Computational Science and Engineering

Technische Universitit Miinchen

Master’s Thesis

Aeroelastic simulation of slender

wings for electric aircraft:
a partitioned approach with DUNE and preCICE

Author: Max Firmbach
Examiner: Prof. Dr.-Ing. Rainer Callies

Submission Date: December 22nd, 2020

@ T

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

December 22nd, 2020 Max Firmbach

Abstract

Distributed electric propulsion is a promising new technology for small sized aircraft. It
enables new possibilities regarding the aerodynamic design, by using large slender wings.
Those are prone to oscillations induced by fluid-structure interactions and thus need to be
analyzed in detail. This thesis introduces a partitioned coupling approach based on the
C++ libraries DUNE and preCICE to be able to simulate the occurring aeroelastic effects.
In a first step, the equations of linear elastodynamics are solved based on finite elements
and validated with a static and dynamic simulation scenario. Afterwards, the partitioned
coupling approach is presented by introducing an adapter that connects the DUNE frame-
work to the coupling interface provided by preCICE. The multi-physics setup and the
respective adapter implementation is validated with three popular fluid-structure interac-
tion benchmark cases.

Contents

Abstract

1.

Introduction
1.1. Review of aeroelastic modelling approaches
1.2. Simulation approach and thesis overview

Background on solving linear elastodynamics

2.1. Equations in linear solid mechanics,
2.2. Finite elements in linear elastodynamics
2.3. Explicit timestepping methods and mass lumping
2.4. Direct-time integration and implicit methods

Implementation: Components of the solver

3.1. Using and extending thesolver,
3.2. Assembler for global and local matrices,
3.3. Numerical schemes for solving the governing equations

Validation cases for linear elasticity
4.1. Static analysis of a cantileverbeam 0L
42. Oscillationofaslenderplate. oL

Background on partitioned simulation

51. Datamappingmethods
52. Couplingschemes.
53. Timeinterpolation

A preCICE adapter for DUNE

6.1. CouplinglibrarypreCICE
6.2. Functionality of the dune-precicemodule
6.3. Implementation intoa dummysolver

Validation cases for fluid structure interaction

71. Flexible flapinachannel o L.
7.2. Lid-driven cavity with flexible bottom
7.3. Fluid-strucuture interaction three - benchmark

= N =

[BRNEN

15
17
18
22

25
25
28

33
33
35
38

41
41
43
44

47
47
52
56

vii

Contents

8. Conclusion, Summary and Outlook

81. Conclusion
82, Summary oo
83. Outlook

Appendix
A.l. Gmsh-reader and boundary segments in DUNE

List of Figures
List of Tables

Bibliography

61
61
62
63

65
65

67

69

71

viii

1. Introduction

Propulsion systems of modern airplanes have not changed significantly in the last 30 years.
The necessary thrust to fly is mainly generated by big Turboprop- and Turbofan-engines
placed under the wing. The turbines suck in air, compress it for an internal combustion
process and exhaust the accelerated gases. This propulsion approach adds unnecessary
weight to the aircraft and generates more noise as well as emissions. An interesting topic
of research is the investigation of alternative propulsion systems especially for small size
aircraft. One approach in this area is the distributed propulsion. Several small electric fans
are mounted over the span of the wing. This offers new possibilities regarding airplane
control and flight dynamics with thrust vectoring. In addition, the aerodynamic behavior
of the wing can be changed resulting in a different geometry. Large slender wings with a
short chord length similar to those of sail planes offer the necessary wingspan to mount
the electric fans. Due to the high aspect ratio, the wings are prone to vibrations induced by
the airflow. These aeroelastic effects play a crucial role during the design and simulation
process of such wings for this propulsion concept.

Figure 1.1.: Section of a slender wing with a distributed propulsion system (from
[DLR, 2019])

Traditional, commercial programs often use a monolithic approach to calculate the un-
derlying physical problem. The governing equations are implemented inside one frame-
work, which solves the overall problem at once. This procedure has several drawbacks

1. Introduction

regarding code reusability and flexibility, as the numerical solver is written for only one
specific type of problem. In contrast, a partitioned approach couples independent, sin-
gle physics codes and combines them to a multiphysics setup. This enables the usage of
already existing programs and an efficient integration of new solvers.

This thesis presents a partitioned coupling approach for general fluid-structure interac-
tion scenarios, which also cover aeroelastic simulation. The structural solver will be build
up from scratch by using the distributed numerics environment DUNE to implement the
linear equations of elastodynamics. For the fluid-structure interaction simulation the open
source fluid solver OpenFOAM is coupled to the structural part by using the preCICE
coupling library.

1.1. Review of aeroelastic modelling approaches

Fluid-structure interaction scenarios play a crucial role in multi physics simulation. A
more specific scenario deals with the movement of slender, flexible structures inside a
flow, called aeroelasticity. A prominent application case are wings deflecting under the
load generated by a flow. In certain situations the structure starts oscillating being critial
for material fatigue. The recent development drives to longer and thinner blades that
make aeroelastic simulation crucial in the development process. The aeroelastic modelling
of wings is nowadays mainly driven by the wind turbine development. An overview of
modelling and simulation approaches are given by [Huang, 2011] and [Wang et al., 2016].
Some of the presented methods can be adapted and thus also be used for aeronautical
applications.

Aerodynamic model

The BEM (blade element momentum) model is widely used as aerodynamic participant
and is implemented in several partitioned simulation programs for wind turbine anal-
ysis including AeroDyn/FAST (refere to [Moriarty and Hansen, 2005]) and HAWC2 (see
[Heinz et al., 2016]). An approach more fitted to airplane wings is to neglect the forces re-
sulting from the rotation leading to a simplified blade element model (similar to the strip
theory commonly used for wing simulation). In [Manwell et al., 2009] it is stated that the
blade element method is based on the local computation of aerodynamic forces on two
dimensional airfoil geometries. The overall wing or blade is divided into several small el-
ements. Each element consists of a specific two dimensional airfoil shape and a local flow
condition, which sum up to the overall force acting on the structure. The aerodynamic
forces are therefore calculated based on the lift and drag characteristics of the airfoil shape
per element and a local velocity resulting in the lift force:

Fr, = chufelS (1.1)

1.1. Review of aeroelastic modelling approaches

and drag force:

Fp = cDguzels (1.2)

with density p, the relative velocity to the wing direction u,; and the reference area
S. The forces can afterwards be transformed into a vertical and a horizontal direction
component. To account for turbulence, tip loss, dynamic inflow and stall phenomena,
additional empirical correction equations have to be solved. The introduced model is only
a coarse approximation of the real aerodynamic system and is highly dependent on the
specific airfoil parameters and empirical data stored for the calculation. This includes the
lift and drag coefficients for different flow scenarios. If no reliable data is provided, the
method lacks in accuracy. The simple computational approach however results in a high
computational efficiency that makes the method attractive for real time simulations.

A more general approach is to resolve the exact flow around an object resulting in a CFD
(computational fluid dynamics) model. The mathematical foundation for this approach are
the formulas resulting from momentum, continuity and energy conservation. The fluid
flows considered in this thesis are assumed to be incompressible, due to a Mach number
of Ma < 0.3. This assumption yields a simplified version of the nonlinear hyperbolic
partial differental equation system called the incompressible Navier-Stokes equations with
constant density:

Vou=0, (1.3)

(ZT?Z + (u-V)u= —;Vp + vAu, (1.4)

with velocity u, pressure p, density p and kinematic viscosity v. The fluid domain is
usually discretized with finite volumes in space. This results in a mesh consisting of cells,
for which pressure and velocity values can be calculated. Depending on the mesh refine-
ment the flow around objects can be resolved with high accuracy. For most applications
this approach already needs significantly more computational power even for small mod-
els resulting in long solving times. With parallelization approaches this problem can be

bypassed to some degree.

Structural model

The structural domain in dedicated aeroelastic simulations is often approximated by a one
dimensional approach (see [[Huang, 2011] and [Wang et al., 2016]). The wing cross section
properties are calculated based on special routines incorporated into the structural model.
The three most relevant one dimensional discretization methods are the modal approach,
multibody dynamics and finite elements.

In the modal analysis scheme, the deflection can be obtained by linear combination of
the mode shapes of the structure. The scheme is based on a transformation of the physical

1. Introduction

coordinates into the modal space. This procedure reduces the degrees of freedom of the
system and decouples the equations of motion, resulting in an efficient computation. A
popular approach to obtain an approximation of the different modal shapes is the usage of
a three dimensional finite element preconditioner. For complex structures the calculation
of the deflection might be efficient, but the initial approximation of the mode shapes can
be costly and time consuming. Therefore, only the first four modes are commonly taken
into consideration. Due to the linear combination approach, non-linearities like large de-
formations can’t be modelled accurately.

In the multibody dynamics approach the structure is split up into flexible and rigid
parts, which are connected by force elements (springs, dampers). The movement of the
system is often described by Lagrangian’s equations of motion. The accuracy of the model
can be increased by adding more elements and thus the degrees of freedom, resulting in a
computationally more intensive calculation.

The one dimensional FE (finite element) method splits up the structure in several nodes,
which are connected by beam elements. Depending on the formulation of the elements
(based on the theory of Euler-Bernoulli’s or Timoshenko’s description for beams) an ac-
curate deformation can be calculated. The scheme can also be adapted for large deforma-
tions.

A more conventional approach is similar to the computational fluid dynamics procedure
by discretizing the fundamental continuum mechanical equations resulting in a more flex-
ible scheme. In this case the equations of linear elastodynamics can be discretized by two
and three dimensional finite elements, resulting in a computational structure mechanics
scheme.

1.2. Simulation approach and thesis overview

The aeroelastic modelling approaches shown in section 1.1 are mostly rough approxima-
tions of the real fluid flow and the structural deformations. In this thesis a partitioned
approach is presented using the coupling library preCICE. This offers a flexible interface
for the coupling of different solver types. A minimal invasive approach makes the mod-
ification of already existing solvers for a coupling straightforward and thus encourages
to reuse code. The structural participant will be modeled as linear elastic material with
two and three dimensional finite elements. The corresponding solver is implemented with
the numerics-library DUNE. On the fluid side, a computational fluid dynamics approach
is chosen, which is realized with OpenFOAM. The main focus of the thesis lies on the
implementation in DUNE and the coupling approach with preCICE.

1.2. Simulation approach and thesis overview

Structure of the thesis

In chapter 2 the governing equations of the linear elastodynamic theory are discussed. In
a next step, the reformulation into a variational problem and the discretization with finite
elements is shown. Additionally, the necessary numerical schemes to solve such systems
are presented. Chapter 3 focuses on the implementation of the presented methods inside
the DUNE framework. The code structure and the simulation procedure of the structural
solver is discussed. Afterwards the code is validated with a static beam bending scenario
and the vibration of a cantilever plate in chapter 4. The second part of this thesis deals
with the main ideas and the background theory of partitioned simulation approaches,
which are given in chapter 5 presenting data mapping, coupling and time interpolation
schemes. In chapter 6 the preCICE coupling library is introduced. The respective imple-
mentation into the DUNE environment is shown, resulting in the dune-precice module.
The modification of a dummy solver for a partitioned coupling is presented. The coupling
adapter implementation in combination with the structural solver are validated with dif-
ferent fluid-structure interaction scenarios in chapter 7, consisting of a flexible flap inside
a channel, a lid-driven cavity with flexible bottom and the fluid-structure interaction three
benchmark. Chapter 8 gives a summary of the thesis and an outlook of future topics con-
cerning partitioned simulations related to aeroelastic modelling and the presented DUNE
modules.

2. Background on solving linear
elastodynamics

The fundamental equations describing linear elastodynamic phenomena are based on con-
tinuum mechanics. The material is assumed to be continuous ignoring the atoms it is ac-
tually made of. The mechanical model that will be discussed is assumed to be valid for
small deformations using the Cauchy stress tensor o and the linearized strain tensor €. The
material law describing the relation between stresses and strains is also assumed to be lin-
ear. Thus, calculations with nonlinear material behaviour or large deformations can’t be
accurately modeled.

In this chapter, the equations of linear elastodynamics are discussed in section 2.1. Af-
terwards, the formulation of the weak form and the discretization of the equations with
finite elements is shown in section 2.2. Explicit timestepping methods and mass lumping
approaches are presented in section 2.3. In a last step, a short introduction into direct-time
integration schemes and implicit methods is given in section 2.4.

2.1. Equations in linear solid mechanics

The fundamental description of the movement of a body is given by a partial differential
equation. It is based on an equivalence of forces given by Newton’s second law. The
equation of motion can thus be written as:

0%u

P o +V-o(u)=f (2.1)

where p describes the density, the second derivative of the displacement is resulting in
the acceleration, body forces f like the gravitational force are given on the right side and
the Cauchy stress tensor o. The relation between stress and strain is generally given by a so
called material law. In case of the linear elasticity assumption the material can be modeled
according to Hooke’s law:

o(u) =C :e(u). (2.2)

The material stiffness tensor C'is based on measurable, physical parameters consisting
of the Young’s modulus E and Poisson ratio v. The strain tensor can be obtained by a

2. Background on solving linear elastodynamics

linearization of the Green-Lagrange strain resulting in the strain-displacement relation:

e(u) = %(Vu + (V)" 2.3)

with the displacement u and the infinitesimal strain e. With the three given equations,
the formulation of the overall elastodynamic problem thus yields:

p%% +V.o(u)=f (Newton’s second law)
o(u) =C : e(u) (Hooke's law) (2.4)

e(u) = 3(Vu+ (Vu)T) (Strain-displacement relation)

describing the deformation of an object over time.

2.2. Finite elements in linear elastodynamics

Newton’s second law given in equation 2.1, describes the motion of a continuum in every
single point. To calculate an approximation of this classical solution, the problem is trans-
formed into it’s weak form obtaining a variational problem. Afterwards the equation is
discretized with finite elements to obtain a system of ordinary differential equations.

Weak formulation

To obtain the weak formulation each term of the equation of motion is multiplied with a
test function v € V and integrated over the bounded domain 2 with a continuous bound-
ary oS

0%u
/ PoE vdV—i—/Q (u):VvdV:/Qf-vdV—i—/m)U(u)n-vdS. (2.5)

The stress tensor o(u) can be rewritten in terms of the material stiffness C' and strain
tensor e(u) by using the relation of equation 2.2. With the strain-displacement relation
from 2.3 the expression €(u) can be replaced due to the symmetry of o (u):

/Q o(u): VodV = /C :VodV = /Vu C: Vodv. (2.6)

Inserting the result into equation 2.5 yields:

2

at;‘ vdV—l—/Vu C:VodV = /f vdV+/ o(u)n - vds. 2.7)

o0

2.2. Finite elements in linear elastodynamics

The weak formulation written in equation 2.7 can be reformulated in terms of the stiff-
ness bilinear form K (u,v), the mass bilinear form M (i, v) and the force linear form f(v)
containing body and surface forces. Therefore, the variational problem of form:

M (i, v) + K(u,v) = f(v) (2.8)

needs to be solved for v € V.

Discretization in space

By choosing appropriate global basis functions ¢ the solution u of the variational problem
is approximated by u;, and can be written as:

Up = Z UjPy- (29)
J

Choosing identical spaces for basis and test functions according to Ritz-Galerkin yields
a system of ordinary differential equations, written in matrix form:
82uh
M= 4+ Kuy, = f, 2.10
92 =1 (2.10)
with the mass matrix M, stiffness matrix K and load vector f. Setting test function v
to ¢ and inserting equation 2.9 gives the following representations of mass and stiffness
matrix:

M = / o" ppdV, (2.11)
Q

K = / Vel CVpdV. (2.12)
Q

The calculation of the system matrices can either be done with a global or local approach.
Here, only the local approach is considered. The continuous domain is split up in discrete
parts called elements. Each of these elements contributes to the global stiffness and mass
matrix. This results in a local computation for the corresponding element matrices and a
global assembly of the system matrices:

N

Me:/ ol pepedV . M => TIM.T, (2.13)
e e=1
N
Ke =/ Vel CNpedV | K:ZTEKeTe, (2.14)
e e=1

with transformation matrices 7 to place the entries into the global matrix.

2. Background on solving linear elastodynamics

2.3. Explicit timestepping methods and mass lumping

The discretization of the equation of motion with finite elements yields a second order
ordinary differential equation of the form:
2
M% + Kup = f. (2.15)
The solution to this initial value problem can be approximated by discretizing the time.
This is archived with time stepping methods, which can either be implicit or explicit. In
a first step, the standard explicit methods for ordinary differential equations of first order
are discussed. Therefore, equation 2.15 is transformed into a system of respective order.
Following [Dinkler, 2017], u and % are chosen as independent variables and the system
can thus be written as:

& 8ol 2
with
y = g;} . 2.17)
L Ot

In general an ordinary differential equation can be formulated in explicit form:

y=rfty). (2.18)

Considering the transformed system from equation 2.16, the explicit form can be written
as:

§ = [—MOIK é] Y+ {MOIP] : (2.19)

Explicit methods

Applying explicit time stepping schemes to types of problems written in the form of equa-
tion 2.18 have the advantage of only using information that has already been calculated.
According to [Hairer et al., 2008], the methods can be divided in one-step and multi-step
methods. While the latter ones use several values, the one-step methods only use informa-
tion from the last time step.

A family of explicit one-step methods are the Runge-Kutta schemes. An s-stage explicit
Runge-Kutta method can be written as:

Yni1 =Un +h > bikj, (2.20)
j=1

10

2.3. Explicit timestepping methods and mass lumping

with the time step size h. The approximation y,,+1 at ¢,41 is calculated only using in-
formation from the last time step, thus is based on the result y,, at ¢,,. The sum consists
of weights b and intermediate function evaluations k at different times inside the time
interval t,, and ¢, 1:

kj = f(tn+hej g+ 0> ajky), j =1.... (2.21)
=1

An expansion to the method yields an approximation y,41 and additionally calculates
a second approximation y,+1. The embedded Runge-Kutta methods use two schemes of
different order p and p (with p = p F 1). Both algorithms use the same function evalua-
tions, but different weighting values b and b. The different coefficients a, b, b and ¢ can be
visualized using the butcher-tableau of form:

1| air - Q1s

Cs as1 to GUss
bl ... b
bl . bs

The difference of both approximations of the solution can be used as local error estima-
tor for an adaptive time stepping. Explicit time stepping methods are only conditionally
stable, restricting the timestep size. In the scope of this thesis, an Runge-Kutta scheme
with adaptive time stepping is implemented (introduced by [Dormand and Prince, 1980]).
Six function evaluations are used to calculate solutions of fourth and fifth order accuracy.

Mass lumping

Considering equation 2.19, the explicit form can only be written by inverting the mass
matrix M. A direct inversion is often only efficiently realizable if the matrix is diagonal.
Otherwise a linear system has to be solved with the mass matrix on the left side, neglecting
the advantages of the explicit form. The mass matrix obtained by equation 2.11 is called
consistent as the mass is distributed uniformly over the elements. A concentration of the
masses on the element nodes leads to a diagonalization of the matrix, called mass lumping.
The lumping procedure is in general not unique, thus several methods can be used that
need to fulfill certain conditions. The mass of every element needs to be conserved, thus
the overall mass should not differ from the consistent approach:

ST pffrmeed = / pdQQ. (2.22)
i Q

11

2. Background on solving linear elastodynamics

Additionally, positivity of the mass matrix entries needs to be guaranteed. The most
simple scheme is to sum up each row of the consistent mass matrix and place the entry on
the diagonal:

Mi(ilumped) _ Z M. (2.23)
J

This approach only fulfills the positivity condition for elements with linear shape func-
tions and is thus not usable for higher order finite elements. Another method was intro-
duced by [Fried and Malkus, 1975] using a so called Lobatto lumping. A special quadra-
ture rule is constructed for the approximation of equation 2.11, where the quadrature and
nodal points of the element coincide. The basis functions are thus evaluated at the nodal
points of each element with a special choice of the weights, the resulting mass matrix is
diagonal. A simpler approach that is also valid for higher order elements is the HRZ lump-
ing (see [Hinton et al., 1976]), where the diagonal entries are scaled. For each element, only
the diagonal entries of the mass matrix are calculated. Afterwards the entries are scaled:

(lumped) _ Mle By
M, i A Me i, (2.24)
with m,. being the element mass. In comparison to the row summation approach, the
consistent mass matrix does not need to be calculated resulting in a more efficient scheme
based on the element level. An overview of customized mass lumping for specific prob-
lems is given by [Felippa et al., 2015].

2.4. Direct-time integration and implicit methods

For certain problems the time step size of explicit methods is very small in order to fulfill
the stability condition. This results in long computation times, despite the low cost per
step. In this case, implicit methods can be preferable, due to stiff parts in the equation.
Additionally, direct-time integration methods have been proposed for second order equa-

tions, which makes the transformation into a system of first order unnecessary. These
schemes are thus more storage efficient as no additional variables need to be introduced
as given in [Hairer et al., 2008]. In structural dynamics, such schemes are typically con-
structed for certain problem statements and often lack features of advanced Runge-Kutta
methods.

Direct-time integration

The direct-time integration is an alternative to the standard approach given in section 2.3,
solving the second order equation directly. In [Hairer et al., 2008], such schemes are pre-
sented as Runge-Kutta Nystrom methods, which can be quite efficient for problems of
the form § = f(t,y) (see [Bettis, 1973]). Considering structural dynamics, often special

12

2.4. Direct-time integration and implicit methods

schemes are constructed including the camping matrix C' (example given in [Lunk and Simeon, 2005]).
Those directly solve the second order ordinary differential equation based on a step-by-

step approach. The unknowns consisting of displacement, velocity and acceleration are
updated, such that the equilibrium equation is fulfilled in each time step. Depending on

how the variables vary within a time interval, different schemes can be constructed. Sev-

eral methods have been proposed for the solution of the linear equation of structural dy-

namics (see equation 2.15). An overview of those methods is given in [Subbaraj and Dokainish, 1989]
including the well known Wilson-6, Houbolt and Newmark methods. The latter one is a

popular family of direct-time integration schemes for structural dynamics, which were in-
troduced by [Newmark, 1959]. The scheme can be written in predictor/corrector form ,

with the predictor steps given as:

Yo i1 = Yn + B + (0.5 = B)1%jjn, (2.25)

Yns1 = Un + (L = 7)hijn, (2.26)

where intermediate values for the displacement and velocity are calculated. Afterwards
a linear system is solved to obtain the unknown acceleration for the next time step:

Mesgini1 = far1 — CUpyr — Kyniq,s (2.27)

with the effective mass matrix:

M.;s = M +~hC + Bh’K. (2.28)

In a last step, the predictor values are corrected based on the calculated acceleration:

Un+1 = Uns1 T VhUn+1, (2.29)

Ynt1 = Yni1 + Bh G, (2.30)

With the free variables § and ~ the methods accuracy and stability can be altered. The
parameters also determine the schemes type as shown in table 2.1. All methods of the
Newmark family are one step methods and can archive second order accuracy for a special
choice of the parameters. In addition, the Fox-Goodwin method can achieve an order four
accuracy, if no damping is included. The central difference method is only fully explicit for
diagonal matrices M and C, which can be done through lumping. Considering stability,
most of the methods are only conditionally stable and thus yield no major advantage over
the explicit methods presented in section 2.3.

13

2. Background on solving linear elastodynamics

Method Type B 0 Stability
Average acceleration (midpoint rule) | Implicit | 1/4 | 1/2 | unconditional
Linear acceleration Implicit | 1/6 | 1/2 conditional
Fox-Goodwin Implicit | 1/12 | 1/2 | conditional
Central difference Explicit 0 1/2 conditional

Table 2.1.: Parameters determining the type of the Newmark method considering different
values for § and ~

Implicit methods

In some of the Newmark methods shown, results from the time ¢,,, 1 are used for the calcu-
lation of the velocity and displacement in addition to the information at ¢,,. Such schemes
are called implicit. In each timestep a linear system has to be solved to obtain the infor-
mation at t,,41, increasing the computational intensity. These schemes can however be
unconditional stable independent of the size of the timestep. In regards of structural dy-
namics the Newmark-beta method is such a scheme, with the parameters set to § = 1/4
and y = 1/2.

An addition to the linear acceleration given in table 2.1 was presented by [Wilson et al., 1973].
By setting 5 = 1/6 and v = 1/2 as fixed values and introducing a new parameter 6 the sta-
bility and numerical dissipation of the method can be changed. The basic equations of the
Wilson- method are given by:

. . OAt .
Ytront = Ut + T(yt—i-QAt +), (2.31)
o1 . .
Yiront = Yi + OALy, + 6(9At)2(yt+9m + 24j¢). (2.32)

Similar to the Newmark methods, equations 2.31 and 2.32 can be split up into a correc-
tor/ predictor scheme. The method is constructed to be unconditional stable for values of
6 > 1.37. Additionally to the stability, the numerical dissipation can be controlled with 6.

14

3. Implementation: Components of the solver

This chapter gives an overview of the code structure and the most important features re-
garding the implementation. The single components of the program are grouped into
different layers shown in figure 3.1, similar to the code presented by [Butler et al., 2020].
The whole program is based on the C++ library DUNE (see [Blatt et al., 2016]) and it’s spe-
cific modules, representing the base layer. Additionally, some code examples presented
by [Sander, 2020] were used as starting point of the implementation. The different com-
ponents provide specific functionality to build numerical solvers, in this case for solving
linear elastodynamical problems:

* dune-istl: The module is used for the setup of data structures like nested sparse ma-
trices and block vectors. Additionally, methods for solving linear systems of equa-
tions are implemented. A more detailed description of the module and it’s features
is given in [Blatt and Bastian, 2007].

* dune-uggrid: Provides the implementation of unstructured grids.

® dune-grid: The generic grid interface (refere to [Bastian et al., 2008]) is given in this
module and the connection to the unstructured grid implementation, as well as the
possibility of loading gmsh files into the DUNE environment.

* dune-functions: The module provides different function spaces for finite elements.

* dune-geometry: Implements a variety of quadrature rules for the evaluation of inte-
gral equations on different reference elements.

The top layer is the so called user layer. The only way to interact with the solver is via
this interface. It consists of a configuration file, where all necessary simulation files and
parameters are set.

The actual solver with it’s main components represents the middle layer. The code struc-
ture of the implemented solver can be split into three main parts consisting of how to use
and extend the code, the assembly and last, the solving of the equations. The first section
given in 3.1 focuses on the usage of the solver and the simulation setup. In a next step the
different assembler implementations for global and local scopes are discussed in section
3.2. Finally, a brief description of the actual solution process of the underlying equations
is given in section 3.3.

15

3. Implementation: Components of the solver

User layer

simulation-config.xml

Solver for linear elasticity

Simulation

ODE-Solve
LGS-Solve

U\

dune-geometry

dune-common ’ ‘

dune-grid ’ ‘ dune-uggrid ’

dune-functions

‘ dune-istl ’ ‘

dune-localfunctions

dune-typetree ’

\J

Figure 3.1.: An overview of the code structure
todynamics equations

implementing the solver for the linear elas-

16

3.1. Using and extending the solver

3.1.

Using and extending the solver

Before the start of a simulation, settings regarding the solver need to be specified inside
a configuration file. During runtime the parameters set in the file are parsed and stored
inside a parameter class consisting of five parts:

Solver interface: Inside the solver interface block, the dimension of the problem and
the order of the basis functions is set. These two properties will be used to set up the
necessary data structures and the basis for the finite element calculation. Addition-
ally, the solver type is chosen either for a static or dynamic setup, the latter needs
additional information about timestep size and simulation runtime.

Mesh file: The meshing is based on the open source program gmsh and it’s respective
file format. This creates the opportunity to generate grids, which resemble complex
geometries either with structured or unstructured meshes. Additionally, it is neces-
sary to specify element and boundary tags inside the mesh file, which are unique
integer numbers. Those will later be used for material and boundary assignment
inside the assembler.

Output generation: The results of the simulation are written in the VTK file format.
This enables the visualization and post processing with ParaView. The ouput file-
name and writing interval for transient simulations can be modified.

Coupling information: Considering multiphysics simulations, the solver is ready to
be used with fluid structure interaction scenarios. The corresponding parameters
are set in the coupling block. With the status setting, the interface can be turned
on and off. If the parameter is set to true, the solver waits for a coupling partner
to communicate with. Otherwise, conventional static and dynamic simulations are
executed.

Material properties: The material properties that need to be specified consist of the
Young’s modulus E, the Poisson ratio v, the material density p and a name. In total
three different materials can be set. They are assigned with different unique material
parameter tags.

New assemblers on global and local scope can be added inside the respective files of
the /Assembler folder. All functions are implemented as templates offering flexibility re-
garding the dimension of the problem and different orders of the Lagrangian basis used.
The different time schemes are specified in the /Integrator directory and implemented
as classes.

17

3. Implementation: Components of the solver

3.2. Assembler for global and local matrices

In this section, the implementation of the assembly of the system matrices and the compu-
tation of the element matrices is presented. First, the main aspects of the global assembler
are shown and thus the procedure how to obtain the stiffness, consistent mass and lumped
mass matrix. Additionally, the global incorporation procedure of the boundary conditions
is shown. Afterwards, the local computation of the element contributions is discussed.
The approach is based on a reference element calculation, which is mapped to the actual
element geometry.

Global Assembler

While the calculation of the element matrix is exclusively done on a single element, the re-
spective matrices need to be placed into the global system matrix. The connection between
local and global scope can be established with an index mapping. Each vertex of the finite
element mesh is numbered in a global manner and additionally has a unique local index
inside an element it belongs to. The boolean index mapping matrix 7" resembles this prop-
erty providing an mapping from local to global numbering by only having one entry per
row that connects the scopes. The assembly of a system matrix based on the summation of
the element matrices is given by:

A=>"TTAT.,, (3.1)

for every element e with the calculated element matrix A. and boolean element index
mapping matrix 7.

In the code implementation, the index set functionality of DUNE is used to provide the
correct mapping. In finite element calculations the system matrices are sparse, thus only
a limited number of entries of the matrix are accessed. The global assembly procedure
is done with three loops. The outermost loop iterates over each element of the grid to
provide the necessary information for the element matrix calculation and retrieve the re-
sults. Afterwards, the entries are added into the system matrix based on equation 3.1 by
using the respective indices of the local element and map them to the corresponding global
numbering. This procedure is done for row and column entries. A simple code example
showing the most important features of the global assembler is given in figure 3.5.

While the main code structure shown in figure 3.5 is used for the assembly of the stiff-
ness matrix, consistent and HRZ-lumped mass matrices, each of the global assemblers
differ slightly in the initialization and setup. For the stiffness matrix, the Young’s modulus
and Poisson ratio of the current element is retrieved to calculate the respective material
stiffness matrix. Considering the mass matrices, the density of the element is recovered.
For the incorporation of the boundary conditions, an additional loop is inserted, which
iterates over the element intersections to retrieve the boundary tag. Those are set dur-
ing mesh generation and are based on unique integer values, which are imported while

18

3.2. Assembler for global and local matrices

loading the mesh. Each intersection also features an boolean value, which is true if the
intersection is on the outer boundary of the mesh and is false otherwise. Based on the tag,
the corresponding boundary condition is inserted into the system matrices and load vector
(see figure 3.3).

for(const auto& element : elements (gridvView)) {
// calculate element matrix

for(size_t i=0; i<elementMatrix.N(); i++) {
auto row = localIndexSet.index (1i);
for(size_t j=0; j<elementMatrix.M(); J++) {
auto col = localIndexSet.index(73);
matrix[row] [col] += elementMatrix[i][]J];

Figure 3.2.: Example program showing the main features of a global assembler in DUNE

for(const auto& element : elements (gridvView)) {
for (const auto& isect : intersections(gridvView, element)) {
if (isect.boundary()) {
switch (boundaryEntity[isect.boundarySegmentIndex()]) {

case 0:
// no boundary condition applied
break;

case 1:
// set fixed wall boundary condition
break;

case 2:
// set coupling boundary condition
break;

Figure 3.3.: Example program showing the main features of the global boundary condition
incorporation

19

3. Implementation: Components of the solver

Local Assembler

To obtain the element matrices, a local assembler is used. It only uses information of a
single element at time and either calculates the contributions to the stiffness, consistent or
HRZ-lumped mass matrix. The globally defined basis functions ¢ introduced in section 2.2
are defined for every single vertex of the mesh. Additionally, the functions are chosen in
a way to feature only local support, being nonzero on the respective element domain and
zero otherwise. This property results in sparse system matrices in the assembly process.
Concerning an appropriate basis, a continuous Lagrangian basis Sg is chosen consisting
of polynomials of order p (here only first and second order basis functions are consid-
ered). Inside the code implementation, the syntax given in figure 3.4 is used to create the
Lagrangian basis of order p.

const int basisOrder =
Functions: :LagrangeBasis<GridView, basisOrder> basis (gridView) ;

Figure 3.4.: The DUNE call to create a Lagrangian basis on a given mesh of order p

The integral equations 2.13 and 2.14 discussed in section 2.2 need to be calculated for
every element and later added into the global matrices. The integrals are solved with a
Gauss-quadrature of respective order to archive an exact integration. In general the el-
ements of a mesh each have different coordinates. Additionally, for unstructured grids
the shape of each element differs. Therefore, the local quadrature is defined on a so called
reference element and the evaluation of the basis is mapped to the actual element. The pro-
cedure can be done with the determinant of the Jacobian matrix of the mapping function
det(J). If the gradients of the basis functions have to be calculated, then the transposed
inverse of the Jacobian (J7)~! needs to be used in addition. Thus, the integral equations
can be rewritten to:

M, = /Q S pepedV = 3 widT (€)pee(&)|det() (3:2)
e =1

and

K.= /Q Ve CVpedV = wi(JT) VR (&) Ce(JT) T V(&) det ()| (33)
e i=1

with quadrature weights w and quadrature coordinates .

Considering the code implementation, the structure is similar to the global assembler.
Again, loops are used for the assembly process, but this time iterating over quadrature
points and matrix entries. In a first step, a quadrature rule of respective order is chosen for
the approximation of the integral formulation. Furthermore, the quadrature point postion,

20

3.2. Assembler for global and local matrices

the determinant of the Jacobi matrix as well as the invere transposed of the Jacobian are
set. Afterwards, the contribution of each quadrature point is calculated and added to the
element matrix. A small code example with the main features of the element assembler is
given in figure 3.5.

auto& quadRule = QuadratureRules<double, dim>::rule(element.type(), order);
for (const auto& quadPoint : quadRule) {

auto quadPos = quadPoint.position();
auto determinantJacobian = geometry.integrationElement (quadPos);
auto invTrpJacobian = geometry.jacobianInverseTransposed (quadPos) ;

localFiniteElement.localBasis () .evaluateFunction (quadPos, shapeFnc);
localFiniteElement.localBasis () .evaluateJacobian (quadPos, shapeFncGr);

for(size_t 1=0; i<elementmassMatrix.N(); 1i++) {
for(size_t j=0; j<elementmassMatrix.M(); J++) {
elementMatrix[i] [J] += quadPoint.weight () =

Figure 3.5.: Example program showing the main features of a element assembler in DUNE

The implementations for the stiffness, consistent mass and HRZ-lumped mass matrices
use the same concept shown above, but differ heavily considering their implementation.
While the calculation process of the consistent mass matrix evaluates all basis function en-
tries, the HRZ-lumped one only uses the diagonal entries and needs an additional scaling
according to equation 2.24. In contrast, the stiffness matrix validates the basis function
gradients and thus needs a different calculation procedure.

21

3. Implementation: Components of the solver

3.3. Numerical schemes for solving the governing equations

This section gives a short overview of the implementation of numerical schemes regarding
linear systems and ordinary differential equations. The first part focuses on the solution
process of the linear systems of equations that need to be solved during the simulation.
Afterwards the usage of the time stepping schemes presented in section 2.3 and 2.4 is
presented.

Solving linear systems

During the process of a static calculation and implicit time stepping, a linear system of
equations of the form

Aup = b (3.4)

has to be solved, where A is a stiffness or mass matrix, vector b a load vector and uy, the
solution approximated by finite elements. The DUNE interface offers several numerical
methods that can be applied to such problems, from which the conjugate gradient method
is chosen. To speed up convergence, a precondtioner is used to reduce the condition num-
ber of matrix A. The implemented method uses an incomplete LU decomposition, thus
the reformulated problem is given by:

(LU) ™' Ay, = (LU) M, (3.5)

where the inverse of A is tried to be efficiently approximated. A short syntax example is
given in figure 3.6, including the preconditioning, operator generation and solving steps.

MatrixAdapter<Matrix, Vector, Vector> operator (systemMatrix);
SeqILUO<Matrix, Vector, Vector> preconditioner (systemMatrix, 1.0);
CGSolver<Vector> cg(operator, preconditioner, tol, iter, 2);
InverseOperatorResult statistics;

cg.apply(x, RHS, statistics);

Figure 3.6.: Example program showing the main features of the setup of the precondi-
tioned conjugate gradient method in DUNE

The iterative process of the method can be stopped by choosing an appropriate tolerance
for the convergence criterion. Additionally, a limit for the number of iterations can be set.

22

3.3. Numerical schemes for solving the governing equations

Time stepping methods

For the solution of the occurring system of ordinary differential equations, direct integra-
tion methods as well as a more traditional explicit Runge-Kutta method are chosen. For
the explicit scheme, the C version of the RK5(4) method presented by [Hairer et al., 2008]
is used as a simple function call. The integration of the code into the existing framework
consisting of the definition of the function evaluation of the equations and providing ap-
propriate output for visualization was only possible with modifications to the internal
functions. The advantages of a pure explicit scheme are partly negated due to the usage of
different data structures. The nested sparse matrices and block vectors provided by DUNE
can’t be used and thus the data has to be written into specific arrays provided by the code
structure, which lowers performance significantly. A more convenient approach is to write
the method in a syntax, which is compatible to the functionality provided by DUNE. The
Newmark family is implemented as a derived class, which is inherited from a direct in-
tegrator class, such that new schemes can easily be added. The intergrator provides two
main methods called initialize () and step(). The first function sets up all necessary
data structures and pre-calculations, where as the step method executes one time step. A
short example of the usage of the Newmark scheme is given in figure 3.7.

double beta = 0.25;

double gamma 0.5;

Dune: :Newmark<sparseMatrix, blockVector> integrator (mass, stiffness);
integrator.coefficients (beta, gamma);

integrator.stepsize (dt);

integrator.initialize (displacement, load);

while (t<t_end) {
integrator.step(displacement, velocity, acceleration, load);
t+=dt;

Figure 3.7.: Example program showing the usage of the Newmark integrator in DUNE

Providing specific member functions makes the implementation process into existing
code and the modification of the time loop easier. This will especially be relevant for the
simulation of fluid-structure interaction cases.

23

4. Validation cases for linear elasticity

To validate the code implementation for the equations of elastodynamics, two test cases
are simulated. In a first step, a static simulation is presented in section 4.1. The scenario
consists of a cantilever beam, which is clamped on one side. A force is applied on the
free end resulting in a deflection of the beam under the load. The approximated solution
is compared to the analytical results and thus a correct calculation and assembly of the
stiffness matrix can be checked. For the dynamic validation, the vibration of a slender
cantilever plate is investigated in section 4.2. The oscillation period of the discretized sys-
tem is compared to the analytical calculated natural period waveform. The explicit and
implicit time stepping schemes as well as the correct implementation of the mass matrix
and lumping methods can therefore be checked.

4.1. Static analysis of a cantilever beam

For the static analysis case, the bending of a cantilever beam is analyzed. The goal hereby
is to verify the correct calculation and assembly of the global stiffness matrix. Therefore,
the deflection at the free end of the cantilever beam according to the theory is compared
against the approximation obtained with finite elements.

The analytical solution of the vertical deflection at the free end of a Euler-Bernoulli beam
is given as (corresponding to [Merkel and Oechsner, 2020]):

FL3
danalytical = ﬁ7 (41)

with the vertical force F' applied, beam length L and the Young’s modulus £. The sec-
ond moment of area around the axis of displacement is given by:

BH?

I= ETR (4.2)
where B is the width and H the height of the beam. The geometry and parameters are
chosen in such a way, that the deformation due to the load is rather small compared to
the overall length of the beam. Therefore, accurate results can be obtained by using the
linear elasticity approach. Additionally, the difference of the analytical solution between
the two most commonly used beam theories including Euler-Bernoulli and Timoschenko

is negligible.

25

4. Validation cases for linear elasticity

Simulation setup

For the simulation, a two and three dimensional validation case is considered. The geom-
etry of the beam used is similar to the one proposed in [MacNeal and Harder, 1985] with
alength L = 6m and a height H = 0.2m (see figure 4.1). For the three dimensional setup
a width W = 0.1m is used, whereas in the other case the unit width is implied. Consid-
ering boundary conditions, one side of the beam is clamped, thus the displacement in all
directions is restricted on that side. At the free end a unit load is applied in positive y-axis
direction.

F
d=0 |
yL

Figure 4.1.: Two dimensional simulation setup of the static beam bending scenario

For the discretization of the structure, ten P, lagragian, hexahedral elements are used
in the three dimensional setup. In the respective two dimensional test scenario, the cor-
responding quadrilateral elements are chosen. The physical parameters consisting of the
Young’s modulus E, Poisson ratio » and applied force of the validation case are given in
table 4.1.

Reference force ‘ F 1N
Young’s modulus | E | 10"N/m?
Poisson ratio v 0.3

Table 4.1.: Physical parameters of the static beam bending scenario

The static system is given by Ku = f and solved by applying a preconditioned con-
jugate gradient method. The convergence criterion is set to 107, As preconditioner, an
incomplete LU-decomposition is utilized.

Results

First, the overall deformation of the cantilever beam is analyzed. The comparison of the
vertical deflection values at the free end and the corresponding errors are discussed af-
terwards. Due to the unit force applied in positive y-axis direction, the beam is bending
upwards with the highest deformation occurring at the free end. The vertical displacement
of the three dimensional cantilever beam is shown as cross section view in figure 4.2. The

26

4.1. Static analysis of a cantilever beam

single load induces a linear bending moment behaviour and thus a parabolic deformation
profile. This corresponds to the deflection of the cantilever beam obtained by simulation.
The two dimensional case yields a similar deformation result. There the overall deforma-
tion is smaller, due to the pseudo unit length taken as width.

EEEmmmm—

y-displacement (m)
oo 0.00 0.02 0.04 0.06 0.08 0.1 0.12

| ‘ : ‘ o

Figure 4.2.: Cross section view of the vertical displacement 3D cantilever beam (the defor-
mation of the geometry is scaled by a factor of 5 for better visualization)

The results of the two different simulation cases, the corresponding analytical solutions
and different error measures are given in table 4.2. Considering the two dimensional sim-
ulation first, the deflection at the beam tip approximated with quadratic finite elements
is very close to the result corresponding to the Euler-Bernoulli beam theory. The absolute
error is of the order of 1079, whereas the relative error is at around 10~*. This results
in a percentage error of 0.0185%. For the three dimensional case, the difference between
the result given by the theory and the approximated solution is bigger. The errors are in
the order of 10~ for the absolute and 1072 for the respective relative error. The error in
percentage is given by 0.36%. Considering the type and number of elements used, the
accuracy of the approximation in both simulation setups is considered as sufficient. Con-
cluding the static validation case, it is assumed that the calculation of the overall stiffness
matrix K, including element wise calculations and assembly is correct.

‘ analytical approximate absolute error relative error percentage error
2D | 0.0108 0.010798 2.0-107° 1.85-1074 0.0185%
3D | 0.108 0.108396 3.96-10~* 3.67-1073 0.36%

Table 4.2.: Analytical and approximate solution for the two and three dimensional beam
bending simulation including the different error measures

27

4. Validation cases for linear elasticity

4.2. Oscillation of a slender plate

The second test scenario consists of a cantilever plate, which is oscillating due to an initial
deflection. The overall simulation setup is similar to the one given in [MathWorks,]. In
a first step, the static deformation based on a unit load is calculated. This result is used
as initial deflection for the dynamic simulation. Afterwards, the approximated period of
the oscillation is compared to the analytical solution. For the transient calculation, the
calculation and assembly of the mass matrix and implementation of the HRZ-lumping
schemes are validated. Additionally, the time stepping methods are checked. Those consist
of the explicit RK5(4) scheme and the Newmark-beta method as direct, implicit integrator.

The frequency at which a cantilever plate of length L, width W and height H is oscillat-
ing can be determined by calculating it’s eigenfrequency:

| EI

_wo
fo—%,

and

(4.4)

with the Young’s modulus F, density p and second moment of area I. The eigenfre-
quency or natural frequency of a system is the frequency the mechanical system tends to
oscillate at in absence of damping or external loads. The oscillation period is given as:

_ 1
fo
The natural frequency of the discretized system can be found using a modal analysis

approach. Therefore, the generalized eigenvalue problem of following form needs to be
solved using the stiffness matrix K and mass matrix M (see [Dinkler, 2017]):

To (4.5)

Kz =w?Mz, (4.6)

with A = w? being the distinctive eigenvalues of the system and the eigenvectors z. Solv-
ing the full system of equations for all eigenvalues given in equation 4.6 is very demanding
in terms of computational cost. In this case only the smallest eigenvalue is of importance,
due to it’s correspondence to the lowest frequency (natural frequency). The analytically
calculated eigenfrequency and thus it’s eigenvalue are known. With algorithms like the
inverse iteration, the approximated eigenvalue of the discretized system can be calulated
efficiently by taking the analytical solution as inital guess.

The parameters of the simulation setup are again chosen in such a way, that the overall
deformation of the plate is small compared to it's geometry size.

28

4.2. Oscillation of a slender plate

Simulation setup

In contrast to the static validation case, only the three dimensional test case is discussed.
For both dimensions the results obtained were very similar in terms of accuracy, thus the
two dimensional setup is omitted here. Considering the discretization of the structure, 120
P, lagrangian, tetrahedral elements are used. The mesh of the plate is shown in figure 4.3.

Figure 4.3.: Discretization of the plate with quadratic tetrahedral elements

The physical constants as well as the parameters used for the time stepping schemes
are given in table 4.3. For the Newmark-beta method the coefficients beta and gamma are
chosen in a way that the implicit method achives unconditional stability as discussed in
section 2.4. The time step size is chosen rather large compared to the one calculated by the
explicit RK5(4) scheme, which is around the order of 10~%s to be numerically stable.

Young’s modulus E 3-107 N/m?
Poisson ratio v 0.3
Density p 0.00077 kg/m3
RK5(4) Atrics(a) adaptive
Newmark-beta | AtNewmark—beta 0.0001s
I6] 0.25
0% 0.5

Table 4.3.: Physical parameters of the dynamic plate oscillation scenario

The simulation procedure is started by calculating the static deformation of the plate by
applying a unit load at the free end. The boundary conditions are similar to the static val-
idation case. The result is used as initial condition for the transient analysis. The accuracy
of the static result is similar to the three dimensional case considered in section 4.1. For
the dynamic simulation, the velocity and acceleration at the clamped end are restricted in
addition to the displacement.

29

4. Validation cases for linear elasticity

Results

In a first step, the physical behaviour of the beam is discussed. At time ¢ = 0.0s, the
plate is in it’s initial deflection corresponding to the static deformation. This resembles
a bending in positive y-axis direction. Starting the time stepping shows the motion of
the structure. It starts oscillating, where the amplitudes are given by the positive and
negative value of the initial deformation. At around ¢ = 0.00175s the plate reaches the
state of no deformation. Afterwards, the negative amplitude is reached at a time close
to t = 0.0035s. The vertical displacement for different times during the oscillation are
shown in figure 4.4. To ensure the correct assembly, calculation and lumping of the mass
matrix, the fundamental frequency of the discretized system is compared to the analytical
one. For the approximation of the eigenvalues and thus the oscillation period, an inverse
iteration is used. The analytical calculated eigenvalue from equation 4.3 is used as shift and
therefore as initial guess for Agppr0.- That way a rapid convergence is achieved and a fast
approximation of the discretized systems oscillation period is obtained. For the inverse
iteration, equation 4.6 can be rewritten to:

(K — pM)z = (w? — p)Mz, 4.7)

with the shift ;.. The approximated eigenvalue found is in close proximity to u, hence a
good initial guess accelerates convergence. With forward and backward substitutions the
iterations of the scheme are given by:

=Mz,
Yp—1 Zp—1 (4.8)
(K = pM)zp = ypa

where z, is the respective eigenvector. The approximated eigenvalue can be retrieved
by the Rayleigh quotient:
T
2, Azp

T .
Zp Zp

Ay = (4.9)

The results for the consistent and HRZ-lumped mass matrix as well as the respective
error measures are shown in table 4.4. Both approaches yield similar results. The absolute
errors are in the order of 105 and the relative ones at around 10~%. Based on the obtained
approximation, the correct implementation of the mass matrix can be assumed.

mass matrix ‘ analytical approximate absolute error relative error percentage error

consistent 0.007841 0.007885 4.4-107° 5.61-1073 0.56%
HRZ-lumped | 0.007841 0.007894 53-107° 6.76 - 1073 0.68%

Table 4.4.: Analytical and approximate solution of the plate oscillation validation case for
a consistent and lumped mass matrix, as well as the error measures

30

4.2. Oscillation of a slender plate

—

y-displacement (m)
< —& 000 0002 0004 0006 0008 001 0012 0014 0.02
} | | " |

(a) t=0.0s

y-displacement (m)
< —oX 000 0002 0004 0006 0008 001 0012 0014 0.02
| | | 1 I

(b) t=0.00175s

y-displacement (m)
Z— 000 0002 0004 0006 0006 001 0012 0014 002
| I | 1 |

(c) t=0.0035s

Figure 4.4.: Vertical deformation of the plate at different times (deformation of the geome-
try is scaled by 5 for better visualization)

31

4. Validation cases for linear elasticity

The overall simulation run for t = 0.025s, including approximately three oscillation
periods. The vertical displacement at the free end of the plate for different time stepping
methods is shown in figure 4.5. The amplitude of the oscillation is given by the initial
vertical displacement. A difference between both time stepping methods can mainly be
seen in the amplitude resembling the maximum deflection of the plate tip. This might
come from different time steps used for the schemes, as well as the different orders of
accuracy of the methods. Taking into account the oscillation periods, both methods show
the correct behavior.

0.02 : : ‘
—— Newmark-beta

—— Runge-Kutta 5(4)

I

A
0.015

0.01

0.005

—0.005

y-displacement in m

—0.01

—0.015

_002 | l 1 | | | | | | | |
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022

time in s

Figure 4.5.: Vertical displacement of the free end of the plate for the explicit RK5(4) and
implicit Newmark-beta method

32

5. Background on partitioned simulation

Partitioned simulations are characterized by a high flexibility, coupling independent solvers
with different discretizations and time stepping methods. This advantage comes with the
cost of additional work that has to be done regarding communication, data mapping, time
interpolation and coupling schemes.

In the following, a brief introduction is given about the most common numerical schemes
used in partitioned simulation based on the related literature. First, the data mapping
methods are presented in section 5.1. Afterwards, time interpolation procedures are intro-
duced in section 5.3 and serial coupling schemes are discussed in section 5.2.

5.1. Data mapping methods

One of the aspects of partitioned coupling is the handling of data between meshes. The dif-
ferent simulation domains are often discretized differently, which makes a mapping at the
coupling interface necessary. For matching meshes as described by [Gatzhammer, 2014],
where the nodes of both meshes coincide at the coupling boundary, the values can just
be copied from one mesh to the other. Generally, non-matching grids are used for multi-
physics simulations, where the real coupling interface I' is only approximated and thus the
grids might not coincide (see figure 5.1). A specific case are non-conforming grids, where
the meshes share the same geometric boundary, but the nodes don’t coincide. Commonly
used mappings are based on projections (nearest-neighbor/-projection) and radial-basis
function interpolation as shown in the comparison carried out by [de Boer et al., 2007].
Additionally a mapping can be conservative or consistent. For a conservative mapping
the the overall sum of a quantity is conserved. For example forces at nodes add up and thus
should be mapped conservative such that the overall force value on a coupling interface
in conserved. For a consistent mapping, the value is just copied. This makes sense for
displacements, where nodes of local proximity at the interface should have the same value.

Nearest-neighbor mapping

The most trivial mapping form is to use information from the geometrically, closest node of
the other grid. This results in a so called nearest-neighbor mapping of first-order accuracy.
For each node the closest one in the other mesh is searched based on the euclidean distance
and the value is copied. Related to the mapping accuracy, [Gatzhammer, 2014] considers it
to be the worst choice. Additionally, this approach can lead to instabilities at the coupling

33

5. Background on partitioned simulation

mesh two

mesh one

Figure 5.1.: Coupling of non-matching grids at the interface with the real boundary shown
in red

interface, described by [Hertrich, 2019]. If one of the grids is substantially coarser then the
other one, the meshes at the coupling interface are unphysically distorted.

Nearest-projection mapping

A second-order accuracy method is achieved with the nearest-projection mapping. A node
is orthogonally projected on the other mesh. The value there is interpolated from neigh-
bouring nodes and used in the original point. For this kind of mapping additional infor-
mation has to be provided (see [Yau, 2016]) related to the connectivity of the nodes that
make up a face or edge.

Radial-basis function interpolation

Another mapping approach is to build up an interpolant with the same dimension as the
coupling interface problem. The nodes and data of one mesh is used for the creation,
whereas the evaluation is done at the nodes of the other mesh. The most common type of
functions used for the interpolation are radial-basis functions (RBF) with ¢(z) = ¢(||z||).
The RBF is build with globally or compactly supported functions. Compact supported
RBF’s use a radius in which the support is defined and set to zero outside:

o(llzll) =0, [lz|| > r. (5.1)

An overview of commonly used functions for radial basis interpolation is given in table
5.1 (discussed by [de Boer et al., 2007], [Gatzhammer, 2014] and [Rendall and Allen, 2008]).
It was shown by [de Boer et al., 2007] that the first two RBF’s shown in table 5.1 yield the
most robust results. In many applications, it is easier to choose appropriate values for pa-
rameter a than for the compact support radius r concerning stability and accuracy of the

34

5.2. Coupling schemes

mapping. Due to the absence of projections, the problems connected to nearest-neighbor
and nearest-projection mapping do not occure (see [Gatzhammer, 2014]).

type o(lIz) support
Thin-plate spline ||| [*log||z|| global
Multi-quadric biharmonic spline Va2 + ||z]|? global
Inverse multi-quadric biharmonic spline 1/+y/a? + ||z||? global
Gaussian e~allzll® global
Compact polynomial, C° (1 — Lzlly2 local
Compact polynomial, C° (1- ”%”)8(32(“%”)3 + 25(”3?—”)2 + 8”%“ +1) | local

Table 5.1.: Overview of different RBF’s with global and local support with tuning parame-
ter a and compact support radius r

5.2. Coupling schemes

The combination and implementation of several solvers in an overall algorithm is another
important task in partitioned coupling simulations. Most schemes can be grouped de-
pending on their iteration behaviour and composition into explicit or implicit and serial or
parallel procedures (see for example [Landajuela et al., 2017]).

Considering serial coupling, the solution process of the problem is staggered. One par-
ticipant solves the associated subproblem and sends the solution to the other solver. The
result is calculated there, send back to particpant one and the procedure starts again. An-
other approach is the calculation of the result by each participant at the same time. Af-
terwards the solution is send to the other solvers calculating the next step simultaneously.
Such a procedure is called parallel coupling.

This thesis will mainly focus on serial methods of explicit and implicit nature. The nota-
tion used is similar to the one used in [Rusch, 2016] and [Wall, 1999]. The operators F™ and
S™ resemble the calculation of a solver at a coupling step n. The result of an computation
at a certain time is denoted by small letters, thus f nt+1 and s"t! would be the solutions
obtained by solver F'and S at 7 =n + 1.

Serial, explicit coupling

A very simple algorithm in this category is the conventional serial staggered (CSS) scheme.
Figure 5.2 shows exemplarily the procedure of the method. Solver one calculates the so-
lution f™*! at the next coupling time step 7! with the structural solution s” at 7. The
result is communicated to participant two, where the structural solution s"*! is calculated
and send back to solver one. With this one coupling window is complete and the proce-
dure starts again. The approach is computationally inexpensive, but lacks in accuracy. The

35

5. Background on partitioned simulation

equilibrium of the coupling quantaties is not fullfilled, resulting in numerical instabilities
for strong coupled problems.

Fm F”(Sn) Fn+1 Fn+1(8n+1) Fn+2
solver one ¢

fn+2 n+2

> @ »@—
qn Sn(fn+1) gn+l Sn+l(sf+2) gn+2

solver two

Figure 5.2.: Schematic procedure of the conventional serial staggered scheme

Serial, implicit coupling

Serial implicit coupling is similiar to the explicit method, but additionally based on sub-
iterations. This procedure is done to achieve an equilibrium between two solvers, thus
the method yields a better accuracy than explicit coupling. The following notation was
also used by [Rusch, 2016], [Yau, 2016] and [Gatzhammer, 2014]. The CSS scheme can be
transformed into a fixed-point problem, where one iteration is written as:

Sk+1 — So F(Sk) = H(Sk), k= 1, 2, oo (52)

A more practical approach is to use the residual form of equation 5.2:

Tk+1 = R(Sk) =So F(Sk) — S = H(Sk) — Sk (53)

The iteration procedure can be stopped by choosing an appropriate convergence crite-
rion. The overall convergence of the system can be measured with an absolute criterion,
taking the euclidean norm of the residual yields a scalar bound:

|7re+1ll2 < €aps- (54)

The same can be done for consecutive sub-iterations, defining a relative convergence
measure as:

sl (5.5)

The first iteration of this procedure is identical to the CSS approach. Afterwards, the

obtained solution s}*! is not used for the next coupling window, instead the calculation

36

5.2. Coupling schemes

is restarted with the result as input quantity s} (regarding figure 5.2). This results in a
new solution f,?j:ll of participant one and thus sZﬁ The procedure is an iterative scheme
proceeding until the convergence criterion is reached. The solution is refined by each
iteration to match the equilibrium condition of the quantities at the coupling interface.
The serial fixed point procedure described above is referred to as multiplicative Schwarz
procedure. Due to stability reasons, a relaxation step is included called acceleration (see

[Uekermann, 2016]):

S = S o F(sk) = H(sk) (5.6)

and

Sk41 = Wk - Sk + (1 — wk) - Sk, (57)

where the first line describes the so called Picard-iteration similar to equation 5.2 and the
second line the acceleration step included in every iteration. The most simple acceleration
scheme is obtained by a constant relaxation with a fixed parameter w”, which might yield
acceptable results for some problems. A more sophisticated method was introduced by
[[rons and Tuck, 1969] resulting in the dynamic Aitken choice of wy;:

(Tk—l)T(""k — Tk—1)

, (5.8)
Ik — re—1ll3

W = —Wg-—1

with rp = 3 — s;. Nowadays, these group of acceleration methods is outclassed by
quasi-Newton coupling schemes, which tend to be more stable for strongly coupled prob-
lems with instabilities. (discussed by [Uckermann, 2016] and [Mehl et al., 2017]). The ac-
celeration step is changed considering the nonlinear fixed-point equation R(s;) = H(si) —
s = 0 from 5.3. The Picard-iteration step (equation 5.6) is included resulting in:

R(sk) = 8 — H '(s) = 0. (5.9)

Reformulating the residual of the Picard-iteration in terms of a Newton update yields:

T (8k) A8, = —R(sh), (5.10)

with the Jacobi matrix of the residual. The linear system needs to be solved for the
optimal correction A3y and thus the final update reads as:

Sk1 = Sk + Ady, (5.11)

where the Picard-iteration is altered by the correction term. The different quasi-Newton
acceleration methods differ in the approximation of the Jacobi matrix of the residual op-
erator. Two popular schemes are discussed in detail by [Scheufele and Mehl, 2016] and
[Uekermann, 2016]: the Anderson acceleration and the generalized Broyden method. Com-
pared to the Schwarz procedure methods, the quasi-Newton schemes are computationally

37

5. Background on partitioned simulation

rather expensive, due to the fact that in every iteration step a linear system has to be solved.
The stability and convergence behaviour is thus increased.

A further addition to the presented schemes is a manifold mapping algorithm for parti-
tioned coupling (see [Blom et al., 2015]). The method is based on a multi-level approach,
where a fine model represents the original problem, which is computationally expensive
to evaluate. The coarse model is a surrogate or reduced order model based on the original
problem and thus less accurate, but not as costly to compute. In a first step, an optimiza-
tion problem regarding the coupling is solved on the coarse model. The solution is used
to evaluate the fine model. The optimization on the coarse model is adjusted based on the
solution via an affine mapping using a so called manifold mapping matrix. These steps
are repeated till convergence is achived.

5.3. Time interpolation

Considering time-dependent, partitioned coupling problems, the involved solvers only
exchange data at fixed synchronized points in time. The time interval between those points
is called coupling window. Inside a coupling window, each solver uses an time integration
scheme fitting to the specific sub-problem. The methods can either be explicit or implicit,
low or high-order and may even consider different time scales.

Order reduction with subcycling

A partitioned coupling with solvers using the same timestep size and thus the same amount
of steps inside a coupling window is not very common. Often adaptive timesteping schemes
are used in combination with fixed ones inside different solvers, resulting in a so called
subcycling, as described by [Wall, 1999]. The coupling window acts as master, where
solvers have to be synchronized at the end. One participant might only need one or a small
amount of steps to reach the end of a coupling window, whereas the other solver utilizes
a smaller step size (see figure 5.3), hence subsycles.The overall accuracy is determined by
the lowest order time integration scheme used. Without a proper time interpolation, the
accuracy of the overall system will degrade to order one as shown by [Birken et al., 2010],
independent of the time integration methods used. This results in the need for a proper
time interpolation to archive accurate high-order results (see [Ruecth et al.,]).

High-order time interpolation

To be able to achieve a high-order coupling scheme in time, a continuous representation of
the solution has to be available inside a coupling window. An algorithm implementing this
procedure inside the serial explicit and implicit coupling is called waveform iteration/re-
laxation, as discussed by [Ruecth et al,,]. The relaxation is related to the acceleration step
described in section 5.2, whereas the waveform regards the continuous representation of

38

5.3. Time interpolation

the solution in time (see figure 5.3). Thus, in each coupling step an interpolant of at least or-
der O(AtP) has to be found, where p is the minimum degree of the interpolant to maintain
the order. Normally, p is chosen such that it has at least the degree of the time integration
scheme with the lowest order. Which interpolation scheme to use is still part of ongoing
research. In the waveform relaxation method presented by [Rueth et al.,], b-splines are
used as interpolant. Often, the time integration in multi physics simulation is done with
different methods. On a first glimpse, dense or continuous output would yield an very
efficient way of construction an interpolant inside a coupling window. Due to the parti-
tioned approach, the solvers are treated as black-boxes, where only a minimum amount
of data is exchanged. Therefore, a method needs to be found that creates the interpolant
efficiently without knowing which solvers are involved in the simulation.

t??+2 ([4 T \ o tg—i_s
n+4

< °

n+3

+1 $ L

n

R] +2

n

°

n+1

T :

'y @ L e (i
solver one coupling window solver two

Figure 5.3.: Time interpolation approach between two coupled solvers with different time
steps

39

6. A preCICE adapter for DUNE

In this chapter a new DUNE module for multi-physics simulation is introduced. In most
parts it is a wrapper for the coupling-library preCICE introduced by [Bungartz et al., 2016]
for partitioned simulation. Several open-source solvers were already modified by [Yau, 2016]
(Calculix, Code Aster), [Chourdakis, 2017] (OpenFOAM) and [Rusch, 2016] (SU?) to imple-
ment the necessary coupling functionality. For abstract numerics like a finite element li-
brary, [Hertrich, 2019] implemented a linear elasticity solver for solid mechanics in FEniCS
with the preCICE coupling functionality. These implementations will be used as reference
for the dune-precice module.

In a first step, a brief introduction is given about preCICE in section 6.1. The functional-
ity and implementation of the dune-precice module is shown in chapter 6.2. The necessary
steps of the implementation of the dune-precice module inside a dummy solver environ-
ment is discussed in section 6.3.

6.1. Coupling library preCICE

The coupling library preCICE is based on C++ and used as a tool for partitioned simulation
in multiphysics. It handles the four major aspects that were mostly discussed in chapter 5
consisting of communication, data mapping, coupling schemes and time integration. Time
integration is yet not fully supported in preCICE and still an object of ongoing research.
The data mapping consisting of nearest-neighbor, nearest-projection and radial basis func-
tion interpolation is specified in a configuration file including the method, the parameters
and the mesh where the mapping happens. The coupling scheme (explicit/implicit and
serial/parallel) is also set there in addition to the coupling window size and the overall
simulation time. For the implicit coupling the convergence criteria has to be stated. An
acceleration method is optional as discussed before, but highly recommended. In a last
step, the communication procedure is defined, consisting of the members participating in
the simulation and which quantities are written or read by each participant.

To make use of the methods, preCICE offers an API to modify existing solvers for multi-
physics simulation. The methods can be divided in several groups based on the function-
ality offered. In the following, the most important methods are presented, which are also
used in the dune-precice module.

41

6. A preCICE adapter for DUNE

Important methods of the preCICE API

At some point in the simulation procedure, the interface to preCICE has to be started to
begin the coupling with other participants. With a call to initialize () the communica-
tion as well as the memory for necessary data structures is set up by the library. On the
other hand, finalize () ends the communication, frees the memory and stops preCICE. To
track the overall time of the simulation in regards to the coupling, the advance () method
is called. It returns the time left inside a coupling window. This is mandatory for syn-
chronization to enable the communication of data. The presented procedures are called
steering methods.

double initialize();
double advance (double computedTimestepLength);
void finalize();

The most important status query is the status of the overall coupling. Depending on the
state, different procedures can be triggered inside the simulation.

bool isCouplingOngoing();

Sometimes it is necessary to have conditional statements that are triggered based on
a specific action. The most prominent method in preCICE using this feature is implicit
coupling, where states need to be stored and reloaded based on the beginning and end of
a coupling window to enable fixed-point iterations.

bool isActionRequired(const std::string &action);
void markActionFulfilled(const std::string &action);

The mesh access is necessary at the beginning of the simulation. The coupling boundary
needs to be specified in order for preCICE to be able to map data values. In particular
the vertex positions of the coupling boundary have to be known. For a nearest-projection
mapping, the overall mesh connectivity of the coupling mesh has to be given additionally.
Therefore, special methods are provided to define edges, faces and elements based on the
vertices given. Additionally, the mesh ID can be retrieved, which needs to be used for the
data communication.

int getMeshID (const std::string &meshName) ;
void setMeshVertices (int meshID, int size,
const double *positions, int xids);

An important feature is the access and communication of data. The values at the cou-
pling boundary can be written to preCICE or retrieved from it. Based on the data ID given,
the communication is unique in a way that the receiver is known through the configuration
file. The API provides functions for both scalar and vector valued quantities.

42

6.2. Functionality of the dune-precice module

int getDatalD (const std::string &dataName, int meshlID);
void writeBlockScalarData (int dataID, int size,

const int *valueIndices, const double xvalues);
void writeBlockVectorData (int datalID, int size,

const int *valueIndices, const double xvalues);
void readBlockVectorData (int dataID, int size,

const int *valueIndices, double *values);
void readBlockScalarData (int dataID, int size,

const int *valueIndices, double *values);

Additionally to the presented methods, preCICE offers some more specific functionality.
Those methods are not discussed in the scope of this thesis.

6.2. Functionality of the dune-precice module

The dune-precice module connects the coupling library preCICE with the numerics envi-
ronment DUNE. An implementation like this will be called adapter from now on. In order
to simulate multi-physics cases some basic methods and functionality need to be avail-
able, which are already provided by preCICE and discussed in section 6.1. Those include
the data mapping at the coupling interface, the communication between different solvers
and the coupling algorithm. Considering the coupling, both explicit and implicit schemes
are available. The adapter implements the most important preCICE functions, but inside
the DUNE framework some specific utility needs to be offered additionally. Thus some
functions are added that handle:

¢ finding the coupling boundary of a DUNE grid
¢ converting data structures from DUNE to preCICE and the other way round

¢ storing and loading iteration checkpoints

Similar to the adapter written by [Rusch, 2016], some methods are just wrappers directly
calling the preCICE function. Others offer a broader functionality considering the DUNE
environment. All functions and internal variables for the coupling are implemented inside
a templated class. The class object can be created for different dimensions and a variable
parameter list. All methods are accessed via this object, allowing to implement the cou-
pling in a minimal invasive manner, which will be shown in section 6.3.

Setup of the coupling interface

To start the coupling with another solver, an adapter object needs to be created providing
the coupling interface from dune-precice. The respective constructor takes coupling pa-
rameters stored in a class or structure, the coupling boundary tag and information about

43

6. A preCICE adapter for DUNE

distributed parallelization as arguments. The parameter class should contain the preCICE
configuration filepath, solver- and mesh name. Additionally, it should store which data
has to be written and read. At this point, the adapter is almost ready for communication,
as the schemes to use for data mapping, communication and coupling algorithm are set.

In a next step the initialization method is called, which handles the coupling bound-
ary and starts the communication. Depending on the basis and gridview, the adapter will
extract the number of vertices and their coordinates at the coupling boundary and com-
municates them to preCICE. Afterwards the coupling with another solver is established.
If the communication is set up, the initial time that is left inside the coupling window will
be returned.

Coupling interface functionality

The main coupling procedure mainly consists of reading and sending data, writing check-
points and tracking the coupling time window. For sending and receiving data, the func-
tions read_blockvector_data() and send blockvector_data() are used, taking a DUNE
blockvector of dimension two or three as input argument. Internally, the adapter selects
the entries positioned at the coupling interface and either sends them to preCICE or over-
writes them with the data received. The same functionality is also available for scalar
values. For an implicit coupling, writing and reading checkpoints is necessary. There-
fore, several functions triggering the storing and reloading of scalars and vectors are avail-
able. Tracking the coupling time window is done with advance (), which takes the time
step length of the solver as input and calculates the remaining time that is left inside
the actual coupling window. This is necessary to adjust the solver timestep in a way,
such that the time between solvers can be synchronized for data communication. With
is_coupling_ongoing(), the state of the coupling can be checked. The boolean value is
often used to exit the solver time loop and finish the coupling with a call finalize().
The finalization of the coupling ends the communication and frees the memory related to
preCICE.

6.3. Implementation into a dummy solver

To show the implementation of the dune-precice module into a minimal working example,
a dummy solver is created in DUNE. To test the principal functionality the dummy is
coupled to a test solver provided by the preCICE library. Thus the overall initialization and
finalizing process, parameter settings and as well as data communication can be checked.

In a first step a structure is set up containing parameters necessary for preCICE (see
figure 6.1). Hereby, the used methods and communication pattern is transferred with the
configuration file. Additionally, the read and write data naming is specified as well as
participant and mesh name. The naming can be chosen arbitrarily and only has to coincide
with the configuration file for unique communication procedures.

44

6.3. Implementation into a dummy solver

struct parameters {
const std::string config_file
const std::string participant_name

"../precice-config.xml";

"SolverTwo";

const std::string mesh_name = "MeshTwo";
const std::string read_data_name = "dataOne";
const std::string write_data_name = "dataTwo";

}i

Figure 6.1.: Necessary parameters for the communication of two solvers via the preCICE
interface

The first step inside the main function (the major features are given in figure 6.2) is the
setup of the MPI environment for parallel computation. The computation in this case is
only done sequentially, but preCICE will use the rank and size variable for the interface
construction. Afterwards the mesh is loaded into DUNE and a grid view is generated.
Important quantaties are the coupling interface tag and the boundary entity vector, which
will be used later on for the determination of the vertices on the coupling interface.

After the gridview is generated, a finite element basis can be created. In this case a first
order Lagrangian basis is chosen. Now, the stiffness and mass matrices of the underlying
problem can be calculated and assembled. In a next step, preCICE is started. Therefore,
the structure variable coupling parameters is generated containing the members described
before. Additionally the data structures for the read and write data are set up. These are
block vectors with two dimensional entries. Now the preCICE object can be constructed.
The dune-precice module uses templates for the most flexiblity, thus the problem dimen-
sion, the used read and write data structure as well as the parameters structure are given
as template arguments. Thus the dimension of the problem can be easily changed. The
same also holds for the parameters structure. To start the communication, the initialize
method is called as member function of the coupling object.

With the status query of the coupling status, the time loop is controlled. A typical
timeloop for the coupling consists of several steps. First is is checked if the data of the ac-
tual step should be saved for a implicit coupling procedure. Afterwards data is read from
preCICE and it is processed. Then the next timestep is calculated as a minimum between
the time left inside the coupling window and the actual timestep length of the solver. The
modified data is written back to preCICE and the coupling is advanced. In case of implicit
coupling, it is checked if the simulation is converged and if not, data might be reloaded.
Otherwise, the timestep is finished with the update of time and iteration count. At the end
of the program, preCICE is stopped.

45

6. A preCICE adapter for DUNE

const int dim = 2;

// set MPI environment
int commRank = mpiHelper.rank();
int commSize mpiHelper.size();

// load mesh and setup grid view with basis

//

// initialize preCICE

parameters coupling_parameters;

Dune: :preCICE<dim, vectortype, parameters>

coupling (coupling_parameters, dune_boundary_interface_id,
commRank, commSize);

coupling.initialize(basis, boundaryEntity);

// start time loop
double t = 0.0, dt = 0.1;
int iteration_count = 0;

while (coupling.is_coupling_ongoing()) {

if (coupling.is_save_required()) {
coupling.save_current_state(write_data, t, iteration_count);
coupling.mark_save_fullfilled();

}

coupling.read_blockvector_data (read_data);

write_data += read_data;

dt = std::min(coupling.precice_timestep_length, dt);

coupling.send_blockvector_data (write_data);

coupling.advance (dt) ;

if (coupling.is_load_required()) {
coupling.reload_old_state(read_data, t, iteration_count);
coupling.mark_load_fullfilled();

} else {
t += dt;
++iteration_count;

// finalize preCICE
coupling.finalize();

Figure 6.2.: A short program showing the major features of DUNE and preCICE

46

7. Validation cases for fluid structure
interaction

In this chapter three fluid-structure interaction scenarios are presented for the validation of
the dune-precice adapter. Therefore, the linear elasticity solver from chapter 3 is coupled
to the open-source fluid solver OpenFOAM. The first simulation setup consists of a flex-
ible flap that is wall-mounted inside a channel. This case was also used by [Rusch, 2016]
and [Hertrich, 2019] for testing. For a numerically more intense problem [Wall, 1999] and
[Uekermann, 2016] used a lid-driven cavity with a flexible bottom, which is used as second
validation setup. The third problem consists of a flap attached to a cylinder inside a chan-
nel, called the fluid-structure interaction three benchmark (see [Turck and Hron, 2007]).
The results are compared to a reference either from literature or another simulation. Ad-
ditionally, problems concerning the validation cases are discussed.

7.1. Flexible flap in a channel

The first test case comprises a laminar flow in a channel, which is deforming a flexible
flap that is mounted inside. Firstly, the overall correctness of the implemented adapter is
evaluated against a reference solution calculated with a dealll-OpenFOAM coupling. This
should show that the mandatory functionalities like setting the coupling boundary, data
mapping and coupled time-stepping work as intended. The validation test finishes with
the comparison of two different coupling methods, namely explicit and implicit coupling.

Simulation setup

In the following, an overview of the simulation setup is given. Afterwards, the meshing
and material parameters are presented. A laminar flow field inside a channel with the
length L = 6 m, height H = 4 m and width W = 1 m is used for the fluid domain.
The boundary conditions are set for the fluid velocity and pressure. On the left side, an
inflow of 10 m/s is given, while the pressure gradient is set to 0. No-slip conditions are
applied to the top and bottom of the channel, resulting in a velocity of 0 m/s at the wall.
Again, the pressure gradient is set to 0 in both cases. The right side contains the channel
outflow, where the pressure is set to 0 as well as the velocity gradient. A brief outline of
the setup is given in figure 7.1. To be able to simulate a fluid-structure scenario, the mesh
needs to be deformed. This yields the third variable, for which boundary conditions have

47

7. Validation cases for fluid structure interaction

to be set. The mesh nodes at the inflow and outflow are not allowed to move. The re-
spective points at the top and bottom wall are allowed to move in tangential direction. At
the coupling interface to the structure, the velocity and pressure gradient is set to 0. The
mesh displacement is not constrained. Inside the channel, a flexible flap of dimensions
L=01m,H=1.0mand W = 1.0 m is mounted to the bottom wall at the middle of the
overall length. To resemble the fixed placement of the flap at the wall, the displacement
and velocity is set to zero at the bottom. The other boundary entities are imposed with a
coupling condition that communicates to the preCICE adapter and thus allows the struc-
ture to move freely inside the fluid domain. OpenFOAM only allows to simulate three
dimensional domains. For this case periodic boundary conditions are chosen for the front
and back of the channel. The setup in two dimensions just sets the boundaries in the width
direction to empty.

u=20
op
. =0
—_—
_—

— - ou _
ug = 10 %_0
op __ _
am =0 p=20

—_—
I‘coupling
—_—

u=20
0
20

Figure 7.1.: Simulation setup of the flexible flap in channel validation testcase

For the fluid and solid domain a structured mesh is used. The solid mesh is uniform and
discretized with quadrilateral, Lagrangian P; elements in 2D. In three dimensions hexa-
hedron, Lagrangian P; elements are used. The fluid uses a non-uniform mesh that uses a
finer discretization around the coupling interface and a coarser one further away from the
structure. The nodes of the fluid and solid grids coincide at the coupling boundary. For the
data mapping of the displacements and forces, a nearest-neighbour mapping is used. The

48

7.1. Flexible flap in a channel

structured meshes for both dimensions are shown in figure 7.2. The blue mesh represents
the fluid domain, where as the red grid resembles the structure.

(a) 2D domain (b) 3D domain

Figure 7.2.: Structured meshes of the flexible flap in a channel scenario

For the fluid-solver, an implicit euler scheme is chosen with a fixed time step size of
At = 0.01 s. On the structure side the explicit Runge-Kutta 4(5) method with adaptive
time stepping is used. The coupling window, material and flow properties are given in
table 7.1. Both the explicit and implicit coupling approach is tested. For the latter one, the
convergence measures are set to 107 for both the absolute and relative one. Additionally,
a maximum number of 50 iterations per coupling window is enforced. For the accelera-
tion scheme, a dynamic Aitken under-relaxation with an initial relaxation factor of 0.1 is
chosen.

fluid density PE 1.0 kg/m?
dynamic viscosity | v | 0.001 kg/(ms)

inlet velocity ug 10.0 m/s
structure density | pg 3000 kg/m3
Young’s modulus | E | 400000 N/m?

Poisson ratio v 0.3
coupling window | 7 0.01s
simulation time | t.,q 22's

Table 7.1.: Physical parameters of the flexible flap in a channel scenario

49

7. Validation cases for fluid structure interaction

Results

In a first step the simulation results are analysed based on the velocity field of the fluid and
the overall displacement of the structure. Due to the constant inflow, the elastic flap bends
backwards and starts oscillating. The oscillation period for the given parameters is around
T = 4.5 s A picture of the horizontal velocity field and the maximum x-displacement
of the flap is given in figure 7.3a at ¢ = 2 s. The velocity field on the left side of the
channel, near the inflow, is almost uniform. The bending flap acts like a nozzle and the
fluid begins to accelerate. The horizontal velocity components behind the flap are close
zero. To understand the fluid motion there, the streamlines of the flow (see figure 7.3b) are
visualised. The flow detaches from the flap tip and creates several vortices. During the
simulation they build up a stable oscillation behaviour that interacts with the movement
of the flap. As the 3D case is just an extrusion of the 2D simulation setup, the overall
displacement and flow behaviour stays the same.

x-veloclty (m/s) x-displacement (m)
10 15 200000 00000 0.1 02 03 04 05 06 07 08000
.

0.0000 5
I

(a) Horizontal velocity field

and x displacement of the flap at t=2s

x-velocity (m/s) x-displacement (m)
0.0000 5 10 15 20.0000 00000 0.1 02 03 04 05 06 0.7 08000
‘ b — ———— !

(b) Structured meshes of the flexible flap in a channel scenario

50

7.1. Flexible flap in a channel

To verify the numerical results generated with the coupling adapter, the displacement of
the flap tip is tracked over time. The results in form of the x-displacements are plotted in
tigure 7.4 over a time interval of 22 s, which resemble roughly five periods of the oscillat-
ing behaviour. The reference solution calculated with a coupling of dealll-OpenFOAM is
showed as black curve. The results of both explicit and implicit coupling with the DUNE-
adapter are given in red and blue. Considering the first three periods, the solution calcu-
lated with DUNE is very close to the reference result. With increasing simulation time, the
results shift slightly away from the reference solution. Comparing the different coupling
methods, they show the same behaviour and show only small differences in the positive
peak values. A better approximation result might be obtained by changing from the low
order of the elements used to a higher one for the solid mesh, which would also increase
the computation time significantly. Especially the explicit coupling that is applied to this
case without a relevant loss of accuracy or occurrence of numerical instabilities acceler-
ates the computation. This is related to a weak coupling of the fluid and solid. Despite
the rather large displacement of the flap, the bending only affects the flow field on a local
scope around the structure.

Comparison of the horizontal displacement of the flap tip

0.7 T T T T T ‘ ‘
\ — Reference
£ 06l \ A — Expli‘ci't coupli'ng 1
k= \ X —— Implicit coupling
] / \ AN
0.5 FAN A N
& \ \ \ ‘/ \ \
= 04} \\ \ \ \ \ |
B \ ‘ \ \
g 03|
g
g
< 0.2 |
Q,
4
b
T o01f |
O | | | I | | | | | |
0 2 4 6 8 10 12 14 16 18 20 22

timetins

Figure 7.4.: Comparison of the coupling results with the DUNE-adapter to the reference
solution calculated with the dealll-adapter

51

7. Validation cases for fluid structure interaction

7.2. Lid-driven cavity with flexible bottom

The first validation case was numerically inexpensive and stable almost independent of
the coupling scheme and parameters. To also simulate a more demanding case the pop-
ular lid-driven cavity with flexible bottom is chosen (see [Wall, 1999]). The simulation
setup and material/flow parameters are similar to the one used by [Vzquez, 2007] and
[Bathe and Zhang, 2009].

Simulation setup

Uug = uref(l - COS(%))

op _
3, =0
> ou

N an =0
o _ —
on 0 p 0
u =0 u=20
9p 9p
on 0 on 0

Fcoupling

Figure 7.5.: Simulation setup of the lid-driven cavity with flexible bottom validation case

In figure 7.5 the simulation setup of the lid-driven cavity with flexible bottom is shown.
The fluid domain consists of a square of length L = 1.0 m. As in the original benchmark
case the top wall is moving with a given velocity, in this case 1 — cos(%tt). The pressure
gradient at the top wall is set to zero. The left and right boundary is set to a no-slip con-
dition, where the velocity and pressure gradient is set to 0 at the wall. A small inflow and
outflow is added in order to fulfill the incompressibility condition of the fluid, thus a vol-
ume change inside the cavity due to the flexible bottom. Those are positioned at a height
of 0.875 m ranging to the top of the cavity. The inflow is located at the left side and consists
of a linear inlet velocity profile. The velocity at the top and bottom of the inflow is linearly
interpolated over it’s height. At the outflow, pressure and velocity gradient are set to zero.
The mesh movement at all sides is set to zero, besides the bottom wall, which is flexible
and therefore the coupling boundary with the structure. The solid part resembles a mem-
brane and has a length of L = 1m and a thickness of ¢ = 0.002m. The upper side of the

52

7.2. Lid-driven cavity with flexible bottom

structure is set as the coupling boundary. On the left and right boundary, the movement is
restricted.

Similar to the first validation case, structured meshes are used for both the fluid and
solid domain. Again P; quadrilateral, Lagrangian elements are used for the structure.
On the coupling interface, the nodes of the fluid and structure mesh coincide. Thus, the
nearest-neighbour mapping is just setting the values from fluid nodes directly to the solid
ones similar to the first validation case.

The implicit-euler scheme is set as fluid solver, as is the Runge-Kutta 4(5) for the struc-
ture side. The properties of the fluid flow and the solid can be seen in table 7.2. For the
oscillation period of the moving wall T' = 5s is chosen. With the given u,.f, the velocity
at the top boundary thus varies between 0m/s and 2m/s. The most critical parameter in
this case is the membrane stiffness, indirectly reflected by the Young’s modulus E. How
the parameter influences the overall simulation behaviour will be discussed later. For the
implicit coupling, the error criteria are set to 10~* and a quasi Newton scheme is used for
acceleration.

fluid density s 1.0 kg/m3
dynamic viscosity | v | 0.01 kg/(ms)
reference velocity | u.f 1.0m/s
structure density | ps | 500 kg/m?
Young’s modulus | E | 25000 N/m?

Poisson ratio v 0.0
coupling window | 7 0.01s
simulation time tend 35s

Table 7.2.: Physical parameters of the lid-driven cavity with flexible bottom scenario

Results

Looking at the overall physical behaviour of the fluid and membrane first, the deforma-
tion of the structure and streamlines of the fluid are tracked over a full oscillation period.
Therefore, the time interval between 16s to 20s is chosen, where the simulation shows a
stable oscillation of the solid. Due to the moving wall on the top and the induced velocity,
the fluid inside the cavity is accelerated and forms a time-dependent vortex. The flexible
membrane is affected by the flow and bends upwards and downwards, depending on the
oscillating wall velocity. The behavior is shown in figure 7.6.

53

7. Validation cases for fluid structure interaction

velocity magnitude
00 02 04 06 08 1 12 14 16 18 20 00 02 04 06
Lo |

velocity magnitude
08 1 12 14 16 18 20
[-

(a) t=16s (b) t=17s

velocity magnitude
00 02 04 06 08 1 12
i——

velocity magnitude
14 16 18 20 00 02 04 06 08 1 12
|

14 16 18 20
L

(c) t=18s (d) t=19s

velocity magnitude
1

velocity magnitude
2 14 16 18 20 00 02 04 06 08 1 12 14 16 18 20
| | 1

00 02 04 06 08 1
| 1 [

(e) t=20s (f) t=21s

Figure 7.6.: Velocity field and flow streamlines over a full oscillation period for implicit
coupling

54

7.2. Lid-driven cavity with flexible bottom

In a next step, the vertical displacement of the membrane mid point is analysed. In fig-
ure 7.7 the results for the explicit and implicit coupling are plotted over a time span of
35s. By adapting the stiffness parameter of the structure, the intensity of the coupling can
be controlled. In this case, the stiffness value is small and thus a strong coupling occurs.
The bending of the membrane influences the whole flow field of the cavity and introduces
numerical difficulties, compared to the first validation case. The explicit coupling is nu-
merically instable and the membrane starts to oscillate at a high frequency. At around
5s the simulation crashes due to the big mesh distortion. The implicit coupling approach
shows better results, due to the subiterations in each timestep, to fulfill the equilibrium
condition. After 15s a stable oscillation is reached, that also shows the period of T' = 5s
from the moving wall. The traditional benchmark case is calculated with a membrane stiff-
ness of 250, which resulted in deformations and mesh distortions that led the simulation to
crash. Large deformations are one kind of nonlinearity that need special treatment inside
the structure solver. The linear elasticity solver implemented with DUNE is only able to
reproduce correct results for rather small deformations, due to the reference to the stiffness
matrix in the undeformed state. Therefore, the stiffness of the structure has been adapted
for this case similar to [Bathe and Zhang, 2009]. Compared to this validation case, the de-
formation of the membrane shows a different behavior for the same Young’s modulus, due
to a different modelling of the inlet. The displacement shown in 7.7 is closer to the results
given by [Wall, 1999], despite the lower Young’s modulus used there.

EComparison of the different coupling schemes for the lid-driven cavity with flexible membrane

c

"é 0.3 T T T T T T T : ‘ : ; ;
= — Explicit coupling
.g —— Implicit coupling
[oW

< 02 .
qa) //\\ //-\\ ///\\ //\\ ” /ﬂ \\\\ /
g /‘/ \\\ / / \ \ / / \\ /,// \\ /‘/ \\\ /

= 01} / \--/ \-+/ \- -/ \ -/ \ /]
: N VAV ViR VAV
s /

S

I 0 i
3]

&

g

S

8“ _ 0 A 1 | | | | | | | | | | | | | | | | |
5 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
)

timetins

Figure 7.7.: Vertical displacement of the membrane midpoint shown for explicit and im-
plicit coupling

55

7. Validation cases for fluid structure interaction

7.3. Fluid-strucuture interaction three - benchmark

Concluding the validation, the so called fluid-structure interaction three benchmark is sim-
ulated. The test case was introduced by [Turck and Hron, 2007] and represents an even
more demanding coupling than the lid-driven cavity with flexible bottom and is highly
nonlinear. The benchmark was further investigated based on partitioned simulation ap-
proaches by [Breuer et al., 2012] and [Bungartz et al., 2010]. Similar to the second valida-
tion case the inflow is oscillating, resulting in an unsteady flow inducing instabilities dur-
ing the simulation. Especially the so called added-mass effect (see [Causin et al., 2005] and
[van Brummelen, 2010]) makes a stable simulation difficult.

Simulation setup

op _
3, =0
u =
-
op __ T li _
%_O Q coupling p=
ou __
uo 87_0
—_—
>
u=20
op _
3, =0

Figure 7.8.: Simulation setup of the fluid-structure interaction three benchmark

The test setup consists of laminar flow, which enters a channel with a length of L = 2.5m
and a height of H = 0.41 m. Inside the channel an obstacle is installed, consisting of a
cylinder with radius » = 0.05 m with a flexible flap attached to it. The cylinder is excluded
from the structural simulation and only acts as fixed body inside the fluid domain. The flap
geometry is given with [= 0.35 m and h = 0.02 m and interacts with the surrounding flow.
The boundary conditions and the general setup are shown in figure 7.8. Similar to the first
test case, the top and bottom wall of the channel is modeled as no-slip condition, with the
velocity and pressure gradient set to 0. The right side consists of an outflow with pressure
and velocity gradient set to 0. On the left side of the channel, the inflow is specified with

56

7.3. Fluid-strucuture interaction three - benchmark

the pressure gradient set to 0 and an parabolic reference inflow velocity given by:

H—
u0(0,) = 15U y<(0 5H)y2) . (7.1)
The time dependent velocity is given by:
1—cos(5t) .
uo(t,0,y) = § 0O, ifE <20 7.2)
up(0,y), otherwise

where in the first two seconds of the simulation, the inflow velocity is set to a fixed value
and afterwards the oscillation is started. The boundary of the flap with the fluid is set to
the coupling boundary communicating with preCICE. The mesh movement at inflow and
outflow is completely restricted, whereas a tangential movement at the walls is allowed.
The flap boundary can move freely inside the fluid domain.

Similar to the validation cases before, P, Lagrangian, hexahedral elements are used for
the structure and thus a structured mesh. For the fluid domain, a curvilinear grid is used
to model the mesh around the cylinder appropriately. Around the obstacles the mesh is
thus chosen to be very fine, getting coarser further away from it.

For the fluid solver, a second order backward method is chosen. The Runge-Kutta 5(4)
is again used for the structural solver. It is assumed that an explicit coupling will induce
numerical instabilities and therefore is omitted here. For the absolute measure a value of
1077 is chosen and 5-107° for the relative one. For the acceleration method a quasi Newton
scheme is used. The physical parameters are listed in table 7.3.

fluid density PR 1000 kg/m?
dynamic viscosity | v | 0.001 kg/(ms)
structure density | ps | 1000 kg/m>
Young’s modulus | E | 5.6-10% N/m?

Poisson ratio v 0.4
coupling window | 7 0.0075 s
simulation time | t.nq 5s

Table 7.3.: Physical parameters of the fluid-structure interaction benchmark three scenario

57

7. Validation cases for fluid structure interaction

Results

The overall physical behavior of the test case is discussed first. The inflow velocity stays
constant in the first 2s of the simulation, creating a stable channel flow. With the start of
the inflow oscillation, the flow detaches from the cylinder and creates a vortex shedding.
The intensity of the vortices depends on the inflow velocity magnitude. The created flow
pattern is called Karman vortex street and is shown in figure 7.9 at t = 3.5 s. Due to the
pressure difference between the upper and lower surface of the elastic flap, the structure
starts to bend and oscillate.

velocity magnitude (m/s)
0.00 05 1 15 2 25 3

- ose—

35 4 450

Figure 7.9.: Velocity field of the benchmark case and deformation of the mesh around the
flap at t=3.5s

For a more detailed analysis of the problem, the vertical deformation of the flap tip
is investigated. Figure 7.10 shows the respective displacement simulated with a dealll-
OpenFOAM scenario as reference. The corresponding simulation with the dune-precice
adapter and implicit-coupling is plotted as comparison. Due to the constant inflow in the
first 2s no major deformation is occurring. Afterwards, the tip starts to oscillate irregu-
larly. In the first 3.5 s the solution obtained with the dune-precice adapter is similar to
the reference. Afterwards displacement amplitude and oscillation period start to differ. In
[Turek and Hron, 2007] it was shown that a stable oscillation can be obtained, which could
not be reproduced here. The simulation procedure turned out to be very sensitive in terms
of the coupling window size, convergence criteria and numerical schemes used.

58

7.3. Fluid-strucuture interaction three - benchmark

10-2 Comparison of the horizontal displacement of the flap tip
6 T [T T [T L —
Reference
— Implicit coupling

y-displacement of flap tip d, in m
)

|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
timetins

Figure 7.10.: Vertical displacement of the flap tip of an implicit coupling with the DUNE-
adapter and a reference simulation with dealll-OpenFoam

59

8. Conclusion, Summary and Outlook

This chapter discusses the main challenges and results of the thesis regarding implemen-
tation and validation in section 8.1. Afterwards a short summary of each chapter is given
in section 8.2. In a last step, the thesis is wrapped up by providing an outlook to future
work in section 8.3.

8.1. Conclusion

The choice of the discretization of the governing equations with Lagrangian, continuum
elements proved to be a good decision. Various literature regarding this topic is available
and the functionality of DUNE enables a robust implementation. As could be seen from
the validation cases, the static and dynamic simulations showed physically logic and ac-
curate results. Initially first order elements were used, which did not yield the expected
accuracy. Thus, a switch to higher order elements was done introducing difficulties re-
garding the mass lumping techniques. The computational intensity rapidly increased for
three dimensional cases. A parallelization of the code would increase the efficiency, but
was not realized in the scope of this thesis.

Considering the multiphysics setup, the coupling library preCICE offers a simple in-
terface for partitioned coupling. To be able to handle the specific DUNE datatypes and
procedures, the dune-precice module was introduced representing an adapter to the cou-
pling library. The multiphysics-setup showed to be very sensitive in terms of coupling and
material parameters chosen. Additionally, the simulations were in a first step only done
with first order elements on the structural side to test the main functionality and response.
The implementation of higher order elements still needs some further work. In the three
valication cases the simulation showed good and fairly accurate results. Compared to a
dealll-OpenFOAM reference simulation the obtained results differed slightly in the case of
the flap in a channel scenario. For the fluid-structure interaction three benchmark, the so-
lutions differed more heavily. Thus, some additional adjustments inside the dune-precice
module and further work regarding it’s implementation has to be done. Also, the linear
elasticity assumption is violated due to the large deformations of the flexible structures.

The main goal of this thesis was to provide the basic features for the aeroelastic sim-
ulation of slender wings for electric aircraft, which can be considered as fulfilled. To be
able to simulate a real three dimensional modelled wing, the efficiency of the implemen-
tation of the structural solver would have to be improved drastically as simulation times
are currently very long, due to the amount of elements that are needed for an accurate

61

8. Conclusion, Summary and Outlook

Figure 8.1.: Grid of a slender wing as might be used for electrically powered aircraft

representation of the wing (see figure 8.1). The coupling library offers the flexibility to
not only connect traditional finite element and finite volume solvers, but can also provide
an interface for implementation of multi-body dynamics and blade element momentum
approaches to model small electric propellers along a wing.

8.2. Summary

To be able to simulate aeroelastic phenomena and thus fluid-structure interaction scenar-
ios, this thesis introduced a solver for the linear elastodynamics equations implemented in
DUNE. Furthermore, the coupling library preCICE and the fluid solver OpenFOAM were
used for the multiphysics setup. Therefore, the prototype of the dune-precice module was
presented, implementing a new adapter for the coupling interface and new module inside
the DUNE environment.

In the first part of the thesis several approximation techniques for the structural and
fluid domain were evaluated, which are commonly used for aeroelastic simulations. A
partitioned coupling scheme was chosen were the numerical solvers are considered inde-
pendently and afterwards connected for a multiphysics setup. The discretization of the
equations of continuum mechanics for both participants was selected to obtain a good ac-
curacy and high flexibility. For the linear equations of elastodynamics representing the
structural part, finite elements were used as discretization scheme, whereas the Navier-
Stokes equations were solved with a finite volume method provided by the black box
solver OpenFOAM.

Considering the implementation of the structural part, the numerics library DUNE was
used to handle the discretization with finite elements. The main steps of the program like
global and local assemblers as well as the numerical schemes were shown. Additionally,

62

8.3. Outlook

implicit and explicit time stepping methods were tested to solve the occurring system of
ordinary differential equations. The structural solver was afterwards validated with a
static beam bending test case and a dynamic simulation case consisting of a oscillating
plate.

In a next step, the preCICE coupling library was introduced for a partitioned, multi-
physics coupling. The mandatory steps considering data mapping, coupling methods and
time interpolation were discussed. Afterwards, the dune-precice module and the respec-
tive implementation and usage was shown. Finally, three different validation cases of
different numerical difficulty consisting of the flap in a channel, lid-driven cavity with
flexible bottom and the fluid-structure interaction benchmark three were simulated.

8.3. Outlook

Further improvements can be made regarding the structural solver, the coupling approach
and the code organization to be able to simulate large scale models with an acceptable
accuracy:

¢ Structural solver: A parallel implementation would increase efficiency and thus
lower the simulation time significantly. Additionally, the linear elasticity assump-
tion could be extended to allow large deformations and nonlinear material models.
This would help to predict the deflections occurring in the fluid-structure interaction
scenarios more accurately.

¢ Coupling approach: The reduction of the temporal accuracy order by using subcy-
cling is one of the drawbacks of the partitioned coupling approach. The topic is still
under development by considering time interpolation inside preCICE.

¢ Code organization: The dune-precice module is a prototype only considering fluid-
structure interaction scenarios, which was sufficient for this thesis. More complex
scenarios with several participants still needs to be implemented. Additionally, the
code implemented for the structural solver needs to be refined regarding the assem-
blers and time stepping schemes to provide the necessary tools to construct solvers
for linear elastodynamics inside a dune-elastodynamics module. This includes more
options for mass lumping and time-stepping methods, which can make use of the
DUNE data structures.

63

Appendix

A.1. Gmsh-reader and boundary segments in DUNE

As described in section 3.1 unique integer values (called boundary tags) are used to iden-
tify different parts of the boundary. Those tags can be specified for different parts of the
grid inside the mesh file, which are later used to specify the respective boundary con-
dition. DUNE offers an interface to read such files and stores the corresponding integer
values inside a vector. This procedure works fine for triangle and quadrilateral elements in
two dimensional cases, where the boundary segments are edges. For tetrahedral elements
the respective geometric entity are triangular faces. Problems occured for hexahedral el-
ements, where the tags were set randomly inside DUNE despite the correct mesh setup.
Therefore only tetrahedral elements were used in the first half of this thesis to circumvent
this behavior.

With the help of Carsten Gréser and Oliver Sander from the DUNE developer team the
error was found inside the gmsh-reader file. A missing method for quadrilateral boundary
elements was triggering the random behavior, which was quickly fixed. The correspond-
ing issue in GitLab can be found here describing the problem and solution in more detail:

65

https://gitlab.dune-project.org/core/dune-grid/-/issues/115

List of Figures

1.1.

3.1.

3.2
3.3.

34.
3.5.
3.6.

3.7.

4.1.
4.2.

4.3.
44,

4.5.

5.1.

5.2.
5.3.

6.1.

6.2.

7.1.
7.2.
74.

Section of a slender wing with a distributed propulsion system (from [DLR, 2019])

An overview of the code structure implementing the solver for the linear

elastodynamics equations L 16
Example program showing the main features of a global assembler in DUNE 19
Example program showing the main features of the global boundary condi-

tionincorporation Lo 19
The DUNE call to create a Lagrangian basis on a given mesh of orderp . . . 20
Example program showing the main features of a element assembler in DUNE 21
Example program showing the main features of the setup of the precondi-

tioned conjugate gradient method in DUNE 22
Example program showing the usage of the Newmark integrator in DUNE 23

Two dimensional simulation setup of the static beam bending scenario . . . 26
Cross section view of the vertical displacement 3D cantilever beam (the de-
formation of the geometry is scaled by a factor of 5 for better visualization) 27

Discretization of the plate with quadratic tetrahedral elements 29
Vertical deformation of the plate at different times (deformation of the ge-
ometry is scaled by 5 for better visualization) 31
Vertical displacement of the free end of the plate for the explicit RK5(4) and
implicit Newmark-betamethod 32
Coupling of non-matching grids at the interface with the real boundary
showninred L L 34
Schematic procedure of the conventional serial staggered scheme 36
Time interpolation approach between two coupled solvers with different
timesteps e 39
Necessary parameters for the communication of two solvers via the pre-
CICEinterface i 45
A short program showing the major features of DUNE and preCICE 46
Simulation setup of the flexible flap in channel validation testcase 48
Structured meshes of the flexible flap in a channel scenario 49
Comparison of the coupling results with the DUNE-adapter to the reference
solution calculated with the dealll-adapter 51

67

1

List of Figures

7.5.
7.6.

7.7.

7.8.
7.9.

7.10.

8.1.

Simulation setup of the lid-driven cavity with flexible bottom validation case 52
Velocity field and flow streamlines over a full oscillation period for implicit

coupling 54
Vertical displacement of the membrane midpoint shown for explicit and im-
plicitcoupling L 55
Simulation setup of the fluid-structure interaction three benchmark 56
Velocity field of the benchmark case and deformation of the mesh around
theflapatt=35s 58
Vertical displacement of the flap tip of an implicit coupling with the DUNE-
adapter and a reference simulation with dealll-OpenFoam 59
Grid of a slender wing as might be used for electrically powered aircraft . . 62

68

List of Tables

2.1.

4.1.
4.2.

4.3.
44

5.1

7.1.
7.2.
7.3.

Parameters determining the type of the Newmark method considering dif-

ferentvaluesfor Sand~ 14
Physical parameters of the static beam bending scenario 26
Analytical and approximate solution for the two and three dimensional beam
bending simulation including the different error measures 27
Physical parameters of the dynamic plate oscillation scenario. 29
Analytical and approximate solution of the plate oscillation validation case

for a consistent and lumped mass matrix, as well as the error measures . . . 30

Overview of different RBF's with global and local support with tuning pa-

rameter ¢ and compact supportradius» oo L oL 35
Physical parameters of the flexible flap in a channel scenario 49
Physical parameters of the lid-driven cavity with flexible bottom scenario . 53
Physical parameters of the fluid-structure interaction benchmark three sce-

NAKIO . . o o e e e 57

69

Bibliography

[Bastian et al., 2008] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Kl6fkorn, R., Kornhuber,
R., Ohlberger, M., and Sander, O. (2008). A Generic Grid Interface for Parallel and

Adaptive Scientific Computing. Part II: Implementation and Tests in DUNE. Computing,
82(2-3):121-138.

[Bathe and Zhang, 2009] Bathe, K.-J. and Zhang, H. (2009). A mesh adaptivity procedure
for cfd and fluid-structure interactions. Computers and Structures, 87:604—617.

[Bettis, 1973] Bettis, D. G. (1973). A runge-kutta nystrom algorithm. Celestial mechanics,
8:229-233.

[Birken et al., 2010] Birken, P., Quint, K. J., Hartmann, S., and Meister, A. (2010). A time-
adaptive fluid-structure interaction method for thermal coupling. Computing and Visu-
alization in Science, 13:331-340.

[Blatt and Bastian, 2007] Blatt, M. and Bastian, P. (2007). The iterative solver template li-
brary. In Kagstrom, B., Elmroth, E., Dongarra, J., and Wasniewski,]., editors, Applied
Parallel Computing — State of the Art in Scientific Computing, pages 666—675, Berlin/Hei-
delberg. Springer.

[Blatt et al., 2016] Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B.,
Gersbacher, C., Gréser, C., Gruber, E, Griininger, C., Kempf, D., Kl6fkorn, R., Malkmus,
T., Mthing, S., Nolte, M., Piatkowski, M., and Sander, O. (2016). The Distributed and
Unified Numerics Environment, Version 2.4. Archive of Numerical Software, 4(100):13-29.

[Blom et al., 2015] Blom, D. S., Uekermann, B., Mehl, M., van Zuijlen, A. H., and Bijl,
H. (2015). Multi-level acceleration of parallel coupled partitioned fluid-structure in-

teraction with manifold mapping. Lecture notes in computational science and engineering,
105:135-150.

[Breuer et al., 2012] Breuer, M., De Nayer, G., Miinsch, T., Gallinger, T., and Wiichner, R.
(2012). Fluid-structure interaction using a partitioned semi-implicit predictor-corrector
coupling scheme for the application of large-eddy simulation. Journal of Fluids and Struc-
tures, 29:107-130.

[Bungartz et al., 2010] Bungartz, H.-J., Benk, J., Gatzhammer, B., Mehl, M., and Neckel, T.
(2010). Partitioned simulation of fluid-structureinteraction on cartesian grids. Journal of
Fluids and Structures, 29:255-284.

71

Bibliography

[Bungartz et al., 2016] Bungartz, H.-J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele,
K., Shukaev, A., and Uekermann, B. (2016). preCICE - a fully parallel library for
multi-physics surface coupling. Computers and Fluids, 141:250-258. Advances in Fluid-
Structure Interaction.

[Butler et al., 2020] Butler, R., Dodwell, T., Reinarz, A., Sandhu, A., Scheichl, R., and
Seelinger, L. (2020). High-performance dune modules for solving large-scale, strongly
anisotropic elliptic problems with applications to aerospace composites. Computer
Physics Communications, 249:106997.

[Causin et al., 2005] Causin, P., Gerbeau, J.-F., and Nobile, F. (2005). Added-mass effect in
the design of partitioned algorithms for fluid-structure problems. Computer Methods in
Applied Mechanics and Engineering, 194:4506-4527.

[Chourdakis, 2017] Chourdakis, G. (2017). A general openfoam adapter for the coupling
library precice. Master’s thesis, Technische Universitdt Miinchen.

[de Boer et al., 2007] de Boer, A., van Zuijlen, A. H., and Bijl, H. (2007). Review of coupling
methods for non-matching meshes. Computer methods in applied mechanics and engineer-
ing, 196:1515-1525.

[Dinkler, 2017] Dinkler, D. (2017). Einfhrung in die Strukturdynamik - Modelle und Anwen-
dungen - 2.Auflage. Springer Vieweg.

[DLR, 2019] DLR (2019). Nineteen-seater aircraft with distributed, electrically driven
propellers. "https:/ /www.dlIr.de/content/en/articles/news/2019/04/20191126_e-
aircraft-novel-configurations-open-up-new-possibilities.html”.

[Dormand and Prince, 1980] Dormand, J. R. and Prince, P. J. (1980). A family of embedded
runge-kutta formulae. Journal of Computational and Applied Mathematics, 6:19-26.

[Felippa et al., 2015] Felippa, C. A., Guo, Q., and Park, K. C. (2015). Mass matrix tem-
plates: General description and 1d examples. Archives of Computational Methods in Engi-
neering, 22:1-65.

[Fried and Malkus, 1975] Fried, I. and Malkus, D. S. (1975). Finite element mass matrix
lumping by numerical integration with no convergence rate loss. International Journal of
Solids and Structures, 11:461-466.

[Gatzhammer, 2014] Gatzhammer, B. (2014). Efficient and Flexible Partitioned Simulation of
Fluid-Structure Interactions. PhD thesis, Technische Universitt Miinchen.

[Hairer et al., 2008] Hairer, E., Norsett, S. P., and Wanner, G. (2008). Solving Ordinary Dif-
ferential Equations I - Nonstiff Problems. Springer.

72

Bibliography

[Heinz et al., 2016] Heinz, J. C., Sorensen, N. N., and Zahle, F. (2016). Fluid-structure in-
teraction computations for geometrically resolved rotor simulations using cfd. Wind
Energy, 19:2205-221.

[Hertrich, 2019] Hertrich, R. (2019). Partitioned fluid structure interaction: Coupling fen-
ics and openfoam via precice.

[Hinton et al., 1976] Hinton, E., Rock, T., and Zienkiewicz, O. C. (1976). A note on mass
lumping and related processes in the finite element method. Earthquake engineering and
structural dynamics, 4:245-249.

[Huang, 2011] Huang, Z. S. (2011). Review of aeroelasticity for wind turbine: Current
status, research focus and future perspectives. Frontiers in Energy Research, 5:419-434.

[Irons and Tuck, 1969] Irons, B. M. and Tuck, R. C. (1969). A version of the aitken accel-
erator for computer iteration. International Journal for Numerical Methods in Engineering,
1:175-277.

[Landajuela et al., 2017] Landajuela, M., Vidrascu, M., Chapelle, D., and Angel, F. M.
(2017). Coupling schemes for the fsi forward prediction challenge: comparative study
and validation. International Journal for Numerical Methods in Biomedical Engineering, 33.

[Lunk and Simeon, 2005] Lunk, C. and Simeon, B. (2005). Runge-kutta-nystréom methods
with maximized stability domain in structural dynamics. Applied Numerical Mathematics,
53:373-389.

[MacNeal and Harder, 1985] MacNeal, R. H. and Harder, R. L. (1985). A proposed stan-
dard set of problems to test finite element accuracy. Finite Elements in Analysis and Design
1, 1:3-20.

[Manwell et al., 2009] Manwell, J. E, McGowan, J. G., and Rogers, A. L. (2009). Wind En-
ergy Explained - Theory, Design and Application. 2. John Wiley Sons Ltd.

[MathWorks, | MathWorks, M. Dynamics of damped cantilever beam.

[Mehl et al., 2017] Mehl, M., Uekermann, B., Bijl, H., Blom, D., Gatzhammer, B., and van
Zuijlen, A. (2017). Parallel coupling numerics for partitioned fluid-structure interaction
simulations. SIAM Journal on Scientific Computing, 39:404-433.

[Merkel and Oechsner, 2020] Merkel, M. and Oechsner, A. (2020). Eindimensionale Finite
Elemente - Ein Einstieg in die Methode. Springer Vieweg.

[Moriarty and Hansen, 2005] Moriarty, P. J. and Hansen, A. C. (2005). AeroDyn Theroy
Manual. National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Col-
orado.

73

Bibliography

[Newmark, 1959] Newmark, N. M. (1959). A method of computation for structural dy-
namics. Journal of the engineering mechanics division, 85:67-94.

[Rendall and Allen, 2008] Rendall, T. C. S. and Allen, C. B. (2008). Unified fluid-structure
interpolation and mesh motion using radial basis functions. International journal for
numerical methods in engineering, 74:1519-1559.

[Rueth et al.,] Rueth, B., Uekermann, B., Mehl, M., Birken, P., Monge, A., and Bungartz,
H.-]. Quasi-newton waveform iteration for partitioned fluid-structure interaction.

[Rusch, 2016] Rusch, A. (2016). Extending su to fluid-structure interaction via precice.

[Sander, 2020] Sander, O. (2020). DUNE The Distributed and Unified Numerics Environment.
1. Springer International Publishing.

[Scheufele and Mehl, 2016] Scheufele, K. and Mehl, M. (2016). Robust multisecant quasi-
newton variants for parallel fluid-structure simulations - and other multiphysics appli-
cations. Computers and Mathematics with Applications, 71:869-891.

[Subbaraj and Dokainish, 1989] Subbaraj, K. and Dokainish, M. A. (1989). A survey of di-
rect time-integration methods in computational structural dynamics-ii. implicit meth-
ods. Computers Structures, 32:1387-1401.

[Turek and Hron, 2007] Turek, S. and Hron, J. (2007). Proposal for Numerical Benchmark-
ing of FluidStructure Interaction Between an Elastic Object and Laminar Incompressible Flow,
volume 53, pages 371-385.

[Uekermann, 2016] Uekermann, B. W. (2016). Partitioned Fluid-Structure Interaction on Mas-
sively Parallel Systems. PhD thesis, Technische Universitit Manchen.

[van Brummelen, 2010] van Brummelen, E. H. (2010). Partitioned iterative solution meth-
ods for fluid-structure interaction. International Journal For Numerical Methods In Fluids,
65:3-37.

[Vzquez, 2007] Vzquez,]J. G. V. (2007). Nonlinear Analysis of Orthotropic Membrane and
Shell Structures Including Fluid-Structure Interaction. PhD thesis, Universitat Politcnica
de Catalunya.

[Wall, 1999] Wall, W. A. (1999). Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen.
PhD thesis, Universitit Stuttgart, Pfaffenwaldring 7, D-70550 Stuttgart.

[Wang et al., 2016] Wang, L., Liu, X., and Kolios, A. (2016). State of the art in the aeroelas-
ticity of wind turbine blades: Aeroelastic modelling. Renewable and Sustainable Energy
Reviews, 64:195-210.

74

Bibliography

[Wilson et al., 1973] Wilson, E. L., Farhoomand, I., and Bathe, K. J. (1973). Nonlinear dy-
namic analysis of complex structures. Earthquake engineering and structural dynamics,
1:241-252.

[Yau, 2016] Yau, L. C. (2016). Conjugate heat transfer with the multiphysics coupling li-
brary precice. Master’s thesis, Technische Universitidt Miinchen.

75

	Abstract
	Introduction
	Review of aeroelastic modelling approaches
	Simulation approach and thesis overview

	Background on solving linear elastodynamics
	Equations in linear solid mechanics
	Finite elements in linear elastodynamics
	Explicit timestepping methods and mass lumping
	Direct-time integration and implicit methods

	Implementation: Components of the solver
	Using and extending the solver
	Assembler for global and local matrices
	Numerical schemes for solving the governing equations

	Validation cases for linear elasticity
	Static analysis of a cantilever beam
	Oscillation of a slender plate

	Background on partitioned simulation
	Data mapping methods
	Coupling schemes
	Time interpolation

	A preCICE adapter for DUNE
	Coupling library preCICE
	Functionality of the dune-precice module
	Implementation into a dummy solver

	Validation cases for fluid structure interaction
	Flexible flap in a channel
	Lid-driven cavity with flexible bottom
	Fluid-strucuture interaction three - benchmark

	Conclusion, Summary and Outlook
	Conclusion
	Summary
	Outlook

	Appendix
	Gmsh-reader and boundary segments in DUNE

	List of Figures
	List of Tables
	Bibliography

