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Abstract

This study proposes a simulation-based mode choice method for ride sharing services.
Conventional mode choice for ride sharing services is a feedback loop based process where
multiple simulation runs are expected to achieve an equilibrium state between assumed and
simulated service attributes. The achieved equilibrium state is viable for the initial set of
supply parameters. This thesis contributes in proposing the use of an analytical ride sharing
market equilibrium model to perform the mode choice for simulating ride sharing services
which is viable against any change in the supply, reducing the otherwise required regress
computational time for running multiple simulations. The proposed methodology calibrates
the market equilibrium model parameters using a set of observed service (attribute) data. The
observed service data contains the service attributes for a range of fleet sizes serving a range
of ride sharing demand. Whereas the analytical market equilibrium model proposed to be
used in this study also outputs ride sharing demand and the network attributes detour and
waiting time. This is taken as an optimization problem to be solved to calibrate the market
equilibrium model parameters so that it outputs the observed service attributes for a given
range of fleet sizes. A number of different goodness of fit errors are also utilized within
the optimization problem. Two different case studies are used for the setup, first synthetic
and then Munich network to calibrate the model parameters. The converged error results
from both case study network shows that the analytical model fits to most of the extent
with the observed data. Computational time of calibrated model is negligible compared to
computationally expensive and regress process of simulation based equilibrium making the
calibrated model as an effective alternate to perform mode choice of ride sharing services.
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1 Introduction

1.1 Background and Motivation

With the ever-increasing traffic related issues, it is impractical for each passenger to drive or
be driven in an individual car. Population growth and relatively higher purchasing power
points towards the immense challenge faced by transport planners of reducing the popularity
of privately owned vehicles. As of 2017, 63 million motor vehicles are registered in Germany,
among these cars constitute to 46 million, out of which around 90% are privately registered
(Kuhnimhof, 2017). These vehicles do not only add up to already existing congestion issues
but are also major contributors to air pollution (Colvile et al., 2001). The direct and indirect
costs caused by congestion on German roads amounted to 80 billion euros in 2017, which
amounts to about 1,770 euros per motorist (Local, 2018). With these figures in mind, it is
evident that the solution does not lie in developing new infrastructures or issuing more
cars rather a shift towards sustainable and environment-friendly modes is inescapable. To
promote these modes a comprehensive approach enveloping, policy, design and psychological
components is needed (Cools et al., 2009). In order to make a quantifiable change, similar or
at the very least comparable, benefits as private transportation must be offered to individuals
in other modes of transportation as well, to expect a shift in behavior.

A study conducted by (Linda, 2003) shows that fervent car users are unwilling to consider
public transportation modes because of the independence and convenience a privately owned
vehicle offers. Following timetables, managing access to bus, tram or subway stations and
traveling with strangers especially during rush hours in over-crowded vehicles on a daily
basis are a few traits not every individual is ready to undertake to solve climate change or
congestion problems. Therefore, this is a high time that we re-think public transportation
in the light of modern technology. Many new ideas have been introduced in the context of
urban mobilities in the past couple of years. Recently, the large-scale usage of smart-phones
and decrease in cellular communication costs has resulted in emergence of new on-demand
mobility, which is also known as car-sharing, ride-sharing(car-pooling, van-pooling), ride-
sourcing or e-hail services. With the advent of autonomous vehicles (AVs) it is envisioned in
a study conducted by (Arbib & Seba, 2017), that by 2030, 95% of US passenger miles traveled
will be served by on-demand autonomous electric vehicles owned by fleets. This business
model is called transport-as-a-service (TaaS). The fundamental idea of on-demand mobility is
based on shared economy, where a desired commodity is shared amongst individuals rather
than a single person owning it. These user-centric services are transforming the urban
mobility by providing convenient transportation options to anyone, anywhere and anytime.
Besides privately owned vehicles and taxis, other public transportation does not offer last-
mile services. Taxis do not fall in the budget bracket for most of the daily commuters. By
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1 Introduction

providing taxi-like last-mile services and being reasonably priced the mobility on-demand
(MoD) services can become very popular. These services can have tremendous positive effects
not only in mitigating congestion but also by reducing other potential external negativities
such as vehicular emissions (Alonso-Mora et al., 2017). MoD users can also benefit from
shared travel costs while experiencing the convenience of a car, travel time can be reduced
by using high-occupancy lanes and often perks such as preferential parking can be availed
(Greenblatt & Shaheen, 2015).

The concepts of shared mobility, in their earliest forms, can be seen applied in transportation
sector throughout the history (Shaheen et al., 1998). Ride-sharing services made their first
appearance in North America as early as 1940s in an effort to preserve resources for war,
they re-emerged again in 1970s during the oil crisis (Greenblatt & Shaheen, 2015). However,
these concepts experienced radical change in their perception in the wake of advancements in
mobile services. Smartphone and internet evolution opened new prospects for ride-sharing
services, as communication was not dependent on time of the day or day of the week anymore,
but the possibilities now extended to real-time access of large quantities of data. Numerous
applications made their way to market which allowed activities to be scheduled ahead of
time (Boutueil, 2018). These ideas revolutionized ride-sharing services such as carpool and
van-pool, as they aim at increasing vehicle occupancy by grouping together users in one
vehicle with similar origin or destination or both, resulting in reduced number of cars on
road.

Nevertheless, for the most part, the implementation of MoD services in an urban mobility
setup has still remained a disorganized activity, as a consequence such innovative services
are still not well established and many startups/service providers failed to follow up for a
sustainable business model. Hence, users also haven’t established trust on using such services
and rather choose more reliable modes. The emerging popular modes signify research
needs from user’s perspective to the opportunity to utilise ride-sharing services for personal
commute. The conventional mode choice models rely on utility functions for each mode.
These functions are derived based on the mode’s service attributes and user’s perception.
However, this method does not give realistic results when applied to ride-sharing as a mode,
the reason lies in their dynamic service attributes, making mode-choice not straightforward
for ride-sharing modes. Wide adoption of these services can only be made certain after
proper calculation of its mode choice based on waiting and detour times of users and fleet
size required to serve the demand ensuring a minimum set Level of Service (LOS) served.

1.2 Objectives

Exhaustive research has been conducted trying to quantify the impact of MoD services in
urban environment, determining the mode choice of these services has unfortunately not
received the required attention and is still open to research.

One has to understand that for services dynamic in nature such as ride sharing, their utility
depends on the service they provide and it is perceived by users mainly in terms of detour
they are facing or the the waiting time spent for the pickup. The current state of the system

2



1 Introduction

keeps changing thus the utility of the service. To apply conventional mode choice models, an
equilibrium state has to be achieved where for a certain supply, demand of the ride sharing
services is ascertained. In a nutshell, the standard mode choice model might have to repeated
multiple times until an equilibrium state is achieved and final mode choice is performed. This
multiple repetition of the process means that several simulation runs are required in order
to obtain the equilibrium state, which is computationally expensive , especially keeping in
mind the fact that the equilibrium tends to change for every change in a supply, therefore
even if the fleet increases or decreases for a same network, the ride sharing demand will be
different thus a new equilibrium state needs to be calculated. Therefore, the main objective of
this thesis is to develop a mode choice method for dynamic van-pooling services where the
need to run an equilibrium for every change in supply and extensive computational efforts
shall be avoided. Specifically it includes the following:

• Understanding the concept of mode choice for mobility on-demand services.

• Developing a framework to integrate an existing ride-sharing market equilibrium model
with a simulation platform.

• Developing a calibrated analytical model viable for varying service attributes to perform
mode choice.

1.3 Thesis Structure

The overall approach adopted for this research and the results concluded are presented in
the rest of this thesis. Chapter 2 reviews the literature on available mobility on-demand
services, modal-split models’ evolution over the years and the models currently in practice to
represent mode-choice for MoD services. It also provides an extensive review on works done
in the area of market equilibrium specifically talking about ride sharing market equilibrium
model, highlighting the literature gaps at the end. Chapter 3 formulates the methodology
used for this study, it describes the framework to integrate an existing ride-sharing market
equilibrium model with a simulation platform to perform the mode choice of ride sharing
services and it describes the process of calibrating the model’s parameters. Chapter 4 describe
the experimental design setup, problems and errors faced during the execution process with
the platform and adoption of the alternative approach to complete the study. Chapter 5
represents the results obtained for a synthetic network and then the case study network of
Munich. Finally the chapter 6 concludes the results and provide direction for the possible
future research.

3



2 Literature Review

This chapter is further divided into three main sections. First section addresses in detail the mode
choice, the types of mode choice models and how these have evolved over time. Second section discusses
the research that has been conducted on ride-sharing services, their modeling and determining the
mode-choice techniques used to determine their modal-split. The third section goes in depth about
Market Equilibrium (ME), how over the years researchers have tried to establish ME for taxi-markets
and only recently for ride-sharing services. The aim of this chapter is also to comprehend and highlight
the research gaps in the area of determining mode choice and establishing market equilibrium for
ride-sharing services.

2.1 Mode Choice

Mode choice is one of the most critical steps of the famous four step model. It is substantial
to transport planners as it affects how much space on ground will be allocated to each
mode of transportation. Being able to identify and model those attributes which influence
traveler’s mode choice is paramount.(de Dios Ortúzar & Willumsen, 2011) classified the factors
influencing the mode choice into three groups; Characteristics of the traveler, characteristics
of the trip and finally mode characteristics.

In USA, previously, mode choice models were created with the assumption that the most
deterministic feature is traveler’s personal characteristics, which gave little authority to policy
makers to influence their modal decision. It was required to incorporate the characteristics
of other modes in the model additionally to make traveler’s mode choice more policy
sensitive. This approach also changed the sequence of four step modeling, as mode choice
was calculated immediately after trip generation which was in contrast to what was being
practiced in Europe. In Europe, modal-split was determined after the distribution step. This
procedure had the advantage of including the attributes of alternate available modes as well
as the trip itself but traveler’s personal characteristics were lacking as they may have already
been aggregated in trip matrix. (de Dios Ortúzar & Willumsen, 2011)

2.1.1 Sequential Models

Sequential models use four-step modeling as their fundamental procedure. However, in the
past, trip characteristics were not included in the model other than the elemental ones, such
as travel time (Goodwin, 1977). Diversion curves were used to detect the proportion of trips
made using similar mode against cost or difference in time. Another initial heuristic modal
split model utilized a version of Kirchoff’s electricity principal which resulted in graphs very
similar to the graphs obtained as a result of Logit equations (Gaudry & Quinet, 2012). The

4
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main drawback of these Logit models was their inability to link trip attributes with trip’s
nature. There were also constraint in capturing the detailed characteristics of other modes
available to individual users.

Entropy-maximisation models estimated trip distribution and modal-split simultaneously.
A big positive of this approach was the possibility that these models could easily be extended
for multiple modes (Wilson, 1969). However, accurate results could only be expected if
the equation proposed by (H. C. Williams, 1977) held true, which inherently indicated that
cost plays a relatively more important role in choosing the mode than it does in choosing
the destination. Modelers failed to satisfy this equation in abundance which resulted in
models producing irrational results. In case the aforementioned equation was not satisfied,
modal-split had to be done immediately after trip generation for realistic results. This was
contrary to the well accepted way of starting with trip generation, which is succeeded by trip
distribution, proceeded by modal split and finally trip assignment takes place (Solli-Sæther &
Gottschalk, 2010).

Figure 2.1: Multimodal Model Structures (de Dios Ortúzar & Willumsen, 2011)

5
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Gradually travelers were equipped with a wider range of choices and it was crucial to
incorporate these choices in model structures as well. Three multimodal-split models are
discussed in (Ortuzar, 1980a), namely N-way structure, added-mode structure and hierarchical
structure. N-way structure being the simplest, makes the mistake of not taking into account
the extent of correlations of different modes, problems arise when some modes are more
similar in nature than others. The second type discussed is added-mode structure, which
adds another mode in the secondary level but it has shown inconsistent results depending on
which mode is taken as the added one (Langdon, 1976). The third structure discussed is the
hierarchical or nested structure, which groups together modes having similar features such
as Public Transport.

Calibration of nested structures was started at a secondary split and moved up till main
mode. It used to be done using maximum likelihood method as this method was found to be
more reliable (Hartley & Ortuzar, 1980) and efficient than least square methods (Domencich
& McFadden, 1975).

2.1.2 Direct Demand Models

This approach does not follow the conventional four-step sequential modeling, consequently
it avoids some of the drawbacks of the regular method. This model is further divided
into two types; purely direct and quasi direct. In purely direct a single equation is used
to estimate the relation between travel demand and mode, trip and user attributes. Quasi
direct method segregated the mode choice and origin-destination travel demand. These
models were originally based on multiplicative functions. One of the first models, SARC
used a multiplication function to link travel demand to socio-economic attributes of each
zone, incorporating the level of service provided by each mode (Kraft, 1968). The only turn
down of demand model is the fact that a vast number of parameters are required to produce
utilizable results. (Domencich et al., 1968) suggested another form of direct demand model
by introducing linear and exponential terms besides multiplicative ones.

Direct Demand models are particularly useful for areas which have larger zone areas.
In their recent versions, household data is used to evaluate a combined frequency-mode-
destination using the structure of Nested Logit Model (de Dios Ortúzar & Willumsen, 2011).

2.1.3 Discrete Choice Models

(Warner, 1962) and (Oi & Shuldiner, 1962) highlighted the downsides of using the conventional
aggregate models early in 1960s. In spite of that, aggregate models were still commonly used
in transport projects until 1980s (H. Williams, 1979), when finally discrete choice models or
Disaggregate Models (DM) as they were then called, started receiving attention because of an
extensive comparative study conducted by (Spear, 1977). In his study it was concluded that
Disaggregate Models had precedence over aggregate models, as they could be applied at any
aggregation level, and were transferable in time and space. All variability of data was utilised
in DM, as individual data was used, resulting in more efficient and less biased models. Utility
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functions used in these models allowed for any number and specifications of explanatory
variables which resolved issues such as inclusion of policy variables.

Discrete Choice Models dictate that the probability of an individual choosing an option is a
function of his socioeconomic characteristics and the relative attractiveness of the mode (de Dios
Ortúzar & Willumsen, 2011). The term utility was used, which was defined as a theoretical
construct that the individual seeks to maximise while choosing an alternative. The utility
function has constants assigned to particular features defining their weights, these features
are both related to the individual and the alternative. An additional alternative specific-constant
tries to capture the net-influence of all the unperceived characteristics. An individual selects
the maximum utility alternative.

Random utility theory is the most common hypothetical structure of discrete choice model
(Domencich & McFadden, 1975), and is based on equation 2.1. Net utility Ujq is composed
of two parts; a measurable part Vjq and a random part ε jq that considers the idiosyncrasies,
where j refers to an alternative and q to an individual.

Ujq = Vjq + ε jq (2.1)

Multinomial Logit Model (MNL)

Multinomial Logit Model (MNL) is the most pragmatic discrete choice model (Domencich
& McFadden, 1975) as it satisfies the axiom of IIA (Independence of Irrelevant Alternatives)
and has a simple covarience matrix. It focuses on the difference of utilities between two
alternatives rather than the utilities themselves. The unique feature of MNL regarding IIA
contributed to its popularity in the past, as MNL was availed to discover the new mode share
after a new alternative was introduced to public. However, in late 2000s serious disadvantages
of this property came to light in the presence of correlated alternatives (de Dios Ortúzar &
Willumsen, 2011).

Nested Logit Model (NL)

In scenarios where alternatives are dependent, or the variance of error terms is not uniform
MNL results in far too simplistic models. To overcome this drawback, an extension of MNL
was proposed which came to be known as Nested Logit (NL) Model. NL can accommodate
varying degrees of similarities amongst alternatives. First exhaustive analysis on NL structures
was done by (H. C. Williams, 1977) with a focus on composite utilities. Meanwhile (Daly &
Zachary, 1978) developed the fundamental theories elucidating Nested Logits. Figure 2.2
depicts a very popular application of NL with two levels.
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Figure 2.2: A General Nested Logit Structure (de Dios Ortúzar & Willumsen, 2011)

The practical implementation of NL was studied in detail by (Ortuzar, 1980b) and (Sobel,
1980). Each nest is represented by a composite alternative, whose utilities is used as a means to
carry the details from lower nest to the next higher nest. In case of more nesting levels, NL
models can be extended to more hierarchical levels as shown in figure 2.3.

Figure 2.3: Nested Logit model with several nests(de Dios Ortúzar & Willumsen, 2011)

One of the major disadvantages of NL model is its dependency on hit and trial method
while deciding the best nesting pattern, as the number of possible structures increases
geometrically with the number of alternatives (Sobel, 1980).

Other Mode-Choice Models

Multinomial Probit Model (MNP) was introduced to address the problem of simple covariance
matrix in MNL by normally distributing the stochastic residual with mean zero and an
arbitrary covariance matrix. As a result, simulation is needed to solve this model (Van Can,
2013).

The widely-used model currently is Mixed Logit Model (ML). It deals with the logit model
limitations by allowing for the random taste variation among individuals, which is a very
serious issue as shown by (Horowitz, 1981). The original formulation of ML dates back to
1970s and is attributed to (N. Cardell & Reddy, 1977) and (N. S. Cardell & Dunbar, 1980).
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However, its present form is the outcome of research of (Bolduc & Ben-AkiWand, 1996) and
(McFadden & Train, 2000).

Hybrid Choice Models have been proposed in an effort to include subjective elements in
discrete choice models. They account for the intangible attributes of alternatives such as
individual’s personal emotions etc. by introducing latent variables (Morikawa & SASAKI,
1998), (Ashok et al., 2002), (Abou-Zeid & Ben-Akiva, 2010).

While these models are fairly suitable to determine the mode-choice for traditional modes
of transportation, they do not produce practical results when applied to new emerging modes
such as Mobility on Demand (MoD). Therefore, there is a dire need to make adjustments
to already existing models to fit to new developing modes, as the utility function for such
modes does not remain constant but changes for every run because of their dynamic service
attributes.

2.2 Mobility on-Demand Services

Mobility on-demand (MoD) have gained popularity over recent years since the advancement
in technology sector, as now various on-demand mobility services can be accessed instan-
taneously through hand-held devices. These services are rapidly changing urban mobility,
providing an alternative to public transport. By the term ride-sharing we refer to a system in
which the goal is to utilize an individual vehicle for multiple user trips, hence increasing its
utility. A variety of services such as ride-hailing, Car sharing, ride sharing and taxi-sharing
can be categorized as on-demand mobility. These services also have a measurable impact in
the reduction of traffic congestion on road and have numerous environmental benefits over
private cars and ride-alone taxis (Cai et al., 2019).

2.2.1 Modeling MoD services

Over the years many attempts have been made to simulate on-demand services effectively. In
the study conducted by (Zhang et al., 2015b) SAVs are simulated using agent based modeling
with dynamic ride-sharing. Based on available household data, similar travel profile trips
are assigned to SAVs in the modelling system. (Ma et al., 2013) tried to develop a practical
framework for managing a large-scale MoD fleet, he devised a heuristic-based taxi dispatching
strategy and fare management system that could handle operations of large urban scaled
fleets. (Levin et al., 2017) developed a framework for existing traffic simulation models to
incorporate the behavior of SAVs. The framework compares the SAVs scenarios with personal
vehicle trips for the study network. (Bischoff et al., 2017) modeled the taxi-sharing services
by extending a MATSim model which was previously used for non-sharing taxi trips only.
MATSim extensions for simulating on-demand transport modes have been used for ride-
sharing taxi service. Similarly, (Lokhandwala & Cai, 2018) used AnyLogic for agent-based
modeling of shared autonomous taxi services in New York City. An agent-based model for
SAVs was introduced by (Fagnant & Kockelman, 2014). In their work they model SAVs for a
given OD-demand with a reasonable fleet size and investigate the relocation strategies for
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SAVs to minimize waiting times faced by passengers. (Fagnant & Kockelman, 2018) further
extended this model to incorporate the concept of Dynamic Ride sharing (DRS), in which a
single SAV can be pooled by multiple users having similar trip attributes.

(Dia & Javanshour, 2017) studies the impact of SAVs on Melbourne mobility patterns using
agent-based modeling. Another agent-based MATSIM model developed for SAVs is studied
by (J. Liu et al., 2017) for Austin Texas. Their work studies the effect of different fare levels for
the SAVs service on person trips modal split. (Zhang et al., 2015a) study the impact of SAVs
on urban parking demand. A Similar simulation based study by (Fiedler et al., 2017) explores
the SAVs impacts on congestion.

Extensive research has been conducted studying the impacts of implementing shared taxis
in urban mobility environments. However, not the same can be stated in case of ride sharing
services despite their promising characteristic to reduce the traffic congestion substantially.
According to the concluded results of the study conducted by (Alonso-Mora et al., 2017), the
total fleet of 13,000 taxis for New York city can be replaced by 2,000 10-seater vehicles, with
98% service rate. Considering such precedence over other modes, some efforts have been
made to integrate vanpooling services in urban mobility setting.

In a study conducted by (Martinez & Viegas, 2017), on assessing impacts of shared mobility
on urban mobility infrastructure of Lisbon Portugal, an autonomous taxi-bus in conjunction
with autonomous shared-taxis was used. The concept of taxi-bus used in this study is similar
to a vanpool service, where the users can reach their destination without transfers and
travel time is comparable to a private car’s. The effect of shared mobility is studied in a
scenario where autonomous shared-taxis and taxi-bus services replaced all other transport
modes. (Alazzawi et al., 2018) implemented the concept of self-driven robo-taxis as shared
autonomous vehicles to study their impact on urban mobility. The seating capacity of these
robo-taxis has been predefined as 6 passengers per taxi.The concept of DRS introduced
by (Fagnant & Kockelman, 2018) for SAVs in which multiple users with same origins,
destinations and departure times can pool a single vehicle. Although these studies give us an
insight about the impact of vanpool-like ride-sharing services on urban mobility, however the
implementation of these services have some limitations, such as smaller capacity (Alazzawi
et al., 2018), inability to accommodate detour times (Fagnant & Kockelman, 2018) or the fact
that the study cannot be extended beyond its scope (Martinez & Viegas, 2017).

2.2.2 Mode Choice of Ride-sharing Services

With the increase in popularity of ride-sharing services, many efforts have been made over
the last few years to understand, design and implement these services in a more efficient way.
It is crucial to recognize here that mode-choice of ride-sharing is not a one time process as it
does not remain constant rather is highly dependable on the service attributes provided to
the users dynamically, based on the current state of the system.

However, most of the literature mentioned in section 2.2.1 ,assumes a fixed exogenous
demand for ride-sharing services with the underline assumption that demand for these
services remains the same over a period of time. In reality these services co-exist with other
transport modes and based on the service attributes the mode choice should be updated
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dynamically. Some of the studies can be found in literature (mentioned subsequently) which
have tried to include the concept of dynamic demand based on the state of the system.

The effects of MoD on urban mobility have also been tried to quantify and control better by
simulating these services on MATSim (Hörl, 2017) and SimMobility platforms (Araldo et al.,
2018). They have used historical data to update the demand unlike many studies where the
demand is fixed. In the works done by (Djavadian & Chow, 2017a) and (Djavadian & Chow,
2017b), a day-to-day process is implemented to have supply-demand interactions dynamically
update the demand for the MoD service.

Integrating mode choice in the design of MoD system is a study by (Y. Liu et al., 2019),
where a unified framework is developed which integrates the mode choice models with an
on-demand mobility system. In their study the users can choose between available MoD
options with varying seating capacity and public transport. The underline assumption of
the MoD services is that they are all run by the same operator with no competition amongst
them. Their proposed framework can be separated into inner and outer loops as shown in
figure 2.4. The outer loop iterates and optimizes the supply-side parameters using Bayesian
Optimization, the objective function of outer loop is based on the equilibrium criterion. The
inner loop keeps updating the mode-specific attributes and feeds them to the choice model,
based on which new mode choice is generated for each iteration until equilibrium is achieved.
This study uses data from stated preference survey conducted on New York population for
on-demand mobility services.

Figure 2.4: A framework to optimize the supply-side parameters for MoD system with the
integration of the mode choice model (Y. Liu et al., 2019)
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However, a simulation-based mode choice framework as developed by these studies
restricts the mode choice equilibrium for the given set of service attributes, its viability
against changing service attribute values is very less and requires computationally expensive
simulation runs to achieve the equilibrium.

Table 2.1: Summary of the literature on MoD services

Literature MoD Service RS SB DSI

Ma et al., 2013 Taxi
Fagnant and Kockelman, 2014 SAVs
Zhang et al., 2015a SAVs
Zhang et al., 2015b SAVs +
Dia and Javanshour, 2017 SAVs + +
Levin et al., 2017 SAVs
Bischoff et al., 2017 Taxi +
Fiedler et al., 2017 SAVs +
J. Liu et al., 2017 SAVs +
Martinez and Viegas, 2017 SAVs +
Hörl, 2017 SAVs + +
Djavadian and Chow, 2017a SAVs +
Djavadian and Chow, 2017b SAVs +
Fagnant and Kockelman, 2018 SAVs +
Lokhandwala and Cai, 2018 SATs +
Alazzawi et al., 2018 SATs + +
Araldo et al., 2018 SAVs + +
Y. Liu et al., 2019 SAVs + +

Note: RS Ride Sharing (≥2 sharing customers per vehicle); SB Simulation-based modelling; DSI Demand Supply
Interaction; SAVs, Shared autonomous vehicles; SATs Shared autonomous Taxis; ’+’ means that the criteria is true

2.3 Market Equilibrium

Market equilibrium is a stable state of the system where the supply-demand interaction is
balanced out mathematically. Not much literature can be found in the area of establishing an
equilibrium market state for ride-sharing services, however, some substantial works on taxi
market equilibrium have been published. In this section we will discuss slightly the works
done in taxi market equilibrium, and discuss a recently proposed market-equilibrium for
ride-sharing services also considering passenger preference.
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2.3.1 Equilibrium Model for Taxi Market

(S. C. Wong & Yang, 1998) were one of the first ones to circulate the idea that aggregate
models cannot capture the true influence of road network structure, since taxi movements
take place over and over and a network model can better reflect reality. Hence, they initially
formulated an optimization network model, based on shortest travel path adopted by taxi
driver to drop off and pick up a costumer, thereby reducing empty taxi time. From this,
gravity distribution of empty taxis is derived. This model was further improved by (K.-I.
Wong et al., 2001), by incorporating network congestion and demand elasticity first. Later on,
(K. Wong et al., 2002) proposed a sensitivity-based solution algorithm to solve the congestion
model more efficiently. However, with the advent of smart taxi systems, these models failed
to deliver reality-based results.

In a relatively recent research by (Qian & Ukkusuri, 2017), taxi service is divided into
two groups namely, Traditional Taxi Service (TTS) and App-based Third-party Taxi Service
(ATTS). This study, models the taxi market at network level as a multiple-leader-follower game
and investigates the equilibrium with competition (TMC Equilibrium). Based on numerical
results, it is observed that fleet size and pricing policy are closely associated with the level of
competition in the market and may have significant impact on total passengers’ cost, average
waiting time, and fleet utilization. However, passenger preference is still not incorporated in
this model rather costumer’s greedy behavior is assumed.

2.3.2 Ride-Sharing Market Equilibrium

In a recent study, (Ke et al., 2020) extended a taxi market based equilibrium model for ride-
sharing market with the inherent assumption that the ride sourcing vehicles will be providing
the ride pooling services. However for simplification the model only paired two users at a
time for a single ride. (Lu, 2020) in his recent study proposes a market equilibrium model for
ride-sharing services in the multi-modal transport context by applying the Multinomial Logit
(MNL) model to present the ride sharing demand for the given passenger preference data.
The model also estimates the detour and waiting times for the network analytically. Figure
2.5 illustrates the relation between exogenous and endogenous variables of this equilibrium
model.

In this market equilibrium model, trip fare and vehicle fleet size are exogenous variables,
while detour time, waiting time, vacant seats and ride-sharing requests generated are all
endogenous variables. Passenger preference is dependent on trip fare and other transport
modes’ attributes. Waiting time is assumed to be dependent on seat availability keeping in
mind the sharing nature of this service, vacant seats available are directly related to fleet size,
ride-sharing requests generated control the detour time. Because of high inter-dependencies,
vacant seats available can also indirectly affect the detour time.
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Figure 2.5: Relationship between endogenous and exogenous variables (Lu, 2020)

Market Equilibrium model is doing service availability based equilibrium as well by
performing the mode choice. To find how many requests are served and what are the service
attributes. An equilibrium state between the service attraction and service attributes is
calculated by the ME model. This is the similar idea of performing a mode choice what
this study aims to achieve for the ride sharing services and to replace regress simulation
computations by a calibrated analytical model.

2.4 Literature Gaps

Following the available literature review of ride sharing services in section 2.2 and the ride
sharing equilibrium model in section 2.3.2. These literature gaps can be extracted

• Few studies are available on the modelling of micro-transit services in a multi-modal
network having a higher capacity than conventional taxis.

• The framework of dynamic mode choice for MoD services is still an open question with
very less research efforts.

• Current mode choice methods for MoD services requires extensive computational effort
(requires equilibrium state each time).

• None of the studies in discussion integrated and calibrated a market equilibrium model
with a conventional simulation based mode choice method.
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This chapter presents the methodology adopted to achieve the objectives of this thesis. The methodology
is explained in three sections. First section deals with modelling of dynamic van-pooling services,
briefly explaining the routing optimization algorithm and functionality of the simulation platform used.
In section two we discuss the market equilibrium model used for this study. Finally the last section
covers the details of ME-based mode choice method, explaining the steps involved in developing the
method, how a simulation database is created and is used to calibrate the market equilibrium model.

3.1 Modeling Dynamic Van-pooling Services

Many efforts have been made to model the mobility on-demand services but there is very
less effort done to model the dynamic van-pooling services which involves a dynamic traffic
assignment and real-time service optimization (Qurashi et al., 2020). Dynamic and stochastic
nature of dvanpool service requires a continuous route scheduling. As the new requests
are generated, the van needs to be routed to the nearest request and serve the request with
best route possible to generate maximum revenue. The scheduler is in place to perform this
routing optimally. The following section will discuss the general framework of scheduler and
the simulation platform used to model the dynamic van-pooling services.

3.1.1 Routing Algorithm

Scheduler used is based on algorithms for dynamic van-pooling services developed by (Li
et al., 2019). Its basic framework can be divided into two parts, evaluation procedure and
scenario based search. Evaluation procedure handles the requests that are sent to scheduler
while the scenario based search determines the best route for each individual van.

Initially the scheduler receives demand requests of new passengers and by means of real-
time interaction with simulation environment, scheduler optimizes and finds the closest van
best suitable for the pickup. Scheduler functionality includes the evaluation criteria which
decides whether the request is to be served or not. At an event of a new request, it is by
default rejected by the scheduler. The evaluation procedure as described in Algorithm 1 by
(Li et al., 2019) compares the average objective function values of accepting and rejecting the
requests respectively. If accepting the request results in a higher value of average objective
function, the request is accepted otherwise remains rejected.
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Algorithm 1: Evaluation Procedure (Li et al., 2019)
state(t)←< V, R >

for each scenario sk(t) ∈ S(t) do
objk(t)← objective function value of SOLVE(state(t), sk(t))

end
return the average value of each objk(t) as objk(t)

Figure 3.1 illustrates the functionality of Algorithm 1. When the average objective function
of accepting the request is higher than rejecting it, scheduler then accepts the requests and
move on the the next step of scenario based search where it decides the route of the selected
van.

Figure 3.1: Illustration of the evaluation procedure (Li et al., 2019)

Deciding on the route that shall be assigned to van is done in scenario-based search. In
brief words, the general methodology of this algorithm as shown in Algorithm 2 is to take
into account the current state of the system , and then look at all the possible routes which
can be assigned to vans, The algorithm loops through all the possible scenarios, updates the
state of the system according to each scenario and then evaluates it based on the objective
function value. The best scenario is then selected as the route to be assigned to the van.

Algorithm 2: Scenario-based search (Li et al., 2019)
state(t)←< V, R >

for each scenario sk(t) ∈ S(t) do
decisionk(t)← decision of SOLVE(state(t), sk(t))
statek(t + ∆t)← UPDATE(state(t), sk(t), decisionk(t))
objk(t + ∆t) ← EVALUATE(statek(t + ∆t))

end
return decisionk(t) with best objk(t + ∆t) as the final decision decision(t)
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Figure 3.2: Illustration of the scenario-based search (Li et al., 2019)

3.1.2 Simulation Platform

In addition to scheduler, a ride sharing simulation platform developed by (Qurashi et al.,
2020) is used to model the dynamic van-pooling services. Simulation platform takes in
the operational parameters such as fleet size, seating capacity, unit price and initializes the
vans on network at selected initial meeting points. On the other hand, demand requests are
generated dynamically by the demand module for given network OD demand. The passenger
preference module inside demand module takes in the scenario inputs such as the service
attributes and based on the utility functions of the different transport modes, it performs
the mode choice for the dynamic van pooling service. The demand is then written in trip
request files and communicated with the scheduler during simulation runs. Based on this
initialization information, simulator in conjunction with scheduler serves the requests.

Figure 3.3: Modelling Architecture of Simulation Platform (Qurashi et al., 2020)
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The python-based scenario executor of the simulation platform interacts with C++ based
scheduler via dynamic link library. The further integration of scheduler with the simulation
platform and translation of data among the two platforms is illustrated in figure 3.4.

Figure 3.4: Scheduler Integration with Simulator (Qurashi et al., 2020)

However in this study we propose to use the ME model as the demand module of the
simulation platform and is used to perform the mode choice of the ride sharing service. The
present process of performing mode choice in the demand module will be modified by using
a calibrated market equilibrium model for ride sharing market. The calibrated model will
provide the ride sharing demand for the given supply parameters and network demand.
In order to use it as the default mode choice method, it needs to be integrated with the
simulation platform and using the calibrated model parameters to perform the mode choice.
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3.2 Ride Sharing Market Equilibrium Model

Market equilibrium can be described as the balance state of the system when demand and
supply interaction reaches an equilibrium state under certain operation conditions. In other
words, the mathematical balancing of supply-demand simultaneous equations is known as
the equilibrium state (Lu, 2020). Recently due to advancements in urban mobility, there
has been a rise in mobility on demand services. Ride-sharing services have emerged as an
alternate to public transport where the user can experience a door-to-door service with fairly
less fares as compared to taxis.

3.2.1 Demand Modelling

A market equilibrium model for the ride-sharing services has been developed for a multi-
modal network. In his work, the application of a multinomial logit (MNL) model is used to
incorporate the passenger preferences.

The market equilibrium model analytically calculates the ride sharing requests along with
the network detour and waiting times of the multi-modal network for the ride-sharing service.
In his study, (Lu, 2020) has developed a relation of Q with detour time t and waiting time w
by introducing model parameters A & B. Equation 3.1 explains the relation of ride sharing
requests Q with detour time t. Similarly equation 3.2 shows how waiting time w is estimated.

t̃i =
Ai ∑j Qjtd

j

N ∑j Qj
(3.1)

wi =
BQi√

Nns −∑j Qjtj

(3.2)

The complete derivation of these equations has been discussed in detail in (Lu, 2020). As
shown in figure 2.5, ride-sharing requests are generated based on the passenger preference
module. The passenger preference data used is available through the stated preference survey
conducted for the city of Munich in his study by (Tsiamasiotis, 2019). This multinomial logit
model based module is used to perform mode choice for the ride-sharing service by taking in
the exogenous variables of the system. The generated requests are then used to estimate the
waiting time w and detour time t which are then again used as the inputs for this passenger
preference module. The above mentioned iterative process is how the equilibrium state of the
market is estimated.

3.2.2 Integration with Simulation Platform

The scheduler integrated simulation platform models the demand of the dynamic van-pools
by creating requisite text files which contains all the data of individual passenger requests
that the platform will serve. The request files are created from the network demand using
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a mode choice method. Currently, the ride sharing demand is extracted from the network
demand using the utility functions and an equilibrium state is achieved my running multiple
simulations. In order to use ME module as default mode choice, it has to be integrated with
simulation platform. The integrated ME model will be replaced between the network demand
and output request files as a mode choice method.

The global inputs of simulation platform are translated to ME module to model the market
equilibrium for the specific study network. ME module calculates the ride sharing requests Q
for the equilibrium state of that network. The generated demand requests Q can be modelled
on the simulation platform to get the simulation specific attributes.

In order to run ride-sharing requests Q from ME module on simulation platform a requisite
request text file is generated. Request trip attributes are communicated with scheduler via
the requests files. The request files includes the trip information such as the depart times,
potential detour time, and trip fare. Along with the requests demand Q from ME module,
additional requisite parameters of potential detour time and fare are also initialized to create
these request files. These parameters are calculated by equations 3.3 and 3.4.

td = Tijδ (3.3)

where:

td = potential detour time

Tij = direct travel time between OD pair i and j

δ = detour coefficient expressed as delay per hour

P = Dij pα (3.4)

where:

P = trip fare

Dij = direct distance between OD pair i and j

p = unit price per kilometer

α = profit ratio
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3.3 ME-based Mode Choice Method

3.3.1 General Methodology

The process for mode choice is not straight forward with services having such a dynamic
nature. The perceived service attributes by the user are not static. They change based on the
availability of the service on the network overtime. Therefore the mode choice also needs to
be dynamic with a feedback loop which updates the demand of the ride-sharing service in the
network. However, to perform this feedback loop over and over again, extensive simulation
runs needs to be performed to achieve the equilibrium state. To simplify this process and
bypass the extensive simulation runs to perform the mode choice, this study developed a mode
choice method for ride sharing services where a calibrated market equilibrium performs the
mode choice of ride sharing services for given supply parameters. This calibrated ME model
can save extensive simulations required to perform a basic equilibrium-based mode choice
of ride sharing services for any change in supply or demand parameters. The calibration of
model parameters is achieved by comparing the simulation results with the analytical results
and reducing the goodness of fit error to achieve a set of model parameters that can provide
the same output through analytical equilibrium rather running simulation equilibrium.

3.3.2 Simulation Database

The first step is to develop a database of simulations which contains the service attributes
detour time and waiting time for varying range of ride-sharing demand Q and fleet size
N. The simulation platform is used to perform the various simulation runs and the output
results of every simulation is stored for large database. Fig 3.5 illustrates the data collection
process of the simulated network attributes using a nested for-loop. For every fleet size, a
series of demand is simulated to generate a fairly large data-set having high significance of
the values by performing multiple simulations for any single scenario.

Where q is the ride sharing demand and n is the fleet size. They both have increment
parameters a and b respectively. However, one of the main step in setting up the simulation
database is to define the range of n and q for which the simulation runs will be performed.
First step is to select an approximated range of fleet that can be operated on the network of
study. Note that this range of fleet size will only be used to calibrate the ME model. The
calibrated ME model will however be valid for the fleet size outside this range as well.

Since market equilibrium model is based on analytical equations, for a fleet size n the
analytical equations 3.1 3.2 have bounds of model parameters within which the equations
can be solved. Parameter’s bounds are specific to network which can easily be determined
by standard hit and trial method. Once an approximated fleet range is selected, a maximum
possible ride sharing demand q that can be output from ME model within those bounds can
be determined. Hence, a range of ride sharing demand q can be defined, starting from as low
as 1 ride sharing demand to the maximum demand output q from ME model. Once these
ranges for fleet n and demand q are defined, a suitable increment parameters a and b can be
selected depending on the level of detail required from the data collected.
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Figure 3.5: Data Collection from Simulation Platform using Nested For Loop

22



3 Methodology

3.3.3 Calibration of ME Model

Upon creation of the required simulation database, the next step is to calibrate the ME model
by comparing the outputs with the corresponding values from the database. The simulated
database is considered as the observed data and the output from ME model are the predicted
values. For a given inputs, the ME model returns a ride-sharing demand and the analytical
networks attributes detour and waiting time for that particular demand. To calibrate the ME
model parameters we develop an optimization objective function that uses the simulation
database (observed values) to compare the ME model results(predicted values) for A and B
model parameter’s values and returns an error term as a measure of difference between the
two data-sets.

Figure 3.6: Objective Function Workflow

This becomes a simple optimization problem where the resulting error from the objective
function can be minimized using one of the optimization algorithm. The optimization
algorithm takes in some initial values of model parameters A and B and tries to minimize the
error term returned by the objective function. The optimization algorithm performs different
function evaluations to determine that in which direction does the model parameters reduces
the error term and tries to converge to the slope minima. The optimization algorithm returns
the set of A and B values after the convergence. The general framework of the function is
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illustrated in figure 3.7 which reduces the error value until convergence. The converged
values of parameters A and B calibrates the market equilibrium model.

Figure 3.7: Calibration of ME Model Parameters

3.3.4 Discussion

As explained earlier, the conventional process of performing mode choice for ride sharing
services includes a feedback loop based system where based on the network state, multiple
simulation runs are required to achieve an equilibrium state. Note that the equilibrium state
achieved is through a regress process and only valid for that particular supply parameters.
For any change in supply, the process has to be performed again until the equilibrium
is achieved. For larger networks, where a single simulation run takes several minutes to
complete, and given the fact that to achieve equilibrium, multiple runs are needed, it can
become computationally expensive to perform mode choice every time there is a change in
supply.
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The calibrated ME model however is viable against the varying service attributes and
reduces the extensive computational time required in conventional simulation based mode
choice method. For any change in supply, the calibrated ME model approximates the ride
sharing demand through analytical equations and takes far less time to solve the equations
compared to running multiple simulations. Another reason that gives ME model advantage
over simulation runs is that the discrete level of a simulation run is the network links and
nodes, where for ME model the discrete level are the OD pairs. In case of larger study areas,
the OD pairs can be aggregated to reduce the number of equations that the ME model solve
analytically however for simulations, the network links, individual vehicles will take up more
time due to larger size of the network and the aggregation of network links is only possible
to some extent.
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This chapter describes the experimental setup used within this research. First section discusses the
creation of simulation database, simulation platform and the standalone scheduler used. Section two
discuss the steps involved in model calibration using the observed simulation data and predicted ME
model data. In the last section, integration of the calibrated module with the simulation platform is
explained.

4.1 Simulation Database

Simulated database acts as the observed values and are compared with predicted analytical
model outputs of the ride-sharing market equilibrium (Lu, 2020). Simulation database is
generated by running multiple simulations for different supply parameters as explained in
section 3.3.2. For this study, ride sharing simulation platform designed by (Qurashi et al.,
2020) was setup to perform simulations required, however during the execution process there
were many errors due to some inconsistencies between the platform and the scheduler and
despite spending quite a lot of time on platform setup it was not used to run simulations.
To complete the study in time, a standalone version of the same scheduler was used to run
the simulations without the interaction with the platform. This section describes both the
original setup of the simulation platform and the use of standalone scheduler.

4.1.1 Ride Sharing Simulation Platform Setup

Simulation platform (Qurashi et al., 2020) designed for ride-sharing services is used to setup
the database. It uses SUMO as its default simulation environment. The platform is itself
written in python programming language and consists of different modules responsible
for their specific tasks in modelling dynamic vans behaviour. Table 4.1 summarizes the
general functionalities of the different modules of the simulation platform. In this study, these
modules have been improved and where necessary additional modules were also written in
python to achieve the desired functionality.
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Table 4.1: Simulation platform modules summary

Module Functionality

Network Integration Methods definition to handle network file and create internal nodes
Operation Definition of functions required by the platform during execution
Simulation Interaction with Scheduler using DLL and SUMO using TraCi

Note: DLL:Dynamic Link Library, TraCi:Traffic Control Interface

Using the nested for loop 3.5 the platform is setup to perform various simulations on the
case study networks and collect as much result possible for the AB estimation and thus model
calibration. The AB estimation requires a large amount of data from the simulations runs
that can be compared with the ME module outputs to calibrate the model. However the ME
module as explained earlier outputs certain demand Q and its respective attributes for given
number of vans. In order to completely calibrate we should have enough simulation data
available for the various values of Q and number of vans N. For each case study network, the
range for fleet and ride sharing demand is specified for which the data is collected.

Scheduler Interaction

As described earlier in section 3.1.1, the scheduler is responsible for the routing of the vans.
It performs the routing of the vans based on the new requests generated after performing the
optimization of the objective functions. However, scheduler is written in C++ and to perform
the routing dynamically, platform needs to interact with the scheduler and call its methods
in real-time. For this purpose, a dynamic link library is generated (DLL) which is used to
interact with scheduler using python and make use of its functions. The simulator module
of the python code is written for this real-time interaction with scheduler and also with the
SUMO simulation. At an event of new requests generation, the simulator module first calls
scheduler’s functions to update the routes of the vans, and then uses TraCi module to update
the new routes of the van on the network and continue with the simulation steps unless new
request is generated.

Traffic Control Interface - TraCi

Traffic Control Interface or TraCi is one of the modules of SUMO which is used to interact in
real-time with simulation environment and retrieve the values of the simulated objects and
is also able to manipulate them. Traci can obtain various attributes of the simulated objects
such as passenger info, passenger driving state, vehicles ids, their locations on the network
etc. All these object attributes are needed by the simulator platform for requests handling.
The simulation platform uses functionality of the TraCi module and models the behaviour
of dynamic vans on the network. Vans can only be dynamic when they are able to route
dynamically on the network. TraCi can only retrieve simulated object’s values but cannot
perform the dynamic routing on its own. For this purpose the simulation platform runs in
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conjunction with the scheduler. On one hand the scheduler performs the dynamic routing of
the vans and on the other, TraCi helps to model their behaviour on the network. Simulation
platform manages the execution of these processes in a sequential and organized manner.

4.1.2 Issues/Errors

In order to create the simulation database, various simulation runs are required to collect
sufficient amount of data to compare with market equilibrium outputs. However, the
simulation platform had several errors during the execution process, mainly while interacting
with the scheduler. Some errors created warnings during the execution where as some were
very critical resulting in the abortion of simulation process.

U-Turn connections

Usually when the network is downloaded from OSM and then converted to XML format, all
the road network is kept in its original state. Some junctions on the network might not allow
a u-turn because of the physical limitations or simply because of the fact that a u-turn is not
allowed. However, the scheduler treats a junction by default as if u-turn is possible which
creates bugs and errors while simulating. The scheduler gives a certain route to van during
simulation assuming that a u-turn is possible however in SUMO network that is not possible
for van resulting in its crash. This was one of the problems with a larger network since there
was more chance of occurrence of such scenarios. So at the time of crashing, the faulty edge
had to be manually checked on the network using NETEDIT and the issue had to be dealt
with.

Scheduler Incomplete Routing

During a normal simulation run, a request is read by the scheduler, then it is given the current
positions of the vans and based on its internal optimization the scheduler assigns a route to
one of the vans. The assigned route is communicated to the selected van on network using
TraCi. However, sometimes during simulation runs, when scheduler selects a route to be
assigned, few of the edges are absent in the route. Consequently when TraCi communicates
the route to the vans on network, they are unable to identify the route because of the missing
edges causing it to crash. Such errors were really hard to resolve and had very frequent
occurrences.

Unserved Passengers

During an event of a new pickup request, a person is generated on the corresponding meeting
point of that traffic assignment zone. The crashing of scheduler due to incomplete routes also
resulted in vans not arriving at the pickup point and thus the passenger remains non-served
during the whole simulation. Most of these errors were caused during the translation of data
from scheduler to SUMO. Another reason is the dynamic link library, which was initially
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generated, may also causes some methods or functions to crash in C++ which are responsible
of routing the vans.

4.1.3 Standalone Scheduler

Some of the issues such as u-turn connections, were resolved in time of this study, however
the other more time-consuming errors could not be resolved for larger networks because of
the time-constraint of this research. Due to these reasons, a successful simulation run using
simulation platform could not be made possible. Quite a lot of time of this study has been
spent on debugging these errors for successful simulation runs but due to the time constraint
of this study, an alternative approach was needed to continue the work and achieve the
desired results. Nevertheless, to conclude the study in time the requests are run analytically
on scheduler-only using a standalone scheduler executable file. It takes the same inputs as
needed by the simulation platform to run multiple simulations. The only downside of this
method was that it did not include the interaction of other traffic on road which could have
impacted a little on detour or waiting time due to the effect of congestion but all in all the
standalone scheduler still does provide the simulated network attributes as it does map the
network waiting time and detour which are compared to the analytical results of ME module.
Therefore the standalone scheduler is used to perform the simulation runs and the desired
data is collected.

4.1.4 Data Collection

To setup the simulation runs on standalone scheduler took very less time as the inputs
were already generated in process of setting up the simulation platform. Therefore only an
executable file with the paths to input files was required to run the simulations. The nested
for-loop as illustrated in figure 3.5 is used to collect the data. To increase the significance of
the data collected, the for-loop itself is repeated multiple times. The outputs of the scheduler
contains the text files containing network attributes of all the simulations ran. The nested
for-loop is setup in such a way that after the fleet size is incremented, the simulation results
are categorized based on the number of vans. After the simulation run is complete for all
vans and demand, all the resulting text files are read and the simulated ride-sharing demand
Q is extracted along with simulated detour and waiting time. Since the for-loop itself is
repeated several times, so for a given N and Q, there are multiple entries of data. The multiple
entries are then aggregated and a mean value is taken for that particular N and Q entry. The
extracted data is stored in a suitable format which can be easily processed and compared
with the ME model outputs. Table 4.2 illustrates the format of simulation database.
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Table 4.2: Simulation Database Format

Fleet Size (N) Demand (Q) Detour Time Waiting Time

n0 q0 tn0q0 wn0q0

n0 . . .
n0 . . .
n0 . . .
n0 qn tn0qn wn0qn

. . . .

. . . .

. . . .
nn q0 tnnq0 wnnq0

nn . . .
nn . . .
nn . . .
nn qn tnnqn wnnqn

4.2 ME Model Calibration

4.2.1 ME Setup

ME model calibration requires observed and predicted values. ME outputs are the predicted
values that are compared with the simulated database. ME module uses the available
passenger preference data (Tsiamasiotis, 2019), the utility functions of other transport modes
and the OD demand in form of a vector, it calculates ride sharing demand Q and the
corresponding network attributes calculated analytically. In order to use market equilibrium
module to get desired outputs for the case study network it requires certain network and
supply specific inputs. Figure 4.1 illustrate the required inputs needed by the market
equilibrium module.

ME module is also written in python and also requires the global inputs that are used
during the simulations as of fleet size, van capacity etc. However, it additionally requires
direct times and distances between all origin destination pairs. To obtain these values of
direct times and distances for all OD pairs, simulations are required of the study network
with complete OD network demand but without the ride sharing service. After running
simulation runs vehicle routes XML file is generated as output. This vehicle route XML is
also one of the outputs of SUMO which can be generated after a simulation. It contains all
the vehicle routes information that were simulated. The route information are OD based and
they are processed to extract the individual OD pair direct distance and direct time. These
direct times and distances along with the supply specific inputs are then given to ME module
to obtain predicted values.
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Figure 4.1: Requisite inputs for Market Equilibrium Module

4.2.2 ME Dataset

Once the ME module setup is completed, the next step is to run the market equilibrium
model with initial guess values of parameters A and B and collect the data for the same range
of fleet size as used in nested for-loop to collect the simulation data. However for getting ME,
only single for-loop is required since the demand is one of the outputs of the ME module
itself along with network attributes. This idea is better illustrated in the following figure 4.2

The resulting data from the ME module is generated in the format shown in table 4.3

Table 4.3: ME Dataset Format

Fleet Size (N) Demand (Q) Detour Time Waiting Time

n0 q0 t0 w0

. . . .

. . . .

. . . .
nn qn tn wn
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Figure 4.2: Data Collection from ME Module using for-loop

4.2.3 Data Comparison

For a given value of N, the ME outputs the ride sharing demand Q of the market, and the
resulting network attributes. The next step is to join the corresponding simulated network
attributes for the same fleet N and demand Q and compare the outputs. A code module is
written in python again that performs this comparison process in a systematic way.

• Reading simulation data from output files and arranging it according to the fleet size in
a dictionary of data frames in python. Where a single data frame consists of network
attributes for varying range of Q for that particular N.

• Getting ME data outputs in a single data frame.

• The code reads the ME output line be line. First it determines the fleet size N, and then
look for the dataframe of that particular N in the dictionary of simulation dataframes.

• Once the target dataframe is identified, it reads the Q from the ME output for the same
line, and then tries to find the Q in target dataframe. However the ME outputs float
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values for Q and the simulation dataset have integer values for Q.

• In the next step the function identifies the neighbouring values of the Q and then
interpolates and gets a detour and waiting time value from simulation dataframe and
attaches it with the ME dataset.

Once this code module is finished reading all the ME output lines and attaches all the
corresponding results, the final comparison dataset is represented in table 4.4

Table 4.4: Comparison Dataset Format

N Q Detourme Waitingme Detours Waitings

n0 q0 tme0 wme0 ts0 ws0

. . . . . .

. . . . . .

. . . . . .
n0 q0 tmen wmen tsn wsn

4.2.4 Goodness of Fit

The next step is to evaluate the difference between the values of both datasets. The goal is to
measure how good the ME outputs fits with the simulation data. The goodness of fit can be
measured through many indicators, in this study following errors have been used to measure
the difference simultaneously on an initial guess values of model parameters and then the
error with better convergence results is used for further evaluations in this study.

For error calculations, the simulation detour and waiting time will be treated as the actual
data and the ME dataset will be the predicted values that has to be fit eventually.

Root Mean Square Error

RMSE =

√
1
n

n

∑
i=1

(
di − fi

)2
(4.1)

where:

di = predicted values (ME)

fi = actual values (Simulation)

n = range of fleet sizes simulated

Root Mean Square Normalized

RMSN =

√
n ∑n

i=1

(
di − fi

)2

∑n
i=1 fi

(4.2)
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where:

di = predicted values (ME)

fi = actual values (Simulation)

n = range of fleet sizes simulated

Mean Absolute Percentage Error

MAPE =
100
n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (4.3)

where:

At = actual value (Simulated)

Ft = forecast value (ME)

n = number of observation values

4.2.5 Optimization

The initial value of any of the above mentioned error would be higher since the input model
parameters are just the initial guess. They need to be optimized so that the model can be
calibrated. The optimization workflow has been explained in detail in the figure 3.7. Python
library scipy is used to for optimization of model parameters

The Minimize() function of the scipy library inputs a callable function and initial guess
values of the A and B parameters. The callable function should take in the model parameters
and return a float value of the error. The optimization algorithm will re-iterate by using
different A and B inputs to the callable function and continue the process unless the error
value is converged or maximum number of iterations have reached.

The convergence of the error value also depends on the initial guess values of the model
parameters as well because the function converges to a local minima which is sometimes
not the lowest value of the error. However, by running the minimize function few times
with different initial guess, results in the convergence to the global minima. The minimize
function after converging outputs results that contains the number of iterations needed to
converge and the final values of model parameters that resulted in the lowest error value.
The parameter values essentially calibrates the market equilibrium model to the extent where
it can be used as an alternate to running simulations.
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4.3 ME-based Simulation Mode Choice

4.3.1 SUMO Inputs

The simulation or modelling of vans happens in presence of the general origin destination
demand of the network. So in order to incorporate the behavior of vans on an existing simu-
lation network, some prerequisite input files are needed by SUMO to initialize a simulation
and then use TraCi to interact with it. A standard SUMO simulation requires a configuration
file .sumocfg which contains the necessary information regarding the simulation. For a
simulation to run, the SUMO configuration file at least requires a path to network file, trips
file containing the information of origin destination trips and an additional file, all in XML
format.

Network File

The network files required by SUMO are in .xml format and they can be created by using the
NETCONVERT feature of SUMO. Networks can be exported from Open Street Maps (OSM)
in .osm format. Since the exported network from OSM also contains other information which
is not necessary for the simulation such as buildings or footpaths, this extra information can
be dropped using OSMFILTER. OSMFILTER is a commandline based program that keeps or
drops the OSM tags from .osm files. After filtering the unnecessary data from .osm file, using
NETCONVERT .osm network can be converted to SUMO readable .xml format.

Trip File

Another required input for the configuration file is the trips.xml file. This file usually contains
the information of all the trips that will be simulated. Note that the trips here refer to the
trips from the origin destination demand of the network zone. Usually the origin destination
data is in matrix format commonly known as OD matrix. SUMO function OD2TRIPS is used
to convert this origin destination data into trips.xml which can be given to configuration as
input for trips. To run OD2TRIPS function, OD matrix is first converted in a vector format
and then given as .txt input. In addition to that, a TAZ file is also needed by the function.
TAZ file is also an XML file, which contains all the traffic assignment zones of the network.

4.3.2 Network Preparation

SUMO takes the network demand in traditional OD matrix format. The demand is represented
as traffic assignment zones which have connectors and we need to represent the same for our
network hence we create meeting points. The meeting points are various locations on the
network that will act as the pickup or drop off locations for the dynamic van-pooling service.
As explained earlier, these vans are modelled with the actual origin destination demand of
the traffic assignment zones of the network. Due to the dynamic nature of their behavior,
vans demand can not be written in form of a trips.xml and given to SUMO at the start of
simulation. All the requests that are generated for vans is not always served if they do not
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fulfill the optimization criteria of the scheduler, therefore meeting points are required on the
network to create the demand during simulation and then the scheduler checks whether it
can serve it or not.

The current working of the simulation platform includes creation of connectors or as we
call them meeting points at random locations on the network. The drawback of random
generation of these meeting points was that sometimes most of the meeting points were
cluttered in a single vicinity resulting in all the pickup requests from a same area. The
systematic way was to create these meeting points distributed over all traffic assignment
zones. The additional set of code written solves this issue and creates distributed meeting
points. The basic methodology adopted by the code is as follow:

• Using the Geopandas library of Python, the module reads the shapefile of the study
area which consists of all the traffic assignment zones (TAZ).

• Module then reads all the edges and nodes of the study area from network XML file
and identify the corresponding TAZ of each one of them from shape file.

• It then filters the links which have starting and ending node in a same TAZ.

• Among the filtered links, it finally selects few links of reasonable length from every
TAZ which are then used as meeting points for the vans.

During initialization process, if the network XML is changed or modified externally, new
meeting points are created every time and this is the default method to create them. During
the process of matching TAZ with links, it also creates a TAZ file. TAZ file is one of the inputs
for creating trips XML file. Using the XSD schema file available in SUMO installation folder,
TAZ XML file is created in a SUMO readable format. This taz.xml is later used in generation
of trips.xml file in the platform.

4.3.3 Demand Processing

Calibrated ME model replaces the conventional mode choice method. For the simulation
platform to integrate the calibrated ME model as mode choice method, the outputs of ME
model needs to be processed into request files required by the simulation platform. Request
files are text files which basically contain the information regarding ride sharing demand
trips, their estimated departure and arrival times. Since the market equilibrium module is a
standalone package which performs analytical operations, the nomenclature of ME module
and simulation platform is very different. Data processing and some additional definition of
the variables is necessary to move forward.

The ride sharing requests Q generated for all OD pairs by the market equilibrium need to
be processed in a way that eventually we have request files in .txt format which are given to
scheduler later on. The request file however not only take Q as an input but it also requires
few additional variables. Figure ?? briefly illustrates the process of creating request files once
the results are obtained from market equilibrium.
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Figure 4.3: Ride Sharing Demand Processing

The ride sharing demand is generated in form of a vector for all OD pairs. Ride sharing
demand output from market equilibrium model is processed into request files for simulation
platform as shown in fig 4.3. Using OD2TRIPS function of SUMO, a trip file is created.
Resulting trip XML file only contains the van trips that are to be served during the simulation.
However this trip file is not used by SUMO as one of the input just like the OD demand trip
file, rather this trip file is used to create passenger request file that the scheduler requires. The
useful data such as trip departs, arrival, ID is extracted and is processed into the request files.

Since this request file is basically an input for the scheduler, other than standard trips
info, it additionally requires the latest arrival, departure time and trip revenue which will be
generated from individual trip. This information allows the scheduler to optimize during
simulation that which of these requests would eventually be profitable and whether a certain
user is willing to wait for their pickup or is acceptable with the fact that they might experience
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extra detour during the trip. Equations 3.3 and 3.4 define these additional parameters using
the available data of direct time and distance from earlier simulation runs without van service.
These additional parameters of potential detour time and expected revenue along with ride
sharing demand from market equilibrium are processed into request files.

Generation of these request files is the final step before the actual simulation starts. This
new mode choice method incorporated a standalone market equilibrium module with the
simulation platform. This integration allows us to simulate the ride sharing demand through
a market equilibrium and then simulate those demand requests with actual OD demand.
This enables us to include the stochastic nature of the actual traffic in the network and map
the actual service attributes.
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This chapter explains the setup of two different scenarios. In first section, a synthetic case study is
developed for a small test network with synthetic demand and utility functions. Later on in section
two the method is then implemented on a slightly bigger network with more traffic assignment zones
and different applications of a calibrated model is explored.

5.1 Unterschleißheim - Synthetic

Unterschleißheim is a suburb of Munich City. It is a small neighbourhood with roughly over
30,000 inhabitants (Rathaus Unterschleissheim, 2020). The area has mostly residential roads
and fairly well interconnected network suitable for our synthetic case study.

5.1.1 Network

Figure 5.1: Unterschleißheim Network

The network for this area is downloaded from (OpenStreetMap contributors, 2017). The
downloaded .osm network file is converted to network XML file using NETCONVERT. Also
additional features which are not needed are dropped using OSMFILTER. The resulting
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network XML file contains only the useful road network which is needed essentially for the
simulation. It also makes the XML file smaller in size which helps in loading the network
faster in simulation platform later. The area is divided into 3 traffic assignment zones, making
sure that all TAZ have equal distribution of the road network. A basic shape file is created in
QGIS. Using an OSM standard layer at bottom, polygons are created to equally divide the
area.

Figure 5.2: Unterschleißheim TAZs

A synthetic OD demand is created for the area of Unterschleißheim. Based on this synthetic
OD demand, trips file, ride sharing demand and all other requisites required for the simulation
platform are prepared.

5.1.2 Simulation Database

First step is to collect the base simulation dataset needed for model calibration. Simulation
dataset for synthetic network is created using the nested for-loop. The dataset is aggregated
based on the unique demand Q and fleet N values as described earlier in table 4.2. During
the setup of nested for-loop, range for fleet size N and ride sharing demand Q is also initiated
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where:

N ∈ Z : 2 ≤ N ≤ 6

Q ∈ Z : 1 ≤ N ≤ 50

The simulation runs are initiated using the fixed parameters shown in table 5.1. Scenario
runs here refer to the times the nested for-loop is repeated itself to get multiple data entries
and then aggregating them at the end. This helps in removing the outliers during the multiple
simulation runs.

Table 5.1: Simulation Setup Fixed Parameters

Parameters Values

Seating Capacity 8
Unit Price 2.5
Scenario Runs 21
Profit Ratio 0.4
Detour Coefficient 1.5

5.1.3 Optimization

Once the simulation dataset is generated, next step is to start the process of the error
minimization. For finding error term, initial parameters guess values are input in market
equilibrium module. The ME module returns the initial output 5.3 for all the complete range
of fleet size. The detour and waiting times are aggregated at the network level.

Table 5.2: ME Module Parameters - Initial Guess

Parameters Values

A 6
B 0.06

Table 5.3: ME Output (Initial Guess)

N Q Detour Time Waiting Time

2 5.526698 860.551500 108.448201
3 9.303947 567.199758 145.169679
4 11.662568 432.792975 155.017755
5 13.277706 346.311693 157.074269
6 14.885227 287.626189 160.027645
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Once the ME output is available, the next step is to retrieve the corresponding detour and
waiting time values for the given values of Q in table 5.3. The ME output dataset usually has
demand Q in float format and the simulation dataset has integer values for the column Q,
the codes are written in such a way that during comparison process it automatically returns
the interpolated values between the two neighbouring integers for the given float value. The
resulting output of the comparison dataset is shown in table 5.4

Table 5.4: Comparison Dataset (Initial Guess)

N Q Detour (ME) Waiting (ME) Detour (Sim) Waiting (Sim)

2 5.526698 860.551500 108.448201 168.576500 186.046727
3 9.303947 567.199758 145.169679 236.467202 156.899426
4 11.662568 432.792975 155.017755 275.138632 147.523902
5 13.277706 346.311693 157.074269 279.561362 142.720219
6 14.885227 287.626189 160.027645 244.268669 151.724580

Once the comparison dataset is available, the next step is to evaluate the goodness of fit
by finding error terms to measure the difference of both datasets. Error term is calculated
individually for both detour and waiting times. Once the error is calculated for both attributes,
a mean value is taken for error term. This is because Minimize() function of python library
Scipy requires a scalar callable function that only returns a single float value.

Individual error minimization is performed for three selected evaluation criteria. While
minimization is performed for one of the error, the change in error term for other two errors
is also calculated based on the initial and converged parameter values.

The process is repeated for each error separately. Table 5.5 represent three sections. In each
section, minimization algorithm is performed with respect to one error, and change in the
values of other two errors is also calculated based on the initial and final parameters values.
This allows us to determine that which minimization will result an overall better reduction of
all three errors.
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Table 5.5: GOF Evaluation - Initial Guess

Error Initial Final ∆ % Change

Minimization w.r.t RMSE

RMSE 193.622 53.189 140.433 72.53
RMSN 1.197 0.236 0.961 80.28
MAPE 83.199 19.476 63.723 76.59

Minimization w.r.t RMSN

RMSE 193.622 53.709 139.913 72.26
RMSN 1.197 0.2042 0.993 82.94
MAPE 83.199 20.158 63.041 75.77

Minimization w.r.t MAPE

RMSE 193.622 47.619 146.003 75.41
RMSN 1.197 0.2052 0.992 82.85
MAPE 83.199 16.959 66.240 79.62

The complete convergence results of the first optimization run with the inital guess values
5.2 are shown in table 5.6. As indicated in table 5.5 that minimization with respect to MAPE
gives the best error reduction results therefore all convergence results hereafter are based on
MAPE minimization.

Table 5.6: Convergence Results - Initial Guess

Attributes Values

Aconv 2.8055
Bconv 0.0607
Mean Absolute Percentage Error 16.959
Number of Iterations 51
Objective Function Evaluations 126
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Figure 5.3: Convergence Plot - Initial Guess

To check whether the optimization function converged to a local minima or global minima,
a series of optimizations runs are performed with varying starting A and B values.

Table 5.7: Summary of Optimization Runs

# A0 B0 Aconv Bconv MAPE

1 6 0.06 2.8055 0.0607 16.959
2 6 0.05 2.8506 0.0609 16.796
3 4 0.05 3.557 0.0625 20.985
4 2 0.035 2.4533 0.056 17.183
5 5 0.04 2.357 0.057 17.749

Among the performed various optimization runs, 2nd optimization results are the ones
with the lowest error term.
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Table 5.8: Comparison Results - Best Optimization

N Q Detourme Waitingme Detours Waitings

2 10.815798 410.178564 213.596544 264.665725 220.222070
3 13.898782 267.661554 218.247680 225.447341 210.168037
4 15.818252 208.723097 212.591986 216.724377 207.950440
5 17.169498 163.723947 204.704164 240.168799 183.208322
6 18.215285 136.536325 197.583651 242.944651 194.648312

Figure 5.4: Detour Time Comparison
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Figure 5.5: Waiting Time Comparison

Figure 5.6: Convergence Plot - Best Optimization
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Table 5.9: Convergence Results - Best Optimization

Attributes Values

A0 6
B0 0.05
Aconv 2.8506
Bconv 0.0609
MAPE 16.796
RMSE 46.741
RMSN 0.1998
Number of Iterations 200
Objective Function Evaluations 526

5.2 Munich

5.2.1 Network

The main area selected for this study are neighbourhoods of Munich, namely Maxvorstadt
and Schwabing. This network has roughly 1300 edges and 500 nodes. It is large enough to
represent a real world scenario which can run a reasonable amount of vans. The study area is
divided into 12 traffic assignment zones. Figure 5.8 shows the shapefile consisting of TAZ
over the selected study area. Note that there might be some additional zones included in the
original shapefile but the road module only selects the zones that are actually linked to the
edges in network XML file.

Figure 5.7: Munich Network
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Figure 5.8: Munich TAZs

5.2.2 Simulation Database

Using the same nested for-loop as used for developing the simulation database for Unter-
schleißheim, data is collected for Munich network as well. However, for Munich, the fleet size
ranges from 8-12 vans as the network size is suitable for this much number of vans. Using the
standalone scheduler executable, the simulation runs are performed. The simulation setup is
with the same fixed parameters as described in table 5.1. The ranges for fleet size N and Q
are also defined where:

N ∈ Z : 8 ≤ N ≤ 12

Q ∈ Z : 10 ≤ N ≤ 180

5.2.3 Optimization

For the Munich area, the goodness of fit is evaluated by mean absolute percentage error since
minimization w.r.t to MAPE has the better convergence results 5.5. The process adotped
for synthetic study is repeated similarly for Munich area as well. Number of different
optimization runs are performed with various initial guess of the ME model parameters. 5.10
summarizes the results of different optimization runs. 3rd Optimization run has the best
convergence results and appeared to be the lowest MAPE value that was converged over
multiple runs hence is considered as the global minima.
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Table 5.10: Summary of Optimization Runs

# A0 B0 Aconv Bconv MAPE

1 13 0.1 8.769 0.136 13.94
2 14 0.15 12.444 0.1583 39.253
3 15 0.1 8.295 0.126 13.767
4 15 0.2 12.963 0.228 52.596
5 12.5 0.15 10.5 0.18 28.914

Following are the results for the best optimization runs i.e. No.3 from the summary table
5.10.

Table 5.11: Comparison Table

N Q Detourme Waitingme Detours Waitings

8 124.992465 208.325390 338.658645 153.433134 299.438695
9 131.785147 184.866072 330.890171 136.933852 296.804585
10 137.573444 166.421769 323.781784 148.943827 306.092624
11 142.741945 151.682394 316.626252 199.920478 305.013470
12 147.428403 138.902176 310.256527 156.678991 304.610151

Figure 5.9: Detour Time Comparison
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Figure 5.10: Waiting Time Comparison

Figure 5.11: Convergence Plot - Best Optimization
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Table 5.12: Convergence Results - Best Optimization

Attributes Values

A0 15
B0 0.1
Aconv 8.295
Bconv 0.126
MAPE 13.767
RMSE 43.120
RMSN 0.157
Number of Iterations 51
Objective Function Evaluations 118

Figure 5.9 and 5.10 illustrates the final predicted values compared to the observed data. The
optimization algorithm has fitted the ME model closest to the observed data. The goodness
of fit is also reflected through the mean absolute percentage error in table 5.12. Figure 5.11
shows the convergence of the error term. After first 10 - 15 iteration the error term stays more
or less in the same region and does not converge further below than that. The convergence
plot shows that there is still some level of noise available in the predicted output of the
ME model. The main reason for this noise is the discrete level on which the predicted and
observed data is compared. Aggregation level of the data is on network. This cannot allow
the ME model to fit perfectly. This is the reason that after few iterations, it just stays at certain
level.

Waiting time in figure 5.10 has been mapped effectively with the observed data. However,
for detour time figure 5.9, ME outputs are decreasing with the increase in fleet size. This is
because ME calculates analytically and it follows a certain slope, where as observed data has
some fluctuations in detour time even with the increase of fleet size. As the fleet increases,
the ride sharing demand also increases and with the presence of network stochasticity the
detour time increased rather than decreasing if compared to the ME output.
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5.2.4 Mode Choice Methods Comparison

Calibrated ME model has computational advantage over the conventional simulation-based
equilibrium mode choice method. The run-time comparison for Munich network for ME
model and a single simulation run is shown in table 5.13.

Table 5.13: Run Times Comparison - Munich

Mode Choice Method Run Time (secs)

ME Model 10-20
Single Simulation Run 115-170

In order to achieve a simulation-based equilibrium, approximately 5 - 10 simulation runs
are required (Y. Liu et al., 2019). For calibration of ME model, approximately 10 iterations
were needed as shown in convergence plot 5.11. Once ME model is calibrated, it only requires
single run (10-20 secs run-time) to perform mode choice.

Figure 5.12: Computational Time Comparison

Figure 5.12 illustrates the computational time comparison of the two methods. The total
time needed for calibrating an ME model after running 10 iterations and then using it to
perform mode choice is significantly less than running simulation runs from 5 - 10. Even
for the minimum of 5 iterations, the run time is very high in relation to using calibrated ME
model.
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Figure 5.13: Computational Time Comparison - Impact Assessment Analysis

Figure 5.13 shows an example of the computational time comparison where both methods
are used in performing an impact assessment analysis. Multiple equilibrium state evaluation
runs are needed to perform the impact assessment analysis. For this example it is considered
that a simulation-based mode choice method requires 5 iterations to achieve the equilibrium
state after every change in supply in comparison to a calibrated ME model that requires its
basic run-time of 10-20 secs to perform mode choice. This example shows the advantage of
using a calibrated ME model over a regress and extensive process of multiple simulation run,
which is computationally expensive. Note that the computational time of running simulations
will further increase as the network size increases. Therefore, the utility of using a calibrated
ME model increases multi-fold as the network size increases.

5.2.5 Model Applications

The optimization algorithm results includes the converged values of the parameters A and
B which makes the analytical market equilibrium model calibrated for this study network.
The calibrated ME model as proposed, can now be used to perform mode choice for varying
fleet size and reduce expensive computations. For any change, the analytical outputs will
output the ride sharing demand, which can be simulated for this network and various useful
simulation related attributes can be extracted. Figure 5.14 shows the mode share of the ride
sharing demand for a large range of fleet size. Similarly figure 5.15 shows the change in
probabilities of modes as the fleet size increases. Such application of calibrated analytical
model is very useful to get a quick overview how the change in supply will effect the ride
sharing demand.
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Figure 5.14: Mode Choice Application - Mode Share

Figure 5.15: Mode Choice Application - Mode Probabilities
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Mode share initially increases significantly as the fleet increases, however after certain fleet
size, the change in demand is very less. The trend shows that no matter how much fleet size
will increase, the demand will remain constant. This information can help decide service
providers to find the optimum fleet size to serve the network demand. It can allow them to
choose optimum fleet for which maximum revenue can be generated.

The optimum fleet’s ride sharing demand can also be modelled using any simulation
platform to extract simulated attributes. Apart from the default mode choice method of the
simulation platform, one of the additional utility of the calibrated ME model is the analytical
service attributes that are calculated along with the ride sharing demand. Case scenarios
where simulations are not necessary, the calibrated ME model can be used in place to retrieve
service attributes for any change in supply.
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6.1 Summary

Mode choice for ride sharing services is an iterative process where the current state of the
network needs to be evaluated to achieve an equilibrium state and thus the ride sharing
demand. However, in order to access the current state of the network, service attributes
such as detour time and waiting time of the ride sharing service is required and this can be
obtained by running simulations. Simulations however becomes computationally expensive
as the network size increases. Also any equilibrium calculated is valid for the given supply
and demand parameters and has to be calculated again for any change in these parameters.
This increases the computational time many folds.

In this study a simulation based mode choice method has been developed for the ride
sharing services. An analytical ride sharing market equilibrium model is calibrated to be used
instead of simulation based rigorous method to perform the mode choice. The calibration
process of the market equilibrium model includes a database of simulated data of the ride
sharing services for varying fleet size and ride sharing demand. The simulation database
is setup using a ride sharing scheduler and simulation platform. This simulation database
is taken as the observed data for model calibration in this study. The analytical outputs of
the market equilibrium model are the predicted values. The market equilibrium model has
parameters A and B which are a function of analytical detour and waiting time respectively.
These parameters can be calibrated in a way that the model outputs are matched with the
observed data available.

Model calibration essentially becomes an optimization problem where the ME outputs are
compared with observed data and the model parameters are changed using an optimization
algorithm from python libraries to better fit. The goodness of fit is evaluated using the mean
absolute percentage error. The optimization algorithm inputs some initial guess values of the
parameters and returns the converged values. The converged values can converge to a local
minima therefore optimization runs are performed on different sets of initial values to obtain
the global minima convergence. The final converged parameters calibrates the ME model and
makes it viable for any change in the supply parameters.

The calibrated ME model is then integrated with the ride sharing simulation platform as
the default mode choice method. Once calibrated for a certain network, ME model performs
mode choice for any change in supply in few seconds where as an simulation equilibrium
require multiple runs and the time of these simulations increases with the increase in size of
network. Also the simulation equilibrium has to be repeated again if the supply changes.

Considering the benefits of lesser computational time over regress and extensive process of
running multiple simulations, it is concluded that calibrated ME model has the potential to
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be an effective mode choice method for ride sharing services. The error convergence results
obtained from the case study also shows promising results and makes the calibrated ME
model as a viable alternative to conventional simulation driven mode choice equilibrium.

6.2 Limitations and Future Scope

For this study, the model calibration has been performed for the service aggregated values at
network level. However, this resulted in a constant noise in the aggregated data which could
not be converge below a certain value. To better map the analytical market equilibrium model
on the simulation database, the above calibration can be performed at a more dis-aggregate
level i.e., OD pair level. The ME model inputs the parameters A and B which calculates the
aggregated network attributes, it can also generate the same results for each OD pair level.
Similarly, simulation database can also be compiled at the OD pair level rather network level.
So for every single value of N, we can have demand Q for all the OD pairs individually. This
will increase the sensitivity of the observed data and the ME predicted outputs will improve
and fit better with the observed data.

One of the aim of this study was to include the network stochasticity by simulating dynamic
vans with actual traffic demand. However due to the errors arised between the scheduler and
simulation platform, and the time constraint of this study, the simulations were performed on
a standalone scheduler. The standalone scheduler mapped the detour and waiting time of the
network however the interaction of dynamic vans with the traffic was not included. During
the setup of simulation database, the simulation platform can also include the network traffic
demand which was originally planned for this study as well. The interaction with network
traffic demand will generate more realistic results and reduce the noise in the data which can
be seen in convergence results.

Calibrated ME model replaces the default mode choice for the ride sharing services in
a simulation platform. For given demand and supply parameters, it can generate the
demand which can then be simulated on a network and various impact assessment scenarios
related to the ride sharing services can be performed. A calibrated ME model will come in
handy especially in any kind of impact assessment scenario where the supply and demand
parameters will be continuously changing. Also the calibrated ME model itself returns the
approximated network detour and waiting time directly for which the simulation runs are
not necessary.
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