

Technical University of Munich

Faculty of Electrical Engineering and Information Technology

Chair of Design Automation

Bachelor’s Thesis

Phoon Jia Wen

Supervisor University Professor : Prof. Ulf Schlichtmann

Supervising Assistant : Yushen Zhang

Issue of the Topic : Development of an STL Library for 3D-Printing Design

Submission Data : 24 May 2021

2 | P a g e

1. Table of Contents

1. Table of Contents ..2

2. Table of Figures ...3

3. Abstract ...5

4. Introduction ..6

5. Background ...7

5.1. Library ..7

5.2. STL ..8

5.2.1. Special Rule for STL ..10

5.2.2. How STL is Printed ..12

5.3. Java ..14

5.4. Microfluidic Chips ..16

6. UML Class Diagram ...17

6.1. Point Class..18

6.2. Rectangle3D Class ..19

6.3. Cylinder Class ...21

6.4. Polygon Class ...22

6.5. Node Class ...23

6.6. Solid Class ..25

6.7. StlWriterUtil Class ..27

7. STL Model ...29

7.1. Calcium Lactate with Sodium Alginate ..29

7.2. Ring Normal ...32

7.3. Mixer ..35

8. Conclusion ...39

9. References ..40

3 | P a g e

2. Table of Figures

Figure 1: Example of Tessellation [5] ...8
Figure 2: Tessellated Cube ...9
Figure 3: Facets [6] ...9
Figure 5: Vertex Rule [7] ..10
Figure 6: Orientation Rule [6] ..11
Figure 7: 3D Cartesian Coordinate System [8] ...11
Figure 8: Spherical Surface Tessellation [9] ...13
Figure 9: Microfluidic Chip 1 [14] ...16
Figure 10: Microfluidic Chip 2 [1] ...16
Figure 11: Microfluidic Chip 3 [15]] ...16
Figure 12: UML Class Diagram ...17
Figure 13: Point Class ...18
Figure 14: Rectangle3D Class ...19
Figure 15: Rectangle3D Constructor ..20
Figure 16: Rectangle3D Allocation ...20
Figure 17: Cylinder Class ..21
Figure 18: Polygon Class ...22
Figure 19: Node Class ...23
Figure 20: Solid Class ..25
Figure 21: Shape Demonstration [16] ..25
Figure 22: Union Combination Solid Shape [16] ..26
Figure 23: Subtract Combination Solid Shape [16] ..26
Figure 24: Intersect Combination Solid Shape [16] ...26
Figure 25: StlWriterUtil Class ...27
Figure 26: Calcium Lactate with Sodium Alginate Interior ..29
Figure 27: Calcium Lactate with Sodium Alginate Exterior ..29
Figure 28: Calcium Lactate with Sodium Alginate Top View -Baseless30
Figure 29: Calcium Lactate with Sodium Alginate Side View 1 - Baseless30
Figure 30: Calcium Lactate with Sodium Alginate Side View 2 - Baseless30
Figure 31: Calcium Lactate with Sodium Alginate Side View 3 - Baseless30
Figure 32: Calcium Lactate with Sodium Alginate Top View with Base32
Figure 33: Calcium Lactate with Sodium Alginate Side View 1 with Base32
Figure 34: Calcium Lactate with Sodium Alginate Side View 2 with Base32
Figure 35: Calcium Lactate with Sodium Alginate Side View 3 with Base32
Figure 36: Ring Normal Interior ...33
Figure 37: Ring Normal Exterior ...33
Figure 38: Ring Normal Top View ...33
Figure 39: Ring Normal Cylinder View ...33
Figure 40: Ring Normal Interior View 1..33
Figure 41: Ring Normal Interior View 2..33

4 | P a g e

Figure 42: Mixer Interior ..35
Figure 43: Mixer Exterior ...35
Figure 44: Mixer Bottom View - Baseless ..36
Figure 45: Mixer Top View - Baseless ..36
Figure 46: Mixer Top View with Base...38
Figure 47: Mixer Bottom View with Base ..38
Figure 48: Mixer interior View 1 with Base ..38
Figure 49: Mixer interior View 2 with Base ..38

5 | P a g e

3. Abstract

In this bachelor’s thesis, we are going to study the development of an STL library for a 3D
printing. It would break down into few parts to study the detail of this topic. Firstly, we will talk
about the background knowledge of how an STL is formed, what is a library in Java, understand
the structure of a library and the target object for our 3D image.

After having some background knowledge, we would go on to focus more on the design. Our
aim is to create a 3D image of a microfluidic chip. Hence, it is important to understand the
different structure of a microfluidic chip. What are the important things to take note when
doing the design if the chip.

We also will have a detailed explanation of the Java code in the form of UML class diagram. It
would explain individual classes to allow reader to understand the library structure. Lastly,
there would also be some STL models provided to further understand the structure and the
use of the library.

6 | P a g e

4. Introduction

Microfluidic chip is commonly use in the biomedical field as well as cell biology research.
Microfluidic chip allows to integrate many medical tests with researching on a chip. The reason
why it is commonly used in this industry is because the micro channel is very similar to the
biological cell. It is similar in term of the characteristic size of the channel. Therefore, simple
manipulation of a single cells is easy to permit in microfluidic chip and it also allows quick
medication changes. [1]

As many designers are designing their microfluidic chip with scratch. Hence, a lot of times
needs to spend on finding the algorithm and the structure behind all the different shapes and
design. It became more difficult as developer need to consider many issues while trying to do
the design of the chips. Therefore, in this project, I am going to design an STL library that is
mainly focus on designing a microfluidic chip. I am going to use java program to create this STL
library. In the library, users would be able to use functions such as adding shapes and inserting
the dimensions of the shapes in x-plane, y-plane, and z-plane for them to build their designed
microfluidic chip.

For the easy usage of the library, there would explanation provided for user whenever they
are inserting or using the functions. This would allow them to understand better how to use
this library.

In the UML class diagram, it would show the mind map of the formation of the library and
detailed functions and methods that is used. There are total of seven classes, which are Point
class, Rectangle3D class, Cylinder class, Node class, Polygon class, Solid class and StlWriterUtil
class. Every class is used for different purposes.

The motive of this bachelor’s thesis is to provide simplification for developer to design the
object. Hence, we aim to create code that is easy to understand as well as easy to use.

7 | P a g e

5. Background

Before we start on the design of the library, we need to analyse the topic so we would know
how to start on our design. From looking at the topic, “Development of an STL Library for 3D-
Printing Design”, firstly, we would need to understand what is a library. We also need to know
what is an STL and how the 3D image is formed with it. As we are using Java programing to
create this library, research are also needs to be done before starting the implementation.

5.1. Library

A library is an assortment of non-volatile assets utilized by computer programs in software
engineering. There is many information that can be include in a library. Information such as
documentation, help data, configuration data, pre-written code, message templates, classes,
values, type specifications or subroutines.

All the information in the library is also known as a collection of implementations of behavior.
The library would show an all-around characterized interface where the behavior is used.
Furthermore, the implementation of behavior in a library is created to allow user to use for
multiple independent programs. For instance, a high-level program would usually use a library
to call their system instead of implementing the system and call it repeatedly. This is how
library is being organized. It can be used in multiple programs with no connection to every
programs. This would benefit user who is creating a large program as it can acquire a various
leveled idea when a program develops huge.

Another advantage of using a library is that user do not need to know the internal detail of the
library. Instead, user only need to know the interface as there would be distinctive features
that a library is coordinated for the reasons for being reused in multiple programs
independently. This saves a lot of time because user does not have to write the program from
scratch. [2]

A Java Class Library (JCL) is a set of progressively loadable libraries that Java Virtual Machine
(JVM) languages can call at run time. The application cannot depend on any of the stage local
libraries because Java Platform is not reliant on a specific operating system. A Java Platform
gives a thorough arrangement of standard class libraries, containing the functions common to
modern operating systems.

There are three purposes that JCL serve within the JVM. Firstly, JCL provide useful facilities
such as container classes and regular expression processing for programmer just like other
standard code libraries. An abstract interface such as file access and network access would also
be provided by library to tasks on the hardware and operating system that would usually rely
heavily on. Moreover, some of the features might not be supported by Java application. Hence,

8 | P a g e

the library can try to copy those features or have a steady method to check for the presence
of a specific feature.

JCL is mostly written in Java, except some parts where we need direct access to the operating
system. [3]While in this project, I would need to convert the Java to an STL format.

5.2. STL

STL stand for Stereo Lithography, it is a file format to create a 3D system. Many software
packages are being supported by STL. For instance, it is commonly used in 3D printing,
computer aided manufacturing as well as rapid prototyping. This file format describes an object
of its surface geometry in three dimensions. An STL format have two kind of representations
which are ASCII and binary while in this project, we would only focus on doing the ASCII
representation. [4]

Tessellation

Now that we have a basic understanding of what is an STL file, we have come to another
question which is how a 3D model is being store in an STL file format? An STL file format is
focusing on the 3D object of its surface geometry. To form the 3D object, we would use a
concept which called “tessellation”. Tessellation refers to a process of tiling a surface with at
least one geometric shape in the 3D model with no gaps and overlaps. A good life example of
tessellation would be a tile floor.

Figure 1: Example of Tessellation [5]

9 | P a g e

Hence, an STL also known as Standard Tessellation Language. The idea of tessellation is using
tiny triangles (also known as facets) to model the 3D object in two-dimensional outer surface.
After the modelling, the information of the facet would store in the file. For instance, a 3D cube
of its surface could be approximated with twelve triangles. This can be shown in Figure 2 below.

Figure 2: Tessellated Cube

The more complex the surface, the more triangles produced. Also, the larger the STL file, the
more triangles placed on the surface of the model. [6]

Facets

There is some information we need to look for about the facets in an STL file. The first thing
we are looking for would be the coordinates of the vertices. The coordinates of the vertices
must be in x-, y- and z-dimensional. Second, would be the unit normal vector to the triangles.
The normal vector of the facet should be pointing outwards with respect to the 3D model. [6]

Figure 3: Facets [6]

10 | P a g e

5.2.1. Special Rule for STL

There are also some special rules that we should take note when designing the facets in STL
file format. Rules such as vertex rule, orientation rule, all positive octant rule as well as triangle
sorting rule.

Vertex Rule

In the vertex rule, it says that “The vertex rule states that each triangle must share two vertices
with its neighboring triangles”.

This rule is applying to the 3D object when we are designing the tessellation of its surface. As
the object’s surface would be built with many tiny triangles, to form an STL format, all the
triangles on the object’s surface must be connected such that 3 points in the triangle would
have 2 points sharing the same position (or coordinate) with the neighboring triangle.

Figure 4: Vertex Rule [7]

Figure 4 shows an example of how vertex rule is being applied. As we can see from the left
image, one of the triangles is only sharing one pint each, to the other two triangles. This has
violated the vertex rule and it is also not a valid tessellation. While for the right image, all the
triangles are sharing exactly 2 vertices to other triangles. This shows the correct vertex rule is
applied and how tessellation should be formed. [6]

Orientation rule

In the orientation rule, it says that “The orientation of the facet (i.e., which way is “in” the 3D
object and which way is “out”) must be specified in two ways”.

There are two parts about this orientation rule. One would be the normal of the triangle must
be in the direction of pointing outwards. Secondly, the order of the 3 vertices in the triangle
must be in the counterclockwise direction when looking from the outside of the object. We
also can check the orientation rule by using the right-hand rule.

11 | P a g e

Figure 5: Orientation Rule [6]

One advantage of having orientation rule is that it would help to prevent the corruption occurs
and maintain the consistency of the data. By having the consistent orientation of the vertices
and normal, a software can verify easily how the object is formed in STL format. [6]

All Positive Octant Rule

In all positive octant rule, it says that “The coordinates of the triangle vertices must all be
positive”.

From the name of this rule, we can tell that the vertices in all triangles must live in all positive
octant. This is applied to the 3D Cartesian coordinate system.

Figure 6: 3D Cartesian Coordinate System [8]

From Figure 6, octant I represent all positive octant. The reason why we have this rule when
building STL file is to save space. [6]

12 | P a g e

Triangle Sorting Rule

Triangle sorting rule, it says that “The triangles appear in ascending z-value order”.

By putting the triangles in ascending order in z direction, it allows the slicers to process faster
in a 3D model. This is recommended while designing the 3D model, however, it is not
compulsory to apply this rule while designing and the 3D model can still be generated even we
are not using the triangle sorting rule. [6]

5.2.2. How STL is Printed

After knowing all the rules that are needed to create an STL file, now we need to understand
how it is printed. In STL file, a 3D printing needs to be generated in designed slicer. A slicer is a
software that can be used in 3D printer. It would help to create an object with the printing
instructions that is converted from digital 3D models.

A slicer will cut the STL file into many slices of flat horizontal layers depending on the amount
that is set by user. Hence, it could be in a range of hundreds to thousands of slices. It also will
calculate the time taken to create and how much material is needed to extrude from your
printer.

After collecting all the information, it would then bundle up and formed a GCode file. This is a
native language for the 3D printer. [6]

Optimization

As we know that STL file format is created by approximate the surface of the 3D model in
triangles, hence, we will never get a perfect shape for a rounded 3D model. One reason is the
facets will create coarseness to the 3D model. This would be a problem as the 3D printer will
print exactly how a coarseness model is created in the STL file.

To solve this issue, we can make the triangles as small as possible to achieve the finest of the
3D model. This is because the smaller the triangle is, the better the approximation, hence it
would result in a good quality 3D model. [6]

13 | P a g e

Figure 7: Spherical Surface Tessellation [9]

As we can see from the figure 7 above, it shows how the smaller triangles can tessellate into a
better spherical surface.

However, there is a limitation on tessellating small triangles. As we can see from figure 7, we
can tell that if the size of the triangle decreases, it would require more triangles to cover up
the entire surface of the sphere. This will result in a large STL file generated and the 3D printer
might not be able to support a gigantic STL file. Therefore, it is important to get the right
balance of the quality of the print and the size of the file.

ASCII and Binary

There are two different ways to store the information in STL file, one is ASCII encoding and
another one would be binary encoding.

ASCII STL files are relatively easy to read and check. It also allows debugging for user who want
to perform manual inspection. Therefore, it is good for those who want to do debugging as it
can be read easily.

Binary STL files are smaller as compared to ASCII STL files and it is also easy to share. Hence,
binary encoding is always recommended to use for 3D printing. [10]

14 | P a g e

5.3. Java

In this project, I am going to use Java to design my STL library. What is Java? Java is an object-
oriented programming language and a class-based programming language that is designed to
have lesser implementation dependencies. It is also known as general-purpose programming
language that allow programmer to compile their Java code and run anywhere that is
supported by Java. Hence, it is wisely use in programming world because of the reliability,
security and fast. [11]

OOP Concepts in Java

Before we start on the coding, we need to understand a few concepts that is very useful while
writing the code in Java. OOP stands for Object-Oriented Programming. So now, what is OOP
concept in Java? It is a concept that allow developer to create their variables and working
methods, then without compromising the security, re-utilize part or all of them. There is total
four main OOP concept in Java, which are abstraction, encapsulation, inheritance, and
polymorphism. [12]

Abstraction

Abstraction refers to a complex code and data that is represented using a simple thing. For
instance, the representation of simple things in Java such as variables, objects, and classes. The
advantage of abstraction is to avoid rehashing the same work on different occasions. With this,
programmer would create different classes or different types of objects. A simple example
would be he/she can create a class of variable: address. Each addresses object would have
name, street, city, and postal code. The object can be employee addresses, customer
addresses or supplier addresses. [12]

Encapsulation

Encapsulation refers to storing the data or code in a private class and provide a public method
to allow accessing. In this way, it helps to protect the information safe within the class as it acts
as a protective barrier for the code and data. This concept is useful as it allows re-using of the
functionality without endangering the security. It also saves a great deal of time. A simple
example would be programmer uses the same variable that is assigned in private and use it in
different functions. [12]

Inheritance

Inheritance refers to sharing the attribute of the existing classes in the new class created. An
inheritance class is also act as a subclass or child class. This allows us to expand on the past

15 | P a g e

work without wasting time. We would use the word “extends” when performing inheritance
from the parent class to the subclass. [12]

Polymorphism

Polymorphism refers to different things in various setting that is using the same word to
represent. There are two types of polymorphism which are overloading and overriding.

Overloading is a compile time, and it refers to the same code but represent different meanings.
For instance, a class overloading is shown below:

class overloading{
 void Rectangle(){
 System.out.println(“No parameter”);
 }
 void Rectangle(double x, double y){
 System.out.println(“x:” + x + “y:” + y);
 }
 void Rectangle(double x, double y, double z){
 System.out.println(“x:” + x + “y:” + y + “z:” + z);
 }
 public static void main(String args[]){
 overloading ol = new overloading();
 ol.Rectangle();
 ol.Rectangle(10, 20);
 ol.Rectangle(10, 20, 30);
 }}

As we can see from the example, the same Rectangle method is being use multiple time with
different parameters that passes through.

Overriding is a run time and it refers to the value of the variable is assigned to different
meanings. For instance, a class overriding is shown below:

class overriding{
 public void move(){
 System.out.println(“Animals can move”);
 }}
class Cat extends overriding{
 public void move(){
 System.out.println(“Cat can move”);
 }
 public static void main(String args[]){
 Cat c = new Cat();
 c.move();
}}

16 | P a g e

The outcome would be: “Cat can move” instead of “Animals can move”. This shows the
program is overriding the information that is store in the method. [12]

5.4. Microfluidic Chips

In this an STL library, I am going to design based on a microfluidic chip. Hence, it is important
to understand what and how a microfluidic chip is. What is microfluidic chip? It is a device that
use to examinate in which micro-channels have been shaped or designed. The channels
shaping in the chip are associated together to permit liquids to go through various channels
and moving between different places. This network channels are associated through inlet and
outlet ports to expose to the outside environment. The chip will allow injection, manage, and
remove the fluids (or gases) inactively or effectively. There can be different internal diameter
for the channel, the usual range would be between 5 to 500µm. However, today constructions
can be manufactured with sub-micrometer accuracy. The channel network should be explicitly
designed for the ideal application and testing. For instance, DNA analysis, lab-on-a-chip, cell
culture, microfluidic droplets, cell culture and many more. [13]

Below would be some of the life sample of how a microfluidic chip is look like. The microfluidic
chip can have many inlets and outlets and the channel is also can be designed in different shape
and size depending on the researcher requirement.

Figure 8: Microfluidic Chip 1 [14]

Figure 9: Microfluidic Chip 2 [1]

Figure 10: Microfluidic Chip 3 [15]]

17 | P a g e

6. UML Class Diagram

In this session, I will show the UML class diagram of my project. There are total of seven classes.
Every classes have their different usages.

Figure 11: UML Class Diagram

As you can see from the figure above, Point class, Rectangle3D class, Cylinder class, Node class,
Polygon class and Solid class are related while StlWriterUtil class is isolated by itself. The
StlWriterUtil class is a class to provide conversion from Java to STL file format. Hence, it is
isolated by itself.

As for the remaining classes, firstly, we can see that Rectangle3D class, Cylinder class and
Polygon class are composited to Point class. Point class is the basic class to generate different
points in three-dimensions, without Point class, we cannot draw any shape.

We also can see that Solid class and Node class is composited with polygon class. This is
because polygon class is the class to create points on a single plane. While Node class is to tell
the location of every points and solid class is a class to combine all the planes together. Hence
without polygon class, the two class will not work.

Finally, we can see that Rectangle3D class and Cylinder class are derived from the Solid class
to form the 3D object. The detailed explanation of each classes is to clarify further at the
session below.

18 | P a g e

6.1. Point Class

Figure 12: Point Class

This class designed to model 3D points with x, y and z coordinates. It contains three instance
variables which are x(double), y(double) and z(double).

Point() is a default constructor that construct a point at the default location of (0,0,0).
Point(point : Point) would be an overloaded constructor that construct a point with the given
point. Point(x : double, y : double, z : double) is an overloaded constructor that construct a
point with the given x, y and z coordinates.

getX() : double, getY() : double and getZ() : double is a getter for the instance variables x, y
and z.

Negate, add, subtract, scalarMultiply, scalarDivide, dotProduct, linearInterp, magnitude,
normalize, crossProduct and equals are the function that is used to do the mathematics
between different points. Negate is to make all x, y and z coordinates in negative value; Add is
to add two points together; Subtract is to minus between two points; Scalar multiply and scalar

19 | P a g e

divide are to scale between two points; Dot product is created to find the magnitude of a
vector; Linear interpolation is to interpolate towards the direction of the point that is working
in. It is used to reconstruct polygons that have been partially removed from the solid;
magnitude is just to find the magnitude of a vector; Normalise is to find the normal of the
magnitude; Cross product is to find a vector which is perpendicular to the plane spanned by
two vectors; Equal is just an equal function. This function is a getter for troubleshooting
purpose.

6.2. Rectangle3D Class

Figure 13: Rectangle3D Class

Rectangle3D is just inherited class from Solid. It is just there to construct a solid type of
rectangle. All methods of Solid can be used on Rectangle3D.

Rectangle3D(center : Point, dimension : Point) is a constructor that construct a 3D rectangle
with center point and dimensions of x, y and z. In this method, the array is four points for each
rectangle surface of the 3D rectangle. There would be six surfaces in total. The normal is next
to the position array indicate the surface direction. After assigning the position and normal, a
loop is created with four-point vertices to make up a rectangle, using the center of the
rectangle passed in, and the dimensions required. After the 4 vertices are obtained, a Polygon
is created from these vertices.

To explain the loop in detail, for the first constructor:

(Math.min(1, i & 1) - 0.5)
(Math.min(1, i & 2) - 0.5)
(Math.min(1, i & 4) - 0.5)

Depending on where the point is on the cube, the coordinate of the point is different relative
to the center of the cube.

For (Math.min(1, i & 1) - 0.5), this statement multiplies either 0.5 or -0.5 to the dimension in
the x direction when constructing a point on the cube. ‘i’ is the position of the point on the
cube. It is labeled in the array above the loop. For example, position 0:

• (Math.min(1, i & 1) - 0.5) will give us -0.5

• (Math.min(1, i & 2) - 0.5) will give us -0.5

20 | P a g e

• (Math.min(1, i & 4) - 0.5) will give us -0.5

This result in point 0 is at (center - 0.5*dimension.x, center - 0.5*dimension.y, center -
0.5*dimension.z).

While for position 5:

• (Math.min(1, i & 1) - 0.5) will give us 0.5,

• (Math.min(1, i & 2) - 0.5) will give us -0.5,

• (Math.min(1, i & 4) - 0.5) will give us 0.5.

This give point 5 at (center + 0.5*dimension.x, center - 0.5*dimension.y, center +
0.5*dimension.z).

Rectangle3D(origin : Point, xDirect : Point, yDirect : Point, zDirect : Point, dimension : Point) is
to construct 3D rectangle with origin point, directions of x, y and z as well as dimensions of x,
y and z. The origin is the starting point of the construction. It must be placed at the bottom left
back. A diagram is shown below for an example of where the origin point is set.

Figure 14: Rectangle3D Constructor

For the xDirect, yDirect and zDirect would be the x direction, y direction and z direction from
the origin respectively. For the dimension, it only allows positive dimension for this
construction.

To explain detail how the allocation of each vertex in the constructor, a diagram is shown below
to have the idea of how it will look like.

Figure 15: Rectangle3D Allocation

The array list has total of six surfaces. It will categorise which four points are to form a surface.

21 | P a g e

6.3. Cylinder Class

Figure 16: Cylinder Class

Cylinder is also an inheritance class from Solid. Same as the Rectangle3D class, it is also to
construct a solid type of cylinder. All methods of Solid can be used on Cylinder. In this cylinder
class, it models a cylinder with x direction, y direction and z direction point, start and end point,
height as well as radius.

Cylinder(start : Point, end : Point, radius : double) is to construct a cylinder with start point,
end point and radius. The slices are arbitrary. The higher the number of slices, the smoother
the cylinder. However, after numerous of testing, I have set 24 as the number of slices. Height
is also to normalise when it is assigned to zDirection. It is easier to handle with the further
calculations below using the zDirection as calculations with normalised vectors.

A Boolean is also created to check if the y component in z is more than 0.5. If it is, the xDirection
is set perpendicular to both zDirection and (1,0,0), else, xDirection would be perpendicular to
both zDirection and (0,1,0).

A normalisation is also made for easy calculation later. These are just arbitrary directions and
does not contribute to the magnitude of the cylinder. As for the crossProduct, it is to get the
vector perpendicular to zDirection and the vector above. It is also explained at the previous
paragraph.

A loop is created. As each slice, there is a top surface, a bottom surface, and a side surface. The
top and bottom surfaces are triangles. and the side surface is a rectangle. Hence, three
polygons are added for three slices. t0 and t1 are the start and end point of the slice radially.

Point(stack : double, slice : double) is to returns the absolute position of a point on the cylinder
that is used to construct the polygons. Stack input indicates if this point is on the bottom or
the top of the cylinder. Slice input is referring to t0 or t1, which is the boundaries of the slice.
‘out’ is the radial magnitude from the center of the cylinder and ‘pos’ is the position.

22 | P a g e

6.4. Polygon Class

Figure 17: Polygon Class

This class stores a polygon object that is made up of points on a single plane. Two constructors
are available for this class.

Epsilon is a constant. It is a threshold to separate coplanar from back and front surfaces.

Polygon(vertices : List<Point>) takes a set of points or vertices, calculates the normal of the
polygon, and stores the vertices in a list.

Polygon(polygon : Polygon) returns a new object that has a deep copy of every item in the
input polygon, including the vertices in the list.

flip() : void is used to flip this polygon. Hence, if before it is an outside facing polygon with
normal (-1,0,0), flip will make it face inside with a normal (1,0,0). The points are still in the same
location. They are just rearranged to maintain the convention of normal calculation with the
vertices.

getVertices() : List<Point>, getNormal() : Point, and getW() : double are just getters.

spiltPolygon(polygon : Polygon, coplanarFront : List<Polygon>, coplanarBack : List<Polygon>,
front : List<Polygon>, back : List<Polygon>) : void. In this categorizes the input polygon,
whether it is in front or at the back of this polygon where the object it is operated on, it will
add the input polygon to the appropriate list. The method is used in conjunction with
clipPolygons of the Node class.

23 | P a g e

6.5. Node Class

Figure 18: Node Class

This class is storing the node of the tree constructor. Each node object is categorized as either
a back node or a front node. All the node objects in a Solid will be compared to its first Polygon
(firstPolygon) in the list. A back node object contains polygons that are at the back of the
firstPolygon. A front node object contains polygons that are in front of the firstPolygon. A node
object may contain 0 or more polygons. If there are more than 1, it indicates that all the
polygons in that particular node are of the same plane. This categorization uses the function
from the Polygon class which are splitPolygons.

Node(polygons : List<Polygon>) is to create a list for all polygons. Node(node : Node) is to check
all the front and back node for all polygons and store in a list. This is explain at the previous
paragraph. Node() is just an empty constructor for composited class to use.

getPolygon() : Polygon, getFront() : Node, getBack() : Node and getPolygons() : List<Polygon>
are just getters.

invert() : void is a function that flip the polygons in the node, and makes it a front node if it
was a back node and it is vice versa. It is to make a hole into a solid space, and a solid space
into a hole.

24 | P a g e

clipPolygons(List<Polygon>) in this method, it removes all polygons in the parameter
List<Polygon> that are inside this object. This is done by categorising the polygons in the list
into back or front polygons. Then, it is called recursively with the following below:

front = this.front.clipPolygons(front);
back = this.back.clipPolygons(back);

The full process is as follows. First, use first Node of this solid. Then it will categorize all
polygons in list input into front or back polygons when compared to the polygon in this Node.
After that, the ‘call front = this.front.clipPolygons(front)’ is called uses a Node with polygons
that are in front of the polygons in this Node. It checks whether the input polygons categorized
as front, is also in front of this Node. This is checked recursively. If a polygon is in front of all
Nodes in this solid, this polygon is kept. While for “call back = this.back.clipPolygons(back)’, this
method call is the same as the call front method, but it checks for polygons that are back. This
is also recursively check and it only keeps a polygon if it is at the back of all Nodes in this solid.
Finally, all the remaining polygons are appended into a list and returned.

This process removes all polygons that are in between the polygons of this solid. Polygons that
are in front of some Nodes, but at the back of other Nodes indicate that it is inside the solid.
Therefore, it is removed.

clipTo(Node bsp) removes all polygons in this object that is inside the input Solid represented
by the Node. It uses helper function clipPolygons.

allPolygons() will returns a list of all the polygons in this chain of Nodes.

build(List<Polygons>) builds the tree of the Solid with the list of its polygons. If a polygon is in
front of a reference polygon, it is moved to the front Node. If a polygon at the back of the
reference polygon, it is moved to the back Node. The reference polygon is the first polygon in
the list of polygons of that Node.

25 | P a g e

6.6. Solid Class

Figure 19: Solid Class

This class stores a solid, which is a list of polygons. It has three constructors.

Solid(polygons: List<Polygon>) stores the polygons in this object. Solid(solid : Solid) creates
new object instances of everything in the input solid, including the points in the polygon list.
Solid() is just an empty constructor for inherited classes to use.

The union, subtract, and intersect are the three functions that help create the new solids
requirement. Union adds two solids together, where all surfaces or polygons that intersect
between the two solids are removed; Subtract removes a solid from another; Intersect keeps
only surfaces that are inside each other. Figure below show two sample shapes use to describe
the formation of union, subtract, and intersect function.

Figure 20: Shape Demonstration [16]

To further describe how the union function work, firstly, I create two trees with nodes having
a set of coplanar surfaces. Then, it removes all of a's surfaces that are in b and it also removes
all of b's surfaces that are in a. To keep only 1 set of coplanar surfaces from both solids,
coplanar surfaces in b will be removed. To do this, b is inverted, then it removes all inverted
b's surfaces that are in a. b is then inverted again and a new solid is built by combining the
remaining surfaces from both solids. [16]

26 | P a g e

Figure 21: Union Combination Solid Shape [16]

Similar concept is applied to subtract function as well. I create a tree for each solid with nodes
having a set of coplanar surfaces. Then, it removes all outer surfaces of a that is inside b and it
also removes all surfaces of b that is inside a. The duplicate coplanar surfaces will be removed.
A new solid is built using all remaining surfaces from both solids. [16]

Figure 22: Subtract Combination Solid Shape [16]

As for the intersect function, I also create a tree for each solid with nodes having a set of
coplanar surfaces. Instead of removing the surface from one another, first invert a, then,
remove all of b’s surfaces that are in a. After that, b is inverted and remove all of a’s surfaces
that are in b. Then, all of b’s surfaces also need to remove from a. Then a is inverted to form a
new solid using all the remaining surfaces from both solid. [16]

Figure 23: Intersect Combination Solid Shape [16]

toTriangles(List<Polygons>) is to convert any non-triangle polygons in the input list to triangles.
The arrangement of vertices in triangle maintains normal direction.

The inner workings of these functions require the use of the Node class which will be explained
in the previous section.

27 | P a g e

6.7. StlWriterUtil Class

Figure 24: StlWriterUtil Class

StlWriterUtil class is a class to convert solid to the ascii or binary format.

For the ascii format is it build in this following [3]:

solid name
facet normal ni nj nk
 outer loop
 vertex v1x v1y v1z
 vertex v2x v2y v2z
 vertex v3x v3y v3z
 endloop
endfacet

writeASCIISTL(solid : Solid, filename : String), this method will pass ASCII code of the solid and
the designed file name and generate an STL file to view the final 3D diagram. An ASCII STL file
will begin with a string name to name the solid. Then the file will continue to get all the
information of the triangle with the format showed above. In a for loop, the facet normal is
first store by getting all the normal from x, y, and z. Then we will get all the vertices with x, y
and z as well. This will then wrap up with ending the loop and facet.

writeBinarySTL(solid : Solid, filename : String) is a method to pass the binary code of the solid
with the designed file name and generate an STL file to view the final 3D diagram. Unlike ASCII
constructor, binary constructor does not start with solid because it may lead to the software
to mistook it as an ASCII generator. Hence, the header would be a 4-byte little endian unsigned
integer to indicate the number of triangles in the file. Then, a for loop is created to run all the
triangle normal and vertices. After all the last triangle information have taken, it will end with
flushing all the unuse bytes and close. The following below is a general idea of how binary STL
file format look like. [3]

28 | P a g e

UINT8[80] – Header - 80 bytes
UINT32 – Number of triangles - 4 bytes

foreach triangle - 50 bytes:
 REAL32[3] – Normal vector - 12 bytes
 REAL32[3] – Vertex 1 - 12 bytes
 REAL32[3] – Vertex 2 - 12 bytes
 REAL32[3] – Vertex 3 - 12 bytes
 UINT16 – Attribute byte count - 2 bytes
end

29 | P a g e

7. STL Model

In this session, I am going to show you some of the STL models that I have generated from the
library that I have created.

7.1. Calcium Lactate with Sodium Alginate

Figure 25: Calcium Lactate with Sodium Alginate Interior

Figure 26: Calcium Lactate with Sodium Alginate Exterior

Above show the Calcium Lactate with Sodium Alginate design and how it formed the 3D image.
Figure 25 is the interior look of the chip while figure 26 is the exterior look of the chip. We
would need to design both interior and exterior chips separately. After the implementation has
done, we would use a function in solid class which is subtract function to combine both figures
above. To form the Calcium Lactate with Sodium Alginate chip, simply subtract the interior
from the exterior to form channel in the chip. Below is the sample look and detail explanation
of how the STL model is formed.

Without Base

This is one of the STL model that I have created. All coordinates are guesses. It might not be
accurate to scale of original drawings.

30 | P a g e

Figure 27: Calcium Lactate with Sodium Alginate Top View -

Baseless

Figure 28: Calcium Lactate with Sodium Alginate Side View
1 - Baseless

Figure 29: Calcium Lactate with Sodium Alginate Side View

2 - Baseless

Figure 30: Calcium Lactate with Sodium Alginate Side View

3 - Baseless

The step by step of the construction is as follow:

1. Construct the large solid rectangle.

• I started from origin, (0, 0.05, 0), while for the arbitrary point can be anything.

• Then, set x, y and z direction from the origin.

• When constructing, the origin must be at position 0.

• x, y, and z direction are arbitrary, depending on the coordinate system that use.

• In my design, I use x as right from origin, z as up from origin, and y as front from origin.

2. Construct the top channel.

• For this origin is at the middle of the first solid, offset to the left by half of channel
width. The dimensions are estimated.

3. Construct bottom wider channel.

• For this, the origin is at the same x, and y coordinates as solid 2, z coordinate is at the
most bottom. The dimensions are also estimated.

4. Construct bottom narrower channel.

31 | P a g e

• For this, the origin is at the same x and y coordinates as solid 2, z coordinate is set at
the end of solid 3. The z coordinate is set at 2 because I ended solid 3 at 2.

5. Construct diagonal channel.

• For this, origin is set at left most edge of solid. z coordinate is a guess. I set at 2.

• For x direction, set as the diagonal towards the middle of solid 1.

• For z direction, calculate the normal with cross product between x and y direction
vectors. All the dimensions are estimated.

6. Construct narrower diagonal channel.

• For this, origin is set at the left most edge of the solid 1. z coordinate is slightly higher
than solid 5.

• For x direction, set as the diagonal towards the middle of solid 1.

• For z direction, calculate the normal with cross product between x and y direction
vectors. All the dimensions are estimated.

7. Construct the other diagonal channel.

• For this, origin is set at the right most edge of solid 1. z is again a guess. I set at 2.

• For this solid, the z Direction is the vector to the middle of solid 1.

• For x direction, it is calculated using cross product of y and z direction vectors. All the
dimensions are estimated.

8. Construct the other narrower diagonal channel.

• For this, the origin is set at the right most edge of solid 1. Z is set slightly higher than
solid 7.

• For this solid, the z direction is the vector to the middle of solid 1.

• For x direction, it is calculated using cross product of y and z direction vectors. All the
dimensions are estimated.

9. Compound all the construction to generate 3D diagram.

• new solid is the name of the generation. It is the combination of solids 2 to 8 that are
subtracted from solid 1.

10. List of triangles are obtained from the list of polygons in new solid.

11. Pass triangles to write stl util.

32 | P a g e

With Base

This is the same concept as the previous Calcium Lactate with Sodium Alginate Baseless design.
The different is the input value for the construction of large solid rectangle. Instead of using
the origin as (0, 0.5, 0) now I use (0, 0, 0) as the origin to achieve the Calcium Lactate with
Sodium Alginate with base.

Figure 31: Calcium Lactate with Sodium Alginate Top

View with Base

Figure 32: Calcium Lactate with Sodium Alginate Side View 1

with Base

Figure 33: Calcium Lactate with Sodium Alginate Side

View 2 with Base

Figure 34: Calcium Lactate with Sodium Alginate Side View 3

with Base

7.2. Ring Normal

This is another STL model that I have created. It is almost the same process as Calcium Lactate
with Sodium Alginate design. All coordinates are guesses. It might not be accurate to scale of
original drawings. Same as the design for Calcium Lactate with Sodium Alginate chip, I also
design the interior and exterior of the ring normal separately.

33 | P a g e

Figure 35: Ring Normal Interior

Figure 36: Ring Normal Exterior

To form the Ring Normal chip, I also subtracted the ring normal interior to ring normal exterior
to form the chip. Below shows the end result of how ring normal look like and detail
explanation is also done to explain how it created.

Figure 37: Ring Normal Top View

Figure 38: Ring Normal Cylinder View

Figure 39: Ring Normal Interior View 1

Figure 40: Ring Normal Interior View 2

34 | P a g e

The step by step of the construction is as follow:
1. Construct the large solid rectangle.

• This is the same as the above design, I started from origin, (0, 0, 0), while for the
arbitrary point can be anything.

• Then, set x, y and z direction from the origin.

• When constructing, the origin must be at position 0.

• x, y, and z direction are arbitrary, depending on the coordinate system that use.

• In my design, I use x as right from origin, z as up from origin, and y as front from origin.

2. Construct the first cylinder.

• For this, I assign the start point as (2, 0.2, 2) and the end point is 2 unit different which
would be at the point of (2, 2.2, 2). The radius is estimated, and all the dimensions are
also estimated.

3. Construct the second cylinder.

• This is the same as the first cylinder. But this time, I change the position of start point
to (2, 0.2, 8) and the end point to (2, 2.2, 8). The radius is estimated, and all the
dimensions are also estimated.

4. Construct the first hole.

• This is the same as the cylinder design above. The reason of naming it as hole is
because I am constructing the inlet and outlet hole in the cylinder. Hence the
dimension would be smaller than the cylinder. All the dimensions are estimated.

5. Construct the second hole.

• This is also the same as the cylinder and hole designs above. The different is the
position of the hole. The dimension would be smaller than the cylinder. All the
dimensions are estimated.

6. Construct the hole connectors.

• This is to construct a connector between the inlet outlet and the loop at the middle.
For this, the origin is at the same x and y coordinates for the first and second holes, z
coordinate is set 1 unit different with respect to the inlet outlet hole. All the
dimensions are estimated.

35 | P a g e

7. Construct the loop.

• For this, the top loop and bottom loop have the same x and y coordinates while the left
loop and right loop have the same y and z coordinates. The z coordinate is different to
locate the top and bottom loop and the x coordinate is different to locate the left and
right loop. All the dimensions are estimated.

8. Compound all the construction to generate 3D diagram.

• new solid is the name of the generation. It is the combination of solids 4 to 7 that are
subtracted from union of solids 1 to 3.

9. List of triangles are obtained from the list of polygons in new solid.

10. Pass triangles to write stl util.

7.3. Mixer

This is another STL model that I have created to show some different shape that can be
generated from the library itself. The idea of building it is the same as what I explain it at the
previous model.

Figure 41: Mixer Interior

Figure 42: Mixer Exterior

36 | P a g e

Without Base

 Same as what I did earlier, I also design the mixer to show the different between how with and
without base look like. The detailed explanation is also showed below.

Figure 43: Mixer Bottom View - Baseless

Figure 44: Mixer Top View - Baseless

The step by step of the construction is as follow:
1. Construct the large solid rectangle.

• This is the same as the above design, I started from origin, (0, 0.05, 0), while for the
arbitrary point can be anything.

• Then, set x, y and z direction from the origin.

• When constructing, the origin must be at position 0.

• x, y, and z direction are arbitrary, depending on the coordinate system that use.

• In my design, I use x as right from origin, z as up from origin, and y as front from origin.

37 | P a g e

2. Construct the first hole.

• For this, I assign the start point as (1, 0.05, 1) and the end point is 0.45 unit different
which would be at the point of (1, 0.5, 1). The radius is estimated, and all the dimensions
are also estimated.

3. Construct the second hole.

• This is the same as the first hole. But this time, I change the position of start point to
(3, 0.05, 1) and the end point to (3, 0.5, 1). The radius is estimated, and all the
dimensions are also estimated.

4. Construct the third hole.

• This is the same as the first and second holes. But this time, I change the position of
start point to (2, 0.05, 9) and the end point to (2, 0.5, 9). The radius is estimated, and
all the dimensions are also estimated.

5. Construct diagonal channel.

• For this, origin is set at left most edge of solid. z coordinate is a guess. I set at 1.

• For x direction, set as the diagonal towards the middle of solid 1.

• For z direction, calculate the normal with cross product between x and y direction
vectors. All the dimensions are estimated.

6. Construct the other diagonal channel.

• For this, origin is set at the right most edge of solid 1. z is again a guess. I set at 1.

• For this solid, the z Direction is the vector to the middle of solid 1.

• For x direction, it is calculated using cross product of y and z direction vectors. All the
dimensions are estimated.

7. Construct the diagonal connectors.

• This is to construct a connector between the two inlets and the s channel at the
middle. For this, the center set as the middle of both inlets which is at (2, 0.09, 2.25).
The dimension of the connector would be the same as the diagonal connector the
only different is the z direction of the length. All the dimensions are estimated.

8. Construct the hole connectors.

• This is to construct a connector for the outlet and the triangular loop. For this, the
center is set same as the outlet position which is at (2, 0.09, 8.5). The dimension of
the connector would be the same as the rest of the channels, only different is the z
direction of the length. All the dimensions are estimated.

9. Construct the s channel.

• This is to construct the s channel for the mixer. All the horizontal channels would be the
same dimension but only different is the position in z direction. While for the vertical,
all the vertical channels are also same dimension but the only different is the left

38 | P a g e

vertical would be at 1 in x direction and 3 in x direction and the position in z direction
is also different to connect all the horizontal channel together to form the s channel.

10. Construct the triangular loop.

• This is made up with 2 diagonal channel and one horizontal channel. The concept is the
same as what I did for the diagonal channel earlier but only changing the position and
the length of the channels.

11. Compound all the construction to generate 3D diagram.

• new solid is the name of the generation. It is the combination of solids 4 to 7 that are
subtracted from union of solids 1 to 3.

12. List of triangles are obtained from the list of polygons in new solid.

13. Pass triangles to write stl util.

With Base

Below shows the mixer model with base. Everything for the construction would be the same
except for the size of the chip. Instead of using (0, 0.05, 0) as the origin, now I would use (0, 0,
0) as the origin.

Figure 45: Mixer Top View with Base

Figure 46: Mixer Bottom View with Base

Figure 47: Mixer interior View 1 with Base

Figure 48: Mixer interior View 2 with Base

39 | P a g e

8. Conclusion

In conclusion, designing a library is definitely not an easy task. It takes a lot of effort on
researching before we can start on the actual implementation. It is especially difficult for me
as Java is a new programming language that I have not learn before. Other than this, learning
the object-oriented programming is also another challenge because algorithm needs to be
understood to start on the implementation.

As for the development of the coding, there is a lot of try and error to test each and every
classes. After numerous try and a library is finally created. From this thesis, I have learnt that
self-learning is very important as many things we need to figure it out ourselves. I also pick up
a new skill which is Java programing language.

There are still some things to improve for this library, as due to the time constraint, I am unable
to create the feature of correcting the values or algorithms of the 3D images after generating
the STL file. Writers must manually change from the java code itself and run again the program.
Hence, my suggestion for the improvement of this project would be adding a feature for
amending the 3D imaging.

40 | P a g e

9. References

[1] elveflow, "Elveflow," [Online]. Available: https://www.elveflow.com/microfluidic-

reviews/general-microfluidics/microfluidics-and-microfluidic-device-a-

review/#:~:text=The%20microfluidic%20technology%20has%20found,characteristic%20size

%20as%20biological%20cells. [Accessed 11 5 2021].

[2] T. F. E. Wikipedia, "Wikipedia, The Free Encyclopedia," [Online]. Available:

https://en.wikipedia.org/wiki/Library_(computing)#:~:text=In%20computer%20science%2C

%20a%20library,classes%2C%20values%20or%20type%20specifications. [Accessed 11 5

2021].

[3] T. F. E. Wikipedia, "Wikipedia, The Free Encyclopedia," [Online]. Available:

https://en.wikipedia.org/wiki/Java_Class_Library. [Accessed 11 5 2021].

[4] T. F. E. Wikipedia, "Wikipedia, The Free Encyclopedia," [Online]. Available:

https://en.wikipedia.org/wiki/STL_(file_format). [Accessed 11 5 2021].

[5] C. Bipat, "Newyork Engineers," 7 2 2021. [Online]. Available: https://www.ny-

engineers.com/blog/types-of-tiles-used-in-flooring.

[6] D. Chakravorty, "Craftcloud," 14 2 2019. [Online]. Available: https://all3dp.com/what-is-stl-

file-format-extension-3d-printing/.

[7] P. Bourke, 10 1999. [Online]. Available: http://paulbourke.net/dataformats/stl/.

[8] W. Commons, "Wkimedia Commons," [Online]. Available:

https://commons.wikimedia.org/wiki/File:Octants.png. [Accessed 11 5 2021].

[9] W.H.Lipscomb, "ResearchGata," 8 2005. [Online]. Available:

https://www.researchgate.net/figure/Generating-geodesic-grids-by-recursive-bisection-and-

projection_fig7_307561876.

[10] A. Chen, "C-MAC Industries Pty Ltd," 18 3 2019. [Online]. Available:

https://www.cmac.com.au/blog/5-vital-things-about-stl-file-format-3d-

printing#:~:text=Binary%20or%20ASCII,to%20use%20for%203D%20printing.

[11] Guru99, "Guru99," [Online]. Available: https://www.guru99.com/java-platform.html#1.

[Accessed 11 5 2021].

[12] A. Altvater, "Stackify," 5 4 2017. [Online]. Available: https://stackify.com/oops-concepts-in-

java/#:~:text=OOP%20concepts%20in%20Java%20are,encapsulation%2C%20inheritance%2C

%20and%20polymorphism.&text=Basically%2C%20Java%20OOP%20concepts%20let,of%20t

hem%20without%20compromising%20security.

41 | P a g e

[13] Fluigent, "Fluigent," [Online]. Available: https://www.fluigent.com/resources/microfluidic-

expertise/what-is-microfluidic/microfluidic-chip-

history/#:~:text=Microfluidic%20chips%20are%20devices%20used,from%20one%20place%2

0to%20another. [Accessed 11 5 2021].

[14] Fluigent, "Fluigent," [Online]. Available: https://www.fluigent.com/resources/microfluidic-

expertise/what-is-microfluidic/how-to-choose-a-microfluidic-chip/. [Accessed 11 5 2021].

[15] R. D. M. C. E. N. C. F. C. Y. C. S. L. N. B. A. P. J. F. R. F. S. J. I. D. E. Novak, "Jove," 20 10 2018.

[Online]. Available: https://www.jove.com/t/58151/scalable-fabrication-stretchable-dual-

channel-microfluidic-organ.

[16] github, "github," [Online]. Available: https://evanw.github.io/csg.js/. [Accessed 11 5 2021].

