
Fakultät für Informatik
Technische Universität München

Relational Representation Learning Beyond Simple Graphs

Frederik Gerzer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende:
Prof. Dr. Anne Brüggemann-Klein

Prüfende der Dissertation:
1. Prof. Dr.-Ing. habil. Alois Knoll
2. Assistant Prof. David Rolnick, Ph. D.

Die Dissertation wurde am 21.06.2021 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 28.10.2021 angenommen.





Abstract

Graph Neural Network (GNN) models are usually applied to simple graphs, i.e. graphs
with only node features and a fixed graph topology. In this thesis, we argue for the need
to expand them to more complex graph types. It is organized in four main topics:

First, we benchmark common GNN architectures on simple graphs. From this, we
draw three conclusions: GNN models show a large variability in their result depending
on the random initialization of their parameters. Graph Convolutional Network (GCN)
layers show good performance on a large number of datasets, which makes them a good
starting point for constructing an initial model. Lastly, GNN models do not yet profit
from a large depth.

Next, we introduce a model modifying input graph topology. EdgePool is a local and
hard pooling layer. We show that it generally outperforms other pooling methods and
can be easily integrated in both graph- and node-level prediction problems. We also
show that it carries a 50% computational time penalty, but that it improves memory
usage on larger graphs.

As our first application, we explore the task of vehicle prediction on the highway. This
introduces edge features to the graph. We show how the changes we introduce into two
GNN models improve prediction quality, with the best model reducing prediction error
by 30%. We also evaluate construction methods for the scene representation, and show
how to make the model more interpretable.

Our second application is on high-voltage power grid control. By modelling a power
grid as a graph—and thereby departing from the simple graph assumption by having
both complex edge features and heterogeneous nodes—we are able to predict the out-
put of a classical optimization algorithm. This model produces results four orders of
magnitude faster than the original solver. By using the model’s output to warm-start
the optimization algorithm, we improved the latter’s runtime by a factor of 3.8× while
keeping the optimizer’s guarantees for a feasible solution. This is crucial for deploying
such techniques to real-life power grids.

iii





Zusammenfassung

GNN-Modelle werden üblicherweise entwickelt um sie auf einfache Graphen, d.h. solche
nur mit Knoteneigenschaften und einer konstanten Topologie, anzuwenden. In dieser
Arbeit argumentieren wir, dass die Verarbeitung komplexerer Graphen notwendig ist.
Sie ist in vier Themen organisiert:

Zuerst evaluieren wir häufig verwendete GNN-Architekturen auf einfachen Graphen.
Daraus ziehen wir drei Schlüsse: Die Ergebnisse von GNN-Modellen variieren sehr stark,
je nach der zufälligen Initialisierung ihrer Parameter. GCN-Layer erreichen gute Ergeb-
nisse über viele Datensätze, was sie zu einem guten Startpunkt für die Architektursuche
macht. Und GNN-Modelle profitieren noch nicht stark von einer größeren Tiefe.

Im nächsten Abschnitt entwickeln wir ein Modell zur Modifikation von Graphtopologie.
EdgePool ist eine lokale und harte Pooling-Methode. Wir zeigen, dass EdgePool bessere
Ergebnisse erreicht als andere Pooling-Methoden und dass es einfach in existierende
Modelle zur Knoten- und Graphprädiktionen integriert werden kann. Wir zeigen, dass
EdgePool etwa 50% mehr Laufzeit benötigt, aber dass es die Speichereffizienz von GNN-
Modellen verbessert.

Unsere erste Anwendung ist die Prädiktion der Fahrzeugbewegungen auf der Auto-
bahn. Für diese Anwendung führen wir Kanteneigenschaften ein. Wir zeigen, dass
GNN-Modelle mit von uns eingeführten Anpassungen den Prädiktionsfehler verglichen
mit Modellen ohne Interaktionen um bis zu 30% reduzieren. Wir evaluieren außerdem
Konstruktionsmethoden für die Repräsentation und zeigen, wie man das Modell inter-
pretierbarer machen kann.

Unsere zweite Anwendung ist die Kontrolle von Hochspannungsnetzen. Indem wir ein
Hochspannungsnetz als Graph modellieren, und damit sowohl komplexere Kanteneigen-
schaften als auch unterschiedliche Knotentypen einführen, können wir ein GNN-Modell
verwenden um das Ergebnis eines klassischen Optimierers hervorzusagen. Unser GNN-
Modell berechnet Ergebnisse vier Größenordnungen schneller als der Optimierer. Indem
wir die Ergebnisse des Modells als Startpunkte für den Optimierer verwenden können
wir die Laufzeit um einen Faktor von 3.8× verbessern während wir gleichzeitig die Le-
galität des Kontrollsignals garantieren. Dies ist absolut notwendig, um solche Techniken
auf echten Hochspannungsnetzen einzusetzen.

v





Contents

Abstract iii

Zusammenfassung v

Contents vii

1 Introduction 1
1.1 Neural Networks on Fixed Data Structures . . . . . . . . . . . . . . . . . 2
1.2 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Beyond Simple Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Representing a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Spectral Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Scalar and Tangent Vector Fields on Graphs . . . . . . . . . . . . 10
2.3.2 Differential and Divergence . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Laplacian Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Fourier Analysis of the Graph Laplacian . . . . . . . . . . . . . . . 12
2.3.5 Convolutions on Graphs . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Learning Tasks on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Node-Level Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Edge-Level Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Graph-Level Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Hybrid and Other Cases . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Graph Neural Networks Paradigms . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Recurrent Graph Neural Networks . . . . . . . . . . . . . . . . . . 16

2.5.1.1 Recurrent Graph MLP . . . . . . . . . . . . . . . . . . . 16
2.5.1.2 Gated Graph Sequence Neural Networks . . . . . . . . . 16
2.5.1.3 Stochastic Steady-State Embedding . . . . . . . . . . . . 17
2.5.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Spectral Graph Neural Networks . . . . . . . . . . . . . . . . . . . 17
2.5.2.1 Spectral Networks . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2.2 ChebNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2.3 CayleyNet . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2.4 Adaptive Graph Convolutional Networks . . . . . . . . . 20
2.5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vii



Contents

2.5.3 Spatial Graph Neural Networks . . . . . . . . . . . . . . . . . . . . 20

2.5.3.1 Graph Convolutional Networks (GCNs) . . . . . . . . . . 21

2.5.3.2 Message Passing Neural Networks (MPNNs) . . . . . . . 22

2.5.3.3 GraphSAGE . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.3.4 Graph Attention Network (GAT) . . . . . . . . . . . . . 23

2.5.3.5 Graph Networks . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3.6 WL-Graph-Isomorphy and the GIN Model . . . . . . . . 24

2.5.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Computational Implementation . . . . . . . . . . . . . . . . . . . . 25

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Simple Graphs 27
3.1 The Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Semi-Supervised Node Classification Datasets . . . . . . . . . . . . 28

3.1.2 Supervised Graph Classification Datasets . . . . . . . . . . . . . . 28

3.1.2.1 The proteins Dataset . . . . . . . . . . . . . . . . . . . . 28

3.1.2.2 The nci1 Dataset . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2.3 The imdb Dataset . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2.4 The rdt-b and rdt-12k Datasets . . . . . . . . . . . . . . . 29

3.2 GNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Tweaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Q1: How Useful is the Inclusion of Graph Information? . . . . . . 34

3.3.2 Q2: How Reproducible Are GNN Models? . . . . . . . . . . . . . . 35

3.3.3 Q3: How Do Different GNN Layers Perform? . . . . . . . . . . . . 37

3.3.4 Q4: How Do We Encode Node Features? . . . . . . . . . . . . . . 38

3.3.5 Q5: How Do We Global-Pool Graphs? . . . . . . . . . . . . . . . . 39

3.3.6 Q6: How Do We Construct the Final Graph Output? . . . . . . . 40

3.3.7 Q7: How Deep should GNN models be? . . . . . . . . . . . . . . . 41

3.3.8 Q8: Which Tweaks Improve GNN Performance? . . . . . . . . . . 42

3.3.9 Q9: Is it Helpful to Separate Processing and Propagation? . . . . 45

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Modifying Graph Topology 49
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Other Pooling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 DiffPool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 TopKPool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 SAGPool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 EdgePool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Choosing Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Computing New Node Features . . . . . . . . . . . . . . . . . . . . 53

viii



Contents

4.3.3 Integrating Edge Features . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.4 Unpooling EdgePool . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.5 Computational Performance . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 General Setup and Training . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Q1: Does EdgePool Outperform Alternative Pooling Approaches? 57

4.4.3 Q2: Can EdgePool Be Integrated into Existing Architectures? . . 58

4.4.4 Q3: Can EdgePool be Used For Node Classification? . . . . . . . . 59

4.4.5 Q4: How Does EdgePool Impact Performance? . . . . . . . . . . . 62

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Edge Features 65

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Traffic Participant Prediction from a Graph . . . . . . . . . . . . . . . . . 67

5.2.1 Adapting Graph Convolutional Networks . . . . . . . . . . . . . . 67

5.2.2 Adapting Graph Attention Networks . . . . . . . . . . . . . . . . . 67

5.2.3 Graph and Feature Construction . . . . . . . . . . . . . . . . . . . 68

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3 Model Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.4 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.5 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Q1: Which of Our Adaptations to GNNs Are Necessary? . . . . . 72

5.4.2 Q2: How do We Construct an Interaction Graph? . . . . . . . . . 73

5.4.3 Q3: Does a Graph Model Increase Prediction Quality? . . . . . . . 73

5.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Inspecting GNNs for Traffic Prediction . . . . . . . . . . . . . . . . . . . . 75

5.5.1 Creating Saliency Graphs . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1.1 Saliency Maps . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.1.2 Computing Gradients . . . . . . . . . . . . . . . . . . . . 77

5.5.1.3 Summarizing Feature-Wise Gradient . . . . . . . . . . . . 77

5.5.1.4 Plotting the Saliency Graph . . . . . . . . . . . . . . . . 77

5.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.2.1 Influence of the Ego Vehicle . . . . . . . . . . . . . . . . 78

5.5.2.2 The Effect of Edge Features . . . . . . . . . . . . . . . . 79

5.5.2.3 Analyzing the Influence of Neighbours . . . . . . . . . . . 79

5.5.2.4 Saliencies for Specific Scenarios . . . . . . . . . . . . . . . 81

5.5.2.5 Interpreting a Complete Traffic Scene . . . . . . . . . . . 81

5.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



Contents

6 Heterogeneous Nodes 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Simulating and Controlling Power Grids . . . . . . . . . . . . . . . . . . . 85
6.2.1 Power Grid Equations . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.3 Optimal Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 Modelling the Power Grid . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 GNN Models for Power Grids . . . . . . . . . . . . . . . . . . . . . 88

6.3.2.1 Independent Model . . . . . . . . . . . . . . . . . . . . . 91
6.3.2.2 Heterogeneous Model . . . . . . . . . . . . . . . . . . . . 91
6.3.2.3 Summarized Features Model . . . . . . . . . . . . . . . . 91
6.3.2.4 Summarized Embeddings Model . . . . . . . . . . . . . . 92
6.3.2.5 Separate Components Model . . . . . . . . . . . . . . . . 92

6.3.3 Ensuring Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 Datasets and Experimental Setup . . . . . . . . . . . . . . . . . . . 93
6.4.2 Q1: Which of the Adapted GNN Models Performs Best? . . . . . 96

6.4.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 96
6.4.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . 96
6.4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.3 Q2: Can an ACOPF Solver be Warm-Started by a GNN Model? . 97
6.4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 97
6.4.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . 97
6.4.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusion & Outlook 101
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.1 Modelling Tasks as Graphs is Powerful . . . . . . . . . . . . . . . . 103
7.2.2 Recommendations for Exploring New Problems . . . . . . . . . . . 103
7.2.3 Building ML Models for Critical Infrastructure . . . . . . . . . . . 104

7.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Publications 105

Bibliography 107

x



1 Introduction

Machine learning (ML) methods and particularly deep learning methods have become
incredibly successful in the last decade. Deep learning techniques have been deployed
in many applications, powering among others search, translation, image recognition,
game playing, and speech recognition technologies. All of these have a regular structure
in common—in vectors, time series, and images, there is a clear notion of position and
relative position, allowing the concept of ”preceding” time step for time series or relative
pixel positions for images (see also Fig. 1.1).

And while many different inputs such as images or time series can be easily modelled
using these regular structures, many more cannot: The world is filled with objects
defined not by their position on a grid but by their relationship to other objects. Each
object might be related to many other objects or to none, something that is exceedingly
difficult to model using regular structures. Yet without modelling these objects and their
relationships, we cannot learn on them.

For ML models, just like with many algorithmic problems, “the key [. . .] is to think
of them in terms of graphs.” (Skiena 2008, p. 146). Graphs provide a natural way
of modelling objects and their relationships as nodes and edges but require new deep
learning techniques to learn on them. Graph Neural Networks (GNNs) are a category
of models that allow us to learn on graphs, taking into account not just node features
but also graph topology.

(a) Vector (b) Image (c) Time Series (d) Graph

Fig. 1.1: Neighbour information in different data types. (a) In vectors, each entry represents a
fixed feature. (b) In images, spatial relations uniquely identify the eight neighbouring
pixels and can be chained to cover all pixels. (c) In time series, temporal relations
uniquely identify the preceding and following timestep and can be chained to identify
all timesteps. (d) In graphs, neighbouring nodes cannot be uniquely identified by
topology.

1



1 Introduction

Yet, most GNN models and benchmark datasets are restricted to what we call simple
graphs, featuring nodes features and a fixed graph topology. While these can model
many problems, even more remain out of reach. In this thesis, we aim to break through
these limitations by modifying graph topology and by introducing tasks that require
reasoning both on edge features and on heterogeneous nodes.

This chapter first introduces neural networks as applied to fixed data structures (Sec-
tion 1.1), followed by a short overview over GNN models (Section 1.2). We then introduce
in more detail our distinction between simple and complex graphs (Section 1.3). Finally,
we outline the remainder of the thesis (Section 1.4).

1.1 Neural Networks on Fixed Data Structures

The great successes of modern deep learning have been achieved on data with a fixed
and known structure such as images or sequences. In these, there is a clear notion of
position—an entry in a vector always represents the same feature, the character in a
specific relative position is always the one preceding the current character, and the pixel
in a specific relative position is always one pixel left of the current one (see Fig. 1.1).
For many applications, the samples already exist in such forms:

Vectors have fixed entries, and each entry always represents the same feature.

Time Series have a fixed order, and one can build relative coordinates by chaining
references to the previous and next timestep.

Images are best represented in matrix form, in which there is a clear notion of relative
position. Each of the eight neighbouring pixels uniquely identified by relative
coordinates.

Videos and other higher-dimensional data can be addressed similarly, referencing to
previous and next relative positions for both spatial and temporal dimensions.

This fixed order allows us to easily build algorithms that operate on these data struc-
tures. For vectors, we can use Multi-Layer Perceptrons (MLPs), which successively and
non-linearly transform input features into output features. MLPs are less useful when
operating on data with a more regular structure, and so both Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) models are used on these. CNN
layers convolve the same operation—usually a matrix multiplication with the weights
followed by a non-linearity—on each sample entry. RNN models keep a hidden state
representing information gathered from preceding timesteps and use this to produce the
current timestep’s output.

But while these methods are unquestionably successful, many more applications fea-
ture samples that do not have a fixed structure. If our data consists only of objects and
their relationships (see Fig. 1.1d), none of these methods work: MLPs require a fixed-size
input, while we may have varying numbers of objects and relationships. RNN models
require a clear notion of previous and next timestep, while we have only an unordered

2



1.2 Graph Neural Networks

set of relationships for each object. And CNN models require relative positions and a
grid-like structure, while we have only the existence of relationships.

Instead, it would fall to developers to manually construct a representation of the data
such that a fixed structure for ML methods can be created. Depending on the task, this
might be straightforward—or we might suffer from significant information loss.

1.2 Graph Neural Networks

Many of the object-relationship tasks are not easily condensed into a fixed representation
such as required by standard ML models. However, graphs are a natural model for these
tasks, modelling objects as nodes and the existence of relationships as edges. These
might be scientists and coauthorships, traffic participants and interactions between them,
atoms and chemical bonds, or power grid junctions and connecting power lines. Like
images or text, it is clear that each of the objects should be treated identically and we
should therefore apply the same model to each object. Like with CNN or RNN models,
this should lead to better generalization, better accuracy, and more flexible models.
Yet unlike images or text, any such object might have variable numbers of interactions.
A hydrogen atom forms only one bond; a carbon atom four. A grid junction might
connect a single generator to a single power line; it might also be an electrical substation
connecting a dozen lines.

The subfield of graph representation learning promises models that can act and learn
on graph-structured data. Generally, they update each node’s features using the same
transformation function. Depending on the model, these transformation functions might
take only the node itself, or the node and its neighbours, or the complete graph topology
into account. We introduce a number of these methods in Section 2.5 and benchmark
several in Chapter 3.

And yet, while GNN models solve the problem modelling objects that have a variable
numbers of unordered relationships with other objects, most GNN methods remain in-
herently limited: They only process node features and the existence of edges between
them. There are no edge features, graph topology does not change, and nodes are
generally assumed to be of the same type.

1.3 Beyond Simple Graphs

Motivated by these shortcomings, we aim to move beyond simple graphs, i.e. those with
a fixed graph topology and only node features (Fig. 1.2a). We consider three specific
departures from this simple graph model:

• We develop a method for modifying graph topology (see Fig. 1.2b and Chapter 4).
This learns how to pool nodes together, combining both their features and edges.

• We apply GNN models to a traffic prediction problem, in which edge features play
a crucial role (see Fig. 1.2c and Chapter 5). We also introduce a simple way to
inspect node importance in GNN models.

3



1 Introduction

• On the task of power grid control, we not only need to use edge features but
also to find a way for treating heterogeneous types of nodes (see Fig. 1.2d and
Chapter 6). We also integrate GNN models with classical solvers to guarantee
solution feasibility.

In summary, we introduce three departures from the more commonly-used model of
simple graphs towards real-world applicability of GNN models.

1.4 Thesis Outline and Contributions

This thesis consists of seven chapters:

• Chapter 1 has outlined both the need for GNN models and the shortcomings of
current models.

• Chapter 2 provides the reader with the necessary background. This includes
how to represent graphs (Section 2.2), the necessary spectral graph theory which
many methods rely on to apply the concept of convolution to graphs (Section 2.3),
how to formulate graph problems (Section 2.4), and finally a number of GNN
methods (Section 2.5). The latter include recurrent graph networks, and spec-
tral and spatial graph networks. We also introduce theoretical analysis of GNN

V1

V2 V3

V4
V5

(a) Simple Graphs only have node features and
edges. We benchmark GNN architectures
on these in Chapter 3.

V1

V2 V3

V4
V5 ⇒

V14

V35

V2

(b) We propose a method which learns how to
pool edges, varying graph topology (Chap-
ter 4.)

V1

V2 V3

V4
V5

E2,5 E3,5

E1,4

E1,2

E4,5

E3,4

(c) We introduce edge features in Chapter 5.

1 2

3

4 5 G

G

G

L

L

L

(d) We use edge features and introduce hetero-
geneous node types in Chapter 6.

Fig. 1.2: Graph types used in this dissertation.

4



1.4 Thesis Outline and Contributions

models (Section 2.5.3.6) and special computational considerations necessary for
implementing GNN models (Section 2.5.4).

• Chapter 3 compares a large number of the GNN models from Section 2.5 and
their tweaks on simple graphs, i.e. those with only node features and feature-less
connections between nodes. We do this on three semi-supervised node classification
tasks and five graph classification tasks. We are particularly interested in how to
build GNN models and explore among others depth, layer types, and encoder and
decoder types. We also explore the usage of graph features and reproducibility of
GNN training.

• Chapter 4 repeals the first restriction of simple graphs: We introduce a pooling
layer which modifies graph topology, allowing further layers to act on groups of
nodes instead of single nodes. EdgePool is a local and hard pooling layer, allowing
simple disaggregation and unpooling for node prediction tasks. We explore Edge-
Pool in comparison to other pooling methods, plug it into both node-level and
graph-level prediction, and measure its performance impact.

• Chapter 5 then repeals another of the restrictions of simple graphs and introduces
simple edge features. On the task of traffic prediction, we show that represent-
ing a traffic scene as a graph and applying GNN models allows for powerful and
expressive models to be applied while keeping model complexity limited. We are
primarily interested in the usefulness of our adaptations, how to construct the
interaction graph, and whether using a graph to model interactions improves pre-
diction quality.

• Chapter 6 applies GNN models to the far more complex problem of power grid
optimization. We model a power grid, featuring heterogeneous components as
nodes and diverse and complex edge features. We also combine these models with
a classical optimization algorithms with the aim to improve the latter’s runtime
while still guaranteeing feasible control inputs. Since infeasible control inputs for
power grids can result in brownouts or blackouts, guaranteeing feasibility is crucial
to deploying such algorithms in the real world. We are primarily interested in how
to construct the model architecture and in the prediction quality of our method.

• Lastly, in Chapter 7, we summarize this thesis, draw the main conclusions from
our experiments, and close with an outlook based on averting the simple graph
paradigm.

5





2 Background

In this chapter, we go over the necessary background for the remainder of the thesis.
We first introduce the notation used (Section 2.1), followed by how to represent a graph
in a computer (Section 2.2). In Section 2.3, we introduce spectral graph theory with
an eye to adapting the convolution theorem to graphs. This allows us to extend the
notion of convolution to graphs, which is used by several GNN models. Section 2.4
introduces different types of tasks based on graphs. Lastly, Section 2.5 goes over different
GNN models, presenting recurrent graph networks, spectral and spatial GNN models,
theoretical analysis of the latter, and several tweaks to GNN models.

2.1 Definitions

A graph G is a tuple G = (V ,E), with V being the set of nodes and E being the set
of edges. We denote a single node as v ∈ V , using subscripts to distinguish between
nodes when necessary. We generally assume a single fixed but arbitrary node order.
Edges are pair-wise connections between nodes; we refer to an edge from node vi to vj
as eij = (vi, vj) ∈ E. Nodes that are connected by an edge are also called adjacent; a
node is incident to any edge that connects it. We allow self-loops (i.e. eii) to exist, but
do not allow multigraphs (i.e. with multiple edges eij). GNN methods generally treat
undirected graphs (i.e. ∀eij ∈ E : ∃eij ⇔ ∃eji) as directed graphs.

We refer to the degree of a node v as deg (v); it is the number of adjacent nodes. In
matrix-notation, we write might use the degree matrix D, which is the diagonal matrix
containing the node degrees. |V | and |E| are the number of nodes and edges in a graph
respectively.

A walk is an alternating sequence of nodes and edges v0, e1, v1, . . . vn−1, en, vn, such
that each edge en is incident to vn−1 and vn. The walk’s length is the number of edges
it contains. If all vertices and edges of a walk are distinct, it is called a path.

Two nodes are connected if a path exists between them1; a graph is connected if all
node pairs are connected.

The neighbourhood of a node is the set of all adjacent nodes. We also use the n-hop
neighbourhood Nn(v) of a node v, which is the set of all nodes connected to v by a path
of at most length n. More constrained, the strict n-hop neighbourhood N̂n(v) of said
node is the set of all nodes connected by a path of exactly length n. Less constrained,
N+(v) refers to the neighbourhood of node v and the node itself.

1In a directed graphs, both directions of a path have to exist.

7



2 Background

Table 2.1: Symbols used in this thesis.

Symbol Meaning

G
ra

p
h

vi, V Node i, all nodes
eij , E Edge from node vi to vj , all edges

G Graph
N (v), Nn(vi) Single-hop and n-hop neighbourhood of node vi

N̂n(vi) Strict n-hop neighbourhood
N+(vi) neighbourhood plus node vi

A Adjacency matrix
|V | |E| Number of nodes and edges

deg (vi), D Degree of node vi; degree matrix
� Elementwise multiplication

�̃, �∗ Complex number, complex conjugate

S
p

ec
tr

al L, Lsym Graph Laplacian, normalized symmetric graph Laplacian
EDir Dirichlet energy

�̂, f ? g Fourier transform, convolution of f and g

G
N

N

Vi, Eij , G Features of node vi, eij , and the graph
|V|, |E|, |G| Dimensionality of node, edge, and global features

�′ Feature � after transformation⊕
Aggregation function

8



2.2 Representing a Graph

Graphs can have different sparsities, a measure for the connectedness of a graph. A
graph is called sparse when nodes are connected to only a few other nodes, and dense
when nodes are connected to many. This can be measured using the graph density

D =
|E|
|V | |V |

. (2.1)

Since we assume graphs to be directed and include self-loops, the maximum number
of edges is |V | × |V |.

Depending on the task, a graph might provide features for different components: Node
features Vi for node vi, edge features Eij for the edge eij , or global features G per graph.
We also use |V|, |E|, and |G| to refer to their size. Generally, we use �′ to refer to the
transformed features produced by a layer.

2.2 Representing a Graph

Most commonly, a graph is represented in a computer by either an adjacency matrix or
an adjacency list. Both rely on defining a fixed but arbitrary node order.

Adjacency Matrix An adjacency matrix A is a boolean matrix of shape |V |×|V |, with
entry Ai,j indicating whether an edge between node i and j exists. Advantages are a
constant-time lookup of edge existence and edge manipulation. Its main disadvantage is
a quadratic space requirement in the number of nodes, which is particularly problematic
for sparse graphs.

When representing edge features, an adjacency matrix can be supplemented by an
edge feature matrix of shape |V | × |V | × |E|. Alternatively, we can add an edge feature
list and store the index of the corresponding edge features in the adjacency matrix.

Adjacency List An adjacency list is a list of length |E|, containing an element (i, j) if an
edge between the ith and jth node exists. Primary advantage is in storage requirements,
which grow linearly with the number of edges. Its main disadvantage is that checking
for the existence of an edge requires searching through the whole list.

Edge features can be easily represented by using a separate edge feature matrix of
shape |E| × |E|, whose ith entry corresponds to the ith entry in the adjacency list.

2.3 Spectral Graph Theory

From the graph definition above, one can draw connections between graphs and mani-
folds. Informally, by treating each node as a point and using the graph neighbourhoods,
a graph can be interpreted as a topological space. Treating each neighbour as equidis-
tant, a locally-Euclidian interpretation allows us to interpret the graph as a manifold.
Interpreting a graph as a manifold, we are now motivated to find metrics for graph
topology. The following draws from Bronstein et al. (2017), to which we refer the reader
for more details.

9



2 Background

2.3.1 Scalar and Tangent Vector Fields on Graphs

One such metric on manifolds is the Laplacian, the divergence of the gradient. The
rough analogy to scalar fields and tangent vector fields are functions defined on nodes
(f : V → R) and edges (F : E → R). With a weight b for each node and a weight w for
each edge, we can use the inner products of

〈f, g〉H(V ) =
∑
v∈V

bvfvgv and (2.2)

〈F,G〉H(E) =
∑
e∈E

weFeGe (2.3)

to define Hilbert spaces on these functions. Intuitively, f associates each node (the
equivalent of a point on manifolds) with a value, while F can be interpreted as producing
a linear combination of the edge vectors, i.e. a single vector, for each node.

2.3.2 Differential and Divergence

Now, we can define a differential operator on such functions (Lim 2020). ∇ : L2(V ) →
L2(E) is the graph gradient operating on the Hilbert spaces induced on the node and
edge functions respectively, and defined as

(∇f)ij = fi − fj . (2.4)

Assuming, as Bronstein et al. (2017) do, that F is alternating, this satisfies

(∇f)ij = −(∇f)ji (2.5)

and the gradient is therefore symmetric. This allows us to define the graph divergence
div : H (E)→ H (V ) as

(divF )i =
1

bi

∑
eij∈E

wijFij . (2.6)

Graph Laplacian Now that we have defined both graph divergence and a graph differ-
ential operator, we can define the graph Laplacian ∆ : H (V ) → H (V ), which like the
normal Laplacian is simply ∆ = −div∇, as

(∆f)i =
1

bi

∑
(i,j)∈E

wij(fi − fj). (2.7)

Stacking edge weights into the n×n-matrix W = (wij) of edge weights, node weights
into the n-dimensional vector B, and degrees into the diagonal degree matrix D we can
rewrite Eq. (2.7) into the more familiar matrix-vector form of the graph Laplacian

Lf = B−1(D−W)f . (2.8)

10



2.3 Spectral Graph Theory

Assuming unweighted nodes and edges, this is equivalent to the simple Laplacian form
L, with

L = D−A =


deg (vi) i = j

−1 i 6= j; (i, j) ∈ E
0 otherwise

. (2.9)

Intuitively, the graph Laplacian of a node captures the difference of a function applied
to a node and the average of the function applied to its neighbours, just like the normal
Laplacian is capturing the difference between a function applied to a point and the local
average of the function around that point.

2.3.3 Laplacian Eigenfunctions

The eigenfunctions of a function f on a certain domain X are the set of orthogonal
functions that minimize the Dirichlet energy

EDir(f) =

∫
X
‖∇f(x)‖2TxX dx. (2.10)

The eigenfunctions are the solution of the optimization problem

min
φi

EDir (φi) s.t. ‖φi‖ = 0 and φi ⊥ φj ∀ 0 ≤ j < i. (2.11)

Since a graph domain is necessarily a discrete setting, we can simplify Eq. (2.11) to

min
Φk∈Rn×k

Tr
(
ΦT
kLΦk

)
s.t. ΦT

kΦk = I, (2.12)

with Φk being the n × k matrix of the first k stacked Laplacian eigenvectors. The
solution to this equation is given by the first k eigenvectors of L, i.e. satisfying

LΦk = ΦkΛk, (2.13)

with Λk being the diagonal matrix of the corresponding eigenvalues. Using the defi-
nition of L from Eq. (2.8), we can rewrite this as

(D−W) Φk = BΦkΛk (2.14)

or, introducing Ψk = B−
1
2 Φk, as

B−
1
2 (D−W) B−

1
2 Ψk = ΨkΛk. (2.15)

In the case of using the node degrees as node weights (i.e. B = D) and identical edge
weights (i.e. W = A), this simplifies to

D−
1
2 (D−A) D−

1
2︸ ︷︷ ︸

=:Lsym

Ψk = ΨkΛk. (2.16)

11



2 Background

0

12

3 4

5
Eigenvalue: 1.88

0

12

3 4

5
Eigenvalue: 1.52

0

12

3 4

5
Eigenvalue: 1.28

0

12

3 4

5
Eigenvalue: 0.87

0

12

3 4

5
Eigenvalue: 0.45

0

12

3 4

5
Eigenvalue: 0.00

Fig. 2.1: Fourier decompositions of a graph, ordered by the magnitude of the eigenvalue.

Lsym is called the normalized symmetric Laplacian, and is also often written as Lsym =

I−D−
1
2 AD−

1
2 .

2.3.4 Fourier Analysis of the Graph Laplacian

For any existing graph, Eq. (2.8) allows us to compute the n× n matrix ∆f describing
the graph. Often, we are interested in a description capturing both node and topology
information. Spectral graph theory allows us to create such a description by applying a
Fourier transform to the graph Laplacian. This creates a set of eigenfunctions φ0, φ1, . . .
and ordered eigenvalues 0 = λ0 ≤ λ1 ≤ . . . which together form the spectrum of the
graph Laplacian.

Given this, we can now decompose any function f on the graph into a Fourier series

f(x) =
∑
i≥0
〈f, φi〉H(V )φi(x), (2.17)

where 〈f, φi〉H(V ) forms the components of the Fourier series. This is shown in Fig. 2.1.

2.3.5 Convolutions on Graphs

Transforming graphs into function space allows us to apply the convolution theorem.
The convolution theorem states that

f̂ ? g = f̂ × ĝ and f̂ × g = f̂ ? ĝ, (2.18)

12



2.4 Learning Tasks on Graphs

i.e. the Fourier transform �̂ of a convolution f ? g of two functions f and g is equiv-
alent to a multiplication of their Fourier transforms (and vice versa). The immediate
formulation of the convolution can be written as

(f̂ ? g)(ω) =

∫ ∞
−∞

f(x)e−iωxdx

∫ ∞
−∞

g(x)e−iωxdx. (2.19)

We can use this equivalency as a definition, thereby sidestepping the issue of being
unable to define convolutions directly on the graph.

Doing so, we arrive at

(f ? g)(x) =
∑
i≥0
〈f, φi〉H(V )〈g, φi〉H(V )φi(x). (2.20)

For graphs, we use the inner product from Eq. (2.2). Integrating this into Eq. (2.20),
we get

(f ? g)(x) =
∑
i≥0

(∑
v∈V

bvfvφi(x)
∑
v∈V

bvgvφi(x)

)
φi(x) (2.21)

or, in matrix-vector notation,

(f ? g) = Φdiag (ĝ) ΦTf , (2.22)

where Φ are the stacked Laplacian eigenvectors and ĝ is the spectral representation
of the filter.

2.4 Learning Tasks on Graphs

The tasks discussed in this thesis follow a similar structure: Each sample is a single graph
(the exception are semi-supervised node-level prediction tasks, see Section 2.4.1). We
store its topology information in an adjacency list and, depending on the tasks, might
store node features V, edge features E , and global features G. Not all tasks provide all
features.

The goal in graph-based machine learning tasks can be sorted into one of three cat-
egories, depending on which parts of a graph they are interested in: Node-level tasks
produce outputs for each node, edge-level tasks for each edge, and graph-level tasks one
set of outputs per graph.

While machine learning models generally distinguish between categories such as clas-
sification or regression, supervised, unsupervised, semi-supervised and reinforcement
learning tasks, this has little influence in the design of GNN layers, which primarily
form the feature extraction backbone out of which we build the final model.

13



2 Background

2.4.1 Node-Level Tasks

Node-level prediction produces outputs per node. Trained on a set of labelled nodes,
the goal is to predict the output values for each node on unseen graphs.

In image processing, the analogy is pixel-wise semantic segmentation, where each pixel
is assigned a class.

Examples for this task are recommender systems2, prediction of particle motion in
physics simulations (Sanchez-Gonzalez et al. 2020), or vehicle motion prediction (see
Chapter 5).

Semi-Supervised Node Tasks Semi-supervised node-level prediction tasks are a spe-
cial case of node-level tasks. They remain important benchmark tasks in the GNN
literature, following their use by Kipf and Welling (2016). The three main datasets are
citation tasks, where papers are modelled as nodes and their citation links as edges (see
Section 3.1.1 for more details).

Generally, the semi-supervised node-level prediction task operates on a single graph3

for which a small percentage of nodes (usually less than 5%) are labelled. The goal is
then to predict the unlabelled nodes on the same graph as used during training.

Outside of citation networks, this type of task occurs wherever there is one single large
graph. Main example are large social graphs (Ying, He, et al. 2018), road networks, or
product graphs in recommender systems.

2.4.2 Edge-Level Tasks

For some tasks, the goal is not to predict node features but instead edge features. These
usually come in two flavours: Either predicting features for existing edges, or predicting
whether an edge exists (link prediction).

Edge Feature Prediction Edge feature prediction is used whenever we are interested
in the attributes of a relation. This could be classifying a type of relationship in a social
graph (friendship, colleagues, or family), attributes of streets in a street network, or
power line attributes in a power grid.

Link Prediction In contrast, link prediction is only concerned with whether a certain
edge exists. While predicting the complete structure of a graph is usually infeasible4,
predictions for single connections are very useful. Link prediction can be conceptually
simple to implement: One can add a virtual edge and directly predict existence (Zhang
and Chen 2018), compute features for both adjacent nodes and create a model predicting
link existence from them, or compare the output of a graph both with and without the
link.

2When not represented as a single big graph, in which case this is rather a semi-supervised node-level
prediction task.

3In principle, it is also possible to have several semi-labelled graphs.
4Computational complexity to handle all possible connections obviously grows quadratically in the

number of nodes.

14



2.5 Graph Neural Networks Paradigms

2.4.3 Graph-Level Tasks

In graph-level prediction tasks, we are interested in a single output per graph. In the
simple case of a fixed graph size, any machine learning model can easily produce this
output. Once we treat graphs of different sizes though, a graph-aware model to compute
component features followed by a global pooling method to combine these features into
a single output becomes more sensible.

The classical example for this task are molecule property prediction, where a molecule
is modelled as a graph with atoms as nodes and chemical bonds as edges and one has to
predict attributes such as toxicity and solubility (see Section 3.1.2).

2.4.4 Hybrid and Other Cases

The tasks mentioned above are not exclusive: A task might require predicting any
combination of them. For example, a model controlling a power grid might be tasked to
output both signals to control power generation of generators (modelled as nodes and a
node-level tasks) and signals to control the power lines between generators (modelled as
edges and an edge-level task).

Similarly, we are not restricted only to supervised or semi-supervised prediction tasks:
We can also use graph models for unsupervised tasks or reinforcement learning. In
the latter case, we might output global actions and global q-values (for example when
modelling a robot’s environment as a graph), local node or edge actions and global q-
values (for a cooperative multi-agent scenario), or both local actions and local q-values
(for a non-cooperative multi-agent scenario).

2.5 Graph Neural Networks Paradigms

In the following section, we give an overview over the development of GNNs. We divide
GNNs into three different categories: Recurrent graph neural networks repeatedly apply
the same function to the graph representation until it converges. Both spectral and
spatial GNNs are closer to the non-graph deep learning paradigm in that they consist of
a series of separately-parametrized layers which successively transform graph features.
They can be distinguished based on the technique they use for that transform: Spectral
GNNs leverage the convolution definition from spectral graph theory (see Section 2.3.5)
to apply a mathematically rigorous convolution operation to the graph. In contrast,
spatial GNNs compute new features based neighbouring nodes’ features, avoiding the
inefficiencies inherent in spectral GNNs. We note, though, that there is no hard line
distinguishing spectral and spatial methods.

15



2 Background

2.5.1 Recurrent Graph Neural Networks

Recurrent Graph Neural Networks (RGNNs)5 were the initial form of neural networks
applied to graphs. They usually apply the same transformation function to node features
until a certain convergence criterium is met, then produce an output.

2.5.1.1 Recurrent Graph MLP

First introduced by Gori et al. (2005) and later expanded by Scarselli et al. (2009), they
can produce both graph- and node-level outputs.

Their model consists of an iterative two-stage process. Given a set of initial node labels
V(0), a set of edge labels E(0) and a set of node states6 V (in modern parlance, these
are the initial node and edge features and the transformed node features respectively),
a parametric transition function T transforming node states is applied to each node

V ′i =
∑

vj∈N (vi)

T
(
V(0)i , E(0)ij ,Vj ,V

(0)
j

)
. (2.23)

This transfer function is applied iteratively until convergence, producing final node
states ĥi. To guarantee convergence, the transfer function is required to be contractive,
and Scarselli et al. (2009) construct a transfer function based on a fully-connected MLP
that fulfils this requirement.

After convergence, a readout function takes the converged node state V̂i and the initial
node features for each node to produce its final output:

oi = ρ
(
V̂i,V(0)i

)
. (2.24)

They again use a fully-connected MLP to learn the output function ρ.
Intuitively, this can be seen as an iteratively-applied convolutional layer on graphs,

with its receptive field increasing with each application. This is primarily based on
the intuition of nodes as entities and edges as their relationship; this way, multiple
applications of the transfer function multi-hop relationships.

2.5.1.2 Gated Graph Sequence Neural Networks

Li, Tarlow, et al. (2017) modify the original Recurrent Graph MLP (Scarselli et al.
2009) to use Gated Recurrent Units (GRUs) (Cho et al. 2014) with a fixed number of
iterations. They also use a soft attention mechanism in their output model. Their main
contribution is in extending this to sequential outputs, demonstrated on both reasoning
and a program verification task.

5Scarselli et al. (2009) refer to this method as Graph Neural Network and abbreviate it as GNN. To
avoid confusion with the much broader term of GNN that is in use today, we follow Wu et al. (2019) in
using the term Recurrent Graph Neural Network (RGNN) instead.

6Scarselli et al. (2009) do not concern themselves with how to initialize the node state since states
converge to the same final state regardless of input.

16



2.5 Graph Neural Networks Paradigms

2.5.1.3 Stochastic Steady-State Embedding

Dai et al. (2018) observed that solving many graph algorithms, such as component de-
tection, PageRank scores, or mean field inference, can be modelled by similar equations
as used by the Recurrent Graph MLP model. They iteratively update each node repre-
sentation until convergence, using

h′i = T
(
{hj}j∈N (vi)

)
(2.25)

with a constant initial h
(0)
vi . As Scarselli et al. (2009), they produce a final output

using a readout function

oi = ρ
(
ĥi

)
. (2.26)

Dai et al. (2018) learn both the transfer function T and the readout function ρ. They
show promising results on learning several graph algorithms and show their methodology
being applicable to node classification.

2.5.1.4 Conclusion

We have seen several models that follow the scheme of repeatedly applying a transforma-
tion. Initially, methods applied these until convergence, but the general movement has
been towards a fixed number of iterations to avoid huge computational costs. Interest-
ingly, this idea of applying a function until convergence has also been used to expand the
depth of CNN models (Chen et al. 2019) by modelling the CNN model as a differential
equation.

The field of RGNN models is the smallest and least active of our subdivisions.

2.5.2 Spectral Graph Neural Networks

Spectral Graph Neural Networks (SGNNs) use spectral graph theory (in particular spec-
tral convolutions on graphs, see Section 2.3.5) to define convolutional layers that work
on graphs. Applying several of these successively transforms node features to a final
representation. Contrary to RGNNs, each layer forms a separate transformation with
its own parameters and each is applied once in order. This is far closer conceptually to
MLP or CNN models used on non-graph data.

2.5.2.1 Spectral Networks

Bruna et al. (2013) first introduced the notion of a GNN layer based on spectral convo-
lutions. They compute new node features layer-wise using

V ′ = ΦT (ΦV �ΦΘ) (2.27)

where V is the layer’s feature representation of all nodes, transformed into the layer’s
output features V ′. Φ is the ordered matrix of eigenvectors of the graph Laplacian. In

17



2 Background

practice, they often reduce this to only the first k eigenvectors. Θ is a diagonal weight
matrix (filter) which has one parameter per eigenvector it acts on, and accordingly
requires the training of |V|×|V ′|×d parameters. While they argue it should be possible to
reduce the number of necessary parameters, they do not provide any constructive method
beyond a 1-dimensional ordering of eigenvectors. They demonstrate their method on two
MNIST-derived datasets: One subsampled to an irregular grid of 400 coordinates, the
other projected onto a 3D sphere.

Henaff et al. (2015) provide an algorithm to achieve the parameter reduction men-
tioned above, building a smooth interpolation of the weights while learning the weights
themselves. More interestingly, they also propose a graph topology estimation procedure
based on estimating the distance between two samples and building a Gaussian diffu-
sion Kernel. They demonstrate both methodologies on a news corpus, a computational
biology task, and show similar performance to a very simple CNN on ImageNet with a
known graph structure.

Unfortunately, both approaches require computation of the eigen-decomposition of the

graph, which has a complexity of O
(
|V |3

)
, clearly infeasible for large graphs. Even with

a precomputed eigen-decomposition, Φ is a dense matrix of shape |V | × |V |, meaning
computational complexity also scales with O (|V |)3. Many of the following methods
concentrated on finding approximations to reduce this computational complexity.

2.5.2.2 ChebNet

Aiming to correct the computational issue inherent in SGNNs with convolutions ex-
pressed in the Fourier domain, Defferrard et al. (2016) introduced a simplified version:
They replace the multiplication by the diagonal weight matrix Θ from Eq. (2.27) with
a polynomial function. For this, they use the Chebyshev expansion. A Chebyshev
polynomial Tk(x) is computed using the stable recurrence

Tk(x) = 2xTk−1(x)− Tk−2(x), (2.28)

with T0 = 1 and T1 = x. Replacing the Fourier transformation and convolution in
Eq. (2.27) with a Chebyshev polynomial of order K then becomes

V ′ =
K−1∑
k=0

θkTk(L̂)V, (2.29)

with a scaled graph Laplacian L̂ = 2L
λmax−I . Since this is a Kth order polynomial in the

Laplacian, output node features only depend on nodes in their K-neighbourhood. By
intelligent computation, runtime scales with O (K |E|), significant savings particularly
on sparse graphs. They also show, experimentally, large speedups compared to the
original formulation.

Taking things one step further, Kipf and Welling (2016) (which we will revisit in
Section 2.5.3 from a spatial convolution perspective) limit K to 1 to receive a function
that is linear with respect to the graph Laplacian. They argue that, similar to MLPs and

18



2.5 Graph Neural Networks Paradigms

CNNs, complex filters can still be recovered by stacking multiple such layers combined
with a non-linear transformation function. They also assume that λmax is approximately
2, relying on the neural network to adapt to this. Using this, Eq. (2.29) simplifies to

V ′ = θ0 + θ1 (L − I)V = θ0 − θ1D−
1
2 AD−

1
2V. (2.30)

Further simplifying by using a single parameter θ = θ0 = −θ1 results in

V ′ = θ
(
I + D−

1
2 AD−

1
2

)
V. (2.31)

Lastly, to alleviate stability issues, they renormalize the formula to

V ′ = θ
(
D̄−

1
2 ĀD̄−

1
2

)
V, (2.32)

with Ā = D + I being the adjacency matrix with added self-connections, and D̄
the degree matrix with added self-connections. Formulated in matrix-vector form, this
becomes

V ′ = D̄−
1
2 ĀD̄−

1
2 ΘV, (2.33)

with a learned weight matrix Θ of size |V ′| × |V|.

2.5.2.3 CayleyNet

Chebyshev filters, while being far more efficient to compute than the original proposed
method by Bruna et al. (2013), suffer whenever narrow-band filters are required. Levie
et al. (2017) show that the number of Chebyshev coefficients K must grow inversely
proportional to the size of an eigenvalue cluster to be able to distinguish between them.
Since ChebNet’s computational complexity grows according to O (K |E|), this quickly
results in large computational requirements.

This motivates Levie et al. (2017) to introduce Cayley filters, based on the eponymous
Cayley transform. They introduce the Cayley filter of order K as

V ′ = θ0V + 2Re

(
K∑
k=1

θk (hL − iI)k (hL+ iI)−k V

)
, (2.34)

with a learnable parameter vector θ of one real and K complex coefficients and a
learnable scalar parameter h, the spectral zoom parameter. h in particular, they argue,
allows a better spreading of either high frequencies (for smaller h) or low frequencies (for
larger h). Intuitively, Eq. (2.34) projects the real node features onto the complex unit
half-circle and extracts only the real component for each.

They demonstrate their method on a citation dataset and a recommender system.

19



2 Background

Original Graph

V1

V2 V3

V4

V5

Message Creation

V1

V2 V3

V4

V5
m3,5

m1,5

m2,5

Message Aggregation

V1

V2 V3

V4

V5

m1,5

m2,5

m3,5

⊕

Fig. 2.2: The message passing paradigm, shown for node v5. For an original graph (left), mes-
sages are computed for each edge using the incident edges (middle). These are then
aggregated for each node (right), producing new node features.

2.5.2.4 Adaptive Graph Convolutional Networks

Li, Wang, et al. (2018) propose a variation in which the graph Laplacian itself is learned.
Specifically, they learn the parameter W ∈ R|V|×|V|, which they then use to form the
covariance matrix S of a generalized Mahalanobis distance measure as S−1 = WWT:

D(vi, vj) =

√
(Vi − Vj)TS−1 (Vi − Vj). (2.35)

Given this distance measure, they use the Gaussian kernel

G(vi, vj) = exp

(
−D (vi, vj)

2σ2

)
(2.36)

which, after normalization, produces a dense modified adjacency matrix Â or, if an
adjacency matrix is already defined by the data, a residual graph Laplacian matrix Lres
using L̂ = L+ αLres with a learned parameter α.

While the model shows improved performance compared to models using a given graph
formulation, they pay for this with large computational cost. In particular, computing

the kernels G requires O
(
|V |2

)
computations and results in a dense adjacency matrix,

invalidating sparse computation tricks to keep computation requirements low.

2.5.2.5 Conclusion

SGNNs models are mathematically elegant, using spectral graph theory to rigorously
define convolution operations on graphs. Unfortunately, they usually suffer from com-

putational issues, with complexity growing with O
(
|V |2

)
or even O

(
|V |3

)
and neces-

sitating dense graph Laplacian matrices. Several approaches aim to reduce the required
computation, but there has not yet been a single convincing method to do so.

2.5.3 Spatial Graph Neural Networks

Contrary to SGNNs, spatial GNN models operate on the notion of neighbourhood and do
not take the whole graph into account. Its main implementations are Message Passing

20



2.5 Graph Neural Networks Paradigms

Neural Network (MPNN) models, which use only the immediate neighbourhood of a
node to compute that node’s new features. Generally, a message function M creates
messages mij for node vi based on its neighbouring nodes vj and the edge eij

mij = M (vi, vj , eij) . (2.37)

Each node’s new features are then computed by a node update function Uv

V ′i = Uv

Vi, ⊕
vj∈N (vi)

mij

 (2.38)

using the messages m and the previous layer’s node features. Messages are collated
using a collation function

⊕
, which has to be transitive and associative in order to avoid

issues with node order. Usually, the sum is used, with a maximum and mean operation
as alternatives. See Fig. 2.2 for a graphical overview.

From the description above, it is clear that computational complexity is better than
using SGNNs, scaling in O (|E|) without requiring polynomial approximations. However,
global graph structure cannot be modelled well using this system (see Section 2.5.3.6).

2.5.3.1 Graph Convolutional Networks (GCNs)

GCNs have already been introduced in Section 2.5.2.2 as an extreme form of approxi-
mating the spectral convolution using only a first-order Chebyshev polynomial approx-
imation. However, while Kipf and Welling (2016) do not formulate their method as a
message passing approach, it nonetheless can easily be expressed as that. Setting

M (vi, vj , eij) = (deg (vi) deg (vj))
−1/2 AijVj , (2.39)

i.e. depending only on the degrees of the corresponding nodes and the hidden features
of the neighbours7, setting

⊕
=
∑

, and

Uv (vi) = Θ
∑

vj∈N+(vi)

mij , (2.40)

we can reformulate the original GCN as a MPNN8. This also shows that a GCN layer
is based on what is essentially a weighted sum of neighbouring node features, which are
then transformed by a learned weight matrix.

This formulation makes the sparsity of the update procedure immediately apparent:
Each node’s update depends only on the immediate neighbours. Using efficient imple-
mentations9, computation time scales in O (|E|).

7The GCN model adds self-connections to the graph, which allows an elegant formulation by adding
the node v itself to its neighbourhood in Eq. (2.39). Alternatively, one can modify Eq. (2.40) to integrate
the node features before applying the weight.

8Kipf and Welling formulate their layer definition as including the activation function σ, which non-
linearly transforms the final output. We use the definition without an activation function for consistency.

9Implementing these is non-trivial: GPUs are dominate deep learning due to their capability of fast
parallelized matrix multiplications, but the usecase for which the low-level libraries are implemented do

21



2 Background

2.5.3.2 Message Passing Neural Networks (MPNNs)

Aside from introducing the message passing formulation used above, Gilmer et al. (2017)
introduced the MPNN model, which also takes edges into account. Compared to the
GCN model, the message function is modified to

M (vi, vj , eij) = MLP (Vi‖Vj‖Eij) (2.41)

to take edge information into account by applying an MLP to them. The node update
function takes the original node features separately into account10:

Uv (vi) = ΘVi +
∑

vj∈N+(vi)i

mij , (2.42)

The MPNN model is conceptually much more powerful than the GCN model, since
it allows for both node-dependent updates and includes edge attributes. It is, however,
restricted to transforming node features11. Edge features are used as an input for each
layer, but remain themselves untransformed. The authors do propose the use of global
features by introducing a virtual master node, connected to every other node. This could
also be used to produce graph-level outputs.

They demonstrate MPNNs on the task of predicting chemical properties for molecules.

2.5.3.3 GraphSAGE

GraphSAGE (Hamilton et al. 2017) is based on a localized sampling of the neighbour-
hood. Each node is updated based on the k-neighbourhood12:

V ′i = Θ

Vi‖ ⊕
vj∈Nk(nodei)

(Vj)

 . (2.43)

In practice, their experiments show a two-hop neighbourhood to slightly increase pre-
diction performance compared to the immediate neighbourhood. Larger neighbourhoods
greatly increased computation time for marginal prediction increases.

Hamilton et al. (2017) explore three different aggregation functions in their work: One
takes the elementwise mean of the vectors, one applies learned Long Short-Term Memory
(LSTM) units on a random permutation of the neighbours, and one applies max pooling
on independently transformed node features. On their example tasks of citation and
protein classification, they found the latter two to generally perform best, but found the
LSTM-based approach to require roughly double the computation time.

not include the large number of scattering operations that GNNs require. However, custom kernels (such
as pytorch-geometric (Fey and Lenssen 2019)) can alleviate this concern and are necessary for large-scale
experiments.

10In particular, this means it does not use the same self-connection trick as the GCN model.
11Gilmer et al. are primarily concerned with predicting values or classifying for the complete graph,

and do not formulate their model for a node-level prediction task. It is trivial to use the model for this,
though.

12We again do not include the activation function in our formulation.

22



2.5 Graph Neural Networks Paradigms

2.5.3.4 Graph Attention Network (GAT)

Whereas GCNs treat all neighbours identically and produce a final output based on an
equal mix of their features, Graph Attention Networks (GATs) (Veličković et al. 2017)
produce attention weights for each neighbouring node based on their features. That is,
the original node update function from Eq. (2.40) is augmented with an edge-specific
attention weight αij for edge eij

Uv (vi) = Θ
∑

vj∈N+(vi)

αijmij . (2.44)

α is computed using the agreement between transformed source and target node fea-
tures, normalized using the softmax operator:

αij = softmaxN+(vi) (σ (ΘVi‖ΘVj)) . (2.45)

Usually, they use multi-head attention. They demonstrate their method on three
citation datasets and a protein dataset.

2.5.3.5 Graph Networks

Expanding on the notion of message passing, Battaglia et al. (2018) introduced a gen-
eralization they call a graph network. It is a very general framework, defining three
update rules for edge features, node features, and global features. These are updated
sequentially.

Edges are updated first, and transformed using their current features, the node features
of source and target node, and the global features:

E ′ij = Ue (Eij ,Vi,Vj ,G) , (2.46)

where Ue is an arbitrary learnable edge update function.
Afterwards, the nodes are updated according to

V ′i = Uv

 E→V⊕
∀eij∈E

(Eij) ,Vi,G

 , (2.47)

where
⊕E→V is an aggregation function aggregating edges and Uv is, again, an arbi-

trary learnable node update function.
Lastly, the global state is updated using

G′ = UG

 E→G⊕
∀eij∈E

(Eij) ,
V→G⊕
∀vi∈V

(Vi) ,G

 , (2.48)

with two aggregate functions
⊕E→G and

⊕V→G aggregating all of the graph’s edges
and nodes respectively. These are then used by the global update function UG , again an
arbitrary learnable function, to produce the new global state.

23



2 Background

As has become apparent from the preceding equations, the Graph Network paradigm
is extremely powerful and flexible. However, it is also so broadly defined that it offers
no real guidance on the choice and tradeoffs of either the aggregation or the update
functions, though Battaglia et al. (2018) use MLPs for their demonstrations on finding
the shortest path, simulating mass-spring systems, and sorting numbers.

2.5.3.6 WL-Graph-Isomorphy and the GIN Model

The Weisfeiler-Leman graph isomorphy test (Weisfeiler and Leman 1968) is used to
test two graphs for isomorphy. It is a powerful heuristic, despite not being able to
distinguish all non-isomorphic graphs. Morris et al. (2018) showed how MPNN models
are equivalent to the 1-WL algorithm, using this to construct more powerful k-GNN
models that operate on sets of nodes. Xu, Hu, et al. (2018) also prove that equivalency
and introduce a GNN layer that is as powerful as possible within the 1-WL framework.

The WL Algorithm The WL algorithm depends on iteratively computing node colour-

ings. We assign each node vi an initial unique node colouring c
(0)
i

c
(0)
i = i. (2.49)

Afterwards, we iteratively compute new colourings

c
(t+1)
i = HASH

(
c
(t)
i , {c

(t)
j |vj ∈ N (vi)}

)
(2.50)

using some bijective hash function HASH that maps each input pair onto a unique
value. That is, we compute the new colour for each node from a combination of its
old label and its neighbours’ labels. We repeat this until convergence, that is until the
number of colours does not change between iterations. This happens after at most |V |
iterations.

When testing for graph isomorphy, we run this algorithm on both graphs in parallel.
When the two graphs are mapped to a different final colouring, they are not isomorphic.

The WL algorithm can be expanded to the k-WL algorithm by using the k-hop neigh-
bourhood Nk(vi), though this increases computational complexity significantly.

Equivalence to GNN models Morris et al. (2018) show how MPNN models are equiv-
alent to the 1-WL algorithm. We only sketch the proofs here, and refer readers to the
appendix of Morris et al. (2018) for the full proof.

They first prove how MPNN models are no more powerful than the 1-WL, i.e. that
the new node features V ′i and V ′j of nodes vi and vj produced by a MPNN layer must
be equal if the new colourings c′i and c′j are equal. If the colourings are equal, both
nodes’ previous colourings and the colourings of their neighbourhoods must have been
identical. Since the node features are computed from exactly these same nodes, they
must also be equal.

24



2.5 Graph Neural Networks Paradigms

Afterwards, they prove that, for certain choices of weights, the 1-WL is no more
powerful than MPNN models. They construct a weight matrix for a MPNN model such
that it achieves the same mapping as the 1-WL algorithm.

Accordingly, GNN models operating on the neighbourhood of graphs by using a simple
aggregation function is as powerful as the 1-WL algorithm.

k-GNN Models Discontent with the shortcomings of neighbourhood-operating GNN
models (which they call 1-GNN models), Morris et al. (2018) instead propose the gener-
alization of k-GNN models, based on the k-WL algorithm. They consider the k-element
subsets of V k instead of the nodes V , i.e. they operate on neighbouring node sets.

They show advantages compared to standard GNN models on both small benchmark
datasets and the larger QM9 dataset.

Graph Isomorphism Network (GIN) Models Concurrently to Morris et al. (2018), Xu,
Hu, et al. (2018) also proved the equivalency of GNN models and the 1-WL algorithm.
They formulated two conditions (both update and aggregation function have to be injec-
tive and the graph-level readout function has to be injective), and decide to use MLPs
to model these functions for maximum flexibility. That is, they introduce a parame-
ter ε (either learned or fixed) and an MLP model into the node aggregation function
Eq. (2.38) such that

V ′i = MLP

(1 + ε)Vi +
∑

vj∈N (vi)

mij

 . (2.51)

They also find failure cases for commonly-used global pooling strategies and choose
to use the summation of the node features from all layers.

2.5.3.7 Conclusion

In contrast to SGNNs models, spatial GNN models are far better scaleable. This has
made them the de facto standard GNN type in use today. Of particular interest are the
theoretical insights gained into GNN models and the resulting models.

2.5.4 Computational Implementation

The implementation of GNN layers is difficult: Whereas standard neural networks rely
only on matrix multiplication, addition, and convolution and are therefore fairly sim-
ple to implement and optimize, GNN models operate on sparse data structures and
often require the scattering of values from a vector onto another matrix based on an
index. Standard GPU implementations like CUDA do not support these functions well
and specialized implementations such as pytorch-geometric (Fey and Lenssen 2019) are
needed.

25



2 Background

2.6 Conclusion

We have introduced the necessary background for this thesis. We have started by in-
troducing the notation and definitions (Section 2.1) and how to represent a graph in a
computer (Section 2.2). In Section 2.3, we then introduced spectral graph theory upon
which graph convolutions are often based. Section 2.4 then showed a number of different
problem types that might occur on graphs. In Section 2.5, we then introduced recurrent
graph networks, and spectral and spatial GNN models as well as theoretical analysis of
the latter.

26



3 Simple Graphs

In its simplest form, a graph consists only of nodes (each with some features) and
featureless edges between them, modelling relations (see Fig. 3.1). This class of problems
has long been used for benchmarks. This remains an issue because these datasets only
represent a small subset of possible tasks: They lack edge features and their nodes are
usually homogeneous, always representing the same type of object.

These datasets are nonetheless extremely diverse, containing data such as academic
citation graphs, proteins, online forum interactions, or co-purchased products. These
task classes have driven the development of models since the beginning of research into
modern GNN models: Kipf and Welling (2016) evaluated their GCN model on three
citation network tasks and one knowledge graph dataset preprocessed to follow the same
format. Since then, the majority of GNN development has been evaluated—most of
them exclusively—on either these citation datasets or a subset of the datasets curated
by Kersting et al. (2020).

In this chapter, we use these datasets to evaluate how to build GNN models, evaluating
among others encoder types, layer types, depth, and global pooling methods. Section 3.1
introduces the datasets we use to evaluate the models. Section 3.2 showcases the base
GNN model and the relevant parameters one can optimize. Based on these building
blocks, Section 3.3 introduces the research questions used to guide our investigation and
their results. Lastly, we summarize our results in Section 3.4.

3.1 The Datasets

GNN models have been evaluated on a large number of benchmark datasets. The most
widely used graph datasets are a set of three citation graphs (citeseer , cora, and pubmed),
which are used for semi-supervised node classification, and graphs from several different

V1

V2 V3

V4
V5

Fig. 3.1: A simple graph: A total of five nodes with different features. There is a graph topology,
but edges do not have separate features.

27



3 Simple Graphs

Table 3.1: Attributes of the three citation datasets. As can be seen, these differ in both size
and the number of targets. However, they are all similarly sparse.

Dataset Nodes Edges Avg. Degree Features Classes Labeled Nodes Density

citeseer 3 327 4 552 1.37 3 703 6 120 (3.64 %) 0.008 21

cora 2 708 5 278 1.95 1 433 7 140 (5.17 %) 0.001 44

pubmed 19 717 44 324 2.25 500 3 60 (0.30 %) 0.000 23

domains, collected by Kersting et al. (2020). The latter are usually supervised graph
classification tasks.

3.1.1 Semi-Supervised Node Classification Datasets

All three citation datasets were introduced as a benchmark for graph tasks by Sen et al.
(2008)1. The datasets model scientific papers as nodes, including bag-of-word features
as node features, and their citations as edges. Details on the datasets can be found in
Table 3.1.

The generally agreed-upon task is a semi-supervised node classification: Given 20
labelled nodes per class and the graph structure, we aim to classify the unlabeled nodes
into one of 3 to 7 subfields. Since semi-supervised node classification acts on only one
single graph, graph topology is identical between training and evaluation. Only the
labelled nodes differ.

3.1.2 Supervised Graph Classification Datasets

Most datasets curated by Kersting et al. (2020) are supervised graph classification
datasets. Each sample is a graph, either labelled or unlabelled, and the model is trained
to predict a single label per graph. We concentrate on five of the collected 130 tasks:
proteins, nci1 , imdb, rdt-b, and rdt-12k , which represent a large cross-section of dataset
and individual graph size. Their statistics are shown in Table 3.2.

3.1.2.1 The proteins Dataset

In the proteins dataset (Borgwardt et al. 2005; Dobson and Doig 2003), each graph
represents one protein. Nodes are secondary structure elements like helices, sheets, and
turns. Nodes are connected if they are neighbours in the amino acid sequence, and to
their three spatially-closest neighbours. Models are trained to predict whether a protein
is an enzyme.

1citeseer (Giles et al. 1998) and cora (McCallum et al. 2000) are adaptations of previously published
datasets. pubmed was released later by Sen et al. (2008) and is not mentioned in the paper; nevertheless,
they ask for that paper to be cited.

28



3.2 GNN Architecture

Table 3.2: Attributes of selected graph classification datasets. As can be seen, these vary in
both size (1 000–12 000 graphs), number of targets (2–11 classes), graph size (20–430
nodes per graph) and density (0.005 3–0.518 5).

Dataset Graphs Avg. Nodes Avg. Edges Avg. Degree Features Classes Density

proteins 1 113 39.1 72.8 1.9 3 2 0.097 7

nci1 4 110 29.9 32.3 1.1 37 2 0.074 8

imdb 1 000 19.8 96.5 4.9 136 2 0.518 5

rdt-b 2 000 429.6 497.8 1.2 1 2 0.005 3

rdt-12k 11 929 391.4 456.9 1.2 1 11 0.005 9

3.1.2.2 The nci1 Dataset

Wale and Karypis (2006) introduced the nci1 dataset based on data from the PubChem
database (Kim et al. 2021)2. It describes the inhibition on a number of chemical com-
pounds by the NCI-H23 human Non-Small Cell Lung tumour cell line, by whose name
it is also sometimes referred to. Vertices represent the chemical compounds’ atoms and
edges represent their bonds.

3.1.2.3 The imdb Dataset

In the imdb dataset (Yanardag and Vishwanathan 2015), each node is an actress or
actor. These are connected if they have appeared together in a movie. The goal is to
classify movies into the Romance or the Action genre. Movies appearing in both genres
are removed.

3.1.2.4 The rdt-b and rdt-12k Datasets

Both reddit datasets (Yanardag and Vishwanathan 2015) are constructed from discus-
sions on the reddit online platform, with each graph modelling one discussion. Nodes
represent users, which are connected if they interact with each other in that discus-
sion. The goal for rdt-b is to distinguish between question/answer-based subreddits
and discussion-based subreddits. For rdt-12k , the goal is to learn which of 11 different
subreddits a discussion belongs to.

3.2 GNN Architecture

In their architecture, GNN models share similarities to the standardization of CNN
architectures, and most GNN models share the same building blocks. We also intro-
duce tweaks commonly used to improve performance, followed by our baseline model
configuration.

2We follow the wishes of the authors and cite the newest update paper of the PubChem database.

29



3 Simple Graphs

v 1

v 2

v 3

v 4
v 5

v 1

v 2

v 3

v 4
v 5

v 1

v 2

v 3

v 4
v 5

v 1

v 2

v 3

v 4
v 5

E
n

co
d

er

G
N

N
1

G
N

N
2

gl
ob

al
p

o
ol

in
g

ou
tp

u
t

Fig. 3.2: Schematic of the generally-used GNN architecture, showcasing (a) the initial feature
encoder, (b) the GNN layers, (c) the global pooling layer, and (d) the output layer.
This example is the architecture for graph-level tasks; a node-level task will not use
the global pooling layer.

3.2.1 Building Blocks

The most commonly used scheme is depicted in Fig. 3.2, and consists of the following
building blocks:

1. The encoding layer preprocesses each node’s features independently.

2. A number of GNN layers then take graph structure and node features into ac-
count to successively transform node features.

3. For graph-level prediction, a single output vector is created by globally pooling
the node features.

4. An output layer produces the final output, either per node or per graph.

Encoding Layer The initial encoding layer mainly serves to encode the node features
into a more expressive subspace. On the citation datasets, for example, this can compress
bag-of-word features of several hundred dimensions into significantly smaller represen-
tations. Alternatively, it might process one-hot-encoded features into denser feature
representations. We explore these in Section 3.3.4.

GNN Layers Most research has concentrated on proposing new GNN layers (see Sec-
tion 2.5 for an overview). These share the same principles, however: Given graph
topology and node features, they transform node features into a new feature space.
In general, none of these layers transform the graph structure itself. We explore these
in Section 3.3.3.

Global Pooling For graph prediction tasks, it is crucial to produce a single vector
output for the final classification. This pooling must be associative and commutative
to be order-invariant. Usually, this is either produced by adding or averaging all node
features (global sum pooling, global average pooling), or by taking the component-wise
maximum of the node features (global max pooling). We explore these in Section 3.3.5.

30



3.2 GNN Architecture

Output Layer The final layer produces either logits (for a classification task) or the
predicted value (for a regression task). Usually, these are simple linear layers; however,
it is also possible to introduce more extensive transformations on the summarized graph
features. We explore these in Section 3.3.6.

3.2.2 Tweaks

A number both of proposed GNN methods and of GNN implementations include several
tweaks. We explore these in Section 3.3.8.

Dropout Introduced by Srivastava et al. (2014), dropout aims to avoid overfitting by
randomly masking features for each layer. This avoids over-adaptation of single features
in the neural network. Classically, this zeroes out fifty percent of the features in each
hidden layer, and twenty percent of the input features.

In GNNs, dropout can also be applied node- and edge-wise in addition to feature-wise.

Batch Normalization Introduced by Ioffe and Szegedy (2015), batch normalization
aims to enforce layer outputs that follow a standard normal distribution. Adapting
the original equations for graph processing, we compute mini-batch mean and variance
during training as

µV =
1

|V |

|V |∑
i=1

Vi, σ2V =
1

|V |

|V |∑
i=1

(Vi − µV)2 , (3.1)

i.e. we treat each node as a separate sample and compute mean and variance over all
nodes in our mini-batch. We then apply the normalization as

Ṽi =
Vi − µV√
(σ2V) + ε

(3.2)

with a small ε to ensure numerical stability. After this, we apply a scale and shift
operation

V ′i = γṼi + β (3.3)

with learned feature vectors γ and β. During training, this is achieved by using batch
statistics to normalize features for each layer; during evaluation, population statistics
collected during training are used instead.

We found that using batch normalization as usually implemented is not compatible
with semi-supervised node classification on one graph. Accordingly, when used for semi-
supervised node classification, we do not use running statistics.

31



3 Simple Graphs

Table 3.3: Accuracy and 95%-confidence bound (in percent) of the baseline model on the eight
simple graph datasets.

citeseer cora pubmed proteins nci1 imdb rdt-b rdt-12k

Baseline 54.7±1.2 70.5±1.0 68.3±1.7 71.7±1.9 75.8±2.7 73.9±3.1 91.6±0.9 48.9±0.5

Jumping Knowledge Introduced by Xu, Li, et al. (2018), the jumping knowledge (JK)
formulation concatenates all previous GNN layer outputs to produce the final feature
representation. This allows the final classification layer to adaptively choose the relevant
neighbourhood size of a node by ignoring larger or smaller neighbourhood sizes.

Separate Node Processing Most GNN models (see Section 2.5.3.1, for example the
GCN formula) aggregate features from neighbours and ego node equally. Introducing a
separate processing step for the ego node increases the computational possibilities. For
a GCN model, this changes Eq. (2.40) to

Uv (vi) = Θ

Vi‖ ∑
vj∈N (vi)

mij

 . (3.4)

3.2.3 Baseline Model

In the following experiments, we use a single configuration as a baseline, whose details
we vary depending on the research question. This is depicted in Fig. 3.3, both for graph-
level and node-level prediction tasks. The baseline uses three GCN layers of 128 channels
each, preceded by a linear feature transformation. To produce a final prediction, the
outputs of the GCN layers are concatenated (JK), and the final output produced by a
two-layer MLP. For graph-level prediction tasks, we use global mean pooling. We use
BatchNorm after each GNN layer3.

We train the models with a batch size of 128 for a maximum of 500 epochs, using
the Adam optimizer (Kingma and Ba 2014) and an initial learning rate of 10−3. On
reaching a plateau (no improvement of the validation loss for 25 epochs), we halve the
learning rate. If no improvement occurs after two consecutive halvings of the learning
rate (50 epochs), we stop the training early. We always load the model with the best
validation loss.

All models are evaluated using ten-fold cross-validation. On the five graph classifica-
tion datasets, this is simply ten-fold stratified cross-validation. On the citation datasets,
we pick a different random combination of twenty labeled nodes per class for each run.

Baseline performance can be found in Table 3.3. In this and in following tables, we
show results as mean and the boundaries of the 95% confidence bound. We mark the
best method and comparable methods within the confidence bounds.

3Note that we modify BatchNorm (see Section 3.2.2) for its use in the semi-supervised node prediction
tasks.

32



3.3 Experiments and Discussion

L
in

ea
r

G
C

N

G
C

N

G
C

N

M
ea

n
P

o
ol

in
g

2-
la

ye
r

M
L

P

(a) Baseline for graph-level tasks.

L
in

ea
r

G
C

N

G
C

N

G
C

N

2
-l

ay
er

M
L

P

(b) Baseline for node-level tasks.

Fig. 3.3: Schematic of the baseline architecture, showing both the configuration used for graph-
level and for node-level prediction tasks.

3.3 Experiments and Discussion

In the following section, we present our experimental setup and discuss our results.
We are primarily interested in two different basic questions: What influence does graph
information have on neural network models (Q1 and Q2), and how to build GNN models
(Q3–Q9). We therefore answer the following research questions:

Q1: How useful is the inclusion of graph information?

Q2: How reproducible are GNN models?

Q3: How do different GNN layers perform?

Q4: How do we encode node features?

Q5: How do we global-pool graphs?

Q6: How do we construct the final graph output?

Q7: How deep should GNN models be?

Q8: Which tweaks improve GNN performance?

Q9: Is it helpful to separate processing and propagation?

33



3 Simple Graphs

Table 3.4: Accuracy and 95%-confidence bound (in percent), comparing graph information.
Our baseline (*) uses both the original node features and the edges.

citeseer cora pubmed proteins nci1 imdb rdt-b rdt-12k Rel. Perf. Mean Rank

Baseline (*) 56.0±1.6 70.0±1.2 68.3±1.2 73.3±2.2 76.4±1.5 73.2±2.3 92.4±1.0 48.8±0.5 1.00 1.125

No Features 19.8±0.6 17.8±1.7 37.9±1.4 59.9±3.1 58.6±4.3 53.3±3.8 86.9±4.8 49.6±1.5 0.68 4.125

Topology Features Only 19.0±1.1 13.1±2.0 34.8±1.1 66.0±2.7 60.5±1.4 70.3±2.3 87.1±1.1 45.3±0.7 0.69 4.25

Topology and Node Features 23.0±2.4 18.7±2.8 40.4±2.1 72.1±1.9 72.2±1.9 71.8±3.0 87.3±1.1 44.8±0.7 0.75 2.75

No Topology 34.0±1.1 32.8±1.1 51.7±0.9 70.4±1.9 64.1±2.2 70.9±2.7 87.2±2.2 45.0±0.7 0.81 2.75

3.3.1 Q1: How Useful is the Inclusion of Graph Information?

The advantage of GNN models is that they can take graph topology into account,
thereby gaining access to additional information. However, the added complexity—
in particular the increase in computational runtime due to inefficient data formats (see
Section 2.5.4)—might not make this a good idea even in tasks where graph topology
helps.

Experiment

To evaluate the usefulness of graph information, we conduct a series of experiments
which remove certain sources of information.

Baseline Our baseline uses both the original node features and graph topology, i.e. edge
features. It uses standard GCN layers.

No Features This experiments removes all node features, and therefore relies only on
graph topology. It uses standard GCN layers.

Topology Features Only This experiment removes both edges and node features. In-
stead, each nodes’ features are replaced with its degree. We expect this to perform
very badly. It uses an MLP.

Topology Features and Node Features This model removes edges. Instead, the degree
is added as additional node feature. It uses an MLP.

No Topology This approach ignores edges, and does not add any additional node fea-
tures. This is equivalent to a non-GNN approach, and uses an MLP to process
nodes.

Results and Conclusion

Table 3.4 shows the results of these experiments. We can make several observations:

• On most datasets, node features are important. Ignoring node features results in
a performance little better than random on the citation datasets. Only on rdt-12k
does the model without node features perform comparably. This is to be expected,
since rdt-12k only contains an artificial normalized degree feature.

34



3.3 Experiments and Discussion

• Artificial topology features are no replacement for the actual edges. The only
exceptions are the proteins and the imdb datasets, where they perform comparable
to GNN models.

• The actual topology information and the communication between nodes from in-
cluding these, increases performance in all cases.

These observations answer Q1: Including graph data is necessary for a good perfor-
mance on most datasets, and they cannot be replaced with just using artificial topology
features.

3.3.2 Q2: How Reproducible Are GNN Models?

In many areas of deep learning, results are hugely variable and may depend more on a
lucky initial initialization of the the neural network parameters than on the hyperparam-
eters or methods (see Lucic et al. (2018) and Pineau (2018) for examples). For GNNs,
Shchur et al. (2018) made similar observations: Depending on the dataset, models with
the same hyperparameters might vary by ten or more percentage points (pp), far more
than the performance gain model optimization could produce.

Experiment

We examine this phenomenon by repeatedly training our baseline model with different
initializations and compare its results on different datasets. We train each model a total
of 100 times.

Results and Conclusion

Fig. 3.4 shows the results. We can make several observations:

• Variability of results depends strongly on the dataset. Even the smallest extent
lies at about 10 pp. For the more varied datasets—proteins and imdb—it reaches
20 pp.

• All show a similar pattern: Fairly close performances, with outliers trailing the
other performances. This is particularly pronounced for the more varied datasets—
proteins, imdb, nci1 —in which the outliers trail mean performance by 10 or more
pp.

• This pattern holds over problem type (node-level and graph-level predictions), and
dataset size.

This answers Q2: GNN models on simple graphs are not particularly reproducible,
and show large variability of performance. This suggests we might not initialize or train
GNNs efficiently yet. Training a GNN multiple times is a stopgap measure.

35



3 Simple Graphs

Cite
see

r
Cora

Pu
bm

ed

PR
OTE

INS
NCI1

IMDBBina
ry

RED
DITB

ina
ry

RED
DIT1

2k

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Fig. 3.4: Influence of different random initializations on the final result. We train the same
model 100 times and plot the final test accuracy. Each dot represents the final result
of one run.

Table 3.5: Accuracy and 95%-confidence bound (in percent), comparing different proposed
GNN layers to the baseline (*).

citeseer cora pubmed proteins nci1 imdb rdt-b rdt-12k Rel. Perf. Mean Rank

GCNConv (*) 55.3±1.4 70.7±0.8 67.0±1.6 72.0±2.7 74.5±3.3 71.9±2.8 92.0±1.3 49.1±0.8 0.99 1.75

GATConv 54.3±1.2 69.7±1.0 65.2±1.4 71.8±2.3 76.2±2.2 71.0±2.9 87.8±2.5 39.1±5.0 0.95 3.375

GINConv 45.6±1.2 58.2±1.7 63.4±2.0 70.1±2.3 79.0±1.5 74.6±2.9 90.8±1.1 47.1±1.1 0.94 2.75

SAGEConv 56.3±1.3 71.1±0.8 66.9±1.0 71.8±2.7 75.8±2.6 69.7±4.2 90.4±1.1 44.2±0.9 0.97 2.625

MLPConv 32.9±1.6 32.8±2.2 53.8±2.2 69.9±1.9 63.6±2.0 71.4±3.1 87.1±1.7 45.0±0.6 0.81 4.5

36



3.3 Experiments and Discussion

3.3.3 Q3: How Do Different GNN Layers Perform?

A large number of GNN layers have been proposed in the past (see Section 2.5 for
an overview). As always, each paper claims theoretical or empirical advantages over
other methods. Previous work by Shchur et al. (2018) has shown that most methods
apparently do not outperform GCN layers, one of the first and arguably one of the
simplest formulations of a spatial GNN layer, on all datasets.

Experiment

To compare different proposed layers, we use the same experimental setup as the baseline
(which uses GCN layers), and only vary the type of GNN layer. We evaluate five different
layers:

GCN GCN layers (see Section 2.5.3) form our baseline.

GAT GAT layers (see Section 2.5.3.4) promise to better filter irrelevant neighbouring
nodes through an attention mechanism.

Graph Isomorphism Network (GIN) GIN layers (see Section 2.5.3.6) avoid theoretical
weaknesses of standard GNN models. We use a two-layer MLP with the same
number of channels for the GIN layer, and learn ε.

GraphSAGE GraphSAGE layers (see Section 2.5.3.3) aggregate only parts of the neigh-
bourhood, allowing the application to larger graphs.

MLP The MLP model does not use edge information and is a simple baseline.

Results and Discussion

Results are shown in Table 3.5. We can draw several conclusions:

• There is no single best GNN layer.

• Over all datasets, GCNs layers perform very well. They form an excellent starting
point for constructing GNN architectures. This mirrors the findings of Shchur et
al. (2018).

• Despite their theoretical power, GIN layers fail on node prediction tasks. However,
they perform well on graph prediction datasets, particularly the nci1 dataset.

• On proteins and imdb, the MLP model performs on par with the worst GNN models
despite not using any graph information. This suggests that graph topology is not
as important for these datasets (see also Section 3.3.1).

• However, the best GNN models still profit from graph topology.

This answers Q3: There is no single best GNN layer, but the simple GCN layer seems
to provide a useful starting point for any task.

37



3 Simple Graphs

Table 3.6: Accuracy and 95%-confidence bound (in percent), comparing different encoders. Our
baseline is a linear encoder (*).

citeseer cora pubmed mutag proteins imdb rdt-b rdt-12k Rel. Perf. Mean Rank

None 61.0±1.5 75.7±1.7 72.6±1.6 75.1±4.3 71.7±2.5 74.0±2.6 89.8±1.6 48.1±0.8 0.99 2.375

Linear (*) 53.8±3.4 70.4±2.5 68.0±3.6 74.5±4.1 71.8±2.7 72.9±3.4 91.0±1.2 48.8±0.5 0.96 2.625

2 layers 44.8±5.5 59.0±8.8 63.9±3.1 73.9±5.5 72.3±2.9 72.7±2.9 92.1±0.9 49.2±0.9 0.91 2.875

3 layers 43.1±5.0 46.4±6.2 56.2±2.1 72.9±3.2 71.6±2.2 71.2±3.3 92.2±1.0 49.7±0.3 0.87 3.75

4 layers 33.2±3.2 38.6±5.8 55.0±1.6 71.8±6.1 73.4±1.8 71.6±3.3 92.9±1.3 50.3±0.7 0.84 3.375

3.3.4 Q4: How Do We Encode Node Features?

The input features in many problems are of a different type than those transformed by
neural network layers. For example, the citation datasets provide bag-of-word features,
i.e. relatively sparse features. In contrast, neural network layers produce dense and often
non-linearly interlaced feature spaces. Depending on the task faced, we might therefore
decide to split the initial feature encoding from feature propagation.

Experiment

We compare five different encoders:

None uses no encoder. Instead, the original features are fed to the GNN.

Linear uses a learnable linear transformation.

2, 3, and 4 layers use MLPs to transform the features. These are 2–4 layers, using the
ReLU activation function.

Results and Discussion

Table 3.6 shows the results. There are three takeaway messages:

• None of the citation datasets profits from the increase in model capacity a more
powerful encoder provides. For these datasets, directly feeding the node features
to the first GNN layer performs best.

• For graph-level predictions, a different image emerges. On mutag , proteins, and
imdb, i.e. the graph-level tasks with smaller graphs, smaller encoders perform well.
For the larger rdt-b and rdt-12k tasks, deeper encoders significantly outperform
shallower encoders.

• Encoding node features with a learned linear representation seems to provide a
good tradeoff, with failing on no dataset.

This answers Q4: There is again no clear best-performing encoder. However, a linear
encoding performs well over all datasets.

38



3.3 Experiments and Discussion

Table 3.7: Accuracy and 95%-confidence bound (in percent), comparing different global pooling
methods to the mean pooling baseline (*).

mutag proteins imdb rdt-b rdt-12k Rel. Perf. Mean Rank

Mean (*) 75.6±5.0 72.0±2.7 73.0±2.8 90.7±1.2 48.4±0.8 0.97 3.4

Sum 74.1±5.5 75.0±1.7 72.9±3.0 91.6±1.0 49.7±0.6 0.98 2.6

Max 73.5±5.5 74.9±2.7 73.3±2.5 89.5±1.0 47.5±0.8 0.97 3.8

Mean, Sum, Max 79.2±5.3 75.1±2.6 73.7±2.5 92.4±0.7 49.9±1.0 1.00 1.0

Attention 73.9±4.1 73.3±2.8 72.5±2.1 88.0±1.7 48.8±0.6 0.96 4.2

Sort 70.3±5.7 69.4±2.9 71.9±4.2 76.7±3.5 35.8±1.8 0.87 6.0

3.3.5 Q5: How Do We Global-Pool Graphs?

In graph prediction tasks, the node features have to be pooled into a graph-level repre-
sentation, conceptually the equivalent to a global pooling for CNNs. We are interested
in which of the proposed pooling methods shows performance advantages.

Experiment

Any order-invariant function can be used for global-pooling a graph. Traditionally, a
simple mean over all features is used, but several other methods are common:

Mean Pooling Mean pooling computes final graph-level features by computing the mean
over all node features: G = 1

|V |
∑

vi∈V vi. Accordingly, it is insensitive to the
number of nodes.

Sum Pooling Sum pooling computes graph-level features by computing the feature-wise
sum over all nodes: G =

∑
vi∈V vi. It is sensitive to the number of nodes.

Max Pooling Max pooling computes graph-level features by taking the feature-wise
maximum over all nodes: Gk = maxvi∈V v

k
i for the kth feature channel. It is

also insensitive to the number of nodes.

Combined Pooling Concatenating the previous three methods increases final graph fea-
ture size, but allows more expressive graph features, which can combine both
count-sensitive and count-insensitive features.

Attention Pooling Li, Tarlow, et al. (2017) introduced attention pooling, which com-
putes a weighted sum of node features by computing node attention weights using
an MLP: αi = softmaxV MLPatt (Vi). This is then used to weight the final feature
representations using G =

∑
vi∈V αi � vi.

Sort Pooling Sort pooling (Zhang, Cui, et al. 2018) sorts node outputs according to
their last channel and concatenates the first k nodes’ features.

39



3 Simple Graphs

Results and Discussion

As Table 3.7 shows, there are large performance differences between the global pooling
methods. There are three main takeaway messages:

• Attention and sort pooling introduce complexity into the model, requiring to ei-
ther compute attention or even to sort the nodes. The latter increases runtime
requirements superlinearly. However, they generally perform worse than the sim-
ple alternatives of summing up node features, averaging them, or computing the
maximum.

• While mean, sum, and max pooling methods perform well, combining all of them
increases performance significantly. The increase in performance compared to each
of the submethods suggests that each of them extracts features the others are
missing. Combining these features apparently allows more performance gains.

• If one cannot combine all simple pooling methods, sum pooling appears to perform
best. We assume this is because it can distinguish between the numbers of nodes,
similar to the theoretical advantages of GIN layers (see Section 2.5.3.6).

This answers Q5: Concatenating mean, sum, and max pooling methods is to be
preferred.

3.3.6 Q6: How Do We Construct the Final Graph Output?

While our default baseline uses a simple two-layer MLP to output the final prediction,
other configurations are possible. Specifically, we can either directly use the output
of the final GNN layer—modified by global pooling if we are interested in graph-level
instead of node-level predictions—or we can increase the complexity of the output model.
This output model is applied after all graph-related steps have been executed, and—if
necessary— the global pooling has happened.

Experiment

We compare a total of five different configurations. These mirror the configuration for
the input encoder (see Section 3.3.4):

None uses no output model. Instead, the features produced by the last GNN layer are
used as a prediction.

Linear uses a learnable linear transformation.

2, 3, and 4 layers use MLPs to transform the last GNN layer’s features. These are 2–4
layers, using the ReLU activation function.

40



3.3 Experiments and Discussion

Table 3.8: Accuracy and 95%-confidence bound (in percent), comparing different output models
to the two-layer MLP (*) used as a baseline.

citeseer cora pubmed proteins nci1 imdb rdt-b rdt-12k Rel. Perf. Mean Rank

None 5.1±0.7 12.6±1.4 3.0±0.7 63.5±2.4 58.3±2.8 71.0±4.0 69.9±2.3 31.9±0.5 0.54 5.0

Linear 58.0±1.1 72.0±1.2 70.0±1.1 68.8±2.9 73.8±3.7 72.7±3.0 89.6±1.4 47.4±0.7 0.98 2.375

2 layers (*) 54.6±1.0 69.7±0.7 68.0±1.0 70.5±2.3 75.9±1.7 72.5±2.5 91.8±1.1 49.2±0.5 0.98 1.875

3 layers 54.7±1.9 69.2±1.0 68.0±1.4 72.2±2.9 73.9±1.7 71.5±2.8 91.1±1.1 48.3±0.7 0.98 2.25

4 layers 51.2±1.7 68.3±1.5 67.1±1.4 70.3±2.2 71.9±2.6 71.5±3.5 90.4±1.2 47.8±0.5 0.96 3.5

Results and Discussion

The results are listed in Table 3.8. There are three main takeaway messages:

• There is a clear and significant disadvantage in using the GNN layers’ output
directly, particularly on node-level prediction tasks. On these, the models fail
to learn anything at all, and produce close to random output. Only on imdb
does it perform close to the other models. This contrasts with the results from
Section 3.3.4, where using no encoder performed well on these tasks.

• For node-level prediction tasks, large output models seem unnecessary and even
counter-productive, with a linear output projection performing best.

• For graph-level prediction tasks, the sweet spot for depth is larger than in node-
level prediction tasks, at about 2–3 layers. We assume this is because the aggre-
gated node information in a graph prediction task has to be aggregated and then
transformed, for which a certain minimum expressive power of the output model
is necessary. Greater depth is, however, still counter-productive.

This answers Q6: Either a linear projection or a two-layer MLP suffice as an output
model, with the former preferable for node-level and the latter for graph-level tasks.

3.3.7 Q7: How Deep should GNN models be?

Especially since the introduction of residual connections (He et al. 2015), CNNs have
grown ever deeper. Empirically, these deeper models generally outperform shallower
models assuming sufficient regularization. Theoretically, removing a layer might need
exponentially more nodes in the existing layers for the same representational power
(Telgarsky 2016). On the other hand, most proposed GNN models use three or fewer
layers of GNNs. As with CNNs, processing capability and receptive field of GNNs
are closely linked: Each additional layer increases the receptive field by one hop and
adds an additional processing step. NT and Maehara (2019) claim that simple GNN
formulations essentially act as a low-pass filter, smoothing node features and therefore
actually removing discriminative ability.

41



3 Simple Graphs

Experiment

We are therefore interested in the performance of deeper GNNs models. We evaluate
between one and sixteen GNN layers.

We are also interested in the performance impact of JK connections (see Section 3.2.2):
Do they allow us to stack GNN layers arbitrarily deep by allowing the network to con-
centrate on earlier layers if necessary?

Results and Discussion

Table 3.9 shows performance values over all datasets. Fig. 3.5 shows performance visually
and includes JK connections. We can draw several conclusions:

• Node-level tasks suffer greatly from deeper GNN models. citeseer is particularly
vulnerable to this, with performance declining by more than 10 pp from one to six
layers. However, two or three GNN layers work well even here.

• Performance on graph-level tasks remains roughly constant with deeper models.

• JK connections do not alleviate performance differences with deeper networks.
As Fig. 3.5 shows, performance and particularly the performance disadvantage of
deeper networks on node-level predictions remain constant with or without JK
connections. This suggests that the claimed advantage of being able to only con-
sider greater neighbourhoods when necessary and ignore them otherwise does not
materialize.

• Two to four GNN layers appear to be a good general-purpose value.

This answers Q7: Deeper networks hurt especially on node-level tasks and do not
provide much benefit on graph-level tasks. Two to four GNN layers are a good starting
point.

3.3.8 Q8: Which Tweaks Improve GNN Performance?

Machine learning models often depend on tweaks to maximize performance. We are
interested in which of the often-used tweaks from Section 3.2.2 improve performance.

Experiment

We evaluate the influence on the performance of the following tweaks:

Dropout uses a dropout layer after each GNN layer. This randomly zeros features with
a chance of 50% to combat overfitting.

No JK The baseline model uses JK connections, i.e. the final GNN output is the con-
catenated output of all previous GNN layers. This should allow the model to

42



3.3 Experiments and Discussion

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

No
de

 P
re

di
ct

io
n

Baseline

CiteseerTask
CoraTask
PubmedTask

No JK

CiteseerTask
CoraTask
PubmedTask

2 4 6 8 10 12 14
Layers

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Gr
ap

h 
Pr

ed
ict

io
n

PROTEINSTask
NCI1Task
IMDBBinaryTask
REDDITBinaryTask
REDDIT12kTask

2 4 6 8 10 12 14
Layers

PROTEINSTask
NCI1Task
IMDBBinaryTask
REDDITBinaryTask
REDDIT12kTask

Fig. 3.5: Performance on the simple graph datasets dependent on the depth of the network.
We compare both the baseline (left) to the baseline without JK connections (right) on
both graph and node prediction tasks.

43



3 Simple Graphs

Table 3.9: Accuracy and 95%-confidence bound (in percent), comparing the performance of
different depths. The baseline (*) uses 3 layers.

citeseer cora pubmed proteins nci1 imdb rdt-b rdt-12k Rel. Perf. Mean Rank

1 57.1±1.4 67.5±1.2 66.6±1.6 72.2±3.1 72.1±2.7 73.4±2.9 90.8±1.3 47.9±0.7 0.97 7.375

2 57.0±0.9 69.3±0.7 69.5±1.2 71.3±2.6 73.8±2.5 73.4±1.9 91.1±0.8 49.0±0.7 0.98 4.5

3 (*) 55.3±1.6 70.6±0.5 69.2±1.1 72.2±2.1 74.9±2.4 72.7±3.2 91.9±1.5 49.2±0.9 0.99 4.0

4 52.9±1.3 70.1±1.0 68.1±1.0 72.6±2.9 78.1±2.0 74.8±2.9 92.5±0.9 48.6±0.8 0.99 2.0

5 51.6±1.8 69.3±1.4 68.0±2.3 71.0±2.4 75.5±2.0 72.4±3.7 92.2±1.0 48.6±1.0 0.97 5.75

6 50.1±1.7 68.8±0.8 66.8±1.7 71.7±2.2 75.6±1.5 72.8±2.5 92.1±0.5 48.0±0.8 0.96 5.375

7 48.8±1.1 68.4±1.1 66.9±1.1 70.0±3.2 75.5±2.0 71.9±2.1 91.1±1.2 47.9±0.5 0.95 8.125

8 48.5±2.3 67.8±0.7 68.1±1.6 70.3±3.7 75.6±2.2 72.7±4.0 91.2±0.7 48.2±0.5 0.96 6.5

9 47.8±1.1 67.9±1.4 66.5±2.4 71.1±2.3 75.1±2.0 73.6±3.4 90.9±1.2 47.6±1.1 0.95 7.875

10 48.0±1.4 67.6±1.3 64.2±1.3 71.0±4.1 76.3±1.6 71.2±4.3 91.0±0.9 47.4±0.6 0.95 9.125

11 46.7±1.7 67.1±1.1 65.3±1.1 67.5±2.3 75.7±1.2 71.6±2.6 91.0±1.4 47.4±0.4 0.94 10.375

12 45.9±1.9 66.1±1.2 63.6±1.9 67.3±2.7 76.2±1.9 72.4±1.7 90.4±1.4 47.3±0.9 0.93 11.5

13 45.9±2.1 66.6±1.0 64.0±2.5 67.8±3.2 74.2±2.1 72.6±3.1 90.2±0.8 46.9±0.9 0.93 12.375

14 45.7±2.5 65.6±1.9 63.4±2.1 68.9±2.9 74.5±1.7 72.7±3.7 89.7±0.9 47.1±0.7 0.93 12.75

15 45.3±1.7 65.6±2.5 63.6±2.1 65.8±3.4 75.7±1.4 72.2±3.8 90.8±1.1 46.9±0.4 0.93 12.375

concentrate on only a specific neighbourhood while keeping the ability for long-
range reasoning intact. However Section 3.3.7 has shown that this might not work.
We evaluate the models without JK.

BatchNorm is often used in CNNs to speed up convergence. Since our baseline model
includes BatchNorm, we evaluate a model that does not include it.

Results and Discussion

Table 3.10 shows the results of varying the tweaks. We can make several interesting
observations:

• Removing BatchNorm from the baseline results in decreased performance (about
7 pp compared to the baseline), primarily on the node prediction and larger graph
prediction datasets.

• As already observed in Section 3.3.7, JK does not show large improvements, and
therefore removing it changes does not change the performance much.

• Dropout shows some small gains in performance on the node prediction tasks, but
also performs extremely similar to the baseline. Together with the performance of
very deep models observed in Section 3.3.7, we can hypothesize that GCN layers
have a very powerful in-built regularizer. This meshes with the low-pass filter
argument of NT and Maehara (2019).

This answers Q8: The only tweak that shows clear performance advantages is the
inclusion of BatchNorm.

44



3.3 Experiments and Discussion

Table 3.10: Accuracy and 95%-confidence bound (in percent), comparing tweaks made to the
baseline (*).

citeseer cora pubmed proteins nci1 imdb rdt-b rdt-12k Rel. Perf. Mean Rank

Baseline 63.1±1.2 75.6±1.0 74.5±1.0 74.4±2.2 74.8±3.8 73.2±3.5 91.7±1.3 48.8±0.7 0.99 1.75

No BatchNorm 49.3±3.7 65.4±2.6 65.3±4.4 74.4±3.0 73.6±1.8 73.5±3.1 87.7±1.6 47.2±0.8 0.92 3.50

Dropout 66.4±1.1 75.4±1.1 72.8±1.1 74.0±2.5 73.7±3.8 72.3±2.3 91.4±1.1 48.5±0.9 0.99 2.75

No JK 60.9±1.5 74.5±0.9 73.6±1.3 74.5±2.1 77.1±1.4 73.9±2.1 91.7±1.5 49.3±0.6 0.99 2

3.3.9 Q9: Is it Helpful to Separate Processing and Propagation?

One potential disadvantage of GNN layers is that they link processing power with re-
ceptive field: Every time a GCN performs a single non-linear transformation, it also
increases its receptive field by one hop. While this is similar to most CNNs with kernel
sizes greater than 1 × 1, these usually have much larger inputs: VGG-16, for example,
uses image inputs of 224×224 pixels. In contrast, the graph datasets used in this chapter
(see Tables 3.1 and 3.2) have an average size of less than 400 nodes. This leads to an
average shortest path length between nodes in these graphs of less than 7, compared to
an average shortest path length of about 150 for a VGG-16-sized image.

Accordingly, while the centre feature representation of a CNN will need about 75
stacked 3 × 3 kernels for its receptive field to cover most of the image, a GNN will
already cover most of the graph at seven layers.

Experiment

Similar to a CNN’s 1 × 1 convolutions, we can introduce multiple processing layers by
including node-wise MLPs into the GNN. This processes node features without taking
neighbours into account and should increase the representation capabilities of the model
while keeping the respective receptive fields constant. We evaluate one to four GNN
layers, which are augmented by up to three MLP layers each. Each MLP layer uses
batch normalization and dropout.

Results and Discussion

Table 3.11 shows the results. We can make several observations:

• Starting with three GNN layers, the additional representational capability of pro-
cessing layers is always counter-productive.

• For smaller networks, processing layers only sometimes add small performance
increases.

• Introducing processing layers generally appears to be counter-productive.

This answers Q9: Stacking GNN layers seems to suffice for these problems. Adding
separate processing layers is unnecessary.

45



3 Simple Graphs

Table 3.11: Accuracy and 95%-confidence bound (in percent), comparing different combinations
of GNN layers with MLP processing layers. The baseline (*) uses three GNN layers.

citeseer cora pubmed proteins nci1 imdb rdt-b rdt-12k Rel. Perf. Mean Rank

1GNN, 0MLP 55.9±1.7 67.1±1.5 66.4±1.4 71.0±3.2 72.0±1.6 73.8±2.4 90.5±1.6 48.2±0.4 0.97 11.5

1GNN, 1MLP 53.6±1.3 64.9±0.9 63.6±1.5 71.4±3.4 74.0±2.3 73.2±3.1 91.8±0.8 47.8±0.9 0.96 10.875

1GNN, 2MLP 49.9±1.3 61.3±1.2 59.8±1.8 73.1±3.0 73.5±2.8 74.7±2.7 91.4±0.9 48.4±0.8 0.94 9.625

1GNN, 3MLP 47.4±2.0 56.7±1.9 57.0±2.0 72.4±2.3 74.6±2.1 72.9±2.6 91.6±1.3 48.2±0.8 0.92 12.75

2GNN, 0MLP 56.4±1.5 71.3±1.0 69.3±1.3 72.3±2.1 72.7±2.3 71.7±3.1 90.8±1.4 49.1±0.3 0.98 9.75

2GNN, 1MLP 52.1±1.3 65.3±0.9 64.5±1.5 70.5±3.3 78.1±2.2 74.1±2.6 90.2±1.2 49.1±0.7 0.96 8.125

2GNN, 2MLP 48.1±1.2 59.8±0.5 59.6±1.7 70.3±2.8 77.4±2.1 74.4±1.8 90.2±1.7 47.9±0.4 0.93 12.5

2GNN, 3MLP 40.3±2.5 53.1±1.3 55.0±1.4 70.5±2.6 78.0±1.6 72.1±3.1 92.2±0.9 48.6±0.8 0.89 11.75

3GNN, 0MLP (*) 55.9±1.1 71.1±0.7 68.1±0.9 72.3±2.9 76.3±2.2 73.4±4.0 92.1±1.2 48.8±0.6 0.99 5.937 5

3GNN, 1MLP 47.9±1.8 63.7±0.8 63.0±0.6 68.5±3.4 77.4±1.6 73.8±2.6 91.7±0.9 49.2±0.6 0.94 8.625

3GNN, 2MLP 41.2±1.9 56.0±1.4 56.3±2.1 70.0±2.8 76.8±1.7 74.3±2.9 91.8±1.2 49.0±0.6 0.91 10.25

3GNN, 3MLP 35.4±2.3 49.6±2.1 52.1±2.4 70.3±2.3 78.4±1.2 72.3±3.3 91.9±0.9 48.2±0.8 0.87 13.812 5

4GNN, 0MLP 53.0±1.6 70.3±1.2 67.7±1.9 71.0±2.6 75.8±2.4 72.4±2.4 91.5±0.6 49.1±0.5 0.97 8.875

4GNN, 1MLP 45.2±1.6 63.2±1.1 62.9±2.0 68.1±2.8 76.9±1.4 71.8±4.3 91.9±0.8 48.6±0.7 0.93 11.937 5

4GNN, 2MLP 39.9±2.1 55.2±1.9 55.4±2.5 69.4±2.7 76.1±2.1 73.1±2.7 91.6±1.6 48.1±0.8 0.89 15.0

4GNN, 3MLP 33.5±2.4 46.3±2.1 51.3±3.0 67.1±3.0 77.5±1.7 73.9±2.8 90.8±1.1 48.0±0.8 0.85 17.187 5

3.4 Conclusion

In this chapter, we have conducted nine experiments with the goal of evaluating GNN
architecture choices. We have evaluated both basic attributes of GNN layers (their sta-
bility with respect to initialization and whether graph information is useful), architecture
choices (encoder and output layer choices, global pooling layers and tweaks) and looked
into edge-cases of GNN models (making them deeper and using separate processing
layers).

These experiments have primarily gained us three valuable insights into constructing
GNN models:

• Using GCN layers is a very good initial approach (see Section 3.3.3). While other
layer types might perform better on single problems, models using GCN layers
consistently perform well.

• GNN model training is unstable, and some training runs result in significantly
worse performance depending on the random initialization (see Section 3.3.2). This
suggests we might either not have a useful method to initialize GNN models or that
our current models are generally unstable. Both suggest future research directions.

• Contrary to other deep learning models, GNN models do not profit from large
network depths (see Section 3.3.7). This situation is somewhat similar to CNNs
before the introduction of residual connections. However, simple residual connec-
tions to not alleviate the problem for GNN models, and neither do JK connections
despite their promise.

In summary, the field is in a state of large and fast growth. There are many pub-
lications, but introduced layers do not generally show better performances in a fair

46



3.4 Conclusion

comparison. We hope for a more unified field, with a number of standard approaches
either arrived at by empirical performance advantages or theoretical analysis.

47





4 Modifying Graph Topology

The GNN models evaluated in the previous chapters have concentrated on updating
features of a graph, as have most published models. However, modifying the graph
structure itself holds significant promise: Pooling multiple nodes together might both
identify clusters (feature- or structure-based) and reduce computational requirements by
reducing the number of nodes. Together, these promise to abstract from flat nodes to
hierarchical sets of nodes (see Fig. 4.1).

This chapter is structured as follows: We first motivate the desire to modify graph
topology (Section 4.1) and introduce other pooling methods (Section 4.2), showcasing
why these do not fulfil our requirements. EdgePool, our proposed method, is introduced
in Section 4.3. Section 4.4 introduces our experiments, particularly concentrating on
comparisons to the other pooling methods, integrating EdgePool in standard models for
graph-level and node-level classifications, and evaluating the impact on computational
performance.

4.1 Motivation

Intelligent node pooling operations are a stepping stone towards the goal of allowing
GNNs to modify graph topology instead of only node features.

We propose a new pooling layer based on edge contractions1. EdgePool learns a
localized and sparse hard pooling transform. We do this by viewing the task not as

V1

V2 V3

V4
V5 ⇒

V14

V35

V2

Fig. 4.1: EdgePool in action: The layer takes an input graph (left) and produces a smaller
output graph with fewer nodes (right). In this example, nodes v1 and v4 are pooled
into v(1,4) while nodes v3 and v5 are pooled into node v(3,5). Node v2 is not pooled.

1Parts of this chapter have been previously published (Diehl, Brunner, et al. 2019b; Diehl 2019b).

49



4 Modifying Graph Topology

choosing nodes but as choosing edges and pooling the connected nodes. This immediately
and naturally takes the graph structure into account and ensures that we never drop
nodes completely.

The main advantages of our proposed EdgePool layer are:

• EdgePool outperforms other pooling methods.

• EdgePool can be integrated in existing graph classification architectures.

• EdgePool can be used for node classification and improves performance.

• EdgePool improves memory efficiency even compared to sparse baseline GNN mod-
els.

4.2 Other Pooling Methods

Graph pooling strategies can be divided into two types: We can either use fixed pooling
methods, usually based on graph topology, or use learned pooling methods. We concen-
trate on comparisons with learned pooling methods, since these appear to outperform
fixed pooling methods.

4.2.1 DiffPool

Ying, You, et al. (2018) were the first to propose a learned pooling layer. DiffPool learns
to soft-assign each node to a fixed number of clusters based on their features. For a graph
with |V |, the DiffPool layer learns a cluster assignment matrix S ∈ R|V |×|V ′| which maps
the nodes to a fixed number |V ′| of new cluster nodes. This cluster assignment matrix
is created through a separate GNN layer,

S = softmaxclusters (GNN (A,V)) , (4.1)

with each node being soft-assigned to each output cluster. The cluster assignment
matrix is then used to compute both new node features and a new adjacency matrix
using

V ′ = STV and (4.2)

A′ = STAS (4.3)

respectively.

DiffPool works well, but suffers from three disadvantages:

• The number of clusters has to be chosen in advance, which might cause performance
issues when used on datasets with different graph sizes.

50



4.2 Other Pooling Methods

• Cluster assignment is based only on node features. Nodes are assigned to the same
cluster based only on their features, ignoring graph topology. Accordingly, very
distant nodes might be assigned to the same cluster.

• The method soft-assigns clusters. Therefore, the cluster assignment matrix a dense
R|V |×|V ′|. Since |V ′| is usually chosen according to the total number of nodes, the
cluster assignment matrix scales quadratically with the number of nodes. Even

worse, the adjacency matrix following the pooling is dense, scaling in O
(
|V ′|2

)
.

This both means memory usage scales very fast and makes the usual GNN imple-
mentations useless.

DiffPool also requires several auxiliary objectives (link prediction, node feature `2 regu-
larization, cluster assignment entropy regularization) to make training work well.

4.2.2 TopKPool

The Graph U-Net model, introduced by Gao and Ji (2019), uses a simple top-k choice
of nodes for its gPool layer, learning a node score and dropping all but the top nodes.
For this, they train a linear projection vector p, which takes each node’s features Vi and
projects them into a single score yi

yi =
Vip
‖p‖

. (4.4)

They then choose those nodes with the largest scores, usually the top 80%. They
preserve edges and features of these nodes and remove all other edges and features.
Cangea et al. (2018) later applied this to graph classification.

While this approach is both sparse and variable in graph size, its node choice is
dependent on global state. This introduces two new issues: (a) Adding nodes to a graph
can change the pooling result of the whole graph. (b) Whole areas of a graph might see
no node chosen, which causes loss of information.

4.2.3 SAGPool

Lee et al. (2019) introduced Self-Attention Graph Pooling (SAGPool). A variant of
TopKPool, SAGPool replaces the linear projection of Eq. (4.4) with a GNN-computed
self-attention score:

yi = σ (GNN (A,V)) . (4.5)

This no longer uses only node features to compute node scores but uses graph convo-
lutions to take neighbouring node features into account Based on yi, they also choose a
fraction of the nodes and their incident edges to keep.

While their method improves TopKPool qualitatively (see Section 4.4.2), the disad-
vantages remain.

51



4 Modifying Graph Topology

4.3 EdgePool

We base our pooling operation on edge contractions. Contracting the edge eij = (vi, vj)
introduces the new node v(ij) and new edges such that v(ij) is adjacent to all nodes either
vi or vj have been adjacent to. vi, vj , and all their incident edges are then deleted from
the graph. Since edge contractions are commutative, we can also define an edge set
contraction. By constructing the set such that no two edges are incident to the same
node, we can simply apply the naive notion of single-edge contraction multiple times.

Intuitively, we choose a single edge to contract by merging its nodes. This new node
is then connected to all nodes the merged nodes had been connected to. We repeat this
procedure multiple times, taking care not to include a newly-merged node into it. See
Fig. 4.2 for an example on a graph from the proteins dataset.

4.3.1 Choosing Edges

Given the conditions mentioned above, we greedily choose edges by computing a score
for each edge, then iteratively contract the highest-scoring edge which does not have a
newly-merged node incident.

In our procedure, we compute raw scores from the concatenated node features. For
an edge eij from node vi to node vj , we compute the raw edge score rij as

rij = MLP (Vi‖Vj) , (4.6)

concatenating the raw node features Vi and Vj .
To compute the final node score sij for an edge, we employ a local softmax normal-

ization over all edges of a node2.

Fig. 4.2: Edge pooling in action on a graph from the proteins dataset. The original graph (left-
most) is pooled three times and results in the graph depicted to the right. In each step,
nodes that will be merged are surrounded by a dashed line of a random colour. In the
next step, the nodes are drawn as their convex hull, filled with the same colour. Notice
how the the pooled graph keeps the mostly-linear structure of the original graph.

2We experimented with a simple tanh gating function, but found softmax normalization to perform
better.

52



4.3 EdgePool

We also modify the final score such that the mean of the score range lies at 1. Later
on, this enables us to include the score in the unpooling procedure without numerical
stability issues. We also found this to lead to better performance in the graph clas-
sification task, which we believe is due to better gradient flow. The final score then
becomes:

sij = 0.5 + softmaxr?j (rij). (4.7)

Given the edge scores, we now iteratively contract edges according to the scores,
ignoring those which have a newly-merged node incident. An illustration of the process
is depicted in Fig. 4.3.

Note that this will always pool roughly 50% of the total nodes. Contrary to DiffPool
and TopKPool, this ratio cannot be changed.

4.3.2 Computing New Node Features

There are many strategies for combining the features of pairs of nodes. In particular, we
are not restricted to symmetric functions since the edges chosen have a specific direction.
Nonetheless, we found that taking the sum of the node features works well.

We use gating and multiply the combined node features by the edge score:

V̂(ij) = sij (Vi + Vj) . (4.8)

This allows the gradient to flow through the scores and thereby enables learning the
score function weights.

4.3.3 Integrating Edge Features

EdgePool can be updated to take edge features Eij of edge eij into account. To do so,
we have to include them in the raw score computation. The simplest approach is to
concatenate them, changing Eq. (4.6) to

rij = MLP (Vi‖Vj‖Eij) . (4.9)

Additionally, we will likely have to change the procedure to compute new node fea-
tures; we propose using an MLP that operates on the concatenation of both nodes’
features, the features of the chosen edge, and the features of the reverse edge if it exists.
This changes Eq. (4.8) to

V(ij) = sijMLP (Vi‖Vj‖Eij‖Eji) . (4.10)

Lastly, we need a procedure to combine the edge features of edges that ended at both
merged nodes and will therefore be merged. We believe a simple sum should work well
here, too. However, we have not conducted experiments on this.

53



4 Modifying Graph Topology

V1

V2 V3

V4

V5

0.71

1.380.71

1.49

1.08

0.
61

0.77

1.23
0.51

1.50

V1

V2 V3

V4

V5

1.380.71

1.49

1.08

1.50

V1

V2 V3

V4

V5

1.49

1.50

V14

V35

V2

Fig. 4.3: Edge score computation. We compute the edge scores, then greedily choose edges. We
first merge nodes v3 and v5. Then, we merge nodes v1 and v4, which is the edge with
the highest score that is not adjacent to a previously chosen node. Node v2 is left
unmerged.

54



4.4 Experiments and Discussion

4.3.4 Unpooling EdgePool

To use pooling in the context of node-level prediction, an unpooling operation is nec-
essary. To do so, each EdgePool layer also emits the mapping of each of the previous
graph’s nodes to the newly-pooled graph’s nodes. When unpooling, we then create an
inverse mapping of pooled nodes to unpooled nodes. Since we assign each node to ex-
actly one merged node, this mapping can be chained through many pooling layers. We
compute features for the unpooled nodes by dividing by the corresponding edge scores:

V ′i = V ′j =
V(ij)
sij

. (4.11)

Integrating the edge score sij here again allows for better gradient flow.

4.3.5 Computational Performance

Given the EdgePool procedure, we immediately see that EdgePool can operate on sparse
representations. When doing so, both runtime and memory scales linearly in the number
of edges. This particularly avoids the scaling issues of DiffPool’s cluster assignment
matrix.

Additionally, EdgePool is locally independent: As long as the node scores of two nodes
v and w and of their neighbours do not change (by changing nodes within the receptive
fields), the choice of edge will not change. Accordingly, EdgePool does not have to be
computed for the whole graph at once. If the graph changes, only the pooling local to
the changed areas needs to be updated.

4.4 Experiments and Discussion

We design our experiments to answer four questions:

Q1: Does EdgePool outperform alternative pooling methods?

Q2: Can EdgePool be used as a plug-and-play addition for any GNN?

Q3: Can EdgePool be used for node classification?

Q4: How does EdgePool impact performance?

4.4.1 General Setup and Training

We evaluate our models on multiple graph and node classification datasets, and share
most of the training procedures between all models. We conduct 10-fold cross-validation
for all datasets and report mean and 95% confidence bounds. We choose all folds at
random, eschewing the default planetoid split.

We implemented the models using PyTorch (Paszke et al. 2017) and in particular
the pytorch-geometric library (Fey and Lenssen 2019). Experiments were conducted on
several Geforce 1080Ti GPUs in parallel, leveraging Singularity containers (Kurtzer et
al. 2017) for reproducibility.

55



4 Modifying Graph Topology

Table 4.1: Attributes of the graph classification datasets. Note how collab is significantly more
dense than the other datasets.

Dataset Graphs Avg. Nodes Avg. Edges Avg. Degree Features Classes Density

proteins 1 113 39.1 72.8 1.9 3 2 0.097 7

rdt-b 2 000 429.6 497.8 1.2 1 2 0.005 3

rdt-12k 11 929 391.4 456.9 1.2 1 11 0.005 9

collab 5 000 74.5 2 457.8 33.0 1 3 0.442 9

Table 4.2: Attributes of the five node classification datasets. As can be seen, these differ in
both size and the number of targets. However, they are all similarly sparse.

Dataset Nodes Edges Avg. Degree Features Classes Labeled Nodes Density

citeseer 3 327 4 552 1.4 3 703 6 120 (3.64 %) 0.008 21

cora 2 708 5 278 1.9 1 433 7 140 (5.17 %) 0.001 44

pubmed 19 717 44 324 2.2 500 3 60 (0.30 %) 0.000 23

photo 7 487 119 043 15.9 745 8 160 (2.14 %) 0.002 12

computer 13 381 245 778 18.4 767 10 200 (1.49 %) 0.001 37

Graph classification datasets For graph classification, we evaluate on three of the
datasets introduced in Section 3.1.2: proteins, rdt-b, and rdt-12k . We additionally use
the collab dataset (Yanardag and Vishwanathan 2015). Each graph in the collab dataset
models scientific collaborations of one researcher. The task is to classify which of three
fields the researcher belongs to. Table 4.1 shows dataset details.

Node classification datasets We also evaluate EdgePool on five semi-supervised node
classification datasets (see Table 4.2 for dataset details): The three citation datasets
introduced in Section 3.1.1 (cora, citeseer , and pubmed) and the photo and computer
datasets (Shchur et al. 2018). The latter are part of the Amazon co-purchasing graph.
Nodes are products and edges model co-purchases between products. The goal is to
predict the product category.

Each of these datasets has bag-of-word features as node features. We use 20 nodes per
class as training data and 30 nodes per class as test data. Every other node is unlabelled.

Training For our training procedure, we follow Ying, You, et al. (2018) for greater
comparability. Each model is trained for a total of 200 epochs using the Adam optimizer
(Kingma and Ba 2014) with a learning rate of 10−3, which is halved every 50 epochs.
128 graphs are batched together at each step by treating them as a single unconnected
graph. We use 128 channels except for proteins and the node classification datasets,
where we used 64. We vary other model configuration parameters depending on the
experiment we conduct.

56



4.4 Experiments and Discussion

G
ra

p
h

S
A

G
E

P
o
ol

in
g

G
ra

p
h

S
A

G
E

P
o
o
li

n
g

G
ra

p
h

S
A

G
E

P
o
o
li

n
g

M
ea

n
P

o
ol

in
g

2-
la

ye
r

M
L

P

Fig. 4.4: Schematic of the architecture used for comparing pooling layer performances.

All models use both dropout and batch normalization (Ioffe and Szegedy 2015). As
noted in Section 3.2.2, we found batch normalization to suffer greatly when evaluated
using population statistics and instead use mini-batch statistics even during testing.

We also found using an edge score dropout significantly increased EdgePool’s perfor-
mance, and during training set every edge score to 0 with a chance of 0.2.

4.4.2 Q1: Does EdgePool Outperform Alternative Pooling Approaches?

Other graph pooling methods introduced in Section 4.2 have theoretical disadvantages
compared to EdgePool. However, we are interested in the performance of EdgePool in
practice.

Experiment

To evaluate this, we use the same architecture as used by Ying, You, et al. (2018) for
DiffPool (see Fig. 4.4): The model has three SAGEConv blocks (Hamilton et al. 2017)
whose outputs are globally mean-pooled and concatenated. Final classification occurs
after two fully-connected layers. The base model does not pool nodes, every other model
pools after every block. Note that DiffPool uses a siamese architecture, using separate
SAGEConv blocks to compute cluster assignments. We restrict DiffPool to a maximum
of 750 nodes per graph and set the pool ratio for both TopKPool and SAGPool to 0.5
to remain comparable to EdgePool.

Additionally, we only use the cross-entropy loss to train the model. To ensure a fair
comparison, we also do this for DiffPool, which originally used three additional auxiliary
losses and tasks to stabilize training and precomputed additional features.

Results and Discussion

Table 4.3 shows mean accuracy and 95% confidence bound for graph classification tasks.
As can be seen, EdgePool consistently improves performance over the non-pooling models
and TopKPool. We draw several conclusions:

• Performance on the proteins dataset, as already noted in Section 3.3.3, is very
close and though EdgePool outperforms other methods, it does not do so within
significance bounds.

57



4 Modifying Graph Topology

Table 4.3: Comparing pooling strategies: Accuracy (in percent) and 95% confidence bound on
benchmark datasets. [*] Ying, You, et al. (2018) use several additional techniques
and auxiliary losses to stabilize training, and also include additional computed fea-
tures. We report results without these.

proteins rdt-b rdt-12k collab

Base Model 74.1±2.0 69.9±2.3 35.1±1.0 65.4±0.9
DiffPool [*] 72.3±3.6 82.9±2.1 34.8±1.2 70.1±0.9

TopKPool 70.6±3.0 68.9±2.0 28.7±1.1 64.6±1.3
SAGPool 71.8±3.7 84.7±2.7 41.9±2.0 63.9±1.5
EdgePool 72.5±2.0 87.3±2.5 45.6±1.1 67.1±1.7

G
N

N

G
N

N

P
o
ol

in
g

G
N

N

G
N

N

P
o
o
li

n
g

G
N

N

G
N

N

P
o
o
li

n
g

G
N

N

M
ea

n
P

o
ol

in
g

2-
la

ye
r

M
L

P

Fig. 4.5: Schematic of the architecture used to evaluate EdgePool impact on graph-level pre-
diction performance.

• DiffPool performs slightly better on the collab dataset. However, it performs sig-
nificantly worse on both the rdt-b and rdt-12k dataset. We assume this to be a
consequence of the collab dataset’s far higher density.

• Except for the collab case noted above, EdgePool outperforms all other pooling
methods. On the collab dataset, it still outperforms TopKPool and SAGPool.

• On all datasets but proteins, EdgePool outperforms the baseline significantly. On
rdt-b and rdt-12k , it does so by 17 pp and 10 pp respectively.

This answer Q1: EdgePool consistently outperforms all pooling methods but DiffPool.
While DiffPool might perform better on some graphs, EdgePool scales far better and
can be used on sparse and large graphs.

4.4.3 Q2: Can EdgePool Be Integrated into Existing Architectures?

It is valuable to have pooling methods that can be easily integrated into pre-existing
architectures. DiffPool, for example, cannot be efficiently integrated since it transforms
a spare graph into a dense graph, making standard GNN models useless.

58



4.4 Experiments and Discussion

Experiment

To evaluate whether EdgePool can be integrated into pre-existing architectures, we follow
the model configuration from pytorch-geometric’s benchmarks (Fey and Lenssen 2019).
Specifically, we use a total of seven convolutional layers, followed by a global pooling
layer and two fully-connected layers. If pooling is used, it is added after every second
convolutional layer (i.e. there are three pooling layers). This is shown in Fig. 4.5.

The convolutional layers we evaluate this on are GCN (Kipf and Welling 2016), GIN
and GIN0 (Xu, Hu, et al. 2018), and GraphSAGE (Hamilton et al. 2017) both with and
without accumulating intermediate results (SAGE nacc). Additionally, we construct a
model using node-independent MLPs, in which only pooling might lead to communica-
tion between nodes.

Results and Discussion

Table 4.4 shows comparative results for different benchmark models with and without
EdgePool. We make several observations:

• On a large majority of GNN/dataset combinations, EdgePool increases perfor-
mance, by an average of almost 2 pp. GIN and GIN0 profit the least (mean im-
provement of 0.3 pp), while GraphSAGE profits the most (5.5 pp).

• Only GIN and GIN0 show cases with significant decreases in performance when us-
ing EdgePool, again on the collab dataset. On all other datasets, adding EdgePool
either increases or does not significantly decrease performance.

• Interestingly, we can see that EdgePool allows even the MLP model to perform
fairly well. This model can only rely on pooling to gain information on the neigh-
bourhood. Nonetheless, it performs competitively with all GNN models on proteins
and collab, and performs competitively to both GraphSAGE model variants on all
datasets.

This allows us to answer Q2: It is easily possible to integrate EdgePool in existing
architectures. Doing so will lead to an estimated improvement of about 2 pp, but might
for some combinations of model and dataset decrease performance.

4.4.4 Q3: Can EdgePool be Used For Node Classification?

Pooling methods are well-suited for graph-level tasks, since the final result is far coarser
than the initial graph anyway. For node-level tasks, every pooling has to be reverted.
We are interested in the performance of our unpooling procedure (Section 4.3.4).

Experiment

On node classification tasks, we evaluate a simple architecture, varying the GNN layer
type. We evaluate GCN, GIN and GIN0, and GAT layers. Again, we also evaluate an

59



4 Modifying Graph Topology

Table 4.4: Integrating EdgePool into existing architectures for graph-level prediction: Accuracy
(in percent) and 95% confidence bound of benchmark models with and without
EdgePool. SAGE is short for GraphSAGE; nacc means without accumulating results.

proteins GCN GIN GIN0 SAGE SAGE nacc MLP

No Pooling 71.4±3.1 70.4±1.7 70.9±2.3 71.7±2.2 73.0±3.0 71.8±2.6

EdgePool 73.1±2.9 72.9±2.2 71.7±2.2 73.5±2.2 69.9±3.0 73.1±2.9

RDT-B

No Pooling 87.1±1.7 91.9±1.1 92.3±0.9 62.5±3.0 50.3±5.2 51.0±2.7
EdgePool 87.8±1.9 92.1±1.4 93.0±1.1 68.0±3.3 64.5±2.9 69.9±1.7

RDT-12K

No Pooling 47.6±0.4 49.5±0.7 50.0±0.8 22.9±1.4 24.4±0.9 21.9±0.9
EdgePool 47.4±1.3 49.3±0.7 49.6±0.7 36.9±1.3 37.8±1.2 34.6±0.8

COLLAB

No Pooling 67.0±1.4 74.2±1.1 74.1±1.0 63.6±1.5 64.1±1.3 52.0±1.6
EdgePool 71.5±1.2 73.0±1.3 72.2±1.0 64.3±1.2 64.1±1.4 67.8±3.2

G
N

N

G
N

N

P
o
ol

in
g

G
N

N

G
N

N

P
o
ol

in
g

G
N

N

U
n

p
o
o
li

n
g

G
N

N

G
N

N

U
n

p
o
ol

in
g

2-
la

ye
r

M
L

P

Fig. 4.6: Schematic of the architecture used to evaluate EdgePool impact on node-level pre-
diction performance. Each pooling’s features are both used for the next layer (at a
decreased resolution) and concatenated with the corresponding unpooling layer’s out-
put.

60



4.4 Experiments and Discussion

MLP layer. As with Q2, we use seven convolutional layers. We pool after the second
and fourth and unpool after the fifth and seventh layer, with shortcuts between the
poolings. The concatenated features are then used by a two-layer MLP to predict each
node’s class. This is depicted in Fig. 4.6.

Results and Discussion

As Table 4.5 shows, GNN layers using EdgePool can be integrated in node classification
architectures and improve performance for 21 of 25 dataset/model combinations. We
make the following observations:

• Only on the photo and computer datasets using a GCN model does performance
decrease significantly.

• Again, using EdgePool in combination with an MLP model improves performance
greatly. On several datasets, this combination performs at least as good as the
worst GNN model.

• For GNN algorithms, EdgePool improves performance by an average of 3.5 pp,
performing worst on pubmed (no improvement on average) and for GCNs (decrease
by 0.1 pp). It performs best for GIN and GIN0, at 5.8 pp and 6.6 pp improvements
respectively.

This answers Q3: EdgePool will, in most cases, improve performance for node-level
prediction. The expected improvement is an average of 3.5 pp.

61



4 Modifying Graph Topology

Table 4.5: Using EdgePool for node-level prediction. Accuracy (in percent) and 95% confidence
bound of benchmark models with and without EdgePool.

cora GCN GIN GIN0 GAT MLP

No Pooling 71.8±2.1 52.1±2.9 55.9±2.7 68.0±2.8 35.6±1.6
EdgePool 72.8±1.2 63.0±3.4 61.3±2.4 70.3±2.1 58.3±2.2

citeseer

No Pooling 62.9±1.8 40.9±2.9 41.4±2.4 58.9±1.7 35.5±2.0
EdgePool 65.3±1.7 50.6±2.4 49.9±3.5 61.0±2.1 50.0±2.3

pubmed

No Pooling 74.2±1.1 60.8±4.2 61.0±2.7 73.0±1.2 62.4±2.5
EdgePool 74.1±1.3 61.0±4.0 61.9±3.0 72.0±2.9 64.8±2.0

photo

No Pooling 88.4±1.4 69.9±2.0 71.9±2.5 78.5±2.8 59.6±3.0
EdgePool 86.5±0.5 77.1±1.1 78.1±0.9 81.0±2.6 81.4±1.4

computer

No Pooling 80.0±1.6 53.1±3.4 52.4±2.2 60.6±7.7 43.0±4.2
EdgePool 77.9±1.4 58.1±3.0 60.4±2.7 62.5±8.1 69.4±1.4

4.4.5 Q4: How Does EdgePool Impact Performance?

EdgePool introduces additional parameters and computation when added to a GNN
model. We are interested in how memory usage and runtime are impacted by it.

Experiment

To evaluate memory usage, we follow the evaluation of Cangea et al. (2018): We con-
struct Erdős-Rényi-Graphs with |E| ≈ 2 |V |. We use the same model as in Section 4.4.2,
i.e. a three-layer GraphSAGE model with 128 random node features, and compute one
forward and one backward pass. We evaluate this on a 1080 Ti GPU with 11GB memory.

Results and Discussion

As Fig. 4.7 shows, both the sparse base model and EdgePool scale linearly in the number
of nodes while DiffPool scales quadratically. Accordingly, DiffPool cannot process more
than about 18 k nodes. The sparse base model’s 250 k node maximum is increased
by EdgePool to 300 k nodes since it offsets its increase in parameters with drastically
reduced graph sizes after several poolings.

At the same time, runtime is consistently worse than the non-pooled sparse baseline,
with being about 50% slower, since EdgePool adds a whole layer of additional computa-

62



4.5 Conclusion

102 103 104 105

Number of Nodes

101

102

103

104

M
em

or
y 

Us
ag

e 
(M

B)

Sparse
DiffPool
EdgePool

Fig. 4.7: Memory requirements for
different pooling algorithms.
Note the log-log axis. The
dashed red line depicts avail-
able GPU memory (11GB).

102 103 104 105

Number of Nodes

10 1

100

Ru
nt

im
e 

(s
)

Sparse
DiffPool
EdgePool

Fig. 4.8: Computational runtime for one
forward and one backward pass
for different pooling algorithms.
Note the log-log axis. Runtimes
are plotted until reaching the
memory limit.

tion that needs to be executed. However, it still runs consistently faster than DiffPool
beginning at graph sizes upwards of 4 000 nodes.

4.5 Conclusion

We have proposed EdgePool, a local and hard pooling method for Graph Neural Net-
works, based on edge contraction. This pooling is both localized (and therefore inde-
pendent of non-local graph changes) and sparse (and therefore computationally efficient
even on large graphs).

EdgePool outperforms all other sparse pooling methods. Except for a single dataset,
it also outperforms DiffPool, which due to its construction cannot be integrated easily
in standard GNN models and is computationally inefficient.

We also showed that EdgePool can be integrated into a large number of GNN ar-
chitectures and usually improves performance on graph classification tasks without any
adaptations to training or architecture. We also proposed an unpooling method which
allows it to be applied to node-level prediction tasks. Here, too, it usually improves
performance.

We have evaluated the computational performance of EdgePool: While it introduces a
50% increase in runtime, it significantly decreases memory usage compared to a standard,
sparse, GNN model, increasing possible graph size by 20%. Compared to DiffPool, it
allows processing of graphs with 16× as many nodes and achieves the same runtime on
graphs of 300 k nodes as DiffPool does on graphs with 14 k nodes.

Besides the obvious use of EdgePool in improving existing GNN architectures, we
hope it will serve as a stepping stone towards methods that learn how to modify graph

63



4 Modifying Graph Topology

structures. We believe this will lead towards methods that no longer operate on nodes
but on abstracted groups of nodes, which would be another step away from the simple
graphs dominating GNN research.

64



5 Edge Features

Whereas previous chapters showed the performance of GNN models on simple graphs,
i.e. those with only graph topology and node features, many real-world problems feature
more complex structures. This chapter introduces the problem of traffic prediction as
such a task and shows that GNN models can be used to naturally model this situation1.

In this chapter, we first introduce the task and its importance (Section 5.1). After-
wards, we introduce the techniques used to build a graph from a traffic scene and the
adaptations to our GNN models necessary for this task (Section 5.2). We then introduce
the setup used to evaluate these models (Section 5.3), particularly the two datasets, both
learned-model baselines and fixed baselines, and the experimental procedures. This is
followed by Section 5.4, which introduces both our research questions and the observa-
tions we made in our experiments. Since GNN models are difficult to interpret, we then
introduce an adaptation of saliency maps to graphs, which allow us to inspect the traffic
situation and find important vehicles that influence our ego vehicle (Section 5.5).

5.1 Motivation

Accurate short-term behaviour prediction of traffic participants is important for appli-
cations such as automated driving or infrastructure-assisted human driving (Krämmer
et al. 2019; Hinz, Buechel, et al. 2017). A major open research question is how to model
interaction between traffic participants. In the past, interactions have been modelled by
either creating a representation of one or several traffic participants (Treiber 2000; Lenz
et al. 2017a) or by using a fixed environment representation such as a simulated LIDAR
sensor (Kuefler et al. 2017).

However, these methods impose certain disadvantages: A fixed environment repre-
sentation poses a much harder problem to learn, since we cannot use data we might

V1

V2 V3

V4
V5

E2,5 E3,5

E1,4

E1,2

E4,5

E3,4

Fig. 5.1: The graph type used in this chapter: It expands upon the simple graphs from Chapter 3
by introducing edge attributes.

1Parts of this chapter have been previously published (Diehl, Brunner, et al. 2019a).

65



5 Edge Features

have extracted previously. Traffic participant representations, on the other hand, scale
computationally with the amount of possible interactions, require a human to decide on
a useful representation, and underspecify the problem one should learn.

By modelling each vehicle as a node and possible interactions between vehicles as
edges (see Fig. 5.2 for a visualization), we gain a sparse and high-level representation
of a traffic scene as a graph. At the same time, it has been shown (Morton et al. 2016;
Kuefler et al. 2017; Lenz et al. 2017a) that machine learning models and particularly
(deep) neural networks perform well on this problem.

Marrying the representation of a traffic situation as a graph with the modelling ca-
pabilities of GNN models promises a clear method to take interactions between traffic
participants into account, good predictive performance, and efficient computation.

To evaluate this, we conduct traffic participant prediction on two real-world datasets,
evaluating their predictive performance and comparing them to three baseline models.
We show that prediction error decreases by 30% compared to our baseline when inter-
action is plentiful and performs no worse when little interaction occurs. At the same
time, computational complexity remains reasonable and scales linearly in the number of
interactions.

This suggests a graph interpretation of interacting traffic participants is a worthwhile
addition to traffic prediction systems.

Our main contributions are:

• We show that representing interactions as graphs leads to better performance.

• We introduce several adaptations into the GNN models to take edge features into
account. We show that using edge features is necessary for a good performance.

• We study both the results of different graph construction techniques and our in-
troduced adaptations on two different datasets.

Fig. 5.2: Interaction graph of a traffic situation. Interactions are assumed to occur between the
ego vehicle (orange) and its up to eight neighbours, assigned by current lane (dashed
lines are lane dividers). These interactions are modelled as edges between the each
vehicle and its neighbouring vehicles. Vehicles are coloured according to their influence
on the ego vehicle. As can be seen, this representation is sparse and models the whole
traffic situation at once.

66



5.2 Traffic Participant Prediction from a Graph

5.2 Traffic Participant Prediction from a Graph

We concentrate on two different graph models: GCN and GAT. As we have shown in
Section 3.3.3, GCN models generally perform very well while remaining a simple model.
GAT models, on the other hand, allows us to easily incorporate edge information into
the model.

5.2.1 Adapting Graph Convolutional Networks

We originally applied the unmodified GCN layer as described in Section 2.5.3.1. However,
we found two changes to be crucial:

Weighting by Distance Kipf and Welling (2016) note that the adjacency matrix can be
binary or weighted. We evaluate weighting edges by the inverse distance, with self-loops
set to 1. This changes the message function from Eq. (2.39) to

M (vi, vj , eij) =
1

d
(deg (vi) deg (vj))

−1/2 AijVj , (5.1)

where d is the distance between the two nodes

Residual Weights The default GCN formula treats both ego node and neighbours
identically, aggregating all of them. However, this means a GCN model cannot treat the
ego node’s own features differently from any of its neighbours. In the prediction task,
this appears to be a significant obstacle to good performance. Accordingly, we change
the node update function of Eq. (2.40) to

Uv (vi) = ΘrVi + Θn

∑
vj∈N (vi)

mij , (5.2)

separating the layer’s weights into a neighbour weight matrix Θn and a residual con-
nection weight matrix Θr.

5.2.2 Adapting Graph Attention Networks

As with GCN layers, GAT layers require two adaptations to perform well on this task.

Edge Attributes The original GAT formulation depends only on the features of the
two nodes. However, the relative positions of two nodes are additional data available to
us in this scenario. Accordingly, we augment the attention computation from Eq. (2.45)
by including edge features, such that

αij = softmaxN (vi) (σ (Θ (Vi‖Vj‖Eij))) . (5.3)

i.e. we modify the attention mechanism to work on the concatenated node features
and the edge features. We do not transform the edge features themselves, and they
remain constant over all layers.

67



5 Edge Features

(a) Self-Connection (b) All Connections

(c) Preceding Connection (d) Neighbouring Connections

Fig. 5.3: Schematics of the connection strategies on the same scene. Cars are moving to the
right.

Residual Weights As with GCN layers, we introduce a residual weight, treating the
ego node differently from its neighbours. This changes Eq. (2.44) to

Uv (vi) = ΘrVi + Θn

∑
vj∈N (vi)

αijmij (5.4)

also separating the layer’s weights into a neighbour weight matrix Θn and a residual
connection weight matrix Θr.

5.2.3 Graph and Feature Construction

Formulating the prediction problem as a graph still leaves open the task of how we
construct said graph and the node features. While there is an obvious strategy to
construct node features—namely to use the corresponding car features like position or
velocity—the same does not apply to constructing a graph topology. Here, no single
strategy is immediately superior to others. However, four basic strategies are possible,
and are depicted in Fig. 5.3:

Self-Connection This only adds self-loops to the graph. It ignores all interaction per-
formance and should perform identically to a simple MLP model operating on the ego
vehicle data only. It is depicted in Fig. 5.3a.

All Connections Connecting all vehicles ensures that no interactions are ignored. How-
ever, this ignores previous knowledge on spatial position and interaction and scales
quadratically in the number of vehicles. It is depicted in Fig. 5.3b.

Preceding Connection Arguably the most important interaction is with the vehicle
immediately in front of us. We can therefore construct interactions only between the
current vehicle and its predecessor. It is depicted in Fig. 5.3c.

68



5.3 Experiments

Neighbouring Connections We argue that the main interactions are with the vehicles
in an ego vehicle’s direct environment, which are at most eight vehicles located to the
front, rear, and sides of the ego vehicle. This construction is similar to the approach by
Lenz et al. (2017a) and Morton et al. (2016). It is depicted in Fig. 5.3d.

While we would prefer to learn these connecting strategies, this is a very difficult open
problem and scales quadratically with the number of considered vehicles. We therefore
only evaluate the fixed strategies.

5.3 Experiments

In order to evaluate the newly proposed models, we conduct a prediction experiment on
real-world traffic data. We purposely keep baselines and models simple to demonstrate
whether the graph interpretation is beneficial without introducing a multitude of con-
founding factors. We therefore do not include RNN architectures, simulation steps, or
imitation or reinforcement learning.

5.3.1 Datasets

We conduct our experiment on two different datasets: The NGSIM I-80 dataset (Federal
Highway Administration (FHWA) 2005) and the HighD dataset (Krajewski et al. 2018).

NGSIM The NGSIM project’s I-80 dataset contains trajectory data for vehicles in a
highway merge scenario for three 15-minute timespans. These are tracked using a fixed
camera system. As Thiemann et al. (2008) show, position, velocity, and acceleration
data contain unrealistic values. We therefore smooth the positions using double-sided
exponential smoothing with a span of 0.5 s and compute velocities from these.

We use two of the recordings as training set and split the last one equally into validation
and test set. We subsample the trajectory data to 1 frame per second (FPS) and extract
trajectories consisting of a total of ten seconds of length. The goal of the model is to
predict the second half of the trajectory given the first five seconds.

HighD Since the NGSIM dataset still contains many artifacts (errors in bounding
boxes, undetected cars, complete non-overlap of bounding box and true vehicle), we
additionally conduct experiments on the new HighD dataset (Krajewski et al. 2018),
which is a series of drone recordings and extracted vehicle features from about 400
meters each from several locations on the German Autobahn. A total of 16.5 hours of
data is available, containing 110 000 vehicles with a total driving distance of 45 000 km.
However, since the dataset consists mainly of roads without on- or off-ramps and without
traffic jams, interaction seems limited: Only about 5% of the cars experience a lane
change.

To avoid information leakage, we split the dataset by recording. The last 10 % of
the recordings are used as test set, the 10 % before that as validation set. Trajectory
construction is then identical to the NGSIM dataset.

69



5 Edge Features

5.3.2 Baselines

We compare our approach to two different model-based static approaches, and one
learned approach.

Constant Velocity Model The Constant Velocity Model (CVM) considers each car to
continue moving at the same velocity (both laterally and longitudinally) as in the last
frame it was observed in. It is a simple model, which nonetheless has been shown to
perform surprisingly well (Schöller et al. 2020).

Intelligent Driver Model The Intelligent Driver Model (IDM) (Treiber 2000) is a
commonly-used driver model for microscopic traffic simulation since it is interpretable
and collision-free. We use this to predict the changes in longitudinal velocity and keep
the lateral position constant.

The IDM’s acceleration is computed from both a free road and an interaction term.
The free road acceleration is computed as

afree = amax

(
1−

(
v

v0

)δ)
,

using the current velocity v and three tunable parameters: Maximum acceleration amax,
the acceleration exponent δ, and the desired velocity v0. The interaction term is defined
as

aint = −amax
(
s0 + v ∗ τ

s
+

v∆v

2s
√
amaxb

)
,

where the minimum distance to the front vehicle s0, the time gap τ , and the maximum
deceleration b are tunable parameters. v is again the vehicle’s speed and ∆v the closing
speed to its predecessor. The total acceleration is the sum of both the free road and
the interaction acceleration. Since the IDM only outputs a longitudinal acceleration, we
assume no lateral motion when using the IDM

We take the IDM parameters for the NGSIM dataset from Morton et al. (2016). For
the HighD dataset, we tune the IDM’s parameters using guided random search with a
total of 20 000 samples. Both values are listed in Table 5.1.

Feed-Forward Model In addition to the models taking interaction into account, we also
add a simple feed-forward MLP, predicting the trajectory from only the ego vehicle’s past
data. We use this baseline model to measure the improvement we gain from including
interaction into our models.

5.3.3 Model Configuration

Each model uses a similar configuration: Two GNN layers producing a 256-dimensional
feature representation, followed by a feed-forward layer which produces the final output,
the displacement in x and y direction. All models use the ReLU nonlinearity. The GAT

70



5.4 Results and Discussion

Table 5.1: Optimized parameters of the IDM. IDM parameters for NGSIM are from Morton
et al. (2016); for HighD they are from guided random search.

Parameter HighD NGSIM

Desired velocity v0
[
m
s

]
58.87 17.8

Maximum acceleration amax
[
m
s2

]
0.14 0.76

Time gap τ [s] 0.12 0.92
Comfortable deceleration b

[
m
s2

]
12.17 3.81

Minimum distance s [m] 14.46 5.249

employs four attention heads (and therefore 64-dimensional feature representations per
head).

Since the GNN models use two layers, their effective receptive field is the two-hop
neighbourhood from the ego vehicle.

All models receive inputs and produce outputs in fixed-length timesteps without re-
currence. They are trained to predict displacement relative to the last position and
receive position and velocity for each past timestep. They train to minimize the mean
squared error over all outputs. All models are implemented in pytorch (Paszke et al.
2017) using and expanding upon the pytorch-geometric library (Fey and Lenssen 2019).

5.3.4 Performance Measure

We report performances of the model by measuring the error in position between ground
truth and prediction. We both report mean displacement error over five seconds, weight-
ing each timestep identically, and final displacement error after five seconds.

5.3.5 Experimental Procedure

Our choice of experiments is guided by the three main questions introduced in Sec-
tion 5.4, which we answer in Sections 5.4.1 to 5.4.3. To ensure meaningful results, we
repeat each evaluation a total of ten times using different random seeds. In tables, we
report all results as mean ± 95% confidence bounds. Figures are violin plots, showing
both individual results and the total result distribution.

We optimize both network adaptations and graph construction strategies on the
NGSIM I-80 dataset since it is both smaller and contains more interactions. We then
use these insights to pick the best-performing models and evaluate them on both the
NGSIM I-80 and the HighD dataset.

5.4 Results and Discussion

We structure our evaluation according to three research questions:

Q1: Which of our adaptations to GNNs are necessary?

71



5 Edge Features

Table 5.2: Results for our GNN ablation study on the NGSIM I-80 dataset. We evaluate our
adaptations for the GCN and GAT models and our connection strategies. The latter
are evaluated using the default GAT model.
(?) Uses 3 instead of 10 evaluations.

Mean Displ. [m] Displ. @5s [m]

G
C

N

Default 2.50±0.04 4.68±0.09

no MLP output 2.52±0.04 4.66±0.07

with weighted edges 2.60±0.05 4.91±0.09
no residuals & with weighted edges 2.87±0.02 5.19±0.05
no residuals 3.74±0.07 6.42±0.06

G
A

T

Default 1.92±0.02 3.45±0.05

no MLP output 1.93±0.04 3.38±0.10

no residuals 2.32±0.01 3.96±0.02
no edge features 2.40±0.03 4.48±0.06

C
on

n
ec

ti
on

s Self-Connection 2.68±0.03 5.08±0.05
Preceding Connection 2.70±0.02 5.11±0.04
Neighbouring Connections 1.93±0.05 3.47±0.08

All Connections (?) 2.41±0.02 4.42±0.03

Q2: How do we construct an interaction graph?

Q3: Does a graph model increase prediction quality?

5.4.1 Q1: Which of Our Adaptations to GNNs Are Necessary?

In Section 5.2.3, we proposed several changes to the GCN and GAT architectures. To
answer which of these changes are beneficial, we conduct an ablation study. From the
results in Table 5.2, we can make several observations:

• Removing the residual connections increases prediction error by at least 20%. This
is likely because there is a clear difference between a neighbouring and the ego node
in this task.

• Using an MLP to produce the final output does not increase prediction performance
significantly. However, it does seem to stabilize training.

• Introducing relative positions as edge features into the GAT model is a clear suc-
cess, reducing the final displacement by about a meter. This is the most significant
improvement of any single component.

• Contrary to that, edge weights for the GCN model slightly decrease performance,
especially when omitting residual weights. We believe that the main contribution

72



5.4 Results and Discussion

of edge weights for the GCN model in our scenario is to discern between the ego and
surrounding vehicles, which is already more effectively modelled through residual
weights.

We therefore evaluate the graph construction using our baseline GAT model with
MLP output, residuals, and edge features.

5.4.2 Q2: How do We Construct an Interaction Graph?

In Section 5.2.3, we proposed four construction strategies for the interaction graph. We
evaluate the quality of predictions with each of these strategies using the GAT model.
We note that in practical scenarios, a tradeoff might be necessary between prediction
quality and computational complexity. Table 5.2 shows results, from which we can make
several observations:

• As expected, the Self-Connection strategy performs identically to the MLP baseline
model. Somewhat surprisingly, the Preceding Connection strategy performs no
better.

• The All Connections strategy improves prediction quality over both of these. How-
ever, it imposes significant computational disadvantages with quadratic instead of
linear runtime and, in our experiments, a slowdown of about 50×.

• The Neighbouring Connections graph construction method clearly performs best,
improving prediction by almost a metre after five seconds compared to the second-
best connection strategy and by 1.5 m compared a model without interactions.
We argue this is due to the structural bias imposed by the model, which strongly
observes the neighbouring vehicles only.

We therefore use the Neighbouring Connections graph construction strategy for our
evaluation.

5.4.3 Q3: Does a Graph Model Increase Prediction Quality?

The motivation of our work is to evaluate whether it is beneficial to model interaction
between traffic participants and whether this can be modelled in a graph construction.
To answer this question, we compare GNN models to a model without interactions (FF).
We also include a comparison with two classical models (CVM and IDM).

We choose the GAT model as best-performing GNN. We also include a GAT model
without edge features (called GAT NEF in our figures and tables) for a fair comparison
with the GCN model.

NGSIM Fig. 5.4 and Table 5.3 show the performance of both our non-learning models,
the MLP model, and three GNN models. We can make several observations:

73



5 Edge Features

Table 5.3: Performance comparison on
the NGSIM dataset.

Displ. [m] Displ. @5s [m]

GAT 1.89±0.01 3.40±0.02

GAT NEF 2.39±0.02 4.46±0.04
GCN 2.51±0.04 4.69±0.07
FF 2.78±0.05 5.22±0.09
CVM 2.58±0.01 5.00±0.01
IDM 3.10±0.01 6.60±0.01

Fig. 5.4: Performance on the NGSIM
Dataset. As can be seen, all three
GNN models perform better than
the baseline which does not take
interaction into account.

• The non-learned baselines perform significantly worse on longer time-scales than
any learned model.

• The CVM outperforming IDM on shorter timescales is consistent with previous
work (Lenz et al. 2017a) and it is likely to achieve better performances in a closed-
or open-loop simulation.

• Every GNN model outperforms the baseline, reducing mean error by 0.5–1.8 m.

• Our GAT adaptations, particularly the inclusion of edge features, increases per-
formance significantly compared to other GNN models. This supports our belief
that edge features are crucial for this task.

• The adapted GAT model reduces prediction error by 30% compared to the FF
baseline.

We can answer Q3: On the NGSIM dataset, the adapted GAT model significantly
increases prediction quality.

HighD Fig. 5.5 and Table 5.4 show the performances on the HighD dataset. We can
make several observations:

• The non-learned baselines still perform significantly worse than any learned model.
However, there is no significant difference between IDM and CVM performance.

• Measured by mean displacement over all timesteps, all learned models show similar
performance. This is independent of their use of interactions.

74



5.5 Inspecting GNNs for Traffic Prediction

Table 5.4: Performance comparison on
the HighD dataset.

Displ. [m] Displ. @5s [m]

GAT 0.47±0.02 1.04±0.04

GAT NEF 0.49±0.04 1.06±0.05

GCN 0.47±0.05 1.10±0.09
FF 0.45±0.04 1.09±0.06
CVM 1.09±0.01 2.66±0.01
IDM 1.12±0.01 2.66±0.01

Fig. 5.5: Performance on the HighD
Dataset. As can be seen, the
algorithms perform similar. We
believe this to be due to little
interaction occurring in the
dataset.

• On long-term prediction, the GAT and GAT NEF models slightly outperform the
GCN model and the FF baseline.

Answering Q3 on the HighD dataset, there is no large performance increase for using
interaction models. We believe this to be a consequence of little interaction between the
cars, which makes all learned models degenerate to the non-interacting case and makes
the interaction term of the IDM model irrelevant. However, the results show including
interaction representations into our model does slightly increase performance even when
there is little interaction in the dataset.

5.4.4 Conclusion

In summary, we show that (Q1) several of our changes result in better performance,
(Q2) as does a good interaction graph construction strategy. (Q3) In total, our model
retains performance on a dataset with little interaction and greatly improves it on a
dataset with plentiful interaction.

5.5 Inspecting GNNs for Traffic Prediction

GNN models share a disadvantage with other neural-network based methods: They are
difficult to interpret. This places engineers in a bind: They can either accept the lower
performance of interpretable models or sacrifice interpretability for performance.

Instead, we present a technique by which representing a traffic scene as a graph im-
proves interpretability. To do so, we adapt the concept of saliency maps (Simonyan
et al. 2013), the primary technique used to visualize relevant image regions for CNNs,

75



5 Edge Features

to graphs. Fig. 5.2 shows how these saliency graphs allow engineers to visually inspect
and interpret the model outputs.

While our presented task is supervised vehicle behavior prediction, it can be applied
to any task using a graph representation. Particularly in reinforcement learning appli-
cations, this technique can be used to find reasons for the ego vehicle’s motion. This
could then be displayed for the passengers to justify the ego vehicle’s behavior.

Aside from such real-time justification to users, engineers can use this interpretability
to guide model architecture choices. Our inspection of the models from Section 5.2 shows
that the naive GNN models do not prioritize relevant vehicles, but our specific adapta-
tions do, particularly when including edge features. This knowledge allows engineers to
justify their model choices on better grounds than just a performance difference and to
better decide which algorithm to deploy to an autonomous car.

5.5.1 Creating Saliency Graphs

We create saliency graphs by adapting the technique of saliency maps to the graph
context.

5.5.1.1 Saliency Maps

Saliency maps, first introduced in the context of weakly-supervised object detection by
Simonyan et al. (2013), are a technique to find the features responsible for a classification
decision.

To do so, they first compute the derivative of the classification score Sc(I) with respect
to an image I for a specific image I0

w =
δSc
δI

∣∣∣∣
I0

. (5.5)

When operating on grayscale images, the final saliency map is constructed by rear-
ranging the values from w such that it is positioned where the corresponding pixel was.
For colour images, this is preceded by extracting a single value for each pixel through
taking the maximum.

There has been much work in producing better-looking saliency maps for images.
The saliency construction detailed above produces very noisy images, which makes in-
terpretation difficult. A large number of methods (for example Smilkov et al. (2017),
Sundararajan et al. (2017), and Selvaraju et al. (2016)) have been proposed to ensure
good-looking results, and further work, for example by Olah et al. (2018), include and
combine these with other techniques.

However, Adebayo et al. (2018) have called several of the saliency construction meth-
ods into question. They showed that some methods’ saliency maps look similar for both
a trained and untrained model. The standard gradient model explained above is resis-
tant to this, but the saliency maps it produces look noisy. Because nodes in a grapk
have a much lower density than pixels in an image and each node is a meaningful unit,

76



5.5 Inspecting GNNs for Traffic Prediction

this does not pose a problem for saliency graphs. Hence, we can use the simple gradient
construction method for saliency graphs.

5.5.1.2 Computing Gradients

First, we compute the derivative of the prediction output p with respect to a graph input
G for our specific graph G0:

w =
δp

δG

∣∣∣∣
G0

. (5.6)

This is equivalent to Eq. (5.5) but for graphs. Note that we are usually interested only
in the influence on a single vehicle, which we call the ego vehicle. We therefore compute
the gradient w only with respect to the prediction of the ego vehicle’s motion pe, which
is a subset of the graph prediction:

we =
δpe
δG

∣∣∣∣
G0

. (5.7)

5.5.1.3 Summarizing Feature-Wise Gradient

Given the procedure from last section, we end up with one gradient value per feature
per vehicle. The problem of summarizing them is similar to the one faced by Simonyan
et al. (2013) when operating on coloured images. We evaluated both taking the mean of
each vehicle’s features and their solution of taking the maximum. We found that they
resulted in somewhat similar feature maps and therefore chose taking the maximum
value.

That is, the influence of the ith vehicle on the ego vehicle is then

wi = max
fki ∈fi

δpe

δfki

∣∣∣∣
G0

, (5.8)

where fki is the kth feature of the ith vehicle.

5.5.1.4 Plotting the Saliency Graph

This procedure gives us saliency values for each node (vehicle) of the graph. Inspecting
these manually immediately reveals that the main influence stems from the ego vehicle’s
features themselves. While this makes sense (see Section 5.5.2.1), it complicates inter-
pretation of the neighbours’ influences. We therefore do not plot ego vehicle influence in
our saliency graphs. We also normalize node importance for each graph, meaning that
all maximum values have the same colour in each of our saliency graphs. While this
means we cannot compare two different saliency graphs, it gives us the maximum range
of values to plot and therefore makes each saliency graph more expressive.

Note that this procedure also gives us influences of the edge features if they exist.
Experimentally, however, these are one to two orders of magnitude smaller than the
node features and we therefore do not plot them.

77



5 Edge Features

P PP

S

(a) Saliency graph of a GAT model that takes edge features into account.

(b) Saliency graph of a GAT model that does not take edge features into account.

Fig. 5.6: Comparison of the saliency maps of GAT models with and without edge features.
Cars are depicted as boxes, with their connections shown. The ego vehicle and its
real trajectory is shown in green, with the predicted trajectory in blue. Other cars
are shaded by influence. As can be clearly seen, the GAT model with edge features
primarily takes the direct predecessor (P) into account and - to a lesser extent - the
cars on its side and the car preceding its predecessor (PP). Using the GAT model
without edge features, however, all cars in the one-hop neighbourhood share the same
influence.

5.5.2 Results and Discussion

Using the ability to construct saliency graphs, we now analyze influences on the predic-
tion of a ego vehicle. For this, we first compare the influence of the ego vehicle’s features
to the influence of the neighbouring vehicles. Afterwards, we evaluate whether the in-
clusion of relative positions into a model improves which vehicles are seen as relevant.
Lastly, we take the created saliency graph and interpret model performance using it.

5.5.2.1 Influence of the Ego Vehicle

As noted in Section 5.5.1.4, the influence of the ego vehicle usually dominates. We exper-
imentally find it varies between 1−4× the influence of the most influential neighbouring
car.

Intuitively, this makes sense: The main feature responsible for predicting the future
displacement are the ego vehicle’s current features. The features of other vehicles merely
act as an influence on this, changing the final motion but not completely controlling it.

78



5.5 Inspecting GNNs for Traffic Prediction

Since we are primarily interested in the influence of neighbouring vehicles, we do not
plot the saliency of the ego vehicle.

5.5.2.2 The Effect of Edge Features

As noted in Section 5.4.1, including the relative position as edge features in the graph
led to better results. With the saliency graph, we can now inspect the actual predictions
and influences thereon in far greater detail than a single numeric performance metric.

One example is shown in Fig. 5.6. As can be seen, the GAT model without edge
features (Fig. 5.6b) is influenced equally by every car in its one-hop neighbourhood.
This makes sense, since the default GAT model can only distinguish between neighbours
and non-neighbours. No distinction is possible by position or similar measures. It
therefore can only compute its result as some aggregation of the set of nodes from the
one-hop and two-hop neighbourhood. While not immediately comparable, this meshes
with theoretical analysis by Xu, Hu, et al. (2018), who show that many classes of GNN
cannot distinguish isomorphic graphs, particularly multisets.

In contrast, the GAT model with edge features (Fig. 5.6a) clearly distinguishes between
cars based on their position: The direct predecessor has the greatest influence on the
ego vehicle’s predicted performance. The inclusion of these edges has the advantages of
both including physical information in a useful format and of the theoretical ability to
distinguish between multisets of identical nodes.

5.5.2.3 Analyzing the Influence of Neighbours

Using the constructed saliency graph, we can now analyze the influence of vehicles on
the ego vehicle. Inspecting Fig. 5.6a, we see that the car directly in front (marked P)
has the highest influence, followed by the neighbouring and following cars. However, the
car immediately preceding the preceding car (marked PP) has a similar influence. This
is despite there being no direct edge between them and the ego vehicle, clearly showing
that the propagation of node features.

At the same time, this shows that the prediction takes similar priorities as humans do:
The mainly relevant cars are directly in front, and cars preceding them have a slightly
lower influence. Observe, for example, the difference in magnitude between the car twice
preceding the ego vehicle (PP) and the one two lanes up from the ego vehicle (S): Despite
both being two edges distant from the ego vehicle, their importance differs greatly.

Compare this with Fig. 5.6b: Here, all direct neighbours of the ego vehicle share the
same influence, as do all two-hop neighbours. On visual inspection, this allows us to
immediately disqualify the model, since we expect the vehicles in front to have a higher
influence on the prediction.

In summary, the modified GAT model primarily looks ”forward” of the ego vehicle
and even takes cars driving in front of these into account. This only occurs when using
edge features, suggesting that the modification using relative positions as edge weights
not only improves performance but also lets the model prioritize between cars similarly
to humans.

79



5 Edge Features

(a) Saliency graph of a free-flow scenario. Best viewed zoomed-in. Note the velocity vector of the plotted
vehicles (black arrows): This is a fast traffic situation.

(b) Saliency graph of a dense-traffic scenario. Note again the velocity vector, which shows
that the vehicles are very slow.

(c) Saliency graph of a lane change.

(d) Saliency graph for a full traffic scene.

Fig. 5.7: Saliency graphs for three different traffic scenarios (a-c) and for a full traffic scene (d).
These also plot velocity vectors (black arrows) for each car to show differences in speed
in the different scenarios. These show the displacement after one second.80



5.5 Inspecting GNNs for Traffic Prediction

5.5.2.4 Saliencies for Specific Scenarios

Several saliency graphs for specific traffic scenarios are depicted in Fig. 5.7. These are a
lane change, a free-flow scenario, and a dense traffic scenario.

Free-Flow Fig. 5.7a shows a traffic scenario with free traffic flow. The ego vehicle is
moving with a velocity of ca. 16 m/s (60 km/h), as do the surrounding vehicles. As can
be seen, despite all the plotted vehicles having a small influence on the prediction of the
ego vehicle, the two main vehicles to look for are the vehicle immediately preceding the
ego vehicle, and the vehicle preceding that.

This makes sense: When moving at such speeds in a free-flow situation, the mainly
relevant vehicles are the vehicle in front, which must be monitored for braking. Since
this is mainly influenced by the vehicle to its front, its relevance also makes sense.

Contrary to this, the neighbouring vehicles would only matter if they change lanes,
which none of these do.

Dense Traffic Fig. 5.7b shows a dense and very slow traffic scenario. The ego vehicle
is moving with a velocity of ca. 1.5 m/s (5 km/h), as do the surrounding vehicles. Note
how, contrary to Fig. 5.7a, surrounding vehicles now have a significantly higher influence
on the ego vehicle’s prediction.

This makes sense: At slow speeds, lane changes are more likely to happen, and any
surrounding car might either allow a lane change or change lanes themselves. Note also
that the predicted trajectory is of a fairly low quality, overestimating the ego vehicle’s
progress by 7 m after five seconds. This is more difficult to predict than a free-flow
scenario, and will require the addition of an open-loop simulation (Lenz et al. 2017a).

Lane Change Fig. 5.7c shows the ego vehicle changing lanes. As can be seen, the great-
est importance is assigned to the immediately preceding car. However, the preceding
car of the previous lane still has a large influence on the prediction. This is despite the
model not having any explicit representation of lanes; it only reacts to relative positions
and velocities of vehicles.

5.5.2.5 Interpreting a Complete Traffic Scene

Previously, we only restricted ourselves to the influence vehicles have on the single ego
vehicle. We can also use this technique to interpret a whole traffic scene by considering
the influence the participating vehicles have on each other.

One such scene is depicted in Fig. 5.7d. Of particular note is the truck (long box)
depicted in the centre of the image. It shares the greatest influence on the scene with
the vehicle directly in front of it. In comparison, the vehicles on the lowest lane—which
move at a significantly higher speed than the dense traffic in the middle lanes—have
little influence on the whole scene.

81



5 Edge Features

5.5.3 Conclusion

We have shown how saliency graphs can be used to interpret the behaviour influences
on the ego vehicle. We have used this to show how our adaptations to the GAT model
allow the model to concentrate on more relevant vehicles. We have also shown how to
use this technique to find the most influential vehicle on a traffic scene as a whole.

5.6 Conclusion

We have proposed modelling a traffic scene as a graph of interacting vehicles. Through
this interpretation, we gain a flexible and abstract model for interactions. We evaluated
two computationally efficient GNNs and proposed several adaptations for our scenario.

In particular, we moved away from simple graphs by introducing edge features, and
have shown how this is necessary for our task. We have introduced several adaptations
to GCN and GAT layers to enable processing edge features. We conducted an ablation
study on these adaptations and found them to improve prediction quality.

On the NGSIM dataset, a traffic dataset with plentiful interaction, modelling interac-
tions decreases prediction error by over 30% compared to the best baseline model. At
the same time, we saw no decrease in prediction quality on the HighD dataset, a dataset
with little interaction.

We also showed that GNN-based prediction of traffic participants can be made human-
interpretable. We used this to gain insight in the performance differences of our models.
In particular, we found that a better-performing variant of the GAT model also differen-
tiates between cars based on their relative position and concentrates more on cars also
relevant to a human in that situation. This shows that the graph interpretation not only
performs well but also allows humans to inspect and interpret reasons for a prediction
in single scenes.

While we have improved prediction quality, much work remains to be done: This work
is only a proof-of-concept that modelling interactions as a graph is worthwhile and should
thus be seen as only one technique for one aspect of traffic prediction. Integrating this
model into existing state-of-the-art methodology, particularly RNNs and simulations,
remains an open task.

And yet, it is a potent argument in favour of moving away from simple graphs: The
inclusion of edge features decreases prediction error by 25% compared to the same model
without edge features.

82



6 Heterogeneous Nodes

In Chapter 5, we have moved away from the simple graph model by introducing edge
features. Yet many real-world tasks not only feature attributes for the relationships
between objects but also different types of object (Fig. 6.1). This chapter introduces
high-voltage power transmission grids as such a task1 and shows how modelling these
as graphs comes naturally. We also show how to apply GNN models on such a highly
critical infrastructure task by combining the learned and fast GNN model with a provably
correct solver to produce a solution faster than the solver alone could manage.

We first motivate why tackling this problem is important (Section 6.1). Section 6.2
then introduces the problems of Power Flow (PF) and Optimal Power Flow (OPF) and
the equations and physical laws governing these. Section 6.3 introduces our methodology:
Both how to model the power grid, how to build GNN models to operate on this problem,
and how we ensure feasibility of the solution. Our experiments in Section 6.4 then aim
to answer two primary questions: Which of our possible architectures performs best,
and whether our methodology is able to tackle this problem.

6.1 Introduction

We first introduce the problem context and why it is important to solve. Afterwards,
we introduce our approach.

6.1.1 Motivation

Electricity and heat production make up 25% of the world-wide yearly emissions of
roughly 50 GtCO2-eq. (IPCC 2014, p. 46f). Accordingly, any increase in efficiency has
the potential of a large impact. At the same time, energy supply is an extremely critical
and sensitive system, in which blackouts and brownouts are unacceptable. Any new
technology deployed on such infrastructure needs to guarantee correctness.

1 2

3

4 5 G

G

G

L

L

L

Fig. 6.1: The graph type used in this chapter: Aside from the edge features first introduced in
Chapter 5, it also contains different types of nodes: Generators, buses, and loads.

1Parts of this chapter have been previously published (Diehl 2019c; Diehl 2019a).

83



6 Heterogeneous Nodes

Training

Grid Solver

GNN

Control

∆

Operation

Grid GNN Solver Control

Fig. 6.2: General procedure used in this chapter. (left) During training, a classical solver takes
a power grid as input and produces an ACOPF solution, which the GNN model is
trained to approximate. (right) During operations, the GNN model’s prediction is
used to warm-start the ACOPF solver.

Day-to-day operating of an electrical grid requires scheduling of generator outputs.
A Transmission System Operator (TSO) needs to optimize the purchase of power from
different generators, each of which has different and potentially nonlinear costs and CO2

emissions per produced MJ. Minimizing cost is known as OPF, and optimizing it using
the full Alternating Current (AC) equations (referred to as ACOPF) has been proven
to be NP-hard (Bienstock and Verma 2015). In the future, the problem size is bound to
increase even more with the proliferation of small renewable generators.

Great progress has been achieved in the last decades (refer to Cain et al. (2012) for an
overview). Yet, particularly in day-to-day operations which require solving OPF within
a minute every five minutes, TSOs are forced to rely on linear approximations known as
DCOPF. Solutions produced by these approximations are inefficient and therefore waste
power and overproduce hundreds of megatons of CO2-equivalent per year (Cain et al.
2012).

6.1.2 Approach

We propose to use machine learning to produce a solution to the OPF problem. Know-
ing that such a solution will not necessarily be optimal or even feasible (i.e. physically
implementable), we can then use it to warm-start an ACOPF solver. Combining both
approaches, we gain a significantly faster execution time while still guaranteeing feasi-
bility.

This has previously been proposed by Guha et al. (2019). However, they only showed
that a MLP could be used to produce such outputs on very small example datasets.
They also did not integrate their results into an actual ACOPF optimizer.

The task is also interesting from the GNN perspective: In contrast to both the default
benchmark datasets of Chapter 3 and the traffic prediction task of Chapter 5, the graph
modelling this task contains both edge features (modelling the power transmission lines)
and different types of nodes (generators, buses, and loads). There is a lack of approaches

84



6.2 Simulating and Controlling Power Grids

for heterogeneous node and edge types. Accordingly, this task also provides us with
additional knowledge on applying GNN models to more interesting tasks, which often
feature diverse types of nodes and edge features.

We therefore also showcase different ways of modelling the task as a graph and con-
duct benchmarking to present the reader with an estimate on the different methods’
performances. This obviously does not provide a definite answer to the question of how
to model heterogeneous graphs; instead, we aim to inspire the reader and provide a
starting point for their own exploration.

6.2 Simulating and Controlling Power Grids

The OPF problem is a crucial ingredient to modern power grids (Cain et al. 2012). TSOs
use it to plan grid expansion and investment, request next-day commitments by power
plant operators, and react to both usage spikes and issues or even losses in generators.

For the following, we follow the introduction by Frank and Rebennack (2016), to which
we refer the reader for more detailed information.

6.2.1 Power Grid Equations

Electrical circuits are modelled as nodes and edges, representing physical interconnec-
tions and circuit elements respectively. These follow Kirchoff’s laws: Kirchoff’s Voltage
Law (KVL) requires that the voltages around a closed loop sum up to zero2, while Kir-
choff’s Current Law (KCL) requires that the incoming and outgoing currents for each
nodes are equal.

Given that modern power grids operate using AC, voltage and current vary constantly.
They are therefore analyzed under the assumption of sinusoidal steady-state operation,
i.e. treating all voltages and currents as sinusoids with fixed magnitude, frequency,
and phase shift. We then transform the time-domain representation into the phasor
representation, complex equations in the frequency domain:

c sin (2πft+ γ)︸ ︷︷ ︸
time domain

⇔ ceiγ︸︷︷︸
frequency domain

, (6.1)

where c is the magnitude, f the frequency (which is fixed, and therefore omitted from
the phasor equation), and γ the phase angle. Alternatively, the phasor representation can
also be written in a polar representation as c cos γ+ic sin γ, with the real part c cos γ and
the imaginary part c sin γ. Lastly, voltage and current phasor magnitudes are expressed
as Root-Mean-Square quantities and scaled by 1√

2
, which avoids introducing a separate

scaling factor.
Leveraging the algebraic representation, Ohm’s law for AC circuits is

Ṽ = ĨZ̃ = Ĩ (R+ iX) , (6.2)

2Taking voltage direction into account.

85



6 Heterogeneous Nodes

with Ṽ being the voltage, Ĩ the current, and Z̃ the complex impedance, distinguishing
between real resistance R and imaginary reactance X. In the following, we use �̃ to
mark complex numbers. Reactance represents the effects of electrical storage, which
produce a phase shift between voltage and current.

As with voltage and current, power is also treated as a phasor in an AC system.
Complex power S̃ consists of real power P and reactive power Q:

S̃ = P + iQ. (6.3)

Real power represents net current flow from source to load over time, and occurs when
voltage and current are in phase. Reactive power represents circular power flows, a net
zero energy transfer over time. It occurs when voltage and current are orthogonal.

6.2.2 Power Flow

Given the a power grid, Power Flow (PF) aims to find bus voltages and power injections
such that the power grid ends up in a physically feasible state. For this, a grid of b buses
is modelled using

Ĩ = Ỹ Ṽ , (6.4)

with Ṽ and Ĩ being b-dimensional vectors of phasor voltages and currents respectively.
Ỹ is the b × b complex bus admittance matrix, which is constructed from power line
parameters. Eq. (6.4) is generally transformed via S = Ṽ Ĩ∗ into

S̃ = Ṽ �
(
Ỹ Ṽ

)∗
, (6.5)

where �∗ is the complex conjugate and � is elementwise multiplication. Here, S̃ =
P + iQ is the b-dimensional vector of complex power injections (i.e. of both real and
reactive power injections) at each node. That is, S̃ is the difference between generated
and consumed power at each node.

The advantage of the power flow-based formulation of Eq. (6.5) over the current-based
formulation of Eq. (6.4) is the more direct computation of required electrical energy and
the independence of injected power from system voltage angle.

With the decomposition of complex power S̃ above into real and reactive power injec-
tions, we can rewrite Eq. (6.5) as

P + iQ = Ṽ �
(
Ỹ Ṽ

)∗
. (6.6)

Real and reactive power injections P and Q are trigonometric functions of the system
voltages and each bus i therefore has four variables: Real and reactive power injections
Pi and Qi, voltage magnitude Vi, and voltage angle δi. Since Eq. (6.6) gives us two
equations (the real and imaginary part), we need to fix two of the four variables for each
bus.

PF classically fixes these variables as follows:

86



6.2 Simulating and Controlling Power Grids

Slack Bus One single slack bus has a fixed voltage magnitude and phase angle3. The
slack bus is the only bus at which power can be freely varied.

PQ Bus At PQ buses, real and reactive power injections are fixed, while voltage mag-
nitude and phase angle can be controlled.

PV Bus At PV buses, real power injection and voltage magnitude are fixed, while reac-
tive power injection and phase angle can be controlled.

To solve the PF problem, we need to determine voltage angles for all buses except the
slack bus. For PQ buses, we also have to determine voltage magnitudes. This requires
us to solve the real part of Eq. (6.6) for all but the slack bus in addition to the imaginary
part for PQ buses.

If such a solution exists, the power grid is in a feasible state.

6.2.3 Optimal Power Flow

Whereas PF concerns itself only with the feasibility of a given grid, OPF aims to produce
a feasible solution that minimizes the cost of electricity generation while ensuring the
safe operation of the grid. It assumes a number of controllable generators connected
to buses. The cost of buying electricity from the generators varies, but is usually not
linear. To ensure safe grid operation, real and reactive power, voltage magnitude, and
phase angle for each bus have to remain within some minimum and maximum values.
Similarly, the current magnitude flowing through branches has to remain below a certain
limit4. Eq. (6.6) still has to be fulfilled.

First formulated in 1962 (Carpentier 1962), no solution technique exists that is both
dependable and fast (Cain et al. 2012). In particular, Eq. (6.6) is non-convex and non-
linear; and the function space is very uneven and contains many local minima. Indeed,
Bienstock and Verma (2015) showed that OPF is NP-hard.

In practice, OPF is often simplified by using DC approximations (referred to as
DCOPF in contrast to an optimization using the full AC equations, referred to as
ACOPF). However, DCOPF can be very inaccurate, particularly for power lines un-
der heavy load. Unfortunately, the latter is often a critical period in which precise
control is necessary. There have also been approaches to use DCOPF to warm-start the
full ACOPF solver, but this often does not work well.

Thus, reliable and scalable ACOPF solution methods remain an open and very inter-
esting problem.

3Usually, PF uses the so-called unit system, in which voltage, power, and current are defined relative
to reference magnitudes. There, the slack bus usually is fixed to a voltage of 1.0 p.u. and an angle of 0◦.

4In the real world, thermal expansion of the power lines leads to sagging which in turn might lead
to electrical arcs between lines and, for example, trees. This can start forest fires.

87



6 Heterogeneous Nodes

1 2

3

4 5 G

G

G

L

L

L

Fig. 6.3: Exemplary five-bus power grid. Buses are depicted as (numbered) circles, loads and
generators are depicted with an L and a G respectively. Branches are black lines,
while intra-bus connections are grey lines. As can be seen, buses can have multiple
generators associated with them (bus 5), can have both generators and loads (bus 3) or
might act only as an interconnection (bus 2). Buses, generators, loads, and branches
all have features associated with them, while bus-to-component connections do not.

6.3 Methodology

Some approaches use a DCOPF solution to warm-start an ACOPF solver, thereby hope-
fully accelerating convergence and making its application feasibly. However, the large
number of local minima noted in the previous section mean that the inaccurate solutions
produced by the DCOPF solver often provide only little speed-up5. However, using the
ACOPF solver guarantees feasible solutions. A better estimate than DCOPF provides
should therefore provide larger speed-ups while at the same time ensuring a feasible
solution.

GNN models can naturally be applied to the graph representation of power grids and
are powerful models that should be able to provide better initial solutions. Our general
idea is train a GNN model to predict the output of an ACOPF solver. Since the GNN
model’s output on new scenarios is not guaranteed to be feasible, we use its output
instead to initialize the ACOPF solver, accelerating its convergence while guaranteeing
feasibility of the solution.

6.3.1 Modelling the Power Grid

We model the power grid as a graph: Nodes are physical buses (each of which might
contain loads and/or generators) connected by branches. Each component is character-
ized by both physical parameters (for example a branch’s resistance) and constraints
(for example a generator’s maximum power output). An example is shown in Fig. 6.3.

This model of our problem closely follows the classical branch/bus model introduced
in Section 6.2.

6.3.2 GNN Models for Power Grids

By modelling the problem as a graph, we can apply GNN models to it. GNN models are
an attractive method to learn on power grids, since they allow us independence of actual

5As we will see in Section 6.4.3, mean speed-ups are less than 5%, though worst-case time is reduced
by up to 50%.

88



6.3 Methodology

1 2

3

4 5 G

G

G

L

L

L

(a) Components providing inputs. These are buses, generators, loads, and inter-bus connec-
tions.

1 2

3

4 5 G

G

G

L

L

L

(b) Components requiring predictions. These are only the generators.

Fig. 6.4: Components providing inputs and require predictions respectively. Relevant compo-
nents have been bolded.

net topology and are data-efficient (contrary to modelling this with standard MLPs) and
are well-suited to the sparse connectivity of the power grid graph.

Following the problem description in Section 6.2, buses, loads, and generators provide
us with input features, as do branches. We require predictions for the generators. This
is depicted in Fig. 6.4.

Most GNN methods consider only node features and adjacencies, ignoring edge fea-
tures. We draw from the Graph Network framework (see Section 2.5.3.5), which can
operate on node, edge, and global features. We adapt this framework, ignoring global
features. This changes Eq. (2.46) to

E ′ij = Ue (Eij ,Vi,Vj) , (6.7)

where E are the edge features, Ue is the edge update neural network, and V are the
node features. Afterwards, the new node features V are computed by adapting Eq. (2.47)
and using the learned node update function Uv:

V ′i = Uv

 ⊕
∀eij∈E

(Eij) .Vi

 . (6.8)

This formulation gives us a network architecture which supports transforming edge
features. However, GNN models are usually applied to heterogeneous nodes, i.e. nodes
that are of the same type. In contrast, this problem features three different types of
components: Buses, generators, and nodes. Modelling these requires changes to the
GNN model, several of which we evaluate. They are depicted in Fig. 6.5 for better
comparison.

89



6 Heterogeneous Nodes

G G B B

G′ G′ B′ B′

(a) Independent

G G B B

G′ G′ B′ B′

(b) Heterogeneous

G G B B

G′ G′ B′ B′

(c) Summarized Features

G G B B

G′ G′ B′ B′

(d) Summarized Embeddings

G G B B

G′ G′ B′ B′

(e) Separate Components

Fig. 6.5: Graphical overview over the different model types operating on a very small graph and
the resulting dataflow. All networks have one encoding, one GNN layer (excepting the
Independent model), and one classification layer. The two generators are assumed to
be connected to one bus. We do not show the influence of edge features onto compu-
tation. Colour-coding is used to denote parameter sharing for that layer, organized by
components.

90



6.3 Methodology

6.3.2.1 Independent Model

The simplest model (see Fig. 6.5a) assumes independence of components, and learns one
MLP for each component type. That is, each layer updates each component’s features c
according to

c′ = Uc (c) , (6.9)

where Uc is a component-specific MLP.

This does not take graph topology or any component interaction into account, and
therefore represents nothing more than a baseline.

6.3.2.2 Heterogeneous Model

We can treat each component as a separate node (see Fig. 6.5b). Edges are then both
the original branches and component-to-bus connections.

Components and buses c are first embedded into the same feature space using separate
linear embedding functions Ec to produce node embeddings V ′:

V ′i = Ec (ci) . (6.10)

Since component-to-bus connections do not have any features, we learn fixed repre-
sentations for each type of component-to-bus connection. Afterwards, node and edge
features are transformed using the base Graph Network from Section 6.3.2, with final
predictions extracted from relevant nodes only.

6.3.2.3 Summarized Features Model

Classically, we could also concatenate component features to their corresponding bus
(see Fig. 6.5c), creating initial node features vi for each bus from both its own features
bi and the generator gi and load li features:

V ′i =

(
bi‖

l⊕
(li) ‖

g⊕
(gi)

)
. (6.11)

Since one bus might have multiple components of the same type, we rely on existing
knowledge on how to combine them to hand-craft the aggregation functions

⊕l and
⊕g.

For example, we can sum up maximum and minimum power generation capabilities for
generators.

To enable different predictions for generators assigned to the same bus, the output
layer predicts using the concatenation of both the final representation of the bus bo and
the original generator input features gi:

go = O (bo‖gi) . (6.12)

91



6 Heterogeneous Nodes

6.3.2.4 Summarized Embeddings Model

Instead of summarizing raw features, we can also embed each component using a per-
component linear embedding function Ec before summarizing multiple components per
bus (see Fig. 6.5d).

V ′ =
(
bi‖
∑

El (li) ‖
∑

Eg (gi)
)
. (6.13)

Here, we use the sum instead of a hand-crafted aggregation function. This is similar
to the approach taken by Zaheer et al. (2017) for representing object sets. As with
the Summarized Feature model, we produce the output using the initial (embedded)
generator features

go = O (bo‖E (gi)) . (6.14)

In contrast to the Summarized Features model, this does not require hand-crafted
aggregation functions and can potentially distinguish better between similar components
attached to the same bus.

6.3.2.5 Separate Components Model

Lastly, we can include existing knowledge (see Fig. 6.5e): We know that components are
only connected to buses, and that they lack features. We therefore define updates to the
components as

c′ = Uc (b‖c) , hb = Uh

b‖ ∑
g∈N (b)

g‖
∑
l∈N (b)

l

 , (6.15)

where c is a type of component (generator or load), b, g, l are the buses, generators,
and loads respectively, and U is an MLP. h is an intermediate value per bus.

Branch features e are then computed according to their source and target buses bs
and bt,

e′ = Ue (bs‖e‖bt) . (6.16)

Lastly, final bus features are computed based on the neighbouring buses and their cor-
responding branch features:

b′ = Ub

h‖ ∑
h,e∈N (b)

Uh,e (o‖e)

 . (6.17)

This model architecture allows us to include existing knowledge as a bias: Each com-
ponent is treated differently but is connected to one (or several) nodes, edge features are
included, and component output depends on the connected bus. There are a total of six
MLPs defining each layer of the model: Ug, Ul, Uo, Ue, Uo,e, and Ub.

92



6.4 Experiments

6.3.3 Ensuring Feasibility

As noted in Sections 6.2 and 6.3, ensuring the feasibility of created solutions is a crucial
problem. The usually-used DCOPF formulation of the problem often produce subopti-
mal or even infeasible results. For a power grid, where infeasible solutions can result in
brownouts or blackouts, we cannot rely on the output of an approximate and uninter-
pretable model.

We first train the GNN model to predict the outputs of an ACOPF solver. While
applying the ACOPF solver to a power grid has high computational requirements, this
can happen offline during training. The trained GNN is extremely fast to execute, but
we have no guarantee as to the feasibility of the produced solutions.

Instead, we use the prediction of the GNN model not as a control input to the power
grid, but rather to warm-start the ACOPF solver. This guarantees a feasible solution
and, since the ACOPF solver starts from a better starting point, accelerates final com-
putation.

Since the final control output is always produced by an ACOPF solver, any solution
has to be feasible and can therefore be used to control a power grid.

6.4 Experiments

We structure our experiments to answer two different questions:

Q1: Which of the adapted GNN models performs best?

Q2: Can an ACOPF solver be warm-started by a GNN model?

6.4.1 Datasets and Experimental Setup

Due to security concerns, real-world datasets on power networks are sparse, out-dated, or
inaccurate (Birchfield et al. 2018). While a variety of example scenarios have been pub-
lished, most of these are used for software correctness tests and therefore both unrealistic
and orders of magnitude smaller than real power networks.

Birchfield et al. (2018) introduced a methodology to construct synthetic power net-
works based on known powerplants, census information, and geographic information.
They produced several example datasets, of which we use case ACTIVSg200 (referred
to as Illinois) and case ACTIVSg2000 (referred to as Texas) datasets. These are
synthetic representations of high-voltage transmission grids of the central part of Illinois
(containing 200 buses with 230 and 115 kV networks) and of Texas (with 2 000 buses
with 500, 230, 161, and 115 kV networks). The grids are depicted in Fig. 6.6 and Fig. 6.7
respectively.

We rely on the PowerModels.jl package (Coffrin et al. 2018) to model the power
grid and convert from a power grid representation to a general non-linear optimization
problem, which we then solve using the IPOPT package (Wächter and Biegler 2006).
We implement the model using pytorch (Paszke et al. 2017) and the pytorch-geometric
package (Fey and Lenssen 2019).

93



6 Heterogeneous Nodes

Fig. 6.6: Map of the synthetic Illinois dataset. Each bus is annotated with its connected
maximum generation capacity (yellow) and load (red), with a half-circle filled relative
to the maximum generation capacity or load. Each branch is colour-coded according
to its voltage.

94



6.4 Experiments

Fig. 6.7: Map of the synthetic Texas dataset. Depicted in the same style as Fig. 6.6

95



6 Heterogeneous Nodes

Table 6.1: Comparison of performances for different model architectures from Section 6.3.2.

Method MAE

Independent 0.250 9
Heterogeneous 0.020 3
Summarized Features 0.018 6
Summarized Embeddings 0.017 1
Separate Components 0.021 8

Both datasets have synthetic hourly load distributions available for one year, and
we randomly split these by day into train, validation, and test dataset. In the Texas
dataset, total load drops below minimum generator output for about half the data-
points. Since our OPF solver does not support disabling generators, we ignore generator
minimum production for Texas.

6.4.2 Q1: Which of the Adapted GNN Models Performs Best?

To answer Q1, we evaluate their performance on the Texas dataset. We measure
performance according to the Mean Absolute Error (MAE) between the control outputs
of the GNN model and the ACOPF solver.

6.4.2.1 Experimental Setup

We train all models identically using the Adam optimizer (Kingma and Ba 2014) at
default parameters, and train for 500 epochs using the Mean Squared Error (MSE) loss.
All models use 8 layers, residual connections, and batch normalization. We scale all
models to the same number of parameters (about 200 k); accordingly, the Independent
model uses 105 units per layer, Separate Components model 32. All other models6 use
48 units per layer.

6.4.2.2 Results and Discussion

We report the MAE in Table 6.1. We make several observations:

• It is immediately apparent that the Independent model performs extremely badly,
with errors an order of magnitude worse than the second-worst method. This is
to be expected, as no generator prediction can depend on any other component.

• All but the Independent and the Separate Components models produce feasible
solutions for every single one of our 2 208 test samples without any further enforce-
ment of physical knowledge. The Independent model fails in about a quarter of
the cases, while the Separate Component model fails on two cases.

6The Heterogeneous model also uses nine instead of eight layers to have the same receptive field as
the other graph models.

96



6.4 Experiments

• The Heterogeneous model, which treats all nodes as heterogeneous nodes, i.e. en-
coding them into the same representation space and applying a GNN model, per-
forms well. This is arguably a useful starting point for other problems, too.

• Our adaptation of the Separate Components model does not perform better than
the simpler Heterogeneous model.

• Both the Summarized Features and Summarized Embeddings model perform well,
with the latter reducing the MAE by 16% compared to the Heterogeneous model.

6.4.2.3 Conclusion

In summary, the results clearly show that introducing prior knowledge through network
architecture is necessary to achieve the best performance on more complex datasets.
Given the disparity of such datasets, no single recommendation can be made on how to
achieve it; however, we have shown several potential strategies which readers can use as
a base for experiments. Yet, even a simple general-purpose representation can already
deliver good results, leaving the inclusion of prior knowledge for hyper-parameter tuning.

For the concrete task of OPF, we use the Summarized Embeddings model going for-
ward.

6.4.3 Q2: Can an ACOPF Solver be Warm-Started by a GNN Model?

To answer Q2, we apply the methodology on both the Illinois and the Texas dataset.
We are interested in two parameters: The runtime of each method and the feasibility of
the produced solutions.

6.4.3.1 Experimental Setup

We again train the model using the Adam optimizer (Kingma and Ba 2014) at default
parameters, and train for 500 epochs using the MSE loss based on the ACOPF solver’s
result. The model has eight layers of 48 units each, and uses both residual connections
and batch normalization.

During evaluation, we either use the result from the model, DCOPF solver, or ACOPF
solver directly or use one of the former two to warm-start the ACOPF solver.

6.4.3.2 Results and Discussion

We discuss the results on Illinois and Texas separately. We report both mean and
95 % quantile runtime. The latter is important for deployed systems. For evaluation, we
do not run the model on a GPU but note that even evaluated on the CPU, the GNN
produces its results in less than half a second.

97



6 Heterogeneous Nodes

Table 6.2: Performance on Illinois. Here, all methods find feasibly solutions. DC and AC are
the corresponding power flow models, while → depicts warm-starting the ACOPF,
either using the DC or the GNN model. All times are noted both in seconds and
relative to the ACOPF optimizer.

Method Mean Time [s] (rel.) 95% Time [s] (rel.)

GNN 0.03 (3%) 0.04 (1%)

DC 0.13 (13%) 0.18 (5%)

GNN → AC 0.75 (72%) 1.96 (55%)

DC → AC 0.98 (95%) 2.58 (72%)

AC 1.03 3.58

Illinois The results on the Illinois dataset, consisting of 200 nodes, can be found in
Table 6.2. We make several observations:

• All models find feasible solutions for all samples in our test set.

• The ACOPF solver warm-started by the DCOPF solver saves about 5% runtime on
average. This is increased for longer-running scenarios, reducing the 95% quantile
runtime by 28%.

• In simple models, the pure GNN model runs 4.5× faster than the DCOPF solver
and 36× faster than the ACOPF solver.

• Even for such a small power grid, the combination of model and ACOPF saves
25 % runtime compared to the pure ACOPF. It also reduces 95% quantile runtime
by almost half.

In summary, warm-starting the ACOPF solver using a GNN is worth it compared to
the alternatives.

Texas The results on the larger and more realistic Texas dataset can be found in
Table 6.3. The runtimes are graphically shown in Fig. 6.8. We can make several obser-
vations:

• The pure DCOPF model fails to find solutions to 6.6% of our scenarios. All other
models succeed for every scenario.

• The ACOPF solver warm-started by the DCOPF solver only saves 2% runtime on
average. This is again increased for longer-running scenarios, reducing the 95%
quantile runtime by 45%.

• In simple models, the pure GNN model runs more than 10× faster than the DCOPF
solver and is more than four orders of magnitude faster than the ACOPF solver.

• The combination of model and ACOPF saves 72 % runtime compared to the pure
ACOPF. It also reduces 95% quantile runtime by 63 %.

98



6.5 Conclusion

Table 6.3: Performance on Texas. As can be seen, the DC power flow model fails to find
solutions in 6.6% of scenarios.

Method Mean Time [s] (rel.) 95% Time [s] (rel.) Legal (of 2208)

GNN 0.2 (0.02%) 0.3 (0.02%) 2208
DC 3.2 (0.37%) 3.6 (0.22%) 2062
Model → AC 244 (28%) 621 (37%) 2208
DC → AC 850 (98%) 919 (55%) 2208
AC 863 1 670 2208

0
20

0
40

0
60

0
80

0
Mean Runtime (s)

ACOPF

DCOPF  ACOPF

Model  ACOPF

DCOPF

Model

14:22 min

14:09 min

03:53 min

3s

< 1s

Fig. 6.8: Runtime comparison on Texas.

6.4.3.3 Conclusion

In summary, the results clearly show that the GNN model is superior both when used
as an approximation, in which it produces better approximations than the DCOPF
model in far less time, and when used to warm-start the ACOPF optimizer, in which it
reduces runtime significantly. In itself, applying a GNN model to a power grid is almost
free computation-wise. We believe that a better optimizer, in particular one that has
been implemented with an eye towards warm-starting, should improve these advantages
further.

6.5 Conclusion

Power grid optimization is an interesting problem to apply GNN models to, since GNN
models are usually applied to simple problems of homogeneous nodes and lacking edge
weights, and there is a lack of discussion on dealing with more interesting problems
featuring nodes of different types and edge weights. Our case study on applying GNN
models to a power grid task is therefore useful beyond the immediate task. By compar-
ing five different approaches, we have shown that incorporating more problem-specific
knowledge than just a graph structure into the model results in better performance. At
the same time, our experiments indicate that the simplest approach can already give

99



6 Heterogeneous Nodes

good results. We therefore give practitioners a valuable starting point to their own
experiments to apply GNNs to an ever larger class of problems.

We have shown that a GNN model can be trained offline on power grid optimiza-
tion results. As an approximator, it performs four orders of magnitude faster than the
ACOPF solver and 10× faster than the DCOPF approximator. Using it to warm-start
the ACOPF solver allows us to dispense with the currently-used linear approximations
and accelerates ACOPF computation by a factor of 3.8× while guaranteeing feasible
solutions. Contrary to a vanilla ACOPF, it is feasible to deploy in short-time control
scenarios.

However, these results should not be understood as more than a first proof-of-concept:
(a) Deployed optimizers are more complex and problem-specific. (b) We rely on synthetic
data, since actual grid data is not publicly accessible. (c) Deploying these solutions
into existing power grid infrastructure is a gigantic task both from an engineering and
organizational perspective.

Nonetheless, wide-spread adoption of such a system could save billions of dollars per
year (Cain et al. 2012), and reduce emissions in the order of a hundred MtCO2-eq./year.

100



7 Conclusion & Outlook

In this chapter, we draw conclusions from the preceding chapters. We first summarize the
work we have presented previously (Section 7.1), presenting the main conclusions from
each of the previous chapters. In Section 7.2, we draw three main conclusions from this
thesis as a whole: We recommend modelling problems as graphs, how to approach a new
graph task, and combining GNN models and classical models for critical infrastructure
tasks. Lastly, in Section 7.3, we look to the future, recommend further work, and note
that aversions to the simple graph paradigm are already spreading throughout the GNN
community.

7.1 Summary

Within this thesis, we have seen how GNN models can be applied to tasks that defy stan-
dard ML approaches, allowing us to learn on problems that are most easily structured
as graphs.

• In Chapter 1, we outlined both the need for GNN models and the shortcomings
of current models.

• In Chapter 2, we provided the reader with the necessary background. This in-
cluded how to represent graphs (Section 2.2), the necessary spectral graph theory
which many methods rely on to apply the concept of convolution to graphs (Sec-
tion 2.3), how to formulate graph problems (Section 2.4), and finally a number
of GNN methods (Section 2.5). The latter include recurrent graph networks, and
spectral and spatial graph networks. We also introduced theoretical analysis of
GNN models (Section 2.5.3.6) and special computational considerations necessary
for implementing GNN models (Section 2.5.4).

• In Chapter 3, we compared a large number of the GNN models from Section 2.5
and their tweaks on simple graphs, i.e. those with only node features and feature-
less connections between nodes. We evaluated our research questions on three
semi-supervised node classification tasks and five graph classification tasks. We
drew several conclusions: GNN models show a large variability in their results.
GCN layers show good performance on a large number of datasets, which makes
them a good starting point for constructing an initial model. Lastly, GNN models
do not yet profit from larger depth.

• In Chapter 4, we showed the first departure from the restrictions of simple graphs:
We introduced a pooling layer which modifies graph topology, allowing further

101



7 Conclusion & Outlook

layers to act on groups of nodes instead of single nodes. We showed that EdgePool,
a local and hard pooling layer, outperforms other pooling methods and can be easily
integrated in both graph- and node-level prediction problems. We also showed that
it carries a 50% computational time penalty, but that it improved memory usage
on graphs.

• In Chapter 5, we explored the task of traffic prediction on highways. Here, we
departed from simple graphs in yet another manner by introducing simple edge
features. We showed that representing a traffic scene as a graph and applying GNN
models allows for powerful and expressive models to be applied while keeping model
complexity limited. We showed how the changes we introduced into two GNN
models improve prediction quality, with the best model reducing prediction error
by 30%. We also evaluated construction methods for the scene representation, and
showed how to make the model more interpretable.

• In Chapter 6, we applied GNN models to the far more complex problem of power
grid optimization. By modelling a power grid as a graph—and thereby departing
from the simple graph assumption by having both complex edge features and
heterogeneous nodes—we were able to predict the output of a classical optimization
algorithm. This model produced results four orders of magnitude faster than the
original solver. And by using the model’s output to warm-start the optimization
algorithm, we improved the latter’s runtime by a factor of 3.8× while keeping the
optimizer’s guarantees for a feasible solution. This is crucial for deploying such
techniques to real-life power grids.

• Lastly, in Chapter 7, we summarize this thesis, draw three main conclusions
from our experiments, and close with an outlook based on averting the simple
graph paradigm.

7.2 Conclusion

In Chapter 1, we motivated this thesis with the observation that most publications
of GNN models concentrate on the case of simple graphs, i.e. those with fixed graph
topology and only node features. Arguing that this was a very limited set of tasks, we
set out to explore different tasks in which the simple graph assumptions would not hold.

Modelling the world using graphs is a powerful and well-applicable technique, and
we have easily found three example tasks in which the simple graph assumptions do
not hold. Changing graph topology as a general task and both traffic prediction and
power grid control as applications each violate the simple graph assumptions normally
underlying GNN models, but in each of these tasks these additions are necessary for a
good performance. The ease with which we have found such problems is proof they are
everywhere, and we accordingly need to find guidelines for designing models for such
tasks.

No single work can produce guidelines that apply to every such task. Nonetheless, we
feel we are able to draw several conclusions that are generally applicable.

102



7.2 Conclusion

7.2.1 Modelling Tasks as Graphs is Powerful

In this thesis, we have seen a large number of tasks which can be modelled well by using
a graph. These tasks range from citation networks, recommender systems, molecule
attribute prediction, and traffic participant prediction to control of a power transmission
grid. In each of these, transforming the samples into a graph allowed applying similar
models. When looking at algorithmic problems, “it is amazing how often messy applied
problems have a simple description and solution in terms of classical graph properties.”
(Skiena 2008, p. 146). The same applies to messy applied problems in ML—transforming
them into a suitable graph representation simplifies ML models and provides a useful
structure for engineers to think about.

That is not to say a graph approach is always well-suited. Indeed, on most of the
tasks on which today’s ML algorithms are deployed, they are unneeded. On video,
image, time-series, or simple vector tasks, there exists a spatial and fixed-grid structure
and using GNN models would mean giving up structural information and having to deal
with the computational inefficiencies. Yet, environments less structured than image or
time-series data will profit from graph modelling.

7.2.2 Recommendations for Exploring New Problems

Building architectures for a new task is always a challenge. In areas like image or text
processing, the domain is generally well-understood and tasks share a certain common
structure, which allows engineers to apply well-known and tested models. In contrast,
tasks that are modelled as graphs are far more diverse, with their structure, attributes,
and the tasks itself varying significantly between problems. This thesis alone has explored
tasks that differ for example in which components are labelled, in graph attributes and
topology, in the complexity of the prediction, and in the output type.

Nevertheless, we can point to several observations we have made within this thesis as
good starting points for work on any tasks:

• The GCN layer is an excellent baseline layer, since it performs well on many tasks.

• Contrary to other deep learning models, current GNN models suffer when intro-
ducing too much depth. Thus, depth should be carefully controlled.

• Care should be taken to model the task as close as possible. Introducing edge
feature, for example, often improves performance significantly. This might require
adaptations to the models used.

• A simple model applied to a task provides an excellent baseline, even in the face
of heterogeneous nodes.

In summary, these observations suggest to use graph data but to start with the simplest
models possible. The improvements mostly stem from better modelling the input data
as a graph rather than far more complex models.

103



7 Conclusion & Outlook

7.2.3 Building ML Models for Critical Infrastructure

Aside from the modelling aspects of Chapter 6, that task also showed us a way to
integrate ML models into highly critical infrastructure such as high-voltage power trans-
mission grids: Not by replacing existing algorithms but by supporting them.

The GNN model produces solutions to the power grid scenarios four orders of mag-
nitude faster than the ACOPF solver. Yet, it cannot be relied on to always produce
feasible solutions. This is particularly critical for anomalous situations, since they are
not likely to be found in training data. Yet, anomalous situations are exactly the critical
situations in which operation margins are thin and blackouts or brownouts loom. These
are also the scenarios in which ACOPF optimizers cannot be used because they are too
slow.

However, we have shown that combining these two produces a system that is both
faster and as robust as before: The GNN model produces a starting point for the ACOPF
solver and does so in negligible runtime. The ACOPF solver, accelerated by the initial
state, can solve the situation far faster while still guaranteeing feasibility. Indeed, we
believe that both more engineering on the ACOPF solver to improve performance from
warm-started starting points and on the GNN model to produce warm-starting points
better suited for the ACOPF solver will increase the speed-up even more. The advantage
of a solution guaranteed to be feasible remains.

7.3 Outlook

As this thesis has argued, we believe the concentration on simple GNN models based
benchmarks of simple graphs to lead to less applicability to real-world tasks. Accordingly,
we believe there is a case to be made for more complex benchmarks and tasks. Luckily,
the recent Open Graph Benchmark datasets (Hu et al. 2021) are a significant step into
this direction, having both larger graph sizes and including graphs with edge features.

Of course, neither these graphs nor the tasks explored in this thesis are the end-all
model that can be applied to all graphs. Particularly global features and more complex
topologies such as multi-graphs are an interesting expansion from the simple graph
model, and research in these has also accelerated.

From a more task-specific point of view, Kelly et al. (2020) have recently created a
series of competitions to control power grids, concentrating on reinforcement learning
algorithms. We find it heartening to see transmission grid operators involved in this
field, since the interest and inclusion of infrastructure operators is the best approach to,
at some point, deploy ML models on such critical infrastructure.

In summary, we believe the modelling of tasks using graphs to be a powerful tool
well-suited to many problems. We look forward to future developments in this field and
to the deployment of such models on real-world tasks.

104



Publications

First-Author Publications

Frederik Diehl (2019c). “Warm-Starting AC Optimal Power Flow with Graph Neural Networks”.
In: Climate Change Workshop at the 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019)

Frederik Diehl (2019a). “Applying Graph Neural Networks on Heterogeneous Nodes and Edge
Features”. In: Graph Representation Learning Workshop at the 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019)

Frederik Diehl, Thomas Brunner, et al. (2019a). “Graph neural networks for modelling traffic
participant interaction”. In: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE

Frederik Diehl (May 2019b). “Edge Contraction Pooling for Graph Neural Networks”. In:
arXiv:1905.10990 [cs, stat]. arXiv: 1905.10990

Frederik Diehl, Thomas Brunner, et al. (2019b). “Towards graph pooling by edge contraction”.
In: ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data

Frederik Diehl and Alois Knoll (2019). “Tree Memory Networks for Sequence Processing”. In:
International Conference on Artificial Neural Networks. Springer, pp. 431–443

Further Publications

Thomas Brunner, Frederik Diehl, Michael Truong Le, et al. (2019a). “Guessing smart: Biased
sampling for efficient black-box adversarial attacks”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 4958–4966

Thomas Brunner, Frederik Diehl, and Alois Knoll (2019). “Copy and paste: A simple but
effective initialization method for black-box adversarial attacks”. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops

Thomas Brunner, Frederik Diehl, Michael Truong Le, et al. (2019b). “Leveraging Semantic
Embeddings for Safety-Critical Applications”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops

Wieland Brendel et al. (2020). “Adversarial vision challenge”. In: The NeurIPS’18 Competi-
tion. Springer, pp. 129–153

Michael Truong Le et al. (2018). “Uncertainty Estimation for Deep Neural Object Detectors
in Safety-Critical Applications”. In: 21st IEEE International Conference on Intelligent Trans-
portation Systems. IEEE, pp. 3873–3878

105



7 Conclusion & Outlook

Chih-Hong Cheng et al. (2018). “Neural networks for safety-critical applications—Challenges,
experiments and perspectives”. In: Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), 2018. IEEE, pp. 1005–1006

David Lenz et al. (2017b). “Deep neural networks for Markovian interactive scene prediction
in highway scenarios”. In: Intelligent Vehicles Symposium (IV), 2017 IEEE. IEEE, pp. 685–692

Gereon Hinz, Martin Büchel, et al. (2017). “Designing a far-reaching view for highway traffic
scenarios with 5G-based intelligent infrastructure”. In: 8. Tagung Fahrerassistenz. Lehrstuhl
für Fahrzeugtechnik mit TÜV SÜD Akademie. München

106



Bibliography

Adebayo, Julius, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been
Kim (2018). “Sanity checks for saliency maps”. In: Advances in Neural Information
Processing Systems.

Battaglia, Peter W., Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vini-
cius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam San-
toro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer,
George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris
Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals,
Yujia Li, and Razvan Pascanu (June 4, 2018). “Relational Inductive Biases, Deep
Learning, and Graph Networks”. In: arXiv: 1806.01261 [cs, stat].

Bienstock, Daniel and Abhinav Verma (Dec. 22, 2015). “Strong NP-hardness of AC
power flows feasibility”. In: arXiv:1512.07315 [math]. arXiv: 1512.07315.

Birchfield, Adam B., Ti Xu, Komal Shetye, and Thomas Overbye (Jan. 3, 2018). “Build-
ing Synthetic Power Transmission Networks of Many Voltage Levels, Spanning Mul-
tiple Areas”. In: Proceedings of the 51st Hawaii International Conference on System
Sciences. isbn: 978-0-9981331-1-9. doi: 10.24251/HICSS.2018.349.

Borgwardt, Karsten M., Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan,
Alex J. Smola, and Hans-Peter Kriegel (June 1, 2005). “Protein Function Prediction
via Graph Kernels”. In: Bioinformatics 21 (suppl 1), pp. i47–i56. issn: 1367-4803.
doi: 10.1093/bioinformatics/bti1007.

Brendel, Wieland, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi, Sharada
P Mohanty, Florian Laurent, Marcel Salathé, Matthias Bethge, Yaodong Yu, et al.
(2020). “Adversarial vision challenge”. In: The NeurIPS’18 Competition. Springer,
pp. 129–153.

Bronstein, Michael M., Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst
(July 2017). “Geometric Deep Learning: Going beyond Euclidean Data”. In: IEEE
Signal Processing Magazine 34.4, pp. 18–42. issn: 1053-5888. doi: 10.1109/MSP.
2017.2693418. arXiv: 1611.08097.

Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun (Dec. 20, 2013). “Spec-
tral Networks and Locally Connected Networks on Graphs”. In: arXiv: 1312.6203
[cs].

Brunner, Thomas, Frederik Diehl, and Alois Knoll (2019). “Copy and paste: A simple
but effective initialization method for black-box adversarial attacks”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

Brunner, Thomas, Frederik Diehl, Michael Truong Le, and Alois Knoll (2019a). “Guess-
ing smart: Biased sampling for efficient black-box adversarial attacks”. In: Proceed-

107

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1512.07315
https://doi.org/10.24251/HICSS.2018.349
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203


Bibliography

ings of the IEEE/CVF International Conference on Computer Vision, pp. 4958–
4966.

Brunner, Thomas, Frederik Diehl, Michael Truong Le, and Alois Knoll (2019b). “Lever-
aging Semantic Embeddings for Safety-Critical Applications”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

Cain, Mary B., Richard P. O’Neill, and Anya Castillo (2012). “History of Optimal Power
Flow and Formulations”. In: Federal Energy Regulatory Commission 1 (2012).

Cangea, Cătălina, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò
(Nov. 3, 2018). “Towards Sparse Hierarchical Graph Classifiers”. In: arXiv: 1811.
01287 [cs, stat].

Carpentier, J (1962). “Contribution to the economic dispatch problem”. In: Bulletin de
la Societe Francoise des Electriciens 3.8, pp. 431–447.

Chen, Ricky T. Q., Yulia Rubanova, Jesse Bettencourt, and David Duvenaud (Dec.
2019). “Neural Ordinary Differential Equations”. In: arXiv:1806.07366 [cs, stat].
arXiv: 1806.07366.

Cheng, Chih-Hong, Frederik Diehl, Gereon Hinz, Yassine Hamza, Georg Nührenberg,
Markus Rickert, Harald Ruess, and Michael Truong Le (2018). “Neural networks
for safety-critical applications—Challenges, experiments and perspectives”. In: De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), 2018. IEEE,
pp. 1005–1006.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio (Sept. 2014). “Learning Phrase Rep-
resentations using RNN Encoder-Decoder for Statistical Machine Translation”. In:
arXiv:1406.1078 [cs, stat]. arXiv: 1406.1078.

Coffrin, Carleton, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles Lubin (June
2018). “PowerModels.jl: An Open-Source Framework for Exploring Power Flow For-
mulations”. In: 2018 Power Systems Computation Conference (PSCC). doi: 10.

23919/PSCC.2018.8442948.
Dai, Hanjun, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song (July 2018). “Learning

Steady-States of Iterative Algorithms over Graphs”. en. In: International Conference
on Machine Learning. ISSN: 2640-3498. PMLR, pp. 1106–1114.

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst (June 30, 2016). “Con-
volutional Neural Networks on Graphs with Fast Localized Spectral Filtering”. In:
arXiv: 1606.09375 [cs, stat].

Diehl, Frederik (2019a). “Applying Graph Neural Networks on Heterogeneous Nodes and
Edge Features”. In: Graph Representation Learning Workshop at the 33rd Confer-
ence on Neural Information Processing Systems (NeurIPS 2019).

— (May 2019b). “Edge Contraction Pooling for Graph Neural Networks”. In: arXiv:1905.10990
[cs, stat]. arXiv: 1905.10990.

— (2019c). “Warm-Starting AC Optimal Power Flow with Graph Neural Networks”. In:
Climate Change Workshop at the 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019).

108

https://arxiv.org/abs/1811.01287
https://arxiv.org/abs/1811.01287
https://doi.org/10.23919/PSCC.2018.8442948
https://doi.org/10.23919/PSCC.2018.8442948
https://arxiv.org/abs/1606.09375


Bibliography

Diehl, Frederik, Thomas Brunner, Michael Truong Le, and Alois Knoll (2019a). “Graph
neural networks for modelling traffic participant interaction”. In: 2019 IEEE Intel-
ligent Vehicles Symposium (IV). IEEE.

— (2019b). “Towards graph pooling by edge contraction”. In: ICML 2019 Workshop
on Learning and Reasoning with Graph-Structured Data.

Diehl, Frederik and Alois Knoll (2019). “Tree Memory Networks for Sequence Process-
ing”. In: International Conference on Artificial Neural Networks. Springer, pp. 431–
443.

Dobson, Paul D and Andrew J Doig (2003). “Distinguishing enzyme structures from
non-enzymes without alignments”. In: Journal of molecular biology 330.4, pp. 771–
783.

Federal Highway Administration (FHWA) (2005). US highway 80 dataset. Tech. rep.
FHWA-HRT-06-137.

Fey, Matthias and Jan Eric Lenssen (Mar. 6, 2019). “Fast Graph Representation Learning
with PyTorch Geometric”. In: arXiv: 1903.02428 [cs, stat].

Frank, Stephen and Steffen Rebennack (Aug. 11, 2016). “An introduction to optimal
power flow: Theory, formulation, and examples”. In: IIE Transactions 48.12 (2016).
issn: 10.1080/0740817X.2016.1189626.

Gao, Hongyang and Shuiwang Ji (2019). “Graph U-Net”. In: International Conference
on Machine Learning. PMLR.

Giles, C Lee, Kurt D Bollacker, and Steve Lawrence (1998). “CiteSeer: An automatic
citation indexing system”. In: Proceedings of the third ACM conference on Digital
libraries, pp. 89–98.

Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl (Apr. 4, 2017). “Neural Message Passing for Quantum Chemistry”. In: arXiv:
1704.01212 [cs].

Gori, Maria Cristina, Gabriele Monfardini, and Franco Scarselli (2005). “A New Model
for Learning in Graph Domains”. In: Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005. International Joint Conference on Neural
Networks 2005. Vol. 2. Montreal, Que., Canada: IEEE, pp. 729–734. isbn: 978-0-
7803-9048-5. doi: 10.1109/IJCNN.2005.1555942.

Guha, Neel, Zhecheng Wang, and Arun Majumdar (2019). “Machine Learning for AC
Optimal Power Flow”. In: arXiv:1910.08842 [cs.LG]. arXiv: 1910.08842.

Hamilton, William L., Rex Ying, and Jure Leskovec (June 7, 2017). “Inductive Repre-
sentation Learning on Large Graphs”. In: arXiv: 1706.02216 [cs, stat].

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Deep Residual
Learning for Image Recognition”. In: Arxiv.Org 7.3. arXiv: 1512.03385 ISBN: 978-
1-4673-6964-0, pp. 171–180. issn: 1664-1078. doi: 10.3389/fpsyg.2013.00124.

Henaff, Mikael, Joan Bruna, and Yann LeCun (June 2015). “Deep Convolutional Net-
works on Graph-Structured Data”. In: arXiv:1506.05163 [cs]. arXiv: 1506.05163.

Hinz, Gereon, Martin Büchel, Frederik Diehl, Guang Chen, Annkathrin Kraemmer, Juri
Kuhn, Venkatnarayanan Lakshminarasimhan, Malte Schellmann, Uwe Baumgarten,
and Alois Knoll (2017). “Designing a far-reaching view for highway traffic scenarios

109

https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1704.01212
https://doi.org/10.1109/IJCNN.2005.1555942
https://arxiv.org/abs/1910.08842
https://arxiv.org/abs/1706.02216
https://doi.org/10.3389/fpsyg.2013.00124


Bibliography

with 5G-based intelligent infrastructure”. In: 8. Tagung Fahrerassistenz. Lehrstuhl
für Fahrzeugtechnik mit TÜV SÜD Akademie. München.

Hinz, Gereon, Martin Buechel, Frederik Diehl, Guang Chen, Annkathrin Krämmer, Juri
Kuhn, Venkatnarayanan Lakshminarasimhan, Malte Schellmann, Uwe Baumgarten,
and Alois Knoll (2017). “Designing a far-reaching view for highway traffic scenarios
with 5G-based intelligent infrastructure”. In: 8. Tagung Fahrerassistenz, p. 8.

Hu, Weihua, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec (Feb. 2021). “Open Graph Benchmark: Datasets
for Machine Learning on Graphs”. In: arXiv:2005.00687 [cs, stat]. arXiv: 2005.00687.

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: arXiv:1502.03167,
pp. 1–11. issn: 0717-6163. doi: 10.1007/s13398-014-0173-7.2. pmid: 15003161.

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change.

Kelly, Adrian, Aidan O’Sullivan, Patrick de Mars, and Antoine Marot (Mar. 2020).
“Reinforcement Learning for Electricity Network Operation”. In: arXiv:2003.07339
[cs, eess, stat]. arXiv: 2003.07339.

Kersting, Kristian, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neu-
mann (2020). Benchmark Data Sets for Graph Kernels.

Kim, Sunghwan, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang
Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, et al. (2021). “PubChem in
2021: new data content and improved web interfaces”. In: Nucleic Acids Research
49.D1, pp. D1388–D1395.

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv: 1412.6980.

Kipf, Thomas N. and Max Welling (Sept. 9, 2016). “Semi-Supervised Classification with
Graph Convolutional Networks”. In: arXiv: 1609.02907 [cs, stat].

Krajewski, Robert, Julian Bock, Laurent Kloeker, and Lutz Eckstein (2018). “The highD
Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways
for Validation of Highly Automated Driving Systems”. In: 2018 IEEE 21st Interna-
tional Conference on Intelligent Transportation Systems (ITSC).

Krämmer, Annkathrin, Christoph Schöller, Dhiraj Gulati, and Alois Knoll (2019). “Prov-
identia - a large scale sensing system for the assistance of autonomous vehicles”. In:
arXiv preprint arXiv:1906.06789.

Kuefler, Alex, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer (June 2017).
“Imitating driver behavior with generative adversarial networks”. In: 2017 IEEE
Intelligent Vehicles Symposium (IV). 2017 IEEE Intelligent Vehicles Symposium
(IV), pp. 204–211. doi: 10.1109/IVS.2017.7995721.

Kurtzer, Gregory M., Vanessa Sochat, and Michael W. Bauer (2017). “Singularity: Sci-
entific Containers for Mobility of Compute”. In: Plos One 12.5, e0177459. issn:
1932-6203. doi: 10.1371/journal.pone.0177459.

Lee, Junhyun, Inyeop Lee, and Jaewoo Kang (Apr. 17, 2019). “Self-Attention Graph
Pooling”. In: arXiv: 1904.08082 [cs, stat].

110

https://doi.org/10.1007/s13398-014-0173-7.2
15003161
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://doi.org/10.1109/IVS.2017.7995721
https://doi.org/10.1371/journal.pone.0177459
https://arxiv.org/abs/1904.08082


Bibliography

Lenz, David, Frederik Diehl, Michael Truong Le, and Alois Knoll (June 2017a). “Deep
neural networks for Markovian interactive scene prediction in highway scenarios”.
In: 2017 IEEE Intelligent Vehicles Symposium (IV). 2017 IEEE Intelligent Vehicles
Symposium (IV), pp. 685–692. doi: 10.1109/IVS.2017.7995797.

— (2017b). “Deep neural networks for Markovian interactive scene prediction in high-
way scenarios”. In: Intelligent Vehicles Symposium (IV), 2017 IEEE. IEEE, pp. 685–
692.

Levie, Ron, Federico Monti, Xavier Bresson, and Michael M. Bronstein (May 22, 2017).
“CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spec-
tral Filters”. In: arXiv: 1705.07664 [cs].

Li, Ruoyu, Sheng Wang, Feiyun Zhu, and Junzhou Huang (Apr. 2018). “Adaptive Graph
Convolutional Neural Networks”. en. In: Proceedings of the AAAI Conference on
Artificial Intelligence 32.1. Number: 1. issn: 2374-3468.

Li, Yujia, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel (Sept. 2017). “Gated
Graph Sequence Neural Networks”. In: arXiv:1511.05493 [cs, stat]. arXiv: 1511.05493.

Lim, Lek-Heng (Aug. 2020). “Hodge Laplacians on Graphs”. en. In: SIAM Review. Pub-
lisher: Society for Industrial and Applied Mathematics. doi: 10.1137/18M1223101.

Lucic, Mario, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet (Oct.
2018). “Are GANs Created Equal? A Large-Scale Study”. In: arXiv:1711.10337 [cs,
stat]. arXiv: 1711.10337.

McCallum, Andrew Kachites, Kamal Nigam, Jason Rennie, and Kristie Seymore (July 1,
2000). “Automating the Construction of Internet Portals with Machine Learning”.
In: Information Retrieval 3.2, pp. 127–163. issn: 1573-7659. doi: 10 . 1023 / A :

1009953814988.
Morris, Christopher, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe (Oct. 4, 2018). “Weisfeiler and Leman
Go Neural: Higher-Order Graph Neural Networks”. In: arXiv: 1810.02244 [cs,

stat].
Morton, Jeremy, Tim A Wheeler, and Mykel J Kochenderfer (2016). “Analysis of Re-

current Neural Networks for Probabilistic Modeling of Driver Behavior”. In: IEEE
Transactions on Intelligent Transportation Systems, pp. 1–10.

NT, Hoang and Takanori Maehara (May 2019). “Revisiting Graph Neural Networks:
All We Have is Low-Pass Filters”. In: arXiv:1905.09550 [cs, math, stat]. arXiv:
1905.09550.

Olah, Chris, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Kather-
ine Ye, and Alexander Mordvintsev (2018). “The Building Blocks of Interpretabil-
ity”. In: Distill. https://distill.pub/2018/building-blocks. doi: 10.23915/distill.
00010.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer (2017). “Au-
tomatic Differentiation in PyTorch”. In: NeurIPS Autodiff Workshop.

Pineau, Joelle (Dec. 2018). Reproducible, Reusable, and Robust Reinforcement Learning.
Montreal, Quebec, Canada.

111

https://doi.org/10.1109/IVS.2017.7995797
https://arxiv.org/abs/1705.07664
https://doi.org/10.1137/18M1223101
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1023/A:1009953814988
https://arxiv.org/abs/1810.02244
https://arxiv.org/abs/1810.02244
https://doi.org/10.23915/distill.00010
https://doi.org/10.23915/distill.00010


Bibliography

Sanchez-Gonzalez, Alvaro, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,
and Peter W. Battaglia (Sept. 2020). “Learning to Simulate Complex Physics with
Graph Networks”. In: arXiv:2002.09405 [physics, stat]. arXiv: 2002.09405.

Scarselli, Franco, Maria Cristina. Gori, Ah Chung Tsoi, M. Hagenbuchner, and Gabriele
Monfardini (Jan. 2009). “The Graph Neural Network Model”. In: IEEE Transactions
on Neural Networks 20.1, pp. 61–80. issn: 1045-9227, 1941-0093. doi: 10.1109/TNN.
2008.2005605.

Schöller, Christoph, Vincent Aravantinos, Florian Lay, and Alois Knoll (2020). “What
the constant velocity model can teach us about pedestrian motion prediction”. In:
IEEE Robotics and Automation Letters 5.2, pp. 1696–1703.

Selvaraju, Ramprasaath R, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell,
Devi Parikh, and Dhruv Batra (2016). “Grad-CAM: Why did you say that?” In:
arXiv preprint arXiv:1611.07450.

Sen, Prithviraj, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad (Sept. 6, 2008). “Collective Classification in Network Data”. In: AI Mag-
azine 29.3, pp. 93–93. issn: 2371-9621. doi: 10.1609/aimag.v29i3.2157.

Shchur, Oleksandr, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann
(Nov. 14, 2018). “Pitfalls of Graph Neural Network Evaluation”. In: arXiv: 1811.
05868 [cs, stat].

Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman (Dec. 2013). “Deep Inside
Convolutional Networks: Visualising Image Classification Models and Saliency Maps”.
In: arXiv:1312.6034 [cs].

Skiena, Steven S. (2008). The Algorithm Design Manual. London: Springer. doi: 10.
1007/978-1-84800-070-4.

Smilkov, Daniel, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg
(2017). “Smoothgrad: removing noise by adding noise”. In: arXiv preprint arXiv:1706.03825.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov (2014). “Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting”. In: Journal of Machine Learning Research 15, pp. 1929–1958. issn: 15337928.
doi: 10.1214/12-AOS1000. arXiv: 1102.4807.

Sundararajan, Mukund, Ankur Taly, and Qiqi Yan (2017). “Axiomatic attribution for
deep networks”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, pp. 3319–3328.

Telgarsky, Matus (June 2016). “Benefits of Depth in Neural Networks”. In: 29th An-
nual Conference on Learning Theory. Ed. by Vitaly Feldman, Alexander Rakhlin,
and Ohad Shamir. Vol. 49. Proceedings of Machine Learning Research. Columbia
University, New York, New York, USA: PMLR, pp. 1517–1539.

Thiemann, Christian, Martin Treiber, and Arne Kesting (2008). “Estimating Accelera-
tion and Lane-Changing Dynamics Based on NGSIM Trajectory Data”. In: Trans-
portation Research Record: Journal of the Transportation Research Board 2088,
pp. 90–101.

Treiber, Martin (2000). “Congested traffic states in empirical observations and micro-
scopic simulations”. In: Physical Review E 62.2, pp. 1805–1824. doi: 10.1103/

PhysRevE.62.1805.

112

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1609/aimag.v29i3.2157
https://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1811.05868
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1214/12-AOS1000
https://arxiv.org/abs/1102.4807
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1103/PhysRevE.62.1805


Bibliography

Truong Le, Michael, Frederik Diehl, Thomas Brunner, and Alois Knoll (2018). “Un-
certainty Estimation for Deep Neural Object Detectors in Safety-Critical Applica-
tions”. In: 21st IEEE International Conference on Intelligent Transportation Sys-
tems. IEEE, pp. 3873–3878.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio (Oct. 2017). “Graph Attention Networks”. en. In.

Wächter, Andreas and Lorenz T Biegler (2006). “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming”. In: Math-
ematical programming 106.1, pp. 25–57.

Wale, Nikil and George Karypis (Dec. 2006). “Comparison of Descriptor Spaces for
Chemical Compound Retrieval and Classification”. In: Sixth International Confer-
ence on Data Mining (ICDM’06). Sixth International Conference on Data Mining
(ICDM’06), pp. 678–689. doi: 10.1109/ICDM.2006.39.

Weisfeiler, Boris and Andrei Leman (1968). “The reduction of a graph to canonical
form and the algebra which appears therein”. In: NTI, Series 2.9. (Translation from
Russian by Grigory Ryabov), pp. 12–16.

Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S.
Yu (Jan. 2, 2019). “A Comprehensive Survey on Graph Neural Networks”. In: arXiv:
1901.00596 [cs, stat].

Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka (Oct. 1, 2018). “How
Powerful Are Graph Neural Networks?” In: arXiv: 1810.00826 [cs, stat].

Xu, Keyulu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,
and Stefanie Jegelka (July 3, 2018). “Representation Learning on Graphs with Jump-
ing Knowledge Networks”. In: International Conference on Machine Learning. In-
ternational Conference on Machine Learning, pp. 5453–5462.

Yanardag, Pinar and S. V. N. Vishwanathan (Oct. 8, 2015). “Deep Graph Kernels”.
In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, pp. 1365–1374. isbn: 978-1-4503-3664-2. doi:
10.1145/2783258.2783417.

Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and
Jure Leskovec (July 2018). “Graph Convolutional Neural Networks for Web-Scale
Recommender Systems”. In: ACM, pp. 974–983. isbn: 978-1-4503-5552-0. doi: 10.
1145/3219819.3219890.

Ying, Rex, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and
Jure Leskovec (June 22, 2018). “Hierarchical Graph Representation Learning with
Differentiable Pooling”. In: arXiv: 1806.08804 [cs, stat].

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R.
Salakhutdinov, and Alexander J. Smola (2017). “Deep Sets”. In: Advances in Neural
Information Processing Systems, pp. 3391–3401.

Zhang, Muhan and Yixin Chen (2018). “Link Prediction Based on Graph Neural Net-
works”. In: Advances in Neural Information Processing Systems 31. Ed. by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran
Associates, Inc., pp. 5167–5177.

113

https://doi.org/10.1109/ICDM.2006.39
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1810.00826
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://arxiv.org/abs/1806.08804


Bibliography

Zhang, Muhan, Zhicheng Cui, Marion Neumann, and Yixin Chen (2018). “An End-to-
End Deep Learning Architecture for Graph Classification”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 32. 1.

114


	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Neural Networks on Fixed Data Structures
	1.2 Graph Neural Networks
	1.3 Beyond Simple Graphs
	1.4 Thesis Outline and Contributions

	2 Background
	2.1 Definitions
	2.2 Representing a Graph
	2.3 Spectral Graph Theory
	2.3.1 Scalar and Tangent Vector Fields on Graphs
	2.3.2 Differential and Divergence
	2.3.3 Laplacian Eigenfunctions
	2.3.4 Fourier Analysis of the Graph Laplacian
	2.3.5 Convolutions on Graphs

	2.4 Learning Tasks on Graphs
	2.4.1 Node-Level Tasks
	2.4.2 Edge-Level Tasks
	2.4.3 Graph-Level Tasks
	2.4.4 Hybrid and Other Cases

	2.5 Graph Neural Networks Paradigms
	2.5.1 Recurrent Graph Neural Networks
	2.5.1.1 Recurrent Graph MLP
	2.5.1.2 Gated Graph Sequence Neural Networks
	2.5.1.3 Stochastic Steady-State Embedding
	2.5.1.4 Conclusion

	2.5.2 Spectral Graph Neural Networks
	2.5.2.1 Spectral Networks
	2.5.2.2 ChebNet
	2.5.2.3 CayleyNet
	2.5.2.4 Adaptive Graph Convolutional Networks
	2.5.2.5 Conclusion

	2.5.3 Spatial Graph Neural Networks
	2.5.3.1 GCN
	2.5.3.2 MPNN
	2.5.3.3 GraphSAGE
	2.5.3.4 GAT
	2.5.3.5 Graph Networks
	2.5.3.6 WL-Graph-Isomorphy and the GIN Model
	2.5.3.7 Conclusion

	2.5.4 Computational Implementation

	2.6 Conclusion

	3 Simple Graphs
	3.1 The Datasets
	3.1.1 Semi-Supervised Node Classification Datasets
	3.1.2 Supervised Graph Classification Datasets
	3.1.2.1 The proteins Dataset
	3.1.2.2 The nci1 Dataset
	3.1.2.3 The imdb Dataset
	3.1.2.4 The rdt-b and rdt-12k Datasets


	3.2 GNN Architecture
	3.2.1 Building Blocks
	3.2.2 Tweaks
	3.2.3 Baseline Model

	3.3 Experiments and Discussion
	3.3.1 Q1: How Useful is the Inclusion of Graph Information?
	3.3.2 Q2: How Reproducible Are GNN Models?
	3.3.3 Q3: How Do Different GNN Layers Perform?
	3.3.4 Q4: How Do We Encode Node Features?
	3.3.5 Q5: How Do We Global-Pool Graphs?
	3.3.6 Q6: How Do We Construct the Final Graph Output?
	3.3.7 Q7: How Deep should GNN models be?
	3.3.8 Q8: Which Tweaks Improve GNN Performance?
	3.3.9 Q9: Is it Helpful to Separate Processing and Propagation?

	3.4 Conclusion

	4 Modifying Graph Topology
	4.1 Motivation
	4.2 Other Pooling Methods
	4.2.1 DiffPool
	4.2.2 TopKPool
	4.2.3 SAGPool

	4.3 EdgePool
	4.3.1 Choosing Edges
	4.3.2 Computing New Node Features
	4.3.3 Integrating Edge Features
	4.3.4 Unpooling EdgePool
	4.3.5 Computational Performance

	4.4 Experiments and Discussion
	4.4.1 General Setup and Training
	4.4.2 Q1: Does EdgePool Outperform Alternative Pooling Approaches?
	4.4.3 Q2: Can EdgePool Be Integrated into Existing Architectures?
	4.4.4 Q3: Can EdgePool be Used For Node Classification?
	4.4.5 Q4: How Does EdgePool Impact Performance?

	4.5 Conclusion

	5 Edge Features
	5.1 Motivation
	5.2 Traffic Participant Prediction from a Graph
	5.2.1 Adapting GCN
	5.2.2 Adapting GAT
	5.2.3 Graph and Feature Construction

	5.3 Experiments
	5.3.1 Datasets
	5.3.2 Baselines
	5.3.3 Model Configuration
	5.3.4 Performance Measure
	5.3.5 Experimental Procedure

	5.4 Results and Discussion
	5.4.1 Q1: Which of Our Adaptations to GNN Are Necessary?
	5.4.2 Q2: How do We Construct an Interaction Graph?
	5.4.3 Q3: Does a Graph Model Increase Prediction Quality?
	5.4.4 Conclusion

	5.5 Inspecting GNNs for Traffic Prediction
	5.5.1 Creating Saliency Graphs
	5.5.1.1 Saliency Maps
	5.5.1.2 Computing Gradients
	5.5.1.3 Summarizing Feature-Wise Gradient
	5.5.1.4 Plotting the Saliency Graph

	5.5.2 Results and Discussion
	5.5.2.1 Influence of the Ego Vehicle
	5.5.2.2 The Effect of Edge Features
	5.5.2.3 Analyzing the Influence of Neighbours
	5.5.2.4 Saliencies for Specific Scenarios
	5.5.2.5 Interpreting a Complete Traffic Scene

	5.5.3 Conclusion

	5.6 Conclusion

	6 Heterogeneous Nodes
	6.1 Introduction
	6.1.1 Motivation
	6.1.2 Approach

	6.2 Simulating and Controlling Power Grids
	6.2.1 Power Grid Equations
	6.2.2 Power Flow
	6.2.3 Optimal Power Flow

	6.3 Methodology
	6.3.1 Modelling the Power Grid
	6.3.2 GNN Models for Power Grids
	6.3.2.1 Independent Model
	6.3.2.2 Heterogeneous Model
	6.3.2.3 Summarized Features Model
	6.3.2.4 Summarized Embeddings Model
	6.3.2.5 Separate Components Model

	6.3.3 Ensuring Feasibility

	6.4 Experiments
	6.4.1 Datasets and Experimental Setup
	6.4.2 Q1: Which of the Adapted GNN Models Performs Best?
	6.4.2.1 Experimental Setup
	6.4.2.2 Results and Discussion
	6.4.2.3 Conclusion

	6.4.3 Q2: Can an ACOPF Solver be Warm-Started by a GNN Model?
	6.4.3.1 Experimental Setup
	6.4.3.2 Results and Discussion
	6.4.3.3 Conclusion


	6.5 Conclusion

	7 Conclusion & Outlook
	7.1 Summary
	7.2 Conclusion
	7.2.1 Modelling Tasks as Graphs is Powerful
	7.2.2 Recommendations for Exploring New Problems
	7.2.3 Building ML Models for Critical Infrastructure

	7.3 Outlook

	Publications
	Bibliography

