
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Learning Algebraic Predicates for
Explainable Controllers

Florian Jüngermann

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Learning Algebraic Predicates for
Explainable Controllers

Lernen von algebraischen Prädikaten für
erklärbare Controller

Author: Florian Jüngermann
Supervisor: Univ.-Prof. Dr. Jan Křetínský
Advisor: M.Sc. Pranav Ashok, M.Sc. Maximilian Weininger
Submission Date: June 4, 2021

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, June 4, 2021 Florian Jüngermann

Acknowledgments

I want to thank my supervisor Prof. Dr. Jan Křetínský for introducing me to the field
of formal verification and giving me the opportunity to work on this exciting topic.

Then I want to thank my advisors M.Sc. Pranav Ashok and M.Sc. Maximilian
Weininger for supporting me along the way. Pranav could always help me when I felt
stuck and Maxi’s extensive feedback on my drafts greatly improved my thesis’ structure
and readability.

Finally, I want to thank my family and friends who always supported me. Especially
with Tobias Schindler, I could always talk about my ideas and get valuable feedback on
whether my explanations are understandable.

Abstract

For safety-critical applications, model checking tools can verify safety criteria of systems
and synthesize correct-by-design controllers. Instead of representing these controllers
with huge lookup tables or hard-to-understand binary decision diagrams, recent work
tried to find succinct and explainable representations with decision trees. To de-
scribe complex systems with small trees, recent efforts used more expressive algebraic
predicates in the decision nodes. However, until now, there has not been a way of
automatically generating those. In this thesis, we propose two solutions: The first one
generates predicates from given domain knowledge. The second one learns polynomial
expressions from the controller data using support vector machines. We implement the
second approach into the open-source tool dtcontrol and evaluate it on 28 case studies.
For many cases, we see a significant size reduction and for 10 case studies, we even
reach the minimum decision tree size.

vii

Contents

Acknowledgments v

Abstract vii

1. Introduction 1

2. Related Work 5

3. Preliminaries 7
3.1. Controllers . 7
3.2. Decision Trees . 8

3.2.1. Impurity Measures . 9
3.2.2. Predicates . 9

3.3. Support Vector Machines . 10
3.3.1. Separating Hyperplanes . 10
3.3.2. Kernel Trick . 12
3.3.3. Computational Complexity . 14

4. Motivating Example 15
4.1. Model Parameters . 15
4.2. Problems with the Current Solutions . 16
4.3. Handpicked Strategy . 16

5. Predicates From Domain Knowledge 19
5.1. Our Approach . 19
5.2. Handcrafted Predicate Derivation . 20
5.3. Performance . 21
5.4. Identified Problems . 22

6. Predicates From Controller Data 25
6.1. Problems with Curve Fitting . 26
6.2. Using Support Vector Machines . 27

6.2.1. Problems With Higher Dimensions 27
6.2.2. Reconstructing the Algebraic Decision Function 28

6.3. Feature Importance . 28
6.4. Rounding Coefficients . 29

6.4.1. Rounding to Zero . 30

ix

Contents

6.4.2. Scaling the Predicate . 30
6.4.3. General Rounding . 30
6.4.4. Numerical Errors . 31

6.5. Min-label Entropy . 31
6.6. Predicate Priority . 33

7. Evaluation 35
7.1. Domain Knowledge Approach . 35
7.2. Data-Driven Approach . 36

7.2.1. Cruise Control . 36
7.2.2. Minimum Tree Size . 36
7.2.3. Benchmarks . 38
7.2.4. Min-Label Entropy and Predicate Priority 40
7.2.5. Explainability . 41

8. Future Work 43

9. Conclusion 45

List of Figures 47

List of Tables 49

Bibliography 51

A. Support Vector Machine Details 59
A.1. Minimization Problem . 59
A.2. Lagrangian Function and Dual Problem . 60
A.3. Soft-Margin . 63

B. The Cruise Control Model 65
B.1. Cruise Control Modifications . 65
B.2. Cruise Control Parameters . 65

C. Predicate Generation 67
C.1. Base Identities . 67
C.2. Handcrafted Predicate . 67

D. Predicates From Controller Data 69
D.1. Predicate Without Prettifying . 69
D.2. Predicate Without Rounding . 69
D.3. Advanced Numerical Precision Problems 69

E. Results 71

x

1. Introduction

Today, we cannot imagine a world without software. From large applications with tens
of millions of lines of code like an operating system to controllers running on embedded
devices found in kitchen tools, we rely on these programs every day. Despite immense
efforts, we continually see those programs fail. The impact of such failures can reach
from unpleasant, if the thermostat fails to keep the correct temperature [Bil16], to severe
in the case of computer-caused power-outages [BBC16], to even fatal in the case of car
accidents caused by malfunctioning software [Isi13].

The standard solution to this problem is testing – either as specific unit tests or as
end-to-end black-box tests. While testing software is great for finding bugs, in general,
it cannot guarantee their absence. However, especially for safety-critical software, we
want to be sure that certain criteria are fulfilled. For example, we want to ensure that
a car with an emergency braking system will always break early enough to avoid any
collisions.

Formal Verification This is where the field of formal verification comes into play. We
use the general notion of an agent interacting with a surrounding system by performing
actions. In the case of the emergency braking system, the agent would be the car we
want to control and the available actions are different acceleration values. To verify
that a certain property is satisfied, we model the dynamics of the surrounding system
formally and express our safety criteria with formalisms such as temporal logic. Then,
after implementing a control strategy (in short controller) for the agent, we can use model
checking to verify whether the criteria hold.

Having precisely specified the surrounding system and the desired behavior even
allows for a more automated approach. Instead of developing a controller by hand and
then verifying it, we can take advantage of the recent advances in controller synthesis to
automatically generate a controller for the agent. The controller ensures that our safety
conditions are satisfied by design.

During the synthesis phase, we can usually decide if we want to generate a deterministic
controller that expresses one way of fulfilling the safety constraints, or if we want to
generate the most-permissive controller which includes all possible actions that will
not violate any constraints. For example, for a thermostat, it might suffice to find
a deterministic control strategy to keep the temperature in a given interval. For an
emergency braking system, we would probably want to allow the human driver to take
any action that does not lead to a safety violation, so we would want to generate the
most-permissive controller.

1

1. Introduction

There are multiple state-of-the-art model checking tools with controller synthesis
options available, such as UPPAAL Stratego [Dav+15], PRISM [KNP11], SCOTS [RZ16],
and STORM [Deh+17]. In the most basic form, they use discretization to represent
the continuous input space with a finite set of states. For each of those states, the
synthesized controller describes which actions are allowed. So, the controller can be
expressed explicitly as a lookup table, often with millions of rows.

There are two main problems with this representation. First, storing such a large table
can require several hundreds of Megabytes of storage. However, the devices on which
the controller should run in the end, mostly are embedded chips with very limited
storage capacity. This makes it infeasible to store the entire lookup table on the device.

Second, the sheer size makes it impossible to understand the behavior of the controller.
The safety guarantees of the controller rely on the assumption that the formal model
was correct and behaves as expected. To validate this, understanding the controller is
crucial. For example, a non-permissive controller for the emergency braking system
might try to immediately stop the car, thus fulfilling the safety criteria while clearly not
being of any help in the real world. These flaws in the model can be detected if we can
represent the safe controller in a succinct and explainable way.

Motivating Example In Chapter 4 of this thesis, we have a closer look at the adaptive
cruise control model (in short cruise) from [LMT15a] which models a simplified emer-
gency braking system for a car. Synthesizing a safe controller with UPPAAL Stratego
gives us a file with more than six million lines although previous work [Akm19] has
shown that there is a way of formulating the safe behavior with a handful of sen-
tences or equations. Our goal is to find such a succinct and explainable representation
automatically with techniques from machine learning.

Controller Representation with Decision Trees Recently, significant progress has
been made with representing controllers with decision trees [Brá+15; Ash+19a; Ash+19b;
Ash+20; Ash+21]. Decision trees [Mit+97] are simple in structure, making them easy
to understand, but still expressive enough to represent complex controllers. The open-
source tool dtcontrol [Ash+21] takes advantage of that and offers an automated way
of generating succinct decision trees. It can read controllers from many commonly used
model checkers and implements various heuristics to minimize the size of the decision
tree.

Traditionally, in a decision tree, the predicate in the decision node has the form vi ≤ c
with some state variable vi and some constant c ∈ R. Such a split divides up the
feature space with a hyperplane orthogonal to the feature axis vi thus giving it the name
axis-aligned split [Mit+97]. Those splits are easy to understand and efficient to find,
forming the basis of the decision tree learning.

However, axis-aligned predicates are incapable of capturing more complex relation-
ships as seen in Figure 1.1a. In this toy example, 5 predicates are needed to separate
the red from the blue labels. For a real-world dataset with thousands of data points,

2

(a) axis-aligned (b) linear (c) algebraic

Figure 1.1.: Example showing how different types of predicates can separate a dataset.

this behavior can be even more extreme. For that reason, dtcontrol also supports
linear predicates as proposed by [MKS94]. These splits are still hyperplanes but now can
have arbitrary orientations (see Figure 1.1b). This makes the predicates harder to find,
more difficult to comprehend as more variables are involved, but can ultimately give
significantly smaller decision trees.

Extending the notion of using more complex decision predicates, the newest version
of dtcontrol allows the use of algebraic predicates [Wei20; Ash+21] (see Figure 1.1c). A
domain expert can provide arbitrary closed-form mathematical expressions that are
then used in the decision tree construction. It is even possible to leave some constants
unspecified and dtcontrol will find suitable values for those.

Limitations While dtcontrol has already greatly reduced the size of the controllers
in many benchmarks, it still has room for improvements. Most of the implemented
heuristics rely on clever ways of determinizing the controller on the fly. This means we
start with the most-permissive controller in the lookup table format and then, given the
set of safe actions for every state, we dynamically select an action so that the resulting
strategy can be represented succinctly. However, in some instances such as the cruise
model, we want to keep the permissiveness of the controller, for example, to give a
human driver the maximum amount of freedom.

For accurately representing the most-permissive controller for the cruise model
without any determination heuristics, dtcontrol needs several hundred decision nodes
and the resulting decision tree is hardly explainable. When providing the right domain
knowledge, significantly shorter decision trees can be found by using algebraic predicates
[Akm19; Wei20]. However, so far, the supplied domain knowledge had to be narrowly
tailored to the problem by hand or even had to explicitly contain a handcrafted solution.

Contributions This thesis addresses these limitations by proposing two solutions and
critically evaluating them:

• We explore how we can automate the generation of relevant algebraic predicates.
Starting with a set of general physical equations, we generate more complex

3

1. Introduction

expressions that we then use in the decision tree construction.

• We facilitate the data from the model checker together with machine learning
techniques to generate predicates. Specifically, we use support vector machines
[HTF09, Chapter 12] to find quadratic polynomials that nicely separate our data.
Then we use those polynomials in the decision nodes.

• We evaluate the second approach on 28 case studies and analyze the results. Most
notably, we receive an explainable decision tree with only 5 decision nodes for
the cruise example and find decision trees of minimum size for 10 out of 28 case
studies.

Structure The remaining thesis has the following structure: We start by covering
related work in Chapter 2, and then define the basic mathematical notions need for
the rest of the thesis in Chapter 3. By analyzing the motivating example of the cruise
model in Chapter 4, we get further insides about possible strategies. In Chapter 5
and Chapter 6 we describe the two approaches of generating predicates from domain
knowledge and from the controller data, respectively. Then, we evaluate the suggested
approaches on the entire benchmark set and analyze the performance in Chapter 7.
Future work is discussed in Chapter 8 before we conclude the thesis by recapitulating
the most important findings in Chapter 9.

4

2. Related Work

This work extends the open-source tool dtcontrol that was first presented in [Ash+20],
covered in detail in [Jac20], and since then has been extended significantly [Ash+21]. In
this thesis, we combine and adapt techniques from machine learning and formal verification.

Machine Learning Most of the algorithms we use for constructing decision trees come
from the field of machine learning. For representing a controller, however, we have
different objectives. In the classical machine learning setting, we are not interested
in a perfect classification of the training dataset but rather want our decision tree to
generalize well to new data – we want to avoid overfitting the training data. This
overfitting issue is not present when we use decision trees for controller representation;
here, we want to find a perfect classifier as our training and evaluation dataset is the
same [Jac20, Section 5.1.5]. Still, those techniques provide a good starting point.

For an introduction to decision trees, we refer to [Mit+97, Chapter3] and [Bre+84].
The idea of more expressive linear or oblique predicates is discussed in [MKS94].
[Ash+19a; CE07] use support vector machines (SVM) to find those oblique predicates. For
an introduction to SVM we refer to [HTF09, Chapter 12].

There have been several approaches using non-linear predicates in decision trees.
[IS96] explicitly constructs new features by combining existing ones (for example take
their product or ratio) while [BB98] explicitly uses SVMs inside the decision nodes. Both
sources focus on the decision tree’s ability to generalize but not on the explainability.
Specifically, they do not explicitly reconstruct algebraic predicates from the SVM.

In previous versions of dtcontrol [Wei20; Ash+21] curve fitting [Arl94] has been used
to find undetermined coefficients in algebraic splitting predicates. This approach is
based on regression analysis and uses least square fitting [Lev44; Mar63]. In our work,
however, we use the predicates to separate the data rather than fitting it. For a more
detailed comparison, see Section 6.1

Binary Decision Diagrams Typically, binary decision diagrams (BDDs) [Bry86] are used
to represent controllers in a compressed way [RZ16; ZVJ18]. As BDDs can only represent
a binary function {0, 1}n → {0, 1}, this approach requires us to encode the list of
state-action pairs of the controller in binary variables. As a result, the BDDs are hardly
explainable. Additionally, the size of the BDD heavily depends on the variable ordering.
Finding an optimal ordering is NP-complete [BW96] and currently known heuristics
struggle with high-dimensional inputs.

Algebraic decision diagrams [Bah+97] extend BDDs to support representing a function
{0, 1}n → S with S ⊂ N. They have been used for representing controllers in [SHB00].

5

2. Related Work

However, they suffer from the same issues we discussed for BDDs. Because of these
problems, we focus on decision trees in this thesis.

Predicate Generation The prototype from [Akm19], enables a domain expert to gener-
ate algebraic predicates by providing a grammar. Unfortunately, because of the search
space explosion, specifically tailored grammars had to be used. Constructing these
grammars is tedious and inherently error-prone, especially for domain experts with little
experience in grammar construction. dtcontrol 2.0 [Ash+21] also adds the possibility
to semi-automatically generate the decision tree. The user can suggest and evaluate
manually entered predicates, though the tool does not provide the functionality to
automatically generate new predicates.

Program Synthesis The problem of generating helpful algebraic predicates has sim-
ilarities to the field of program synthesis. There, the goal is to generate program code
according to some specification or input/output examples. Similar to the predicate
generation, recent work in program synthesis uses generation grammars together with
techniques to prune the search space. While these techniques cannot be directly trans-
ferred, they might give inspiration for future work. Promossing approaches include
[HKO19], [Mor+20], and [CPS20]. [HKO19] uses domain knowledge partly generated
from the problem description to reduce the search space for a genetic programming
approach. Similarly, [Mor+20] predicts how useful individual parts of the generation
grammar are to trim the search space. [CPS20] modifies the grammar to balance the
expressiveness of a complex grammar with the low branching factor of a compact one.

In this work, we combine the insights we receive from the controller data with the
domain knowledge to construct smaller and more explainable decision trees.

6

3. Preliminaries

In this chapter, we formally define the key concepts used throughout the thesis. Specifi-
cally, we cover controllers, decision trees, and support vector machines.

3.1. Controllers

When formally modeling a dynamic system, different tools can be used. Among the
most prominent ones are timed automata and markov decision processes. Regardless of the
specific tool chosen, the concept of a controller or sometimes called strategy or policy
is almost always applicable. Intuitively, a controller describes how an agent should
act in the dynamic system. What most modeling tools have in common is the concept
of discrete states, usually defined by the combination of multiple state variables, and
the concept of actions that an agent can perform. For example, the state of the car in
the cruise example is defined by the combination of the discrete approximation of its
current velocity, acceleration, the front vehicle’s current velocity and acceleration, and
their relative distance. The actions the agent can perform describe the car’s acceleration.
This motivates the definition we use here, inspired by [Ash+19b; Jac20]:

Definition 1. For 1 ≤ i ≤ M ∈ N, let vi be a discrete state variable. The set of states
S ⊆×M

i=1 Dom(vi) is defined by the M state variables. For a model M with states S
and actions A, a controller C : S → 2A selects for every state s ∈ S a set of safe actions
C(s) ⊆ A.

Note that this definition allows for permissive controllers that can provide multiple
possible actions for a state. So we define a most-permissive controller C as a controller for
that every additional action included will lead to a safety violation. On the other side,
we call a controller deterministic when |C(s)| = 1 for all s ∈ S , meaning we can only
choose exactly one possible action in every state. Figure 3.1 shows a deterministic and a
permissive controller in a decision tree representation for a battery-powered temperature
control system.

Also note that according to our definition, the controller’s decision is solely based
on its current state, not its past states. In practice, this limitation can oftentimes be
circumvented by encoding additional information about the past into the state. For
example, the decision of whether to water the plants may depend on the precipitation
of the last three days. Then we can model our current state as a tuple (p1, p2, p3) where
pi describes the precipitation i days ago.

7

3. Preliminaries

battery ≤ 0.15

temp ≤ 21

temp ≤ 19

Off

AC

Heating Off

True False

True False

True False

(a) deterministic

battery ≤ 0.15

temp ≤ 20

temp ≤ 19 temp ≤ 21

{Off}

{Heating} {Off, Heating} {Off, AC} {AC}

True False

True False

True False True False

(b) permissive

Figure 3.1.: An example of how a decision tree can represent a controller. (a) shows a
determinized controller, (b) a permissive one with multiple safe actions at
some states.

3.2. Decision Trees

A decision tree [Mit+97] is a well-known classification tool from machine learning used to
predict discrete output labels of input data. Formally, this classification can be seen as
learning a function f : A → B where B is a set of discrete output labels and A =×M

i Ai
is the not necessarily discrete, M-dimensional feature space or input data.

Definition 2. We define a decision tree T as following:

• T is a rooted full binary tree, meaning every node either is an inner node and has
exactly two children, or is a leaf node and has no children.

• Every inner node v is associated with a decision predicates αv. A decision predicate
(or just predicate) is a boolean function A → {0, 1} over the input A.

• Every leaf l is associated with an output label bl ∈ B.

For learning a decision tree, numerous methods exists such as CART [Bre+84], ID3
[Qui86], and C4.5 [Qui93]. In principle, they all evaluate different predicates by calcu-
lating some impurity measure (see Subsection 3.2.1) and then greedily pick the most
promising one before splitting the dataset on that predicate and recursively continuing
with the two children.

When we have built a decision tree, we can predict the output label of an input vector
~x ∈ A by starting at the root of T and traversing the tree until we reach a leaf node
l. Then, the label of the leaf bl is our prediction for the input ~x. To decide at which
child to continue at an inner node v, we evaluate the decision predicate αv with ~x. If the
predicate evaluates to true, we pick the left child, otherwise, we pick the right one.

When we represent a controller with a decision tree, our input data is the set of states
and an output label describes a subset of safe actions. Figure 3.1b shows an example

8

3.2. Decision Trees

of such a tree. In this thesis, we want to find a decision tree that exactly represents the
most-permissive controller C. So we make the following definition.

Definition 3. We call a classifier perfect, if every sample of our training data is classified
correctly.

For us, this means that for every state s ∈ S , the labels on the resulting leaf exactly
match the set of safe actions of this state. In the machine learning setting, this would
be considered overfitting, but in our case, that is exactly what we want to ensure safety
[Jac20, Section 5.1.5].

3.2.1. Impurity Measures

To evaluate how promising a predicate α is, dtcontrol implements different impurity
measures. A splitting predicate should aim to minimize the total impurity which is
calculated as the weighted sum of the impurities of both children nodes. Here, we will
only discuss the most frequently used impurity measure entropy and refer to [Jac20,
Section 5.3] for a detailed explanation of the choices dtcontrol has to offer.

Entropy The impurity measure entropy originates from information theory. It measures
how much uncertainty is left in a dataset. If the dataset is dominated by one specific
label, the entropy is low, whereas a heterogeneous dataset has a higher entropy. For
a dataset X with N data points and the label set B, let n(X, y) be the number of data
points in X with the label y ∈ B. Then the entropy H(X) is defined as:

H(X) = − ∑
y∈B

n(X, y)
N

log2

(
n(X, y)

N

)
(3.1)

To evaluate a predicate α, we calculate the remaining entropy after the split. If α is a
binary split and partitions X into X = Xl] Xr, we define

H(α, X) =
|Xl |
|X| H(Xl) +

|Xr|
|X| H(Xr) (3.2)

3.2.2. Predicates

In every decision node of our tree, a predicate function A → {0, 1} is used to decide
at which child we continue. We distinguish three categories of predicates according to
their complexity:

Axis-Aligned Predicates The simplest and by far the most commonly used type of
predicate has the form vi ≤ c for a constant c ∈ R. Geometrically speaking, the function
vi = c describes a hyperplane orthogonal to the vi axis, intersecting at vi = c. That is
why they are called axis-aligned predicates [Mit+97].

9

3. Preliminaries

For finding the best axis-aligned predicate, we make the simple observation that for
a feature vi with k different values, there are only k − 1 different relevant values for c.
So we can simply evaluate all possible predicates for all features vi and select the most
promising one.

Linear Predicates Linear predicates [MKS94] or sometimes called oblique predicates have
the form ∑i aivi ≤ c with ai, c ∈ R. This linear combination of different features
describes a hyperplane with arbitrary orientation. Hence they are more expressive but
it also makes it harder to find optimal predicates. Algorithms used to find suitable
predicates include the OC1 algorithm [MKS94], logistic regression [HTF09, Chapter 4.4]
and support vector machines [HTF09, Chapter 12].

Algebraic Predicates As outlined in [Akm19] and implemented in [Wei20; Ash+21],
allowing even more powerful predicates can reduce the size of the decision tree and
improve explainability. Algebraic predicates allow any closed-form expressions hence
they are the most expressive. Though, automatically generating good algebraic splitting
predicates is a difficult problem and oftentimes is only possible with close human
guidance.

Figure 1.1 shows how the three types of predicates work on a toy dataset. As expected,
the more expressive the predicate is, the fewer predicates are needed to build a perfect
classifier.

3.3. Support Vector Machines

Support vector machines [HTF09, Chapter 5] (also see [Win10] and [Vap00] for further
instructive material) are a key tool we want to apply in this thesis. To understand how
they can be used to learn predicates, we will briefly explain the most important concepts.
At some places, we refer the interested reader to Appendix A where we elaborate on
additional steps. However, these steps are not needed to understand the rest of this
thesis.

3.3.1. Separating Hyperplanes

A support vector machine uses a hyperplane to split a dataset into two partitions. A
hyperplane of arbitrary rotation is more expressive than an axis-aligned predicate from
a decision tree but still general enough to avoid overfitting. Now, consider the dataset in
Figure 3.2. We want to find a hyperplane – in this case a straight line – that separates
the red and the blue labels. In this example, we can find uncountably many lines that
perfectly separate our labels – but which one is the best?

As we want the classifier to be robust against noisy data, a reasonable choice is
the line that maximizes the distance between the nearest points on both sides. In

10

3.3. Support Vector Machines

(a) Separating the dataset with hyperplanes (b) The maximum-margin hyperplane

Figure 3.2.: The sample dataset with different separating hyperplanes.

Figure 3.2b, this line is drawn, together with the margin it leaves to both sides, giving it
the name maximum-margin hyperplane or optimal separating hyperplane [HTF09, Section
4.5.2]. Notably, the dividing line is only defined by three points, the so-called support
vectors.

~w

~x

α
|~x| cos α

= ~x · ~w
|~w|

Figure 3.3.: Projecting ~x onto the normal direction ~w.

To formally define a hyperplane, we use a (not necessarily normalized) normal vector
~w ∈ RM. By taking the dot-product with an arbitrary point ~x ∈ RM, we project ~x onto
the direction ~w (see Figure 3.3). As all of our points on the hyperplane have the same
component in ~w direction, we can represent the hyperplane with

~w ·~x = b

for some constant b ∈ R. Further, for points not on the hyperplane, we can decide on
which side they are located on by evaluating ~w ·~x − b. In our example, if the expression

11

3. Preliminaries

is less than 0, the point is located on the left of the line, as the component in ~w direction
is smaller than it is for the points on the line. Otherwise, for values larger than 0, the
point is located on the right side.

Corollary 1. A hyperplane satisfying ~w ·~x − b = 0 acts as the classifier

c : RM → {−1, 0, 1}
~x 7→ sgn(~w ·~x − b) (3.3)

where sgn is the sign function.

To find the maximum-margin hyperplane, we can calculate the size of the margin and
formulate a constrained quadratic optimization problem. Using further observations,
we can reformulate the problem and arrive at a so-called dual formulation which we
will use in the next section. We refer the interested reader to Appendix Section A.1 and
Section A.2. Also, we elaborate on the soft-margin variant of support vector machines
in Section A.3. This notion extends support vector machines to cases where the data
cannot be perfectly separated by a hyperplane by introducing a loss function.

3.3.2. Kernel Trick

So far, we assumed that it is possible to separate our data with a hyperplane. In practice,
this is often not the case. In this section, we learn how we would handle this problem
in the machine learning context. Based on this approach, we later develop our own
solution in Chapter 6.

Consider the one-dimensional dataset from Figure 3.4a. It is clear that we cannot
find a single hyperplane that will separate the data. What can do, however, is to
map the data into a higher-dimensional space. For that we define a transformation
function φ : RM → RK with K > M. In our example, we choose φ : x 7→ (x, x2)T. Our
one-dimensional dataset now becomes two-dimensional and suddenly, we can find a
separating hyperplane (Figure 3.4b). In our original space, this hyperplane corresponds
to a quadratic function.

Of course, this comes at a cost. If we look at a three-dimensional dataset that we
want to map with a quadratic transformation, φ might look like this: φ : (x, y, z)T 7→
(x, y, z, xy, xz, yz, x2, y2, z2)T – for the quadratic mapping, the dimensionality already
increases quadratically. With that, the computation time for finding the maximum-
margin hyperplane and evaluating the decision function increases significantly.

In the machine learning context, we deal with high-dimensional data in areas like
natural language processing [Pra+04] and image classification [DS02]. Increasing the
dimensionality quadratically or even more is simply not feasible in that case. This is
why support vector machines usually make use of the so-called kernel trick.

The main idea of the kernel trick is that we do not need transform the dataset to the
high-dimensional space explicitly to find the maximum-margin hyperplane. Instead, we
use the so-called dual formulation of the margin-maximization problem that we derive

12

3.3. Support Vector Machines

x

y y = −x2 + mx + b

(a) The original one-dimensional dataset

x

x2 x2 = mx + b

(b) The transformed dataset

Figure 3.4.: A linearly inseparable dataset becomes linearly separable by transforming it
into a higher-dimensional space. Transforming the decision function back
gives a quadratic polynomial.

in Appendix A.2. There, our function only depends on the dot-products of pairs of ~xi.
Hence, instead of calculating the high-dimensional dot-product φ(~xi) · φ(~xj) explicitly,
we define a so-called kernel function K(~xi,~xj) = φ(~xi) · φ(~xj) that we calculate implicitly.

Polynomial Kernel The polynomial kernel of degree d is defined as [HTF09, Chapter
12.3]

K(~u,~v) = (1 + ~u ·~v)d (3.4)

For example, for d = 2 and ~u,~v ∈ R2, this is

K(~u,~v) = (1 + u1v1 + u2v2)
2

= 1 + 2u1v1 + 2u2v2 + 2u1v1u2v2 + u2
1v2

1 + u2
2v2

2

and therefore corresponds to

φ(~u) = (1,
√

2u1,
√

2u2,
√

2u1u2, u2
1, u2

2)
T

For calculating K(~u,~v) we only need to calculate the dot-product of the two-dimensional
vectors ~u and ~v, while the result is the same as the dot product of the six-dimensional
vectors φ(~u) and φ(~v).

Radial Basis Kernel The radial basis kernel (sometimes called RBF kernel or gaussian
kernel) with parameter γ ∈ R is defined as

K(~u,~v) = exp(−γ|~u −~v|2) (3.5)

While this is one of the most widely used kernels, K is no longer based on a simple
transformation function φ. In fact [Sha09] shows that φ maps to an infinite-dimensional
space.

13

3. Preliminaries

The kernel trick of only implicitly calculating the high-dimensional representation is a
key contributor to the success of support vector machines. In our use-case, however, as
our data is usually not as highly-dimensional, we propose a slightly different solution
in Chapter 6.

3.3.3. Computational Complexity

When working with a large dataset xi ∈ RM for i ∈ {1, . . . , N} the runtime complexity
is important and impacts the choice of our approach in Chapter 6. As most solvers use
iterative methods that depend on the specific dataset, expressing the runtime only in
terms of N and M sometimes does not capture the entire behavior – still it gives a good
overview of the different methods.

Nonlinear Kernels When working with nonlinear kernels with the kernel trick, usually
the dual formulation is used. This way, we do not have problems with high-dimensional
data. However, simply evaluating our optimization function (Equation A.11) is already
quadratic in the number of data points N. To help with that, solvers like LIBSVM [CL11]
use decomposition methods and cache results. Depending on the efficiency of the cache,
one iteration takes O(N) time if the cache can be used or O(NM) time in case the
relevant data was not cached [CL11, Section 5.7]. While the exact number of iterations
needed has not been formally shown, the expected number of iterations seems to scale
“higher than linear” in N [CL11, Section 5.7]. In total, the training time is at least
quadratic in N, making it impractical for large datasets.

Linear Kernels When no kernel is used (or the kernel is linear), the training time can
be much improved. LIBLINEAR [Fan+08] implements fast solvers using trust region
Newton methods [LWK07] as well as coordinate descent algorithms [CHL08; Hsi+08].
Here, either the primal or the dual formulation is used depending on the dimensionality
of the data. In practice, these methods scale almost linearly to large numbers of data
points and dimensions.

14

4. Motivating Example

As a motivating example, we have a look at the cruise control model from [LMT15a].
Here, we want to develop a controller for a car that ensures that the car will not crash
into the front vehicle. As a secondary objective, the car should drive as fast as possible,
thereby minimizing the distance between both cars.

Distance

VelocityEgo

AccelerationEgo

VelocityFront

AccelerationFront

Figure 4.1.: An illustration of the cruise model. Source: [LMT15a]

The model is illustrated in Figure 4.1. We only consider two vehicles, our vehicle
called ego and the next vehicle in front of us called front. We drive on a single lane
without cars entering or leaving, therefore this constellation does not change. The state
of the system is modelled by the velocities ve, v f of the cars and their relative distance dr;
the safety criteria dr ≥ dsa f e should hold at every state. In the model, both cars choose
a constant acceleration ae, a f for the duration of one time step t1. Then, the new state
(d′r, v′e, v′f) is given by

v′e = ve + aet1 (4.1)

v′f = v f + a f t1 (4.2)

d′r = dr + (v f − ve)t1 +
1
2
(a f − ae)t2

1 (4.3)

The model restricts the domains of the accelerations to ae, a f ∈ {−2, 0, 2} describing the
three actions deceleration, neutral, and acceleration. Similarly, the cars have a bounded
minimum and maximum velocity vmin, vmax and the distance sensor has a limited reach
of dmax. Depending on the values of these parameters, the size of the generated controller
changes considerably.

4.1. Model Parameters

We made some adjustments to the cruise model compared to the version available
at [LMT15b]. In addition to the modifications previous works made (described in

15

4. Motivating Example

Appendix B.1) we also changed the constants vmin, vmax, and dmax. The cruise model
used in [Ash+20] and [Ash+21] specified vmax = 20, vmin = −10, and dmax = 200. This
provoked the following unwanted behavior. When the distance between the the front
and the ego vehicle is at around 150 and both cars can drive at full speed. However,
when the relative distance approaches 200, the ego vehicle needs to slow down. The
reason being the following behavior of the front vehicle:

1. the front vehicle drives with v f = 20 and dr = 190,

2. the front vehicle disappears into the far-away state as dr > 200,

3. a “new” car appears at the end of the sensor range dr = 200. Independent of
the velocity the front vehicle had before, the new car can have any velocity, for
example v f = −10.

This way, the front vehicle effectively changes its velocity from v f = 20 to v f = −10 in
just a couple of time steps. Even the distance of 200 is not enough for the ego vehicle
to react and avoid a crash in this scenario. We fix this flaw by increasing the minimal
velocity and the maximum sensor distance so that the ego vehicle has enough time to
break if a new car suddenly appears. An overview of the parameters we used for the
cruise model is in Appendix B.2.

4.2. Problems with the Current Solutions

To illustrate the problem with the current solution, we consider the dataset cruise_250
(see Appendix B.2). Here, the model checker UPPAAL Stratego [Dav+15] generates
a controller file with over 400MiB comprising 320,523 states and 961,569 state-action
pairs. Representing it with a binary decision diagram [Bry86] still uses over 1,800 nodes.
With dtcontrol and axis-aligned or linear splits, we can get a decision tree with 869
or 369 nodes respectively which is still far too large to be understandable. Using the
determinization heuristics discussed in [Ash+20], we find a decision tree with only 3
nodes. Unfortunately, this determinized controller is of little use – it simply lets the
car decelerate until it reaches minimal velocity. Of course, this behavior satisfies the
safety criteria but is not helpful in the real world. To also fulfill the secondary objective
of minimizing the relative distance we have two options. We can pre-determinize
the controller by always picking the largest safe acceleration or we keep the maximal
permissiveness. In the latter case, the cruise controller acts as an emergency braking
system by letting the human driver choose any action as long as it is a safe one.

4.3. Handpicked Strategy

As shown in [Akm19], there is a decision tree representing the most-permissive controller
for the cruise example with just 11 nodes. Yet, there has not been a way of automatically
generating it with dtcontrol so far.

16

4.3. Handpicked Strategy

To better understand the model, we will briefly explain how the handcrafted strategy
works. In the worst case, the front vehicle will start decelerating in the next time step
and will continue until it has reached its minimal velocity. For our car, we have to decide
what action to take for the next time step t1: accelerate, stay neutral or decelerate. To see
if it is safe to accelerate, we calculate the relative distance after accelerating for one time
step t1 and then decelerating until the ego vehicle has reached the minimal velocity.

t1

vmin

v f

ve

A1

A2

A3

A4

t1(1 − amax
amin

)

t

v

Figure 4.2.: A velocity-time graph showing the ego vehicle accelerating for one time
step. The area between the blue and the red curve describes the change in
distance between the two cars.

In Figure 4.2 we have plotted the velocity-time diagram describing the kinematics
of both cars in case the ego vehicle accelerates in the next time step. The front vehicle
(red) instantly decelerates with the rate amin and then continues with minimal velocity.
The ego vehicle (blue) starts with a higher velocity, accelerates for one step, and then
decelerates with the same rate. The distance traveled is the time integral of the velocity,
so the area between the curves describes the relative distance change. We can partition
the area into four sections and calculate the respective areas:

A1 = − v2
e

2amin
−
(
−

v2
f

2amin

)

A2 = vmin
ve − v f

amin

A3 = amaxt2
1

(
1 − amax

amin

)
A4 = (ve − vmin) t1

(
1 − amax

amin

)
With these values, we can write the predicate deciding whether it is safe to accelerate in
the next time step as a quadratic polynomial of our state variables ve, v f , dr:

17

4. Motivating Example

1
2amin

v2
e −

1
2amin

v2
f

−
(

vmin

amin
+ t1(1 −

amax

amin
)

)
ve +

vmin

amin
v f

−
(

1 − amax

amin

)
t1(t1amax − vmin)

+ dr ≥ dsa f e (4.4)

18

5. Predicates From Domain Knowledge

As discussed in [Akm19; Ash+21], we want to facilitate domain knowledge provided by
human experts to generate helpful splitting predicates. Providing very specific equations
like the handcrafted predicate from Equation 4.4 is inherently tedious and error prone.
Ideally, we want to be able to synthesize the specific predicates from general domain
knowledge. In the case of the cruise model, we use the velocity and distance relations
that follow from a constant acceleration a for at time period t:

v = at (5.1a)

d =
1
2

at2 + vt (5.1b)

5.1. Our Approach

To generate new predicates from the base equations, [Akm19] used grammars. We
identified three main problems with that:

• Constructing those is challenging for a non-experienced user.

• The search space explodes if the grammar is not narrow enough.

• It is hard to tell whether an intermediate result with non-terminals is useful until
we have substituted all non-terminals.

This is why we propose a slightly different approach. Let P = {d, v, a, t} be the set of
physical quantities distance, velocity, acceleration, and time we consider in this example.
Then, let S = {ve, v f , dr} be the set of state variables and C = {dsa f e, vmin, vmax, aacc, aneu,
adec, t1} be a set of constants describing the minimum safety distance, the minimum and
maximum velocities of the cars, the acceleration values corresponding to the actions
“accelerate”, “neutral”, “decelerate”, and the duration of one time step. We observe that
every constant and state variable describes exactly one physical quantity. So we define
the function ρp(A) that returns the subset of entities of the set A that are associated
with the physical quantity p ∈ P. For example, ρs(S ∪ C) = {dr, dsa f e}. Our approach
can be described as following:

1. Initialize Vp := ρp(S ∪ C) for all p ∈ P describing the values that the physical
quantity p may have.

2. For every equation from the domain knowledge (5.1), solve it for every physical
quantity. This gives a set of equations in the form p = f (P \ {p}) for p ∈ P that we

19

5. Predicates From Domain Knowledge

call base identities. For example, the base identities for the acceleration are: a = v
t

and a = 2(d−vt)
t2 . A complete list of all 8 base identities is in appendix C.1.

3. For every physical quantity p and every pair of values x1, x2 ∈ Vp, add x1 + x2 and
x1 − x2 to Vp.

4. For every base identity α associated with the quantity pα, and for every possible
substitution function σ that maps physical quantities p ∈ P to values x ∈ Vp, add
σ(α) to Vpα .

Steps 3 and 4 can be repeated, thereby creating increasingly complex expressions. As
an example, let us see how we can generate the value done describing the difference in
distance after one time step if the ego vehicle accelerates and the front vehicle decelerates.
In Step 3 we add amin − amax to Va, as well as v f − ve to Vv. In Step 4 we use the base
identity α : d = 1

2 at2 + vt with the substitutions

σ(a) = amin − amax

σ(t) = t1

σ(v) = v f − ve

and we receive the expression for done:

done =
1
2
(amin − amax)t2

1 + (v f − ve)t1

In contrast to the grammar approach, every predicate we generate can be used directly
as a splitting predicate in a decision tree – we do not have any non-terminals we need
to replace later. For example, we could try to use done ≤ c for some constant c ∈ R in
our decision tree, where we would replace the constants amin, amax and t1 in done with
their respective numerical values, leaving us with a function of the state variables v f and
ve. Or instead, we could use done in the next substitution to create more sophisticated
expressions.

5.2. Handcrafted Predicate Derivation

We have seen a technique of generating compounded predicates, but how far away is the
handcrafted predicate we want to synthesize? For that, we try to derive the handpicked
predicate from Section 4.3 using the domain knowledge (cf. [Akm19]). For now, we
assume ve ≥ v f as these are the interesting cases. Then, the kinematics can be described
in three phases. First, the behavior in the next time step where the ego vehicle accelerates
and the front vehicle decelerates. Second, the phase when both cars break lasting until
the front car has reached minimum velocity. Third, the final phase where the front car
continues at minimal velocity whereas the ego car continues to decelerate until it also
reaches minimum velocity. We define the following expressions:

20

5.3. Performance

• done: the change in relative distance during the first time step.

• v f Chg, veChg: the change in velocity for both cars during the first time step.

• v′f , v′e: the new velocity of both cars after the first time step.

• t f , te: the time after the first time step until the respective cars reach minimal
velocity.

• d f , de: the distance traveled by the respective cars after the first time step until they
reached their minimal velocity.

• d f e: the distance the front car travels with minimal velocity until the ego car also
reaches its minimal velocity.

Using these expressions, Figure 5.1 shows how we can arrive at the handcrafted predicate.
At the top, we have a subset of the base values S ∪ C comprising constants like amax and
state variable like dr. The color encodes to which physical quantity a value belongs. For
example, all velocities are drawn in blue. Then the diagram shows the iterations of our
algorithm. Every iteration consists of two phases: Step 3 where values of the same type
can be added or subtracted to form new values, and Step 4 where we use our domain
knowledge base identities to calculate new values. We leave out the irrelevant values as
the total number of generated values would be far too large as we will see in the next
section.

We observe that the first meaningful distance predicates emerge after four iterations.
Then, summing the distance expressions together takes another 3 iterations. The
non-simplified version of the predicate that our algorithm would output is shown in
Appendix C.2.

5.3. Performance

Having an understanding of the goal, we can now interpret the performance of our
search. Unfortunately, the proposed approach is infeasible in practice. From 8 base
identities and 9 starting values from C ∪ S (we leave out aneutral), after one iteration, we
already have 3,604 predicates. After the second iteration, we estimate the number of
predicates to be in the realms of 1018.

An important contributor to the growth is Step 3. Without Step 3, we generate 66
predicates in the first and 10,568 in the second iteration. Unfortunately, Figure 5.1 shows
that these sums and differences are crucial throughout all iterations of the algorithm.

While the equation from the geometric interpretation (Equation 4.4) is less complicated,
it does not offer a convenient way of deriving it from the domain knowledge, especially
not in an explainable way.

21

5. Predicates From Domain Knowledge

dr amax t1 amin v f vmin ve

− −

done v f Chg veChgIteration 1

+ − −

v′
f v′

e

− −

Iteration 2

− −

t f teIteration 3

−

ded f d f eIteration 4

+
Iteration 5

−
Iteration 6

+
Iteration 7

Figure 5.1.: A derivation of the “can-accelerate” predicate.

5.4. Identified Problems

We have identified two fundamental problems with this approach: the large search space
and the missing uniqueness of the derivation.

First, as the search space is so large, we need a heuristic telling us which expression
will be useful at a later stage. When introducing the approach we stressed that we can use
any intermediate predicate in the decision tree. So a natural choice for a heuristic would
be some kind of impurity measure on the controller data. Unfortunately, expressions
like the time until we reach minimal velocity are not great splitting predicates. And even
expressions close to the final predicate like done or de are of little use on their own. In
Figure 5.2, we plot the handcrafted predicate d∗ together with its individual components
in a two-dimensional plot for the value v f = 2. While each predicate individually is a
bad classifier, their sum can perfectly classify the data. Given only the impurities of the
predicates, there does not seem to be a way to conclude which predicates are useful.
Thus, developing a better heuristic is an important step for future work.

Second, the handcrafted predicate is so complex that there are alternative expressions

22

5.4. Identified Problems

−6 −4 −2 0 2 4 6 8 10
−10

0

10

20

30

40

50

60

ve

d

d∗

dsa f e
done
d f
d f e
−de

Figure 5.2.: The handcrafted predicate d∗ and the terms used to derive it, plotted for
a fixed value of v f = 2. While the sum of the terms is a perfect classifier,
individually, they are not helpful for the classification.

that evaluate to the same predicate after substituting the constants with their values. For
example, when calculating done in Section 5.1, we set the acceleration to amin − amax which
evaluates to −4. Our approach would also try setting the acceleration to amin + amin
which also evaluates to −4 but lacks any relation to the situation we want to describe.
So only the general domain knowledge and the controller data might not be enough to
unambiguously derive an explainable predicate. Either a human has to steer the process
and select the most sensible predicates, or we have to somehow incorporate additional
information about the model.

With these realizations, we try to approach the problem from a completely different
perspective in the next chapter.

23

6. Predicates From Controller Data

We now propose a different approach that does not use domain knowledge but instead
precisely analyzes the controller data. In Figure 6.1, we have visualized a part of the
controller data from the cruise model together with a handcrafted splitting predicate.
The coordinate axes describe our three state variables ve, v f , dr and the color of the
data points describes which actions are allowed. We see that the handcrafted strategy
perfectly separates the red and blue labels. By looking at a two-dimensional plot for
a fixed value of v f in Figure 5.2, we see that the predicate is well defined by the data
points – we should be able to reconstruct the splitting function by solely looking at the
data and fitting a function to it.

ve

0
2

4
6

8

v f

0
2

4
6

8

dr

5

10

15

20

25

Figure 6.1.: Visualization of a handcrafted predicate perfectly separating the data.

In this chapter, we will first explore why the available curve fitting functionality is not
sufficient for our goal and then propose an alternative solution using support vector
machines. To make the decision trees even smaller and more explainable, we introduce
four additional techniques. First, we simplify the individual predicates by removing

25

6. Predicates From Controller Data

unimportant terms in Section 6.3 and rounding the coefficients to nice numbers in
Section 6.4. Then, we optimize which predicates are selected when building the decision
tree by proposing a new impurity measure in Section 6.5 and changing the predicates’
priorities in Section 6.6.

6.1. Problems with Curve Fitting

The recent extensions of dtcontrol [Wei20; Ash+21] enable us to use curve fitting [Arl94]
for finding unspecified coefficients. We know from Equation 4.4 that the handpicked
strategy is a quadratic polynomial so we can try to use a general quadratic polynomial
c1v2

e + c2vev f + c3v2
f + . . . and determine the coefficients with curve fitting. Unfortunately,

this approach fails to find the correct predicate. To understand why we need to
investigate how the curve fitting is implemented.

1 2 3 4

1

2

3

4

(a)

2
4

2
4

−2

−1

0

1

2

(b)

Figure 6.2.: In the current curve-fitting implementation, a two-dimensional dataset (a) is
mapped to a three-dimensional space where the z ∈ {−1, 1} is determined
by the label. The old approach then fits a function to the new dataset. Our
approach instead tries to separate the data like the gray surface does in (b).

For now, we always consider a one versus the rest split. This means, we pick a label y
that we want to separate from the rest and set

y′i =

{
+1 if yi = y

−1 else
for all i

Consider the two-dimensional data from Figure 6.2a. What the current version of
curve fitting does is the following. First, we map our two-dimensional data xi ∈ R2 with
label y′i ∈ {−1, 1} to the three-dimensional space where y′i is used as the third coordinate.
Then we use regression analysis to fit a function to the data with least-squares-fitting
[Lev44; Mar63] (see Figure 6.2b). What we propose in this thesis, is to use a classification

26

6.2. Using Support Vector Machines

approach rather than a regression approach. So in Figure 6.2b we are interested in the
gray function separating the data points instead of fitting them. This way, we put most
emphasis on the sample points close to the split rather than weighting every sample
equally. Coming back to the two-dimensional space (Figure 6.2a), we want to find a
function that smoothly separates the labels, ideally maximizing the distance to any
specific sample. This is where support vector machines come into play.

6.2. Using Support Vector Machines

As described in Chapter 3, support vector machines (SVMs) exactly do what we want:
find a function that separates the data and maximizes the margins. The main idea
offered in this work is that we can reconstruct the algebraic decision function from
the internal coefficients of the SVM. This is not feasible for tools like neural networks
[HTF09, Chapter 11] but we will see how and under what conditions it is possible for
SVMs in the next sections.

The dtcontrol tool already supports finding linear splitting predicates with SVMs.
Though, for the cruise example, a linear predicate is not enough to perfectly split the
data. So we are tempted to use a polynomial kernel to increase the expressiveness
of our SVM. However, we recall from Subsection 3.3.3 that the runtime of common
training algorithms for SVMs is at least quadratic in the number of samples. And in
fact, the algorithms implemented in the open-source tool scikit-learn [Ped+11] do
not terminate within an hour for the cruise example with a few hundred thousand
sample points.

We can circumvent this issue by taking advantage of our specific use case. Usually,
SVMs are used with high-dimensional datasets like images [DS02] or language models
[Pra+04] where the number of features has the same order of magnitude as the number
of samples. For the purpose of controller synthesis, the number of state variables is
usually small as the number of states usually grows exponentially with the number of
state variables. So while the kernel trick is useful for high-dimensional data, we can
renounce the kernel trick in our case and explicitly construct the higher-dimensional
space as we did at the beginning of Subsection 3.3.2. A similar idea is also described in
[Cha+10].

For example, when we want to change from the linear three-dimensional space
(ve, v f , dr)T to the quadratic space, we will have the following 9 dimensions

(ve, v f , dr, vev f , vedr, v f dr, v2
e , v2

f , d2
r)

T (6.1)

The moderate increase in dimensions is clearly outweighed by the much better perfor-
mance of the linear SVM algorithms we can now use.

6.2.1. Problems With Higher Dimensions

At the moment, we only support mapping to the quadratic space, which means our
predicates are quadratic polynomials. For higher degree polynomials, we have not seen

27

6. Predicates From Controller Data

that the gained expressiveness justifies the significantly increased complexity of the
predicates. For example, a cubic predicate with 5 variables already has 55 terms. Even
with the methods we will discuss in Section 6.3 and Section 6.4, this predicate will not
fulfill our goal of being explainable. Mapping to a space with features like ex or sin(x)
poses the challenge that we can only fit the coefficient, but not scale the function in
x-direction like ecx or sin(cx) and is therefore left for future work.

6.2.2. Reconstructing the Algebraic Decision Function

Assuming that our SVM finds a separating hyperplane that we want to use as a splitting
predicate in our decision tree, how do we reconstruct the algebraic representation? The
SVM algorithm finds a hyperplane (~w∗, b∗) with ~w∗ ·~x − b∗ = 0 where ~x corresponds to
a transformed set of state variables in the form of Equation 6.1. This means the wi are
the coefficients of the quadratic polynomial of our state variables.

When implementing it in practice, there is a small intermediate step we want to
mention for completeness. In order for the quadratic optimization algorithm to work
properly, the input data needs to be normalized to have a mean of 0 and a standard
deviation of 1. This standardization of course has to be taken into account when
exporting the coefficients.

We have now seen how SVMs can help us generate predicates that nicely separate
two label sets. Still, the polynomial predicates we receive for the cruise example
consist of up to 25 terms (see Appendix D.1 for an example). To improve readability
and explainability, we simplify the predicates with two methods: selecting the most
important features and rounding coefficients.

6.3. Feature Importance

As we have discussed in Chapter 4, the state of the cruise model is defined by ve, v f ,
and dr. However, the model checker UPPAAL Stratego also exposes four additional state
variables. These comprise the current acceleration values ae, a f that do not impact the
acceleration the cars choose in the next time step and the variables fchoose and echoose that
are an artifact from the internal model and have constant values for all relevant states.

To recognize such unimportant variables, we introduce a basic version of a feature
importance measure. Consider the two-dimensional dataset shown in Figure 6.3a with
features x1 and x2. To classify a data point, feature x2 is not needed. We verify this,
by removing feature x2 and grouping the data points with the same x1 value. We can
now measure how many “collisions” occur. If zero collisions occur, the predicate is not
needed. Otherwise, we can give a rough estimate of the importance of that feature by
calculating the ratio of data points where a collision happened.

Note that for a dataset like Figure 6.3b, this approach would judge both features as
irrelevant. Individually seen that is correct but we can only remove one of them without

28

6.4. Rounding Coefficients

x1

x2

(a)

x1

x2

(b)

Figure 6.3.: Examples with redundant features. In (a) x2 is not needed. In (b) x1 and x2

individually look redundant, but only one may be removed. Also, removing
x1 is preferred over removing x2

causing collisions. This is why we calculate the feature importance incrementally. When
we find an irrelevant feature, we remove it directly before calculating the importance
of the next feature. As a result, the outcome may depend on the order of features we
choose. For example, in Figure 6.3b, removing x1 would result in a linearly separable
dataset while removing x2 would not. In general, there might even be a case where
we can either remove a single feature xi or all three features features xi+1, xi+2, xi+3.
However, we did not observe any behavior like this so far, so we leave this issue for
future work.

6.4. Rounding Coefficients

With the feature importance, we remove variables that are clearly useless and reduce
the number of terms in the cruise predicates from 25 to 9. Still, we generate predicates
that contain unnecessary terms. For example, we know from our handcrafted predicate
(Equation 4.4) that we do not need a d2

r term for the cruise predicates. But, in the
predicate we generate (see Appendix D.2), the respective coefficient has a small positive
value. To understand why that is the case, recall that the only objective the SVM has
is to maximize the margin between the data points. For that, a small coefficient for d2

r
seems to be beneficial. If we loosen the maximum margin objective, we can generate a
predicate with equivalent accuracy but a simpler algebraic expression. Again, as we are
not interested in the classifier’s ability to generalize – as long as the accuracy for our
controller data stays the same – we do not care about how large the margins are.
So, to prettify our predicate, we proceed in three steps:

1. Setting coefficients to zero.

2. Scaling the entire predicate.

3. Rounding coefficient to integers or nice numbers.

29

6. Predicates From Controller Data

6.4.1. Rounding to Zero

If we can set a coefficient to zero, the predicate becomes significantly shorter and easier
to understand. So this is our primary goal. A natural approach is to try setting a
coefficient with a small absolute value to zero and checking if the classification for all
samples stays the same. While this suffices for some coefficients, sometimes we need
to change the remaining ones to counterbalance the change. So, what we do instead
is to remove the feature temporarily and try re-training the SVM. If successful, we
permanently remove the feature for this split and try the next feature. Similar to the
feature importance approach (Section 6.3), the result may again depend on the order
of coefficients we try to remove. Here, we use the heuristic of trying to remove the
coefficient with the smallest absolute value first.

Compared to the feature importance approach, three key differences make this
approach more powerful:

• We only consider the subset of the entire dataset available in the current subtree.

• We only focus on separating one specific label (we only have the two labels +1
and −1).

• We directly consider the features in the higher-dimensional space such as d2
r

6.4.2. Scaling the Predicate

An additional step to improve readability is to scale the generated predicate. In principle,
a predicate α : 0.5x + 0.1y ≤ 0.3 is equivalent to a scaled predicate 10α : 5x + y ≤ 3 but
the second one might be easier to read. The SVM uses an internal scaling constraint
(Appendix Equation A.1) but for us, this is not relevant. We can again lift this constraint
and scale all coefficients as well as the intercept value b arbitrarily. One could think of
various heuristic of how to scale the predicate. We decided to use a simple one: we
search for the coefficient with the value closest to 1 and scale the predicate so that it
becomes exactly 1. This way, we have at least one term with a simple coefficient.

6.4.3. General Rounding

As the last step, we generalize the “rounding to zero” approach and use it on the
coefficient we could not set to zero. This way, instead of having a predicate like
8.165839d2

r − 2.935846vr ≤ 0 we can use a nicer looking one like 8d2
r − 3vr ≤ 0. For that,

we try the approach from above with increasing relative precision. For example, for the
coefficient of d2

r , we first try the value 10, then 8, then 8.2, and so on, until we find a
value that does not change the classification for any sample. Note that we do not re-train
the SVM in this step but simply change the coefficient and check if the classification
stays the same.

30

6.5. Min-label Entropy

With these techniques, we can finally generate pretty predicates. For example, one
the predicate we find for the cruise_250 dataset exactly corresponds to the handcrafted
polynomial from Equation 4.4 after substituting all constants. The only difference is the
constant offset:

−0.25v2
e + 0.25v2

f − 5ve + 3v f + dr + 19.5 ≤ 0 (6.2)

But before we continue, we need to have a look at numerical problems we encounter
while rounding.

6.4.4. Numerical Errors

One problem we need to handle concerns floating point precision errors. When testing
our classifier, we use the internal coefficients of the SVM. The coefficients we output are
different though, as we need to undo the normalization we applied. We must ensure
that possible precision errors from these transformations do not change the classification.
In the original predicate generated by the SVM, the classifier maximizes the margin
between the label sets so we can be quite confident that small precision errors will
not change the classification1. When trying out rounded coefficients, however, we lose
this property. A rounded coefficient might classify everything correctly but the slightly
different transformed coefficient might lead to other results.

As a heuristic against these problems, we over-approximate a change when trying out
a rounded coefficient. For example, if our current coefficient is 2.953 and we want to try
the rounded value 3, we over-approximate the change and try 3.00001 instead. If that
works, we can be more confident that the value 3 will not lead to those problems.

Additionally, we also encounter precision problems if our SVM uses very large
coefficients. How we deal with them is discussed in Appendix D.3.

When the tree construction is finished, dtcontrol verifies that every sample is classi-
fied correctly or outputs an error rate. In this step, we use the transformed coefficients
of the polynomial we output so we can be sure that the decision tree is as accurate as
the tool tells the user.

6.5. Min-label Entropy

Now that we have pretty predicates, we shift our focus to the decision tree construction
for the next two sections. For the cruise dataset, we can now construct a decision tree
with 37 nodes, only 10% of the size when using linear predicates. Moreover, we have
seen that we generate the exact predicates we derived by hand in Section 4.3. Still, the
decision tree is not as compact as the 11 node tree from [Akm19] as we do not directly
use those predicates. To understand why this is the case, we have a look at Figure 6.4.
We see that split A perfectly separates the blue label from the rest, while B separates the
red and orange labels but distributes the blue one among both children. Considering

1Note that this only holds for cases where we find a perfect split.

31

6. Predicates From Controller Data

only a single split, we would prefer split B because the dataset is nicely separated except
for the small number of blue samples. The entropy impurity measure comes to the same
conclusion and assigns split B a better entropy score.

However, when building a perfect classifier for representing the most-permissive
controller, we have a different perspective than in machine learning. At some point, we
need to separate the blue labels from the rest. If we do not separate them now and select
split B, we have to add additional splits on both sides of the split B. If we rather start
with split A, we can select split B as the next split in the left child and receive a smaller
decision tree. Both options are shown in Figure 6.5.

A B

Entropy: 1 Entropy: 0.88

Figure 6.4.: Two different splits with their respective entropy values. While split B has
a better entropy value and is preferred in machine learing, we want to use
split A first when building a perfect classifier.

B

A A

A

B

Figure 6.5.: The decision trees needed for perfect classification with the splits from
Figure 6.4.

This effect is especially prevalent if the number of samples per label differs significantly.
In the cruise example, we observe exactly that: the label “all actions are allowed” has 20
times more data points than any of the other labels. As a countermeasure we introduce
a new impurity measure that we call min-label entropy:

Definition 4. For a dataset X = Xl] Xr with the label set B, let n(X, y) describe the
number of data points in X with label y ∈ B. For a predicate α that splits the dataset
into Xl and Xr, we define the min-label entropy H∗ as

K(p) := −p log2(p)

H∗(X, y) := K
(

n(X, y)
|X|

)
H∗(α, X) := min

y∈B

{
|Xl |
|X| H∗(Xl , y) +

|Xr|
|X| H∗(Xr, y)

}
(6.3)

32

6.6. Predicate Priority

Intuitively, the min-label entropy measure estimates for every label y, how difficult it
will be to to separate the label y in both partions after this split. Then it returns the
value of the best label. The strategy we want to provoke with this impurity measure is
to first fully separate one label and then continue with the next one. Specifically, if we
can completely separate one label like in the example in Figure 6.4, the impurity for this
split is 0 and we definitely select such a spilt.

6.6. Predicate Priority

With the min-label entropy, we reduce the decision tree size of the cruise example to
25. As a last optimization heuristic, we also adjust the priorities of the predicates. When
deciding between an axis-aligned and a polynomial predicate that both have similar
impurity values, we want to choose the axis-aligned one as it is considerably simpler
to understand. For that reason, dtcontrol has implemented a priority function for
predicate generators. For example, when we give the polynomial predicates the priority
0.5 and the axis-aligned ones the priority 1, we only choose a polynomial predicate if it
is at least twice as good in terms of the impurity measure. In fact, we want to choose
an even lower value as a priority for another reason. In the cruise example, we know
that we can find a polynomial that distinguishes cases where we can accelerate from
those where we cannot. In our handpicked strategy, we did however not consider the
edge cases when we are already driving at minimal or maximal velocity. If we do not
exclude those, the data is not perfectly separable, meaning we will find a polynomial
split that almost classifies everything correctly, but misses a few data points. While this
is not a huge problem, it turns out that it is more effective to first exclude the edge cases
with axis-aligned predicates and then perfectly split the data with a complex predicate
later. We can achieve it with a low priority value ≤ 0.2 for the polynomial splits in
combination with our min-label entropy. This way, we will only choose the complicated
splits if they are at least 5 times better. Note that the impurity is 0 if we can perfectly
separate one label, so in this case, we are infinitely better than any non-perfect solution.

33

7. Evaluation

In this chapter, we will evaluate how well the two approaches proposed in Chapter 5
and Chapter 6 perform on our running example cruise as well as on other benchmarks.

Artifacts All resources such as generated domain knowledge predicates, model files,
and synthesized controllers used in this thesis are available to download at [Jün21]. The
repository also contains scripts to reproduce the benchmark tables presented in this
chapter.

7.1. Domain Knowledge Approach

As we have seen in Chapter 5, our approach was unable to generate the handcrafted
predicate for the cruise example. Still, we generated a lot of predicates that might be
useful when building the decision tree. We evaluate three sets of predicates that we
generated with our approach from Section 5.1. As the number of predicates increases
so fast and we cannot even complete two iterations, we also try skipping Step 3 in the
approach, meaning we do not add sums and differences of our values. The number of
nodes of the resulting decision trees for the cruise_250 dataset are shown in Table 7.1.
In addition to the number of generated predicates, we also list the number of unique
predicates as multiple predicates can evaluate to the same expression after substituting
the constants with their values (we have seen the example amin = −amax in Section 5.4).
To build the decision tree, we use the generated predicates in addition to the axis-aligned
predicates and choose the best splitting predicates using the entropy impurity measure.

As a comparison, we have included the decision trees we receive without domain
knowledge using only axis-aligned splits and using linear predicates generated with the
OC1 heuristic [MKS94].

We see that the generated predicates help find succinct decision trees. For the largest
predicate set, we even find a smaller tree than we do with linear predicates. Still, it is
not clear whether this is because the predicates describe the dynamics of the system
well or whether this improvement is simply due to the large number of predicates we
try. In fact, we try so many splitting predicates that the runtime increases from 1 minute
when using linear predicates to over twelve hours for the large predicate set, even after
implementing use-case-specific optimizations.

As we did not succeed in creating truly explainable decision trees for the cruise
example, we do not try this approach on other case studies but instead focus on the
second approach.

35

7. Evaluation

Table 7.1.: The decision tree sizes (number of nodes) while using different sets of pred-
icates for the cruise_250 dataset. The column “Sum?” describes if we use
Step 3 of our generation approach from Section 5.1.

Iterations Sum? #Predicates #Unique Pred. DT Size

1 No 66 42 655
1 Yes 3,604 1,929 395
2 No 10,568 9,634 269

Comparision
Axis-aligned predicates 869
Linear predicates 369

7.2. Data-Driven Approach

We will now evaluate how well generating quadratic polynomials with SVMs performs
in practice. While developing the various techniques and heuristics, we mainly focused
on the cruise dataset. In this section, we first analyze the results for this dataset
but then investigate how well the approach generalizes for other case studies. For
that, we compare our results to the existing approaches and to the minimum decision
tree achievable in theory. Then we will look at our new impurity measure and its
performance independently.

7.2.1. Cruise Control

Using all the strategies discussed in Chapter 6 we achieve great results for the cruise
model. For the cruise_250 dataset, we find a succinct decision tree with only 11
nodes (see Figure 7.1a). This is exactly the number of nodes [Akm19] found with the
handcrafted strategy. In fact, we precisely found the handcrafted “must break” and “can
accelerate” predicate from Equation 4.4 (or in a different formulation in Appendix C.2).
There is only a slight difference in the constant offset.

For the slightly larger cruise_300 dataset, we generate a very similar but slightly
larger decision tree with 13 nodes (Figure 7.1b). The quadratic predicates change in line
with the change of the constant vmin (see Table B.1 in the appendix) and one complex
splitting predicate is exchanged for two simpler predicates.

In both cases, the generated decision trees are almost 80 times smaller than the ones
we receive with axis-aligned predicates and 30 times smaller than the ones with linear
predicates.

7.2.2. Minimum Tree Size

To better understand the quality of our results, we compare them to the theoretical
minimum-sized decision trees. We can give a lower bound on the number of nodes
the decision tree must contain if we want to represent the entire controller without

36

7.2. Data-Driven Approach

0.25*vE²
-0.25*vF²

-d
+4vE
-3vF

+11.5 <= 0

vE <= -5.0

True

-2

False

-0.333*d*vE
+vF

-9 <= 0

True

vE <= 19.0

False

0

True

[0, 2]

False

-0.25*vE²
+0.25*vF²

+d
-5vE
+3vF

-19.5 <= 0

True

[0, -2]

False

[0, -2]

True

[0, -2, 2]

False

(a) cruise_250

0.25*vE²
-0.25*vF²

-d
+6vE
-5vF

+15.5 <= 0

vE <= -9.0

True

-2

False

d <= 7.5

True

vE <= 19.0

False

-2d
-vF

+5 <= 0

True

[0, 2]

False

[0, 2]

True

0

False

-0.25*vE²
+0.25*vF²

+d
-7vE
+5vF

-27.6 <= 0

True

[-2, 0]

False

[-2, 0]

True

[-2, 0, 2]

False

(b) cruise_300

Figure 7.1.: The decision trees for the cruise example generated by our data-driven
approach.

determinizing (the most-permissive controller) as following. At every state s, a subset
of actions C(s) ⊆ A is allowed. We define U := {C(s) | s ∈ S} as the set of all possible
allowed action subsets that occur in our controller at at least one state. To completely
represent the controller, we need at least one distinct leaf in our decision tree for every
distinct element u ∈ U. If we disregard the non-binary splits for categorical variables
introduced in [Ash+21], we always build a full binary decision tree. As a full binary tree
with n leaves has n − 1 inner nodes, the lower bound for the total number of nodes of
our decision tree is 2|U| − 1.

If the decision predicates are sufficiently complex we can always achieve this bound.
However, in practice oftentimes this is not even desirable. For example, we see that our
decision tree for the cruise example in Figure 7.1a does not have minimum size as it
contains two leaves with the actions a ∈ {−2, 0}. Still, to keep an explainable decision
tree, we would not want to merge those leaves as one describes that the car cannot
accelerate because it has already reached its maximum velocity while in the other case,
accelerating would be technically possible but would lead to unsafe behavior.

37

7. Evaluation

7.2.3. Benchmarks

To see how our approach and the individual heuristics generalize, we evaluate them
on the case studies of cyber-physical systems from [Ash+20] as well as on the case
studies from the quantitative verification benchmark set [Har+19] that were used in
[Ash+21]. We do not use any determination heuristics but generate the most-permissive
controllers. We ran all experiments on a server with the operating system Ubuntu
20.04, a 2.2GHz Intel(R) Xeon(R) CPU E5-2630 v4 and 250 GB RAM. Table 7.2 contains a
selection of the results, with the case studies of cyber-physical systems at the top and
quantitative verification at the bottom. In every row, we compare the number of nodes
in the generated decision tree for

• the axis-aligned splitting strategy (Ax.Al.),

• the smallest decision tree we could generate with axis-aligned and linear predi-
cates1 (Linear),

• axis-aligned predicates and the quadratic polynomials generated by support vector
machines with a priority value of 0.1 (Poly),

• and with the default priority value of 1.0 (PolyPrio1).

In every cell, the top number describes the result using the entropy impurity measure
and the bottom number refers to the result using min-label entropy. TO indicates that
we were not able to generate a decision tree within three hours. As a comparison, we
list the number of states of the controller as well as the theoretical minimum size of the
decision tree.

A complete table with all 28 case studies, a comparison with BDDs, and results for
different linear strategies can be found in Appendix E.

Scatter Plot Additionally, Figure 7.2 visualizes the results in a logarithmic scatter plot.
As a reference, we take the smallest tree we could generate with linear predicates and the
entropy impurity. Then we compare it to the size of the tree with axis-aligned predicates
and our quadratic polynomials. For example, the two blue points near the location
(370, 10) are the two cruise datasets. The x-coordinate is the size of the tree with linear
predicates and the y-coordinate shows the size of the polynomial or axis-aligned results.

Statistics Our new approach gives smaller decision trees for almost all case studies,
except for helicopter and cdrive.102 where the linear solution is smaller by 6% and
traffic_30m where we run into a timeout. Table 7.3 shows the cumulated statistics.
Most notably, we increase the cases where we find a tree of minimum size from 2 to 10
out of 28.

1We calculate this as the minimum over the three splitting strategies logistic regression, linear support
vector machines, and the OC1 heuristic.

2see Appendix E

38

7.2. Data-Driven Approach

Table 7.2.: The number of nodes of the generated decision trees using axis-aligned splits,
linear splits, and the proposed quadratic polynomial splits with priority 0.1
and 1.0. Each row displays the result using the entropy impurity measure at
the top and using min-label entropy at the bottom. TO means time out after
3 hours. As a comparison, we show the number of states of the underlying
controller and the minimum size a decision tree needs to have. The full table
is in Appendix E

Comparision Previous Quadratic

Case Study States MinSize Ax.Al. Linear Poly PolyPrio1

cartpole [Jag+20] 271 169
253 183 243 189
263 187 169 169

10rooms [JZ17] 26,244 49
17,297 147 61 61
17,297 107 49 49

helicopter [Jag+20] 280,539 475
6,339 3,769 5,035 3,787
9,649 4,637 TO TO

cruise_250 [LMT15a] 320,523 9
869 369 353 37

1,067 363 11 25

dcdc [RZ16] 593,089 5
271 139 129 199
265 173 147 273

truck_trailer [KZ19] 1,386,211 1,839
338,283 TO TO TO
366,411 TO TO TO

aircraft [RWR15] 2,135,056 31
915,877 916,685 725,011 602,335

1,015,903 1,013,949 688,577 630,631

pacman.5 232 37
53 49 47 37
81 59 37 37

philosophers-mdp.3 344 59
391 333 315 251
403 367 251 223

ij.10 1,013 19
1,291 753 897 209
1,405 735 141 177

elevators.a-11-9 14,742 129
16,341 9,865 9,779 2,859
17,809 9,955 2,023 1,919

exploding-blocksworld.5 76,741 149
16,913 2,687 4,511 829
20,273 2,845 TO TO

wlan_dl.0.80.deadline 189,641 175
3,369 701 693 667
3,675 2,841 523 TO

pnueli-zuck.5 303,427 173
171,371 156,165 114,979 83,219
263,955 221,645 95,879 83,951

39

7. Evaluation

101 102 103 104101

102

103

104

TO

TO

linear DT size

Linear
Polynomial (CPS)
Polynomial (QV)

Axis Aligned (CPS)
Axis Aligned (QV)

Figure 7.2.: Performance comparison of different predicate types. Based on the decision
tree size using linear predicates, we compare how many nodes the decision
trees with axis-aligned splits and quadratic polynomials have. Every sample
corresponds to a case study of cyber-physical systems (CPS) or originates
from the quantitative verification benchmark set (QV).

7.2.4. Min-Label Entropy and Predicate Priority

We applied two significant changes to arrive at the small decision trees in the cruise
example: the min-label entropy impurity measure and the modified predicate priority
value. We now analyze how useful they are for the other case studies.

In Figure 7.3 we again make use of a logarithmic scatter plot to visualize the data
from our tables. As a baseline, we take the size of the decision tree generated with our
proposed approach using the entropy impurity measure and the default priority 1.0.
We compare it to the size when using the proposed min-label entropy (blue) and when
using the reduced priority value 0.1 (red).

Table 7.3.: Cumulated statistics over all 28 benchmarks. We compare the best linear
strategy with entropy impurity with the best of our heuristics.

Linear Quadratic

Timeout 1 2
Minimal DT 2 (7%) 10 (35%)

DT is smaller or equal 25 (89%)
DT has less than half the size 8 (29%)

40

7.2. Data-Driven Approach

Min-Label Entropy The min-label entropy reduces the tree size in 14 out of 17 cases
(82%) where we are not already at the minimum size and do not run into a timeout.
Interestingly, this behavior is different when using the min-label entropy with axis-
aligned splits or linear splits. There, the min-label entropy can only improve the result
in 30 out of 106 cases (28%).

Also, we observe 5 cases where our approach only times out when using the min-label
entropy but not when using the standard entropy. A reason for this might be that the
min-label entropy encourages the formation of decision trees formed like a line. For all
case studies where we generate minimum-sized trees like the 10rooms case study, every
leaf has a unique label. With the min-label entropy impurity, every splitting predicate
separates out one of those labels. So the tree looks like a line. As a consequence, the
runtime for finding predicates does not decrease as fast while constructing the tree.
When we construct a perfectly balanced tree, the size of the dataset left at the subtree at
depth d is only a small fraction (2−d) of the original size. In the case of a line, however,
the dataset size only decreases slowly.

Low Priority Heuristic While the low priority value helps in the cruise example in
combination with the min-label entropy, the only other cases where this heuristic brings
an improvement are the dcdc and eajs.2.100.5.ExpUtil3 case studies. We conclude
that our motivating idea of first separating the “outliers” and then using the more
sophisticated splits later does not generalize well. Apparently, it is beneficial to just take
the best available split right away in complex models.

7.2.5. Explainability

We have seen that we can significantly reduce the number of decision tree nodes with
our proposed approach. But how explainable are the trees we generate?

Of course, reducing the number of decision nodes already helps create an explainable
decision tree. Still, we have to consider that the complexity of the individual splitting
predicate increases, thereby potentially reducing explainability. As an example, we
consider the 10rooms case study. Here, we find a decision tree with 49 nodes which
is the minimum size for a most-permissive decision tree. Unfortunately, the decision
tree is not particularly explainable as some predicates comprise up to 35 terms, even
after trying to round coefficients to zero. The reason being the large number of 10 state
variables. A quadratic polynomial with ten variables can already have 65 terms.

Regardless of the complexity of individual predicates, for some case studies, the
minimum decision tree size is already too large to be easily understandable by a human.
Any most-permissive decision tree for the case studies helicopter and truck_trailer
will have more than 400 and 1,800 nodes respectively. So, in these cases, we might need
to investigate determinized controllers as discussed in [Ash+20; Ash+21].

3see Appendix E

41

7. Evaluation

101 102 103 104101

102

103

104

TO

TO

Entropy Prio. 1 DT size

Entropy Prio. 1
MLE Prio. 1 (CPS)
MLE Prio. 1 (QV)

Entropy Prio. 0.1 (CPS)
Entropy Prio. 0.1 (QV)

Figure 7.3.: Performance comparison of the min-label entropy (MLE) and the low prior-
ity heuristic. Based on the decision tree size using quadratic polynomials
as predicates with entropy and priority 1.0, we compare how the heuris-
tics change the tree size. Every sample corresponds to a case study of
cyber-physical systems (CPS) or originates from the quantitative verification
benchmark set (QV).

42

8. Future Work

The tool dtcontrol achieves great performance generating compact decision trees,
especially when using the determination heuristics proposed in [Ash+20; Ash+21]. In
this work, we showed that more expressive quadratic polynomials can especially help
generate succinct trees for most-permissive controllers. An important part that can still
be improved upon, however, is the explainability. Of course, succinct decision trees
are already easier to understand by nature, but more complex predicates again reduce
explainability. Ideally, we would want to have a justification explaining the coefficients
of the complex predicate. Also, synthesizing other types of functions and improving the
current curve fitting are interesting directions for future work.

Predicate Generation From Domain Knowledge We have seen that predicate gener-
ation from general domain knowledge without an effective heuristic is infeasible. If
existent, such a heuristic would probably have to use a completely different approach, as
the impurity approach taken in this thesis does not seem to be a promising choice. With
regards to the problem of uniqueness we discovered in Section 5.4, a key component for
a heuristic might be the model checker or at least the dynamics equations of the system.
With that, simulations could be used to judge if a predicate describes a relevant behavior
of the system.

A different approach would be to use the polynomials we found in this work. Specifi-
cally, if we exactly know the coefficients where we want to arrive, it might be easier to
find a derivation for that with some kind of meet-in-the-middle technique.

Feature Importance As we have described in Section 6.3, the proposed feature im-
portance is far from perfect. The current implementation depends on the order of
features. Future work could analyze this dependence and propose countermeasures. In
the bigger picture, the feature importance could be lifted from a binary “relevant”/“ir-
relevant” classification to a continuous spectrum that could be used in the decision tree
construction.

Decision Tree Balance We proposed the min-label entropy impurity measure that
focuses on separating one label first. As a result, we encourage the formation of
unbalanced, line-like decision trees (see Subsection 7.2.4). However, more balanced
decision trees might be easier to understand by a human. Additionally, we might reduce
the individual predicate complexity (number of terms in the polynomial) if we use more
general splits first. For that, we would need to develop an impurity measure that prefers

43

8. Future Work

split A from Figure 8.1 over split B, just like the standard entropy does, but still keeps
the advantages of the min-label entropy and finds trees of minimum size.

A B

MLE: 0.5
(Entropy: 1)

MLE: 0
(Entropy: 1.19)

Figure 8.1.: Two different splits with their respective min-label entropy (MLE) and
standard entropy values. Split A leads to a more balanced tree and has a
better entropy value but split B is preferred by the min-label entropy as one
label is completely separated.

More Expressive Predicates In this work, we restricted ourselves to quadratic polyno-
mials as predicates generated by the support vector machines. To mitigate the problems
we discussed in Subsection 6.2.1, techniques such as principal component analysis could
be used to significantly reduce the dimensionality. This would allow us to use higher
degree polynomials, maybe even other types of functions.

Analysis of Other Case Studies The cruise model has been extensively discussed in
other work [Ash+19b; Wei20; Ash+21] as well as this thesis and we have found adequate
solutions. However, for case studies such as helicopter [Jag+20] and aircraft [RWR15]
the decision tree representation is still larger than the BDD representation (see Appendix
E). A better understanding of the model could lead to new realizations. Maybe other
types of functions as predicates are needed or our impurity measures do not work
sufficiently well for those cases.

Improved Curve Fitting In Section 6.1 we show the difference between the current
curve-fitting implementation and our new approach. In principle, the current approach
uses regression analysis to find a function that fits the data with least-square-fitting.
Our approach, however, tries to find a function separating the data instead of fitting it.
As we have seen great success with our approach, we might be able to transfer some
insight to the general curve fitting that is used to determine unspecified constants in
user-entered expressions.

44

9. Conclusion

In this work, we have investigated two approaches to generating expressive algebraic
splitting predicates for decision trees. We have seen that automatically generating
predicates from domain knowledge is not yet feasible with the current method. Hence
we proposed learning quadratic polynomials with support vector machines directly from
the controller data. Additionally, we introduced a new impurity measure called min-label
entropy that focuses on separating one specific label first. We integrated both ideas into
the open-source tool dtcontrol and were able to generate significantly smaller decision
trees in cases where the determination heuristics could not be applied. For the cruise
model, we generated a tree with the same size a the one created with help of a human
expert, and in 10 out of 28 case studies, we even found a decision tree of minimum size.

45

List of Figures

1.1. Example showing how different types of predicates can separate a dataset. 3

3.1. An example of how a decision tree can represent a controller. (a) shows a
determinized controller, (b) a permissive one with multiple safe actions at
some states. 8

3.2. The sample dataset with different separating hyperplanes. 11
3.3. Projecting ~x onto the normal direction ~w. 11
3.4. A linearly inseparable dataset becomes linearly separable by transforming

it into a higher-dimensional space. Transforming the decision function
back gives a quadratic polynomial. 13

4.1. An illustration of the cruise model. Source: [LMT15a] 15
4.2. A velocity-time graph showing the ego vehicle accelerating for one time

step. The area between the blue and the red curve describes the change
in distance between the two cars. 17

5.1. A derivation of the “can-accelerate” predicate. 22
5.2. The handcrafted predicate d∗ and the terms used to derive it, plotted for

a fixed value of v f = 2. While the sum of the terms is a perfect classifier,
individually, they are not helpful for the classification. 23

6.1. Visualization of a handcrafted predicate perfectly separating the data. . . 25
6.2. In the current curve-fitting implementation, a two-dimensional dataset

(a) is mapped to a three-dimensional space where the z ∈ {−1, 1} is
determined by the label. The old approach then fits a function to the
new dataset. Our approach instead tries to separate the data like the gray
surface does in (b). 26

6.3. Examples with redundant features. In (a) x2 is not needed. In (b) x1 and
x2 individually look redundant, but only one may be removed. Also,
removing x1 is preferred over removing x2 29

6.4. Two different splits with their respective entropy values. While split B
has a better entropy value and is preferred in machine learing, we want
to use split A first when building a perfect classifier. 32

6.5. The decision trees needed for perfect classification with the splits from
Figure 6.4. 32

47

List of Figures

7.1. The decision trees for the cruise example generated by our data-driven
approach. 37

7.2. Performance comparison of different predicate types. Based on the deci-
sion tree size using linear predicates, we compare how many nodes the
decision trees with axis-aligned splits and quadratic polynomials have.
Every sample corresponds to a case study of cyber-physical systems (CPS)
or originates from the quantitative verification benchmark set (QV). . . . 40

7.3. Performance comparison of the min-label entropy (MLE) and the low
priority heuristic. Based on the decision tree size using quadratic poly-
nomials as predicates with entropy and priority 1.0, we compare how
the heuristics change the tree size. Every sample corresponds to a case
study of cyber-physical systems (CPS) or originates from the quantitative
verification benchmark set (QV). 42

8.1. Two different splits with their respective min-label entropy (MLE) and
standard entropy values. Split A leads to a more balanced tree and has a
better entropy value but split B is preferred by the min-label entropy as
one label is completely separated. 44

A.1. Calculating the margin size d by projecting onto the direction ~w 60
A.2. Finding a minimum with an active constraint. If ~∇ f and ~∇c are not

parallel, we find a descending step (shown in orange). 62

48

List of Tables

7.1. The decision tree sizes (number of nodes) while using different sets of
predicates for the cruise_250 dataset. The column “Sum?” describes if
we use Step 3 of our generation approach from Section 5.1. 36

7.2. The number of nodes of the generated decision trees using axis-aligned
splits, linear splits, and the proposed quadratic polynomial splits with
priority 0.1 and 1.0. Each row displays the result using the entropy
impurity measure at the top and using min-label entropy at the bottom.
TO means time out after 3 hours. As a comparison, we show the number
of states of the underlying controller and the minimum size a decision
tree needs to have. The full table is in Appendix E 39

7.3. Cumulated statistics over all 28 benchmarks. We compare the best linear
strategy with entropy impurity with the best of our heuristics. 40

B.1. The parameters used for generating the controllers of the cruise model
and the resulting sizes measured in number of states and number of
state-action pairs. 65

E.1. Benchmark results for the cyber-physical system case studies. 72
E.2. Benchmark results for case studies from the quantitative verification

benchmark set (part 1). 73
E.3. Benchmark results for case studies from the quantitative verification

benchmark set (part 2). 74

49

Bibliography

[Akm19] S. M. Akmese. “Generating Richer Predicates for Decision Trees”. Bachelor’s
thesis. Technical University of Munich, 2019.

[Arl94] S. Arlinghaus. Practical Handbook of Curve Fitting. Taylor & Francis, 1994.
isbn: 9780849301438.

[Ash+19a] P. Ashok, T. Brázdil, K. Chatterjee, J. Křetínský, C. H. Lampert, and V.
Toman. “Strategy Representation by Decision Trees with Linear Classifiers”.
In: Quantitative Evaluation of Systems. Ed. by D. Parker and V. Wolf. Cham:
Springer International Publishing, 2019, pp. 109–128. isbn: 978-3-030-30281-
8. doi: 10.1007/978-3-030-30281-8_7.

[Ash+20] P. Ashok, M. Jackermeier, P. Jagtap, J. Křetnský, M. Weininger, and M.
Zamani. “DtControl: Decision Tree Learning Algorithms for Controller
Representation”. In: Proceedings of the 23rd International Conference on Hybrid
Systems: Computation and Control. HSCC ’20. Sydney, New South Wales,
Australia: Association for Computing Machinery, 2020. isbn: 9781450370189.
doi: 10.1145/3365365.3382220.

[Ash+21] P. Ashok, M. Jackermeier, J. Kretnský, C. Weinhuber, M. Weininger, and M.
Yadav. “dtControl 2.0: Explainable Strategy Representation via Decision Tree
Learning Steered by Experts”. In: Lecture Notes in Computer Science 12652
(2021). Ed. by J. F. Groote and K. G. Larsen, pp. 326–345. doi: 10.1007/978-
3-030-72013-1_17.

[Ash+19b] P. Ashok, J. Kretnský, K. G. Larsen, A. L. Coënt, J. H. Taankvist, and M.
Weininger. “SOS: Safe, Optimal and Small Strategies for Hybrid Markov
Decision Processes”. In: Quantitative Evaluation of Systems, 16th International
Conference, QEST 2019, Glasgow, UK, September 10-12, 2019, Proceedings. Ed.
by D. Parker and V. Wolf. Vol. 11785. Lecture Notes in Computer Science.
Springer, 2019, pp. 147–164. doi: 10.1007/978-3-030-30281-8_9.

[SHB00] R. St-Aubin, J. Hoey, and C. Boutilier. “APRICODD: Approximate Policy
Construction Using Decision Diagrams”. In: Advances in Neural Information
Processing Systems 13, Papers from Neural Information Processing Systems (NIPS)
2000, Denver, CO, USA. Ed. by T. K. Leen, T. G. Dietterich, and V. Tresp.
MIT Press, 2000, pp. 1089–1095. url: https://proceedings.neurips.cc/
paper/2000/hash/201d7288b4c18a679e48b31c72c30ded-Abstract.html.

51

https://doi.org/10.1007/978-3-030-30281-8_7
https://doi.org/10.1145/3365365.3382220
https://doi.org/10.1007/978-3-030-72013-1_17
https://doi.org/10.1007/978-3-030-72013-1_17
https://doi.org/10.1007/978-3-030-30281-8_9
https://proceedings.neurips.cc/paper/2000/hash/201d7288b4c18a679e48b31c72c30ded-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/201d7288b4c18a679e48b31c72c30ded-Abstract.html

Bibliography

[Bah+97] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi. “Algebraic Decision Diagrams and Their Applications”.
In: Formal Methods Syst. Des. 10.2/3 (1997), pp. 171–206. doi: 10.1023/A:
1008699807402.

[BBC16] BBC. Hackers caused power cut in western Ukraine. Jan 12, 2016. url: https:
//www.bbc.com/news/technology-35297464.

[BB98] K. P. Bennett and J. A. Blue. “A support vector machine approach to decision
trees”. In: 1998 IEEE International Joint Conference on Neural Networks Proceed-
ings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).
Vol. 3. 1998, 2396–2401 vol.3. doi: 10.1109/IJCNN.1998.687237.

[Bil16] J. Billington. Nest not working: Smart thermostat bug plunges customers into
cold. Jan 14, 2016. url: https://www.ibtimes.co.uk/google-owned-nest-
thermostat-plunges-customers-into-cold-after-software-glitch-
153797.

[BW96] B. Bollig and I. Wegener. “Improving the Variable Ordering of OBDDs Is
NP-Complete”. In: IEEE Trans. Computers 45.9 (1996), pp. 993–1002. doi:
10.1109/12.537122.

[Brá+15] T. Brázdil, K. Chatterjee, M. Chmelik, A. Fellner, and J. Kretnský. “Coun-
terexample Explanation by Learning Small Strategies in Markov Decision
Processes”. In: Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Ed. by
D. Kroening and C. S. Pasareanu. Vol. 9206. Lecture Notes in Computer
Science. Springer, 2015, pp. 158–177. doi: 10.1007/978-3-319-21690-4_10.

[Bre+84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984. isbn: 0-534-98053-8.

[Bry86] R. E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”.
In: IEEE Trans. Computers 35.8 (1986), pp. 677–691. doi: 10.1109/TC.1986.
1676819.

[CPS20] N. Chan, E. Polgreen, and S. A. Seshia. “Gradient Descent over Metagram-
mars for Syntax-Guided Synthesis”. In: CoRR abs/2007.06677 (2020). arXiv:
2007.06677. url: https://arxiv.org/abs/2007.06677.

[CL11] C.-C. Chang and C.-J. Lin. “LIBSVM: A library for support vector machines”.
In: ACM Trans. Intell. Syst. Technol. 2.3 (2011), 27:1–27:27. doi: 10.1145/
1961189.1961199.

[CHL08] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. “Coordinate Descent Method for
Large-scale L2-loss Linear Support Vector Machines”. In: J. Mach. Learn. Res.
9 (2008), pp. 1369–1398. url: https://dl.acm.org/citation.cfm?id=
1442778.

52

https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://www.bbc.com/news/technology-35297464
https://www.bbc.com/news/technology-35297464
https://doi.org/10.1109/IJCNN.1998.687237
https://www.ibtimes.co.uk/google-owned-nest-thermostat-plunges-customers-into-cold-after-software-glitch-153797
https://www.ibtimes.co.uk/google-owned-nest-thermostat-plunges-customers-into-cold-after-software-glitch-153797
https://www.ibtimes.co.uk/google-owned-nest-thermostat-plunges-customers-into-cold-after-software-glitch-153797
https://doi.org/10.1109/12.537122
https://doi.org/10.1007/978-3-319-21690-4_10
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://arxiv.org/abs/2007.06677
https://arxiv.org/abs/2007.06677
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://dl.acm.org/citation.cfm?id=1442778
https://dl.acm.org/citation.cfm?id=1442778

Bibliography

[Cha+10] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. “Train-
ing and Testing Low-degree Polynomial Data Mappings via Linear SVM”.
In: J. Mach. Learn. Res. 11 (2010), pp. 1471–1490. url: http://portal.acm.
org/citation.cfm?id=1859899.

[CE07] I. T. Christou and S. Efremidis. “An Evolving Oblique Decision Tree En-
semble Architecture for Continuous Learning Applications”. In: Artificial
Intelligence and Innovations 2007: from Theory to Applications, Proceedings of
the 4th IFIP International Conference on Artificial Intelligence Applications and
Innovations (AIAI 2007), 19-21 September 2007, Peania, Athens, Greece. Ed. by
C. Boukis, A. Pnevmatikakis, and L. Polymenakos. Vol. 247. IFIP. Springer,
2007, pp. 3–11. doi: 10.1007/978-0-387-74161-1_1.

[Dav+15] A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist.
“Uppaal Stratego”. In: Tools and Algorithms for the Construction and Analysis
of Systems - 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings. Ed. by C. Baier and C. Tinelli.
Vol. 9035. Lecture Notes in Computer Science. Springer, 2015, pp. 206–211.
doi: 10.1007/978-3-662-46681-0_16.

[DS02] D. DeCoste and B. Schölkopf. “Training Invariant Support Vector Machines”.
In: Mach. Learn. 46.1-3 (2002), pp. 161–190. doi: 10.1023/A:1012454411458.

[Deh+17] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. “A Storm is Coming: A
Modern Probabilistic Model Checker”. In: Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II. Ed. by R. Majumdar and V. Kuncak. Vol. 10427. Lecture
Notes in Computer Science. Springer, 2017, pp. 592–600. doi: 10.1007/978-
3-319-63390-9_31.

[Fan+08] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. “LIBLINEAR:
A Library for Large Linear Classification”. In: J. Mach. Learn. Res. 9 (2008),
pp. 1871–1874. url: https://dl.acm.org/citation.cfm?id=1442794.

[Har+19] A. Hartmanns, M. Klauck, D. Parker, T. Quatmann, and E. Ruijters. “The
Quantitative Verification Benchmark Set”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 25th International Conference, TACAS
2019, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
Part I. Ed. by T. Vojnar and L. Zhang. Vol. 11427. Lecture Notes in Computer
Science. Springer, 2019, pp. 344–350. doi: 10.1007/978-3-030-17462-0_20.

[HTF09] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer Series
in Statistics. Springer, 2009. isbn: 9780387848570. doi: 10.1007/978-0-387-
84858-7.

53

http://portal.acm.org/citation.cfm?id=1859899
http://portal.acm.org/citation.cfm?id=1859899
https://doi.org/10.1007/978-0-387-74161-1_1
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1023/A:1012454411458
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://dl.acm.org/citation.cfm?id=1442794
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7

Bibliography

[HKO19] E. Hemberg, J. Kelly, and U.-M. O’Reilly. “On Domain Knowledge and
Novelty to Improve Program Synthesis Performance with Grammatical Evo-
lution”. In: Proceedings of the Genetic and Evolutionary Computation Conference.
GECCO ’19. Prague, Czech Republic: Association for Computing Machinery,
2019, pp. 1039–1046. isbn: 9781450361118. doi: 10.1145/3321707.3321865.

[Hsi+08] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. “A
dual coordinate descent method for large-scale linear SVM”. In: Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008. Ed. by W. W. Cohen, A. McCallum, and
S. T. Roweis. Vol. 307. ACM International Conference Proceeding Series.
ACM, 2008, pp. 408–415. doi: 10.1145/1390156.1390208.

[Isi13] C. Isidore. Toyota settles acceleration case after $3 million jury verdict. Oct
25, 2013. url: https://money.cnn.com/2013/10/25/news/companies/
toyota-crash-verdict/.

[IS96] A. Ittner and M. Schlosser. “Non-Linear Decision Trees - NDT”. In: Machine
Learning, Proceedings of the Thirteenth International Conference (ICML ’96), Bari,
Italy, July 3-6, 1996. Ed. by L. Saitta. Morgan Kaufmann, 1996, pp. 252–257.

[Jac20] M. Jackermeier. “dtControl: Decision Tree Learning for Explainable Con-
troller Representation”. Bachelor’s thesis. Technical University of Munich,
2020.

[Jag+20] P. Jagtap, F. Abdi, M. Rungger, M. Zamani, and M. Caccamo. “Software
Fault Tolerance for Cyber-Physical Systems via Full System Restart”. In:
ACM Trans. Cyber Phys. Syst. 4.4 (2020), 47:1–47:20. url: https://dl.acm.
org/doi/10.1145/3407183.

[JZ17] P. Jagtap and M. Zamani. “QUEST: A Tool for State-Space Quantization-Free
Synthesis of Symbolic Controllers”. In: Quantitative Evaluation of Systems -
14th International Conference, QEST 2017, Berlin, Germany, September 5-7, 2017,
Proceedings. Ed. by N. Bertrand and L. Bortolussi. Vol. 10503. Lecture Notes
in Computer Science. Springer, 2017, pp. 309–313. doi: 10.1007/978-3-
319-66335-7_21.

[Jün21] F. Jüngermann. Learning Algebraic Predicates for Explainable Controllers: Arti-
facts. May 2021. doi: 10.5281/zenodo.4746131.

[KZ19] M. Khaled and M. Zamani. “pFaces: an acceleration ecosystem for symbolic
control”. In: Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April
16-18, 2019. Ed. by N. Ozay and P. Prabhakar. ACM, 2019, pp. 252–257. doi:
10.1145/3302504.3311798.

[KT51] H. Kuhn and A. Tucker. “Nonlinear Programming”. In: Second Berkeley
Symposium on Mathematical Statistics and Probability. 1951, pp. 481–492.

54

https://doi.org/10.1145/3321707.3321865
https://doi.org/10.1145/1390156.1390208
https://money.cnn.com/2013/10/25/news/companies/toyota-crash-verdict/
https://money.cnn.com/2013/10/25/news/companies/toyota-crash-verdict/
https://dl.acm.org/doi/10.1145/3407183
https://dl.acm.org/doi/10.1145/3407183
https://doi.org/10.1007/978-3-319-66335-7_21
https://doi.org/10.1007/978-3-319-66335-7_21
https://doi.org/10.5281/zenodo.4746131
https://doi.org/10.1145/3302504.3311798

Bibliography

[KNP11] M. Z. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification
of Probabilistic Real-Time Systems”. In: Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture
Notes in Computer Science. Springer, 2011, pp. 585–591. doi: 10.1007/978-
3-642-22110-1_47.

[LMT15a] K. G. Larsen, M. Mikucionis, and J. H. Taankvist. “Safe and Optimal Adap-
tive Cruise Control”. In: Correct System Design - Symposium in Honor of
Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, Oldenburg, Ger-
many, September 8-9, 2015. Proceedings. Ed. by R. Meyer, A. Platzer, and H.
Wehrheim. Vol. 9360. Lecture Notes in Computer Science. Springer, 2015,
pp. 260–277. doi: 10.1007/978-3-319-23506-6_17.

[LMT15b] K. G. Larsen, M. Mikučionis, and J. H. Taankvist. Safe and Optimal Cruise
Control: Website. Sep 16, 2015. url: https://people.cs.aau.dk/~marius/
stratego/cruise.html.

[Lev44] K. Levenberg. “A method for the solution of certain non-linear problems in
least squares”. In: Quarterly of applied mathematics 2.2 (1944), pp. 164–168.

[LWK07] C.-J. Lin, R. C. Weng, and S. S. Keerthi. “Trust region Newton methods for
large-scale logistic regression”. In: ACM International Conference Proceed-
ing Series 227 (2007). Ed. by Z. Ghahramani, pp. 561–568. doi: 10.1145/
1273496.1273567.

[Man02] O. L. Mangasarian. “A finite newton method for classification”. In: Optim.
Methods Softw. 17.5 (2002), pp. 913–929. doi: 10.1080/1055678021000028375.

[Mar63] D. W. Marquardt. “An algorithm for least-squares estimation of nonlinear
parameters”. In: Journal of the society for Industrial and Applied Mathematics
11.2 (1963), pp. 431–441.

[Mit+97] T. M. Mitchell et al. Machine learning. McGraw-hill New York, 1997.

[Mor+20] K. Morton, W. T. Hallahan, E. Shum, R. Piskac, and M. Santolucito. “Gram-
mar Filtering for Syntax-Guided Synthesis”. In: The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 1611–1618. url:
https://aaai.org/ojs/index.php/AAAI/article/view/5522.

[MKS94] S. K. Murthy, S. Kasif, and S. Salzberg. “A System for Induction of Oblique
Decision Trees”. In: J. Artif. Intell. Res. 2 (1994), pp. 1–32. doi: 10.1613/
jair.63.

[NW00] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Opera-
tions Research and Financial Engineering. Springer New York, 2000. isbn:
9780387987934.

55

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-23506-6_17
https://people.cs.aau.dk/~marius/stratego/cruise.html
https://people.cs.aau.dk/~marius/stratego/cruise.html
https://doi.org/10.1145/1273496.1273567
https://doi.org/10.1145/1273496.1273567
https://doi.org/10.1080/1055678021000028375
https://aaai.org/ojs/index.php/AAAI/article/view/5522
https://doi.org/10.1613/jair.63
https://doi.org/10.1613/jair.63

Bibliography

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn:
Machine Learning in Python”. In: J. Mach. Learn. Res. 12 (2011), pp. 2825–
2830. url: http://dl.acm.org/citation.cfm?id=2078195.

[Pra+04] S. S. Pradhan, W. H. Ward, K. Hacioglu, J. H. Martin, and D. Jurafsky.
“Shallow Semantic Parsing using Support Vector Machines”. In: Human
Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics, HLT-NAACL 2004, Boston, Massachusetts, USA,
May 2-7, 2004. Ed. by J. Hirschberg, S. T. Dumais, D. Marcu, and S. Roukos.
The Association for Computational Linguistics, 2004, pp. 233–240. url:
https://www.aclweb.org/anthology/N04-1030/.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
isbn: 1-55860-238-0.

[Qui86] J. R. Quinlan. “Induction of Decision Trees”. In: Mach. Learn. 1.1 (1986),
pp. 81–106. doi: 10.1023/A:1022643204877.

[RWR15] M. Rungger, A. Weber, and G. Reissig. “State space grids for low complexity
abstractions”. In: 54th IEEE Conference on Decision and Control, CDC 2015,
Osaka, Japan, December 15-18, 2015. IEEE, 2015, pp. 6139–6146. doi: 10.1109/
CDC.2015.7403185.

[RZ16] M. Rungger and M. Zamani. “SCOTS: A Tool for the Synthesis of Symbolic
Controllers”. In: Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control, HSCC 2016, Vienna, Austria, April 12-14,
2016. Ed. by A. Abate and G. E. Fainekos. ACM, 2016, pp. 99–104. doi:
10.1145/2883817.2883834.

[Sha09] A. Shashua. Introduction to Machine Learning: Class Notes 67577. 2009. arXiv:
0904.3664 [cs.LG].

[SZ19] A. Swikir and M. Zamani. “Compositional Synthesis of Symbolic Models
for Networks of Switched Systems”. In: IEEE Control. Syst. Lett. 3.4 (2019),
pp. 1056–1061. doi: 10.1109/LCSYS.2019.2920766.

[Vap00] V. N. Vapnik. The Nature of Statistical Learning Theory, Second Edition. Statistics
for Engineering and Information Science. Springer, 2000. isbn: 978-0-387-
98780-4.

[Wei20] C. Weinhuber. “Learning Domain-Specific Predicates in Decision Trees
for Explainable Controller Representation”. Bachelor’s thesis. Technical
University of Munich, 2020.

[Win10] P. Winston. 6.034 Artificial Intelligence, Lecture 16. Massachusetts Institute of
Technology: MIT OpenCourseWare, Fall 2010. url: https://ocw.mit.edu.
License: Creative Commons BY-NC-SA.

56

http://dl.acm.org/citation.cfm?id=2078195
https://www.aclweb.org/anthology/N04-1030/
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1109/CDC.2015.7403185
https://doi.org/10.1109/CDC.2015.7403185
https://doi.org/10.1145/2883817.2883834
https://arxiv.org/abs/0904.3664
https://doi.org/10.1109/LCSYS.2019.2920766
https://ocw.mit.edu

Bibliography

[ZVJ18] I. S. Zapreev, C. Verdier, and M. M. Jr. “Optimal Symbolic Controllers
Determinization for BDD storage”. In: IFAC-PapersOnLine 51.16 (2018).
Ed. by A. Abate, A. Girard, and M. Heemels, pp. 1–6. doi: 10.1016/j.
ifacol.2018.08.001.

57

https://doi.org/10.1016/j.ifacol.2018.08.001
https://doi.org/10.1016/j.ifacol.2018.08.001

A. Support Vector Machine Details

In this chapter, we have a deeper look at support vector machines. In Section A.1 we
describe how we can formulate the search for the maximum-margin hyperplane as
a constrained optimization problem. Then, in the following Section A.2 we analyze
how we can reformulate such a constrained problem more nicely and arrive at the dual
formulation that is later used for the kernel trick. In Section A.3 we generalize the
support vector machine to handle cases where we cannot perfectly separate the data by
introducing a loss function we want to minimize. There, we introduce the formulation
of the problem that is used by most support vector machine libraries.

A.1. Minimization Problem

We now want to find the maximum-margin hyperplane. For that, lets suppose we have
a dataset ~xi ∈ RM with corresponding positive and negative labels yi ∈ {−1,+1} for
i ∈ {1, . . . , N} that can be perfectly separated by a hyperplane.

We know that for points on the plane ~w · ~x − b = 0. For the data points closest to
the plane (the support vectors) we want |~w ·~xs − b| = 1 for future convenience. We can
always achieve this normalization by scaling ~w. By using our labels yi ∈ {−1,+1}, we
can rewrite it to:

ys(~w ·~xs − b) = 1 (A.1)

For all other data points, this expression has to be even larger. So in general, we have
the condition

yi(~w ·~xi − b) ≥ 1 (A.2)

for all i.
Now, how large is the margin between the the positive and negative samples? As

described in [Win10], we can calculate the distance d by looking at the connecting vector
from a negative support vector ~xn to a positive support vector ~xp and projecting it onto
the normal direction ~w (see Figure A.1):

d = (~xp −~xn)
~w
|~w|

= ((1 + b)− (b − 1))
1
|~w|

=
2
|~w| (A.3)

59

A. Support Vector Machine Details

where we used Equation A.1 to evaluate ~w · ~xp and ~w · ~xn as we know yp = 1 and
yn = −1.

~w

~xp

α
|~xp| cos α

= ~xp · ~w
|~w|

~xp −~xn

d

Figure A.1.: Calculating the margin size d by projecting onto the direction ~w

So, to maximize the margin distance d, we need to minimize |~w| while adhering to
Equation A.2.

A.2. Lagrangian Function and Dual Problem

To solve this constrained minimization problem, recall that |~w| =
√

∑j w2
j . As the square

root function is strictly monotonically increasing, we can instead minimize the radicand.
So we formulate the equivalent constrained quadratic optimization problem [HTF09,
Section 4.5.2]:

min
1
2
|~w|2 (A.4a)

subject to yi(~xi · ~w − b) ≥ 1, i = 1, . . . , N (A.4b)

How do we solve such a constrained problem? Of course, there are tools like [Fan+08]
that use iterative methods such as coordinate descent [CHL08] for problems formulated
like this, or more specifically for the soft margin formulation of this problem that we
encounter in section A.3. Still, we want to spend some time analyzing the specific
problem to find an dual formulation crucial for the success of support vector machines.

Ignoring the constraints for a second, we note that the function to be minimized
f (~w, b) := 1

2 |~w|2 is convex. We find the global minimum by setting ~∇ f = ~0. In our
example, the unconstrained minimum is at ~w = ~0 which clearly does not satisfy our
constraints. Now, consider one linear constraint ci(~w, b) := yi(~xi · ~w − b) − 1 with
ci(~w, b) ≥ 0.

60

A.2. Lagrangian Function and Dual Problem

Definition 5. Similar to [NW00, Chapter 12.1], we define call a constraint ci(~w, b) active
for (~w∗, b∗), if ci(~w∗, b∗) = 0. Otherwise, if ci(~w∗, b∗) > 0, we call ci inactive.

We can then distinguish those two cases when looking for an optimal solution (~w∗, b∗)
[NW00, Chapter 12.1]:

• The constraint is inactive (ci(~w∗, b∗) > 0): In this case,

~∇ f (~w∗, b∗) =~0 (A.5)

must hold. Otherwise, we could move in the opposite direction of the gradient
without violating the linear constraint to find a smaller solution ~w∗ − α~∇ f (~w∗, b∗)
for a sufficiently small α > 0.

• The constraint is active (ci(~w∗, b∗) = 0): In this case, we may not be able to freely
move in the direction of the gradient. So we can have a local minimum where
the gradient is not null. However, we know that the gradient must not have a
component in the direction parallel to our constraint, otherwise we could again
move in that direction. This means, the gradient of f and the gradient of ci (the
normal vector) must be parallel at position (~w∗, b∗):

~∇ f = λi~∇ci, for some λi ≥ 0. (A.6)

To see why λi must be nonnegative, we observe that ~∇ci points towards positions
with ci > 0 which satisfy the constraint. If we want to have a minimum at the
border, ~∇ f must point in the same direction, describing that f will increase in that
direction (see Figure A.2).

Also note that equation A.5 is equivalent to A.6 with λi = 0.

Lagrangian Function For now, we assume ci is active in the solution. We can then
define the Lagrangian function:

L(~w, b, λi) = f (~w, b)− λici(~w, b) (A.7)

The main idea is that we encode our active contrains into the Lagrangian function and
thereby reduce the problem to an unconstrained optimization problem. Let us verify
this claim by calculating the necessarily conditions for an extremum of L:

• ∂λiL = 0: this is equivalent to ci(~w, b) = 0, our active constraint.

• ∂~w,bL = 0: this is equivalent to ~∇ f = λi~∇ci, equation A.6 (we still need to require
λi ≥ 0).

This means we can find candidates for minima by finding extremums of L as long as
we enforce λi ≥ 0 and know which constraints are active. By extending this notion

61

A. Support Vector Machine Details

f

c = 0
c < 0

c > 0

~∇c

~∇ f −~∇ f

Figure A.2.: Finding a minimum with an active constraint. If ~∇ f and ~∇c are not parallel,
we find a descending step (shown in orange).

to multiple constraints as shown in [NW00, Chapter 12], we receive the following
Lagrangian equation for our problem:

L =
1
2
|~w|2 −

N

∑
i=1

λi(yi(~xi · ~w − b)− 1) (A.8)

If we again set the partial derivatives to zero, we receive the following insightful
relationships:

∂L
∂~w

= ~w −
N

∑
i=1

λiyi~xi = 0 ⇒ ~w =
N

∑
i=1

λiyi~xi (A.9)

∂L
∂b

=
N

∑
i=1

λiyi = 0 (A.10)

Recall that λi = 0 if constraint i is inactive and λi ≥ 0 if it is active. This means we can
express ~w as a linear combination of that sample points xi that have active constraints.
In fact, these will be our support vectors.

Dual Problem As a last step, we can use relations A.9 and A.10 to substitute ~w in
equation A.8:

L =
1
2

(
N

∑
i=0

λiyi~xi

)(
N

∑
j=0

λjyj~xj

)
−
(

N

∑
i=1

λiyi~xi

)(
N

∑
j=1

λjyj~xj

)
+ b

N

∑
i=1

λiyi +
N

∑
i=1

λi

=
N

∑
i=1

λi −
1
2

N

∑
i=1

N

∑
j=1

λiλjyiyj~xi ·~xj (A.11)

62

A.3. Soft-Margin

with the additional constraints ∑N
i=1 λiyi = 0 (see A.10), λi ≥ 0 (see A.6), and either

condition i has to be active or λi = 0, which can be expressed as

λi(yi(~xi · ~w∗ − b∗)− 1) = 0 (A.12)

These equations form the Karush-Kuhn-Tucker conditions [KT51] and are necessary for
(~w∗, b∗) to be a minimum.

Equation A.11 is an alterative way of formulating A.4 and is called the dual problem
to the primal formulation A.4. Interestingly, L only depends on the dot-products of ~xi.
This fact enables the so-called kernel trick that we discus in Subsection 3.3.2.

A.3. Soft-Margin

We have seen that working in a higher-dimensional space can make a dataset linearly
separable. In general, though, the data might still not be linearly separable in the higher
dimension due to noisy or erroneous data. Even if 1% of our data is erroneous, we still
want to find a classifier that predicts correct labels for 99% of data points.

Definition 6. We define the L1 - hinge loss function ξ for a hyperplane with ~w∗ and b∗,
and a sample point ~xi, yi as

ξ(~w∗, b∗, ~xi, yi) = max(0, 1 − yi(~w∗ ·~xi − b∗)) (A.13)

As we have seen in equation A.2, we can satisfy yi(~w∗ ·~xi − b∗) ≥ 1 in the linearly
separable case, so ξ = 0. Otherwise, ξ is a measure of how far away xi is from the correct
side. We can now frame our optimization problem (A.4) as the following unconstrained
problem:

min
1
2
|~w|2 + C

N

∑
i=1

ξ(~w, b,~xi, yi) (A.14)

with a constant C ∈ R. We can use C to balance the size of the margin and the accuracy
of the classification.

At first sight, an unconstrained problem looks beneficial. But at the same time, we
have lost the smoothness of our function as ξ is not differentiable everywhere. This is
why oftentimes an alternative formulation as a smooth constrained problem is used
literature [HTF09, Chapter 12.2] as well as when implementing solvers [CL11]. However
recently, there has also been work directly using this formulation [Hsi+08].

A variation of the hinge loss function is the L2 - hinge loss function ξ2 = ξ2 used
in [Fan+08; CHL08] and hence also utilized in dtcontrol. By taking the square, ξ2 is
differentiable, but not twice differentiable [Man02].

63

B. The Cruise Control Model

B.1. Cruise Control Modifications

The cruise control system is modeled in the tool UPPAAL Stratego [Dav+15]. The model
was introduced in [LMT15a] and is available to download on the respective website
[LMT15b]. We made the following small adjustment just like in previous work [Ash+20;
Ash+21]. As the accelerations are −2, 0 or 2 and the time step is 1, all velocities occurring
in the model are even. However, when a car appears from the far-away state, it can also
have an odd number velocity. To keep the even velocities, we changed the source code
in lines 242ff. to:

242 i:int[minVelocityFront/2, maxVelocityFront/2]
243 2*i <= velocityEgo
244 velocityFront = i*2,
245 distance = maxSensorDistance,
246 rVelocityFront = 2 * i * 1.0,
247 rDistance = 1.0*maxSensorDistance

You find the modified model file in [Jün21].

B.2. Cruise Control Parameters

We use other parameters for the cruise example than previous work [Ash+20; Ash+21].
Table B.1 contains an overview of the parameters used and the resulting size of the
controller measured in number of states and number of state-action pairs. The generated
controllers are included in [Jün21].

Table B.1.: The parameters used for generating the controllers of the cruise model and
the resulting sizes measured in number of states and number of state-action
pairs.

Parameters Controller Size

Name vmin vmax dmax #states #s-a pairs

cruise_prev -10 20 200 295,615 886,845
cruise_250 -6 20 250 320,523 961,569
cruise_300 -10 20 300 500,920 1,502,760

65

C. Predicate Generation

C.1. Base Identities

These 8 base identities are used when generating new predicates:

a =
2(d − tv)

t2

a =
v
t

t =
−v +

√
2ad + v2

a

t = −v +
√

2ad + v2

a
t =

v
a

v = − at
2
+

d
t

v = at

d =
at2

2
+ vt

C.2. Handcrafted Predicate

The non-simplified predicate deciding whether the ego vehicle can accelerate in the next
time step is:

done + d f 1 − de + d f 2 + dr ≥ dsa f e

⇔
(amin − amax)t2

1/2 + (v f − ve)t1

+amin((vmin − (v f + amint1))/amin)
2/2 + (v f + amint1)(vmin − (v f + amint1))/amin

−amin((vmin − (ve + amaxt1))/amin)
2/2 − (ve + amaxt1)(vmin − (ve + amaxt1))/amin

+vmin
[
(vmin − (ve + amaxt1))/amin − (vmin − (v f + amint1))/amin

]
+dr ≥ dsa f e

67

D. Predicates From Controller Data

D.1. Predicate Without Prettifying

Before applying the methods described in Section 6.3 and Section 6.4, a predicate for the
cruise example looks like this (rounded to 6 decimal places):

− 1.004058echoosedr + 0.000121d2
r + 4.011296echooseve − 0.002316drve + 0.51353v2

e

+ 8.5 · 10−5echooseae − 0.000276drae + 0.002239veae − 6.4 · 10−5a2
e

− 3.007296echoosev f + 0.001317drv f − 0.012358vev f − 0.001334aev f

− 0.499783v2
f − 0.000224echoosea f + 0.000261dra f − 0.002111vea f

− 6.4 · 10−5aea f + 0.001224v f a f + 3.1 · 10−5a2
f − 1.004058dr

+ 4.011296ve + 8.5 · 10−5ae − 3.007296v f − 0.000224a f

+ 23.107387 ≤ 0

D.2. Predicate Without Rounding

After leaving out unimportant features as described in Section 6.3 but without rounding
coefficients as described in Section 6.4, a predicate for the cruise example looks like
this (rounded to 6 decimal places):

− 0.000463d2
r + 0.008656drve − 0.549255v2

e − 0.005078drv f

+ 0.046916vev f + 0.496888v2
f + 2.043519dr − 10.25286ve

+ 6.138132v f − 39.685041 ≤ 0

D.3. Advanced Numerical Precision Problems

Sometimes, when training the SVM, very large coefficients occur. As long as every
datapoint is located on the right side of the hyperplane, the loss function (see Section A.3)
does not penalize these large coefficients. However, when evaluating a predicate like

2x1 − 3x2 + 1018x3 − 1018 ≤ 0

the floating point precision reaches its limits. So, in the rare case that we observe such a
behavior, we apply the following countermeasure.

69

D. Predicates From Controller Data

For every feature i, we add the control samples (~ei, 1) and (~ei,−1) to the dataset, where
~ei is the unit vector in direction of feature i. Then we re-train the SVM. Note that this
way, the data is not linearly separable. The loss function (see Section A.3) penalizes
control samples that are far away from the separating hyperplane because either the
positive or the negative control sample is located on the wrong side. Hence, the SVM
uses small coefficients to keep the control samples reasonably close to the decision
function. The liblinear tool [Fan+08] that we use in this work also supports different
sample weights. Thus, we give the control samples a weight that is three orders of
magnitude smaller than the weights for the regular samples so we do not disturb the
regular training too much.

If, for some reason, we still have coefficients with an absolute value larger than 107

or smaller than 10−7 but not 0, we change them to a value inside of this interval. This
might change the classification but therefore ensures that we do not run into precision
errors after exporting the decision tree and evaluating the predicate on a device with a
slightly different floating-point engine.

70

E. Results

Here we list the benchmark results for all case studies. The structure is the same as
described in Subsection 7.2.3 with two slight differences. First, we add the size of the
binary decision diagram (BDD) representation. Second, we explicitly list the tree sizes
we get with the linear support vector machine, the logistic regression, and the OC1
heuristic splitting strategies. In Table 7.2 in the main matter, we only show the minimum
across those.

The BDD sizes for the cyber-physical system cases is the minimum number of nodes
from 10 tries. For the quantitative verification case studies, we show the BDD sizes from
[Ash+21] which correspond to the minimum across 20 tries.

The benchmarks are split into three tables. Table E.1 contains the cyber-physical
system case studies, Table E.2 and Table E.3 contain case studies from the quantitative
verification benchmark set [Har+19].

71

E.
R

esults

Table E.1.: Benchmark results for the cyber-physical system case studies.

Comparision Linear Quadratic

Case Study States BDD MinSize Ax.Al. LinSVM LogReg OC1 Poly PolyPrio1

cartpole [Jag+20] 271 312 169
253 247 199 183 243 189
263 263 187 261 169 169

10rooms [JZ17] 26,244 168 49
17,297 157 147 4,515 61 61
17,297 121 107 7,455 49 49

helicopter [Jag+20] 280,539 1,348 475
6,339 5,787 3,769 TO 5,035 3,787
9,649 9,763 4,637 TO TO TO

cruise_250 [LMT15a] 320,523 1,820 9
869 721 557 369 353 37

1,067 817 657 363 11 25

cruise_300 [LMT15a] 500,920 2,229 9
1,157 991 691 467 521 59
1,343 1,035 881 507 13 23

dcdc [RZ16] 593,089 575 5
271 279 139 179 129 199
265 265 173 179 147 273

truck_trailer [KZ19] 1,386,211 36,169 1,839
338,283 TO TO TO TO TO
366,411 TO TO TO TO TO

aircraft [RWR15] 2,135,056 177,332 31
915,877 916,685 TO TO 725,011 602,335

1,015,903 1,013,949 TO TO 688,577 630,631

traffic_30m [SZ19] 16,639,662 TO 23
12,573 9,631 8,953 TO TO TO
20,895 9,211 7,099 TO TO TO

72

Table E.2.: Benchmark results for case studies from the quantitative verification benchmark set (part 1).

Comparision Single Feature Linear Quadratic

Case Study States BDD MinSize Ax.Al. Categ. LinSVM LogReg OC1 Poly PolyPrio1

triangle-tireworld.9 48 51 17
27 28 25 23 19 25 17
31 31 21 25 23 17 17

pacman.5 232 330 37
53 43 51 49 55 47 37
81 81 71 59 81 37 37

rectangle-tireworld.11 241 495 481
481 3731 481 481 481 481 481
481 481 481 481 481 481 481

philosophers-mdp.3 344 295 59
391 181 381 377 333 315 251
403 307 375 367 393 251 223

firewire_abst.3.rounds 610 295 25
25 25 25 25 25 25 25
25 25 25 25 25 25 25

rabin.3 704 303 23
111 187 51 43 29 69 27
175 137 31 29 45 23 23

ij.10 1,013 436 19
1,291 1,291 907 753 771 897 209
1,405 1,405 893 735 1,131 141 177

zeroconf.1000.4.true.correct_max 1,068 535 45
83 83 67 63 49 75 57
79 79 47 45 71 45 45

blocksworld.5 1,124 3,985 367
1,687 1,308 1,515 1,407 1,583 1,451 891
1,771 1,649 1,535 1,405 1,719 521 513

1 this is better than the minimum size as it uses non-binary splits

73

E.
R

esultsTable E.3.: Benchmark results for case studies from the quantitative verification benchmark set (part 2).

Comparision Single Feature Linear Quadratic

Case Study States BDD MinSize Ax.Al. Categ. LinSVM LogReg OC1 Poly PolyPrio1

cdrive.10 1,921 5,134 1,903
2,401 3,122 2,401 2,401 2,257 2,401 2,401
2,089 2,037 TO TO TO TO TO

consensus.2.disagree 2,064 138 25
67 67 75 69 69 57 51

105 105 105 93 95 35 33

beb.3-4.LineSeized 4,275 913 57
65 70 65 65 63 65 59
85 76 57 57 89 57 57

csma.2-4.some_before 7,472 1,059 65
103 103 107 105 89 103 79
185 185 85 65 177 65 65

eajs.2.100.5.ExpUtil 12,627 1,315 65
167 160 173 161 135 133 141
167 167 167 157 133 133 125

elevators.a-11-9 14,742 6,750 129
16,341 16,413 11,243 9,865 13,619 9,779 2,859
17,809 17,495 11,505 9,955 16,423 2,023 1,919

exploding-blocksworld.5 76,741 3,447 149
16,913 8,138 4,503 2,687 5,993 4,511 829
20,273 8,571 5,307 2,845 6,893 TO TO

echoring.MaxOffline1 104,892 43,165 801
2,101 2,251 1,629 1,625 1,627 2,005 1,431
5,031 TO TO TO TO TO TO

wlan_dl.0.80.deadline 189,641 1,541 175
3,369 3,369 2,821 2,563 701 693 667
3,675 3,675 2,841 2,621 1,049 523 TO

pnueli-zuck.5 303,427 50,128 173
171,371 171,371 156,165 150,341 125,421 114,979 83,219
263,955 263,955 221,645 214,801 221,645 95,879 83,951

74

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Preliminaries
	Controllers
	Decision Trees
	Impurity Measures
	Predicates

	Support Vector Machines
	Separating Hyperplanes
	Kernel Trick
	Computational Complexity

	Motivating Example
	Model Parameters
	Problems with the Current Solutions
	Handpicked Strategy

	Predicates From Domain Knowledge
	Our Approach
	Handcrafted Predicate Derivation
	Performance
	Identified Problems

	Predicates From Controller Data
	Problems with Curve Fitting
	Using Support Vector Machines
	Problems With Higher Dimensions
	Reconstructing the Algebraic Decision Function

	Feature Importance
	Rounding Coefficients
	Rounding to Zero
	Scaling the Predicate
	General Rounding
	Numerical Errors

	Min-label Entropy
	Predicate Priority

	Evaluation
	Domain Knowledge Approach
	Data-Driven Approach
	Cruise Control
	Minimum Tree Size
	Benchmarks
	Min-Label Entropy and Predicate Priority
	Explainability

	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography
	Support Vector Machine Details
	Minimization Problem
	Lagrangian Function and Dual Problem
	Soft-Margin

	The Cruise Control Model
	Cruise Control Modifications
	Cruise Control Parameters

	Predicate Generation
	Base Identities
	Handcrafted Predicate

	Predicates From Controller Data
	Predicate Without Prettifying
	Predicate Without Rounding
	Advanced Numerical Precision Problems

	Results

