
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Multifidelity Gaussian Processes for
Uncertainty Quantification

Martin Klapacz

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Multifidelity Gaussian Processes for
Uncertainty Quantification

Multifidelity Gauß Prozesse zur
Quantifizierung von Unsicherheit

Author: Martin Klapacz
Supervisor: Prof. Dr. Hans-Joachim Bungartz
Advisor: Kislaya Ravi, Dr. rer. nat. Tobias Neckel
Submission Date: 15.03.2021

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.03.2021 Martin Klapacz

Acknowledgments

I would like to express my sincere gratitude to my advisor Kislaya Ravi for his
continuous support of my thesis, for his patience, his assistance and knowledge.

Abstract

Forward uncertainty quantification is used to obtain useful insight of many physical
models. However, it is a challenge to get accurate results for a given amount of
computational resources, when dealing with complex models. There are different
methods to tackle such problems. In this work we combine two of such techniques
namely, polynomial chaos expansion and multi-fidelity to create an efficient method
to solve forward UQ problems. Firstly, we develop multi-fidelity Gaussian process
regression models which fuse information from the low-fidelity model, derivative
approximations of it and the parameter space. We also use a composite kernel which
further improves the regression results. Thereafter, those models request adaptively
new high-fidelity data points which improve the currently existing surrogate the best.
Finally, we perform polynomial chaos expansion on Gaussian process surrogates to
estimate the statistical moments of a quantity of interest. Combining the aforementioned
methods leads to an efficient approach for solving forward UQ problems. In this work,
we deal with only two level of fidelity. Our evaluation of the method shows considerable
savings of computational effort.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 2

2 Polynomial Chaos Expansion 5
2.1 Forward Uncertainty Quantification problems 5

2.1.1 Methods for Forward UQ . 5
2.2 Polynomial Chaos Expansion . 7

2.2.1 Orthogonal polynomials . 7
2.2.2 Coefficients . 10
2.2.3 Choice of multi-index set . 11
2.2.4 Statistical moments . 11

2.3 Sensitivity Analysis . 12

3 Gaussian Process Regresssion 14
3.1 Multivariate Gaussian distributions . 14

3.1.1 Marginalization . 15
3.1.2 Conditional distribution . 15

3.2 Gaussian Processes . 15
3.3 Inference . 16
3.4 Kernel algebra . 18
3.5 Hyperparameter Optimization . 18
3.6 Automatic Relevance Determination (ARD) 19

4 Multi-fidelity Gaussian Processes 21
4.1 Multifidelity . 21

4.1.1 Multifidelity Models . 21
4.1.2 Multifidelity Model Management Strategies 22

4.2 Autoregressive Schemes (AR1) . 23

v

Contents

4.3 Nonlinear autoregressive multi-fidelity GPs (NARGP) 24
4.3.1 Composite NARGP kernel . 25
4.3.2 NARGP workflow . 26

4.4 Multi-fidelity Data Fusion GPs (DFGP) 27
4.5 Data Fusion Gaussian processes with NARGP kernel and Adaptation . 31

4.5.1 Adaptation optimization . 31
4.6 Implementation . 34

4.6.1 MultifidelityDataFusion . 36
4.6.2 AbstractMFGF . 37
4.6.3 Models . 37
4.6.4 Augmentation Iterators . 38
4.6.5 Acquisition optimizers . 38
4.6.6 General polynomial chaos . 39

5 Results 40
5.1 Uncertainty development during Adaptation 40
5.2 Comparing Adaptation and random sampling 42
5.3 Comparison of different methods . 45
5.4 Uncertainty Quantification using multi-fidelity Gaussian processes . . . 51

5.4.1 2D problem setting . 54
5.4.2 3D problem setting . 55
5.4.3 4D problem setting . 55
5.4.4 Conclusion . 56

6 Conclusion 57
6.1 Future Works . 57

List of Figures 59

List of Tables 61

Bibliography 62

vi

1 Introduction

In many scientific research fields such as physical engineering and applied mathematics
we often encounter a recurring kind of problem. Our goal is to study the properties of
highly complex and stochastic systems. The insights obtained from these system are
used to design and implement new technologies. In uncertainty quantification (UQ) we
formalize this problem and calculate the statistical moments of such non-deterministic
systems [30, 32]. However, we are limited in terms of available computational resources.
Thus, UQ is a challenging problem that requires sophisticated methods to obtain
knowledge about the quantity of interest.

Analysing such complex systems requires us to design appropriate models. In such
problem settings we deal with trade-offs between precise but costly and cheap but
inaccurate models. Multi-fidelity methods can be deployed in such problem settings.
They fuse information obtained from cheap but inaccurate and accurate but costly
models to enhance accuracy of the results. While ordinary single-fidelity approaches
would use one of the available models for further treatment, more sophisticated multi-
fidelity models try to learn cross-correlations between all available data sources using
machine learning methods [18, 19, 20, 27]. In recent years multi-fidelity modelling has
gained a lot of attention, as it has been successfully applied to various data-driven
problems [11, 26, 28]. A detailed review of numerous aspects of multi-fidelity is
presented in [25]. Other multi-fidelity approaches from numerical analysis are for
example Richardson extrapolation [42], which takes different resolutions into account
and significantly improves the rate of convergence. Multiresolution methods [4] and
multiscale solvers deployed in computational physics [3] are used to numerically solve
PDEs and make use of multi-fidelity modelling, as well. In this work we will use
multi-fidelity modelling to solve forward UQ problems.

1.1 Motivation

Polynomial chaos expansion (PCE) is one way of performing UQ. It is an especially
efficient way to calculate the statistical moments for computational expensive functions
[30]. The number of function evaluation depends upon the complexity of the function
and the number of stochastic parameters. Our goal is to minimize the number of costly
evaluations and at the same time approximate the statistical moments accurately. One

1

1 Introduction

of the ways to achieve this is to adaptively choose the evaluation points [6, 9]. The
flowchart of the process is shown in figure 1.1a.

As described in the previous section, combining different fidelity models to reduce
the overall computational cost has garnered significant attention in recent times. We
can combine multi-fidelity and adaptation to efficiently perform polynomial chaos
expansion. Figure 1.1b shows the general workflow of the algorithm. The details of
this approach can be found in [23, 41]. The basic idea is to build a polynomial chaos
expansion using a range of low-fidelity models and then use a high-fidelity model
to determine and add the correction term. However, modelling highly non-linear
correction relations requires us to evaluate a comparatively high number of evaluation
points. Thus, we propose the use of Gaussian processes [29] to solve this issue.

Gaussian processes are stochastic processes where the posterior statistical moments
are calculated using Bayesian statistics. There are many methods to build multi-fidelity
Gaussian process (GP) regression models [27, 19, 18]. In this work we will build
multi-fidelity Gaussian process surrogates and then perform PCE on it. The workflow
of this approach is illustrated in figure 1.1c. Moreover, we will use a procedure in which
we choose the function evaluation points adaptively in order to use the computational
resources as efficiently as possible.

1.2 Outline

In the first part of this work we will introduce the basic theory, which is necessary for
the methods described and tested in this work and which are covered in the second
part. The last part illustrates test cases and performances of those methods.

Chapter 2 covers the theory behind polynomial chaos expansion. We will explain
what kind of problem it is applied to and how it works. In chapter 3 we will describe
Gaussian process regression. We will introduce Gaussian processes and go over to
inference and optimization. Chapter 4 covers the multi-fidelity methods of this work.
In the first section we introduce and formalize the idea behind multi-fidelity. In the
following sections we will revisit existing multi-fidelity methods such as AR1 [18],
NARGP [27] and Data Fusion GPs [20]. We start with AR1, as it is fundamental
for NARGP. Data Fusion GPs is an extension of NARGP and will be explained after
AR1 and NARGP. Next, we will introduce an own multi-fidelity model that combines
adaptation and the before mentioned multi-fidelity methods. Section 4.6 gives an
overview of the implementation of this work, which we used to obtain the results
of this approach. In chapter 5 we visually illustrate the effects of adaptation on the
model accuracy and compare it with randomly sampled training without adaptation.
Afterwards, we test the accuracy of multi-fidelity models using adaptation in more

2

1 Introduction

specific problem settings which are likely occur in real-world problems. Finally, we
perform PCE in combination with multi-fidelity modelling and compare it with direct
GPC.

3

1 Introduction

(a) Classical Approach (b) Multifidelity polynomial chaos expansion

figures/mggp_pce_flowchart .png

(c) Proposed method (Combining multifidelity GP and PCE)

Figure 1.1: Workflow depicting different approached to efficiently perform polynomial
chaos expansion

4

2 Polynomial Chaos Expansion

In real world applications we come across many physical systems where the parameters
are stochastic. This causes the output to be stochastic too. Approximating the statistical
moments of the output uncertainty falls under the category of Forward Uncertainty
problems. Efficiently solving forward UQ problems is crucial for both theoretical and
practical applications in scientific computing. In this chapter, we discuss a method
which can be applied to such problems.

We start by providing a formal mathematical definition of forward UQ problems
and state some existing methods to solve them in section 2.1. Thereafter, we explain
polynomial chaos expansion (PCE) in detail in section 2.2. In the end, we briefly present
sensitivity analysis in section 2.3, which is used to determine the relative contribution
of each stochastic parameter to the total variance.

2.1 Forward Uncertainty Quantification problems

Firstly, we introduce the underlying problem setting of this chapter. Let us define a
function f (X, Ω) expecting two types of input parameters. X is a vector of deterministic
parameters and Ω is a vector of stochastic parameters. We assume the values x ∈ X
as well as the probability distribution of all the stochastic parameters ω ∈ Ω to be
given. Due to the stochastic parameters Ω the output of f is also stochastic, too. In the
following, we call the required output Quantity of Interest (QoI). Our target is to find
the the statistical moments of QoI. These kinds of problems are termed as Forward UQ
problems. Figure 2.1 shows the structure of a generic forward UQ problem.

2.1.1 Methods for Forward UQ

There are several ways to solve a forward UQ problem. The three most commonly used
methods are the following:

1. Monte Carlo Method: In Monte Carlo methods [15] we draw samples of the
stochastic parameter Ω. We evaluate the model f for every sample. Each eval-
uation represents a sample from the output distribution. So, we can directly
calculate the statistical moments of the QoI using the calculated function values.

5

2 Polynomial Chaos Expansion

Figure 2.1: Forward UQ problem

This method is simple to implement. Moreover, the algorithm is embarrassingly
parallelisable. However, this method also has some glaring disadvantages. The
error term e is proportional to σ/

√
N, where N represents the sample size [22].

The square root error convergence rate is very slow. So, we need to evaluate f
very often to get a small error. This leads to high and impractical computational
requirements of the method. Moreover, high variance is also a commonly faced
issue. To solve this, we use various methods like Quasi Monte Carlo method [15],
Importance Sampling [35], etc.

2. Polynomial Chaos Expansion: As the name suggests, polynomial chaos expan-
sion expresses the function as linear combination of polynomials [30, 40]. The first
step of PCE is to separate the deterministic variable and the stochastic variable.
Then, we span the model using polynomials. The family of the polynomials
depends upon the distribution of the stochastic variable Ω. The deterministic
parameters decides the constant term X. The details of this method will be
discussed later in this chapter.

3. Stochastic Galerkin Method: This method is similar to the polynomial chaos
expansion. However, it relies on the knowledge of the functional structure to
determine the statistical moments [30].

6

2 Polynomial Chaos Expansion

2.2 Polynomial Chaos Expansion

The basic idea behind polynomial chaos expansion is to write the function f as a linear
combination of polynomials [30]:

f (X, Ω) =
∞

∑
m=0

f̂ (X)φm(Ω) (2.1)

The polynomials φm depend only on the stochastic terms Ω. The coefficient terms f̂
depend on the deterministic inputs X. We typically truncate the infinite expansion in
equation 2.1 to M terms:

f (X, Ω) ≈
M−1

∑
m=0

f̂ (X)φm(Ω) (2.2)

In order to perform PCE, we firstly need to choose the polynomials φm. Then, we
need to calculate the coefficients f̂ . Thereafter, we need to select the truncation limit M.
After finishing those three steps, we need to answer the question how to calculate the
statistical moments of f using this expansion. In the next subsections, we will show
how to perform those four steps.

2.2.1 Orthogonal polynomials

The first step is to choose the correct family of polynomials. As stated earlier, the
polynomials only depend on the distribution of the stochastic input parameters. For
the sake of simplicity, we start the description with the number of stochastic parameters
being one (one dimensional stochastic space). Later, we generalise the stochastic space
to multiple dimensions.

Let ρ(ω) be the probability density function defined on the stochastic input domain
Ω. The polynomials are orthonormal with respect to the given probability density:

< φi(ω), φj(ω) >ρ(ω)= δij (2.3)

where, < φi(ω), φj(ω) >ρ(ω) is the inner product of the two polynomials φi(ω) and
φi(ω) with respect to the density ρ(ω). The inner product is defined as follows:

< φi(ω), φj(ω) >ρ(ω)=
∫

supp(ρ)
φi(ω) φj(ω) ρ(ω) dω

δij is the Kronecker delta function:

δij =

{
1, if i = j,

0, if i 6= j.

7

2 Polynomial Chaos Expansion

Distribution Density function Polynomial basis Support

Normal 1√
2π

e
−x2

2 Hermite Hn(x) [−∞, ∞]

Uniform 1
2 Legendre Pn(x) [−1, 1]

Exponential e−x Laguerre Ln(x) [0, ∞]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1) Jacobi P(α,β)
n (x) [−1, 1]

Table 2.1: List of the orthonormal polynomial basis based on the probability density
function [23]

Table 2.1 shows the list of the orthonormal basis functions based on the probability
density function. We present a more detailed description of the two most commonly
used distributions namely standard uniform distribution and normal distribution.

Legendre Polynomials

Legendre polynomials [30] are orthogonal with respect to the uniform distribution
U [−1, 1] with density function:

ρ(ω) =
1
2

The first five legendre Polynomials as shown in figure 2.2a are:

φ0 = 1

φ1 = ω

φ2 =
1
2
(
3ω2 − 1

)
φ3 =

1
2
(
5ω3 − 3ω

)
φ4 =

1
8

(
35ω4 − 30ω2 + 3

)
(2.4)

However, Legendre polynomials are not normalised. So in order to be orthonormal and
not just orthogonal, we need to divide by its norm. The analytical formula to calculate
the norm of the Legendre polynomials is:∫ 1

−1
φi(ω) φi(ω) ρ(ω) dω =

2
2i + 1

(2.5)

8

2 Polynomial Chaos Expansion

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

Le
g
e
n
d
re

 p
o
ly

n
o
m

ia
ls

φ0

φ1

φ2

φ3

φ4

(a) Legendre Polynomials

−3 −2 −1 0 1 2 3

x

−8

−6

−4

−2

0

2

4

6

8

H
e
rm

it
e
 p

o
ly

n
o
m

ia
ls

φ0

φ1

φ2

φ3

φ4

(b) Hermite Polynomials

Figure 2.2: Orthogonal polynomials

Hermite Polynomials

Hermite polynomials [30] are orthogonal with respect to the normal distributionN (0, 1)
with density function:

ρ(ω) =
1√
2π

e
−x2

2

The first five Hermite polynomials as shown in figure 2.2b are:

φ0 = 1

φ1 = ω

φ2 = ω2 − 1

φ3 = ω3 − 3ω

φ4 = ω4 − 6ω2 + 3

(2.6)

However, the polynomials are again not normalised. This is why, we again need
to divide by the corresponding norm. The analytical formulation of the Hermite
polynomial norm is as follows:∫ 1

−1
φi(ω) φi(ω) ρ(ω) dω = i! (2.7)

9

2 Polynomial Chaos Expansion

Multidimensional Stochastic domain

We assume the number of stochastic parameters to be d. Additionally, we assume the
random vector Ω to be a vector of d independent random variables:

Ω = (ω1, ω2, ..., ωd)

Let us consider a multi-index m = (m1, m2, ..., md) ∈ Nd
0. We represent φmi(ωi) as an

orthonormal polynomial corresponding to stochastic variable ωi with degree mi. The
multivariate polynomial can written as a product of univariate polynomials

Φm(Ω) =
d

∏
i=1

φmi(ωi) (2.8)

LetM represent set of all multi-indices. Now, the multidimensional polynomial chaos
expansion can be written as

f (X, Ω) = ∑
m∈M

f̂ (X)Φm(Ω) (2.9)

2.2.2 Coefficients

The next step in polynomial chaos expansion is to calculate the coefficients f̂k(X). In this
work, we will discuss pseudo-spectral projection [39, 40, 30] which is used to calculate
the coefficients. Please note that there are other ways to calculate the coefficients like
Stochastic collocation [16].

In order to evaluate the coefficients, we exploit the orthonormality of the underlying
basis functions. Our goal is to evaluate the coefficients f̂k(x), which depend on the
multi-index k. We project the left and right side of equation 2.9 to the polynomial
Φk. Then, we make use of the orthonormality of the polynomials Φi to calculate the
coefficient f̂k(X). The calculation is summarised as following:

f (X, Ω) = ∑
m∈M

f̂ (X)Φm(Ω)

< f (X, Ω), Φk(Ω) >ρ =< ∑
m∈M

f̂ (X)Φm(Ω), Φk(Ω) >ρ

< f (X, Ω), Φk(Ω) >ρ = ∑
m∈M

f̂ (X)< Φm(Ω), Φk(Ω) >ρ︸ ︷︷ ︸
δmk

< f (X, Ω), Φk(Ω) >ρ = f̂k(X)

So we evaluate f̂k(X) by projecting the model f on the corresponding orthonormal
polynomial. However, we have to solve an integration problem which can be done

10

2 Polynomial Chaos Expansion

using quadrature methods like Gaussian quadrature etc.

f̂k(X) =< f (X, Ω), Φk(Ω) >ρ

=
∫

f (X, Ω)Φk(Ω)ρ(Ω)dΩ

≈ ∑
qj∈Q,wj∈W

f (X, qj)Φ(qj)wj

where Q and W represent sets of quadrature points and weights, respectively.

2.2.3 Choice of multi-index set

The order of the polynomials in PCE depends on the model f . However, more com-
plicated models require higher order polynomials. Making a suitable choice of the
polynomial order is a very important step, which has a strong impact on the ac-
curacy of the results. However, the higher the order of the polynomials, the more
quadrature points need to be evaluated. This will be a challenge for computationally
expensive problems. The process becomes even more difficult when we deal with
multi-dimensional stochastic domains. Due to the curse of dimensionality, the number
of quadrature points increases rapidly as the dimension of the problem increases. There
exist various adaptive algorithms that helps us adaptively choose the multi-indices.
The details of such algorithms are beyond the scope of this work. Interested reader can
refer [6, 9] for details.

2.2.4 Statistical moments

Computing the stochastic moments of a QoI turns out to be surprisingly easy when
working with polynomial chaos expansion. More precisely, we can use the coefficients
directly to calculate the statistical moments. For the sake of simplicity we assume the
stochastic domain to be one-dimensional. From subsection 2.2.1 we know that the order
0 polynomials are φ0 = 1. We calculate the expectation value f (x, ω) as follows:

E[f (x, ω)] ≈ E

[
M−1

∑
m=0

f̂m(x) φm(ω)

]

=
M−1

∑
m=0

f̂m(x)E[1 · φm(ω)]

=
M−1

∑
m=0

f̂m(x) E[φ0(ω) φm(ω)]︸ ︷︷ ︸
=δ0m

= f̂0(x)

11

2 Polynomial Chaos Expansion

The expectation value is the first coefficient. This concept can be generalized to
multidimensional stochastic problems, too. In those cases the expectation value will be
equal to the coefficient with zero multi-index:

E[f (X, Ω)] = f̂m0 (2.10)

with m0 = (0, . . . , 0)︸ ︷︷ ︸
d times

.

We derive the variance of f similarly. Again, we start with one-dimensional stochastic
problems:

V[f (t, ω)] = E
[
(f (t, ω)−E[f (t, ω)])2

]
≈ E

(N−1

∑
n=0

f̂n(t) φn(ω)− f̂0(x)

)2


= E

(N−1

∑
n=1

f̂n(t) φn(ω)

)2


=
N−1

∑
n=1

f̂ 2
n(t)E

[
φn(ω)2]︸ ︷︷ ︸
=1

=
N−1

∑
n=1

f̂ 2
n(t)

We can see that the variance of f is the squared sum of all coefficients which do not
corresponding to the zero order polynomial φ0. Of course, this can be extended to
multi-dimensional settings:

V[f (X, Ω)] =

(
∑

m∈M
f̂ 2
m

)
− f̂ 2

m0
(2.11)

where m0 = (0, . . . , 0)︸ ︷︷ ︸
d times

andM represents the set of multi-indices representing the order

of polynomials.

2.3 Sensitivity Analysis

The goal of sensitivity analysis is determine the relative contribution of a stochastic
parameter to the total variance. We will give a brief explanation of the global Sobol
sensitivity index [Sobol2001global]. Suppose, we have d stochastic input parameters
and we want to calculate the Sobol index of the j−th parameter. M is the multi-index

12

2 Polynomial Chaos Expansion

set which represents the order of the individual parameters of all polynomials in PCE.
Let us defineMj as following:

Mj = {m ∈ M|mj 6= 0} (2.12)

where mj is the j-th element of the multi-index. The global Sobol sensitivity index is
defined as:

Sj =
∑m∈Mj

f̂m

∑m∈M f̂m
(2.13)

Sj represents the contribution of the j−th stachastic parameter to the total variance. In
order to reduce the complexity of the model, we can compute the Sobol indezes of all
stochastic parameters and neglect inputs with a very small contribution.

13

3 Gaussian Process Regresssion

In this chapter, we provide a basic description of Gaussian progress regression. We
mainly focus on the subtopics, which are important for the following chapters. We start
with some probability theory in section 3.1. This lays the foundations for the following
Gaussian processes. Afterwards, we will discuss posterior predictions using Gaussian
processes in section 3.2 and section 3.3. Finally, we will describe some approaches to
influence and improve a GP’s prediction performance.

3.1 Multivariate Gaussian distributions

Gaussian distributions, also called normal distributions, are the basic building blocks
of Gaussian process regression and therefore fundamental for the methods described in
this paper. A multivariate Gaussian distributed random variable X ∼ N (µ, Σ) is fully
defined by its mean vector µ ∈ Rd and its covariance matrix Σ ∈ Rd×d. Its probability
density function is defined as:

fX(x) =
1√

(2π)pdet(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (3.1)

µ and Σ are defined as follows:

µ = E [X] = arg max
x∈Rd

fX(x) (3.2)

Σ = cov [X] = E [(X− µ)(X− µ)] (3.3)

Gaussian distributed random variables come with a few useful characteristics [2]. Their
mean is equal to their expectation value and to their mode. For a multivariate Gaussian
distribution X = (X1, . . . , Xd), the correlation between Xi and Xj is determined by Σij.

High positive values of Σij implicate strong correlations between Xi and Xj, whilst
small values implicate weak correlations. Conditional distribution and marginalization
of Gaussian distributions are relevant for this work. Therefore, before starting with the
regression part, those two concepts are introduced in the following.

14

3 Gaussian Process Regresssion

3.1.1 Marginalization

Assuming a multivariate Gaussian distribution is given and its mean and components
can be organized like this:(

X1

X2

)
∼ N

((
µ1

µ2

)
,
(

Σ11 Σ12

Σ21 Σ22

))
(3.4)

As the covariance matrix Σ is symmetric, Σ11 and Σ22 are symmetric as well. Addi-
tionally, Σ21 and Σ21 are reflections along the diagonal from each other. This is why
Σ21 = ΣT

21 holds. The marginalization property of Gaussian distributions states that
all subvectors of the samples from equation 3.4 are Gaussian distributed as well [29].
Therefore X1 and X2 have the following distributions:

X1 ∼ N (µ1, Σ11)

X2 ∼ N (µ2, Σ22)
(3.5)

3.1.2 Conditional distribution

Let us consider two random variables X and Y are jointly Gaussian. According to [2],
their conditional distribution X|Y will be Gaussian as well. Therefore, the conditional
distribution X1|X2 ∼ N

(
µ1|2, Σ1|2

)
from equation 3.4 is Gaussian as well defined by

the following parameters:

µ1|2 = µ1 − Σ12Σ−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21

(3.6)

3.2 Gaussian Processes

Formally, Gaussian processes are defined as collections of random variables, any finite
number of which have a joint Gaussian distribution [29]. The size of this collection or the
collection in general is neither fixed nor predefined. Instead, Gaussian processes should
be rather understood as distributions over functions f (x) which can be evaluated at
positions x1, . . . , xn [2]. Those evaluations can be arranged to a vector and correspond
to random variables which are jointly Gaussian distributed. In order to be well defined,
this multivariate Gaussian distribution needs well defined statistics, i.e. mean vector
and covariance matrix. However, as the number of random variables is not fixed and
may be infinite, Gaussian processes are typically defined as

f (x) ∼ GP
(
m(x), k(x, x′)

)
(3.7)

15

3 Gaussian Process Regresssion

where m(x) is the mean function and k(x, x′) specifies the kernel function. Equivalently
to multivariate normal distributions the following identities hold [2]:

m(x) = E[f (x)]

k(x, x′) = cov(f (x), f (x′))

= E[(f (x)−m(x))(f (x′)−m(x′))]

The kernel function k (x, x′) is a means of expressing a certain notion of correlation
between the function values f (x) and f (x′). This correlation becomes stronger with
increasing similarity between x and x′ [2]. The radial basis kernel, or RBF kernel, is the
most popular kernel function and is defined as

k(x, x′) = σ2 exp

(
−−‖x− x′‖2

2l

)
(3.8)

with σ, l ∈ R being free parameters which we currently assume to be given. For a given
set of values x1, . . . , xn we can build a so called Gram matrix K ∈ R× whose entries
are defined as Kij = k(xi, xj). We can define a Gaussian process with mean function
m(x) = 0 and RBF kernel 3.8 function to create a Gaussian X ∼ N (0, K) from which
we can generate random samples. If we have chosen a sufficiently high number of input
points x1, . . . , xn, we can plot a few of these randomly generated high dimensional
sample vectors like ordinary functions and see, that Gaussian distributions indeed can
be seen as distributions over functions.

Figure 3.1 illustrates a number of random samples. The smoothness and behavior of
samples depend upon the kernel function. The radial basis functions generates samples
f ∈ C∞ that are infinitely differentiable [29]. Other kernel functions generates random
samples with other properties. For details on other type of kernel function refer to
[29].

3.3 Inference

In this section we explain how to use Gaussian processes for regression. The regression
workflow strongly resembles Bayesian Inference [2], where we formulate a prior to
incorporate our domain specific knowledge and belief about the behavior of the model.
Then we use the empirical data to update the prior. This results in the posterior model
which is a compromise between our prior believes and the empirical data.

Equivalently, in GP regression the prior model is a Gaussian Process defined as
GP (0, k(x, x′)). For the sake of symmetry the mean function is typically defined as
m(x) = 0. The choice of a proper kernel function k(x, x′) is a crucial design decision

16

3 Gaussian Process Regresssion

Figure 3.1: Sample vectors Y ∈ R1000 plotted as function curves and generated from a
Gaussian process with RBF kernel and input points x1, . . . , x1000 ∈ [0, 10]

and offers a great opportunity for the developer to directly influence the shape of the
regression curve. In Gaussian process regression training the model with the data set
D = {(xi, yi) |i = 1, . . . , N} is equivalent to updating the prior with the empirical data
in Bayesian statistics. First of all, we formulate the joint distribution of the training and
test target values f and f∗ using the training and test inputs X and X∗ [29]:(

f
f∗

)
∼ N

(
0,
(

k(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

))
(3.9)

K(X, X) or K(X∗, X∗) are the Gram matrizes of the training input values X and test
input values X∗, respectively. K(X, X∗) consists of the covariances between X and X∗.
As the distribution in equation 3.9 is Gaussian, we apply the conditional property
introduced in subsection 3.1.2 to formulate the predictive posterior distribution

f∗|X∗, X, f ∼ N
(
µpred, Σpred

)
(3.10)

with parameters

µpred = K(X∗, X)K(X, X)−1 f (3.11)

Σpred = K(X∗, X∗)− K(X∗, X)K(X, X)−1K(X, X∗) (3.12)

where we condition the joint Gaussian prior distribution on the training data [29].
We get a multivariate Gaussian distribution where the dimensionality is equal to the

17

3 Gaussian Process Regresssion

number of test inputs. This can be interpreted as single variate normal distributions
with mean µ

pred
i and variance Σpred

ii for each test input point Xi. As stated in equation
3.2, for each test point the most probable target value is the respective mean. An
advantage of Gaussian process regression is the fact that each target value prediction
comes with its uncertainty, i.e. the respective variance. The higher the variance value,
the less confident is the GP about its mean prediction target value. Exactly like the
prior model mentioned previously, the trained GP is nothing but a Gaussian and can
therefore generate sample functions conditioned on the training points.

From equation 3.11 and 3.12 we can observe that in order to calculate the predicted
posterior mean and variance, we need to compute the inverse of the covariance matrix K.
This is typically done using Cholesky decomposition [33]. The complexity of cholesky
decomposition is cubic with the number of data points O(N3). This cubic complexity is
the main issue against Gaussian process for big data application. However, in literature
there exists many methods to reduce the complexity of Gaussian processes [1].

3.4 Kernel algebra

A function k : Rd ×Rd → R is a valid kernel function if and only if the corresponding
Gram matrix K is positive semi-definite [2]. This is the case, if k can be written as
k(x, x′) = φ(x)Tφ(x′) and φ : Rd → Rn is a basis function we know from ordinary
regression tasks [2]. A useful characteristic of valid kernel functions is that there is a
set of simple operations defined on them which form a closed algebra. Meaning, we
can combine different kernel function to get new ones. For valid kernels k1(x, x′) and
k2(x, x′) and c > 0 the following composite kernels will be valid as well [2]:

k(x, x′) = ck1(x, x′)

k(x, x′) = k1(x, x′) + k2(x, x′)

k(x, x′) = k1(x, x′)k2(x, x′)

(3.13)

Later in this work, we will intensively use a composite kernel function which can be
created using the rules in equation 3.13.

3.5 Hyperparameter Optimization

The behavior of a GP regressor will strongly depend on the chosen kernel function.
In section 3.3 we have assumed that the hyperparameters in the kernel functions are
given. However, we should choose values for those hyperparameters that improve the
prediction performance of the model. This is done by maximizing the log-likelihood of

18

3 Gaussian Process Regresssion

the training data with respect to the kernel hyperparameters θ. The log likelihood is
given as:

ln p(y|θ) = −1
2

ln det(Σ)− 1
2

yTΣ−1y− N
2

ln(2π) (3.14)

There are multiple gradient based optimization algorithms in literature which solve
this problem [38]. They use partial derivatives of equation 3.14 to maximize the
log-likelihood [2]. Its partial derivatives are defined as follows:

∂

∂θi
ln p(x|θ) = −1

2
Tr
(

Σ−1 ∂Σ
∂θi

)
+

1
2

xTΣ−1 ∂Σ
∂θi

Σ−1x. (3.15)

Generally, the log probability is not convex. Therefore, it is advised to repeat this
procedure multiple times with different initialization values to increase the probability
of finding the global maximum.

3.6 Automatic Relevance Determination (ARD)

In a multidimensional setting, we can use ARD to improve the model performance.
We modify the kernel function by assigning a dedicated hyperparameter to each input
dimension [2]. The standard RBF kernel from equation 3.8 would result in

k(d)ARD(x, x′) = σ2 exp

(
−

d

∑
i=1

wi(xi − x′i)
2

2l

)
(3.16)

with parameters θ = (σ, l, w1, . . . , wd). Hyperparameter optimization will then initialize
all parameters θ with values that maximize the log-likelihood of the training data X.
It is likely that some ARD weights wi get relatively high values while others almost
diminish. An explanation of this phenomenon is that often predictions mostly depend
on a smaller subset of input entries, meaning some input dimensions are less relevant
for the prediction than others [2]. In equation 3.16, each wi assigns a relevance value
to the i-th dimension of x. In order to reduce the complexity of the hyperparameter
optimization problem we can neglect dimensions with extremely small ARD weights.
Figure 3.2 illustrates the optimization run of a three dimensional kernel with ARD
weights w1 (red), w2 (blue) and w3 (green). With increasing number of optimization
steps the blue weight slowly diminishes. Thus, we could reduce the dimensionality of
the problem by ignoring the blue input without really reducing the model’s accuracy.

We can also extend kernel 3.16 with e.g. ARD weighed multiplicative and constant
components in order to express other underlying trends, if they exist:

k(d)ARD2(x, x′) = k(d)ARD(x, x′) +
d

∑
i=1

wi+dxix′i + w2d+1 (3.17)

19

3 Gaussian Process Regresssion

Figure 3.2: ARD weight evolution during optimization [2]

However, each new ARD weight increments the dimensionality of the hyperparameter
optimization problem. Due to the curse of dimensionality, with linearly growing
dimensionality the space growths exponentially. Therefore, we are more prone to
finding an unsatisfactory local optimium, while the optimization process becomes
more expensive. This trade-off between flexibility and computational cost has to be
considered when making use of the ARD framework.

20

4 Multi-fidelity Gaussian Processes

In this chapter we make the step from single-fidelity to multi-fidelity problem settings.
Firstly, we explain and formalize the term Multi-fidelity. Then we introduce a range of
multi-fidelity algorithms, which are based on Gaussian Process Regression described
in chapter 3. All those algorithms are extensions of each other, meaning we start with
the simplest and end with more sophisticated ones. In the last section we extensively
present a new approach, which combines some features of the methods described
before.

4.1 Multifidelity

In many different scientific fields measuring real world data is fundamental for design
and decision making. When working with different measure devices or computer
simulations, data comes with a certain quality and quantity describing the underlying
phenomenon. In situations like this people usually have to make a trade-off between
working with few and precise data called high-fidelity or plentiful but inaccurate
low-fidelity data. In this chapter we are going to discuss multi-fidelity algorithms,
which can be used in this setting to take multiple data sets of different fidelities into
consideration. Our goal is to leverage our model performance with high accuracy from
the high-fidelity data and the data-richness from the low-fidelity data. In this section
we will introduce a formalization of this problem setting, which we will use in the
following sections.

4.1.1 Multifidelity Models

Let us define multi-fidelity models [25] as functions f : Z → Y mapping an input
z ∈ Z ⊆ Rd to an output y ∈ Y ⊆ R. Each of those model evaluations comes with a
certain workload c ∈ R+. We distinguish between the high-fidelity model fhi : Z → Y
with evaulation workload chi ∈ R+ and low-fidelity models f (i)lo : f : Z → Y with

evaluation workloads c(i)lo ∈ R+. Evaluating fhi is much more expensive than evaluating

f (i)lo :

∀i = 0, . . . , N − 1 : c(i)lo < chi

21

4 Multi-fidelity Gaussian Processes

However, while we consider the high-fidelity model to be a comparitively accurate
approximation of the underlying function fexact, i.e. fexact ≈ fh, all f (i)lo return bad
approximations of fexact. In theory, they can be understood as versions of fexact, that
have been corrupted by a transformation function

f (i)lo = h(i)trans ◦ fexact.

The more complex the underlying transformation function h(i)trans, the worse is the
approximation performance of f (i)lo . This means, a low-fidelity model f 1

lo with an

underlying complex nonlinear transformation function such as h(1)trans(x) = 2x2 + sin(x)
will give worse approximations of fexact than a low-fidelity model with a simple linear
transformation such as h(2)trans(x) = 1.2x. We can easily simulate different low-fidelity
functions using such transformations with different complexities. Figure 4.1 illustrates

Figure 4.1: Illustration of a trade-off between low- and high-fidelity models [25].

an example multi-fidelity setting. We have multiple models, each being a compromise
between cost and error. The most expensive but precise model is the high-fidelity
model. In addition to that, we have a cluster of low-fidelity models in an area of high
error and low costs.

4.1.2 Multifidelity Model Management Strategies

A model management strategy typically specifies how to combine and apply different
fidelity levels [25]. Components of algorithms discussed in the following sections can

22

4 Multi-fidelity Gaussian Processes

be categorized as implementations of such management strategies.

Adaptation

Adaptation iteratively updates a low-fidelity model using input-output-pairs of a high-
fidelity model [25]. While the high-fidelity model must provide a sufficient accuracy,
the low-fidelity model must be able to improve its own performance using input-
output pairs of the high-fidelity model. The low-fidelity models, which are derived
by the input-output pairs of high-fidelity models are also called data-fit models [25].
Gaussian process regression, discussed in chapter 3, and interpolation in general [25]
are examples of data-fit models. After such an adaptation process, the cheap low-fidelity
model turns into a more precise model, which can be used to make more accurate and
still cheap input evaluations.

Fusion

The second model management strategy is Information fusion. Some multi-fidelity
algorithms expect us to merge, concatenate or combine information from different
fidelity sources and to pass it as an input [25]. Information fusion plays an important
part in multi-fidelity models.

4.2 Autoregressive Schemes (AR1)

In this section we introduce the first and most basic multi-fidelity algorithm introduced
by Kennedy and O’Hagan in 2000 [18]. It forms the basis for the multi-fidelity algo-
rithms, which follow in the next sections. An ordinary Gaussian process discussed in
chapter 3 expects a single data set and is not able to take multiple qualities of different
data sets into consideration. Nonetheless, various multi-fidelity methods are based on
Gaussian processes. In this section, we assume to have a range of data sets D1, . . . , Ds of
increasing quality and decreasing sizes n1 > · · · > ns. Each Dt is a set of input output
pairs (x, y) with x ∈ Xt ⊆ Rd being a d-dimensional input point and y ∈ Yt ⊆ R being
a corresponding one-dimensional target value.

The recursive GP regression framework introduced by Kennedy and O’Hagan [18]
is a simple multi-fidelity method whose key idea can be expressed in the following
equation:

ft(x) = ρt−1 ft−1(x) + δt(x) (4.1)

ft(x) is a prediction function representing on Dt. δt(x) is an independent GP with
own mean µt and covariance function kt(x, x′). Equation 4.1 gives rise to a linear

23

4 Multi-fidelity Gaussian Processes

interconnection between all fidelity levels with constant regression parameter ρt−1 ∈ R

that specifies the strength of the correlation between the fidelity levels. For a given
value ft−1(x) we can infer nothing more about ft, if we have additional information in
the form of ft−1(x′) with x 6= x′. This characteristic is known as the Markov property
[18]. Replacing the GP priors with their respective predictive posterior distributions
f ∗t results in an inference scheme consisting of a number of chained standard GP
regression problems [18]. In order to compute a prediction, we have to pass the input
to the GP of lowest fidelity f1(x) which is a standard Gaussian process trained on
D1 and propagate the results through the entire recursive chain built by equation 4.1
from lowest to highest fidelity level. The last GP’s prediction will be the prediction
of the overall model. This method transforms the prediction task into s standard GP
prediction problems. [19] introduces an improvement of this method. The constant in
equation ρt−1 is replaced by a space-dependent scaling factor

ρt−1(x) =
Cov(ft(x), ft−1(x))

var(ft−1(x))
.

In a multi-fidelity setting, autoregressive approaches should be used instead of standard
GPs as they make use of multiple data sets with different qualities. However, [27] shows
that the autoregressive scheme in [18] is less flexible than other more sophisticated
multi-fidelity algorithms. It is unable to learn more complex cross-correlations with
non-linearities. Hence, we describe more sophisticated methods in the next sections.

4.3 Nonlinear autoregressive multi-fidelity GPs (NARGP)

As we want to work with more complex fidelity cross-correlations, we now discuss
Nonlinear Information Fusion Gaussian processes (NARGP). NARGP can be seen as a
generalisation of the autoregressive scheme, where we replace equation 4.1 by

ft(x) = gt(x, f ∗t−1(x)). (4.2)

The constant ρ and the Gaussian process δt are implicitly included in gt [27]. gt :
Rd ×R → R is a deterministic mapping that jointly maps model inputs and output
from the underlying fidelity level to the output of the current fidelity level t. g can be
trained by maximizing the marginal likelihood. We can get an intuitive understanding
of what g actually is by taking a look at figure 4.2. For the sake of simplicity we assume
that we have only two fidelity levels fl : R→ R specifying the low-fidelity model and
fh : R→ R specifying the high-fidelity model. Both models expect one-dimensional
inputs, i.e. d = 1.

24

4 Multi-fidelity Gaussian Processes

Figure 4.2: Graphical representation [27] of the manifold function g (green) in equation
4.2

We try to learn a manifold mapping g whose input dimension is the input dimension
of fl + 1. Therefore, we can visualize g as a 3D-manifold which is defined on the entire
input space R2. Its specific shape, is spanned by the high-fidelity training points which
live in the manifold. From a visual point of view, we can break down the prediction
procedure in two steps [20]. Firstly, we map the input x ∈ R on its augmented version
(x, fl(x)). Then we map the augmented version of x to the manifold. The height
of the manifold at this point will be the approximations of fh(x). g is therefore the
mean prediction function of a Gaussian process trained on the augmented data set
D∗ = {(x, fl(x)) |x ∈ D}. In practical applications the mean predict function fl can
either be defined as a closed function or by data [20]. We can use a closed low-fidelity
function directly for augmentation. If only low-fidelity data is available, we train a
Gaussian process on that data and use its prediction function as fl . This consideration
can be generalized to s > 2 fidelity sets, where the procedure visualized in figure 4.2 is
repeated s− 1 times.

4.3.1 Composite NARGP kernel

Fusing input points and posterior predictions from two completely different spaces
gives raise to the question, if a standard RBF kernel is still a reasonable choice for a co-

25

4 Multi-fidelity Gaussian Processes

variance function. A special composite kernel [27] better incorporates the autoregressive
nature in equation 4.1:

kNARGP(x, x′) = k1
(
x, x′; θ1

)
k2
(

f ∗t−1(x), f ∗t−1(x′); θ2
)
+ k3

(
x, x′; θ3

)
(4.3)

The kernel combination rules listed in 3.13 are used to build this composite kernel. We
will refer to this kernel as NARGP kernel. The subkernels k1, k2 and k3 are RBF kernels
with ARD weights:

k1(x, x′; θ1) = σ2
1 exp

(
−

∑d
i=1 w1i(xj − x′j)

2

2l1

)
with θ1 = (σ1, w11, . . . , w1d, l1) (4.4)

k2(x, x′; θ2) = σ2
2 exp

(
w2 (ft−1(x)− ft−1(x′))2

2l2

)
with θ2 = (σ2, w2, l2) (4.5)

k3(x, x′; θ3) = σ2
3 exp

(
−

∑d
i=1 w3i(xj − x′j)

2

2l3

)
with θ3 = (σ3, w31, . . . , w3d, l3) (4.6)

Notice that kernel k2 expects a 1-dimensional input, while k1 and k3 expect d-dimensional
inputs. k2 is responsible for taking the low-fidelity prediction into account. Each subker-
nel has its own hyperparameter vector. θ = (θ1, θ2, θ3) is therefore the hyperparameter
vector of kNARGP. At this point we could also choose different kernel classes for k1, k2

and k3. We could also use a mixture of different kernel classes. Again, this is a point
where the developer has a lot of freedom to influence the behavior of the model. In this
work we will only use RBF kernels for k1, k2, k3.

4.3.2 NARGP workflow

Equipped with basic knowledge of how NARGP works, we summarize the workflow
of a NARGP application [27] with multiple fidelity levels:

First data set

For the lowest data set D1 we train a GP with kernel kNARGP(x, x′; θ1) and optimize the
kernel parameters by maximizing the log-likelihood using equation 3.14. Training to
model scales with O(n3

1) where n1 is the size of the first data set, which is greater than
the rest of the data sets [27].

Subsequent data sets

For all subsequent data sets D2, . . . , Ds we create GPs fi(x) and train them on aug-
mented data sets D∗i = {((x, fi−1(x); y(x))|(x, y) ∈ Di}. So each GP fi, with i > 1 will

26

4 Multi-fidelity Gaussian Processes

be trained using input data of dimension d+ 1 which is augmented using the prediction
of the previous GP. Unlike the first GP, all subsequent GPs have therefore input dimen-
sionality of d + 1. Again, each training phase is followed by an optimization phase as
described in section 3.5, using a gradient based optimizer with multiple restarts [38].
Each GP treatment comes again with a cubic complexity of O(n3

i), but as the data set
size ni decreases, the workload of each GP treatment becomes smaller.

Prediction

At this points all GPs are trained and optimized. For a given test set X∗ we make
predictions by passing X∗ to the first GP, whose result will be given to the next GP
and used to augment X∗. The result of each inner GP is propagated through the entire
chain of models. The result of the highest fidelity layer is the prediction of the NARGP
model.

4.4 Multi-fidelity Data Fusion GPs (DFGP)

The NARGP framework is more powerful than the autoregressive scheme, because it is
able to find nonlinear cross-correlations between data sets. However, we can further
improve the regression process by indirectly using the derivative information of low
fidelity models. In this section, we introduce NARGP linked with with data-driven
manifold embeddings [20], which is a modification of the NARGP framework described
in section 4.3. The goal of this approach is to learn more complicated non-linearities.
To keep things simple, we assume to have have only one low-fidelity fl and one high-
fidelity model fh. We generalizes the approximation manifold function in equation 4.2
to

fh(t) = g(t, fl(t), f (1)l (x), . . . , f (K)l (x)) (4.7)

by taking the first K derivatives into account. Of course, this requires fh to be at least K
times differentiable. Another requirement assumed in [20] is:

‖ ∂

∂xi
g(x1, . . . , xK+2) ‖L∞≤ ε ∈ R (4.8)

Each entry in each partial derivative of g is bounded by a small constant. We should
ask ourselves if there exists a function that the model can learn using its derivatives
and if those derivatives are helpful at all. Firstly, we have to understand the underlying
idea. We can write each real and infinitely differentiable function f as its corresponding

27

4 Multi-fidelity Gaussian Processes

Taylor series [12] defined as

f (x) =
∞

∑
k=0

(x− x0)k

k!
f (k)(x).

We can formulate fh evaluated at a neighborhood point t + τ ∈ Rd in a similar way
[20]:

fh(t + τ) = fh(t) +
∂

∂t
fh(t)τ +O

(
‖ ∂2

∂t2 fh ‖
)

As we assume that the first K derivatives exist, we can hope that g takes the form a
truncated version of fh’s Taylor series which should be a reasonable approximation
which we can use. Equation 4.8 makes sure that the truncations don’t lead to a too
high error. But if we wanted to directly learn the truncated Taylor series of fh, we
would need multiple of its derivatives. However, the closed form derivatives of fh
are not available. A workaround of this problem are finite difference stencils used to
approximate a functions derivatives [5]. For example, we can approximate the first two
derivatives of a function f : R→ R as [5]:

∂

∂x
f (x) ≈ f (x + τ)− f (x)

τ
∂2

∂2x
f (x) ≈ f (x + τ)− 2 f (x) + f (x− τ)

τ2

More generally, we approximate the m-th derivatives of f using the m-th finite difference
stencil ∆m f (x), which we can again express in terms of evaluations of f at delayed
locations x − kτ with |k| < m [20]. However, due to the multi-fidelity setting we
cannot afford to request an arbitrary amount of new fh evaluations. This is where fl
comes into play. We replace the delayed fh evaluations in the truncated Taylor series
approximation by evaluations of fl and make the whole approximation computationally
tractable. Therefore, the Gaussian process fh tries to learn a mapping g by finding a
truncated Taylor series with finite difference stencils in order to approximate fh. Using
finite differences approximation instead of derivatives changes equation 4.7 to a more
implicit form:

fh(t) = g(t, fl(t), fl(t− τ) . . . , fl(t− Kτ)). (4.9)

Whenever we deploy this approach, we have to make the following design decisions.

1. The number of derivatives to include: The higher the estimated complexity of
the underlying cross-correlation between the high- and low data sets, the more
derivatives are necessary to find a good approximation [20].

28

4 Multi-fidelity Gaussian Processes

(a) Augmentation with one derivative

(b) Augmentation with two derivatives

Figure 4.3: Visualisation of a possible delay pattern: t ∈ Rd is denoted by the orange
point, the blue points are neighbour points of t with distance τ, green points
with distance 2τ.

29

4 Multi-fidelity Gaussian Processes

2. The delay pattern of the parameters passed to g.

While [20] uses negative delays (x, x− τ, . . . , x− Kτ), we can also work with ’forward-
and-backward’ shifts such as

fh(t) = g(t, fl(t− 2τ), fl(t− τ), fl(t), fl(t + τ), fl(t + 2τ)) (4.10)

with K = 2 and d = 1. Especially, when working in a higher dimensional input space
of d > 1 with fh : Rd → R it is important to find a appropriate delay pattern. To get a
better understanding of how shifting with multiple delays and multiple dimensions
works we illustrate forward-and-backward-delays used in equation 4.10 in figure 4.3.
All points except the orange point in the center are neighbour points t− eiτ of t with
ei ∈ Rd being the i-th canonical unit vector defined by

e(j)
i =

{
1, i = j

0, otherwise

As shown in equation 4.10, we pass the neighbour points to the low-fidelity function
and fuse the corresponding results with t. Figure 4.3 also shows that with increas-
ing number of derivatives and dimensions, the number of delayed neighbour points
dramatically increases. In this example, the number of delays is specified by O(2dn)
with d being the input dimension and n being the number of derivatives. The delay
pattern from [20] used in 4.9 would grow with O(dn) as the delays go towards one
direction. This gives raise to an interesting conflict: With increasing number of deriva-
tives more complex functions can be learned. However when using ARD, additional
augmentation entries increase the number of parameters which we have to optimize
in hyperparameter optimization. As described in section 3.6, this makes finding the
optimal hyperparameter vector more difficult. Therefore, too many new augmentation
entries can make the model less accurate.

DFGP Workflow

The DFGP workflow is almost identical to standard NARGP, which we have already
described in subsection 4.3.2. The most important difference is that more parameters
are passed to the mapping g. Therefore firstly, we need to specify the following
configurations:

• Distance to the surrounding neighbour points τ > 0

• Number of derivatives n

• Delay pattern

30

4 Multi-fidelity Gaussian Processes

Due to these additional configurations, the augmented version D∗t of a input set Dt is
typically more complex and has more additional entries than in NARGP.

4.5 Data Fusion Gaussian processes with NARGP kernel and
Adaptation

In this work we are going to introduce and test a new method which we refer to as Data
Fusion Gaussian processes with composite NARGP kernel (DFGPC). For a single delay
term τ with second order derivative stencil, the covariance kernel looks as following:

kDFGPC(x, x′) = k1(k2 + k3 + k4) + k5

k1(x, x′; θ1) = σ2
1 exp

(
−

∑d
i=1 w1i(xj − x′j)

2

2l1

)

k2(x, x′; θ2) = σ2
2 exp

(
w2 (ft−1(x)− ft−1(x′))2

2l2

)

k3(x, x′; θ3) = σ2
2 exp

(
w3 (ft−1(x− τ)− ft−1(x′ − τ))2

2l3

)

k4(x, x′; θ4) = σ2
2 exp

(
w4 (ft−1(x + τ)− ft−1(x′ + τ))2

2l4

)

k5(x, x′; θ3) = σ2
3 exp

(
−

∑d
i=1 w3i(xj − x′j)

2

2l3

)

(4.11)

It is simply a DFGP model (described in chapter 4.4), but with an internal high-
fidelity level which uses the composite kernel instead of a RBF kernel. Additionally, we
deploy an implementation of the model management strategy called adaptation from
subsection 4.1.2. For the sake of simplicity, we assume to have only two fidelity levels,
the high- and the low-fidelity data set.

4.5.1 Adaptation optimization

Additionally, we use adaptation described in subsection 4.1.2 to choose evaluation
points. Instead of training the model on a random set of high-fidelity points and
then using it for predictions, we firstly train the model on an extremely small data
set of m0 points. The model must still be highly underfitted after the first training
run. The next step is to apply adaption. As described in subsection 4.1.2 we update a
low-fidelity model with input-output pairs from a high-fidelity model. This underfitted

31

4 Multi-fidelity Gaussian Processes

model will correspond to the low-fidelity model. We enter an adaptation loop with
n iterations, where in each step the low-fidelity model chooses a new high-fidelity
input point x ∈ X ⊆ Rd from the input domain. For this chosen point it requests the
corresponding accurate target value fhigh(x) ∈ R. After calling the high-fidelity model,
the new input-output pair (x, fhigh(x)) will be merged into the existing high-fidelity
training data set. We now retrain the low-fidelity model, taking the new input-output
pair into account. During a procedure like this with n steps, we must train the model
on data sets of sizes m0, m0 + 1, . . . , m0 + n. Of course, this is way more computationally
expensive than directly using a random data set of appropriate size. But on the other
side, this procedure makes sure that the model gets a much better training data set.

Choosing the next data point

During the adaptation loop, the model has to choose the next input point, whose
respective target value should be requested. So far, we have left out this point. We
deploy an information based approach. The method is inspired from single fidelity
Bayesian optimisation methods [21]. More precisely, we refer to the max-value entropy
search (MES) [36]. In this approach the next evaluation point corresponds to the point
of maximum information gain. The gain of information is the difference between the
entropy at a point of interest before and after the function evaluation at this point.
Let us represent f∗ = f (x) as the exact prediction of an input x of a GP surrogate.
Dn = {x1, x2,, xn} is a set of n evaluation points and xn+1 is the (n+ 1)− th evaluation
point. The information gain at xn+1 due to the function evaluation at this point is:

I(xn+1, f∗|Dn) = H(f∗|Dn)− H(f∗|Dn, xn+1) (4.12)

where H(f∗|Dn) is the conditional entropy. We compute the next evaluation point by
solving the optimisation problem:

xn+1 = arg max
xn+1∈X

I(xn+1, f∗|Dn) (4.13)

In equation 4.12, we can see that the information gain depends upon the conditional
entropy. We know from equation 3.10 that the predicted value f∗ is Gaussian distributed
with posterior mean µp and variance σp defined in equation 3.11 and 3.12, respectively.

p(f∗|Dn) =
1√

2πσp2
exp

(
−(f∗ − µp)2

2σp2

)

32

4 Multi-fidelity Gaussian Processes

We simplify the conditional entropy as:

H(f∗|Dn) = −
∫ ∞

−∞
p(f∗|Dn) log p(f∗|Dn)d f∗

= −
∫ ∞

−∞
p(f∗|Dn) log

 1√
2πσp2

exp

(
−(f∗ − µp)2

2σp2

) d f∗

= − log

 1√
2πσp2

 ∫ ∞

−∞
p(f∗|Dn)d f∗︸ ︷︷ ︸

=1

+
1

2σp2

∫ ∞

−∞
(f∗ − µp)

2 p(f∗|Dn)d f∗︸ ︷︷ ︸
=σp2

=
1
2

log
(
2πσp

2)+ σp
2 log(e)
2σp2

=
1
2

log
(
2πeσp

2)
= log

(
σp
√

2πe
)

(4.14)
We use the above derived expression of entropy of Gaussian distribution for further
derivation. When we evaluate the function at a point, the posterior standard deviation
at that point is equal to the observation noise σnoise. Using the result from equation
4.14, we can write:

H(f∗|Dn, xn+1) = log
(

σnoise
√

2πe
)

(4.15)

Substituting equation 4.14 and 4.15 in equation 4.12:

I(xn+1, f∗|Dn) = log
(

σp
√

2πe
)
− log

(
σnoise

√
2πe

)
= log σp − log σnoise (4.16)

The second term of equation 4.16 log σnoise is constant. So, optimising the information
gain is equivalent to optimising the first term log σp. Moreover, logarithm is a monotonic
function. Therefore, optimising log σp is equal to optimising σp. Hence, we can simplify
the optimisation problem in equation 4.13 to

xn+1 = arg max
xn+1∈X

σp = arg min
xn+1∈X

−σp (4.17)

However, we need to specify a bounded search domain X ∈ Rd where we search for
the global optimum so that the optimization problem in equation 4.17 is well defined.
In simple words, our goal is to find the input point with maximum posterior variance.
We evaluate the high-fidelity function at that point, which will modify the covariance
kernel k after training and optimization. This changes the variances at all points. Again,
we find the point with highest variance and repeat the process.

33

4 Multi-fidelity Gaussian Processes

Therefore, searching for the next evaluation point turns out to be an optimisation
problem defined (equation 4.17), that is non-convex and that has multiple critical points.
Therefore, obtaining the global minimum is a very challenging problem. There are
different approaches mentioned in literature to solve this problem like gradient based
methods [38], Covariance matrix adaptation evolution strategy (CMA-ES) [24], DIRECT
[17] etc. In this work we only use the DIRECT algorithm.

DIRECT-l algorithm

The implementation of this work uses the DIRECT-l global optimization algorithm [17].
It is applicable to following optimization problems:

argmin
x

f (x)

s.t. i = 1, . . . , m : x(L)
i ≤ xi ≤ x(U)

i

(4.18)

Locally-based DIRECT (DIRECT-l) is based on the standard DIRECT optimization
algorithm, which tends to suffer from a slow refinement of the current optimal result.
DIRECT-l improves this weaknesses [17]. Formulation 4.18 makes no specific assump-
tions about f (x). This complies with the adaptation setting described in subsection
4.1.2 where the high-fidelity model is also treated as a black-box. Hence, we do not
need any gradients or special information of f (x). This is an important characteristic,
because we have no further information about the uncertainty function σ(x). It is
therefore not guaranteed to be differentiable. Moreover, DIRECT-l is deterministic [17].
So, unlike hyperparameter optimization (described in section) there is no need for
multiple restarts.

A drawback of DIRECT-l is that it tends to be less successful in higher dimensional
problem [17]. However, this weakness is no big deal for our purposes, as in this work
we mainly focus on problems up to four dimensions.

4.6 Implementation

Now, we describe the implementation of this work, which is written in Python 3.8.5. We
use GPy (version 1.9.9) [14] to create basic GP regression models. It is a Gaussian pro-
cess framework written in Python from the Sheffield machine learning group. We use
Chaospy (version 4.2.3) [10], which is a Python package for uncertainty quantification
using polynomial chaos expansion. The link for the Github repository of the imple-
mentation is https://github.com/MartinKlapacz/multifidelity-datafusion-GPs.
git. Figure 4.4 illustrates the structure of the implementation. To keep things simple
the illustrated classes contain only the most important methods and attributes.

34

https://github.com/MartinKlapacz/multifidelity-datafusion-GPs.git
https://github.com/MartinKlapacz/multifidelity-datafusion-GPs.git

4 Multi-fidelity Gaussian Processes

Figure 4.4: UML class diagram of the implementation

35

4 Multi-fidelity Gaussian Processes

4.6.1 MultifidelityDataFusion

The MultifidelityDataFusion class is the core of the implementation. It is a highly
parameterized class that can be used to build own multi-fidelity Data Fusion mod-
els. From a higher level perspective a MultifidelityDataFusion object expects the
following information:

• Input dimensionality and input bounds

• The exact ground-truth function, which will serve as the high-fidelity model

• A specification of the low-fidelity model

• Information about derivatives to include

• The high-fidelity kernel

• The number of adaptation steps.

In this implementation we will only consider multi-fidelity settings of two fidelity
levels. Hence, each MultifidelityDataFusion object has an internal low-fidelity and
high-fidelity layer.

Data-driven and function-driven low-fidelity model

Depending on the multi-fidelity problem, the low-fidelity model is available in the
form of data (input-output-pairs) or in the form of a closed function. Therefore, there
is a data-driven and a function-driven way of specifying the low-fidelity model of a
DFGP object. If we pass the data to the constructor, a GPy.models.GPRegresssion object
is created, trained and optimized using this data. From now on its mean prediction
function will represent the low-fidelity model. However, if it is available as a closed
function, we can pass the function to the constructor, where it is saved and used for
further computations.

Training and prediction

The method fit trains the model using the high-fidelity data and expects only the
input values. The corresponding target values are computed using high-fidelity func-
tion which has been passed to the model as a parameter before. Internally, it creates
(and optimizes) a GPy.models.GPRegresssion model trained on an augmented ver-
sion of the passed training data. It uses the low-fidelity function for augmentation.
This model will serve as the high-fidelity model. We can make predictions using

36

4 Multi-fidelity Gaussian Processes

the predict method, which augments the input data and calls the prediction func-
tion of the internal high-fidelity model. We always optimize the models by calling
GPy.models.GPRegression.optimize, which internally uses BFGS optimization [38].

4.6.2 AbstractMFGF

AbstractMFGP is an abstract superclass of MultifidelityDataFusion. Multifidelity-
DataFusion contains most of the methods, which the user will directly use. AbstractM-
FGP contains private helper methods, which are important for plotting and internal
computation.

4.6.3 Models

A normal user would quickly feel overwhelmed when directly working with Multi-
fidelityDataFusion. Instead, they should take a look at the subclasses of Multifi-
delityDataFusion as they implement concrete multi-fidelity algorithms described in
this paper (using MultifidelityDataFusion). New multi-fidelity models can be added
in the future by simply inheriting from MultifidelityDataFusion. What follows is a
description the implemented multi-fidelity algorithm.

NARGP class

NARGP is a subclass of MultifidelityDataFusion and provides an implementation of
the NARGP algorithm, which is described in chapter 4.3. It uses the composite NARGP
kernel and no derivatives. Therefore, initializing an object of this class requires the low-
and high-fidelity specification and the input dimension. The composite NARGP kernel
plays an important part in this method. GPy provides a kernel algebra implementation,
which makes combining different kernel functions very easy. We use this GPy feature
to implement the NARGP kernel in equation 4.4.

GPDF class

GPDF provides an implementation of Data Fusion Gaussian processes described in
chapter 4.4. As described in chapter 4.4, Data Fusion GPs take a specified number
of derivatives into account. Therefore, when initializing a GPDF object, the number of
derivatives and the step length must be passed to the constructor, as well. The internal
high-fidelity model of a GPDF object uses a GPy RBF kernel.

37

4 Multi-fidelity Gaussian Processes

GPDFC class

GPDFC is similar to GPDF. Unlike GPDF, the internal high-fidelity model of GPDFC uses a
composite NARGP kernel. It also provides plotting methods for the NARGP kernel
hyperparameters.

4.6.4 Augmentation Iterators

Throughout most of the algorithms in this work, augmentation plays an important part.
High-fidelity data is fused with a number low-fidelity predictions in order to finally
pass it to the high-fidelity model. While NARGP has a simple augmentation mapping
x 7→ (x, fl(x)), Data Fusion GPs can have more complex mappings (as illustrated
in figure 4.3), where dimensionality and number of derivatives must be taken into
consideration. These dynamic augmentation mappings are implemented using Python
iterator classes. The number sequences they generate are used as the prefactors of τ,
which are added to x to get the neighbour points, where we evaluate the low-fidelity
function. The following table shows the iterator classes and the augmentation pattern
which they implement.

Class Numbersequence Augmentation mapping
Backward
Augmentation

0,−1, . . . ,−K x, fl(x), . . . , fl(x− Kτ)

Forward
Augmentation

0, 1, . . . , K x, fl(x), . . . , fl(x + Kτ)

Even
Augmentation

0,−1, 1, . . . ,−K, K x, fl(x), fl(x− τ), fl(x + τ), . . . ,
fl(x− Kτ), fl(x + Kτ)

Table 4.1: Augmentation classes and their corresponding number sequence

All iterator classes must implement the abstract class AbstractAugmIterator. As
we deploy the Strategy Pattern, we can easily add new augmentation patterns to the
implementation.

4.6.5 Acquisition optimizers

In each iteration of the adaptation process, the model has to choose and acquire a
new high-fidelity point. Section 4.5.1 provides a detailed description of the decision
making process. We use an optimization algorithm to find this input value. Again,
we deploy the Strategy Pattern to provide an extendable set of optimization strate-
gies. Each optimization class must implement the abstract class AbstractMaximizer.

38

4 Multi-fidelity Gaussian Processes

Currently, we only provide one optimization method. However, new subclasses of
AbstractMaximizer can easily be added to create new maximization strategies in the
future.

DIRECTLMaximizer class

This maximizer class uses a Python package called DIRECT (version 1.0.1). It is a
wrapper for the Fortran implementation of the DIRECT algorithm written by Joerg.
M. Gablonsky [13]. It provides an implementations of the DIRECT and DIRECT-l
optimization algorithms. In most cases we use DIRECT-l, which we described in chapter
4.5.1. Some plots in section 5.3 were created using the Python package scipydirect
(version 1.3), which implements the DIRECT algorithm, as the DIRECT packaged
caused some errors.

MethodAssessment class

MethodAssessment can be used to compare multiple multi-fidelity models. It trains and
adapts multiple models on the same input data. The performance of these models can
be displayed and compared on a shared mean squared error plot.

4.6.6 General polynomial chaos

In this work combine multi-fidelity Gaussian processes with general polynomial chaos
expansion. Therefore, this implementation also provides basic functionality that enables
the usage of GPC. ChaospyWrapper is a wrapper of the Chaospy [10] functionality. We
can use it to compute the statistical moments of a computationally complex func-
tion such as the mean prediction function of multi-fidelity model. This is how we
combine multi-fidelity models and polynomial chaos expansion. MFGP_GPC is similar
to MethodAssessment. Its purpose is to assess and display PCE performances using
a multi-fidelity model with different numbers of adapted data points. It expects a
multi-fidelity model and a GPC object and computes the accuracies of the GPC object
combined with differently adapted versions of the model.

39

5 Results

The previous chapter provided a detailed description of different multi-fidelity models.
In this chapter we test the aforementioned methods and illustrate their performances.
The results and plots are obtained using the implementation described in section
4.6. For the sake of simplicity we only work with two fidelity levels. Additionally,
all deployed models use a internal function-driven low-fidelity model. We therefore
assume that the low-fidelity level is infinitely cheaper than the high-fidelity model.

5.1 Uncertainty development during Adaptation

In this section we visually illustrate the development of the uncertainty curve during
the adaptation process. We start with a data set of 8 uniformly distributed high-fidelity
points x ∼ U [0, 1] and pass it to a NARGP model. For simplicity we choose the low-
fidelity level to be function-driven and therefore assume that low-fidelity evaluations
are infinitely cheap. For illustrative purposes we only show two adaptation steps,
which will result in a NARGP model trained on 10 high-fidelity points. We use a
multi-fidelity setting from [27], which is defined as:

fl(t) = sin(8πt)

fh(t) = (t−
√

2)× fl(t)2

Figure 5.1 illustrates the development of the mean curve (left column) and variance
curve (right column) during the adaptation steps. The left column shows the exact
curves (dotted blue) and the predicted mean curves (green). The width of the light-
green margins around the mean is two times the variance at the current position and
therefore proportional to the variance curves in the right column. The right column
plots the variance or uncertainty curves. All subplots have the same x-axis. The first
row shows the model curves before adaptation. Each subsequent row shows the current
model curves after performing one adaptation step. The red crosses in the right column
denote a new high-fidelity point which will be acquired in the current adaptation step.

As described in section 4.5.1, the goal in each adaptation step is to find the input
point that leads to maximum information gain. Our strategy in this work is to find the
input x ∈ X that maximizes the current uncertainty curve. Our assumption is that this

40

5 Results

Figure 5.1: Snapshot of the adaptation process: Prediction (green) and exact curve
(dotted blue) in the left column, variance/uncertainty curve (blue) and the
new adaptation point (red cross) in the right column

reduces the model entropy and therefore increases the accuracy of the mean prediction.
Figure 5.1 illustrates how each adaptation step slightly flattens the uncertainty curves in
the right column, while the similarity between the mean prediction curve and the exact
curve increases. Especially the first two uncertainty curves have a lot of very similar
local maxima. Nonetheless, DIRECT-l always finds the highest peak in the illustrated
steps. When comparing the mean prediction curve at 8 and at 10 high-fidelity points we
conclude that adding those two points has significantly reduced the difference between
the prediction curve and the exact curve.

41

5 Results

5.2 Comparing Adaptation and random sampling

Equipped with an formal and visual understanding of the adaptation process we move
on to our second experiment. We illustrate the additional accuracy, which we gain
when using an adapted data set instead of a randomly generated one. The multi-fidelity
setting is defined as following:

fh(x, y) = sin(2x0)
2 + cos(2x1)

fl(x, y) = 1.5 fh(x, y)2 + 3

The low-fidelity model is the result of a quadratic transformation followed by a linear
transformation applied to the high-fidelity model. In this section we focus on the effect
of adaptation. This is why we apply it to four differently configured models and show
that adaptation improves them independently of their underlying configuration:

1. A standard NARGP model

2. A Data Fusion GP with RBF kernel and one derivative (DFGP1)

3. A Data Fusion GP with composite kernel and one derivative (DFGPC1)

4. A Data Fusion GP with composite kernel and two derivatives (DFGPC2)

All models, except the NARGP model, use backward-shifting:

x 7−→ (x, fl(x), fl(x− τ), . . . , fl(x− Kτ)) (5.1)

Firstly, we train each model with five randomly selected high-fidelity data points
x ∼ U [0, 1]. Next, each model adapts 20 data points. We calculate and plot the mean
squared error values after each adaptation steps.

Additionally, we train equal models on data sets of 5, 10, 15, 20 and 25 uniformly
distributed high-fidelity points x ∼ U [0, 1]. For each data set size we make 10 runs
and average and plot the means squared error values. All subplots in figure 5.2 show
that the adapted model performs better. Their mse curves drop significantly quicker
than the averaged mse curves of the models with random training data. A random
data set is likely to have clusters of points stacked together. This leads to an ineffective
utilization of resources, because each point is prone to contributing only a small amount
of information to the data set. However, each data point still costs one high-fidelity
model evaluation. On the other hand, in each adaptation step the next chosen point
maximizes the information gain at the current state of the data set. This leads to an
optimal utilization of resources as we make sure that we get the maximum amount

42

5 Results

model attributes mean squared error

name kernel
number of

delays τ random adapted

NARGP
Composite

kernel - - 2.305× 10−5 3.362× 107

DFGP1 RBF kernel 1 0.01 7.804× 10−3 2.201× 10−3

DFGPC1
Composite

kernel 1 0.01 1.260× 10−5 2.251× 10−7

DFGPC2
Composite

kernel 2 0.01 1.263× 10−5 3.253× 10−7

Table 5.1: Comparison of mean square error between random vs adaptive selection of
evaluation points

of information for one high-fidelity evaluation. Finally, an adapted data set has less
redundancy and a higher amount of information than a random data set. This leads to
a better model accuracy.

In each subplot, we also observe that before reaching 15 high-fidelity points, adapta-
tion and random sampling lead to similar accuracies. After reaching 15 high-fidelity
points the adapted version starts to outperform the randomly sampled version. The
bigger the size of the randomly sampled data set, the the higher is the number of points
with close neighbors, which reduces their amount of new information contributed to
the data set. This is why adaptation will only lead to an accuracy advantage (compared
to random sampling), if the existing data set has reached a certain minimum density of
points.

Table 5.1 lists the models configurations and the corresponding mean squared errors
after 25 high-fidelity points. But we should also take the downside of this method into
consideration. Adaption of 20 data points requires a training run on a small data set
of five points followed by 20 training runs on data sets with 5, 6, . . . , 25 points. This
tremendously increases the computational training costs. This again leads to a trade-off
we must consider.

43

5 Results

(a) NARGP performances (b) DFGP1 performances

(c) DFGPC1 performances (d) DFGPC2 performances

Figure 5.2: Comparison of models with random and with adapted training data: mse
curve of adapted models (blue), averaged mse curves of models with random
training data

44

5 Results

5.3 Comparison of different methods

In the last section we have seen how adapted training data sets positively affect the
model performance. In this section, we compare different methods on a few chosen
problems. The problem settings [20] are defined as:

1. Setting with phase shifted oscillations

2. Setting with different periodicities

3. Discontinuous curves

4. Product of sinusoidal functions with 2 and 4 input dimensions.

We make the assumption that low fidelity functions are infinitely cheaper than the
high fidelity functions. The models are trained on random high-fidelity data sets of
5, 10, 15, 20 and 25 points. For each model and data set size, we plot the mean squared
error values against the number of high fidelity evaluations. Training and testing data is
sampled from a uniform distribution U [0, 1]. The following table lists the configurations
of the deployed models:

Name τ Number of delay points Kernel

DFGP2 0.01 2 RBF
DFGPC2 0.01 2 Composite
DFGP4 0.01 4 RBF

DFGPC4 0.01 4 Composite
NARGP - - Composite

Phase shifted oscillations

When working with real world data of different resolutions, fidelity levels often have
similar oscillations but different phases [20]. An example multi-fidelity setting with
this characteristic is:

fl(t) = sin(8πt) (5.2)

fh(t) = t2 + sin
(

8πt +
π

10

)
(5.3)

Figure 5.3 shows the results of fitting adaptive multi-fidelity GP on the aforemen-
tioned model. We observe from Figure 5.3a that NARGP has the highest amount of

45

5 Results

(a) Mean square error vs number of high fidelity
evaluations

(b) GPDF2

(c) GPDFC2 (d) GPDF4

(e) GPDFC4 (f) NARGP

Figure 5.3: Phase Shifted Oscillation

46

5 Results

error. To understand this we perform the Taylor series expansion of the high-fidelity
function:

fh(t) = t2 + sin
(

8πt +
π

10

)
= t2 + sin (8πt) +

π

10
dsin (8πt)

dt
+ ε

= t2 + fl(t) +
π

10
d fl

dt
+ ε

Here, ε is the error value. We can see that the derivative of the low-fidelity function is
present in the expansion of the high fidelity function. Since NARGP does not use any
derivative terms, its performance quite poor compared to other methods.

Different Periodicities

Lets continue with an example where the high and low fidelity models are sinusoidal
functions but with different periodicities [20]:

fl(t) = sin(6
√

2πt)

fh(t) = sin
(

8πt +
π

10

) (5.4)

In this example, the cross-correlation between the fidelities are characterized not only
by a slight phase shift of π

10 , but also by different periods. Figure 5.4 shows the results
of applying adaptive multi-fidelity GPs to the aforementioned setting. Figure 5.4a
shows that methods with composite kernels have a much lower mean square error
than modelds with RBF kernels. Also, GPDFC2 and GPDFC4 have a lower error
than NARGP. We therefore recommend to use GPDFC models when working with
cross-correlations which include different periodicities. In order to understand why the
covariance kernel leads to a better performance, we should take a more precise look
at the high-fidelity function in equation 5.4. Firstly, we rewrite fh using trigonometric
addition rules:

fh(t) = sin (8πt) cos
(π

10

)
+ cos (8πt) sin

(π

10

)
(5.5)

Now, we can rewrite sin(8πt) and sin(8πt) in terms of fl and derivatives of fl .

sin(8πt) = sin
(

6
√

2πt +
(

8π − 6
√

2π
)

t
)

= sin (at− bt)

= sin (at) cos (bt)− cos (at) sin (bt)

= cos (bt) fl(t)− sin (bt) f (1)t (t)

(5.6)

47

5 Results

(a) Mean square error vs number of high fidelity
evaluations

(b) GPDF2

(c) GPDFC2 (d) GPDF4

(e) GPDFC4 (f) NARGP

Figure 5.4: Different Periodicity

48

5 Results

where a = 6
√

2π and b = 6
√

2− 8π. We can also rewrite cos (8πt):

cos(8πt) = cos
(

6
√

2πt +
(

8π − 6
√

2π
)

t
)

= cos (at− bt)

= cos (at) cos (bt) + sin (at) sin (bt)

= cos (bt) f (1)t (t) + sin (bt) fl(t)

(5.7)

Substituting equation 5.6 and 5.7 in equation 5.5 shows that fh(x) can indeed be
represented in terms of fl and f (1)l :

fh(t) =
(

cos
(π

10

)
cos (bt) + sin

(π

10

)
sin (bt)

)
fl(t)

+
(

sin
(π

10

)
cos (bt)− cos

(π

10

)
sin (bt)

)
f (1)t (t)

(5.8)

Models which are applied to this multi-fidelity setting must find a way to approximating
fh. The derived form of fh consists of the following components: The prefactors, fl(t)
and f (1)t (t). The NARGP kernel assigns its three subkernels to one of those components
and is therefore more successful at learning the underlying cross-correlation than the
more limited RBF kernel. This is the reason why the models with composite kernels
outperform the models with only RBF kernel.

Discontinuity

Now, we take a look at an example with a discontinuity [20]:

fl(t) =

{
0.5(6t− 2)2sin(12t− 4) + 10(t− 0.5)− 5, for t ≤ 0.5

0.5(6t− 2)2sin(12t− 4) + 10(t− 0.5), for 0.5 < t

fh(t) = 2 fl(t)− 20t + 20

(5.9)

Figure 5.5 shows the results of applying adaptive multi-fidelity GP to the discon-
tinuous setting. In Figure 5.5a we can observe that all models have low errors except
GPDF4. Including more derivatives in the computation seems to reduce the accuracy of
the model predictions. Figure 5.5d helps us understand this phenomenon. It illustrates
the green prediction curve of a GPDFC model with four derivatives. The model is
fitted with 25 high-fidelity data points which are marked with the blue crosses. 20 of
them are adapted and five are randomly sampled points x ∈ [0, 1]. In this example, 25
high-fidelity points are enough to make the prediction curve almost identical to the
exact curve. However, we are interested in the locations of the high-fidelity points. We
can see that most of the points are very close to the discontinuity at t = 0.5. During

49

5 Results

(a) Mean square error vs number of high fidelity
evaluations

(b) GPDF2

(c) GPDFC2 (d) GPDF4

(e) GPDFC4 (f) NARGP

Figure 5.5: Discontinuous

50

5 Results

adaptation, the highest uncertainty (and therefore maximum information gain) can be
found at areas where the curve has sudden and unexpected behaviors. This is the case
at discontinuous locations, such as t = 0.5. This is why the model keeps focusing on
this area during adaptation.

However, a intensive concentration of points near the discontinuity also causes this
strange behavior. The function is not differentiable at this discontinuity. However due
to adaptation, a large proportion of the high-fidelity data is located directly at this
non-differentiable point. Data Fusion GPs use approximations of the first K derivatives
at high-fidelity data points. Computing (multiple) derivatives at areas which are
not differentiable does not make sense. This disturbs the approximation of fh and
therefore negatively affects the model performance. With increasing number of included
derivatives this negative effect grows. However, this effect is not observed in GPDFC4.
The reason for that might be the weight corresponding to delay terms convergences to
a very low value during hyperparameter optimisation (ARD). However, this does not
happen when using GPDF4, as the RBF kernel is not flexible enough to adapt to this
situation. Likelihood is a multi-modal function. Which is why the optimiser might get
lost in a unsatisfactory local minimum despite of multiple restarts.

Product of sinusoidal function with different input dimensions

In this section we focus on different input dimensionalities. We consider problems with
two and four input dimensions. The two dimensional problem is defined as following:

fh(x) = sin(2.2πx1) sin(πx2)

fl(x) = 2 fh(x)− 1.2
(

sin
(

pi
10

x1

)
+ sin

(
pi
10

x2

)) (5.10)

The four dimensional problem is as:

fh(x) = sin(πx1) sin(πx2) sin(πx3) sin(πx4)

fl(x) = 2 fh(x)− 0.25
(

sin
(

pi
10

x1

)
+ sin

(
pi
10

x2

)
+

(
pi
10

x3

)
+

(
pi
10

x4

)) (5.11)

Figure 5.6 shows that all the methods work fine in high dimensional cases, as well.

5.4 Uncertainty Quantification using multi-fidelity Gaussian
processes

Since we have tested the accuracies of multi-fidelity models in various problem settings
with different configurations, we can finally move on to our final experiment. In this

51

5 Results

(a) Mean square error evolution for 2d function (b) Mean square error evolution for 4d function

Figure 5.6: Product of sinusoidal functions

section we combine polynomial chaos and multi-fidelity GP models. As described
in chapter 2 we can use polynomial chaos to create approximations of complex and
costly functions. Moreover, approximating the statistical moments of a QoI turned out
to be very easy when working with PCE. As described in subsection 2.2.4, we need
evaluations of the QoI to compute the coefficients f̂k(x). This is the standard approach
when using GPC. However, in this approach we train a multi-fidelity model on the
QoI and pass its mean prediction function to the polynomial chaos. This prediction
function will be used to compute the coefficients f̂k(x). In this experiment we compare
both approaches in terms of computational costs and relative error when estimating
mean and variance of the QoI. We assume that low-fidelity evaluations are infinitely
cheap compared to high-fidelity evaluations, which is why the computational costs
are proportional to the number of high-fidelity evaluations. Our goal is to check if the
computed statistical moments using the mean prediction function instead of the QoI
provide good estimations of the exact solutions. Moreover, we will illustrate how the
relative error of each GPC run develops for several adaptation runs. Our final goal
is to find out how much computational effort we can save by using GPC linked with
multi-fidelity GPs instead of direct GPC.

We will consider three multi-fidelity settings with two, three and four input di-
mensions. The analytical mean µ (a) and variance σ (a) depend upon a sequence

52

5 Results

Name τ

Number of
delay points Kernel

NARGP - - composite

GPDF 0.001 2 RBF

GPDFC 0.001 2 composite

Table 5.2: Configuations of the deployed multi-fidelity GPs

a = (a0, . . . , ad−1) of parameters and are always defined as follows:

µ =
d−1

∏
i=0

(
1− cos (ai)

ai

)
(5.12)

σ = t1(a) + t2(a) + µ (a)2 (5.13)

t1 =
d−1

∏
i=0

(
1
2
− sin(2ai)

4ai

)
(5.14)

t2 = 2µ (a) (−1)d−1
n−1

∏
i=0

cos (ai)− 1
ai

(5.15)

In each example the high-fidelity function is defined as follows:

fh(x) = 5 +
d−1

∏
i=0

sin(aixi)

Training and testing input points are uniformly distributed and d-dimensional with
entries xi ∼ U [0, 1]. As described in table 2.1, we use polynomials from the Legendre
family. In addition to direct GPC, we deploy GPC with different multi-fidelity models.
Their configurations are listed in table 5.2.

53

5 Results

5.4.1 2D problem setting

We start with a two dimensional example. The parameter sequence a and the low-
fidelity function are defined as follows:

a = (2.2π, π)

fl(x) = fh(x)− 1.2
(

sin
(π

10
x0

)
+ sin

(π

10
x1

)) (5.16)

Figure 5.7 displays the relative mean and variance estimation errors of the aforemen-
tioned GPC approaches for different numbers of high-fidelity evaluations. In both
subfigures we can see that for few high-fidelity points the error curves of the multi-
fidelity approaches drop much quicker than direct GPC. After reaching 10 evaluation
points the accuracy of the multi-fidelity approaches stays on the same level. In figure
5.7a NARGP-GPC with 10 high-fidelity evaluations leads to the same accuracy as direct
GPC with 30 high-fidelity evaluations. In figure 5.7b the accuracies of the multi-fidelity
approaches are even better. 10 high-fidelity evaluations return variance estimations
with relatives errors of approximately 10−4. Direct GPC, however, reaches far worse
accuracies of approximately 0.05 at the costs of 50 high-fidelity points. Using a multi-
fidelity approach instead of direct GPC leads therefore to much better results at lower
costs.

(a) Mean square error evolution for 2d setting (b) Mean square error evolution for 2d setting

Figure 5.7: Evolution of the relative error in mean (a) and variance (b) with respect to
the number of high fidelity function

54

5 Results

5.4.2 3D problem setting

Now, we extend the previous setting to three dimensions. The multi-fidelity setting is
defined as follows:

a = (3π, 2π, π)

fl(x) = fh(x)− 1
4

(
sin
(π

10
x1

)
+ sin

(π

20
x2

)
+ sin

(
3π

20
x3

)) (5.17)

Figure 5.8 illustrates a similar situation as figure 5.7. In both subfigures all multi-fidelity
error curves drop quickly to a low level, while the accuracy of direct GPC improves
very slowly. According to subfigure 5.8a, direct GPC needs 60 high-fidelity points to
reach the same accuracy as NARGP-GPC reaches with 10 high-fidelity points. However,
it is still tremendously outperformed by GPDFC-GPC with 10 high-fidelity. Using one
of both multi-fidelity approaches would safe at least 50 high-fidelity evaluations. When
estimating the variace in figure 5.8a, the difference between both approaches is even
higher.

(a) Mean square error evolution for 3d setting (b) Mean square error evolution for 3d setting

Figure 5.8: Evolution of the relative error in mean (a) and variance (b) with respect to
the number of high fidelity function

5.4.3 4D problem setting

In this example we work with 4 dimensions. The multi-fidelity setting is defined as
follows:

55

5 Results

a = (π, π, π, π)

fl(x) = fh(x)− 1
4

(
sin
(π

10
x1

)
+ sin

(π

20
x2)
)
+ sin

(
3
20

πx3

)
+ sin

(π

5
x4

)) (5.18)

Again, the high-fidelity approach leads to much better estimations of the statistical
moments as illustrated in figure 5.9. According to figure 5.9a, a multi-fidelity GPC
with 30 high-fidelity points leads to a relative error of approximately 10−4, which is
equal to standard GPC with 80 high-fidelity points. When estimating the variance, the
computational costs which are safed when using multi-fidelity GPC is even higher.

(a) Mean square error evolution for 4d setting (b) Mean square error evolution for 4d setting

Figure 5.9: Evolution of the relative error in mean and variance with respect to the
number of high fidelity function

5.4.4 Conclusion

In all examples GPC linked with multi-fidelity models led to a high accuracy gain at
significantly lower computational costs. In real world forward UQ problems, where
one high-fidelity evaluation can take up to one day of computation, it is crucial to make
as few high-fidelity evaluations as possible. Using this approach we can save a lot of
time, as it reaches similar accuracies with much less computational effort. Therefore,
GPC linked with multi-fidelity models is capable of turning previously intractable UQ
problems into tractable ones.

56

6 Conclusion

In this work, we have given an overview of Gaussian processes and polynomial chaos
expansion. We described recent multi-fidelity regression algorithms and introduced an
own approach that combines several of their features. We also deployed a multi-fidelity
model management strategy called adaptation. As shown in chapter 5.2, it is applicable
to all multi-fidelity GP models and leads to a significant increase of the model accuracy.
However, this accuracy gain comes at the price of running extra optimisation algorithms.
We assume that we apply our method in computationally intensive models. So, the
gain by decreasing the number of evaluation points overshadows other overheads.
Finally, we have introduced GPC linked with multi-fidelity GPs, which combines
multi-fidelity GPs and polynomial chaos expansion. We have tested it in differently
dimensional problems with varying multi-fidelity models. In all cases GPC linked with
multi-fidelity GPs led to significantly better estimations with less computational costs
than standard GPC. According to our results, it can be used in forward UQ problems
as a substitute for standard GPC to save a tremendous amount of computational
resources. Throughout this work we have intensively tested multi-fidelity models in
various situations and learned that there is one specific trade-off determining their
accuracy. The more complex the model is, the more difficult are the cross-correlations it
is capable of learning. As expected, we observe that the model needs more evaluations
to get a decent accuracy as the dimensionality of the problem increases. Moreover, as
we increase the dimensionality, the number of hyperparameters to be optimised also
increases. This may sometimes reduce the accuracy of the model.

6.1 Future Works

At this point the methods described in this paper and this research area in general
still provide a lot of future possibilities. Different modifications of adaptation could
be worth studying. Probability of Improvement, Expected Improvement and GP Upper
Confidence Bound are possible acquisition functions described in [31]. Deploying other
acquisition functions and comparing their effect on the adaptation process would be
very interesting. All models which we deployed made use of the RBF kernel class
and combinations of it. In this work we mainly focused on multi-fidelity and less on
kernel functions. Using the multi-fidelity models in combination with more diverse

57

6 Conclusion

kernel classes such as the Matérn family or the rational quadratic kernel [29] could
have a high potential and may be studied in further research. Moreover, all methods in
this work were tested on models with two fidelity levels. Deploying and testing them
in settings with a higher number of fidelity levels could lead to interesting insights,
too. We also assume that our low fidelity functions are very cheap. However, in real
world cases this might not always be correct. In such cases, we also build a surrogate
for the low-fidelity model. This could be another direction in which we could take in
future. There are numerous global optimization algorithms [37], which can be used
instead of DIRECT to find the next evaluation point. Other well suited optimization
methods may improve the runtime performance of adaptation. In this work we relied
on multi-fidelity GPs from [20, 27]. But there are also completely different ways of
performing multi-fidelity using Gaussian process. We can use deep Gaussian processes
[8, 34, 7] to build multi-fidelity models, as well. In such models, each layer represents
one fidelity. These more advanced models are less prone to overfitting as observed
in case of scalable Gaussian processes [1]. Sparse grid multi-fidelity [23] is another
way of implementing the multi-fidelity. However, the effects of adaptivity on such
models are yet to be studied. The goal of this work was to show the effectiveness of the
presented methods. The aim of future works could be to improve the efficiency of the
aforementioned methods. One could create a parallelized version of adaptation which
returns multiple evaluation points in each step. In general, evaluating multiple input
points could be done in parallel. One of the existing methods of multifidelity GPC is
using sparse grids [23]. It would be interesting to compare the two methods and test
them in different scenarios.

Indeed, there are still a lot of open questions and possibilities in this research field.
We are convinced that the promising results of this work are just the tip of the iceberg
and that further research will lead to fascinating insights.

58

List of Figures

1.1 Workflow depicting different approached to efficiently perform polyno-
mial chaos expansion . 4

2.1 Forward UQ problem . 6
2.2 Orthogonal polynomials . 9

3.1 Sample vectors Y ∈ R1000 plotted as function curves and generated from a
Gaussian process with RBF kernel and input points x1, . . . , x1000 ∈ [0, 10] 17

3.2 ARD weight evolution during optimization [2] 20

4.1 Illustration of a trade-off between low- and high-fidelity models [25]. . 22
4.2 Graphical representation [27] of the manifold function g (green) in equa-

tion 4.2 . 25
4.3 Visualisation of a possible delay pattern: t ∈ Rd is denoted by the orange

point, the blue points are neighbour points of t with distance τ, green
points with distance 2τ. 29

4.4 UML class diagram of the implementation 35

5.1 Snapshot of the adaptation process: Prediction (green) and exact curve
(dotted blue) in the left column, variance/uncertainty curve (blue) and
the new adaptation point (red cross) in the right column 41

5.2 Comparison of models with random and with adapted training data:
mse curve of adapted models (blue), averaged mse curves of models
with random training data . 44

5.3 Phase Shifted Oscillation . 46
5.4 Different Periodicity . 48
5.5 Discontinuous . 50
5.6 Product of sinusoidal functions . 52
5.7 Evolution of the relative error in mean (a) and variance (b) with respect

to the number of high fidelity function 54
5.8 Evolution of the relative error in mean (a) and variance (b) with respect

to the number of high fidelity function 55

59

List of Figures

5.9 Evolution of the relative error in mean and variance with respect to the
number of high fidelity function . 56

60

List of Tables

2.1 List of the orthonormal polynomial basis based on the probability density
function [23] . 8

4.1 Augmentation classes and their corresponding number sequence 38

5.1 Comparison of mean square error between random vs adaptive selection
of evaluation points . 43

5.2 Configuations of the deployed multi-fidelity GPs 53

61

Bibliography

[1] M. Bauer, M. van der Wilk, and C. E. Rasmussen. “Understanding probabilistic
sparse Gaussian process approximations.” In: Advances in neural information
processing systems. 2016, pp. 1533–1541.

[2] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[3] A. Brandt. “Multiscale solvers and systematic upscaling in computational physics.”
In: Computer Physics Communications 169.1-3 (2005), pp. 438–441.

[4] A. Brandt. “Multiscale scientific computation: Review 2001.” In: Multiscale and
multiresolution methods (2002), pp. 3–95.

[5] H.-J. Bungartz and M. Schäfer. “Modelling, simulation.” In: Optimization 53 (2014),
p. 53.

[6] P. R. Conrad and Y. M. Marzouk. “Adaptive Smolyak pseudospectral approxima-
tions.” In: SIAM Journal on Scientific Computing 35.6 (2013), A2643–A2670.

[7] K. Cutajar, M. Pullin, A. Damianou, N. Lawrence, and J. González. “Deep gaus-
sian processes for multi-fidelity modeling.” In: arXiv preprint arXiv:1903.07320
(2019).

[8] A. Damianou and N. D. Lawrence. “Deep gaussian processes.” In: Artificial
intelligence and statistics. PMLR. 2013, pp. 207–215.

[9] I.-G. Farcaş, T. Görler, H.-J. Bungartz, F. Jenko, and T. Neckel. “Sensitivity-driven
adaptive sparse stochastic approximations in plasma microinstability analysis.”
In: Journal of Computational Physics 410 (2020), p. 109394.

[10] J. Feinberg and H. P. Langtangen. “Chaospy: An open source tool for designing
methods of uncertainty quantification.” In: Journal of Computational Science 11
(2015), pp. 46–57.

[11] A. Forrester, A. Sobester, and A. Keane. Engineering design via surrogate modelling:
a practical guide. John Wiley & Sons, 2008.

[12] J. Fosso-Tande. Applications of Taylor series. Aug. 2013.

[13] J. M. Gablonsky et al. “Modifications of the DIRECT Algorithm.” In: (2001).

62

Bibliography

[14] GPy. GPy: A Gaussian process framework in python. http://github.com/SheffieldML/
GPy. since 2012.

[15] J. Hammersley. Monte carlo methods. Springer Science & Business Media, 2013.

[16] S. S. Isukapalli. “Uncertainty analysis of transport-transformation models.” In:
(1999).

[17] D. R. Jones and J. R. Martins. “The DIRECT algorithm: 25 years Later.” In: Journal
of Global Optimization (2020), pp. 1–46.

[18] M. C. Kennedy and A. O’Hagan. “Predicting the output from a complex computer
code when fast approximations are available.” In: Biometrika 87.1 (2000), pp. 1–13.

[19] L. Le Gratiet. “Multi-fidelity Gaussian process regression for computer experi-
ments.” PhD thesis. Université Paris-Diderot-Paris VII, 2013.

[20] S. Lee, F. Dietrich, G. E. Karniadakis, and I. G. Kevrekidis. “Linking Gaussian
process regression with data-driven manifold embeddings for nonlinear data
fusion.” In: Interface focus 9.3 (2019), p. 20180083.

[21] J. Mockus. Bayesian approach to global optimization: theory and applications. Vol. 37.
Springer Science & Business Media, 2012.

[22] C. Z. Mooney. Monte carlo simulation. 116. Sage, 1997.

[23] L. W.-T. Ng and M. Eldred. “Multifidelity uncertainty quantification using
non-intrusive polynomial chaos and stochastic collocation.” In: 53rd AIAA/AS-
ME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th
AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. 2012, p. 1852.

[24] J. Ocenasek, S. Kern, N. Hansen, and P. Koumoutsakos. “A mixed Bayesian
optimization algorithm with variance adaptation.” In: International Conference on
Parallel Problem Solving from Nature. Springer. 2004, pp. 352–361.

[25] B. Peherstorfer, K. Willcox, and M. Gunzburger. “Survey of multifidelity methods
in uncertainty propagation, inference, and optimization.” In: Siam Review 60.3
(2018), pp. 550–591.

[26] P. Perdikaris and G. Karniadakis. “Model inversion via multi-fidelity Bayesian
optimization: A new paradigm for parameter estimation in haemodynamics, and
beyond.” In: Journal of The Royal Society Interface 13 (May 2016), p. 20151107. doi:
10.1098/rsif.2015.1107.

[27] P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence, and G. E. Karniadakis.
“Nonlinear information fusion algorithms for data-efficient multi-fidelity mod-
elling.” In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 473.2198 (2017), p. 20160751.

63

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://doi.org/10.1098/rsif.2015.1107

Bibliography

[28] P. Perdikaris, D. Venturi, and G. E. Karniadakis. “Multifidelity information fusion
algorithms for high-dimensional systems and massive data sets.” In: SIAM Journal
on Scientific Computing 38.4 (2016), B521–B538.

[29] C. E. Rasmussen. “Gaussian processes in machine learning.” In: Summer School
on Machine Learning. Springer. 2003, pp. 63–71.

[30] R. C. Smith. Uncertainty quantification: theory, implementation, and applications.
Vol. 12. Siam, 2013.

[31] J. Snoek, H. Larochelle, and R. P. Adams. “Practical bayesian optimization of
machine learning algorithms.” In: arXiv preprint arXiv:1206.2944 (2012).

[32] C. Soize. Uncertainty quantification. Springer, 2017.

[33] G. Strang and K. Borre. Linear algebra, geodesy, and GPS. Siam, 1997.

[34] M. Titsias and M. Lázaro-Gredilla. “Doubly stochastic variational Bayes for non-
conjugate inference.” In: International conference on machine learning. PMLR. 2014,
pp. 1971–1979.

[35] S. T. Tokdar and R. E. Kass. “Importance sampling: a review.” In: Wiley Interdisci-
plinary Reviews: Computational Statistics 2.1 (2010), pp. 54–60.

[36] Z. Wang and S. Jegelka. “Max-value entropy search for efficient Bayesian opti-
mization.” In: International Conference on Machine Learning. PMLR. 2017, pp. 3627–
3635.

[37] T. Weise. “Global optimization algorithms-theory and application.” In: Self-
Published Thomas Weise (2009).

[38] J. Wu, M. Poloczek, A. G. Wilson, and P. I. Frazier. “Bayesian optimization with
gradients.” In: arXiv preprint arXiv:1703.04389 (2017).

[39] D. Xiu. “Efficient collocational approach for parametric uncertainty analysis.” In:
Communications in computational physics 2.2 (2007), pp. 293–309.

[40] D. Xiu. Numerical methods for stochastic computations: a spectral method approach.
Princeton university press, 2010.

[41] X. Zhu, A. Narayan, and D. Xiu. “Computational aspects of stochastic collocation
with multifidelity models.” In: SIAM/ASA Journal on Uncertainty Quantification 2.1
(2014), pp. 444–463.

[42] Z. Zlatev, I. Dimov, I. Faragó, and Á. Havasi. Richardson extrapolation: practical
aspects and applications. Vol. 2. Walter de Gruyter GmbH & Co KG, 2017.

64

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Outline

	Polynomial Chaos Expansion
	Forward Uncertainty Quantification problems
	Methods for Forward UQ

	Polynomial Chaos Expansion
	Orthogonal polynomials
	Coefficients
	Choice of multi-index set
	Statistical moments

	Sensitivity Analysis

	Gaussian Process Regresssion
	Multivariate Gaussian distributions
	Marginalization
	Conditional distribution

	Gaussian Processes
	Inference
	Kernel algebra
	Hyperparameter Optimization
	Automatic Relevance Determination (ARD)

	Multi-fidelity Gaussian Processes
	Multifidelity
	Multifidelity Models
	Multifidelity Model Management Strategies

	Autoregressive Schemes (AR1)
	Nonlinear autoregressive multi-fidelity GPs (NARGP)
	Composite NARGP kernel
	NARGP workflow

	Multi-fidelity Data Fusion GPs (DFGP)
	Data Fusion Gaussian processes with NARGP kernel and Adaptation
	Adaptation optimization

	Implementation
	MultifidelityDataFusion
	AbstractMFGF
	Models
	Augmentation Iterators
	Acquisition optimizers
	General polynomial chaos

	Results
	Uncertainty development during Adaptation
	Comparing Adaptation and random sampling
	Comparison of different methods
	Uncertainty Quantification using multi-fidelity Gaussian processes
	2D problem setting
	3D problem setting
	4D problem setting
	Conclusion

	Conclusion
	Future Works

	List of Figures
	List of Tables
	Bibliography

