar score in a given 
category is obtained by a normalized ranking formalism: First, the stars are ranked 
according to the selected category in reversed order, hence, the worst star is ranked 
first, while the best star is ranked last. The stellar score 𝑠𝑖,𝑥 with respect to the category 𝑥 is then defined by its ranking position 𝑟𝑖 normalized by the number of stars 𝑛:  𝑠𝑖,𝑥 = 𝑟𝑖,𝑥𝑛  Eq. ( 4-5 ) 

Due to the normalization, values from 0 to 1 are obtained, where 1 refers to the highest 
score (the best star in the selected category) and 0 to the lowest score (the worst star 
in the selected category).  

The procedure is illustrated in Figure 4-8, taking the effective temperature as an 
example. For the other factors and categories, the procedure is the same.  
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Figure 4-8: Calculation procedure of the stellar score 

In the described procedure each factor is weighted equally. Depending on the mission 
needs, it is also possible to build a weighted sum if one of the factors has higher 
relevance. The derived metric represents a relative assessment of the stars, which is 
due to the ranking based score assignment. Hence, the same star can yield different 
scores when considered within different models. 

4.3 Building a Simplified Test Model for Algorithm Testing and 
Parameter Adjustment 

Before applying the algorithm to the real star data model, a test case is generated and 
used for testing and parameter tuning. Additionally, the test problem serves as 
performance check for the algorithm: It enables a comparison of the algorithm solution 
and the ideal solution, which is known due to the simple structure of the test problem.  

The test problem is built based on similar length scales and size of the search space 
of the real star model, which is supposed to contain 10,000 stars with max. 110 ly 
distance from sol. As model domain, a cube with 120 ly side length is used to yield a 
similar maximum distance, which is 104 ly and reached at the cube corner. The cube 
volume is filled uniformly with stars, whereby the minimum distance between two stars 
is 6 ly. The stars are distributed within a rectangular grid, as shown in Figure 4-9.  
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Figure 4-9: 2D grid of the stellar test model, each blue dot represents one star 

The resulting 3D model of the test problem is shown in Figure 4-10. It contains 9,260 
stars (21³-1) after removing the star at the origin [0,0,0], which represents Sol. Each 
star has a score of 𝑠𝑖 = 1,  hence the mission return of a solution equals the number of 
visited stars. 

 
Figure 4-10: 3D model of the test problem: 9260 uniformly distributed stars within a cube-shaped 

volume of 120 ly side length 

 

 The test model represents a cube-shaped domain with a side length of 
120 ly which contains 9,260 equally spaced stars.  
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5 Implementation of an Adapted Hybrid Multi-Objective 
Genetic Algorithm 

This chapter describes the basic mechanisms of the optimization algorithm, which is 
implemented to solve the described problem. In the beginning, relevant terminologies 
and definitions are introduced, which are required due to the genetic algorithm 
methodology. The second subchapter explains the main functions and steps of the 
optimization procedure. Finally, a summary of the algorithm implementation is provided 
in form of a pseudocode.  

5.1 Algorithm Terminology and Definitions  

By following, the algorithm terminology is introduced as well as some further 
definitions. This includes the encoding of the optimization problem in the genetic 
context and metrics, which are used to evaluate the solution quality.  

5.1.1 Genetic Encoding of the Problem 

Before going into detail of the optimization procedure, some general definitions are 
required, which will encode the problem and its variables for an appropriate use within 
the evolutionary algorithm context. The first term to be introduced is the chromosome, 
which represents one possible solution of the given problem and, as such, can be 
interpreted as one mission suggestion. The chromosome itself consists of a number of 
genes. Each gene embodies a sequence of stars, which are explored as part of the 
suggested mission by defining a travel route. Consequently, the number of genes 
which are part of one chromosome is limited by the probe number, as each probe is 
assigned to a different route and visits different stars. Note that in general also empty 
routes are allowed, which corresponds to probes that are not launched.  

A set of chromosomes forms a population, therefore sometimes they are also referred 
to as individuals. As the population undergoes an evolving process and will change 
with time, each population belongs to a certain generation. With increasing generation 
number, the population and the solutions represented by each individual will improve. 
Figure 5-1 illustrates the given explanations on the encoding procedure and 
terminology.  
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Figure 5-1: Evolutionary Algorithm Terminology and Encoding of Exploration Mission Terms 

5.1.2 Defining Metrics for Solution Quality Evaluation 

This subchapter introduces metrics that are used to assess the quality of a solution. It 
starts with the concept of Pareto dominance, which is a common practice in multi-
objective optimization problems. Afterwards, the crowding distance metric is 
presented, which serves to generate new solutions in unexplored regions of the 
solution space. Finally, the solution fitness ratio is introduced which is defined by the 
ratio of both objectives.   

5.1.2.1 Pareto Dominance and Pareto Rank 

An essential tool for comparing solutions mutually is based on the principle of Pareto 
dominance, which is a common method to evaluate and rank solutions in multi-
objective optimization problems. Roughly speaking, one solution is Pareto dominated 
by a second solution if the second solution allows an improvement in at least one 
objective function 𝐽𝑖 without worsening in one or more of the remaining objective 
functions 𝐽𝑗. The set of non-dominated solutions (also referred to as Pareto optimal 
solutions) builds the Pareto front. 

Figure 5-2 shows the concept of Pareto dominance and Pareto front for the considered 
bi-objective optimization problem with the objective functions 𝐽1 and 𝐽2. As an example, 
an exploration mission is considered, where mission return 𝐽1 (e. g. determined by the 
number of explored stars) is supposed to be optimized while keeping the entire mission 
duration 𝐽2 minimal. 
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Figure 5-2: Concept of Pareto front and Pareto dominance, the blue crosses indicate possible 

solutions in the search space 

Intuitively, both objective functions are competing: The higher the mission duration, the 
more stars can be visited and vice versa. This negative correlation makes it difficult to 
compare two different solutions with respect to their performance. In those cases, the 
Pareto principles tries to find subsets of optimum solutions by searching for non-
dominated solutions. In the considered example, one solution 𝑖 is dominated by 
another solution 𝑗 if 𝑗 either allows higher mission return in the same or in shorter time 
or if the same mission return is obtained in shorter time. Mathematically formulated, 𝑗 
dominates 𝑖 if one of the two following conditions hold:  𝐽1(𝑗) > 𝐽1(𝑖) 𝑎𝑛𝑑 𝐽2(𝑗) ≤ 𝐽2(𝑖) Eq. ( 5-1 ) 

or:  𝐽1(𝑗) = 𝐽1(𝑖) 𝑎𝑛𝑑 𝐽2(𝑗) < 𝐽2(𝑖) Eq. ( 5-2 ) 

The concept of Pareto dominance is used to derive the Pareto rank, which is another 
important quantity to evaluate the relative quality of an individual within its population. 
Its calculation is adopted from [193] (originally developed by Fonseca [194]) which is 
similar to the NSGA-II based approach [195] but easier to formulate.  

The Pareto rank of an individual is determined by comparing it to all other individuals 
from one population and counting the number of dominating solutions. For instance, if 
individual A is dominated by 10 solutions, its Pareto rank equals 10. Consequently, 
individuals with a low rank are dominated by less solutions than individuals with a 
higher rank. By means of the Pareto rank, the population can be subdivided into 
subpopulations, e. g. individuals with rank 0 are non-dominated and form the Pareto 
front of the current generation.  

5.1.2.2 Crowding Distance 

Whenever two individuals with the same Pareto rank are compared, another criterion 
is required, which is referred to as the crowding distance. Generally, it favors 
individuals in less crowded, unexplored regions from the search space over those 
located in denser regions. The crowding ranking is only valid between individuals from 
the same Pareto rank and thus needs to be recalculated for each subpopulation 
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corresponding to one Pareto rank. The concept can be visualized by drawing a cuboid 
around the selected individual 𝑖, which is bounded by the neighboring individuals 𝑖 − 1 
and 𝑖 + 1 (see Figure 5-3). The crowding distance value corresponding to 𝑖 is then the 
normalized side length of the cuboid.  

 
Figure 5-3: Concept of crowding distance for a solution 𝑖, the filled dots form a subset of solutions with 

the same Pareto rank ([195]) 

The calculation method follows mostly the NSGA-II approach [195] and is illustrated 
by means of a pseudocode in Figure 5-4. A short explanation follows below.  

 
Figure 5-4: Pseudocode for crowding distance calculation (from [195], adapted); the term 𝐽𝑚(𝐼[𝑖]) 

refers to the evaluation of individual 𝐼[𝑖] with respect to objective 𝐽𝑚 

In (1), the number of individuals 𝑙 is determined, which form the subpopulation 𝐼 
corresponding to a given Pareto rank. (2) initializes the crowding distance variable and 
sets it to 0 for each individual. From (3), a loop is started where the crowding distance 
is calculated for each objective 𝐽𝑚. As herein two objectives are considered (mission 
value and time), the loop (3)-(7) will be passed twice. (4) sorts the individuals according 
to the objective 𝐽𝑚 in ascending order. For instance, assuming 𝐽𝑚 = 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 
the individual with the shortest mission duration is placed at the first position, while the 
individual with the longest mission duration is located at the end. In (5), both individuals 
positioned at the beginning and at the end are assigned an infinite crowding distance 
value. As later individuals with high crowding distance values will be preferred, those 
boundary points will be selected and kept for further generations in almost any case.  

(6) starts another loop, where now the crowding distance is calculated for the remaining 
individuals. This is done by measuring the distance between the two adjacent 
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individuals for one individual 𝐼[𝑖]. The result is normalized with the maximum distance 
within the considered subpopulation. This is slightly different from the original approach 
in [195] where the global maximum distances (considering the entire population) are 
used for normalization. A brief explanation on this issue is provided after this paragraph 
– in short, this modification yields a more balanced weighting between the distances 
for each objective. Note that crowding distance values derived from former objectives 
are kept, hence new distance values (corresponding to the new objective) are added 
to the old distance values.  

Remark on Crowding Distance Calculation 

Due to the different normalization factors the final crowding distance value is a 
weighted sum: The larger the normalization factor 𝐹𝑛𝑜𝑟𝑚𝑎𝑙,𝑚, the smaller the distance 
value for one objective.  

𝐼[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ 𝐽𝑚(𝐼[𝑖 + 1]) − 𝐽𝑚(𝐼[𝑖 − 1])𝐹𝑛𝑜𝑟𝑚𝑎𝑙,𝑚
𝑀

𝑚=1  Eq. ( 5-3 ) 

Considering the two objectives mission return and time yields: 𝐼[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐽1(𝐼[𝑖 + 1]) − 𝐽1(𝐼[𝑖 − 1])𝐹𝑛𝑜𝑟𝑚𝑎𝑙,𝑟𝑒𝑡𝑢𝑟𝑛 + 𝐽2(𝐼[𝑖 + 1]) − 𝐽2(𝐼[𝑖 − 1])𝐹𝑛𝑜𝑟𝑚𝑎𝑙,𝑡𝑖𝑚𝑒  Eq. ( 5-4 ) 

Hence, if one of the normalization factors is relatively large, the resulting, final crowding 
distance value 𝐼[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 will mostly depend on the crowding distance based on the 
other objective. This especially may occur, when one of the objectives is unconstraint. 
In the considered problem this is true, as one objective has a “natural” limit (set by the 
star number), while the other (mission duration) in theory is not bounded upwards (only 
if a time constraint is set). 

In its original formulation [195], the normalization factor is defined as follows: 𝐹𝑛𝑜𝑟𝑚𝑎𝑙,𝑚 = max (𝐽𝑚(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)) − min (𝐽𝑚(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)) Eq. ( 5-5 ) 

Consequently, the normalization factor 𝐹𝑛𝑜𝑟𝑚𝑎𝑙,𝑡𝑖𝑚𝑒 for time-based crowding distance 
might grow immensely, whenever one individual from the entire population features a 
very long mission duration (e. g. due to mutation). Thus, the time-based crowding 
distance will be weighted relatively low compared to the mission-return based crowding 
distance.  

To avoid this behavior, the normalization factor is determined from the maximum 
distance of the considered subset of individuals instead of the entire population:  𝐹𝑛𝑜𝑟𝑚𝑎𝑙,𝑚 = max (𝐽𝑚(𝐼)) − min (𝐽𝑚(𝐼)) Eq. ( 5-6 ) 

Hence, only if the poor solution is part of the subset, it will affect the normalization 
factor and thus the crowding distances. 

5.1.2.3 Fitness Ratio 

The final quantity to be introduced here as part of the solution metrics is the fitness 
ratio 𝜎. The idea behind the fitness ratio is adopted from [171], where the averaged 
cost over nodes is used as criterion to identify the best routes within a solution.  
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Typically, it is considered whenever none of the previously described quantities is 
applicable. This is particular the case for low-level comparisons, such as comparing 
different routes from one solution. As its name suggests, it is defined by the ratio of 
both objectives:  𝜎 = 𝐽1𝐽2 Eq. ( 5-7 ) 

Since 𝐽1 is dimensionless and 𝐽2 is noted in years it can be interpreted as averaged 
mission return per mission year. The fitness ratio includes the concept of Pareto 
dominance implicitly, hence, whenever one solution or route is dominated by another, 
its fitness ratio is also lower. Note that in general this relation does not hold backwards: 
Solutions or routes with lower fitness ratio are not necessarily Pareto dominated by 
other solutions with higher fitness ratio. 

If 𝐽2 equals zero, e. g. in case of empty routes, Eq. ( 5-7 ) cannot be evaluated. In this 
case, the fitness ratio is manually set to zero, as no stars are visited, yielding zero 
mission return. Hence, any other solution or route which contains stars is to be 
preferred.  

Based on the fitness ratio 𝜎𝑖, which refers to an individual 𝑖, an average fitness ratio 𝜎𝑚𝑒𝑎𝑛 can be derived. It represents the averaged fitness of a population with size 𝑃𝑚𝑎𝑥  
and is calculated as follows:  

𝜎𝑚𝑒𝑎𝑛 = 1𝑃𝑚𝑎𝑥 ∑ 𝜎𝑖𝑃𝑚𝑎𝑥
𝑖=1  Eq. ( 5-8 ) 

As populations will evolve over the generations, 𝜎𝑚𝑒𝑎𝑛 varies with time: The more 
dynamically the populations are evolving, the higher its variation. Typically, the 
evolution dynamics decreases with time while approaching the optimum and thus 
stabilizing 𝜎𝑚𝑒𝑎𝑛. Hence, the behavior of 𝜎𝑚𝑒𝑎𝑛 indicates, whether the evolving and 
improving process of the population is still ongoing or already stagnating, which makes 𝜎𝑚𝑒𝑎𝑛 a suitable convergence criterion. 
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5.2 Description of the Optimization Procedure  

The algorithm which is implemented to solve the given problem follows mostly the 
approach described in [172], apart from some additional features and adaptions. In 
particular, the modified calculation of the second objective 𝐽2 requires some changes 
with respect to the original implementation. For a better understanding, they are 
explained together with the corresponding algorithm sections.   

The method in [172], referred to as hybrid multi-objective evolutionary algorithm, 
combines two different approaches: Firstly, the Non-Dominated Sorting Genetic 
Algorithm (NSGA-II), which is a well-established genetic algorithm used for solving 
multi-objective problems. Secondly, several local search methods are applied for better 
convergence, making the algorithm a hybrid variant. 

Figure 5-5 illustrates the concept including the main functions of the genetic algorithm.  

 
Figure 5-5: Overview and main functions of the genetic algorithm  

Before the evolution loop starts, an initial population needs to be generated. This is 
done by randomly distributing unvisited stars to the probes of an individual until either 
the time constraint is violated, or all stars are assigned to a route. Then the three 
operations within the evolution loop are carried out subsequently: It starts with the 
selection of parents, which are used to generate children, before evolving the 
population, which again serves as pool to select new parents. According to the 
evolution terminology introduced in the previous chapters, the iteration of one loop is 
referred to as one generation. The evolution loop is stopped once a given number of 
generations is reached. In the subsequent chapters, the functions of the main loop are 
explained in more detail.  

5.2.1 Selection of Parents 

The parent selection process is based on a tournament procedure: Individuals are 
grouped randomly in pairs and compared with respect to their Pareto rank and 
crowding distance. The underlying tournament condition is: Lower Pareto rank beats 
higher Pareto rank and higher crowding distance beats lower crowding distance. Note 
that the Pareto rank has higher priority, therefore the crowding distance is only 
considered when two individuals with the same Pareto rank are compared. If two 
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individuals have the same Pareto rank and the same crowding distance value, the 
winner is selected randomly. The tournament procedure is shown in Figure 5-6.  

 
Figure 5-6: Tournament procedure 

The winning individual will be included into the parent population, whereas the losing 
individual is kept in the general population without being involved in the children 
generation process. In the next step, the resulting set of winning individuals, which are 
forming the parent population, are used to generate children.  

5.2.2 Generating Children 

The children creation process consists of several steps. Firstly, two chromosomes from 
the parent population are chosen randomly. Then, each parent creates one offspring 
by replicating its genes and a so-called crossover operation. The crossover enables 
sharing of the best gene, so each child will receive an additional gene from the other 
parent. To identify the best gene from each parent, the fitness ratio criterion is used. 
Due to the crossover the chromosome now may contain duplicate gene entries, which 
means, that stars would be visited twice by different probes within one mission. As this 
is solution is not wanted, the inherited genes (obtained from replication) are checked 
for duplicates with respect to the route obtained from crossover. If there exists any, the 
duplicate element will be removed from the inherited gene, while the crossover gene 
is kept without modifications. The described children creation process is illustrated in 
Figure 5-7.  
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Figure 5-7: Generating children by replication and crossover procedure: From each parent the best 

route (based on fitness ratio 𝜎) is shared with each child; duplicates in the remaining routes 
are eliminated 

As seen in Figure 5-7, the gene number of the resulting children is increased by one, 
which conflicts with the given number of space probes. Therefore, a repair function is 
introduced, which deletes the worst gene (again evaluated based on the fitness ratio 𝜎) until the desired gene number is reached.   

After the repairing is finished, a mutation operation is applied to the children with a 
certain probability, which is defined by the mutation rate. During the mutation, different 
operations are possible, which are selected based on probabilistic rates. The mutation 
operations are: 

A) Partial Swap: Two random segments from two random routes are exchanged. 
B) Shortest Route Merge: The two shortest routes (in terms of travel time) are 

merged into one single route.  
C) Longest Route Split: The longest route (in terms of travel time) is split at a 

random position into two shorter routes.  
D) Shuffle: The stars in each route are reordered randomly.  

Note that the mutation may generate non-valid solutions, which violate the mission 
time constraint or exceed the probe number limit. For instance, operation B) and C) 
reduce or increase the route number per child by one, which requires further 
modifications: For C), the original route number is restored by deleting the route with 
the worst fitness ratio (analogous to the repair function used when creating children). 
For B), a new, empty route slot will be created, which can be filled with unexplored 
stars in subsequent steps. By means of these operations a constant gene number is 
ensured.  

If the time constraint is violated (which may occur for all operations apart from C)), 
either the original solution is restored (for A) and D)) or the relevant route is cut 
elementwise, until the mission time reaches 𝑇𝑚𝑎𝑥 (for B)).  

In Figure 5-8 the mutation procedure is shown.   
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Figure 5-8: Mutation procedure: Mutation operations (blue) are carried out randomly (rand(0,1) 

generates a random number between 0 and 1); subsequent modifications (orange) may be 
required to avoid constraint violation (adopted from [193], modified) 

However, depending on the parents and the mutation, the resulting children may 
underperform with respective to the objectives, as the travel times of their routes 
possibly vary significantly: For instance, assume two parents with very different 
mission timeframe (see Figure 5-9). Due to the route sharing, the route lengths of child 
A are not balanced, instead there will be one long route (inherited from parent B) and 
several short routes (inherited from parent A). The same issue occurs after the 
mutation, i. e. after merging the shortest routes, where an empty route is generated. 

Bearing in mind that mission duration and thus solution fitness is determined by the 
longest travel time, the solution can be improved (yielding better Pareto rank) by filling 
up the shorter (or empty) routes with unvisited stars. The improved solution will 
dominate the original solution, as the star count is increased while the mission duration 
is kept constant. Alternatively, routes can be cut down to the shortest route lengths, 
which also equalizes the travel times.  
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Figure 5-9: Child suffering from high discrepancies in travel time, leading to poor solution fitness 

Therefore, to increase solution quality and thus survivability of the children, an 
improvement function is implemented, which is applied to each child. It consists of 
either filling up all routes (apart from the longest route) with unvisited stars until the 
longest route travel time is reached or cutting each route (apart from the shortest route) 
down to the shortest route travel time (see Figure 5-10). Again, selection between the 
methods is made using a probabilistic rate (cut rate), except from children containing 
empty routes, where a cut of all other routes is not desirable.  

 
Figure 5-10: Child improvement procedure 

Note that this improvement operation is not part of the original approach: As already 
explained in the beginning of this section, this is one of the modifications which is 
required due the differing calculation of 𝐽2. Unlike here, where unbalanced routes may 
yield poor solution fitness, there the ratio between the routes does not affect the overall 
solution quality.  

The described procedure of producing children is repeated until the children population 
reaches a certain size, which is defined by the crossover rate. For instance, assuming 
a crossover rate of 1, the size of the children population equals the size of the original 
population. Hence, after merging both populations, the population size is doubled.  
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5.2.3 Evolving Population 

Due to the merging of children and original population the population size increases. 
Therefore, another selection procedure is required, which again makes use of the 
Pareto rank and crowding distance (as during the population tournament, see section 
5.2.1).  

During the evolving process, the next generation’s population is filled subsequently 
with individuals from the current population until the maximum population size is 
reached. The underlying principle is illustrated in Figure 5-11.  

 
Figure 5-11: Evolving procedure based on non-dominated sorting and crowding ranking (from [195], 

adapted) 

Firstly, individuals are sorted according to their Pareto rank. In Figure 5-11, 𝐹𝑖 refers to 
a subpopulation of individuals with the same Pareto rank. Individuals with the lowest 
Pareto rank (𝐹1 in Figure 5-11) are prioritized and included first into the evolved 
population before individuals with higher ranks are added. Once the maximum 
population size is about to be reached, individuals from the critical rank (𝐹3 in Figure 
5-11) are selected based on their crowding distance. As described earlier, individuals 
with high crowding distances are located in less crowded regions of the search space 
and thus preferred over individuals with low crowding distances. When the maximum 
population size is reached, the left individuals from the critical rank with lower crowding 
distance are rejected as well as the individuals with higher Pareto ranks (𝐹4 upwards 
in Figure 5-11). 

5.2.4 Local Search Operation 

Strictly speaking, the local search operation is not part of the evolutionary algorithm 
procedures. Instead, it represents an additional, external method to improve the 
solution convergence and therefore is not included in the main loop of Figure 5-5. The 
local search operation is a set of five methods which are applied within a regular 
interval to each individual from a population. The methods are described by following:  
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A) One-point: An arbitrarily chosen star is switched to another position within the 
same route.  

B) Two-points: Two arbitrarily chosen stars switch position within the same route.  
C) Two-opt: An arbitrarily chosen route segment is inverted.  
D) Best insertion: The route is rebuilt using a nearest neighbor heuristic.  
E) Switch from longest to shortest: The last star from the longest route is removed 

and appended to the shortest route.  

A)-D) is adopted from [172]. E) is another extension to the original algorithm and added 
to counteract unbalanced route times for one individual (as described in 5.2.2). The 
concept of E) is adopted from [28], where with the l-opt a similar local search operation 
is implemented.  

For each individual, one of the five operations is chosen arbitrarily and then applied to 
all of its routes. Generally, any route modifications caused from local search operations 
are kept only if the overall solution is improved, which is measured by means of the 
fitness ratio 𝜎 (see Figure 5-12).  

 
Figure 5-12: Local search procedures (one-point operation as example, workflow equivalent for two-

points and two-opt operation) 
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5.3 Algorithm Overview – Presentation of the Preliminary 
Pseudocode 

The complete algorithm is summarized in Figure 5-13 by means of a pseudocode. As 
the code might be modified during the testing and adjustment procedure, this version 
is referred to as preliminary pseudocode.  

 
Figure 5-13: Preliminary algorithm pseudocode (the “%“ symbol in the if-condition for performing the 

local search refers to the modulo operator) 
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6 Applying the Algorithm to the Simplified Test Model  
This section describes the results for the test problem, based on the preliminary 
algorithm code as presented in Figure 5-13. It starts with a preliminary analysis on the 
test model before the optimization algorithm is applied. The results are used to refine 
the algorithm and find a suitable parameter set up, which serves as initial configuration 
to start with the optimization based on the Gaia star models.  

6.1 Preliminary Analysis of the Model 

For the preliminary analysis, an exploration mission carried out by a single space probe 
is considered. Assuming a constant travel speed of 10 % of the speed of light, the 
probe would reach the nearest star (at 6 ly distance) after 60 years. Due to the uniform 
star distribution, each subsequently visited star increases the mission duration by 
further 60 years. Dividing the number of visited stars by the mission duration yields the 
fitness ratio 𝜎, which represents the average number of visited stars per year. The 
larger this ratio, the more stars are visited on average per year.  

The optimum value is reached, when a maximum number of stars is visited within the 
shortest possible time. For above example of a single-probe mission, this value will be 

constant at 
160 𝑦: 𝜎𝑚𝑎𝑥,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑟𝑜𝑏𝑒 = max (𝐽1𝐽2) = 𝑛𝑠𝑡𝑎𝑟𝑠,𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑛𝑠𝑡𝑎𝑟𝑠,𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∙ 60 𝑦 = 160 𝑦 Eq. ( 6-1 ) 

Increasing the probe number will increase the scientific return without affecting the 
mission duration, as more stars can be visited within the same time. Consequently, the 
fitness ratio will increase as function of the probe number 𝑚: 𝜎𝑚𝑎𝑥(𝑚) = max (𝐽1𝐽2) = 𝑛𝑠𝑡𝑎𝑟𝑠,𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∙  𝑚𝑛𝑠𝑡𝑎𝑟𝑠,𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∙ 60  𝑦 = 𝑚60 𝑦 Eq. ( 6-2 ) 

However, this equation holds only for small probe numbers and a limited number of 
visited stars, as, in general, a time-optimum transfer lasting only 60 years is not always 
possible: Already the travel to the first target star will last longer, when more than six 
probes are allowed, as there are only six stars at six light years distance (one in each 
axis-direction, positive and negative). As each probe is starting from the solar system, 
only six of them can reach a star within 60 years, the remaining probes have to choose 
farther stars. Similarly, when most of the stars are already explored, the allocation of 
new stars reachable within reasonable travel times becomes more and more 
challenging and potentially impossible, particularly when more probes are involved. 
Hence, for most cases the fitness ratio has to be interpreted as reference value, not 
necessarily as an exact, absolute criterion to judge the algorithm performance. 
Nevertheless, it helps to compare different solutions and gives a rough estimate on the 
deviation between optimum and calculated solution, especially for small probe and star 
number.  
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6.2 Parameter Variation and Algorithm Adjustment  

In this section, several algorithm parameters are varied and investigated with respect 
to their impact on the solution. The solution quality is evaluated by means of the results 
from the preliminary model analysis (chapter 6.1).  

In general, parameters and input data of optimization runs are specified in a table (e. 
g. see Table 6-1), following the conventions introduced in the pseudocode (Figure 
5-13). The values in the table are kept constant along the selected runs while “X”-
values indicate a parameter variation.  

6.2.1 Variation of Time Constraint Settings 

As explained in chapter 4.2.3, the value for the time constraint 𝑇𝑚𝑎𝑥 limiting the 
maximum route time is about 7000 years for physical reasons. However, setting 𝑇𝑚𝑎𝑥 
already from optimization start to 7000 years turned out to impair the solution quality. 
Significant higher quality is reached, when the time constraint is disregarded at the 
beginning of the run and set active after a certain number of generations. Temporarily, 
this produces invalid solutions but as the activation of 𝑇𝑚𝑎𝑥 is combined with a cut 
operation, which cuts each route down to 𝑇𝑚𝑎𝑥, the final set of solutions will satisfy the 
time requirements.  

Within the runs described in this section, the timing effect of 𝑇𝑚𝑎𝑥 activation and cut 
operation is investigated. This includes a staggered cutting and 𝑇𝑚𝑎𝑥 activation, which 
means, that in a pre-step solutions are cut to a 𝑇𝑚𝑎𝑥 > 7000 𝑦 before performing the 
final cut to ensure valid solutions.  

In Table 6-1, the used input data and algorithm parameter are listed.  
Table 6-1: Specification of input data and algorithm parameter, X values indicate a parameter variation 

Input Data 

Model Testproblem 𝒎 4 𝒏 9260 𝒗 0.1 c 𝒔𝒊 1  

Algorithm Parameter 𝑻𝒎𝒂𝒙 X 𝒓𝒄𝒓𝒐𝒔𝒔 1 𝒓𝒔𝒘𝒂𝒑 0.5 𝒈𝒄𝒖𝒕 X 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 0.05 𝒓𝒎𝒆𝒓𝒈𝒆 0.5 𝒈𝒎𝒂𝒙 2000 𝒓𝒍𝒐𝒄_𝒔𝒆𝒂𝒓𝒄𝒉 40 𝒓𝒔𝒉𝒖𝒇𝒇𝒍𝒆  0.3 𝑷𝒎𝒂𝒙 100 𝒓𝒎𝒖𝒕 0.4  
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As shown in Table 6-1 the first parameters to be varied are the time constraint 𝑇𝑚𝑎𝑥 
and the timing of the cut operation 𝑔𝑐𝑢𝑡 . The remaining algorithm parameters are either 
adopted from the original approach [172] (𝑟𝑐𝑟𝑜𝑠𝑠 and the mutation parameters 𝑟𝑚𝑢𝑡, 𝑟𝑠𝑤𝑎𝑝, 𝑟𝑚𝑒𝑟𝑔𝑒, 𝑟𝑠ℎ𝑢𝑓𝑓𝑙𝑒), or set based on experimentation. Their impact is addressed in 
separate subchapters.  

The selected parameters are varied according to Table 6-2. 𝑇𝑚𝑎𝑥,𝑔=0 refers to the time 
constraint at start, 𝑇𝑚𝑎𝑥 =  ∞ indicates unconstraint mission duration. The second 
parameter 𝑇𝑚𝑎𝑥,𝑔=𝑔𝑐𝑢𝑡1  gives the value used for the pre-cut, which is performed after 𝑔𝑐𝑢𝑡1 generations. Note that for subsequent generations the time constraint 𝑇𝑚𝑎𝑥,𝑔=𝑔𝑐𝑢𝑡1  is active from 𝑔𝑐𝑢𝑡1, hence the algorithm is forced to generate solution only 
within this time range.  

Analogously, 𝑇𝑚𝑎𝑥,𝑔=2 refers to the value used for the final cut. To ensure valid 
solutions, it is set to 7000 years and remains active until the run ends. Entries with “-“ 
indicate that there is no cut and time constraint activation applied, e. g. run 1 remains 
unconstraint with respect to mission duration whereas run 5 maintains its initial 
constraint until the end.    

Table 6-2: Parameter variation concerning 𝑇𝑚𝑎𝑥 activation and cut operation timing 

Run 
𝑇𝑚𝑎𝑥,𝑔=0  

[y] 

𝑇𝑚𝑎𝑥,𝑔=𝑔𝑐𝑢𝑡1 

 [y] 

𝑔𝑐𝑢𝑡1  

[generat.] 

𝑇𝑚𝑎𝑥,𝑔=𝑔𝑐𝑢𝑡2 

 [y] 

𝑔𝑐𝑢𝑡2  

[generat.] 

1 ∞ - - - - 

2 ∞ - - 7000 500 

3 ∞ 100000 300 7000 500 

4 ∞ 100000 100 7000 300 

5 7000 - - - - 

6 ∞ 100000 100 7000 150 

7 ∞ 100000 500 7000 800 

 

Figure 6-1 shows the resulting set of solutions for each run. The solutions are obtained 
by evaluating the objective functions for each individual from the final population. 
Additionally, the ideal curve is given as reference, which is calculated based on the 
maximum fitness ratio, as discussed in the preliminary analysis.  
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Figure 6-1: Solution set for each run considering different 𝑇𝑚𝑎𝑥 activation and cutting time, the ideal 

solution is given as reference 

Apart from run 5, all solutions are within a similar range, which indicates that the effects 
from different timings for constraint activation and cutting operation are rather low. For 
run 1, only few solutions are obtained for the considered time frame, which is due to 
the unconstraint mission time that spreads the population over a large timescale. 

6.2.1.1 Time Constraint Effect on the Solution Quality 

As already stated previously, run 5, which has an active 𝑇𝑚𝑎𝑥 restriction from the 
beginning, performs significantly worse compared to the other runs. This is assumed 
to result from the strong reduction of the stars in the solution space from the beginning: 
In Figure 6-2, this effect is visualized by comparing the number of different stars per 
generation for run 5 and run 6. Additionally, a plot is given below, which shows the 
number of new stars compared to the previous generation. Note that to generate this 
data, run 5 and 6 are repeated and thus may differ slightly from the original runs, 
however, the general trend is not affected.    
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Figure 6-2: Upper plot: number of different explored stars per generation; lower plot: number of new 

stars in subsequent generation compared to previous generation 

As each generation represents a set of missions consisting of various star exploration 
sequences, it also serves as a pool of stars for the subsequent generations. The only 
opportunity to add new stars to this pool is during the mutation operations or children 
improvement procedure, assuming that the corresponding child survives the evolving 
process. Due to the high star number, however, the probability of selecting a star and 
inserting it at a favorable position within a suitable exploration sequence of a viable 
child is rather low, given the random nature of the algorithm. This is exactly what 
happens in case of run 5: It starts with a small set of stars (see upper plot in Figure 
6-2) which is further reduced before being enlarged very slowly with increasing 
generations. Hence, the routes are built subsequently by adding new stars, which 
requires many generations. Run 6 pursues a different strategy, where routes are built 
by selecting stars from the existing set without requiring new stars to be added. This 
leads to better solutions in faster time. A visualization of selected solution from each 
run is provided by Figure 6-3, considering a number of 2000 generations. 
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Figure 6-3: Visualization of routes for selected solutions with similar mission return from run 5 and run 

6 (both after 2000 generations); each color refers to one route 

Compared to run 6, in run 5 the transfers between the stars are much longer and 
appear to be more chaotic, since there are less stars available to build suitable routes 
(Figure 6-2, upper plot). As a result, the mission duration required to yield a similar 
mission return is more than three times higher. With increasing generation number, the 
routes are improved by subsequently inserting new stars, e. g. after 40000 generations 
the same mission return is obtained after 3430 years. In run 6, contrarily, the transfer 
trajectories are much shorter and reveal a more organized structure due to the higher 
density of selectable stars.  

 

6.2.1.2 Linear Correlation and Considerations on Convergence 

Another observation is the linear correlation between both objectives, which is due to 
the uniform star distribution. The relation is defined by the fitness ratio, which yields for 
the ideal case according to Eq. ( 6-2 ):  𝜎𝑖𝑑𝑒𝑎𝑙(𝑚𝑝𝑟𝑜𝑏𝑒𝑠) = 𝑚𝑝𝑟𝑜𝑏𝑒𝑠60 = 460 ≈ 0.067 Eq. ( 6-3 ) 

Whenever one solution reaches this fitness ratio, it represents the ideal solution.  

Due to the linearity the ideal fitness ratio value is constant across the population. 
Hence, by means of the mean fitness ratio 𝜎𝑚𝑒𝑎𝑛 the overall quality of a population can 
be evaluated. The development of 𝜎𝑚𝑒𝑎𝑛 along the generations is shown in Figure 6-4, 
the ideal value of 0.067 is given as reference.  

The solution quality can be improved significantly by means of an initial 
relaxation of the time constraint. 
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Figure 6-4: Mean fitness ratio of populations vs. generation number for runs with different 𝑇𝑚𝑎𝑥 

activation and cutting timing, additionally the ideal value of 0.067 is given as reference 

There is a strong improvement of the solution within the first generations for run 5. The 
other runs initially stagnate on a low level but outpace run 5 shortly after the first local 
search operation is applied (after 40 generations). The cut operations can be 
recognized by small troughs in the plots, as due to the cutting the overall fitness is 
temporarily reduced (as shown in the upper plot in Figure 6-4): The cutting operation 
typically modifies the existing population and also the non-dominated solutions by 
compressing the Pareto front. Hence, the number of non-dominated solutions is 
reduced, as formerly non-dominated solutions (located at the end of the curve and thus 
affected by the cut) may now be dominated by short-term missions, where no cut was 
required. If the number of non-dominated solutions is smaller than the allowed 
population size, also dominated solutions are included in the next generation 
(depending on their Pareto rank, see again section 5.2.3). Due to the inclusion of the 
comparably worse solutions, the overall population fitness is temporarily reduced. 

Another observation from Figure 6-4 is that, apart from run 5, the mean fitness ratio 
does not improve significantly after a certain number of generations, which indicates a 
stagnation in the evolving process and thus the presence of a converged solution. In 
its original formulation from [172], the algorithm is stopped after a certain number of 
generations without considering the behavior of the solution. With respect to 
computational resource and runtime this approach might be very inefficient if the 
optimum solution is found very early and not improved by further generations, as it can 
be observed in Figure 6-4. Therefore, a convergence check is developed to reduce 
unnecessary runtime and computational cost, given the large size of the problem 
considered here. 
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Technically, the convergence check is implemented by observing 𝜎𝑚𝑒𝑎𝑛 over 
200 generations and applying a moving average of size 3 to filter small fluctuations. 
The solution is then assumed to be converged, when the ratio of minimum 𝜎𝑚𝑒𝑎𝑛,𝑚𝑖𝑛 
and maximum 𝜎𝑚𝑒𝑎𝑛,𝑚𝑎𝑥 over the considered sample is below 1 %. Note that a 
generation number of 300 is set as minimum limit in order to avoid premature 
convergence due to entrapment in local optimums. In case the convergence criterion 
is not satisfied, the algorithm stops after reaching the maximum number of generations 𝑔𝑚𝑎𝑥.  

6.2.1.3 General Quality and Efficiency Assessment  

In Table 6-3, the final fitness ratio of each run measured after 2000 generations with 
respect to the ideal fitness ratio is provided. For convenience, also the relevant 
parameters related with 𝑇𝑚𝑎𝑥 are given, furthermore the runtime is shown.   

Table 6-3: Solution quality relative to the ideal value for each run together with the relevant 
parameters, run 6 considered to be most efficient 

R
u
n 

𝑇𝑚𝑎𝑥,𝑔=0  

[y] 

𝑇𝑚𝑎𝑥,𝑔=𝑔𝑐𝑢𝑡1 
 [y] 

𝑔𝑐𝑢𝑡1  

[gen.] 

𝑇𝑚𝑎𝑥,𝑔=𝑔𝑐𝑢𝑡2 
 [y] 

𝑔𝑐𝑢𝑡2  

[gen.] 

𝜎𝑚𝑒𝑎𝑛,𝑓𝑖𝑛𝑎𝑙𝜎𝑖𝑑𝑒𝑎𝑙   runtime 
[min] 

1 ∞ - - - - 81 % 196 

2 ∞ - - 7000 500 88 % 65 

3 ∞ 100000 300 7000 500 87 % 54 

4 ∞ 100000 100 7000 300 88 % 41 

5 7000 - - - - 43 % 22 

6 ∞ 100000 100 7000 150 88 % 35 

7 ∞ 100000 500 7000 800 90 % 77 

The results in the table confirm the qualitative observations made from the previous 
figures: The solution from run 5 deviates significantly from the ideal solution, while the 
other runs are within a range of 80-90 %. Not that for run 1, which is unconstraint with 
respect to 𝑇𝑚𝑎𝑥, the ideal solution is maybe not realizable for the entire population, 
hence it performs slightly worse but still better compared to run 5.  

Regarding the runtime, it can be stated that it correlates with the possible route length, 
which is limited by 𝑇𝑚𝑎𝑥. Consequently, run 5 is very fast due to the permanent 
constraint, while run 1 takes about 9 times longer. The runtime of the other runs 
depends on the timing of 𝑔𝑐𝑢𝑡: The earlier the cut is applied, the shorter is the overall 
runtime.  

The decision, which parameter combination is the most suitable, is based on the 
solution quality and runtime: Run 7 performs best, however, its runtime is more than 
twice compared to the runtime from run 6, which performs only slightly worse. 
Therefore, the parameters from run 6 are assumed to represent a good trade-off 
between solution quality and runtime. 
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6.2.2 Implementation of Convergence Check and Variation of Crossover and 
Mutation Rates 

This set of runs is dedicated to the probability rates used for crossover, mutation and 
improvement operations. Additionally, the functionality of the convergence check as 
described before is tested. The remaining parameters are kept constant and listed in 
Table 6-4.  

Table 6-4: Specification of input data and algorithm parameter corresponding to runs investigating 
crossover and mutation parameter, X values indicate a parameter variation 

Input Data 

Model Testproblem 𝒎 4 𝒏 9260 𝒗 0.1 c 𝒔𝒊 1  

Algorithm Parameter 𝑻𝒎𝒂𝒙,𝒈=𝟎 ∞ 𝒈𝒎𝒂𝒙 2000 𝒓𝒎𝒖𝒕 X 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟏 100,000 y 𝑷𝒎𝒂𝒙 100 𝒓𝒔𝒘𝒂𝒑 X 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟐 7000 y 𝒓𝒄𝒓𝒐𝒔𝒔 X 𝒓𝒎𝒆𝒓𝒈𝒆 X 𝒈𝒄𝒖𝒕𝟏 100 gen. 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 X 𝒓𝒔𝒉𝒖𝒇𝒇𝒍𝒆  X 𝒈𝒄𝒖𝒕𝟐  150 gen. 𝒓𝒍𝒐𝒄_𝒔𝒆𝒂𝒓𝒄𝒉 40  

The parameters are varied for each run according to Table 6-5. For better transparency 
in each run only one parameter is varied compared to run 1 (apart from run 8).  
Table 6-5: Variation of parameters corresponding to runs investigating crossover, mutation parameter 

and children improvement operation parameter 

Run 𝑟𝑐𝑟𝑜𝑠𝑠  𝑟𝑚𝑢𝑡 𝑟𝑠𝑤𝑎𝑝 𝑟𝑚𝑒𝑟𝑔𝑒 𝑟𝑠ℎ𝑢𝑓𝑓𝑙𝑒 𝑟𝑖𝑚𝑝_𝑐𝑢𝑡 

1 1 0.4 0.5 0.5 0.3 0.05 

2 0.8 0.4 0.5 0.5 0.3 0.05 

3 1 0.8 0.5 0.5 0.3 0.05 

4 1 0.4 0.8 0.5 0.3 0.05 

5 1 0.4 0.5 0.8 0.3 0.05 

6 1 0.4 0.5 0.5 0.6 0.05 

7 1 0.4 0.5 0.5 0.3 0.2 

8 0.9 0.7 0.6 0.7 0.2 0.1 
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The plot of the final solution fitness for each run is omitted here, instead only the mean 
fitness ratio over the generations is shown (see Figure 6-5).  

 
Figure 6-5: Population mean fitness ratio vs. generations for variation of crossover rate, mutation 

operation probabilities and improvement operation parameter 

All runs stop before the maximum generation number is reached, which is due to the 
implemented convergence check. The criterion appears to be rather strict but kept to 
avoid pre-mature solutions, as the runtime is still manageable.  

Based on the plots shown in Figure 6-5 the parameter variation seems to have only 
low effect on the solution quality. This can be confirmed quantitatively by comparing 
the mean fitness ratio from the final solution to the ideal fitness ratio, as done in Table 
6-6. Due to the stochastic nature of the algorithm, each run is performed twice, which 
increases the reliability of the result. Therefore, Table 6-6 contains one column with 
results for set 1, a second column for set 2 (where the runs from set 1 are repeated 
with the identical parameters) and a third column, where both values are averaged.  
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Table 6-6: Results for variation of crossover rate and mutation operation probabilities 

Run 𝑟𝑐𝑟𝑜𝑠𝑠  𝑟𝑚𝑢𝑡 𝑟𝑠𝑤𝑎𝑝 𝑟𝑚𝑒𝑟𝑔𝑒 𝑟𝑠ℎ𝑢𝑓𝑓𝑙𝑒 𝑟𝑖𝑚𝑝_𝑐𝑢𝑡 

𝜎𝑚𝑒𝑎𝑛,𝑓𝑖𝑛𝑎𝑙𝜎𝑖𝑑𝑒𝑎𝑙  

set 1 set 2 mean 

1 1 0.4 0.5 0.5 0.3 0.05 88 % 86 % 87 % 

2 0.8 0.4 0.5 0.5 0.3 0.05 86 % 86 % 86 % 

3 1 0.8 0.5 0.5 0.3 0.05 87 % 86 % 87 % 

4 1 0.4 0.8 0.5 0.3 0.05 89 % 90 % 90 % 

5 1 0.4 0.5 0.8 0.3 0.05 84 % 88 % 86 % 

6 1 0.4 0.5 0.5 0.6 0.05 84 % 88 % 86 %  

7 1 0.4 0.5 0.5 0.3 0.2 89 % 85 % 87 % 

8 0.9 0.7 0.6 0.7 0.2 0.1 86 % 88 % 87 % 

As already derived from observations from Figure 6-5, the results are fairly robust 
against the parameter variation. Furthermore, it can be stated that an early termination 
of the simulation due to the implemented convergence check does not impair the 
overall solution quality. Out of all runs, run 4 performs best. Consequently, the 
parameters from run 4 are considered to be the most suitable.  
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6.2.3 Variation of Population Size and Local Search Operation Intervals  

In this subchapter the focus is on parameters which have not been varied yet. This 
includes the population size together with the probe number and the local search 
intervals. The constant input data and parameters are given in Table 6-7.  

Table 6-7: Specification of input data and algorithm parameter corresponding to runs investigating 
population size and local search interval impact, ‘X’ indicates a parameter variation 

Input Data 

Model Testproblem 𝒎 X 𝒏 9260 𝒗 0.1 c 𝒔𝒊 1  

Algorithm Parameter 𝑻𝒎𝒂𝒙,𝒈=𝟎 ∞ 𝒈𝒎𝒂𝒙 2000 𝒓𝒎𝒖𝒕 0.4 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟏 100,000 y 𝑷𝒎𝒂𝒙 X 𝒓𝒔𝒘𝒂𝒑 0.8 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟐 7000 y 𝒓𝒄𝒓𝒐𝒔𝒔 1 𝒓𝒎𝒆𝒓𝒈𝒆 0.5 𝒈𝒄𝒖𝒕𝟏 100 gen. 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 0.05 𝒓𝒔𝒉𝒖𝒇𝒇𝒍𝒆  0.3 𝒈𝒄𝒖𝒕𝟐  150 gen. 𝒓𝒍𝒐𝒄_𝒔𝒆𝒂𝒓𝒄𝒉 X  

Table 6-8 shows the varied parameters together with the results. Note that the ideal 
fitness ratio for runs with 32 probes is not realizable, as discussed in the preliminary 
analysis. Accordingly, the corresponding deviation values must be considered as 
relative values which enable a comparison between runs and not as absolute values 
which indicate the actual solution quality.  
Table 6-8: Results for parameter variation considering probe number, population size and local search 

interval 

Run 𝑚 𝑃𝑚𝑎𝑥 𝑟𝑙𝑜𝑐_𝑠𝑒𝑎𝑟𝑐ℎ 
𝜎𝑚𝑒𝑎𝑛,𝑓𝑖𝑛𝑎𝑙𝜎𝑖𝑑𝑒𝑎𝑙  

1 4 100 40 88 % 

2 4 50 40 86 % 

3 4 200 40 88 % 

4 32 100 40 45 % 

5 32 50 40 44 % 

6 32 200 40 45 % 

7 4 100 20 87 %  

8 4 100 80 82 % 
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Regarding the population size, it can be stated that there is a negligible decline in 
solution quality when the population size is reduced to 50 individuals. This holds also 
for higher probe numbers. Run 7 and 8, which investigate the effect of more or less 
frequent local search operations, indicate that the reduction from 40 to 20 does not 
improve the overall solution quality. Conversely, doubling the interval to 80 reduces 
the quality significantly.  

Based on the described observations, the initial configuration with a search interval of 
40 generations for performing the local search operations appears to be a good choice. 
Similarly, the population size of 100 individuals seems to represent a fair initial value 
to start with when the Gaia based star model is considered.  

6.3 Revised Pseudocode based on Test Problem Outcomes 

Based on the findings from the test problem runs the preliminary pseudocode is revised 
as shown in Figure 6-6. Compared to the preliminary pseudocode, two major 
modifications are made: The first one concerns the time constraint implementation, the 
second one the convergence check.  
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Figure 6-6: Revised pseudocode based on test problem results (the “%“ symbol in the if-condition for 

performing the local search refers to the modulo operator) 
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7 Applying the Revised Algorithm to the Gaia based Star 
Models 

In this section, the revised algorithm as presented at the end of the previous chapter 
(Figure 6-6) is applied to the star models built from Gaia data. Two different models 
are considered: One large-size model containing 10,000 stars as defined in 4.2 and a 
smaller one with 1,000 stars. The smaller model is obtained from the 10,000 stars 
model by simply selecting the 1,000 nearest stars. For each model, several analyses 
are performed, as shown in Figure 7-1. Finally, the results of both models are 
compared. Note that in both models the stellar scoring metric is not incorporated, 
hence the mission return is equal to the number of explored stars.  

  
Figure 7-1: Overview and high-level structure of chapter 7 

7.1 Results for 10,000 stars  

The results for the 10,000 stars model are structured as follows: At the beginning the 
model is analyzed with respect to the spatial star distribution. Then selected 
parameters are varied, which comprises the probe number and algorithm parameters.  

7.1.1 Preliminary Analysis of the Model - Spatial Star Distribution 

The preliminary analysis focus on the spatial star distribution. Therefore, the star 
locations are analyzed with respect to their coordinates. Due to the spherical model 
domain spherical coordinates are considered, which are galactic longitude, latitude and 
distance. Furthermore, the transfer distance for each star to its nearest neighbor star 
is investigated.  
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7.1.1.1 Distribution of the Galactic Longitude 

The distribution of the galactic longitude is analyzed by dividing the entire range of 0-
360° into 72 equal-sized intervals, yielding an interval size of 5°. Depending on their 
longitude, stars are assigned to a certain interval and counted. The resulting histogram 
is shown in Figure 7-2.  

 
Figure 7-2: Distribution of galactic longitude, each beam refers to an interval with a size of 10° 

From the histogram in Figure 7-2 it can be derived that the galactic longitude follows 
approximately a uniform distribution.  

7.1.1.2 Distribution of the Galactic Latitude 

The analysis of the galactic latitude distribution follows the same approach as the 
longitude. From the range of -90° to 90° now 90 equal-sized intervals are built, yielding 
an interval size of 2°. Note that conversely to the longitude, the spherical characteristics 
of the system must be involved in the distribution analysis of the latitude. Hence, the 
star count of a uniform distribution is not constant for all latitude values (as it was for 
the longitude) but decreases towards the poles. In [196], an approach to model a 
random distribution of the latitude is presented, which is adopted here. The resulting 
curve together with the star model data is shown in Figure 7-3. 
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Figure 7-3: Comparison of galactic latitude coordinate and random uniform distribution 

Based on Figure 7-3, an approximately uniform distribution of the latitude can be 
assumed.  

7.1.1.3 Distribution of the Estimated Distance Values 

To analyze the distribution of the distances to Sol a cumulative histogram is used. 
Hence, each bin indicates the number of stars with smaller or same distance for a 
considered distance value. Accordingly, the final bin at 110 ly, which is the maximum 
distance in the model, includes all 10,000 stars. In Figure 7-4, the resulting histogram 
is given together with the theoretical curve derived from a random uniform distribution. 
Note that due to the cubic increase of a spheric volume with radius (𝑉 ∼ 𝑟3) the random 
distribution curve has a cubic course.  
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Figure 7-4: Cumulative histogram for distance values; random distribution represented by cubic curve 

As indicated by the plot, the distances to Sol can be assumed to follow a uniform 
distribution.  

7.1.1.4 Distribution of the Minimum Transfer Distances between Stars 

As final distribution analysis the minimum distances between the stars are considered. 
The analysis is done by means of the distance matrix, which represents a look-up table 
where each possible transfer 𝑑𝑖,𝑗 between two stars 𝑖 and 𝑗 is calculated. Note that due 
to the symmetry assumption 𝑑𝑖,𝑗 equals 𝑑𝑗,𝑖, hence the distance matrix is symmetrical.  

Table 7-1: Structure of the distance matrix 

 1 2 𝑗 … N 

1 - 𝑑1,2 𝑑1,𝑗 … 𝑑1,𝑁 

2 𝑑2,1 - 𝑑1,𝑗 … 𝑑2,𝑁 𝑖 𝑑𝑖,1 𝑑𝑖,2 - … 𝑑𝑖,𝑁 

… … … .. - … 

N 𝑑𝑁,1 𝑑𝑁,2 𝑑𝑁,𝑗 … - 

From each row in the distance matrix, the minimum value is extracted and stored 
separately, yielding a new array which contains for each star the transfer distance to 
its nearest neighbor star. This new array is used to create a histogram which is plotted 
in Figure 7-5. The interval size is 0.25 ly, e. g. the second bar represents the number 
of stars that have a transfer distance between 0.25-0.5 ly to it nearest neighbor.  
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Figure 7-5: Distribution of the minimum transfer distance between two stars; interval size of 0.25 ly 

The minimum transfer distances range from 0 to 12 ly. The distribution appears to 
resemble a Poisson distribution, apart from a large number of very short transfers 
smaller than 0.75 ly. This phenomenon is expected to be caused by the presence of 
binary or multiple star systems, as in the Gaia release each star source is treated as 
single star [192].  Hence, from Figure 7-5 it can be stated that more than 10 % of the 
stars in the model are part of a binary or multiple star system. In fact, multiple star 
systems are even more prevalent: 40 - 60 % of the stars in the Milky Way are estimated 
to form multiple systems [3, p. 109]. The deviation between model and estimations are 
assumed to result from the limited resolution of the Gaia observations and due to the 
filtering procedure: As very close binary systems may produce spurious results, those 
stars are eliminated during the filtering (for more details on binaries and multiple star 
systems in the Gaia release it is referred to [192]).  

 
  

Based on a qualitative analysis of the coordinates, stars appear to follow a 
uniform spatial distribution but are not equally spaced due to the presence 

of multiple star systems.   
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7.1.2 Variation of Probe Number for Given Algorithm Configuration 

Table 7-2 lists the parameters that are kept constant along this set of runs. As 
indicated, solely the probe number is varied.  

Table 7-2: Specification of input data and algorithm parameter, ‘X’ indicates a parameter variation 

Input Data 

Model Gaia Star Model 𝒎 X 𝒏 10,000 𝒗 0.1 c 𝒔𝒊 1  

Algorithm Parameter 𝑻𝒎𝒂𝒙,𝒈=𝟎 ∞ 𝒈𝒎𝒂𝒙 1500 𝒓𝒎𝒖𝒕 0.4 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟏 100,000 y 𝑷𝒎𝒂𝒙 200 𝒓𝒔𝒘𝒂𝒑 0.8 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟐 7000 y 𝒓𝒄𝒓𝒐𝒔𝒔 1 𝒓𝒎𝒆𝒓𝒈𝒆 0.5 𝒈𝒄𝒖𝒕𝟏 100 gen. 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 0.05 𝒓𝒔𝒉𝒖𝒇𝒇𝒍𝒆  0.3 𝒈𝒄𝒖𝒕𝟐  150 gen. 𝒓𝒍𝒐𝒄_𝒔𝒆𝒂𝒓𝒄𝒉 40  

The parameters are adopted from the test problem results, with some minor changes: 
The population size is increased to 200 compared to the suggestions from chapter 6 
to obtain a higher density of solutions along the front, particularly regarding the cases 
with high probe number. The maximum generation number is set to 1500 to reduce the 
maximum runtime of one optimization run.  

A set of 9 runs with different probe numbers is considered. Starting with 2 probes, the 
probe number is doubled for each run, which yields a probe number of 512 for run 9.  

7.1.2.1 General Solution Overview 

In Figure 7-6, the final populations from each run are evaluated with respect to the 
objectives. Due to the algorithm behavior, the curves define the estimated Pareto front 
for the given problem. Each dot represents one individual from the final population.  
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Figure 7-6: Final solutions for different probe numbers, the lower chart shows a zoomed section from 

the complete upper plot  

From Figure 7-6, several observations can be made: As expected, the mission return 
for a given mission duration increases with probe number. Furthermore, there appears 
to be a linear relation between both objectives for a given probe number. 

 

Driven by the crowding distance criterion, individuals are distributed uniformly along 
each curve. The presence of small gaps (e. g. for run 1 (𝑚 = 2) near 4600 years) is 
due to the probabilistic nature of the algorithm together with the convergence criterion 
and the limited population size. This can be easily shown by repeating the run with the 
same parameters, where former gaps are filled. A closer comparison between the 
curves (zoomed section in Figure 7-6) reveals that with increasing probe number there 

For a given probe number, in most instances a linear relation between 
mission duration and number of explored stars is observed. 
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is a slightly higher fluctuation along the curve while for small probe numbers the curves 
are smooth. This may indicate poor convergence and requires further analysis based 
on the mean fitness ratio.  

7.1.2.2 Linearity and Impact on Routes and Star Selection  

In general, for a given probe number the mission return increases linearly with mission 
duration, apart from two exceptions: The first one is the flattening of the curve of run 9 
(considering 512 probes) towards higher mission duration, say 5000 years upwards. 
This phenomenon is assumed to result from the restriction of the model to 10,000 stars, 
which may cause a saturation effect: Considering solutions with high probe number 
and mission duration (upper right region in the plot), only few stars are remaining, that 
have not been explored yet. Unlike in the beginning, where the probes could select 
suitable targets from a large pool of unexplored stars, they are now forced to add stars 
with less favorable transfer trajectories to their route. Hence, when approaching the 
maximum star number of the model an increase of mission return is more expensive 
in terms of mission time. The presumption, that this effect is induced by the model and 
not due to real star constellations, needs further verification in following subchapters. 

The second exception to the linear behavior concerns again the high probe number 
runs but now related with very short-term missions. This solution region in the lower 
left corner in the plot from Figure 7-6 is shown again in Figure 7-7 with higher resolution 
and for selected runs to ensure clarity. 

 
Figure 7-7: Mission return vs. mission duration for selected runs considering short-term missions 

Considering the high probe number run (m=512) in Figure 7-7, the linear course of the 
curve sets in roughly from a mission return of 200 upwards. Below that limit, the curve 
approaches the curves with lower probe numbers, which can be explained as follows: 
In this short-term mission regions not all probes of the available set are deployed. 
Therefore, the obtained solutions for high probe number runs are similar to the results 
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from runs with lower probe number, as effectively the same probe number is used. 
This effect amplifies with further reduction of the mission return. Another observation 
is, that due to the high probe number the short-term missions typically consist of one-
target missions. This is illustrated in Figure 7-8, where two example solutions from 
different runs are compared with respect to the suggested routes.  

 
Figure 7-8: Visualization of selected solutions with similar mission return, each color refers to one 

route, each node indicates an explored star - left: run for 512 probes, right: run for 8 probes 

As visualized, though yielding almost the same mission return both solutions reveal a 
very different mission structure: In the left plot, the probes are sent omnidirectionally 
trying to find the nearest star from sol. Note that due to the selected mission return 
value not all 512 probes are deployed. With each probe being launched, the distance 
to the nearest star which is still unexplored increases. Still, the selected stars are within 
a distance range of up to 20 light years to Sol. In the right plot, contrarily, also more 
distant stars are included. Due to the lower probe number, routes with suitable star 
sequences need to be build. Hence, the distance from sol becomes less relevant with 
increasing route length and more distant stars are selected when they allow a favorable 
transfer from the current departure star.  

 

The question, how many stars are considered at minimum to deploy all available 
probes is addressed in Figure 7-9. It shows the ratio between the minimum number of 
stars, where all available probes are deployed, and the probe number. For instance, a 
ratio of 1.5 for a probe number of 128 indicates, that only if more than 192 stars are 
considered, each of the 128 probes is assigned to at least one star. For lower star 
numbers, empty routes are created, hence some probes will remain unused (as for the 
512 probes case in Figure 7-8).  

High probe number missions focus on the immediate solar neighborhood, 
whereas low probe number missions include more distant stars. 
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Figure 7-9: Ratio of minimum number of stars required to deploy all available probes and probe 

number 

From Figure 7-9 a general trend towards higher ratios with increasing probe number is 
observed: For low probe numbers the minimum star number is equal to the probe 
number, which corresponds to single-target travels. Regarding higher probe numbers, 
contrarily, the ratio increases. Hence, single-target travels appear to be less attractive 
or at least equivalent compared to multi-target travels, which represent routes that 
contain more than one star. Considering the maximum probe number of 512 as an 
example, more than 850 stars need to be included into the mission to deploy all 512 
probes.  

This is an interesting observation as single-target missions are expected to represent 
the fastest exploration approach. The reason behind this behavior has already been 
delivered in the previous discussion on the route structure (see again Figure 7-8): 
Assuming single-target missions, the entire mission duration for a given number of 
explored stars is determined by the longest transfer distance. With increasing probe 
number, the transfer distance increases, as there are less unexplored stars in the 
immediate solar neighborhood. Hence, after a certain threshold of probes it is possible 
to assign several stars to one probe without increasing the overall mission duration. 
The resulting solution is then equivalent to single-target missions with respect to the 
considered objectives.  

This is visualized by means of an example sketch in Figure 7-10, where two different 
hypothetical missions A and B are considered. Each color refers to one probe, blue 
dots represent explored stars.  



Applying the Revised Algorithm to the Gaia based Star Models 

 

 

Page 105 

 
Figure 7-10: Comparison of two example missions with different probe number but equivalent mission 

return and duration 

Mission A consists of single-target travels with 6 probes, where the longest travel 
determines the entire mission duration (indicated by blue, thick line). In mission B, three 
of the single-target travels are merged into one route (red), which allows a reduction of 
the probe number to 4 without affecting the mission return. Due to the small transfer 
distances along the red route, the overall mission duration is still determined by the 
blue route. Therefore, both missions are equivalent with respect to the objectives.  

As there is no additional criterion (such as average transfer length or minimum probe 
number) to distinguish further between both missions, they appear as duplicates in the 
solution space. Hence, if necessary, the algorithm will select randomly between both 
missions without assessing any further characteristics of the mission. This is important 
to consider when interpreting the observations from Figure 7-9: Given the random 
selection in case of duplicates, the ratios are not representing the actual thresholds. 
Instead, they represent only a lower bound; the actual thresholds are expected to be 
higher.  

7.1.2.3 Doubling Factor Effect 

The effect of doubling the probe number with respect to the mission return for a given 
mission duration is analyzed in Figure 7-11. The figure has to be read counterclockwise 
starting with the plot in the upper right, which is already known from section 7.1.2.1. 
From this plot, selected solutions with mission durations of 2000 years and 4000 years 
are extracted and transferred into a new plot (upper left), as implied by the arrows. This 
new plot visualizes the impact of probe number doubling on the mission return for the 
considered mission durations. In the final subplot (below), the factorial increase of 
mission return after doubling is shown, again differentiated for both selected mission 
durations.  
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Figure 7-11: Effect of probe number doubling on the mission return – upper right plot: Mission return 

vs. mission duration for different probe numbers; upper left plot: extraction of selected 
solutions at 2000 and 4000 years mission duration; lower plot: increase in mission return 

after doubling the probe number 

As shown in Figure 7-11, the doubling factor 
𝐽1(2𝑚)𝐽1(𝑚)  can be assumed as nearly constant 

apart from the last run with 512 probes. There, the doubling factor is significantly higher 
for both considered curves (> 2). This unexpected behavior requires further 
investigation and will be discussed later. 

Excluding the last run and averaging the doubling factor over the runs yields a value 
of 1.58. Hence, considering the lower probe runs, the relation between mission return 
and probe number for a given mission duration can be approximated as following:  𝐽1 (𝐽2 = 𝑐𝑜𝑛𝑠𝑡) ~ 𝑚0.66 Eq. ( 7-1 ) 

Note that this correlation does not hold in the non-linear case and is less accurate for 
high probe numbers.  

By following, a further analysis of the derived relation is conducted. Differentiating Eq. 
( 7-1 ) with respect to the probe number yields the first derivative: 𝑑𝑑𝑚 𝐽1  ~  𝑑𝑑𝑚 𝑚0.66 = 0.66 𝑚−0.34 Eq. ( 7-2 ) 

The second derivative, again with respect to the probe number, is: 𝑑2𝑑𝑚2 𝐽1  ~  𝑑2𝑑𝑚2 𝑚0.66 = −0.22 𝑚−1.34 Eq. ( 7-3 ) 

Due to the negative exponent both derivatives are approaching 0 for large probe 
numbers. Furthermore, as the second derivative is negative for all probe numbers, the 
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first derivative is strictly decreasing with increasing probe number. These observations 
appear to be similar to the law of diminishing returns, which is a concept in economics 
in the production context: Roughly speaking, diminishing returns denote the effect 
when an increase of the input yields progressively lower or even reduced increase in 
output [197]. In the considered case, the input is defined by the probe number (as 
mission duration is assumed to be constant in Eq. ( 7-1 )) while the output is 
represented by the mission return.  

In Figure 7-12 the first derivative (Eq. ( 7-2 )) is plotted considering a maximum probe 
number of 250.   

 
Figure 7-12: Plot of the first derivative of the scaling law with respect to probe number (Eq. ( 7-2 )) 

The plot in Figure 7-12 shows a strong decline of the first derivative when low probe 
numbers (say up to 10 probes) are considered. Afterwards, the curve is further 
decreasing but with a lower rate, as the second derivative is strictly negative and 
approaches zero for high probe numbers. Based on these observations it can be 
stated, that in the very beginning each additional probe allows for a substantial 
increase of the mission return. However, this effect holds only for a small range of 
probe numbers and becomes less significant with each additional probe. Considering 
higher probe numbers, the curve flattens at a low level, indicating that the impact of 
additional probe numbers on the mission return is low, regardless of the probe number.  

This behavior can be explained by a crowding-like effect, which has already been 
observed during earlier analyses (see again the previous chapter 7.1.2.2, particularly 
Figure 7-8): When many probes are launched from the solar system, long initial 
transfers are required to assign each probe an unexplored star. Regarding low probe 
numbers, contrarily, there are still enough nearby stars left which have not been 
explored yet and thus can be assigned to new probes. Moreover, in case of very long 
initial transfers of one probe, it is possible to merge shorter routes of other probes, 
which further reduces the benefits of high probe numbers (see again Figure 7-9). 

 

An increase of the probe number correlates with a substantial higher 
mission return only for low probe numbers.   
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7.1.2.4 Convergence Behavior 

The convergence behavior is analyzed by means of the mean fitness ratio over the 
generations (see Figure 7-13).  

 
Figure 7-13: Population mean fitness ratio vs. generations for runs with varied probe number, note the 

logarithmic y-axis scale  

From Figure 7-13 earlier observations on the convergence behaviour are confirmed: 
For the low probe number runs the solution stabilizes and satisfies the given 
convergence criterion. Contrarily, with increasing probe number the solution behaves 
less stable and appears to be more noisy over time. This is assumed to be an effect of 
the non-linearity of the fitness curve, which becomes more significant with increasing 
probe number (see again Figure 7-7): As the population mean fitness ratio is by 
definition an averaged value which represents the derivation of the solution curve, it is 
only constant for strictly linear curves. Since this condition is not given for higher probe 
numbers, the mean fitness ratio varies depending on the distribution of solutions along 
the Pareto curve. The distribution is intended to be balanced by means of the crowding 
distance criterion, however, small fluctations may still occur. Hence, the implemented 
convergence criterion with the current settings works only for small probe numbers 
where linearity is provided, for higher probe an adaption e. g. of the moving average 
settings might be required.  

Leaving the fluctuations aside, it can be further observed, that run 9 with 512 probes 
is still improving its population mean fitness ratio. Hence, the resulting fitness curve for 
run 9 in Figure 7-6 can be assumed to be not optimal and bears potential for further 
improvements. This aspect is addressed in the following subchapter, where algorithm 
parameters are variied for a given probe number.  
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7.1.3 Variation of Algorithm Parameter for Given Probe Number 

7.1.3.1 Runs with 4 Probes 

Table 7-3 provides the input data and algorithm parameters which are fixed during this 
set of runs.  

Table 7-3:  Specification of input data and constant algorithm parameter, ‘X’ indicates a parameter 
variation 

Input Data 

Model Gaia Star Model 𝒎 4 𝒏 10,000 𝒗 0.1 c 𝒔𝒊 1  

Algorithm Parameter 𝑻𝒎𝒂𝒙,𝒈=𝟎 ∞ 𝒈𝒎𝒂𝒙 X 𝒓𝒎𝒖𝒕 0.4 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟏 100,000 y 𝑷𝒎𝒂𝒙 X 𝒓𝒔𝒘𝒂𝒑 0.8 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟐 7000 y 𝒓𝒄𝒓𝒐𝒔𝒔 1 𝒓𝒎𝒆𝒓𝒈𝒆 X 𝒈𝒄𝒖𝒕𝟏 100 gen. 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 X 𝒓𝒔𝒉𝒖𝒇𝒇𝒍𝒆  0.3 𝒈𝒄𝒖𝒕𝟐  150 gen. 𝒓𝒍𝒐𝒄_𝒔𝒆𝒂𝒓𝒄𝒉 40  

The parameters are varied as indicated in Table 7-4. From run 1 to 3 the population 
size is increased. Between run 4 to 6 the population size is kept constant while the 
mutation and improvement rates are varied. For run 7 the parameters from run 6 are 
adopted with changing the maximum generation number to 3000. 

Note that for run 7 the convergence check was suspended to ensure the number of 
3000 generations. 

Table 7-4: Variation of parameter for given probe number of 4 

Run 𝑷𝒎𝒂𝒙 𝒓𝒎𝒆𝒓𝒈𝒆 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 𝒈𝒎𝒂𝒙 

1 200 0.5 0.05 1500 

2 300 0.5 0.05 1500 

3 400 0.5 0.05 1500 

4 300 0.8 0.05 1500 

5 300 0.5 0.01 1500 

6 300 0.8 0.01 1500 

7 300 0.8 0.01 3000 
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Figure 7-14: Results for algorithm parameter variation for a given probe number of 4 

As shown in Figure 7-14, the modification of algorithm parameters can lead to slightly 
different fitness curves. In general, the best solution is obtained for run 6, the worst for 
run 1. Comparing both runs, the maximum deviation of mission return for a given 
mission duration is about 20 %. As it is difficult to distinguish between the runs in Figure 
7-14, the further analysis is conducted by means of the mean population fitness ratio 
over time (see Figure 7-15).  
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Figure 7-15: Population mean fitness ratio over generations for runs with constant probe number of 4 

For all runs, the final mean fitness ratio is ranging in an interval from 0.049 y -1 to 
0.054 y-1. The deviation between the runs is below 10 % when comparing run 2 to 7 
and only slightly higher considering run 1. From comparing the first three runs it can 
be stated that the final solution quality is increased by enlarging the population size. 
However, increasing the population size requires more generations to converge. 
Regarding the variation of the mutation and improvement parameter, run 6 yields the 
best result, as already observed from Figure 7-14. Interestingly, by repeating run 6 with 
increased generation number and disabled convergence check, a slightly worse 
solution is obtained. This indicates the entrapment in a local optimum.  

7.1.3.2 Runs with 512 Probes 

Table 7-5 specifies the input data and algorithm parameter which are kept constant 
along this set of runs. 
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Table 7-5: Specification of input data and constant algorithm parameter, ‘X’ indicates a parameter 
variation 

Input Data 

Model Gaia Star Model 𝒎 512 𝒏 10,000 𝒗 0.1 c 𝒔𝒊 1  

Algorithm Parameter 𝑻𝒎𝒂𝒙,𝒈=𝟎 ∞ 𝒈𝒎𝒂𝒙 X 𝒓𝒎𝒖𝒕 0.4 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟏 100,000 y 𝑷𝒎𝒂𝒙 X 𝒓𝒔𝒘𝒂𝒑 0.8 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟐 7000 y 𝒓𝒄𝒓𝒐𝒔𝒔 1 𝒓𝒎𝒆𝒓𝒈𝒆 X 𝒈𝒄𝒖𝒕𝟏 100 gen. 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 X 𝒓𝒔𝒉𝒖𝒇𝒇𝒍𝒆  0.3 𝒈𝒄𝒖𝒕𝟐  150 gen. 𝒓𝒍𝒐𝒄_𝒔𝒆𝒂𝒓𝒄𝒉 40  

The undefined algorithm parameters from Table 7-5 are varied according to Table 7-6. 
From run 1 to 3 the population size is increased. Between run 4 to 6 the population 
size is kept constant while the mutation and improvement rates are varied, in addition 
the maximum generation number is doubled. For run 7 the parameters from run 6 are 
adopted with changing the generation number to 5000. 

Table 7-6: Variation of parameter for given probe number of 512 

Run 𝑷𝒎𝒂𝒙 𝒓𝒎𝒆𝒓𝒈𝒆 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 𝒈𝒎𝒂𝒙 

1 200 0.5 0.05 1500 

2 300 0.5 0.05 1500 

3 400 0.5 0.05 1500 

4 300 0.5 0.05 3000 

5 300 0.8 0.05 3000 

6 300 0.8 0.01 3000 

7 300 0.8 0.01 5000 

The result of each run is plotted in Figure 7-16. 
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Figure 7-16: Results for algorithm parameter variation for a given probe number of 512 

As shown in Figure 7-16, in a certain range the solution can be improved by more than 
30 % by increasing the generation limit. This observation confirms the presence of a 
premature, non-converged solution in Figure 7-6, which was already presumed based 
on the behavior of the mean fitness ratio (see section 7.1.2.4). The effect of the 
variation of mutation and improvement parameters (run 4 to 6) is negligible.  

The population size, which is increased from run 1 to 3 tuns out to have no significant 
effect on the solution. This possibly can be explained by the limited generation number: 
As already observed in section 7.1.3.1 for 4 probes, increasing the population size 
requires more generations to yield better solutions. 

Due to the improved solution the non-linear effects are more evident now. As explained 
earlier, in those cases the population mean fitness ratio must be interpreted with 
caution and is therefore not analyzed here.  
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7.2 Results for 1,000 Stars 

The results for the 1,000 stars model are structured similar to the large-sized case: 
Firstly, the model is analyzed with respect to the spatial star distribution. Then the 
parameter variation is performed, which focus on the probe number.  

7.2.1 Preliminary Analysis of the Model - Spatial Star Distribution 

By following, the spatial star distribution in the 1,000 stars model is analyzed. Since 
the procedure is equivalent to 7.1.1, the results are summarized in Figure 7-17 without 
further explanations on the underlying approach.  

The upper left plot contains the histogram indicating the distribution of the galactic 
longitude (5° interval size), the same is shown in the lower left plot regarding the 
galactic latitude (2° interval size). The upper right plot provides a cumulative histogram 
considering the estimated distance from Sol (1 ly steps). Finally, in the lower right plot 
the distribution of the transfer distances from the stars to their nearest neighbors are 
analyzed by means of another histogram (0.25 ly interval size).   

 
Figure 7-17: Analysis of the spatial star distribution in the 1,000 stars model  

Both the latitude and the longitude show some fluctuations and thus deviate from the 
ideal uniform distribution. This is assumed to be an effect of the low star number, where 
statistical outliers are more evident. The distribution of the distance to sol appears to 
be more uniform, which is due to the cumulative nature of the histogram.  

The minimum transfer distances (lower right plot) are in a range of 0-12 ly. Again, there 
is a strong increase in star systems with very small minimum transfers (< 0.5 ly), 
indicating the presence of binary or multiple star systems.  
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7.2.2 Variation of Probe Number for Given Algorithm Configuration 

The parameters which are kept constant along the runs are given in Table 7-7. As 
indicated, only the probe number is varied. 

Table 7-7: Fixed input parameters and algorithm parameters 

Input Data 

Model Gaia Star Model 𝒎 X 𝒏 1000 𝒗 0.1 c 𝒔𝒊 1  

Algorithm Parameter 𝑻𝒎𝒂𝒙,𝒈=𝟎 ∞ 𝒈𝒎𝒂𝒙 1500 𝒓𝒎𝒖𝒕 0.4 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟏 100,000 y 𝑷𝒎𝒂𝒙 200 𝒓𝒔𝒘𝒂𝒑 0.8 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟐 7000 y 𝒓𝒄𝒓𝒐𝒔𝒔 1 𝒓𝒎𝒆𝒓𝒈𝒆 0.5 𝒈𝒄𝒖𝒕𝟏 100 gen. 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 0.05 𝒓𝒔𝒉𝒖𝒇𝒇𝒍𝒆  0.3 𝒈𝒄𝒖𝒕𝟐  150 gen. 𝒓𝒍𝒐𝒄_𝒔𝒆𝒂𝒓𝒄𝒉 40  

Based on the results from the large star model with 10,000 stars it is decided to include 
only probe numbers up to 64 for the smaller model, as higher probe numbers would 
lead to very short routes or even one-target missions. Between the runs the probe 
number is doubled again; hence, starting with a probe number of 2 yields a set of 6 
runs. The resulting solution fitness is given in Figure 7-18.  
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Figure 7-18: Resulting solution fitness for various probe numbers considering a model with 1000 stars 

The pattern shown in Figure 7-18 is similar to the results obtained considering the 
10,000 stars model. As before, there appears to be a linear relation between mission 
duration and mission return. Exceptions to this behavior are found again in the higher 
probe number runs, when either the maximum mission return is approached or, at the 
other extreme, towards very short-term missions.  

7.2.2.1 Doubling Factor Effect 

In Figure 7-19, the doubling effect of the probe number is analyzed. As done already 
for the 10,000 stars model, selected solutions for each run at certain mission durations 
are extracted from Figure 7-18 (see upper left plot in Figure 7-19). Based on this data, 

the doubling factor 
𝐽1(2𝑚)𝐽1(𝑚)  is derived, which represents the change in mission return for 

a given mission duration when the probe number is doubled.  
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Figure 7-19: Effect of probe number doubling on the mission return considering 1000 stars model – 

upper right plot: Mission return vs. mission duration for different probe numbers; upper left 
plot: extraction of selected solutions for 2000 and 4000 years mission duration; lower plot: 

increase in mission return after doubling the probe number 

The doubling factor varies only slightly for the first runs but increases significantly from 
run 32 to 64. This aspect is reconsidered when comparing the results of both models 
in section 7.3. Excluding the last run and averaging the doubling factors yields a mean 
value of 1.58. Hence, the relation between mission return and probe number for a given 
mission duration can be approximated by:  𝐽1 (𝐽2 = 𝑐𝑜𝑛𝑠𝑡) ~ 𝑚0.66 Eq. ( 7-4 ) 

7.2.2.2 Convergence and Further Solution Behavior Analysis 

The convergence behavior of the solutions is shown in Figure 7-20 by means of the 
fitness ratio.  
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Figure 7-20: Population mean fitness ratio over time for 1000 stars model with varying probe number 

The convergence criterion is satisfied only for the first three runs (until a probe number 
of 8). Considering higher probe numbers, the algorithm stops when the maximum 
generation number is reached. Hence, in particular the curve of last run with 64 probes 
in Figure 7-18 can be assumed to bear further potential for improvement.  

By following, the behavior of the solution over the generations is further analyzed, 
focusing on the distribution of solutions within one generation with respect to the 
mission return. Therefore, another quantity needs to be introduced. It is based on the 
average mission return of a generation:  

𝐽1,𝑚𝑒𝑎𝑛 = 1 𝑃𝑚𝑎𝑥 ∑ 𝐽1(𝑖)𝑃𝑚𝑎𝑥
𝑖=1  Eq. ( 7-5 ) 

To enable a comparison between runs with different probe numbers, the result is 
normalized with the maximum mission return of the considered generation, yielding the 
normalized mission return distribution factor 𝜀(𝑗) with respect to a generation 𝑗: 𝜀(𝑗) = 𝐽1,𝑚𝑒𝑎𝑛(𝑗)max (𝐽1(𝑗))  Eq. ( 7-6 ) 

Assuming uniformly distributed solutions, this value equals 0.5. If there are more 
solutions located along the upper region of the Pareto curve (towards higher mission 
return) the distribution factor increases to maximum 1. Conversely, in case of more 
short-term missions it approaches 0. It is emphasized, that the distribution factor is 
different to the mean fitness ratio, which is calculated similarly but cannot be used to 
analyze the distribution of solutions within a generation.  

In Figure 7-21, the distribution factor is plotted over the generations for the considered 
runs.   
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Figure 7-21: Normalized mission return distribution for the considered runs 

As shown in Figure 7-21, the curves for different runs follow a similar pattern: They 
start with a distribution factor value of 1, as the initial generation consists of individuals 
with the highest mission return. By means of the mutation and improvement operations, 
the solutions are spread subsequently within the search space, yielding a reduction of 
the distribution factor. This results in a drop of the distribution factor, which indicates 
the presence of many short-term missions. In fact, the algorithm produces many 
duplicates with very short mission durations. Since during the evolving procedure the 
Pareto rank is prioritized over the crowding distance, those solutions, being non-
dominated, are preliminarily kept. However, with increasing generations also the upper 
region of the search space is gradually populated with non-dominated solutions. Once 
the number of non-dominated solutions passes the maximum population size, the 
crowding distance selection is also applied within the non-dominated subpopulation. 
As a result, solutions in the lower, dense search space are substituted by others from 
the upper, rarely populated region. This finally yields a balanced distribution of the 
mission return, indicated by a distribution factor of 𝜀 ≈ 0.5.  

7.2.2.3 Analysis of the Transfer Distances  

In this subsection, the transfer distances along the selected exploration sequences are 
analyzed. The transfer distance represents the distance traveled by the probe between 
two stars along its route and thus depends on the star locations. Together with the 
travel velocity the sum of transfer distances for one route determines the required travel 
time for the considered route.   

Figure 7-22 shows the average transfer distances per mission, differed by probe 
number.  
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Figure 7-22: Average transfer distances vs. mission return for various probe numbers 

As already stated in chapter 7.1.2.2 based on the route structure analysis, the average 
transfer distances increase with probe number. An exception to this behavior is found 
for the 64 probes run considering higher mission return. This is in line with the 
observations concerning the probe number doubling (chapter 7.2.2.1), where the 
doubling effect becomes more significant when doubling from 32 to 64 probes. The 
reason behind this phenomenon needs further investigation and will be reconsidered 
in the discussion section.  

Another observation from Figure 7-22 is the slight increase of transfer distance with 
mission return. This contradicts earlier observations on the linear relation between both 
objectives, from which a constant average transfer is anticipated. Hence, it can be 
assumed that the non-linearity, which is induced by the model limit, has also an impact 
on lower probe numbers. As the increase in transfer distance is rather small, it is not 
evident in the plot of the solution fitness curves, which was shown in the beginning of 
this chapter (Figure 7-18). 

The dependence of the transfer distances on the probe number is also observable 
when analyzing the distribution of transfers for selected solutions. For that purpose, 
two solutions are extracted from Figure 7-22 and investigated by means of a histogram. 
The histogram indicates the number of transfers with a certain distance (see Figure 
7-23). Both solutions, one with 4 probes and the other with 64 probes, provide a similar 
mission return. One bin in the histogram represents an interval size of 1 ly. For 
instance, the first bin counts all transfers in the considered mission with 0-1 ly distance.  
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Figure 7-23: Distribution of the transfer distances for selected solutions, each bin represents an 

interval size of 1 ly 

As shown in Figure 7-23, the transfer distances are lower when less probes are 
deployed, which is in line with earlier observations. The very short transfers (0-1 ly) 
indicate the exploration of binary or multiple star systems. Interestingly, the fraction of 
those systems is much higher in the lower probe number case. Hence, the presence 
of multiple star systems appears to be more advantageous for low probe numbers.  

 
  

Small probe numbers allow for shorter transfers and a higher fraction of 
multiple star systems compared to large probe numbers.  
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7.3 Comparison of Different Model Results 

For the comparison of the two different models, runs with probe numbers higher than 
64 are not considered due to the limit of the smaller model. Note that the results may 
differ slightly from previous subchapters, as the runs have been repeated. Table 7-8 
provides the used input data and algorithm parameters.  

Table 7-8: Input data and algorithm configuration 

Input Data 

Model Gaia Star Model 𝒎 X 𝒏 X 𝒗 0.1 c 𝒔𝒊 1  

Algorithm Parameter 𝑻𝒎𝒂𝒙,𝒈=𝟎 ∞ 𝒈𝒎𝒂𝒙 2000 𝒓𝒎𝒖𝒕 0.4 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟏 100,000 y 𝑷𝒎𝒂𝒙 200 𝒓𝒔𝒘𝒂𝒑 0.8 𝑻𝒎𝒂𝒙,𝒈=𝒈𝒄𝒖𝒕𝟐 7000 y 𝒓𝒄𝒓𝒐𝒔𝒔 1 𝒓𝒎𝒆𝒓𝒈𝒆 0.5 𝒈𝒄𝒖𝒕𝟏 100 gen. 𝒓𝒊𝒎𝒑_𝒄𝒖𝒕 0.05 𝒓𝒔𝒉𝒖𝒇𝒇𝒍𝒆  0.3 𝒈𝒄𝒖𝒕𝟐  150 gen. 𝒓𝒍𝒐𝒄_𝒔𝒆𝒂𝒓𝒄𝒉 40  

7.3.1 Comparison of the Models  

In Figure 7-24 the spatial star distribution of both models is compared. The distribution 
of the distance estimations to Sol is omitted, as the histogram for the small model 
represents an extract from the histogram of the large model. To enable a comparison 
between both models, the counts for the larger model are reduced by a factor of 10. 
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Figure 7-24: Comparison of spatial star distribution between both model  

As already stated in chapter 7.2.1, the distribution of the coordinates (latitude and 
longitude) in the smaller model appears to be less uniform, which is due to the lower 
star number. An interesting observation is made from the lower histogram, where the 
transfer distances to the nearest neighbors are plotted: Compared to the large model, 
the fraction of closely neighboring stars (<0.25 ly) in the small model is significantly 
higher, indicating an increased occurrence of binary or multiple star systems. This is 
assumed to have technical reasons, as due to the restriction to the 1,000 nearest stars 
more multiple systems can be resolved.   

7.3.2 General Comparison of the Solutions and Linearity Effects 

In Figure 7-25, the solution fitness curves for different probe numbers with respect to 
the used models are plotted. Star symbols indicate the usage of the 10,000 stars 
model, while the results from the 1,000 stars model are represented with dots.  
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Figure 7-25: Comparison of solution fitness for different probe numbers with respect to the star models 

(dots indicate the usage of the 1,000 stars model, star symbols represent runs from the 
10,000 stars model) 

The non-linearity of the curves when approaching the maximum mission return sets in 
already for lower probe numbers, which is due to the reduction of the star number: It is 
strongly evident for a probe number of 64 but also observable for 32 probes. Even for 
lower probe number runs it becomes apparent as the curves are slightly skewed: For 
low mission durations, the smaller model runs are superior to the corresponding large 
model runs, while with increasing mission duration the larger model delivers better 
solutions, yielding higher mission return for the same time. This is in line with results 
from the transfer distance analysis (subchapter 7.2.2.3), where a slight increase of 
transfer distance with mission return is observed.  

An exception to these observations is the run with 64 probes from the smaller model, 
which outperforms the corresponding run from the larger model significantly. The 
extraordinary behavior of the 64 probes run has already been noted earlier, however, 
there is still no explanation found.  

7.3.3 Probe Number Doubling Effects 

In Figure 7-26, the doubling factors for the two different models are compared. The 
methods have already been described in the previous subchapters and therefore are 
not repeated here. 
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Figure 7-26: Comparing doubling factors for different star models 

Considering runs with probe numbers from 2 to 32, the resulting mission return is 
similar (upper left plot in Figure 7-26). With respect to 64 probes there is a significant 
increase in mission return when both models are compared. This deviation in mission 
return is also apparent in the lower plot, where the doubling factors are compared. The 
fluctuations for lower probe numbers are assumed to be due to the probabilistic nature 
of the algorithm, reconsidering the results of previous runs (see again Figure 7-11), 
where the doubling factor is almost constant for lower probe numbers. However, there 
appears to be a general trend of a disproportionate increase in mission return when 
considering probe number runs which are reaching the star model limit. This effect is 
not fully understood and later addressed in the discussion (chapter 8.2.2).  

As done earlier, the doubling factors from the low probe number runs (up to 32) are 
averaged, which yields a value of about 1.51. This allows the derivation of the following 
relation, which is independent from the model: 𝐽1 (𝐽2 = 𝑐𝑜𝑛𝑠𝑡) ~ 𝑚0.6 Eq. ( 7-7 ) 

Note that the exponential growth factor of 0.6 deviates by 10 % from the factor based 
on earlier runs.  

Together with the observations on linearity, the following scaling law between both 
objectives and the probe number can be derived:  𝐽1  ~ 𝐽2 𝑚0.6 Eq. ( 7-8 ) 

Note that this relation is valid for the considered models with constant star values 
(hence 𝑠𝑖 = 1) and within the linear regions described earlier. Furthermore, it is less 
accurate for probe numbers that are approaching the limit of the star model. 
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This becomes evident, when the scaling law is included in the upper left plot from 
Figure 7-26, as done in Figure 7-27.  

 
Figure 7-27: Comparison of the derived scaling law with the algorithm results obtained for given 

mission duration and from different models 

Given these observations, it can be stated, that the relation as formulated above 
represents a conservative estimation.  

 

7.3.4 Convergence Behavior 

The effects of the star number restrictions due to the different models are also 
observable in the behavior of the mean fitness ratio. In Figure 7-28 only a selection of 
runs is compared for better clarity.  

Considering lower probe numbers, the relation between the two objectives 

and the probe number can be approximated by 𝑱𝟏 ~ 𝑱𝟐 𝒎𝟎.𝟔.  
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Figure 7-28: Mean fitness ratio for selected runs considering the two models with different star number 

Considering the 64 probes run, both curves differ strongly: While for the larger model 
the solution is stable and converges, the same run based on the smaller model is noisy 
and keeps improving over time. This behavior is very similar to the observations in 
section 7.1.2.4 with respect to the 512 probes run. Regarding the low probe number 
run the curves do not differ significantly, while for the 32 probes run differences become 
observable. Reconsidering the above observations on the non-linearity of the 64 and 
32 probes runs, the previously made assumptions on the non-linearity impact on the 
mean fitness ratio and thus convergence are confirmed.  

7.3.5 Star Selection Analysis 

7.3.5.1 Star Selection and Routes within the Final Generation  

To analyze the differences in star selection, the final population of each run is 
considered. Firstly, the individuals from each population are ranked according to the 
mission return (starting with the lowest). Then each individual is compared with its 
higher ranked neighbor with respect to the set of explored stars as follows: The 
intersection between both sets is calculated, which gives the number of stars that are 
adopted by the next individual. Dividing this number by the entire star number of the 
corresponding individual yields the fraction of stars that are reused. For instance, 
assume an individual A with routes including the star set {1,2,3,5} and another 
individual B with the star set {2,5,7,8,10}. The intersection of both sets yields a new set 
consisting of {2,5}, which represents the stars in B that are adopted from A. The fraction 
of stars in B that have been adopted from A is then the size of the intersection set (here 
equals 2) divided by the size of the B star set (here equal to 5), yielding 0.4.  

In Figure 7-29 the described factor is plotted for selected runs. 



Applying the Revised Algorithm to the Gaia based Star Models 

 

 

Page 128 

 
Figure 7-29: Star fraction used by subsequent individual 

From Figure 7-29 follows that within one population the individuals tend to reuse stars 
from their neighbor individuals. Considering the 64 probes run from the smaller model, 
this is a trivial observation, as due to the restriction to 1,000 stars with increasing 
mission duration the individuals are forced to reuse the existing stars. However, the 
same behavior is observed for the 2 probes run based on the large model, which offers 
much more stars to choose from. 

The differences in star selection become also evident when analyzing the route 
structures. In Figure 7-30, four different plots are provided which illustrate the routes 
from two solutions along the Pareto front (𝐽1 ≈ 150, 𝐽1 ≈ 300) considering both models 
and assuming 4 probes.  
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Figure 7-30: Routes comparison for different solutions from both models considering 4 probes 

Comparing plot I with II reveals the first difference in the route structure: While both 
missions yield a similar return in similar time, the second one includes also more distant 
stars. Accordingly, the routes tend to follow a straight shape, whereas in I the routes 
are more curved. For higher mission return, this tendency towards curved, winding 
routes continues (plot III). Considering the larger model (plot IV), this behavior is also 
observable, but less apparent. Due to the differences between both models, the 
curvature effect can be assumed to be determined by the model borders: After 
launching the probes in different directions, the algorithm tends to produce straight-
lined routes to further increase the distance between the probes. By means of this 
technique an overlap of the routes is avoided. However, after a certain time the border 
of the star model is approached, which requires a deflection of the route. In case of the 
smaller model, this occurs earlier, which finally leads to a higher occupation of the 
entire star model volume (see plot III) compared to the larger model (plot IV).   

Reconsidering Figure 7-25 from the beginning of this chapter, these observations 
explain why solutions from the larger model outperform the corresponding solution 
from the smaller model with increasing mission duration. However, it cannot explain 
the difference between both runs with 64 probes.  
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Beside these described observations, Figure 7-30 provides also suitable examples on 
the reusability of stars and routes within one generation (as analyzed in Figure 7-29). 
For instance, considering the left two plots (I + III), the red route in III is generated by 
merging the red and the green route in I. The right plots (II + IV) show how existing 
route are extended to increase the mission return (e. g. the red route in IV represents 
an extension of the green route in II, likewise the orange route).  

7.3.5.2 Star Selection along the Optimization Procedure 

In Figure 7-31, the variation of the considered star sets over the generations is shown. 
The focus is on lower probe numbers, as for higher probe numbers the considered star 
set approaches the limit of the smaller star model.  

 
Figure 7-31: Number of different stars within one generation for different probe numbers and star 

models over the optimization procedure 

As shown in the upper plot in Figure 7-31 the number of different stars considered 
within one generation is initially equal to the model star number. This is due to the initial 
relaxation of the time constraint. When the cutting operations are applied (in particular 
the second one at 150 generations), the star number is reduced significantly. Within 
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subsequent generations, the star number decreases further (see the zoomed section 
provided by the lower plot in Figure 7-31) and stabilizes until the convergence criterion 
is met. Interestingly, the two runs with low probe numbers (m = 2 and m = 4) based on 
the smaller star model reach higher values compared to the corresponding runs from 
the large model. For increasing probe number (8 upwards) this behavior is reversed. 

In Figure 7-32, two runs are selected and compared with respect to the number of new 
stars that are included in the next generation.  

 
Figure 7-32: Number of new stars in next generation compared to previous generation considering 

runs with 4 probes from different models  

As shown in Figure 7-32, there are no new stars included until the first cut operation is 
applied and the time constraint is activated. This is expected as from the beginning the 
entire set of stars is available within the generations (see again Figure 7-31). Along 
with the cutting operations, the star number used in the generations is reduced (as 
shown in Figure 7-31). From here, new stars are included, as temporarily also worse 
solutions are considered (see explanations on the impact of cutting on the solution 
quality in chapter 6.2.1.2). The cutting operations have a stronger impact on the run 
based on the large-sized model, as it enables much longer routes.  

Reconsidering the lower plot in Figure 7-31, within this generation regime (say from 
100 to 200) the entire star number of the set is still reduced. Hence, the new stars 
either replace existing stars from the set or are removed in the subsequent generation. 
With further generations, the number of new stars added to the existing set is close to 
zero (considering the large model run) or within a range between 1 to 5 for the small 
model. This deviation between both models is assumed to result from the different 
probabilities of choosing a suitable star due to the random selection process: 
Compared to the large model, the probability of randomly selecting a star which is 
compatible to the existing star set is much higher in case of the smaller model.  

Based on these observations it can be stated that the star selection procedure is 
completed after 200 generations, independent of the underlying star model. Further 
generations are then used to distribute the selected set of stars among the probes and 
optimize the sequences by means of the local search operations.  
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8 Discussion  

8.1 Discussion on Selected Models and Algorithm 

8.1.1 Assumption on Mission Concept and Probe Technology 

The strong simplifications on mission concept and probe technology made during the 
definition of the optimization framework (section 3.1) must be definitely considered in 
the discussion and interpretation of the results: Regarding the probe concept, only the 
travel velocity is included in the optimization problem. It is provided as input parameter 
and set based on the literature, where different probe concepts are suggested. 
Additional parameters, such as probe mass, or relevant probe subsystems, e. g. 
propulsion system or communication systems back to earth, are not considered. This 
entails the advantage, that the derived results are valid across a large range of 
concepts proposals from literature. In turn, however, the simplified probe model does 
not allow to derive strategies and recommendations with respect to certain 
technologies and mission concepts, such as effects of replicability.   

Another aspect not discussed here is the feasibility of probe and mission concept. Even 
when refining the current probe and mission model it is evident, that given the existing 
technologies, the missions proposed here are at least questionable. For instance, one 
cannot expect that probes are working without failure over more than several hundreds 
or even thousands of years. 

Along with the probe concept also the mission and trajectory models are simplified: 
The departure trajectory from the solar system, where the probes are accelerated to 
near-relativistic speed, is not treated separately. Furthermore, transfers between stars 
are assumed to follow straight trajectories, which is shown to be a valid assumption 
and in line with the literature. However, the gravity of a star is an important factor 
concerning the stellar exploration sequence selection: A common practice, currently  
only in interplanetary travel, but probably also relevant for interstellar travel, is the 
usage of the stellar gravity and velocity to change the probe trajectory. This is particular 
of interest with respect to the trajectory deflection during the flyby, which is also not 
considered in the model and thus represents another weakness of the model: At the 
considered velocity regime it can be expected that the possible deflection angles only 
by means of gravity are limited (for instance, see [188]). Hence, to enable high 
deflection angles a deceleration of the probe may be required, e. g. by means of a 
photogravitational assist as suggested for small-scale probes in [58]. If such 
deceleration maneuvers are not feasible (e. g. due to probe concept restrictions), the 
general travel velocity needs to be reduced. However, the reduction of the travel 
velocity affects other parameters and requires further trade-offs. For instance, consider 
the minimum encounter distance between probe and star which is determined by the 
maximum heat flux the probe can resist and the stellar luminosity [26]: Decreasing the 
probe velocity increases the heat load, as the probe will spend more time close to the 
star. To encounter this effect, either the probe shielding needs to be improved, which 
may entail a higher probe mass or the periastron distance must be increased, which in 
turn affects the deflection angle.  

Alternatively, regarding large probe concepts with fusion based engines such as 
Project Icarus, the option of resource harvesting can be considered:  Assuming to be 
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capable of propellant mining and processing, these probes are decelerated to harvest 
the required resources to provide sufficient propellant and then continue their travel to 
the next star system. As further advantage, the temporary deceleration extends the 
observation period and thus may increase the scientific return of the mission. However, 
this requires an extension of the mission architecture by including rendezvous 
maneuvers, which are not considered here.  

Based on these discussions, it can be stated that the used mission model represents 
an ideal scenario. However, it is emphasized that the made assumptions and 
simplifications do not impair the validity of the outcomes and derived recommendations 
with respect to the exploration strategies: Aspects such as linearity and star selection 
preferences are expected to be not affected, which indicates a high model robustness. 

8.1.2 Star Model Limitations 

Compared to the probe and mission model, the star model represents a very realistic 
approximation of the solar neighborhood: It is based on observations from the ongoing 
Gaia mission, which is assumed to provide the most accurate and complete star 
catalogue. However, there are also some limitations on the Gaia data:  

• Firstly, very bright stars are not included due to restrictions on the observable 
magnitude. The effect of this limitation can be examined by checking lists of 
very bright stars. One of those lists is provided by Kaler [198], covering more 
than 170 stars with magnitudes smaller than 3. Of those stars, about 60 are 
within the distance considered in the large-sized model. This represents a 
fraction of less than 1 %, that is not represented in the model. Based on this 
estimation, the magnitude limit of the underlying star data can be expected to 
be negligible for the results.  

• Secondly, the Gaia catalogue is known to contain several data artifacts, 
particularly with respect to the immediate solar neighborhood. To encounter this 
issue, a very strict filtering procedure is applied, based on suggestions from 
literature, to obtain a clean dataset. However, due to the strict filtering also 
confirmed data sources are eliminated. As outlined in section 4.2.3, this effect 
is assumed to be less harmful to the results than the presence of spurious stars 
that may mislead the algorithm.   

• Thirdly, all observations on star characteristics and position estimates by nature 
contain some uncertainty, which is induced in the model. However, compared 
to the made assumptions and given the formulated objective of deriving trends 
instead of planning a mission in detail, the uncertainty of data can be assumed 
to be negligible. 

• Fourthly, each source is considered as single star. Hence, binary or multiple 
star systems are not treated as such, even when being resolved, which is not 
possible in all cases due to technical reasons. Furthermore, some of the binaries 
which are not fully resolvable cause errors, as observations may assigned to 
the wrong component [192]. This issue, which may produce spurious data is 
addressed by the filtering procedure.  

Like the Gaia catalogue, the model does not account for binary or multiple star 
systems, hence, each star is treated as single target. As a result, the probe receives 
multiple rewards when visiting a multiple star system. Since the probe tries to maximize 
the return while limiting the mission duration, it favors stars that are forming multiple 
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star systems over isolated stars. By merging multiple star systems into one star, this 
effect can be eliminated, which is recommended for future work.  

Another simplification of the star model is the neglection of stellar motion. This 
assumption is shown to be valid within a certain timeframe, which is represented by 
the time constraint in the problem formulation. As mentioned earlier, the model of fixed 
stars together with neglecting gravity effects eliminates the possibility of performing 
slingshot maneuvers. This is certainly one important aspect that has been omitted here 
and thus a weakness of the model, as it is expected to impact the selection of stars 
and exploration sequences.  

Furthermore, the concept of the stellar metric which assigns each star an individual 
score as suggested in 4.2.4 has not been implemented yet. Hence the mission return 
equals the number of explored stars.  

8.1.3 Algorithm Limitations: Remarks on Solution Quality and Reliability 

The used algorithm is a metaheuristic method. Hence, by definition the generated 
solutions are not guaranteed to represent the global optimum and, even worse, might 
be located at any distance from the true optimum. This aspect is addressed by means 
of a test model with very simple star distribution: As in this special case the true 
optimum can be estimated analytically, it enables a quantitative assessment of the 
algorithm at least for a limited probe number. Considering a probe number of 4, the 
deviation between global optimum and algorithm solution is about 10 %.  

However, considering high probe numbers, the solution quality cannot be assessed by 
means of the test problem, as in those cases the analytical approach is not feasible 
anymore. The only possibility to obtain an estimate of the deviation is by considering 
the maximum possible fitness ratio. The maximum fitness ratio is obtained for a 
hypothetical mission, where the number of stars is equal to the number of probes and 
thus each probe is sent to one star. In this case, the fitness ratio is determined by the 
max. obtainable mission return, the travel distance to the most distant star max (𝑑𝑖𝑗) 
and the average travel velocity 𝑣:  𝜎max = 𝑣max(𝑑𝑖𝑗) ∑ 𝑠𝑖𝑛

𝑖=1  Eq. ( 8-1 ) 

Assuming 𝑠𝑖 = 1 for all stars, the max. mission return is equal to the number of stars 𝑛. Considering the large model consisting of 10,000 stars, the maximum fitness ratio 
is then about 9 𝑦−1, assuming a travel speed of 10 % of the speed of light. In the 
considered runs, the highest fitness ratio of approximately 1 𝑦−1 is reached when 
512 probes are assumed. Hence, the derived solution for higher probe numbers can 
be expected to be at least in the same order of magnitude compared to the global 
optimum.  

Another aspect to be emphasized is that due to the probabilistic nature of the algorithm 
the reliability of the results is limited. For instance, consider the derived relations 
between objectives and probe number: Comparing two sets of runs, the resulting 
growth rate deviates by 10 %. This effect is typically encountered by repeating runs 
several times and averaging or choosing the best one, but not done here due to the 
limited time resources. 
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Furthermore, the algorithm parameters have been shown to impact the solution quality. 
For high number runs, the maximum generation number has the largest impact, 
yielding deviations of more than 30 %. Considering lower probe numbers, the mutation 
and improvement probability rates turned out to bear more relevance (20 % max. 
deviation). Given these observations and the previous discussion on the algorithm 
reliability it is stated that the derived results need to be considered rather as trends or 
tendencies instead of exact solutions.  

 

8.2 Implications of the Results for Exploration Strategies and 
Mission Planning 

8.2.1 Linearity vs. Non-Linearity 

Under the assumption that the mission return represents the number of explored stars, 
the mission return correlates linearly with the mission duration for a given probe 
number, hence 𝐽1 ~ 𝐽2. This is expected, as the stars are found to follow an 
approximately uniform spatial distribution.  

The linear correlation can be described by means of the fitness ratio, which is 
calculated from the ratio of both objectives and thus represents the derivation of the 
fitness curve. Hence, it can be interpreted as the average mission return obtained 
within one year mission time. For instance, assuming a number of four probes yields a 
fitness ratio of about 0.05 𝑦−1. Due to the linear characteristics of the curve, this value 
can be used to estimate the required time to explore a certain number of stars, or, 
alternatively, how many stars can be explored within a given time. E. g., a mission 
duration of 1,000 years allows for an exploration of about 50 stars.  

A further effect of the linearity is that by doubling the mission duration also the mission 
return is doubled. This finding is in line with a conclusion drawn by Cartin [26], who 
states that doubling the targets requires twice the exploration time. Note that compared 
to his work, where each target from a given set must be visited, in the presented 
approach the probes can choose their targets from the model.  

However, the assumption of linearity does not hold in general, as there are two 
exceptions to this behavior:  

• The first exception is observed when approaching the maximum mission return 
provided by the model. In this case, a saturation effect occurs, which makes a 
further increase in mission return comparatively expensive with respect to the 
mission duration. By comparing two runs with the identical probe number but 
considering different models (one with 10,000 and the other with 1,000 stars), it 
can be shown that this effect is caused by the model. Therefore, it has no 
implications on true, physical missions, which may be realized one day. 
However, this aspect definitely has to be accounted for when building and 
implementing models for similar applications: In order to avoid the presence of 
non-linearities in the results, the model should be designed in a way that the 

The solution deviates by 10 % from the ideal solution (considering a test 
case) and is generally expected to range at least in the same order of 

magnitude.  
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limits of the model are not reached. Note that the non-linearity effects due to 
small models are also observed for low probe number runs, which appear to be 
far from reaching the model limits.  

• The second exception is found at the other side of the time-scale, which 
concerns short term missions. Assuming a high probe number, it is not 
necessary to launch each probe when only few target stars are considered. In 
those cases, an increase in probe number does not correlate with a decrease 
in mission duration, as the few considered stars cannot be further distributed 
among the probes. The linear relation is only true once a certain threshold of 
mission return is passed and enough probes are launched. An analysis of the 
minimum star number which is required to deploy all available probes efficiently 
revealed that there is no constant factor between both parameters. Instead, the 
ratio of probe number and minimum star number to deploy all probes increases 
towards higher probe numbers: For 512 probes the ratio reaches its maximum 
value of 1.67, indicating that probes may remain unused when the mission 
includes less than 830 stars. This means in turn, that missions with less than 
830 stars can be conducted with less than 512 probes without increasing the 
mission duration. However, it is emphasized, that these derivations need to be 
seen as trend instead of strict values, as the algorithm does not distinguish 
between missions with equivalent objective values and performs a random 
selection in those cases. Consequently, the actual thresholds are assumed to 
be much higher than the values calculated here.   
Contrarily to the first exception, this effect is not artificially induced by the model. 
Hence, it needs to be involved in the mission design and planning procedure in 
order to make fully use of the benefits of higher probe numbers, otherwise the 
mission might suffer from inefficiency.  

8.2.2 The Relation between Probe Number, Mission Duration and Mission 
Return  

8.2.2.1 General Discussion on the derived Scaling Law 

Extending the linearity considerations by involving the effect of probe number, it is 
found that the mission return correlates with mission duration and probe number 
according to 𝐽1 ~ 𝐽2 𝑚0.6. However, this relation must be treated with caution: It is only 
valid in the linear case and when assuming constant star scores (e. g. 𝑠𝑖 =  1). 
Furthermore, it is not accurate, when considering probe numbers that collide with the 
star model size (512 probes for large model, 64 probes for small model). In those 
cases, surprisingly the factor is even higher - due to the non-linearity effects actually a 
decrease of the factor is expected. By comparing two runs with the same probe number 
but based on two different models, it could be shown that this unexpected increase is 
induced by the model. Further investigations on finding the exact reason behind this 
phenomenon did not succeed, hence this effect is not fully understood. Some ideas 
that have been considered and discarded are described by following:  

• Difference in convergence: As described earlier, the restriction of the star 
number in the model may lead to a non-linear behavior of the fitness curve when 
high probe numbers are considered. This non-linearity destabilizes the mean 
fitness ratio, which is used to measure the solution convergence. As a result, 
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the solution will never satisfy the convergence criterion and run until the 
maximum generation number is reached. Depending on the run, an increase in 
generation number may improve the solution significantly (shown in section 
7.1.3.2). Hence, one may expect that for the large model the solution does not 
reach its optimum as it is interrupted earlier due to the assumption of 
convergence. This hypothesis is disproven by repeating the corresponding run 
for the large model with suspended convergence check.  

• Random nature of the algorithm: Due to the algorithm characteristics, the results 
from runs with identical parameters may differ. However, repeating the 
corresponding run with 64 probes yielded similar results. Hence, the 
probabilistic algorithm characteristics are assumed to be not responsible for the 
observed effect.  

• Model differences: 
o Spatial star distributions: Regarding the 1,000 stars model the stars 

appear to follow a less uniform distribution. This is due to the lower star 
number, which makes deviations from an ideal uniform distribution in 
form of statistical outliers more evident. Less uniformly distributed stars 
indicate the presence of clusters. Assuming, that missions with low probe 
number benefit from those clusters, an opposite effect to the observed 
results is expected. Furthermore, as the irregularities are still 
comparatively low, it is not expected that they influence the results that 
significantly. This is confirmed by the comparison of lower probe number 
runs for both models, which are very similar.  

o Higher occurrence rate of binary or multiple star systems: By analyzing 
both models, the fraction of binary or multiple stars systems is found to 
be much higher in the smaller model compared to the large model. In 
general, this could lead to differences in the solution curves when the 
same probe number is considered. As contradiction to this hypothesis, 
again one can refer to the smaller probe number runs, which deliver 
similar results. Furthermore, it could be shown, that typically small probe 
numbers benefit from the presence of those systems.  

Given these considerations and the results from another set of runs with slightly 
differing growth factor (𝐽1 ~ 𝐽2 𝑚0.66),  it is emphasized that the derived relation must 
not be interpreted as an exact equation. Instead, it needs to be considered as a trend 
which serves as an orientation and requires further investigations to ensure higher 
reliability. Furthermore, as the higher probe number runs are not involved in its 
calculation, it is assumed to represent a rather conservative estimation.  

Nevertheless, a first verification approach is intended by following. Again Carter [26] is 
considered as reference, who derives a similar scaling law. Rewritten with respect to 
the objectives used in here and neglecting the impact of velocity his result can be 
roughly approximated by 𝐽1 ~ 𝐽2 𝑚0.8.  

Hence, he derives a higher growth factor which deviates by roughly 20 - 30 % 
compared to the results presented here. However, it must be noted that there are some 
differences between both approaches. Firstly, while both are based on true star data 
the used models differ strongly in size: Whereas Carter considers a maximum of 60 
stars (based on the RECONS database), the smallest star model considered here 
consists of 1,000 stars. The other main difference was already mentioned along the 
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linearity discussions and concerns the exploration strategy: While the approach 
presented here allows the probes to select suitable stars and thus to skip unfavorable 
stars, Carter forces the probes to explore each star from the model.  

Given these differences in modelling and accounting for the rather conservative nature 
of the scaling law derived here, it can be stated that at least the trend of the results is 
confirmed.  

8.2.2.2 Scaling Law Implications for the Exploration Strategy  

To derive possible implications for the exploration strategy, the scaling law has been 
further analyzed. For that purpose, the derivatives with respect to the probe number 
were determined under the assumption of a given mission duration.  

Based on the derivatives, a strong similarity to the concept of diminishing returns from 
economics has been observed. Accordingly, the effect of a mission return increase by 
deploying more probes becomes less significant with increasing probe number. More 
precisely, there is only a substantial increase of mission return for very low probe 
numbers. This is assumed to be caused by a crowding-like effect: All probes are 
launched from the solar system, which entails large initial transfer distances when 
many probes are deployed. To avoid those large initial transfers due to crowding 
effects, one can either reduce the probe number or consider swarm-based mission 
concepts: For instance, a mother ship can be used to transport a fleet of smaller probes 
to a distant star or just a distant region. Once arrived, the probes are released and start 
to explore nearby stars. 

In Figure 8-1 this idea is visualized by means of a sketch of two hypothetical missions 
A and B: Mission A represents a set of 17 probes which are launched from the solar 
system while mission B considers only 13 probes including one mother ship (red, 
dotted trajectory). The mother ship transports a small fleet of 5 probes to a distant star, 
where they are released to explore the neighboring stars. Furthermore, suitable routes 
from mission A are merged, which allows for a further reduction of the initial transfer 
distances.  
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Figure 8-1: Comparison of two different missions A and B with swarm-based concept to avoid 

crowding effects - each color represents one probe, the blue dots indicate explored stars 

As shown in the sketch in Figure 8-1 the initial transfer distances are significantly 
reduced by means of the merging procedure and the mother ship. As in both missions 
the longest routes have similar lengths, the time required for completing both missions 
is roughly equal. Note that a similar, de-crowding effect can be yielded by using self-
replicable space probes. However, in those cases the time required for the replication 
needs to be taken into account.  

Hence, with respect to optimal exploration strategies the following can be stated:  

• Launching a high number of probes from the solar system bears the risk of 
crowding effects. These effects cause high initial transfer distances and thus 
lead to an inefficient deployment of probes. As possible mitigation strategies 
swarm-based or self-replicable probe concepts are suggested.  

• For very low probe numbers, contrarily, increasing the probe number is still 
comparably efficient with respect to the corresponding increase in mission 
return. However, it is emphasized that the efficiency declines already from the 
beginning. Note that there is no strict threshold concerning the probe number 
efficiency: Based on Figure 7-12 from chapter 7.1.2.3, which is again given here 
for convenience (Figure 8-2), only ranges can be provided.  
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Figure 8-2: First derivative of the scaling law with respect to the probe number and recommendation 

for swarm-based concepts based on qualitative analysis of the scaling law 

Up to a probe number of 10 - 20, the mission return can be increased efficiently 
by deploying more probes. From a range of 20 - 100 probes upwards, the 
launch of additional probes becomes less efficient. Hence, considering this 
probe number range, the usage of a swarm-based concept might be beneficial. 
This holds especially for higher probe numbers, as the efficiency decreases 
continuously, although at a very low rate. In Figure 8-2 this is indicated by the 
grey color gradient, which represents the recommendation for swarm-based 
concepts based on a qualitative analysis of the scaling law derivation curve.  

Note that the given recommendations are based solely on the scaling law under the 
assumption that the crowding effects are responsible for the observed behavior of 
diminishing returns. A verification of this hypothesis is left for further research.   

8.2.3 The Effect of Probe Number on the Star Selection 

Beside its general impact on the mission return, the probe number is also found to 
affect the star selection procedure. This has been shown by comparing two runs with 
very different probe number but similar mission return, which is illustrated again in 
Figure 8-3.  
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Figure 8-3: Comparing runs with similar mission return but different probe number 

Though providing the same mission return, in case of higher probe numbers the focus 
is on nearby stars, while for lower probe number also more distant stars are included. 
Furthermore, the low probe number missions allow for shorter average transfer 
distances along the routes and includes a higher fraction of binary or multiple star 
systems. Note, that even though the number of explored stars is higher than the 
probes, in the left mission not all 256 probes are used: There is still a fraction of 15 
probes which are not assigned with a star. This is confirmed by earlier observations on 
the effect of non-linearity.  

Hence, with respect to possible exploration strategies the following can be stated: 

• If the mission is supposed to explore many stars in the immediate solar 
neighborhood, higher probe numbers are favorable. In those cases, higher 
probe numbers entail a further advantage: As each probe visits only few or 
even one star (single-target missions), the probe can be customized according 
to the target star. In particular, this concerns the scientific instrumentation and 
equipment, which can be tailored to increase the scientific return. However, the 
probe number needs to be chosen carefully to avoid that there are probes 
remaining which are not assigned with any star (see previous discussions in 
chapter 8.2.1) 

• When the probe number is limited (e. g. due to high production costs), it is 
recommendable to include also more distant stars, as this allows more efficient 
routing. Note that the reduction of the probe number leads to a significant 
increase in mission duration.  

• In general, smaller probe numbers are more efficient in terms of travel 
distances for a given mission return. This needs to be considered e. g. when 
fuel costs are relevant, as in those cases it may be recommendable to deploy 
a smaller number of probes.  

• With respect to the mission success probability, the shorter travel distances for 
low probe numbers at the cost of higher mission duration entail two opposite 
effects: 

o Assuming a failure probability of the probe per traveled distance (as 
done in [26]), the shorter travel distances can help to increase the 
mission success rate.  
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o Contrarily, the increase of mission duration, which leads to longer 
runtimes, can be expected to reduce the mission success probability.   

Therefore, it is not possible to give a general recommendation on this aspect. 
However, swarm-based concepts may be advantageous, as they enable a 
decrease of the travel distances without reducing the probe number (see again 
the previous discussion on the implications of the scaling law in chapter 
8.2.2.2).  

• If the exploration mission is focusing on binary or multiple star systems, smaller 
probe numbers appear to be more efficient.  

Hence, suitable probe concepts for low probe number mission may be similar to the 
Daedalus spaceprobe or its successors, e. g. as suggested by the Ikarus project group. 
Considering high probe number missions, contrarily, small-scale concepts such as 
Breakthrough Starshot appear to be more suitable. In Figure 8-4 the described 
relations between probe number and mission considerations are summarized. The 
discussion on swarm-based concepts is not included, as it is mostly based on 
hypotheses and requires further verification.  

 
Figure 8-4: Strategy recommendations based on mission constraints and requirements including 

suitable probe concepts from literature 
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8.3 Further Implications for Star Model and Algorithm 

8.3.1 Implications for Star Model: Remark on the Spatial Star Distribution 

Based on the preliminary analyses of the spatial star distribution, the star coordinates 
are found to be distributed uniformly within the model sphere - the more stars are 
considered, the more accurate. However, it must be noted that there is a significant 
fraction of binary and multiple star systems. Hence, unlike in the test model, the stars 
are not arranged with constant distance to their neighbors. Compared to their expected 
occurrence in the Milky Way, multiple star systems are still underrepresented in the 
model, which is due to the limited resolution capabilities. This becomes more evident, 
when more distant stars are included.  

Given the described observations, the following implications on the star modeling can 
be stated:  

• In the considered distance range, the assumption of a uniform spatial star 
distribution is valid. This holds especially for models with high star numbers. 
However, if an exact model is required, one needs to use real data (as e. g. 
from the Gaia DR2) to account for binary and multiple star systems.  

• The fraction of binary and multiple star systems decreases towards larger 
models, which is due to the limited resolution capabilities. This model effect 
must be considered when those systems are relevant. 

• The model size impairs the linearity of the solution - the smaller the model, the 
higher the impact. The effects of the non-linearity induced by the model are 
observed very early (also for low probe number runs), even when the mission 
appears to be far from the model limits. This aspect is very important when 
choosing the size of the model to avoid false conclusions for the exploration 
strategy.  

8.3.2 Implications for Algorithm: Initial Relaxation of the Time Constraint 

With respect to the optimization procedure implemented in the algorithm, the initial 
relaxation of the time constraint allows a significant improvement of the performance. 
Generally, the idea of relaxing constraints does not represent a novelty in the 
optimization field – in some applications it is common practice. However, typically the 
relaxation method is used to transform the given problem into a related problem with 
known solution or which is at least easier to solve (for instance Lagrangian relaxation 
described in [199, p. 132]). 

In the presented approach, contrarily, the relaxation does not change the problem 
itself, but enlarges the search space substantially: More precise, the relaxation opens 
access to the entire set of stars, which are selectable by initial generations and used 
to build routes. This method may be interpreted as a top-down approach, as the large 
set of stars available from the beginning is subsequently reduced until it stabilizes once 
the solution is converged (see Figure 8-5). Without the relaxation of the time constraint, 
the initial set of stars available within the generations is limited from the beginning: The 
initial generation is created randomly, which leads to poor routes with large mission 
durations, where stars which are not located within the close neighborhood are 
excluded. Due to the algorithm characteristics and the selection process, the inclusion 
of new stars from outside of the generation set is possible but rather improbable and 
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thus requires many generations. Hence, contrarily to the top-down approach, the star 
set is enlarged subsequently, and accordingly can be interpreted as bottom-up 
approach.  

 
Figure 8-5: Principle of different approaches to select/build the generation star set – top-down 

corresponds to initial relaxation of the time constraint, bottom-up refers to active time 
constraint from the beginning 

Note that at a certain point in the optimization procedure the time constraint must be 
activated, additionally a cut operation is necessary. Otherwise, the final generation will 
contain invalid solutions. To avoid a very harsh transition between two generations, 
the cut operation and time constraint activation can be performed stepwise.  

The approach introduced here may be adopted in various applications, whenever the 
problem consists of a large search space, which is significantly restricted by an 
optimization constraint.   



Conclusions and Remarks on Future Work 

 

 

Page 145 

9 Conclusions and Remarks on Future Work 

9.1 Summary and Main Outcomes 

9.1.1 Main Results  

This thesis presented an approach to derive optimal strategies for interstellar 
exploration missions considering nearby stars. The problem of interstellar exploration 
has been categorized as bi-objective multi-vehicle open routing problem with profits, 
assuming a minimum set of variables. The problem has been addressed by means of 
a hybrid multi-objective genetic algorithm. Applied on a test model with exact uniform 
star distribution, the algorithm generated a solution with a deviation of 10 % to the ideal 
value. Based on the test model results, it has been found that by means of an initial 
relaxation of the time constraint the solution quality improves significantly. 
Furthermore, a convergence check has been implemented to save computing 
resources.  

The star models used for the actual optimization of the exploration strategies are based 
on the Gaia DR2 and revealed an approximately uniform distribution of the stars in the 
solar neighborhood. This has been found via a qualitative analysis of the coordinate 
distribution. However, there is a significant fraction of binary or multiple star systems 
(10 - 20 %), which is lower than expected due to the limited resolution capabilities. A 
generic stellar metric to assign each a star a score (profit) has been suggested but is 
not included yet in the optimization models.  

With respect to the optimization results on the real star models, several observations 
are made:  

• In most cases, a linear relation between mission duration and number of 
explored stars is obtained. This is assumed to be a result of the uniform star 
distribution.  

• The general relation between mission duration, explored stars and probe 
number can be approximated by 𝐽1 ~ 𝐽2 𝑚0.6. This relation is less accurate for 
high probe number runs when reaching the star model limits. In those cases, an 
increase of the growth factor has been observed, which has been proven to be 
a modelling effect. 

• The choice of the probe number turned out to influence the star selection and 
route structure:  

o Assuming a given number of explored stars, small probe number 
missions include more distant stars while high probe number solutions 
focus on the immediate neighborhood.  

o In general, the average transfer distances between two subsequent stars 
within a route increase with higher probe number. 

o Furthermore, the fraction of explored binary or multiple star systems is 
higher in case of small probe numbers.  
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9.1.2 Simplifications and Known Weaknesses 

Along the modelling and optimization procedure several simplifications have been 
made: The probes travel at a constant velocity of 10 % of the speed of light along 
straight-lined trajectories. This has been proven to be a valid simplification for flyby 
missions, as the impact of the galactic potential can be neglected in this velocity 
regime. However, the feasibility of the required trajectory deflections when travelling 
with near-relativistic velocities is not regarded. Furthermore, the probes are assumed 
to operate without failure, which is not realistic for long time missions, given the current 
state of technology. With respect to the probe concept and technology, no further 
restrictions have been made. Hence, the results are valid across various exploration 
concepts. On the downside, the generic probe and mission model does not allow to 
investigate the impact of various technologies on the exploration strategy, e. g. the 
effect of replicability or different propulsion techniques.  

In the star models the effect of stellar motion has been neglected, hence stars are 
assumed to maintain constant positions. This has been proven to be a valid 
simplification for mission timeframes up to 7000 years. Furthermore, the gravitational 
effects are not considered, which eliminates the possibility of performing slingshot 
maneuvers. As the models are based on the Gaia DR2, they are assumed to represent 
a very realistic approximation of the solar neighborhood. 

Due to the nature of the used genetic algorithm, which belongs to the class of meta-
heuristics, the optimization results are not guaranteed to represent the true optimum. 
This is encountered by means of the test problem with known ideal solution. 
Furthermore, a verification approach based on literature results confirmed the trend of 
the derived relation.  

9.1.3 Main Conclusions for Future Optimization Procedures and Interstellar 
Exploration Strategies 

Based on the results, the following main conclusions on modelling and optimization 
procedures can be drawn: Stars in the solar neighborhood (up to 110 ly distance) can 
be assumed to follow a uniform spatial distribution but are not equally spaced due to 
the presence of binary or multiple star systems. The improvement of the algorithm by 
means of an initial relaxation of the time constraint may be adopted in future 
optimization problems with similar structure: In particular, when the problem features 
a large search space, which is restricted by an outer constraint, the described approach 
may be advantageous.  

Implications for possible exploration strategies concern primarily the effect of probe 
number: High probe numbers are beneficial when the mission focus is on the 
immediate solar neighborhood. As further advantage, a higher specialization of the 
probes is possible, as each probe explores only few stars. This allows for significant 
time savings, which is described by means of the derived relation between optimization 
objectives and probe number. Those kinds of missions are suitable for lightweight, 
small-scale probes which rely on remote propulsion, e. g. the Breakthrough Starshot 
concept.  

Lower probe numbers, contrarily, allow a more resource-optimal exploration, which is 
due the reduced transfer distances. As further difference to high probe number 
missions, they conclude also more distant stars and appear to be more efficient when 
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focusing on binary or multiple star systems. However, missions with small probe 
number typically consist of long routes, which entails an increase of the mission 
duration. As the probe number is limited, more sophisticated probes can be deployed, 
e. g. with a high degree of intelligence. Due to the long mission durations, also a high 
robustness is required, ideally paired with self-repairing capabilities. Given the shorter 
transfer distances, the energy costs are minimized, which allows for large-scale probes 
with integrated propulsion systems. A suitable probe concept for those missions might 
be similar to the Daedalus spaceprobe and its successor projects, e. g. as suggested 
by the Icarus project [32].  

The derived scaling law and found solution metric (fitness ratio), which is constant for 
a given probe number, can be used for preliminary estimations in the mission design 
process. This can help to support some basic considerations during the mission 
planning, such as the number of stars that can be explored within a given time for a 
certain probe number. Furthermore, the scaling law is found to reveal strong similarities 
to the law of diminishing returns from economics. Hence, an increase of the probe 
number correlates with a substantial higher mission return only for low probe numbers. 
As this behavior is expected to result from a crowding-like effect, which occurs when 
many probes are launched from the solar system, swarm-based concepts may help to 
mitigate this effect. Swarm-based concepts are further assumed to increase the 
mission success probability, as they are expected to allow for small transfer distances 
without reducing the probe number.  

9.2 Evaluation of the Research Questions  

Before concluding this thesis with remarks on future work, the research questions 
introduced in chapter 1.2 are reconsidered and linked to the results and findings 
presented previously. For each question, the corresponding thesis chapters are given 
together with a concise summary of the answer:    

• What are relevant optimization parameters and typical values in the interstellar 
exploration context? This question has been addressed in chapter 2 and 3.1: 
The minimum set of parameters to describe the interstellar exploration problem 
are found to be the probe number, the travel velocity and the star exploration 
sequence including the underlying the star system data (such as position and 
stellar characteristics). Typical values for travel velocities in the related literature 
range from 10 - 20 % of the speed of light, however, with respect to the probe 
concept itself high differences in scale (from gram to hundreds of tons) are 
found.  

• How can interstellar exploration strategies be formulated as optimization 
problem and what is the corresponding problem class? This question is 
answered in sections 3.2 - 3.4: The problem of developing interstellar 
exploration strategies has been defined as bi-objective multi-vehicle open 
routing problem with profits. As such, it belongs hierarchically to the class of 
vehicle routing problems and is found to be very similar to the subclass of team-
orienteering problems.    

• Is it possible to quantify the value of a star system for a given mission? This 
aspect is addressed in subchapter 4.2.4: A concept of a stellar metric is 
suggested based on a relative ranking of the considered stars which allows to 
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evaluate each star’s contribution to the entire mission return. Note that the 
stellar metric has not been included yet in the optimization procedure.  

• How can current knowledge on nearby stars contribute to the exploration 
strategy development? This aspect is addressed in chapter 4.2 and in chapter 
8.3.1: Instead of relying on simple distribution models, the used star model is 
built from the Gaia DR2, which is considered to be the most recent and complete 
star catalogue. Hence, the derived strategies are based on true star data. 
Further information on star systems can be incorporated by means of the 
suggested stellar metric.   

• What type of algorithm can be used to solve this kind of problem? This question 
is primarily addressed in chapter 3.3.3: Given the large solution space, 
heuristics or metaheuristics need to be considered. Furthermore, due to the bi-
objectivity of problem, population-based algorithms are regarded as an 
appropriate approach to analyze the relation between both objectives. In this 
work, a hybrid genetic algorithm was used; other examples which are expected 
to perform similar are Particle Swarm Optimization or Ant Colony Optimization 
methods. 

• How do mission design parameters affect the exploration strategy and the star 
selection? This question, which represents the overarching thesis objective, is 
addressed explicitly in chapter 8.2 based on the results described in chapter 7. 
As it comprises various aspects, only two examples are given here: The 
explored star number increases linearly with mission duration and, furthermore, 
an increase of the probe number leads to higher transfer distances.   

Table 9-1 provides an overview of the research questions and the corresponding 
chapters in the thesis. 
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Table 9-1: Research questions and corresponding thesis chapters 

Research question Corresponding thesis chapter 

What are relevant optimization 
parameters and typical values in the 
interstellar exploration context? 

Generally addressed by the literature 
survey in chapter 2 and more 
specifically within the variable 
identification in chapter 3.1 

How can interstellar exploration 
strategies be formulated as optimization 
problem and what is the corresponding 
problem class? 

Addressed through chapters 3.2 - 3.4  

Is it possible to quantify the value of a 
star system for a given mission? 

Addressed in chapter 4.2.4 

How can current knowledge on nearby 
stars contribute to the exploration 
strategy development? 

Addressed in chapter 4.2 and the 
discussion in chapter 8.3.1 based on 
analyses from chapter 7 

What type of algorithm can be used to 
solve this kind of problem? 

Addressed in chapter 3.3.3 based on 
the literature survey results on 
optimization algorithms in chapter 2.3  

How do mission design parameters 
affect the exploration strategy and the 
star selection? 

Addressed in chapter 8.2 based on the 
results from chapter 7  

9.3 Future Work 

Given the limited research on interstellar exploration, there are still various 
opportunities left for future research: 

The generic probe and mission model can be refined by including more variables, such 
as probe mass or allowing for rendezvous. This would extend the previous analysis on 
the trade-off between mission return and time. Another aspect, which has not been 
regarded here but is commonly discussed in literature, is the capability of replication 
and how it affects the exploration strategy. In a similar manner, swarm-based concepts 
may be considered to verify the presumptions made during the discussion section, e. g. 
with respect to the transfer distances. To resolve differences in the propulsion 
technology, also the star model needs to be refined, for instance by including the 
luminosity of the stars, which is relevant for light sail based propulsion or deceleration. 
In this context, the effects of gravity could be included together with the stellar motions, 
which would allow the probes to perform slingshot maneuvers. With respect to 
gravitational effects, also the feasibility of trajectory deflections at the given velocity 
regime might be investigated.  
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A further refinement of the star model can be obtained by applying the suggested 
stellar metric to the optimization model. Interesting outcomes are expected from the 
analysis of the selected stars and their distribution (are there regions with higher or 
lower interest in the solar neighborhood?) and the comparison of the results with the 
solutions presented here; in particular, with respect to the validity of the derived relation 
between the objectives and the conclusions on the optimal exploration strategies. 
Moreover, by identifying binary or multiple star systems and treating them as single 
targets, a preference of those systems in the exploration strategy could be avoided.  

Regarding the algorithm, further improvements are possible, e. g. by replacing the 
static algorithm configuration with dynamical algorithm parameters: The population 
size may be varied along the optimization procedure depending on the density of the 
current generation (e. g. based on the crowding distance) for higher efficiency. The 
probability rates of the mutation rates could be adapted to force the production of 
solutions in a certain region of the search space: E. g. by increasing the probability of 
the merge rate, more solutions in the upper search space are obtained. Furthermore, 
the efficiency can be increased by eliminating duplicate individuals from the lowest 
Pareto rank, e. g. by considering the crowding distance already in the Pareto ranking. 
The convergence check could be refined by including the success rate of the local 
search operations: When during the local search no further improvement of the routes 
is possible, the solutions can be assumed to be converged. This could help in case of 
non-linear fitness curves, where the fitness ratio is not a suitable indicator of 
convergence. Another aspect left for further research is the unexpected solution 
behavior for high probe numbers. This has been discussed and shown to be a 
modelling effect, but the exact reason has not been found yet. Finally, it would be 
interesting to apply an alternative optimization algorithm to the problem (e. g. PSO or 
ACO) and check, whether the results are similar to the ones obtained from the genetic 
algorithm.  

Given the large challenges which need to be mastered, one might question the 
feasibility of interstellar travel, particularly when considering travel routes consisting of 
several, distant stars as suggested in this work. However, those doubts are 
encountered by the second of Clarke’s three laws: The only way of discovering the 
limits of the possible is to venture a little way past them into the impossible. 
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