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Abstract—Interpretation of 3-D scene through LiDAR point
clouds has been a hot research topic for decades. To utilize mea-
sured points in the scene, assigning unique tags to the points of
the scene with labels linking to individual objects plays a cru-
cial role in the analysis process. In this article, we present a
supervised classification approach for the semantic labeling of
laser scanning points. A novel method for extracting geometric
features is proposed, removing redundant and insignificant infor-
mation in the local neighborhood of the supervoxels. The pro-
posed feature extraction method uses the supervoxel-based local
neighborhood instead of points as basic elements, encapsulating
the geometric features of local points. Based on the initial clas-
sification results, the graph-based optimization is used to spa-
tially smooth the labeling results, based on the graphical model
using the perception weighted edges. Benefiting from the graph-
based optimization process, our supervised classification method
required only a few training datasets. Experiments were carried
out by comparing the semantic labeling results with manually
generated ground truth datasets. The performance of the proposed
methods with different characteristics was analyzed. By using our
testing datasets, we have achieved an overall accuracy of bet-
ter than 0.8 for assigning the measured points to eight semantic
classes.

Index Terms—Classification, detrended geometric features,
graphical model, LiDAR, optimization, supervoxel context.
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I. INTRODUCTION

IN RECENT decades, automated interpretation of 3-D scenes
with LiDAR has been a popular research topic in fields of

photogrammetry [1], remote sensing [2], computer vision [3],
architecture [4], civil engineering [5], cadastral investigation [6],
and robotics [7]. As a flexible and portable measurement tech-
nique, LiDAR can obtain point clouds via different acquisition
platforms and systems, such as airborne laser scanning (ALS)
using aerial platform, like airplanes or UAVs, terrestrial laser
scanning (TLS) using fixed tripod platform, and mobile laser
scanning (MLS) using moveable platforms, like vehicles or
boats. ALS measures point clouds with a far observation distance
and a relatively low density, which is usually used for mapping
and monitoring a large area since the flying aerial platform
can easily cover a large investigation area. While, for accurate
analysis and interpretation of 3-D urban scenes, TLS and MLS,
providing higher scanning density with close observation dis-
tance and more precise points with static carrier platform or
stations, are more competent.

However, only having applicable platforms and systems is
far from enough to accomplish the analysis of 3-D scenes. To
fully understand and extract 3-D information from the scene,
unique labels of given categories should be used to mark the
acquired 3-D points in the scene, which reveals the semantic
meanings of the objects represented by the points. Therefore,
assigning semantic tags to points belonging to objects of the
different categories is crucial in the overall 3-D scenario analysis
workflow [8]. Supervised classification is one of the solutions to
accomplish this labeling task. Although a lot of related research
has been presented, this work is still a challenge. For the majority
of supervised classification methods, a well-trained classifier is
required, with a large amount of training dataset needed [9].
Nevertheless, the conventional way of generating training data
of point clouds still depends on manual work, which is a more
challenging endeavor than manually labeling the 2-D image due
to the complex 3-D structures. Fortunately, 3-D point clouds
encode more precise topological and geometric information of
the real 3-D scene than those of 2-D images, if we can provide
additional constraints or assumptions based on these topological
relations between structures and geometric characters of points,
we could achieve a supervised classification without using a
large percentage of the training dataset. Especially, point clouds
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of urban scenes encapsulate some form of regularity with spe-
cific structures, which can be exploited to improve the accuracy
of semantic labels [10].

To this end, we present a supervised semantic labeling method
designed for classifying 3-D points, with supervoxel-based de-
trended features calculated in the local neighborhood and graph-
based optimization. The effort spent on the reduction of the
required training dataset considers two aspects. On one hand, we
conduct a preclustering of points with geometric homogeneity,
which provides constraint at the local level. Points of the cluster
are forced to share the same label. In our work, this preclustering
is achieved by supervoxels with refined boundaries. For the
estimated geometric features, we proposed a novel detrending
algorithm removing redundant and insignificant information
in the local environment of the points. On the other hand, a
regularization of labeled points is also applied to improve the
accuracy of initial labels estimated by the classifier. In our work,
this is achieved by the global graph optimization of labels. Here,
we have an assumption that the perception-weighted graphical
model has a natural relation to the representation of the 3-D
scene, which reflects both the geometric and topological infor-
mation. Therefore, by constructing and optimizing the graphical
model, wrong labels can be corrected.

The following are innovative contributions in our proposed
approach. 1) A novel detrended geometric feature, removing
the local tendency of the geometric characteristic of the local
neighborhood, is proposed. Our novel feature extraction method
is effective for delineating the local geometry in the 3-D scene.
Different from our previous work [11], apart from the geometric
and height features, in this work, we also took surface and
contextual features into consideration, which are concatenated
in various ways. Moreover, in this work, the intensity values
of the points are not used. Instead, it is a purely geometric
solution. 2) Without using points as fundamental elements, the
supervoxel-based context is designed in the local vicinity to en-
code geometric attributes of points, achieving a preclustering of
homogenous points. Conventional segment-based classification
methods heavily rely on the quality of obtained segments, so
that we compromise this issue by using the refined supervoxels.
In this step, a boundary refined supervoxelization algorithm
is developed, which is an improvement of the classic voxel
cloud connectivity segmentation (VCCS) algorithm by refining
the boundaries between supervoxels. 3) A perception-weighted
graphical model is constructed and optimized to improve the
results of the initial classification result, which can reassign
those wrongly labeled fragments with correct semantic labels.
The remainder of this article is organized as follows. A brief
literature view of point clouds classification is given in Section
II. The methodology of the proposed point cloud classification
method is provided in Section III. Subsequently, the tested point
cloud datasets, experimental results, and related discussions are
given in Sections IV and V. Finally, Section VI concludes the
article.

II. RELATED WORK

Semantic labeling of 3-D point clouds, aiming at tagging a
unique semantic label to an individual point, is a fundamental

task for urban mapping and remote sensing. Currently, a well-
designed point cloud classification method could involve three
core steps: Extraction of features, classification using extracted
features, and smoothing of labels. Based on the various derived
features, initial labels can be assigned to points by applying
classifiers. Then, benefiting from label-smoothing techniques,
the initial label of every point could be further refined according
to external information or constraints, with those wrong labels
corrected.

A. Extraction of Features

The extraction of features is for abstracting local geometric
information of the given point and encapsulating the information
into feature vectors [12]. Generally, there are two key factors
influencing the extraction of features: 1) selection of neighbor-
hoods for the investigated element (e.g., point or segment), and
2) parameterization of geometrical characteristics with appro-
priate descriptors for generating discriminative feature vectors.

It is essential to select appropriate neighborhood describing
details in the near of a given point [8]. For various purposes, it
is necessary to rely on different objective details of all points
within the selected neighborhood. Neighborhood definitions in
common use are divided into different categories, namely, the
single-scale neighborhood and the multiscale neighborhood.
The formal one extracts features using a constant neighborhood,
while the later one utilizes multiple neighborhoods with flexible
sizes and forms. A common way to generate the local neighbor-
hood, which is defined by a specific number of neighbors (e.g.,
k-nearest neighbors (KNN) or neighbors with a given distance)
[13] or 2-D projective distance [14]. Besides, spherical [15]
and cylindrical [16] neighborhoods are also representatives of
the single-scale neighborhood. For multiscale neighborhoods,
different features are separately extracted from various neigh-
borhoods with different forms and sizes, and then combine them
to encode the output feature vectors. In [8], a neighborhood
selection approach based on multiple individually optimized
neighborhoods is proposed. Similarly, in [17], multiscale neigh-
borhoods for selecting features are introduced to enhance the
performance of 3-D point clouds classification. Although dif-
ferent classifiers will definitely influence the performances of
the entire classification workflow, the importance of features
also matters a lot, especially when the classifier is identified and
has insufficient training samples. In [18], for detecting vehicles
from the scene, the authors implement a multilayer model for
feature generation consisting of partitioned octree structures of
several levels. Moreover, in [19], a Latent Dirichlet allocation is
adopted to generate features, which are derived from point-based
hierarchical clusters, in order to classify objects having varying
sizes.

For parameterizing geometrical characteristics with appropri-
ate descriptors, using 3-D shape descriptors to encode local or
global geometric information around the point of interests is a
commonly adopted solution. Based on the spatial distribution
of 3-D points around the point of interest, both local and global
features of this point can be quantized into a vector having a fixed
number of bins by the use of the 3-D shape descriptor. Here, the
3-D shape descriptor is actually an algorithm transforming 3-D
coordinates to features via mathematical formulations, which
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can describe the geometry of the local area around the point of
interests. In the recent decade, a number of representative feature
descriptors have been developed [20], for instance, 3-D context
shape [21], Fast Point Feature Histogram (FPFH) [7], and Signa-
ture of Histogram of Orientations (SHOT) descriptor as well as
its variants [22]. However, since all these descriptors rely mainly
on the detailed description of geometric properties, and they sel-
dom focus on the generalized structural features. Thus, they can-
not immune noise and lack a strong geometric and topological
relationship. Therefore, for characterizing the general geometry
of an object, novel methods are proposed. Instead of consider-
ing detailed geometric and texture distributions, they estimated
eigenvalues calculated from 3-D coordinates of points, which
can reflect and express essential geometric information and
topological relationships between the point and its neighbors. In
this respect, the geometry description based on eigenvalues [23],
[24] is an example. The eigenvalues of the tensor of coordinates
characterize the 3-D features of the shape. In addition to the
original spatial coordinates, number of returns and intensity, it
is also possible to enrich the point attributes used to describe
the features. For instance, the RGB color [25] and the thermal
information [26] are used for featuring the 3-D point cloud.

B. Classification Using Extracted Features

Point and segment based methods are typical strategies for
classification using extracted features. Point-based classification
will gain a label for each point when conducting classifica-
tion [8], [27]. While the segment-based classification applies
segmentation like preclustering to the point cloud for getting
primitives having homogeneities [10], [28], [29] before the
further classification. The segment-based strategy has the ad-
vantage that it can separate individual objects from the scene
simultaneously. No matter which strategy is being used, classi-
fiers also contribute a lot to the classification performance. Here,
AdaBoost [30], support vector machines [31], [32], random
forest (RF) [24], conditional random field [33], or its high-order
variations [34], and deep neural networks [35], [36] are the
representative ones.

The voxel-based data structure is a popular way of preparing
point clouds. Unlike conventional point-based data structure, the
voxel structure can easily cope with nonuniform point density
and problems caused by varying observation distances of large-
scale point clouds. Octree-based structure [37] is an example,
simplifying the entire dataset and suppressing noise and outliers
with rasterized 3-D grids. The octree can identify neighboring
relations of created voxels and index the inside points simultane-
ously. The tree structure can facilitate the searching of neighbors
as well. Voxels can also be aggregated into larger supervoxels
by the use of methods, such as VCCS [38] algorithm, which
can explore the potentialities of voxel structures. A supervoxel
is generated by grouping neighboring voxels via a graphical
model or k-means clustering. One of the major advantages of
using supervoxel structures is that they can precisely discover
boundaries between objects or different parts of an object. When
supervoxels are utilized in classification task, the generation of
supervoxels is actually a preclustering of voxels with common

properties, like normal vectors, colors, or other geometric at-
tributes [39]. After such a clustering, the boundary of voxels
from different clusters likely corresponds to the edges of various
objects. Since this clustering is an unsupervised process, the size
and the shape of the cluster is only adjusted by the difference of
the local geometry of those voxels belonging to different objects.
Namely, in the same cluster, voxels have always similar local
geometric characteristic, which can better reflect the geometry
of the local area. If we use such clusters as the neighborhood
for the extraction of features, it could be an optimized solution.
Based on the over-segmentation idea, it is also possible for su-
pervoxels to be further merged into larger local patches utilizing
a predefined radius of vicinity [19], [29], to delineate geometric
features in a local vicinity more completely.

C. Smoothing of Labels

The spatial regularity is an elementary prior knowledge about
acquired measuring data of the real world [40], [41]. To derive
a regularized labeling, smoothing of labels can be designed
to refine the initial tags obtained by the classification results,
with the assumption that adjacent pixels or points are likely to
share the same object label (i.e., class). Generally, the smoothing
approaches can be conducted with two different strategies, i.e.,
local label smoothing and global label smoothing [34].

Local smoothing of labels focuses on the weight assignment
of adjacent entities, which is mainly implemented via local
filtering, local graph optimization, or preclustering of points. In
[11], the initial labels of classification results are corrected by a
voting-based filter process via a local first-order graph. In [42],
the segmentation of local graphical model is also adapted to
optimize initial labels. Moreover, in [10], instead of directly
labeling individual points, a nonparametric segmentation is first
conducted to aggregate points into segments sharing common
labels, which could be regarded as a geometric constraint be-
tween labels and points. However, the performance of local
label smoothing largely depends on the quality of the initial
classification and definition of the neighborhood [34]. To be
specific, the major assumption of applying the local smoothing
is that the wrong labels are mainly surrounded by the corrected
ones [11], but such a constraint is difficult to set for irregular
shaped point clouds because large incorrectly labeled regions
remain after the smoothing. Besides, how to design appropriate
neighborhoods is still a challenging task.

As an alternative to the local label smoothing strategy, global
label smoothing methods are also explored by a wide variety
of studies, which consider the labels of points in the entire
scene, simultaneously. The global label smoothing is mainly
achieved via the optimization or regularization under graphical
models or Markov networks [41]. In [43], the initial classifica-
tion is globally optimized by adopting a multiclass graph cut
algorithm, followed by a refinement with a local optimization
using an object-oriented decision tree. In [36], a regulariza-
tion framework using a global graph structure is proposed and
employed for smoothing labels of point cloud segments, with
impressive results achieved. Similarly, in [34], the initial labels
with relaxed probabilities are optimized via graph-structured
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Fig. 1. Workflow of our point cloud classification.

regularization. The same as the local label smoothing strategy,
the quality of initial labels matters, which usually serves as the
prior knowledge for smoothing. Besides, the construction of
graphical models or Markov networks also plays a vital role
for the optimization or regularization, which should consider
both the spatial relationship (e.g., topology) and defined weights
(e.g., similarity or proximity) between points. The graph can
be built not only based on a KNN structure [36], but also the
one considering manifold structure, like Riemannian graph [44].
The optimization or regularization is achieved by solving the
cost function formulated from the graphical models or Markov
networks. However, the selection of appropriate solver of the
cost function is still needed to be addressed when dealing with
complex urban areas [41].

III. METHODOLOGY

In Fig. 1, a brief overview of the workflow is displayed,
with key steps and representative results illustrated. The entire
workflow includes four essential procedures: Supervoxeliza-
tion and local neighborhood selection, extraction of detrended
geometric features, supervised classification, and graph-based
optimization. At first, an oversegmentation is implemented by
the use of the VCCS method [38], but with boundaries re-
fined. A local neighborhood is defined for every supervoxel,
considering neighbors directly connected. Second, geometric
features of every supervoxel and connected neighbors in the
local neighborhood are calculated. Afterward, a local tendency
of geometry is estimated for each supervoxel in the feature space.
The estimated local tendency will detrend the geometric features
of the center supervoxel. In the supervised classification step,
RF classifier is used to distinguish points of objects utilizing
the detrended features, with initial labels obtained. Finally,
graph-based optimization is conducted to refine the initial labels
with a perception-weighted graphical model.

A. Boundary Refined Supervoxelization

To generate the voxel structure for point clouds, the entire
space is partitioned into small cubic grids employing octree,

splitting each parent node into eight equal child nodes. Here, the
octree structure is conducted through the approximate nearest
neighbor [45] searching algorithm. The supervoxelization is
conducted via VCCS algorithm. However, the supervoxels of
VCCS always suffer from the “zig-zag” effect, namely, the edges
are not smooth ones. Instead, they are twisted conforming the
squared edges of basic voxels, because the fundamental element
of VCCS is the cubic shaped voxel [11]. To be specific, the “zig-
zag” effect that we want to remove is the one between/across two
adjacent objects. For supervoxels generated within one single
object (i.e., wall or ground), there would not have any effect
for feature extraction. However, the edge between two objects
at the meanwhile should also be the edge between two super-
voxels, which means that such effect is originally caused by the
“zig-zag” edges of each supervoxel generated by VCCS. Since
the edges of a supervoxel are formed by cuboid-shaped voxels,
the edges between/across two adjacent objects cannot reach
a point-level accuracy. In such situations, supervoxel located
at the edge of one object may be contaminated by points of
other adjacent object, which may affect the feature extraction.
To overcome this problem, we proposed a boundary refined
supervoxel clustering algorithm for creating supervoxels with
a point-level accuracy of their boundaries.

Our proposed boundary refined supervoxel is based on the
original VCCS supervoxel, consisting of two major steps,
namely, the detection of boundary points, and the refinement of
boundary points. In the first step, all the points of one supervoxel
will be measured by the distance from the point to the center of
the supervoxel considering the local curvature [44] exploring
the spatial proximity of adjacent supervoxels in geodetic space.

In the supervoxel V , from the point Pi to neighboring point
Pj , the distance Dproj is calculated by its projected point Pj

′

on the tangent plane of Pi defined by the normal vector Ni. If
Dproj is larger than a given threshold of θ, the point is regarded
as a boundary point. Empirically, the θ is set to rseed/2, where
rseed is the seed resolution of supervoxels. The radius size of
spherical neighborhoods for estimating the normal vector is
equal to the size of the voxel. Then, in the second step, a local
k-mean clustering is conducted between the boundary point and
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Fig. 2. Boundary refined VCCS supervoxelization. (a) Local k-means clus-
tering of boundary points in neighboring supervoxels. (b) Refined boundaries
between supervoxels.

Fig. 3. Illustration of boundary refined VCCS supervoxelization.

the centers of neighboring supervoxels [see Fig. 2(a)]. Here,
the clustering is governed by a distance measure calculated
in a feature space, considering the normal vectors and spatial
distance

Dproj =
√
wn · ||Ni −Nb||2 + wd · ||Xi −Xb||2 (1)

where Ni and Nb are the normal vectors of the center of one
neighboring supervoxel and the boundary point, while Xi and
Xb are their positions, respectively.wn andwd denote the weight
factors for the angle between normal vectors and the distance
between centroids, respectively. In the experiments, wn and
wd are empirically set to one and the reciprocal value of the
size of voxels, respectively. In our approach, merely spatial
distance and normal vectors are used during supervoxelization
(also for the VCCS step in our work), which shows better
performance when finding real boundaries of objects than the
implementation at the level of using merely voxels. In Fig. 3,
we show the difference between supervoxels generated from
the original VCCS supervoxelization and our boundary refined
VCCS supervoxelization. As seen from the figure, the boundary
between supervoxels from the original VCCS method suffer a
significant “zig-zag” effects. By contrast, the boundary between
supervoxels from our boundary refined VCCS method is greatly
smoothed. For example, the boundary between the door of the
garage and ground surface should be a straight line, but in the
results of the original VCCS method, we can clearly find the
twisted edges. On the contrary, the results from our method can
fully recover this boundary with a straight line.

B. Detrended Feature Extraction

Considering a large number of 3-D points containing only
spatial coordinates, we need to extract geometric features from
the 3-D coordinates to describe the geometry of the object. Since
the supervoxel and its local neighborhood are already known, it
is necessary to properly use them to represent the local geometry.
Therefore, geometric features based on eigenvalues [8], [24], as
well as additional structural features, are introduced to delineate
both the geometric and structural characteristics in the local
area of the point of interests. The eigenvalue-based geometric
features are used to represent the local geometry of the object
(e.g., the size and shape of the local area), while additional
structural features are added to describe the basic structure of the
local neighborhood (e.g., height and topological information).

Eigenvalue-based features, including linearity Lλ, planarity
Pλ, scatteringSλ, omnivarianceOλ, anisotropyAλ, eigenentropy
Eλ, local curvatureCλ as well as the sum of eigenvalues

∑
λ, can

be derived following the work presented in [8]. The Lλ, Pλ, and
Sλ describe the dimensionality of the points, while Oλ, Aλ, Eλ,
Cλ, and

∑
λ encode statistical features for the shape description.

In addition to eigenvalue-based features derived from the 3-D
structure tensor, height features, orientation features (i.e., normal
vectors and verticality), and surface features (i.e., local point
density D) are also introduced as additional information for the
geometry description. Furthermore, considering the interaction
between the supervoxel itself and the local context, we also
utilize relative position Rp, relative direction Rd, and spatial
distribution pattern Rs advocated in [46]. The relative position
denotes the averaged distance doi between the center supervoxel
Vo and its first-order neighbor Vi in the local context. For the
relative direction, it relates to the averaged angle between the
normal vector of the center supervoxel and those of its first-order
neighbors in the local context. The spatial distribution pattern
stands for the averaged angle of the orientation angle aoi formed
by the center supervoxel Vo and the first-order neighboring
supervoxel Vi. The angle mentioned here is formed by the
connection lines between the centers of the centering supervoxel
and those of its neighbors. In detail, in Table I, we show the
definition of each vector in the output feature vectors.

1) Local Neighborhood of the Supervoxel: Although super-
voxel structures have preclustered voxels at lower levels, super-
voxels prefer to partition objects into small pieces, which leads
to dissimilarities among different patches belonging to the same
surface. Therefore, the decision tree cannot be trained perfectly.
To address this issue, we use the idea given in [19], utilizing
information from all supervoxels in the first-order graph of a
given supervoxel. To be specific, for each supervoxel, we will
define a local neighborhood to gain contextual information. In
Fig. 4, we show the illustration of the defined local neighborhood
for a given supervoxel.

2) Detrending Local Tendency of Supervoxel-Based Context:
Regarding the interpretation of complex 3-D scenes, there are
typically various objects, and it is necessary to identify the
exact boundaries between the objects. Furthermore, according
to the analysis performed in [10], the contribution of each vector
from the local descriptor in the generated vector of features
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TABLE I
LIST OF FEATURES USED IN THE FEATURE VECTORS

Fig. 4. Local neighborhood of the supervoxel.

(i.e., feature histogram) varies even for objects of the same type.
This will result in the ambiguity when generating features for
different types of objects. For instance, the geometric features of
natural ground and artificial ground could be quite similar if we
consider linearity, flatness, and orientation of normal vectors.
In such a case, we need to use additional features, like the
surface smoothness and roughness, to distinguish them. For the
implemented vector of features, we carry out the process of
enhancing the useful and salient feature vectors and weakening
trivial feature vectors.

Enlightened by the edge detection operator (i.e., difference of
Gaussian) of the domain of image processing, we used the idea
given in [11] to estimate the local trend of the 3-D geometry of
each supervoxel in the local environment, and then removed this
local tendency to obtain salient information about objects that
represent unique structures and detail elements. Additionally,
the local trend of the supervoxel background also acts as a vital
role when finding supervoxels near the real boundary of objects
having different semantic labels. In Fig. 5, we show the 1-D
outline, which illustrates the estimation of the local trend of the
geometric surface of the object. It is obvious that after removing
local trends, two curves having originally similar layouts will
be distinguishable.

Fig. 5. Illustration of local tendency of geometric shapes. (a) For objects with
smooth surface. (b) For objects with rough surface.

The geometric features based on eigenvalues basically reflect
the general geometry relating to “low frequency” components of
the geometry. In contrast, the detrended feature is also a kind of
“high-pass” filter, removing background geometry information
from nearby parts and leaving “high-frequency” components.
Then, if we can describe the complete geometry of the object
by integrating these two components, better uniqueness can be
reached.

3) Detrended Geometric Features in the Local Neighbor-
hood: For creating geometric features with local tendency de-
trended, we calculate dimensionality features, statistical fea-
tures, height features, orientation features, and surface features
from points of supervoxels in the local neighborhood. The
dimensionality, statistical, and surface features mainly reflect
the 3-D shape of the object, namely, those relatively detailed
components. In contrast, the structural, height, and orientation
features can provide contextual information of the object relat-
ing to fundamental components. In the meantime, contextual
features encapsulate the interaction in the context. Thus, if we
can combine these components together, better distinctiveness
can be achieved for representing the geometry of objects.

The local tendency is expressed in the feature space and
removed for each supervoxel. The vector of features of a given
supervoxel V is denoted by Hv in (2). The feature vector of
the local neighborhood of the supervoxel standing for the local
tendency is noted byHl in (2). The vector of contextual features
is represented byHr in (2).Hv is calculated according to the di-
mensionality, statistical, height, orientation, and surface features
listed in Table I using points within the supervoxel itself. While
Hl is also calculated according to the dimensionality, statistical,
height, orientation, and surface features listed in Table I, but here,
the points we used include points within all supervoxels in the
local neighborhood.Hr is calculated according to the contextual
feature listed in Table I. Then, the detrended geometric feature
vector Hd is obtained by the following operation:

Hd = Hv −Hl. (2)

The output vector of features H is achieved by a weighted
concatenation of Hv , Hd, and Hr

H = [HT
v , k ·Hd

T , Hr
T ] (3)
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Fig. 6. Generation of the vector of features.

where k is the factor weighting the strength of the local tendency,
estimated by the number of used supervoxels. Finally, a vector
of features with 33 bins for supervised classification is achieved.
We illustrate the concatenation of different geometric features
in Fig. 6.

It is noteworthy that compared with the method given in [11],
in our approach, we do not use radiometric features (e.g., RGB
color or intensity), and only 3-D coordinates are utilized. To
some extent, our proposed detrended geometric feature uses a
similar strategy like the difference of normal feature presented
in [49], which generate the difference of angles between normal
vectors estimated from various sizes of neighborhoods. The
difference is that what we used is more than normal vectors,
instead, also get the difference of local geometries, height values,
verticalities, and densities. Besides, we also consider the contex-
tual features representing the interaction between the supervoxel
and its context.

C. Initial Labeling With RF

The supervised classification using the classical RF algo-
rithm [50] is implemented to distinguish supervoxels with dif-
ferent predefined labels. An RF classifier combines a number
of decision trees that are created by randomized vectors that
are sampled independently of the input vector of features. Each
decision tree votes to elect the most probable label of the sample
of the input vector [50]. Besides, the RF classifier will grow a
tree at each node, which enforce it to be insensitive to overfitting
following the strong law of large numbers. During training, the
bagging method is applied to each combination of features, gen-
erating a training dataset by drawing N examples with random
replacement. Here, N is the size of the original training set.
After the supervised classification, each supervoxels Vi as well
as all the points within it will be given a soft label Pi, where
P ∈ S and S = {p ∈ [0, 1]K|∑k∈K pk = 1}. The probability
of a supervoxel Vi having the label k ∈ K is calculated by

Pi,k =
Nk

Nt
(4)

where Nk is the amount of decision trees voting for class k,
while Nt is the number of all the trees.

Fig. 7. Global graph structure. (a) 3-D scene. (b) Supervoxelized 3-D space.
(c) Generated global graph of labeled supervoxels.

D. Graph Structured Global Smoothing of Labels

To refine the results of RF, we adopt a global optimization for
spatial smoothing based on the perception-weighted graphical
model, as advocated in [51]. This optimization aims to find an
improved labeling result P̂ , and the solution should provide the
labeling of supervoxels with enhanced spatial smoothness and
remain as close as possible to the input labeling P [41].

1) Construction of Perception-Weighted Graphical Model:
The idea of using perception-weighted graphical model is that
we assume that the graphical model could naturally represent the
spatial space of 3-D scenes. Here, perceptual grouping, referring
to the determination of regions and parts from visualization and
perception that should belong to the same piece of higher-level
perceptual elements [52], is adopted. This is because, for all
the points of the same object, they are likely to form a smooth,
continuous, and convex surface. Thus, to encode the spatial con-
straint from the aspect of perceptual grouping laws, we consider
cues of proximity, continuation, and similarity, measuring the
spatial distance, the difference angles of normal vectors, and the
difference between feature vectors.

More specifically, to structure the objective functional of this
optimization, we first construct a weighted graphical modelG=
(V,E,W ), in which nodes denote supervoxels, and the edges are
assigned with weights W . Regarding each supervoxel Vi ∈ V
as a node, all supervoxels of its KNN in Euclidean space will be
connected. Then, a global graph is composed of all the connected
nodes. An illustration of the generated global graph can be found
in Fig. 7. Here, {P1, P2, . . ., Pn} is given initial labels of n
supervoxels, and the weight W (i, j) of edge e(i, j) between
Vi and Vj is assessed by the proximity relating to the spatial
distance ΔXij , the continuation relating to the difference of
normal vector angles ΔAij , and the similarity relating to the
difference of feature vectors ΔHij . The weight value W (i, j)
ranges from 0 to 1. The spatial distance represents the Euclidean
distance between Vi and Vj

ΔXij = || �Xi − �Xj ||2 (5)
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while the difference angles of normal vectors ΔAij between
planes formed by points within supervoxels Vi and Vj

ΔAij = ∠( �Ni, �Nj). (6)

For measuring the similarity Cs
ij between Vi and Vj , the differ-

ence ΔHij between Hi and Hj is used

ΔHij =

8∑

k=1

(
hi(k)− hj(k)

hi(k) + hj(k)

)2

. (7)

Here, the smaller the value ΔHij , the more similar the 3-D
shapes between two objects. Finally, the weight of edges is
computed with the following:

W (i, j) = exp

(
−δxΔXij + δaΔAij + δhΔHij

2θ2

)
(8)

where δx, δa, and δh are weight factors, and θ is the bandwidth
of the Gaussian kernel.

2) Optimization of Graphical Model: The above-mentioned
graphical model can be formulated to an optimization problem.
P ∗ is the solution of the structured optimization problem

P ∗ ∈ argmin
Q∈Ω

∑

i∈V
φ(Pi, Qi) +

∑

(i,j)∈E
λ · ψ(Qi −Qj) (9)

where φ and ψ stand for the fidelity term and the regularizer,
respectively. The strength of regularization λ is a positive value
denoting the strength for regularization and Ω represents the
search space. The fidelity term φ(P,Q) influencing the initial
labeling P will decrease if Q is closer to P . By contrast, the
regularizer ψ(Qi, Qj) guarantees that optimized labels of Vi
and Vj are spatially smooth. λ balances the influence of the reg-
ularization regarding the fidelity term [41]. Here, the penalizer
ψ(a, b) influences the relation between adjacent nodes Va and
Vb, and is thus determined by Potts model [53]

ψ(a, b) =

{
0 if Pa = Pb

1 if Pa �= Pb

(10)

where la and lb are the labels of Va and Vb. The regularization
strength λ is estimated as follows:

λ = exp

(
− (dij)

2

δ2

)
(11)

where dij is the weight (i.e.,W (i, i)) between two supervoxels,
and δ is the expectation of all neighboring weights. While
the fidelity term φ(p, q) is a smooth and convex function,
which is calculated following a linear-logarithmic function of
the observed probability, which tends to induce discrete hard
labels [41]:

φ(p, q) = −
∑

k∈K
qklog

(α
k
+ αpk

)
(12)

where α ∈ [0, 1], and the entrywise logarithm can make the
observed probability to be smoothed to prevent numerical
issues [41].

The minimization problem is solved by a graph-cut strategy
using the alpha expansion, which can quickly find an approxi-
mate solution with a few graph-cut iterations. The implementa-
tion of the alpha expansion is achieved by the use of GCO-V3.0
library [54]–[56]. Here, the labeling cost is not considered since
we assume that labels of all the objects are independent so
that all elements in the labeling cost matrix are set to one,
except the diagonal ones setting to zero. The optimization results
automatically adapt to the underlying scene without the need for
predefined features of certain potential objects.

IV. EXPERIMENTS

A. Test Datasets

Experiments are conducted on two different datasets in urban
scenes, including TUM city campus dataset [57] and Seman-
tic3D dataset [58]. For the TUM MLS dataset, the testing site
is in the area of the city campus of the Technical University
of Munich, covering around 80 000 m2. Fraunhofer Institute of
Optronics, System Technologies and Image Exploitation (IOSB)
[57] originally acquires this dataset. Two Velodyne HDL-64E,
used for acquiring point clouds, are mounted on the top of the
vehicle [57].

For the evaluation process, the ground truth is generated
by manually labeling of point clouds. As a consequence, a
highly precise reference of the entire city campus is made. In
Fig. 8, the labeled scene with eight semantic classes is rendered
by eight different colors, including building, high vegetation,
low vegetation, vehicles, human-made terrain, natural terrain,
hardscape, and scanning artefacts [27].

While the TLS dataset is used to further test the versatility
of our classification method on point clouds with varying point
density. Here, we used the popular Semantic3D dataset pub-
lished by ETH Zürich [27]. This dataset is manually labeled
into eight different classes, namely building, hight vegetation,
low vegetation, vehicles, human-made terrain, natural terrain,
hardscape, and scanning artefacts. In this experiment, the scans
we used are Bildstein and Untermaederbrunnen. Each scene has
three scans, and we use two of them as training dataset and
the rest one as test dataset. In Fig. 8, we show the manually
labeled reference of these two scenes, with labels provided by
www.semantic3d.net.

B. Evaluation Metric

For the evaluation of the classification, we follow the Pascal
VOC challenges [59] and use Intersection over Union (IoU)
averaged over all classes. The evaluation measure for class i is
defined as

IoUi =
TPi

TPi + FPi + FNi
. (13)

The main evaluation measure is the IoU, which is the average
summation of IoUi for each class i. Moreover, the overall
accuracy (OA) are also calculated

IoU =
1

N

N∑

i=1

IoUi (14)

www.semantic3d.net
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Fig. 8. Testing dataset with manually labeled reference.

Here, for the labeled result of each class, TP denotes the true
positive, which is the number of points correctly labeled as this
class, namely the points with correct labels. FP stands for the
false positive, which means the number of points with incorrect
labels. FN is the false negative, which is the number of points
which should be labeled as other classes, but incorrectly labeled
as this class. Besides, the precision (Pre.) and recall (Rec.) values
are also given for assessing the performance, and finally, the OA
will be calculated as well.

OA =

N∑

i=1

(
TPi

TPi + TNi + FPi + FNi

)
. (15)

V. RESULTS AND DISCUSSION

A. Preprocessing

Although the dataset suits well for the work, it has some
drawbacks. For instance, the original dataset is exceptionally
dense, including more than one billion points only for the
Arcisstrasse, which could not be handled efficiently. Besides,
the alignment between scans is not so accurate, that the objects
are usually with variable thickness. Therefore, appropriate pro-
cessing for later work is necessary. The original raw point cloud
is preprocessed first by the statistical outlier removal filter, and
then down sampled. Preprocessed points have been reduced to
around 50 million points, namely about only 5% of the original
point cloud. In Fig. 9, a comparison between a subscene of the

Fig. 9. Preprocessing of point clouds. (a) and (d) Original point clouds.
(b) and (c) Preprocessed point clouds.

raw and preprocessed point clouds is illustrated. It is shown that
apparent noise and outliers are removed, while the structures of
objects are well preserved.

B. Experimental Results

In semantic labeling experiments, our algorithms used for
feature extraction and initial classification are implemented via
C++ which is run on an Intel i7-6700 CPU @ 3.4 GHz and with
32.0 GB RAM.
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TABLE II
COMPARISON FOR CLASSIFICATION RESULTS USING TUM DATASET WITH DIFFERENT FEATURES

1) Results of Using TUM Datasets: When using the TUM
datasets for conducting a supervised classification, we use only
the area along the Acissstrasse as the training set, nearly 30% of
the entire dataset, while the rest of the dataset (around 70%) is
used as the testing set. For assessing the effectiveness of our pro-
posed detrended features and the graph-structured optimization,
we compared the method (termed as SV, i.e., using Hv) using
merely features from points of the supervoxel without the local
neighborhood information, the method (termed as CX, i.e., using
Hl) using features from the local neighborhood information, the
method (termed as RL, i.e., using Hd and Hr) using features
removing the local tendency and the local contextual features,
the method (termed as DE, i.e., using H) using our proposed
detrended features without graph-structured optimization, and
our proposed method (termed as DEGO, i.e., usingH and graph
optimization) with using our proposed detrended features and
our graph-structured optimization. For the setting of key param-
eters, the size of the voxel is 0.3 m, while the seed resolution
of supervoxels is 1.0 m. For the weight factors in the boundary
refined process,wn is set to one, whilewd is set to the reciprocal
value of the size of voxels. The number of trees used in our RF
classifier is 200. The default threshold for the graph cut is set
to 0.5. Finally, we reach an OA of better than 0.86, for labeling
eight semantic classes (see the legend in Fig. 8). In Table II, the
comparison of classification results of using different features is
shown.

With respect to the OA, methods using our detrended geomet-
ric features can overweight other methods, having an improve-
ment of around 1% and 7%, respectively. It means that using
the features removing the local tendency can get equivalent
or even better performance as the one of using features from
single supervoxel, with merely 1% improvement. However,
when combining these two vectors of features, the accuracy
can be drastically improved with 7%. This is because that in
the combined situation, the original geometric features are kept,
and at the meanwhile the details are enhanced, which facilitates
the feature expression. For the IoU measures, our approach
outperforms others as well. In particular, for scanning artefacts
and vehicles, which are likely to be labeled as the building
facades and low vegetation, our detrended feature can gain better
IoU measures. The effectiveness of our detrended features can
be backed by the analysis of features as well. In Fig. 10, we also
provide a summary of feature importance of different vectors

Fig. 10. Importance of feature vectors used in RF classifier.

in the RF process. As shown in the figure, we can observe that
the last three vectors representing the contextual features play an
important role in decision trees. Besides, the vectors of detrended
features from the bins 15 to 30 in the vector of features are also
essential to the creation of decision trees, with a higher averaged
value of importance compared with those of the features from
the supervoxel itself.

While the comparisons of classification results of using dif-
ferent graph cut thresholds τ are given in Table III, and it seems
that with an increasing threshold of τ , we can achieve a better
OA. However, what stands out is the low vegetation, which has
been totally categorized into wrong classes after the optimization
process when using a high threshold for graph optimization.
This is because a high threshold of τ will result in large cliques
in the graphical model after the optimization and vice versa.
The generation of such large cliques will force small cliques or
nearby nodes to merge into a large clique so that for small objects
with different initial labels, they will be wrongly optimized.

Benefiting from the preclustering, one advantage of
segmentation-based classification methods over classical point-
based classification methods is the in-sensitiveness to outliers
and noise. Meanwhile, the supervoxel structure also has some
disadvantages. For instance, choosing the appropriate voxel size
is a compromise between noise suppression and detail preserva-
tion and unify uneven density. The larger the voxel, the smoother
the details. Obviously, for traditional boundaries, such as the
right-angled corners of the corners formed by smooth walls,
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TABLE III
COMPARISON FOR CLASSIFICATION RESULTS USING TUM DATASET WITH DIFFERENT GRAPH CUT THRESHOLDS

Fig. 11. Classification results. (a) Initial classification result of TUM campus. (b) Optimized classification result of TUM campus. (c) Optimized classification
result of Bildstein. (d) Optimized classification result of Untermaederbrunnen.

our fine-grained boundary supervoxels can accurately find out
these boundaries. However, when irregular edges are involved,
for example, due to the presence of French windows, the edges
between the walls and the ground, the boundaries found by
supervoxels are biased. Besides, for small objects like minor
scanning artefacts, if the size of the supervoxel is too large, they
are easily blurred by their background and cannot be described
correctly. This can be seen from the initial result that large
objects like buildings and high vegetation can always achieve
a good IoU value.

To have a complete view of the classification performance,
we apply the trained classifier mentioned above to the entire
TUM dataset, which is nearly four times larger than the training
data of the Arcisstrasse. The classification result of our method
is given in Fig. 11. As seen from the figure, corresponding

to the performance shown in Table III, the semantic labeling
result of the entire experimental area is given. In the result,
we can find that majority of buildings, man-made terrain, and
high vegetation are labeled correctly. Besides, we can find that
our purposed method reveals excellent potential in positioning
stationary vehicles, although this can only be achieved after
the optimization. In Fig. 12, we give a detailed view of the
optimization of vehicles and buildings. The initial classifica-
tion result of vehicles is questionable because in fact, parts
of points of vehicles are occluded due to the view direction
of observation. These occluded observations of vehicles make
the supervoxel of cars and buses look like part of hardscapes.
After the optimization, those wrongly labeled supervoxels can
be corrected. However, if the initial label of the local area is
biased, as the lower-left corner of the campus scene in Fig. 12,
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Fig. 12. Comparison of results before and after the optimization (the area in the boxes of Fig. 12). (a) Initial classification result. (b) Optimized classifi-
cation result. (c) Ground truth of TUM campus. (d) Initial classification result. (e) Optimized classification result. (f) Ground truth of Untermaederbrunnen.
(g) Initial classification result. (h) Optimized classification result. (i) Ground truth of Bildstein.

the optimization may make the situation worse. In this area,
large parts of the road surface are initially labeled as natural
terrain, so that the optimization is failed because for nodes
in the graphical model, all their neighbors have wrong labels.
Besides, due to the complexity of the large testing area, there
are misclassifications, such as “sparkling effects” [11], where the
area within the facade of the building is incompletely measured
and too sophisticated for classification. Thus, certain parts of
the inner building structure are considered to be disturbing
objects. Although part of the fragmentation error label is nor-
malized, there are still a large number of areas with incorrect
labels.

For a further evaluation of the performance of our proposed
method, we also compared our proposed method with other two
baseline methods PointNet [60] and PointNet++ [61], which are
both renown deep learning based classification methods for 3-D
points. In Table IV, we illustrate the comparison of the classi-
fication results. Here, the training and testing datasets we used

for PointNet and PointNet++ are the same as those used in our
method. Here, to fulfill the requirement for input in PointNet and
PointNet++, the entire point cloud is subdivided into thousands
of subpoint chips, in which 10 000 points are contained. These
chips are downsampled to 8192 points, which represent the main
structure of each chip, and the downsampled chips serve as the
input for PointNet and PointNet++. Each point in the chip is
represented by a 3-D vector, containing the coordinates (x, y, z).
For the training process, each training batch contained in a total
of 16 chips. The stochastic gradient descent algorithm with a
learning rate η = 0.001 and a momentum value of p = 0.9 was
utilized. For adjusting the learning rate, we decayed its value
by the factor of 0.7 in every 40 training chips. The training
process lasts for a total of 500 epochs. We monitor the progress
of the validation loss and save the weights if the loss improves.
Both of these methods were implemented via Tensorflow and
carried out by a NVIDIA TITAN X (Pascal) 12 GB GPU. As seen
from the results, our proposed method has significant advantages
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TABLE IV
COMPARISION OF CLASSIFICATION RESULTS USING TUM DATASET WITH DIFFERENT METHODS

Fig. 13. Comparison of classification results using different methods. (a) Classification result using PointNet. (b) Classification result using PointNet++.
(c) Classification result using our proposed method.

over these two baseline methods, when checking the overall
accuracies. Especially, our proposed method outperforms the
others when labeling buildings, man-made terrain, and high veg-
etation. The possible reason could be that the these three kinds of
objects have generally isotropic geometric characteristics, which
can facilitate the graph-based optimization process considering
the local contextual information. However, for the vehicles and
low vegetation, the deep learning based methods show better
results. One of the explanations could be that the features used in
the deep learning based methods are not generated from feature
engineering. Instead, they are generated by supervised learning,
so, theoretically, they should perform better when dealing with
irregular shaped objects. However, due to the lack of training
samples, they cannot fully perform the advantages of neural
networks. On the other hand, this can also be regarded as the
merits of our proposed method. Similarly, we apply the trained
models of PointNet and PointNet++ to the entire TUM dataset.
The results of different methods are shown in Fig. 13. As seen
from the figure, the visualization results can also support the
quantitative evaluation results that our proposed method per-
forms better when discriminating buildings and high vegetation,
but is weak at classifying vehicles and low vegetation.

2) Results of Using ETH Datasets: We tested our method
using the semantic3D dataset provided by ETH Zürich [27], in
order to explore the full potentiality of our feature extraction
method. It is worth noting that the semantics 3-D dataset is
measured by TLS that causes the density of the points to vary
with the distance between the station and the object. Here, the
voxel size is 0.3 m and the supervoxel seed resolution is 1.0 m.
For the weight factors in the boundary refined process, wn and
wd are set to one and the reciprocal value of the size of voxels,
respectively. The number of trees used in our RF classifier is 200.
The default threshold for the graph cut is set to 0.75. In Fig. 11,
we provide results for the experimental scenario. As illustrated
in the results, for our main concerns like buildings, roads, and
tall trees, the results of our method reveal the enormous potential
when using our detrended features. Our optimization is suitable
to the points of the building and the high vegetation, but for areas
with significant changes in density, the artificial terrain is easily
considered to be a natural terrain.

The evaluation of using two datasets is given in Tables V
and VI. In the experiments of Bildstein scene, we used the
scans of Bildstein 3,5 for training. Then, the point cloud of
Bildstein 1 is used for validation, classifying points into eight
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TABLE V
EVALUATION FOR CLASSIFICATION RESULTS USING BILDSTEIN DATASET

TABLE VI
EVALUATION FOR CLASSIFICATION RESULTS USING

UNTERMAEDERBRUNNEN DATASET

classes. As given in the table, we can observe that our method
can still get an outcome having an OA of 0.811. Interestingly,
the classification of vehicles, low vegetation, and hardscapes
are almost failed in the test. The primary reason is due to the
insufficient number of training samples, which is a frequent
problem for segment-based point cloud classification, namely,
for objects without enough training samples, like hardscapes
and vehicles, the labeling is always failed. In contrast, for those
objects having enough training samples, for instance, buildings
and artificial terrain [see Fig. 12(e)], satisfying results can be
achieved.

In the experiments of the Untermaederbrunnen scene, the scan
we used for training is Untermaederbrunnen 1. For evaluation,
the scan of Untermaederbrunnen 3 is used, involving all eight
classes. As shown in the table, our proposed method can achieve
an OA of 0.804. Similar to the result of the previous scene,
buildings, man-made terrain, high vegetation (see Fig. 12) can
obtain good OA, but for the natural terrain and vehicles both
the initial labeling and optimization failed due to the insuffi-
cient training samples. It is noted that for vehicles, TLS laser
scanning may cause more severe occlusions so that the scan-
ning points of vehicles have confusing geometry like that of
hardscapes.

Indeed, the result of using the ETH dataset cannot compare
with the methods, which have higher OA reaching 0.9, but
considering that our proposed method is supervised and requires
much less training dataset, the results are satisfying. Besides,
for the object of our primary concern (i.e., buildings), both our

proposed detrended features and graph-structured optimization
perform well, and the voxel-based data structure significantly
accelerates the processing speed. For practical applications,
LiDAR points are always textured with reliable intensity or RGB
color, the performance of our method can be further improved
by this radiometric information like in [11]. Moreover, in our
proposed method, we only use the RF classifier for obtaining
the initial labels, but in fact, any classifier providing soft labels
can be used in our methods. An excellent initial labeling result
can significantly improve the effectiveness of graph-structured
optimization. In future work, a better initial labeling method
could be utilized.

VI. CONCLUSION

In this work, we proposed a supervised point cloud classi-
fication method using a novel detrended geometric features,
removing redundant and insignificant information in the local
neighborhood of the supervoxels. The proposed feature ex-
traction method uses the supervoxel-based local neighborhood
instead of points as basic elements, encapsulating the geometric
features of local points. Based on the initial classification re-
sults, the graph-based optimization is used to spatially smooth
the labeling results, based on the graphical model using the
perception weighted edges. The optimization of labeling can
be naturally represented in terms of energy minimization [62].
We minimize the energy function constructed with a data term
and piecewise smoothness term via a graph cut algorithm, i.e.,
alpha-expansion proposed in [54], which finds a good approx-
imate solution by iteratively running min-cut/max-flow algo-
rithms on an appropriate graph. This move making algorithm
iteratively selects a label and considers moves increasing the
clique of pixels that are given this label if the movement has
lower energy. Besides, the constructed energy function can be
justified in the context of maximum a posteriori estimation
of Markov Random Fields. The discrete multilabel MRF are
solved by applying min-cut/max-flow algorithms iteratively to
binary-labeled piecewise MRF [63]. At the moment, our result
of using the Semantic3D dataset cannot be compared with the
state-of-the-art methods with OA reaching 0.9 yet, but for the
object of our primary concern (i.e., buildings), both our proposed
detrended features and graph-structured optimization perform
well, and the voxel-based data structure significantly reduce the
number of elements needed to be processed, which is similar to
a downsampling procedure. However, we should also admit that
the handcrafted feature has naturally drawbacks compared with
those generated from supervised learning, because it is always
difficult to manually design the feature expression algorithm and
tune the parameters, although they may perform in some specific
situations. In the future, features generated by the learning based
methods should be more promising and of wide use.
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