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Part I

Introduction

1 General introduction

Imagine that we have a set of indistinguishable particles and a graph. Initially, we
place the particles on different sites of the graph. We then let the particles move
independently according to a given transition rule. However, when a particle tries to
move to an occupied site, this move is suppressed. For a given graph, a given initial
distribution of the particles, and a given transition rule, what can we say about the
long-term behavior of the system?

The main goal of this thesis is to investigate this question when the particles perform
simple random walks. In this case, the above-described dynamic is called the simple
exclusion process. The simple exclusion process is a model with a long history. In the
late 1960s, a version of this model was first studied in biology by MacDonald, Gibbs,
and Pipkin, where the particles represent ribosomes moving along the RNA [100].
Nowadays, the exclusion process has various applications, such as a model for cars
in a traffic jam or molecules in gases [30, 71, 111]. A first study in the mathematical
literature is attributed to Spitzer in 1970; see [133]. Since then, over the last decades,
the exclusion process equally raises scientists’ attention from probability, statistical me-
chanics, and combinatorics; see [21, 89, 94, 140] for review papers in the respective areas.

The simple exclusion process is a natural example of a Markov process. Informally
speaking, for a Markov process, it suffices to know its current state to determine the law
of its future evolution. When the underlying graph of the exclusion process is infinite
but locally finite, a characterization of the limit behavior is of significant interest. We
achieve first insights by investigating the set of invariant measures. For example, it
is a classical result that the Bernoulli product measures with constant parameter are
extremal invariant measures for the exclusion process when the graph and the rates are
translation invariant under spatial shifts; see [94]. In general, studying the behavior of
the exclusion process in and out of equilibrium reveals surprising phenomena. These
include phase transitions and the formation of shocks, i.e., an abrupt change in the
particle density; see [56, 51, 53, 54, 137]. The main observable to describe these phe-
nomena is the current. The current quantifies the number of particles passing through a
given location over time. The moments of the current are closely related to the motion
of second class particles [10]. Intuitively, second class particles are perturbations of
the system as they act as particles with respect to empty sites and as empty sites
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1 General introduction

with respect to particles. In particular, the fluctuations of the current of a simple
exclusion process on the integers with drift can be expressed using the mean of the
displacement of a single second class particle started from the origin within a Bernoulli
product measure. We see either a diffusive or a sub-diffusive behavior of the current
depending on the product measure parameter; see [11, 53, 112]. Furthermore, we can
identify shocks using second class particles [51, 54, 55]. More precisely, suppose that
we consider the simple exclusion process on the integers and start with a shock at the
origin, i.e., we associate two product measures to the positive and negative integers
with different parameters. We place a second class particle at the transition point. It is
a classical result that the second class particle will stay close to the shock location for
all times under certain assumptions on the parameters in the product measures [51].

A different way of gaining insights on the long-term behavior of the exclusion pro-
cess is to study the motion of a single particle within the system, referred to as the
tagged particle. In the following, we focus on the speed of the tagged particle and
its fluctuations around the expected position over time. Consider the d-dimensional
lattice, where the transition probabilities are given by a simple random walk with
drift, and where we start from the invariant Bernoulli-ρ-product measures with pa-
rameter ρ. In this case, the speed of the tagged particle is 1 − ρ times the speed
of a single particle; see [78, 114]. This formula for the speed is what one expects:
since the density of empty sites is 1 − ρ, only a proportion of 1 − ρ of the steps are
carried out. In one dimension, Arratia proved that the symmetric simple exclusion
process has a subdiffusive behavior [4]. Kipnis and Varadhan studied the fluctuations
of the symmetric simple exclusion process on Zd with d ≥ 2 and proved a diffusive
behavior [79]. These articles had a significant impact on further work for exclusion
processes and related processes; see [80] for an overview. For a general introduction
to exclusion processes and other interacting particle systems, we refer to Liggett [94, 95].

When the infinite system is too complicated to be analyzed directly, an alternative
is to study finite particle systems as approximations. We treat the corresponding
exclusion processes as continuous-time Markov chains on a finite state space. When
the underlying graph is the integer lattice, we consider the simple exclusion process
with open boundaries as a natural model to approximate the infinite system. In this
process, we allow particles to enter and exit at the segment’s endpoints in addition
to the particle movement under the exclusion rule. The simple exclusion process with
open boundaries is, in general, not reversible and it is one of the simplest examples of
a non-equilibrium system. Informally speaking, this means that the mean position of
the particles does not stay fixed over time. We quantify this observation by studying
currents for the simple exclusion process with open boundaries; see Section 6.3.2 for a
more detailed discussion. Currents were investigated for symmetric transition rates
within the segment in [87]. For general boundary parameters and drift, Uchiyama et al.
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determined the first-order of the current using Askey–Wilson polynomials [137] . This
extended previous results of Blythe et al. [22]. Current fluctuations for the asymmetric
simple exclusion process with open boundaries were investigated in [69, 88]. Related
spectral properties can be found in [42, 41, 43], among others. Furthermore, there
are deep connections to the Kardar–Parisi–Zhang universality class; see [35, 37, 39, 108].

Over the last decades, invariant measures of the simple exclusion process with open
boundaries were intensively studied; see [94, Part III, Section 3]. An important tool
is the matrix product ansatz. It is in an implicit form already given in [92] and was
successfully applied for the simple exclusion process with open boundaries in [45]
when particles can move only in one direction. Informally speaking, we assign in the
matrix product ansatz to every configuration a weight that consists of a product of
matrices and vectors. The matrices and vectors must satisfy certain relations, usually
called the DEHP algebra; see [45]. The matrix product ansatz allows to study the
mean current, the density profile, and correlations within the stationary distribution;
see [117, 137, 138]. Representing the weights in the matrix product ansatz is a combi-
natorial question that gained lots of recent attention. It led to descriptions such as
weighted Catalan paths and staircase tableaux; see [23, 33, 101]. These representations
are closely related to Askey–Wilson polynomials, building on the works of Sasomoto
and Uchiyama et al. [116, 137]. Similar expressions hold for the simple exclusion process
with second class particles using Koornwinder polynomials — see [26, 32] — and were
recently extended for more than two different kinds of particles [27, 61, 102].

When no particles are allowed to enter or exit the finite system, a main question is
to quantify the convergence to the equilibrium from an arbitrary starting configuration.
This problem has a particular motivation coming from card shuffling: suppose that we
have a deck of cards which we shuffle in the following way. In each step of the shuffle,
we pick a pair of adjacent cards uniformly at random and swap their positions. How
many steps does it take until a deck of N cards is well mixed? This dynamic of shuffling
cards is known as the random adjacent transposition shuffle, and more generally, as the
interchange process for arbitrary finite graphs. We reobtain an instance of the simple
exclusion process with k particles by projecting the first k cards to particles and all
other cards to empty sites. We study (total-variation) mixing times to quantify how
much time is required to mix. Informally speaking, for general Markov chains, the
mixing time determines when the law of the chain is close to its equilibrium for any
possible starting configuration. We are interested in the mixing time when the system’s
size grows. We say that a family of Markov chains exhibits the cutoff phenomenon,
if the transition from unmixed to mixed occurs in a short time interval compared to
the total amount of time needed to mix. Diaconis and Shahshahani discovered this
phenomenon in [46] in the year 1981 and it obtained its name in a seminal paper by
Aldous and Diaconis [2]. It appears for a wide range of families of Markov chains and is
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2 Overview of the results

still not fully understood today; see [15, 18, 48, 65] for recent progress. However, many
techniques for achieving good bounds on the mixing time are now available. An intro-
duction to these tools can be found in [91] and we discuss a selection of them in Section 4.

For the symmetric simple exclusion process (SSEP), i.e., when the particles perform
symmetric simple random walks on the segment, the first-order term of the mixing
time is determined in [139] and [84]. In particular, we see cutoff when the number of
particles and empty sites goes to infinity together with the size of the segment. The
proof for the lower bound in [139] uses spectral techniques. The upper bound in [84]
follows from a clever combination of various properties of the SSEP. For the asymmetric
simple exclusion process (ASEP), i.e., when the particles perform biased simple random
walks on the segment, Benjamini et al. showed that the mixing time is linear in the
size of the segment [19]. Recently, Labbé and Lacoin proved cutoff for the ASEP [81].
Furthermore, mixing times for exclusion processes were investigated for size-dependent
bias as well as on general graphs [72, 82, 90, 107]. All these investigations have in
common that the underlying simple exclusion process is reversible. Many techniques for
precise bounds on the mixing time require reversibility and do, for example, not apply
for the simple exclusion process with open boundaries. To our best knowledge, mixing
times for a non-reversible simple exclusion process were previously only investigated
for the asymmetric simple exclusion process on the cycle [60].

2 Overview of the results

This thesis is based on the following five publications and preprints:

• [119, Section 5]; published in Electronic Journal of Probability,

• [66]; submitted, joint work with Nina Gantert and Evita Nestoridi,

• [29]; published in Electronic Communications in Probability, joint work with
Dayue Chen, Peng Chen and Nina Gantert,

• [67]; published in Electronic Journal of Probability, joint work with Nina Gantert,

• [62]; submitted, joint work with Nina Gantert and Nicos Georgiou.

The content of the material presented in this thesis mainly follows the publications
and preprints. The presentation will differ at several points, e.g., we provide additional
explanations and figures. We will now give an outline of the thesis.

In the remainder of Part I, we introduce the exclusion process as an interacting
particle system. We state preliminary results on the existence of the exclusion process
as a Feller process and present a selection of classical properties. This includes the

4



characterization of the extremal invariant measures of the simple exclusion process as
well as its graphical representation and canonical coupling.

In Part II, we study the simple exclusion process on segments of the integers. We
focus on two cases: The simple exclusion process in a random environment and the
simple exclusion process with open boundaries. Following [119, Section 5], we study in
Section 5 a site-dependent random environment ω = {ωx}x∈{1,...,N} for the segment of
size N , where the elements ωx are i.i.d. according to a distribution ν on (0, 1]. Here, a
particle at a site x moves to the right at rate ωx and to the left at rate 1−ωx whenever
the target is a vacant site. We quantify the speed of convergence to the equilibrium
using mixing times. Suppose that the environment law is marginally nestling with a
bias to the right-hand side, i.e., ν is supported on [1

2
, 1]. Then the order of the mixing

time is at most N log3(N) with probability tending to 1 when N goes to infinity.

We then study mixing times for the simple exclusion process with open boundaries
in homogeneous environments. This part is based on joint work with Nina Gantert
and Evita Nestoridi [66]. For symmetric rates and general boundary conditions, we
prove that the mixing time is at least the mixing time of the simple exclusion process
on the closed segment to first-order; see also [84]. Moreover, we establish the cutoff
phenomenon when particles can enter and exit only from one side. The analysis for
the simple exclusion process with drift is more delicate. For closed segments, the
mixing time is always linear in the size of the segment; see [19]. We see different
regimes of the mixing time depending on the boundary parameters. In particular,
we study the case where particles can enter and exit at both sides of the segment
and produce a positive linear current. This is from a physical perspective arguably
the most exciting regime. Compared to previous results for exclusion processes, this
case is harder to analyze since many essential properties such as a monotone height
function representation, a reversible measure, or the conservation of particles are no
longer available. We introduce multi-class particle arguments to prove that the mixing
time in the high density and in the low density regime is linear in the size of the segment.

In Part III, we start with a brief overview of related work for currents and tagged
particles. We then investigate tagged particles in exclusion processes on trees. This part
is based on joint work with Dayue Chen, Peng Chen, and Nina Gantert [29, 67]. We
consider the exclusion process on rooted d-regular trees. We assume that the particles
move according to symmetric transition rates that are translation invariant, irreducible,
and of finite range. For ρ ∈ (0, 1) fixed, we start from a Bernoulli-ρ-product measure
conditioned on having a particle at the root — our tagged particle. Our goal is to prove
limit laws for the statistics of tagged particles, measured in terms of the shortest path
distance on the tree. For d ≥ 3, we show that the tagged particle has a positive linear
speed, which we determine explicitly. It turns out that the speed scales linearly in the
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2 Overview of the results

particle density ρ. Further, we prove a central limit theorem for the tagged particle on
the d-regular tree when d ≥ 3, following the classical results of Kipnis and Varadhan [79].
For d = 2 and nearest neighbor transition rates, a subdiffusive behavior was shown in [4].

For simple exclusion processes, i.e., when the particles perform only nearest neighbor
moves, we extend the results to non-regular trees. More precisely, we consider an
offspring distribution with support in N. We define a Galton–Watson tree by choosing
a starting position o as the root. Recursively, starting from o, we then draw for every
site a number of descendants independently according to the offspring distribution.
Since the root has, on average, one neighbor fewer than all other sites, we add one
additional descendant to o, and apply the same recursion to obtain an augmented
Galton–Watson tree. We define the simple exclusion process on a fixed augmented
Galton–Watson tree in two different ways: In the variable speed model, each particle
at a site x has an exponential waiting time with parameter deg(x) independently of all
other particles. In the constant speed model, the particles have exponential waiting
times with parameter 1. In both cases, we let the simple exclusion process start from
an equilibrium distribution with non-vanishing particle density and consider the tagged
particle initially placed at the root. We show in both models that the tagged particle
has almost surely a positive linear speed and we give explicit formulas for the speeds.
We see a linear scaling in the particle density for the variable speed model, similar to
the d-regular tree. In the constant speed model, it turns out that the scaling of the
speed is in general smaller than linear in the averaged particle density.

In Sections 10 and 11, we consider the totally asymmetric simple exclusion process
(TASEP) on rooted trees with a reservoir. This part is based on joint work with Nina
Gantert and Nicos Georgiou [62]. In the TASEP, particles can only jump on an edge
along the direction pointing away from the root. In addition, particles are created
at the root according to a given rate whenever the root is vacant. Our interests are
two-fold. On the one hand, we study invariant measures for the TASEP on trees and
provide sufficient conditions for the existence of non-trivial equilibrium distributions;
see Section 10. In particular, we are interested in conditions which ensure that the
invariant measure has a non-trivial density when starting with all sites being empty. On
the other hand, we study the current of the TASEP, i.e., the number of particles that
have passed through a specific level of the tree until a particular time; see Section 11.
In this case, we let the underlying graph be a Galton–Watson tree with the above
assumptions on the offspring distribution. We give upper and lower bounds on the
current for general rates. For regular trees with the same rates at each tree level, we
provide refined bounds on the current. An essential step in the analysis of the current
is to understand how the particles disentangle on the tree over time. This is a question
of independent interest.
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3 Preliminaries on exclusion processes

We will now give a brief introduction to interacting particle systems. We focus on
the simple exclusion process and related processes. The presented material is mainly
taken from Chapters 3 and 4 of [96] and Chapter VIII of [95] by Liggett, and we refer
the reader to these references for a more detailed discussion.

3.1 Construction and basic definitions

Let G = (V,E) be a locally finite graph with vertex set V and edge set E. Let
S = {0, 1, . . . , n} for some n ∈ N be a set of colors, also called spins. For a fixed graph
G and a set of spins S, let Ω := SV be the space of all vertex-colorings of G using
elements of S. We endow Ω with the product topology.

In the following, we focus on the case S = {0, 1}. We say for a configuration η ∈ Ω
that the site v ∈ V is vacant if η(v) = 0 holds, and occupied otherwise. Intuitively,
we think of the spins as indicators whether a certain site v ∈ V is occupied by a particle
(η(v) = 1) or empty (η(v) = 0). On the space {0, 1}V , we define two basic operations:
flipping and swapping. For η ∈ {0, 1}V , we write

ηx(z) :=

{
1− η(z) if z = x

η(z) if z 6= x
(3.1)

for the configuration which we obtain from η by flipping the value at x ∈ V and leaving
all other spins unchanged. For x, y ∈ V with x 6= y, we denote by

ηx,y(z) :=


η(x) if z = y

η(y) if z = x

η(z) if z 6= x

(3.2)

the configuration which we obtain from η by swapping the values at x and y, and again
leaving all other spins unchanged.

With these notions at hand, we will now define a stochastic process (ηt)t≥0 on Ω.
Consider a pair of functions c : V ×Ω 7→ R+

0 and p : V × V 7→ R+
0 , and let the operator

L be given by

Lf(η) =
∑
x∈V

c(x, η) [f(ηx)− f(η)] +
∑

x,y∈V : η(x)=1,η(y)=0

p(x, y) [f(ηx,y)− f(η)] (3.3)

7



3 Preliminaries on exclusion processes

for all cylinder functions f : Ω → R. The following theorem gives sufficient conditions
such that the closure of L yields a Feller process; see Chapter 3 in [96] for a definition
and a general introduction to Feller processes. It is a direct consequence of Theorem 4.3
and Theorem 4.68 in [96].

Theorem 3.1. Suppose that the function p in (3.3) satisfies

sup
x∈V

∑
y∈V : y 6=x

[p(x, y) + p(y, x)] <∞ . (3.4)

Moreover, assume that c in (3.3) is uniformly bounded, continuous in the second
component, and satisfies

sup
x∈V

∑
y∈V : y 6=x

sup
η∈S
|c(x, ηy)− c(x, η)| <∞ . (3.5)

Then the closure of the operator L is the generator of a Feller process.

When Theorem 3.1 holds for some operator L, we call the associated Feller process
(ηt)t ≥ 0 the exclusion process on G with transition rates p and c and generator L.
We say that the transition rates are nearest neighbor if

p(x, y) > 0 ⇒ {x, y} ∈ E
c(x, η) 6= c(x, ηy) ⇒ {x, y} ∈ E or x = y

holds for all x, y ∈ V . If the transition rates are nearest neighbor and c ≡ 0, we
call (ηt)t≥0 a simple exclusion process on G. For nearest neighbor transition rates,
Theorem 3.1 implies that for any graph G of uniformly bounded degree, i.e., when G
has a finite maximum degree, the operator L always gives raise to a Feller process on
Ω, provided that c and p are uniformly bounded. However, when the underlying graph
is locally finite, but does not have a uniformly bounded degree, the assumption (3.4)
in Theorem 3.1 may fail even for uniformly bounded rates p and c.

The next theorem generalizes Theorem 3.1 for the simple exclusion process on a larger
class of graphs. We remark that results of this type are well-known in the interacting
particle system community. However, we will give a formal statement and proof in the
following as we could not find an appropriate reference. Recall that G = (V,E) is a
locally finite, connected graph, and let o ∈ V be some distinguished, but fixed site of
G, called the root. Let pG ∈ [0, 1] denote the critical value for bond percolation on G,
i.e., we set

pG := sup {p ≥ 0: Pp(o is contained in an infinite open cluster) = 0} ,

where Pp denotes the law of Bernoulli bond percolation on G with parameter p.

8



3.2 Invariance and ergodicity

Theorem 3.2. Let G be a graph such that pG > 0 holds. Let (p(x, y))x,y∈V be a family
of nearest neighbor transition rates which are uniformly bounded from above. Then the
associated simple exclusion process on G with transition rates (p(x, y))x,y∈V is a Feller
process with respect to the operator given in (3.3).

The proof of Theorem 3.2 is deferred to Section 3.5. We will see an application of
Theorem 3.2 in Sections 9 and 11, where we study the simple exclusion process on
Galton–Watson trees. In the following, we will only consider graphs and transition
rates which satisfy either the assumptions of Theorem 3.1 or of Theorem 3.2. Hence,
the associated exclusion process will indeed be a Feller process.

Remark 3.3. Theorem 3.2 can be extended to show that interacting particle systems
with only nearest neighbor interactions and uniformly bounded transition rates on locally
finite graphs with strictly positive critical value for bond percolation are well-defined
Feller processes.

3.2 Invariance and ergodicity

In order to understand the limit behavior of an exclusion process, we are in particular
interested in its invariant distributions. We say that a probability measure µ on Ω is
invariant for the exclusion process (ηt)t≥0 if the process, when initialized with law
µ, will have law µ at any fixed time. Moreover, we call an exclusion process (ηt)t≥0

stationary or in equilibrium if (ηt)t≥0 is started from an invariant measure. An
equivalent way of defining invariant measures for Feller processes is the following
criterion which involves the generator. It is an immediate consequence of Theorem 3.37
in [96].

Theorem 3.4. Let (ηt)t≥0 be an exclusion process with generator L. A probability
measure µ is invariant for (ηt)t≥0 if and only if∫

Lfdµ = 0 (3.6)

for all cylinder functions f .

For a given exclusion process, we denote by I the set of all of its invariant measures.
Note that I is convex and denote by Ie its extreme points. We say that a probability
measure µ on Ω is extremal invariant for the exclusion process (ηt)t≥0 if µ ∈ Ie.
Extremal invariant measures play an important role in order to determine the long-term
behavior of the exclusion process. This can be see in the next theorem, which follows
from Theorem B.50 and Theorem B.52 in [94].

Theorem 3.5. Let (ηt)t≥0 be a stationary exclusion process with respect to some
invariant measure µ ∈ I. Then the following two statements are equivalent:

9
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• Let A be an event for the exclusion process (ηt)t≥0, which is time shift-invariant,
i.e.,

(ηt)t≥0 ∈ A ⇒ (ηt)t≥T ∈ A (3.7)

for all T ≥ 0. Then either A or Ac must hold almost surely.

• It holds that µ ∈ Ie.

Moreover, if one of the above equivalent statements holds, then

lim
t→∞

1

t

∫
f(ηs)ds =

∫
f(η)dµ (3.8)

almost surely for all bounded, measurable functions f : Ω → R.

In general, when a stationary process satisfies the first statement of Theorem 3.5, we
call the process ergodic. The consequence (3.8) for stationary and ergodic processes
is known as Birkhoff’s ergodic theorem.

3.2.1 Construction of invariant measures

In the following, we will construct a family of invariant measures for the simple exclusion
process on a graph G = (V,E) under certain assumptions on the transition rates. To
do so, we require a bit of setup. For a given function a : V → [0, 1], we denote by νa
the Bernoulli product measure on Ω with marginals given by a, i.e.,

νa(η(x) = 1) = 1− νa(η(x) = 0) = a(x) (3.9)

holds for all x ∈ V . We will write νρ for ρ ∈ [0, 1] whenever a ≡ ρ. Note that the
measures ν1 and ν0 are always invariant measures for the simple exclusion process for
any choice of transition rates (p(x, y))x,y∈V . We will now give a sufficient condition
such that νρ is invariant for all ρ ∈ [0, 1]. We say that the transition rates (p(x, y))x,y∈V
of a simple exclusion process satisfy a flow rule if∑

v∈V

p(x, v) =
∑
w∈V

p(w, x) (3.10)

holds for all x ∈ V . The following theorem is an immediate consequence of the proof
of Theorem 2.1 in [95, Chapter VIII].

Theorem 3.6. Let (ηt)t≥0 be a simple exclusion process on Ω with transition rates
(p(x, y))x,y∈V . If the transition rates satisfy a flow rule, then νρ ∈ I for all ρ ∈ [0, 1].

We obtain a one-parameter family of invariant measures for the simple exclusion
process in this way. In the particular case where the underlying graph and the transition
rates are translation invariant under spatial shifts, one can show that the measures νρ
are actually extremal invariant for all ρ ∈ [0, 1]; see Theorem 1.17 of [94, Part III].
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3.3 Graphical representation and canonical coupling

3.2.2 Construction of reversible measures

In the following, we will give another way of constructing invariant measures for the
simple exclusion process. The resulting measures will satisfy the stronger conditions
of reversibility. We say that a probability measure µ is reversible for an exclusion
process (ηt)t≥0 if its generator L satisfies∫

f (Lg) dµ =

∫
g (Lf) dµ (3.11)

for all cylinder functions f, g : V → R. Note that every reversible measure µ for an
exclusion process (ηt)t≥0 satisfies µ ∈ I. This can be seen by taking g ≡ 1 in (3.11)
and using Theorem 3.4. The following theorem provides sufficient conditions for the
existence of reversible measures for the simple exclusion process. It is an immediate
consequence of the proof of Theorem 2.1 in [95, Chapter VIII].

Theorem 3.7. Let (ηt)t≥0 denote the simple exclusion process on Ω with transition
rates (p(x, y))x,y∈V . Assume that there exists a measure π on V such that (p(x, y))x,y∈V
satisfies

π(x)p(x, y) = π(y)p(y, x) (3.12)

for all x, y ∈ V . Then νa with a(x) = π(x)
1+π(x)

for all x ∈ V is reversible for (ηt)t≥0.

Similar to Theorem 3.6, note that we obtain a one-parameter family of reversible
measures. While both Theorem 3.6 and Theorem 3.7 provide a way of constructing
invariant measures for the simple exclusion process, it is in general a difficult task
to determine for a simple exclusion process the set of all invariant measures I. In
Section 3.4, we will address this question for the simple exclusion process on the
integers.

3.3 Graphical representation and canonical coupling

Next, we introduce the graphical representation of the simple exclusion process,
which allows us to study the evolution of the process for different initial configurations
simultaneously. The graphical representation has the following description:

Consider a simple exclusion process (ηt)t≥0 and transition rates (p(x, y))x,y∈V . For
every pair (x, y) ∈ V × V with p(x, y) > 0, we assign a sequence of independent
Exponential-p(x, y)-distributed random variables, which we call (Poisson) clocks.
Each time a clock associated to a transition rate p(x, y) rings at time t, we check
whether the site x is occupied and the site y is empty, i.e.,

ηt(x) = 1− ηt(y) = 1

11



3 Preliminaries on exclusion processes

holds. If this is the case, then move the particle from x to y. Otherwise, the current
configuration remains unchanged. Note that there are at most countably many clocks,
and hence, there are almost surely no two clocks ringing at the same time.

Consider a pair of simple exclusion processes (ηt)t≥0 and (η̃t)t≥0 with the same
underlying graph and the same transition rates, but which may have different initial
distributions. We say that (ηt)t≥0 and (η̃t)t≥0 are within the canonical coupling, also
called basic coupling, if we use the same clocks to determine the evolution of both
processes within the graphical representation. Note that the canonical coupling natu-
rally gives raise to a grand coupling, in which the evolution of the simple exclusion
process can be determined for any possible starting configuration using only the clocks
of the graphical representation.

The canonical coupling has the property that it preserves the component-wise order
for the simple exclusion process. More precisely, we say for η, ζ ∈ {0, 1}V that η
dominates ζ with respect to the component-wise order, and we write η �c ζ, if

η(x) ≥ ζ(x) (3.13)

for all x ∈ V . The following proposition is an immediate consequence of the construction
of the canonical coupling, so we omit the proof.

Proposition 3.8. Consider two simple exclusion processes (ηt)t≥0 and (η̃t)t≥0 within
the canonical coupling, and denote by P their joint law. Then

P (ηt �c η̃t for all t ≥ 0 | η0 �c η̃0) = 1 . (3.14)

We will discuss various extensions of the canonical coupling in the course of this thesis;
see Section 6.3.1 for the simple exclusion process with open boundaries and Section 10.2
for the TASEP on rooted trees with a particle source at the root. Moreover, we will
see that the canonical coupling will preserve a different partial order for the simple
exclusion process on the segment, introduced by its height function representation; see
Section 3.4.2 and Section 3.4.3 as well as Section 5.2 and Section 6.3.1 for extensions
to random environments and open boundaries, respectively.

3.4 The simple exclusion process on the integers

We now study the simple exclusion process (SEP) in the special case where the
underlying graph G is a connected subgraph of the one-dimensional integer lattice, i.e.,
the vertex set is either the full line Z, the half-line N or a segment [N ] := {1, . . . , N}
for some N ∈ N, and we place an edge between two sites x, y ∈ [N ] if and only if the
Euclidean distance between x and y is equal to 1.

12



3.4 The simple exclusion process on the integers

-4 -3 -2 -1 0 1 2 3 4

1
2

1
2

Figure 1: Example of a configuration of the symmetric simple exclusion process on the
integers. Particles are depicted as red dots. Note that the particle at position
−1 may move to position 0, while the position −2 is blocked.

3.4.1 The symmetric simple exclusion process on the integers

We start by considering the simple exclusion process on Z, where we choose all transition
rates to be equal to 1

2
, i.e., we set

p(x, y) =

{
1
2

if y ∈ {x− 1, x+ 1}
0 otherwise;

(3.15)

see Figure 1. The associated Feller process is called the symmetric simple exclusion
process (SSEP) on the integers generated by the closure of

Lf(η) =
∑

x∈Z : η(x)=1
η(x+1)=0

1

2

[
f(ηx,x+1)− f(η)

]
+

∑
x∈Z : η(x)=1
η(x−1)=0

1

2

[
f(ηx,x−1)− f(η)

]
. (3.16)

Theorem 3.1 ensures that the symmetric simple exclusion process on Z is indeed a Feller
process. Since all particles are indistinguishable in the symmetric simple exclusion
process on Z, one can instead of L also consider the operator

L̃f(η) =
∑
x∈Z

[
f(ηx,x+1)− f(η)

]
(3.17)

for all cylinder functions f . We will revisit this construction in Section 4.5 when
introducing the interchange process. By Theorem 3.7, the Bernoulli-ρ-product measures
νρ with ρ ∈ [0, 1] are reversible for any simple exclusion process with symmetric rates,
i.e., where p(x, y) = p(y, x) holds for all x, y. In fact, when the rates satisfy in addition a
flow rule, these measures are also extremal invariant. Moreover, we can give a complete
characterization of the set of extremal invariant measures when the underlying graph
is the integer lattice; see Theorem 1.10 and Theorem 1.16 in [94, Part III].

Theorem 3.9. For a simple exclusion process with symmetric rates which satisfy a
flow rule, the set of extremal invariant measures satisfies

{νρ for ρ ∈ [0, 1]} ⊆ Ie . (3.18)

Moreover, the symmetric simple exclusion process on Z satisfies (3.18) with equality.
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3.4.2 The asymmetric simple exclusion process on the integers

Next, we study the asymmetric simple exclusion process (ASEP) on the integers,
which we obtain by taking the transition probabilities (p(x, y))x,y∈Z equal to

p(x, y) =


p if y = x+ 1

(1− p) if y = x− 1

0 otherwise

(3.19)

for some p ∈ [0, 1] with p 6= 1
2
. Intuitively, all particles perform biased simple random

walks under the exclusion rule. Note that the asymmetric simple exclusion process is a
Feller process generated by the closure of

Lf(η) =
∑

x∈Z : η(x)=1
η(x+1)=0

p
[
f(ηx,x+1)− f(η)

]
+

∑
x∈Z : η(x)=1
η(x−1)=0

(1− p)
[
f(ηx,x−1)− f(η)

]
(3.20)

for all cylinder functions f ; see Theorem 3.1. Since the rates satisfy a flow rule, we see
by Theorem 3.4 that the measures νρ are invariant for the asymmetric simple exclusion
process for all ρ ∈ [0, 1]. Furthermore, by Theorem 3.7, we note that the product
measures νa with

a(x) =
cpx

(1− p)x + cpx
(3.21)

for all x ∈ V are reversible for the ASEP for all c > 0 when p /∈ {0, 1}. Observe that
under this measure νa

νa ({η : ∃ Cη > 0 s.t. η(x) = 1 ∀x > Cη and η(x) = 0 ∀x < −Cη}) = 1

holds when p > 1
2
and

νa ({η : ∃ Cη > 0 s.t. η(x) = 0 ∀x > Cη and η(x) = 1 ∀x < −Cη}) = 1

when p < 1
2
. In the following, we will assume without loss of generality that p > 1

2

as all arguments apply similarly for p < 1
2
by reflecting the underlying graph along a

vertical axis. For all n ∈ N, we denote by An the set of configurations

An :=

{
η ∈ {0, 1}Z :

∑
x>n

(1− η(x)) =
∑
x≤n

η(x) <∞

}
. (3.22)

Note that νa(An) > 0 for all p < 1, and define the blocking measure ν(n) on An to
be ν(n)(·) := νa( · |An) for all n ∈ N. When p = 1, we let ν(n) be the Dirac measure on
the configuration ϑn ∈ An given by

ϑn(x) = 1x>n (3.23)
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-3 -2 -1 0 1 2 3 4

p1− p

Figure 2: Visualization of the ground state ϑ0 for the asymmetric simple exclusion
process with p > 1

2
and restricted to the set of configurations A0.

for all x ∈ Z. We call ϑn the ground state on An; see Figure 2. Note that An
consists of countable many configurations and that the asymmetric simple exclusion
process restricted to An is a positive recurrent continuous-time Markov chain for all
n ∈ N. Its unique reversible measure is the blocking measure ν(n) on An when p ∈ (0, 1).

The following theorem, which can be found as Theorem 1.4 in [93], guarantees that
all invariant measures for the asymmetric simple exclusion process must be convex
combinations of Bernoulli product measures with constant parameters and blocking
measures.

Theorem 3.10. For the asymmetric simple exclusion process with p ∈ (1
2
, 1]

Ie = {νρ for some ρ ∈ [0, 1]} ∪ {ν(n) for some n ∈ Z} . (3.24)

For the simple exclusion process restricted to the sets An for some n ∈ Z, we can
define a partial order �h as follows. For two configurations η ∈ An and ζ ∈ Am with
n,m ∈ Z

η �h ζ ⇔
j∑

i=−∞

η(i) ≥
j∑

i=−∞

ζ(i) for all j ∈ Z . (3.25)

Intuitively, η �h ζ holds whenever η has for any given reference point on Z at least as
many particles to the left-hand side as ζ. Note that on the set of configurations An,
the ground state ϑn is the unique minimal element with respect to the partial order �h.
Moreover, we observe that the canonical coupling preserves the partial order �h on An
for all n ∈ Z. This is immediate from its construction, and summarized in the following
proposition, where we recall Proposition 3.8 for a similar statement with respect to the
partial order �c.

Proposition 3.11. Consider two simple exclusion processes (ηt)t≥0 and (η̃t)t≥0 on An
for some n ∈ Z within the canonical coupling and denote by P their joint law. Then

P (ηt �h η̃t for all t ≥ 0 | η0 �h η̃0) = 1 (3.26)

holds.
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3.4.3 The simple exclusion process on the segment

We now consider the simple exclusion process on a finite segment [N ] for some N ∈ N
and initially k particles for some k ∈ [N − 1]. Note that the number of particles k is
preserved in the exclusion process. Hence, we can restrict the dynamics to be defined
as a continuous-time Markov chain with state space ΩN,k given by

ΩN,k :=

{
η ∈ {0, 1}N :

N∑
i=1

η(i) = k

}
. (3.27)

When p(x, x+ 1) > 0 holds for all x ∈ [N − 1], the simple exclusion process on ΩN,k

has a unique stationary distribution µ. If in addition p(x + 1, x) > 0 holds for all
x ∈ [N − 1], the simple exclusion process is reversible with respect to µ, and

µ(η) =
1

Z

N−1∏
j=1

(
p(j, j + 1)

p(j + 1, j)

)∑N
i=j+1 η(i)

(3.28)

holds for all η ∈ ΩN,k with respect to some normalization constant Z.

Similar to the asymmetric simple exclusion process restricted to the set of configura-
tions An, we define the partial order �h on the state space ΩN,k. More precisely, for a
given N ∈ N and k ∈ [N − 1]

η �h ζ ⇔
j∑
i=1

η(i) ≥
j∑
i=1

ζ(i) for all j ∈ [N ] (3.29)

for configurations η, ζ ∈ ΩN,k. In words, η �h ζ holds if and only if the ith particle in η
is further to left than the ith particle in ζ for all i ∈ [k]. As an analogue of the ground
state, we get unique minimal and maximal elements ϑN,k and θN,k on ΩN,k with

ϑN,k(i) := 1i>N−k , (3.30)

where all particles are on the right-hand side and

θN,k(i) := 1i≤k , (3.31)

where all particles are on the left-hand side, and i ∈ [N ]. Again, it is immediate that
the canonical coupling for the simple exclusion process preserves the partial order �h.

Proposition 3.12. Consider two simple exclusion processes (ηt)t≥0 and (η̃t)t≥0 on
ΩN,k for some n ∈ N and k ∈ [N − 1] within the canonical coupling, and denote by P

their joint law. Then

P (ηt �h η̃t for all t ≥ 0 | η0 �h η̃0) = 1 . (3.32)
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�h
1 2 3 4 5 1 2 3 4 5

Figure 3: Visualization of two ordered configurations of the simple exclusion process
on a segment of size N = 5 with k = 3 particles, and their corresponding
paths which we obtain as linear interpolations of their height functions. Note
that two adjacent sites with different spins, as for example in the blue edge,
corresponds to a local extremum in the path representation.

The partial order �h on ΩN,k has also a graphical interpretation. For η ∈ ΩN,k, let
h : {0, . . . , N} 7→ R be the height function of η, given by

hη(x) :=
x∑
z=1

(
η(z)− k

N

)
(3.33)

for all x ∈ [N ]. Note that η �h ζ if and only if hη(x) ≥ hζ(x) for all x ∈ [N ]. A
visualization of the height function in terms of paths in a rotated coordinate system
is shown in Figure 3. Note that configurations of the simple exclusion process and
height functions are in a one-to-one correspondence, and we will exploit this connection
in Section 6.4 in more detail, where we discuss approximated eigenfunctions for the
symmetric simple exclusion process with open boundaries.

We remark that one can define a similar height function representation for the
simple exclusion process on Z. When particles can only move in one direction and the
rates are homogeneous, the path representation of the height function yields a natural
interpretation of the simple exclusion process on the integers as an i.i.d. exponential
corner growth model on Z2. This description is a key to many exact expression for
various observables of the exclusion process; see [34, 126, 128] for an introduction and
overview. In Section 11.3.2, we will make use of this corner growth representation when
studying last passage times for a slowed down exclusion process on trees.
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3.5 Feller property for locally finite graphs

In this section, we present the proof of Theorem 3.2, which states a criterion for the
existence of Feller processes on locally finite graphs. Again, for graphs with uniformly
bounded degree, we refer to Theorem 3.1 due to Liggett; see also [96] for a more
comprehensive discussion.

Proof of Theorem 3.2. We start by defining the simple exclusion process as a Markov
process (ηt)t≥0 on the state space Ω. Recall the graphical representation of the exclusion
process from Section 3.3. To every (directed) edge (x, y) ∈ E of the underlying graph
G, we assign rate p(x, y) Poisson clocks. Whenever a clock rings and the site x is
occupied, we move the particle from x to y, provided that y is empty; otherwise nothing
happens. Set

C := max
x,y∈V

p(x, y)

and let τ = pG
3C

. Note that P (X ≤ τ) < pG holds for X being Exponential-(2C)-
distributed. Observe that the value of ηt(x) for x ∈ V and t ∈ [0, τ ] does only depend
on the sites which are in the percolation cluster containing x spanned by the edges
on which at least one clock rings until time τ . By our choice of τ , each such cluster is
almost surely finite. Hence, the number of transitions in the evolution of (ηt(x))t∈[0,τ ]

is almost surely finite for all x ∈ V , and therefore, the evolution of (ηt(x))t∈[0,τ ] is
well-defined. For t ≥ τ , observe that the graphical representation is Markovian and
iterate the above argument to conclude.

In order to show that (ηt)t≥0 is a Feller process, it remains to verify the Feller
property, i.e., to show that for any continuous function f : {0, 1}V → R, the mapping

ζ 7→ Eζ [f(ηt)] (3.34)

is continuous in the starting configuration ζ for all t ≥ 0. Using the Markov property
of (ηt)t≥0, it suffices to check this for t ∈ [0, τ ]. Moreover, since the state space {0, 1}V
is equipped with the product topology, and is hence compact, we can assume that f is
a bounded function. We denote its `∞-norm by ‖f‖∞. Let ε > 0 be fixed. For a given
bounded continuous function f , we can choose r = r(G, ε) such that

sup
{
|f(η)− f(ζ)| : η|Br(G,o) = ζ|Br(G,o)

}
<
ε

2
(3.35)

holds, where Br(G, o) denotes the ball of radius r around the root o of G and η|Br(G,o)
is the configuration η restricted to Br(G, o). We claim that there exists a constant
r′ = r′(r, τ) such that

P
(
ηt|Br(G,o) 6= ζt|Br(G,o) for some t ∈ [0, τ ]

∣∣∣ η0|Br′ (G,o) = ζ0|Br′ (G,o)
)
<

ε

2‖f‖∞
(3.36)
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where (ηt)t≥0 and (ζt)t≥0 perform simple exclusion processes according to the graphical
representation using the same clocks. Note that the event in (3.36) can only occur if
there exists a path of edges, which are updated until time τ , connecting the boundaries
of the balls Br(G, o) and Br′(G, o). Since we are in the subcritical regime of percolation
on G, the probability of this event goes to 0 for r′ tending to infinity. Thus, for
η, ζ ∈ {0, 1}V with η|Br′ (G,o) = ζ|Br′ (G,o), we conclude that

|Eη[f(ηt)]− Eζ [f(ηt)]| < ε

holds for all t ∈ [0, τ ] by combining (3.35) and (3.36). Hence, the simple exclusion
process on G is a Feller process. The fact that the generator of the simple exclusion
process has indeed the form stated in (3.3) follows from a comparison with the graphical
representation.
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Part II

Mixing times for exclusion processes

4 Preliminaries on mixing times

In this part of the thesis, we focus on exclusion processes on finite graphs. We will
assume that the exclusion process has a unique stationary distribution that we approach
from any starting configuration. Our goal is to quantify the speed of convergence to
the equilibrium when the size of the underlying state space grows towards infinity. We
achieve this using the notion of total-variation mixing times. In the following, we give
a brief introduction to mixing times and related quantities. Most of the presented
material can be found in [91] in the context of discrete-time Markov chains. We continue
with an overview of recent related work on mixing times for exclusion processes. In
Sections 4.3 to 4.5, we discuss three techniques, which play a crucial role in achieving
precise upper and lower bounds on the mixing time of exclusion processes. We study
Wilson’s lower bound technique [139], the censoring inequality introduced by Peres and
Winkler [110], and second class particle arguments, which were first used by Benjamini
et al. in [19] in the context of mixing times. We present generalizations of all three
mentioned concepts, which we will use throughout this thesis.

4.1 Definition and the cutoff phenomenon

We start by introducing the notion of mixing times for general continuous-time
Markov chains. Let (Xt)t≥0 be a continuous-time Markov chain on a finite state space
S with generator A. We assume that (Xt)t≥0 has a unique stationary distribution π to
which (Xt)t≥0 converges for any initial state s ∈ S. For two probability measures ν, ν̃
on S, we define their total-variation distance as

‖ν − ν̃‖TV := max
A⊆S

ν(A)− ν̃(A) =
1

2

∑
x∈S

|ν(x)− ν̃(x)| . (4.1)

We denote by Pν(Xt ∈ · ) = P(Xt ∈ · |X0 ∼ ν) the law of the process (Xt)t≥0 at time
t ≥ 0, where X0 ∼ ν, and write Px(Xt ∈ ·) when ν is the Dirac measure δx on x ∈ S.
We define

d(t) := sup
x∈S
‖Px(Xt ∈ · )− π‖TV (4.2)

for all times t ≥ 0 to be the maximal distance from equilibrium at time t. Note
that d(t) takes only values in [0, 1] and is a monotone decreasing function in t; see for
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t

dn(t)
1

tnmix(
1
4)

Figure 4: Visualization of the cutoff phenomenon for a family of Markov chains (Xn
t ).

The maximal distance dn(·) exhibits a sharp transition from (close to) 1 to
(close to) 0 at the order of the mixing time when n is large.

example Exercise 4.2 in [91]. The total-variation ε-mixing time tmix(ε) of (Xt)t≥0 is

tmix(ε) := inf{t ≥ 0 : d(t) ≤ ε} (4.3)

for all ε ∈ (0, 1). Note that the ergodic theorem for Markov chains ensures that tmix(ε)

is almost surely finite under the above assumptions. For ε = 1
4
, we call tmix = tmix(1

4
)

simply the mixing time of the Markov chain (Xt)t≥0.

In the following, our goal is to provide sharp upper and lower bounds on the mixing
times of a sequence of Markov chains. In particular, we are interested in the dependence
on the parameter ε. Consider a family of Markov chains ((Xn

t )t≥0)n∈N with ε-mixing
times tnmix(ε). We say that this family exhibits pre-cutoff if there exist constants
c1, c2 > 0 such that for any ε ∈ (0, 1)

c1 ≤ lim inf
n→∞

tnmix(1− ε)
tnmix(ε)

≤ lim sup
n→∞

tnmix(1− ε)
tnmix(ε)

≤ c2 (4.4)

holds. Moreover, we say that the cutoff phenomenon occurs, if we can choose
c1 = c2 = 1 in (4.4). In words, a sequence of Markov chains exhibits pre-cutoff if the
ε-mixing time is located in a fixed time-window of the order of the mixing time for any
ε ∈ (0, 1) when n goes to infinity. If the size of this window is of strictly smaller order
than the mixing time, we have cutoff; see Figure 4. In general, it is a challenging task
to determine whether cutoff occurs. For a more comprehensive discussion of cutoff, we
refer to Chapter 18 of [91]. We will now discuss three quantities, the coupling, hitting
and the relaxation time, which are closely related to mixing times.
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4 Preliminaries on mixing times

4.1.1 Coupling and hitting times

Let (Xt)t≥0 and (Yt)t≥0 be two continuous-time Markov chains on some common state
space S, which have the same generator A. For a coupling (Xt, Yt)t≥0 with initial
configurations X0 = η and Y0 = ζ, we define the coupling time with respect to
η, ζ ∈ S to be

τcouple(η, ζ) := inf {t ≥ 0: Xt = Yt} . (4.5)

The following upper bound on the mixing time is well-known; see Corollary 5.5 in [91].

Proposition 4.1. Let the Markov chains associated with the generator A on the state
space S be irreducible. Moreover, assume that for every pair η, ζ ∈ S, we have a
coupling (Xt, Yt)t≥0 of Markov chains according to A with X0 = η and Y0 = ζ almost
surely. Then

d(t) ≤ max
η,ζ∈S

P (τcouple(η, ζ) > t) (4.6)

holds for all t ≥ 0. In particular, tmix ≤ 4 max
η,ζ∈S

E [τcouple(η, ζ)] holds.

Whenever the state space S is equipped with a partial order which is respected by
the coupling, the right-hand side in (4.6) can be simplified. More precisely, assume
that S is equipped with a partial order �. A coupling (Xt, Yt)t≥0 with law P is said to
be monotone with respect to �, if

P (Xs � Ys for all s ≥ 0 | X0 � Y0) = 1 (4.7)

holds P-almost surely. We say that a grand coupling is monotone if (4.7) holds
P-almost surely for any pair of initial configurations. Note that the graphical repre-
sentation for the simple exclusion process on the segment with respect to the partial
order �h yields a monotone grand coupling by Proposition 3.12. For any pair of
configurations η, ζ ∈ S, we let

τ ζhit(η) := inf{t ≥ 0: Xt = η,X0 = ζ} (4.8)

be the hitting time of the configuration η starting from ζ. The following result is an
immediate consequence of Proposition 4.1.

Corollary 4.2. Suppose that the state space S is equipped with a partial order �, and
that we have a monotone grand coupling with law P. Further, assume that there exist
unique minimal and maximal elements ∨,∧ ∈ S such that

∨ � η � ∧ (4.9)

for all η ∈ S. Then for all t ≥ 0

d(t) ≤ P (τcouple(∨,∧) > t) ≤ min(P (τ∨hit(∧) > t) ,P (τ∧hit(∨) > t)) . (4.10)

22



4.1 Definition and the cutoff phenomenon

4.1.2 The relaxation time and a necessary criterion for pre-cutoff

In order to get precise bounds on the mixing time, one possible way is to analyze
the spectrum of the process. Historically, studying eigenvalues and the corresponding
eigenfunctions allowed Diaconis and Shahshahani in [46] to show cutoff for the first
time, although the term “cutoff” was only introduced later by Aldous and Diaconis [2].
For a continuous-time Markov chain (Xt)t≥0 on a a state space S with generator A, we
consider pairs (λ, f) for λ ∈ C and f : V → C such that

(Af)(x) = λf(x) (4.11)

holds for all x ∈ V . When (4.11) holds, we say that f is an eigenfunction of (Xt)t≥0

with respect to the eigenvalue λ. Note that the function f ≡ 1 is always an eigen-
function with respect to the eigenvalue λ = 0.

When (Xt)t≥0 is reversible, all eigenvalues λ of A are real-valued and satisfy λ ≤ 0;
see Theorem 12.1 in [91]. In this case, our goal is to investigate the spectral gap λ∗

of the process, which is the absolute value of the second largest eigenvalue of A. In
practice, it will often be convenient to consider the relaxation time trel := (λ∗)−1.
The following proposition show that the relaxation time can be used to provide a lower
bound on the mixing time. The proof is similar to the one of Lemma 20.11 in [91].

Proposition 4.3. For any eigenvalue λ < 0 of (Xt)t≥0, it holds that

d(t) ≥ 1

2
exp(λt) . (4.12)

In particular

tmix(ε) ≥ log

(
1

2ε

)
(trel − 1) (4.13)

holds for any ε ∈ (0, 1
2
).

Moreover, Proposition 4.3 gives raise to a necessary criterion for a family of Markov
chains to exhibit pre-cutoff. The proof is similar to the one of its discrete-time analogue
Proposition 18.4 in [91].

Proposition 4.4. Let (tnmix(ε))n≥1 and (tnrel)n≥1 denote the ε-mixing times and re-
laxation times of a family of reversible, irreducible continuous-time Markov chains
((Xn

t )t≥0)n≥1. Assume that tnrel ≥ 1 for all n ≥ 1. If for some ε ∈ (0, 1)

lim sup
n→∞

tnmix(ε)

tnrel
<∞ , (4.14)

then ((Xn
t )t≥0)n≥1 does not exhibit pre-cutoff.
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4 Preliminaries on mixing times

4.2 Mixing times for the simple exclusion process

Equipped with these tools, we now study the mixing time of the simple exclusion
process. For the simple exclusion process (ηt)t≥0 on the segment [N ], we say that we
have a homogeneous environment if

p(x, y) =


p if y = x+ 1

(1− p) if y = x− 1

0 otherwise

(4.15)

holds for all x, y ∈ [N ] and some p ∈ (0, 1) fixed. In accordance with the simple
exclusion process on the integers, we call (ηt)t≥0 the symmetric simple exclusion
process (SSEP) on the segment when p = 1

2
, and the asymmetric simple exclusion

process (ASEP) when p 6= 1
2
.

4.2.1 Mixing times for the symmetric simple exclusion process

We start with the mixing time of the symmetric simple exclusion process on the segment
[N ] for N → ∞. When the number of particles k = k(N) is bounded from above
uniformly in N , it is well-known that the resulting simple exclusion process has a
mixing time and a relaxation time of order N2, and hence by Lemma 4.4 no cutoff; see
also Chapter 12 in [91]. When the number of particles k = k(N) and the number of
empty sites N − k(N) both grow with N , a lower bound of the correct leading order
was shown by Wilson for a discrete-time version of the exclusion process [139]. Over
10 years later, Lacoin proved a matching upper bound [84]. In total, we obtain the
following result on the mixing time of the symmetric simple exclusion process.

Theorem 4.5 (c.f. Theorem 2.4 in [84]). Let tN,kmix(ε) denote the ε-mixing time of the
symmetric simple exclusion process on [N ] and with k = k(N) particles. Assume that

lim
N→∞

min(k(N), N − k(N)) =∞ (4.16)

holds. Then for all ε ∈ (0, 1)

lim
N→∞

tN,kmix(ε)

N2 log(min(k(N), N − k(N)))
=

1

π2
. (4.17)

In particular, the symmetric simple exclusion process exhibits cutoff.

The crucial idea for the lower bound in Theorem 4.5 is to gain detailed knowledge
about the spectral gap and the corresponding eigenfunction. More precisely, Wilson
derives an explicit formula of the eigenvalue corresponding to the spectral gap and the
corresponding eigenfunction by interpreting the evolution of the mean of the height
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4.2 Mixing times for the simple exclusion process

function as a solution to a discretized, one-dimensional heat equation. With this
explicit eigenvalue at hand, as well as a bound on the fluctuations of the corresponding
eigenfunction, Wilson then identifies the times at which the symmetric simple exclusion
process started from the ground state has not reached equilibrium with high probability.
This idea will be formalized in Section 4.3 where we discuss Wilson’s lower bound
technique for general Markov chains.

For the upper bound, Lacoin combines various techniques for the simple exclusion
process, including correlation properties, scaling limits of the height function represen-
tation, as well as the censoring technique, which will be discussed in Section 4.4. We
will revisit parts of the proof in Section 6.5.2, where we give precise bounds on the
mixing time for the symmetric simple exclusion process with one open boundary.

At this point, we note that similar results were achieved by Lacoin for the symmetric
simple exclusion process on the cycle. It turns out that under the above assumptions
of Theorem 4.5, the symmetric simple exclusion process on the cycle exhibits cutoff,
where the right-hand side in (4.17) is replaced by 1/(4π2). Moreover, the limiting
profile of the maximal distance from equilibrium can be described; see [83, 85].

4.2.2 Mixing times for the asymmetric simple exclusion process

We now study the asymmetric simple exclusion process on the segment of size [N ]. We
assume that the number of particles k = k(N) satisfies

lim
N→∞

k(N)

N
= ρ (4.18)

for some ρ ∈ [0, 1]. The following result on the mixing time of the asymmetric simple
exclusion process is due to Labbé and Lacoin [81].

Theorem 4.6 (c.f. Theorem 2 in [81]). Fix some p ∈ (1
2
, 1]. Let tN,kmix denote the

mixing time of the asymmetric simple exclusion process with parameter p and k = k(N)

particles. Moreover, assume that (4.18) holds for some ρ ∈ [0, 1]. Then

lim
N→∞

tN,kmix

N
=

(
√
ρ+
√

1− ρ)2

2p− 1
. (4.19)

In contrast to the results for the symmetric simple exclusion process, the order of
the mixing time of the asymmetric simple exclusion process on the segment does not
depend on the number of particles k. We note that the first bound of the correct
order on the mixing time was given by Benjamini et al. in [19]. In their proof, they
reduce the question of estimating mixing times to bounding the hitting time of the
ground state for an asymmetric simple exclusion process on Z with a certain initial
configuration. This is formalized in the following lemma.
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Theorem 4.7 (c.f. Lemma 2.8 in [19]). Let p ∈ (1
2
, 1]. We fix some N and k ∈ [N − 1].

For η ∈ ΩN,k, let Θη
N,k denote the configuration on {0, 1}Z which is given by

Θη
N,k(x) :=


0 if x ≤ −(N − k)

η(x+ (N − k)) if − (N − k) < x ≤ k

1 if x > k ,

(4.20)

and we write ΘN,k when η = θN,k, i.e., the particles in ΘN,k are placed on the sites
{−N + k+ 1, . . . ,−N + 2k} ∪ {k+ 1, . . . }. Recall ϑ0 from (3.23). Then for all ε > 0,

P(τ
ΘN,k
hit (ϑ0) > t) ≤ ε (4.21)

implies that tNmix(ε) ≤ t for the ε-mixing time of the asymmetric simple exclusion process
with state space ΩN,k.

Intuitively, (4.21) yields an upper bound on the mixing time by considering the
projection (η̃t)t≥0 of an asymmetric simple exclusion process on Z started from ΘN,k

onto the segment [−(N − k) + 1, k]. This argument can be formalized using the
graphical representation. We identify edges of the asymmetric simple exclusion process
on the segment and the integers, and apply Corollary 4.2; see also Figure 5. We
will return to the idea of using the simple exclusion process on Z for studying mix-
ing times of the simple exclusion process on the segment in Section 5.3.2 and Section 6.6.

We conclude this paragraph by noting that mixing times were also studied when we
allow the parameter p of the drift to depend on N . More precisely, when

lim
N→∞

p(N) =
1

2
(4.22)

we say that we are in the weakly asymmetric regime. In this setup, mixing times
were investigates by Levin and Peres who showed the existence of two phase transitions
in the rate of decay of (p(N))N∈N [90]. Recently, cutoff results were obtained in the
weakly asymmetric regime by Labbé and Lacoin [82].

4.2.3 Mixing times for general simple exclusion processes

We now consider mixing times for the simple exclusion process on general graphs
G = (V,E) with k ∈ [|V | − 1] particles. We will focus on the case of symmetric
transition rates, i.e., where

p(x, y) = p(y, x) (4.23)

holds for all {x, y} ∈ E. In this case, the simple exclusion process has a unique
reversible distribution, which is the Uniform distribution on the state space. In general,
it is a difficult task to bound the mixing time of exclusion processes on some arbitrary
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Figure 5: Visualization of a configuration η ∈ ΩN,k of the simple exclusion process with
N = 4 and k = 2, and its extension to the set A0 using the embedding Θη

N,k

defined in (4.20) of Theorem 4.7. The embedding Θη
N,k provides a natural way

of associating a path representation for configurations η̃ ∈ A0 with η̃(x) = 0
for all x ≤ −N + k and η̃(x) = 1 for all x > k, respectively.

graph G. Hence, it is a natural question whether the mixing time of the simple exclusion
process can be bounded from above using the mixing time of a single particle, i.e.,
when we choose k = 1. The following result due to Oliveira shows that the mixing time
of the simple exclusion process with symmetric rates differs only by a factor of order
log(|V |) from the mixing time of a single particle [107].

Theorem 4.8 (c.f. Theorem 1.1 in [107]). Let G = (V,E) be a graph with symmetric
transition rates, such that the corresponding simple exclusion process on G is irreducible.
Let tG,kmix(ε) denote the ε-mixing time of the simple exclusion process on G when we have
k ∈ [|V | − 1] particles. Then for all k ∈ [|V | − 1] and ε > 0

tG,kmix(ε) ≤ C log

(
1

ε

)
log(|V |)tG,1mix

(1

4

)
(4.24)

holds for some universal constant C.

Recently, the results by Oliveira were extended by Hermon and Pymar in [72]. They
derive upper bounds with an explicit dependence on the number of particles k for
certain families of graphs. Moreover, they show that the mixing time for a single
particle can never exceed the mixing time of a simple exclusion process for any number
of particles k ∈ [|V |− 1] by more than some universal factor; see Proposition 1.6 in [72].
Note that in general, when the transition rates do not satisfy (4.23), Theorem 4.8 may
fail; see Section 5 for an example.
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4.3 A generalized Wilson’s lemma

For lower bounds on the mixing time, recall Proposition 4.3 which states that the
mixing time can be bounded from below using the relaxation time. In general, when
we have a detailed knowledge about an eigenvalue and the corresponding eigenfunction,
this may allow us to refine this lower bound on the mixing time.To state such a refined
estimate, we will use the following definition. For a continuous-time Markov chain
(Xt)t≥0 with generator A, let (Mt)t≥0 be the associated martingale given by

Mt := F (Xt)− F (X0)−
∫ t

0

(AF )(Xs)ds (4.25)

for all t ≥ 0. We denote its quadratic variation by (〈M〉t)t≥0. For an introduction
to martingales and their quadratic variations, we refer to Chapter 3 and Chapter 5
in [96]. The following bound is due to Wilson in [139] for discrete-time Markov chains.
It naturally extends to continuous-time Markov chains as follows; see also [83, 84].

Theorem 4.9 (Wilson’s lemma in continuous time). Let (Xt)t≥0 be a continuous-time
Markov chain on some finite state space S with a unique stationary distribution π and
generator A. Let F : S → R be a function with

AF (y) = −λF (y) for all y ∈ S, (4.26)

with constant λ > 0. We assume that the quadratic variation (〈M〉t)t≥0 of the associated
martingale defined in (4.25) satisfies

d
dt
E [〈M〉t] ≤ R (4.27)

for some R > 0 and all t ≥ 0. Then for all ε ∈ (0, 1), the ε-mixing time tmix(ε) of
(Xt)t≥0 satisfies

tmix(1− ε) ≥ 1

λ
log (‖F‖∞)− 1

2λ
log

(
16R

λε

)
. (4.28)

Although we may use any eigenvalue and corresponding eigenfunction, it turns out
that the eigenfunction corresponding to the spectral gap will in general yield the most
precise bounds. Again, we remark that the idea of using eigenfunctions to estimate
the mixing time is already present in [46], where Diaconis and Shahshahani obtain the
complete spectrum of the random transposition shuffle, and apply a second moment
method to prove cutoff. However, note that for many models, often no exact descriptions
of the eigenvalues and eigenfunctions are available. In this case, it is useful to work
with a generalized version of Wilson’s lemma, which allows for an approximation of
eigenvalues and eigenfunctions. This idea was introduced by Nam and Nestoridi in
[105] for discrete-time Markov chains. It transfers to our setup as follows.
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Lemma 4.10 (Generalized Wilson’s lemma). Let (Xt)t≥0 be an irreducible continuous-
time Markov chain with finite state space S and generator A. Let F : S → R be a
function with

|(−AF )(y)− λF (y)| ≤ c for all y ∈ S, (4.29)

with constants λ ≥ c > 0. Moreover, we assume that the quadratic variation (〈M〉t)t≥0

of the associated martingale defined in (4.25) satisfies for some R > 0 and all t ≥ 0

d
dt
E [〈M〉t] ≤ R . (4.30)

Then for all ε ∈ (0, 1), the ε-mixing time tmix(ε) of (Xt)t≥0 satisfies

tmix(1− ε) ≥ 1

λ
log (‖F‖∞)− 1

2λ
log

(
16(3c‖F‖∞ + max(R, c))

λε

)
. (4.31)

We call F an approximate eigenfunction if (4.29) holds. We will see an applica-
tion of the Lemma 4.10 in Section 6.4, where we discuss lower bounds for the symmetric
simple exclusion process with open boundaries. We now prove Lemma 4.10 combining
ideas from [105] with martingale techniques used for Lemma 2.2 in [83].

Proof of Lemma 4.10. For X0 = η, let f(t) := E[F (Xt)] = Eη[F (Xt)] for all t ≥ 0.
Now

f ′(t) = E [(AF )(Xt)] ∈ [−λf(t)− c,−λf(t) + c] for all t ≥ 0

using the martingale property of (Mt)t≥0 and (4.29). Apply Gronwall’s lemma to get
for all t ≥ 0

f(t) ≤ f(0)e−λt +

∫ t

0

ce−λ(t−s)ds ≤ f(0)e−λt +
c

λ
;

see Lemma 2.7 in [135]. Similarly, apply Gronwall’s lemma to −f to conclude that∣∣f(t)− e−λtf(0)
∣∣ ≤ c

λ
(4.32)

for all t ≥ 0. Next, we define g(t) := E[(F (Xt))
2]. Observe that (F (Xt))t≥0 is a

semimartingale. Thus, we apply Itô’s formula to see that

F 2(Xt)− F 2(X0) = 2

∫ t

0

F (Xs)d
[
F (Xs)−

∫ s

0

(AF )(Xr)dr
]

+ 2

∫ t

0

F (Xs)d
[ ∫ s

0

(AF )(Xr)dr
]

+
1

2

∫ t

0

2 d〈M〉s

holds; see also Theorem 5.33 in [96]. Next, we obtain

g(t)− g(0) = 2

∫ t

0

E [F (Xs)(AF )(Xs)] ds+ E [〈M〉t]
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for all t ≥ 0 by taking expectations and changing the order of integration. Taking
derivatives yields

g′(t) = 2E [F (Xt)(AF )(Xt)] +
d
dt
E[〈M〉t]

for all t ≥ 0. Using (4.29), we obtain that

2E [F (Xt)(AF )(Xt)] ≤ −2λg(t) + 2c||F ||∞

holds. By applying Gronwall’s lemma and using (4.30), a calculation shows that

g(t) ≤ g(0)e−2λt +
c||F ||∞
λ

+

∫ t

0

(
d
ds

E[〈M〉s]
)
e−2λ(t−s)ds ≤ g(0)e−2λt +

c||F ||∞ +R

λ

for all t ≥ 0. Together with (4.32) and the fact that g(0) = f(0)2, we deduce

Var(F (Xt)) = Varη(F (Xt)) = g(t)− f(t)2 ≤ 3c||F ||∞ +R

λ
(4.33)

for any initial state η ∈ S, and all t ≥ 0. Recall the total-variation distance from (4.1)
and let dη(t) denote the total-variation distance between the law of Xt started from η

and its stationary distribution. Note that for all t ≥ 0 and any initial state η,

dη(t) ≥ P
(
F (Xt) ≥

1

2
E[F (Xt)]

)
− P

(
F (X∞) ≥ 1

2
E[F (Xt)]

)
.

Here, X∞ is a random variable whose law is the stationary distribution of (Xt)t≥0.
Using Chebyshev’s inequality, we see that

dη(t) ≥ 1− 4Var(F (Xt))

E[F (Xt)]2
− 4E[F (X∞)2]

E[F (Xt)]2

≥ 1− 4
Var(F (Xt)) + Var(F (X∞)) + E[F (X∞)]2

E[F (Xt)]2
(4.34)

The goal is to show that for t equal to the right-hand side of (4.31), the right-hand side
of (4.34) is ≥ 1 − ε, which implies (4.31). Let η be such that |F (η)| = ||F ||∞ holds.
We bound the denominator in (4.34) for t equal to the right-hand side of (4.31) by

E[F (Xt)] ≥ e−λtF (X0)− c

λ
= e−λt||F ||∞ −

c

λ
≥ 1

2
e−λt||F ||∞ ,

where the last inequality is due to our choice of t. To bound the nominator of the
last term in (4.34), take t→∞ in (4.32) and (4.33) to see that |E[F (X∞)]| ≤ c/λ and
|Var[F (X∞)]| ≤ (3c||F ||∞ + R)λ−1. A calculation shows that indeed the right-hand
side of (4.34) is ≥ 1− ε.
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4.4 The censoring inequality

Next, we discuss the censoring inequality which we use to establish upper bounds on
the mixing time. The censoring inequality is a very recent technique, first established
by Peres and Winkler [110] for spin systems, and then later applied to the symmetric
simple exclusion process on the segment by Lacoin [84]. Informally speaking, this
inequality says that leaving out transitions of the exclusion process along certain
edges only increases the distance from equilibrium. More precisely, we will assume the
existence of a partial ordering on the state space, and compare the laws of processes
with and without censoring in terms of stochastic domination. This will allow us to
compare the maximal distance from equilibrium in both dynamics. Let ν, ν ′ be two
probability measures defined on a common probability space S, which is equipped
with a partial order �. We say that ν stochastically dominates ν ′ with respect to
�, and write ν � ν ′, if there exists a coupling P with X ∼ ν and Y ∼ ν ′ such that
P (X � Y ) = 1. Equivalently, ν � ν ′ holds whenever∫

f dν ≥
∫
f dν̃ (4.35)

for all increasing functions f : S → R; see Theorem B.9 in [94].

Slightly generalizing the definition from [110], we say that a censoring scheme
C for an exclusion process (ηt)t≥0 on a finite graph G = (V,E) is a random càdlàg
function

C : R+
0 → P (E) (4.36)

which does not depend on the process (ηt)t≥0. In the censored dynamics (ηCt )t≥0, a
transition along an edge e at time t is performed if and only if e /∈ C(t); see Figure 6.
In order to state the censoring inequality, recall the partial order �h from (3.29) as well
as the height function representation from (3.33). We assume that the state space of
the exclusion process has a unique maximal element ∧ and a unique minimal element
∨ with respect to �h. Further, assume that the dynamics obey a monotone grand
coupling with respect to �h. By Proposition 3.12, we note that these assumptions are
satisfied for the simple exclusion process on the segment. The following lemma is an
immediate consequence of the proofs of Theorem 1.1 and Lemma 2.1 in [110], and can
be found for the symmetric simple exclusion process as Proposition 6.2 in [84]; see also
Lemma 2.12 in [66] for a general version.

Lemma 4.11. Let C be a censoring scheme for the exclusion process. For an initial
state η and a time t ≥ 0, let Pη(ηt ∈ ·) and Pη(ηCt ∈ ·) denote the law of (ηt)t≥0 and its
censored dynamics (ηCt )t≥0, respectively. Under the above assumptions, for all t ≥ 0

P∧(η
C
t ∈ · ) �h P∧(ηt ∈ · ) and P∨(η

C
t ∈ · ) �h P∨(ηt ∈ · ) . (4.37)
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1 2 3 4 5 6 7 8 9

Figure 6: Visualization of a censoring scheme for the simple exclusion process, where
the particles can only move within the blue boxes. In particular, only the
particle in the middle box can move and performs a random walk on {4, 5, 6}.

Moreover, the density function η 7→ 1
µ(η)

P∧(ηt = η) is increasing with respect to the
partial order �h and

‖P∧(ηCt ∈ · )− µ‖TV ≥ ‖P∧(ηt ∈ · )− µ‖TV (4.38)

and
‖P∨(ηCt ∈ · )− µ‖TV ≥ ‖P∨(ηt ∈ · )− µ‖TV (4.39)

holds for all t ≥ 0.

We will see applications of Lemma 4.11 in Section 5.3.1 as well as in Sections 6.6
and 6.8. Note that the statement (4.37) in Lemma 4.11 extends to the asymmetric
simple exclusion process Z when starting from a ground state ϑn for some n ∈ Z by
using finite systems as an approximation. This yields the following corollary.

Corollary 4.12. Using the partial order �h from (3.25) for the simple exclusion
process on the integers restricted to An for some n ∈ Z, we see that

Pϑn(ηt ∈ · ) �h Pϑn(ηCt ∈ · ) (4.40)

holds for all t ≥ 0 and n ∈ Z.

4.5 The disagreement process

So far, we focused on the case where for a graph G = (V,E) the state space Ω is given
by a subset of {0, 1}V , i.e., we choose S = {0, 1} as the set of spins. In this section, we
allow for more general sets S. We start with the case where S = {0, 1, 2}, which leads
to the exclusion process with second class particles. Intuitively, each site is still
either occupied by a particle or left empty. However, we now allow for different kinds
of particles, namely first class particles, which will correspond to our original particles,
and second class particles.

We give a brief introduction to the notion of second class particles for the exclusion
process on a locally finite graph G = (V,E); see [94, Part III, Section 1] for a more
comprehensive discussion. For a configuration ξ ∈ {0, 1, 2}V , we say that a vertex x ∈ V
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ηt

ζt

ξt

Figure 7: Two configurations ηt �h ζt with disagreement process ξt at time t ≥ 0.

is occupied by a first class particle if η(x) = 1 holds, by a second class particle
if η(x) = 2 holds and vacant in the remaining case η(x) = 0. We assign priorities to
the vertices. Sites with first class particles get the highest priority, then sites with
second class particles and then empty sites. For given transition rates (p(x, y))x,y∈V , the
(simple) exclusion process with second class particles, sometimes also called
two-species exclusion process, is the Markov process (ξt)t≥0 on the state space
{0, 1, 2}V with the following construction.

Recall the graphical representation of the simple exclusion process from Section 3.3.
Whenever a clock associated to p(x, y) rings, we swap the spins of x and y, provided
that x has a higher priority than y. In addition, we may allow for rules of flipping
spins at certain sites in general exclusion processes; see for example Section 6.3.1.

Second class particles for the simple exclusion process were intensively studied
over the last decades as they are closely related to current fluctuations and shocks;
see [11, 51, 53, 54]. In the context of mixing times, second class particles were first
used by Benjamini et al. in [19] for the asymmetric simple exclusion process on the
segment. We will follow their ideas when using second class particle arguments for the
simple exclusion process in marginal nestling environments in Section 5.3.2, and for
the asymmetric simple exclusion process with one blocked entry in Section 6.6.

In the following, our main application for second class particles is to describe the
difference between two exclusion processes. More precisely, for two exclusion processes
(ηt)t≥0 and (ζt)t≥0 on a locally finite graph G = (V,E), we define, with a slight abuse
of notation, the disagreement process (ξt)t≥0 between (ηt)t≥0 and (ζt)t≥0 by

ξt(x) := 1{ηt(x)=ζt(x)=1} + 21{ηt(x)6=ζt(x)} (4.41)

for all x ∈ V and all t ≥ 0. In words, we keep the current value if the processes (ηt)t≥0

and (ζt)t≥0 agree and place a second class particle otherwise; see Figure 7. Note that
this definition does not rely on the transition rules or the coupling of the two exclusion
processes. However, when both exclusion processes have the same transition rules, obey
the canonical coupling, and are initially ordered according to �c, then the disagreement
process yields an exclusion process with second class particles.
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4 Preliminaries on mixing times

When the underlying graph G = (V,E) is finite, we can use the disagreement process
(ξt)t≥0 on {0, 1, 2}|V | to provide upper bounds on the mixing time of the exclusion
process on G. The next lemma is immediate from Proposition 4.1.

Lemma 4.13. For a pair of initial configurations η, ζ, let (ξη,ζt )t≥0 be the disagreement
process between two exclusion processes with respect to the canonical coupling started
from η and ζ, respectively. We denote by τ(η, ζ) the first time at which (ξη,ζt )t≥0 contains
no second class particles. Then for any ε ∈ (0, 1), if

max
η,ζ

P (τ(η, ζ) > t) ≤ ε (4.42)

holds, the ε-mixing time of the exclusion process on G satisfies tmix(ε) ≤ t.

Note that in the same way, we can allow any totally ordered finite set of spins S. We
use a similar construction by assigning priorities and applying the canonical coupling,
but now for more than two different hierarchies of particles. The resulting process
is called multi-species exclusion process. Multi-species exclusion processes are
of huge recent interest; see [27, 61]. We will see a modified multi-species exclusion
processes in Section 6.8 where the priorities only obey a partial ordering.

Suppose that the simple exclusion process on a graphG has symmetric transition rates;
see (4.23). If all sites are occupied and have different spins, we refer to the resulting
multi-species exclusion process under the above construction as the interchange
process on G. Note that since all particles can be distinguished in the interchange
process, the spins along any undirected edge will be swapped at rate 1. Hence, the
generator of the interchange process has the form in (3.17), which was stated for the
special case where the underlying graph is Z.

4.6 Notation for asymptotic estimates of mixing times

Before we come to our main results on mixing times, we give some remarks on the
used notation. Whenever we consider a family of Markov chains indexed by N ∈ N,
we will use the following notation for asymptotic estimates. For functions f, g : N→ R

f . g ⇔ ∃c > 0 s.t. lim sup
N→∞

∣∣∣∣f(N)

g(N)

∣∣∣∣ ≤ c (4.43)

f & g ⇔ ∃c > 0 s.t. lim inf
N→∞

∣∣∣∣f(N)

g(N)

∣∣∣∣ ≥ c . (4.44)

We write f � g if and only if f . g and f & g holds. Moreover, let f � g or f = o(g)

if and only if (4.43) is satisfied for all c > 0. We say that an asymptotic estimate holds
with high probability if for some fixed c > 0, the respective inequality in (4.43) or
(4.44) holds with probability tending to one.
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5 The simple exclusion process in random
environment

5.1 Introduction

In Section 4.2, we discussed mixing times for the simple exclusion process with homo-
geneous or symmetric transition rates. In the following, we investigate mixing times for
the simple exclusion process when the underlying transition rates are inhomogeneous
and asymmetric. This section is in large parts based on Section 5 of [119]. We will
impose the following assumptions on the choice of the transition rates: we will allow
only nearest-neighbor jumps, such that each particle tries to perform a jump at a total
rate of 1. This is called the constant speed model of the simple exclusion process.
In the beginning, we choose for each site the rate to perform a jump to the right
i.i.d. according to some distribution on (0, 1]. We assume that the distribution is such
that a single particle on Z with i.i.d. chosen jump rates according to this distribution
has almost sure a positive linear speed. We refer to this as the ballistic regime;
see (5.1). In the following, we focus on mixing times for the simple exclusion process
in the ballistic regime when the underlying distribution is supported on A ⊆ [1

2
, 1] with

1
2
∈ A. This ensures that the particles have a macroscopic drift to the right-hand side

and microscopically no bias to the left-hand side. We call this regime the marginal
nestling case.

5.1.1 Definition of the model

We now give a formal introduction to the simple exclusion process in random envi-
ronments. First, we define the simple exclusion process on the segment in a fixed
environment. The simple exclusion process in environment ω for ω = (ω(x))x∈[N ]

on a segment of size N with k particles is a continuous-time Markov chain (ηt)t≥0 on
the state space ΩN,k from (3.27). It is generated by the closure of

Lf(η) =
N−1∑
x=1

ω(x) η(x)(1− η(x+ 1))
[
f(ηx,x+1)− f(η)

]
+

N∑
x=2

(1− ω(x)) η(x)(1− η(x− 1))
[
f(ηx,x−1)− f(η)

]
,

where we assume ω(x) ∈ (0, 1] for all x ∈ [N ]. For the simple exclusion process on
ΩN,k in a random environment, we choose the transition probabilities (ω(x))x∈[N ] to
be i.i.d. according to some probability distribution on (0, 1] and denote the law of the
environment by P. Since ω(x) ∈ (0, 1] for all x ∈ [N ], the simple exclusion process has
a unique essential class, and hence a unique stationary distribution µ; see (3.28). We
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1 2 3 4 5 6 7 8 9
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Figure 8: Example of the simple exclusion process in a marginal nestling environment
ω where P(ω(1) = 1

2
) = P(ω(1) = 3

4
) = 1

2
. For positions x with ω(x) = 1

2
, we

mark the label in red, and in blue otherwise.

denote the quenched law of the exclusion process in a fixed environment ω with starting
distribution ν by Pω,ν . If ν is the Dirac measure on some configuration ψ ∈ ΩN,k, we
will write Pω,ψ. Define the quenched ε-mixing time of the exclusion process (ηt)t≥0

tω,Nmix (ε) := inf

{
t ≥ 0 : max

ψ∈ΩN,k
‖Pω,ψ (ηt ∈ · )− µ‖TV < ε

}
for ε ∈ (0, 1). Again, we refer to tω,Nmix = tω,Nmix (1

4
) simply as the mixing time. Our goal is

to study the order of tω,Nmix when N tends to infinity.

In the following, let (ηt)t≥0 be the simple exclusion process in a random environment
ω with state space ΩN,k and mixing time tω,Nmix . We study the ballistic regime with a
drift to the right, i.e.,

E
[

1− ω(1)

ω(1)

]
< 1 (5.1)

holds. Solomon [132] showed that under assumption (5.1), a single particle has almost
surely a positive linear speed to the right-hand side; see [141] for a survey on random
walks in random environment. We distinguish three different cases. When

P
(
ω(1) ≥ 1

2
+ δ

)
= 1 (5.2)

holds for some δ > 0, we say that we are in the non-nestling case. When

P
(
ω(1) ≥ 1

2

)
= 1 (5.3)

holds, but (5.2) is not satisfied, we say that we are in the marginal nestling case;
see Figure 8 for an example. If neither (5.2) nor (5.3) holds, but the environment
law satisfies (5.1), we are in the plain nestling case. Note that for plain nestling
environments, we must have

P
(
ω(1) <

1

2

)
> 0 , (5.4)
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5.1 Introduction

i.e., with positive probability a site has a bias against the macroscopic drift direction.
The terms non-nestling, marginal nestling and plain nestling are taken from [142].

5.1.2 Related literature

For a discussion of mixing times for the simple exclusion process in homogeneous
environments, we refer to Section 4.2. However, let us emphasis at this point that
the results by Oliveira, stated as Theorem 4.8, do in general not apply for the simple
exclusion process in random environments. When assumption (3.15) holds, like in
the setup of Theorem 4.8, we say that we consider the variable speed model of the
simple exclusion process. This assumption is in general not satisfied in the constant
speed model of the simple exclusion process, where the particles attempt jumps at a
total rate of 1.

For the special case of a single particle, i.e., when k = 1 holds for all N ∈ N, mixing
times were studied by Gantert and Kochler [63]. Under some mild assumptions on the
environment law, they show that in the ballistic regime, we see with high probability
with respect to the law of the environment that the mixing time is linear in the size
of the segment. Moreover, the cutoff phenomenon occurs. Furthermore, they study
mixing times in the transient regime, where

P
(

log

(
1− ω(1)

ω(1)

))
< 0 (5.5)

holds. Solomon showed that assumption (5.5) guarantees that a single particle in an
i.i.d. environment on Z, which satisfies (5.5), will have a drift to the right-hand side
and almost surely return to the origin only finitely often [132]. When an environment
is transient but not ballistic, a single particle escapes to infinity at a sublinear speed.
This case is called the subballistic regime. Again, under some mild conditions on
the environment law, including the assumption that

E

[(
1− ω(1)

ω(1)

)λ]
= 1 (5.6)

holds for some λ ∈ (0, 1], Gantert and Kochler prove that in the subballistic regime,
we see with high probability a mixing time of order N

1
λ , and no cutoff.

For the simple exclusion process in a ballistic random environment with a positive
fraction of particles, i.e., when the number of particles k = k(N) satisfies

0 < lim inf
N→∞

k(N)

N
≤ lim sup

N→∞

k(N)

N
< 1 , (5.7)
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lower bounds on the mixing time were obtained in the author’s unpublished Master
thesis [118]; see also Sections 3 and 4 in [119] for a published version of these results.
The lower bounds on the mixing times can be summarized as follows.

Theorem 5.1. Let (ηt)t≥0 denote the simple exclusion process in random environment
ω with state space ΩN,k and mixing time tω,Nmix . Suppose that assumption (5.7) holds.
We distinguish three cases:

• Suppose that we are in the non-nestling case. Then P-almost surely the mixing
time satisfies tω,Nmix & N .

• Suppose that we are in the marginal nestling case. Then with high probability,
the mixing time satisfies tω,Nmix � N .

• Suppose that we are in the plain nestling case. Then there exists some δ > 0 such
that with high probability, the mixing time satisfies tω,Nmix & N1+δ.

For the simple exclusion process in the marginal nestling regime with a positive
fraction of particles, the mixing time has with high probability with respect to the
environment law a superlinear growth. Moreover, in the plain nestling regime, we see
that the mixing time of a single particle and the mixing time for a positive fraction of
particles differ with high probability by a polynomial factor in the size of the segment,
using the results of [63]. For the non-nestling case, it is immediate that tω,Nmix � N for
P-almost all environments, using an extension of the canonical coupling; see Section 5.2
and Theorem 4.7.

Very recently, the lower bounds were improved and extended for the simple exclusion
process in the subballistic regime by Lacoin and Yang [86]. Further, they show that in
the ballistic and subballistic regime, with high probability with respect to the law of
the environment, the mixing time is polynomial in the size of the segment.

5.1.3 Main result

We present now our main result on the mixing time of the simple exclusion process in
a marginal nestling random environment.

Theorem 5.2. Let (ηt)t≥0 denote the simple exclusion process in environment ω with
state space ΩN,k and mixing time tNmix for some k = k(N) = [N − 1]. Then for all
marginal nestling environments, which satisfy (5.3) but not (5.2), tNmix . N log3(N)

holds with high probability with respect to the environment law P.

Together with the results of Gantert and Kochler in [63] on the mixing time of a
single particle in a ballistic random environment, this shows that with high probability,
the mixing time of the simple exclusion process in a marginal nestling environment is
within a polylogarithmic factor of the mixing time of a single particle; see Figure 9 for
a simulation of the corresponding height function over time.
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t = 0 t = 600 t = 1200

Figure 9: Simulation of the path of the height function for a simple exclusion process
in the marginal nestling case. We have a segment of size N = 200, k = 100
particles, and the environment law satisfies P(ω(1) = 1

2
) = P(ω(1) = 3

4
) = 1

2
.

5.1.4 Outline of the proof

We will now give an overview of the strategy for the proof of Theorem 5.2. We start by
recalling the canonical coupling for the simple exclusion process from Section 3.3, and
present an extension for inhomogeneous environments in Section 5.2. This modified
canonical coupling will preserve the partial order �h using height functions for the
simple exclusion process and a partial order for the environment.

In Section 5.3, we study the speed of the particles on the segment when starting
from the configuration θN,k with all particles at the left-hand side. In general, the
speed will no longer be linear in N . However, when we extend the line segment to a
larger size, say N2, we can show that with high probability, the particles have traveled
a distance of N log(N) until a time of order N log3(N). We formalize this observation
in Proposition 5.4 using the censoring technique; see Section 4.4. More precisely, we
partition the segment into boxes according to a censoring scheme such that with high
probability, each box contains at most one particle at a time. The isolated particles
perform independent random walks within their boxes. In this way, we control the
particle movements with respect to their local equilibria simultaneously.

The remaining part of the proof follows the ideas of Benjamini et al. in [19]. Using
Theorem 4.7, we extend the simple exclusion process to the integers and study the
hitting time of the ground state. We will then use the exclusion process with second
class particles; see Section 4.5. We obtain an upper bound on the hitting time, which
is of order N log3(N) plus the hitting time of the ground state in a system with a
different starting configuration; see Proposition 5.9. We iterate this argument until the
remaining hitting time is with high probability of order at most N .
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5 The simple exclusion process in random environment

5.2 The canonical coupling for inhomogeneous
environments

Recall the canonical coupling from Section 3.3. We present now a modified canonical
coupling for the simple exclusion process in general environments. It is defined with
respect to a common space of all possible initial configurations and environments. It
will be monotone with respect to the partial order �h on ΩN,k from (3.29) as well as
with respect to the partial order �e on the set of all possible environments given by

ω �e ω̄ ⇔ ω �c ω̄ ⇔ 1− ω(x) ≤ 1− ω̄(x) for all x ∈ [N ] (5.8)

for environments ω and ω̄, and the component-wise order �c from (3.13). We will now
construct the modified canonical coupling (ηt, ζt)t≥0 for two simple exclusion processes
(ηt)t≥0 and (ζt)t≥0 in environments ω and ω̄, respectively.

We place rate 2 Poisson clocks on all sites x ∈ [N ]. Whenever the clock at a site
x rings at time t, we flip a fair coin and sample a Uniform-[0, 1] random variable U
independently. We proceed as follows:

Suppose that the coin shows “head” and it holds that x 6= N , U ≤ ω(x) and
ηt(x) = 1− ηt(x + 1) = 1. Then we move the particle from site x to site x + 1 in ηt.
Moreover, if U ≤ ω̄(x) as well as ζt(x) = 1 − ζt(x + 1) = 1 are satisfied, then move
the particle from site x to site x+ 1 in the configuration ζt. Similarly, suppose that
the coin shows “tail”, and x 6= 1, U > ω(x) and ηt(x) = 1 − ηt(x − 1) = 1. Then
we move the particle from site x to site x − 1 in ηt. Again, if U > ω̄(x) as well as
ζt(x) = 1− ζt(x− 1) = 1 are satisfied, then move the particle from site x to site x− 1

in configuration ζt. If none of these rules apply, we leave the configurations unchanged.

The following proposition is immediate from the construction of this modified
canonical coupling for the simple exclusion process. With a slight abuse of notation,
we call this coupling again the canonical coupling and denote its law by P.

Proposition 5.3. Let (ηt)t≥0 and (ζt)t≥0 be exclusion processes in environments ω and
ω̄, respectively, according to the canonical coupling. If η0 �h ζ0 and ω �e ω̄, then

P (ηt �h ζt ∀t ≥ 0) = 1 .

We will see another possible modification of the canonical coupling for the TASEP
on trees; see Section 10.2. Note that using the canonical coupling, together with Corol-
lary 4.2 and Theorem 4.7, we immediately see that for any deterministic environment
ω with some δ > 0 such that ω(x) ≥ 1

2
+ δ for all x ∈ [N ], the mixing time is linear in

the size of the segment; see also [118] and Theorem 1.1(i) in [119].
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t = 0

t = S−

t = S

t = 2S−

t = 2S

Figure 10: Illustration of the censoring scheme used in the proof of Proposition 5.4
with U = 2. During each period [iS, (i+ 1)S) for i ∈ N0 = {0, 1, . . . }, the
particles shown in red are only allowed to move within their assigned boxes.

5.3 Upper bound for marginal nestling environments

We will now show Theorem 5.2, following the strategy outlined in Section 5.1.4.

5.3.1 Speed of the particles in the marginal nestling case

Recall the censoring inequality from Section 4.4. By Proposition 5.3, we see that the
modified canonical coupling for the simple exclusion process in random environment
is a monotone grand coupling with respect to the partial order �h. Hence, we can in
the following apply the censoring inequality from Lemma 4.11 to get a lower bound
on the speed of the particles. In order to define the speed on a suitable scale, we will,
for the moment, enlarge the underlying segment. More precisely, we will assume that
the simple exclusion process (ηt)t≥0 in a marginal nestling environment is defined with
respect to the line segment of size N2 and k ∈ [N − 1] particles. In Section 5.3.2, we
will see how the results for the exclusion process on this enlarged segment transfer to
bounds on the mixing time for the simple exclusion process on a segment of size N . In
the following, we denote by L(η) the position of the leftmost particle and by R(η) the
position of the rightmost empty site in a configuration η, respectively.

Proposition 5.4. Consider the simple exclusion process (ηt)t≥0 with initial configu-
ration θN2,k from (3.31) for k ∈ [N − 1]. Then with P-probability at least 1 − N−2

Pω,θN2,k
(L(ηTN ) ≥ N log(N) +N) ≥ 1− 2

N2
(5.9)

holds for TN = cN log3(N), where c > 0 is a sufficiently large constant.

In order to show Proposition 5.4, we will now provide a censoring scheme C for the
simple exclusion process; see Figure 10. Intuitively, we alternate between two partitions
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of the line segment into boxes of logarithmic size. Moreover, in every second iteration,
we release a particle at the left-hand side as long as there are particles available. The
time between the switches of the two partitions and the size of the boxes will be chosen
such that with high probability, up to time TN , all particles move to the right half of
the box within each iteration. Formally, we define C as follows:

The censoring scheme C remains constant within the intervals [iS, (i+ 1)S) for all
i ∈ N0 and some S = S(N), which we choose later. For i even, C contains all edges
e = {x, x+ 1} such that x = 2jU for some j ∈ N and x ≤ N2−2U . Again, the value of
U = U(N) will be determined later on. For i odd, C consists of all edges e = {x, x+ 1}
such that x = (2j + 1)U for some j ∈ N as well as x ≤ N2 − 2U . In both cases,
whenever i < 2k, we let e = {x, x+ 1} be the unique edge in C with the smallest x such
that k−

⌊
i
2

⌋
≤ x holds. We remove e from C and add the edge

{
k −

⌊
i
2

⌋
− 1, k −

⌊
i
2

⌋}
.

This ensures that the ith particle from the right will only move from time 2(i− 1)S

onward.

We refer to Figure 10 for an illustration. Our goal is to control the particles within
the boxes in the censoring scheme C. Whenever a particle is allowed to move, it is
isolated in a box of size 2U during an iteration. Only the first and the last box might
be larger due to boundary effects, but are at most of size 4U . Consider the ith particle
and condition on its position at time jS for the largest j such that t ≥ jS holds. Let
B = B(i, t) denote the interval according to the censoring scheme in which the ith

particle is placed at time t ≥ 0. Further, let C = C(i, t) denote the set of the rightmost
U vertices in B. Let B be the set of all B(i, t) for some t ≥ 0 and i ∈ [k]. The next
lemma gives an estimate on the invariant measure and the mixing time of the random
walk within a box B ∈ B.

Lemma 5.5. Let µω,BRW denote the invariant measure of the random walk on B ∈ B
in environment ω|B. There exists a constant u > 0 such that for U = u log(N), with
P-probability at least 1−N−2

µω,BRW(C) ≥ 1−N−5 (5.10)

holds for all B ∈ B and N ∈ N. For this choice of U , let tω,BRW(ε) denote the ε-mixing
time of the random walk on B ∈ B in environment ω|B. There exists a constant s > 0

such that for S = s log3(N) and almost every environment ω

tω,BRW(N−5) ≤ S (5.11)

holds for all B ∈ B and N ∈ N. Hence, with P-probability at least 1−N−2, a random
walk started at some point in B is contained in the respective set C after time S with
probability at least 1− 2N−5 for all B ∈ B.
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5.3 Upper bound for marginal nestling environments

Proof. Observe that B contains at most N3 elements by construction of the censoring
scheme. For the random walk on B, the stationary distribution µω,BRW is given by

µω,BRW(y) =
1

ZB

y∏
i=1

ω(i)

1− ω(i+ 1)

for all y ∈ B and some normalization constant ZB. Using condition (5.1), we know
that E[µω,BRW(y)] is exponentially increasing in y, where E[ · ] denotes the expectation
with respect to P. Hence, let u > 0 be such that with P-probability at least 1−N−5

µω,BRW(C) ≥ 1−N−5

holds for every B ∈ B fixed and N ∈ N. Taking a union bound over all elements in
B gives (5.10). In order to show (5.11), recall that |B| ≤ 4U holds for all B ∈ B. We
claim that the mixing time of the random walk in B satisfies

tω,BRW

(
1

4

)
≤ 64U2

for all B ∈ B and almost every environment ω. Using Corollary 4.2 for k = 1, it suffices
to give a bound on the hitting time of the rightmost site in B when starting the random
walk from the leftmost site in B. Using Proposition 5.3, this hitting time is dominated
by the respective hitting time of a symmetric simple random walk on B, which has
mean |B|2. Hence, we obtain (5.11) from Corollary 4.2 and Markov’s inequality.

Proof of Proposition 5.4. We start by making the following observation. Suppose that
for all i ∈ [k] and j ∈ N0 with 2(i − 1) ≤ j ≤ TN/S, the ith particle, counted from
the right-hand side, is contained in the set C(i, jS) at time ((j + 1)S)−, i.e., up to
time TN all the particles reach the right half of their respective boxes within time S
whenever they are able to move. By construction of the censoring scheme C, we then
have that up to time TN , each box contains at most one particle at a time. More-
over, each particle has moved a distance of at least U(TN/S−2k) to the right-hand side.

Let U = U(N) and S = S(N) from Lemma 5.5 be the size of the boxes and the time
between the switches of the partitions in the censoring scheme C, respectively. We
set TN := S(U−1(N log(N) +N) + 2k) for all N ∈ N. Note that we have at most N
particles and each particle is contained in at most N2 different boxes up to time TN
for all N sufficiently large. Using Lemma 5.5 and the above observation, we obtain
that with P-probability at least 1−N−2

P Cω,θN2,k

(
L(ηCTN ) ≥ N log(N) +N

)
≥ 1− 2

N2

holds. Since the event in (5.9) is decreasing for �h, we conclude using Lemma 4.11.
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ξ0

ηZ0

η0

1 2 3 4 16

−1 0 1 2 3 4 5 6

−1 0 1 2 3 4 5 6

Figure 11: Visualization of the initial configurations θN2,k, θZ,k, and ξ0 for the different
processes (ηt)t≥0, (ηZt≥0), and (ξt≥0), respectively, for N = 4 and k = 2,
which are involved in the proof of Theorem 5.2.

5.3.2 Comparison to the exclusion process on the integers

Next, we want to compare the simple exclusion process (ηt)t≥0 on {0, 1}N2 to a simple
exclusion process (ηZt )t≥0 on the integers; see Figure 11. Formally, the simple exclusion
process (ηZt )t≥0 in environment ω ∈ (0, 1]Z is a Feller process on {0, 1}Z generated by
the closure of

L̃f(η) =
∑
x∈Z

ω(x) η(x)(1− η(x+ 1))
[
f(ηx,x+1)− f(η)

]
+
∑
x∈Z

(1− ω(x)) η(x)(1− η(x− 1))
[
f(ηx,x−1)− f(η)

]
. (5.12)

Note that Theorem 3.1 ensures that (5.12) gives a Feller process. With a slight abuse
of notation, we will use the same notation for the quenched law of (ηZt )t≥0 as for the
simple exclusion process on the segment. Note that the partial order �h as well as the
canonical coupling from Section 5.2 naturally extend to Z when the number of particles
is finite, i.e., we compare the positions of the ith particles in both configurations.
However, we loose the existence of a unique maximal or minimal element.

In the following, we assume that the environment ω ∈ (0, 1]Z for (ηZt )t≥0 is marginal
nestling, i.e., (ω(x))x∈Z are i.i.d. and their law satisfies condition (5.3), but not (5.2).
Let θZ,k denote the configuration in {0, 1}Z, where we place exactly k particles on [k].

Lemma 5.6. Let (ηZt )t≥0 be the simple exclusion process on the integers in environment
ω started from θZ,k. Then for all k ∈ [N − 1] with P-probability at least 1−N−2

Pω,θZ,k
(
L(ηZTN ) ≥ N log(N)

)
≥ 1− 4

N2

holds for all N large enough, where TN is taken from Proposition 5.4.
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5.3 Upper bound for marginal nestling environments

Proof. For the simple exclusion process (ηZt )t≥0 on the integers in environment ω, we
consider its projection to the environment ω̃ := ω|[−N+1,N2−N ]. Observe that (ηZt )t≥0 is
uniquely determined by its values on ω̃ whenever no particle reaches the sites −N + 1

or N2 −N . We claim that for almost all environments ω the statements

Pω,θZ,k
(
∃t ∈ [0, TN ] : max

{
i ≥ 0 : ηZt (i) = 1

}
≥ N2 −N

)
≤ 1

N2
(5.13)

and
Pω,θZ,k

(
∃t ∈ [0, TN ] : L(ηZt ) ≤ −N + 1

)
≤ 1

N2
(5.14)

hold for all N large enough. The first statement is immediate when we consider the
motion of the rightmost particle in (ηZt )t≥0. For the second statement, notice that the
position of the leftmost particle in (ηZt )t≥0 stochastically dominates the position of the
leftmost particle in a symmetric simple exclusion process on Z with the same initial
condition. Recall from Section 3.4.1 that the symmetric simple exclusion process can
be seen as an interchange process in which the particles swap positions along each
edge irrespectively of the configuration at the endpoints. In this case, the particles
perform symmetric simple random walks on Z, and we use Chernoff bounds to conclude.

Whenever the events in (5.13) and (5.14) occurs, the simple exclusion process (ηZt )t≥0

with initial configuration θZ,k has on the set [−N + 1, N2−N ] up to time TN the same
law as a simple exclusion process (ηt)t≥0 on the segment of size N2 in environment
ω̃, started from the configuration where all k particles are placed on the positions
{N + 1, . . . , N + k} of the segment [N2]. Hence, using the stochastic domination from
Proposition 5.3 together with Proposition 5.4 gives the desired result.

Lemma 5.6 shows that the particles in (ηZt )t≥0 started from θZ,k have passed a distance
of at least N log(N) to the right-hand side until time TN . We will now ensure that also
for times larger than TN , the particles escape fast enough. In particular, we study the
motion of the particles at different time scales, which will be increasing exponentially
with respect to N .

Lemma 5.7. Let (ηZt )t≥0 be the simple exclusion process in environment ω started
from θZ,k. For all k ∈ [N − 1], with P-probability at least 1− 2N−2,

Pω,θZ,k

(
∀t ≥ TN : L(ηZt ) > t

2
3 +N

)
≥ 1− 10

N2

holds for all N large enough, where TN is taken from Proposition 5.4.

Proof. For a given N ∈ N, we define the sequences (Ni)i∈N0 and (ti)i∈N0 to be

Ni := exp

((
4

3

)i
log(N)

)
and ti :=

i∑
j=0

TNj . (5.15)
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5 The simple exclusion process in random environment

By Lemma 5.6, with P-probability at least 1−N−2
0

Pω,θZ,k
(
L(ηZt0) ≥ N0 log(N0)

)
≥ 1− 4

N2
0

(5.16)

holds. Suppose that the event in (5.16) occurs. Then without loss of generality, we
can assume that the particles are placed on the sites in [N0 log(N0), N0 log(N0) + k] at
time t0 by Proposition 5.3. Starting from this configuration, we can apply Lemma 5.6
again to obtain that with P-probability at least 1−N−2

0 −N−2
1

Pω,θZ,k
(
L(ηZti) ≥ Ni log(Ni) for i ∈ {0, 1}

)
≥ 1− 4

(
1

N2
0

+
1

N2
1

)
holds. Iterating this argument along the sequence (Ni)i∈N0 , we see that P-probability
at least 1− 2N−2

Pω,θZ,k
(
L(ηZti) ≥ Ni log(Ni) for i ∈ N0

)
≥ 1− 8

N2

is satisfied. Observe that
Ni log(Ni) > (ti)

2
3 +N

holds for all i ∈ N0 and N large enough. Hence, it remains to consider the case of
t ∈ (ti, ti+1) for some i ∈ N0. Using the same arguments as for the proof of (5.14) in
Lemma 5.6, we obtain that for P-almost every environment ω

Pω,θZ,k
(
L(ηZt ) ≥ Ni ∀t ∈ [ti, ti+1] | L(ηZti) ≥ Ni log(Ni)

)
≥ 1− 1

N2
i+1

holds for all i ∈ N and N sufficiently large. Since

(ti+1)
2
3 +N < Ni

holds for all i ≥ 1 and N sufficiently large, we obtain the desired result.

We will now work towards using the above estimates for mixing times. Recall from
(3.23) that ϑ0 ∈ {0, 1}Z denotes the ground state on A0, and that ΘN,k from (4.20) is
the projection of θN,k to A0, for N ∈ N and k ∈ [N − 1]. Further, recall (4.8) and let

tω,Nhit (ε) := inf
{
t ≥ 0: Pω,ΘN,k

(
τ
ΘN,k
hit (ϑ0) > t

)
≤ ε
}

(5.17)

be the ε-hitting time of (ηZt )t≥0 for all ε ∈ (0, 1). We now relate the ε-hitting time of
(ηZt )t≥0 to the ε-mixing time tω|[N ]

mix (ε) of a simple exclusion process on the line segment
of size N in environment ω|[N ]; see also Section 4.1.1. The following statement is the
analogue of Theorem 4.7 for inhomogeneous environments. Again, it follows directly
by extending the canonical coupling to Z, so we omit the proof.
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5.3 Upper bound for marginal nestling environments

Lemma 5.8. For almost all environments ω ∈ (0, 1]Z, and for all ε > 0

t
ω|[N ],N

mix (ε) ≤ tω,Nhit (ε) .

For the remainder of the proof of Theorem 5.2, we will follow the ideas of Benjamini
et al. [19]. We will show that whenever the particles in the simple exclusion process on
Z have with high probability passed a distance of at least N to the right-hand side, an
associated exclusion process on the line segment has “almost” reached the ground state.
This will be our main idea for the proof of Proposition 5.9, which states a recursion for
the ε-hitting time. For an environment ω ∈ (0, 1]Z and n ∈ Z, we denote by ωn the
environment shifted to the right-hand side by n, i.e., for all x ∈ Z

ωn(x) := ω(x− n) . (5.18)

Proposition 5.9. For a given N ∈ N and k = k(N) ∈ [N − 1], we set N ′ = N3/4 and
k′ = k(N ′) = 1

2
N3/4. Consider the simple exclusion process on Z in a marginal nestling

environment ω. Set n = N − k −N ′ + k′ and recall TN from Proposition 5.4. Then
with P-probability at least 1− 2N−2,

tω,Nhit (ε) ≤ TN + tωn,N
′

hit

(
ε− 12N−2

)
holds for all ε > 0 and N large enough.

In words, Proposition 5.9 states that the ε-hitting time of the ground state can with
high probability be bounded from above by TN plus the (ε− 12N−2)-hitting time with
respect to N ′ and k′ of the ground state for the simple exclusion process in the shifted
environment ωn.

In order to show Proposition 5.9, recall the notion of second class particles from
Section 4.5. Let (ξt)t≥0 be a simple exclusion process on Z with second class particles.
We will now define two projections of (ξt)t≥0 onto {0, 1}Z. Let (ξ2→1

t )t≥0 be the process
given by

ξ2→1
t (x) :=

{
1 if ξt(x) 6= 0

0 if ξt(x) = 0
(5.19)

for all x ∈ Z and t ≥ 0. Similarly, (ξ2→0
t )t≥0 denotes the process where

ξ2→0
t (x) :=

{
1 if ξt(x) = 1

0 if ξt(x) 6= 1
(5.20)

for all x ∈ Z and t ≥ 0. We refer to (ξ2→1
t )t≥0 and (ξ2→0

t )t≥0 as particle blindness
and second class-empty site blindness, respectively. A visualization of the two
projections is given in Figure 12.
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In addition, we define a third projection (ξX
t )t≥0 onto {0, 1}Z by removing all first

class particles as well as the sites corresponding to the particles, and then applying
projection (ξ2→1

t )t≥0. Since the resulting process is only well-defined up to translations,
we initially place a tagged particle in the origin. Note that a formal introduction to
the tagged particle process on general graphs will be given in Section 7. Here, in the
special case of the simple exclusion process on Z in random environment, we use the
following construction. Assume that a given configuration ξ ∈ {0, 1, 2}Z satisfies

|{i ∈ Z : ξ(i) = 2}| =∞ .

Let u : Z→ Z ∪ {∞} be an enumeration of the sites in ξ such that

u(0) :=

{
inf{i ≤ 0: ξ(i) = 2} if −∞ < inf{i ≤ 0: ξ(i) = 2} < +∞
inf{i > 0: ξ(i) = 2} otherwise.

We define the positions u(j) and u(−j) for all j ∈ N recursively by

u(j) := inf{i > u(j − 1) : ξ(i) 6= 1}

and
u(−j) := inf{i > u(−j + 1): ξ(i) 6= 1} .

We can now define ξX as

ξX(i+ 1) :=

{
1 if ξ(u(i)) = 2

0 if ξ(u(i)) = 0
(5.21)

for all i ∈ Z. In order to obtain a stochastic process (ξX
t )t≥0, we denote by ut(i) the

position of the particle at time t which is in position u(i) in ξ0, and then apply (5.21)
accordingly. Again, we refer to Figure 12 for a visualization of the projection. The
proof of Proposition 5.9 will now be an interplay of the three projections (ξ2→1

t )t≥0,
(ξ2→0
t )t≥0 and (ξX

t )t≥0 of a simple exclusion process with second class particles (ξt)t≥0.

Proof of Proposition 5.9. Let (ξt)t≥0 be the simple exclusion process with second class
particles in environment ω with

ξ0(x) :=


0 if x ≤ 0

1 if x ∈ [k]

0 if x ∈ [k + 1, N ]

2 if x > N

as initial configuration. Observe that the process (ξ2→1
t )t≥0 has the same law as a

simple exclusion process in environment ωN−k started from the configuration ΘN,k.
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ξX

ξ2→0

ξ2→1

ξ

−3 −2 −1 0 1 2 3 4

−3 −2 −1 0 1 2 3 4

−3 −2 −1 0 1 2 3 4

−2 −1 0 1 2 3

Figure 12: Visualization of the particle blindness ξ2→1, the second-class empty site
blindness ξ2→0, and the projection ξX (with u(0) = 0) for a configuration
ξ ∈ {0, 1, 2}Z of the simple exclusion process with second class particles.

Our goal is to bound the hitting time of the ground state for the process (ξ2→1
t )t≥0. We

make the following observation: Suppose that at time t ≥ 0, the two events

K1 :=
{

inf{x ∈ Z : ξt(x) = 1} ≥ t
2
3 +N

}
K2 :=

{
ξX
t (x) = 1{x≥0} ∀x ∈ Z

}
occur. Then ξ2→1

t = ϑN−k holds. To see this, note that if K1 occurs, then there exists
a second class particle which is on the left-hand side of the leftmost first-class particle
in ξt. If K2 occurs, then all empty sites are placed on the left-hand side of the leftmost
second class particle in ξt. We claim that with P-probability at least 1− 2N−2,

Pω,ξ0 (K1 holds for all t ≥ TN) ≥ 1− 10N−2 (5.22)

holds. Note that the process (ξ2→0
t )t≥0 has the same law as a simple exclusion process

in environment ω started from configuration θZ,k, and so (5.22) follows by Lemma 5.7.

We now want give an upper bound on the first time t ≥ TN such that the event K2

occurs. We claim that for almost every marginal nestling environment ω

Pω,ξ0

(
sup{i ≥ 0: ξX

t = 0} < t
2
3 ∀t ≥ TN

)
≥ 1− 1

N2
(5.23)

holds. To see this, note that by Proposition 5.3 and the censoring inequality, the
position of the rightmost empty site in the process (ξX

t )t≥0 is stochastically dominated
by the position of the rightmost empty site for a symmetric simple exclusion process
with starting configuration ψ ∈ {0, 1}Z given by ψ(x) = 1x≤0 for all x ∈ Z. Recall from
Section 3.4.1 that the symmetric simple exclusion process can be seen as an interchange
process on Z and hence, we obtain (5.23) by applying Chernoff bounds. Using the
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same argument for the position of the leftmost second class particle,

Pω,ξ0

(
inf{i ≤ 0: ξX

t = 1} > −t
2
3 ∀t ≥ TN

)
≥ 1− 1

N2
(5.24)

holds for almost every environment ω. Note that when the events in (5.22) and (5.23)
hold, no first-class particle will be next to an empty site for any time t ≥ TN . Since
transitions between first and second class particles do not change a configuration
in (ξX

t )t≥TN , the process (ξX
t )t≥TN then has the law of a simple exclusion process in

environment ωn. Hence, the hitting time of the ground state in (ξX
t )t≥TN started from

ξX
TN

gives an upper bound on the hitting time of the ground state for (ξ2→1
t )t≥0.

We now show that it suffices to consider the hitting time of the ground state for
(ξX
t )t≥TN started from ΘN ′,k′ at time TN . Provided that the events in (5.23) and (5.24)

occur, ξX
TN
�h ΘN ′,k′ holds for all N sufficiently large, where we recall �h from (3.25).

Note that the canonical coupling extended for the exclusion process on Z preserves the
partial order �h on A0. Combining these observations, we obtain that the hitting time
of the ground state for (ξ2→1

t )t≥0 is stochastically dominated by the hitting time of the
ground state in (ξX

t )t≥TN started from ΘN ′,k′ at time TN whenever the events in (5.22),
(5.23) and (5.24) occur. This gives the desired result.

The next lemma gives a bound on the ε-hitting time of the ground state when
the parameters in the initial configuration of the simple exclusion process on Z are
increasing slowly.

Lemma 5.10. For all ε > 0, we find a sequence (MN)N∈N with limN→∞MN = ∞
such that the ε-hitting time of the ground state for a simple exclusion process on the
integers with initial configuration ΘMN ,MN/2 satisfies

P
(
tω,MN

hit (ε) < N
)
≥ 1− 1

M(N)

for all N sufficiently large.

Proof. Note that by Theorem 1.1(b) of [77] and Theorem B.52 of [94], the simple
exclusion process (ηZt )t≥0 restricted to A0 is an ergodic Markov chain for P-almost every
environment ω. Hence, for all m ∈ N and all ε > 0, the ε-hitting time of the ground
state for a simple exclusion process started from Θm,m/2 satisfies

lim
N→∞

P (tω,mhit (ε) < N) = 1

by the Poincaré recurrence theorem. For every N ∈ N, we set

MN := max
{
m ∈ N : P (tω,mhit (ε) < N) ≥ 1−m−1

}
in order to obtain a sequence (MN)N∈N as stated in Lemma 5.10.
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Proof of Theorem 5.2. By Lemma 5.8, it suffices to show that

lim
N→∞

P
(
tω,Nhit

(
1

4

)
< CN log3(N)

)
= 1

holds for some constant C > 0. Recall the definition of Ni from (5.15), and extend
it for i ∈ Z. For N ∈ N large enough and MN of Lemma 5.10 with respect to ε = 1

8
,

define
IN := min {i ∈ N : N−i < MN} .

We iterate Proposition 5.9 now IN many times to obtain that with P-probability at
least 1− 4M

−3/4
N

tω,Nhit

(
1

4

)
≤

IN∑
i=0

TN−i + tωl,MN

hit

(
1

4
−

IN∑
i=0

1

N−i

)
≤ 2TN + tωl,MN

hit

(
1

8

)
holds for all N sufficiently large and some l ∈ Z depending only on N and k. Since the
shifted environment ωl has the same law as ω, we conclude that with P-probability at
least 1− 5M

−3/4
N

tω,Nhit

(
1

4

)
≤ 2TN +N ≤ CN log3(N)

holds for some C > 0 and N large enough. This finishes the proof of Theorem 5.2.

5.4 Open problems

In Theorem 5.2, we prove an upper bound on the mixing time for the simple exclusion
process in the marginal nestling case. This raises the following question.

Question 5.11. What is the correct order of the mixing time for the simple exclusion
process in a marginal nestling random environment?

For single particle in the ballistic regime, Gantert and Kochler show that with high
probability cutoff occurs; see Theorem 1.5 in [63].

Question 5.12. Does the simple exclusion process in the ballistic regime exhibit cutoff
for any number of particles?

The last open problem of this section concerns the exclusion process in the constant
speed model on general graphs. In the varying speed model on G = (V,E), the mixing
time of the simple exclusion process differs from the mixing time of the random walk
on G by at most a factor of order log(|V |); see [107]. Theorem 5.1 shows that this
relation does in general not hold in the constant speed model.

Question 5.13. Does a similar relation as in Theorem 4.8 hold for the constant speed
model of the simple exclusion process?
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6 The simple exclusion process with open
boundaries

6.1 Introduction

In Sections 4.2 and 5, we studied mixing times for the simple exclusion process when
the number of particles is preserved. In this case, under mild assumptions on the
transition rates, the simple exclusion process has a unique reversible distribution. We
now study mixing times for the simple exclusion process with open boundaries. The
presented material is based in large parts on [66], which is joint work with Nina Gantert
and Evita Nestoridi. In the simple exclusion process with open boundaries, we allow
particles to jump in and out of the system at the ends of the segment according to given
rates. In particular, note that the number of particles is no longer preserved over time.
Moreover, in general, the simple exclusion process with open boundaries no longer has
a reversible measure, and the mean displacement of the particles does not stay fixed
in equilibrium. This makes the simple exclusion process with open boundaries one of
the most fundamental examples of a non-equilibrium particle system from a statistical
mechanics’ perspective.

The simple exclusion process with open boundaries is intensively studied in var-
ious fields, including probability theory, statistical mechanics, and combinatorics
[21, 89, 94, 140]. Informally speaking, the simple exclusion process with open boundaries
is an approximation of an infinite system, which captures surprising phenomena such
as phase transitions in the current and the formation of shocks; see [45, 51, 54, 55, 137].
In the course of this chapter, we will see examples for these phenomena, e.g., in Sec-
tion 6.3.2 we discuss current results for the asymmetric simple exclusion process with
open boundaries, and in Section 6.6.5, we prove the shock wave phenomenon using an
asymmetric simple exclusion process on the half-line.

Note that, in general, a major difficulty is to write down explicitly the stationary
distribution of the simple exclusion process with open boundaries. Over the last
decades, various different descriptions of the stationary measure were achieved. We
refer to Section 6.1.2 for an overview of the available literature. When the stationary
measure is hard to describe, an alternative can be to simulate it using Markov chains.
We determine in this section how many steps of running the specific Markov chain given
by the dynamics of the simple exclusion process with open boundaries are required to
have mixed. In particular, we show in several cases that a number of steps proportional
to the length of the path is necessary and sufficient for the process to be close to its
equilibrium.
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p1− pα β

γ δ
1 N = 5

Figure 13: Simple exclusion process with open boundaries for parameters p, α, β, γ, δ.

6.1.1 Definition of the model

We will now define the simple exclusion process with open boundaries. Recall the
simple exclusion process on the segment with drift p > 0 from Section 3.4.3, and let

Lexf(η) =
N−1∑
x=1

p η(x)(1− η(x+ 1))
[
f(ηx,x+1)− f(η)

]
+

N∑
x=2

(1− p) η(x)(1− η(x− 1))
[
f(ηx,x−1)− f(η)

]
be the generator of the simple exclusion process on the closed segment. For the simple
exclusion process with open boundaries (ηt)t≥0, we in addition allow creation of
particles from reservoirs at the endpoints of the segment. Moreover, particles can be
annihilated at the endpoints. More precisely, for parameters α, β, γ, δ ≥ 0, (ηt)t≥0 is
the exclusion process with state space ΩN := {0, 1}N for some N ∈ N and generator

Lf(η) = Lexf(η) + α(1− η(1))
[
f(η1)− f(η)

]
+ γη(1)

[
f(η1)− f(η)

]
+ δ(1− η(N))

[
f(ηN)− f(η)

]
+ βη(N)

[
f(ηN)− f(η)

]
(6.1)

for all cylinder functions f and configurations η ∈ ΩN ; see Figure 13. Note that in
contrast to the simple exclusion process on the closed segment, the number of particles
will in general no longer be preserved over time. In the remainder, we assume that the
above parameters α, β, γ, δ, p ≥ 0 are chosen such that (ηt)t≥0 has a unique stationary
distribution µ; see also (3.28). Again, let us stress that µ is not necessarily reversible
for (ηt)t≥0. In the following, our goal is to investigate the speed of convergence towards
µ in terms of the ε-mixing time tNmix(ε) of (ηt)t≥0 when N goes to infinity.

6.1.2 Related literature

Depending on the parameters, the simple exclusion process with open boundaries can
be found under many different names. In the physics literature, it is called partially
asymmetric simple exclusion process when p ∈ (1

2
, 1) and totally asymmetric simple

exclusion process for p = 1. When p = 1
2
and the boundary parameters are chosen in

such a way that the simple exclusion process with open boundaries has no reversible
measure, the process is typically called boundary driven simple exclusion process.
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When the simple exclusion process with open boundaries is not reversible, it can be
seen as one of the simplest examples of a non-equilibrium system, i.e., the expected
position of the particles in equilibrium does not stay fixed over time. This observation is
quantified by studying currents for the simple exclusion process with open boundaries;
see Section 6.3.2. For the symmetric simple exclusion process, currents are investigated
in [87]. For the simple exclusion process with open boundaries and general parameters,
the leading order term of the current was determined in [137] using Askey–Wilson
polynomials, extending the results of [22]. More recently, current fluctuations for the
asymmetric simple exclusion process with open boundaries are studied in the physics
literature [69, 88]. Note that the moments of the current for the simple exclusion
process are closely linked to the motion of second class particles; see [10, 11, 53, 112]
for a discussion when the underlying graph is Z. Recently, currents are studied for
the simple exclusion process with open boundaries containing second class particles;
see [40, 136]. Note that second class particles can also be used to identify shocks; see for
example [51, 54, 55], and we will see an application of second class particle arguments
when proving a shock wave behavior for the asymmetric simple exclusion process with
one blocked entry in Section 6.6.5.

Despite the fact that the invariant measure of the simple exclusion process with open
boundaries has in general not a simple closed form, several representations were achieved
in the last decades. An essential tool is the matrix product ansatz, which allows us to
study various observables like the current, the density profile and correlations between
the occupation variables on the segment [117, 137, 138]. Intuitively, we represent in the
matrix product ansatz each configuration by a weight which consists of a product of
matrices and vectors, satisfying the so-called the DEHP algebra [45]. The vectors and
matrices are, in general, infinite-dimensional, and the fact that such a representation
exists is non-trivial. We refer to [94, Part III, Section 3] for an introduction. Historically,
a similar idea to express the stationary distribution in a recursive way was already
discovered by Liggett in [92]. We will revisit parts of the argument in the course of
Section 10. The formal framework of the matrix product ansatz was first introduced in
[45] for the simple exclusion process with open boundaries in the totally asymmetric
case. The question of representing the weights in the matrix product ansatz also gained
recent attention in combinatorics, and descriptions such as weighted Catalan paths
and staircase tableaux were found; see [23, 33, 101].

We conclude this paragraph on related results by noting that a discussion on the
mixing times of the simple exclusion process on the closed segment can be found in
Section 4.2. Again, let us point out that the discussed results have in common that the
underlying simple exclusion process is reversible, while the simple exclusion process
with open boundaries is in general not reversible. This is a crucial difference since
reversibility is required for many techniques which give precise mixing time bounds.
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6.2 Main results

In the following, we investigate mixing times for the simple exclusion process with
open boundaries. Our goal is to provide sharp bounds on the leading order of the mixing
time, and investigate whether pre-cutoff or cutoff occurs; see Section 4.1. We claim
that without loss of generality, we can assume p ∈ [1

2
, 1]. This is due to the symmetry

in the definition of (ηt)t≥0 with respect to the boundary parameters. Moreover, we
assume that max(α, β, γ, δ) > 0 holds. When all boundary parameters are zero, we
refer to Section 4.2 for precise bounds on the mixing times of the simple exclusion
process on the closed segment.

6.2.1 Symmetric simple exclusion process with open boundaries

We start with the case when all transitions in the bulk are symmetric, i.e., p = 1
2
holds,

but we allow now for general boundary parameters.

Theorem 6.1. For p = 1
2
, the ε-mixing time of the symmetric simple exclusion process

with open boundaries satisfies

1

π2
≤ lim inf

N→∞

tNmix(ε)

N2 log(N)
≤ lim sup

N→∞

tNmix(ε)

N2 log(N)
≤ C (6.2)

for all ε ∈ (0, 1) and some constant C = C(α, β, γ, δ) In particular, the symmetric
simple exclusion process with open boundaries has pre-cutoff.

When all boundary parameters are zero and we have a positive fraction of particles,
recall (5.7), we note that by Theorem 4.5, the lower bound in (6.2) gives the asymptotic
behavior of the ε-mixing time for the simple exclusion process in first-order. However,
the next theorem shows that when particles enter and exit only at a single side of the
segment, we see a different constant in the leading order.

Theorem 6.2. For p = 1
2
, suppose that max(α, γ) = 0 and min(β, δ) > 0 holds. Then

for all ε ∈ (0, 1), the ε-mixing time of the symmetric simple exclusion process with open
boundaries satisfies

lim
N→∞

tNmix(ε)

N2 log(N)
=

4

π2
. (6.3)

By symmetry, (6.3) holds for p = 1
2
, min(α, γ) > 0 and max(β, δ) = 0 as well. In

particular, the symmetric simple exclusion process with one open boundary exhibits
cutoff.

Together with Theorem 6.1, it is a natural conjecture that cutoff occurs for all choices
of α, β, γ, δ ≥ 0 when p = 1

2
holds; see also Section 6.10 for a discussion.
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6.2.2 Asymmetric simple exclusion process with one blocked entry

Next, consider the asymmetric simple exclusion process with p > 1
2
. When α > 0, let

a = a(α, γ, p) :=
1

2α

(
2p− 1− α + γ +

√
(2p− 1− α + γ)2 + 4αγ

)
(6.4)

and similarly, for β > 0, we set

b = b(β, δ, p) :=
1

2β

(
2p− 1− β + δ +

√
(2p− 1− β + δ)2 + 4βδ

)
. (6.5)

We study the case of one blocked entry, i.e., min(α, β) = 0 and max(α, β) > 0.

Theorem 6.3. Let p > 1
2
and γ, δ ≥ 0. If α = 0 and β > 0, then for all ε ∈ (0, 1), the

ε-mixing time of the simple exclusion process with open boundaries satisfies

lim
N→∞

tNmix(ε)

N
=

(max(b, 1) + 1)2

(2p− 1) max(b, 1)
. (6.6)

For α > 0 and β = 0

lim
N→∞

tNmix(ε)

N
=

(max(a, 1) + 1)2

(2p− 1) max(a, 1)
. (6.7)

In particular, we see in both cases that cutoff occurs.

A key ingredient for the proof of Theorem 6.3 is to understand the creation of shocks.
The shocks will travel at a linear speed. Heuristically, the mixing time corresponds to
the time at which the shock hits the boundary, which justifies a sharp mixing behavior.

6.2.3 The reverse bias phase for the simple exclusion process

In contrast to the simple exclusion process where all boundary parameters are zero,
there exists a regime of the asymmetric simple exclusion process with open boundaries
with an exponentially large ε-mixing time. This case is known in the literature as the
reverse bias phase; see [21]. This terminology is justified as the particles are forced
by the boundary conditions to move against their natural drift direction.

Theorem 6.4. Suppose that max(α, β) = 0 and p ∈
(

1
2
, 1
)
. Then for all ε ∈ (0, 1

2
)

lim
N→∞

log
(
tNmix(ε)

)
N

= log

(
p

1− p

)
(6.8)

holds whenever min(γ, δ) = 0 and max(γ, δ) > 0. If min(γ, δ) > 0 holds, then

lim
N→∞

log
(
tNmix(ε)

)
N

=
1

2
log

(
p

1− p

)
. (6.9)
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6.2.4 The high and low density phase for the simple exclusion
process

Now suppose that min(α, β) > 0 and p > 1
2
, so the quantities a and b from (6.4) and

(6.5) are both well-defined. We distinguish three different regimes according to the
density within the stationary distribution; see Section 6.3.3 with Figure 16 for more
details. The regime a > max(b, 1) is called the low density phase of the exclusion
process, while we refer to the regime b > max(a, 1) as the high density phase. The
remaining case where max(a, b) ≤ 1 holds is called the maximal current phase.
A visualization of these three phases in terms of the parameters a and b is given in
Section 6.3.2 with Figure 15. Intuitively, the invariant distribution is an interpolation
between two Bernoulli-product measures with densities 1

1+a
and b

1+b
, respectively, and

we will see a justification of this claim in Lemma 6.12. The terminology low density
phase, respectively high density phase, will be justified in Lemma 6.13, since the average
density within the invariant measure stays below, respectively above 1

2
.

Theorem 6.5. For parameters α, β > 0 and γ, δ ≥ 0, as well as p > 1
2
, suppose that

we are in the high density phase. Then there exists some Ch = Ch(a, b, p) > 0 such that
the ε-mixing time of the simple exclusion process with open boundaries satisfies

1

2p− 1
≤ lim inf

N→∞

tNmix(ε)

N
≤ lim sup

N→∞

tNmix(ε)

N
≤ Ch (6.10)

for all ε ∈ (0, 1). Similarly, when we are in the low density phase with parameters
α, β > 0 and γ, δ ≥ 0, as well as p > 1

2
, the ε-mixing time of the simple exclusion

process with open boundaries satisfies

1

2p− 1
≤ lim inf

N→∞

tNmix(ε)

N
≤ lim sup

N→∞

tNmix(ε)

N
≤ C` (6.11)

for some C` = C`(a, b, p) > 0, and all ε ∈ (0, 1). In particular, pre-cutoff occurs.

6.2.5 The triple point of the simple exclusion process

An interesting special case is the triple point where p > 1
2
and a = b = 1 holds.

Intuitively, the low-density phase, the high density phase and maximal current phase
coexist at the triple point, and it can be shown that the process gives raise to the KPZ
equation under a suitable scaling [39, 108]. We have the following bound on the mixing
time; see also [120] for a recent improvement to N3/2 when p = 1 and γ = δ = 0.

Theorem 6.6. Suppose that p > 1
2
and a = b = 1 holds. Then there exists some

constant C = C(α, β, γ, δ, p) such that for all ε ∈ (0, 1), the ε-mixing time of the simple
exclusion process with open boundaries satisfies

tNmix(ε) ≤ CN3 . (6.12)
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6.3 Preliminaries on the simple exclusion process with
open boundaries

In this section, we collect basic properties and techniques which are specific for the
simple exclusion process with open boundaries. This includes a modified canonical
coupling, currents and invariant measures as well as a hitting time bound. Motivations
and applications of these techniques come from probability theory, statistical mechanics
and combinatorics. We will give a brief background to the different techniques and
point out where we require generalizations. For a discussion of general techniques to
estimate the mixing time of exclusion processes, we refer to Section 4.

6.3.1 The canonical coupling for the SEP with open boundaries

In Section 3.3, we introduced the canonical coupling for the simple exclusion process
on the segment. We will now present a modified canonical coupling for the simple
exclusion process with open boundaries:

We place rate 1 Poisson clocks on all edges e ∈ E. Whenever the clock of an edge
e = {x, x+ 1} rings, we sample a Uniform-[0, 1]-random variable U independently of
all previous samples and distinguish two cases.

• If U ≤ p and η(x) = 1− η(x+ 1) = 1 holds, we move the particle at site x to site
x+ 1 in configuration η.

• If U > p and η(x) = 1− η(x+ 1) = 0 holds, we move the particle at site x+ 1 to
site x in configuration η.

In addition, we place a rate α Poisson clock (a rate γ Poisson clock) on the vertex 1.
Whenever a clock rings, we place a particle (an empty site) at site 1, independently of
the current value of η(1). Similarly, we put a rate β Poisson clock (a rate δ Poisson
clock) on the vertex N . Whenever this clock rings, we place an empty site (a particle)
at site N independently of the current value of η(N).

Observe that we obtain a grand coupling by using the same clocks for the exclusion
processes. Moreover, we can extend this construction to simple exclusion processes
with open boundaries, which differ in the parameters p, α, β, γ, δ; see also Section 5.2
for a similar extension for the simple exclusion process in random environment. More
precisely, suppose that two simple exclusion processes (ηt)t≥0 and (ζt)t≥0 with open
boundaries on a segment of size N agree in all parameters, except for α > 0 in (ηt)t≥0

and some α′ > α in (ζt)t≥0. We then use the same rate α Poisson clocks to determine
in both processes when a particle enters at the left-hand side boundary. In addition,
insert particles at the leftmost site in (ζt)t≥0 according to an independent rate (α′ − α)

Poisson clock. A similar construction applies for the remaining parameters.
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The component-wise partial order revisited

We saw in Proposition 3.8 that the canonical coupling of the simple exclusion process
preserves the component-wise partial order �c from (3.13). A similar statement holds
for the modified canonical coupling, even if we allow for some differences in the boundary
parameters α, β, γ, δ. These observations are formalized in the following lemma. Since
it follows immediately from the above construction, we omit a formal proof. With a
slight abuse of notation, we denote the law of this modified canonical coupling for the
simple exclusion process with open boundaries again by P.

Lemma 6.7. Consider two exclusion processes (ηt)t≥0 and (ζt)t≥0 on the segment of
size N with parameters (p, α, β, γ, δ) and (p, α′, β′, γ′, δ′), respectively. Suppose that

α ≥ α′ β ≤ β′ γ ≤ γ′ and δ ≥ δ′ (6.13)

holds, then the canonical coupling P satisfies

P (ηt �c ζt for all t ≥ 0 | η0 �c ζ0) = 1 . (6.14)

Let 1 and 0 be the configurations in ΩN containing only particles and empty sites,
respectively, and observe that these two configurations form the unique maximal and
minimal elements with respect to the partial order �c on ΩN . Hence, the following
lemma is a consequence of Lemma 6.7 and Corollary 4.2.

Lemma 6.8. For a simple exclusion process with open boundaries and ε-mixing time
tNmix(ε), let τ denote the first time, at which the processes started from 1 and 0,
respectively, agree within the canonical coupling P. If for some s ≥ 0

P(τ ≥ s) ≤ ε (6.15)

holds, then the ε-mixing time satisfies tNmix(ε) ≤ s.

The partial order via height functions revisited

When max(α, γ) = 0 or max(β, δ) = 0 holds, we will see that the partial order �h from
(3.29) extends to the simple exclusion process with open boundaries on ΩN . More
precisely, when max(α, γ) = 0 holds, we use the definition (3.29) for all configurations
η, ζ ∈ ΩN to define the partial order �h on ΩN . For max(β, δ) = 0, we apply the
definition (3.29) to the simple exclusion process with open boundaries and parameters
(1− p, 0, γ, 0, α). Note that the partial order �h again arises from the height function
representation; see (3.33). In the following, it will be convenient to treat the height
function of a given configuration η ∈ {0, 1}N as a function hη : {0, 1, . . . , 2N} → R on
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�h

Figure 14: Paths of the height function for two ordered instances of the simple exclusion
process for N = 4 and with particles entering and exiting only at the right-
hand side of the segment.

the segment of size 2N given by

hη(x) :=
x∑
i=1

2
[
η(i)1{i≤N} + (1− η(2N + 1− i))1{i>N}

]
− x (6.16)

for all x ∈ {0, 1, . . . , 2N}. Note that hη(0) = hη(2N) = 0 by construction. Intuitively,
we can think of the height function as having a mirror image on {N + 1, . . . , 2N};
see Figure 14 for a visualization using the path representation of the height function.
For all N ∈ N, we see that a pair of configurations satisfies η �h ζ if and only if
hη(x) ≥ hζ(x) holds for all x ∈ [N ]. Again, the canonical coupling will be monotone
with respect to the partial order �h. In addition, similar to Lemma 6.7, we allow for
differences in the parameters p, α, β, γ, δ. This is formalized in the next lemma. Since
the statement is again immediate from the above construction of the modified canonical
coupling, so we omit the proof.

Lemma 6.9. Consider two exclusion processes (ηt)t≥0 and (ζt)t≥0 on the segment of
size N with parameters (p, α, β, γ, δ) and (p′, α′, β′, γ′, δ′), respectively. Suppose that

p ≤ p′ α = 0 β ≤ β′ γ = 0 δ ≥ δ′ (6.17)

or
p ≤ p′ α ≥ α′ β = 0 γ ≤ γ′ δ = 0 (6.18)

holds. Then the canonical coupling P of the two processes satisfies

P (ηt �h ζt for all t ≥ 0 | η0 �h ζ0) = 1 . (6.19)
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6.3.2 The current of the SEP with open boundaries

In this section, we study of the current of the simple exclusion process with open
boundaries. Currents are one of the main objects for the exclusion process in statistical
mechanics with deep connections to second class particles; see [11, 53, 137]. Intuitively,
the current formalizes the way of counting the number of particles which pass through
the segment over time; see also Section 7.2 for a more general definition. We will use
current arguments to prove the upper bounds in Theorem 6.3 and Theorem 6.5.

For p ∈
(

1
2
, 1
]
, assume that min(α, β) > 0 holds. On the segment of size N , let JN+

t

be the number of particles which have entered at the left-hand side of the segment by
time t and let JN−t be the number of particles which have exited at the left-hand side
of the segment by time t. Let (JNt )t≥0 with

JNt := JN+
t − JN−t for all t ≥ 0 (6.20)

be the current of the simple exclusion process with open boundaries. Similarly, one
could define the current with respect to the net number of particles crossing the
right-hand side of the segment, leading to the same long-term behavior. The following
lemma states an asymptotic bound on the current. We obtain it directly from the
results in Section 6 of [137] and Theorem 3.5.

Lemma 6.10. Recall the definition of a and b from (6.4) and (6.5), and set

J = J(a, b, p) :=


(2p− 1) a

(1+a)2
if a > max(b, 1)

(2p− 1) b
(1+b)2

if b > max(a, 1)

(2p− 1)1
4

if max(a, b) ≤ 1 .

(6.21)

Then the current (JNt )t≥0 of the simple exclusion process with open boundaries satisfies

lim
t→∞

JNt
t

= JN (6.22)

almost surely for some deterministic sequence (JN)N∈N with limN→∞ JN = J . In
particular, the current is maximized when max(a, b) ≤ 1; see also Figure 15.

We refer to JN as the flux of the simple exclusion process with open boundaries.

6.3.3 Invariant measures of the SEP with open boundaries

In this section, we focus on the stationary distribution µ of the simple exclusion process
with open boundaries. The following result, which is adopted from [23], shows that
under certain conditions on the boundary parameters, the invariant distribution has a
product structure. In general, µ can not be stated in a simple closed form; see [25, 44].
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1

1

b

a

Maximal
current

High density

Low density

Figure 15: Visualization of the three main different regimes of current of the simple
exclusion process with open boundaries.

Lemma 6.11 (c.f. [23], Proposition 2). Suppose that min(α, β) > 0 and a = 1
b
holds

for a and b given in (6.4) and (6.5). Then for every configuration η ∈ ΩN ,

µ(η) =
1

(α + β + γ + δ)N
(α + δ)|η|(β + γ)N−|η| =

(
1

1 + a

)|η|(
a

1 + a

)N−|η|
(6.23)

where |η| :=
∑N

i=1 η(i) denotes the number of particles in configuration η.

Next, we compare the stationary measure µ to Bernoulli-ρ-product measures νρ for
some ρ ∈ [0, 1] on ΩN . Recall the notion of stochastic domination from (4.35).

Lemma 6.12. Suppose that min(α, β) > 0 holds. Then the stationary distribution µ
of the simple exclusion process with open boundaries satisfies

νcmax �c µ �c νcmin
(6.24)

where

cmin := min

(
1

1 + a
,

b

1 + b

)
and cmax := max

(
1

1 + a
,

b

1 + b

)
. (6.25)

Proof. We consider only µ �c νcmin
for cmin = b

1+b
as the remaining cases are similar.

In this case, we have a ≤ 1
b
, and we recall a = a(α, γ, p) from (6.4). Observe that a is

decreasing in α and note that we can choose some α′ ∈ (0, α] such that a′ := a(α′, γ, p)

satisfies a′ = 1
b
. We conclude using Lemma 6.7 and Lemma 6.11.

Note that Lemma 6.12 is motivated by treating the simple exclusion process with open
boundaries as having reservoirs at both ends with densities 1

1+a
and b

1+b
, respectively, and

µ interpolating between both sides. The next result characterizes how the interpolation
within the stationary distribution µ is realized. Using Lemma 6.10 and Lemma 6.12, it
follows from the same arguments as Theorem 3.29 in [94, Part III].
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1
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Figure 16: Visualization of the three main different regimes of densities of the simple
exclusion process with open boundaries on a segment of size N . In the
high density phase, we see that the average density stays above 1

2
, in the

low density phase, the average density stays below 1
2
, and in the maximum

current phase, the average density is close to 1
2
; see also Lemma 6.13.

Lemma 6.13. Suppose that min(α, β) > 0 holds. Let (xN)N∈N be a sequence with
min(xN ,

N
2
− xN) → ∞ for N → ∞. Further, let µN denote the measure on {0, 1}N

given on the sites 1, . . . , N − 2xN by the restriction of µ to [xN , N − xN ], and by the
Dirac measure on empty sites everywhere else. Then

lim
N→∞

µN =


ν 1

1+a
if a > max(b, 1)

ν b
1+b

if b > max(a, 1)

ν 1
2

if max(a, b) ≤ 1,

(6.26)

where the limit is with respect to weak convergence, and the product measures ν· are
defined on {0, 1}N; see also (3.9).

When particles are allowed to enter and exit only from one side of the segment, the
measure µ is reversible and can be given explicitly. Suppose that particles are only
allowed to enter and exit at the right-hand side, i.e., max(α, γ) = 0 holds. A similar
formula will hold when max(β, δ) = 0. For p ∈ (0, 1] and min(β, δ) > 0, consider µ
with

µ(η) =
1

ZN

(
δ

β

)|η|
·
|η|∏
i=1

(
1− p
p

)zi
for all η ∈ ΩN , (6.27)

where zi denotes the distance of the ith particle from site N and ZN is a normalization
constant. Then µ is reversible for the process (ηt)t≥0. When min(β, δ) = 0 holds, µ is
the Dirac measure on 1 if β = 0, and on 0 if δ = 0. Note that for the simple exclusion
process on the segment where all boundary parameters are equal to zero, a similar
formula for the reversible measure is given in (3.28).
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6.3.4 Hitting times for the SEP in the blocking measure

The last preliminary result, which we will present in this section, is a bound on the
position of the leftmost particle and the rightmost empty site in the simple exclusion
process on Z. Intuitively, this allows us to determine for which time horizons we can
couple the simple exclusion process on the segment with the simple exclusion process
on Z. Recall from Section 5.3.1 that L(η) and R(η) denote the positions of the leftmost
particle and the rightmost empty site in a configuration η, respectively. In Sections 6.6
and 6.7, we will use the following lemma which bounds L(·) and R(·) when starting in
the blocking measure ν(0) on the set A0, defined in Section 3.4.2.

Lemma 6.14. For p ∈ (1
2
, 1), let (ηZt )t≥0 denote the simple exclusion process in A0

with initial distribution ν(0). There exists a constant C = C(p) > 0 such that for any
ε ∈ (0, 1

2
) and all x ≥ 0 sufficiently large,

Pν(0)

(
max

(
R(ηZt ),−L(ηZt )

)
≤ x for all t ∈

[
0,
εC

x

(
p

1− p

)x])
≥ 1− 2ε . (6.28)

Recall (4.8). In the following, we abbreviate τ0 := τ ·hit(ϑ0), and write τA for the
hitting time of a set of configurations A.

Lemma 6.15. For x ∈ N, recall Θ2x+1,x ∈ A0 from (4.20), where the particles are
placed on {−x, . . . ,−1} ∪ {x + 1, . . . }. Let Θ2x+1,x be the initial state for the simple
exclusion process (ηZt )t≥0 on A0. Then there exists some c > 0 such that EΘ2x+1,x [τ0] ≤ cx

holds for all x ≥ 0.

Proof. For all x ≥ 0, we define Bx to be the set of configurations

Bx := {η ∈ A0 : max(R(η),−L(η)) > x} (6.29)

and denote for all s ≥ 0 by τ sBc
x

:= inf {t ≥ s : ηt /∈ Bx} the first time after time s when
we hit the set Bc

x. We claim that there exists some c̃ > 0 such that for all x, s ≥ 0

EΘ2x+1,x [τ
s
Bc
x
]− s ≤ c̃ . (6.30)

To see this, let (ηxt )t≥0 and (η−x−1
t )t≥0 be two exclusion processes on Ax and A−x−1,

started from the blocking measure, respectively. Using Corollary 4.12, we note that

P
(
R(ηZt ) ≤ R(ηxt ) and L(ηZt ) ≥ L(η−x−1

t ) for all t ≥ 0
)

= 1 (6.31)

holds with respect to the canonical coupling P; see also Figure 17. Moreover, note
that (ηxt , η

−x−1
t )t≥0 is a stationary and ergodic Feller process for which the state

(ϑx, ϑ−x−1) has a strictly positive probability in equilibrium, and that τ sBc
x
≤ T whenever

(ηxt , η
−x−1
t )t≥0 is in the state (ϑx, ϑ−x−1) at time T ≥ s. We conclude (6.30) using Kac’s
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6.3 Preliminaries on the simple exclusion process with open boundaries

lemma for the embedded discrete chain of (ηxt , η
−x−1
t )t≥0; see Theorem 21.12 in [91],

and a time-change. Next, by Theorem 1.9 in [19],

PΘ2x+1,x (τ0 ≤ c1x) ≥ c2 (6.32)

holds for all x ≥ 0 with constants c1, c2 > 0. We claim that together with (6.30), this
yields

EΘ2x+1,x [τ0] ≤ c2c1x+ (1− c2)
(
c1x+ c̃+ EΘ2x+1,x [τ0]

)
. (6.33)

To see this, note that with probability at least c2, we hit ϑ0 by time c1x. Suppose that
ϑ0 was not hit by time c1x, then we can wait until hitting Bc

x and use (6.30). Since
η �h Θ2x+1,x holds for all η ∈ Bc

x, the hitting time of ϑ0 starting from the configuration
at time τ c1xBc

x
is stochastically dominated by the hitting time of ϑ0 when starting from

Θ2x+1,x. Now take expectations to get (6.33). Since EΘ2x+1,x [τ0] <∞, we conclude by
solving (6.33) for EΘ2x+1,x [τ0].

Next, we study the return time τ+
Bx

:= inf
{
t ≥ τBc

x
: ηt ∈ Bx

}
to the set Bx.

Lemma 6.16. There exists some C > 0 such that for all x ≥ 0

Eν(0) [τ
+
Bx

] ≥ ν(0)(ϑ0)Eϑ0 [τBx ] ≥
C

x

(
p

1− p

)x
. (6.34)

Proof. Observe that an exclusion process in Bc
x can change its state if and only if a

clock on the sites [−x, x] rings. Hence, using Kac’s lemma for the embedded discrete
chain, we see that

Eν(0)( · |Bx)[τ
+
Bx

] ≥ 1

(2x+ 1)ν(0)(Bx)
≥ c1

x

(
p

1− p

)x
(6.35)

holds for all x ≥ 0 and some constant c1 > 0. Since ϑ0 �h η for all η ∈ Bc
x

Eν(0)( · |Bx)[τ
+
Bx

] =
∑
ζ∈Bc

x

(
Eν(0)( · |Bx)

[
τζ | ητBc

x
= ζ
]

+ Eζ [τBx ]
)
Pν(0)( · |Bx)(ητBc

x
= ζ)

≤ Eν(0)( · |Bx)[τ0] + Eϑ0 [τBx ] . (6.36)

Recall that η �h Θ2x+1,x for all η ∈ Bc
x. Note that there exists some c2 > 0 such that

Eν(0)( · |Bx)[τ0] =
∑
y≥x

∑
η∈By\By+1

Eη[τ0]ν(0)(η|Bx)

≤
∑
y≥x

EΘ2y+3,y+1 [τ0]ν(0)(By|Bx) ≤ c2x (6.37)

holds for all x ≥ 0, using Lemma 6.15 and the fact that ν(0)(By|Bx) ≤ c3((1− p)/p)y−x
for some c3 > 0 in the last inequality. By (6.35), (6.36) and (6.37), we conclude.
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6 The simple exclusion process with open boundaries

Figure 17: The initial state Θ2x+1,x of (ηZt )t≥0 is shown in red. The position of the
leftmost particle in (ηZt )t≥0 is stochastically dominated by the position of the
leftmost particle in (η−x−1

t )t≥0 shown in black. A similar statement holds
for the position of the rightmost empty site in (ηZt )t≥0.

Proof of Lemma 6.14. We will prove Lemma 6.14 by contradiction. Take C > 0 from
Lemma 6.16 and assume that (6.28) is not true. Then, using the general fact that for
arbitrary events A and B, the inequality P(A ∩B) ≥ P(A)− P(Bc) holds,

q := Pν(0)

(
ηt ∈ Bx for some t ∈

[
0,
εC

x

(
p

1− p

)x]
and η0 ∈ Bc

x

)
> 2ε− ν(0)(Bx) .

A similar argument as for (6.33) yields

Eν(0) [τ
+
Bx

] ≤ q
εC

x

(
p

1− p

)x
+ (1− q)

(
εC

x

(
p

1− p

)x
+ Eν(0) [τ

+
Bx

]

)
. (6.38)

Solving (6.38) for Eν(0) [τ
+
Bx

] and using the definition of ν(0) for q, we see that for all x
large enough Eν(0) [τ

+
Bx

] < εCx−1(p/(1− p))x holds. This contradicts Lemma 6.16.

6.3.5 Outline of the proof of the main results

In order to show the main results on the mixing time for the simple exclusion process
with open boundaries, we build on the results from Sections 3 and 4 as well as on the
above preliminaries for the simple exclusion process with open boundaries.

In Sections 6.4 and 6.5, we study mixing times of the symmetric simple exclusion
process with open boundaries. Lower bounds are achieved using a continuous-time
version of a generalization of Wilson’s lemma from [105]; see Lemma 4.10. A general
upper bound follows from a comparison to independent simple random walks using
the interchange process. This bound is then refined in the special case of one open
boundary, following closely the ideas of Lacoin in [84].

The analysis of mixing times for the asymmetric simple exclusion process is carried
out in Sections 6.6 to 6.9. In Section 6.6, we use second class particles, current estimates
and a comparison to the exclusion process on Z to investigate mixing times for the
ASEP with one blocked entry. The reverse bias phase is considered in Section 6.7
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requiring second class particle estimates, hitting time bounds for the simple exclusion
process on the integers. In Section 6.8 we study the simple exclusion process in the
high density phase and in the low density phase using multi-species exclusion processes,
stochastic orderings and the censoring inequality. The triple point for the simple
exclusion process is treated in Section 6.9 using a symmetrization argument. We
conclude this section with a discussion of related open problems and conjectures.

6.4 Lower bounds for the SSEP with open boundaries

In this section, we prove the lower bounds in Theorems 6.1 and 6.2 using a generalized
version of Wilson’s lemma with approximate eigenfunctions; see Lemma 4.10. For
the construction of the approximate eigenfunctions, we have the following intuition.
Observe that for all choices of boundary parameters and initial configurations η,
(fη(x, t))x∈[N ],t≥0 given by

fη(x, t) := Eη[ηt(x)] for all x ∈ [N ] and t ≥ 0

solves a discrete heat equation, where we see either discrete Neumann or Dirichlet
boundary conditions for closed or open endpoints, respectively. In the following, we
consider a simple exclusion process with open boundaries at both endpoints and
compare it to a simple exclusion process on the circle of length 2N with N particles.
On the circle, the eigenfunctions are sine and cosine waves, where the length of the
circle is a multiple of the period length; see Lemma 2.2 in [85] and Lemma 1 in
[139]. Our approximate eigenfunctions will be stretched and shifted versions of these
eigenfunctions. With a slight abuse of notation, extend each η ∈ ΩN to Ω2N,N given in
(3.27) by

η(x) := 1− η(2N + 1− x) for all x ∈ {N + 1, . . . , 2N}.

Lemma 6.17. Recall that p = 1
2
and assume that max(α, γ) > 0 and max(β, δ) > 0

holds. Set
C :=

1

2(α + γ)
− 1

2
and D :=

1

2
− 1

2(β + δ)
(6.39)

and define M := N + C +D. Let φ : Z/(2N)Z→ R be given by

φ(x) := sin

((
x+ C − 1

2

)
π

M

)
(6.40)

for all x ∈ [N ], and set φ(x) = −φ(2N + 1−x) for all x ∈ {N + 1, . . . , 2N}. Moreover,
we let λN := 1− cos( π

M
) and define

ΦN(η) :=
2N∑
x=1

η(x)φ(x) +
φ(1)

λN
(1− 2α) +

φ(N)

λN
(1− 2δ) (6.41)
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6 The simple exclusion process with open boundaries

for all η ∈ ΩN . Then ΦN satisfies the conditions of Lemma 4.10 for λ = λN , for some
c of order N−3, some R of order N−1 and ‖ΦN‖∞ of order N . In particular, under
the above assumptions the lower bound stated in Theorem 6.1 holds.

Proof. Using trigonometric identities, (∆φ)(x) = −λNφ(x) holds for x ∈ {2, . . . , N−1}.
Here, ∆ is the discrete Laplace operator on the circle of length 2N , i.e., for all functions
f : Z/(2N)Z→ R, we set

(∆f)(x) :=
1

2
(f(x− 1) + f(x+ 1))− f(x) for all x ∈ Z/(2N)Z. (6.42)

By our choice of C and D, note that for all N large enough and some c1, c2 > 0

|(∆φ)(1) + (1− α− γ)φ(1) + λNφ(1)| ≤ c1

M3

|(∆φ)(N) + (1− β − δ)φ(N) + λNφ(N)| ≤ c2

M3

holds using the Taylor expansion of the sine and trigonometric identities. Since

N∑
x=1

(Lη)(x)φ(x) =
N∑
x=1

(∆η)(x)φ(x) + φ(1)
(
η(1)(1− α− γ) + α− 1

2

)
+ φ(N)

(
η(N)(1− β − δ) + γ − 1

2

)
and (Lη)(x) = −(Lη)(2N + 1− x) for all x ∈ [N ], we see that

|(−L)ΦN(η)− λNΦN(η)| ≤ 2(c1 + c2)

M3

holds. This gives condition (4.29) in Lemma 4.10. To verify condition (4.30), we follow
the ideas of the proof of Lemma 2.2 in [85] for the simple exclusion process on the circle.

Observe that the process (Φ(ηt))t≥0 can change its value only whenever an edge or a
boundary vertex is updated. This happens at rate N ′ where N ′ := N−1+α+β+γ+δ.
For two configurations η and η′ which differ by at most one transition,

|Φ(η)− Φ(η′)| ≤ 2 max
x∈[2N ]

|φ(x)− φ(x+ 1)| ≤ c3

M

holds for some constant c3 = c3(C,D) > 0. Combining these observations, we conclude

d
dt
E [〈M〉t] ≤ N ′

( c3

M

)2

for all t ≥ 0.

This gives the desired bound on R of order N−1. Since max(|ΦN(1)| , |ΦN(0)|) is of
order N , Lemma 4.10 yields the lower bound stated in Theorem 6.1.
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Next, we consider the case of the simple exclusion process with open boundaries
when particles are allowed to enter and exit the segment only at one side. Without
loss of generality, assume that max(α, γ) = 0 and max(β, δ) > 0 holds. We will again
construct approximate eigenfunctions for the simple exclusion process using the height
function representation.

Lemma 6.18. Recall that p = 1
2
and assume that max(α, γ) = 0 and max(β, δ) > 0

holds. For D defined in (6.39), let φ̃ : Z/(2N)Z→ R be

φ̃(x) := sin

(
xπ

2(N −D)

)
(6.43)

for all x ∈ [N − 1], and φ̃(x) = φ̃(2N + 1− x) for x ∈ {N + 1, . . . , 2N}. Further, set
λ̃N := 1− cos( π

2(N−D)
) and define

φ̃(N) :=
1

β + δ − λ̃N
φ̃(N − 1) . (6.44)

Recall the height function for the simple exclusion process defined in (6.16) and set

Φ̃N(η) :=
2N∑
x=1

hη(x)φ̃(x) +
φ̃(N)

λ̃N
(δ − β) (6.45)

for all η ∈ ΩN . Then Φ̃N satisfies the conditions of Lemma 4.10 for λ = λ̃N , some c
of order N−4, some R of order N and ‖Φ̃N‖∞ of order N2. In particular, the lower
bound in Theorem 6.2 holds for max(α, γ) = 0 and max(β, δ) > 0.

Proof. A similar computation as in Lemma 6.17 shows that for N large enough∣∣∣(−L)Φ̃N(η)− λ̃N Φ̃N(η)
∣∣∣ ≤ c1

(N −D)4

holds for some c1 > 0 using the Taylor expansion of the sine and trigonometric identities.
This gives condition (4.29) of Lemma 4.10 for some c of order N−4. For condition (4.30),
we again follow the ideas of the proof of Lemma 2.2 in [85]. Note that the process
(Φ̃(ηt))t≥0 may change its value only when an edge or boundary vertex is updated. This
happens at a rate N ′ Poisson clock for N ′ = N − 1 + β + δ. For two configurations η
and η′ which differ by at most one transition, observe that Φ̃(η) and Φ̃(η′) differ by at
most 2. Thus

d
dt
E [〈M〉t] ≤ 4N ′.

holds for all t ≥ 0.This gives the desired bound on R of order N . Since we have that
max(|Φ̃(1)|, |Φ̃(0)|) is of order N2, Lemma 4.10 yields the desired lower bound.

Combining Lemma 6.17 and Lemma 6.18, this finishes the proof of the lower bounds
in Theorem 6.1 and Theorem 6.2.
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6.5 Upper bounds for the SSEP with open boundaries

In this section, we prove the upper bounds in Theorems 6.1 and 6.2. We start
with a general upper bound for the simple exclusion process with open boundaries for
p = 1

2
and arbitrary boundary rates with max(α, β, γ, δ) > 0. This bound is refined in

Section 6.5.2 when particles enter and exit only at one side of the segment.

6.5.1 A general upper bound on the mixing time

We now prove the upper bound in Theorem 6.1. Without loss of generality, assume
that max(α, β, γ, δ) = α holds as we can flip the segment and use the particle-empty
site symmetry, otherwise. Let (ξt)t≥0 be the disagreement process when starting from
1 and 0, and let τ be the first time at which all second class particles have left. By
Lemma 4.13, taking t = log N

ε
, it suffices to show that for some c > 0, and all t ≥ 0,

P
(
τ > ctN2

)
≤ Ne−t . (6.46)

Since p = 1
2
and particles of the same type are indistinguishable, we can also describe

the dynamics along the edges such that the values of the endpoints are swapped at
rate 1, independently; see also (3.17). From this perspective, the second class particles
perform continuous-time simple random walks with absorption on at least one of the
boundaries. Using a comparison to the Gambler’s ruin problem on [N ] with reflection
at the right-hand side, we see that with probability at least 1

2
, a given second class

particle gets either absorbed or reaches site 1 by time 2N2. Note that this bound does
not depend on the starting point of the particle. Moreover, for a second class particle
at site 1 at time t, with probability at least 1−e−α

e
the particle gets absorbed at the

boundary until time t+ 1. Thus,

P
(
τ∗ > 2N2 + 1

)
≤ 1− e−α

2e
(6.47)

holds, where τ∗ denotes the absorption time of a fixed second class particle in the above
dynamics. Using (6.47), we see that

P

(
τ∗ > t

2e

1− e−α
(2N2 + 1)

)
≤
(

1− 1− e−α

2e

)t 2e
1−e−α

≤ e−t . (6.48)

for all t ∈ N. The inequality (6.46), and hence the upper bound in Theorem 6.1 follows
from a union bound on the events in (6.48), and choosing c accordingly.

Remark 6.19. Note that by a standard argument, the bound in (6.46) implies that
any eigenvalue λ of the generator of the symmetric simple exclusion process with open
boundaries must satisfy |λ|−1 ≤ cN2; see Corollary 12.7 in [91] for a similar statement
for reversible, discrete-time Markov chains.

70



6.5 Upper bounds for the SSEP with open boundaries

6.5.2 Cutoff for the SSEP with one open boundary

In this section, we prove the upper bound in Theorem 6.2 using the ideas and results
of [84]. Since large parts of the proof will follow verbatim from the arguments in
Section 8 of [84] for the simple exclusion process, we will focus on presenting the
required adjustments in the proof rather than giving full details. We start by collecting
some technical results on the simple exclusion process with open boundaries. Together
with Section 6.3, this will cover the corresponding preliminaries on the simple exclusion
process in Section 6 of [84]. We then highlight how these results are used to adapt the
arguments of [84] for the simple exclusion process with one open boundary.

Correlation properties of the SSEP with one open boundary

Our first preliminary result is the FKG-inequality as well as a corollary of Holley’s
inequality for the simple exclusion process with p = 1

2
and one open boundary. For

η, ζ ∈ ΩN , we let min(η, ζ) and max(η, ζ) be the configurations in ΩN which satisfy

hmin(η,ζ)(x) := min (hη(x), hζ(x)) and hmax(η,ζ)(x) := max (hη(x), hζ(x)) (6.49)

for all x ∈ [N ], respectively. Note that min(η, ζ) and max(η, ζ) are indeed elements
of ΩN . Further, ΩN equipped with these operations is a distributive lattice. By (6.27)

µ(min(η, ζ)) = min(µ(η), µ(ζ)) and µ(max(η, ζ)) = max(µ(η), µ(ζ))

holds when δ ≥ β and similarly for δ < β. With these insights, the next result follows
from the same arguments as Proposition 6.1 in [84].

Lemma 6.20 (c.f. [84], Proposition 6.1). For any two functions f and g on ΩN which
are increasing with respect to the partial order �h on ΩN ,∫

fgdµ ≥
∫
fdµ

∫
gdµ . (6.50)

Moreover, we have for any two increasing subsets A ⊆ B of ΩN with

{min(η, ζ)|η ∈ A, ζ ∈ B} ⊆ B (6.51)

that 1
µ(A)

∫
A

fdµ ≥ 1
µ(B)

∫
B

fdµ holds for any increasing function f .

Mean of the height function of the SSEP with one open boundary

Next, we give an estimate on the mean of the height function of the simple exclusion
process with p = 1

2
and one open boundary. For η ∈ ΩN , we define, recalling (6.16)

h∗η(x) := hη(x)−min(x, 2N + 1− x)
δ − β
δ + β

(6.52)
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for all x ∈ [2N ]. Intuitively, h∗η is the height function of η after subtracting the mean
of the height function according to stationary measure.

Lemma 6.21 (c.f. [84], Lemma 6.4). For all N large enough

max
x∈{0,...,2N}

∣∣Eη [h∗ηt(x)
]∣∣ ≤ 3Ne−λt (6.53)

holds for all t ≥ 0 and initial states η ∈ ΩN , where λ = 1− cos( π
2N+(β+δ)−1 ).

Proof. Observe that the function fη : {0, . . . , 2N}×R+
0 → R with fη(x, t) := Eη[h∗ηt(x)]

for some initial state η ∈ ΩN is a solution to the system of equations{
∂tfη = (1{x 6=N} + 1{x=N}(β + δ))∆fη

fη(0, t) = fη(2N, t) = 0
(6.54)

for all t ≥ 0 and x ∈ {0, . . . , 2N}, with initial condition fη(x, 0) = h∗η(x). Here, ∆
denotes the discrete Laplace operator which is defined in (6.42). Using Taylor expansion
and a continuity argument, we see that there exists some cN ∈ [ 1

2(β+δ)
− 1, 1

2(β+δ)
] such

that for all N large enough, the function g : {0, 1, . . . , 2N} → R with

g(x, t) :=

(
1{x≤N} sin

(
xπ

2(N + cN)

)
+ 1{x>N} sin

(
(2N − x)π

2(N + cN)

))
e−λN t

for all x ∈ {0, 1, . . . , 2N}, t ≥ 0 and λN := 1− cos
(

π
2(N+cN )

)
, is a solution to (6.54),

with initial condition g(x, 0). Note that sin(zπ/2) ≥ min(z, 2−z) holds for all z ∈ [0, 2],
and cN ≥ −1. Hence, we obtain for sufficiently large N that

|h∗η(x)| ≤ 2 min(x, 2N − x) ≤ 3Ng(x, 0)

for all x ∈ {0, 1, . . . , 2N} and η ∈ ΩN . Since this relation is preserved in (6.54) over
time, we conclude.

Scaling limits for the SSEP with one open boundary

We now study the law of the height function in equilibrium.

Lemma 6.22 (c.f. [84], Lemma 8.5). Let η be a configuration sampled according to
the stationary distribution µ of the simple exclusion process with p = 1

2
and one open

boundary. Then (
β + δ√
Nβδ

h∗η(xN)

)
x∈[0,1]

(6.55)

converges for N →∞ in law to a standard Brownian motion on the interval [0, 1].

Proof. Using the explicit form of the invariant distribution µ in (6.27) for p = 1
2
and

the Binomial theorem, we see that the total number of particles |η| in a configuration
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η according to µ is Binomial-(N, δ
β+δ

)-distributed. Conditioning on the number of
particles in the segment, observe that the number of particles in η until position y is
Binomial-(y, δ

β+δ
)-distributed. The convergence for all finite marginals follows from

the De Moivre-Laplace theorem. Together with a tightness argument, we obtain the
convergence in law to a standard Brownian motion on [0, 1].

Proof of the upper bound in Theorem 6.2

The upper bound in Theorem 6.2 is shown in two steps. First, we give an upper
bound on the time it takes to reach equilibrium when starting from the two extremal
configurations 1 and 0. In the next step, we consider a suitable coupling such that
the exclusion processes started from 1 and 0 agree with high probability. This will be
formalized in Lemma 6.23 and Lemma 6.24.

Lemma 6.23 (c.f. [84], Propositions 8.2). Let (η1t )t≥0 and (η0t )t≥0 denote the simple
exclusion processes with one open boundary and p = 1

2
started from the configurations 1

and 0, respectively. For a given ε > 0, we set

t0 :=
4

π2
N2 logN

(
1 +

ε

2

)
. (6.56)

Then

lim
N→∞

‖P (η1t0 ∈ ·)− µ‖TV = 0 and lim
N→∞

‖P (η0t0 ∈ ·)− µ‖TV = 0 (6.57)

holds for all ε > 0.

Sketch of the proof. The proof of Lemma 6.23 is divided into two main steps. First,
we consider the simple exclusion process (ηt)t≥0 with open boundaries for initial states
1 and 0 up to time t2, where

t2 :=
4

π2
N2 logN

(
1 +

ε

4

)
. (6.58)

We study the functions (h∗ηt)t≥0, defined in (6.52), and evaluate them at xi := b2iN/Kc
for K := ε−1 and i ∈ {0, . . . , K}. Following [84], we call the dynamics restricted to
(xi)i∈[K] the skeleton. Our goal is to argue that when the mean of (h∗ηt)t≥0 at time t2
has at most the order of the typical fluctuations within the stationary distribution µ,
the law of the skeleton at time t2 is in total-variation distance close to equilibrium. This
follows by applying the same arguments as in the proof of Lemma 8.4 in [84], replac-
ing Proposition 6.1 and Lemma 8.5 in [84] by Lemma 6.20 and Lemma 6.22, respectively.

To conclude the first step, use Lemma 6.21 to see that for any initial state η ∈ ΩN ,
Eη[h∗ηt(x)] is at most of order

√
N at time t = t2 for all x ∈ [2N ]. In a second step, we
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6 The simple exclusion process with open boundaries

apply the censoring inequality from Lemma 4.11 for the censoring scheme

C(t) = {{xi, xi + 1} : i ∈ [K]} ,

where t ∈ [t2, t0], in order to show that the dynamics mixes locally. In words, this
censoring scheme ensures that the number of particles in the interval [xi−1, xi] for all
i ∈ [K] remains almost surely constant between t2 and t0. Thus, we see K independent
simple exclusion processes on a closed segment during this period. Using the above
bounds at time t2, the remainder is analogous to Proposition 8.2 in [84].

Note that Lemma 6.23 does not immediately imply Theorem 6.2 since there could
be an initial state other than 1 or 0, which maximizes the distance from equilibrium.
However, using Lemma 6.23, we obtain the following result which allows us to conclude
the upper bound in Theorem 6.2 using Lemma 6.8.

Lemma 6.24 (c.f. [84], Propositions 8.1). For a given ε > 0, we set

t1 :=
4

π2
N2 logN(1 + ε) . (6.59)

Then there exists a coupling P̃ which respects �h such that for all ε > 0

lim
N→∞

P̃ (η1t1 6= η0t1) = 0 . (6.60)

Sketch of the proof. In order to show Lemma 6.24 using Lemma 6.23, we consider a cou-
pling which is monotone with respect to �h and maximizes the fluctuations of (h∗ηt)t≥0.
We use the construction of the alternative coupling defined in [84, Section 8.4]. However,
for all transitions where particles enter and exit the segment, we apply the update rule
of the canonical coupling for the simple exclusion process with open boundaries, i.e.,
we use the same rate β and rate δ Poisson clocks in both simple exclusion processes to
determine when a boundary vertex is updated. The proof of Lemma 6.24 follows from
similar arguments as the proof of Proposition 8.1 given in [84, Section 8.4], replacing
Lemma 8.5 in [84] by Lemma 6.22.

6.6 Mixing times for ASEP with one blocked entry

In this section, we prove Theorem 6.3 for the asymmetric simple exclusion process
with one blocked entry. We start by defining the simple exclusion process on the
half-line as an auxiliary process, and investigate its current. By a coupling to the
original dynamics, this allows us to deduce the lower bound on the mixing time. For
the upper bound, we again use the simple exclusion process on the half-line to estimate
the hitting time with respect to the extremal states 0 and 1, and conclude by a shock
wave argument. We will only consider α = 0 and β > 0, and prove (6.6), since (6.7)
follows from similar arguments using the symmetry between particles and empty sites.
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6.6 Mixing times for ASEP with one blocked entry

6.6.1 The simple exclusion process on the half-line

In the following, we study the simple exclusion process (σt)t≥0 on the half-line N with
drift p ∈ [1

2
, 1], where particles enter at rate α̃ and exit at rate γ̃ at site 1. Formally,

(σt)t≥0 is the Feller process on {0, 1}N generated by

(LNf)(η) =
∞∑
x=1

(
pη(x)(1− η(x+ 1)) + (1− p)η(x+ 1)(1− η(x))

) [
f(ηx,x+1)− f(η)

]
+
(
α̃(1− η(1)) + γ̃η(1)

) [
f(η1)− f(η)

]
(6.61)

for all cylinder functions f . Recall the notion of the current from (6.20), and let (JN
t )t≥0

be the current of (σt)t≥0, i.e., the net number of particles entering at the left-hand side
boundary. Recall the component-wise order from (3.13) and the stochastic domination
from (4.35). The following bound on the current of the simple exclusion process on the
half-line extends the results from [92] for general boundary parameters.

Lemma 6.25. Let α̃ > 0, γ̃ ≥ 0 and p > 1
2
. Recall a = a(α̃, γ̃, p) from (6.4). Then the

simple exclusion process (σt)t≥0 started from the empty initial configuration 0 satisfies

P0 (σt ∈ ·) �c ν 1
1+a

, (6.62)

where ν 1
1+a

denotes the Bernoulli- 1
1+a

-product measure on N. Furthermore,

lim
t→∞

JN
t

t
= (2p− 1)

max(a, 1)

(max(a, 1) + 1)2
(6.63)

holds almost surely.

Proof. Note that the measure ν 1
1+a

is invariant for the simple exclusion process on the
half-line. This can be seen by a direct calculation using the generator in (6.61), or
alternatively, by Lemma 6.11 when taking b = 1/a and letting the size of the segment
go to infinity. Hence, (6.62) follows using the canonical coupling and monotonicity for
the simple exclusion process on the half-line when starting from ν 1

1+a
.

For ≤ in (6.63), we compare (σt)t≥0 to a simple exclusion process (ηt)t≥0 on the
segment of size N with drift p and boundary parameters α = α̃, β = p, γ = γ̃, δ = 0,
which is started from the empty configuration. We adjust now the canonical coupling
P such that we use the same Poisson clocks in both processes on the sites [N − 1],
and try to remove a particle in (ηt)t≥0 at site N whenever the clock for performing a
jump from site N to N + 1 in (σt)t≥0 rings. In particular, the coupling ensures that
when ηt(x) = 1 holds for some x ∈ [N ], then σt(x) = 1, provided that both processes
agreed initially on [N ]. Therefore, the current (JNt )t≥0 of (ηt)t≥0 satisfies JNt ≥ JN

t for
all t ≥ 0 and N ∈ N, P-almost surely, and we conclude ≤ in (6.63) by Lemma 6.10
and taking N →∞.
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6 The simple exclusion process with open boundaries

For ≥ in (6.63), we assume without loss of generality that a ≥ 1. This is due to
the fact that for a = a(α̃, γ̃, p) < 1, we can decrease α̃ continuously until we reach
a = 1, and apply a half-line version of Lemma 6.7 to see that this will only decrease the
current. Using Lemma 6.7 again, and the canonical coupling P, we see that the current
in (6.63) is bounded from below by the current in (σt)t≥0 when starting initially from
ν 1

1+a
. In order to conclude (6.63), it suffices to show that ν 1

1+a
is extremal invariant for

(σt)t≥0; see Theorem 3.5. We follow the arguments of Theorem 1.17 in [94, Part III]
and relate the extremal invariant measures of the asymmetric simple exclusion process
on Z to those of the symmetric simple exclusion process on Z.

It suffices now to show that ν 1
1+a

is extremal invariant for the simple exclusion process
on the half-line with p = 1

2
, where particles enter at rate 1

2
(α̃ + a−1γ̃) and exit at rate

1
2
(γ̃ + aα̃), respectively. As observed in Section 2 of [77], a sufficient condition for some

distribution ν to be extremal invariant is that for any finite set A ⊆ N

lim
t→∞

PνA1 (σt ∈ B) = lim
t→∞

PνA0 (σt ∈ B) for all finite B ⊆ N, (6.64)

where νA1 ( · ) := ν( · | η(x) = 1 ∀x ∈ A) and νA0 ( · ) := ν( · | η(x) = 0 ∀x ∈ A). The
process (σt)t≥0 can be realized as a disagreement process within the canonical coupling,
where we start with with initial laws νA1 and νA0 . Since ν 1

1+a
is a product measure,

we have initially second class particles on A, and a Bernoulli- 1
1+a

-product measure
everywhere else. Since p = 1

2
, we can view the dynamics as an interchange process,

where all second class particles perform symmetric simple random walk on N, with
absorption at site 1 at rate at least (α̃ + γ̃)/2. This allows us to conclude (6.64).

6.6.2 Lower bound for the ASEP with one blocked entry

We will now show ≥ in (6.7). First, we assume α = γ = 0 as well as β > 0. Using
(6.27), the stationary distribution µ = µN of (ηt)t≥0 satisfies

lim
N→∞

µN

(
∃x ∈ {1, . . . , N −

√
N} : η(x) = 1

)
= 0 . (6.65)

Suppose we start from the configuration 1 with all sites being initially occupied. Using
(4.1), we see that in order to prove an asymptotic lower bound tN on tNmix(ε) for all
ε ∈ (0, 1), it suffices to show that with probability tending to 1, no more than N −

√
N

particles have exited the segment by time tN . Using the symmetry between particles
and empty sites, the number of particles which have exited the segment by time tN is
dominated by the current of the simple exclusion process on the half-line with drift p
and boundary parameters α̃ = β, γ̃ = δ, evaluated at time tN . Hence, we can conclude
the lower bounds on the mixing time in Theorem 6.3 using Lemma 6.25. Note that for
γ > 0, the statement (6.65) holds as well, due to Lemma 6.7. More precisely, consider
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6.6 Mixing times for ASEP with one blocked entry

the initial state ηN ∈ ΩN given by

ηN(x) = 1x≥
√
N (6.66)

for all x ∈ [N ]. Comparing the process started from ηN to the blocking measure on Z,
we see that almost surely no particle reaches site 1 by time N2 for all N sufficiently
large, due to Lemma 6.14. Hence, we can again use the previous bound via the current
for the simple exclusion process on the half-line to conclude.

6.6.3 An a priori upper bound on the hitting time

In order to show ≤ in (6.7), we will bound the hitting time τ0 := τ1hit(0), i.e., the first
time the process reaches 0, when all sites are initially occupied. We start with an a
priori bound when the starting configuration contains a small number of particles and
the particles are concentrated on the right-hand side.

Lemma 6.26. Let α = γ = 0 and β > 0. For k ∈ [N − 1], assume that η ∈ ΩN

satisfies η(i) = 0 for all i ∈ [N − k]. There exists c = c(β, δ, p) > 0 such that for all k
and N

Eη[τ0] ≤ exp(ck3) . (6.67)

Proof. Suppose that δ > 0 and p < 1. Recall from Section 6.3.4 the return time τ+
0

τ+
0 = inf{t ≥ τΩN\{0} : ηt = 0} (6.68)

for the simple exclusion process with open boundaries, where for a set A ⊆ ΩN , we let
τA denote the hitting time of A. Note that for all η ∈ ΩN \ {0}

Eη[τ0] ≤ E0[τ+
0 ]
(
P0(τη < τ+

0 )
)−1

.

Further, by Kac’s lemma, E0[τ+
0 ] = (µ(0))−1 holds. Thus, E0[τ+

0 ] is bounded uniformly
in N due to (6.27), noting that ZN in (6.27) is bounded uniformly in N . Starting
from 0, there exists a sequence of at most k2 updates to reach η involving only the
rightmost k + 1 edges and the right-hand side boundary. Moreover, this sequence can
be chosen in such a way that all other updates do not affect the evolution of the process.
Thus, forcing the rate 1 Poisson clocks along these edges to ring according to a given
order, we see that

µ(0)P0(τη < τ+
0 ) ≥ µ(0)

(
min(1− p, δ)
k + β + δ

)k2
≥ exp(−ck3)

holds for some c > 0. For δ = 0 or p = 1, use Lemma 6.9 to bound Eη[τ0] by the
expected hitting time for a simple exclusion process with the same parameters, except
for some different choices of δ > 0 and p < 1.
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t = 0

t = 300

t = 600

t = 900

Figure 18: Visualization of the shock wave phenomenon for the asymmetric simple
exclusion process with one blocked entry for different times where N = 100
with p = 0.75, and α = γ = 0 as well as β = δ = 1.

6.6.4 Upper bound for the ASEP with one blocked entry

We now prove ≤ in (6.7) for the asymmetric simple exclusion process (ηt)t≥0 with
one blocked entry. We will bound the hitting time τ0 of the configuration 0, starting
from configuration 1 where all sites are occupied, and conclude by Lemma 6.8 since τ0
stochastically dominates the coupling time between the states 0 and 1. By Lemma 6.7,
we can assume without loss of generality that γ = 0. For all k ∈ [N ], let θk be the
configuration in ΩN where the rightmost k sites are occupied and all other sites are
empty. Recall that L(η) denotes the position of the leftmost particle in η. We set

cb,p := (max(b, 1) + 1)2/((2p− 1) max(b, 1)) . (6.69)

Our key tool is the following lemma, showing that the particles travel like a “shock wave”
at linear speed until a time τ̃ , which is defined later on; see Figure 18 for an illustration.
In particular, τ̃ will be a stopping time which describes that enough particles exited.

Lemma 6.27 (Shock wave phenomenon). Assume α = γ = 0 and β > 0. Further, let
p > 1

2
and δ ≥ 0. Let ε, ε̃ > 0. Then there exist N0, k0 ∈ N such that for all N ≥ N0

and k ≥ k0 with k = k(N) ∈ [N ], we find a stopping time τ̃ such that (ηt)t≥0 on ΩN

started from θk satisfies

P
(∣∣L(ητ̃)−N ∣∣ ≤ log3 k and τ̃ ≤ (1 + ε)cb,pk | η0 = θk

)
≥ 1− ε̃ . (6.70)

Moreover, for all t ≥ 0,

P (τ0 ≥ (1 + ε)cb,pk + t | η0 = θk) ≤ P
(
τ0 ≥ t | η0 = θblog3 kc

)
+ ε̃ . (6.71)

The proof of Lemma 6.27 is deferred to the upcoming Section 6.6.5. We conclude
this paragraph by showing Theorem 6.3 under the assumption that Lemma 6.27 holds.
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Figure 19: Visualization of the initial configurations of the different processes used in
the proof of the upper bound in Theorem 6.3 for N = 4 and k = 3.

Proof of Theorem 6.3. Fix ε, ε̃ > 0. For N sufficiently large, we apply Lemma 6.27
twice, for k = N with t = 2εcb,pN as well as for k = log3N ≤ (1 + ε)−1εN with
t = εcb,pN , respectively, to see that

P (τ0 ≥ (1 + 3ε)cb,pN | η0 = 1) ≤ P
(
τ0 ≥ 2εcb,pN | η0 = θblog3Nc

)
+ ε̃

≤ P
(
τ0 ≥ εcb,pN | η0 = θblog3(blog3Nc)c

)
+ 2ε̃ . (6.72)

By Lemma 6.26 and Markov’s inequality, the right-hand side of (6.72) is bounded by 3ε̃

for all N large enough. Since ε and ε̃ are arbitrary, apply Lemma 6.8 to conclude.

6.6.5 Proof of the shock wave phenomenon

To show Lemma 6.27, we introduce three auxiliary exclusion processes, which are
intertwined by the canonical coupling P. A visualization can be found in Figure 19.
We define (ηNt )t≥0 by extending the simple exclusion process (ηt)t≥0 on the segment of
size N to the half-line (−∞, N ]. More precisely, let (ηNt )t≥0 be the simple exclusion
process on the half-line (−∞, N ] ∩ Z with drift p, and particles exiting and entering
at site N at rates β and δ, respectively. On all positive integers, we use the same
clocks for the processes (ηt)t≥0 and (ηNt )t≥0. When both processes agree initially on the
sites in [N ], this construction will ensure that the position L(·) of the leftmost particle
satisfies L(ηNt ) ≤ L(ηt) almost surely for all t ≥ 0. In the following, we will assume
that (ηt)t≥0 and (ηNt )t≥0 are started with exactly the rightmost k sites being occupied.

Next, we let (ζt)t≥0 be the exclusion process on (−∞, N ]∩Z with the same transition
rules as (ηNt )t≥0, but started from the all full configuration. Under the canonical
coupling P, let (ξt)t≥0 denote the disagreement process between (ηNt )t≥0 and (ζt)t≥0.
Note that (ξt)t≥0 is again an exclusion process on (−∞, N ] ∩ Z where the rightmost k
sites are initially occupied by first class particles, and all other sites by second class
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ξ

ξ∗

Step 2

Step 1
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Figure 20: Construction of ξ∗ ∈ A0 from ξ. All censored edges are drawn dashed.

particles. If ξt has a positive number of first class particles, let L1(ξt) be the position
of its leftmost first class particle. For all x ∈ [k], let τ̃(x) be the first time at which
k − x particles have exited in (ζt)t≥0. The next lemma shows that L1(ξt) is close to
the boundary at time t = τ̃(dlog2 ke). Indeed τ̃(dlog2 ke) will be the stopping time τ̃
whose existence we claim in Lemma 6.27.

Lemma 6.28. Let ε̃ > 0. Then there exists some k0 ∈ N such that for all k ≥ k0 and
all N ∈ N, under the above canonical coupling P

P
(
|L1(ξτ̃(dlog2 ke))−N | ≤ log3 k

)
≥ 1− ε̃ . (6.73)

Proof. Note that by construction, (ξt)t≥0 must contain at least log2 k first class particles
until time τ̃(dlog2 ke), and hence L1(ξτ̃(dlog2 ke)) is well-defined. In order to show (6.73),
we use similar ideas as Benjamini et al. in [19] for the closed segment; see also (ξX

t )t≥0

in (5.21). Recall (3.22) and define a process (ξ∗t )t≥0 on A0 from (ξt)t≥0 as follows: For
every t ≥ 0, consider the sequence which we obtain by first deleting all sites which
are empty in ξt, merging certain edges if necessary, and then replacing all second class
particles by empty sites. We let ξ∗t be the unique configuration in A0 which contains
this sequence, and has only empty sites to its left and only first class particles to its
right; see Figure 20. Note that ξ∗0 = ϑ0 holds by construction.

Our key observation is that up to the first time τ ∗ at which a second class particle
exits at the right-hand side boundary in (ξt)t≥0, the process (ξ∗t )t≥0 has the law of a
simple exclusion process on A0 with censoring. More precisely, an edge e is censored in
ξ∗t at time t if and only if either one of its endpoints is > N or the edge is merged in
the first step of the construction from two edges which are adjacent to an empty site;
see Figure 20. Note that this censoring scheme does not depend on the process (ξ∗t )t≥0,
since in order to determine the positions of the empty sites in (ξt)t≥0, we do not need
to distinguish between first and second class particles. Recall cb,p from (6.69). For all
k ∈ N and ε > 0, we define

B1
k :=

{
τ̃(dlog2 ke) ≤ (1 + ε)cb,pk

}
and B2

k :=
{
τ̃(dlog2 ke) ≤ τ ∗

}
(6.74)

80



6.7 Mixing times for the reverse bias phase

to be the events that there exists some time before (1 + ε)cb,pk at which at least
k−dlog2 ke particles in (ζt)t≥0 exited, and that no second class particle exited in (ξt)t≥0

before that time, respectively. Observe that the total number of particles which left
in (ζt)t≥0 by time t has the same law as the current of a simple exclusion process on
the half-line at time t with boundary parameters α̃ = β and γ̃ = δ; see (6.61). Hence,
Lemma 6.25 implies that P(B1

k) = 1− ε̃/4 for all k sufficiently large. Moreover, when{
τ ∗ ≤ τ̃(dlog2 ke) ≤ (1 + ε)cb,pk

}
holds, there must be an empty site in (ξ∗t )t≥0 at position log2 k until time τ ∗. Thus, we
can conclude that P(B2

k | B1
k) ≥ 1 − ε̃/4 by combining Lemma 6.14, Corollary 4.12,

and the above key observation on the law of (ξ∗t )t≥0 for k large enough. In particular,
this yields P(B2

k) ≥ 1 − ε̃/2. Recall that R(·) denotes the position of the rightmost
empty site. Again, by Lemma 6.14, we see that the events

B3
k :=

{
|L(ξ∗t )−R(ξ∗t )| ≤ log2 k for t = τ̃dlog2 ke

}
satisfy P(B3

k | B1
k ∩B2

k) ≥ 1− ε̃/4 for all k sufficiently large. Note that whenever the
events B1

k, B
2
k and B3

k occur, a sufficient condition for the statement in Lemma 6.28 to
hold is that the event

B4
k :=

{
|x ∈ [N − log3 k,N ] : ξt(x) 6= 0| ≥ 2 log2 k for all t ∈ [0, (1 + ε)cb,pk]

}
occurs. Using the particle-empty site symmetry, we see by (6.62) in Lemma 6.25 that
the law of ζt dominates a Bernoulli- b

b+1
-product measure for all t ∈ [0, (1 + ε)cb,pk].

Hence, we can conclude that P(B4
k | B1

k ∩B2
k ∩B3

k) ≥ 1− ε̃/4 for all k large enough.

Proof of Lemma 6.27. Note that (6.70) with τ̃ = τ̃(dlog2 ke) follows immediately from
Lemma 6.25 and Lemma 6.28, recalling that L(ηNt ) ≤ L(ηt) holds almost surely for
all t ≥ 0. For the second statement (6.71), we apply the strong Markov property for
(ηt)t≥0 with respect to the stopping time τ̃(dlog2 ke). Note that by adding additional
particles to the process (ηt)t≥0 at some time t ≤ τ0, we will only increase the hitting
time τ0 of the state 0. Hence, whenever the event in (6.70) holds with respect to
τ̃(dlog2 ke), we see that the hitting time of 0 starting from ητ̃(dlog2 ke) is stochastically
dominated by the hitting time when starting from θdlog3 ke. This yields (6.71).

6.7 Mixing times for the reverse bias phase

In this section, we prove upper and lower bounds on the mixing time of the simple
exclusion process in the reverse bias phase. Recall that 1

2
< p < 1 and α = β = 0

holds, i.e., the particles have a drift to the right-hand side, but can neither exit at
the right-hand side nor enter at the left-hand side boundary. Intuitively, the particles
have to move against their natural drift direction. We will see that this results in
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an exponentially large mixing time. For the lower bound, we consider two exclusion
processes with different initial states and show that with high probability, they have a
disjoint support even at exponentially large times. For the upper bound, we compare
the disagreement process for initial states 0 and 1 to a birth-and-death chain.

6.7.1 Lower bounds for the reverse bias phase

We start with the lower bound when min(γ, δ) > 0 holds. Recall the total-variation
distance from (4.1) and note that by the triangle inequality

max
ζ∈{θ,θ′}

‖Pζ(ηt ∈ ·)− µ‖TV ≥
1

2
‖Pθ(ηt ∈ ·)− Pθ′(ηt ∈ ·)‖TV (6.75)

for any initial states θ, θ′ ∈ ΩN of the simple exclusion process (ηt)t≥0 with open
boundaries. We define

θ(x) := 1{x≥bN2 c} and θ′(x) := 1{x≥bN2 c+1} for all x ∈ [N ]. (6.76)

Since the total-variation distance of two distributions with disjoint support is 1, the
right-hand side of (6.75) is bounded from below by 1 minus the probability that at least
one particle enters or exits in at least one of the exclusion processes started from θ and
θ′. We estimate this probability by comparing the simple exclusion processes started
from θ and θ′, respectively, to the simple exclusion processes on Z via the embedding

η̃(x) :=


η(x) if x ∈ [N ]

0 if x ≤ 0

1 if x > N

(6.77)

for all x ∈ Z and η ∈ ΩN . In particular, note that θ̃ and θ̃′ are the ground states in An
and An+1 for n = bN/2c, respectively. Using the canonical coupling and the censoring
inequality, the simple exclusion processes started from θ̃ and θ̃′ are stochastically
dominated by the respective exclusion processes started from the blocking measures
on An and An+1; see Corollary 4.12. Thus, we obtain the lower bound in (6.9) from
Lemma 6.14 for the simple exclusion process on Z with x = N − 1 and ε = N−1.

In the case where particles can exit only from one side of the segment, a similar
argument holds. Using the particle-empty site symmetry, it suffices to consider γ > 0

and α, β, δ = 0. The stationary distribution µ is then the Dirac measure on 0. Consider
the initial state ζ with ζ(x) = 1{x=N} for all x ∈ [N ] and note that ζ̃ is the ground state
on AN−1. Similar to the previous case, we obtain the lower bound in (6.8) by applying
Lemma 6.14 for the simple exclusion process on Z with x = N − 2 and ε = N−1. This
concludes the proof of the lower bounds in Theorem 6.4.
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6.7.2 Upper bounds for the reverse bias phase

We now show the upper bounds in Theorem 6.4. By Lemma 4.13, it suffices to consider
the disagreement process between 1 and 0, and study the time it takes until all second
class particles have left the segment. In the following, we enumerate the second class
particles from left to right, and let (X

(i)
t )t≥0 for i ∈ [N ] denote the trajectory of the

ith second class particle in the disagreement process. Moreover, denote its exit time
of the segment by τ ex

i . In order to bound these exit times, we compare (X
(i)
t )t≥0 to a

certain continuous-time birth-and-death chain (Bt)t≥0 with state space [n] for some
n ∈ N which will be determined later on. Similarly to (6.68), we let for all j ∈ [n]

τ+
j := inf

{
t ≥ τ[n]\{j} : Bt = j

}
(6.78)

be the return time of (Bt)t≥0 to the state j.

Lemma 6.29. Consider a birth-and-death chain (Bt)t≥0 on [n] for some n ∈ N with
transition rates 1− p to the right and p to the left. Then the return time τ+

n to the site
n satisfies

Ek
[
τ+
n

]
≤ 1

Z

(
p

1− p

)n
(6.79)

for any initial state k ∈ [n], with a constant Z > 0.

Proof. Observe that the stationary distribution µ′ of the birth-and-death chain satisfies
µ′(x) = 1

Z′

(
1−p
p

)x
for all x ∈ [n], with a normalization constant Z ′ > 0. Moreover,

Ek
[
τ+
n

]
≤ Pn

(
τ+
k < τ+

n

)−1 En
[
τ+
n

]
= Pn

(
τ+
k < τ+

n

)−1
Z ′
(

p

1− p

)n
holds for all k ∈ [n− 1]. Note that Pn

(
τ+
k < τ+

n

)
is bounded from below by some c > 0

uniformly in k and n. We obtain (6.79) for Z = c−1Z ′.

We start with the case where particles can enter only at one side of the segment.
Without loss of generality, assume that δ > 0 and γ = 0 holds. The stationary
distribution µ is then the Dirac measure on the configuration 1. Observe that each
second class particle moves to the right at least at rate 1 − p, and to the left at
most at rate p independently of the remaining particle configuration. Thus, (X

(i)
t )t≥0

stochastically dominates the process (Bt)t≥0 from Lemma 6.29 until time τ ex
i for n = N

and started from B0 = X
(i)
0 , i.e., we find a coupling such that X(i)

t ≥ Bt holds almost
surely for all t < τ ex

i . Moreover, when a second class particle reaches site N at time t,
with probability at least 1−e−δ

e , it has exited the segment by time t + 1. Thus, with
respect to the canonical coupling, there exists some c > 0 such that for all i ∈ [N ]

E [τ ex
i ] ≤ c

(
p

1− p

)N
.
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6 The simple exclusion process with open boundaries

Moreover, by Markov’s inequality, we see that for all i ∈ [N ]

P

(
τ ex
i > cN2

(
p

1− p

)N)
≤ 1

N2
.

We conclude the upper bound in (6.8) of Theorem 6.4 using a union bound for the
event that some second class particle has not left the segment by time cN2(p/(1−p))N .

Now suppose that min(γ, δ) > 0 holds. Note that each second class particle has a
distance of at most bN/2c to either the site 1 or the site N . Consider the family of
processes (Y

(i)
t )t≥0 given by

Y
(i)
t := max(X

(i)
t − dN/2e, dN/2e+ 1−X(i)

t ) (6.80)

for all t ≥ 0 and i ∈ [N ]. Note that (Y
(i)
t )t≥0 increases by 1 at most at rate p and

decreases by 1 at least at rate 1 − p. Hence, for all i ∈ [N ], the process (Y
(i)
t )t≥0 is

stochastically dominated by the birth-and-death process in Lemma 6.29 for n = bN/2c
and B0 = Y

(i)
0 . A similar argument as for the one-sided case yields Theorem 6.4.

6.8 Mixing times in the high and low density phase

In this section, we prove Theorem 6.5 for the asymmetric simple exclusion process in
the high density phase and in the low density phase; see Figure 21 for a simulation of
the height function over time. We will focus on showing an upper bound of order N .
The lower bound of order N follows from a comparison to a single particle in the process
using the fact that the invariant measure has a positive density; see also Section 6.6.2.
Moreover, we only consider the high density phase. For the low density phase, similar
arguments apply using the particle-empty site symmetry.

6.8.1 Construction of two disagreement processes

Assume that we are in the high density phase of the simple exclusion process with
parameters (p, α, β, γ, δ), i.e., a = a(p, α, γ) and b = b(p, β, δ) defined in (6.4) and (6.5)
satisfy b > max(a, 1). We have the following strategy to show the upper bound (6.11)
in Theorem 6.5. For j ∈ [4], we study simple exclusion processes (ηjt )t≥0 with open
boundaries within the canonical coupling P. The processes (η1

t )t≥0, (η2
t )t≥0 and (η3

t )t≥0

are defined with respect to the parameters (p, α, β, γ, δ). They are started at states 1,
0 and from the stationary distribution µ, respectively.

In order to define (η4
t )t≥0, note that b is decreasing and continuous in β. Thus,

we can choose some β′ > β such that b > b′ > max(a, 1) holds for b′ := b(p, β′, δ).
We let (η4

t )t≥0 be the simple exclusion process with open boundaries for parameters
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6.8 Mixing times in the high and low density phase

t = 0 t = 300 t = 600 t = 900 t = 1200

Figure 21: Simulation of the path representation of the height function for the simple
exclusion process with open boundaries in the high density phase at different
times t ≥ 0. We set N = 200 and p = 0.85 as well as α = 3, β = 0.1 and
γ = δ = 1. We start initially from the configurations 1 and 0, respectively.

(p, α, β′, γ, δ) started from its equilibrium. Using Lemma 6.7, note that we can choose
the initial configurations in (η3

t )t≥0 and (η4
t )t≥0 such that

P
(
η3
t �c η

4
t for all t ≥ 0

)
= 1 . (6.81)

We define (ξt)t≥0 to be the disagreement process between (η1
t )t≥0 and (η2

t )t≥0. Further,
we let (ζt)t≥0 be the disagreement process between (η3

t )t≥0 and (η4
t )t≥0. Using the

canonical coupling, note that (ξt)t≥0 and (ζt)t≥0 can be seen as Markov chains on
{0, 1, 2}N , and (ζt)t≥0 is started from equilibrium. Further, in (ξt)t≥0, no second class
particles can enter the segment. In (ζt)t≥0, second class particles can enter only at site
N provided that N is occupied by a first class particle. In Lemma 6.31, we will see
that if enough second class particles have exited at the left-hand side in (ζt)t≥0, then
with probability tending to 1, (ξt)t≥0 has no second class particles.

For i ∈ {0, 1, 2}, let (J
(i)
t )t≥0 denote the current of objects of type i, i.e., for a given

time t ≥ 0, J (i)
t denotes the number of objects of type i which have entered by time t

minus the number of objects of type i which have exited by time t at the left-hand
side boundary in (ζt)t≥0; see also (6.20). The next lemma shows that the current of
second class particles in (ζt)t≥0 is linear when starting from its stationary measure µ′.

Lemma 6.30. Let (ζt)t≥0 have initial distribution µ′. There exists some constant
c = c(b, b′, p) > 0 such that for all t = t(N) ≥ cN ,

lim
N→∞

P
(
−J (2)

t(N) > 4N
)

= 1 . (6.82)

Proof. Let (ζ2→1
t )t≥0 and (ζ2→0

t )t≥0 denote the processes which we obtain from (ζt)t≥0 by
projecting all second class particles to first class particles and empty sites, respectively.
By construction, (ζ2→1

t )t≥0 and (ζ2→0
t )t≥0 are stationary simple exclusion processes
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6 The simple exclusion process with open boundaries

3 2 4 1 4

ξt

ζt

χt

Figure 22: Coupling (χt)t≥0 between the processes (ζt)t≥0 and (ξt)t≥0 for N = 7.

with parameters (p, α, β, γ, δ) and (p, α, β′, γ, δ), respectively; see (6.81). Observe that
(J

(1)
t )t≥0 is given by the current of particles in (ζ2→0

t )t≥0 while (J
(0)
t )t≥0 is given by the

current of empty sites in (ζ2→1
t )t≥0. Thus, we see that for some c > 0,

lim
N→∞

P
(
J

(0)
cN + J

(1)
cN < −4N

)
= 1

holds due to Lemma 6.10 and the ergodic theorem. Since

J
(0)
t + J

(1)
t + J

(2)
t = 0 for all t ≥ 0

and (J
(2)
t )t≥0 is decreasing in t, we conclude.

6.8.2 Comparison via a multi-species exclusion process

Next, we relate the current of second class particles in (ζt)t≥0 to the motion of the
second class particles in (ξt)t≥0. The following lemma shows that when at least 4N

second class particles have exited at the left-hand side boundary in (ζt)t≥0, all second
class particles must have left in (ξt)t≥0, with probability tending to 1.

Lemma 6.31. For all N large enough and T = T (N) ≤ N2,

P
(
ξT (x) 6= 2 for all x ∈ [N ]

∣∣∣ − J (2)
T (N) > 4N

)
≥ 1− 1

N
, (6.83)

where (J
(2)
t )t≥0 is defined with respect to (ζt)t≥0.

Proof of Theorem 6.5 assuming Lemma 6.31. The upper bound in Theorem 6.5 follows
from Lemma 6.30 and Lemma 6.31 together with Lemma 4.13.

In order to show Lemma 6.31, we require a bit of setup. Define the process
(χt)t≥0 = (ζt, ξt)t≥0 and note that under the canonical coupling, (χt)t≥0 is a Markov
process with state space SN where S := {0, 1, 2}2. In the following, we will use an
alternative interpretation of the process (χt)t≥0 on the state space {0, 1, 2}N . By
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6.8 Mixing times in the high and low density phase

type 1 type 2

type 3

type 4

type 5

Figure 23: Visualization of the different types of second class particles. The tip of
an arrow between two types indicates which type has the lower priority.
The dashed arrows signalize that updating an edge with two second class
particles of types 3 and 4 creates two second class particles of types 2 and 5,
respectively. Note that in contrast to the multi-type exclusion process from
Section 4.5, the different types of particles satisfy only a partial ordering.

construction, every site in (χt)t≥0 which is not occupied by two first class particles or
by two empty sites, must be of the form (0, 2), (2, 2), (1, 2) or (2, 1). For example, note
that the configuration (2, 0) is not attained since whenever a second class particle is
created in (ζt)t≥0 at the boundary, there has to be a first class particle in (ξt)t≥0. We
refer to these configurations as second class particles of types 1 to 4, respectively; see
Figures 22 and 23.

By definition, χ0 contains only second class particles of types 1, 2 and 3, while all
second class particles which enter at site N must have type 4. Among each other, the
second class particles of types i and j respect the canonical coupling, i.e., a particle of
type j has a higher priority than a particle of type i if i < j. For example, a second
class particle of type 1 associated to (0, 2) has in both components a lower priority
than a second class particle of type 4 which is associated to (2, 1). However, there is
one exception: When two second class particles of types 3 and 4 are updated, they
create the configurations (2, 2) and (1, 1). In this update mechanism, we call (1, 1) a
second class particle of type 5; see Figure 23. To the other configuration values (1, 1)

and (0, 0) in (χt)t≥0, we refer as first class particles and empty sites, respectively. Note
that when ignoring the labels of the second class particles, the process (χt)t≥0 has the
same transition rates as (ζt)t≥0. In particular, entering and exiting of first class par-
ticles and empty sites in (χt)t≥0 is not affected by the types of the second class particles.

We will now investigate the behavior of the different types of second class particles
in (χt)t≥0 among each other using an auxiliary process (χ?t )t≥0. This process has a
similar construction as (ξ∗t )t≥0 in Section 6.6.5. Intuitively, for each t ≥ 0, we obtain
χ?t by deleting all sites which are either empty or occupied by a first class particle in
χt, merging certain edges if necessary, and replacing all second class particles of types
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6 The simple exclusion process with open boundaries

1, 2 or 3 with empty sites, as well as all second class particles of types 4 or 5 with first
class particles. We then extend χt to a configuration on {0, 1}Z by adding particles
on the right-hand side, and empty sites as well as a finite number of particles on the
left-hand side of the segment.

We will see from the formal construction below that χ?0 = ϑ0, recall (3.23), and that
(χ?t )t≥0 has the law of a simple exclusion process on Z with censoring, in which the
rightmost empty site R(χ?t ) is replaced by a first class particle whenever the correspond-
ing second class particle in (χt)t≥0 exits at site N at time t. An edge e is censored
for χ?t at time t if and only if it was merged in χt in the deletion step, or if one of its
endpoints is occupied by a particle which is not present in χt, and thus was only added
in the construction when extending the configuration to Z. Note that this censor-
ing scheme does not depend on the different types of the second class particles in (χt)t≥0.

For a formal construction of (χ?t )t≥0, we use the following procedure to obtain
χ? = χ?(v) ∈ {0, 1}Z from χ ∈ {0, 1, 2}N for every v = {0, 1}k and k ∈ N ∪ {0}.

Step 1 Delete all vertices in χ which are empty or contain a first class particle.

Step 2 Concatenate the vector v at the left-hand side of the diminished segment.

Step 3 Turn all second class particles to empty sites if they are of type 1, 2 or 3 and
turn them into first class particles if they are of type 4 or 5.

Step 4 Extend to a configuration χ? ∈ {0, 1}Z by adding empty sites at the left-
hand side and first class particles at the right-hand side of the segment.

An illustration is given in Figure 24. Note that χ? in this procedure is only defined
up to translations on Z. We use this additional degree of freedom when we define the
process (χ?t )t≥0 from (χt)t≥0. For all t ≥ 0, let v = v(t) denote the vector of all second
class particles which have left the segment at the left-hand side boundary by time t.
More precisely, we place a 1 at position i in v if the ith second class particle exiting is
of type 4 or 5, and we put a 0, otherwise. For all t ≥ 0, we obtain χ?t up to translations
by applying the above procedure for χt and v(t). In order to determine the specific
translation of χ?t in (χ?t )t≥0, we proceed as follows. We choose χ?0 ∈ A0 where A0 is
defined in (3.22). In particular, note that χ?0 = ϑ0 holds. For t > 0, suppose that
χ?t ∈ An holds for some n ∈ Z. If at time t a second class particle of type 1, 2 or 3 exits
at the right-hand side boundary in χt, we choose the updated configuration such that
χ?t+ ∈ An−1 holds. In all other cases, we choose χ?t+ ∈ An. The next lemma states that
the position of the leftmost particle (L(χ?t ))t≥0 is close to the position of the rightmost
empty site (R(χ?t ))t≥0.

Lemma 6.32. There exists a constant c > 0 such that for all N sufficiently large and
T ≤ N2

P (|R(χ?T )− L(χ?T )| > c logN +N) ≤ 1

N
. (6.84)
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3 2 4 1 5

χ

3 2 4 1 5

Step 1

3 2 4 1 5

Step 2

Step 3

Step 4

Figure 24: Construction of χ? from χ for v = (0, 1). Censored edges are drawn dashed.

Proof. Let (η0
t )t≥0 and (η−Nt )t≥0 be two simple exclusion processes on A0 and A−N

with initial states ϑ0 and ϑ−N , respectively. We let (η0
t )t≥0 and (η−Nt )t≥0 be canonically

coupled to (χ?t )t≥0, and apply the same censoring scheme. Since (η0
t )t≥0 and (χ?t )t≥0

differ only by the fact that in (χ?t )t≥0 occasionally the right-most empty site is replaced
by a particle, we see that R(χ?t ) ≤ R(η0

t ) holds almost surely for all t ≥ 0. Further,
we claim that L(χ?t ) ≥ L(η−Nt ) holds almost surely for all t ≥ 0. This can be seen by
conditioning on the at most N times at which the rightmost empty site in (χ?t )t≥0 gets
replaced, and then using an induction argument. Since the above way of prohibiting
updates in (χ?t )t≥0 is indeed a censoring scheme in the sense of Section 4.4, we use the
censoring inequality from Corollary 4.12 to see that the laws of (η0

t )t≥0 and (η−Nt )t≥0

are stochastically dominated by the blocking measures on A0 and A−N , respectively,
with respect to the partial order �h. In order to see that the statement in (6.84) holds,
we apply Lemma 6.14.

Proof of Lemma 6.31. Note that when the current of second class particles is at most
−4N at time T , we know that at least 4N second class particles are absorbed at the
left-hand side boundary in (χt)t≥0 at time T . Note that in this case, at least 2N of
them must be of type 4 since all second class particles created at site N are of type 4,
and there are at most N second class particles of types 1, 2, 3 initially in the segment.
By Lemma 6.32, we see that with probability at least 1 − N−1, each second class
particle of type 1, 2 or 3 in χT has at most c logN +N second class particles of type
4 or 5 to its left, counting also particles which have exited at site 1. Hence for all N
large enough, all second class particles in (χt)t≥0 of type 1, 2 or 3, and thus also all
second class particles in (ξt)t≥0, have left the segment by time T with probability at
least 1−N−1.

Remark 6.33. For the simple exclusion process in the maximal current phase, we
conjecture that a similar analysis of the disagreement process between 1 and 0 yields
the order of the ε-mixing time, see also [120] for recent progress. In particular, the
fluctuations with exponent 2

3
for a second class particle on Z in a Bernoulli-1

2
-product

measure suggest that the time until all second class particles leave the segment is
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6 The simple exclusion process with open boundaries

of order N3/2. Furthermore, note that the exponent 2
3
is the KPZ relaxation scale

which was shown by Baik and Liu for periodic models in [7] as well as by Corwin and
Dimitrov for the ASEP on Z in [35], and more broadly is present in all KPZ class
models. Moreover, Corwin and Shen, as well as Parekh showed that under a weakly
asymmetry scaling, the height function (suitably normalized) of the simple exclusion
process with open boundaries in the triple point converges to a solution of the KPZ
equation; see [39, 108]. Using Proposition 4.4, this indicates that cutoff does not occur.

6.9 Mixing times in the triple point

In this section, we prove Theorem 6.6 for the simple exclusion process (ηt)t≥0

with open boundaries and parameters (p, α, β, γ, δ) in the triple point. We use a
symmetrization argument, similar to the one presented in [60] for the case of the totally
asymmetric simple exclusion process on the circle. The main technique used is a Nash
inequality as introduced in [47]. We compare the total-variation distance between
the law of (ηt)t≥0 and its stationary distribution µ to the spectral gap of a reversible
process (ζt)t≥0; see also Section 4.1.2. Define the adjoint L? of the generator L of the
simple exclusion process (ηt)t≥0 with open boundaries as the linear operator with∑

η∈ΩN

f(η)(Lg)(η)µ(η) =
∑
η∈ΩN

(L?f)(η)g(η)µ(η)

for all functions f, g : ΩN → R. In particular, note that for reversible processes L = L?
holds; see (3.11). By Lemma 6.11, the stationary distribution µ of (ηt)t≥0 is the
Uniform distribution on ΩN . Hence, observe that the simple exclusion process with
open boundaries and parameters (1−p, γ, δ, α, β) has generator L∗. We consider now the
additive symmetrization of the simple exclusion process (ηt)t≥0 with open boundaries
with generator L and the simple exclusion process generated by its adjoint L∗. More
precisely, we let (ζt)t≥0 be the Feller process on ΩN generated by 1

2
(L? + L). Observe

that (ζt)t≥0 is reversible with respect to µ. Moreover, (ζt)t≥0 has the law of a simple
exclusion process with open boundaries for parameters

p′ =
1

2
, α′ = γ′ =

α + γ

2
and β′ = δ′ =

β + δ

2
.

The next lemma relates the total-variation distance of (ηt)t≥0 to the spectral gap of
the process (ζt)t≥0. It is an immediate consequence of Theorem 2.14 in [60].

Lemma 6.34. Let λ denote the spectral gap of (ζt)t≥0. Then

‖Pξ(ηt ∈ ·)− µ‖TV ≤ 2N/2+1 exp(−λt) (6.85)

holds for all initial states ξ ∈ ΩN and t ≥ 0.
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Proof of Theorem 6.6. By Remark 6.19, we see that λ−1 ≤ CN2 holds for some constant
C = C(α, β, γ, δ), and we conclude by applying Lemma 6.34.

6.10 Open problems

We conclude this section with a discussion of open problems. We saw in Theorem 6.1
and Theorem 6.2 that the symmetric simple exclusion process exhibits pre-cutoff.

Conjecture 6.35. Let p = 1
2
and α, β, γ, δ ≥ 0 with max(α, γ) > 0 and max(β, δ) > 0.

Then the lower bound in (6.2) is sharp, and cutoff occurs.

In the high density and low density phase, we have the following conjecture.

Conjecture 6.36. Under the assumptions of Theorem 6.5, the mixing time in the
high-density phase satisfies for all ε ∈ (0, 1)

lim
N→∞

tNmix(ε)

N
=

(b+ 1)(â2(2b− 1) + â(b− 3) + b)

(b− â)(2p− 1)
(6.86)

where â := max(a, 1). A similar statement holds for the low density phase.

Let us give some heuristics on this conjecture for the high density phase. Suppose
we start from the empty initial configuration, and wait until we see the equilibrium
density of b

b+1
within the segment; see Lemma 6.10. Similar to the hydrodynamic limits

in [81], we expect at time (b+ 1)(b− â)−1(2p− 1)−1n to see a density which is 1
â+1

at
1, 1

b+1
at n and linearly interpolated in between. After this time, the right boundary

creates a shock wave traveling to site 1. This supports the conjecture of cutoff; see also
Section 6.6. The total travel time of this shock can be computed by comparing the
current at both endpoints. Note that in the maximum current phase, no such shock
is created, and the particles can travel at the maximal possible speed of 1

4
(2p − 1).

The mixing time is expected to be governed by second class particle fluctuations; see
Remark 6.33 and Section 4 in [120].

Conjecture 6.37. When max(a, b) ≤ 1 holds, including the triple point, the ε-mixing
time of the simple exclusion process with open boundaries is of order N3/2 for all
ε ∈ (0, 1). Moreover, the cutoff phenomenon does not occur.

Very recently, partial progress on this conjecture was made by the author when p = 1

and γ = δ = 0 holds [120]. We have an upper bound of order N3/2 log(N) and a lower
bound of order N3/2 on the mixing time. In the triple point α = β = 1

2
, the lower

bound is sharp, i.e., the mixing times is shown to be of order N3/2.

For a = b > 1 and p > 1
2
, called the coexistence line, we see that the right-hand

side of (6.86) in Conjecture 6.36 blows up.

Question 6.38. What is the order of the ε-mixing time of the simple exclusion process
with open boundaries at the coexistence line?
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Part III

Limit theorems for exclusion processes
on trees

7 Prelimiaries on limit theorems for exclusion
processes

In this part, we investigate limit theorems for different observables of the exclusion
process on trees. More precisely, we are interested in the motion of a tagged particle,
i.e., the trajectory of a particle in the exclusion process traced over time. Moreover, we
study the current, which expresses the number of particles passing through a given site
over time. As a motivation and to put the results from Sections 8 to 11 in a general
context, we start with an overview on similar results for exclusion processes on Zd.

7.1 Limit theorems for the tagged particle in exclusion
processes on Zd

Let G = (V,E, o) be a rooted graph with vertex set V , edge set E and root o. We
assume that G is locally finite and equipped with transition rates p(x, y) for x, y ∈ V
and c ≡ 0 such that the corresponding simple exclusion process is a Feller process.
Suppose that we are given an initial distribution ν for the exclusion process on G. We
denote by ν∗ the Palm measure, which we get from ν by conditioning on a particle
at the root, i.e.,

ν∗(·) := ν ( · | η(o) = 1) . (7.1)

The particle starting at o is called the tagged particle. We follow the evolution of
the tagged particle over time and denote by (Xt)t≥0 its position. We now collect some
well-known results about tagged particles.

Let the underlying graph be Zd with the root at the origin. We assume that the
transition rates p(x, y) for x, y ∈ Zd are translation invariant, i.e.,

p(x, y) = p(0, x− y) (7.2)

holds for all x, y ∈ Zd. Moreover, we assume that the rates are of finite range,
i.e., p(0, z) is non-zero for at most finitely many z ∈ Zd. In particular, Theorem 3.1
guarantees that the corresponding exclusion process is in this case a Feller process.
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→
p

Figure 25: Visualization of a tagged particle, drawn in blue, in an asymmetric simple
exclusion process on Zd with drift vector →p .

Further, we assume that the transitions rates are irreducible, i.e., for every site x ∈ Zd,
we can find a sequence x1, x2, . . . , xn of vertices such that

p(0, x1)p(x1, x2)p(x2, x3) · · · p(xn−1, xn)p(xn, x) > 0 (7.3)

holds. Note that since the rates satisfy a flow rule, recall (3.10), Theorem 3.6 yields
that the Bernoulli-ρ-product measures νρ are invariant for all ρ ∈ [0, 1].

Consider now the case where d = 1 with 0 as the root and ν∗ρ as initial distribution
for some ρ ∈ [0, 1]. In the special case where the transition rates are nearest-neighbor
and symmetric, the fluctuations of the tagged particle were determined by Arratia [4].

Theorem 7.1. Suppose that the transition rates on Z satisfy p(0, 1) = p(0,−1) > 0,
and p(0, x) = 0, otherwise. Then for any continuous, bounded function f

lim
t→∞

E
[
f

(
Xt

t
1
4

)]
= E[f(Y )] , (7.4)

where Y is a Gaussian with mean 0 and variance 2
√
p(0, 1)/π(1− ρ)ρ−1.

In particular, the tagged particle has a subdiffusive scaling. The following result by
Kipnis and Varadhan shows that this behavior is exceptional [79].

Theorem 7.2. Suppose that the transition rates are symmetric, translation invariant,
irreducible, and of finite range, but exclude the case of one-dimensional nearest-neighbor
transition rates. Starting from ν∗ρ for some ρ ∈ [0, 1], we see that for any continuous,
bounded function f : Rd → Rd

lim
t→∞

E
[
f

(
Xt

t
1
2

)]
= E[f(Y )] , (7.5)

where Y is a multivariate Gaussian with mean 0 and non-degenerated covariance.
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We remark that Theorem 7.2 states only a special case of Theorem 1.8 in [79]. In
general, the results of Kipnis and Varadhan yield a central limit theorem for certain
functionals of reversible Markov processes, which satisfy the so-called H−1-condition;
see Proposition 8.11 for a formal description.

In the case where the transition rates are translation invariant, but not symmetric,
we have a law of large numbers due to Kipnis for d = 1 and nearest-neighbor transition
rates, and Saada for general d ≥ 1 and finite range transition rates; see [78, 114] and
Figure 25. We note that a central limit theorem in the special case of p = 1 and
nearest-neighbor transition rates is attributed the Kesten; see also [133].

Theorem 7.3. Suppose that the transition rates are translation invariant, irreducible,
and of finite range. Then the tagged particle (Xt)t≥0 satisfies

lim
t→∞

Xt

t
= (1− ρ)

∑
x∈Zd

xp(0, x) (7.6)

almost surely, provided that we start from ν∗ρ for some ρ ∈ [0, 1].

In the setup of Theorem 7.3, a central limit theorem for the tagged particle was
shown by Kipnis in [78] for d = 1 and by Sethuraman et al. in [130] for d ≥ 3. The case
d = 2 remains open, although partial progress was achieved by Sethuraman proving a
diffusive scaling [129]. We note that similar results on the motion of a tagged particle
can be achieved under weaker assumptions on the transition rates; see [80] for an
overview and more comprehensive treatment of this question.

7.2 Limit theorems for the current in exclusion
processes

Note that the results in Section 7.1 require that we start from an invariant measure
of the simple exclusion process, conditioned on having the tagged particle in the root.
If the process is not in equilibrium, or if it is too complicated to analyze the motion of a
tagged particle directly, a different observable, which may be accessible, is the number
of particles passing through a given site over time. This is formalized using the notion
of current, which we introduced for the simple exclusion process with open boundaries
in Section 6.3.2. For general graphs G = (V,E), we use the following definition.

For each edge e ∈ E, we fix an orientation −→e , and denote by
−→
E the set of all directed

edges. We let J+
x (t) for a site x ∈ V and t ≥ 0 be the number of particles which jump

to x until time t via an edge −→e with −→e = (·, x). The same particle may be counted
multiple times in J−x (t), each time when it traverses an edge −→e = (·, x). Similarly, let
J+
x (t) be the number of particles which jump away from x until time t via −→e = (x, ·).
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1

Figure 26: Visualization of the totally asymmetric simple exclusion process on the
integers, where particles can only jump to the right-hand side.

The current through x until time t is given by

Jx(t) := J+
x (t)− J−x (t) (7.7)

for all x ∈ V and t ≥ 0. Note that we reobtain the current defined in (6.20) for the
simple exclusion process with open boundaries on a segment of size N by choosing the
orientation −→e = (x, x+ 1) of edges for all x ∈ [N − 1], and treating the entering and
exiting of particles as incoming and outgoing directed edges, respectively. Observe that
for uniformly bounded nearest neighbor rates, and when starting from an extremal
invariant distribution ν, Theorem 3.5 ensures that almost surely for fixed x ∈ V

lim
t→∞

Jx(t)

t
=
∑
y∈V

(21
(y,x)∈

−→
E
− 1)p(y, x)ν(η(y) = 1, η(x) = 0) . (7.8)

Consider now the totally asymmetric simple exclusion process (TASEP) on
the integers. It is the asymmetric simple exclusion process on the integers from Section
3.4.2 with p = 1; see Figure 26 and Section 10 for a generalization to trees. Fix the
orientation −→e = (z, z + 1) for all z ∈ Z. The current through z until time t is the
number of times a particle jumps from site z−1 to z until time t. Suppose that we start
from a Bernoulli-ρ-product measure. The following seminal result is due to Ferrari and
Fontes [53] for the diffusive case, where current fluctuations are of order

√
t, and due

to Ferrari and Spohn [59] for the sub-diffusive case, where we see a scaling of order t
1
3 .

Theorem 7.4. Let x = x(t) = ct for some constant c 6= 1 − 2ρ. Then for every
bounded, continuous function f ,

E
[
f

(
Jx(t)− ρ(1− ρ)t

t
1
2

)]
= E [f (Y )] (7.9)

holds, where Y is Normal-distributed with mean 0 and non-degenerated variance. When
c = 1− 2ρ, there exists a constant c̃ > 0 such that

E
[
f

(
Jx(t)− ρ(1− ρ)t

c̃t
1
3

)]
= E [f (Z)] (7.10)

holds, where Z is Baik–Rains-distributed; see [8] for a definition of the law of Z.
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8 The simple exclusion process on regular trees

Note that 1− 2ρ is the speed of single second class particle within the Bernoulli-ρ-
product measure, which has fluctuations of order t2/3 [10, 51, 112]. The scaling of order
t
1
3 in the case c = 1− 2ρ for the current fluctuations is characteristic for the TASEP as
a model belonging to the KPZ universality class; see [34] for an introductory survey.
We conclude this paragraph by noting that investigating the current of the TASEP for
different initial conditions or for the partially asymmetric case p ∈ (1

2
, 1) is a topic of

huge recent interest; see [1, 11, 17, 36, 57] for a selection of recent progress.

8 The simple exclusion process on regular
trees

8.1 Introduction

In the following, our goal is to investigate the motion of a tagged particle on graphs
different from Zd. We focus on the tagged particle (Xt)t≥0 on rooted d-regular trees.
The presented material is based in large parts on [29], which is joint work with Dayue
Chen, Peng Chen, and Nina Gantert. Intuitively, for d large enough, the exclusion
process on a d-regular tree can be seen as an approximation of the exclusion process
on Zd. However, a crucial difference compared to Zd is that the mean displacement of
a tagged particle is non-zero when measured with respect to the shortest-path distance
from the root. This will be resolved using ideas from Lyons et al. for the speed of a
simple random walk on Galton–Watson trees [97]. Intuitively, we treat the particles
in the exclusion process as a dynamic random environment for the tagged particle to
apply the arguments from [97]. Let us stress that it is crucial for the results on tagged
particles on Zd that we have a translation invariant system. We will see in Section 8.2
that the translation invariance of regular trees allows for a simple description of the
process “seen from the tagged particle”. We discuss in Section 9 how this can be relaxed
for the simple exclusion process on Galton–Watson trees.

8.1.1 Definition of the model

For d ∈ N with d ≥ 2, let T d = (V,E, o) denote the d-regular tree with root o. We
assume that the transition rates p(x, y) ≥ 0 are irreducible, of finite range, and depend
for all x, y ∈ V only on the shortest path distance |x− y| between x and y in T d. With
a slight abuse of notation, we will write p(|x− y|) := p(x, y) in the following. Recall
the operator L in (3.3) with c ≡ 0. We let the exclusion process on T d be the
exclusion process (ηt)t≥0 with state space {0, 1}V and generator L given in (3.3) for
the above choice of transition rates p(·, ·) and c ≡ 0; see Figure 27. By Theorem 3.1,
the exclusion process on T d is under the above assumptions indeed a Feller process.
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Figure 27: Visualization of the tagged particle, drawn in blue, in a configuration of the
simple exclusion process on a d-regular tree.

We claim that by Theorem 3.7, the Bernoulli-ρ-product measures νρ from (3.9) on
{0, 1}V with ρ ∈ [0, 1] are reversible for the exclusion process on T d = (V,E). To see
this, note that we can extend the exclusion process on T d to a simple exclusion process
by adding only finitely many edges to each site. Moreover, under the above assumption
that the transition rates p(x, y) are symmetric, we can set π(x) = 1 in (3.12) for all
x ∈ V to obtain the claim. Note that due to Theorem 3.9, the collection {νρ : ρ ∈ [0, 1]}
of measures is also extremal invariant for (ηt)t≥0. Recall the Palm measure ν∗ρ from
(7.1) with respect to the Bernoulli-ρ-product measures νρ for ρ ∈ (0, 1]. Observe that
ν∗ρ is a Bernoulli-ρ-product measure on all sites other than o. In the following, our
goal is to study the evolution of the tagged particle (Xt)t≥0 with X0 = o and initial
distribution ν∗ρ = νρ( · | η(o) = 1).

8.1.2 Related literature

Proving limit laws for the position of a tagged particle in exclusion processes is a
classical problem, which is intensively studied when the underlying graph is Zd; see
Section 7.1 for an overview. For the tagged particle process on other translation invariant
graphs, less results are known. We note that the results of Kipnis and Varadhan on a
central limit theorem for the tagged particle can be extended to exclusion processes
on more graphs; see [79, 130] as well as Section 8.5 for a discussion. In the case of
the d-dimensional ladder graph, a central limit theorem for the position of the tagged
particle is due to Zhang [143]. However, the question of a law of large numbers for
the speed of a tagged particle on trees is not resolved by these observations. Hence,
we require different approaches such as analyzing the process “seen from the tagged
particle”; see [114]. We conclude this paragraph by noting that also other interacting
particle systems, as for example the contact process, are studied on regular trees; see
for example [103, 109, 144].
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8 The simple exclusion process on regular trees

8.1.3 Main results

We consider now the exclusion process on a d-regular tree for d ≥ 2, and establish a law
of large numbers with respect to the shortest path distance from the root. Moreover,
for d ≥ 3, we show that a central limit theorem holds. We start with a law of large
numbers for the position of the tagged particle (Xt)t≥0. In the following, we write
|z| := |z − o| for all z ∈ V .

Theorem 8.1. For d ≥ 2, let (ηt)t≥0 on T d have initial distribution ν∗ρ for some
ρ ∈ (0, 1]. The position of the tagged particle (Xt)t≥0 satisfies a law of large numbers,
i.e.,

lim
t→∞

|Xt|
t

= (1− ρ)(d− 2)
∑
i∈N0

ip(i) =: v

almost surely. In particular, we see a speed of (1 − ρ)(d − 2)d−1 in the case of the
simple exclusion process on T d, where we have p(1) = d−1.

Recall that a similar relation holds for exclusion processes with drift on Zd; see
Theorem 7.3. If ρ tends to 0, we obtain the speed of the random walk on T d with
transition rates p(·, ·). If ρ = 1, then v = 0 holds, and in between the speed is linear
in 1− ρ. For d ≥ 3, we show that the tagged particle has a diffusive behavior. Note
that when d = 2, the d-regular tree equals Z and the tagged particle has a subdiffusive
behavior; see Theorem 7.1.

Theorem 8.2. For d ≥ 3 and ρ ∈ (0, 1), the tagged particle (Xt)t≥0 on T d satisfies

|Xt| − tv√
t

d−→ N (0, σ2)

for some σ = σ(d, ρ, p(·)) ∈ (0,∞), and v from Theorem 8.1.

8.1.4 Outline of the proof

The proof of the main results is structured as follows: In Section 8.2, we introduce the
environment process, which can be interpreted as the exclusion process “seen from the
tagged particle”. As a first step in the proof of Theorem 8.1, we show in Section 8.3 that
the Palm measures ν∗ρ are ergodic for the environment process, following the approach
in [114] for the tagged particle in exclusion processes on Zd with drift. This is a result
of independent interest. In Section 8.4, we study the tagged particle process in more
detail. We show that the tagged particle is transient using a martingale decomposition
which can be found in [94, Part III, Section 4]. We then deduce Theorem 8.1 following
the ideas of Lyons et al. in [97]. In Section 8.5, we prove Theorem 8.2 using the results
of Kipnis and Varadhan as well as Sethuraman et al.; see [79, 130].
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8.2 Construction of the environment process

8.2 Construction of the environment process

We will now introduce the environment process, which is a classical tool in order
to establish a law of large numbers; see [114, 133] for exclusion processes and [141]
for random walks in random environment. For its definition, we require the following
notation. The d-regular tree T d = (V,E, o) has a natural interpretation in terms of
Cayley graphs. For I = {1, . . . , d}, let

G := 〈ai, i ∈ I|a2
i = e for all i ∈ I〉

denote the free group over all i ∈ I for the two-element groups {e, ai} with the relation
a2
i = e and neutral element e. The tree T d can be now be identified with the Cayley

graph of G with respect to the generator S = {a1, . . . , ad}. Note that the vertex set V
is isomorphic to G with e ∼= o and two corresponding elements b, c ∈ G are neighbored
if and only if ba = c holds for some a ∈ S. The group structure of T d allows us to
extend this relation and define

b+ c := bc as well as b− c := bc−1 (8.1)

for b, c ∈ G. In the same way, we write x + y = z and x − y = z for x, y, z ∈ V

if the corresponding elements in G satisfy (8.1). Let the maps τx on configurations
η ∈ {0, 1}V be given as

τxη(y) := η(x+ y)

for all x, y ∈ V . Equipped with this notation, we define the environment process
(ζt)t≥0 as

ζt(x) := τXtηt(x) (8.2)

for all t ≥ 0 and x ∈ V . Note that (ζt)t≥0 is again a Feller process on the state space
{ζ ∈ {0, 1}V : ζ(o) = 1} generated by the closure of

Lf(ζ) =
∑
x,y 6=o

p(|x− y|)ζ(x)(1− ζ(y)) [f(ζx,y)− f(ζ)]

+
∑
x∈V

p(|x|)(1− ζ(x)) [f(τxζ)− f(ζ)] . (8.3)

Note that each transition in (ηt)t≥0 involving the root is a transition in (ζt)t≥0 followed
by a translation. In the following, our goal is to investigate the set of invariant measures
of (ζt)t≥0. The next proposition follows from the same arguments as Proposition 4.3 in
[94, Part III] for the exclusion process on Zd, so we omit the proof.

Proposition 8.3. The measure ν∗ρ is invariant for (ζt)t≥0 for all ρ ∈ [0, 1].

In order to calculate the speed of the tagged particle, we will now show that (ζt)t≥0

started from ν∗ρ is a stationary and ergodic process.
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8.3 Ergodicity for the environment process

In order to derive ergodicity with respect to ν∗ρ and ρ ∈ (0, 1), we closely follow the
arguments of Saada in [114]. For simplicity of notation, we only consider the case of a
simple exclusion process on T d as for general p(·) the same arguments apply.

Proposition 8.4. For d ≥ 3, the stationary environment process (ζt)t≥0 with initial
law ν∗ρ is ergodic for all ρ ∈ (0, 1).

To show Proposition 8.4, we proceed with a proof by contraction. Suppose that
(ζt)t≥0 is not ergodic. By Theorem 3.5, there exists A ⊆

{
ζ ∈ {0, 1}V : ζ(o) = 1

}
with

0 < ν∗ρ(A) < 1 (8.4)

such that A is invariant, i.e.,

P
(
ζt ∈ A

∣∣ ζ0 = ζ̃
)

= 1

holds for almost all ζ̃ ∈ A. Hence, A is a non-trivial invariant set for (ζt)t≥0. Define
B :=

{
ζ ∈ {0, 1}V : ζ(o) = 1

}
\ A and note that B is a non-trivial, invariant set for

(ζt)t≥0 as well. Recall from Theorem 3.9 that νρ is extremal invariant for the simple
exclusion process (ηt)t≥0, and hence (ηt)t≥0 started from νρ is ergodic; see Theorem 3.5.
We want to use this observation to establish a contradiction. Let the sets Ã and B̃ be

Ã :=
⋃

x∈V, ζ∈A

τxζ and B̃ :=
⋃

x∈V, ζ∈B

τxζ .

Then, Ã and B̃ are invariant for (ηt)t≥0. Since A ⊆ Ã and B ⊆ B̃, by (8.4)

νρ(Ã) = νρ(B̃) = 1 (8.5)

holds. In particular, the sets Ã and B̃ are not disjoint. We now deduce that A and B
are not disjoint, contradicting the definition of B, by using the next lemma. In the
following, let ∼ denote the relation of two sites being adjacent.

Lemma 8.5. For almost every η distributed according to νρ, there exist integers n,m, l
and sites

w, x, y, z; x1, x2, . . . , xn; y1, y2, . . . , ym; z1, z2, . . . , zl

with the following properties:

(i) τxη ∈ A, τwη ∈ B

(ii) η(y) = η(z) = η(x1) = . . . = η(xn) = 0

(iii) x, y, z are located in pairwise different branches with respect to w in T d
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(iv) w is connected to x via the path x1 ∼ x2 ∼ · · · ∼ xn, connected to y via the path
y1 ∼ y2 ∼ · · · ∼ ym and connected to z via the path z1 ∼ z2 ∼ · · · ∼ zl.

Proof. By (8.5), there almost surely exist sites x,w ∈ V such that τxη ∈ A and τwη ∈ B
holds. Let x1, x2, . . . , xn denote the shortest path connecting x and w, which may be
empty for x ∼ w. Without loss of generality, we assume that η(x1) = . . . = η(xn) = 0

holds. More precisely, note that A and B form a partition of {ζ ∈ {0, 1}V : ζ(o) = 1}
and so τwη ∈ A ·∪B holds for all occupied sites w ∈ V . Among the occupied sites along
the path from x to w, there exist two sites x̃, ỹ with τx̃η ∈ A, τỹη ∈ B with only vacant
sites in between of them. Take x̃, ỹ as new choices for x and y.

In order to show that properties (iii) and (iv) hold, let C(x,w) and D(x,w) denote
the vertices of two arbitrary branches of w different from the one containing x. Since
C(x,w) and D(x,w) contain infinitely many sites, for ν∗ρ-almost every η there are
infinitely many y in C(x,w) and z in D(x,w) such that η(y) = η(z) = 0 holds. Choose
two of these sites as y and z arbitrarily and define y1, y2, . . . , ym and z1, z2, . . . , zl to be
the shortest paths connecting them to w, respectively.

Proof of Proposition 8.4. Take an η satisfying the properties in Lemma 8.5 for sites

N := {w, x, y, z, x1, x2, . . . , xn, y1, y2, . . . , ym, z1, z2, . . . , zl} .

Fix an arbitrary time t0 > 0. Let η̃ denote the configuration that agrees with η on N
while on the complement of N , η̃ has the distribution of a simple exclusion process
(ηt)t≥0 at time t0 which is started from η and where all moves involving the sites N
are suppressed. In the following, we consider two ways of transforming η into ηx,y.
Since the transformations use only transitions in N , they also provide two ways of
transforming η̃ into η̃x,y for any fixed t0 > 0.

(a) First, move the particle from w to z along z1, z2, . . . , zl, i.e., for {ij, 1 ≤ j ≤ J}
being successive values of i such that η(zij) = 1, move the particle from ziJ to
z, then from ziJ to ziJ−1

and so on. Next, move the particle from x to y along
x1, x2, . . . , xn and y1, y2, . . . , ym in the same way. Finally, move the particle from
z back to w along z1, z2, . . . , zl.

(b) Move the particle from w to y along y1, y2, . . . , ym, then the particle from x to w
along x1, x2, . . . , xn.

A visualization of the transformations in (a) and (b) is given in Figure 28. Note
that in (a), the particle originally at w moves back to w. Since τwη ∈ B and B is
invariant for the process (ζt)t≥0, we conclude that τwη̃x,y ∈ B holds almost surely. In
transformation (b), the particle originally at x moved to w. Since τxη ∈ A and A

is invariant for (ζt)t≥0, we conclude that τwη̃x,y ∈ A holds almost surely. Using the
graphical representation, observe that ηt0 agrees with η̃x,y with positive probability.
Hence, we obtain a contradiction to A and B being disjoint.
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Figure 28: Transformations for η to ηx,y in T 3 where x, y, z are neighbors of w.

8.4 Speed of the tagged particle

In this section, we prove that the tagged particle (Xt)t≥0 on T d for d ≥ 3 satisfies a
law of large numbers. As a first step, we show that (Xt)t≥0 is transient for d ≥ 3, i.e.,
(Xt)t≥0 visits the root of T d almost surely only finitely many times. To do so, we use
the following framework introduced by Lyons et al. in [97] to study random walks on
Galton–Watson trees. An infinite path (x0, x1, . . . ) of sites in T d will be denoted by →x.
We say that a path →x is a ray ξ if it never backtracks, i.e., xi 6= xj for all i 6= j. The
set of rays starting at the root is called the boundary ∂T d of the tree T d. We say
that a path →x converges to a ray ξ if →x visits every site at most finitely many times
and ξ is the unique ray which is intersected infinitely often. For a site x and a ray ξ,
let [x, ξ] denote the unique ray starting in x and converging to ξ. Moreover, for two dis-
tinct sites x, y ∈ V , let x∧ξy denote the site where [x, ξ] and [y, ξ] meet for the first time.

For two vertices x, y ∈ V , recall that |x − y| denotes the shortest path distance
between x and y. We define their horodistance with respect to some given ray ξ as
the signed distance

〈y − x〉ξ := |y − x ∧ξ y| − |x− x ∧ξ y| , (8.6)

see Figure 31 in Section 9 for a visualization of the horodistance on general trees. We
set 〈x〉ξ := 〈x − o〉ξ with respect to the root o of T d. Throughout the rest of this
section, let ξ ∈ ∂T d be an arbitrary, but fixed boundary point of T d, which will in
the following be omitted as a subscript in the notation of the horodistance. Note that
without loss of generality, we can define the addition on T d such that the horodistance
defines a group homomorphism between (T d,+) and (Z,+), i.e., for all sites x, y ∈ V

〈x+ y〉 = 〈x〉+ 〈y〉 . (8.7)
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Our goal is to show a law of large numbers for the stochastic process (〈Xt〉)t≥0 from
which we will deduce Theorem 8.1. We define

ψ(ζ) :=
∑
z∈V

p(|z|)(1− ζ(z))〈z〉 (8.8)

to be the local drift at the root for a configuration ζ ∈ {0, 1}V with ζ(o) = 1. Recall
the definition of the environment process (ζt)t≥0 in (8.2). We want to express (〈Xt〉)t≥0

in terms of (ζt)t≥0. Observe that (Xt, ζt)t≥0 is a Feller process whose generator is given
by the closure of

L̃f(x, ζ) =
∑
y,z 6=o

p(|z − y|)ζ(y)(1− ζ(z)) [f(x, ζy,z)− f(x, ζ)]

+
∑
y∈V

p(|x− y|)(1− ζ(y)) [f(y, τy−xζ)− f(x, ζ)] ,

and let (Ft)t≥0 denote the respective σ-algebra. Note that the process (Xt)t≥0 on its
own is in general not Markovian. We now decompose the process (〈Xt〉)t≥0 into a
martingale and a function depending only on the environment process. This follows
the ideas of Proposition 4.1 in [94, Part III].

Lemma 8.6. For all t ≥ 0, it holds that

〈Xt〉 =

∫ t

0

ψ(ζs)ds+Mt , (8.9)

where (Mt)t≥0 is a martingale with respect to (Ft)t≥0.

Proof. Define the function f(x, ζ) := 〈x〉. Observe that for this choice of f ,

L̃f(x, ζ) =
∑
y∈V

p(|x− y|)(1− ζ(y)) [f(y, τy−xζ)− f(x, ζ)] = ψ(ζ) (8.10)

holds using (8.7). It remains to show that the process (Mt)t≥0 defined via the relation
in (8.9) is indeed a martingale with respect to (Ft)t≥0. In particular, for all s < t, we
need to verify that

E [Mt −Ms|Fs] = 0

holds. Using the Markov property of (Xt, ζt)t≥0, we obtain that

E [Mt −Ms|Fs] = E
[
〈Xt〉 − 〈Xs〉 −

∫ t

s

ψ(ζr)dr|Fs
]

= E(Xs,ζs)

[
〈Xt−s〉 − 〈X0〉 −

∫ t−s

0

ψ(ζr)dr
]
,
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where E(Xs,ζs)[ · ] denotes the expectation when starting the process from (Xs, ζs). In
particular, it suffices to show that for fixed x ∈ V and ζ ∈ {0, 1}V ,

E(x,ζ) [〈Xt〉 − 〈x〉]−
∫ t

0

E(x,ζ) [ψ(ζr)] dr = 0

holds for all t ≥ 0. Using (8.10), this follows immediately by Dynkin’s formula; see
(4.25) or Chapter 3 in [96].

Applying the results of Section 8.2, we obtain the following lemma as an immediate
consequence, and as an analogue of Corollaries 4.5 and 4.16 in [94, Part III].

Lemma 8.7. Suppose that (ηt)t≥0 has initial distribution ν∗ρ for some ρ ∈ [0, 1]. Then
the martingale (Mt)t≥0 in Lemma 8.6 has stationary and ergodic increments.

Proof. Observe that 〈Xt〉 can be expressed as a function Ft of {ζs, 0 ≤ s ≤ t} for
all t ≥ 0 since all transitions of (〈Xt〉)t≥0 correspond precisely to the shifts in the
environment process. In particular,

〈Xt〉 − 〈X0〉 = Ft(ζs, 0 ≤ s ≤ t)

holds. Using that (ζt)t≥0 is stationary, Lemma 8.6 yields

Mt −Ms = Ft−s(ζr, s ≤ r ≤ t) +

∫ t

s

ψ(ζs)ds

for all s < t. Recall from Propositions 8.3 and 8.4 that (ζt)t≥0 started from ν∗ρ is
stationary and ergodic, and hence, the claimed statement follows.

We now show a law of large numbers for the process (〈Xt〉)t≥0. A similar statement
for the tagged particle on Zd can be found as Theorem 4.17 in [94, Part III].

Proposition 8.8. For d ≥ 2, let (ηt)t≥0 on T d have initial distribution ν∗ρ for some
ρ ∈ (0, 1). Then the associated tagged particle (Xt)t≥0 satisfies

E [〈Xt〉] = (1− ρ)(d− 2)
∑
i∈N0

ip(i) · t = v · t (8.11)

for all t ≥ 0. Moreover, almost surely

lim
t→∞

〈Xt〉
t

= v (8.12)

holds. In particular, the tagged particle (Xt)t≥0 on T d is transient for d ≥ 3.

Proof. For d = 2, (8.11) with v = 0 follows by symmetry and this easily implies (8.12),
so we assume that d ≥ 3. Taking expectations on both sides of (8.9) in Lemma 8.6
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yields that

E [〈Xt〉] =

∫ t

0

E [ψ(ζs)] ds+ E[Mt] .

Observe that (ψ(ζt))t≥0 is a stationary sequence. Hence,

E [ψ(ζt)] = E [ψ(ζ0)] = (1− ρ)(d− 2)
∑
i∈N0

ip(i)

holds for all t ≥ 0. Since (Mt)t≥0 is a martingale, the statement in (8.11) follows. In
order to show (8.12), recall Proposition 8.4 and Lemma 8.7, and apply the ergodic
theorem to both terms on the right-hand side of (8.9), respectively, to conclude.

As an immediate consequence of the transience of the tagged particle (Xt)t≥0 for
d ≥ 3, and T d being spherically symmetric, we obtain the following corollary.

Corollary 8.9. For d ≥ 3 and ρ ∈ (0, 1), let
→
x denote the trajectory of the tagged

particle (Xt)t≥0 on T d. Then
→
x converges almost surely to a unique boundary point

x+∞ ∈ ∂T d. Moreover, for any deterministic choice of ξ ∈ ∂T d, x+∞ 6= ξ holds almost
surely.

Proof of Theorem 8.1. By Corollary 8.9, we almost surely have for all t ≥ 0 sufficiently
large that

|Xt| = 〈Xt〉+ 2|w| , (8.13)

where w is the last common vertex of x+∞ and ξ. Since ξ was arbitrary, but fixed
at the beginning, w is well defined and |w| is almost surely finite. Since |w| does not
depend on t, we obtain Theorem 8.1 from Proposition 8.8.

8.5 Diffusivity of the tagged particle

In order to prove Theorem 8.2, we show a central limit theorem for the process
(〈Xt〉)t≥0. Recall from (8.9) that (〈Xt〉)t≥0 can be decomposed into a martingale (Mt)t≥0

and a process
∫ t

0
ψ(ζs)ds. For p(·) and v taken from Section 8.1.3, we define

ψ̄(ζ) := ψ(ζ)− v =
∑
x∈V

p(|x|)〈x〉(ρ− ζ(x)) .

Our goal is to establish a similar decomposition for the process
∫ t

0
ψ̄(ζs)ds. Let L2(ν∗ρ)

denote the Hilbert space of square integrable functions with respect to ν∗ρ and scalar
product

〈f, g〉ν∗ρ :=

∫
fgdν∗ρ .

Observe that the environment process (ζt)t≥0 with generator L from (8.3) is reversible
with respect to ν∗ρ for all ρ ∈ [0, 1]. For a function f ∈ L2(ν∗ρ) in the domain of L, we
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define its ‖·‖1-norm to be

‖f‖1 :=
√
〈f, (−L)f〉ν∗ρ .

Let H1 denote the respective Hilbert space generated by all local functions f of finite
‖·‖1-norm. We define its dual space H−1 to be the Hilbert space generated by all local
functions which have a finite norm with respect to

‖f‖−1 := inf

{
C ≥ 0:

∣∣∣∣∫ fgdν∗ρ

∣∣∣∣ ≤ C‖g‖1 for all local functions g
}
.

The following result was shown by Sethuraman et al. for the exclusion process on Zd

with d ≥ 3, and carries over to T d for d ≥ 3; see Lemma 2.1 in [130].

Proposition 8.10. For d ≥ 3, we have ψ̄ ∈ H−1.

Note that the proof in [130] only uses the transience of the simple random walk
on the underlying graph T d as well as the fact that ψ̄ is a bounded, local function of
zero mean. The next proposition is a special case of the seminal result by Kipnis and
Varadhan on additive functionals of reversible Markov processes; see also Theorem 1.8
in [79].

Proposition 8.11. Assume that ψ̄ ∈ L2(ν∗ρ)∩H−1 has mean zero. Then
∫ t

0
ψ̄(ζs)ds can

be decomposed into a square integrable martingale (Nt)t≥0 with stationary increments
and a stochastic process (Rt)t≥0, i.e.,∫ t

0

ψ̄(ζs)ds = Nt +Rt ,

where (Rt)t≥0 satisfies lim
t→∞

t−1 · E [R2
t ] = 0.

Proof of Theorem 8.2. A simple computation shows that the martingale (Mt)t≥0 satis-
fies a central limit theorem with non-degenerate limit variance; see Proposition 4.19 in
[94, Part III]. Combining Propositions 8.10 and 8.11, we can now apply a martingale
central limit theorem to the process (Mt +Nt)t≥0. To see that the limit variance of this
process is non-degenerate, observe that by Lemma 3.8 in [130], there exists a constant
C > 0 such that ∣∣∣∣∫ ψ̄gdν∗ρ

∣∣∣∣ ≤ C
√
Dex(g)

holds for all local functions g, where

Dex(g) :=
1

4

∫ ∑
x,y 6=o

p(x, y) [g(ηx,y)− g(η)]2 dν∗ρ .

We then apply the same arguments which were used in the proof of Theorem 4.55
in [94, Part III]. Together with (8.13), this yields Theorem 8.2.
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9 The simple exclusion process on
Galton–Watson trees

9.1 Introduction

So far, we studied the simple exclusion process when the underlying graph has
a regular structure, i.e., it is the integer lattice or a regular tree. In the following,
we allow that the underlying graph is chosen randomly, namely as a supercritical,
augmented Galton–Watson tree without extinction. We will consider two different
models of simple exclusion processes, the variable speed model where a particle at-
tempts to cross all adjacent edges with rate 1, respectively, and the constant speed
model where particles wait according to rate 1 Poisson clocks before attempting a
jump to some uniformly chosen neighbor. Precise descriptions for both cases are given
in Section 9.1.1. After choosing the tree, we keep the tree fixed and start from a
stationary distribution, where we condition on initially having a tagged particle in the
root. In both models, we study the evolution of the tagged particle over time. The
presented material is based in large parts on [67], which is joint work with Nina Gantert.

Our motivation is two-fold. On the one hand, the speed of a tagged particle in
exclusion processes on Zd was extensively studied; see Section 7.1. In particular, recall
the simple exclusion process on the d-dimensional lattice in Theorem 7.3, where the
transition probabilities are given by a random walk with drift, and where we start
from a Bernoulli-ρ-product measure. In this setup, the speed of the tagged particle is
1− ρ times the speed of a single particle. Intuitively, this is plausible as the density
of empty sites is 1 − ρ, and thus only a proportion of 1 − ρ of the steps is carried
out. We saw in Theorem 8.1 that the same formula continues to hold for exclusion
processes on regular trees. In this case, a crucial tool are the explicitly known in-
variant measures. We consider Galton–Watson trees as an example for a random
environment, where invariant measures for the exclusion process are known. In the
variable speed model, the Bernoulli-ρ-product measures are invariant distributions and
the speed of the tagged particle is again 1 − ρ times the speed of a single particle.
For the constant speed model, we have invariant measures which are still product
measures, but not with identical marginals, and we see a different formula for the speed.

On the other hand, random walks on Galton–Watson trees are intensively investigated.
We refer to the seminal work [97] and Section 9.1.2 for a discussion of related results.
We consider tagged particles in exclusion processes as a natural generalizations of
random walks, treating the tagged particle as a random walk in a dynamical random
environment. One difficulty is that the position of the tagged particle is not a Markov
chain, and thus the proof of its transience is not straightforward; see Section 9.4.
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9 The simple exclusion process on Galton–Watson trees

9.1.1 Definition of the model

Our goal is to study the simple exclusion process on randomly chosen trees. In particu-
lar, we choose the underlying graph to be an augmented Galton–Watson tree T
with vertex set V (T ), edge set E(T ), and root o ∈ V (T ). More precisely, we have the
following construction.

Let (pk)k∈N0 be a sequence of non-negative numbers with
∑∞

k=0 pk = 1, which defines
the offspring distribution of the tree, i.e., a random variable according to the
offspring distribution takes the value k with probability pk for all k ∈ N0. We construct
T in such a way that each site has precisely k + 1 neighbors with probability pk for
all k ∈ N0 independently of all other sites. To do so, define a starting vertex o, the
root, and recursively, starting from o, let every site have a number of descendants
drawn independently according to the offspring distribution. The resulting tree is
called Galton–Watson tree. Since in this construction, the root has on average one
neighbor less than all other sites, we add one additional descendant to o and apply
the same recursion in order to obtain an augmented Galton–Watson tree. We
will in the following assume that the underlying Galton–Watson branching process is
supercritical and without extinction, i.e.,

p0 = 0 and m :=
∑
k≥1

kpk ∈ (1,∞) (9.1)

holds. In particular, the corresponding augmented Galton–Watson tree is almost surely
locally finite since every vertex has only a finite number of descendants.

Recall the construction of a simple exclusion process from (3.3) for c ≡ 0 and
nearest-neighbor transition rates p(x, y). Let T = (V,E) be a supercritical, augmented
Galton–Watson tree without extinction and consider the following two ways of defining
a simple exclusion process on T . For p(x, y) = 1{x,y}∈E, we refer to the resulting process
(ηv
t )t≥0 as the variable speed model, for p(x, y) = deg(x)−11{x,y}∈E, we call (ηc

t )t≥0

the constant speed model of the simple exclusion process; see Section 5.1. The terms
“variable speed model” and “constant speed model” go back to [12] who consider random
walks among random conductances. In words, each particle in the variable speed model
at a site x has an exponential waiting time with parameter deg(x) independently of
all other particles. When the time is up, it jumps to one of its neighbors uniformly at
random under an exclusion rule. In the constant speed model, the particles have an
exponential waiting time with parameter 1. They then choose one neighbor uniformly
at random and jump to the selected site if it is vacant. Note that the two models of
the simple exclusion process agree for regular graphs up to a deterministic time change.
The next result states that the simple exclusion process on Galton–Watson trees in
both models is almost surely a Feller process.
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Figure 29: Visualization of the tagged particle, drawn in blue, in a configuration of the
simple exclusion process on a Galton–Watson tree.

Proposition 9.1. For almost every Galton–Watson tree T , the simple exclusion pro-
cesses according to the variable speed model and the constant speed model on T are
well-defined Feller processes whose generators are given by (3.3).

Proof. Observe that bond percolation with parameter p on a Galton–Watson tree with
offspring mean m gives a Galton–Watson tree of mean mp. Hence, pG = 1

m
∈ (0, 1)

holds for almost every supercritical Galton–Watson tree without extinction; see also
Proposition 5.9 in [99]. We conclude Proposition 9.1 from Theorem 3.2.

For a given realization T of an augmented Galton–Watson tree, we describe a
parametrized set of invariant measures with respect to both models of the simple
exclusion process. For ρ ∈ [0, 1], let νρ,T denote the Bernoulli-ρ-product measure on
{0, 1}V (T ), i.e.,

νρ,T (η(x) = 1) = ρ (9.2)

for all x ∈ V (T ). For α ∈ [0,∞), let ν̃α,T denote the product measure on {0, 1}V (T )

with marginals

ν̃α,T (η(x) = 1) =
α deg(x)

1 + α deg(x)
(9.3)

for all x ∈ V (T ). The fact that the measures νρ,T and ν̃α,T are reversible, and hence
invariant, for the simple exclusion processes (ηv

t )t≥0 in the variable speed model and
(ηc
t )t≥0 in the constant speed model, respectively, whenever ρ ∈ [0, 1] or α ∈ [0,∞)

holds, follows from Theorem 3.7. When we condition to initially have a particle in the
root, recall that we denote the resulting Palm measures by ν∗ρ,T and ν̃∗α,T on {0, 1}V (T );
see (7.1). For ρ = 0 and α = 0, we use the convention that the simple exclusion process
started from ν∗0,T , respectively ν̃∗0,T , is the simple random walk on T in the respective
model starting in the root o. In the following, our goal is to investigate the motion of
the tagged particle in both models, where we denote by (Xv

t )t≥0 the position of the
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9 The simple exclusion process on Galton–Watson trees

tagged particle in T in the variable speed model and by (Xc
t )t≥0 its position in T in

the constant speed model of the simple exclusion process; see also Figure 29.

9.1.2 Related literature

In the last decades, many results for random walks on Galton–Watson trees were
achieved. The study of random walks on Galton–Watson trees goes back to Grimmett
and Kesten who proved that the simple random walk on supercritical Galton–Watson
trees conditioned on non-extinction is almost surely transient [70]. Lyons et al. showed
that this random walk has almost surely a positive linear speed and calculated the
speed explicitly [97]. The case of a simple random walk on Galton–Watson trees
with bias was studied by Lyons et al. in [98]. More recent progress on the speed
of random walks on Galton–Watson trees includes [3, 5, 64], among others. An in-
troduction to random walks on Galton–Watson trees can be found in Chapter 17 of [99].

For the simple exclusion process in a one-dimensional random environment, Chayes
and Liggett investigated the set of invariant distributions [28]. The tagged particle in
one-dimensional random environments was studied by Jara and Landim [75]. To our
best knowledge, this is the first time the tagged particle in the simple exclusion process
is studied on random graphs. Note that a crucial difference for the study of the tagged
particle in an exclusion process on augmented Galton–Watson trees compared to Zd

or T d from Sections 7.1 and 8 is that the underlying graphs are no longer transitive.
However, we will be able to recover the transitivity of the graphs “in distribution” since
all sites have the same degree distribution by construction.

9.1.3 Main result

Our main result is to establish a law of large numbers for the tagged particle in
the simple exclusion process when starting from a Palm measure on an augmented
Galton–Watson tree. For a rooted tree T and x ∈ V (T ), recall that we write |x| for
the shortest path distance from the root.

Theorem 9.2. Let Z be distributed according to the offspring distribution. Then for
almost every augmented Galton–Watson tree T , the following holds:

(i) Variable speed: Let (ηv
t )t≥0 on T have initial distribution ν∗ρ,T for some ρ ∈ [0, 1).

Then

lim
t→∞

|Xv
t |
t

= (1− ρ)E
[
Z − 1

Z + 1

](
E
[

1

Z + 1

])−1

(9.4)

almost surely.
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(ii) Constant speed: Let (ηc
t )t≥0 on T have initial distribution ν̃∗α,T for some α ∈ [0,∞).

Then
lim
t→∞

|Xc
t |
t

= E
[
Z − 1

Z + 1

1

α(Z + 1) + 1

]
(9.5)

almost surely.

In particular, the tagged particle has almost surely a strictly positive speed.

If the tree is regular, i.e., Z ≡ m, then 1 − ρ corresponds to 1
α(m+1)+1

, comparing
with (9.2) and (9.3). In particular, the two formulas (9.4) and (9.5) agree up to the
deterministic time change

(
E
[

1
Z+1

])−1. We make the following remarks.

Remark 9.3. (i) In the constant speed model for α → 0, we recover the result of
Lyons et al. on the speed of a random walk on supercritical Galton–Watson trees
without extinction [97].

(ii) For the variable speed model, we see a linear scaling in the density 1− ρ of empty
sites. Similar results hold for an exclusion process with drift on Zd and without
drift on the regular tree; see Theorems 7.3 and 8.1.

(iii) In the constant speed model

E
[
Z − 1

Z + 1

1

α(Z + 1) + 1

]
≤ E

[
Z − 1

Z + 1

]
E
[

1

α(Z + 1) + 1

]
holds, with strict inequality unless Z ≡ m. Hence, in general the scaling of the
speed is lower than linear in the averaged density of empty sites.

9.1.4 Outline of the proof

Our formulas for the speed of the tagged particle rely on explicitly given invariant
measures for the environment seen from the tagged particle. We show that the envi-
ronment process started from these invariant measures is ergodic. We use two sets of
techniques, one coming from random walks on Galton–Watson trees and the other one
from exclusion processes. In contrast to the case of regular trees from Section 8, our
proof requires to intertwine the techniques from both sets.

In particular, we have the following strategy in order to prove Theorem 9.2. In
Section 9.2, we define a common probability space for locally finite, rooted trees and
the respective exclusion processes on them. This will allow us to study the environment
process in Section 9.3, which can be interpreted as the exclusion process “seen from the
tagged particle”. We provide stationary measures for the environment process in both
models of the simple exclusion process. The arguments in this section are based on the
ideas of Lyons et al. for studying random walks on Galton–Watson trees.
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9 The simple exclusion process on Galton–Watson trees

Since the motion of the tagged particle is itself not a Markov process, a crucial step
is to show that the tagged particle is transient. This is accomplished in Section 9.4 by
combining the results of Section 9.3 on Galton–Watson trees and martingale techniques
from [94, Part III, Section 4] for the motion of a tagged particle in exclusion processes.
A similar approach was used in Proposition 8.8 to show the transience of the tagged
particle on regular trees.

In Section 9.5, we show ergodicity for the environment process. We do this by
intertwining different techniques coming from random walks on Galton–Watson trees
and interacting particle systems, i.e., we combine coupling arguments of Saada in [114]
for the exclusion process on Zd with drift, with regeneration time arguments of Lyons
and Peres in Chapter 17 of [99] for the random walk on Galton–Watson trees. Using
the ergodicity of the environment process, we deduce a law of large numbers for the
position of the tagged particle in Section 9.6, and then conclude this section with an
outlook on related open problems.

9.2 Spaces and measures for trees

In this section, we introduce spaces and measures for rooted trees which allow us
to study the simple exclusion process and locally finite, rooted trees on a common
probability space. We write (T, o) ∈ T for a tree T with root o, where T denotes
the space of all rooted, locally finite trees. Recall from Section 3.5 that we denote by
Br(T, o) the ball of radius r around the root of T with respect to the graph distance. We
say that two rooted trees (T, o), (T ′, o′) ∈ T are isomorphic on a ball of radius r, and
write Br(T, o) ∼= Br(T

′, o′), if there exists a bijection φ : Br(T, o)→ Br(T
′, o′) such that

φ(o) = o′ and {x, y} ∈ E(T ) for x, y ∈ Br(T, o) holds if and only if {φ(x), φ(y)} ∈ E(T ′).
In words, two trees are isomorphic on a ball of radius r around the root when the sites
of distance at most r from the root can be mapped one-to-one such that the adjacency
structure of the tree is preserved.

The space T will be equipped with the local topology, that is the topology
introduced by the distance function d̃loc on T given by

d̃loc((T, o), (T
′, o′)) :=

1

1 + R̃

for all trees (T, o), (T ′, o′) ∈ T , where

R̃ = sup {r ∈ N0 : Br(T, o) ∼= Br(T
′, o′)} .

In particular, the open sets on T will be generated by the sets of all trees which are
isomorphic on a ball of radius r for some r ≥ 0. Note that d̃loc is not a metric, but
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only a pseudo-metric, since trees which are isomorphic on Br(T, o) for every r ≥ 0

have d̃loc-distance 0. In order to turn T together with d̃loc into a metric space, we
consider isomorphism classes of trees. We say that two trees (T, o), (T ′, o′) ∈ T are
isomorphic if d̃loc((T, o), (T

′, o′)) = 0, and write [T ] for the set of isomorphism classes.
It is a well-known result that ([T ], d̃loc) forms a Polish space; see [97].

With a slight abuse of notation, we denote in the following the space of all 0/1-colored,
locally finite, rooted trees by

Ω :=
{

(T, o, η) : η ∈ {0, 1}V (T ), (T, o) ∈ T
}
, (9.6)

as our (extended) state space for the simple exclusion process. We let Br(T, o, η)

denote the ball of radius r around the root o of T where each site receives a color 0

or 1 according to η. Similar to the case of unlabeled trees, we say that (T, o, η) and
(T ′, o′, η′) are isomorphic on a ball of radius r, and write Br(T, o, η) ∼= Br(T

′, o′, η′),
if Br(T, o) ∼= Br(T

′, o′) for some bijection φ as well as η(v) = η′(φ(v)) holds for all
v ∈ Br(T, o). The space Ω is equipped with the topology induced by

dloc((T, o, η), (T ′, o′, η′)) :=
1

1 +R

with
R = sup {r ∈ N0 : Br(T, o, η) ∼= Br(T

′, o′, η′)}

for all (T, o, η), (T ′, o′, η′) ∈ Ω. Again, we will in the following consider isomorphism
classes of 0/1-colored trees. As before, one can show that this yields a Polish space
([Ω], dloc); see Lemma 2.3 in [115] for a proof.

For a fixed tree (T, o) ∈ T , we define

ΩT :=
{

(T, o, η) ∈ Ω : η ∈ {0, 1}V (T )
}
⊆ Ω

to be the space of 0/1-configurations on (T, o). Moreover, let

Ω̃T :=
{

(T, x, η) ∈ Ω : η ∈ {0, 1}V (T ), x ∈ V (T )
}
⊆ Ω (9.7)

be the space of 0/1-configurations on (T, o) and on all isomorphism classes of trees
obtained from (T, o) by shifting the root. In addition, we denote by

Ω∗ := {(T, o, η) ∈ Ω : η(o) = 1} ⊆ Ω

the set of configurations in Ω with occupied root, and define Ω∗T and Ω̃∗T similarly.
Note that forming the above subspaces is consistent under taking isomorphism classes
of trees, e.g., [ΩT ∩Ω] = [ΩT ]∩ [Ω]. From now on, we will only work with isomorphism
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9 The simple exclusion process on Galton–Watson trees

classes of trees and drop the brackets in the notation. Let us stress that we define
all probability measures on the subspaces of (T , d̃loc) and (Ω, dloc) with respect to the
Borel-σ-algebra.

Let GW denote the Galton–Watson measure on T which is induced by the
Galton–Watson branching process; see Chapter 4 of [99]. More precisely, we define
GW for families of rooted trees

TT (r) := {(T ′, o′) ∈ T : Br(T
′, o′) = Br(T, o)}

with r ∈ N and (T, o) ∈ T fixed. The measure GW assigns now to TT (r) the prob-
ability that the genealogical tree of a branching process according to the offspring
distribution agrees with Br(T, o) up to generation r. A standard extension argument
yields the probability measure GW on T . In the same way, we define AGW to be the
augmented Galton–Watson measure on T by taking a branching process where
the first particle has one additional child. One may also define AGW directly on T by
choosing two independent trees according to GW and joining their roots by an edge;
see Chapter 17 of [99].

The simple exclusion process in the variable speed model is now a process on Ω with
the initial distribution

Pv
ρ := AGW × ν∗ρ,T (9.8)

being a semi-direct product of AGW on T and ν∗ρ,T . Similarly, the simple exclusion
process in the constant speed model is a process on Ω with the initial distribution

Pc
α := AGW × ν̃∗α,T (9.9)

being a semi-direct product of AGW on T and ν̃∗α,T . In particular, this construction as
a semi-direct product defines Pv

ρ for 0/1-colored balls of radius r. However, in contrast
to Pv

ρ, we can not determine Pc
α for 0/1-colored balls of radius r in a direct way. This is

due to the fact that in order to determine the color of a vertex at distance r according
to ν̃∗α,T , one has to know the number of its adjacent sites at distance r + 1 from the
root. To remedy this problem, we condition according to the number of children in
the (r + 1)th generation for each site at level r. For the resulting balls of radius r + 1

with colors only up to level r, we can now make sense of the measure Pc
α. We conclude

this section by noting that for a fixed augmented Galton–Watson tree (T, o) ∈ T , the
simple exclusion process on (T, o) is AGW-almost surely a Feller process with values
in the space ΩT for both models. Hence, instead of working with the measures ν̃∗α,T and
ν∗ρ,T on a fixed Galton–Watson tree (T, o) ∈ T , we will from now on study the measures
Pc
α and Pv

ρ on the space Ω, and restrict the space to ΩT whenever we condition on a
certain underlying tree (T, o) ∈ T .
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9.3 Stationarity for the environment process

In Section 8.2, we introduced the environment process for exclusion processes on
regular trees as the process “seen from the tagged particle”. We will now study a
corresponding environment process for the simple exclusion process on augmented
Galton–Watson trees. Intuitively, it is given as the following Markov process with
values in Ω∗. The state of the environment process at time t is the 0/1-colored tree
given by the configuration of the exclusion process on the original tree whose root is
shifted to the position of the tagged particle at time t. Its state can change in two
ways: either the coloring outside the root changes according to the exclusion process,
or the root of the tree is shifted. The latter happens if and only if the tagged particle
moves; see below for precise definitions.

Recall that the environment process is a common approach to prove a law of large
numbers for random walks in random environment or tagged particles in exclusion
processes; see [141] and Theorems 7.3 and 8.1. However, a crucial difference to these
examples is that the underlying tree for the environment process on augmented Galton–
Watson trees changes with time, which requires a more detailed analysis. Recall that
∼ denotes the relation of two sites being adjacent. For the simple exclusion process on
Ω with transition rates p(·, ·), we define the corresponding environment process to be
the Feller process with state space Ω∗ generated by the closure of

Lf(T, o, ζ) =
∑
x,y 6=o

p(x, y)ζ(x)(1− ζ(y)) [f(T, o, ζx,y)− f(T, o, ζ)]

+
∑
z∼o

p(o, z)(1− ζ(z)) [f(T, z, ζo,z)− f(T, o, ζ)] (9.10)

for all cylinder functions f . We write Lv and Lc for the generators of the environment
process of the simple exclusion process in the variable speed model and in the constant
speed model, respectively. Note that the generator can be split into two parts, namely
into transitions which do only exchange particles and do not change the underlying
tree, as well as into transitions which involve the root of the tree. More precisely, we
define the generators

(Lc
exf)(T, o, ζ) :=

∑
x,y 6=o

1

deg(x)
ζ(x)(1− ζ(y)) [f(T, o, ζx,y)− f(T, o, ζ)]

(Lc
shf)(T, o, ζ) :=

∑
z∼o

1

deg(o)
(1− ζ(z)) [f(T, z, ζo,z)− f(T, o, ζ)]

for the environment process in the constant speed model for (T, o, ζ) ∈ Ω∗ and all
cylinder functions f . The generators Lv

ex and Lv
sh for the environment process in the

variable speed model are defined analogously.
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We want to investigate the invariant measures of the environment process. We
provide two classes of reversible measures for the environment process, Qv

ρ for ρ ∈ (0, 1)

and Qc
α for α ∈ (0,∞), such that Qv

ρ and Pv
ρ, respectively Qc

α and Pc
α, are equivalent,

i.e., mutually absolutely continuous, for all ρ ∈ (0, 1) and α ∈ (0,∞). Let us stress
once again that we work on isomorphism classes of trees in order to properly define
stationary measures for the environment process.

For the environment process in the variable speed model, we will use the ideas of
Aldous and Lyons [3]. Consider the unimodular Galton–Watson measure UGW
which we obtain from AGW by weighting a tree according to the reciprocal of the
degree of its root, i.e.,

dUGW
dAGW

(T, o) =

(
E
[

1

Z + 1

])−1

· 1

deg(o)
(9.11)

for (T, o) ∈ T , where Z is distributed according to the offspring distribution. We define
Qv
ρ on Ω∗ to be the probability measure given as the semi-direct product

Qv
ρ := UGW × ν∗ρ,T (9.12)

for all ρ ∈ (0, 1). As pointed out by the authors of [3], the measure AGW on T gives
the environment process a natural bias proportional to the degree of the root. This
bias is compensated by the Radon–Nikodym derivative in (9.11). For the environment
process in the constant speed model with parameter α ∈ (0,∞), we let Qc

α denote
the probability measure on Ω∗ which is absolutely continuous with respect to Pc

α and
satisfies

dQc
α

dPc
α

(T, o, ζ) =

(
E
[

1

α(Z + 1) + 1

])−1

· 1

α deg(o) + 1
(9.13)

for all (T, o, ζ) ∈ Ω∗, where Z is distributed according to the offspring distribution. We
want to provide some intuition for the Radon–Nikodym derivative in (9.13). Observe
that the semi-direct product AGW × ν̃α,T satisfies

(AGW × ν̃α,T ) (deg(o) = k|ζ(o) = 1) =
αk

αk + 1
· pk−1∑

k≥1
αk
αk+1

pk−1

for all k ≥ 1. Since the root is always occupied in the environment process, we expect to
see a similar weighting of the degree of o within Qc

α. Recall AGW (deg(o) = k) = pk−1

for all k ∈ N. Since AGW provides for the environment process a natural bias
proportional to the degree of the root o, it remains to include the factor of 1

αk+1
for Qc

α.
We now show that Qv

ρ and Qc
α are indeed reversible measures for the environment process

for all ρ ∈ (0, 1) and α ∈ (0,∞), respectively. For an introduction to reversibility of
Feller processes, we refer to Section 3.2.2.
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9.3 Stationarity for the environment process

Proposition 9.4. Fix parameters ρ ∈ (0, 1) and α ∈ (0,∞) for the measures Qv
ρ and

Qc
α, respectively. Then the following statements hold.

(i) The measure Qv
ρ is reversible for the environment process generated by Lv.

(ii) The measure Qc
α is reversible for the environment process generated by Lc.

In particular, the measures Qv
ρ and Qc

α are invariant for the environment process in
the variable speed model and the constant speed model, respectively.

Proof. It suffices to show reversibility with respect to the different parts of the generators
Lv and Lc. By construction, the processes on Ω∗ associated to the generators Lv

ex and
Lc

ex, respectively, leave the underlying tree unchanged and ignore all moves involving
the root. Recall that for a fixed (T, o) ∈ T , the measures νρ,T and ν̃α,T are invariant
for the simple exclusion process on (T, o) for all ρ ∈ (0, 1) in the variable speed model
as well as for all α ∈ (0,∞) in the constant speed model, respectively; see Theorem 3.4.
By Theorem 3.7, we obtain the reversibility of the measures νρ,T and ν̃α,T , i.e., for all
(T, o) ∈ T , and for all cylinder functions f and g∫

f(η)(Lvg)(η)dνρ,T =

∫
(Lvf)(η)g(η)dνρ,T

as well as ∫
f(η)(Lcg)(η)dν̃α,T =

∫
(Lcf)(η)g(η)dν̃α,T

holds for all ρ ∈ (0, 1) and α ∈ (0,∞), where Lv and Lc denote the generators of the
variable speed model and the constant speed model of the simple exclusion process on
(T, o), respectively. Since the Palm measures ν∗ρ,T and ν̃∗α,T have the same law as νρ,T
and ν̃α,T except at the root, this shows reversibility of the measures Qv

ρ and Qc
α for the

processes generated by Lv
ex and Lc

ex, respectively.

We now show reversibility with respect to the operators Lv
sh and Lc

sh, following
the ideas of Lyons et al. in [97] for the random walk on Galton–Watson trees. For
0/1-colored trees (T, o, ζ), (T ′, o′, ζ ′) ∈ Ω, let (T •-T ′, o, ζ •-ζ ′) denote the tree, where
we join the roots of T and T ′ by an edge and let the resulting tree have its root at o.
For Borel sets C,D ⊆ Ω, we define

C •-D := {(T •-T ′, o, ζ •-ζ ′) ∈ Ω : (T, o, ζ) ∈ C, (T ′, o′, ζ ′) ∈ D} .

For disjoint trees (T1, o1, ζ1), . . . , (Tk, ok, ζk) ∈ Ω, let
(∨k

i=1 Ti, o
′,
∨k
i=1 ζi

)
∈ Ω∗ denote

the tree where we connect the roots to a new vertex o′ forming the new root, and to
which we assign color 1. Similarly, we define

k∨
i=1

Fi :=

{(
k∨
i=1

Ti, o
′,

k∨
i=1

ζi

)
: (Ti, oi, ζi) ∈ Fi

}
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9 The simple exclusion process on Galton–Watson trees

for Borel sets F1, . . . , Fk ⊆ Ω. Note that
∨k
i=1 Fi is again a Borel set of 0/1-colored

trees. Moreover, for a set of trees F ⊆ Ω, we define

F̄ := {(T, o, ζo) ∈ Ω : (T, o, ζ) ∈ F} ,

where ζo ∈ {0, 1}V denotes the configuration in which we flip the color in ζ ∈ {0, 1}V
at the root o. Observe that the processes generated by Lv

sh and Lc
sh on Ω∗ yield the

transition rates

qv
sh((T, o, ζ), B) := |{z ∈ V (T ) : z ∼ o, (T, z, ζo,z) ∈ B}|

for the variable speed model and

qc
sh((T, o, ζ), B) :=

1

deg(o)
|{z ∈ V (T ) : z ∼ o, (T, z, ζo,z) ∈ B}|

for the constant speed model for all (T, o, ζ) ∈ Ω∗, respectively. We define for Borel
sets A,B ⊆ Ω∗

qv
sh(A,B) :=

∫
A

qv
sh((T, o, ζ), B)dQv

ρ(T, o, ζ)

qc
sh(A,B) :=

∫
A

qc
sh((T, o, ζ), B)dQc

α(T, o, ζ) .

Note that in order to prove reversibility it suffices to show that for almost all Borel
sets A,B ⊆ Ω∗

qv
sh(A,B) = qv

sh(B,A)

qc
sh(A,B) = qc

sh(B,A) .

Without loss of generality, we assume that A and B have the form A = C •- D̄ and
B = D •- C̄ for

C =
k∨
i=1

Ci and D =
l∨

j=1

Dj (9.14)

with integers k, l such that C,C1, . . . , Ck, D,D1, . . . , Dl ⊆ Ω are disjoint Borel sets.
More precisely, for two independent samples (T, o), (T ′, o′) ∈ T of trees according to
GW, we have almost surely that d̃loc((T, o), (T

′, o′)) > 0 holds. Thus, for Qv
ρ and Qc

α,
the underlying Borel-σ-algebra on (Ω∗, dloc) is generated up to nullsets when taking
only disjoint Borel-sets C and D of 0/1-colored trees into account. A similar argument
applies for all remaining pairs of sets C,C1, . . . , Ck, D,D1, . . . , Dl. A visualization of
the sets C •- D̄ and D •- C̄ is given in Figure 30. In the variable speed model, we claim
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9.3 Stationarity for the environment process

C •- D̄ D •- C̄

o o′
C3

C2

C1

Ck

. . .

C3

C2

C1

Ck

. . .

D2

D1

Dl

. .
.

D2

D1

Dl

. .
.

o o′

Figure 30: Visualization of the Borel sets C •- D̄ ⊆ Ω∗ and D •- C̄ ⊆ Ω∗, where the
tagged particle is marked in red.

that we obtain

Qv
ρ(A) =(k + 1)!pk(l!)pl

k∏
i=1

(GW × νρ,T )(Ci)
l∏

j=1

(GW × νρ,T )(Dj)

· (1− ρ) · 1

k + 1
·
(
E
[

1

Z + 1

])−1

. (9.15)

In particular, (9.15) implies that Qv
ρ(A) = Qv

ρ(B). In order to show (9.15), consider a
tree (T •-T ′, o, ζ •-ζ ′) ∈ A with (T, o, ζ) ∈ C and (T ′, o′, ζ ′) ∈ D̄ where C and D are
given in (9.14). By construction, the tree (T, o, ζ) must have degree k at the root o
before the tree (T ′, o′, ζ ′) is attached. There are now (k + 1)! ways of attaching the
subtrees belonging to C1, . . . , Ck, D to the root o. Furthermore, the subtree (T ′, o′, ζ ′)

must have degree l at o′ before being connected to o, and o′ has to be empty. There are
l! possibilities to attach to o′ the trees belonging to D1, . . . , Dl. By construction, under
Qv
ρ the subtrees belonging to C1, . . . , Ck and D1, . . . , Dl are i.i.d. with law (GW×νρ,T ).

The factor (1− ρ) is the probability that the site o′ is vacant. Together with (9.11),
this gives the above formula for Qv

ρ(A). Since

qv
sh((T, o, ζ), B) = qv

sh((T ′, o′, ζ ′), A)

for all (T, o, ζ) ∈ A, (T ′, o′, ζ ′) ∈ B, we obtain claim (i) of Proposition 9.4.

For a given tree (T, o) ∈ T and α ∈ (0,∞), let ν̄α,T be the product measure on
{0, 1}V (T ) with marginals

ν̄α,T (η : η(x) = 1) =

{
ν̃α,T (η(x) = 1) if x 6= o
α(deg(o)+1)
α(deg(o)+1)+1

if x = o .

In words, we obtain ν̄α,T by taking ν̃α,T except that we add 1 to the degree of the root.
Using a similar decomposition as for Qv

ρ, and taking (9.13) into account, we can write
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9 The simple exclusion process on Galton–Watson trees

Qc
α(A) in the constant speed model as

Qc
α(A) =(k + 1)!pk(l!)pl

k∏
i=1

(GW × ν̄α,T )(Ci)
l∏

j=1

(GW × ν̄α,T )(Dj)

· 1

α(k + 1) + 1
· 1

α(l + 1) + 1
·
(
E
[

1

α(Z + 1) + 1

])−1

. (9.16)

Here, 1
α(l+1)+1

is the probability that o′ is vacant, and the factor 1
α(k+1)+1

comes
from (9.13). In particular, (9.16) implies that

Qc
α(A)

k + 1
=

Qc
α(B)

l + 1

holds. Since

qc
sh((T, o, ζ), B) =

1

k + 1
and qc

sh((T ′, o′, ζ ′), A) =
1

l + 1

for all (T, o, ζ) ∈ A and (T ′, o′, ζ ′) ∈ B, we obtain claim (ii) of Proposition 9.4.

9.4 Transience of the tagged particle

Recall that the position of the tagged particle in the simple exclusion process is
denoted by (Xv

t )t≥0 in the variable speed model and by (Xc
t )t≥0 in the constant speed

model. Let PPv
ρ
be the law of the simple exclusion process started from Pv

ρ in the
variable speed model for some ρ ∈ (0, 1). Similarly, let PPc

α
denote the law of the simple

exclusion process started from Pc
α in the constant speed model for some α ∈ (0,∞).

For both models, we say that the tagged particle is transient if (Xv
t )t≥0, respectively

(Xc
t )t≥0, hits the root PPv

ρ
-almost surely, respectively PPc

α
-almost surely, only finitely

many times.

Proposition 9.5. The tagged particle is transient for the simple exclusion process in
the variable speed model with initial distribution Pv

ρ and in the constant speed model
with initial distribution Pc

α for all ρ ∈ (0, 1) and α ∈ (0,∞).

In order to show Proposition 9.5, we recall the framework by Lyons et al. in [97] for
the simple random walks on Galton–Watson trees, which we discussed for the exclusion
process on regular trees in Section 8.4, and which we will now use again in order to
study the simple exclusion process on augmented Galton–Watson trees. Fix a tree
(T, o) ∈ T . Recall that we write →x for a path (x0, x1, . . . ) in (T, o) and say that a path
is a ray ξ if it never backtracks. We denote by ∂(T, o) the boundary of a tree (T, o) and
note that ∂(T, o) consists AGW-almost surely of infinitely many elements, as we see
AGW-almost surely infinitely many sites of degree at least 3 by our assumptions on
the offspring distribution. Recall that a path →x converges to ξ ∈ ∂(T, o) if ξ is the only
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9.4 Transience of the tagged particle

0 1−1 2−2

o

ξ

yx

x ∧ξ y

Figure 31: Visualization of the horodistance on a tree (T, o) with ray ξ ∈ ∂(T, o). In
this example, 〈x〉(T,o) = 0 and 〈y − x〉(T,o) = 1 holds.

ray which is intersected infinitely often and →x visits every site at most finitely many
times. We let [x, ξ] denote the unique ray starting at a site x ∈ V (T ) and converging
to ξ ∈ ∂(T, o). Note that this ray can be constructed for general rooted trees by taking
the shortest path connecting x and o, following this path starting from x until the first
time a vertex of ξ is hit and then following the ray ξ in the direction pointing away
from o. For sites x, y ∈ V (T ) and a ray ξ, let x∧ξ y be the first site at which [x, ξ] and
[y, ξ] meet. In particular, as [x, ξ] and [y, ξ] are both rays converging to ξ, they must
agree for all but finitely many vertices with ξ.

For two sites x, y ∈ V (T ), recall from (8.6) that we denote by 〈y − x〉ξ their
horodistance with respect to some given ray ξ of (T, o); see Figure 31 for a visualization,
and we write 〈x〉ξ := 〈x − o〉ξ. In the following, we will fix for every infinite tree
(T, o) ∈ T a ray ξ = ξ(T, o) ∈ ∂(T, o) and write

〈y − x〉(T,o) := 〈y − x〉ξ(T,o)

for all x, y ∈ V (T ). Similar to (8.7), we require that the choice of the ray is consistent
under performing shifts of the root, i.e., for a given tree (T, o) ∈ T

〈y − x〉(T,z) = 〈y〉(T,x) (9.17)

holds for all x, y, z ∈ V (T ). In contrast to the simple exclusion process on regular trees,
we can not exploit a group structure of the underlying trees to achieve (9.17), so we use
the following construction for consistent rays instead. We first choose a tree (T, o) ∈ T .
Let ξ(T, o) ∈ ∂(T, o) now be an arbitrary, but fixed ray. For all (T, z) with z ∈ V (T ),
we then set ξ(T, z) := [z, ξ(T, o)]. Now choose another tree not in this collection and
iterate. Observe that for this choice of rays, the relation in (9.17) indeed holds as
the vertex x ∧ξ(T,z) y remains the same for any choice of z; see also Figure 31. Our
construction ensures that we have the same ray on all trees which one can get from a
given tree by shifting its root. For (T, x, ζ) ∈ Ω∗, we define the local drift at x in the
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9 The simple exclusion process on Galton–Watson trees

variable speed model to be

ψv(T, x, ζ) :=
∑
z∼x

(1− ζ(z))〈z − x〉(T,x) , (9.18)

see also (8.8). Similarly, the local drift at x in the constant speed model is denoted by

ψc(T, x, ζ) :=
∑
z∼x

1

deg(x)
(1− ζ(z))〈z − x〉(T,x) . (9.19)

Using these notions, we rewrite the position of the tagged particle as a martingale and
a function depending only on the environment process in a ball of radius 1 around its
root. This follows the ideas of Proposition 4.1 in [94, Part III] and Lemma 8.6.

Lemma 9.6. Fix ρ ∈ (0, 1) and α ∈ (0,∞). Then the following two statements hold:

(i) Let (Tt, ot, ζt)t≥0 be the environment process in the variable speed model with
initial distribution Qv

ρ and natural filtration (Fv
t )t≥0. Then

〈ot〉(T0,o0) =

∫ t

0

ψv(Ts, os, ζs)ds+Mv
t (9.20)

holds for all t ≥ 0, where (Mv
t )t≥0 is a martingale with respect to (Fv

t )t≥0.

(ii) Let (Tt, ot, ζt)t≥0 be the environment process in the constant speed model with
initial distribution Qc

α and natural filtration (F c
t )t≥0. Then

〈ot〉(T0,o0) =

∫ t

0

ψc(Ts, os, ζs)ds+M c
t (9.21)

holds for all t ≥ 0, where (M c
t )t≥0 is a martingale with respect to (F c

t )t≥0.

Proof. We only show part (i) of Lemma 9.6 as for part (ii) the same arguments apply.
For a given tree (T, o) ∈ T , we define

Qv
ρ,T := Qv

ρ ((T ′, o′, .) ∈ · |(T ′, o′) = (T, o)) .

Note that we can write for all Qv
ρ-measurable sets A

Qv
ρ(A) =

∫
Ω∗
1{(T,o,ζ)∈A}dQv

ρ(T, o, ζ)

=

∫
T

∫
{0,1}V (T )

1{(T,o,ζ)∈A}dν∗ρ,T (ζ)dUGW(T, o) (9.22)

=

∫
T

∫
Ω̃∗T

1{(T ′,o′,ζ)∈A}dQv
ρ,T (T ′, o′, ζ)dUGW(T, o) .
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9.4 Transience of the tagged particle

Thus, it suffices to show that

EQv
ρ,T

[
〈ot〉(T,o) − 〈os〉(T,o) −

∫ t

s

ψv(Tr, or, ζr)dr
∣∣∣Fv

s

]
= 0

holds for all t > s ≥ 0 and UGW-almost every tree (T, o) ∈ T , where EQv
ρ,T

denotes
the expectation with respect to the environment process started from Qv

ρ,T . Recall that
the choice of the ray for a tree in T is consistent under performing shifts of the root.
Moreover, note that an environment process started from Qv

ρ,T remains in Ω̃∗T almost
surely. Using the Markov property of the environment process as well as the fact that
Qv
ρ is stationary for the environment process by Proposition 9.4, for all s ≥ 0,

EQv
ρ,T

[
〈ot〉(T,o) − 〈os〉(T,o) −

∫ t

s

ψv(Tr, or, ζr)dr
∣∣∣Fv

s

]
=

EQv
ρ,Ts

[
〈ot−s〉(T,o) − 〈o0〉(T,o) −

∫ t−s

0

ψv(Tr, or, ζr)dr
]
.

Hence, it suffices to show that for UGW-almost every (T, o) ∈ T

EQv
ρ,T

[
〈ot〉(T,o) − 〈o0〉(T,o)

]
−
∫ t

0

EQv
ρ,T

[ψv(Ts, os, ζs)] ds = 0 (9.23)

is satisfied for all t ≥ 0. For a tree (T, o) ∈ T , let g be the function on Ω̃∗T given by

g(T, x, ζ) := 〈x〉(T,o)

for all (T, x, ζ) ∈ Ω̃∗T . Plugging g into the generator in (9.10), we note that

Lvg(T, x, ζ) =
∑
y∼x

(1− ζ(y)) [g(T, y, ζx,y)− g(T, x, ζ)] = ψv(T, x, ζ)

holds for all (T, x, ζ) ∈ Ω̃∗T . For the second equality, we use (9.17) together with the
relation

〈y − x〉(T,x) = 〈y − x〉(T,o) = 〈y〉(T,o) − 〈x〉(T,o)

for all x, y ∈ V (T ), which follows from the construction of the horodistance; see also
Figure 31. We obtain (9.23) by applying Dynkin’s formula.

Proof of Proposition 9.5. We will only prove transience for the tagged particle in the
variable speed model of the simple exclusion process. For the tagged particle in the
constant speed model of the simple exclusion process, similar arguments apply. We
will show that the tagged particle has PPv

ρ
-almost surely a strictly positive speed with

respect to the horodistance, which implies transience. Observe that the martingale
(Mv

t )t≥0 defined via the relation (9.20) has stationary increments by Proposition 9.4,
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9 The simple exclusion process on Galton–Watson trees

and thus satisfies a law of large numbers. By Lemma 9.6

EQv
ρ

[
lim
t→∞

〈ot〉(T0,o0)

t

]
= EQv

ρ
[ψv(T0, o0, ζ0)]

holds using that Qv
ρ is stationary for the environment process. Moreover,∑

x∼o0

EQv
ρ

[
〈x〉(T0,o0)| deg(o0) = k

]
= k − 2

is satisfied for all k ≥ 2. Thus, combining these two observations yields

EQv
ρ

[
lim
t→∞

〈ot〉(T0,o0)

t

]
= (1− ρ)

∫
T

(deg(o)− 2)dUGW(T, o)

= (1− ρ)E
[
Z − 1

Z + 1

](
E
[

1

Z + 1

])−1

, (9.24)

where Z has the offspring distribution. Since (〈ot〉(T0,o0))t≥0 is the horodistance of
the tagged particle from the root within the environment process, with positive Qv

ρ-
probability, the tagged particle has a strictly positive speed. Now in order to show
that the tagged particle is transient with respect to the initial distribution Pv

ρ, suppose
that there exists an initial set of 0/1-colored trees B ⊆ Ω∗ with Qv

ρ(B) > 0 for which
the tagged particle has speed zero. Note that B can be chosen such that it forms an
invariant set for the environment process. Let EQv

ρ( · |B) denote the expectation of the
environment process started from Qv

ρ( · |B). Using the same arguments as in the proof
of Lemma 9.6, the environment process must satisfy

0 =

∫ t

0

EQv
ρ( · |B) [ψv(Ts, os, ζs)] ds

=

∫ t

0

∑
k≥2

∑
x∼os

EQv
ρ( · |B)

[
〈x〉(Ts,os)| deg(os) = k

]
Qv
ρ(deg(os) = k, ζs(x) = 0|B)ds

for all t ≥ 0. Again, from the construction of the horodistance,∑
x∼os

EQv
ρ( · |B)

[
〈x〉(Ts,os)| deg(os) = k

]
= k − 2

holds for all k ≥ 2. Moreover, note that the conditional probability

Qv
ρ(deg(os) = k, ζs(x) = 0|B) (9.25)

does not depend on the particular choice of x ∼ os. Hence,

0 =

∫ t

0

∑
k≥2

(k − 2)Qv
ρ(deg(os) = k, ζs(x) = 0|B)ds
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9.4 Transience of the tagged particle

must hold for all t ≥ 0 and x ∼ os. However, this gives a contradiction as the term
in (9.25) is non-negative for all k ≥ 2 and strictly positive for at least one k ≥ 3.
Otherwise, the underlying augmented Galton–Watson tree would almost surely be
restricted to a copy of Z. Thus, the tagged particle has a strictly positive speed
Qv
ρ-almost surely. We conclude since Pv

ρ and Qv
ρ are equivalent for all ρ ∈ (0, 1).

Corollary 9.7. Choose an initial configuration (T, o, ζ) ∈ Ω∗ according to Qv
ρ, re-

spectively according to Qc
α. Consider the tagged particles within two independently

sampled environment processes (Tt, ot, ζt)t≥0 and (T ′t , o
′
t, ζ
′
t)t≥0, which are both started

from (T, o, ζ). Then the trajectories of the respective tagged particles converge almost
surely to two distinct rays ξ, ξ′ ∈ ∂(T, o).

Proof. By Proposition 9.5, the tagged particles in both environment processes are
almost surely transient, and hence their trajectories converge almost surely to unique
rays ξ, ξ′ ∈ ∂(T, o), respectively. It remains to show that ξ 6= ξ′ holds almost surely. In
the proof of Proposition 9.5, we only require the ray of a tree to be consistent under
performing shifts of the root and to be fixed at the beginning. Since (Tt, ot, ζt)t≥0 and
(T ′t , o

′
t, ζ
′
t)t≥0 are evaluated independently, we can first sample (Tt, ot, ζt)t≥0 in which

the tagged particle almost surely converges to some ray ξ ∈ ∂(T, o). For the process
(T ′t , o

′
t, ζ
′
t)t≥0, we then define the horodistance with respect to this ray ξ. Since almost

surely
lim
t→∞
〈ot〉(T0,o0) =∞

holds, and the tagged particle in (T ′t , o
′
t, ζ
′
t)t≥0 converges almost surely to some ray

ξ′ ∈ ∂(T, o), the two rays ξ and ξ′ can almost surely not be the same.

Remark 9.8. In (9.24), we saw that the averaged speed of the tagged particle in the
environment process in the variable speed model is given by

EQv
ρ

[
lim
t→∞

〈ot〉(T0,o0)

t

]
= (1− ρ)E

[
Z − 1

Z + 1

](
E
[

1

Z + 1

])−1

(9.26)

for Z having the law of the offspring distribution, and ρ ∈ (0, 1). Similarly, one derives
that the averaged speed of the tagged particle in the environment process in the constant
speed model is given by

EQc
α

[
lim
t→∞

〈ot〉(T0,o0)

t

]
= E

[
Z − 1

Z + 1

1

α(Z + 1) + 1

]
(9.27)

for α ∈ (0,∞). We will show in Section 9.6 that (9.26) and (9.27) give the speed of
the tagged particle PPv

ρ
-almost surely, respectively PPc

α
-almost surely, using an ergodicity

argument for the environment process.
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9 The simple exclusion process on Galton–Watson trees

9.5 Ergodicity for the environment process

In this section, we show that the environment process started from Qv
ρ in the variable

speed model and from Qc
α in the constant speed model, respectively, is ergodic for all

ρ ∈ (0, 1) and α ∈ (0,∞). The proof will have two main ingredients. First, we show
that every invariant set A can be represented by a set of trees, which we obtain by
dropping the 0/1-coloring in every configuration of A. This step follows the ideas of
Saada for the exclusion process on Zd; see [114], and Lemma 8.5 for regular trees. We
then deduce ergodicity using regeneration points, following the ideas of Lyons and
Peres in Chapter 17 of [99] for the simple random walk on Galton–Watson trees.

Proposition 9.9. Fix parameters ρ ∈ (0, 1) and α ∈ (0,∞) for the measures Qv
ρ and

Qc
α, respectively. The following two statements hold.

(i) The measure Qv
ρ is ergodic for the environment process generated by Lv.

(ii) The measure Qc
α is ergodic for the environment process generated by Lc.

We will only show part (i) of Proposition 9.9, i.e., we will prove that Qv
ρ(A) ∈ {0, 1}

holds for any set A which is invariant under the environment process in the variable
speed model. For part (ii) of Proposition 9.9, similar arguments apply. The following
lemma says that in order to determine if (T, o, ζ) ∈ A holds, it suffices Qv

ρ-almost surely
to know the underlying tree (T, o) ∈ T .

Lemma 9.10. Let A ⊆ Ω∗ be an invariant set for the environment process started
from Qv

ρ. Then for UGW-almost every tree (T, o) ∈ T∫
Ω̃∗T

1{(T ′,o′,ζ)∈A}dQv
ρ,T (T ′, o′, ζ) ∈ {0, 1} (9.28)

holds. Moreover, we can find a Borel set of rooted trees U ⊆ T which is invariant
under the environment process such that∫

Ω̃∗T

1{(T ′,o′,ζ)∈A}dQv
ρ,T (T ′, o′, ζ) = 1{(T,o)∈U} (9.29)

is satisfied.

In order to show Lemma 9.10, we follow the arguments of Saada in [114]. A similar
approach can be found in [29] for the simple exclusion process on regular trees. A key
tool in [114] for showing ergodicity of the environment process of the simple exclusion
process on Zd with drift is to use that the Bernoulli-ρ-product measures are extremal
invariant for the simple exclusion process on Zd with drift for all ρ ∈ [0, 1].

Similarly, our arguments are based on the fact that we have ergodicity for the simple
exclusion process started from νρ,T for AGW-almost every initial tree (T, o) ∈ T .
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9.5 Ergodicity for the environment process

More precisely, by Theorem 3.9 the measures νρ,T are extremal invariant for the simple
exclusion on {0, 1}V (T ) for AGW-almost every tree (T, o) ∈ T , for all ρ ∈ (0, 1). By
Theorem 2.1 of [77], a similar statement holds for the measures ν̃α,T in the constant
speed model. Since, for AGW-almost all trees, the simple exclusion process on a given
tree is a Markov process, this implies that the measures νρ,T are ergodic for the simple
exclusion process on a AGW-almost every tree (T, o); see Theorem 3.5.

We will now show that the environment process on Ω̃∗T with initial law Qv
ρ,T is ergodic

for AGW-almost every tree (T, o) ∈ T , using a proof by contradiction. Suppose that
for some ρ ∈ (0, 1), the set A satisfies

0 < Qv
ρ,T (A) < 1 .

Since the set A is invariant for the environment process with starting distribution
Qv
ρ, it has to be invariant for the environment process on Ω̃∗T with initial law Qv

ρ,T for
AGW-almost every tree (T, o) ∈ T . Define B := Ω̃∗T \ (A ∩ Ω̃∗T ) and note that B is a
non-trivial, invariant set for the environment process started from Qv

ρ,T . Moreover, we
let the sets Ã, B̃ ⊆ ΩT be given as

Ã :=
⋃

(T̃ ,v,ζ)∈A∩Ω̃∗T : (T̃ ,v)=(T,v)

{(T, o, ζ)}

and
B̃ :=

⋃
(T̃ ,v,ζ)∈B : (T̃ ,v)=(T,v)

{(T, o, ζ)} .

In words, Ã is the set of all 0/1-colorings of (T, o) which we obtain by taking all
0/1-colored trees in A ∩ Ω̃∗T and considering their colorings of (T, o). Observe that the
sets Ã and B̃ are invariant for the simple exclusion process with initial distribution

Pv
ρ,T := δ(T,o) × νρ,T (9.30)

where δ(T,o) denotes the Dirac measure on T concentrated on (T, o). Moreover, since
Qv
ρ,T is absolutely continuous with respect to Pv

ρ,T for all ρ ∈ (0, 1),

Pv
ρ,T (Ã) > 0 and Pv

ρ,T (B̃) > 0

is satisfied for AGW-almost every tree (T, o) ∈ T . From [77], using the ergodicity of
the simple exclusion process on ΩT , we conclude that

Pv
ρ,T (Ã) = Pv

ρ,T (B̃) = 1 . (9.31)

In particular, the sets Ã and B̃ are not disjoint. From this, we want to deduce that
A and B are not disjoint as well. For a tree (T, o) ∈ T and x, y ∈ V (T ), let [x, y] be
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9 The simple exclusion process on Galton–Watson trees

the sites in the shortest path connecting x and y in (T, o). The following lemma is the
analogue of Lemma 4 in [114] and Lemma 8.5 for regular trees.

Lemma 9.11. For Pv
ρ,T -almost every (T, o, η) ∈ ΩT , there exist sites v, w, x, y, z ∈ V (T )

with the following properties:

(i) (T, y, η) ∈ A, (T, z, η) ∈ B

(ii) η(v) = η(w) = 0 and η(a) = 0 for all a ∈ [y, z] \ {y, z}

(iii) x and z are located in different branches with respect to y in T .

(iv) v, w, y are located in pairwise different branches with respect to x in T .

(v) The path [v, x] contains at least |x− y|+ 1 vacant sites.

Proof. Using (9.31), there almost surely exist sites y, z ∈ V (T ) such that (T, y, η) ∈ A
and (T, z, η) ∈ B holds. Without loss of generality, the shortest path connecting y
and z can be assumed to consist only of vacant sites. To see this, observe that for any
(T, a, η) ∈ Ω̃∗T with η(a) = 1 and a ∈ V (T ), either (T, a, η) ∈ A or (T, a, η) ∈ B holds.
Hence, along the shortest path connecting y and z, there must be a pair of occupied
sites y′ and z′ with (T, y′, η) ∈ A and (T, z′, η) ∈ B, and only vacant sites on the
shortest path between them. Thus, we can take these sites y′ and z′ as our new choices
of y and z which satisfy (i). By our assumptions on the augmented Galton–Watson tree,
there almost surely exists a site x in a branch of y different from the one containing
z with degree at least 3. Let C(x, y) and D(x, y) denote the vertices of two distinct
branches of x which do not intersect the path [x, y]. Using a Borel–Cantelli argument,
we see that C(x, y) and D(x, y) both contain Pv

ρ-almost surely a ray starting at x with
infinitely many vacant sites. Let w be the first vacant site along that ray in C(x, y).
Let v be the first vacant site along that ray in D(x, y) such that there are |x− y|+ 1

empty sites along the path [x, v].

Proof of Lemma 9.10. Take a configuration (T, o, η) ∈ ΩT according to Pv
ρ,T which

satisfies the properties (i) to (v) of Lemma 9.11 with sites v, w, x, y, z and set

N := {v, w, x, y, z, [v, x], [w, x], [x, y], [y, z]} . (9.32)

We fix a time t0 > 0 and define a 0/1-coloring η̃ ∈ {0, 1}V (T ) as follows. We let η̃ agree
with η on N . On V (T ) \N , let η̃ have the law of a simple exclusion process at time
t0 started from η, where all moves involving a site in N are suppressed. We will now
provide two ways of transforming η into ηw,z which only involve the sites in N ; see
Figure 32. This also provides two ways of changing η̃ into η̃w,z for any fixed t0 > 0. At
the beginning, we assume for both transformations that all particles in [x, y] \ {y} are
moved into the empty sites within [v, x] \ {v, x} in an arbitrary way using only nearest
neighbor moves within N . In a next step, the two transformations differ in performing
the following transitions.
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9.5 Ergodicity for the environment process

z

x

v

y

w

→

→

(a)

(b)

→

→

→

Figure 32: Transformations for η to ηw,z in a sample of an augmented Galton–Watson
tree for the special case when v, w and y are neighbors of x and [x,w] as
well as [x, v] are empty.

(a) Push the particles along the path [y, v] towards v, i.e., for {vi, 1 ≤ i ≤ k} being
successive vertices in [v, y] with η(vi) = 1, move the particle from v1 to v, then
the particle from v2 to v1 and so on. Next, we push the particles in [z, w] towards
w in the same way. Afterwards, push the particles along [v, y] towards y.

(b) Push the particles along the path [y, w] towards w in the same way as described
in (a). Afterwards, move the particle at z to y along [z, y].

At the end, in both transformations all particles which were moved to the empty sites
in [v, x] \ {x} at the beginning are moved back to their original positions.

Following the transformation according to (a), we see that (T, y, η̃w,z) ∈ A holds
Pv
ρ,T -almost surely, using that A is invariant for the environment process and (i) of

Lemma 9.11. For the transformation according to (b), note that (T, y, η̃w,z) ∈ B holds
following the trajectory of the particle originally at z and using that B is invariant for
the environment process. Observe that at time t0, the simple exclusion process started
from (T, o, η) agrees with (T, o, η̃w,z) with positive probability using the graphical rep-
resentation. Hence, we obtain the desired contradiction of A and B not being disjoint.

For the second statement in Lemma 9.10, we let S denote the set of trees which we
obtain by deleting all 0/1-colorings in the elements of A, i.e.,

U := {(T, o) : (T, o, ζ) ∈ A} ⊆ T . (9.33)

From the construction of the σ-algebras on Ω and T , we see that U forms a Borel set
of trees. Using the first statement of Lemma 9.10, we obtain that U is invariant for
the environment process started from Qv

ρ.

129



9 The simple exclusion process on Galton–Watson trees

Next, we show that UGW(U) ∈ {0, 1} holds for the set U defined in (9.33). This
yields Proposition 9.9 since

Qv
ρ(A) =

∫
T
1{(T,o)∈U}dUGW(T, o)

by Lemma 9.10. We follow the same arguments as in the proof of Theorem 17.13 in
[99], which are used to establish ergodicity for the environment process of the simple
random walk on supercritical Galton–Watson trees.

Lemma 9.12. Let (Tt, ot, ζt)t≥0 denote the environment process with state space Ω∗

and initial distribution Qv
ρ. The corresponding dynamical system is mixing in the

tree-component, i.e.,

UGW((T0, oo) ∈ C, (Tt, ot) ∈ D)
t→∞−→ UGW((T0, oo) ∈ C)UGW((Tt, ot) ∈ D)

holds for all Borel-sets C,D ⊆ T . In particular, UGW(Ũ) ∈ {0, 1} holds for any set
of trees Ũ which is invariant for the environment process.

To prove Lemma 9.12, we will need some preliminaries. Recall that the σ-algebras on
T and Ω are generated by sets of trees which agree within a ball of finite radius around
the root. Including all finite unions and intersections of these balls, we see that the
balls generating the σ-algebra on T form a semi-algebra. Hence, using a well-known
result from ergodic theory, it suffices to show mixing in the tree component for the sets
C and D which take into account only a finite range of the tree around its root; see
Exercise 2.7.3(1) in [50].

For a given tree (T, o) ∈ T , let ↔x = (. . . , x−1, x0, x1, . . . ) be a bi-infinite path in
(T, o) with x0 = o. We denote by

↔
T the space of all such bi-infinite paths for which

both ends converge to distinct rays in ∂(T, o). Define the path space of trees to be

PathsInTrees :=
{

(
↔
x, T ) :

↔
x ∈

↔
T , (T, o) ∈ T

}
. (9.34)

Let S be the map which shifts ↔x to the right and changes the root of T to x1, i.e.,

(S
↔
x)n = xn+1

holds for all n ∈ Z and
S(
↔
x, T ) := (S

↔
x, T ) .

As in Corollary 9.7, choose an initial configuration (T, o, ζ) ∈ Ω∗ according to Qv
ρ.

We consider two independently sampled environment processes (Tt, ot, ζt)t≥0 and
(T ′t , o

′
t, ζ
′
t)t≥0, which are both started from (T, o, ζ). We let →x = (x0, x1, . . . ) and

→
y = (y0, y1, . . . ) denote the trajectories of the tagged particles in the environment
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9.5 Ergodicity for the environment process

processes (Tt, ot, ζt)t≥0 and (T ′t , o
′
t, ζ
′
t)t≥0, respectively. We join the trajectories →x and

→
y to obtain a bi-infinite path ↔x by

↔
x := (. . . , y2, y1, x0, x1, x2, . . . ) ,

and denote the corresponding law of (
↔
x, T ) in PathsInTrees by EX×Qv

ρ. Note that
↔
x ∈

↔
T holds almost surely, since by Corollary 9.7, the two trajectories of the tagged

particles converge almost surely to two distinct rays. The path space is equipped with
the σ-algebra F induced by the environment processes. Since by Proposition 9.4, the
environment process is a reversible Feller process with respect to Qv

ρ, we observe that(
PathsInTrees,F ,EX×Qv

ρ, S
)

forms a measure-preserving system, i.e.,

EX×Qv
ρ(F ) = EX×Qv

ρ(S
−1F ) (9.35)

holds for all F ∈ F . Define the event of having a regeneration point at x0 to be

Regen :=
{

(
↔
x, T ) ∈ PathsInTrees s.t. ∀n ≤ 0: xn 6= x1 and ∀n ≥ 1: xn 6= x0

}
.

In words, x0 is a regeneration point if the edge {x0, x1} is traversed precisely once.

We will see that regeneration points are random points in time, which allow us to
determine when the tagged particle visits a new part of the tree which is “independent
of its past”. The following lemma is the analogue of Proposition 17.12 in [99] for the
simple random walk on Galton–Watson trees.

Lemma 9.13. For EX×Qv
ρ almost every configuration (

↔
x, T ), we find infinitely many

n ∈ Z such that Sn(
↔
x, T ) ∈ Regen holds.

In order to show Lemma 9.13, observe that the event of having a regeneration point
at x0 can be written as the intersection of the event of having a fresh point at x0

Fresh :=
{

(
↔
x, T ) ∈ PathsInTrees s.t. ∀n ≤ 0: xn 6= x1

}
and the event of having an exit point at x0

Exit :=
{

(
↔
x, T ) ∈ PathsInTrees s.t. ∀n ≥ 1: xn 6= x0

}
.

Using reversibility of the environment process with respect to Qv
ρ together with (9.35),

we see that
EX×Qv

ρ(Fresh) = EX×Qv
ρ(Exit) (9.36)
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N

x0

x

v

xk

w

→ → →↔
x

Figure 33: Construction of a regeneration point at x0 in a sample of an augmented
Galton–Watson tree when w and xk are neighbors of x, and [x, v] as well as
[x,w] are empty. The tagged particle is drawn in blue.

holds. Using the transience of the tagged particle together with Corollary 9.7, there
are EX×Qv

ρ-almost surely infinitely many fresh points, i.e.,

EX×Qv
ρ

(
∃n ≥ m s.t. Sn(

↔
x, T ) ∈ Fresh

)
= 1

holds for any m ≥ 0. Since the probability of the event of having a fresh point at x0 is
invariant under shifts according to S, we conclude that the probabilities in (9.36) must
be strictly positive. Moreover, this shows that EX×Qv

ρ-almost surely, we see infinitely
many exit points. For m,n ∈ Z with m ≤ n, we define the event

Hm,n :=
{
Sm(

↔
x, T ) ∈ Fresh, Sn(

↔
x, T ) ∈ Exit, [xm, xn] ∩ {xi, i ∈ Z \ [m,n]} = ∅

}
.

In words, Hm,n is the event that xm is a fresh point, xn is an exit point and the shortest
path connecting xm and xn does not intersect the remaining trajectory.

Lemma 9.14. There exists some k ≥ 0 such that EX×Qv
ρ(H0,k) > 0 holds.

Proof. Observe that for EX × Qv
ρ-almost every (

↔
x, T ) ∈ PathsInTrees, the tagged

particles in the environment processes converge to different rays ξ1, ξ2 ∈ ∂(T, x0). Let
a ∈ V (T ) be the last common vertex of ξ1 and ξ2. Using transience, we observe that a
is hit almost surely only finitely often. We choose m such that Sm(

↔
x, T ) ∈ Fresh with

a /∈ {. . . , xm−1, xm}, and n such that Sn(
↔
x, T ) ∈ Exit with a /∈ {xn, xn+1, . . . }. For

these choices of m and n, we see that (
↔
x, T ) ∈ Hm,n. Note that we find such m and n

for EX×Qv
ρ-almost every element of PathsInTrees. Hence, EX×Qv

ρ(Hm,n) > 0 must
hold for some deterministic choice of m and n. Set k = n−m and use the fact that we
have a measure-preserving system to conclude.

For a given configuration (
↔
x, T ) ∈ H0,k with k ≥ 0 from Lemma 9.14, let (Tt, ot, ζt)t≥0

be the underlying environment process in positive time direction. We recursively define
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9.5 Ergodicity for the environment process

a sequence of almost surely finite stopping times by τ0 := 0 and

τi := inf{t ≥ τi−1 : ot 6= oτi−1
}

for all i ≥ 1. We show that (
↔
x, T ) is contained in the set of regeneration points at

x0 with positive probability using a similar argument as in the proof of Lemma 9.10.
Let (T ′t , o

′
t, ζ
′
t)t≥0 be the environment process with the same initial configuration as

(Tt, ot, ζt)t≥0 but where all moves involving the tagged particle are suppressed. Using
the graphical representation, note that ζ ′τk and ζτk differ almost surely in at most
finitely many values. Let N denote the sites in the minimal spanning tree consisting
of {x0, x1, . . . , xk} together with all sites in which ζ ′τk and ζτk differ. The proof of the
following lemma uses similar arguments as the proof of Lemma 9.11.

Lemma 9.15. For almost every configuration (
↔
x, T ) and 0/1-colorings ζ ′τk and ζτk

differing only in sites within N , there exist v, w, x ∈ V (T ) with the following properties:

(i) v, w, x /∈ N , x0 /∈ [x, xk]

(ii) ζτk(w) = 0.

(iii) xk, v and w are located in pairwise different branches with respect to x in T .

(iv) The path [x, v] contains at least |x− xk|+ k + 1 vacant sites.

Proof. Let C(xk) be a branch of xk which does not contain x0. Using a Borel–Cantelli
argument, there almost surely exists a site x ∈ C(xk) with deg(x) ≥ 3 which is not
contained in the set N . Let C(x) and D(x) be two different branches of x which are
disjoint of [x, xk]. Note that C(x) and D(x) are disjoint from the set N and contain
almost surely an infinite number of vacant sites. Let w be the first site in C(x) which
is empty. Similarly, let v be the first site in D(x) such that condition (iv) holds.

Proof of Lemma 9.13. If Lemma 9.14 holds for k = 0, we conclude by Poincaré’s
recurrence theorem. For k ≥ 1, we will use Lemma 9.15 to provide a way of transforming
ζ ′τk into ζτk by finitely many transitions; see Figure 33 for a visualization. In this
transformation, the tagged particle will not come back to x0 once it has left its starting
point. Let Nk := N ∪ [xk, v] ∪ [xk, w] for v, w from Lemma 9.15. We start by moving
all particles on the sites [x0, x] \ {x0} into empty positions in [x, v] \ {x} using only
nearest neighbor transitions in Nk which do not involve x0. In a next step, we push
the tagged particle from x0 towards w along the path [x0, w], i.e., for {wi, 1 ≤ i ≤ n}
being successive vertices in [w, x0] with η(wi) = 1, move the particle from w1 to w,
then the particle from w2 to w1 and so on. In particular, note that after this push, the
tagged particle is contained in [x,w] \ {x}. Next, we perform nearest neighbor moves
involving only the sites N ∪ [xk, v] such that z ∈ N \ [xk, x] is occupied if and only if
ζτk(z) = 1 holds and all sites in [xk, x] are empty. We now push the particles along
the path [w, xk] towards xk in the same way as described before. Note at this point
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9 The simple exclusion process on Galton–Watson trees

that the tagged particle is located in xk and the constructed configuration may differ
from ζτk only at sites [xk, v] \ {xk}. Since the number of particles in Nk is preserved,
we can now perform nearest neighbor moves using only the particles in [xk, v] \ {xk} to
obtain the configuration ζτk . Note that for almost every pair of configurations ζ ′τk and
ζτk , this provides a way of transforming ζ ′τk into ζτk by modifying the exclusion process
only between times 0 and τk on an almost surely finite set of vertices Nk. Thus, under
the measure EX×Qv

ρ( · | H0,k), with a positive probability all transitions among the
sites Nk follow precisely the above described transformation from ζ0 to ζτk between
times 0 and τk. Since in this case, we have by construction a regeneration point at x0,

EX×Qv
ρ(Regen|H0,k) > 0

holds. Using Lemma 9.14, we conclude by Poincaré’s recurrence theorem.

Proof of Lemma 9.12. We follow similar arguments as in the proof of Proposition 17.12
in [99]. For a tree (T, o) ∈ T and x ∈ V (T ), let T x denote the subtree of (T, o) rooted
at x, containing the sites which become disconnected from o when x is removed. For
(
↔
x, T ) ∈ Regen, let the first return time nRegen be

nRegen(
↔
x, T ) := inf

{
n > 0: Sn(

↔
x, T ) ∈ Regen

}
and note that nRegen is almost surely finite; see (6.68) for a similar definition of return
times for Markov chains. For n = nRegen, we define the associated slab

Slab(
↔
x, T ) := ((x0, . . . , xn−1) , T \ (T x−1 ∪ T xn))

and set SRegen := SnRegen . This yields an i.i.d. sequence
(
Slab(SkRegen(

↔
x, T ))

)
k∈Z

gen-

erating (
↔
x, T ). Recall that we have to prove mixing in the tree-component only for

Borel-sets C,D ⊆ T which take into account a finite range of the tree around the
root. Since the tagged particle is transient, we see that for all t sufficiently large, the
events {(T0, o0) ∈ C} and {(Tt, ot) ∈ D} depend on disjoint sets of slabs. This gives
Lemma 9.12 and hence also Proposition 9.9.

9.6 Speed of the tagged particle

Combining the results of the previous sections, we have all ingredients to prove
Theorem 9.2. As pointed out in Remark 9.8, we will use the arguments from Section 9.4
to show transience of the tagged particle in order to determine the almost-sure speed
of the tagged particle with respect to PPv

ρ
and PPc

α
. Recall from Lemma 9.6 that we

can rewrite the horodistance of the tagged particle in terms of the environment process
in a ball of radius 1 around its root and a martingale. Using the results of Section 9.3
and Section 9.5, we obtain the following lemma; see also Lemma 8.7 for regular trees.
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9.6 Speed of the tagged particle

Lemma 9.16. For any ρ ∈ (0, 1) in the variable speed model and for any α ∈ (0,∞)

in the constant speed model of the simple exclusion process, the martingales (Mv
t )t≥0

and (M c
t )t≥0 in Lemma 9.6 have stationary and ergodic increments.

Proof. We only prove the case of the variable speed model. For each t ≥ 0, the random
variable 〈ot〉(T0,o0) can be expressed as a function Ft of {(Ts, os, ζs), 0 ≤ s ≤ t} by
following the shifts of the root, i.e.,

〈ot〉(T0,o0) − 〈o0〉(T0,o0) = Ft((Ts, os, ζs), 0 ≤ s ≤ t) .

Since the environment process is a stationary process when starting from Qv
ρ,

Mv
t −Mv

s = Ft−s((Tr, or, ζr), s ≤ r ≤ t) +

∫ t

s

ψv(Tr, or, ζr)dr

holds for all s < t. From Propositions 9.4 and 9.9, we know that the environment
process with respect to Qv

ρ is stationary and ergodic, and so the claimed statement
follows.

Proof of Theorem 9.2. Using Proposition 9.9 and Lemma 9.16, we can apply the ergodic
theorem for both terms on the right-hand side of (9.20), respectively, to see that

lim
t→∞

〈ot〉(T0,o0)

t
= (1− ρ)E

[
Z − 1

Z + 1

](
E
[

1

Z + 1

])−1

holds almost surely for Qv
ρ-almost every initial configuration in the variable speed

model and ρ ∈ (0, 1). Similarly,

lim
t→∞

〈ot〉(T0,o0)

t
= E

[
Z − 1

Z + 1

1

α(Z + 1) + 1

]
holds almost surely for Qc

α-almost every initial configuration in the constant speed
model and α > 0. Recall that the measures Qv

ρ and Pv
ρ, respectively Qc

α and Pc
α, are

equivalent for all ρ ∈ (0, 1) and α ∈ (0,∞). Since (ot)t≥0 describes the position of the
tagged particle within the environment process, we conclude that

lim
t→∞

〈Xv
t 〉(T0,o0)

t
= (1− ρ)E

[
Z − 1

Z + 1

](
E
[

1

Z + 1

])−1

holds PPv
ρ
-almost surely for Pv

ρ-almost every initial configuration in the variable speed
model and all ρ ∈ (0, 1). Similarly,

lim
t→∞

〈Xc
t 〉(T0,o0)

t
= E

[
Z − 1

Z + 1

1

α(Z + 1) + 1

]
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9 The simple exclusion process on Galton–Watson trees

holds PPc
α
-almost surely for Pc

α-almost every initial configuration in the constant speed
model and all α ∈ (0,∞). Note that in both models of the simple exclusion process,
the tagged particle converges almost surely to a ray ξ′ ∈ ∂(T0, o0) different from
ξ = ξ(T0, o0). Let a denote the last common vertex of ξ and ξ′ in the variable speed
model and observe that

|Xv
t | = 〈Xv

t 〉(T0,o0) + 2|a|

holds for all t ≥ 0 sufficiently large. A similar statement is true for the tagged particle
in the constant speed model. We conclude since |a| does not depend on t.

9.7 Open problems

In this section, we studied the speed of a tagged particle when the particles perform
simple random walks under an exclusion rule on supercritical, augmented Galton–
Watson trees without extinction. It is a natural question if a similar result holds for
Galton–Watson trees which may die out.

Conjecture 9.17. On supercritical Galton–Watson trees conditioned on survival, the
tagged particles in the constant speed model and in the variable speed model of the
simple exclusion process have almost surely a positive linear speed.

Another extension of this model is to consider random walks with different transition
probabilities. In particular, it is interesting to understand the case where the particles
perform biased simple random walks; see Sections 10 and 11 for an approach towards
this problem by studying currents for the TASEP on trees.

Question 9.18. What is the speed of a tagged particle when the particles perform
biased random walks on augmented Galton–Watson trees under the exclusion rule?

A classical problem for exclusion processes is the question if the tagged particle
satisfies a central limit theorem. In the case where the augmented Galton–Watson tree
is a d-regular tree with d ≥ 3, a central limit theorem holds; see Theorem 8.2.

Conjecture 9.19. For any ρ ∈ (0, 1), there exists a constant σv ∈ (0,∞), depending
only on ρ and the offspring distribution, such that on almost every supercritical aug-
mented Galton–Watson tree without leaves, the tagged particle (Xv

t )t≥0 in the variable
speed model satisfies

|Xv
t | − EPv

ρ
[|Xv

t |]√
t

(d)−→ N (0, σ2
v) .

Similarly, for every α ∈ (0,∞), there exists a constant σc ∈ (0,∞), depending only
on α and the offspring distribution, such that on almost every supercritical augmented
Galton–Watson tree without leaves, the tagged particle (Xc

t )t≥0 in the constant speed
model satisfies

|Xc
t | − EPc

α
[|Xc

t |]√
t

(d)−→ N (0, σ2
c ) .
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10 The TASEP on trees in equilibrium

10.1 Introduction

In Sections 8 and 9, we studied exclusion processes on trees, where the particles
choose one of its neighbors uniformly at random when attempting a jump. In this case,
a natural bias of the particles away from the root is entirely created by the underlying
tree structure. We will now consider the case, where the particles themselves have a
bias away from the root. We will focus on a totally asymmetric setup, i.e., the particles
can only jump in the direction pointing away from the root. The presented material
is based in large parts on [62], which is joint work with Nina Gantert and Nicos Georgiou.

In one dimension, i.e., when the underlying tree is N or Z, the TASEP is among
the most investigated interacting particle systems. It is a classical model to describe
particle movements or traffic jams, which is studied from various different perspectives;
see [21, 94, 140]. Recall Section 7.2, where we gave an introduction to the TASEP
on the integers. We now study the TASEP on trees as a natural generalization, and
investigate the set of invariant measures as well as the convergence to equilibrium. In
particular, we are interested in the long-term behavior of the current across the root.
Note that the TASEP on trees is a natural way to describe transport on irregular
structures, like blood, air or water circulations systems, which can also be found in the
physics literature; see [14, 104, 131].

10.1.1 Definition of the model

Recall from Section 9.2 that we denote by T the space of all locally finite rooted
trees. In the following, we fix a tree (T, o) ∈ T with T = (V,E), and let all edges in
E be directed and pointing away from the root. The totally asymmetric simple
exclusion process (TASEP) (ηt)t≥0 on T with a reservoir of intensity λ > 0 at the
root and transition rates (rx,y)(x,y)∈E has the following construction; see Figure 34.
A particle at site x tries to move to site y at rate rx,y, provided that (x, y) ∈ E. In
addition, we have a particle source of rate λ > 0 at the root. Formally, the TASEP on
trees is the exclusion process (ηt)t≥0 with state space {0, 1}V and generator

Lf(η) = λ(1− η(o))[f(ηo)− f(η)] +
∑

(x,y)∈E

rx,y(1− η(y))η(x)[f(ηx,y)− f(η)] (10.1)

for all cylinder functions f . In the following, we assume that the underlying tree and
the transition rates are such that we obtain by Theorem 3.2 a Feller process in (10.1).
In particular, this includes Galton–Watson trees when the rates are uniformly bounded.
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10 The TASEP on trees in equilibrium

λ

x yrx,y

Figure 34: Visualization of the TASEP on trees, where particles are generated at rate
λ at the root, and can only move in the direction away from the root. In
particular, the edge (x, y) has a rate rx,y Poisson clock, and a particle at x
performs a jump to y under the exclusion rule when this clock rings.

In order to state our main results, we require the following notation for the TASEP
on trees and its current. For any pair of sites x, y ∈ V , we say that x is below y (and
write x ≤ y) if there exists a directed path in T connecting x to y. Moreover, we set

Z` := {x ∈ V : |x| = `} (10.2)

and refer to Z` as the `th generation or level of the tree, for all ` ∈ N0. Recall the
current from (7.7). When the starting configuration η0 of (ηt)t≥0 has only finitely many
particles, let the current (Jx(t))t≥0 across x ∈ V be given by

Jx(t) :=
∑
y : x≤y

ηt(y)−
∑
y : x≤y

η0(y) =
∑
y : x≤y

(ηt(y)− η0(y)) (10.3)

for all t ≥ 0. Similarly, we define the aggregated current (J`(t))t≥0 at generation `
by

J`(t) :=
∑
x∈Z`

Jx(t) (10.4)

for all ` ∈ N0 and t ≥ 0. Intuitively, the current, respectively the aggregated current,
denotes the number of particles that have reached site x, respectively level `, by time
t. Our goal is to prove a law of large numbers for the aggregated current through a
fixed generation. In particular, we are interested when we have an aggregated current
which is linear in time. We will see that an answer to this question depends on the
local structure of the rates. In particular, we have to compare the incoming rates to a
site x ∈ V and, for all x ∈ V , the sum of the outgoing rates

rx :=
∑

(x,y)∈E

rx,y . (10.5)
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10.1 Introduction

10.1.2 Main results

We will now present our main results on the long-term behavior of the TASEP on trees.
Let the TASEP start from ν0, where we recall that νρ denotes the Bernoulli-ρ-product
measure on {0, 1}V for all ρ ∈ [0, 1]. For all x ∈ V (T ), we define the net flow q(x)

through x to be

q(x) :=

rx − rx̄,x x 6= o

ro x = o ,
(10.6)

where x̄ denotes the unique parent of x. We say that the rates satisfy a superflow
rule if q(x) ≥ 0 holds for all x ∈ V (T ) \ {o}. Recall the definition of a flow rule
from (3.10). With a slight abuse of notation, we say that a flow rule holds for the
TASEP on trees if q(x) = 0 for all x ∈ V (T ) \ {o}, and we let q(o) be the strength of
the flow. Furthermore, we say that the rates satisfy a subflow rule if

lim
m→∞

∑
x∈Zm

rx = 0 . (10.7)

Theorem 10.1. Let (St)t≥0 be the semi-group of the TASEP (ηt)t≥0 on a fixed tree
(T, o) ∈ T . We assume that T is infinite, without leaves, and has uniformly bounded
rates (rx,y). Suppose that particles are generated at the root at rate λ > 0. Then there
exists a stationary measure πλ of (ηt)t≥0 with

lim
t→∞

ν0St = πλ (10.8)

with respect to weak convergence of probability measures on {0, 1}V . If a superflow rule
holds, then πλ 6= ν1 and the current (Jo(t))t≥0 through the root satisfies

lim
t→∞

Jo(t)

t
≥ λπλ(η(o) = 0) > 0 . (10.9)

Moreover, if in addition λ < ro as well as

lim
n→∞

|Zn−m| min
x∈Zn

rx,y =∞ (10.10)

holds for all m ≥ 0 fixed, we see a fan behavior, i.e.,

lim
n→∞

1

|Zn|
∑
x∈Zn

πλ(η(x) = 1) = 0 . (10.11)

When the rates satisfy a subflow rule, we see blockage, i.e., πλ = ν1 and almost surely

lim
t→∞

Jo(t)

t
= 0 . (10.12)
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10 The TASEP on trees in equilibrium

10.1.3 Parallels between the TASEP on the integers and on trees

For the TASEP on trees and on the integers, an essential first step is to understand
their equilibrium measures. For the TASEP on Z, the extremal invariant measures are
Bernoulli-ρ-product measures and the Dirac measures on blocking configurations; see
Theorem 3.10. In Lemma 10.6, we will see that for the TASEP on trees with a reservoir
at the root, a flow rule on the rates implies that there exists a non-trivial invariant
Bernoulli-ρ-product measure. This should be compared to Theorem 3.6, where we
show that the Bernoulli-ρ-product measures are invariant for all ρ ∈ [0, 1] for simple
exclusion processes with a flow rule, as well as to the proof of Lemma 6.25, where we
discuss extremal invariant measures for the asymmetric simple exclusion process on
the half-line with a particle source at the endpoint.

A great strength of various particle systems are their explicit hydrodynamic limits,
as the macroscopic and the microscopic behavior are connected; see [52] for a survey
on the TASEP on the integers, and references therein. Hydrodynamic limits for the
one-dimensional TASEP, in the sense of a rigorous connection to the Burgers equation,
were established by Rost in [113], who studied the rarefaction fan. The result were
then extended in various ways in [121, 122, 123, 124]. Similar ideas for the TASEP
on regular trees with a flow rule and spherically symmetric rates can be found in the
physics literature [104]. However, to our best knowledge, hydrodynamic limits are
not available for the TASEP on general trees, and we refer to Conjecture 10.13 for a
possible approach to hydrodynamic limits in the case of flow rules.

Depending on the initial particle configuration, the macroscopic evolution of the
particle density in the TASEP on the integers may show a shock or a rarefaction
fan, as one can see from the limiting partial differential equation. Moreover, in a
simple two-phase example, starting from macroscopically constant initial conditions,
one can see the simultaneous development of blockage and fans, depending on the
common value of the density [68]. In Theorem 10.1, we describe blockage and fans in
the limiting particle distribution for the TASEP on trees even without having access
to hydrodynamic limits. In particular, we show that blockage occurs in the case of a
subflow rule, starting with all sites being empty.

A common tool is to approximate the TASEP on the integers using a finite exclusion
process with open boundaries. We saw in Section 6 how the speed of convergence to the
equilibrium for the TASEP with open boundaries can be analyzed in terms of mixing
times. We will see an approximation of the TASEP on trees using a finite TASEP with
open boundaries in Section 10.4. However, determining the mixing time of the TASEP
on finite trees remains an open problem; see Question 11.28.
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10.1.4 Outline of the proof

In order to show Theorem 10.1, we have the following strategy. We start by introducing
a modified canonical coupling for the TASEP on trees. In Section 10.3, we prove that
the law of the TASEP on trees converges for any choice of the rates when we start from
the empty initial configuration; see Proposition 10.4. We show in Section 10.4 that for
superflow rules, we have a positive linear current; see Proposition 10.8. Furthermore,
the particle density vanishes; see Proposition 10.10. For subflow rules, we show in
Section 10.5 that blockage occurs; see Proposition 10.12. We conclude with an outlook
on open problems.

10.2 The canonical coupling for the TASEP on trees

Recall the canonical coupling for the simple exclusion process from Section 3.3. As
in Section 5.2 for the simple exclusion process in random environment, we will now
define a modified canonical coupling for the TASEP on trees.

Let (η1
t )t≥0 and (η2

t )t≥0 denote two totally asymmetric simple exclusion processes on
T = (V,E) with transition rates (rx,y), where particles are generated at the root at
rates λ1 and λ2, respectively. Assume λ1 ≤ λ2. The modified canonical coupling is the
joint evolution (η1

t , η
2
t )t≥0 of the two TASEPs according to the following description.

For every edge e = (x, y) ∈ E, consider independent rate rx,y Poisson clocks. When-
ever a clock rings at time t for an edge (x, y), we try in both processes to move a
particle from x to y, provided that η1

t (x) = 1 − η1
t (y) = 1 or η2

t (x) = 1 − η2
t (y) = 1

holds. We place a rate λ1 Poisson clock at the root. Whenever the clock rings, we try
to place a particle at the root in both processes. Furthermore, if λ1 < λ2, we place an
additional independent rate (λ2 − λ1) Poisson clock at the root. Whenever this clock
rings, we try to place a particle at the root in (η2

t )t≥0.

Recall from (3.13) that �c denotes the component-wise partial order on {0, 1}V , and
that, with a slight abuse of notation, we denote by P the law of the modified canonical
coupling.

Lemma 10.2. Let (η1
t )t≥0 and (η2

t )t≥0 be two TASEPs on trees within the above
canonical coupling. Suppose that λ1 ≤ λ2 holds, then

P
(
η1
t �c η

2
t for all t ≥ 0 | η1

0 �c η
2
0

)
= 1. (10.13)

Remark 10.3. In a similar way, we can define the modified canonical coupling for
the TASEP on trees when we allow reservoirs of intensities λv1 and λv2 at all sites
v ∈ V , respectively. The canonical coupling preserves the partial order �c provided that
λv1 ≤ λv2 holds for all sites v ∈ V .
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Figure 35: Approximation of a tree T satisfying a flow rule of strength 7 by trees T2,
depicted on the left-hand side, and T3, depicted on the right-hand side.

10.3 Construction of the invariant measure

Recall that we assume (T, o) ∈ T to be a locally finite, rooted tree on which the
TASEP is a Feller process with respect to a given family of rates (rx,y). Moreover, we
start the TASEP on T from ν0, where all sites are initially empty.

Proposition 10.4. Let (St)t≥0 be the semi-group of the TASEP (ηt)t≥0 where particles
are generated at the root at rate λ for some λ > 0. There exists a probability measure
πλ on {0, 1}V such that

lim
t→∞

ν0St = πλ . (10.14)

In particular, πλ is a stationary measure for (ηt)t≥0.

In order to show Proposition 10.4, we adopt a sequence of results from Liggett [92].
Let Tn denote the tree restricted to level n, where particles exit from the tree at
x ∈ Zn at rate rx; see Figure 35. For every n, let πnλ denote the invariant distribution
of the dynamics (ηnt )t≥0 on Tn with semi-group (Snt )t≥0. We extend each measure
πnλ to a probability measure on {0, 1}V (T ) by taking the Dirac measure on 0 for all
sites x ∈ V (T ) \ V (Tn). Recall from (4.35) the stochastic domination for probability
measures with respect to �c.

Lemma 10.5 (c.f. Proposition 3.7 in [92]). For any initial distribution π̃, the laws of
the TASEPs (ηnt )t≥0 and (ηn+1

t )t≥0 on Tn and Tn+1, respectively, satisfy

π̃Snt = P(ηnt ∈ ·) �c P(ηn+1
t ∈ ·) = π̃Sn+1

t (10.15)

for all t ≥ 0. In particular, πnλ �c π
n+1
λ holds for all n ∈ N.

Proof. We follow the arguments in the proof of Theorem 2.13 in [92]. We note that for
all n ∈ N, the generators Ln and Ln+1 of the TASEPs on Tn and Tn+1 satisfy

Ln+1f(η)− Lnf(η) =
∑

x∈Zn,y∈Zn+1

[f(ηx)− f(η)] rx,y (−η(x)η(y)) ≥ 0
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10.3 Construction of the invariant measure

for any increasing function f which does only depend on V (Tn), for all η ∈ {0, 1}V (T ).
Using the extension arguments from Theorem 2.3 and Theorem 2.11 in [92], we obtain
that ∫

fd [π̃Snt ] ≤
∫
fd
[
π̃Sn+1

t

]
(10.16)

for any increasing function f which only depends on V (Tn), for all t ≥ 0. It suffices
now to show that (10.16) holds for all increasing functions f which only depend on
V (Tn+1). This follows verbatim the proof of Theorem 2.13 in [92] by decomposing f
according to its values on V (Tn+1) \ V (Tn).

Lemma 10.5 implies that the probability distribution πλ given by

πλ := lim
n→∞

πnλ (10.17)

exists; see also Theorem 3.10 (a) in [92]. More precisely, Lemma 10.5 guarantees for
every increasing cylinder function f that

lim
n→∞

∫
fdπnλ =

∫
fdπλ .

Since the set of increasing functions is a determining class, (10.17) follows. Furthermore,
since Snt f converges uniformly to Stf for any cylinder function f , πλ is invariant for
(ηt)t≥0; see Proposition 2.2 and Theorem 4.1 in [92]. We now have all tools to show
Proposition 10.4.

Proof of Proposition 10.4. Since we know that πλ is invariant, we apply the modified
canonical coupling from Lemma 10.2 to see that for all t ≥ 0,

ν0St �c πλ .

Moreover, by Lemma 10.5, for all t ≥ 0 and all n ∈ N

ν0S
n
t �c ν0St .

To prove Proposition 10.4, it suffices to show that

lim
t→∞

∫
fd [ν0St] =

∫
fdπλ

holds for any increasing cylinder function f . Combining the above observations∫
fdπnλ = lim inf

t→∞

∫
fd [ν0S

n
t ] ≤ lim inf

t→∞

∫
fd [ν0St] ≤ lim sup

t→∞

∫
fd [ν0St] ≤

∫
fdπλ

holds for every n ∈ N and for any increasing cylinder function f . We conclude the
proof recalling (10.17); see also the proof of Lemma 4.3 in [92].
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10 The TASEP on trees in equilibrium

Next, we show that if the rates satisfy a flow rule then there exists an invariant
Bernoulli-ρ-product measure for some ρ ∈ (0, 1) for the TASEP on the tree; see also
Theorem 3.6.

Lemma 10.6. Let T be a locally finite, rooted tree with rates satisfying a flow rule for
a flow of strength q. Assume that particles are generated at the root at rate λ = ρq for
some ρ ∈ (0, 1). Then νρ is an invariant measure for the TASEP (ηt)t≥0 on T .

Proof. By Theorem 3.4, we have to show that for all cylinder functions f ,∫
Lfdνρ = 0 .

Due to the linearity of L, it suffices to consider f of the form

f(η) =
∏
x∈A

η(x) (10.18)

with η ∈ {0, 1}V (T ) and for A some finite subset of V (T ). A calculation shows that if
o /∈ A, ∫

Lfdνρ = (1− ρ)ρ|A|
∑

x∈A,y/∈A

[ry,x − rx,y] ; (10.19)

see also the proof of Theorem 2.1(a) in [95, Chapter VIII]. Since a flow rule holds, the
sum in (10.19) is zero. Similarly, we obtain in the case o ∈ A

∫
Lfdνρ = (1− ρ)ρ|A|

 ∑
x∈A,y/∈A

[ry,x − rx,y] +
λ

ρ

 .

We conclude using the flow rule, noting ro = q = λ
ρ
and recalling the definition of ro

from (10.5).

Remark 10.7. Note that the measure ν1 is always invariant for the TASEP on trees.
Theorem 1 of [24] shows that the TASEP on T with a half-line attached to the root,
where all edges point to the root, has an invariant product measure with densities in
(0, 1) if and only if a flow rule holds. If a flow rule holds, a similar argument as
Theorem 1.17 in [94, Part III] shows that νρ is extremal invariant for all ρ ∈ [0, 1].

10.4 Proof of positive current

Next, we consider the case where the rates do not necessarily satisfy a flow rule. In the
following, we will without loss of generality assume that λ < q(o) holds. When λ ≥ q(o),
the canonical coupling in Lemma 10.5 yields that the current stochastically dominates
the current of any TASEP with rate λ′ for some λ′ < q(o). We now characterize the
behavior of the TASEP in the superflow case.
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Figure 36: Visualization of the superflow decomposition used in Lemma 10.9. The
superflow given at the left-hand side is decomposed into two flows of strengths
5 and 2, respectively, shown at the right-hand side.

Proposition 10.8. Assume that a superflow rule holds. Let (Jo(t))t≥0 be the current
at the root for the TASEP on a tree T with a reservoir of rate λ = ρq(o) for some
ρ ∈ (0, 1), and initial distribution ν0. Then the current (Jo(t))t≥0 through the root
satisfies

lim
t→∞

Jo(t)

t
= λπλ(η(o) = 0) ≥ q(o)ρ(1− ρ) (10.20)

almost surely, where πλ is given by (10.14).

In order to prove Proposition 10.8, we will use the following lemma, which states that
the law of the TASEP on trees is always dominated by a certain Bernoulli-ρ-product
measure on the tree.

Lemma 10.9. Assume that the rates satisfy a superflow rule and consider the TASEP
(ηt)t≥0 with a reservoir of rate λ = ρq(o) for some ρ ∈ (0, 1). If P(η0 ∈ ·) �c νρ holds,
then

P(ηt ∈ ·) �c νρ (10.21)

for all t ≥ 0. In particular, the measure πλ from (10.14) satisfies πλ �c νρ.

Proof. In order to show (10.21), we decompose the rates satisfying a superflow rule
into flows starting at different sites. More precisely, we claim that there exists a family
of transition rates ((rzx,y)(x,y)∈E(T ))z∈V (T ) with the following two properties. For every
i ∈ V (T ) fixed, the rates (rzx,y)(x,y)∈E(T ) satisfy a flow rule for a flow of strength q(z)
for the tree rooted in z. Moreover, for all (x, y) ∈ E(T ),∑

z∈V (T )

rzx,y = rx,y ;

see also Figure 36. We construct such a family of transition rates as follows. We start
with the root o and choose a set of rates (rox,y)(x,y)∈E(T ) according to an arbitrary rule
such that the rates satisfy a flow rule for a flow of strength q(o) starting at o, and
rox,y ≤ rx,y for all (x, y) ∈ E(T ). Next, we consider the neighbors of o in the tree. For
every z ∈ V (T ) with |z| = 1, we choose a set of rates (rzx,y)(x,y)∈E(T ) according to an
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10 The TASEP on trees in equilibrium

arbitrary rule such that the rates satisfy a flow rule for a flow of strength q(z) starting
at z. Moreover, we require that

rzx,y ≤ rx,y − rox,y

holds for all (x, y) ∈ E(T ). The existence of the flow is guaranteed by the superflow
rule. More precisely, we use the following observation. Whenever the rates satisfy
a superflow rule, we can treat the rates as maximal capacities and find a flow (rox,y)

of strength q(o) which does not exceed these capacities. Note that the reduced rates
(rx,y − rox,y) must again satisfy a superflow rule, but now on the connected compo-
nents of the graph with vertex set V (T ) \ {o}. This is due to the fact that the net
flow vanishes on all sites V (T )\{o}. We then iterate this procedure to obtain the claim.

Let (η̃t)t≥0 be the exclusion process with rates (rx,y)(x,y)∈E(T ), where in addition, we
create particles at every site x ∈ V (T ) at rate q(x)ρ. Due to the above decomposition
of the rates and Lemma 10.6, we claim that the measure νρ is invariant for (η̃t)t≥0.
To see this, we define a family of generators (Lz)z∈V (T ) on the state space {0, 1}V (Tz).
Here, the trees Tz are the subtrees of T rooted at z, consisting of all sites which can be
reached from site z using a directed path. For all cylinder functions f , we set

Lzf(η) = ρq(z)(1− η(z))[f(ηz)− f(η)] +
∑

(x,y)∈E(Tz)

rzx,y(1− η(y))η(x)[f(ηx,y)− f(η)]

and thus by Lemma 10.6 ∫
Lzf(η)dνρ = 0 (10.22)

holds. Note that the generator L̃ of the process (η̃t)t≥0 satisfies

L̃f(η) =
∑

z∈V (T )

Lzf(η) (10.23)

for all cylinder functions f on {0, 1}V (T ), and that at most finitely many terms in the
sum in (10.23) are non-zero since f is a cylinder function. Hence, we obtain that νρ is
an invariant measure of (η̃t)t≥0 by combining (10.22) and (10.23). Using Remark 10.3,
we see that the modified canonical coupling P for the TASEP on trees satisfies

P (ηt �c η̃t for all t ≥ 0 | η0 �c η̃0) = 1 .

Thus, we let (η̃t)t≥0 be started from νρ and conclude using Strassen’s theorem [134].

Proof of Proposition 10.8. Combining Proposition 10.4, Remark 10.7, and Lemma 10.9,
we obtain (10.20) by applying the ergodic theorem for Markov processes.
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10.4 Proof of positive current

Proposition 10.10. Consider the TASEP (ηt)t≥0 on the tree T = (V,E) for some
λ = ρq(o) > 0 with ρ ∈ (0, 1). Moreover, assume that a superflow rule holds and that
(10.10) is satisfied. Then the measure πλ from Proposition 10.4 satisfies

lim
n→∞

1

|Zn|
∑
x∈Zn

πλ(η(x) = 1) = 0 . (10.24)

Proof. Note that (10.10) is equivalent to assuming

lim
n→∞

|Zn| min
(x,y)∈E
|x|∈[n,n+m]

rx,y =∞ (10.25)

for any m ≥ 0 fixed. Moreover, note that

Jo(t)− Jn(t) ≤
∑
i∈[n]

|Zi| (10.26)

for any n ∈ N and t ≥ 0. Using Proposition 10.4, we see that

λ ≥ lim
t→∞

Jo(t)

t
= lim

t→∞

Jn(t)

t
=

∑
x∈Zn : (x,y)∈E

πλ(η(x) = 1, η(y) = 0)rx,y

holds for all n ∈ N0. In particular, for all n,m ∈ N0∑
|x|∈[n,n+m]

∑
(x,y)∈E

πλ(η(x) = 1, η(y) = 0) ≤ mλ
(

min
(x,y)∈E
|x|∈[n,n+m]

rx,y

)−1

. (10.27)

Let δ > 0 be arbitrary and fix some m ∈ N such that ρm ≤ δ
2
. Moreover, for all x ∈ Zn,

fix a sequence of sites (x = x1, x2, . . . , xm) with (xi, xi+1) ∈ E for all i ∈ [m− 1]. Note
that the sites (xi)i∈[m] are disjoint for different x ∈ Zn and that by Lemma 10.9

πλ(η(xi) = 1 for all i ∈ [m]) ≤ δ/2 (10.28)

for all x ∈ Zn. For x ∈ Zn, we decompose according to the value on (xi)i∈[m] to get∑
x∈Zn

πλ(η(x) = 1) ≤
∑
x∈Zn

πλ(η(xi) = 1 ∀i ∈ [m]) +
∑

(x,y)∈E
|x|∈[n,n+m]

πλ(η(x) = 1, η(y) = 0) .

Hence, combining (10.25), (10.27) and (10.28), we see that for all n sufficiently large,∑
x∈Zn

πλ(η(x) = 1) ≤ δ

2
|Zn|+mλ

(
min

(x,y)∈E
|x|∈[n,n+m]

rx,y

)−1

≤ δ |Zn| .

Since δ > 0 was arbitrary, we conclude.
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10 The TASEP on trees in equilibrium

We use a similar argument to determine when we have a positive averaged density.

Corollary 10.11. Suppose that a superflow rule holds. Consider the TASEP (ηt)t≥0

on the tree T = (V,E) for some λ = ρq(o) > 0 with ρ ∈ (0, 1). Moreover, assume that
T has maximum degree ∆, and that

lim sup
n→∞

|Zn| min
(x,y)∈E,x∈Zn

rx,y ≤ c (10.29)

holds for some constant c > 0. Then

lim inf
n→∞

1

|Zn|
∑
x∈Zn

πλ(η(x) = 1) > 0 . (10.30)

Proof. Observe that for every x ∈ Zn and n ∈ N, we can choose a neighbor y ∈ Zn+1

of x such that

1

∆
lim sup
t→∞

Jx(t)

t
≤ lim sup

t→∞

Jy(t)

t
= πλ(η(x) = 1, η(y) = 0)rx,y

holds. Together with (10.29)

∑
x∈Zn

πλ(η(x) = 1) ≥
∑
x∈Zn

1

∆rx,y
lim sup
t→∞

Jx(t)

t
≥ 1

c∆
|Zn| lim sup

t→∞

Jn(t)

t
.

Since the rates satisfy a superflow rule, we conclude by applying Proposition 10.8.

10.5 Proof of blockage

Next, we consider the case where the rates in the tree decay too fast, i.e., when a
subflow rule holds; see (10.7) and Figure 37. We show that the current is sublinear.

Proposition 10.12. Suppose that the rates satisfy a subflow rule. Then the current
(Jo(t))t≥0 of the TASEP (ηt)t≥0 on a tree T = (V,E) with a reservoir of rate λ > 0

satisfies

lim
t→∞

Jo(t)

t
= 0 (10.31)

almost surely. Moreover, the limit measure πλ of Lemma 10.4 is the Dirac measure ν1.
In particular, (ηt)t≥0 has a unique invariant measure.

Proof. By (10.26), it suffices for (10.31) to prove that for every ε > 0, there exists
some m = m(ε) such that the aggregated current (Jm(t))t≥0 at generation m satisfies

lim sup
t→∞

Jm(t)

t
≤ ε .
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n n+ 1

Figure 37: Visualization of the proof of blockage for the TASEP on trees when a subflow
rule holds. For any given ε, we can choose n large enough such that the
total rates along the edges shown in blue sum up to at most ε.

Recall rx from (10.5) for all x ∈ V , and let (Xx
t )t≥0 be a rate rx Poisson clock, indicating

how often the clock of an outgoing edge from x rang until time t. In order to bound
(Jm(t))t≥0, recall that we start with all sites being empty, and observe that the current
can only increase by one if a clock at an edge connecting level m− 1 to level m rings.
Thus, we see that

0 ≤ lim sup
t→∞

Jm(t)

t
≤ lim sup

t→∞

1

t

∑
x∈Zm−1

Xx
t =

∑
x∈Zm−1

rx

holds almost surely. Using the subflow rule, we can choose m = m(ε) sufficiently large
to conclude (10.31). To prove that πλ is the Dirac measure on all sites being occupied,
use Proposition 10.8 to see that (10.31) holds if and only if πλ(η(o) = 1) ∈ {0, 1}. Since
the rate λ at which particles are generated is strictly positive and πλ is an invariant
measure, we conclude that πλ(η(o) = 1) = 1. Using the ergodic theorem, we see that
almost surely for all neighbors z of o,

πλ(η(o) = 1, η(z) = 0)ro,z = lim
t→∞

Jz(t)

t
≤ lim

t→∞

Jo(t)

t
= 0 .

Hence, we obtain that πλ(η(z) = 1) = 1 holds for all z ∈ V with |z| = 1 as well. We
iterate this argument to conclude.

10.6 Open problems

In Theorem 10.1, we study the stationary measure πλ for the TASEP on trees when
starting from the empty configuration. We expect the following property of πλ, which
is similar to the TASEP on the half-line; see Lemma 4.3 in [92].

Conjecture 10.13. Consider TASEP with a reservoir of rate λ = ρq for some constant
ρ ∈ (0,∞) such that a flow rule holds for some flow of strength q > 0. Then for ρ ≤ 1

2
,
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11 The TASEP on trees out of equilibrium

the invariant measure πλ from (10.14) satisfies πλ = νρ. For ρ > 1
2
, it holds that

lim
|x|→∞

πλ(η(x) = 1) =
1

2
. (10.32)

Note that in Theorem 10.1, a key assumption is that either a superflow or a subflow
rule holds. When both rules do not apply, the question whether a single local microscopic
change in the rates affects the current is already a difficult task for the one-dimensional
TASEP, known as the “slow bond problem”. Originally, the “slow bond problem” was
introduced in [73, 74] on a finite segment with open boundaries. On Z, progress was
made in [125], and the problem was solved in [16].

Question 10.14. What can we say about the current through the root for the TASEP
on trees when the rates neither satisfy a superflow rule nor a subflow rule?

11 The TASEP on trees out of equilibrium

11.1 Introduction

In this section, we study the TASEP on trees out of equilibrium. The presented
material is based in large parts on [62], which is joint work with Nina Gantert and
Nicos Georgiou. Our goal is to investigate the aggregated current through a given
generation of the tree. In contrast to Section 10, we consider the current through the `th

generation for some ` = `(t) which dependents on the time t ≥ 0. We will assume that
`(t)→∞ for t→∞. Throughout this section, we start the TASEP on trees from the
configuration where all sites are empty, and focus on the motion of the first n particles
entering the tree. In particular, we are interested in establishing a time interval in
which we see a transition from no particles to approximately n particles at a given
generation. Conversely, we aim at proving a dual theorem where we give a window of
generations in which most of the first n particles can be located at a given point in time.

Our investigations are motivated by similar results for the one-dimensional TASEP;
see Sections 7.2 and 10.1.3. We consider the TASEP on directed rooted trees as
a natural generalization, where we can mimic this total asymmetry. An important
observation and difference to the one-dimensional setup is that once two particles are
located on distinct branches of the tree, they do not affect the transitions of each
other. We make use of this observation by locating where the particle trajectories
disentangle and the particles start to move independently. Quantifying the location
of disentanglement is a key step in our analysis. Since the arguments require several
assumptions on the underlying structure of the trees, we will restrict our attention to
the TASEP on supercritical Galton–Watson trees without extinction.
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11.1 Introduction

11.1.1 Definition of the model

Recall the definition of Galton–Watson trees from Section 9. We refer to Chapter 4
of [99] for a more comprehensive introduction. In the following, we assume that all
Galton–Watson trees are supercritical and without extinction, i.e., the conditions in
(9.1) hold, and recall that the Galton–Watson branching process induces a probability
measure GW on the space of all locally finite rooted trees T ; see Section 9.2.

Fix a tree (T, o) ∈ T drawn according to GW. On this tree T = (V,E), we study
the TASEP (ηt)t≥0 with a reservoir of intensity λ > 0 and transition rates (rx,y)(x,y)∈E.
Formally, (ηt)t≥0 is the exclusion process on {0, 1}V with respect to the generator given
in (10.1). Note that the same arguments as in Proposition 9.1 for the simple exclusion
process on Galton–Watson trees ensure that for uniformly bounded transition rates,
the TASEP on T is GW-almost surely a Feller process. For a tree (T, o) ∈ T , let PT
denote the law of the TASEP on T . Furthermore, we let in the following

P = GW × PT

be the semi-direct product, where we first choose a tree (T, o) ∈ T according to GW
and then perform the TASEP on T .

11.1.2 Related literature

In Section 10.1.3, we discussed parallels between the TASEP on trees and the TASEP
on the integers with a focus on their equilibrium measures and hydrodynamic lim-
its. For the one-dimensional TASEP started out of equilibrium, a key tool to obtain
sharp results is an alternative representation as a two-dimensional exponential corner
growth model; see also Section 3.4.3. For example, the TASEP on Z in the rarefaction
fan, where the negative integers are initially occupied and the positive integers are
initially empty, as well as the TASEP on N with a rate 1 particle source at site 1

and initially only empty sites, both have representations as exponential corner growth
models with i.i.d. weights on the first quadrant, respectively on the half-quadrant, of Z2.

In the seminal work [76], Johansson showed that the TASEP on Z in the rarefaction
fan has Tracy–Widom weak limits associated with the Kardar–Parisi–Zhang universality
class; see [17, 58] for more general initial conditions. Similar results were recently
achieved for the TASEP on N; see [6, 20]. More generally, when viewing one-dimensional
interacting particle systems like the TASEP on the integers as queues in series, one
can often utilize Burke’s theorem to find a family of corresponding invariant last
passage models [9]. Burke-type theorems usually imply that the model in question
is an integrable example of the KPZ universality class; see [34] for an overview and
[13, 31, 38, 106, 127] for other lattice examples having Burke’s property. This means
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11 The TASEP on trees out of equilibrium

that we are often endowed with precise estimates for various statistics of the process,
for example on the current fluctuations [76, 112].

Note that the variety and precision of exact results for the TASEP on the integers and
related models is so far not available for the TASEP on trees. Hence, in the following,
our goal is to make a first step into this direction by providing quantitative results for
observables of the TASEP on trees. More precisely, when starting the TASEP on a
supercritical Galton–Watson tree with all sites being initially empty, we give estimates
in terms of the aggregated current on the locations of the first n particles which enter
the tree.

11.1.3 Main results

In the following, let the rates be bounded uniformly from above for GW-almost every
Galton–Watson tree, and let the tree be initially empty. We start with an upper bound
on the first generation at which the first n particles are located in different branches of
the tree, and hence behave like independent random walks. Throughout this section, we
will impose the following two conditions on the transition rates. Our first assumption
on (rx,y) is a non-degeneracy condition, which ensures that the particle system can in
principle explore the whole tree.

Assumption 11.1 (Uniform Ellipticity (UE)). The transition rates on T are uni-
formly elliptic, i.e., there exists an ε ∈ (0, 1] such that

inf

{
rx,y
rx,z

: (x, y), (x, z) ∈ E
}
≥ ε . (11.1)

Note that (UE) guarantees that the first n particles will eventually move on different
subtrees of T and behave as independent random walks after a certain generation; see
Proposition 11.8. To state our next assumption, we define

rmin
` = min{rx,y : x ∈ Z`, y ∈ Z`+1} and rmax

` = max{rx,y : x ∈ Z`, y ∈ Z`+1} (11.2)

to be the minimal and maximal transition rates in generation ` for all ` ∈ N0. The
following assumption guarantees that the rates are not decaying too fast, which may
cause certain branches of the tree to become blocked for the particles.

Assumption 11.2 (Exponential decay (ED)). The transition rates decay at most
exponentially fast, i.e., there exist constants clow, κ > 0 such that for all ` ≥ 0

rmin
` ≥ κ exp(−clow`) .
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11.1 Introduction

Equipped with these two assumptions, we will now introduce some notation to state
our main results. In the following, we let

dmin := min{i : pi > 0} and m̃ :=

(
∞∑
k=2

pk

)−1 ∞∑
k=2

kpk (11.3)

be the minimal number of offspring and the mean number of offspring when conditioning
on having at least two offspring, respectively. Let

co :=

{
(5 + log2 m̃)(log(1 + p1)− log(2p1))−1 if dmin = 1 ,

1/ log dmin if dmin > 1 ,
(11.4)

and define the integer function

Dn := inf
{
m ∈ N : rmax

` ≤ n−(2+clowco)(log n)−3 for all ` ≥ m
}

(11.5)

for all n ∈ N, where we use the convention inf{∅} =∞. In words, (Dn)n∈N denotes a
sequence of generations along which all rates decay at least polynomially fast. The
order of the underlying polynomial depends on the structure of the tree. In particular,
for exponentially fast decaying rates, Dn will be of order log(n). We are now ready to
quantify the generation where decoupling of the first n particles is guaranteed.

Theorem 11.3. Consider the TASEP on a Galton–Watson tree and assume that the
transition rates satisfy assumptions (UE) and (ED) with ε from (11.1). Let δ > 0 be
arbitrary, but fixed, and defineMn for all n ∈ N as follows.

1. When lim sup
n→∞

Dn
log n

<∞ holds, set

Mn :=

(co + 1)Dn + co(2 + δ) log1+ε n if dmin = 1 ,

dmin

dmin−1
Dn + (2 + δ) log1+ε n if dmin > 1 .

(11.6)

2. When lim inf
n→∞

Dn
log n

= +∞ holds, set

Mn :=

(
co1{dmin=1} +

1

dmin − 1
1{dmin>1} + (1 + δ)

)
min{Dn, n} . (11.7)

Then P-almost surely, the trajectories of the first n particles decouple after generation
Mn for n large enough, i.e., the first n particles visit distinct sites at levelMn.

At this point, let us give two remarks on this disentanglement theorem, including a
comparison to independent random walks on the tree.
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11 The TASEP on trees out of equilibrium

Remark 11.4. Using the pigeonhole principle, we see that for GW-almost every tree
and any family of rates, the first generation of decoupling of n particles will be at least
of order log n. When the rates decay exponentially fast, the disentanglement theorem
ensures that order log n generations are sufficient to decouple n particles. In particular,
in this case the bounds in Theorem 11.3 are sharp up to constant factors.

Remark 11.5. A similar result on the disentanglement of the particles holds when
we replace the reservoir by dynamics which generate almost surely a linear amount of
particles. This may for example be a TASEP on a half-line attached to the root and
started from a Bernoulli-ρ-product measure for some ρ ∈ (0, 1).

Using the disentanglement estimates from Theorem 11.3, we now study the current
for the TASEP on Galton–Watson trees. Recall the notation from Section 10.1.1 for
the TASEP on trees. For m ≥ ` ≥ 0, we define

Rmin
`,m :=

m∑
i=`

(
min
x∈Zi

rx
)−1

, Rmax
`,m :=

m∑
i=`

(
max
x∈Zi

rx
)−1 (11.8)

and set Rmin
` := Rmin

`,` as well as Rmax
` := Rmax

`,` . Intuitively, Rmin
`,m and Rmax

`,m are the
expected waiting times to pass from generation ` to m when choosing the slowest,
respectively the fastest, rate in every generation.

In the following, we will state our main results on the current only for the special
case of exponentially decaying rates, i.e., we assume that there exists some cup > 0

such that
Rmax
` ≥ exp(cup`) (11.9)

holds for all ` ∈ N. We provide more general statements in Section 11.4 from which the
next two theorems directly follow. Fix now an integer sequence (`n)n∈N with `n ≥Mn

for all n ∈ N, whereMn is taken from Theorem 11.3. For every n ∈ N, we define a
time window [tlow, tup] in which we study the current through the `thn level of the tree,
and where we see a number of particles proportional to n passing through Z`n .

Theorem 11.6. Suppose that (UE) and (ED) holds, and that the rates satisfy (11.9).
Then for all δ ∈ (0, 1), there exists a constants c, c̃ > 0 such that for all tlow = tlow(n)

and tup = tup(n) with

tup ≤ c(nRmin
Mn

+Rmin
`n ) ≤ nc̃clow + n exp(clow`n) , tlow ≥ exp

(1

2
cup`n

)
, (11.10)

for n ∈ N, we see that P-almost surely

lim
n→∞

J`n(tlow) = 0 , lim inf
n→∞

1

n
J`n(tup) ≥ 1− δ . (11.11)
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11.1 Introduction

Next, we let t be a fixed time horizon and define an interval [Llow, Lup] of generations.
Recall the notation of the disentanglement generationMn from Theorem 11.3 for the
first n particles and define

nt := sup

{
n ∈ N0 : (n+Mn)( min

|x|≤Mn

rx)
−1 ≤ t

}
. (11.12)

Note that for exponentially decaying rates, the quantity nt will be a polynomial in t.
For large times t, the next theorem gives a window of generations where we expect to
see a positive fraction of the first nt particles which entered the tree.

Theorem 11.7. Suppose that (UE) and (ED) holds, and the rates satisfy (11.9). Then
there exists a constant c > 0 such that for all Llow = Llow(t) and Lup = Lup(t) with

Llow ≥ c log t , Lup ≤
2

cup
log t , (11.13)

for t ≥ 0, we see that P-almost surely

lim sup
t→∞

JLup(t) = 0 , lim inf
t→∞

1

nt
JLlow(t) > 0 . (11.14)

Note that the precision of the results strongly depends on the transition rates and
the structure of the tree. The above theorems can be sharpened when we have more
information about the rates and the tree. This trade-off is illustrated in Section 11.5
for the special case of regular trees T d some integer d ≥ 3. When the rates decay
polynomially, we determine a regime such that the lower and upper bounds in the time
window tlow and tup agree in first-order. Similarly, when the rates decay exponentially
fast, we refine the arguments used in Section 11.4 to show Theorem 11.7, and give
conditions such that the lower and upper bounds in the location window Llow and Lup

agree in the leading order.

11.1.4 Outline of the proof

In order to show the different theorems presented in Section 11.1.3, we will proceed as
follows. We start in Section 11.2 with the proof of the disentanglement theorem. The
proof combines combinatorial arguments, geometric properties of Galton–Watson trees
and large deviation estimates on the particle movements. In Section 11.3, we introduce
two comparisons of the TASEP on trees to related models, which will be helpful in
the proof of the remaining theorems. This includes a coupling to independent random
walks and a comparison to a slowed down TASEP on trees, which can be studied using
inhomogeneous last passage percolation. We apply these tools in Section 11.4 to prove
a generalized version of Theorems 11.6 and 11.7; see Theorems 11.21 and 11.22. We
show in Section 11.5 that the current bounds can be sharpened in certain cases of the
TASEP on regular trees, and conclude with an outlook on open problems.
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11 The TASEP on trees out of equilibrium

11.2 The disentanglement theorem

The proof of Theorem 11.3 will be divided into four parts. First, we give an a priori
argument on the level where the particles disentangle, requiring assumption (UE). We
then study geometric properties of Galton–Watson trees. Afterwards, we estimate the
time of n particles to enter the tree. This will require only assumption (ED). In a last
step, the ideas are combined in order to prove Theorem 11.3.

11.2.1 An a priori bound on the disentanglement

In this section, we give an a priori bound on the disentanglement of the trajectories
within the exclusion process. This bound relies on a purely combinatorial argument,
where we count the number of times a particle performing TASEP has a chance to
disentangle from a particle ahead. Recall that we start from the configuration where
all sites are empty. For a given infinite, locally finite rooted tree T and x, y ∈ V (T ),
recall that we denote by [x, y] the set of vertices in the shortest path in T connecting x
and y. We set

F (o, x) := |{z ∈ [o, x] \ {x} : deg(z) ≥ 3}| (11.15)

to be the number of vertices in [o, x] \ {x} with degree at least 3. For any fixed tree
(T, o) ∈ T , let dT be the smallest possible number of offspring a site can have. Note
that when T is a Galton–Watson tree, dT = dmin holds GW-almost surely for dmin

from (11.3). For all i,m ∈ N, let zmi ∈ Zm denote the unique site in generation m

which is visited by the ith particle which enters the tree.

Proposition 11.8. For a given tree (T, o) ∈ T consider the TASEP on T where n
particles are generated at the root according to an arbitrary rule. Assume that (UE)
holds for some ε > 0. Then

PT
(
zmi 6= zmj for all i, j ∈ {1, . . . , n} with i 6= j

)
≥ 1− n2

(
1

ε+ 1

)Fn(m)

, (11.16)

where for all m,n ∈ N, we set

Fn(m) :=

min {F (o, x) : x ∈ Zm} − n if dT = 1 ,

m−
⌈
n(dT − 1)−1

⌉
if dT ≥ 2 .

(11.17)

With this proposition, we control the probability that two particles have the same
exit point at generation Zm in a summable way, provided that Fn(m) ≥ c log(n) for
some c = c(ε) > 0. Note that this bound can in general be quite rough. For example
on Galton–Watson trees, if instead of TASEP we have independent random walks, we
expect to see disentanglement of n particles already after order log n generations.
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11.2 The disentanglement theorem

Proof of Proposition 11.8. Consider the jth particle for some j ∈ [n] := {1, . . . , n}
which enters the tree. We show that the probability of particle j to exit from x ∈ Zm
satisfies

PT
(
zmj = x

)
≤
( 1

1 + ε

)Fn(m)

(11.18)

for all j ∈ [n]. Note that if particle j exits through x, it must follow the unique
path [o, x]; see also Figure 38. Our goal is to find a generation m large enough that
guarantees that on any ray the particle will have enough opportunities to escape this ray.

For dT ≥ 3, we argue that any particle will encounter at least Fn(m) many locations
on [o, x] which have at least 2 holes in front when the particle arrives. To see this,
suppose that particle j encounters at least n(dT − 1)−1 generations among the first n
generations with no two empty sites in front of it when arriving at that generation. In
other words, this means that particle j sees at least dT − 1 particles directly in front
of its current position when reaching such a generation. Since particle j may follow
the trajectory of at most one of these particles, this implies that particle j encounters
at least (dT − 1) · n

dT−1
= n different particles in total until reaching level n. This is a

contradiction as j ≤ n and the tree was originally empty.

For dT ∈ {1, 2} we apply a similar argument. We need to find m large enough so that
every possible trajectory has minx∈Zm F (o, x) ≥ n locations where, when a particle
arrives there are at least two children, and there is no particle ahead. By definition,
every possible trajectory has at least F (o, x) ≥ Fn(m) + n sites with at least two
children. Observe that in order to follow the trajectory [o, x] for some x ∈ Zm, the first
accepted transition at every stage must be along [o, x]. But there can be at most n sites
at which the first attempt was not to follow [o, x] and this attempt was suppressed. This
is because in order to block an attempt of leaving [o, x], the blocking particle cannot
be on [o, x] and thus block only a single attempt of particle j to jump. Hence, there
must be at least Fn(m) sites of degree at least 3 accepting the first attempted transition.

Now we prove (11.18). Suppose that particle j is at one of the Fn(m) many locations,
say y ∈ Z`, on [o, x] where two children z1, z2 of y are vacant. At most one of them
belongs to [o, x], say z1. Using (UE), the probability of selecting z1 is bounded from
above by (1 + ε)−1. To stay on [o, x], we must pick the unique site in [o, x] at least
Fn(m) many times, independently of the past trajectory. This shows (11.18). Since
particle i is not influenced by the motion of particle j for all j > i, we conclude

PT
(
∃i, j ∈ [n], i 6= j, : zmi = zmj

)
≤

∑
1≤i<j≤n

PT
(
zmi = zmj

)
≤ n2

( 1

1 + ε

)Fn(m)

,

applying (11.18) for the last inequality.
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11 The TASEP on trees out of equilibrium

i

j

Figure 38: Visualization of the key idea for the proof of the a priori bound on the
disentanglement. When (UE) holds, the probability that particle i follows
the blue trajectory of particle j is at most

(
1

1+ε

)2.

11.2.2 Geometric properties of the Galton–Watson tree

Next, we give an estimate on the number F (o, x), defined in (11.15), which will be
essential in the proof of Theorem 11.3 when there is a positive probability to have
exactly one offspring.

We define the core of a Galton–Watson tree to be the Galton–Watson tree, which
we obtain by conditioning in the offspring distribution with respect to (pk)k∈N on
producing at least 2 sites. Intuitively, we obtain the core from a given tree by collapsing
all linear segments to single edges. On the other hand, given a core T̃ according to
the conditioned offspring distribution, we can reobtain a Galton–Watson tree with
the original offspring distribution according to (pk)k∈N, by extending every edge ẽ to
a line segment of size Gẽ where (Gẽ)ẽ∈E(T̃ ) are i.i.d. Geometric-(1 − p1)-distributed
random variables supported on N0. Moreover, we have to attach a line segment [o, õ]

of Geometric-(1− p1)-size to the root õ of T̃ and declare o to be the new root of the
tree. An illustration of this procedure is given in Figure 39.

We now give an estimate on how much the tree is stretched when extending the core
with the conditioned offspring distribution to a Galton–Watson tree with an offspring
distribution with respect to (pk)k∈N.

Lemma 11.9. Let (Hn)n∈N be an increasing sequence that goes to infinity and assume
that p1 ∈ (0, 1). Recall m̃ from (11.3). Set Mn := dαHne for all n ∈ N, where

α :=
5 + log2 m̃

log2(1 + p1)− log2(2p1)
. (11.19)

Then we have that

GW
(

inf
x∈ZMn

∑
v∈[o,x)

1{deg(v) ≥ 3} ≥ dHne
)
≥ 1− 2−2Hn+1 . (11.20)
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õ o

(T, o)(T̃ , õ)

Figure 39: A core (T̃ , õ) and one of its corresponding Galton–Watson trees (T, o). We
obtain the Galton–Watson tree from the core (the core from the Galton–
Watson tree) by adding (removing) the smaller vertices depicted in gray.

Proof. Note that it suffices to bound the probability that all sites at generation Hn of T̃
are mapped to a generation less or equal than Mn in the corresponding Galton–Watson
tree. Using Markov’s inequality, we see that

GW(|x ∈ V (T̃ ) : |x| = Hn| ≥ m̃Hn22Hn) ≤ 2−2Hn . (11.21)

Note that each site x at level Hn in T̃ is mapped to a generation given as the sum
of Hn-many independent Geometric-(1− p1)-distributed random variables (Gi)i∈[Hn].
Using Chebyshev’s inequality, we see that

P
( Hn∑
i=1

Gi ≥Mn

)
≤ e−tMn

(
1− p1

1− p1et

)Hn
=

(
1 + p1

2p1

)−Mn

2Hn (11.22)

when we set t = log(1+p1
2p1

). Fix some site x̃ ∈ ZMn . Now condition on the number of
sites at level Hn in T̃ and apply (11.21) together with a union bound to see that

GW
(
∃x ∈ ZMn :

∑
v∈[o,x)

1{deg(v) ≥ 3} ≤ dHne
)

≤ m̃Hn22HnGW
( ∑
v∈[o,x̃)

1{deg(v) ≥ 3} ≤ dHne
)

+ 2−2Hn

≤ m̃Hn22HnP
( Hn∑
i=1

Gi ≥Mn

)
+ 2−2Hn ≤ 2−2Hn+1

using (11.22) and the definition of Mn for the last two steps.

11.2.3 Entering times of the particles in the tree

We now define an inverse for the current. For any n ∈ N, m ∈ N0, we set

τnm := inf{t ≥ 0 : Jm(t) ≥ n} . (11.23)
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11 The TASEP on trees out of equilibrium

In words, τnm gives the time that the aggregated current across generation m becomes
n, or equivalently, precisely n particles reached Zm. Hence, the following two events
are equal:

{τnm ≤ t} = {Jm(t) ≥ n} .

The main goal of this section is to give a bound on the first time τn0 at which
n particles have entered the tree. Note that this random time τn0 depends on the
underlying tree as well as on the evolution of the exclusion process.

Proposition 11.10. Fix a number of particles n. Consider a supercritical Galton–
Watson tree without extinction and assume that (ED) holds for some constant clow.
Recall co from (11.4). There exists a constant c > 0 such that

PT
(
τn0 < cnclowco+1 log n

)
≥ 1− 2

n2
(11.24)

holds with GW-probability at least 1− 2n−2 for all n sufficiently large.

In order to show Proposition 11.10, we require a bit of setup. Let Z(x)
m be the mth

generation of the subtree Tx rooted at x. For a tree (T, o) ∈ T and a site x, we say
that the exclusion process on T has depth of traffic Dx(t) ∈ N0 with

Dx(t) = inf{m ≥ 0 : ηt(z) = 0, for some z ∈ Z(x)
m } , (11.25)

at site x at time t. In words, Dx(t) is the distance to the first generation ahead of
x which contains an empty site. Note that for any fixed x, the process Dx(t) is a
non-negative integer process. It takes the value 0 when ηt(x) = 0 and it becomes
positive when ηt(x) = 1. Since particles move only in a directed way, the process is
non-increasing until it hits 0. The following lemma gives a bound on the depth of
traffic at the root in Galton–Watson trees.

Lemma 11.11. Let Hn = log2(n) and recall Mn and m̃ from Lemma 11.9. Then

GW
(
PT
(
Do(t) ≤Mn + 1 for all t ≤ τn0

)
= 1
)
≥ 1− 2

n2
. (11.26)

In words, this means that with GW-probability at least 1− 2n−2, the depth at the
root is smaller than Mn whenever no more than n particles have entered the tree.

Proof of Lemma 11.11. Observe that the root can only have depth ` when all vertices
until level ` are occupied and that there are at most n particles until time τn0 . Note
that Lemma 11.9 guarantees, with our choice of Hn, that with probability at least
1− 2n−2, the tree up to generation Mn contains more than n sites. Hence, there is at
least one empty site until generation Mn by the definition of τn0 .
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11.2 The disentanglement theorem

Next, we give a bound on the renewal times of the process (Do(t))t≥0. For t ≥ 0 and
x ∈ V , we define the first availability time ψx(t) after time t to be

ψx(t) = inf{s > t : Dx(s) = 0} − t ≥ 0 .

This is the time it takes until x is empty, observing the process from time t onward.

Lemma 11.12. Fix a tree (T, o) ∈ T with root o, and assume that (ED) holds for
some clow, κ > 0. Moreover, let t = t(`) ≥ 0 satisfy 0 ≤ Do(t) ≤ `. Then for all c > 0

PT

(
ψo(t) > (1 + c)(`+ 1)κ−1eclow(`+1)

)
≤ exp

(
− (c− log(1 + c))`

)
. (11.27)

Proof of Lemma 11.12. Since Do(t) ≤ `, there exists a site y with |y| ≤ ` + 1 and
ηt(y) = 0, such that the ray connecting y to x is fully occupied by particles. Thus,
ψo(t) is bounded by the time a hole at level `+ 1 needs to travels to o. By (ED),

ψo(t) ≤ κ−1 exp(clow(`+ 1))
`+1∑
i=1

ωi

holds for independent Exponential-1-distributed random variables (ωi)i∈[l+1]. Now

P

(
`+1∑
i=1

ωi > (1 + c)(`+ 1)

)
≤ exp (−(c− log(1 + c))`)

by using Cramér’s theorem yields an upper bound on the left-hand side in (11.27).

Proof of Proposition 11.10. Recall that a particle can enter the tree if and only if the
root is empty, and that particles are created at the root at rate λ. Thus

τ i0 − τ i−1
0 ≤ ψo(τ

i−1
0 ) + λ−1ωi (11.28)

holds for all i ∈ [n] for some sequence (ωi)i∈[n] of i.i.d. Exponential-1-distributed random
variables. Recall (11.4) where for dmin > 1, we take co such that Mn = co log n, and set
co = 1/ log(dmin) otherwise. Rewriting τn0 as a telescopic sum yields

PT (τn0 > cnclowco+1 log n) ≤ PT (∃i ∈ [n] : τ i0 − τ i−1
0 > cnclowco log n)

≤ nmax
i∈[n]

PT
(
ψo(τ

i−1
0 ) > (c− 3λ−1)nclowco log n

)
+ nPT (ω1 > 3 log n) .

Together with Lemma 11.11 and Lemma 11.12 for ` = co log n, we obtain that

nmax
i∈[n]

PT
(
ψo(τ

i−1
0 ) > (c− 3λ−1)nclowco log n

)
+ nPT (ω1 > 3 log n) ≤ 1

n2
+

1

n2

holds for some c > 0 withGW-probability at least 1−2n2 for all n sufficiently large.
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11 The TASEP on trees out of equilibrium

Dn = 2 31 Mn = 40

o

λ

Figure 40: Visualization of the TASEP on trees and the different generations Dn and
Mn involved in the proof for n = 4. The particles are drawn in red. Note
that it depends on the next successful jump of the particle at generation 3
if the first 4 particles are disentangled at generationMn = 4, i.e., they will
disentangle if the particle jumps at the location indicated by the arrow.

11.2.4 Proof of the disentanglement theorem

For the proof of Theorem 11.3 we have the following strategy. We wait until all n
particles have entered the tree. We then consider a level in the tree which was reached
by no particle yet. For every vertex at that level as a starting point, we use the a priori
bound on the disentanglement from Proposition 11.8; see also Figure 40.

Starting from the empty initial configuration, we study the maximal generation
which is reached until time τn0 . The next lemma gives an estimate on the degrees of
the vertices along the possible trajectories of the particles.

Lemma 11.13. Let (Ln)n∈N be an integer sequence such that Ln ≥ c̃ log n holds for
some c̃ > 0 and n ∈ N. Then we can find a sequence (δn)n∈N with δn tending to 0 with
n such that the following statement holds with GW-probability at least 1− n−2 for all
n large enough: for every site x ∈ ZdLn(1+δn)e, there exists a site y ≤ x, i.e., y is on a
directed path from the root to x, with |y| ≥ Ln and deg(y) ≤ log log n.

Proof. It suffices to consider the case where the offspring distribution has infinite
support. Using Markov’s inequality, we see that withGW-probability at least 1−(2n)−2,
the Galton–Watson tree contains at most (2n)2mLn sites at generation Ln. We denote
by (Ti)i∈[|ZLn |] the trees with roots oi attached to these sites. We claim that with
GW-probability at least 1− (2n)−4m−Ln , every ray [oi, x] for x at level dδnLne of Ti
contains at least one vertex which has at most log log n neighbors. To see this, we use
a comparison to a different offspring distribution. Recall that the mean of the offspring
distribution is m < ∞, and that pi is the probability of having precisely i offspring.
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11.2 The disentanglement theorem

We define another offspring distribution for weights (p̄i)i∈{0,1,... }, where

p̄i :=


pi for i > log log n

1−
blog lognc∑

i=1

pi for i = 0

0, else.

Let m̄n denote the mean of the distribution given by (p̄i)i∈{0,1,... }, and note that m̄n → 0

holds when n→∞. Observe that the probability that all rays up to generation dδnLne
contain at least one vertex of degree at most log log n is equal to the probability that the
tree with offspring distribution drawn according to (p̄i)i∈{0,1,... } dies out until generation
dδnLne. Using a standard estimate for Galton–Watson trees, this probability is at least
1− m̄

dδnLne
n . Set

δn = −2Ln + 4 logm(2n)

Ln logm m̄n

(11.29)

and note that δn → 0 holds when n→∞. From this, and Ln ≥ c̃ log n for some c̃ > 0,
for all n large enough

m̄dδnLnen ≤ (2n)−4m−Ln

follows. We conclude with a union bound over all trees Ti at level Ln.

Next, for all t ≥ 0, we let S(t) denote the generation

S(t) = max{` ≥ 0 : J`(t) = 1}

when starting from the configuration where all sites are empty.

Lemma 11.14. Recall (Dn) from (11.5) and (δn) from (11.29). Then P-almost surely

S(τn0 ) ≤ (1 + δn)Dn (11.30)

for all n sufficiently large.

Proof. By Lemma 11.13, with GW-probability at least 1 − n−2, there exists some
generation ` ≥ Dn such that for every i ∈ [n], the ith particle has at most log log n

neighbors. Let ζi be the holding time at this generation for particle i and note that ζi
satisfies with respect to the stochastic domination �c from (4.35)

ζi �c ωi ∼ Exp(rmax
Dn log log n) .

Set t = cnclowco+1 log n for c > 0 sufficiently large such that for all n large enough

GW
(
PT
(
S(t) ≥ S(τn0

))
≥ 1− 2

n2

)
≥ GW

(
PT
(
τn0 ≤ t

)
≥ 1− 2

n2

)
≥ 1− 2n−2
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11 The TASEP on trees out of equilibrium

using that S(·) is monotone increasing for the first inequality, and Proposition 11.10
for the second step. For the same choice of t and using the definitions of Dn and S(t)

PT (S(t) > Dn(1 + δn)) ≤ PT

(
min

1≤i≤n
ζi < t

)
≤ PT

(
min

1≤i≤n
ωi < t

)
≤ c1 log log n

n log2 n

holds for some constant c1 > 0 and all n sufficiently large, with GW-probability at
least 1− n−2. An integral test shows that all error terms in the above estimates are
summable with respect to n, and we obtain (11.30) by the Borel–Cantelli lemma.

Proof of Theorem 11.3. Note that when the event in Lemma 11.14 occurs, P-almost
surely no ray contains more than Dn(1 + δn) particles out of the first n particles for
all n sufficiently large. We will use this observation to apply the a priori bound from
Proposition 11.8 for all trees (T i) rooted at generation Dn(1 + δn) which eventually
contain at least one of the first n particles. In the following, we assume that Dn < n.
For Dn ≥ n, we directly apply Proposition 11.8 for the original tree T with n particles.

We start with the case where dmin ≥ 2 holds. Let δ ∈ (0, 1) be fixed and set

M̃n =
1

dmin − 1
(Dn(1 + δn)) + (2 + δ) log1+ε(nDn) . (11.31)

Moreover, we fix a tree T i rooted at generation Dn(1 + δn) which eventually contains a
particle. We claim that by Proposition 11.8, all of the at most Dn(1 + δn) particles
entering T i are disentangled after M̃n generations in T i with PT -probability at least
1− cn−2−δ for some constant c > 0. To see this, recall (11.17) and observe that

FDn(1+δn)(M̃n) ≤ (2 + δ) log1+ε(nDn) .

We then apply (11.16) to obtain the claim. Note that this holds for GW-almost every
tree (T, o) ∈ T . Moreover, the events that the particles disentangle on the trees (T i)

are mutually independent, and we conclude using a union bound for the trees (T i).

Now suppose that dmin = 1 holds. Recall co from (11.4) and that δ ∈ (0, 1) is fixed.
Note that δn ≤ δ holds for all n sufficiently large and set

M̃n = co(Dn(1 + δ)) + (2 + δ)co log1+ε(nDn) . (11.32)

Observe that (2 + δ) log1+ε n ≥ log2 n for all n using the definition of ε in (UE). Let
Hn = Dn(1 + δ) + (2 + δ) log1+ε(nDn). Similar to the case dmin ≥ 2, we now combine
Proposition 11.8 and Lemma 11.9 to see that P-almost surely, all of the at most
Dn(1 + δ) particles entering T i are disentangled after M̃n generations in T i for all
i ∈ [n] and n large enough. Compare (11.31) and (11.32) withMn in (11.6) and (11.7)
to conclude.
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11.3 Two comparisons using couplings

In this section, we discuss two ways of comparing the TASEP on trees to related
processes via couplings. We start with a comparison to independent random walks
on the tree. This coupling is used to prove a lower bound on the time window in
Theorem 11.6 and an upper bound on the window of generations in Theorem 11.7. Our
second model is a slowed down TASEP which is studied using an inhomogeneous last
passage percolation model. It is used to give an upper bound on the time window in
Theorem 11.6 and a lower bound on the window of generations in Theorem 11.7. In
both cases, recall that we fix the respective tree (T, o) ∈ T with T = (V,E), and a
family of rates (rx,y)x,y∈E such that the TASEP on T is a Feller process.

11.3.1 A comparison with independent random walks

We start by comparing the TASEP (ηt)t≥0 on T to independently moving biased random
walks on T . Assume that the TASEP is started from some state η, which is — in
contrast to our previous assumptions — not necessarily the configuration with only
empty sites. We enumerate the particles according to an arbitrary rule and denote
by zit the position of the ith particle at time t ≥ 0. We define the waiting time σ(i)

` in
level ` for all i ∈ Z and ` ∈ N to be the time particle i spends on generation ` once it
sees at least one empty site. Recall Rmax

` from (11.8) and the stochastic domination
�c from (4.35). Then

σ
(i)
` �c R

max
` ω

(i)
` (11.33)

holds for all i ∈ [n] and ` ≥ 0, where ω(i)
` are independent Exponential-1-distributed

random variables. We now define the independent random walks (η̃t)t≥0 started from η.

Each particle at level ` waits according to independent rate (Rmax
` )−1 Poisson clocks,

and jumps to a neighbor in generation ` + 1 chosen uniformly at random when the
clock rings. When a particle is created in (ηt)t≥0, create a particle in (η̃t)t≥0 as well.

Note that in these dynamics, a site can be occupied by multiple particles at a time.
Let z̃it denote the position of the ith particle in (η̃t)t≥0 at time t ≥ 0 and denote by
(J̃`(t))t≥0 the aggregated current of (η̃t)t≥0 at generation ` ∈ N0. The following lemma
is immediate from (11.33) and the construction of the random walks (η̃t)t≥0.

Lemma 11.15. There exists a coupling P̃ between the TASEP (ηt)t≥0 on T and the
corresponding independent random walks (η̃t)t≥0 such that

P̃
(∣∣zit∣∣ ≤ ∣∣z̃it∣∣ for all i ∈ N

)
= 1 (11.34)

holds for any common initial configuration. In particular, J`(t) ≤ J̃`(t) holds for all
` ∈ N0 and t ≥ 0.
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11 The TASEP on trees out of equilibrium

Using the comparison to independent random walks, we can give bounds on the
current using estimates on weighted sums of Exponential random variables. We will
frequently use the following estimates.

Lemma 11.16. For ` ∈ N and c0, c1, c2, . . . , c`, t ≥ 0, set S :=
∑`

i=0 ci
−1 as well as

c := mini∈{0,1,...,`} ci. Let (ωi)i∈{0,1,...,`} be independent Exponential-1-distributed random
variables. Then for any δ ∈ (0, 1),

1− e−δct

(1− δ)cS
≤ P

(∑̀
i=0

1

ci
ωi ≤ t

)
≤ min

(
eδct

(1 + δ)cS
, e`(1+log t

`
)+

∑`
i=0 log ci

)
. (11.35)

Proof. By Chebyshev’s inequality, we see that

P
(∑̀
i=0

1

ci
ωi ≤ t

)
≤ e`

∏̀
i=0

E

[
exp

(
− `

tci
ωi

)]
= e` exp

(
−
∑̀
i=0

log

(
1 +

`

tci

))

holds. Since the logarithm is increasing, we can rearrange the sums to get the second
upper bound. For the first upper bound, again apply Chebyshev’s inequality for

P
(∑̀
i=0

1

ci
ωi ≤ t

)
≤ eδct exp

(
−
∑̀
i=0

log

(
1 +

δc

ci

))
. (11.36)

Using concavity of the logarithm, we obtain for all i ∈ {0, 1, . . . , `} and all x > −1 that

log

(
1 +

xc

ci

)
≥ log (1 + x)

c

ci
. (11.37)

For x = δ in (11.37), together with (11.36), this yields the first upper bound. For the
lower bound, we use again Chebyshev’s inequality and (11.37) with x = −δ to get that

P
(∑̀
i=0

1

ci
ωi ≥ t

)
≤ e−δct exp

(
−
∑̀
i=0

log

(
1− cδ

ci

))
≤ e−δct

(1− δ)cS
.

This finishes the proof of the lemma.

Remark 11.17. Note that the bounds in Lemma 11.16 are in general not sharp, and
can be refined, for example when for some k > 1 the weights satisfy ci = ki for all i ≥ 1;
see Theorem 2.3 in [49].

11.3.2 A comparison with an inhomogeneous LPP model

In this section, we compare the TASEP on T to a slowed down exclusion process, which
we study using last passage percolation (LPP) in an inhomogeneous environment. To
describe this model, we will now give a brief introduction to last passage percolation,
and refer the reader to [126, 128] for a more comprehensive discussion.
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Consider the lattice N×N, and let (ωi,j)i,j∈N be independent Exponential-1-distributed
random variables. Let πm,n be an up-right lattice path from (1, 1) to (m,n), i.e.,

πm,n = {u1 = (1, 1), u2, . . . , um+n = (m,n) : ui+1 − ui ∈ {(1, 0), (0, 1)} for all i} .

The set of all up-right lattice paths from (1, 1) to (m,n) is denoted by Πm,n. The last
passage time in an environment ω is defined as

Gω
m,n = max

πm,n∈Πm,n

∑
u∈πm,n

ωu , (11.38)

for all m,n ∈ N. Equivalently, the last passage times are defined recursively as

Gω
m,n = max{Gω

m−1,n, G
ω
m,n−1}+ ωm,n , (11.39)

with boundary conditions for all k, ` ∈ N given by

Gω
1,` =

∑̀
j=1

ω1,j , Gω
k,1 =

k∑
i=1

ωi,1 . (11.40)

In the following, we will restrict the space of lattice paths, i.e., we consider the set of
paths Am := {u = (u1, u2) : u2 ≥ u1 −m} ∩ N× N. For any (i, j) in N× N, we define

Gω
i,j(Am) = max

π∈Πi,j(Am)

∑
u∈π

ωu ,

where Πi,j(Am) contains all up-right paths from (1, 1) to (i, j) that do not exit Am, i.e.,

Πi,j(Am) =
{
π = {(1, 1) = u1, . . . ui+j = (i, j)} : ui+1 − ui ∈ {(1, 0), (0, 1)}, ui ∈ Am

}
.

Based on the environment ω, we define an environment ω̃ = {ωi,j}i∈N,j∈N by

ω̃i,j :=


1

rmin
i−j−1

ωi,j if j < i ,

λ−1ωi,j if j = i ,

0, else;

(11.41)

see Figure 41 for a visualization. The next lemma shows that the last passage times
in ω̃ can be used to study the entering time of the nth particle in the TASEP on trees.

Lemma 11.18. Let m,n ∈ N be such that m ≤ Mn holds, where Mn is defined in
Theorem 11.3. Then there exists a coupling between Gω̃

n,n+m and the time τnm of the
TASEP on trees, defined in (11.23), such that P-almost surely, for all n large enough

Gω̃
n+m,n(AMn) ≥ τnm . (11.42)
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Figure 41: Visualization of the environment which is used to describe the slowed down
TASEP as a last passage percolation model. The numbers in the cells are
the parameters of the respective Exponential-distributed random variables.
The square at the bottom left of the grid corresponds to the cell (1, 1).

In order to show Lemma 11.18, we require a bit of setup. Consider the event

Dn := {the first n particles disentangle by generationMn} (11.43)

which holds for all n large enough by Theorem 11.3. In particular, note that if Dn

holds, whenever one of the first n particles reaches generationMn, it no longer blocks
any of the first n particles. Moreover, observe that when it is possible to jump for
particle i from generation `, the time σ(i)

` until this jump is performed is stochastically
dominated by an Exponential-distributed random variable with the smallest possible
rate out from generation `. In other words, the inequality

σ
(i)
` �c

1

rmin
`

ω`+i+1,i

holds for all i, ` ∈ N.

We construct now a slowed down TASEP (η̃t)t≥0 in which particles use the times
(rmin
` )−1ω`+i+1,i to jump from generation ` to ` + 1, but only after particle i − 1 left

generation ` + 1. Moreover, we assume without loss of generality that all particles
follow the trajectories of the original dynamics (ηt)t≥0. As before, let zit and z̃it denote
the position of the ith particle in (ηt)t≥0 and (η̃t)t≥0, respectively. The following lemma
is immediate from the construction of the two processes.

Lemma 11.19. There exists a coupling P̃ between the TASEP (ηt)t≥0 on T and the
corresponding slowed down dynamics (η̃t)t≥0 such that

P̃
(∣∣z̃it∣∣ ≤ ∣∣zit∣∣ for all i ∈ [n]

)
= 1 (11.44)

holds for any common initial configuration of the two processes.
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11.3 Two comparisons using couplings

Proof of Lemma 11.18. It suffices to show that the time in which the nth particle
reaches generation m in the slowed down dynamics has the same law as Gω̃

n+m,n(AMn).
Let G̃m,n be the time the nth particle jumped n−m times in the slowed down process
and note that for all m,n

G̃m,n = max(G̃m−1,n, G̃m,n−1) + ω̃m,n .

Moreover,

G̃0,m =
m∑
`=1

ω̃0,`, G̃`,1 =
∑̀
k=1

ω̃k,1 .

The right-hand side of the last three stochastic equalities are the recursive equations
and initial conditions for the one-dimensional TASEP, in which particle i waits on
site ` for (rmin

` )−1ω`,`+1 amount of time, after ` + 1 becomes vacant. Note that any
maximal path from (0, 1) up to (n, n+Mn) will never touch the sites for which the
environment is 0, so the passage times in environment (11.39) and (11.40) coincide
with those in environment (11.41), as long as we restrict the set of paths to not cross
the line `− i =Mn. For any time t ≥ 0, on the event Dn, this yields

PT (Jm(t) ≤ n,Dn) ≤ PT (J̃m(t) ≤ n,Dn) ≤ PT (Gω̃
n+m,n(AMn) ≥ t) .

We set t = τnm and conclude as Dn holds P-almost surely for all n large enough.

We use this comparison to an inhomogeneous LPP model to give a rough estimate
on the time τnm for general transition rates. Note that this bound can be refined when
we have more detailed knowledge about the structure of the rates.

Lemma 11.20. RecallMn from Theorem 11.3 and fix α > 0. Then

PT

(
Gω̃
n+Mn,n(AMn) ≤ 4(1 + α)

min
|x|≤Mn

rx
(n+Mn)

)
≥ 1− e−cn (11.45)

holds for some constant c = c(α) > 0 with limα→∞ c(α) =∞.

Proof. Let G(1)
m,n be the passage time up to (m,n) in an i.i.d. environment with

Exponential-1-distributed weights. Observe that we have the stochastic domination

Gω̃
n+Mn,n(AMn) �c G

ω̃
n+Mn,n+Mn

(AMn) �c
(

min
|x|≤Mn

rx
)−1

G
(1)
n+Mn,n+Mn

. (11.46)

For all α > 0, we obtain from Theorem 4.1 in [122] that

PT

(
G

(1)
M,M ≤ 4(1 + α)M

)
≥ 1− e−cM (11.47)

holds for some c = c(α) > 0 with limα→∞ c(α) =∞ and all M ∈ N, where the constant
c(α) is an explicitly known rate function. Combine (11.46) and (11.47) to conclude.
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11 The TASEP on trees out of equilibrium

11.4 Proof of the current theorems

We have now all tools to prove Theorem 11.6 and Theorem 11.7. In fact, we will
prove more general theorems which allow for any transition rates (rx,y) satisfying the
assumptions (UE) and (ED). We start with a generalization of Theorem 11.6 on the
current in a time window [tlow, tup]. Recall (11.8), and set

ρ` := min
i≤`

max
x∈Zi

rx . (11.48)

For the lower bound, let
tlow := max

(
tlow1 , tlow2

)
with

tlow1 := Rmax
0,`n

(
1− 2

(
Rmax

0,`nρ`n
)− 1

3 logRmax
0,`n

)
(11.49)

tlow2 :=
`n
2

exp
( 1

`n + 1

`n∑
i=0

logRmax
i

)
. (11.50)

Note that both terms in the maximum can give the main contribution in the definition
of tlow, depending on the rates. For the upper bound, we define

θ := lim inf
n→∞

( min
Mn<|x|≤`n

rx)R
min
Mn,`n ∈ [0,∞] (11.51)

and fix some δ ∈ (0, 1). We let tup = tup(δ) be

tup :=
5(n+Mn)

min
|x|≤Mn

rx
+

[
1{θ<∞}

(
1 + δ − 2 log δ

θδ

)
+ 1{θ=∞}(1 + θn)

]
Rmin
Mn,`n (11.52)

with some sequence (θn)n∈N tending to 0 satisfying

lim inf
n→∞

1

θn
( min
Mn<|x|≤`n

rx)R
min
Mn,`n =∞ (11.53)

when θ = ∞. Consider the first n particles which enter the tree, starting with the
configuration which contains only empty sites. The following theorem states that we
see at least an aggregated current in [tlow, tup] of order n.

Theorem 11.21. Suppose that (UE) and (ED) hold and let (`n)n∈N be a sequence of
generations with `n ≥Mn for all n ∈ N. Fix δ ∈ (0, 1) and let tlow and tup = tup(δ) be
given in (11.49), (11.50) and (11.52). Then P-almost surely

lim
n→∞

J`n(tlow) = 0 , lim inf
n→∞

1

n
J`n(tup) ≥ 1− δ . (11.54)

In particular, for rates which satisfy (11.9), the estimates in Theorem 11.6 hold.
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11.4 Proof of the current theorems

Proof. We start with the lower bound involving tup. Recall Dn from (11.43) as the
event that the first n particles are disentangled at generation Mn, and τMn

n from
(11.23) as the first time such that the first n particles have reached generationMn. Set

t1 = 5(n+Mn)
(

min
|x|≤Mn

rx
)−1

and define t2 := tup − t1. Combining Theorem 11.3, Lemma 11.18 and Lemma 11.20,
we see that

Dn ∩ {τMn
n ≤ t1} (11.55)

holds P-almost surely for all n sufficiently large. In words, this means that all particles
have reached generationMn by time t1 and perform independent random walks after
levelMn. We claim that it suffices to show that

p := PT

(
`n∑

i=Mn

ωi
rmin
i

> t2

)
< δ (11.56)

holds, where (ωi) are independent Exponential-1-distributed random variables. To see
this, let Bi be the indicator random variable of the event that the ith particle did not
reach level `n by time tup. From (11.56), we obtain that (Bi)i∈[n] are stochastically
dominated by independent Bernoulli-p-random variables when conditioning on the
event in (11.55). Hence, we obtain that

PT

(
J`n(tup) ≥ (1− δ)n

∣∣∣ Dn, τ
Mn
n ≤ t1

)
≤ PT

(
n∑
i=1

Bi ≥ δn
∣∣∣ Dn, τ

Mn
n ≤ t1

)
≤ e−δn(1 + epn)

holds using Chebyshev’s inequality for the second step. Together with a Borel–Cantelli
argument and (11.55), this proves the claim. In order to verify (11.56), we distinguish
two cases depending on the value of θ defined in (11.51). Suppose that θ <∞ holds.
Then by Lemma 11.16 and a calculation, we obtain that

PT

(
`n∑

i=Mn

ωi
rmin
i

> t2

)
< exp

(
( min
Mn<|x|≤`n

rx)R
min
Mn,`n

(
− δ − δ2 +

2 log δ

θ
− log(1− δ)

))
≤ exp

(
θ
(
− δ
(
1− θ−1 log δ

)
+ δ2

))
≤ δ

holds for all n large enough and δ ∈ (0, 1), using the Taylor expansion of the logarithm
for the second step. Similarly, when θ =∞, we apply Lemma 11.16 to see that

PT

(
`n∑

i=Mn

ωi
rmin
i

> t2

)
≤ exp

(
( min
Mn<|x|≤`n

rx)R
min
Mn,`n

(
− δ
(
θn log δ

)
+ δ2

))
(11.57)
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11 The TASEP on trees out of equilibrium

holds for all n large enough and some sequence (θn)n∈N according to (11.53). In this
case, we obtain that for any fixed δ ∈ (0, 1), the right-hand side in (11.57) converges
to 0 when n→∞. Thus, we obtain that (11.56) holds for both cases depending on θ,
which gives the lower bound.

Next, for the upper bound, we use a comparison to the independent random walks
(η̃t)t≥0 defined in Section 11.3.1. By Lemma 11.15,

PT (J`n(tlow) ≤ δ) ≥ PT

(
J̃`n(tlow) ≤ δ

)
holds for all δ > 0, where (J̃t)t≥0 denotes the current with respect to (η̃t)t≥0. Fix some
δ > 0 and let (ωi)i∈N0 be independent Exponential-1-distributed random variables. We
claim that the probability for a particle in (η̃t)t≥0 to reach level `n is bounded by

PT

( `n∑
i=0

ωi
rmax
i

≤ tlow

)
≤ 1

2λtlow
(11.58)

for all n sufficiently large, where we recall that particles enter the tree at rate λ > 0.
To see this, we distinguish two cases. Recall the construction of tlow in (11.49) and
(11.50), and assume that tlow = tlow1 . By the first upper bound in Lemma 11.16,

tlowPT

( `n∑
i=0

ωi
rmax
i

≤ tlow

)
≤ tlow1 exp

(
δρ`nt

low
1 − ρ`nRmax

0,`n log(1 + δ)
)

holds for all δ ∈ (0, 1). For δ = (ρ`nR
max
0,`n

)−1/2 and using the Taylor expansion of the
logarithm, we see that the right-hand side in (11.58) converges to 0 when n → ∞.
Similarly, for tlow = tlow2 the second upper bound in Lemma 11.16 yields

tlowPT

( `n∑
i=0

ωi
rmax
i

≤ tlow

)
≤ tlow2 exp

(
`n(1 + log tlow2 − log `n)−

`n∑
i=0

logRmax
i

)
,

where the right-hand side converges to 0 for n → ∞ using the definition of tlow2 and
comparing the leading order terms. Since particles enter in both dynamics at the root
at rate λ, note that for all n large enough, at most 5

4
λtlow particles have entered by

time tlow. By Chebyshev’s inequality together with (11.58), P-almost surely no particle
has reached generation `n by time tlow for all n sufficiently large.

Now let t be a fixed time horizon and define an interval [Llow, Lup] of generations.
RecallMn from Theorem 11.3 and define the generations

Llow :=Mnt and Lup := min(Lup
1 , L

up
2 ) (11.59)
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11.4 Proof of the current theorems

for nt from (11.12) and, recalling (11.2),

Lup
1 := inf

{
` : log `− 1

`+ 1

∑̀
i=1

log rmax
i ≥ log t+ 2

}
, Lup

2 := inf
{
` : Rmax

0,` ≥ t+ t
2
3

}
.

Since rmax
i is bounded from above uniformly in i, Lup

1 and Lup
2 are both finite. The next

theorem is the dual result of Theorem 11.21. Recall nt from (11.12). We are interested
in a window of generations [Llow, Lup] where we can locate the first nt particles.

Theorem 11.22. Suppose that (UE) and (ED) hold. Then the aggregated current
through generations Llow and Lup satisfies P-almost surely

lim sup
t→∞

JLup(t) = 0 , lim inf
t→∞

1

nt
JLlow(5t) ≥ 1 . (11.60)

Note that Theorem 11.22 implies Theorem 11.7 for rates which satisfy (11.9), keeping
in mind that in the setup of Theorem 11.7, there exists some c > 0 such that n5t ≤ cnt
holds for all t ≥ 0.

Proof. Let us start with the bound involving Lup. Let (ωi)i∈N0 be independent
Exponential-1-distributed random variables. Note that P-almost surely, no more
than 2λt particles have entered the tree by time t for all t > 0 large enough. Using a
similar argument as after (11.58) in the proof of Theorem 11.21, it suffices to show that

lim
t→∞

2λtPT

(
Lup∑
i=0

ωi
rmax
i

≤ t

)
= 0 . (11.61)

By Lemma 11.16 and using the definition of Lup
1

tPT

Lup
1∑
i=0

ωi
rmax
i

≤ t

 ≤ exp

Lup
1 (1 + log t− logLup

1 ) + log t+

Lup
1∑
i=0

log rmax
i

 ,

where the right-hand side converges to 0 for t→∞. Moreover, by Lemma 11.16

tPT

Lup
2∑
i=0

ωi
rmax
i

≤ t

 ≤ t exp(δρLup
2
t)

exp
(
ρLup

2
Rmax

0,Lup
2

log(1 + δ)
) (11.62)

holds for any δ ∈ (0, 1) which may also depend on t. Note that sup`∈N ρ` <∞ holds
by our assumptions that the transition rates are uniformly bounded from above. Set
δ = 2(t2/3ρLup

2
)−1 log t for all t large enough. Using the definition of Lup

2 and the Taylor
expansion of the logarithm, we conclude that the right-hand side in (11.62) converges
to 0 for t→∞. Since Lup = min(Lup

1 , L
up
2 ), we obtain (11.61).
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Figure 42: The 3-regular tree satisfying a flow rule with equal splitting as an example
for a tree with exponential decaying rates.

For the remaining bound in Theorem 11.22, recall the slowed down exclusion process
from Section 11.3.2. By Lemma 11.18 and Lemma 11.20, note that for some c > 0

PT (JLlow(5t) < nt) ≤ PT

(
Gω̃
nt+Llow,nt

≥ 5t
)
≤ e−cnt (11.63)

holds P-almost surely when t is sufficiently large. Consider a sequence of times (ti)i∈N
such that ti →∞ as i→∞ and

lim
i→∞

JLlow(5ti)(5ti)

nti
= lim inf

t→∞

JLlow(5t)(5t)

nt
(11.64)

By possibly removing some of the ti’s, we can assume without loss of generality that
nti < nti+1

. This way, nti ≥ i for all i ∈ N. Therefore by (11.63) and the Borel–Cantelli
lemma, we obtain that

JLlow(5ti) ≥ nti

holds almost surely for all i large enough. Theorem 11.22 follows from (11.64).

Remark 11.23. Note that the bound in Theorem 11.22 involving Llow continues to
hold when we replace nt by some n with nt ≥ n > c′ log t.

11.5 Current theorems for the TASEP on regular trees

In this section, we let the underlying tree be a d-regular tree, i.e., we assume that
the offspring distribution is the Dirac measure on d− 1 for some d ≥ 3; see Figure 42.
Our goal is to show how the results of Theorems 11.6 and 11.7, and more generally of
Theorems 11.21 and 11.22 can be refined when we have detailed knowledge about the
structure of the tree and the rates. This is illustrated in Section 11.5.1 for polynomially
decaying rates, and in Section 11.5.2 for exponentially decaying rates.
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11.5 Current theorems for the TASEP on regular trees

11.5.1 The regular tree with polynomially decaying rates

Consider the d-regular tree and homogeneous polynomial rates, i.e. we assume that we
can find some p > 0 such that the rates satisfy

1

jp
= rmin

j = rmax
j (11.65)

for all j ∈ N. For this choice of the rates, we want to show how the bounds in
Theorem 11.21 on a time window can be improved. In the following, we will write
an ∼ bn if limn→∞ an(bn)−1 = 1. Note that Dn andMn from (11.5) and (11.7) satisfy

Dn ∼
(
n2+coclow log3 n

) 1
p and Mn ∼

d− 1 + δ

d− 2
min(Dn, n)

for all p > 0 and δ > 0. Recall that we are free in the choice of the sequence of
generations (`n)n∈N with `n ≥ Mn for all n ∈ N along which we observe the current
created by the first n particles entering the tree. We assume that (`n)n∈N satisfies

lim
n→∞

Mn

`pn
= a , lim

n→∞

nMp
n

`p+1
n

= b (11.66)

for some a ∈ [0, 1) and b ∈ [0,∞). We apply now Theorem 11.21 in this setup.

Proposition 11.24. Consider the TASEP on the d-regular tree with polynomial weights
from (11.65) for some p > 0, and a and b as in (11.66) for some sequence of generations
(`n)n∈N. Let tup, tlow be taken from (11.49), (11.50) and (11.52). For a ∈ [0, 1) and
b = 0,

lim
n→∞

tup

tlow
= lim

n→∞
tup

(d− 1)(1 + p)

(1− a)`p+1
n

= 1 . (11.67)

For a ∈ [0, 1) and b ∈ (0,∞),

c ≤ lim inf
n→∞

tup

tlow
≤ lim sup

n→∞

tup

tlow
≤ c′ (11.68)

holds for some constants c, c′ > 0.

Proof. For b ∈ (0,∞), we observe that for the above choice of transitions rates

( min
Mn<|x|≤`n

rx)R
min
Mn,`n = r`n

`n∑
k=Mn

1

rk
=

1

`pn

`n∑
k=Mn

kp ∼ 1

`pn

∫ `n

Mn

xpdx ∼ 1− a
1 + p

`n

holds, and hence θ =∞ in (11.51). Thus, we see that

tup ∼ 5(n(Mn)p + (Mn)p+1) +
1− a

(d− 1)(1 + p)
`p+1
n . (11.69)
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A similar computation for b = 0 shows that tup ∼ (1− a)((d− 1)(1 + p))−1`p+1
n holds.

For the lower bound tlow, we use that tlow ≥ tlow1 with tlow1 in (11.49) to see that

tlow ∼ Rmin
0,`n ∼

1− a
(d− 1)(1 + p)

`p+1
n (11.70)

holds. Therefore, combining (11.69) and (11.70), we obtain a sharp time window where
we see a current of order n when b = 0. We obtain the correct leading order for the
time window to observe a current linear in n in the case of 0 < b <∞.

11.5.2 The regular tree with exponentially decaying rates

We now study the d-regular tree with exponentially decaying rates, i.e. the rates satisfy

κe−cup` = rmin
` = rmax

`

for all ` ∈ N and some constants κ, cup > 0. In this setup, our goal is to improve the
bounds on the window of generations in Theorem 11.22. Let (Nt)t≥0 be some integer
sequence and assume that for some cexp ∈ [0, 1).

lim
t→∞

logNt

log t
= cexp . (11.71)

Proposition 11.25. Consider the TASEP on the d-regular tree with exponentially
decaying rates, and fix some δ ∈ (0, 1). We set

L̃up :=

⌈
1

cup
log t

(
1 + log−

1
3 t
)⌉

and L̃low :=
1− δ
cup

log t . (11.72)

Then there exists some C = C(δ, cup) > 0 such that if cexp ≤ C, then

lim
t→∞

JL̃up
(t) = 0 and lim

t→∞

1

Nt

JL̃low
(t) =∞ . (11.73)

In particular, for cexp = 0, we can choose L̃up and L̃low such that L̃up ∼ L̃low holds.

Proof. We start with the lower bound L̃low. Observe that by Theorem 11.3, there
exists some C = C(δ, cup) ∈ (0, 1) such that the first dtCe particles are P-almost surely
disentangled at generation Llow for all t sufficiently large. Since Jm(t) is decreasing
in the generation m, and Mn is increasing in the number of particles n, we apply
Theorem 11.22 and Remark 11.23 to conclude the second statement in (11.73). For
the first statement, we follow the proof of Theorem 11.22. It suffices to show

lim
t→∞

2λtPT

 L̃up∑
i=0

ωi
rmax
i

< t

 = 0 , (11.74)
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where (ωi) are independent Exponential-1-distributed random variables. Using Cheby-
shev’s inequality, we obtain that

PT

 L̃up∑
i=0

ωi
rmax
i

< t

 ≤ exp

L̃up −
L̃up∑
i=0

log
(

1 +
L̃up

t
κ exp(cupi)

) .

Since L̃upt
−1 exp(cupi) ≥ 0 holds for all i ∈ N, we see that

tPT

 L̃up∑
i=0

ωi
rmax
i

< t

 ≤ exp

log t+ L̃up −
L̃up∑

i=bL̃up−
√
L̃upc

(
cupi+ log(κL̃up)− log t

) .

Plugging in the definition of L̃up from (11.72), a computation shows that the right
hand side converges to 0 when t→∞. This yields (11.74).

11.6 Open problems

We saw that under certain assumption on the transition rates, the first n particles in
the TASEP will eventually disentangle and continue to move as independent random
walks. Intuitively, one expects for small times that the particles in the TASEP block
each other, and hence force each other not to follow their predecessors. This raises the
following question.

Question 11.26. Consider the TASEP (ηt)t≥0 on T started from the configuration
where all sites are empty. Let (η̃t)t≥0 be the dynamics on T where we start n independent
random walks at the root. Let pn,` and p̃n,` denote the PT -probability that the first n
particles are disentangled at level ` in (ηt)t≥0 and (η̃t)t≥0, respectively. Does p̃n,` ≤ pn,`
hold for all `, n ∈ N?

It is not hard to see that this is true for n = 2. However, already the case n = 3

remains unclear. The next question concerns the current in the TASEP on trees
through generations which increase in their distance from the root with time.

Question 11.27. Does the aggregated current of the TASEP on trees from Theo-
rem 11.6 for a given sequence of generations increasing with time satisfy a law of large
numbers?

We saw that in Part II of this thesis that a natural tool to investigate the transition
from a non-equilibrium starting distribution to equilibrium are mixing times for finite
exclusion processes. One possibility to get a family of finite approximations of the
TASEP on trees is by truncating the tree at generation n for n ∈ N; see Section 10.3.

Question 11.28. What is the mixing time of the TASEP on trees, when the tree is
truncated at generation n?
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