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1 Introduction

This thesis deals with sustainable last-mile delivery using truck-and-robot systems. It
presents approaches to planning delivery tours, e.g. for parcels shipped to consumers’
homes. This chapter provides an introduction to the methodology applied, namely
Operations Research (Section 1.1), and the application field of last-mile delivery
(Section 1.2), focusing on the truck-and-robot concept.

The remainder of this thesis is structured as follows. Chapter 2 describes the specific
scope and key findings of the three contributions presented. For each of them, it
summarizes the authors, journal and current status of its publication. Chapters 3 to
5 consist of one of these articles each. The final Chapter 6 summarizes the findings
and highlights opportunities for future research.

1.1 Methodology

How can business decisions be made efficiently? This is the fundamental question
Operations Research (OR) tries to answer by modelling, analyzing and solving
practical problems. It can be applied to a wide variety of decisions such as what
to produce when on a machine or (in the case considered here) in which order to
visit given customers to deliver parcels. What these problems have in common is
an objective that should be minimized or maximized, such as costs, process time or
profit. Further, there are dependencies that describe the underlying physical process.
As an example, a truck requires a minimum time to travel between visiting two

1
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customers. The decision to be made must comply with all these constraints and
should lead to a minimum (or maximum) objective value.

Mathematical models A typical problem for retail and logistics companies is the
distribution and transportation of goods from a warehouse to its customers. As an
example, consider the task of delivering parcels to a set of n customers by truck
on the shortest-possible route. The decision to be made is the order in which the
customers are visited. This is a classical OR problem in last-mile delivery, called the
Travelling Salesman Problem (TSP). For five customers, there are already 5! = 120
possible tours. For ten customers, this number becomes 3.6 million. It is therefore
impossible to assess all individual possibilities and pick the shortest route. We can
model the problem mathematically and apply algorithms to solve the problem, which
exploit certain problem characteristics to reduce the search space. To model the
TSP, we define the set L of all customer locations and the set L0, which additionally
contains the warehouse location (i.e., the start and end point of the truck tour). We
then use the distance di,j as input parameter and define a decision variable si,j for
every pair of locations i and j (with i, j ∈ L0). The variable si,j is defined as 1, if the
truck travels from location i to location j, and 0 otherwise. This means our objective,
the total distance to be minimized, is the sum of the distances di,j travelled. This is
expressed by the objective function (1.1). We must choose all si,j as 1 or 0 to define
a tour. This is defined in Constraints (1.2). Since every customer must be reached
and the truck must return to the starting point, we demand that the truck arrive at
each point and leave each point i exactly once, as expressed in Constraints (1.3) and
(1.4). Next, we must enforce flow constraints, that is, ensure that the truck can only
start from locations after it arrived there. This eliminates so-called sub-tours, for
which an example is presented in Figure 1.1. First, we define an auxiliary decision
variable zi for every location in Equations (1.5). This variable indicates the order
of the stops such that a higher zi corresponds to a later position on the tour. It is
not needed to define a tour (the variables si,j are sufficient for this), but it allows
enforcing practical constraints. Constraints (1.6), enforce that if the truck travels
from i to j, then zj ≥ zi + 1. This leaves only the warehouse location as the starting
point for a circle tour and prevents sub-tours as shown in Figure 1.1, since a feasible

2
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set of values for zi does not exist for the customers on the sub-tour. Toth and Vigo
(2001) provide a more detailed review of vehicle routing problems.

min
∑
i,j∈L0

di,jsi,j (1.1)

subject to

si,j ∈ {0, 1} ∀i, j ∈ L0 (1.2)∑
j∈L0

sj,i = 1 ∀i ∈ L0 (1.3)

∑
j∈L0

si,j = 1 ∀i ∈ L0 (1.4)

zi ≥ 0 ∀i ∈ L0 (1.5)
zi − zj + nsi,j ≤ n− 1 ∀i ∈ L0, j ∈ L (1.6)

Feasible tour

Warehouse

C

C
C

C
C

C

Given: Routing result:

C Customer

C

C

Non-feasible sub-tour

Figure 1.1: Example of a non-feasible TSP solution with a sub-tour

For such models, there are exact methods to find the optimal solution, i.e. the
decision that leads to the minimum (or maximum) objective value. There are
commercial solvers available (e.g., CPLEX, Gurobi or LINDO) that rely on the

3
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mathematical formulation and some advanced exact procedures (e.g., branch&bound,
branch&price). However, for large problems these exact methods can take a long
time to find the optimal solution or to confirm that a given solution is optimal. The
presented TSP model has already 110 decision variables in the case of nine customers
and one warehouse (10 × 10 si,j and 10 zi). In practical settings, problems often
involve more locations and additional constraints and variables. As an example,
arrival at each customer can be required within a specific time window or goods
could first be picked up at one location before being delivered to another. As often
with operations problems, the TSP model is a Mixed Integer Program (MIP). This
means its solution is given by a tuple of numbers, of which some (in our case si,j)
must be integers. This type of problem creates particularly high computational effort,
since a solver must often try many combinations of such integer values.

Heuristics For this reason, alternative methods are developed, which make use of
problem-specific knowledge to generate a good (not always optimal) solution. Such
a method is called heuristic. An example for problem-specific knowledge of the TSP
is that the shortest tour does not cross itself, as the removal of a crossing reduces
the total distance. A heuristic builds and tests solutions based on a certain strategy.
For instance, it could sequentially append the closest next location to the truck tour
until all locations have been visited. A more sophisticated heuristic could then try
to improve the obtained tour by swapping two random locations and testing if this
reduces the distance. Since heuristics cannot prove an optimum, they typically abort
the search after a certain number of iterations of when a certain solution quality is
reached. The result is then the best-known solution. Our contributions in Chapters
3 to 5 develop such tailored heuristics for problems a standard MIP solver could not
solve in reasonable time. As an example, when a parcel delivery tour to different
customers is planned in practice, the solver must find a solution before the vehicle
can start the tour.

4
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1.2 Last-mile delivery

The application considered in this thesis is in the field of last-mile delivery, i.e., the
task of bringing orders from a distribution center to a customer‘s door. This section
provides background information on last-mile delivery in general and on the concept
studied in this thesis, which is based on robot delivery.

1.2.1 Relevance and trends

Last-mile delivery is becoming increasingly important due to growing volumes of
online orders. At the same time it creates problems in cities, as the classical delivery
by truck causes emissions and traffic congestion. Together with a global trend
towards urbanization, this puts cities under pressure to prevent traffic systems from
collapsing and avoid harmful levels of pollution (World Economic Forum, 2020). For
retailers, last-mile delivery is an important cost driver and a way to differentiate
their offering (e.g., same-day delivery). Therefore, both cities and retailers (with
their logistics providers) have a strong motivation to find new delivery concepts
that reduce costs and environmental impact. (Hübner et al., 2016b; McKinsey &
Company, 2016)

1.2.2 Related last-mile delivery concepts

Truck delivery Traditionally, last-mile deliveries are performed by a truck and
a driver, who visits every customer individually to hand over the order. When
operating such a delivery truck, the sequence in which customers are visited must
be defined (TSP). When several trucks are available, additional decisions on which
customer to serve by which vehicle must be made. This problem is called the Vehicle
Routing Problem (VRP). An exemplary routing result is shown in Figure 1.2.

5
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Truck route

Warehouse

C C

C

C C

C

C C

C

C
C

CCC

C

Given: Routing result:

C Customer

C

C

C
C

C

Figure 1.2: Exemplary VRP result

Possible objectives for minimization are the total distance travelled or the time
until the last vehicle returns. The basic version of the VRP can be solved in
an exact manner for relevant numbers of customers. However, there are many
variants characterized by additional constraints or alternative objectives which make
the problem very complex. E.g., customers could require their delivery within an
individual time window, vehicles could have limited capacities or require different
travel and processing times. Other variants consider energy consumption and charging
of electric vehicles. There exists a large body of literature on such variants of the VRP
and tailored solution approaches typically relying on heuristics (Konstantakopoulos
et al., 2020).

2-Echelon networks In recent years, several concepts have been proposed to
reduce the environmental impact of last-mile delivery, particularly in large cities.
Many of them rely on small zero-emission vehicles such as cargo bikes, aerial drones
or electric vans for the delivery to customers. Therefore, several locations are needed,
in which the orders arriving from outside the city by truck are transshipped to the
smaller vehicles, since these have a limited range and speed. For a given set of

6
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customers and potential transshipment points, the operator must find (i) truck routes
from the warehouse to transshipment points and (ii) routes for the smaller vehicles
from these points to the customers (see Figure 1.3). Decision problems of this kind
are called 2-Echelon Vehicle Routing Problems. Based on the vehicle types, customer
requirements and type of transshipment facilities, different variants of the problem
exist (Mühlbauer and Fontaine, 2021).

Truck route

Warehouse

C C
C C

C

C

C

C

C

C

CC

C

Given: Routing result:

C Customer

C

C

C
C

C

T

T

T

T

T

T Transshipment point Bike route

Figure 1.3: Exemplary 2-Echelon VRP result

Truck-and-drone delivery Aerial drones can operate in conjunction with trucks
to make deliveries. Besides the classical 2-Echelon approach described above, a drone
can be loaded onto a truck and launch while the truck visits a customer. It then
makes one delivery (since it cannot carry more parcels) and meets the truck again at
one of its later stops. The resulting route is depicted in Figure 1.4. The advantage
of this concept is that the truck distance is reduced without the need for dedicated
transshipment infrastructure (Murray and Chu, 2015; Otto et al., 2018).

1.2.3 Robot delivery

Several new means of delivery have emerged in recent years, enabled by technological
advancements in autonomous driving, electrical propulsion and IT platforms. The
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Truck route

Drone route

C Customer

Warehouse

C

C
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Figure 1.4: Exemplary truck-and-drone route

delivery robots considered in this thesis move autonomously on sidewalks at low
speed, transporting a single parcel to a customer, who can retrieve it from the robot‘s
freight compartment. Since the robots are battery powered, they have the potential
to reduce both emissions and road traffic. Furthermore, several independent robots
add flexibility to a logistics system and can enable it to meet delivery time windows
or respond to fluctuating demand. Further details on robot technology are provided
in chapters 3 to 5.

To ensure fast delivery across larger distances, the robots can be transported by a
truck and dropped off close to customers. This compensates for the low speed of the
robots, while the truck mileage compared to regular truck deliveries is reduced and
the driver‘s productivity increased, because the truck does not visit every customer
individually. In the concept considered, the truck does not wait for robots to return,
but picks up new robots waiting at charging stations in the customer area. Once
a robot has made its delivery, it returns to the closest charging station, also called
robot depot, and waits for its next use (Boysen et al., 2018b). The resulting tour
is depicted in Figure 1.5 (robot returns are not shown, as they are not part of the
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decision problem). The key advantages of this concept compared to truck-and-drone
are a further reduction of truck distance and the higher robustness (paired with
lower costs) of ground vehicles vs. aerial drones.
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Figure 1.5: Exemplary truck-and-robot route

This leads to the decision problem of where to go by truck to drop off robots and
from which of these stops to start each customer‘s robot delivery. Note that this
has some similarities with the VRP described in the previous section, since a set of
customers must be visited. The challenge in this case is that two different vehicle
types must cooperate to serve all customers and to do so, their movements must be
synchronized.

This thesis analyzes the truck-and-robot concept as a promising approach to last-mile
delivery. It proposes heuristics for the task of finding routes that minimize costs
and emissions. The routes resulting from these heuristics in various scenarios are
then evaluated to derive practical insights on when a truck-and-robot system is
cost-competitive and how it should be operated. This includes questions such as the
following:

• How can we find the best tour for a given set of customers? Strategies
and rules to construct and improve solutions are needed for this.
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• How do the costs of truck-and-robot delivery compare to classical truck
delivery? This requires modelling the delivery process in a way that captures all
relevant cost drivers.

• Which benefits does truck-and-robot delivery bring for the environment
and urban traffic? This requires tracking the truck mileage of the different
delivery modes.

• How do we ensure the truck has sufficient robots on board to supply
all customers? This involves tracking the number of robots aboard the truck as
it picks up and releases robots along its route.

• How many trucks are needed to serve a certain area? To answer this
question, we must decide on how customers are distributed to several available
vehicles.

• How can parcels that do not fit into the robot compartment be handled?
This would require the possibility to include deliveries by the driver in the truck-
and-robot tour.
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2 Contributions

This chapter introduces three articles (chapters 3-5) written in conjunction with
the doctoral thesis. It is intended as a guide to the topics and motivation for the
research questions. An overview on the articles and the status of their publication
process is given in Table 2.1.

Contribution Co-authors Status
1 Cost-optimal Truck-and-

Robot Routing for Last-Mile
Delivery

Ostermeier, Manuel;
Hübner, Alexander

Accepted for publication in
Networks on January 19,
2021

2 A mixed truck and robot de-
livery approach for the daily
supply of customers

Ostermeier, Manuel;
Hübner, Alexander

Submitted to the European
Journal of Operational Re-
search (under review)

3 The multi-vehicle truck-and-
robot routing problem for last-
mile delivery

Ostermeier, Manuel;
Hübner, Alexander

Submitted to Transporta-
tion Science (under review)

Table 2.1: Status of publication

Methodology Each article presents a state-of-the art routing approach based on
OR methodology. The overarching problem considered is how to route trucks and
robots for attended home deliveries within time windows at minimal logistics costs.
This problem (with its specific extensions and assumptions in each article) is first
described qualitatively and formulated as a mathematical model, which represents
the necessary aspects of the real problem at hand. Since the models cannot be solved
in an exact manner with standard solvers due to their numerical complexity, we
then propose a heuristic solution approach tailored to the problem specifics. This
involves an innovative solution framework for each problem to consider its variables,
parameters, objective function and constraints. The approach is described in detail
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and the rationale behind each of its components is given. It is then applied to
solve test instances generated from real world location coordinates. We compare
the heuristic developed to existing approaches to demonstrate its advantages in
solution quality and run-time. In the next step, managerial implications are analyzed.
This includes quantifying the reductions in costs and emissions achieved by the
truck-and-robot concept and assessing the influence of problem parameters such
as customer density and fleet size on the results. Each article concludes with a
summary of key insights, their practical implications and an outlook on potential
future research topics in the field.

Remark The final articles published may differ from the versions presented here
due to changes made in the peer review process after this thesis was submitted. The
fundamental content and findings remain the same.

2.1 Contribution 1: Cost-optimal truck-and-robot

routing for last-mile delivery

In this article, we first provide an overview on existing truck-and-robot literature.
The key publications in this field are by Boysen et al. (2018b) and Alfandari et al.
(2019), who focus on demonstrating high logistical performance for attended home
deliveries with deadlines. They make some simplifying assumptions and do not
provide a cost comparison to existing delivery concepts. We therefore introduce a
new decision problem, which extends existing work on truck-and-robot routing by
several practically relevant aspects.

First, delivery time windows are assumed, since the customer must be at home to
retrieve the parcel from the robot. Therefore, instead of only considering a deadline
for each delivery as in Boysen et al. (2018b), we also impose an earliest delivery time
for each customer, assuming they are not at home before that time.
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Second, instead of focusing on the number of late deliveries, we formulate an objective
function which estimates the total last-mile delivery costs, including labor, vehicle
amortization, energy consumption and delay duration. The individual cost factors
are obtained empirically. This is crucial for the implementation of truck-and-robot in
practice, as companies need to operate the system at minimal costs and they require
a cost comparison to their existing delivery concept before investing into robots.

Third, a limited number of available robots is considered. This is a key prerequisite
for the practical application of our routing approach, since the resulting tour cannot
use more robots than currently at hand.

In total, these enhancements lead to a more complex optimization problem compared
to prior research, with additional decision variables, constraints and cost terms. To
handle this complexity and find efficient routes in reasonable time, we propose a
tailored local search (LS) heuristic. It relies on problem-specific operators, which try
to improve a given solution by iteratively making changes that have shown to often
lead to improvements. Our numerical experiments show that the LS is competitive in
terms of run-time and solution quality. Furthermore, it leads to a cost reduction of
46% compared to to prior routing approaches. Overall, the truck-and-robot concept
shows savings of 68% compared to truck delivery in our case study.

2.2 Contribution 2: A mixed truck and robot

delivery approach

Based on the promising cost reduction potential identified in Contribution 1, the
question arises if a truck-and-robot system can completely replace normal delivery
trucks. While we assumed all deliveries are made by robot in our previous work,
some goods require personal delivery in practice. This can include bulky items that
do not fit into the robots, hazardous substances and valuables. In Contribution 2,
we mathematically formulate this problem and propose a solution approach based on
General Variable Neighborhood Search (GVNS) which can include these deliveries
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by the truck driver into the truck-and-robot tour such that delivery time windows
are met.

Our performance comparison (on instances with robot deliveries only) shows that
the GVNS approach is up to 94% faster than the LS proposed in Contribution 1,
at the cost of up to 2% higher objective values. When applied to instances with
truck deliveries required (which the LS approach cannot solve), the GVNS run-time
increases, but stays at an acceptable level of roughly 30 minutes for 50 customers.

We then analyze the implications of such a "mixed" tour containing deliveries by
truck and by robot. In our case study, it still leads to a 43% cost reduction compared
to normal truck delivery. The cost advantage of one integrated tour vs. two separate
tours for truck and robot delivery is 22%. The following sensitivity analyses identify
the length of the time windows for truck delivery as a key cost driver.

2.3 Contribution 3: Vehicle assignment for

truck-and-robot deliveries

After proposing solutions for operating a single truck with robots, one important
problem remains when the system is scaled up to several trucks. This is necessary
as soon as the customers cannot be served by one truck during a single shift, the
truck‘s parcel capacity is exceeded or delivery time windows are too tight. In the
case of several trucks, the additional decision which customers to serve by which
truck must be made. Since this customer assignment is highly interdependent with
the routing decisions of each truck, these problems cannot be treated separately.

As already routing one truck required the application of tailored heuristics, so does
the more complex, integrated problem. We mathematically formulate the problem
and propose an approach based on a heuristic to generate large pools of potential
truck tours and an MIP to choose tours from the pool and assign the customers to
the stops of these tours.
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Within the numerical evaluation, this approach is 23 - 60% faster and yields 18 -
24% better solutions than the benchmark relying on the best customer assignment
for a VRP and the GVNS from Contribution 2 for truck-and-robot routing of each
individual truck. Further analyses confirm a large cost reduction potential compared
to truck delivery (62%) and identify the number of trucks and time window offering
as key cost drivers.
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3 Cost-optimal Truck-and-Robot
Routing for Last-Mile Delivery

Co-autors: Manuel Ostermeier, Alexander Hübner
Accepted in Networks on January 19, 2021
(in press, DOI: 10.1002/net.22030)

Abstract During recent years, several companies have introduced small autonomous delivery
robots and evidenced their technical applicability in field studies. However, a holistic planning
framework for routing and utilizing these robots is still lacking. Current literature focuses mainly
on logistical performance of delivery using autonomous robots, ignoring real world limitations,
and does not assess the respective impact on total delivery costs. In contrast, this paper presents
an approach to cost-optimal routing of a truck-and-robot system for last-mile deliveries with
time windows, showing how to minimize the total costs of a delivery tour for a given number of
available robots. Our solution algorithm is based on a combination of a neighborhood search with
cost-specific priority rules and search operators for the truck routing, while we provide and evaluate
two alternatives to solve the robot scheduling subproblem: an exact and a heuristic approach.
We show in numerical experiments that our approach is able to reduce last-mile delivery costs
significantly. Within a case study, the truck-and-robot concept reduces last-mile costs by up to
68% compared to truck-only delivery. Finally, we apply sensitivity analyses to provide managerial
guidance on when truck-and-robot deliveries can efficiently be used in the delivery industry.
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3.1 Introduction

Last-mile delivery describes the final step in the retail supply chain, i.e., actual
delivery to the customer. It is a key challenge for retailers and logistics service
providers (Hübner et al., 2016b) and is responsible for a large share of logistics
costs, often above 50% (see e.g., Glatzel et al. (2012), Kuhn and Sternbeck (2013) or
McKinsey & Company (2016)). The last-mile service in urban areas is forecast to
grow by 78% by 2030 (World Economic Forum, 2020), particularly driven by the
growth of online shopping and home delivery (Wollenburg et al., 2018; Ishfaq et al.,
2016; Allen et al., 2018). Furthermore, the share of the world population living in
urban areas will grow from 55% in 2018 to 68% by 2030, and with that the volume of
freight transportation, emissions and congestion within these areas (United Nations,
2018). Home deliveries are traditionally performed by diesel trucks, which have to
visit each customer individually to hand over ordered goods, and thus intensify traffic
and pollution problems. Moreover, failed deliveries (i.e., in cases where customers
are not at home to receive a delivery) lead to additional customer visits and further
increase traffic. Home deliveries usually require customer attendance. To ensure
that the customer is at home, time windows are applied in practice (see e.g., Hübner
et al. (2016b)). This helps to avoid failed deliveries by arranging fixed service time
windows a customer can select when ordering. In this way the delivery is scheduled
at a time in which the customer is expected to be at home and can receive the
order. The application of scheduled deliveries is steadily increasing for attended home
deliveries (see e.g., Agatz et al. (2011), Ulmer (2017), Klein et al. (2019), Köhler
et al. (2020) and World Economic Forum (2020)). However, the application of time
windows reduces the efficiency of truck tours. Innovative last-mile solutions for retail
fulfillment are required to address these challenges (Agatz et al., 2008; Orenstein
et al., 2019; Hübner et al., 2019).

In recent years, many new technological concepts have emerged for last-mile deliveries.
Delivery with autonomous robots in cities has already been realized (see Starship
(2019)). The small robots, e.g., developed by Starship (2019), Marble (2019) and
several others, transport an order (e.g., parcel or a grocery basket) to a single
customer within an agreed time window. Robots navigate on sidewalks at pedestrian
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speed and can safely move in autonomous mode most of the time or switch to remote
control in the event of problems. Once the robot arrives at the door, the customer
is notified and can then unlock the freight compartment to retrieve the order. A
further innovation, which received much attention in recent literature, is drone-based
delivery (Otto et al., 2018). A well-studied concept in this field is the support of
truck deliveries by an aerial drone. A fast-moving drone starts from and returns
to the truck to perform individual deliveries on the route. However, robot delivery
shows several advantages compared to drones for last-mile delivery in urban areas.
First, air traffic is much more restricted and needs to be regulated. While robots
can move anywhere on walkways and park safely on sidewalks, drones need to find
safe drop-off and landing spots in an area with limited space. Second, robots are
less sensitive to weather conditions and weight restrictions. Furthermore, robots
move silently on pedestrian walks, and do not interfere with the privacy of residents.
Finally, ground vehicles are more energy efficient than drones and also cheaper to
produce, since less motor power is required and lightweight solutions are not needed.
For large-scale application, the challenge is to benefit from the advantages of robots
on the last-mile, but also compensate for their relatively low travel speed. One
way to do this would be to create a dense warehouse infrastructure to reduce travel
distances, but this involves high investments and is barely feasible in urban areas.
The alternative is to combine several robots with faster means of transportation,
such as trucks. The truck stops at drop-off points and releases the robots for delivery
(see Figure 3.1). This concept is called truck-and-robot delivery.

Figure 3.1: Specialized truck launching robots at the kerbside (Mercedes-Benz Vans, 2016)
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Solving the resulting routing problem requires deciding on the truck route (i.e., a
sequence of possible robot drop-off locations), and the assignment of each customer
order to a location along the truck route, from which a robot is sent out to perform
the actual delivery. The robots return to a robot depot after each delivery and from
here they will be picked up for later tours. Due to the problem complexity in truck
routing and robot scheduling, heuristics are needed to solve instances of relevant size.
Current literature on truck-and-robot routing is focused on demonstrating logistical
performance (e.g., with respect to late deliveries) for small problem sizes and some
stylized assumptions. There is not yet any holistic approach to comprehensively
evaluate delivery costs, robot availability, and meet time windows for attended home
delivery. We propose an extended truck-and-robot routing problem that (i) is based
on decision-relevant costs (for all aspects of truck and robot use), (ii) takes into
account restrictions for the use of this system in practice, and (iii) considers trade-off
decisions between cost and service quality. We formulate the complete problem as
Mixed Integer Program (MIP) and solve it by decomposition into truck routing and
robot scheduling. Our solution approach is based on cost-specific priority rules and
search operators for the truck routing, while we provide and evaluate two alternatives
to solve the robot scheduling subproblem: an exact and a heuristic approach. This
allows us to incorporate all problem extensions discussed and keep the computational
effort at a minimum.

This paper is organized as follows. Section 3.2 provides an overview of related
literature and highlights the differences to existing concepts. Section 3.3 describes
the problem of a truck-and-robot system, detailing the concept with its costs and
constraints. It then derives the mathematical problem formulation. Section 3.4
details our solution approach. In Section 3.5 we analyze the numerical performance
of our approach and provide managerial insights. The final Section 3.6 summarizes
our findings.
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3.2 Review of related literature

Our problem is related to a growing body of literature on city logistics. This includes
not only delivery robots but also drones, autonomous cars and parcel lockers. This
section first discusses publications on related delivery concepts that have analogies to
robot systems, before detailing the existing literature on robot delivery. It concludes
by identifying the gap in research.

3.2.1 Related last-mile delivery concepts

Drone-based delivery Among different autonomous vehicles, aerial drones have
received most attention in literature. In a first problem variant, drones start and
end their tour at the distribution center (DC). This presumes that the DC lies in
customer proximity (e.g., see Murray and Chu (2015), Ulmer and Thomas (2018)
and Coelho et al. (2017)). In a second variant a drone starts from a truck visiting
customers and picking up the drone at later customer stops during the tour, e.g.,
Murray and Chu (2015), Yoo and Chankov (2018) or Bouman et al. (2018)). The
challenge is to find truck and drone routes that are cost-efficient, guarantee timely
delivery and account for the drones’ maximum range. Existing approaches rely on a
solution of the corresponding travelling salesman problem (TSP, i.e., determining a
truck tour to visit all customers) that is then improved iteratively by reassigning
customers to the drone. A possible resulting tour is shown in Figure 3.2.

Recent publications allow the use of several drones combined with one truck. Murray
and Raj (2020), Phan et al. (2018) and Moshref-Javadi et al. (2020a) propose a
concept with several drones started from a truck at a customer location. Again the
drones meet the truck at one of its later stops. The authors consider up to four
drones, which implies at least 20% truck deliveries (as every drone starts from a
customer visited by truck). Murray and Raj (2020) note that more drones per truck
would reduce the system‘s efficiency, since drones must keep some distance to other
drones and thus take off and land sequentially. The solution approaches therefore
rely on solving a TSP for a given set of customers visited by the truck. Chang and
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Figure 3.2: Illustrative truck-and-drone tour

Lee (2018), Moshref-Javadi et al. (2020b) and Salama and Srinivas (2020) consider a
truck with up to ten drones aboard visiting customer clusters. At the waiting point
of each cluster, it launches drones for deliveries that return to the waiting truck. The
clusters, their waiting points and the truck tour through these waiting points are
subject to optimization. While this concept can reduce truck mileage significantly, it
still relies on a TSP solution approach for truck routing, i.e. the visited stops are
given, and cannot handle time windows. Kim and Moon (2019) study a hub concept
in which a truck leaves parcels at a storage hub, from where drones deliver them.
This has the potential to reduce truck mileage and eliminate the need to synchronize
the truck and the drone movements, but it requires infrastructure investments into
hubs. In summary, a major difference of the truck-and-robot concept is the number
of customers served by drone/ robot (see Figures 3.2 and 3.3). The truck routes
therefore differ significantly from a TSP for customer visits, as individual robot
depots and drop-off points may or may not be visited by the truck. The number of
robots launched is higher than the number of drones considered in truck-and-drone
literature. On the other hand, the truck does not have to be synchronized with
returning robots, which adds flexibility to meet time windows (not considered by
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Figure 3.3: Illustrative truck-and-robot tour

the mentioned drone publications) and achieve large reductions in truck mileage.
For a more extensive overview on truck-and-drone routing we refer to Macrina et al.
(2020), Boysen et al. (2021) and Rojas Viloria et al. (2020).

As highlighted by Otto et al. (2018) drones have some limitations in big cities, such
as the capacity of the air space, availability of safe landing or drop-off space, noise
regulation, and safety (e.g., flying above busy pedestrian zones) as well as privacy
concerns (e.g., flying near homes while filming). Consequently, companies are now
piloting this approach in rural areas rather than in cities (The Guardian, 2019), where
drones can leverage their advantage of higher speed. The delivery robots used in our
application have several advantages for the use in cities. They are quiet, inherently
safe due to the low speed, robust against weather conditions and vandalism, and
they can park without consuming electrical energy. Due to the different dynamics of
driving vs. flying, robots typically have a longer range, higher payload, and cheaper
sensors and batteries. However, as they are slower than drones, existing concepts
for drones cannot be applied directly to robots due to the underlying distribution
process (see Section 3.3.2). The disadvantage of lower speed of robots is eliminated
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by the combination with trucks and depots. We further refer to Otto et al. (2018)
for a more detailed literature overview on drone delivery, the limitations of this
approach and obstacles to overcome. To summarize, truck-and-drone concepts have
several limitations in cities and their routing approaches cannot be applied directly
for truck-and-robot routing. Robots have advantages in cities, while drones may be
more beneficial for last-mile deliveries in rural areas.

Autonomous electric cars Networks of autonomous electric cars are another
approach to reduce costs and emissions in last-mile delivery. Agatz et al. (2017)
provide a valuable overview on advantages and challenges of autonomous vehicle
platoons serving ad hoc passenger and freight transportation requests. The system
consists of a pool of autonomous vehicles that can move individually or form a train
(also called “platoon” or “flexible road train”) with several others. While this could
improve traffic flow and reduce the use of private cars, it is computationally hard
to assess due to its complexity. The idea of a platoon with vehicles joining and
leaving on the route is similar to the truck-and-robot distribution, where robots are
picked up and released. However, there are not yet satisfying modelling and routing
approaches for these concepts (Agatz et al., 2017). This is due to the high problem
complexity, given that the vehicles have a high speed, range to move on their own,
and are able to join or leave a platoon anywhere on the route without stopping.
To obtain insights on performance of autonomous vehicle platoons in urban freight
delivery, Haas and Friedrich (2017) apply traffic micro-simulation. While their results
provide first insights into benefits and challenges, the system analyzed of three nodes
and a roundabout does not provide a realistic problem size for application in practice.
In addition, several technical and non-technical issues of autonomous driving remain,
such as reliability of sensors and real-time processing, testing and validation as well
as regulatory and insurance-related questions (Hussain and Zeadally, 2019). To
summarize, platooning with autonomous electric cars has some similarities with
truck-and-robot delivery, but there are no routing approaches available that could
be transferred.
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Parcel lockers Another related approach in last-mile delivery is the use of parcel
lockers as hubs or storage locations. The most common way to use parcel lockers is
to replace home delivery with pickup from a locker by the customer. This could be a
way to reduce costs and emissions for less urgent deliveries that customers do not
mind picking up close to their homes. For example, Veenstra et al. (2018) solve the
facility location of parcel lockers and the vehicle routing problem of delivering either
to the customers or a nearby locker. Parcel lockers are already in use on a large
scale, e.g. by DHL (2020). In a further use case, lockers are applied as a micro-hub
to exchange parcels between vehicles. Fikar et al. (2018) show through agent-based
simulation that this approach can improve service quality and reduce delays in food
delivery with cargo bikes. Enthoven et al. (2020) consider a two-echelon system of
trucks and cargo bikes, using the lockers for cross-docking. Generally, our problem
is similar to such two-echelon problems, but more complexity is added in our case
as vehicles from the second-tier are transported by the first-tier vehicle. This leads
to even more interdependencies and synchronization between the two vehicle types.
The system of parcel lockers can be extended by the use of autonomous vehicles with
several lockers that can park close to the customers and wait for them to retrieve
their parcels. This is a promising concept for regular (next day) deliveries (McKinsey
& Company, 2016). To summarize, delivery to parcel lockers is a promising solution
for non-urgent deliveries and parcel lockers as micro-hubs have similarities to the
truck-and-robot concept. However, we consider the truck-and-robot concept for
urgent premium deliveries that has additional dependencies and requires specific
routing approaches.

3.2.2 Autonomous last-mile delivery with robots

The literature on autonomous delivery robots is still very limited. It can be classified
as hub-and-robot concepts and truck-and-robot concepts. While in the former robots
move without an additional carrier, in the latter the support of delivery trucks is
essential.
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Hub-and-robot concepts Bakach et al. (2021b) provide a cost assessment for a
concept involving robots. They propose a two-tier last-mile delivery system where
a truck brings goods to local hubs in which the goods are stored and loaded into
robots. The robots then make pendulum tours to the customers. This is simulated
with and without time windows. The key difference versus the problem considered in
this paper is that the robots are not transported on the truck but stay around one
fixed hub. Furthermore, the hubs have a different role to that of our depots, as goods
are stored and automatically loaded into robots there. The authors propose a mixed
integer program (MIP) to first define the lowest possible number of hubs across a set
of problem instances. In the next step, for a given number of hubs, the customers
are assigned to hubs and individual robots such that robot mileage is minimized,
while the maximum robot availability and range is limited. Note that this sequential
approach is only possible if the flexibility of moving robots on the truck is given up.
The authors provide a cost estimate for their solutions that indicates the potential
to reduce operating costs by 70 - 90% compared to “truck only” deliveries. However,
robot amortization and maintenance are not included in this comparison. Poeting
et al. (2019b) assess the same concept as Bakach et al. (2021b), with only one robot
per hub. A truck delivers most parcels directly to customers and only up to 3% of the
parcels to the hubs for delivery by robots. Their focus is on planning a suitable truck
tour such that customer time windows and hub opening hours are met. Poeting et al.
(2019a) similarly propose an MIP to schedule robot pendulum tours from hubs with
several robots such that customer time windows are met with minimal earliness and
tardiness. They evidence that their MIP approach is suitable for up to 20 customers
and evaluate the impact of the robot quantity. Sonneberg et al. (2019) propose an
MIP to plan cost-optimal tours with robots only and assess the benefits of additional
robot compartments (that enable a robot to serve more customers on the same tour).
As relevant costs they consider a rental fee per robot per day, labor costs for loading
the robots and transport costs per distance unit. The model is applied to instances
with ten customers. As expected, additional compartments drastically reduce the
distance traveled, number of robots needed and total costs, since the robots no longer
return to the hub after every delivery. In comparison, our problem covers a more
general case and could be reduced to such hub concepts by setting the maximum
number of robots aboard the truck to zero. Furthermore, we investigate whether an
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integrated, cost-optimal selection of truck-and-robot routes can achieve savings in
operational costs and eliminate the need for expensive hub and storage facilities.

Truck-and-robot concepts Jennings and Figliozzi (2019) propose a system where
a truck drops off robots in the customers’ area on several rounds and picks them up
to return them to the DC on later rounds. They apply continuous approximation
to estimate travel distances and times, but do not optimize for routing. Further,
the authors do not consider robot cost and utilization, which will suffer from the
robots’ long waiting times in this concept. Boysen et al. (2018b) propose the delivery
concept based on robot depots, as depicted in Figure 3.3. They assess a system of one
truck, several depots, up to 40 customers and a similar number of defined drop-off
points. In contrast to our area of application where time windows are necessary, a
deadline for delivery is given for each customer and therefore early deliveries are
possible. Their solution approach consists of a multi-start local search heuristic for
truck tours and an MIP to find optimal robot schedules for each truck tour. The
authors identify key drivers for service quality and show that several additional
trucks would be needed to satisfy the same customer demands with traditional
truck delivery. However, their objective exclusively considers the number of late
deliveries, neglecting the actual delay times that are necessary to measure service
levels. There is further no total cost evaluation that allows a realistic cost assessment
with respect to truck routing and corresponding robot costs. The consideration of
all relevant cost aspects significantly changes the search for optimal truck routes.
Furthermore, robots are assumed to be available in unlimited numbers. This leads
to non-feasible solutions with respect to a practical application, as the robot fleet
and thus the number of robots per depot is limited. Alfandari et al. (2019) have
compared the binary lateness measure for the truck-and-robot concept by Boysen
et al. (2018b) with two alternatives (maximum and average delay) and developed
a Branch-and-Benders-cut scheme to solve problems within an hour. While their
numerical method proves to be efficient, the cost of robot use remains unknown.

Research gap and contribution Table 3.1 summarizes related literature. It
includes characteristics on the use of support vehicles (SVs, i.e. robots or drones),
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i.e., if SVs (i) are transported by truck (SV on truck), (ii) are stored in a location
(SV storage), (iii) availability in the storage is limited (SV avail.), and (iv) SV return
to the truck after delivery (SV return).

This paper is the first to consider a large but limited number of support vehicles,
which can be picked up and transported by the truck, delivery time windows and
total costs. The truck-and-robot concept is one of the most promising new last-
mile delivery concepts in city logistics and is technically ready for implementation.
Other approaches have considerable limitations for use in dense urban areas. First
publications have demonstrated the computational performance and potential of
the truck-and-robot system for smaller problem sizes. However, none of the current
publications identifies and takes into account all decision-relevant costs to assess
the profitability of the truck-and-robot concept (i.e., truck routing and robot usage
costs). Moreover, practical constraints (as the limited availability of robots) and hard
time windows (required for attended home delivery) have not yet been considered.
We therefore contribute to the existing literature by closing this gap. We deduce and
integrate empirically collected costs for both trucks and robots and extend the concept
by incorporating the mentioned restrictions in practice. In this way we are the first
to present a cost-based evaluation of this innovative last-mile delivery concept, which
is a prerequisite for assessing possible applications and their profitability. As such, it
is not only of academic interest but also of high practical relevance, as it enables
field tests on a larger scale.

3.3 Problem description

This section describes the technology required, the distribution processes involved
as well as the associated costs for the truck-and-robot concept. It concludes by
formulating the formal representation of the distribution problem.
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Aspects considered in optimization

Cust. SV TW SV on SV SV SV Costs
Publication Specifics Objective truck storage avail. return

Approaches with a truck and several drones

Chang and Lee (2018) Clusters Delivery time 100 10 - X - - X -

Salama and Srinivas
(2020)

Clusters Return time and
routing cost

35 6 - X - - X X

Moshref-Javadi et al.
(2020b)

Clusters Customer waiting
time

100 3 - X - - X -

Kim and Moon (2019) Drone hubs Delivery time 80 na - - X X - -

Phan et al. (2018) Multi-drone-TSP Costs 100 3 - X - - X X

Murray and Raj
(2020)

Multi-drone-TSP Return time 100 4 - X - - X -

Moshref-Javadi et al.
(2020a)

Multi-drone-TSP Customer waiting
time

100 3 - X - - X -

Hub-and-robot systems

Sonneberg et al.
(2019)

Varied robot sizes Robot transport
costs

10 3 X - X X - X

Poeting et al. (2019a) Varying no. of
robots

Deviation from
time window

20 5 X - X X - -

Poeting et al. (2019b) Two-tier system
with robots on
second tier

Length of truck
tour on tier one

na na X - X - - -

Bakach et al. (2021b) Two-tier system
with robots on
second tier

Number of hubs,
robot time

300 95 X - X X - -

Truck-and-robot systems

Jennings and
Figliozzi (2019)

Sequential tours for
dropping off and
collecting robots

None: continuous
approximation for
tour length

na na - - - - - -

Boysen et al. (2018b) Deadlines Number of delays 40 40 (X)1 X X - - -

Alfandari et al.
(2019)

Deadlines 3 lateness measures 100 100 (X)1 X X - - -

This paper Time windows Total cost 125 125 X X X X - X

Cust.: maximum number of customers served, SV: support vehicles used (robots/ drones), TW: time windows, X: considered, -: not considered
1 deadlines considered

Table 3.1: Overview on existing delivery robot literature and related truck-and-drone approaches

3.3.1 Truck-and-robot related technology

The key principle of the truck-and-robot concept is that a truck acts as mother
ship that can pick up, transport, load and drop off delivery robots. Autonomous
delivery robots are designed to carry out a single customer delivery at a time. The
compartment is locked during transportation and can be opened at the customer
location via an access code or using a smartphone app to retrieve the freight. The
robots are equipped with several cameras, GPS, additional sensors for distance
measurement and a mobile internet connection to move autonomously and prevent
abuse or theft. This allows safe autonomous driving on sidewalks at pedestrian speed
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and, when needed, manual remote control. Once a parcel is delivered, the robot
returns to a designated robot depot. The truck, in its role as mother ship, helps to
reduce the distance traveled by the slow-moving robots. This reduces transportation
times and increases the robots’ utilization. A typical truck setup could be to use the
complete floor of the loading space for approximately six to ten robots and the space
above for shelves that carry the parcels. For instance, Daimler’s “Vans and Robots”
setup (see Figure 3.4) provides space for 54 delivery boxes and up to eight robots. A
ramp allows the robots to enter and leave the truck either from the back or the side.
An employee is needed to manually drive the truck and load the robots with freight.
We refer to Hoffmann and Prause (2018) for more details on robot technology.

Figure 3.4: Example of truck layout with robots on the floor and goods in the racks above
(Mercedes-Benz Vans, 2016)

3.3.2 Truck-and-robot distribution concept

The truck-and-robot distribution is based on a combination of a delivery truck,
robots and a network of small robot charging stations, also called robot depots (see
Figure 3.3). The concept is intended for attended home deliveries in inner cities.
The distribution process consists of a truck tour and various robot tours, one for
each customer. The truck departs from a given starting point (e.g., the DC) with all
parcels to be delivered on board and visits several drop-off locations (blue arrows
in Figure 3.3) to release robots for delivery. A drop-off location is either a robot
depot (denoted as “R” in Figure 3.3) or a designated drop-off point (denoted as “d”
in Figure 3.3), where trucks are able to stop and unload robots. In the case of robot
depots, the trucks are able to pick up new robots for later deliveries or release robots
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with deliveries right from the depot. Once a robot is released for delivery, it visits
a single customer (green dotted lines in Figure 3.3). We consider attended home
deliveries, and consequently the delivery (i.e., arrival at the customer location) has
to happen within the time window agreed upon with the respective customer. As
soon as a robot arrives at the customer location, the customer is notified and can
pick up the delivery. In the event that a robot arrives early (e.g., before the assigned
time window), it must wait until the customer is available to receive the delivery.
This is another advantage as the cost of the robot’s waiting time is lower than the
cost of a delivery person waiting or making multiple delivery attempts. After the
parcel has been retrieved, the robot returns to the closest robot depot (not displayed
in Figure 3.3 for sake of clarity), where it can recharge and wait for the next delivery
tour. Since robots are comparatively slow, the advantage of this concept is that
the truck does not have to wait for them. On its route, it will repeatedly pick up
additional robots waiting at the depots, load them with parcels and drop them off
close to the respective customers. As stated above, robots can also be loaded with
parcels at depots and be sent to nearby customers without transporting them on
the truck. The challenge of this concept is the definition of the truck route, i.e.,
to decide on where to stop the truck to drop off the robots. Once a truck route is
defined, it is necessary to decide where to start each customer delivery such that late
deliveries and robot mileage are minimized, while respecting the truck’s maximum
robot capacity and the robot availability of each depot along its way.

To summarize, the truck-and-robot concept presented relies on a network of depots
and drop-off locations, robots fulfill the complete customer demand, and robots
return to a robot depot, not to a truck, as they move at pedestrian speed.

3.3.3 Decision-relevant costs

In the following we derive the decision-relevant costs for truck-and-robot delivery.
This is necessary to extend the current literature with the cost-based approach and
also obtain managerial insights about the benefits of the truck-and-robot concept in
general.
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Truck-related costs One of the main drivers for potential cost savings within the
truck-and-robot concept is the reduction of truck mileage compared to classical truck
deliveries. The cost factors of the truck utilization are the driver’s salary (which is
incurred at an hourly rate), fuel consumption, tolls and truck amortization (which
are proportional to the distance covered). These rates apply to the time and distance
of the truck‘s entire round trip back to the starting point. The truck-and-robot
system primarily aims at reducing truck-related costs the following way: the truck
does not have to drive to every individual customer and the driver does not need to
spend time carrying parcels and waiting for customers.

Robot-related costs The cost of robots is the primary cost increase compared
to a traditional truck delivery. As is common for machines, an hourly machine
rate for the robots is applied for the entire time the robot is loaded, travels to the
customer, is unloaded and returns to the closest depot. This is also in line with
a possible concept of a third party service provider for robots. In this concept,
robot manufacturers (e.g., Kiwibot (2020) and Starship (2019)) offer their robots
as a service for logistics companies at a predefined hourly rate. It incurs for the
entire time between a robot’s launch by the truck driver and its return to the closest
depot after the delivery was made. Since we consider attended home deliveries as a
premium shipping service (e.g., as offered by grocery stores and Amazon (2019)) a
delivery cannot happen before the agreed time window. A robot must wait at the
customer until the beginning of the time window in the event of an early arrival.
The hourly cost rate covers amortization, maintenance, electrical energy, rent for the
depot space and charging stations. The fact that for electric vehicles more than 50%
of the total cost of ownership is incurred for amortization and only 22% for electrical
energy highlights the need to consider usage time as the main cost driver for robots
(Bekel and Pauliuk, 2019).

Service-related costs Service-related costs account for any delayed deliveries.
This means that a late delivery will incur hourly penalty costs if a consumer does
not receive the parcel within the agreed time window. For instance, some companies
offer a refund of premium shipping fees if an order arrives late (e.g., Amazon (2019)).
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This also implies a trade-off decision between service dimensions (i.e., on time) and
logistics costs.

3.3.4 Decision model

Based on the characteristics described, we present the truck-and-robot model to
minimize total costs, while respecting a limited robot fleet. The basis of a truck-and-
robot routing problem consists of the locations to be visited by the truck and robots.
The available locations can be divided into the following sets:

• Set of robot depot locations R: At these locations, the truck can load additional
robots up to the depot’s robot availability and/or launch available robots for
delivery.

• Set of drop-off locations D: At these locations, the truck can only stop and launch
the robots it has aboard. There are no additional robots available to load. This
can be interpreted as a robot depot with a robot availability of 0.

• Set of customers C: Indicates the customer locations with a delivery request within
the planning horizon being considered. These are visited exclusively by the robots.

Since the truck could potentially visit a drop-off or robot depot location a, a ∈ D∪R,
several times (i.e., releasing robots at different times), we allow this by duplicating
locations. This results in the index sets D̂ and R̂ of duplicate locations. For simplicity,
we refer to the set of all duplicate locations as L̂ := D̂∪ R̂. For every distinct location
a, a ∈ D ∪R, we call the index set of its duplicates Ia ⊂ L̂. Finally, we define Ima as
the set of indices in Ia that are less or equal to m ∈ Ia.

Using these sets, a truck is characterized by its starting position γ, its initial number
of loaded robots δ and its maximum robot capacity K. Subtours are not allowed
and each truck stop is associated with a distinct arrival time ti, i ∈ L̂. The initial
number of available robots in a robot depot is denoted by ra, a ∈ D ∪ R. These
robots can be retrieved from and replenished into the depot by the truck. We do
not consider the time when a robot has returned to the depots for robot availability.
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Robots often return to a depot only after the truck tour is completed due to their
low speed compared to the truck. Waiting for robots to return is not economical
due to the high costs of the truck driver. Furthermore, the return times would be
hard to predict in practice as customers could take longer to retrieve their goods.
The travel times between locations i and j, i, j ∈ L̂, are specified by ϑtij for the
truck and between locations i, i ∈ L̂, and customers k, k ∈ C, by ϑrik for the robots.
Accordingly, λij indicates the travel distance of a truck between the corresponding
locations. Please note that any fixed processing time that occurs at a stop (e.g., for
walking around the truck, loading and unloading the robots) can be modeled by
adding it to the respective travel times. This processing time can be specific to every
stop. The deliveries for all customers k, k ∈ C, have to happen within a defined
time window of length ε, which ends with the deadline dk (i.e., the time window of a
customer is given by [dk − ε, dk]). All customers are served exclusively by robots.

A solution is defined by the following decision variables. First, sij indicates whether
the truck travels from location i to j, i, j ∈ L̂. For every location duplicate i, i ∈ L̂,
xik indicates whether a customer k is served from there (i.e., a robot is launched
from this location to drive to the customer) or not. To ensure feasibility and assess
actual costs, we additionally need the following auxiliary decision variables. If a
robot arrives before the designated time window, it has to wait until the start of the
time window (causing robot usage costs). The corresponding waiting time is denoted
by auxiliary variable wk, k ∈ C. If the deadline is missed, the delay at customer k
is indicated by auxiliary variable vk, k ∈ C. The auxiliary variable qi indicates the
number of robots on the truck upon departure from location i, i ∈ L̂. In line with
this, auxiliary variable ei indicates the quantity of robots taken out of a robot depot
i, i ∈ R̂.

The cost of truck routing and robot scheduling is defined as follows:

• The truck costs incur for the time (at the rate ct) and distance (at the rate cd) of
the entire round trip back to the starting point. This includes travel and processing
times for loading the robots.

• Robots travel from depot/drop-off locations to customers and return to the closest
depot afterwards, i.e., the hourly cost (at rate cr) for a robot incurs for the time
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from loading the robot to its arrival at the depot closest to the customer served.
Service times for loading and unloading are included in the travel times.

• Deliveries can only happen after the beginning of the corresponding time window
due to customer availability. An earlier arrival causes waiting time (and thus usage
cost at the rate cr) for the robot.

• Deliveries after the time window lead to hourly delay costs at the rate cl as
customers have to wait for their goods.

Index sets
C Set of customers
D Set of distinct drop-off locations
R Set of distinct robot depot locations
D̂ Set of drop-off locations including duplicates
R̂ Set of robot depot locations including duplicates
L̂ Set of all locations the truck can visit, including duplicates, L̂ := D̂ ∪ R̂
Ia Set of duplicate indices i, i ∈ L̂, of one distinct location a, a ∈ D ∪R
Ima Set of elements i ∈ Ia with i ≤ m
Parameters
dk Deadline for customer k, k ∈ C
K Maximum robot capacity of a truck
ra Initial number of available robots in location a, a ∈ R
γ Starting position of the truck, with γ /∈ L̂
δ Initial number of robots aboard the truck
ε Length of time windows
ϑtij Truck travel time from location i to location j, i, j ∈ L̂
ϑrik Robot travel time from location i, i ∈ L̂, to customer k, k ∈ C
λij Distance between locations i and j, i, j ∈ L̂
Cost parameters
cl Cost of delays per time unit
cd Cost of truck per distance unit
ct (cr ) Cost of truck (robot) per time unit
Decision variables
sij Binary: 1, if truck goes from location i to location j; 0 otherwise
xik Binary: 1, if customer k is supplied from location i; 0 otherwise
Auxiliary variables
ei Number of robots taken out of depot location i, i ∈ R̂
qi Number of robots aboard the truck at departure from location i, i ∈ L̂
ti Arrival time of truck at location i, i ∈ L̂
vk Delay of delivery to customer k, k ∈ C
wk Waiting time for robot at customer k, k ∈ C

Table 3.2: Notation
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Table 3.2 summarizes the notation used. The objective function and the restrictions
of the model are then formulated as follows.

min TC(S,X,E,Q, T, V,W ) =∑
i∈L̂

∑
j∈L̂

(cd · λij + ct · ϑtij) · sij +
∑
i∈L̂

∑
k∈C

cr · ϑrik · xik +
∑
k∈C

(cl · vk + cr · wk) (3.1)

subject to

∑
i∈L̂

xik = 1 ∀k ∈ C (3.2)

∑
k∈C

xjk ≤M ·
∑

i∈L̂∪{γ}

sij ∀j ∈ L̂ (3.3)

∑
j∈L̂

sγ,j ≤ 1 (3.4)

∑
i∈L̂∪{γ}

sij =
∑

i∈L̂∪{γ}

sji ∀j ∈ L̂ ∪ {γ} (3.5)

tγ = 0 (3.6)

tj ≥ ti + ϑtij −M · (1− sij) ∀j ∈ L̂; i ∈ L̂ ∪ {γ} (3.7)

vk ≥ ti + ϑrik − dk −M · (1− xik) ∀k ∈ C; i ∈ L̂ (3.8)

wk ≥ dk − ti − ϑrik − ε−M · (1− xik) ∀k ∈ C; i ∈ L̂ (3.9)

qγ = δ (3.10)

qj ≤ qi + ej −
∑
k∈C

xjk +M · (1− sij) ∀i ∈ L̂ ∪ {γ}; j ∈ R̂ (3.11)

qj ≤ qi −
∑
k∈C

xjk +M · (1− sij) ∀i ∈ L̂ ∪ {γ}; j ∈ D̂ (3.12)

ti ≤ tj ∀a ∈ R; i, j ∈ Ia : i ≤ j (3.13)∑
h∈L̂∪{γ}

shi ≥
∑

h∈L̂∪{γ}

shj ∀a ∈ R; i, j ∈ Ia : i ≤ j (3.14)
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ra −
∑
i∈Ima

ei ≥ 0 ∀a ∈ R;m ∈ Ia (3.15)

sij ∈ {0, 1} ∀i, j ∈ L̂ ∪ {γ} : i 6= j (3.16)

sii = 0 ∀i ∈ L̂ ∪ {γ} (3.17)

xik ∈ {0, 1} ∀i ∈ L̂; k ∈ C (3.18)

ei ∈ Z ∀i ∈ R̂ (3.19)

ti ≥ 0 ∀i ∈ L̂ (3.20)

qi ∈ [0, K] ∀i ∈ L̂ (3.21)

vk, wk ≥ 0 ∀k ∈ C (3.22)

The objective function (3.1) minimizes total costs TC. The first term of the objective
function considers the truck costs, which depend on the traveling segments sij selected
and the corresponding costs for distance and travel time. The second term sums up
the robot costs dependent on associated travel times, and the last term sums up the
costs for delayed deliveries and for robot waiting times if the assigned time window is
not met. Please note that the costs of the robots’ return to the closest depot do not
depend on the scheduling decisions as they are known in advance, and thus added
ex-post. Every customer must be supplied by exactly one robot (see Constraints
(3.2)), and robots can only start from locations where the truck has stopped (see
Constraints (3.3)). Constraint (3.4) ensures that only one truck can start in γ,
and if it arrives at a location, it must also depart from there, which is denoted by
Constraints (3.5). Constraints (3.5) also ensure the truck returns to the starting
point γ. Based on the tour, Constraints (3.6) and (3.7) define the arrival times at
every truck stop. These constraints further prevent subtours as a feasible arrival
time ti for a location i, i ∈ L̂, visited twice, does not exist. Constraints (3.8) define
the delay duration for every customer (in the event of late delivery) and Constraints
(3.9) the robots’ waiting time. Waiting times occur in the event of early arrivals as
we consider attended home deliveries and customers are assumed to be available only
during the agreed time windows. Both constraints use the fact that the arrival time
at a customer k supplied from location j (i.e., xjk = 1) equals tj + ϑrjk. Constraints
(3.10)–(3.12) keep track of the number of robots on the truck. The truck departs
from the starting point with the initial number of robots. On later stops, robots
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launched are subtracted and robots loaded in depots are added. Constraints (3.13)
and (3.14) ensure without loss of generality that duplicates of the same location are
visited in ascending index order. This fact is then used by Constraints (3.15) to
ensure that the number of robots in a depot after visiting duplicate m is not below
0. By enforcing ascending order of duplicates in Constraints (3.13) and (3.14), we
ensure that no ei of unvisited stops is included in Constraints (3.15) for any m that is
visited. The variable ei of unvisited stops could otherwise imply infinite robot supply,
as they are not constrained by Constraints (3.11). Finally, Constraints (3.16)–(3.22)
define the variables.

A solution consists of a truck route from the starting point γ through several depots
and drop-off points and an allocation of each customer to one of the locations on
that route, from which its parcel will be delivered by a robot. Consequently, the
solution π can be denoted as a tuple of locations Y , where y(u) ∈ R ∪D is the u-th
stop, and a matrix X = (xuk), defining whether customer k is supplied from stop u.
Note that a location a ∈ R ∪D can occur on the route several times and y(1) = γ

always holds.

The MIP presented is an NP-hard combinatorial problem (Boysen et al., 2018b).
The truck must visit a location up to |C| times, which means we have to solve the
problem for |C| · (|R| + |D|) duplicate locations. In a real-world application, e.g.,
with C = 50, R = 25 and D = 50, these would amount to 3,750 locations, which
makes it intractable to solve in acceptable time with conventional solvers. For this
reason we propose a heuristic.

3.4 Solution approach

In this Section, we introduce our Truck-and-Robot Cost-optimal Routing approach
(TRC). The task of finding an optimal truck tour is closely related to the classical
vehicle routing problem (VRP), with the addition that the truck can visit a location
several times or not at all, and that at the same time the robot schedules need to be
defined. The proposed heuristic is therefore based on principles known from VRPs
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by generating an initial tour and improving the truck tour using a specific search
procedure. The structure of our approach is inspired by Boysen et al. (2018b) as
it has been shown that it is efficient for the truck-and-robot problem to minimize
lateness. The specific algorithms and operators have been developed to reflect our
setting and model. More precisely, we aim at minimizing total logistics costs, and
therefore develop a tailored solution approach. This means that our approach uses
a cost-specific start heuristic as well as specialized search operators to take into
account the different cost aspects for the optimization. We extend the existing model
by considering additional constraints for a limited availability of robots, and present
a repair step for non-feasible routing solutions. Moreover, we introduce an innovative
heuristic for the subproblem of scheduling robots.

Figure 3.5 summarizes our three-step approach. After an initial truck route has
been determined using priority rules in Step 1, an iterative approach is applied that
alternates Steps 2 and 3. Step 2a ensures the feasibility of the truck route with
respect to robot availability before the robot scheduling subproblem is solved for
each feasible truck tour in Step 2b to define the corresponding robot movements
(i.e., which customers are served from which location on the truck tour). We present
an exact and a heuristic approach to solve the robot scheduling. With the solution
obtained, the remaining problem is to find the best truck tour, which takes place in
Step 3 using a tailored heuristic based on a local search algorithm.

Generate initial truck 

tours

Priority rules PR1, PR2

Ensure tour feasibility

Truck route post-

processing 

Schedule robots

MIP/ heuristic for a 

given truck tour

Improve truck tours

Local search 

procedure

Initialization

Step 1

Feasibility and robot scheduling Improvement

Step 2a Step 2b Step 3

Iterate

Figure 3.5: Illustrative structure of the applied solution method

Step 1: Initial solution for truck tours To obtain a start solution for the truck
tours we apply the priority rules “Move to the position that is cost-optimal for the

38



Cost-optimal Truck-and-Robot Routing Andreas Heimfarth

highest number of customers per the location’s distance” (PR1) and “Move to the
position from which most customers can be reached in time” (PR2). PR1 considers
robot and delay costs but ignores truck-related costs. As a result it tends to lead
to longer truck routes than optimal. PR2 aims to minimize delays, as they can be
a pivotal cost driver. With robot and truck costs ignored, it leads to shorter than
optimal truck tours at the cost of inefficient robot use. Combined, the two rules
incorporate all key cost drivers and provide starting points on both sides of the
optimum (routes that are too long and too short) to the local search. PR1 and PR2
are detailed in the following.

PR1 is based on the delivery costs of each customer k from a possible next drop-off
or depot location a, a ∈ R ∪D. These costs consist of the robot travel and waiting
time and potential delay costs. These are driven by the arrival time of the truck
at location a, a ∈ R ∪ D, and the robot travel time ϑrak between location a, and
the customer k, k ∈ C. Truck costs are not considered as they cannot be clearly
allocated to a single customer. We select the next (first) truck stop as follows. Based
on the current time and truck location, the delivery costs for every location-customer
combination (a, a ∈ R ∪D; k, k ∈ C) is calculated. Next, for every customer, the
delivery costs at potential next stops is compared to the delivery costs of stops
already visited (including the current stop). If the delivery costs are minimal for one
of the stops visited, the customer is assigned to that stop and will not be considered
for the further assignment process. Finally, for every location a, a ∈ R ∪ D that
has not yet been visited, the number of customers with their cost minimum in this
location is divided by the distance from the current truck position to derive a score.
The location with the highest score is then selected as the next truck stop and the
customers with their cost minimum in this location are assigned to it. The procedure
is repeated until all customers k, k ∈ C, are assigned to a location a, a ∈ R ∪D.

PR2 considers only customers k, k ∈ C, that can be reached from a given drop-off
or depot location a, a ∈ R ∪ D, before their deadline dk. It selects the location
a, a ∈ R ∪D, with the highest number of customers that can be reached on time
as next stop. At every stop, all customers who can be reached before the deadline
terminates are served, and the selection of the next location a, a ∈ R∪D, is repeated
with the remaining customers. This procedure terminates as soon as there are no
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more customers that can be served in time. This rule was proposed by Boysen et al.
(2018b) and proved to be effective for our approach as well.

Step 2a: Feasibility and robot availability Both priority rules ignore robot
availability at any given location a, a ∈ R∪D, and an unlimited number of customers
can be served. This may result in non-feasible routes. In contrast to the routing
approach by Boysen et al. (2018b) we must ensure that the total number of available
robots NR (initial number of robots on the truck δ plus all robots at depots visited
on the tour ra, a ∈ R) is equal to or larger than the number of customers |C|. To
do so, we post-process the results obtained by PR1 and PR2 by adding the closest
additional depots if necessary. The post-processing is described in Algorithm 3.1.

Algorithm 3.1 Truck route post-processing for feasibility
Input: (Truck tour Y , number of customers |C|, initial robot availability on truck δ and in depots
ra )
feasible = false;
while not feasible do

NR = δ +
∑
a∈Y ra;

if NR < |C| then
append closest depot a ∈ R, a /∈ Y ;

else
feasible = true;

end if
end while
return Y

Step 2b: Robot scheduling for given truck route As a next step we solve
the corresponding scheduling of robots for the given truck route. We propose two
alternatives. The first one is based on the exact solution of a scheduling MIP, the
second one develops a heuristic.

Alternative 1: Exact solution of MIP for robot scheduling An MIP for the
subproblem of robot scheduling assigns customers to the truck stops (i.e. depots and
drop-off points on the route). This is essential to evaluate the total costs. Using the
MIP, we provide the basis for the solution evaluation and thus for the acceptance of
improved solutions within the improvement heuristic. This complements the truck
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tour to a full solution, i.e., it provides the total costs for a given tour and the starting
point of each robot delivery. In contrast to the complete problem, we do not need
duplicates of robot drop-off (D) and depot locations (R). Table 3.3 presents the
additional notation of truck tour parameters and decision variables.

Truck tour parameters
U Index set of stops on the truck tour u ∈ {1, 2, ...}
y(u) u-th stop of the truck route, y(u) ∈ R ∪D
tu Arrival time at truck stop number u, u ∈ U
cTuk Cost of serving customer k, k ∈ C from stop u, u ∈ U
Decision and auxiliary variables
xuk Binary: 1, if customer k, k ∈ K, is supplied from stop u, u ∈ U ; 0 otherwise
qu Number of robots aboard the truck at departure from stop u, u ∈ U
rau Number of available robots in location a, a ∈ R ∪D, after the u-th truck

stop

Table 3.3: Additional parameters and variables for the MIP

For a given truck route Y and the corresponding index set of stops U , the time
of each truck stop tu, u ∈ U , is determined by Equations (3.23) and (3.24). The
parameter y(u) indicates the actual location of the u-th stop, i.e., y(u) ∈ R ∪ D.
Based on the time of each stop, we precalculate the total cost cTuk of supplying a
customer k from the corresponding stop u as defined in (3.25). The costs include
the robot usage cost per time (cr) depending on the travel time from the truck stop
to the customer, the potential waiting time for the beginning of the delivery time
window, and the time to return to the closest depot min

a∈R
(ϑrak). Delay costs are also

included.

t1 = 0 (3.23)
tu = tu−1 + ϑty(u),y(u−1) ∀u ∈ U \ {1} (3.24)
cTuk = cr · (ϑry(u)k + (dk − ε− tu − ϑry(u)k)+ + min

a∈R
(ϑrak))

+ cl · (tu + ϑry(u)k − dk)+ ∀u ∈ U, k ∈ C (3.25)
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The auxiliary variable rau indicates the number of robots available at location
a, a ∈ R ∪D, after the u-th stop and qu indicates the number of robots aboard the
truck after departing from u. The resulting MIP for minimizing the costs of robot
scheduling for a given truck tour follows.

min F (Q,X,R) =
∑
u∈U

∑
k∈C

xuk · cTuk (3.26)

subject to

∑
u∈U

xuk = 1 ∀k ∈ C (3.27)

rau = rau−1 ∀a ∈ R, u ∈ U : a 6= y(u) (3.28)
rau ≤ ra,u−1 + qu−1 − qu −

∑
k∈C

xuk ∀a ∈ R ∪D, u ∈ U : a = y(u) (3.29)

q0 = δ (3.30)
ra0 = ra ∀a ∈ R (3.31)
rau = 0 ∀a ∈ D, u ∈ U (3.32)
xuk ∈ {0, 1} ∀u ∈ U, k ∈ C (3.33)
rau ≥ 0 ∀a ∈ R, u ∈ U (3.34)
0 ≤ qu ≤ K ∀u ∈ U (3.35)

Constraints (3.27) ensure that exactly one robot is launched to each customer.
Constraints (3.28) and (3.29) keep track of the number of robots in the depots and
on the truck after every truck stop. Constraints (3.30) and (3.31) define the initial
quantity of robots in each depot and on the truck. Constraints (3.32) ensure that
robots cannot be stored at drop-off locations. Constraints (3.33)–(3.35) define the
range of variables.
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Due to the problem structure, the corresponding LP solution satisfies the integer
constraints in most cases. The problem can therefore be solved many times within
the entire heuristic at affordable computational effort. Nevertheless, the MIP for the
robot scheduling constitutes a potential bottleneck in terms of computation time. For
this reason, we propose an alternative heuristic approach in the following. Numerical
analysis will be applied to assess the performance in terms of computation time vs.
solution quality of both variants.

Alternative 2: Heuristic for robot scheduling The robot scheduling heuristic
(RSH) relies on (i) calculating a lower bound of the robot schedule cost, (ii) fixing the
number of started robots per stop, and (iii) swapping customers between stops.

(i) The RSH starts with assigning each customer to the cost-optimal truck stop
without considering robot availability. Here we need to differentiate two cases: First,
if the resulting solution is above the total costs of the current best-known solution,
the given truck tour cannot be part of a better solution. It will be disregarded and
the search continues with Step 3. Second, if this solution is below the total costs
of the current best-known solution, we further test if this robot schedule is feasible
with respect to robot availability in the depots and on the truck. If so, this robot
schedule and the given truck tour are the new best-known solution. If not, we search
for a feasible robot schedule for the given tour in step (ii).

(ii) Customers are sequentially assigned to stops on the tour using regret-insertion.
The regret is defined as the cost difference of the best and second best possible stop to
which a customer can be assigned. Since stops can run out of robots simultaneously
(e.g., several consecutive drop-off points as soon as the truck runs empty), we consider
as possible second-best stops only those after the best one, starting at the first depot.
The customer with the highest regret is assigned to the best possible stop. After each
assignment, the robot availability and truck capacity have to be updated, and new
regret values are calculated. This step is repeated until all customers are assigned
and therefore a feasible robot schedule is obtained.
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(iii) Finally, we improve the robot schedule by swapping pairs of customers if this
leads to a cost decrease. Please note that this step does not impact robot availability
and therefore feasibility remains. We further focus on the customers currently not
assigned to their best stop to speed up the search. This step concludes the robot
scheduling and provides the total costs of the current solution.

In the following, we denote the approach based on this heuristic as TRC-RSH and
the approach based on exact robot scheduling as TRC. In the numerical analysis, we
will show which of the alternatives is beneficial under which conditions.

Step 3: Local search for improving truck routing A local search (LS) procedure
is applied to improve the solutions. The truck tours obtained are post-processed
in each iteration to obtain feasible tours (Step 2a), and the corresponding robot
scheduling (Step 2b) is solved. This means that any truck tour Y obtained within
the LS corresponds to exactly one complete solution π = (Y ′, X), which is the result
of the feasibility check and the subsequent robot scheduling. Please note that if Y is
feasible, Y ′ = Y holds. This enables us to find the best possible objective value for
any given truck tour as the respective robot scheduling solution is optimal. We denote
the complete solutions (i.e., truck tour after feasibility check and corresponding robot
schedule) for the initial tours Ypr1 and Ypr2 as πpr1 and πpr2. Each of these two start
solutions is then evaluated κ/2 times by the LS procedure as given in Algorithm
3.2. The best solution is chosen across all κ search cycles. The LS is applied for κls

iterations with the respective starting solution. The following operators within the
LS are used in order to improve the given truck route:

• Best-cost removal: The stop whose removal leads to the best estimated total
cost is removed. This operator aims at reducing unnecessary detours early on
the tour, which may cause delays on later stops. The total costs are estimated
without solving the robot scheduling, using the following procedure. First, for all
customers assigned to the remaining stops, the new arrival time is calculated based
on the new, shorter truck tour. This new arrival time can lead to an updated
robot waiting time or delay time, and thus a change in cost. Customers who were
previously assigned to the stop that has been removed must be redistributed. We
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do this by calculating the hypothetical robot and delay cost (based on arrival time)
for every combination of stops on the truck route and customers to be redistributed.
All of these customers are then assigned to the stop where their respective cost is
minimal (without enforcing the number of available robots at that stop). Finally,
the truck time and distance are updated together with their corresponding costs.
After assessing these hypothetical new total costs for the removal of every stop,
the stop with minimal cost is selected for removal.

• Depot insertion: After a random stop of the current tour, the unused depot that
leads to the minimal deviation is inserted. This operator contributes to the degree
of freedom for the robot schedule as this increases the number of available robots
and their possible starting locations.

• Random removal: A random stop is removed from the current tour.
• Random insertion: A random stop is inserted at a random position of the current

tour.
• Random swap: Two random stops of the tour are swapped.

Algorithm 3.2 Local search procedure
Input: (Starting solutions πpr1, πpr2; number of iterations κ)
πbest = null; // best solution found
for i = 1 to κ do

if i ≤ κ/2 then
π = πpr1.clone();

else
π = πpr2.clone();

end if
πlocal = LS(#iterations: κls, start solution: π); // local search with κls cycles
if πbest = null or Z(πlocal) ≤Z(πbest) then

πbest = πlocal; // save best result
end if

end for
return πbest

To enlarge the search area in the event of local minima, two instead of one of these
operations are performed sequentially within a single iteration if no improvement
has been made during the last 50 LS cycles and three operations after 100 LS
cycles without improvement. Our tests have shown that this enables the best-known
solutions to be improved, and that the best solutions were also found faster and
more robustly across all κ cycles.
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3.5 Numerical analysis

This section analyzes the performance of our solution approach and provides manage-
rial insights. Section 3.5.1 describes the generation of our problem instances, which
are available online at http://www.vrp-rep.org/datasets/item/2020-0005.html.
Using these instances, we show the efficiency of our TRC approach in Section 3.5.2.
This section compares it first to MIP solutions using Gurobi for small instances
(see Section 3.5.2). We further investigate the efficiency of the exact vs. heuristic
approach for the robot scheduling (see Section 3.5.2). Additionally, we asses the
efficiency with the state-of-the-art approach from literature in Section 3.5.2. Section
3.5.2 extends the comparison to other instances provided in recent literature. In
Section 3.5.3, we compare the truck-and-robot system’s performance to traditional
truck deliveries. Section 3.5.4 details the cost structure of the solutions and resulting
implications for the system’s ability to meet changing demand settings. We have
implemented our algorithm and the corresponding benchmark approach in Python
(using PyCharm 2018.3.5 Professional Edition) with Gurobi (version 8.0.1) as a
solver for the robot scheduling MIP. All computations were executed on a 64-bit PC
with an Intel Core i7-8650U CPU (4 × 1.9 GHz), 16 GB RAM and Windows 10
Enterprise.

3.5.1 Instance generation and parameter setting

This section details the generation of the problem instances. We consider Munich as a
model delivery area for deriving actual delivery situations. We assume a delivery area
that resembles half of the city center (a square area with side length of 4 km) and in
which |C| = 50 customers are served per tour. For a realistic spatial distribution we
randomly choose 50 of all known building locations in the northern half of Munich
using Open Street Maps (see OpenStreetMap Foundation (2019)) and distribute the
|R| = 25 depots in an equidistant manner. The drop-off points are uniform-randomly
distributed and the truck is assigned to one random depot or drop-off location as a
starting point. For the deadlines we assume the company offers different delivery
times for customers, depending on their location, and assigns orders to trucks such
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that early deadlines are closer to the truck’s starting position and later deadlines
further away (see similar approach in Boysen et al. (2018b)). To simulate this, every
deadline is calculated as dk = tk,min · ρk, where tk,min is the time needed to directly
go from the starting point to the customer by truck (excluding any handling times)
and ρk is a factor drawn from a uniform distribution in the interval [ρmin, ρmax] (in
our example [5, 8]) for every customer individually. This procedure assumes a given
vehicle allocation such that viable tours can be planned. The initial number of robots
is set to ra = 10 for every depot a, a ∈ R, if not stated otherwise. We further use the
setting for the remaining parameters as given by Boysen et al. (2018b). The truck
can carry up to K = 8 robots and is fully loaded at the beginning (δ = 8). The
average speed is 30 km/h for the truck and 5 km/h for the robots. The handling time
per stop is assumed to be 40 sec. The truck costs are estimated using fuel, labor,
investment costs and amortization, resulting in a distance cost of cd = 0.20 e/km
and a time cost of ct = 30 e/h. For the delays, we refer to the common offer to
refund the premium shipping fee in the event of late delivery. In our example, a fee
of 5 e is refunded for a one hour delay. Robot costs are calculated based on the
target purchasing price of 2,000 aes reported on Condliffe (2018). Amortization
time is assumed to be five years. The robots are in operation 50 weeks per year, six
days per week and eight hours per day. Furthermore, the utilization rate is 50% and
there is a markup for maintenance, electricity, etc., of 50%. Using these estimates,
we derive a cost rate of cr = 0.50 e/h, with cr= 2,000 /e(5 · 50 · 6 · 8 h · 50%
utilization) · (1 + 50% markup). Lastly, we set the run-time parameters of our
heuristic to κ = 16 search cycles and κls = 500, as this robustly produced results
that were close to the best-known one across all κ cycles. The search cycles were
executed in parallel using multiprocessing. Table 3.4 summarizes the parameters
applied that have been collected empirically. We apply this data throughout all
experiments except for a further comparison on lateness in Section 3.5.2, where we
build the experiments upon the data instances of Boysen et al. (2018b).
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Parameter Description Value
Index set sizes
|C| Number of customers 50
|D| Number of drop-off locations 48
|R| Number of robot locations 25
Constraints
K Truck’s maximum robot capacity 8
r Initial number of available robots per depot 10
δ Initial number of robots aboard the truck 8
ε Length of time windows 10 min
µ Fixed processing time at every stop 40 s
[ρmin, ρmax] Deadline factor interval [5, 8]
ωt Average truck speed 30 km/h
ωr Average robot speed 5 km/h
Cost factors
cd Distance cost of truck 0.20 e/km
ct Time cost of truck 30 e/h
cr Cost of robots 0.50 e/h
cl Cost of delays 5.00 e/h

Table 3.4: Empirically estimated values applied as default values in a problem instance

3.5.2 Efficiency of suggested solution approach

Comparison to exact solution of MIP

In our first performance comparison, we assess the solution quality and runtime of our
TRC approach by solving the MIP presented exactly (see Equations (3.1) to (3.22))
using Gurobi. The MIP solution using Gurobi is only feasible and computationally
tractable for small instances. We use instances with 9, 12, 15 and 18 customers and
16 depots each. The number of drop-off points is derived as 2 · |C|. The number of
robots per depot r, the robot capacity of the truck K, and initial number of robots
aboard δ are set at |C|/3. The remaining parameters are as described in Table 3.4.
We consider two duplicates of each location, i.e. the truck can visit a location at most
twice. This has proved to be sufficient to find the optimal solution. The runtime
limit of Gurobi is set at 30 minutes. Table 3.5 compares TRC to the MIP for 20
instances per problem size, showing the percentage of instances for which the optimal
and best-known solutions were found, the average gap of solutions to Gurobi‘s lower

48



Cost-optimal Truck-and-Robot Routing Andreas Heimfarth

bound, the runtime and average savings obtained by applying TRC instead of Gurobi.
The comparison shows that the MIP solution with Gurobi becomes computationally
intractable for more than 12 customers. TRC in contrast remains fast, identifies
better solutions on average and in total finds 14 out of 19 proven optima (i.e., 18%
of all 80 instances).

Best solution ∅ Gap to ∅ Improvement
Optima found [%] found [%] lower bound [%] ∅ Runtime [sec] by TRC [%]

Customer TRC Gurobi TRC Gurobi TRC Gurobi TRC Gurobi Cost Time
9 50 65 85 70 9 12 48 995 4 95
12 20 30 90 40 20 25 63 1,524 6 96
15 0 0 95 30 33 41 85 1,800 13 95
18 0 0 100 5 33 50 101 1,800 25 94

Total 18 24 93 36 25 36 75 1,530 14 95

Table 3.5: Performance of our TRC approach compared to solution of the MIP (Equations (3.1)
to (3.22)) with Gurobi (20 instances per row)

Comparison of alternative solution approaches

Next, we compare the performance of TRC and TRC-RSH, i.e., the efficiency if RHS
is used for robot scheduling instead of the MIP in Step 2b. Table 3.6 summarizes
the results across 20 instances per parameter setting.

Instances Average change due to RSH [%] Standard deviation
Customers Robots per depot Computation time Objective value of objective value change [ppt]

25 10 -71 0.00 0.0
50 10 -56 0.00 0.2
75 10 -46 -0.03 0.9
100 10 -29 0.05 1.7
125 10 -23 -0.39 2.4
100 5 -14 4.77 9.5
100 30 0 -0.06 1.7

Table 3.6: Performance comparison of TRC-RSH vs. TRC

Applying TRC-RSH is up to 71% faster, in particular for smaller test cases. However,
the advantage of computational time decreases with a growing number of customers.
With high number of customers and high number of robots, the TRC becomes as
fast as the TRC-RSH. Whereas there is no significant difference in solutions between
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TRS-RSH and TRC for instances with up to 100 customers and 10 robots per depot,
the objective values deviate increasingly and we obtain slightly better or worse
solutions by TRS-RSH. This can be attributed to the stochastic search within our
LS. Since RSH evaluates some truck tours with higher-than-actual costs, it can avoid
local minima that prevent finding a better solution. On the other hand, it can also
prevent the LS from finding the best solution. Both effects occur increasingly with
larger instances, as can be seen in the increasing standard deviation. This effect is
reinforced with very tight robot availability (see e.g., example with 100 customers
and 5 robots per depot). A lower robot availability reinforces RSH’s disadvantages
in robot scheduling and therefore leads to worse objective values. On the other
hand, when robots are not limiting at all, RSH’s time advantage disappears, since
the trivial robot schedule to assign every customer to their cheapest stop is often
feasible.

In conclusion, TRC-RSH has the potential to save computation time in cases where
robot availability is not extremely low. As one of our contributions is to consider
robot availability, we will rely on TRC in our further experiments as it provides
more robust results and performs better for scenarios with more restricted robot
availability. In practice, the choice between TRC-RSH and TRC can be made based
on the number of customers and the availability of robots.

Comparison to benchmark approach

We compare our solution approach to the state-of-the-art approach by Boysen et al.
(2018b). Their approach (denoted as TRL) aims at minimizing the number of
customers who receive their order late, i.e., it only evaluates whether orders are
delivered late, but does not account for the absolute time of delay. The multi-
start local search procedure of TRL relies on a neighborhood search with standard
operators for VRPs. We reimplemented this approach and use the parameter setting
as indicated by the authors for the “large dataset”. We adapt our TRC approach to
minimize the number of late deliveries as well (denoted as TRC lateness), and set
the local search limit to κls = 2, 000. TRL lateness and TRC lateness are ultimately
compared with TRC applied for its intended total cost objective (denoted as TRC
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cost). For both TRL and TRC lateness, the total costs are obtained by an ex-post
calculation on the final solution using the cost factors stated. Figure 3.6 shows the
average results (of a sample of 20 instances per data point) for 25 to 125 customers.

25 50 75 100 125
Number of customers

10

20

30

40

50

60

70
Computation time [min]

TRC cost
TRC lateness
TRL lateness

25 50 75 100 125
Number of customers

0

5

10

15

20

25

30

Number of delays
TRC cost
TRC lateness
TRL lateness

25 50 75 100 125
Number of customers

10

20

30

40

50

Total costs [EUR]
TRC cost
TRC lateness
TRL lateness

25 50 75 100 125
Number of customers

0

5

10

15

20

Average delay duration [min]
TRC cost
TRC lateness
TRL lateness

25 50 75 100 125
Number of customers

2

4

6

8

10

12

14
Total truck distance [km]

TRC cost
TRC lateness
TRL lateness

25 50 75 100 125
Number of customers

20

30

40

50

60

70

Maximum number of robots started at the same location
TRC cost
TRC lateness
TRL lateness

Figure 3.6: Performance comparison of our TRC method and the TRL routine by Boysen et al.
(2018b) applied for the two objectives cost and lateness
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Performance comparison for minimizing lateness The results show that our
TRC approach also performs very well if applied for the altered objective of minimizing
lateness. In comparison to TRL, it is able to match the given results both in terms
of computation time and objective value. The higher computation times for TRC
lateness can be attributed to cost-specific starting rules and search operators. As
its rules and operators are focused on total cost, it takes TRC slightly longer to
converge to solutions with the minimal number of delays. The increase in runtime
for all methods is mostly driven by the fact that the MIP for robot scheduling must
be solved for longer truck tours with an increasing number of customers.

Impact of total cost perspective Considering TRC applied to the cost objective,
we see that its computation times are comparable to TRL. Looking at the solution
structure, the comparison between TRC with cost objective and TRL further high-
lights the impact of a total cost perspective. TRC cost leads to a higher number
of delays. However, the average delay duration (of all delays > 0) is drastically
reduced compared to the TRL results. This is because for TRL, every delayed
customer is “lost” and there is no incentive to shorten an unavoidable delay. In
contrast, TRC shortens unavoidable delays. Comparing the total costs achieved by
all approaches, we see that minimizing lateness while ignoring the other cost factors
leads to a significant increase in actual costs. By way of example, in the case of 75
customers, TRC cost reduces total costs by 46%, average delay duration by 93% and
truck mileage by 49% compared to TRL. The difference in total costs is lower when
comparing TRC cost to TRC lateness since the latter already applies our cost-specific
operators and therefore respects total costs while minimizing lateness. For the large
data set of 125 customers, the total costs of both approaches are almost equal. The
reason for this is the impact of robot availability, which we detail in the following.

Impact of limited robot availability In TRC cost we take into account the limited
availability of robots at depots (i.e., 10 robots per depot), which represents an
additional restriction. This means that the more customers are to be served, the
more constraining the limited robot availability gets for the routing decision. In the
case of 125 customers, for instance, the truck must visit at least 12 depots to supply
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all customers (see increased truck distance and delay duration). The restriction
reduces the cost advantage at first glance but leads to a more realistic truck tour
where the maximum number of robots started at a single depot is reduced from 74
to 16. Thanks to our combination of cost optimization and limited robot availability,
the maximum number of robots started remains constant as the number of customers
goes up. This makes the concept economically feasible, as depots must be affordable
and easy to integrate into existing traffic space and the robot fleet size should be
realistic to keep investment costs as low as possible.

Performance comparison based on instances from literature

We further assess the algorithmic performance with data instances of Boysen et al.
(2018b). The so called “large dataset” comprises 200 instances with 40 customers
each. We compare our TRC to the TRL approach of Boysen et al. (2018b) based on
their lateness objective (see Section 3.5.2).

The comparison in Table 3.7 confirms the results from Section 3.5.2. TRC lateness
finds objective values comparable to TRL lateness. Out of 200 instances, 182 instances
were solved with identical objective values by both approaches. TRC found a better
solution for four instances and a worse solution for 14 instances. Due to the problem-
and cost-specific search operators used in our TRC approach, it takes more effort
to find lateness-optimal solutions, but it is able to find pareto improvements with
respect to the associated costs: total costs, covered truck distance, and the absolute
time of delays are decreased despite the objective of minimizing the number of delays.
TRC‘s computation times are five to six minutes higher. As already seen in Figure
3.6, TRL is faster for smaller instances (as it is the case here with 40 customers),
but the relative difference is much lower for larger instances with more customers.
Both approaches are consequently comparable with respect to time-efficiency.
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Criteria TRL lateness TRC lateness Change TRC
Boysen et al. (2018b) this paper vs. TRL [%]

# of best known solutions found 196 186 -5.1
Avg. objective value [number of delays] 0.99 1.03 +4.0
Avg. total costs (ex-post evaluation) [e] 27.49 25.25 -8.1
Avg. truck distance [km] 10.09 8.49 -15.9
Avg. delay per customer [sec] 14.38 10.33 -28.2
Avg. computation time [sec] 217.10 563.13 +159

Table 3.7: Performance of our TRC approach compared to the TRL approach of Boysen et al.
(2018b) based on the 200 instances of the “large dataset“ of Boysen et al. (2018b)

3.5.3 Analysis of truck-and-robot performance

A detailed cost comparison with traditional delivery modes is a prerequisite for
the adoption of truck-and-robot systems. As such, we analyze different parameter
settings for the truck-and-robot concept and compare the TRC results with the
solution for classical truck-only delivery, modeled as a vehicle routing problem (VRP)
with time windows. We solve the VRP (see Appendix A) using the Gurobi solver
in Python with a time limit of three hours. We adapt our problem setting to solve
the VRP in reasonable time and apply the following to reduce computational effort.
First, there are no waiting times. We assume that the driver can always leave the
parcel at the door should he/she arrive before the time window, which reduces the
time windows to deadlines. This drastically increases flexibility for the truck routes.
Furthermore, we define the same processing time of 40 sec. per customer, which is an
optimistic time for manual deliveries. Finally, we allow the use of up to four vehicles
without incurring any fixed cost per vehicle. The solutions show that less than four
vehicles are used in more than 90% of the cases and thus additional vehicles do
not provide better solutions. These simplifying assumptions work in favor of the
truck-only deliveries.
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Influence of varying robot fleet size and general observations

First we study the impact of robot availability. Figure 3.7 shows how the truck-and-
robot concept solved by our TRC (labeled TRC cost) performs compared to the
VRP subject to robot availability per depot ra, a ∈ R. We analyze the impact on
total costs, truck distance, the average delay per customer, and the number of delays.
The reported numbers are again average values from 20 instances per data point.
Since truck-only delivery does not use any robots, its performance is not affected by
a change in robot availability. Further, since the truck-only delivery could not be
solved to proven optimality within the defined time limit of three hours in all cases,
we report the values of the best-known solution (labeled VRP) and the lower bound
of the total cost (labeled VRP LB).
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Figure 3.7: Comparison of truck-only delivery to TRC for a varying number of robots per depot

In our default case with 10 robots per depot, TRC leads to a cost saving of between
59% and 68% (compared to the lower bound and the best-known solution, respec-
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tively). In comparison to the best-known VRP solution, the truck distance is reduced
by 82%. This correlates with the reduction in CO2 emissions when diesel trucks
are applied. While the number of delays increases by 27%, the delay duration per
customer is reduced by 68%. This shows that the VRP does not avoid delays even
if four delivery trucks are used. In contrast, the truck-and-robot approach is able
to adapt its solution in order to minimize the total delay time by accepting smaller
delays for a few more customers, and thus reducing total costs. Finally, in the case
of truck-only delivery, an average of three trucks is required to serve all customers
compared to only one truck using the truck-and-robot concept.

While cost and truck mileage for the truck-and-robot system are very competitive
even for a small robot fleet, a minimum number of robots is required per depot (in
our case 7). Above this minimum fleet size, the improvements in total costs achieved
are small, but a reduction of the robot fleet below this level leads to a significant
increase in total costs. The number of delays as well as total time of delay is minimal
for ten robots per depot. Neither an increase nor a decrease leads to better solutions.
The reasons for this are twofold. First, an increase in the number of robots per
depot above 10 causes more delays, as the trade-off between truck cost and delay
cost leads to shorter truck tours that cause delays due to longer robot trips. Second,
the number of available robots per depot defines the shortest possible truck tour
such that the truck can pick up enough robots. If the number of robots is reduced,
the truck tour becomes longer and the probability of late deliveries from later stops
rises. This effect also explains the substantial increase in truck distance, delay and
cost for the case there are three robots per depot. Even if all customers were located
in the same area, the truck would have to visit (|C| − δ)/r depots, i.e., 14 depots in
this case. This leads to high truck cost and a late robot launch for the customers
served last. The effects of robot availability observed highlight the need to carefully
size the robot fleet for the cost-optimal supply of customers. On the other hand
our results indicate that the concept could be piloted with a very small robot fleet
for a use case in which small delays are still acceptable. In summary, our results
show that the proposed truck-and-robot concept outperforms classic truck delivery
in terms of both cost and service criteria.
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Influence of varying depot density

Since the availability of robot depots is essential for the truck-and-robot concept, we
show the impact of changing depot density. For this experiment we keep the total
number of available robots as close as possible to our default setting in Section 3.5.1
by adapting the number of robots per depot to 28/16/10/7 for the instances with
9/16/25/36 depots, respectively. The results are summarized in Figure 3.8.
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Figure 3.8: Comparison of truck-only delivery to TRC for varying robot depot density

The results show that the impact of depot density on cost and truck distance is
small. In our analysis, the number of robots per depot increases as the number of
depots declines, which leads to shorter truck tours (see also Section 3.5.3). In detail,
mileage is reduced by 24% in the case of nine depots vs. our default case with 25.
Total costs vary between -2% (25 vs. 36 depots) and +6% (25 vs. nine depots) only,
and do not reveal a clear trend. Note that due to the equidistant arrangement of
depots assumed, a change in their number affects all depot coordinates, and thus
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a solution with fewer depots may be better if those depots happen to be closer to
the random customer locations. This explains the cost minimum for 16 depots. The
most striking observation is the increase in the number of delays together with total
time of delay. If fewer depots are available, the best solution accepts an increase in
delays in favor of shorter tours. This observation is in line with our results from
Section 3.5.3. In summary, fewer depots can be attractive with regard to cost and
emissions but significantly reduce on-time deliveries. This highlights the advantage
of the truck-and-robot concept with depots vs. other approaches that involve only
one large robot hub in which robots are loaded and launched.

Influence of varying robot costs

The cost of a single robot is an important input factor for the truck-and-robot
distribution, and may vary significantly for different situations. This depends on
market dynamics, volumes produced and technical details of the different robot
models. We therefore analyze the impact of varying robot costs on the overall
problem. The results are illustrated in Figure 3.9.
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Figure 3.9: Comparison of truck-only delivery to TRC for varying robot costs

As could be expected, total costs show a linear increase as the robot cost rate rises.
However, even if our basic rate of 0.50 e/h is quadrupled to 2.00 e/h, total costs
increase by only 131% and remain competitive compared to truck-only delivery. This
means that even with significantly higher robot costs, the truck-and-robot concept
enables distribution with lower costs compared to the lower bound of the VRP. The
robot cost increase is only partly mitigated via longer truck tours (i.e., the truck
visits more stops close to customers such that robot time is reduced). In the case
where robot costs are 2.00 e/h, we found that robot time was reduced by 34%
compared to the base case, leading to a 164% increase in overall costs for robots.
Additional deviations on the truck tour to reduce robot time would lead to delays
for customers who are served from late stops and are thus inefficient. Up to 300% of
the original cost rate, we can again observe the positive effect of longer truck tours
on delays (also see Section 3.5.3). Our two delay measures decrease by 9% each
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with higher robot costs as more distance is covered by the truck and this reduces
robot travel times and consequently delays. The increase in the truck distance of
77% is still acceptable considering the great reduction in travel distance compared
to traditional truck delivery.

3.5.4 Cost impact of changing demand

The number of orders may increase as the service becomes more popular with
consumers. Consequently we also analyze the impact of changing demand on the cost
structure. Figure 3.10 provides a breakdown of the costs depending on the number
of customers served. Please note that waiting cost and costs for robot travel times
are summarized as robot costs.
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Figure 3.10: Cost breakdown depending on number of customers

The truck usage cost (both for time and distance) increases linearly with the number
of customers. As the number of customers quintuples from 25 to 125, so does the
truck cost (+450%). The robot costs (including a growing share of 20 - 38% waiting
costs), on the other hand, only increase moderately. Consequently, a change in order
volumes within a certain range does not change the robot fleet needed or its utilization
but mostly the shift and tour length of the truck. In the event of lower order volumes,
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the truck-and-robot concept therefore helps to save variable truck costs (e.g., fuel and
personnel cost) as the use of robots enables short delivery tours. Furthermore, the
delay cost increases moderately for scenarios with up to 100 customers as well. As a
consequence, the truck-and-robot concept robustly reveals good service performance
for the corresponding scenarios. Afterwards, the delays increase significantly for
supplying another 25 customers (125 customer case), meaning that a higher number
of robots per depot would be necessary to decrease the number of delays (see Section
3.5.3). In conclusion, these results underline the flexibility and advantages of the
truck-and-robot system but also identify the limits for on-time deliveries and the
need to adapt the robot system to the given requirements.

3.6 Conclusion

The truck-and-robot concept is an innovative solution for last-mile delivery. Our
model extends this concept by identifying relevant costs and therefore enabling
total cost evaluation. Further, we include a setting with practical relevance where
the available robot fleet is limited. A specialized heuristic is presented to address
this problem based on problem-specific construction heuristics, search operators for
truck tours and an MIP to find optimal robot schedules for given truck tours and
robot availability. Additionally, we introduce a heuristic alternative for the robot
scheduling step that further decreases runtimes. In numerical experiments we analyze
the main characteristics of the truck-and-robot concept and their impact on total
costs. We show the efficiency of our approach via comparison with a benchmark
method and highlight the need for a total cost perspective. Further, we compare the
truck-and-robot approach to classic delivery by trucks. In summary, the findings from
the experiments can provide guidance for planning and operating a truck-and-robot
system. A truck-and-robot system can reduce costs by up to two-thirds compared
to classic truck delivery and at the same time reduce the truck fleet required. The
savings potential depends mostly on the truck driver labor costs and the robot
purchase prices. However, even for significantly higher robot costs in the early stage
of the innovation cycle we show that (i) the concept is attractive for companies, as
total costs are below the cost of conventional truck-only delivery, (ii) high level of
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on-time deliveries is not opposed to cost-optimal routing, and (iii) truck distance
and thus local emissions are reduced by more than 60% as a by-product (without
incurring additional costs). For a given delivery area, a certain minimum number of
robots is required to ensure high service quality. Beyond that number, improvements
due to additional robots are small. Depot density has little impact on cost and
emissions but moderate impact on service quality.

There are numerous opportunities for future research. To begin with, the approach
presented can help evaluate the effects of urban planning decisions on a truck-and-
robot system. Certain zones could be forbidden for the truck or the robots, for
example, while in other zones robots could be allowed to travel at higher speed.
Such constraints can be modelled by adapting the corresponding index sets and
travel times. Moreover, the robot fleet needed could be further reduced by allowing
robots to travel between depots such that robot availability is increased at locations
visited by the truck. Robot availability could be further improved by considering
the robots’ return from customers to depots (with stochastic arrival times). To
enable this, decisions on the robot movements must be made simultaneously with
the delivery routing decisions. In addition, deliveries without time windows or for
bulky goods that require manual delivery can be included in the planning problem.
For the heuristic, this means customers are then potential or required stops on the
truck route. Another interesting aspect is the allocation of customers to trucks
and the start time of the truck, which we assume as given. In practice, these
decisions must be made such that they enable our method to find efficient tours.
Lastly, solving truck-and-robot problems requires tailored solution approaches and
innovative algorithms. There are further approaches for related VRP variants that
could be adapted and tested for the truck-and-robot concept.
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4 A mixed truck and robot delivery
approach
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Abstract Innovative last-mile logistics solutions are needed to reduce delivery costs, traffic
congestion, and pollution in cities. A promising concept in this context are truck-and-robot
systems, as they enable significant cost and traffic reduction compared to classic truck deliveries.
The system relies on small autonomous delivery robots to cover the last meters to a customer.
Existing truck-and-robot concepts to date consider home deliveries by robots, while trucks are only
used to transport robots and not for deliveries. This assumption disregards the fact that regular
truck deliveries are still needed for some delivery requests, such as for the delivery of bulky items,
or for customers who do not accept robots. Our research addresses this issue and proposes a mixed
truck and robot delivery concept in which both robots and the delivery truck can visit customers.
Our tailored solution approach is based on a General Variable Neighborhood Search that efficiently
solves the routing problem and outperforms existing truck-and-robot routing algorithms. The
numerical experiments show that this approach enables cost reductions of up to 43% compared
to classical truck deliveries and up to 22% compared to a truck-and-robot system that does not
allow deliveries by both truck and robots on the same tour. Further analyses reveal additional
benefits of such mixed tours and the robustness of our approach for different problem settings.
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4.1 Introduction

Traffic congestion and pollution are growing problems in cities around the world.
Home deliveries are contributing to this problem due to the increasing volume
of online orders (Ishfaq et al., 2016; Wollenburg et al., 2018; Allen et al., 2018),
particularly as usual deliveries are still conducted by a diesel truck. New concepts
are needed to enable the projected growth of delivery volumes and prevent urban
traffic from collapsing (Agatz et al., 2008; Orenstein et al., 2019; Hübner et al., 2019).
While attended home deliveries are convenient for customers, they account for a
large share of logistics costs (Kuhn and Sternbeck, 2013; Hübner et al., 2016a). The
complexity of planning deliveries is growing with access restrictions in inner cities
(e.g., diesel suspensions) and the growing application of time windows of attended
home deliveries. This increases customer service and reduces the number of failed
deliveries, i.e., deliveries that are not accepted as customers are not at home. In
addition, the COVID-19 pandemic has not only increased the home deliveries, but
also created consumer preferences for deliveries without human interaction and
challenged companies to protect their workforce.

Delivery by truck and robots is a promising approach to address these issues as
well as to flexibly accommodate customers’ time window preferences. Autonomous
delivery robots (e.g., by Starship (2019) and Marble (2019)) can transport a single
parcel or grocery bag to customers. They are designed to travel short distances
at pedestrian speed. Due to their lower speed and limited range, delivery robots
are combined with specialized trucks to enable a fast and efficient delivery process.
This means that a truck transports the corresponding goods for delivery together
with robots and releases the robots at dedicated drop-off locations for the actual
home delivery. Daimler (2019) has tested such a concept and has shown that it
potentially decreases lead time and traffic. Baum et al. (2019) predict that delivery
robots will likely be introduced on a larger scale soon due to their low production
costs and limited legal obstacles. Recent routing literature shows the suitability and
cost efficiency of the combination of trucks and robots and provides methods for
cost-optimal routing (Boysen et al., 2018b; Ostermeier et al., 2021a).
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Existing truck-and-robot (TnR) concepts exclusively consider robots for final delivery
to customers. In practice, however, there are multiple reasons for deliveries requiring
human interaction and therefore final delivery by a person. First, some customers
may be unable or unwilling to interact with the robot and to retrieve the goods from
it, such as elderly or disabled persons. Second, the delivery of some goods would
be forbidden or risky via a robot. This includes valuables, drugs and hazardous
substances such as cleansing agents, paint, pesticides, etc. Third, individual orders
may be too bulky to fit into the robot compartment. This can be the case with some
electronics, household and do-it-yourself products, and even groceries being delivered
in bulk. According to Forbes (2019), 10 - 25% of Amazon deliveries could not be
handled by aerial drones, whose size restrictions are similar to those of delivery
robots. Up to one in four orders must therefore be delivered without the use of
robots and completed by conventional delivery by truck and human driver. Moreover,
even when an order is suitable for robot delivery, the possibility of choosing between
truck or robot increases routing flexibility and may yield cost reductions.

In the related routing approaches for attended home delivery, the prevailing literature
deals either with a vehicle routing problem (VRP) for truck delivery (e.g., Toth and
Vigo (2001); Laporte (2009)) or a TnR routing problem with delivery by robots (see
e.g., Boysen et al. (2018b); Ostermeier et al. (2021a); Bakach et al. (2021b)). This
means that only truck or robot deliveries are considered, ignoring requirements and
the potential benefits of combining deliveries by robot and truck as described above.
A new approach that provides this additional flexibility is therefore needed. We
close this gap in literature by proposing the Mixed Truck and Robot (MTR) delivery
concept, leading to the Mixed Truck and Robot Routing Problem (MTR-RP). This
is a generalization of the TnR routing problem and determines which customers
are supplied via truck, which customers are approached via robots, and how these
deliveries are integrated into the delivery tour. In this application, the truck not only
transports the robots to drop-off locations, but is also deployed for direct customer
deliveries. This additional option increases the complexity of routing. As such, we
solve the MTR-RP with a variant of General Variable Neighborhood Search (GVNS)
that incorporates problem-specific insights into the operators. Furthermore, the
MTR-RP is different from truck-and-drone concepts, as first a small number of
drones are used during a tour, whereas with MTR, the truck picks up multiple new
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robots during the tour and second, the drones return to the truck, whereas robots
return to a depot.

The delivery concept with robots is innovative and we therefore first outline the
detailed problem characteristics based on existing concepts and technology in Section
4.2. Section 4.3 discusses related literature and highlights the differences versus
other last-mile delivery concepts. Section 4.4 presents the formal model of the MTR-
RP. We detail our GVNS approach in Section 4.5. Section 4.6 presents numerical
experiments to compare our approach to existing routing frameworks and to analyze
the impact of the additional delivery mode by truck. Section 4.7 summarizes our
findings and presents opportunities for future research.

4.2 Problem description

This section outlines how a truck and robots are combined for attended home
deliveries with time windows. Section 4.2.1 introduces the related technology, on
which the problem is based. We then describe the MTR delivery concept in Section
4.2.2.

4.2.1 Technical properties of robots and customized trucks

Delivery robots navigate autonomously on sidewalks and bike lanes but can be remote
controlled in the event of problems. To do so, most models rely on several cameras,
map data and GPS. In addition, many robots use lidar, ultrasound and radar. For
communication, LTE and WiFi are widely-used, at times also touch displays and
speakers (Baum et al., 2019). The sensors enable autonomous driving and help
prevent theft or vandalism. Recent studies show that robot technology is ready for
industry applications. Starship (2019) reports successful tests in more than 80 cities
worldwide, and Jaller et al. (2020) discuss robot models that are already in use in
the US and Europe. Baum et al. (2019) count 19 different models, of which the
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majority have already been tested in the field. According to their overview, most
robots operate at pedestrian speed, i.e., at 6 to 8 km/h. The maximum range lies
between 6 and 77 km (Jennings and Figliozzi, 2019). The payload varies from one
parcel and 10 kg to 20 parcels and 70 kg. When a robot arrives at the delivery
destination, customers are notified (e.g., via mobile phone) and can unlock the robot’s
compartment with a code to retrieve the order (Starship, 2019; Marble, 2019).

Given the relatively low speed of robots, companies such as Daimler (2019) have
developed customized trucks to transport them. Otherwise robots would have to
drive the complete distance from the warehouse to the customer and back. In large
delivery areas, this would imply long travel times, issues with lead times and meeting
short-term time windows, and low robot utilization. The trucks transport robots to
overcome larger distances (e.g., between the warehouse and city center) and release
them at dedicated drop-off locations. This enables the efficient use of delivery robots,
especially in urban areas. Trucks typically provide space for around eight robots on
their floor and enable autonomous pick-up and drop-off via automatic doors and
ramps. A shelf system above the floor can be used to carry goods for delivery. It
is only driving the truck and loading robots that remain manual tasks. Figure 4.1
shows a typical truck setup. For robot deliveries, the truck driver enters the front
part of the cargo bay, retrieves the goods from the shelf system, loads them into
robots, and these then leave the truck via a ramp to the side. Direct deliveries by the
driver (i.e., without a robot) can therefore easily be included in this system. These
orders could be loaded to the rear of the shelf system, for instance, and when the
driver arrives at the customer location, (s)he picks up the order from the back door
and walks to the customer.

4.2.2 Concept of mixed truck and robot deliveries (MTR)

Conventional TnR In line with Boysen et al. (2018b) and Ostermeier et al. (2021a),
TnR is a system in which the delivery robots are transported by truck and therefore
the times and locations of both vehicle types are coupled. The central element of
this concept is that robots are carried by truck and dropped off close to customers
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Figure 4.1: Specialized truck with freight containers and delivery robots (Mercedes-Benz Vans,
2016)

(see Figure 4.2). The distribution process therefore consists of a truck tour, visiting
different robot drop-off locations (i.e., a location where the truck can safely stop and
release robots onto the sidewalk, see solid arrows in Figure 4.2), and robot tours
visiting a single customer each (dotted arrows in Figure 4.2). Some of these drop-off
locations are so-called robot depots, where robots are stored and charged. Trucks
can both pick up robots at robot depots for later drop-off or load and release robots
directly for delivery without transporting them. The number of available robots per
depot is limited. Each robot returns to a nearby robot depot after it has delivered
its parcel (not displayed in Figure 4.2 for sake of readability). At the depot (which
consists only of an outdoor charging station and parking space), it is again charged
and waits for the next delivery. Other drop-off points are spots where trucks can
stop and release robots for delivery, but no robots are stored. This concept reduces
the truck mileage and increases the driver’s productivity, which makes it attractive
from a cost and environmental perspective (Boysen et al., 2018b; Ostermeier et al.,
2021a).
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Figure 4.2: TnR tour (with all deliveries by robots)

MTR concept In the conventional TnR concept described above, the truck acts
solely as a taxi for robots and does not deliver parcels directly to customers. How-
ever, some deliveries are not suitable for robot delivery and must be made by a
delivery person. This is necessary for bulky goods that do not fit into the robot’s
compartment, and goods that must be handed over personally, such as valuables and
drugs. A customer could also choose not to receive robot deliveries based on personal
preferences or skills. In these cases, a delivery truck has to visit the customer within
the respective time window. This can be done by a separate delivery tour (as in
prevailing truck-only concepts) or by employing the truck used for robot drop-off
to directly approach those customers (as shown in Figure 4.3). Using one truck for
both delivery modes has the potential to reduce the fleet needed and the costs and
emissions caused for serving a set of customers. Besides customers requiring truck
delivery, there are customers who can be visited by either truck or robot. Visiting
those customers by truck can in some cases further decrease costs as it may lead
to shorter tours or reduce robot use and delays. Note that when the truck stops
at a customer, it can launch robots to other customers from there as well. As a
consequence, we extend the existing TnR concept to account for both delivery types.
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The stops for truck delivery have to be integrated into the truck routes for dropping
off robots (see solid arrows in Figure 4.3). This complicates the search for optimal
truck tours, since truck deliveries also have to take place within the designated time
windows. Early arrivals at customer locations cause waiting times for the truck and
late arrivals cause delay costs in the form of reduced future revenues (due to lower
customer satisfaction) or the granting of rebates. The admission of additional truck
deliveries therefore causes new dependencies and increases the problem complexity.
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Figure 4.3: MTR tour (incl. deliveries by truck)

Decision problem structure MTR routing requires simultaneous decisions on
different routing problem aspects. To illustrate this, Figure 4.4 shows the different
vehicles’ actions in a truck-and-robot tour over time. For the truck, it includes driving
between the goods warehouse, robot depots and drop-off points and customers, as
well as potential waiting time at customers. For the robot, it comprises travel time
between drop-off points, customers and depots, and potential waiting time. For
the truck, there is a mileage-based cost (mainly for fuel) and a time-based cost
(for the driver’s salary). These have to be considered separately since the truck
might have to wait if it reaches a customer before the time window (see diamond
in the truck lane of Figure 4.4). The robots start from a depot or drop-off point
visited by the truck, drive to a customer and must also wait for the time window
in the event of early arrival (see Robot 1 in Figure 4.4). After the delivery, the
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robots return to the closest depot. A time-based robot fee applies during this entire
time. If an order arrives late (see Robot 3 in Figure 4.4), a delay cost is incurred,
consisting of a rebate granted to the customer or that accounts for penalties for
reduced customer satisfaction. A feasible solution must ensure all customers are
served after the start of their respective time window by truck or robot, depending
on the request. The decision problem at hand aims to minimize total delivery costs.
To achieve this, it is necessary to define (i) which customers are served via truck,
which via robot, (ii) which robot depot and drop-off locations are visited during the
truck tour, (iii) in which sequence these locations are visited, and (iv) from which
stop on the tour each robot delivery is started. The truck starts and ends at the
goods warehouse, whereas a robot starts from either a depot or a drop-off location
and, after meeting the customer, returns to the closest depot. Besides required travel
times and synchronization of truck and robot actions, the decision is constrained by
the number of robots available on the truck and in each robot depot.
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Truck

Robot 3

Robot 4

Robot 2

Goods warehouse

Robot depot/ drop-off point

Delivery to customer

Driving

Waiting

Time window of a 

specific customer
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Figure 4.4: Gantt chart of an MTR tour (example)

4.3 Review of related literature

This section provides an overview of related routing approaches for robot-based
deliveries. We first highlight the similarities and differences of related concepts,
namely truck-and-drone delivery and delivery with covering options. These concepts
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share the idea of two vehicle types making deliveries together. Next, we provide a
summary of robot routing literature, separated into hub-and-robot and TnR concepts.
We conclude by highlighting the gap in existing literature.

(i) Truck-and-drone delivery Truck delivery supported by drones has received a
lot of attention in recent publications (e.g., Ulmer and Thomas (2018), Sacramento
et al. (2019), Agatz et al. (2018)). A truck visits customers to make deliveries and a
drone serves other customers not visited by the truck. Initially the truck transports
the drone. While the truck stops to make a delivery, the drone can start with a
parcel, serve one customer and meet the truck again at a later customer on the truck
route. This can be repeated several times. Since every drone delivery starts at a
customer served by the truck, the highest possible share of drone deliveries is 50%
(Murray and Chu, 2015; Agatz et al., 2018; Ha et al., 2018; de Freitas and Penna,
2020). Even for an extended scenario with up to four drones on the truck, solved by
Murray and Raj (2020), the share of truck deliveries must remain above 20%. The
authors further note that adding drones leads to diminishing marginal improvements,
since too many drones cause long take-off and landing queues at the truck. A key
difference between drone concepts and the robot concept considered is therefore
the lower number of autonomous vehicles (drones), and their return to the truck
instead of dedicated depots. The MTR concept has a higher potential to reduce truck
mileage as a truck can launch multiple robots at each stop. Furthermore, the truck
picks up further robots during the tour from robot depots, whereas the pertinent
applications in truck-and-drone routing rely on a given number of drones on the
truck. A further difference is that the truck stops in the MTR concept are optional
stops at depots, drop-off points, and further customer locations. Routing approaches
for truck-and-drone are as such not directly applicable to MTR since they rely on
the fact that many customers need to be visited by truck and the truck does not
have other (optional) locations to visit. Pertinent heuristics improve the solution
of the traveling salesman problem (TSP) by reassigning customers to the drone
(Murray and Chu, 2015; Agatz et al., 2018; Ha et al., 2018; de Freitas and Penna,
2020; Kitjacharoenchai et al., 2019; Sacramento et al., 2019; Murray and Raj, 2020).
A detailed analysis of the differences between truck-and-drone and TnR is performed
by Ostermeier et al. (2021a). Alongside these differences, practical advantages of
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robots are their high safety level, robustness in any weather conditions and fewer
regulatory obstacles due to slow driving instead of flying. These strengths could
soon enable the large-scale practical application of delivery robots in cities (Baum
et al., 2019). In summary, delivery robots and drones are used in different setups
(based on their strengths) and problem specifics. We refer to Otto et al. (2018) and
Macrina et al. (2020) for a detailed overview of the truck-and-drone concept and its
challenges.

(ii) Delivery with covering options Enthoven et al. (2020) introduce the two-
echelon vehicle routing problem with covering options (2E-VRP-CO). In this last-mile
delivery application, the truck on the first echelon can either deliver a parcel to a
satellite location, from where cargo bikes bring it to the customers, or to a covering
location (i.e., a parcel locker) from which nearby customers can pick up the parcel.
Similar to the MTR-RP, the truck only needs to visit a subset of given potential
locations, and the delivery type which makes the last mile has to be defined. The
proposed solution approach relies on an Adaptive Large Neighborhood Search (ALNS)
with tailored operators. Several aspects of our MTR-RP are more complex, however,
despite the similarities. First, robots can only be applied to attended home delivery
and thus have to meet time windows. Second, the robots move aboard the truck,
which is not the case in a two-echelon setup. In the two-echelon case, each potential
truck stop has a fixed number of bikes available and there are only a few of these
stops. Finally, both vehicle types of the MTR-RP can visit customers, whereas in the
2E-VRP-CO this is only possible for cargo bikes. These differences add dependencies
to the truck schedule, as robots can only launch from a location while the truck
is present and the truck must meet the customer’s time window. Similarly, other
two-echelon models fall short of characteristics required in the MTR-RP.

(iii) Hub-and-robot The first concepts developed involving robots can be described
as hub-and-robot concepts. Their principle is that robots move between a fixed
hub and customers. They do so independently of other means of transportation.
Consequently, hubs have the ability to store goods and load the robots, which requires
a more sophisticated infrastructure compared to the robot depots (i.e., charging
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stations) in the TnR or MTR case. Bakach et al. (2021b) propose a mixed integer
program (MIP) to allocate customers to hubs and robots. Their objective is to
minimize the number of hubs and robot mileage required, while respecting the robots‘
maximum range. Poeting et al. (2019b) and Poeting et al. (2019a) optimally solve an
MIP for truck tours visiting hubs and customers and a schedule of pendulum robot
tours from these hubs to customers. Sonneberg et al. (2019) minimize the costs of
tours for robots with several compartments applying an MIP. Due to their nature,
hub-and-robot systems do not consider mixed delivery but only robot deliveries
paired with an existing hub infrastructure.

(iv) TnR The MTR-RP originates from TnR systems. These concepts constitute a
more complex routing problem than the hub-and-robot concept due to the coupling
of truck and robot movements. To date, three publications explicitly deal with
TnR routing. In the seminal paper, Boysen et al. (2018b) introduce the idea of
robot depots to eliminate truck waiting time and aim to minimize the number of
delayed deliveries. The system analyzed consists of 40 customers and several depots
and drop-off points. They solve the problem with a multi-start local search (LS)
procedure and show that a TnR system with one truck can replace several traditional
delivery vehicles while maintaining service quality. The authors do not incorporate
truck deliveries in their approach nor do they provide a quantification of financial
and environmental benefits. Some simplifications are assumed (e.g., unlimited robot
availability at every depot). Alfandari et al. (2019) build on this work by analyzing
alternative delay measures and proposing a Branch-and-Benders-cut scheme for faster
computation. Ostermeier et al. (2021a) have extended the problem to account for
limitations in robot availability at every depot and minimize total logistics costs,
including both truck- and robot-specific costs. Again, the problem is restricted to
robot delivery only, while direct truck deliveries are not considered. The authors
propose a local search to deal with the increased complexity. In their experiments
the concept reduces costs by up to 68% and truck mileage by up to 82% compared
to classical truck delivery.

Furthermore, Simoni et al. (2020) propose a delivery mode similar to truck-and-drone,
in which a robot leaves the truck at a customer location, makes one or two deliveries
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and meets the truck again at a later customer on the truck route. Accordingly, their
solution approach relies on finding good TSP tours within a local search with adaptive
perturbation and then optimally inserting robot tours with dynamic programming.
Due to the limited speed of robots, a large share of customers is still served by truck
and the reported savings potential of around 20% is lower than savings achieved
by the above TnR variants. Jennings and Figliozzi (2019) and similarly Figliozzi
and Jennings (2020), assess a TnR system based on continuous approximation and
conclude that it has the potential to reduce truck mileage. They do not solve a
specific routing problem, but estimate the system’s performance based on average
distances and speeds.

Aspects considered in modeling and optimization
Delays Robot Costs Truck Truck/robot

Publication Objective Methodology availab. delivery selection
Boysen et al.
(2018b)

Number of late
deliveries

Local search X - - - -

Alfandari et al.
(2019)

3 different delay
measures

Branch-and-
Benders-cut

X - - - -

Ostermeier et al.
(2021a)

Total costs Local search X X X - -

This paper Total costs GVNS X X X X X
X: considered, -: not considered

Table 4.1: Summary of existing TnR routing literature

Research gap In summary, the MTR concept leads to a routing problem that re-
quires problem-tailored solution approaches. Approaches for the concepts mentioned
in paragraphs (i) to (iv) do not yet include the necessary specifics of the MTR-RP,
in particular time windows, a large fleet of smaller vehicles transported by truck and
a selection of alternative delivery modes to the customer. For a more detailed review
of last-mile delivery concepts we refer to Boysen et al. (2021).

There are only three publications on TnR routing and none of them enables mixed
truck and robot deliveries (see Table 4.1). All publications dealing with this innovative
last-mile delivery concept focus on robot deliveries, while the truck does not visit
customers directly, but only stops at given drop-off locations. However, in a practical
application the combination of both delivery modes is needed to ensure that all types
of orders can be processed on the same truck tour to reduce costs. We therefore
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extend the existing literature by addressing the MTR-RP, in which truck deliveries
are incorporated when required and a decision between truck and robot delivery is
made if both modes are feasible. The corresponding decision model is presented in
the next section.

4.4 Formulation of the MTR-RP

This section introduces the mathematical formulation of the MTR-RP. The notation
used is summarized in Table 4.2.

Index sets
C Set of all customers k ∈ C
Cm (Cr) Subset of customers requiring truck (robot) delivery, with Cm ∪ Cr ⊆ C
Co Subset of customers indifferent regarding truck or robot delivery, with

Co ⊆ C
D (R) Set of distinct robot drop-off points (robot depots)
D̂ (R̂) Set of robot drop-off points (robot depots) including duplicates
L̂ Set of all (duplicate) locations reachable by truck: L̂ := Cm ∪Co ∪ D̂∪ R̂
Ia Set of duplicate indices i, i ∈ D̂∪ R̂, of one distinct location a, a ∈ D∪R
Ima Set of elements i ∈ Ia with i ≤ m
Problem parameters
dk Deadline for customer k, k ∈ C
K Maximum robot capacity of a truck
ra Initial amount of available robots in location a, a ∈ R
γ (γ̄) Start (end) position of the truck, with γ, γ̄ /∈ L̂
δ Initial number of robots aboard the truck
εk Length of time window of customer k
λi,j Distance between locations i and j, i, j ∈ L̂
ϑt
i,j Truck travel time from location i to location j, i, j ∈ L̂
ϑr
i,k Robot travel time from location i, i ∈ L̂, to customer k, k ∈ C
ϑb
k Robot travel time from customer k back to the closest robot depot

Cost parameters
cl Cost of delay per time unit
cd Cost of truck per distance unit
ct (cr) Cost of truck (robot) per time unit
Decision variables
si,j Binary: 1, if truck travels from location i to location j; 0 otherwise
xi,k Binary: 1, if customer k is supplied by a robot from location i; 0 otherwise
Auxiliary variables
ti Arrival time of truck at location i

Continued on next page
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Table 4.2 – Continued from previous page
qi Number of robots aboard the truck after visiting location i
ei Number of robots taken out of depot location i, i ∈ R̂
vk Delay of delivery for customer k
wk Waiting time for robot at customer k

Table 4.2: Notation of the MTR-RP

The following sets form the basis of the MTR-RP. The set of customers C consists
of three disjointed subsets: customers with mandatory truck delivery Cm, customers
requiring robot delivery Cr, and customers for which the delivery mode is optional
Co (i.e., both truck and robot delivery are possible), with C = Cm ∪ Cr ∪ Co. Every
customer k ∈ Cr ∪ Co can be served by one robot, every customer k ∈ Cm ∪ Co by
the truck. The truck-and-robot infrastructure consists of a set of robot drop-off
locations D, where the truck can start robots, and a set of robot depots R, where
the truck can pick up and start robots. We further duplicate drop-off and depot
locations to allow multiple visits of the same depot or drop-off point. This results
in the duplicate sets D̂ and R̂. For clarity, we summarize all (duplicate) locations
that can be visited by truck in L̂ := Cm ∪ Co ∪ D̂ ∪ R̂. For every distinct location
a, a ∈ D ∪R, we denote the set of its duplicates as Ia, Ia ⊂ L̂, and the set of indices
in Ia that are less or equal to m,m ∈ Ia, as Ima . The set Ima is required to keep track
of the order in which duplicates are visited and to enforce the constraint on available
robots after every visit.

The truck starts in γ (e.g., a goods warehouse, γ /∈ L̂) with δ robots on board and
has a maximum capacity of K robots (δ ≤ K). It is already loaded with the goods
to be delivered. In every robot depot a, a ∈ R, there are an initial number of robots
ra available. Every customer k, k ∈ C, has a delivery time window defined by a
deadline dk and the time window length εk. The delivery cannot take place before
the customers’ time window starts (i.e., not before dk − εk). In this case truck or
robot waiting time applies. If it occurs after the deadline, delay costs at the rate
of cl are incurred. The distance between locations i and j is denoted by λi,j, the
resulting travel times by ϑt

i,j for the truck and ϑr
i,k for the robots. We further denote

the robot travel time from customer k, back to the closest depot as ϑb
k. Note that

the costs of the robots’ return to the closest depot is a parameter for each customer
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supplied by robot as the closest depot is known in advance. Any processing time
for loading and unloading is added to these times. We introduce the dummy end
location γ̄ (typically equal to the starting location, γ̄ /∈ L̂) to track total truck time.
This is necessary since the truck may have to wait to meet a time window for delivery.
The total truck time that is needed to assess truck usage costs is thus the arrival
time at the end node γ̄, indicated by tγ̄. The time-based cost rate of the truck is
denoted as ct and the distance-based cost rate cd. A time-based machine rate cr is
assumed for the use of robots. It is incurred while loading the robot, its travel to
the customer, waiting for the beginning of the time window (if necessary), unloading
by the customer, and the return to the closest depot.

In the course of minimizing total costs, we further define the following decision
variables. The binary variable si,j indicates whether the truck travels from location i
to location j or not. The binary variable xi,k defines whether customer k is supplied
by robot from location i, i.e., whether a robot travels from i to k. To track feasibility
and costs of a solution, the following auxiliary decision variables are needed. The
variable ti defines the arrival time of the truck at location i, i ∈ L̂, and qi the quantity
of robots aboard the truck when leaving the location. The quantity of robots taken
out of depot i, i ∈ R̂ (i.e., loaded on the truck or directly started towards a customer)
is defined by ei. For every customer k, vk indicates the duration of delay (in the
event of late arrival) and wk the robot waiting time (in the event of early arrival).
We then formulate the MTR-RP as follows.

minTC = cttγ̄ +
∑

i∈L̂∪{γ}

∑
j∈L̂∪{γ̄}

cdλi,jsi,j +
∑
i∈L̂

∑
k∈Cr∪Co

cr(ϑr
i,k + ϑb

k)xi,k+

+
∑
k∈C

(clvk + crwk) (4.1)

subject to
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∑
i∈L̂

xi,k +
∑

i∈L̂∪{γ}

si,k = 1 ∀k ∈ Co ∪ Cm (4.2)

∑
i∈L̂

xi,k = 1 ∀k ∈ Cr (4.3)

∑
k∈C

xj,k ≤M
∑

i∈L̂∪{γ}

si,j ∀j ∈ L̂ (4.4)

∑
j∈L̂

sγ,j ≤ 1 (4.5)

∑
i∈L̂∪{γ}

si,j =
∑

i∈L̂∪{γ̄}

sj,i ∀j ∈ L̂ (4.6)

tγ = 0 (4.7)
tj ≥ ti + ϑt

i,j −M(1− si,j) ∀j ∈ L̂ ∪ {γ̄}; i ∈ L̂ ∪ {γ} (4.8)
tk ≥ dk − ε ∀k ∈ Cm (4.9)
tk ≥ dk − ε−M(1−

∑
i∈L̂∪{γ}

si,k) ∀k ∈ Co (4.10)

qγ = δ (4.11)
qj ≤ qi + ej −

∑
k∈C

xj,k +M(1− si,j) ∀i ∈ L̂ ∪ {γ}; j ∈ R̂ (4.12)

qj ≤ qi −
∑
k∈C

xj,k +M(1− si,j) ∀i ∈ L̂ ∪ {γ}; j ∈ D̂ ∪ Cm ∪ Co (4.13)

vk ≥ tk − dk ∀k ∈ Cm ∪ Co (4.14)
vk ≥ tj + ϑr

j,k − dk −M(1− xj,k) ∀k ∈ Cr ∪ Co, j ∈ L̂ (4.15)
wk ≥ (dk − ε)− tj − ϑrj,k −M(1− xj,k) ∀k ∈ Cr ∪ Co, j ∈ L̂ (4.16)
ti ≤ tj ∀a ∈ R; i, j ∈ Ia : i ≤ j (4.17)∑
h∈L̂∪{γ}

sh,i ≥
∑

h∈L̂∪{γ}

sh,j ∀a ∈ R; i, j ∈ Ia : i ≤ j (4.18)

ra −
∑
i∈Ima

ei ≥ 0 ∀a ∈ R;m ∈ Ia (4.19)

si,j ∈ {0, 1} ∀i ∈ L̂ ∪ {γ}; j ∈ L̂ ∪ {γ̄} : i 6= j (4.20)
si,i = 0 ∀i ∈ L̂ (4.21)
xi,k ∈ {0, 1} ∀i ∈ L̂; k ∈ Cr ∪ Co (4.22)
xi,k = 0 ∀i ∈ L̂; k ∈ Cm (4.23)
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ei ∈ Z ∀i ∈ R̂ (4.24)
ti ≥ 0 ∀i ∈ L̂ ∪ {γ̄} (4.25)
qi ∈ {0, ..., K} ∀i ∈ L̂ (4.26)
vk, wk ≥ 0 ∀k ∈ C (4.27)

The objective function (4.1) minimizes total costs. The first term considers the
cost of truck time (at cost rate ct). It compromises the total truck time including
travel time between locations and potential waiting time if customers are approached
too early. The second term covers the truck’s distance costs (at cost rate cd). The
third term comprises the robot costs dependent on associated travel times to the
customer and back to the closest depot (at cost rate cr). The last term of the
objective function sums up the cost of possible delayed deliveries (cost rate cl) and
robot waiting times across all customers. Constraint (4.2) ensures exactly one visit
by either truck or robot for every customer k ∈ Co ∪ Cm. Similarly, constraint (4.3)
ensures that each customer who requires a robot delivery is visited by exactly one
robot. Constraint (4.4) states that robots can only be launched from stops that are
actually visited by truck. Constraint (4.5) defines that the truck only leaves once
from the starting point, and (4.6) ensures that if the truck reaches a location, it must
also leave it. Constraints (4.7) and (4.8) determine the truck arrival time at every
stop based on travel times. This also prevents a second visit to the same (duplicate)
stop. Constraint (4.9) ensures that a required truck delivery is not made before the
respective time window and (4.10) does so for optional truck deliveries in case they
are made by truck (and not by robot). The following constraints (4.11), (4.12) and
(4.13) handle the number of robots aboard the truck when leaving the starting point,
a depot or any other location, respectively. Constraint (4.14) defines the delay for
customers receiving truck delivery. Constraints (4.15) and (4.16) define the delay and
waiting time for customers receiving robot deliveries. Constraints (4.17) and (4.18)
ensure without loss of generality that duplicates of the same location are visited in
ascending order of their index. This fact is then used by constraint (4.19) to track
the robot stock in every depot and to ensure that the stock is ≥ 0. Finally, the
variable domains are defined by constraints (4.20) to (4.27).
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The MTR-RP extends the classical TnR problem, i.e., without truck deliveries, in
several ways: Some customers must be served by truck, others can be. This means
that the total number of robots started (tracked by (4.11), (4.12) and (4.13)) is not
predetermined but part of the decision problem. Moreover, total truck time is no
longer based merely on the legs si,j traveled since the truck may have to wait for the
beginning of a time window ((4.9) and (4.10)). We need to determine the usage time
of a truck instead by using the return time to the warehouse tγ̄, and add the term
tγ̄c

t to the objective function. Since the optimal tγ̄ is determined via the recursive
constraints (4.8), (4.9) and (4.10), this is computationally expensive even for small
instances.

4.5 Solution approach

The MTR-RP generalizes the NP-hard TnR routing problem and therefore constitutes
an NP-hard optimization problem by itself (see Boysen et al. (2018b)). Since even
small instances cannot be solved exactly, we propose a tailored solution approach,
denoted as MTR heuristic, that is based on a GVNS framework (see Mladenović and
Hansen (1997); Hansen and Mladenović (2001)). VNS formulations have been used
successfully for many variants of routing problems (e.g., Kovacs et al. (2014a); Henke
et al. (2015); Ostermeier et al. (2020)) as they provide a high degree of flexibility
and can be tailored to the given problem specifics. The key benefit of GVNS for
this application (compared to the local search previously used for TnR, e.g., in
Boysen et al. (2018b) and Ostermeier et al. (2021a)) is that complete neighborhoods
are evaluated in a defined order. This is necessary for finding improvements as
the objective function is sensitive to small changes in the truck route, which can
lead to long waiting times or delays. Furthermore, defining an order of assessed
neighborhoods enables us to incorporate problem-specific knowledge, such as truck
distance as a key cost driver (Ostermeier et al., 2021a). An overview of our solution
framework is shown in Figure 4.5.

We generate an initial truck tour with one of two possible start procedures, depending
on the given problem instance (see Section 4.5.1). This truck tour is then evaluated
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Figure 4.5: Structure of the MTR heuristic proposed

and complemented to a full solution by finding the optimal robot schedule using
an MIP (see Section 4.5.2). Next, a GVNS is used to improve truck tours with
respect to depots visited, drop-off locations and direct truck deliveries (see Section
4.5.3). It consists of a shaking step and a subsequent Variable Neighborhood Descent
(VND). Within the GVNS, tours are again assessed by the robot scheduling MIP
from Section 4.5.2.

4.5.1 Initial truck tour generation

There are start heuristics for classical VRPs (i.e., truck delivery only) and TnR
routing (i.e., robot delivery only) available in current literature. Our approach
combines these two modes and thus chooses between truck and robot delivery based
on efficiency. We found in our numerical experiments that above a certain number
of mandatory truck deliveries, the order of these deliveries is crucial for solution
quality. Below a certain number of truck deliveries, the robot deliveries have a greater
impact on the solution and total costs. Leveraging these insights, we propose two
alternative principles for generating start solutions, depending on the number of
truck deliveries required. They differ in terms of which deliveries are considered and
in which order.
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Robot deliveries first, truck deliveries second In the event of less than σ

mandatory truck deliveries, we generate a tour that includes both robot and truck
deliveries in a two-step approach. First, stops at drop-off and depot locations are
sequentially appended to the tour based on the priority rule (PR) “go to the location
from which most robot deliveries can be started such that they reach customers
on time”. Truck delivery customers are ignored in the first step. As soon as robot
customers are assigned to a stop, they are not considered for later stops. This rule
results in a sequence of depot and drop-off points, which could be non-feasible since
robot availability is not yet considered. In the second step, the truck deliveries
required are inserted sequentially, each customer at the position of the tour where
the smallest deviation is caused. We therefore obtain a complete tour consisting of
drop-off locations and stops at truck delivery customers.

Only truck deliveries In the event of at least σ truck deliveries, we solve a VRP
with time windows (see model provided in Appendix B) for truck delivery customers,
thus ignoring robot deliveries completely. The corresponding VRP can be solved
optimally for small problem sizes, while for larger problem sizes the best solution
found within a given time limit τ is used. This results in a truck tour that visits all
customers requiring truck delivery, starting from the start location. This route then
serves as starting solution for the GVNS. Despite lacking the consideration of robot
drop-off locations, this enables us to obtain an efficient basis for the truck routing
as the direct truck deliveries are decisive for the final tour, including drop-off and
depot locations.

4.5.2 Tour evaluation and robot scheduling

Feasibility of truck tours All solutions obtained (including the start solution)
need to be assessed with respect to robot availability to prevent non-feasible tours.
A truck tour is only feasible if the total number of available robots (initial number
of robots on the truck δ plus all robots at depots visited on the tour ra, a ∈ R) is
equal to or larger than the number of customers not visited by truck (i.e., customers
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that are not on the truck route). We append the closest unvisited depot to the end
of the tour as long as the number of available robots is not sufficient.

Robot scheduling for given truck route Once feasibility is ensured, the corre-
sponding robot movements for the truck route in question must be defined, i.e., all
remaining customers must be assigned to a truck stop, from which the corresponding
robot will start. This transforms the truck tour into a full solution. We apply an
MIP proposed by Boysen et al. (2018b) and enhanced by Ostermeier et al. (2021a)
to assign customers to the truck stops on the route. This is necessary to evaluate
the quality of a route that has been found. In contrast to the MIP from Section
4.4, which included the decision on truck movements, we do not need duplicates of
robot drop-off (D) and depot locations (R). This leads to L := Cm ∪ Co ∪D ∪ R
being the set of all locations potentially reachable by truck. We assume the truck
tour to be given as a tuple Y , where y(u) is the location of the u-th stop, y(u) ∈ L.
Note that we exclude all customers who are served by direct truck delivery from the
assignment. We denote the set of remaining customers to be served by robot as C̃,
with C̃ ⊆ Co ∪ Cr. Table 4.3 summarizes the notation of truck tour parameters and
decision variables.

Truck tour parameters
U Index set of stops on the truck tour u ∈ {1, 2, ...}
Y Tuple of truck stops, where element y(u) is the u-th stop of the truck tour,

y(u) ∈ L
C̃ Set of customers not visited by truck (i.e., not in Y)
tu Arrival time at truck stop u, u ∈ U
cTu,k Cost of serving customer k, k ∈ C̃, from stop u, u ∈ U
Decision and auxiliary variables
xu,k Binary: 1, if customer k, k ∈ C̃, is supplied from stop u, u ∈ U ; 0 otherwise
qu Number of robots aboard the truck at departure from stop u, u ∈ U
ra,u Number of available robots in location a, a ∈ L, after the u-th truck stop

Table 4.3: Additional parameters and variables for robot scheduling

The actual arrival time at each truck stop tu, u ∈ U for a given tour Y can be
calculated using Equations (4.28)–(4.30). Equation (4.28) states that the truck
tour starts at time zero. For drop-off and depot locations, only truck travel times
determine the arrival time (Equation (4.29)). For customer locations, the beginning of
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the respective time window also has to be considered to prevent premature deliveries
(Equation (4.30)).

t1 = 0 (4.28)
tu = tu−1 + ϑty(u),y(u−1) ∀u : y(u) ∈ D ∪R (4.29)
tu = max(tu−1 + ϑty(u),y(u−1), dy(u) − εk) ∀u : y(u) ∈ C (4.30)

Based on arrival times, the total cost cTu,k of supplying a customer k from stop u is
denoted by Equation (4.31). It comprises the robot usage cost (at rate cr) for travel
time, waiting time at the customer (in the event the robot arrives before the time
window) and the time to return to the closest depot ϑb

k. Finally, delay costs are
added.

cTu,k := cr(ϑry(u),k + (dk − εk − tu − ϑry(u),k)+ + ϑbk)
+ cl(tu + ϑry(u),k − dk)+ ∀u ∈ U, k ∈ C̃ (4.31)

The variables xu,k, ra,u and qu define where each customer’s robot is started, how
many robots are available in each location and on the truck after every stop. The
robot scheduling MIP can then be formulated as follows.

min F (Q,X,R) =
∑
u∈U

∑
k∈C̃

xu,k · cTu,k (4.32)

subject to

∑
u∈U

xu,k = 1 ∀k ∈ C̃ (4.33)

ra,u = ra,u−1 ∀a ∈ R, u ∈ U : a 6= y(u) (4.34)
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ra,u ≤ ra,u−1 + qu−1 − qu −
∑
k∈C̃

xu,k ∀a ∈ L, u ∈ U : a = y(u) (4.35)

q0 = δ (4.36)
ra,0 = ra ∀a ∈ R (4.37)
ra,u = 0 ∀a ∈ L \R, u ∈ U (4.38)
xu,k ∈ {0, 1} ∀u ∈ U, k ∈ C̃ (4.39)
ra,u ≥ 0 ∀a ∈ R, u ∈ U (4.40)
0 ≤ qu ≤ K ∀u ∈ U (4.41)

The objective function (4.32) minimizes total robot and delay costs. Constraint
(4.33) ensures that exactly one robot is sent to each remaining customer. Constraint
(4.34) states that if a depot is not visited, the number of available robots remains
the same. Constraint (4.35) keeps track of the number of robots in locations visited
and aboard the truck after every stop. Equations (4.36) and (4.37) define the initial
number of robots in the depots and on the truck. Constraint (4.38) ensures that
robots cannot be stored at drop-off locations or customers. Constraints (4.39)–(4.41)
define the variable domains.

4.5.3 General Variable Neighborhood Search

For improving the truck tour, we apply a GVNS as described by Hansen and
Mladenović (2018), which tries to improve the initial routing solution by exploiting
problem-specific knowledge. It conducts several cycles of shaking and subsequent
VND. Both the shaking and the VND rely on neighborhoods. These are defined
by operators, such that every neighborhood contains all truck tours that can be
generated by applying the respective operator to the incumbent truck tour. Algorithm
4.1 summarizes the GVNS applied. The inner while loop constitutes the VND (with
its improvement neighborhood ki), the outer one conducts the shaking (with shaking
neighborhood ks) and stores the best known solution. The parameter α in the for
loop determines the number of VND iterations for every shaking neighborhood. To
evaluate truck tours, the GVNS repeatedly uses the robot scheduling MIP.
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Algorithm 4.1 GVNS procedure (adapted from Hansen and Mladenović (2018))
Input: Starting solution πs
πbest = πs; // best solution found
ks = 1 // shaking neighborhood
while ks ≤ number of shaking neighborhoods do

improvement = false
// perform several VND runs with same shaking neighborhood:
for j = 1 to α do

ki = 1
πcurrent = random(shakeneighborhood(πbest, ks)) // shaking neighborhood ks
while ki ≤ number of VND neighborhoods do

πki = best(improveneighborhood(πcurrent, ki) // improvement neighborhood ki
if Z(πki) <Z(πbest) then

πbest = πki

ki = 1
improvement = true

else
ki+ = 1; // next neighborhood

end if
end while
if improvement = true then

ks = 1
break

end if
end for
ks+ = 1

end whilereturn πbest
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Shaking The shaking phase of the GVNS is used to diversify the search. Neigh-
borhoods are obtained by varying the truck tour of a previously generated solution
and reoptimizing the robot movements. The neighborhoods are applied in the given
order, one in each shaking phase, and used to generate α new solutions. For each of
these solutions we apply a separate VND in the next step. When a shaking step has
led to an improvement, the process restarts from the first neighborhood. The search
is complete after all shaking neighborhoods have been used without improvements.

• Depot insertion. Inserts a new robot depot into the tour. Since robot availability
is crucial for finding an efficient robot schedule, selecting different depots can
enable tour improvements.

• Detour insertion. This operator inserts a drop-off point or a customer with
optional truck delivery into the truck tour that leads to a detour of half the delivery
area’s side length or above. It is used to diversify the search by causing a large
change in the current truck tour.

• Swap stop. This operator swaps two random stops (of which each can be a
drop-off point, robot depot or customer) of a truck tour. This may again lead to
large detours and thus widens the search space.

• Stop relocation. This operator shifts a stop to a later or earlier point on the
tour.

• Customer reshuffling. This operator instigates the most extensive tour change.
It first removes all non-customer stops and then reshuffles the visits at customers
according to their original arrival times (i.e., before stop removal). This means
that every truck delivery customer supplied late is shifted to earlier positions on
the tour such that the deadline is met. The resulting new tour is added to the
neighborhood for every combination of late customer and possible earlier position
on the tour. In the event that this results in more than nshuffle tours, only the
option that minimizes the tour distance is added for each late customer. The
following VND will then construct a new solution around the reshuffled truck
deliveries. This operator makes use of the fact that particularly the order of
truck deliveries required defines the solution quality. The complete procedure of
customer reshuffling is presented in Algorithm 4.2.
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Algorithm 4.2 Customer reshuffling
Input: Current tour Y
save original arrival times tk of every customer k supplied by truck
remove non-customer stops from Y
for u = 1 to umax do

k = y(u);
if tk > dk then

// customer was delivered late
poolk = {}
poolk.add(shift(Y, k, 1)) // shift customer to first stop after starting point
for i = 2 to u− 1 do

k̂ = y(i− 1)
if tk̂ < dk then

// time at previous stop is before deadline
poolk.add(shift(Y, k, i)) // shift customer to stop i

end if
end for

end if
end for
if no. of tours in all pools > nshuffle then

poolfinal =
⋃
{shortest tour from every pool}

else
poolfinal =

⋃
{all pools}

end ifreturn poolfinal

VND The VND is used to improve the truck tour. It relies on multiple neighborhoods
of the incumbent solution that are searched sequentially. The VND restarts from
the first neighborhood when a better solution is found. This continues until all
neighborhoods of the incumbent solution have been searched and no improvement
has been found. Each neighborhood contains all tours that can result from applying
its operator to the incumbent tour.

• Remove a non-depot. Removes a drop-off point or a customer with optional
truck delivery from the current truck tour. Since truck distance is a main cost
driver, this often leads to improvements. Required truck deliveries cannot be
removed in this step.
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• Remove a depot. Removes a depot from the current truck tour. The removal
of a depot may lead to non-feasible solutions. In this case additional depots will
be appended within the feasibility check.

• Add depot. Adds a new depot to the existing truck tour. Additional depots can
increase robot availability on parts of the tour and lead to better robot schedules
at reduced costs.

• Add a non-depot. Adds a drop-off point to the existing truck tour. This may
reduce robot travel times by bringing the truck closer to nearby customers.

• Swap two stops. By changing the order of stops, truck distance can be reduced
or delays at the later stop can be avoided.

• Relocate a stop. This operator primarily aims at improving arrival times at
customers. In particular when the truck arrives at a customer too early and is
forced to wait for the time window, shifting this customer to a later point of the
tour can reduce total time and delays.

The order of improvement neighborhoods ensures that tours are kept short, and
that we start with the smallest neighborhoods. This reduces the computational
effort by limiting the number and complexity of the robot scheduling MIP (equations
(4.32)-(4.41)) that has to be solved to evaluate the tours. Since in neighborhoods
“add depot” and “add non-depot”, several hundreds of combinations of inserted
location and insertion position of the tour exist, neighborhoods are limited to the
nmax shortest tours. This again reduces computational effort based on known problem
characteristics.

4.6 Numerical examples

This section analyzes the performance of our MTR heuristic. First, we describe
the instances and parameters used in our experiments (Section 4.6.1). Next, we
compare our approach to a benchmark (Section 4.6.2) to assess the performance of our
algorithm. Further experiments assess the impact of both required and optional truck
deliveries. We compare different fulfillment concepts for home delivery depending on
the share of truck deliveries required (Section 4.6.3) and analyze the impact of time
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windows on the routing (Section 4.6.4). Finally, we discuss the impact of customer
distribution (Section 4.6.5), and cost rates for the truck and delays (Section 4.6.6).
Our approach was implemented in Python (using PyCharm 2018.3.5 Professional
Edition) with Gurobi (version 8.0.1) as MIP solver and executed on a 64-bit PC
with an Intel Core i7-8650U CPU (4 × 1.9 GHz), 16 GB RAM, and Windows 10
Enterprise.

4.6.1 Instance and parameter setting

In our numerical experiments we aim at analyzing the performance of our MTR
heuristic in comparison to related approaches. To enable a fair comparison and
to evaluate the impact of direct deliveries we leverage the test data provided by
Ostermeier et al. (2021a) (http://www.vrp-rep.org/datasets/item/2020-0005.
html). The data set comprises 160 instances for TnR routing and resembles the
general setting of our problem but ignores the possibility of direct truck deliveries.
The data setting is as follows. Customer locations are picked randomly from all
buildings in a 4 km2 area in northern Munich (Germany), using OpenStreetMap
(OpenStreetMap Foundation, 2019) to create instances with |C| = 50 customers. To
account for direct truck deliveries, we assume that the first 12% of customers (which
the instances list in random order) require truck delivery (|Cm|/|C|=0.12). The
remaining customers require robot delivery (Cr = C \ Cm). This means there are no
optional truck deliveries in the default case (Co = ∅). The impact of optional truck
deliveries will be analyzed separately. Note that our assumption for |Cm|/|C| is in
line with the estimate reported by Forbes (2019), that technically 75 - 90% of Amazon
deliveries could be made by autonomous vehicles, and will be subject to a sensitivity
analysis in the following. There are |R|=25 evenly distributed robot depots, and |D|
= 48 uniform-randomly distributed drop-off points in the area. All delivery time
windows have the same length ε = 10 min. The end of a customer‘s time window
is generated based on the direct travel time of the truck from its random starting
position to the customer. This travel time is multiplied by a uniform-randomly
distributed factor from the interval [ρmin, ρmax] = [5, 8]. This procedure simulates an
assignment of customers to vehicles such that reasonable tours are made possible.
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The initial number of robots is ra = 10 for every depot a, a ∈ R. The capacity of the
truck is K = 8 robots and it is fully loaded at the start (δ = 8). The average speed
of the truck is 30 km/h and the average speed of the robots 5 km/h. A handling
time per truck stop of µ = 40 sec is assumed in addition to travel times. There are
20 instances generated for each setup. All results presented show the average of the
corresponding 20 solutions. We further apply the cost rates empirically quantified
by Ostermeier et al. (2021a). These are cd = 0.20 e/km and ct = 30 e/h for the
truck, cr = 0.50 e/h for robot use and cl = 5 e/h for delivery delays.

Lastly, we allow α = 4 VND iterations per shaking neighborhood (executed in
parallel), a maximum of nshuffle = 4 for the customer reshuffling shaking neighborhood
and a maximum VND neighborhood size of nmax = 90 tours. The threshold for the
selection of the start heuristic is set to σ = 2 and its time limit τ to 3 minutes.

4.6.2 Performance comparison

There are no existing solution approaches to MTR and only a couple of publications
on TnR (see literature analysis). To the best of our knowledge, Boysen et al. (2018b)
and Ostermeier et al. (2021a) provide the currently most developed approaches in
this research area. As we provide a generalization of the problem, we will use a
special case of our problem that is equivalent to the problems in the benchmark.
We compare our MTR heuristic to the LS approach by Ostermeier et al. (2021a),
as the authors study the TnR concept a with total cost objective, i.e., without the
possibility of truck deliveries. Their numerical studies show that their LS approach
outperforms the approach by Boysen et al. (2018b) in finding cost-optimal tours.
However, due to its structure, the LS is not suitable for incorporating truck deliveries
and all customers must be visited by robot. We consequently apply our MTR
heuristic to solve both instances without truck deliveries and additionally instances
with the restriction of 12% truck deliveries required. In the special case of our setting
without truck deliveries, the problem is identical to the one solved by Ostermeier et al.
(2021a). The MTR heuristic reaches a solution quality differing only 0.3 - 2.0% from
the LS in these cases. The computation times for different problem sizes are shown
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in Figure 4.6. The scenario with 12% truck deliveries is labeled ‘MTR 0.12‘ and the
one without truck deliveries ‘MTR 0.0‘. We see that the MTR approach outperforms
the LS when only robot deliveries are required, reducing the computation time by up
to 94% (25 customers). This shows that despite the focus of our MTR approach on
a mixed delivery structure, it works efficiently and effectively for a related problem
without direct truck deliveries. When truck deliveries are required, the computation
effort increases, but remains at a level acceptable for an application in practice.
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Figure 4.6: Comparison of our MTR approach to the benchmark (i.e., LS approach by Ostermeier
et al. (2021a)) for a share of 0% and 12% of truck deliveries

Additionally, we found that the MIP for the entire MTR-RP ((4.1)–(4.27)) could
not be solved exactly within three hours for six customers, even if stops are not
duplicated, branching is supported by a relaxed MIP version and a feasible start
solution is provided to the solver. An average MIP gap of 52% remained.

4.6.3 Comparison of delivery concepts

This section compares the delivery concepts given in Table 4.4 for a varying share of
truck deliveries required.

Figure 4.7 shows the total costs, computation times, average delay and total truck
distance for the concepts analyzed. We henceforth highlight the default setting
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Concept Description Rationale Solution
approach

TD: Truck-only
delivery

Only deliveries by truck to all
customers

Benchmark to assess
MTR benefits

MIP from
Appendix B

MTR: Mixed
truck and robot
delivery

Tour with mandatory truck deliveries
and all other deliveries by robot
(Cr = C \ Cm)

Approach of this paper MTR heuristic

MTR OT:
MTR with
optional truck
deliveries

MTR extended by optional truck
deliveries, i.e., in addition to mandatory
truck deliveries, all other deliveries can
be made by truck (Co = C \ Cm)

Approach of this paper
and assessing optional
truck delivery

MTR heuristic

STR: Separate
truck and robot
tours

Separate planning of one TD tour for
truck deliveries and one TnR tour for
robot deliveries (i.e., two simultaneous
tours)

Serves as benchmark to
assess benefits of MTR
heuristic vs. existing
TnR heuristics

TD tour by MIP
from Appendix B;
TnR tour by MTR
heuristic

Table 4.4: Overview of delivery concepts

described in Section 4.6.1 with a bold x-label. Note that TD was solved without
consideration of the earliest delivery time, i.e., delivery can occur before the time
window to reduce computational complexity. This leads to an advantage for TD and
an underestimation of the improvements due to MTR. Despite this simplification,
optimality could not be proved within the computation time limit of three hours.
We therefore report properties of the best solutions found and the lower bound of
the objective value (‘TD LB‘). Further, MTR and STR are identical for 0% of truck
deliveries.
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Figure 4.7: Comparison of different delivery modes for a varying share of required truck deliveries

Computation time Runtime increases significantly for a mixed planning (i.e., MTR
and MTR OT) as soon as truck deliveries are required. The actual locations of
individual customers are the main driver of computation times. Single customers
can significantly increase the problem complexity and the respective runtimes if they
require truck delivery and cause a large detour for the truck. For example, for MTR,
the standard deviation across the 20 instances relative to the average objective value
increases by 25% when the share of truck deliveries increases from 0 to 12%. In line
with this, runtimes for MTR OT are higher due to the potential additional truck
stops. STR on the other hand reveals a decrease in runtime as more truck deliveries
are outsourced to a separate routing problem.
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Total costs All robot concepts outperform a solution with truck deliveries only
(TD). This is inline with current literature (see Ostermeier et al. (2021a)). MTR
OT is the option with the lowest total costs in all examples. Total costs increase
significantly for all concepts involving robots as soon as truck deliveries are required
(i.e., comparing 0 and 4% truck deliveries required). In the STR case, this is due
to the truck delivery tour needed in addition to the robot delivery tour. In the
MTR and MTR OT cases, it can be attributed to reduced flexibility given the stops
required for truck delivery.

A further increase in the share of truck deliveries leads to a moderate increase in
total costs. Comparing a combined truck and robot delivery to a separate delivery
(i.e., MTR vs. STR) of more than 4% truck deliveries results in cost savings of
between 20 and 24% in favor of a mixed delivery. This highlights the advantage of
our MTR heuristic’s ability to combine truck and robot deliveries into one tour. The
cost advantage of additional optional truck deliveries (i.e., MTR OT vs. MTR) is
lower with up to 2% savings. Compared to TD, MTR reduces costs by 43% in the
default case with 12% truck deliveries. This highlights the attractiveness of delivery
by trucks and robots even for situations in which not all deliveries can be made by
robot.

Delay and truck distance The logistical performance with respect to delays is
comparable for all robot concepts. This shows that all deliveries can be made by
a single tour without compromising on delivery performance. MTR and MTR OT
show a minimum delay when 8% of truck deliveries are considered. The reason for
this is that including additional stops at truck delivery customers (and thus forcing
the truck to make a longer tour) can improve punctuality as less distance needs to
be covered by robots. A further increase in truck deliveries then leads to additional
delays caused by longer truck tours and a later launch of robots at the last drop-off
points. The latter effect also leads to a decreasing advantage of MTR OT when
more than 8% of deliveries are required by truck. The truck is already overwhelmed
serving the customers who require truck deliveries such that optional truck deliveries
are hardly made in addition. The development of covered truck distance is similar
across the three concepts using robots. It shows a flattening increase for an increasing
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number of truck deliveries. In the default case, MTR reduces truck mileage by 45%
compared to TD, showing that it is able to reduce pollution and traffic even when
truck deliveries are necessary. The steady increase in mileage can be reasoned by
the tight time windows considered. The truck in the MTR scenario must go on a
criss-cross route to satisfy all the time windows at customer stops. We therefore
analyze a changing time window structure in the following.

4.6.4 Analysis of the time window structure

Time windows limit the degree of freedom for the routing. This section analyzes the
impact of the time window length for both truck and robot deliveries. We analyze
both customer groups separately since the impact of a customer’s time window on
the overall solution is higher when the truck needs to visit the customer and meet the
time window. This can lead to detours or waiting time affecting all other deliveries as
well, while a robot delivery has little effect on other deliveries. As the cost advantage
of MTR OT compared to MTR is only around 2% in our tests, we restrict our
remaining analyses to the comparison of MTR vs. STR for better readability.

Time window length for truck deliveries Figure 4.8 shows the performance of
MTR vs. STR depending on the change in time window length for truck deliveries.
Every time window change is made symmetrically, i.e., in the case of a 10 min change,
start and end of the time windows are shifted by 5 min each. 0 corresponds to the
default case.

Cost and computation time are reduced if time windows become wider due to
increased flexibility. The cost decrease runs in parallel for MTR and STR such that
MTR‘s cost advantage is stable at 21 - 23%. The driver of the cost decrease is
reduced truck usage both for MTR and STR. STR achieves only a moderate truck
distance reduction, but at the same time reduces delays and keeps robot use stable
since the separate robot delivery tour is not affected. MTR achieves a larger distance
reduction at the cost of increasing delays and robot use. This means that although
the time windows become wider, MTR uses this opportunity to further reduce truck
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Figure 4.8: Comparison of MTR vs. STR for varying length of truck delivery time windows

distance and allow longer robot travel, resulting in a very small increase in delays.
Additionally, we considered a scenario without time windows for truck deliveries.
Even in this scenario, a cost saving of 19% is achieved by MTR compared to STR.
This is possible as truck deliveries can be added freely at beneficial points of the
route such that deviations are minimized.

Time window length for robot deliveries We further analyze the impact of
robot delivery time windows. The results for the corresponding changes are shown
in Figure 4.9.
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Figure 4.9: Comparison of MTR vs. STR for varying length of robot delivery time windows

As could be expected, costs of the MTR are hardly affected by these changes since
truck tours are dominated by truck deliveries. The only effect of wider time windows is
reduction in delays. For STR, the TnR route changes slightly. The distance becomes
longer, while robot cost and delays decrease. This leads to a minor cost reduction
as robot deliveries only account for 38% of total costs and truck deliveries are not
affected. In practice, this means both approaches can fulfill tight time windows for
robot deliveries at little additional cost. The MTR approach outperforms the STR
concept with separate planning of truck and robot deliveries across all scenarios.
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4.6.5 Impact of customer distribution

The spatial distribution of customers can have a strong impact on a concept‘s
performance. We therefore analyze total costs of MTR vs. STR for different
distribution types. The uniform distribution of our default setting is compared to
two alternatives: a concentrated distribution, where customers are located centrally
in a 2×2 km2 square area, and a clustered distribution, where two customer clusters
a considered, one in the lower left and one in the upper right quadrant of the
original 4×4 km2 square area. The distribution of depots and drop-off points remains
unchanged. The number of customers is varied from 25 to 100 (where our default
case corresponds to the uniform distribution of 50 customers). The MIP used to
solve the truck delivery tour part of STR could not be solved to proven optimality
within three hours in the 100-customer case. The best-known solutions are reported.
The results are summarized in Figure 4.10.
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Figure 4.10: Cost comparison of MTR vs. STR for varying customer distributions

100



A mixed truck and robot delivery approach Andreas Heimfarth

Total costs show a near linear increase for both concepts. The MTR approach is able
to sustain or even expand its cost advantage for an increasing number of customers
when customers are distributed uniformly or clustered. MTR‘s savings decrease in
the concentrated distribution scenario, culminating in almost equal results for 100
customers. Concentrated customers are beneficial for both MTR and STR as long as
the robot depot density is high enough. For 25 and 50 customers, depots in customer
proximity provide enough robots to serve all customers (10 robots per depot). In
the case of 100 customers (of which 88 receive robot delivery), the truck is forced to
leave the customer area to pick up robots from remote depots. Both STR and MTR
suffer from this effect such that the cost difference decreases. Despite this effect we
can state that combining truck and robot deliveries within our MTR approach leads
to significant savings in most cases, and to equal costs in the worst-case scenario.

4.6.6 Impact of costs

Impact of truck costs The hourly cost rate of the truck is mostly driven by the
driver‘s salary. We therefore provide a sensitivity analysis on the truck cost rate ct,
which corresponds to a Western European salary level in our default case. Figure 4.11
displays our findings. Total costs increase proportionally for both approaches, leading
to stable cost savings of 22 - 24% through MTR. STR is more sensitive to changing
costs. The higher the truck costs, the higher the delays. The increase in delays goes
along with a decrease in truck distance. The MTR solution on the other hand is not
sensitive to changing costs with respect to delays and truck distance. In the 10 e/h
scenario, the MTR approach therefore results in 10% less mileage at a cost of a 50%
higher average delay compared to STR.

Impact of delay costs We have shown that increasing truck costs may lead to
increasing delays within the MTR approach. In our final test we therefore assess how
MTR performs for varying delay costs cl. The results are summarized in Figure 4.12.
The cost curves show that MTR savings slightly decrease as the importance of delays
increases. However, MTR achieves cost savings of 15% even for a 100 e/h delay
cost rate. Since the applied instances are chosen to be challenging with respect to
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Figure 4.11: Comparison of MTR vs. STR for varying hourly truck cost rates

delivery times, neither of the two approaches can eliminate delays completely. STR
is able to reduce delays more as it uses two vehicles instead of one. The price of this
is an increasing truck distance, while MTR‘s truck distance is stable. In summary,
the STR concept minimizes delays compared to our MTR approach, but at the cost
of longer truck tours. From a total cost perspective, MTR enables significant cost
savings even if the costs of delays are high.
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Figure 4.12: Comparison of MTR vs. STR for varying delay cost rates

4.7 Conclusion

Our work shows that the MTR concept is a valuable extension of the existing TnR
concept to enable further applications in the retail industry. It combines autonomous
robot deliveries with classical truck deliveries (e.g., for bulky orders). We present a
comprehensive model formulation for this home delivery concept and solve it using a
tailored GVNS solution framework. The GVNS is competitive compared to existing
TnR routing algorithms as it outperforms the prevailing LS approach in terms of
runtime and equals its solution quality for a robot-only delivery. The extension
presented enables practitioners to assess and operate an MTR system that can
completely replace classical truck tours.
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Our analyses show that the MTR concept reduces costs and truck mileage by more
than 40% compared to classical truck delivery, even when a share of customers has
to be supplied by truck. To give some further detail, the experiments show that (i)
direct truck deliveries have a large impact on costs and solution structure (e.g., 46%
higher costs and 119% higher mileage due to 4% of truck deliveries with MTR), (ii)
by including direct truck deliveries in the tour, our approach leads to savings of up
to 24% compared to a separation of truck and robot deliveries, and (iii) adapting
the time windows for truck deliveries can help to further reduce costs and travel
distance. Additional analyses highlight the benefits of a mixed delivery concept and
show that the MTR results are robust across different settings.

While we address an important extension for TnR delivery, there are several other
aspects that can be assessed in future research. Our model could test technical
additions and infrastructure specifics such as faster robot travel on bike lanes. Robot
movements between depots may further help to increase robot availability in depots
visited by truck. The exchange of robots between depots might therefore be a
next step. In line with this, our model could be extended to include the pickup
of robots at drop-off points on the tour. This means that robots could be sent
to locations other than robot depots. Stochastic travel times and pickups from
customers could be considered to generalize the problem. Other innovative last-mile
delivery concepts could be compared to MTR to derive guidance on which concept
and fleet mix to implement in which setting. To date, the TnR and MTR routing
approaches have focused on a single truck tour. The use of multiple tours and the
corresponding allocation of customers to different tours is required in settings with
higher order volumes. Ultimately, the problem presented demonstrates situations
of high complexity and unique structure for which alternative solution approaches
can be tested. Those could assist in accelerating computation, dealing with larger
problem sizes or evidencing optimality.
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Abstract Last-mile delivery with autonomous robots launched from dedicated delivery trucks
is a promising, innovative approach to reduce logistics costs and inner-city traffic. Existing
approaches for the truck-and-robot concept focus on the use of a single truck. This limits the
practical use of this concept for actual industry applications in bigger cities. The demand for
home deliveries is steadily increasing and with that also the requirements for potential delivery
by robots. The truck-and-robot concept therefore needs to be extended to meet the growing
demand, and to offer an attractive alternative to truck deliveries on a larger scale. We present
an extended truck-and-robot delivery concept to cover the more general case of multiple delivery
tours. This means that several trucks are available for distribution, and customer orders must be
clustered to delivery tours. We formulate this problem as multi-vehicle truck-and-robot routing
problem. This extension includes an approach for clustering customers to truck tours. We develop
a tailored heuristic solution approach based on an innovative neighborhood search, the Set
Improvement Neighborhood Search (SINS). We show that tour costs can be reduced by up to
24% using our integrated approach of customer clustering, truck routing and robot scheduling
compared to a sequential cluster-first-route-second approach. Complementary experiments
show a 62% savings potential compared to conventional truck delivery and analyze the impact
of changing customer distributions, delivery time windows, and truck or robot availability.
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5.1 Introduction

The global autonomous last-mile delivery market is forecast to grow seven-fold
by 2027, with ground vehicles accounting for 85% of it (Grand View Research,
2020). Some retailers expect 80% of their deliveries to be autonomous by 2025
(Bennett, 2020). The application of autonomous delivery robots has the potential
to fundamentally revolutionize last-mile logistics. At the same time, consumers are
increasingly ordering products online to benefit from the comfort of home deliveries.
Statista (2021), for example, forecasts a growth of online food sales in the U.S. by
one-third from 2020 to 2023. However, classical trucks for last-mile delivery are
increasingly obstructing traffic flow in urban areas and driving up local emissions.
Enhanced services such as same-day delivery and tighter delivery time windows
pose even more challenges for logistics systems, while cost pressure increases (Ishfaq
et al., 2016; Hübner et al., 2016a; Buldeo Rai et al., 2019; Arslan et al., 2019; van
Heeswijk et al., 2019). Last-mile deliveries are therefore becoming increasingly
important (McKinsey & Company, 2016; Otto et al., 2018; Boysen et al., 2021).
Innovative delivery concepts are needed to reduce traffic congestion, CO2 emissions,
as well as noise, and to enable cost-efficient and customer-friendly services (Orenstein
et al., 2019; Hübner et al., 2019). A promising approach in this respect is applying
autonomous robots carried by trucks in urban areas, known as the truck-and-robot
concept (see e.g., Boysen et al. (2018b) and Alfandari et al. (2019)). Delivery trucks
act as motherships and transport parcels together with the robots – also known as
ground drones. The robots carry out the actual home deliveries and are released in
customer vicinity to travel the “last mile” to the customer’s home. The customers can
choose a delivery time window, during which they are at home and can retrieve their
order from the robot. Daimler (2019), for instance, has developed and successfully
tested customized trucks paired with delivery robots. Delivery robots have further
been successfully implemented in different settings by a number of companies (see
e.g., Marble (2019), Starship (2019) and Kiwibot (2020)), who usually offer them as
a rental service to logistics service providers.

The objective of truck-and-robot routing is to plan a truck route and schedule robot
deliveries to satisfy the complete demand, respect truck and robot capacities, and
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minimize the total costs arising from the travel costs of trucks and robots and
potential service-related costs (e.g., for delays). The emerging but currently still
small body of literature on truck-and-robot concepts focuses on the identification of
central problem aspects and related benefits, such as the reduction of emissions and
costs (Ostermeier et al., 2021a) or service quality (Boysen et al., 2018a; Alfandari
et al., 2019). Current literature addresses the basic problem, where only one truck is
available to transport robots and goods. Given the steady growth of e-commerce
and its home delivery, a single truck may not be sufficient to fulfill the complete
demand within a defined delivery period. This calls for an extension of the concept
to multiple trucks. The generalized problem employs not just one truck but a fleet
of delivery trucks and additionally incorporates the clustering of customers to truck
tours and the routing of multiple tours.

This paper addresses this generalization and formulates the first Multi-Vehicle Truck-
and-Robot Routing Problem (MVTR-RP) as an extension of the basic problem
with only one truck. Prevailing solution approaches of the single-truck problem
(e.g., Boysen et al. (2018b) or Alfandari et al. (2019)) are not designed to solve this
extended problem as neither the clustering for customers to various truck tours is
considered nor the routing of various trucks with different start times. We introduce
a tailored solution approach for the NP-hard problem of simultaneously solving the
clustering of customers to truck tours, routing of trucks and robot scheduling. Our
approach relies on a specifically developed neighborhood search algorithm – denoted
as Set Improvement Neighborhood Search (SINS) – that improves a set of tours by
optimally choosing a new set out of the neighborhoods of all incumbent tours. It
does this by creating and testing large pools of potential truck tours, from which the
optimal set is chosen and to which customers are clustered.

The remainder of this paper is organized as follows. We outline the delivery concept
and develop the formal problem description in Section 5.2. Section 5.3 reviews related
literature and Section 5.4 proposes a tailored heuristic. Section 5.5 analyses the
numerical efficiency and develops managerial insights. We summarize our findings
and outline potential future research areas in Section 5.6.
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5.2 Problem description and formal model

This section details the multi-vehicle truck-and-robot concept. We first outline the
logistical setup of both the single- and multi-vehicle concept in Section 5.2.1. This
builds the basis for introducing the formal model (Section 5.2.2). In our context the
term "vehicle" refers to a goods and robots transporting truck, whereas the term
"robots" refers to autonomously driving ground robots.

5.2.1 Technological and logistical setup

The basic truck-and-robot concept with a single truck The truck-and-robot
concept combines the use of autonomous delivery robots with specialized delivery
trucks to launch robots in customer proximity for attended home delivery. The
delivery trucks are specialized vans (see Figure 5.1) that act as mothership for the
transportation of parcels and robots (Jennings and Figliozzi, 2019; Boysen et al.,
2018b; Alfandari et al., 2019). Robots can enter the truck via a ramp from the back,
be loaded by the driver in the front part of the truck, and leave it via another ramp
to the side. The truck’s capacity is limited with respect to robots and storage boxes.
An example setup allows up to eight robots and 54 storage boxes (see, e.g., Mercedes-
Benz Vans (2016)). A variety of different robot models are used for deliveries (see
e.g., Jaller et al. (2020); Baum et al. (2019)), mainly differing in size and travel
speed.

The other key component of the truck-and-robot system are robot depots, small
charging stations in the customer area operated by a robot provider. The provider
rents robots to multiple logistics service companies. Robots wait at these charging
stations until they are needed by a logistics provider, who picks them up by truck
and pays a time-dependent rental fee. Figure 5.2 illustrates the example of a truck-
and-robot tour with a single truck. The truck tour of the logistics provider starts at
a goods warehouse where all parcels for delivery and the initial number of robots are
loaded. The truck then visits dedicated locations to pick up and release robots within
the delivery area. Additional potential truck stops where robots can be released
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Figure 5.1: Specialized truck for robot deliveries

are defined as drop-off points. In contrast to depots, robots can only be released
at drop-off points but no new robots can be loaded. Drop-off points and depots
are predetermined locations due to infrastructural requirements. The truck never
waits for dropped off robots, but picks up new robots waiting at the robot depots.
Once released, robots move autonomously on sidewalks at pedestrian speed and
deliver parcels to customer doors. Customers are notified on arrival and receive their
delivery by unlocking the compartment after receiving a code. Since the customers
must be present, they can choose a delivery time window during the purchase. After
a customer has retrieved the parcel, the robots return to the closest robot depot,
from where the robot provider can rent it to another logistics company (not shown
in Figure 5.2 for better readability). Relevant costs are the truck costs (i.e., travel
times and distances from warehouse to robot depots, drop-off locations and return
to warehouse) and robot travel times from the drop-off location to customers. The
truck costs include time-based costs for the driver and distance-based travel costs.
As robots are usually rented as a service from a robot provider and charged by
usage time, a time-based fee applies for the actual travel time. The application of
time windows imposes further cost considerations. If a robot arrives before the time
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window, it must wait for the customer. If it arrives after the time window, delay
costs (as opportunity costs for reduced satisfaction or rebates on delivery fees) are
incurred.
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Figure 5.2: Truck-and-robot tour with one truck (example)

The routing of trucks is a central aspect in the truck-and-robot concept. Specifically,
it needs to be decided which of the given robot depots and drop-off points are visited
by the truck and in which sequence. In contrast to the Traveling Salesman Problem
(TSP), the number of stops and the stop locations are part of the decision problem.
At the same time, the assignment of customers to truck stops needs to be considered,
i.e., the drop-off location as the starting point of each customer’s delivery. This is
also called robot scheduling and determines the arrival and usage time of each robot.
This is further constrained by robot availability at robot depots. We denote the
problem of routing one truck with robots as Single-Vehicle Truck-and-Robot Routing
Problem (SVTR-RP).

Multi-vehicle truck-and-robot routing A single truck is only able to supply a
given maximum number of customers, as its parcel capacity is limited. A single truck
may not be sufficient in a real-life setting for last-mile delivery in urban areas with a
large number of customers. An increasing demand volume together with the need to
carry out deliveries simultaneously (given the time windows) will require additional
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trucks to avoid late or failed deliveries. Figure 5.3 illustrates an example with two
truck tours. In comparison to Figure 5.2, two trucks can serve more customers
and avoid delays. The extension to the multi-vehicle problem, denoted above as
MVTR-RP, enables the simultaneous delivery to different customers by multiple
tours. This increases the flexibility and the fulfillment capacity, but it also increases
the problem complexity. In the MVTR-RP, multiple tours need to be determined,
i.e., their start times, the respective stops and their sequence. Multiple tours access
the same resources (robot depots), and robot availability must be monitored. In
addition, customers need to not only be assigned to truck stops (as in the basic
SVTR-RP) but clustered (i.e., allocated) to delivery tours in the first place. This
means a simultaneous decision is required on the (i) clustering of customers to truck
tours, the (ii) routing of trucks (i.e., selection of robot depots and drop-off locations
as well as sequencing of the stops), and the (iii) robot scheduling (i.e., assignment
of customers to drop-off locations of the tour, from where the respective robot
starts). All three decisions are interdependent. For example, the reallocation of one
customer to another tour impacts routing and robot scheduling. Furthermore, it
is not sufficient to cluster customers based on similar locations and time windows,
since two customers far from each other with different deadlines could fit well on one
tour.

To summarize, the underlying routing problem is specified by a given number of
customers with a known demand and given time windows that need to be supplied
with a certain number of robots launched by trucks. The trucks travel from a
warehouse to robot depots to pick up robots and to drop-off points to launch the
robots, where each robot serves one customer. The objective is to minimize travel
costs of trucks and robots and potential service-related costs (e.g., for delays) by
clustering customers, routing truck tours and defining robot schedules that satisfy
the entire demand as well as maintaining truck and robot capacities.
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Figure 5.3: Two separate truck-and-robot tours

5.2.2 Mathematical model of the Multi-Vehicle
Truck-and-Robot Routing Problem

Subsequent to the problem description we formulate the mathematical model of the
MVTR-RP. Table 5.1 summarizes the notation used.

Index sets
C Set of customers, k ∈ C
D (D̂) Set of distinct drop-off points (including duplicates)
R (R̂) Set of distinct robot depots (including duplicates)
L̂ Set of all (duplicate) locations from which robots can be started:

L̂ := D̂ ∪ R̂
Ω (Ω̄) Set of duplicate start (end) positions, one duplicate ω ( ω̄) for each truck,

with ω, ω̄ /∈ L̂
Ia Set of duplicate indices i, i ∈ R̂, of one distinct robot depot a, a ∈ R
Ima Set of elements i ∈ Ia with i ≤ m
Problem parameters
dk Deadline for customer k, k ∈ C
Q (G) Maximum robot (parcel volume) capacity of a truck
βa Initial amount of available robots in location a, a ∈ R
δ Initial number of robots aboard a truck at start
ε Length of time windows

Continued on next page
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Table 5.1 – Continued from previous page
ηk Volume of parcels per customer k
ϑvi,j Truck travel time from location i to location j with i, j ∈ L̂ ∪ Ω ∪ Ω̄
ϑri,k Robot travel time from location i, i ∈ L̂, to customer k, k ∈ C
λi,j Distance between locations i and j with i, j ∈ L̂ ∪ Ω ∪ Ω̄
Cost parameters
clate Cost of delays per time unit
cdist Cost of truck travel per distance unit
cveh (crob) Cost of truck (robot) per time unit
Decision variables
si,j Binary: 1, if a truck travels from location i to location j; 0 otherwise
ti Arrival time of a truck at location i
xi,k Binary: 1, if customer k is supplied from location i; 0 otherwise
Auxiliary variables
ei Number of robots taken out of depot location i, i ∈ R̂
gi Volume of parcels aboard a truck when arriving at location i
qi Number of robots aboard a truck at departure from location i
lk Lateness (delay) time of delivery to customer k
wk Waiting time for robot at customer k

Table 5.1: Notation of the MVTR-RP

Index sets The MVTR-RP is based on the location sets of customers (C), robot
depots (R) and drop-off points (D). To allow for each robot depot and each drop-off
point to be visited several times, we duplicate the elements in R and D, resulting
in R̂ and D̂ as the corresponding sets of duplicates. All duplicate locations are
summarized by the set L̂ := D̂ ∪ R̂. Duplicates enable multiple visits at the same
location by several trucks. This means that one or several trucks can retrieve robots
from the same robot depot on multiple occasions. The set of the truck’s start and
end locations is denoted by Ω and Ω̄, each containing one (duplicate) location for
every available truck. This way the number and usage time of trucks can be tracked
although all trucks move through the same location network L̂. Finally, to keep track
of available robots in the unique robot depots, we define the set Ia of all duplicate
locations i to the depot a (with i ∈ L̂, a ∈ R), and the set Ima of indices in i ∈ Ia
with i ≤ m for a given number m.

Parameters and costs Between two locations i and j we define the distance as
λi,j and travel times ϑvi,j and ϑri,j for the trucks and robots, respectively. The travel
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times include any processing times that occur at each stop. Each customer k, k ∈ C,
has a time window defined by the delivery deadline dk and the time window length
ε, which is the same for all customers. Every robot depot a, a ∈ R, has an initial
number βa of robots available. We consider a homogeneous truck fleet where each
truck has a maximum robot capacity Q and starts with δ robots aboard. G denotes
a truck’s parcel capacity and ηk the parcel volume of customer k. We further assume
that each customer order fits into a single robot. Finally, time-dependent cost rates
cveh and crob for the trucks and the robots apply. For the truck, this mostly represents
the driver’s salary, as we assume drivers can perform other value-adding tasks or
reduce overtime when tours become shorter. The costs for the robots consist of the
time-based rental fee charged by the robot provider. Each truck further incurs costs
cdist per distance. Delayed deliveries are priced at a time-based lateness rate clate.

Decision variables The binary variable si,j defines whether a truck travels from
location i to location j. The variable ti stands for a truck’s arrival time at each
location. The binary variable xi,k defines whether customer k is served from location
i, i.e., whether a robot travels between the two. Further, the following auxiliary
decision variables are applied. The variable qi defines the number of robots on the
truck and ei the number taken from a depot at the truck’s departure from stop
i. The variable gi represents the parcel volume aboard the truck when arriving at
location i. Variable lk tracks the delay time if the delivery at customer k occurs after
the deadline, and wk represents a robot’s waiting time if it arrives early, i.e., before
dk − ε. The decision problem is then defined as follows.

minRC = cveh(
∑
ω̄∈Ω̄

tω̄ −
∑
ω∈Ω

tω) +
∑

i∈L̂∪Ω

∑
j∈L̂∪Ω̄

cdistλi,jsi,j

+
∑
i∈L̂

∑
k∈C

crobϑri,kxi,k +
∑
k∈C

(clatelk + crobwk) (5.1)

subject to
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∑
i∈L̂

xi,k = 1 ∀k ∈ C (5.2)

xj,k ≤
∑

i∈L̂∪Ω

si,j ∀j ∈ L̂, k ∈ C (5.3)

∑
j∈L̂∪Ω̄

sω,j = 1 ∀ω ∈ Ω (5.4)

∑
j∈L̂∪Ω

sj,ω̄ = 1 ∀ω̄ ∈ Ω̄ (5.5)

∑
i∈L̂∪Ω

si,j =
∑

i∈L̂∪Ω̄

sj,i ∀j ∈ L̂ (5.6)

tj ≥ ti + ϑvi,j −M · (1− si,j) ∀j ∈ L̂ ∪ Ω̄; i ∈ L̂ ∪ Ω (5.7)
lk ≥ ti + ϑri,k − dk −M · (1− xi,k) ∀k ∈ C; i ∈ L̂ (5.8)
wk ≥ dk − ti − ϑri,k − ε−M · (1− xi,k) ∀k ∈ C; i ∈ L̂ (5.9)
qω = δ ∀ω ∈ Ω (5.10)
qj ≤ qi + ej −

∑
k∈C

xj,k +M · (1− si,j) ∀i ∈ L̂ ∪ Ω; j ∈ R̂ (5.11)

qj ≤ qi −
∑
k∈C

xj,k +M · (1− si,j) ∀i ∈ L̂ ∪ Ω; j ∈ D̂ (5.12)

gω̄ = 0 ∀ω̄ ∈ Ω̄ (5.13)
gj ≥ gi +

∑
k∈C

ηkxj,k −M · (1− sj,i) ∀i ∈ L̂ ∪ Ω̄; j ∈ L̂ (5.14)

ti ≤ tj ∀a ∈ R; i, j ∈ Ia : i ≤ j (5.15)∑
h∈L̂∪Ω

sh,i ≥
∑

h∈L̂∪Ω

sh,j ∀a ∈ R; i, j ∈ Ia : i ≤ j (5.16)

βa −
∑
i∈Ima

ei ≥ 0 ∀a ∈ R;m ∈ Ia (5.17)

si,j ∈ {0, 1} ∀i ∈ L̂ ∪ Ω, j ∈ L̂ ∪ Ω̄ : i 6= j (5.18)
si,i = 0 ∀i ∈ L̂ (5.19)
xi,k ∈ {0, 1} ∀i ∈ L̂; k ∈ C (5.20)
ei ∈ Z ∀i ∈ R̂ (5.21)
ti ≥ 0 ∀i ∈ L̂ ∪ Ω ∪ Ω̄ (5.22)
qi ∈ [0, Q] ∀i ∈ L̂ (5.23)
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gi ∈ [0, G] ∀i ∈ L̂ (5.24)
lk, wk ≥ 0 ∀k ∈ C (5.25)

The objective function (5.1) minimizes total routing costs (RC). The first term
indicates the time-dependent usage costs across all trucks, i.e., the total time for
each truck from departure to arrival at the warehouse. The second term sums up
total distance costs of all legs traveled by the trucks. The third term considers the
costs of robot travel from truck stops to customers. The last term adds the costs of
robot waiting and delay times. Note that the robots’ return time from a customer
to the closest depot does not depend on the routing decisions and is therefore not
decision relevant. Constraints (5.2) ensure that every customer is served exactly once,
while Constraints (5.3) make sure a robot starts only from stops visited by a truck.
Constraints (5.4) and (5.5) ensure that only one truck starts from each start location
and also returns to it. Trucks that are not required will stay at their start location,
i.e., sω,ω̄ = 1 and tω = tω̄. Constraints (5.6) represent the flow constraint, stating
that the truck leaves every location j, j ∈ L̂ as often as it arrives there. Constraints
(5.7) calculate the truck arrival times based on associated travel times. Note that
these constraints ensure that every duplicate stop is visited only once and only by
one truck. This means that a sufficient number of duplicates is needed for every
stop (in the worst case this could be |C|). Constraints (5.8) and (5.9) calculate the
delay and robot waiting time for each delivery. Equations (5.10) define the number
of available robots aboard the truck at departure. Constraints (5.11) and (5.12) keep
track of the robots aboard a truck after each stop, depending on whether the stop is
a robot depot or a drop-off point. Constraints (5.13) and (5.14) ensure adherence to
truck capacities by keeping track of the total quantity of parcels aboard the truck
arriving at location j. This is done in a recursive manner by defining that the tour
ends with an empty truck. Constraints (5.15) and (5.16) enforce (without loss of
generality) that duplicates of the same location are visited in ascending order of their
index. This fact is then used to determine the robots in each depot after every visit
(left side of Constraints (5.17)). This limits robot availability at depots even if they
are visited by different trucks. Finally, constraints (5.18) - (5.25) define the variable
domains.
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5.3 Related literature

Having derived the distribution system and the formal decision problem, this section
reviews related literature. We refer to Savelsbergh and van Woensel (2016), Olsson
et al. (2019) and Boysen et al. (2021) for a detailed overview on current last-mile
delivery concepts. The literature related to our problem can be classified into two
streams. The first stream is clearly related to our setting and defined by ‘truck-and-
robot‘ as a system in which the robots are transported aboard the truck, make a
delivery and return to a robot depot. We first review this literature (and related
concepts) in Section 5.3.1. As this is an emerging area with only a small body
of literature and all state-of-the art publications consider only a single truck and
not yet multiple trucks, we extend our review to multi-vehicle problems in Section
5.3.2. This constitutes a second related stream and includes various other means of
transportation such as drones and cargo bikes that are combined with multiple trucks.
Finally, we blend both streams, analyze them in the context of the MVTR-RP, and
identify the research gap in Section 5.3.3.

5.3.1 Robot concepts with a single truck

Current publications for truck-and-robot systems are based on the SVTR-RP, i.e.,
limited to one truck. All approaches consider time windows or delivery deadlines.
In a seminal paper, Boysen et al. (2018b) discuss such a basic truck-and-robot
concept. The authors minimize the number of late deliveries and assume unlimited
robot availability. Their solution approach is based on a local search procedure,
and their analysis shows the potential benefits of the concept compared to standard
truck delivery. Alfandari et al. (2019) build on this work by proposing alternative
delay measures and a Branch-and-Benders-cut scheme for routing. Ostermeier et al.
(2021a) further extend the decision model by minimizing total delivery costs and
incorporating limitations on robot availability. Their solution approach relies on a
local search as well and solves instances with up to 125 customers. In numerical
experiments, the system of one truck with robots reduces costs and emissions by
more than 50% compared to normal truck delivery. Heimfarth et al. (2021) generalize
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the concept by including manual delivery by the truck driver. They apply a General
Variable Neighborhood Search (GVNS) to minimize costs. This work considers the
most general case of the SVTR-RP to date, and the proposed GVNS framework
proved very efficient compared to other existing local search approaches.

Another concept based on robots relies on hubs (also called satellite locations) in
which goods arriving by truck can be stored. It requires more infrastructure and
workforce since goods must be stored and robots loaded at the hubs when the truck is
already gone. Bakach et al. (2021b), for instance, propose a two-tier delivery system
where a truck supplies local hubs in which goods are stored and loaded into robots.
The robots then make pendulum tours to the customers. Poeting et al. (2019b),
Poeting et al. (2019a), Sonneberg et al. (2019) and Bakach et al. (2021a) are further
examples of hub-and-robot settings. The key difference vs. truck-and-robot is that
the robots are not transported on the truck but stay around one fixed hub. These
variations reduce the complexity but induce practical disadvantages, such as long
driving and waiting times for vehicles.

5.3.2 Related concepts with multiple trucks

As there is no existing approach on truck-and-robot concepts with multiple vehicles,
we expand our literature analysis to related concepts that employ multiple vehicles
and combine trucks with innovative transportation technologies. We analyze these
works with respect to our setting, focusing on clustering customers to truck tours.
All these concepts share with our use case that trucks are combined with smaller
vehicles that have a limited range, namely robots, drones or cargo bikes.

Robot-based concepts with multiple vehicles A hub-and-robot approach is
taken by Liu et al. (2020a), who consider delivery robots starting at and returning
to fixed hubs. They assume larger robots that can carry more than one order. The
customers are assigned to hubs based on k-means clustering. The remaining problem
is a vehicle routing problem (VRP) for trucks supplying goods to the satellites and
a VRP for the robots of each hub. Liu et al. (2020b) propose a similar concept,
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with the additional possibility of customers picking up their order at a hub. Time
windows are not considered in both publications. The concept of multiple trucks with
robot sidekicks is proposed by Chen et al. (2021b). It relies on robots transported by
trucks and considers time windows, but does not use robot depots. In this concept
the truck makes deliveries to customers and robots make pendulum tours to other
customers nearby in the meantime, or while the truck waits for the return of the
robots. The problem is solved with a cluster-first-route-second approach. Chen et al.
(2021a) analyze the same problem and propose an ALNS for simultaneous clustering
and routing. However, the savings potential is smaller compared to using robot
depots. Chen et al. (2021b) report savings of 4 - 17% compared to normal truck
deliveries, whereas Ostermeier et al. (2021a) for example identified more than 50%
savings compared to truck deliveries.

Truck-and-drone with multiple vehicles A large body of truck-and-drone liter-
ature was published in recent years (see e.g., review of Otto et al. (2018)). In these
applications, a truck usually carries between one and four drones (see Murray and
Chu (2015), Agatz et al. (2018), Moshref-Javadi et al. (2020a) and Murray and Raj
(2020) as examples for single-truck problems), which depart from the truck at a cus-
tomer location to serve another customer and join the truck again at the start point
or at a another customer. The solution approaches for this particular application
first solve a TSP (in the single truck case) or VRP (e.g., see Kitjacharoenchai et al.
(2019)) for the trucks, and then select some customers for drone delivery. So far
only Li et al. (2020) consider multiple trucks and drones and deliveries with time
windows. Their concept is based on a fleet of trucks delivering to customers directly
and drones starting from the truck at the visit of customer locations or from the
goods warehouse. Each drone can serve several customers per tour and then returns
to its starting point, i.e., the truck waits for drones to return. Dayarian et al. (2020)
propose a fleet of trucks and drones for same-day delivery, in which the latter supply
further parcels to the trucks along their route as new orders are placed. This leads to
a problem similar to a VRP, with the additional decision on the meeting points for
drone resupply. The truck-and-drone concepts differ from robot approaches, as they
consider a small and fixed number of drones that only serve some of the customers,
and have to return to the truck. For a more detailed overview on drone delivery we
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refer to Otto et al. (2018), Dayarian et al. (2020) and Macrina et al. (2020), and to
Ostermeier et al. (2021a) for an analysis of differences between truck-and-drone vs.
truck-and-robot routing.

Cargo bikes and multiple vehicles A further related problem setting is the
application of cargo bikes. Cargo bikes can be combined with trucks to reduce
emissions and traffic in inner cities. In most concepts the goods are handed over
from trucks to bikes at predefined satellite locations. This means there has to be
synchronization between the two vehicle types, resulting in a two-echelon problem.
In contrast to truck-and-robot, the bikes cannot be transported on the truck and
they can visit many customers in a row, which also requires definition of the bike
tour. Anderluh et al. (2017) consider a delivery area with two zones in which
customers require delivery by truck or by bike, respectively. Mühlbauer and Fontaine
(2021) analyze a system where all deliveries are made by bike. Both publications
simultaneously solve the clustering of customers and routing of trucks and bikes.
While cargo bike deliveries have similarities with the truck-and-robot concept, there
are several fundamental differences. First, time windows have not been taken into
account so far. Further, each potential truck stop has a fixed number of bikes
available and there are only a few stops. Finally, as trucks cannot pick up and
transport bikes, this dramatically reduces the solution space. This is also the key
difference between truck-and-robot and two-echelon problems.

5.3.3 Research gap and contribution

Looking at the first stream, there is no approach in pertinent literature on related
truck-and-robot concepts for clustering customers when multiple trucks are applied.
Current literature on truck-and-robot routing only covers the SVTR-RP. However, in
large delivery areas and with the growing order volumes or tighter deadlines, several
trucks will become necessary. This leads to the research gap in truck-and-robot
literature when it comes to clustering customers to multiple trucks, which depends
on the truck routing and robot scheduling.
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Approaches to customer clustering exist only for other related applications. However,
looking at the second related stream, we can conclude that the distinctive features
of the truck-and-robot concept complicate the transfer of available approaches to
the MVTR-RP. The MVTR-RP has several specifics that differ from other delivery
concepts. First, there are many potential locations for robot pickup and drop-off to
be considered for truck routing. Second, these locations cannot store goods, which
leads to synchronization between trucks and robots. Third, the truck has limited
capacity for two types of objects, goods and robots. Finally, deliveries must occur
within time windows, as goods are retrieved from the robots manually in attended
home deliveries. These problem specifics make it difficult to apply existing clustering
and routing approaches to the MVTR-RP. To summarize, none of the publications
on related problems consider the customer clustering to tours and the combination of
coupled truck and robot movements, robot pickup along the tour and time windows.
There is consequently a research gap when it comes to multi-vehicle settings and the
associated MVTR-RP.

5.4 Solution approach

The MVTR-RP generalizes the NP-hard SVTR-RP (see Boysen et al. (2018a))
and hence the MVTR-RP also constitutes an NP-hard problem. That means
practically relevant problem sizes cannot be solved to optimality in reasonable time
with exact approaches. An advanced heuristic for customer clustering, truck routing
and robot scheduling is needed to solve the problem efficiently. As we introduce a
new decision problem, there is no reference approach available that jointly includes
clustering, routing and robot scheduling. We therefore introduce an innovative
heuristic, the Truck-and-Robot Clustering and Routing (TRCR), which is built on an
initialization and improvement phase (see Figure 5.4). The initialization generates
a route for each available truck and allocates each customer to one of these initial
truck routes (denoted as clustering), dependent on customers’ locations and time
windows (Section 5.4.1). The route of each customer cluster is then determined using
a variable neighborhood descent (VND) framework (Section 5.4.1). Based on the
initialization, the improvement phase, denoted as Set Improvement Neighborhood
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Search (SINS), seeks improved clustering, routing and scheduling. It iteratively
generates neighborhoods containing variations of each incumbent truck tour (Section
5.4.2), and solves an MIP to test whether a better set of truck-and-robot routes can
be obtained by combining these variations (Section 5.4.2). As long as a better set can
be found, this process is repeated, otherwise SINS terminates. SINS makes use of the
fact that improvements can often be achieved by simultaneously changing two tours
and reallocating customers between them. Since it uses an MIP in a metaheuristic
fashion, it belongs to the growing field of math-heuristics.

Iterate

Initialization Improvement phase (SINS)

Separate routing and 

robot scheduling for 

each cluster

Optimal tour 

selection, customer 

clustering and robot 

scheduling

Tour variationInitial customer 

clustering

Section 4.1.1. Section 4.1.2. Section 4.2.1. Section 4.2.2.

Based on priority rule 

and VND

Based on MIP solved 

with a time limit

Based on insertion, 

replacement and 

removal operators

Based on cost 

estimates for 

template tours

Figure 5.4: Overview of the TRCR heuristic

5.4.1 Initialization phase

The initialization provides a start solution consisting of multiple tours serving all
customers. It first clusters customers and then solves the routing and robot scheduling
problem for each cluster.

Initial customer clustering

The initial clustering is based on template tours, which is a concept that has been
successfully applied to VRPs (see e.g., Kovacs et al. (2014b)). The idea is to (i)
generate template tours based on given problem specifics, and (ii) cluster customers
such that they are allocated to template tours based on approximated tour costs.
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(i) Template tour generation The building of template tours is based on insights
from typical truck-and-robot delivery tours found in our experiments: the first stop
regularly lies outside a given range away from the start, the tour proceeds in an
arc-shape, and finally returns to the start. Template tours only consider robot depots
as these are essential for the supply with robots and the tour building. The tour
generation is defined as follows. Candidate depots are selected that are between an
inner and outer circle around the start position. The inner circle defines an area
including a share of σ1 robot depots, the outer one an area including a share of
σ2 depots (see Figure 5.5). All depots between these circles (see grey area) act as
candidates for the template routes. Next, we select the convex hull of these candidate
depots, i.e., only depots that form the convex hull are part of the template tours
(see solid blue line in Figure 5.5). Finally, we generate all possible tours that move
along the convex hull and visit all of its depots exactly once. All depots on the
convex hull are included in the tour and visited in their sequence as given by the
convex hull, i.e., no shortcuts are allowed. This results in one template tour for every
possible first depot and for each possible direction (clockwise/counterclockwise). This
leads to 6 · 2 = 12 template tours for the example in Figure 5.5. The generation of
template tours can be applied for different shares of σ1 and σ2 to create a larger pool
of templates. All tours created are then used as input for the customer clustering.
Please note that the template tours are only used to cluster customers, not for actual
routing.

(ii) Customer clustering Customers have two characteristics related to routing:
location and time windows. In the clustering, we take these two into account. This
means two customers with differing locations and time windows may be clustered
to the same tour if they fit into the tour sequence and arrival times. In total
we have n clusters, each corresponding to one of the template tours. Inspired by
the VRP clustering heuristic by Fisher and Jaikumar (1981), we solve an MIP to
cluster customers for the later route building based on a cost approximation for each
customer-tour combination. At this stage we ignore robot availability and truck
capacity. The notation for the clustering MIP is presented in Table 5.2.
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Figure 5.5: Template tour generation

Sets and parameters
C Set of customers, k ∈ C
T Set of template tours, τ ∈ T
n Number of available trucks
ck,τ Cost of supplying customer k from tour τ
Decision variables
xk,τ Binary: 1, if customer k, k ∈ C, is supplied from tour τ, τ ∈ T ; 0

otherwise
zτ Binary: 1, if template tour τ, τ ∈ T is used; 0 otherwise

Table 5.2: Notation for the initial customer clustering based on cost approximations

The clustering of customers is based on an approximation of costs for serving the
customer from a template route. We estimate that all depots and me equidistant
points between two consecutive depots on the tour are potential stops. This accounts
for the possibility of visiting drop-off points between two depots. The coordinates
and arrival times of the points between depots are obtained via linear interpolation.
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The approximated cost of serving a customer from a given point of a tour τ is defined
as the sum of the robot costs for travel time to the customer and potential waiting
time, the cost of a potential delay, and a share of the truck costs incurred up to that
point, i.e., the truck costs divided by the average number of customers per available
truck, |C|/n. In a preprocessing phase we calculate the costs for all theoretical points
on the template tour and select the minimal cost for each customer and template
tour, denoted by ck,τ . The decision model for the customer clustering can then be
formulated as follows.

min F (X) =
∑
k∈C

∑
τ∈T

ck,τxk,τ (5.26)

subject to

∑
τ∈T

xk,τ = 1 ∀k ∈ C (5.27)

xk,τ ≤ zτ ∀k ∈ C, τ ∈ T (5.28)∑
τ∈T

zτ = n (5.29)

xk,τ ∈ {0, 1} ∀k ∈ C, τ ∈ T (5.30)
zτ ∈ {0, 1} ∀τ ∈ T (5.31)

The objective function (5.26) minimizes the total clustering costs of customer-tour
combinations. Constraints (5.27) ensure that each customer is served once, (5.28)
mandate that customers are served only via tours that are actually used, and (5.29)
defines the number of template tours used as a basis for the improvement phase.
Finally, (5.30) and (5.31) define the variable domains. The solutions of this step
result in allocating each customer to one cluster. The customer clusters found are
then used in the next step to determine actual routes for the customers in question.
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Separate routing and robot scheduling for each cluster

Subsequent to the clustering, actual truck tours are determined by solving the routing
problem for each customer cluster. As such, it resembles an SVTR-RP and we build
upon known efficient approaches. We apply an adapted version of the heuristic
proposed by Heimfarth et al. (2021) for the solution of an SVTR-RP. We use the
priority rule “go to the location from which most robot deliveries can be started such
that they reach customers in time“ to generate an initial truck tour and a VND for
improvement. After a truck tour is defined, the optimal robot schedule is determined.
Here we apply a robot scheduling MIP which is a special case of our “tour selection
and customer clustering” MIP that will be introduced later in Section 5.4.2, when
only one truck with unlimited parcel capacity is used. For the sake of streamlining
the algorithmic description, we pick up on the robot scheduling approach later below
when detailing the improvement phase.

After sequentially appending stops based on the priority rule mentioned, the resulting
tour is used as start solution for the VND framework, which sequentially tests
complete neighborhoods of the incumbent tour. If a better tour is found, it is accepted
as the new incumbent tour and the VND restarts from the first neighborhood. If no
better tour is found, the VND accepts a random solution from the neighborhood
with an initial probability of p, which is decreased by ∆p in every iteration. This
random acceptance of worse tours widens the search space in the early stage of the
VND. If no new solution is accepted, the VND proceeds with the next neighborhood
on the list. It terminates when all neighborhoods have been evaluated in a row
without accepting a new solution. For a more detailed description of VND we refer
to Hansen and Mladenović (2018). The neighborhoods evaluated within the VND
are defined by the following operators (adapted from Heimfarth et al. (2021)) and
evaluated in the order presented. Each neighborhood is limited to the mVND cheapest
tours (in terms of truck costs) to limit computational efforts.

1. Remove drop-off point. Removes a drop-off point from the current tour.
Since truck distance is a main cost driver, this often leads to improvements.
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2. Remove depot. Removes a depot. Depot removal may lead to non-feasible
tours with respect to robot availability. In the event of non-feasibility, the
closest depot is appended to the end of the tour.

3. Add depot. Adds a new depot to the existing tour. Additional depots can
increase robot availability on parts of the tour and thus lead to better robot
schedules at reduced costs.

4. Add drop-off point. Adds a new drop-off point to the tour. This may reduce
robot usage or delays by bringing robots closer to the customers.

5. Swap two stops. Swaps two stops, i.e., both robot depots and drop-off
locations. By swapping two stops, truck distance can be reduced or delays of
deliveries starting at the later stop can be avoided.

6. Relocate stop. Shifts a single stop within a tour. Depending on whether the
stop is shifted to an earlier or later point on the tour, the delays occurring at
this stop or following stops can be reduced.

The VND results in n individual truck-and-robot routes serving each customer exactly
once. As we generate each tour separately, the routes can still rely on the same
robots in the same depots such that in combination this may lead to non-feasible
solutions considering all tours. Nevertheless, the tours found provide an efficient
starting solution for the improvement phase.

5.4.2 Improvement phase

Using the initial routing for the customer clusters found, the improvement phase
searches for an improved customer clustering, routes and robot schedules. It therefore
varies given tours and the corresponding clustering of customers to these tours.
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Tour variation

In this step, we generate tour candidates as a potential basis for improvements. To
build this set, a pool of variations is generated for each incumbent tour. Each pool is
built by applying the following operators, which were most effective in our pretests.
The operators are applied to modify the stops at a tour by changing depots and
drop-off points. Since depots are crucial for robot availability, particular emphasis is
given to inserting new depots into a tour.

• Remove up to two stops. Every possible tour resulting from the removal of
one or two stops is added to the pool.

• Insert a depot. The mVAR cheapest truck tours (based on costs for truck time
and distance) obtained by inserting a depot are added to the pool.

• Insert a drop-off point. The mVAR cheapest truck tours obtained by inserting
a drop-off point are added to the pool.

• Replace a stop by a depot. The mVAR cheapest truck tours obtained by
replacing an existing stop with a depot are added to the pool.

• Insert two new depots. The mVAR cheapest truck tours obtained by inserting
two depots that are not yet on the tour are added to the pool.

• Adapt departure time. Shift the departure of the truck to an earlier or later
start time.

The start time of a tour significantly impacts times and costs, and often leads to
improvements due to new options for customer supply. Hence, the last operator
speeds up the search in the event that a significant change of the departure time is
beneficial (which could otherwise only be achieved in several iterations when adding
or removing a maximum of two stops). Tour variation results in one pool for each
incumbent tour.

Before these pools can be passed to the next step of the algorithm to select the
best combination of tours, we need to identify non-feasible tour combinations and
exclude them. This is necessary as robot availability has been relaxed so far and
may be violated. In the MVTR-RP, multiple tours access the same robot depots
and respective robot availability, i.e., robot availability is shared between tours (see
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Equation (5.17)). For a computationally efficient implementation of this constraint,
we assume that robot depots can be refilled automatically (i.e., by transferring robots
between depots) within a given refill time. No two tours may access the same robot
depot during this time. We introduce the parameter ϑf to indicate the refill time,
thus defining a waiting time until the next tour may access a given robot depot.
As a consequence, we forbid the selection of two tours for the routing solution if
these tours visit the same depot with less than ϑf time in between. Note that a
very large ϑf ensures that depots are not shared between trucks at all and no refill
is assumed. We exclude the combination of any two tours from the same pool (i.e.,
derived from the same incumbent tour) in the same way, as this proved inefficient.
The rationale behind this is that incumbent tours can be simultaneously adapted to
make improvements, but choosing several very similar tours proved unattractive.

However, excluding tour combinations may lead to overall non-feasibility when
selecting tours in the next step, as it can happen that no two tours can be combined
due to the use of common depots. This may lead to insufficient depot visits to ensure
a sufficient robot availability. We therefore create another variant of each incumbent
tour by sequentially replacing every depot also included in another incumbent tour by
the closest depot not included in any incumbent tour. This results in one additional
variation for each of the n incumbent tours and prevents non-feasibility. The result
of this step is a set of T tours and a matrix bτ,χ defining whether any two tours τ
and χ can be used at the same time.

Optimal tour selection, customer clustering and robot scheduling

This step selects the optimal set of tours and provides a feasible solution for the
MVTR-RP based on the tours created within the tour variation step. This means
that it simultaneously defines the truck tours used, the customer clustering (i.e., from
which truck each customer’s robot starts) and the corresponding robot schedule (i.e.,
from which stop each customer’s robot starts). Table 5.3 summarizes the notation of
truck tour parameters and decision variables.
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Problem parameters
T Set of potential tours, τ ∈ T
Uτ Index set of stops on the truck tour τ ; τ ∈ T ; u ∈ {1, 2, ...}
Yτ Tuple of truck stops on tour τ, τ ∈ T , where element yτ (u) is the u-th stop of τ ;

yτ (u) ∈ L
n Number of available trucks, n ≤ |T |
cTk,τ,u Costs (for robot travel/ waiting time and potential delay) of supplying customer k

from tour τ , at stop u, u ∈ Uτ
cfτ Total truck costs (incl. time and distance) of using tour τ
bτ,χ 1, if only tour τ or χ can be used; 0 if both can be used, τ, χ ∈ T
Decision variables
xk,τ,u Binary: 1, if customer k, k ∈ C, is supplied from tour τ, τ ∈ T , at stop u, u ∈ Uτ ;

0 otherwise
zτ Binary: 1, if tour τ, τ ∈ T, is used; 0 otherwise
qτ,u Number of robots aboard the truck on tour τ, τ ∈ T, at departure from stop

u, u ∈ Uτ
βa,τ,u Number of available robots in location a, a ∈ L, for tour τ after the u-th stop,

u ∈ Uτ

Table 5.3: Notation for the optimal customer clustering to given tours

Since a set of potential truck tours τ is given, drop-off (D) and robot depot locations
(R) do not need to be duplicated, and L := D∪R is the set of all locations potentially
reachable by truck. A truck tour τ is defined by a tuple Yτ , where yτ (u) is the
location of the u-th stop, yτ (u) ∈ L. From the set of all potential tours, we want to
select a maximum of n tours and allocate all customers to the stops of these tours
in a cost-minimal manner. For each tour τ ∈ T , we pre-calculate the arrival times
ψτ,u at its stops u based on the truck travel times. With known robot travel times
and customer deadlines we can then calculate the robot travel and the waiting and
delay costs cTk,τ,u of serving a customer k from stop u on tour τ as shown in Equation
(5.32). Its first term represents the robot costs for travelling from the stop to the
customer and waiting at the customer if needed. The second term adds the cost of a
potential delay of the delivery. Note again, as the robot always returns to the closest
depot, the return costs are not decision relevant.

cTk,τ,u := crob(ϑryτ (u),k + (dk − ε− ψτ,u − ϑryτ (u),k)+)
+ clate(ψτ,u + ϑry(u),k − dk)+ ∀u ∈ U, k ∈ C (5.32)
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Furthermore, every tour is associated with fixed total tour costs cfτ incurred for
the truck’s travel time and distance. The decision variables xk,τ,u define whether
customer k is served from stop u of tour τ . Variable zτ states whether tour τ is
used at all. The auxiliary variables qτ,u and βa,τ,u keep track of available robots on a
truck during its tour and in the depots visited by a tour. The objective function and
constraints are formulated as follows:

min F (X) =
∑
k∈C

∑
τ∈T

∑
u∈Uτ

ck,τ,u · xk,τ,u +
∑
τ∈T

cfτ zτ (5.33)

subject to

∑
τ∈T

∑
u∈Uτ

xk,τ,u = 1 ∀k ∈ C (5.34)
∑
k∈C

∑
u∈Uτ

ηkxk,τ,u ≤ Gzτ ∀τ ∈ T (5.35)

zτ + zχ ≤ 1 ∀τ, χ ∈ T : bτ,χ = 1 (5.36)∑
τ∈T

zτ ≤ n (5.37)

βa,τ,u ≤ βa,τ,u−1 + qτ,u−1 − qτ,u −
∑
k∈C

xk,τ,u ∀a ∈ L, τ ∈ T,

u ∈ Uτ : a = yt(u) (5.38)
βa,τ,u = βa,τ,u−1 ∀a ∈ R, τ ∈ T,

u ∈ Uτ : a 6= yt(u) (5.39)
qτ,0 = δ ∀τ ∈ T (5.40)
βa,τ,0 = βa ∀a ∈ R, τ ∈ T (5.41)
βa,τ,u = 0 ∀a ∈ D, τ ∈ T, u ∈ Uτ (5.42)
xk,τ,u ∈ {0, 1} ∀k ∈ C, τ ∈ T, u ∈ Uτ (5.43)
zτ ∈ {0, 1} ∀τ ∈ T (5.44)
βa,τ,u ≥ 0 ∀a ∈ R, τ ∈ T, u ∈ Uτ (5.45)
0 ≤ qτ,u ≤ Q ∀τ ∈ T, u ∈ Uτ (5.46)
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The objective function (5.33) minimizes the sum of the costs of robot travel, waiting
and potential delay and the costs of all truck tours selected. Constraints (5.34)
ensure that every customer is supplied by exactly one robot and Constraints (5.35)
that robots are only started from tours used, not exceeding the goods capacity of
each truck. Constraints (5.36) allow the definition of tour combinations excluded and
(5.37) limit the total number of tours. Constraints (5.38) and (5.39) keep track of the
robots available to a tour in each location and on the truck, depending on whether
the location is visited (i.e., a = yτ (u)) or not. Note that due to Constraints (5.36),
there is no coupling of robot availability between tours required. The variable βa,τ,u
is only needed since the same tour could visit a robot depot several times. Equations
(5.40) state the initial number of robots aboard the trucks, and (5.41) define the
same for each robot depot. Constraints (5.42) ensure robots cannot be stored at
drop-off points. Finally, Constraints (5.43)-(5.46) define the variable domains.

Iterations The MIP returns a feasible solution for the MVTR-RP. We set a runtime
limit of mMIP for the MIP to ensure time-efficient iterations. This is done as the
solver otherwise spends considerable time to prove an optimum while this does not
lead to better solutions. If one tour of the previous solution was eliminated (i.e.,
none of this tour‘s variations was chosen) and thus less than n tours are selected, this
tour will be added to the potential tours τ in future iterations. This ensures that
both an increase and decrease of tours is possible in subsequent iterations. When no
improvement is found for the first time, the time limit for the MIP solver is increased
and the next improvement iteration starts. When no improvement is found for the
second time, the heuristic terminates and the current set of tours (together with the
customer assignment to the stops of these tours identified by the MIP) are returned
as the best solution.

5.5 Numerical studies

This section completes numerical studies to obtain insights into computational per-
formance of the TRCR and managerial implications related to the MVTR-RP. We
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describe the parameter setting applied in our experiments in Section 5.5.1. Sec-
tion 5.5.2 investigates the performance of TRCR compared to benchmark approaches.
We further provide managerial insights by means of sensitivity analyses on depot
refill times, time window distributions, and fleet sizes (Section 5.5.3).

5.5.1 Instances, parameter setting and test bed

We apply a 4× 4 km delivery area that resembles the northern half of the Munich
(Germany) city center. In the default data set, we assume a customer set |C| = 50,
and randomly select 50 building locations in the delivery area obtained from Open-
StreetMap Foundation (2019). Up to n = 3 trucks are available for this delivery
area. |R| = 25 depots are first distributed in an equidistant manner and then slightly
shifted by a random distance between 0 and 500 meters in south-north and east-west
direction. |D| = 48 drop-off points are distributed by a random uniform distribution.
The warehouse is randomly selected from the set of depots and drop-off locations. For
the determination of customer deadlines we assume a random-uniform distribution.
The interval for the deadlines is defined as [tM · ρmin, tM · ρmax], where tM is the time
needed to travel from the starting point to the furthest customer by truck. The
parameters are set to ρmin = 3 and ρmax = 6 in the default case. The initial number
of robots is set to βa = 0.08 · |C| in every depot a, a ∈ R and the depot refill time to
ϑf = 15 min. Similarly, the truck’s capacity and initial number of loaded robots is set
(Q = δ = 0.08 · |C|). The parcel volume per customer is η = 1 and the truck’s parcel
capacity is G = 100. The average speed is 30 km/h for the truck and 5 km/h for
the robots. A handling time per stop of 40 sec is added to the resulting travel times.
Following the costs empirically derived by Ostermeier et al. (2021a), we assume the
cost rates of cdist = 0.20 e/km and cveh = 30 e/h for the truck, clate = 5 e for
delays and crob = 1.0 e/h for robot use. Please note that we also apply the robot
costs to the return time from the customer to the closest depot to enable a fair
comparison of total costs. As explained above, these costs are not decision relevant
(as known a priori) but contribute to the total costs of the MVTR-RP.
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Within the TRCR, the applied values of σ1 and σ2 (share of depots defining circle
areas) in the initial truck tour generation are chosen as [0.0, 0.3] and [0.3, 0.8]. We set
the number of points considered as potential stops between two depots in the start
heuristic to me = 5. The VND is parameterized with the probability of accepting
a worse solution p = 0.5, its decrease per cycle ∆p = 0.001 and the maximum
neighborhood size mVND = 20. The maximum number of tours for each operator
used in the tour variation step is set to mVAR = 20, and the time limit mMIP for
solving the optimal tour selection, customer clustering and robot scheduling to 1 min
at the start and 10 min after the increase. The default setting of the base scenario is
highlighted in the following charts with a bold x-label. We generate 20 instances for
each set of parameters, each with different locations and deadlines. Henceforth, each
data point shown represents the average across 20 instances.

Our approach was implemented in Python (using PyCharm 2018.3.5 Professional
Edition) with Gurobi (version 8.0.1) as MIP solver and executed on a 64-bit PC
with an Intel Core i7-8650U CPU (4 × 1.9 GHz), 16 GB RAM, and Windows 10
Enterprise.

5.5.2 Efficiency of the solution approach

The SVTR-RP already constitutes an NP-hard problem and thus no comparison
for practically relevant problem sizes of the more complex MVTR-RP is possible.
For example, the optimization of an MVTR-RP instance with six customers was
terminated with an optimality gap of 70% after 10 hours of computation. As there is
no existing routing approach for the MVTR-RP, we apply the GVNS framework for
the SVTR-RP by Heimfarth et al. (2021) as a benchmark for single truck problems.
This benchmark approach (denoted as GVNS) is most suitable as it is aimed at total
logistics costs as well. Moreover, we extend the GVNS with a customer clustering to
tours in a second step to enable a comparison for the MVTR-RP. For the customer
clustering, we solve a clustering MIP (see Appendix C) for a given number of trucks,
assuming standard truck deliveries. To reduce computation times, we relax the time
window constraint to deadlines within the MIP. We further limit the search to 60

134



Vehicle assignment for Truck-and-Robot Deliveries Andreas Heimfarth

minutes. This is then input to the GVNS for subsequent routing of each cluster. We
denote this benchmark approach MIP&GVNS. Compared to the integrated approach
of TRCR with simultaneous customer clustering, truck routing and robot scheduling,
the MIP&GVNS can be described as a cluster-first-route-second approach. As an
alternative clustering, we also tested the clustering heuristic by Fisher and Jaikumar
(1981), followed again by the GVNS. However, the resulting solution quality is worse
than in the case of the MIP&GVNS. Please note that MIP&GVNS does not prevent
the different trucks from using the same robots at depots, and as such provides a
simplified search in favor of the benchmark approach.

Special case of a single truck We set the number of available trucks to n = 1
to compare TRCR directly to the specialized GVNS by Heimfarth et al. (2021).
Figure 5.6 shows the comparison for different instance sizes. In this special case,
TRCR comes close to the solution quality of GVNS, which has been developed
specifically for such settings. Our approach leads to costs that are only 1% higher on
average. This is an acceptable gap as TRCR is designed to solve the MVTR-RP with
a larger pool of tours for several available vehicles. The GVNS on the other hand is
tailored to a single truck and consequently uses tailored operators to improve the
SVTR-RP. The computation time is two to three times (up to 8 minutes) higher, as
TRCR also solves the tour selection, customer clustering and robot scheduling MIP,
although this is not needed in the case of a single truck. In summary, this validates
TRCR’s ability to find good solutions compared to state-of-the-art approaches for
the SVTR-RP.

Performance comparison for multiple trucks The routing of multiple trucks is
at the core of the MVTR-RP. Figure 5.7 shows the computation times and logistical
performance obtained from our TRCR (simultaneous approach) and the MIP&GVNS
(cluster-first-route-second approach) for different numbers of customers. The TRCR
is 23 - 60% faster, especially since the clustering MIP always reaches its time limit
and then requires additional time for the routing. TRCR computation times are
generally at a level acceptable for practical use, as the tours can be planned during
picking time in the warehouse. Moreover, TRCR is able to reduce total costs by 18
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Figure 5.6: Comparison of TRCR vs. GVNS routing for SVTR-RP, average of 20 instances

- 24%. The MIP&GVNS results in the use of too many trucks and a suboptimal
clustering of customers resulting in longer delays and truck distances. Consequently,
TRCR leads to a pareto improvement compared to the cluster-first-route-second
benchmark. Furthermore, the average objective value reduction in the improvement
phase of TRCR is 18%, which highlights the effectiveness of both our start heuristic
and improvement phase.

Benchmark analysis with varying spatial customer distribution To assess
the robustness of the results of the TRCR, we apply different customer distributions
and compare TRCR again with the MIP&GVNS. We denote the default case as
uniform and create two further spatial distributions. First, we select only building
locations from the lower left and upper right quadrant of the selected 4×4 km square
area, resulting in a clustered distribution. By selecting only building locations from
the central 2× 2 km square, we obtain a concentrated distribution. Table 5.4 shows
that TRCR performs very well for all customer distribution settings, reducing total
costs by 12% (concentrated) to 23% (uniform).
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Figure 5.7: Comparison of TRCR vs. MIP&GVNS for MVTR-RP, average of 20 instances

Benchmark analysis with varying truck capacity Limited truck capacity can
lead to solutions with more trucks or less efficient routes. In the previous section,
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Customer Improvement of TRCR vs. MIP&GVNS, in % of MIP&GVNS
distribution Total costs Computation time Number of trucks used Truck distance
Uniform 23 37 53 27
Clusters 20 58 42 20
Concentrated 12 42 41 25

Table 5.4: TRCR vs. MIP&GVNS for different spatial customer distributions, average of 20
instances

it was only the deadlines that motivated the use of additional trucks. We therefore
reduce the trucks’ parcel capacity G for the case with 100 customers of G = 100 to
G = 80 and G = 60. With one parcel volume unit per customer (η = 1), G customers
can be served per truck. The results are summarized in Figure 5.8. TRCR results
are very stable across different truck capacities. We obtain the following insights
when comparing the TRCR solutions with varying truck sizes. Reducing capacity
from 100 to 60 increases the average cost by 0.3% and the computation time by 23%.
As expected, the number of tours (+8%) and the truck mileage increase (+4%). The
delays increase only slightly, at a low absolute level. Overall, this shows that truck
capacity does not have a crucial impact on logistical performance as long as there is
sufficient total capacity across the trucks to serve customers. The TRCR efficiently
handles instances with tighter truck capacities as well. Finally, the TRCR again
outperforms the MIP&GVNS solutions. The latter do not change across capacity
sizes, as none of the truck tours obtained serve more than 60 customers.

5.5.3 Managerial insights

Having shown the efficiency of the proposed algorithm, we now analyze the impact of
hierarchical and strategic managerial decisions that are entered into the MVTR-RP
as input parameters and compare the MVTR-RP to conventional truck deliveries
without robots. First, the assumption of depots being refilled is analyzed, as this is
a key assumption in the truck-and-robot concept and also in our solution approach.
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Figure 5.8: TRCR vs. MIP&GVNS for varying truck capacity and 100 customers, average of 20
instances

Next, the time window distribution is varied, since time windows are expected to
have a strong influence on the customer clustering. Finally, we detail the benefits
of additional trucks (and thus one further advantage of TRCR) in the case of tight
time windows. To highlight the overall attractiveness of truck-and-robot systems, we
henceforth compare the performance to traditional truck deliveries (i.e., all customers
are supplied by trucks). We apply the MIP (see Appendix C) for this purpose, and
we report the best-known solution (labeled VRP) and the lower bound of the costs
(labeled as VRP LB) after 60 minutes of computation.

Robot depot refill assumptions and comparison with truck delivery Robot
availability at robot depots is limited. The time required to refill a depot with new
robots after a truck visit could have a significant impact on solution quality if visiting
a single depot several times could be beneficial. We analyze the impact of this time
on a truck-and-robot system with 25 (default case as described above) and 12 depots,
which also leads to less available robots. The two scenarios are denoted TRCR-12
and TRCR-25. Figure 5.9 shows that there is hardly any impact on costs and other
performance metrics with varying refill times for solutions obtained with TRCR. In
particular, even if the time is set to 0 (i.e., two trucks arriving at the depot at the
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same time can both access the depot’s full robot availability), this does not lead to
significant improvements. This means that the assumption in our solution approach
(which prevents two trucks visiting the same depot within the depot refill time)
does not worsen the results. It further shows that there is no benefit in ensuring
an immediate refill of visited depots in practice. Reducing the number of depots
from 25 to 12 leads to longer truck distances traveled and a cost increase of 17% on
average. Comparison with the conventional truck-only delivery reveals cost savings
of 62% and a truck mileage reduction of 71% due to the truck-and-robot concept.
This corresponds to a 71% reduction of local emissions if diesel trucks are used. The
MIP is terminated after 60 min and results in a 45% average MIP gap. However,
even compared to the lower bound, TRCR has a cost savings potential of 30%.
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Figure 5.9: System performance for different depot refill times, average of 20 instances

Time window structure The key feature of TRCR is the clustering of customers,
which must happen based on their locations and time windows, as these are the only
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differences between any two customers. Therefore, besides the influence of locations
(see Section 5.5.2), we further assess the impact of time windows, which are expected
to have a strong impact on costs and logistical performance (see e.g., Heimfarth
et al. (2021)). First, the effect of earlier and later time windows is assessed. Next,
customers in the same region are offered similar time windows.

(i) Early vs. late time windows. One important question when designing a last-mile
delivery system is how fast a delivery can reach the customer. We therefore test the
system’s performance with earlier or later time windows, i.e., different values of the
deadline factor interval [ρmin, ρmax]. Figure 5.10 summarizes results for a ρmin of 1
(earlier), 3 (default) and 5 (later). With ρmax = ρmin + 2 the span of all deadlines
remains constant. Comparing the results of TRCR for ρmin = 3 vs. 5, we see that
additional trucks can ensure that earlier deadlines are met at scant additional costs.
On the other hand, if time windows are too early (ρmin = 1 instead of 3), even
increasing the number of trucks used by 61% cannot prevent a 19-fold increase in
delays and further leads to a 35% longer distance travelled by the trucks. Together,
these effects increase total costs by 22%. There is little variance in the number of
trucks used: for ρmin = 1, this number is 2 or 3 in all solutions; for ρmin = 3 or
5, only 1 or 2 trucks are used. This shows that a truck-and-robot system must be
designed specifically to meet the lead times promised. In times of high demand,
offering later time windows to customers can relieve the system. The scenario with
truck deliveries (again denoted as VRP) benefits from later deadlines as well, as it
can reduce its high level of delays. However, it does so by further increasing truck
distance. The cost savings of using the truck-and-robot system remain high as a
result, at 54% with the later deadlines.

(ii) Location-based time windows. Assigning similar time windows to adjacent
customers could potentially enable shorter truck tours and reduce robot waiting time
and delays. We therefore test two policies for making such an assignment. Each
policy splits the customers into two equal groups and assigns each group to one
half of the deadline factor interval such that the first half of all deadlines is in one
region and the second half in the other region. The first policy (denoted distance)
splits the customers based on their distance from the warehouse and assigns the
closer customers the earlier deadlines. The second policy (denoted angle) finds a
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Figure 5.10: System performance for different deadline factor intervals

straight line through the warehouse that separates the customers into two equal
groups and randomly assigns one to the earlier and one to the later half of the
deadlines. We compare the TRCR results for these scenarios with the default case
of completely random deadlines. Both types of zone lead to a decrease in delays
(angle -68% and distance -85%). Interestingly, assigning zones based on distance
does so while at the same time reducing the number of trucks used (-4%) and their
total distance traveled (-4%). This shows that the same truck can serve the closer
customers with early deadlines first and then take care of the customers who are
further away with later deadlines. In the angle case, more trucks (7%) are needed
and they cover a larger distance (5%). Consequently, this time window distribution
does not seem to facilitate efficient truck tours. The total costs in this scenario
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remain unchanged. Only the distance scenario enables a 2% cost reduction in total,
thus leading to a pareto improvement (all metrics considered are improved). It is
therefore a favorable policy to offer customers a time window based on their distance
from the warehouse.

Fleet size One key question when implementing a truck-and-robot system is
how many trucks will be needed. This is also necessary to plan the shifts. We
therefore investigate the effect of the number of available trucks on the system’s
performance. The instances used were generated with a deadline factor interval of
[ρmin, ρmax] = [1, 3]. This leads to best solutions using two or three trucks in the
default case of three available trucks. Table 5.5 shows the results with a varying
number of available trucks. Our derived cost function for trucks includes a distance-
based fee for trucks. That means that the fixed costs for a truck are transferred to
mileage costs. With a total lifetime mileage, the total costs of a truck (incl. variable
and fixed costs) can be calculated per distance unit (see Hübner and Ostermeier
(2019) for a similar approach). TRCR tends to use more trucks whenever they
become available even if this does not really reduce total costs: these are reduced by
24% when a second truck is added, mostly due to a 74% reduction in delays. After
that, additional available trucks have no effect on total costs, as the reduction in
delays is outweighed by the increase in truck distance. This shows that it can be
necessary to apply several trucks and TRCR can help to optimally size the truck
fleet for a given demand scenario. In the VRP case (not shown in Table 5.5), all
available trucks are used to reduce the high level of delays. Consequently, fewer
available trucks result in a high cost increase driven by delays.

Number of available trucks
1 2 3 4

Total costs [EUR] 44 34 34 34
Number of trucks used 1.0 2.0 2.3 2.5
Total delays [min] 191 49 44 41
Truck distance [km] 12.4 14.2 14.6 14.6

Table 5.5: Performance change of TRCR for different available truck fleets, average of 20 instances
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5.6 Conclusion

Truck-and-robot systems will contribute to reduce costs, emissions and traffic conges-
tion caused by last-mile delivery. Multiple trucks combined with robots are needed to
enable large scale application and short lead times. Since state-of-the-art literature
is limited to single-truck problems (e.g., Boysen et al. (2018a), Alfandari et al. (2019)
or Ostermeier et al. (2021a)), we present an extension to truck-and-robot routing
by allowing the use of multiple trucks. The resulting multi-vehicle truck-and-robot
routing problem (MVTR-RP) requires the simultaneous clustering of customers to
truck tours and routing of each tour. To simultaneously solve the customer clustering,
truck routing and robot scheduling problem, we propose a novel heuristic, the Set
Improvement Neighborhood Search (SINS). The approach further relies on tailored
start heuristics, problem-specific neighborhood operators and estimates leading to
solvable MIPs. Our numerical experiments show that this simultaneous solution is 23
to 60% faster and yields 18 to 24% better solutions than a benchmark that is based
on a cluster-first-route-second approach. The solution approach yields robust results
overall, demonstrating the advantages of the truck-and-robot concept compared to
various benchmarks and alternative delivery concepts. Further numerical studies
show that using multiple trucks instead of one for the same delivery area and time
windows reduces delays by about 75% on average, only slightly increases total truck
distance by about 15%, and hence results in total costs improvements of about 20 -
25%. This highlights the benefits of multiple trucks. We were able to further identify
cost reductions by 62% and truck emissions by 71% compared to conventional truck
delivery. This improvement potential further increases with more challenging time
windows. Sizing the truck fleet, defining the time windows customers can choose
and the total number of available robot depots are identified as key decisions for the
hierarchical planning of truck-and-robot operations.

As we deal with an innovative delivery concept, there are still many promising
opportunities for future research. One could build on our approach to develop exact
solution approaches. Furthermore, the SINS approach of optimally choosing a set
of tours from the neighborhoods of all incumbent tours has proven effective and
could be transferred to other problems, for which the solution is a set of objects.
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Further modifications to the truck-and-robot concept and the instances applied can
be investigated as well, such as alternative delivery modes (by driver, by drone etc.)
and different spatial situations. Our results show the attractiveness of truck-and-
robot in a city, but the system‘s high flexibility could make it adaptable to more
rural settings, too. This could require the introduction of additional delivery modes.
The concept can be further extended to pickup and delivery operations, as customer
returns are becoming increasingly important for logistics operations. A heterogeneous
fleet of trucks with varying capacity and also range limitations should be assessed.
This would be particularly relevant if an existing truck fleet is successively replaced
with electric vehicles. It would require additional decisions and constraints in the
tour selection step. More generally, there are plenty of applications and approaches
for clustering. One could adapt our approach to related clustering applications or
examine the effectiveness of existing clustering approaches for the MVTR-RP in a
cluster-first-route-second setting. Machine learning methods seem a promising way
forward in view of the complex interdependencies of the various problem aspects
involved.
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6 Conclusion and outlook

6.1 Conclusion

Every individual contribution concludes by summarizing the methodological and
managerial insights and proposing extensions and improvements as subject to further
research. In this section, our findings are stated in a more aggregated way and viewed
in a wider context.

Potential of truck-and-robot delivery Within the work presented, we assessed
the economical and environmental advantages of truck-and-robot deliveries. In the
scenarios analyzed, the concept displays the potential to reduce costs and emissions
by more than 50%. It demonstrates a high flexibility and robust performance across
different settings. The improvements observed mean a substantial relief for urban
traffic and pollution and at the same time make fast premium deliveries viable and
affordable for many new use cases. As an example, truck-and-robot could be used
to extend the delivery areas of restaurants and local stores. We therefore believe
truck-and-robot should be tested in the field on a larger scale. Our heuristics can
help to assess the implications of truck-and-robot use in specific settings prior to
implementation and ensure efficient operations afterwards.

The key success factors for the implementation of truck-and-robot systems are the
following. Autonomous driving must work reliably most of the time. This reduces
remote control effort and thus the cost of operating robots. Furthermore, it would
enable deregulation of robot use, which is still needed in many locations before robots
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are allowed to move completely unsupervised. Another prerequisite for the concept
are robot charging stations in cities. These could be included into regular electric car
charging stations and (if appropriately standardized) shared with other small electric
vehicles such as scooters and bikes. Another possibility is to leverage a retailer‘s or
logistics company‘s existing store infrastructure to provide charging stations. Besides
these technical and regulatory requirements, it is crucial that a robot fleet reach a
certain scale and utilization to be run profitably. The only companies who could
reach this are very large online retailers or dedicated robot sharing providers, who
offer short term rentals (similar to car sharing) to any retailer, logistics provider and
consumer. Finally, consumers’ sentiment towards robots will play a crucial role for
the adoption of the technology. This includes the willingness to retrieve an order
from a robot, but also the public acceptance of robots moving on the sidewalk.

Methodological findings Different heuristic approaches are presented in the three
publications. All of them have in common that truck routes are improved via search
operators and that robot movements for given truck tours are solved in an exact
manner. Obtaining exact solutions with a solver for parts of the problems is a strong
driver of runtime, but it proved very advantageous for solution quality in our different
tests during the development phases. Furthermore, it makes resulting tours and
weaknesses of the overall heuristic more interpretable.

The most complex problem is solved in Contribution 3, as it considers multiple
trucks. We think that some of its heuristic components can be transferred to similar
problems. First, the principle of clustering customers with delivery time windows
based on their fit to a pool of given candidate tours can be used in any routing
problem involving several vehicles and time windows. Second, we proposed the
concept of Set Improvement Neighborhood Search (SINS), which tries to improve
a set of objects by choosing a new set from the neighborhoods of all objects. This
could be applied not only to various routing decisions, but whenever a set of similar
objects must be defined, e.g. when configuring machines or vehicles.
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6.2 Future areas of research

There are numerous opportunities for future research. The truck-and-robot concept
can be further extended, e.g. to pick-up and delivery scenarios. The role of a
potential robot fleet operator could further be investigated, including problems such
as network balancing and dynamic pricing. Further offerings based on shared robots
can be developed, such as direct delivery from stores and restaurants. While these
use cases are less complex from a routing perspective, it would be interesting to
assess their profitability and implications for urban traffic. Further, a life cycle
sustainability assessment of delivery robots should be conducted to account for the
impact of robot manufacturing.

Methodologically, truck-and-robot delivery provides further areas of research as
well. E.g., our heuristics can be enhanced and tuned to reduce computation times.
As computing power increases, more and more sophisticated approaches such as
Genetic Algorithms become feasible for this problem. Due to this development,
it may soon be possible to further investigate the performance of our heuristics
compared to exact methods for relevant problem sizes. Another promising approach
to routing lies in machine learning methods. Reinforcement learning, as an example,
has been used for small routing problems successfully and could soon be adapted
to truck-and-robot routing problems as well. Further, our solution approaches can
potentially be transferred to related applications involving several coupled vehicles,
such as truck-and-drone delivery, ride sharing and flexible road trains. Even besides
urban logistics, there are fields with similar problem structures, where vehicles depart
from a mothership and their return is negligible. This can be relevant in disaster
response via drones, where it is most important that drugs, food or other important
supplies arrive on time, even if the drone cannot return from the destination due to its
range. A similar problem can be found in research applications, where autonomous
exploration vehicles (e.g., mars rovers) are brought to a remote area to remain there
and report results via radio.

Finally, the field of sustainable city logistics offers a multitude of research topics. This
can involve innovative vehicle concepts or smart ways of bundling and distributing
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passengers and freight. Further advancements in the areas of propulsion technology,
autonomous driving, IT platforms and real-time processing can help achieve this.
Even more broadly, ways to eliminate the need of transportation contribute to
the solution. This includes 3D printing, near-shoring of industrial and agricultural
production and technologies for engaging remotely for work, leisure and shopping.
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A MIP model for the VRP with deadlines

We introduce the following MIP model as a benchmark for the truck-and-robot
concept. It minimizes the cost of traditional truck-based manual delivery, assuming
the same cost factors as in the truck-and-robot case. We assume that the driver can
leave the parcel at the door in the event that he/she arrives before the time window,
which reduces the time windows to deadlines and favors the VRP. Furthermore, we
assume the same processing time of 40 sec. per customer, which is again on the
optimistic side and favors the VRP.

The notation is as defined by Tables 3.2 and 3.4. We additionally introduce the
number of available vehicles f and the total costs for truck travel from location i to
location j as cVRPij . It is calculated using cVRPij = λij · (cd + ct/ωt). The binary variable
sij is 1 if a vehicle goes from location i to location j and 0 otherwise. Finally, tk
denotes the arrival time at customer k.

This leads to the objective function (1), which incorporates the cost of truck travel
and delays. Constraint (2) ensures that every customer is visited exactly once. (3)
and (4) keep track of the arrival times at customers and (5) derives the delay from
the arrival time. Constraints (6) and (7) establish flow constraints for the trucks at
every stop. Equations (8) and (9) define the solution space.

min
∑

i∈C∪{γ}

∑
j∈C∪{γ}

sij · cVRPij +
∑
k∈C

vk · cl (1)

subject to

∑
i∈C∪{γ}

sik = 1 ∀k ∈ C (2)

ϑtγk −M · (1− sγk) ≤ tk ∀k ∈ C (3)
ti + ϑtij −M · (1− sij) ≤ tj ∀i, j ∈ C (4)
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tk − dk ≤ vk ∀k ∈ C (5)∑
i∈C∪{γ}

sik =
∑

i∈C∪{γ}
ski ∀k ∈ C (6)

∑
k∈C

sγk ≤ f (7)

sij ∈ {0, 1} ∀i, j ∈ C (8)
tk ≥ 0; vk ≥ 0 ∀k ∈ C (9)

B MIP model for the VRP with time windows

For solving the VRP with time windows, we introduce the following MIP model,
which we adapted from Ostermeier et al. (2021a) to incorporate time windows instead
of only deadlines. It minimizes the cost of traditional truck delivery assuming the
same cost factors as in the MTR case. We further assume the same processing time
of 40 sec. for every customer k (included in ϑtik). We introduce the set of available
vehicles F , which contains only one vehicle in our case. The binary decision variable
sfij is 1 if vehicle f travels from location i to location j and 0 otherwise. Finally,
auxiliary decision variable tk denotes the arrival time at customer k and tTf the total
tour time of vehicle f . This leads to the objective function (10), which incorporates
the cost of truck distance, truck time and delays. Constraints (11) ensure every
customer is visited exactly once. (12) and (13) keep track of the earliest possible
arrival times at customers. Constraints (14) ensure no customer is served before his/
her time window and Constraints (15) derive the delays from the arrival times. (16)
define the total operating time of each truck. (17) and (18) establish flow constraints
for the trucks at every stop. Constraints (19) to (21) define the solution space.

min
∑
f∈F

∑
i∈C∪{γ}

∑
j∈C∪{γ}

cdλijsfij +
∑
f∈F

cttTf +
∑
k∈C

clvk (10)

subject to
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∑
i∈C∪{γ}

∑
f∈F

sfik = 1 ∀k ∈ C (11)

tk ≥ ϑtγk −M · (1− sfγk) ∀k ∈ C, f ∈ F (12)
tj ≥ ti + ϑtij −M · (1− sfij) ∀i, j ∈ C, f ∈ F (13)
tk ≥ dk − ε ∀k ∈ C (14)
vk ≥ tk − dk ∀k ∈ C (15)
tTf ≥ tk + ϑtkγ −M · (1− sfkγ) ∀k ∈ C, f ∈ F (16)∑
i∈C∪{γ}

sfik =
∑

i∈C∪{γ}
sfki ∀k ∈ C, f ∈ F (17)

∑
k∈C

sfγk ≤ 1 ∀f ∈ F (18)

sfij ∈ {0, 1} ∀i, j ∈ C, f ∈ F (19)
tk ≥ 0; vk ≥ 0 ∀k ∈ C (20)
tTf ≥ 0 ∀f ∈ F (21)

C MIP model for customer clustering of the

benchmark approach

The MIP minimizes the cost of traditional truck delivery assuming the same cost
factors as in the truck-and-robot case. We consider only deadlines instead of time
windows to reduce computational complexity. Our experiments showed that this
leads to the best results in the MIP&GVNS experiments while also working in
favor of the benchmark. Given early deliveries are possible, we can further fix the
start time of each vehicle to the earliest possible time, tω=0, without worsening the
objective value.

We introduce the set of available vehicles F . The binary decision variable sf,i,j is
1 if vehicle f travels from location i to location j, and 0 otherwise. The auxiliary
decision variable tk denotes the arrival time at customer k and tTf the total tour time
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of vehicle f . This leads to the objective function (22), which sums up the cost of
truck distance, truck time and delays. Constraints (23) ensure that every customer is
visited exactly once. Constraints (24) keep track of the earliest possible arrival times
at customers. Constraints (25) derive the delay from the arrival time. (26) defines
the total operating time of each truck. (27) and (28) establish flow constraints for
the trucks at every stop. Constraints (29) limit the truck capacity, and Constraints
(30) to (33) define the solution space.

min
∑
f∈F

∑
i∈C∪{ω}

∑
j∈C∪{ω}

cdistλi,jsf,i,j +
∑
f∈F

cvehtTf +
∑
k∈C

clatelk (22)

subject to

∑
i∈C∪{ω}

∑
f∈F

sf,i,k = 1 ∀k ∈ C (23)

tj ≥ ti + ϑti,j −M · (1− sf,i,j) ∀i ∈ C ∪ {ω}, j ∈ C, f ∈ F (24)
lk ≥ tk − dk ∀k ∈ C (25)
tTf ≥ tk + ϑtk,ω −M · (1− sf,k,ω) ∀k ∈ C, f ∈ F (26)∑
i∈C∪{ω}

sf,i,k =
∑

i∈C∪{ω}
sf,k,i ∀k ∈ C, f ∈ F (27)

∑
k∈C

sf,ω,k ≤ 1 ∀f ∈ F (28)
∑

i∈C∪{ω}

∑
k∈C

ηksf,i,k ≤ G ∀f ∈ F (29)

sf,i,j ∈ {0, 1} ∀i, j ∈ C ∪ {ω}, f ∈ F (30)
tω = 0 (31)
tk ≥ 0; lk ≥ 0 ∀k ∈ C (32)
tTf ≥ 0 ∀f ∈ F (33)
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