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Abstract
Environmental and host-associated microbial communities are complex ecosystems, of which
many members are still unknown. Hence, it is challenging to study community dynamics and
thus important to create model systems of reduced complexity that mimic major community
functions. However, comprehensive strategies for construction of such simplified communities
are lacking. Here we present “MiMiC” (Minimal Microbial Consortia), a bioinformatic
approach that derives the composition of the original metagenomic community into a
minimal microbial consortium that represents main functionalities of the ecosystem.
MiMiC uses an iterative scoring system based on maximal match-to-mismatch ratios of Pfams
(protein families) between single genomes and the input metagenome. To this end, all bacterial
and archaeal genomes available (~156k) until February 2019 in the NCBI (National Center for
Biotechnology information) RefSeq genome database were used.

First, I built a binary matrix (presence/absence) of Pfam (n = 17,929) for each genome
assembly. Further, the redundancy of the genome assemblies was reduced using reference,
representative and most completeness score for the prokaryotic species. This resulted in a
Pfam binary vector of reference genome database containing 45 phyla, 95 classes, 213 orders,
481 families, 2,617 genera, and 22,627 species. This was complemented by three host-specific
bacterial reference genome datasets of Pfam binary vectors from pig (111 species), mouse
(104 species) and human (803 species) gut-derived isolates. By analyzing 937
metagenomes, I demonstrated that Pfam vectorization retained enough resolution to
distinguish shotgun metagenomic profiles from various environments. Metagenomes
from various locations in the mouse gut (colon, ileum, cecum) and their association with
healthy or inflamed conditions (susceptibility to DSS-induced colitis) formed distinct
clusters based on Pfam binary vectors.

Furthermore, I evaluated MiMiC on the MBARC mock community (a reference mixture of
known microbes) and found that the corresponding minimal community inferred from
the entire reference database (n=22,806 genomes) represented 97% and 92% of the
original functional and taxonomic profile, respectively. Also, I evaluated the MiMiC
outcome using publicly available metagenomic datasets including human, mouse and pig gut,
human tongue, soil and ocean. Pfam matches were significantly higher (p < 0.001) in
MiMiC-selected consortia than in random sets of an equal number of species in all types
of metagenomes. In addition, I predicted 23 species as a representative consortium for pig
metagenomes (n=284) from the set of PiBAC (The Pig Intestinal Bacterial Collection) species
(n=111). All in all, I demonstrated that MiMiC is able to propose the minimal microbial
community functionally close to the native ecosystem and validated this approach on the mock
community (MBARC). All scripts and data deployed during the work are open source and can
be accessed at https://github.com/ClavelLab/MiMiC.
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Zusammenfassung
Umwelt- und wirtsassoziierte Mikroorganismen-Gemeinschaften sind komplexe Ökosysteme,
von denen zahlreiche Mitglieder bisher noch unbekannt sind. Untersuchungen der
Gruppendynamik sind daher sehr anspruchsvoll, weshalb Modellsysteme mit reduzierter
Komplexität erstellt werden müssen, welche die Hauptfunktionen der Gemeinschaft imitieren
können. Bisher fehlt es jedoch noch an geeigneten Strategien zur Entwicklung dieser
vereinfachten Gemeinschaften. Nachfolgend stellen wir “MiMiC” (Minimal Microbial
Consortia) vor, einen bioinformatischen Ansatz, der ein minimales mikrobielles Konsortium,
das die Hauptfunktionen des Ökosystems darstellt, von der ursprünglichen metagenomischen
Gemeinschaft ableitet. MiMiC verwendet ein iteratives Bewertungssystem, das auf dem
Verhältnis zwischen maximaler Konkordanz und Diskrepanz von Pfams (Proteinfamilien)
zwischen einzelnen Genomen und dem Ausgangs-Metagenom basiert. Zu diesem Zweck
wurden alle Bakterien- und Archaeengenome verwendet (~156k), die bis Februar 2019 in der
RefSeq-Genomdatenbank des NCBI (National Center for Biotechnology Information) zur
Verfügung standen.

Zunächst habe ich für jede Genomassemblierung eine binäre Matrix (Anwesenheit/
Abwesenheit) aus Pfams (n = 17.929) erstellt. Des Weiteren wurde die Redundanz der
Genomassemblierungen, für die prokaryotischen Spezies unter Verwendung von Referenz-,
Repräsentativ- und Vollständigkeitswerten verringert. Daraus entstand eine
Referenzgenom-Datenbank für Pfams aus Binärvektoren der 45 Phyla, 95 Klassen, 213
Ordnungen, 481 Familien, 2.617 Gattungen und 22.627 Arten enthielt. Dies wurde durch drei
wirtsspezifische Bakterien-Referenzgenom-Datenbanken aus Darmisolaten von Schweinen
(111 Arten), Mäusen (104 Arten) und Menschen (803 Arten) ergänzt. Durch die Analyse von
937 Metagenomen konnte ich zeigen, dass die Vektorisierung der Pfams für die
Unterscheidung von shotgun-metagenomischen Profilen aus verschiedenen Umgebungen
ausreichend ist. Es stellte sich heraus, dass Metagenome aus verschiedenen Bereichen des
Mausdarms (Kolon, Ileum, Zäkum) und Bereichen, die mit gesunden oder entzündeten
Zuständen (Anfälligkeit für DSS-induzierte Kolitis) assoziiert sind, eindeutige Gruppen auf der
Basis von binären Pfam-Vektoren bildeten.

Darüber hinaus habe ich MiMiC an der MBARC-Scheingemeinschaft (einer Referenzmischung
bekannter Mikroorganismen) getestet und festgestellt, dass die entsprechende minimale
Gemeinschaft, die aus der gesamten Referenzdatenbank (n = 22.806 Genome) abgeleitet
wurde, 97 % des ursprünglichen funktionellen beziehungsweise 92 % des ursprünglichen
taxonomischen Profils betrug. Außerdem evaluierte ich das MiMiC-Ergebnis anhand öffentlich
verfügbarer metagenomischer Datensätze, einschließlich Menschen-, Mause- und
Schweinedarm, menschlicher Zunge, Boden- und Meerwasserproben. In den von MiMiC
ausgewählten Konsortien fanden sich mehr signifikante (p< 0,001) Übereinstimmungen
zwischen Pfams als in zufälligen Sätzen gleicher Artenzahl, in allen Metagenom-Typen. Die
Diskrepanzen blieben, mit Ausnahme der Schweinedarm- und Meerwasserproben, niedriger
als bei zufälligen Sätzen. Darüber hinaus prognostizierte ich 23 Arten als repräsentatives
Konsortium für Schweine-Metagenome aus der Gruppe der PiBAC-Arten (The Pig Intestinal
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Bacterial Collection, n = 111). Zusammenfassend konnte ich darlegen, dass MiMiC in der Lage
ist, die minimale Mikroorganismen-Gemeinschaft aufzustellen, die dem ursprünglichen
Ökosystem funktional am nächsten ist. Außerdem konnte ich diese Methode an der
Scheingemeinschaft (MBARC) validieren. Alle während dieser Arbeit bereitgestellten Skripte
und Daten sind quelloffen und können unter https://github.com/ClavelLab/MiMiC abgerufen
werden.
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1 Introduction
The present PhD work focuses on the selection of prokaryotic species in any given microbial
ecosystem to design personalized simplified microbial consortium based on shotgun
metagenomic data. This introduction highlights background information on microbiomes,
metagenomic sequencing, bioinformatics, functional annotation of microbial species, and
simplified microbial communities.

1.1 Background and recent development to study microbial
species via sequencing

1.1.1 Early development in microbiology
“Microbiology” is a broad research discipline that studies the diversity and biology of microbes.
The invention of the microscope opened the door to the new hidden world of microorganisms in
the late 17th century. The field of microbiology has evolved tremendously since Antonie
van Leeuwenhoek was the first to attempt looking at bacterial cells through a
self-invented microscope in 1663 (Gest 2004). In the early phase of microbiology, only
cultured bacteria were used for detailed studies. Louis Pasteur’s discoveries about
vaccinations and fermentation provided an early ground for the impression and the role of
bacteria in human health and disease (Lenormant 1861; Pasteur, Chamberland, and Roux
2002; Smith 2012). Robert Koch initiated the approach of isolating bacteria being responsible
agents for infectious diseases. Initially, microorganisms were classified only based on
morphology and Gram-staining behaviour (Coico 2005; “Ueber Die Isolirte Färbung Der
Schizomyceten in Schnitt- Und Trockenpräparaten von Dr. Gram, Kopenhagen. — Fortschritte
Der Medicin 1884 No. 6. Ref. Dr. Becker” 1884). Later in the 1970’s, Carl Richard Woese
proposed the use of 16S rRNA molecules and genes there to classify and characterize bacteria
via sequence comparison and phylogenetic analyses (Woese, Kandler, and Wheelis 1990;
Woese and Fox 1977; Escobar-Zepeda, Vera-Ponce de León, and Sanchez-Flores 2015). The
16S rRNA is a conserved molecule within prokaryotic ribosomes that can be used as a
phylogenetic clock and thus helps differentiating two species thanks to heterogeneity within
variable regions of the molecule (Coenye and Vandamme 2003).

1.1.2 Moving from culture-based to molecular microbial ecology via
sequencing
After the development of PCR by Kary Mullis in the 1980's (Kary B. Mullis et al. 1987; K. B.
Mullis 1990; Garibyan and Avashia 2013) and the construction of first 16S rRNA gene libraries
by Giovannoni (Britschgi and Giovannoni 1991), Handelsman proposed the term
“metagenome”, in the context of collective genomes of microbial species in soil
environment (J. Handelsman et al. 1998; Jo Handelsman 2004). Metagenomics can be
defined as the area of microbiology dedicated to the study of complex microbial communities
via sequencing the assemblage of all genomes from community members (Liebl 2011; Quince
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et al. 2017). The classification of microbes via 16S rRNA gene amplicons sheds light onto the
dark matter within microbiomes not accessible by cultivation methods. In other words, 16S
rRNA gene amplicon based studies allowed investigating the yet uncultured fraction of
microbial communities. At the same time, Carl Woese used 16S rRNA genes to study
evolutionary relationships between different bacterial species and defined the Archaea as a
new domain of life in 1977 (Woese and Fox 1977). Recent development and cost reduction
made it convenient to sequence the whole genetic material of microbial species from an
environment (http://www.genome.gov/sequencingcostsdata). Whole shotgun metagenomics
made it possible to study microbes at the level of functional potentials (gene catalogues) and
nowadays with strain-level resolution (Dilthey et al. 2019). Sequencing 16S rRNA gene
amplicons or whole DNA (shotgun metagenomics) has tremendously helped
discovering a substantial number of microbial species and their functions, which was
not possible via cultivation methods alone.

1.2 Sequencing approaches in microbiology
Fredric Sanger and colleagues proposed the revolutionary chain termination method in 1977
(Sanger, Nicklen, and Coulson 1977). Since then, sequencing technologies have developed
tremendously. High-throughput sequencing of DNA or RNA molecules enables rapid and
comprehensive exploration of whole genomes and expressed functions. In 1995, the first
complete genome was sequenced, namely the genome of the bacterium Haemophilus
influenzae Rd (Fleischmann et al. 1995). Since then, the quality and throughput of sequencing
have improved and costs have decreased exponentially, allowing scientists to obtain more
insights at lower costs (http://www.genome.gov/sequencingcostsdata). Sequencing has
become the most fundamental research approach to obtain evolutionary and functional insights
into microbial communities. Sequencing habitat-specific microbial communities opens new
avenues for the development of innovative strategies in the context of human health and
environmental research. Sequencing 16S rRNA genes and whole genomes from complex
microbial communities allows gathering valuable information on species members and their
functions, even if many of them can not yet be cultured in laboratories.

Depending on the aims of a study, several sequencing approaches can be applied.
Sequencing only 16S rRNA amplicons gives an idea about the overall taxonomic
composition and phylogenetic diversity of communities. Shotgun sequencing gives
more in-depth information about the functional potential and strain-level diversity within
the ecosystem (Hugenholtz, Goebel, and Pace 1998). Metatranscriptomics gives
information about expressed functions under varying environmental conditions
(Aguiar-Pulido et al. 2016).

1.2.1 High-throughput 16S rRNA gene amplicon sequencing
The very first question usually asked while studying a microbial ecosystem is “What is
its composition?”. This can be addressed by amplifying and sequencing 16S rRNA genes.
Unlike eukaryotes, prokaryotic ribosomes are composed of two unequal subunits (40S and
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30S). The small 30S subunit contains 16S rRNA molecules that play a structural role and
thereby help the translation machinery (Schluenzen et al. 2000). 16S rRNA gene amplicon
sequences are evolutionarily conserved. They contain hyper-variable regions that help
distinguish between bacteria down to the species level (Gray, Sankoff, and Cedergren 1984).
With this feature, 16S rRNA genes are used as chronological markers and to infer phylogenetic
distances between microorganisms. 16S rRNA genes are approximately 1,500 bp-long
(Clarridge 2004). Prior to sequencing, variable regions need to be amplified by PCR. This can
be done by using a variety of more or less universal primers, which substantially influence the
outcomes of analysis (Klindworth et al. 2013). Obtaining 16S rRNA profiles involve several
steps from the wet lab to computational analysis, as follows:

● Sample collection and metagenomic DNA isolation. During these steps, freeze-thaw
cycles are known to influence microbial profiles and the lysis of prokaryotic cells is a
critical parameter.

● Amplifying hyper-variable regions followed by PCR cleanup and equimolar pooling:
during this step, the choice of primers is important and the number of PCR cycles
should be kept to a minimum (Bonnet 2002).

● Sequencing using next-generation machines. Technical parameters such as
sequencing length, depth and coverage vary between technologies (Illumina, PacBio,
Nanopore).

● Bioinformatic analysis of generated sequencing data: computation involves several
steps from preprocessing of raw sequences to the generation of final readouts. Reads
are usually first demultiplex (assigned to their sample of origin), quality checked and
potentially assembled if paired-end sequencing was performed. Amplicon Sequence
Variants or Operational Taxonomic Units are built and further analyzed in terms of alpha
and beta-diversity as well as taxonomic composition (Edgar 2013; Callahan et al. 2016).

Alpha-diversity is used to represent the diversity of species within a given environment
(Whittaker 1960, 1972). Species richness is the number of observed molecular species found
in a specific sample. Alpha-diversity parameters such as the Shannon-index and
Simpson-index do take into account the abundance of individual species (Whittaker 1972;
Shannon 1948; Spellerberg and Fedor 2003). Relative abundance is used to appreciate the
level of occurrence of species and allows comparison between samples (Hubbell 2001; McGill
et al. 2007). Beta-diversity is used to explain the level of relatedness between two ecosystems
based on their microbial makeup (Whittaker 1960). Phylogenetic trees can be visualized based
on 16S rRNA gene amplicon data. Evolutionary relationships between ecosystem members
can be studied using phylogenetic trees.

16S rRNA gene amplicon sequencing made it possible to identify and estimate the
occurrence (relative abundance) of species members in complex microbial ecosystems.
Eztaxon (Yoon et al. 2017), SILVA (Pruesse et al. 2007), and RDP (Ribosomal Database
Project) (Cole et al. 2014) are major platforms providing databases and tools for 16S rRNA
gene amplicon-based analysis. QIIME2, Mothur, DADA2 are few important bioinformatic
pipelines to analyze 16S rRNA gene amplicon data from row read to OTU table, taxonomy, and
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downstream statistical analysis (Bolyen et al. 2019; Schloss et al. 2009; Callahan et al. 2016).
IMNGS (Integrated Microbial Next Generation Sequencing), is a web-based platform for the
integration and processing of 16S rRNA gene amplicon sequencing data based on the
UPARSE pipeline (Edgar 2013; Lagkouvardos, Joseph, et al. 2016). Rhea is a R based
pipeline for statistical analysis of OTU tables generated by IMNGS or other programs.
(Lagkouvardos et al. 2017).

1.2.2 Metagenomics
16S rRNA gene amplicon sequencing allows classifying prokaryotes, but the functions
encoded within the communities are still unknown. In contrast, whole shotgun genome
sequencing of individual species and subsequently collective sequencing of whole
metagenomic DNA present in ecological systems give the opportunity to study community
functions. Due to extensive development in the cultivation of anaerobes and in high-throughput
sequencing techniques, hundreds of microbial species are being isolated and described every
year. Whole genome sequencing of bacterial isolates has made it easier to understand the
functional capacity of a bacterium and the evolutionary and functional relatedness with other
species within an environment (Wooley, Godzik, and Friedberg 2010).

After the Sanger sequencing method (Sanger and Coulson 1989; Sanger, Nicklen, and
Coulson 1977), many sequencing technologies have emerged such as pyrosequencing (Nyrén,
Pettersson, and Uhlén 1993) (first NGS machine from Roche), reversible terminator
sequencing by synthesis (Canard and Sarfati 1994) (Illumina), Nanopore sequencing (X. Sun
et al. 2020) and Pacific Biosciences (Coupland et al. 2012; Sharon et al. 2013). Despite
progress made in the ability to cultivate single species and to study their genomes, it is
still challenging to obtain each and every single microbial species from a given
ecosystem. Shotgun metagenomics can help here: using computational methods, it is
possible to assemble short reads into species and even strain-specific individual
genomes, also referred to as MAGs (metagenome-assembled genomes) (Parks et al.
2018; Pasolli et al. 2019; Plaza Oñate et al. 2019). For shotgun approaches, protocols consist
of several steps that must be tightly controlled in order to generate high-quality sequence data.
(Costea et al. 2017). The standard protocol of metagenomic starts from isolating metagenomic
DNA, preparing library sequencing, and eventually bioinformatic analysis. The latter steps
involve preprocessing, assembly, taxonomic assignment of reads and functional annotation.
The preprocessing step involves quality control, demultiplex, adapter removal, filtering
host-specific reads.

Using computational methods, it is possible to determine genes, functional pathways and
biological interactions between community members. However, proper metagenomic data
processing is highly dependent on the quality of reference databases. In contrast to 16S rRNA
gene amplicon sequencing reads, metagenomic data generate enormous amounts of reads
which have to be processed on a unix/Macintosh based operating system with higher power of
random access memory (RAM). Bioinformatic pipelines are combinations of bioinformatic tools
used for step by step processing of sequencing data. Metagenomic pipelines can be
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customised based on the specific requirement and choice of different bioinformatic tools.
Conda allows users to install different bioinformatic softwares in one package used for
metagenomics under the channel named bioconda (Grüning et al. 2018). MetaPhaln2 and
kraken2 are widely used tools for taxonomic classification (Truong et al. 2015; Wood and
Salzberg 2014; Wood, Lu, and Langmead 2019). MetaPhaln2 uses predefined marker genes to
assign reads to species whilst Kraken/kraken2 uses complete microbial genomes from NCBI.
MEGAHIT and metaSPAdes are main tools to assemble metagenomic reads into contigs (Nurk
et al. 2017; D. Li et al. 2015). MetaBAT2 is one of few tools to assign contigs into draft
genomes, a process referred to as genome binning (Kang et al. 2015). The MOCAT2 pipeline
provides a range of tools including preprocessing, quality control, assembly, taxonomy, and
functional annotation (Kultima et al. 2016). HUMAnN2 and prokka are pipelines that provide a
functional insights into a metagenome by assigning reads to conserved domain sequence,
proteins, protein families, metabolic enzymes, cluster of orthologous genes (COGs) and
metabolic pathways (KEGG) (Franzosa et al. 2018; Seemann 2014). MG-RAST has been used
as a web-based tool for submitting, processing and annotating metagenomes (Meyer et al.
2008). Different tools and pipelines have their own pros and cons in terms of computational
requirement, time required for processing, databases and algorithms used. As an example
mapping reads to protein using standard BLASTX will cost a lot of computational timing and
source compared to DIAMOND blast (Altschul et al. 1990; Buchfink, Xie, and Huson 2015). A
benchmark of different tools designated for the same purpose can help to accommodate
and choose the right tool for processing or analysing the data (Ye et al. 2019; Fritz et al.
2019). Taxonomic abundance information from metagenomic data can be analyzed in a similar
way as 16S rRNA amplicon data. Species richness, alpha-diversity and beta-diversity can also
be calculated from metagenomic data.

1.3 NCBI sequence database
NCBI is a division of the National institute of Health (NIH) and hosts several databases,
bioinformatic tools. GenBank is the primary sequence database of NCBI which interchange
sequence data on daily bases with two other collaborative centers European Molecular Biology
laboratory (EMBL) and DNA Databank of Japan (DDBJ) (Benson et al. 2012). Sequence Read
Archive (SRA) is the database for high-throughput short read sequencing data hosted by NCBI.
High throughput sequence data have to be submitted to SRA or European Nucleotide Archive
(ENA) prior to publishing the study. GenBank does not accept nucleotide sequences less than
200 base pairs. Being as a primary database, GenBank allows multiple entries for the same
sequence (loci). Whole genome shotgun (WGS) database accepts the genome sequence for
prokaryotic and eukaryotic genomes. To overcome the redundancy of the same species
and quality standard, a separate reference sequence database was built and named as
NCBI RefSeq database. NCBI RefSeq allows one sequence per loci filtering from
GenBank. NCBI RefSeq (Pruitt, Tatusova, and Maglott 2005) contains well-curated whole
genome sequences of bacterial and archaeal species from several hosts and ecological
environments. The number of full genomes of bacteria, archaea and fungi has increased
exponentially in recent years, which allows more detailed functional characterization and
annotation of microbial species (Land et al. 2015).
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From the human gut alone, genomes from thousands of bacterial isolates are available and the
number is increasing each year (Bilen et al. 2018; Zou et al. 2019). Despite the advancements
of culture and sequencing techniques, there is still a long way to uncover all still unknown
microbial species and to understand the functional contribution of each in complex ecosystems
(Peisl, Schymanski, and Wilmes 2017). NCBI RefSeq genome database makes all microbial
genomes available as open source. Microbial genomes in NCBI RefSeq are annotated using
the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (Haft et al. 2018; Tatusova et al.
2016). RefSeq follows a defined quality control standard and maintains high-quality
genome assemblies and annotations. Refseq excludes the assemblies from
metagenomes, mixed cultures, single-cell genomes, undefined genera, low-quality
sequence and not meeting a certain cutoff of genome length (<15Mb), assembly quality
(L50 >500, N50 <5000 or N50 > 2000). Only genome sequences from pure cultures are
taken into account to reduce the risks of any biological contaminations. Moreover,
Refseq provides the list of assemblies as reference or representative genome assemblies
following certain criterias. Reference genomes are chosen based on experimental backup,
sequence and annotation quality. Representative genomes are assigned based on manual
curated information about the assembly, lowest standard deviation from the average assembly
length of the available assemblies of the species. Non-reference and non-representative
genome assemblies cover a majority of databases and were kept to observe the strain-level
variations within the species. Following all these criteria and strict quality standards,
RefSeq provides the best quality genomes of microbial species, which were utilized in
the present work to build a reference genome database and thereby predict minimal
microbial consortia.

1.4 Computational methods to define microbial function
The functional profile of a given metagenome provides insights into what microbes are
capable of doing in an ecosystem. The functional profile of metagenomes can be assessed
by several computational methods, including coding sequence (CDS prediction), gene ontology
(GO) (T. G. O. Consortium and The Gene Ontology Consortium 2008), KEGG pathway (M.
Kanehisa 1997; M. Kanehisa and Goto 2000; Minoru Kanehisa et al. 2006), protein family
(Pfam) (Finn et al. 2014), cluster of orthologs (COGs) (Tatusov, Koonin, and Lipman 1997) and
EggNOG (Jensen et al. 2008).

1.4.1 Gene prediction and protein annotation
The very first step in the process of assigning functions is to identify microbial genes. The basic
principle involves identifying open reading frames flanked by start and stop codons. A number
of tools like Glimmer (Delcher et al. 2007), GenemarkHMM (Lukashin 1998), EASY genes
(Schou Larsen and Krogh 2003), MED (Zhu et al. 2007), Prodigal (Hyatt et al. 2010) and
Prokka (Seemann 2014) exist for gene prediction. Prodigal provides an improved and better
prediction in terms of finding translation initiation sites, and less false positives ORFs. Protein
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annotations from gene prediction tools are further used to map on existing HMM models of
COGs or Pfams or metabolic pathways.

1.4.2 Cluster of Orthologs
COGs are clusters of orthologous proteins based on pairwise alignment of protein sequences
among the genomes from different clades. Orthologs are genes which are similar by structure
and oftenly have the similar functions in an evolutionary diverse species. Most often, orthologs
occur due to speciation during evolution by retaining the similar function from the common
ancestral genes (Fitch 1970; Fang et al. 2010). COGs are useful to characterize functions of
newly sequenced genomes of species and proteins by mapping them to the models of known
ortholog clusters. The basic rule of COGs is that a conserved gene should be orthologous in at
least 3 distantly related species which can be expanded further to find a match to another
group until there is no further hit found (Tatusov, Koonin, and Lipman 1997). Each cluster of
orthologs associated with conserved and specific function which consequently lead to predict
function prediction of a protein to be compared. COGs are assigned into 20 functional
categories, which makes it easier to interpret results. Initially, COGs were developed using
seven complete genomes, Escherichia coli, H. influenzae, Mycoplasma genitalium,
Mycoplasma pneumoniae, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces
cerevisiae from 5 different phylogenetically distant related phyla (Tatusov, Koonin, and Lipman
1997), which eventually developed further into a COG database and is accessible via the NCBI
database (Tatusov and Fedorova 2003).

COGs are the first initiative of its kind which were later used by several developers and a
number of databases were developed based on the similar approach (Galperin et al. 2015,
2020; Kristensen, Wolf, and Koonin 2017; Makarova, Wolf, and Koonin 2015). Based on a
concept similar to COGs, the EggNOG (evolutionary genealogy of genes of Non-supervised
Orthologous Group) database was created using a higher number of complete genomes from
bacteria and domains like eukaryotes and archaea (Huerta-Cepas et al. 2016; Jensen et al.
2008; Muller et al. 2010; Powell et al. 2012, 2014; Huerta-Cepas et al. 2019). Each cluster of
orthologous proteins is created as a Hidden Markov Model (HMM) (Eddy 2004).

1.4.3 Protein family
Pfam profiles are HMMs of evolutionarily related proteins sharing similar functional domains
(Sonnhammer et al. 1998; Sonnhammer, Eddy, and Durbin 1997). The Pfam represents
multiple sequence alignment of well curated proteins with known functions and HMM profile to
identify or assign function to a protein with unknown function. An extensive development has
been taken over the time in the Pfam database and it’s number of protein families (Bateman et
al. 2002; Finn et al. 2006, 2008, 2014; El-Gebali et al. 2019). The HMM profiles are made by
HMMER using seed alignment (Durbin et al. 1998). The seed alignment is generated and
updated based on experimentally validated proteins available in the latest updated version of
uniprotKB database (“UniProt: A Hub for Protein Information” 2015; Finn et al. 2016). Pfams
are classified a step further as clans (Sammut, Finn, and Bateman 2008). Clan is a group of
similar Pfam which share similar functional domains among different protein families and have
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emerged from a single evolutionary origin (Sonnhammer, Eddy, and Durbin 1997). About 75%
of Pfams are classified to a clan by 2019 (El-Gebali et al. 2019; Finn et al. 2016). Sequence
motifs and tertiary structure similarities are the main criteria used to assign Pfams into clans
(“UniProt: A Hub for Protein Information” 2015) .

An enormous number of sequence data is being generated and it is not possible to validate
each single protein's function experimentally. Pfam models are very handy to assign
functions based on similar functional domains present in the uncharacterized or
unannotated new proteins. At the same time, it is computationally quicker to annotate
protein using Pfam models than mapping protein sequences against each other within a
comprehensive database (Sonnhammer, Eddy, and Durbin 1997; El-Gebali et al. 2019).
Assigning more weight to the match in conserved regions helps to detect distant related
homology proteins and thus able to assign function to the poorly annotated genomes. Prosite
(Sigrist et al. 2010), Print (group of conserved motifs) (Scordis, Flower, and Attwood 1999;
Attwood et al. 2003), SMART (based on domains from signaling, extracellular and chromatin
related proteins) (Letunic, Doerks, and Bork 2009), InterPro (combined information from
multiple database) (R. Apweiler et al. 2001), CDD (conserved domain database including 3-D
structure information of protein) (Marchler-Bauer et al. 2013) are some of the databases that
used the similar concept of conserved domain in protein families.

1.4.4 Metabolic pathways
Metabolic pathway is a series of biochemical reactions interconnected with the
enzymatic reaction within a living cell (Fisher 2001). Use or consumption of energy in
bacterial cells depends on the metabolic pathways occurring in the cell. Metabolic pathways
are catalysts by enzymes that are proteins itself. Predicted proteins which are enzymes can be
annotated to metabolic pathways which provide an insight of microbial species responsible for
biochemical reactions. KEGG (Kyoto Encyclopedia of Genes and Genomes) provides the
detailed information of interconnected metabolic pathways and pathways involved in
transcription, translations, replication, membrane transport, signal transduction, cell growth, cell
membrane, immune system, human disease and drug development (M. Kanehisa 1997; M.
Kanehisa and Goto 2000; Minoru Kanehisa et al. 2006; Xiao et al. 2015). The BioCyc database
is another major source of metabolic pathways which are further categorized into several
branches. MetaCyc is the major branch of BioCyc database comprising a large number (2,749)
of metabolic pathways (Caspi et al. 2020).

1.5 Microbiome: profiling the whole microbial community from an
ecosystem
A microbiome is defined as the overall community of bacteria, archaea, fungi and viruses within
a specific habitat together with their genomes and surrounding environmental factors
(Highlander 2013; Marchesi and Ravel 2015). It represents a symbiotic system of
microorganisms in a specific environment or host (Lee Lerner and Lerner 2003).
Microbiomes are environment-specific and tend to be relatively stable at high taxonomic
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levels (e.g. phyla, families) without marked changes in environmental conditions, whilst
more variability has been observed at the species level. For instance, although various
species of the genus Bacteroides are found universally among healthy human individual’s
colon such as Bacteroides fragilis, Bacteroides oralis, Bacteroides melaninogenicus, relative
abundance profiles of the same species may vary depending on environmental conditions.
However, the functional profiles of an ecosystem has been observed to have the least variance
in spite of varying taxonomic profiles, partly due to functional redundancy but also our inability
to properly annotate substantial parts of sequence data (Human Microbiome Project
Consortium 2012).

Until recently, it was considered that the human microbiome represents 10 times more cells
than own eukaryotic cells in the human body itself (Luckey 1972). This assumption was
revisited in recent years, suggesting rather comparable cell numbers (Sender, Fuchs, and Milo
2016). In a recent study it was found that there are a total of 45,666,334 non-redundant genes
present in the human microbiome (Tierney et al. 2019). Microbiota is an inevitable part of
human health. Microbial composition also plays a major role at molecular level such as bile
acid metabolism (Ramírez-Pérez et al. 2017).

1.6 Roles of the Microbiome in human health and diseases
Microbial communities are an intrinsic part of human health. The human gut harbors complex
communities of commensal microbial species which benefit humans in a mutualistic way. The
human gut microbiota helps training the immune system, prevents colonization by
pathogenic strains, and can metabolize indigestible food components such as
carbohydrates and thereby produce short-chain fatty acids (Cummings JH Cummings
1981 JH). For instance, several members of the genera Bacteroides and Bifidobacterium are
specialized in the degradation of dietary fibers and complex carbohydrates (Larsbrink et al.
2014; Morowitz, Carlisle, and Alverdy 2011). Other bacteria are known to produce certain
vitamins such as vitamin B or vitamin K (B. Wang et al. n.d.2017).

Shifts in the gut microbiota have been associated with specific health conditions. Obesity or
inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, have been
linked for instance to dysbiosis of the gut microbiota, defined as structural or functional
changes in the ecosystem which were shown in some cases to play a causative role in disease
(DiBaise et al. 2008; Mukhopadhya et al. 2012). Firmicutes and Bacteroidetes are major
phyla within the human gut microbiome, the occurrence of which is altered in IBD (Sha
et al. 2013; Nemoto et al. 2012; Lloyd-Price et al. 2019). Alterations of the gut microbiota can
influence the immune system at the intestinal epithelial surface, thereby affecting mucosal
barrier and favoring uncontrolled immune responses to microbial antigens (Coskun 2014;
Frank et al. 2011; Maloy and Powrie 2011).

The gut microbiota also plays a role as mediator between the gastrointestinal tract and the
nervous system, also known as the gut-brain axis (Y. Wang and Kasper 2014; Sudo et al. 2004;
Mayer et al. 2014). The taxonomic compositions of the gut microbiota differ significantly
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between healthy individuals and patients with major depressive disorder (MDD) (Zheng et al.
2016). Changes in the gut microbiota were also reported in the case of autism and Parkinson’s
disease, albeit without causal relationships demonstrated yet (Buie 2015; Sarkar et al. 2016;
Dinan and Cryan 2015).

In terms of intervention, a healthy gut microbiota can be used to beneficially alter the disturbed
ecosystem via transplanting it to a subject with disease. Fecal microbiota transplantation
(FMT) has been used to successfully treat patients with chronic infection by the
Gram-positive pathogen Clostridioides difficile (van Nood et al. 2013; Moayyedi et al.
2017). Other types of interventions include prebiotics that may act by increasing the production
of short-chain fatty acids (Macfarlane, Macfarlane, and Cummings 2006).

1.7 Simplified microbial community

Figure 1: Mimicking an ecosystem with a minimum number of species. Concept of MiMiC
representing the complex microbial ecosystem (left) with the minimum bacterial community (right).

A synthetic microbial consortium (or community) can help to understand the symbiotic
relationships between species in a defined environment. The term “consortium” was used
for the first time by Johannes Reinkee in 1872 (Reinke 1872; Kull 2010). A few computational
methods have been developed to design and study minimal microbial consortia using different
approaches like dynamic models and flux balance analysis. Dynamic models can predict the
richness of species over the time in a consortium (McCarty and Ledesma-Amaro 2019). Flux
balance analysis (FBA) simulates metabolic networks of microbial communities based
on genome-scale reconstruction (Francke, Siezen, and Teusink 2005). FBA can predict the
growth of bacteria under a certain source of energy and vice-versa. The genomes scale
metabolic (GSM) reconstruction are built based on genome sequence of the organism using
genes, metabolic pathways, enzymes and their targeted biochemical reaction, and metabolites.
GSM predicts the growth, molecular mechanism, and metabolic pathways interaction of the
respective organism and it can be constructed on prokaryotes and eukaryotes (Thiele and
Palsson 2010). Information from many databases are integrated into one to build the metabolic
reconstruction of an organism. KEGG, BioCyc, MetaCyc, ENZYMES (Bairoch 2000), BRENDA
(Jeske et al. 2019), Bigg (King et al. 2016) are major databases from which the information
about pathways, corresponding enzymes for a protein and organism, and already predicted
GSM models are merged together into a mathematical model. Pathway Tools (Karp et al.
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2010), ModelSeed (Henry et al. 2010), CoReco (Pitkänen et al. 2014; Castillo et al. 2016), are
few major bioinformatic tools used to reconstruct GSM models.

Symbiotic relationships within microbial communities depends on the syntrophy of metabolites
between two species (Schink and Stams 2013). Stoichiometric metabolic models of metabolic
networks provide an insight of mutualism and adaptation of species to an environment by
predicting metabolic fluxes (Stolyar et al. 2007). Synthetic microbial consortia have
applications in bioremediation, biofuels and biotechnology to predict the effect of
certain species and metabolites in metabolic reaction. However, these models can predict
the behaviour of microbial species in a consortium whilst selecting the species at first place for
a synthetic consortium is still a challenge. Most of the computational tools have been
developed to model a consortium of knowledge based selected species. Which means these
methods are applied in the second step of designing microbial consortia. At the first step, a set
of species are needed with a well known function mimicking corresponding functions of
corresponding environment.

Due to advancement in the sequencing field it is possible to sequence the whole microbial
community from an ecosystem at once by high-throughput technologies instead of only relying
on conventional culture-based methods. This opens the door to an uncultured microbial world
whose function and abundance can be known via metagenomics (Hugenholtz, Goebel, and
Pace 1998). This provides an opportunity of more options to choose microbial species for a
microbial consortium mimicking or modeling a corresponding microbiota.

A microbiota provides a key to model an ecosystem by selecting the species depending on
their cumulative functions based on its metagenomic profile. It is well-known that, in an
ecosystem, a single species does not carry all the functions by itself, but rather the
functional potential is distributed among the multiple species in an interdependent
manner (Johns et al. 2016). Due to the inherent complexity of native microbial communities
and the still substantial dark matter (Filee et al. 2005; Lloyd et al. 2018) (i.e. unknown fraction)
within them, it is very difficult to study microbiomes in comprehensive manners. Hence, there is
a great value in building representative yet simplified models of complex native ecosystems
(Babaei et al. 2018; Baldini et al. 2019; Sen and Orešič 2019). This is where minimal microbial
consortia consisting of a limited number of known species are useful and allow deciphering
functional interactions between microbes and their environment. A minimal microbial
consortium can also be designed for specific purposes choosing microbes with certain
metabolic functional properties (Brenner, You, and Arnold 2008; Song et al. 2014). Our
approach (MiMiC) provides an essential step of selecting the minimum number of
species that represent the maximum functional profile of a corresponding environment.
This can be used further for studying species behaviour and interaction via metabolic networks
or genome scale metabolic reconstruction using existing methods like flux balance analysis.
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1.8 Example of existing minimal microbial consortia
Several minimal microbial consortia of gut microbes have been defined, including the Altered
Schaedler Flora (ASF) (Dewhirst et al. 1999) with 8 species, the Simplified Human Intestinal
Microbiota (SIHUMI) (Becker et al. 2011) with 7 species, and most recently the Oligo-MM
(Brugiroux et al. 2016) with 12 species in its basic conformation. Whilst the ASF consists of
isolates from the mouse gut and can be used to model murine microbiota, SIHUMI can be used
for the human intestinal microbiota. The OligoMM is helpful for understanding mechanisms
underlying resistance to enteric infection by Salmonella enterica serovar Typhimurium
(Brugiroux et al. 2016). Simplified microbial communities were proposed even for plant roots
(Zhang et al. 2019) and soil to understand biochemical interactions among the microbial
communities (Zhalnina et al. 2018) and how beneficial they could be for the growth of certain
plants. Several studies had been carried out in an attempt to understand the microbe-plant
interaction. It is essential to understand the mechanism of community dynamics for the
microbe’s benefits for the betterment of plants (Niu et al. 2017). Nie el al 2017 proposed 7
strains and studied the effect of individual species in this community to see how important the
keystone species could be in certain communities. Other simplified communities have been
proposed in sugarcane (Armanhi et al. 2017) and Arabidopsis thaliana (Herrera Paredes et al.
2018).

Although useful, the minimal microbial consortia mentioned above were designed by
hand-picking species according to expert knowledge about ecosystems and the functions
carried out by the respective species and driven by the ability to grow strains in the lab. Hence,
considering the tremendous diversity between individual microbiomes, they can not be used for
the purpose of individual studies. For instance, it has been observed that mice from different
facilities tend to be colonized by different microbiota with varying functional profiles (Alexander
et al. 2006).

1.9 Mock communities
A mock community is a predefined mixture of microbial species used for
standardization purposes and to simulate defined microbiota in vitro (Highlander 2015).
Since microbial composition, abundance are not known in an ecosystem prior to sequence, it is
difficult to estimate the accuracy of in vitro and in silico methods used to predict the microbiota.
For example, if a species is very low abundant in an ecosystem, there are few chances to get
the whole genome level information from metagenomic sequences unless the sequencing
depth and coverage is high. Mock communities help optimize analysis parameters and
estimate the reliability of predictions made from metagenomic data. The human microbiome
project (HMP) has provided a number of microbial mock communities which can be used for
streamlining bioinformatic analysis pipelines (Human Microbiome Project Consortium 2012;
“The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics
Profiles during Periods of Human Health and Disease” 2014).Mock microbiota is another
database consisting of 11 mock communities including bacterial, archaeal and eukaryotic
communities (Bokulich et al., n.d.2016). MBARC-26 (Mock Bacteria ARchaea Community
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MBARC-26) is a mixture of 23 bacteria and 3 archaeal strains with complete reference
genomes available (Singer et al. 2016). These species cover 10 different phyla and 14 classes,
including different abundances with very high coverage and long reads using Illumina and
PacBio sequencing. This mock community has been used in the present work to validate
computed prediction of minimal microbial consortium.
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2 Hypothesis and Aim of the dissertation
The primary aim of this dissertation was to simplify the inherent complexity within microbiota in
order to generate detailed functional insights and being able to generate individualized minimal
microbial consortia that depict the majority of the functional profile within a given metagenome.
There are several computational models that can simulate interactions between microbes in a
preselected set of microbial species. In most of the cases, these models of synthetic microbial
consortia are built based on the taxonomic composition of species or common knowledge on
their general functions. In contrast, there is a lack of computational methods to select species
for a minimal microbial consortium that represents the functional profile of the entire
ecosystem. We hypothesized that, despite the high diversity of microbial species that
coexist in an ecosystem, a minimum number of them which cover the maximum
functionality of the respective ecosystem can be used as functionally representative and
thus as backbone for minimal microbial consortia. We thus explored approaches on how
a minimal microbial consortium can be designed based on the functional profile of an
input metagenome. The second goal was to make the method freely available as a
bioinformatic tool to the scientific community.

Accordingly, the work within this dissertation was carried in a series of specific aims. The first
objective was to develop a reference genome database usable as a comprehensive reference
to construct minimal consortia as individual sets of microbial species. In this part of the
dissertation, I explored the genomes availability of microbial species (bacteria and archaea) in
NCBI and developed a curated reference database with the functional profile as protein family
(Pfam) binary vector (presence and absence). At the same time, I made a separate dataset of
host-specific microbial species such as pig (PiBAC), mice (miBC) and human gut. Following
this, I investigated how good Pfams were to distinguish different ecosystems and established it
as a fundamental unit of the method to generate function-based minimal microbial consortia. In
the third phase, I explored different ways of scoring the species for their selection in order to
obtain the best possible set that covers the original metagenomic functions. For validation, I
applied the final version of the scoring method on a mock community (i.e. a mixture of known
composition) and 937 metagenomes from diverse ecosystems. In the last section, I applied
MiMiC to generate minimal microbial consortia for two animal species of great importance in
research: pigs and mice. MiMiC is proposed as an open source bioinformatic pipeline providing
a series of shell, perl and R scripts to generate minimal microbial consortia from metagenomic
dataset.
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3 Materials and Methods
Sequencing the whole microbial DNA present in an ecological system provides detailed
information about the microbes and their functions. Reads generated via high-throughput
sequencing need to be processed to eliminate artifacts which may cause biases in the
generation of taxonomic as well as functional profiles. Here, I present a method to propose a
minimal microbial consortium from a given metagenome. The publicly available MBARC mock
community was used to validate the approach. Several publicly available metagenomic
datasets were taken from human, mice, pig, soil and ocean to investigate the Pfam-based
profiling and inferred minimal microbial consortia variations within and between the
ecosystems. The sources and further information on all these data are provided in detail below.
This method section is divided into following parts.

● Description of metagenomic datasets used in the dissertation.
● Pfam-based reference genome database.
● Processing of metagenomes and genomes.
● Scoring strategies.

○ MiMiC-score.
○ knee point calculation to determine the diversity of minimal microbial consortia.
○ Summary statistics generated from for minimal microbial consortia.

● Methods for visualization of Pfam-based classifications.

3.1 Metagenomic datasets
Metagenomes from different hosts, environmental habitats, and mock community were
selected from public repositories or published studies. A diverse collection of metagenomes
was considered to see if the functional profile of microbial communities based on Pfam could
be distinguished. The prediction of minimal microbial consortia based on metagenomic Pfam
profiles were expected to be specific to the respective ecosystem. The following section
provides detailed information on the final set of 937 metagenomes studied (Table 1).

3.1.1 Mock community
A mock community is a mixture of genomic DNA from already known microbial species with
complete genome; it can be used to benchmark bioinformatic and in vitro methods. I selected
the MBARC-26 (Mock Bacteria Archaea Community) (Singer et al. 2016) mock community to
test the performance of MiMiC (https://www.ebi.ac.uk/ena/browser/view/SRX1836716). It
contains the species with complete reference genome sequence available in the database,
which makes it more reliable to benchmark this approach.

3.1.2 Host-derived metagenomes
● Human

Metagenomes were selected from the Integrative Human Microbiome Project (iHMP) (“The
Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles
during Periods of Human Health and Disease” 2014). The iHMP project was initiated to
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establish and characterize human microbiota and its role in human health and disease. The
iHMP data portal provides access to metagenomic assemblies from different parts of the
human body. Already processed Metagenomic assemblies from different body sites were
downloaded (https://portal.hmpdacc.org/). Metagenomes were considered only from healthy
humans. The data was downloaded for feces and tongue.

● Mice
In research, mice are extensively used as a model organism to mimic the function, disease,
and drug responses in humans (Rosenthal and Brown 2007). Mouse gut metagenomes were
selected from the study of mouse gut gene catalog (Xiao et al. 2015) which included 184
mouse metagenomic samples from diverse strains, genetic background, providers and housing
laboratories. The samples were sequenced with Illumina HISeq 2000 as single and paired-end
layouts. The metagenomic files (paired-end) were downloaded from the ENA under the project
ID PRJEB7759 (https://www.ebi.ac.uk/ena/browser/view/PRJEB7759).

● Pig
Pig is also a model organism often used for human health and disease related studies (Bassols
et al. 2014). Pig gut metagenomes were taken from gut gene catalog study. There are 287 pig
samples sequenced by Illumina HiSeq 2000 under project ID PRJEB11755 in ENA (Xiao et al.
2016). Paired-end libraries were downloaded from the link “Submitted FTP”
(https://www.ebi.ac.uk/ena/browser/view/PRJEB11755). Metagenomes were sequenced from
three countries China, Denmark, and France.

3.1.3 Environmental metagenomes
In order to test the approach on diverse ecosystems, environmental metagenomic samples
from ocean and soil were also used in this study.

● Ocean
Ocean data was collected from the study of global ocean atlas of eukaryotic genes (Carradec
et al. 2018). The samples were collected from different sites world wide from the surface water
and deep surface chlorophyll maximum (DCM). Samples were sequenced with Illumina HiSeq
2000 in paired-end mode. The assemblies of processed data were downloaded from ENA
under the project ID “PRJEB4352” (https://www.ebi.ac.uk/ena/browser/view/PRJEB4352).

● Soil
I performed a search in NCBI assemblies for soil metagenomes and downloaded all 100
pre-assembled metagenomes from different studies (Tringe et al. 2005; Meier, Paterson, and
Lambert 2016; Johnston et al. 2016; Mitchell et al. 2018; Van Goethem et al. 2018; Carlos,
Fan, and Currie 2018).

3.1.4 Healthy vs disease susceptible metagenome
Metagenomes from DSS-colitis susceptible and non-susceptible mice were used to generate
minimal microbial consortia (Roy et al. 2017). Mice (76) were taken from several providers
(CharlesRivers (ChR), Taconic (Tac), National Cancer Institute (NCI), Helmholtz Centre for
Infection Research (HZI), Dys/N6 B6.Cg5Nlrp6tm1Flv from Yale, Harlan (Har)) and kept at the
facility of Helmholtz Center for Infection Research in Braunschweig. Mice were treated with
DSS (Dextran Sodium Sulphate) for 7 days and 3 days with normal water. If mice developed
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colitis following DSS treatment, the mice from the same provider and housing facility were
considered DSS-colitis susceptible. In contrast, mice that did not develop colitis were
considered as DSS-resistant. Samples were collected from different gut locations (ileum,
ceacum, colon) and sequenced with illumina HiSeq 2000 with read size 100 in paired-end
mode. Preprocessed metagenomic reads were provided by colleagues at HZI (Prof. Dr. Till
Strowig).

Table 1: Description of the final datasets used in this study

Metagenome Numbers of metagenome Source of data

Human gut 117 The Integrative Human
Microbiome Project (iHMP)

Human tongue 121 The Integrative Human
Microbiome Project (iHMP)

Mouse gut 170 (Xiao et al. 2015)

Mouse gut (Health vs disease
susceptible)

76 HZI (Prof. Dr. Till Strowig)

Pig gut 284 (Xiao et al. 2016)

Ocean 186 (Carradec et al. 2018)

soil 72 NCBI

Mock community 1 (Singer et al. 2016)

3.2 Reference genome database
MiMiC calculates the best functionally representative species from a reference genome
dataset. This approach is reference dependent and will always find the best functionally
representative species whose genomes were available in the reference dataset.
Considering this I made reference datasets based on bacterial and archaeal genomes
available in NCBI RefSeq genome database and host specific isolated bacterial genomes
from published studies.

3.2.1 NCBI RefSeq genome database

● Bacterial genome
NCBI RefSeq filters out the bad quality genome assemblies and makes a seperate data
repository from GenBank after carrying out certain quality controls. All annotated bacterial
genome files (translated_cds.faa.gz) were downloaded from NCBI RefSeq genome database
updated until February 2019. There were multiple assemblies for the same species in NCBI
RefSeq resulting in a huge redundancy for the annotated proteins as well. Some widely studied
species and pathogens had comparatively more redundancy. I developed a non-redundant
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reference database containing mostly one assembly per species. Multiple assemblies
were retained if they were marked as reference or representative genome.

● Archaeal genome
All archaeal annotated (translated_cds.faa.gz) files were downloaded from NCBI RefSeq
genome database updated until February 2019 (n=977) and Pfam binary vector was generated
for each annotated assembly accession. A non-redundant version of the database was
prepared based on the reference genome, representative genome and best checkM (Parks et
al. 2015) completeness score.

3.2.2 Host specific reference genome datasets
I made three host specific reference genome datasets collecting genome from three different
cultivable collections, human, mouse and pig.

● Human
I collected translated_cds.faa.gz from NCBI of 1500 isolated bacteria from fecal samples of
healthy humans (Zou et al. 2019). This collection covered major phyla including Firmicutes,
Bacteroidetes, Actinobacteria, Proteobacteria and Fusobacteria of human gut microbiota
profile. On the basis of the accession numbers provided in the study, I downloaded the
annotations from RefSeq database making up to 1486 assemblies representing 803 species. In
an effort to make a non-redundant database I calculated the completeness score (checkM) and
selected the assembly with the best completeness score. Though these species were
already present in the complete bacterial reference genome database, this subset could
be used specifically for human gut microbiota related studies.

● Mice
The MiMiC reference dataset for mice was made based on the genomes from cultivable
species proposed as the Mouse Intestinal Bacterial Culture Collection (miBC) (Lagkouvardos,
Pukall, et al. 2016). Mice are the most extensively used model organism to understand the
physiology and functional characterization for human related disease and health (Park and Im
2020). Still there is a large number of bacterial species that are yet to be uncovered or
characterized from mouse gut. The miBC culture collection covered a large number of diversity
in terms of phyla, family, genus and species level. The miBC culture collection of 78 species
provides a platform to explore the functions and possibly cultivable representative minimal
microbial consortia for different mouse models. The genome sequence and isolates are
available at www.dsmz.de/miBC. The expanded version of miBC culture collection including
104 cultivable species from the mouse intestine was used for MiMiC prediction of mouse gut
minimal microbial consortia.

● Pig
MiMiC reference dataset for pig was prepared based on the culture collection in Pig Intestinal
Bacterial Culture Collection (PiBAC) (Wylensek et al. 2020). The PiBAC culture collection
covers a huge diversity of pig gut microbiota expanding to 9 phyla, 39 families and 111 species.
The culture collection includes 21 novel species. Out of 111 species 65 genomes were
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sequenced in house and 46 genomes were picked as a close match in NCBI RefSeq in this
study. Reference or representative genomes were available for 36 species. There were 10
bacterial species that did not have the representative or reference genomes. For these species
the assembly with maximum completeness score using checkM was selected. The genome
sequence and isolates are available at www.dsmz.de/pibac.

3.3 Data preprocessing for making Pfam profile of
metagenome/genome

3.3.1 Processing of metagenomes

Figure 2: An overview of generating a Pfam profile for an ecosystem. Basic steps of scanning Pfam
domains on a sequenced metagenomic library. Starting from sequencing the library, read assembly,
gene and protein prediction and scanning of Pfams on the resulting protein sequences. The sequenced
reads and assembled genomic sequences are shown as grey lines and predicted genes/proteins as dark
blue. The yellow colored shapes depict the Pfam domains on protein sequences.

I developed an inhouse metagenomic pipeline to process the metagenomic raw reads into
assembly, protein annotation and Pfam (protein families) scanning. Figure 2 depicts a
conceptual representation of the functional metagenomic approach used in this study. I
have collected metagenomes from several sources. If the public datasets used in this study
had the contig assemblies available, I proceed from the protein annotation step. I had applied
the complete preprocessing pipeline only on pig and mice gut metagenomes.

Following methods and tools were applied on the metagenomic datasets and assembled
together as a bioinformatic pipeline.

● The quality control involves removing the reads with low sequencing quality below
defined threshold and removing adapter sequences. This step was carried out by fastp
[version 0.14.1] (Chen et al. 2018). Adapter sequences were removed with default
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option. Reads were filtered based on percentage of unqualified bases. The default
phred quality of a base should be more than 15(q) (Ewing et al. 1998). On average 40%
of unqualified base pairs were allowed in a sequence. Reads were trimmed at 3’end
(-3) with the average mean quality 20 and window size 16(-W). Reads less than 35 (-l)
base pairs were filtered out.

● It is important to know the species present in the metagenome that helps to understand
the taxonomic level abundance and richness in an ecosystem. Kraken was used to
define the read level taxonomic classification (Wood and Salzberg 2014).

● Host specific reads were filtered from the metagenomic data if the contamination is
expected really high (Bushnell 2014).

● Processed reads were assembled into contigs with default options (-meta) using
metaSPAdes tools version 3.13.0 (Bankevich et al. 2012).

● Contings were filtered based on the minimum length of 500 base pairs using seqkit
version 0.10.0 (Shen et al. 2016).

● The assembled contigs were then annotated for proteins using prodigal version 2.6.3
(Hyatt et al. 2010). Gene modeling parameters (-c, -m, -q, -f sco, -d) were used. Partial
genes were not considered at the edge of sequence with the option -c. The option -m
does not allow to predict the genes from gaps, -q is an output option to suppress
logging output, -f sco sets the outfile format to a simple coordinated file and -d is used
to assign the input file.

● The proteins were then scanned for the presence of Pfams (database version 17.0)
(Finn et al. 2014) using hmmscan version 3.2.1 (http://hmmer.org/) with the threshold
cut-ga (Carradec et al. 2018).

3.3.2 Processing of genomes
The bacterial and archaeal genome assemblies from NCBI RefSeq database were downloaded
in the form of annotated proteins. NCBI RefSeq genomes were already annotated using the
PGAP annotation pipeline (Tatusova et al. 2016). The annotated file with the suffix
“translated_cds.faa.gz” contains computationally predicted proteins as well as proteins with
valid names in Uniprot. These proteins were then scanned for the presence of Pfams.
However, the other host specific datasets were available in different forms. For some species,
the protein annotations were available while for the others only contigs or raw reads. In the
end, all the genomes were processed from the required stage to produce the Pfam profiles in
desirable formats. All genomes and metagenomes were processed using the same tools and
parameters as described above (3.3.1) to retain the consistency.

3.4 Making Pfam binary vector
The main MiMiC script needs Pfam binary vector of microbial species as reference genome
dataset and the metagenome to predict the corresponding minimal microbial consortium. This
is needed as two individual tab delimited files where the rows are the Pfams and the columns
are the species genomes/metagenomes. The values are represented as 0 and 1 for the
absence and presence of the Pfam in each genome/metagenome. These files can be provided
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in required format by the user or it can be generated by MiMiC’s preprocessing scripts. The
hmmscan, a sub-package of HMMER that was used to compare a protein sequence against a
protein family profile database. The HMM Pfam profile database had to be built prior to
mapping protein sequence using hmmpress. I built a HMM profile database for Pfam version
A-17 to be scanned in the genomes/metagenomes in this study. The hmmscan output was
parsed using a custom perl script (provided within MiMiC) to select the first best hit for
each Pfam. The presence and absence of Pfams were represented as 1 and 0
respectively to generate a binary Pfam vector. This binary vector of Pfam was
considered as the functional profile of the metagenome or individual microbial species.

3.5 Reducing redundancy in NCBI reference genome database
I collected the bacterial genomes available in NCBI Refseq genome database and other
publicly available databases. I made three host specific (PiBAC, miBC, Human gut) and one
NCBI RefSeq reference database. To reduce the redundancy, I decided to take the assemblies
marked as reference or representative genome per species. However, all species did not have
a representative or reference genome and in that case I used a genome completeness quality
score from checkM tool (Parks et al. 2015). An assembly is defined as a reference genome to
the species if the assembly has high sequence quality, backed with experimental data and has
extensive proteome support from Uniprot (Rolf Apweiler et al. 2004; U. Consortium 2018). A
representative genome was decided based on the strain, first complete genome or highest
assembly quality and/or clade analysis where the genome with the maximum number of
proteins in the cluster was selected. checkM (Parks et al. 2015) tool provides the assessment
of quality of the genome based on ubiquitous and single copy genes within a phylogenetic
lineage. Moreover, the scores like completeness and contamination fraction provided by
checkM helps identify the best assembly out of the pool. The assembly was selected in the
priority order of it being a reference genome, representative genome or for the species lacking
either of the genome, based on its checkM score. If a species had several reference genomes
then all those assemblies were retained. I took all Escherichia Coli genomes and clustered
them based on the Pfam binary vector using the jaccard index (Jaccard 1901). I noticed that all
4 reference genomes fall into different clusters. Considering that the multiple reference
genomes might be useful to maintain the diversity within the species. I calculated the
completeness score of the species with redundant assemblies and selected the assembly with
the best score.

The resulting non-redundant reference datasets were then subjected to either protein
prediction or directly Pfam scanning and binary vector generation. I named the Pfam binary
vector database of non-redundant NCBI RefSeq as Pfam Signature Database (hereafter
referred as PfamSigDB). PfamSigDB represents one Pfam binary vector per species. The
scripts used for downloading, annotating, parsing of the output, vector generation were
collectively made available within MiMiC repository.
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3.6 Scoring species

Scoring the species from a reference dataset for a given metagenome is the central part of the
MiMiC approach.

3.6.1 Calculating MiMiC-score

MiMiC-score is the actual numerical value based on which the species is selected as a
member of the minimal microbial consortium. I calculate MiMiC-score considering the
maximum Pfam matches and least Pfam mismatches of the reference species to the
metagenome in comparison in each cycle (iteration) of the selection. However, I
explored several other ways of calculating MiMiC-score. These scoring methods were
compared with the MiMiC method (x/x+y) (Figure 3) using PiBAC as a reference dataset
(n=111) (Wylensek et al. 2020) on pig gut metagenomes (Xiao et al. 2016). Under the notion
that more prevalent Pfams represent more common functionalities while less prevalent
represent unique functions of the species, I used the rareness index of the Pfam as weight to
adjust the species score in weighted scoring methods.

Figure 3: MiMiC scoring system. The circles represent the Pfam presence in the metagenome (MG)
and reference genomes (G1, G2, G3 … Gn). The grey transparent box shows which genome is being
matched to the metagenome in the current iteration.

3.6.1.1 Unweighted score method

Unweighted MiMiC-score is the score given to each microbial species based on the
number of Pfam matches and mismatches of the metagenome to the species genome.
Each Pfam was given the same importance in the calculation, no matter if it was a core
or rather unique function (Figure 3). This was done iteratively. Iterations were the defined
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number of species to be selected from the reference genome dataset. In the first cycle, Pfams
in the species vector were compared with Pfams in the metagenome. Pfams common in
genome and metagenome were called as match (x) and the Pfams present only in the
reference species but not present in the metagenome were considered as mismatch (y).
Matches (x) were meant to be closer to the metagenome while mismatches showed that
function wise how different a bacterium was to the metagenome. To reduce the difference and
bring bacteria which had more function closer to the metagenome, I always divided the number
of matches (x) by the number of matches plus mismatches (x/x+y). The species having the
highest score is picked in the first iteration. Before going to the second iteration, the functions
(Pfams) in the metagenome covered by the first species and in the reference genome dataset
is replaced by zero. This reduced the chance of redundant functions covered by different
species and picked the next species based on more novel function match to metagenome.

3.6.1.2 Weighted score method

The weighted score was assigned to the Pfam based on its uniqueness or rareness in
one species compared to all other species within the reference dataset. I calculated the
prevalence of protein families amongst the available genomes in a reference genome
database. Pfams which were present in most of the genomes could be responsible for
housekeeping functions. Such Pfams could be given the lowest score. Pfams, shared rarely or
less common among the genomes, could be more specific to certain functions in the species.

The ubiquitous index was calculated for each Pfam based on its presence in the reference
genome dataset. This ubiquitous index was used to give weightage to the score of each
genome calculated based on the Pfam present in the genome. This added weightage to the
selection of the genome that retained more unique functionality. Ultimately, the weighted
scoring system might lead to a minimal consortium that covers a wider range of functionality. I
calculated the percentage of the absence of Pfams across the reference genome dataset by
dividing the number of absences by the total number of genomes in the reference dataset.
Then the obtained score was added to the present score (1) of each metagenome. This way
the Pfam gets the higher score with more number of absent counts in the reference dataset.

The weighted scoring system is explained with an example below with a dummy table
representing the reference genome dataset (Table 2,3). In the following example the species
genome is represented with the letter “G” and Pfam with the latter of “P”. Suppose genome G1
and genome G9, have the equal number of Pfam counts but different Pfams correspond to the
metagenomes. From genome G1, protein family P1, P2, P4, and genome G9 protein family P1,
P3 and P4 matched to the metagenome. If we observe the binary based match score will be
the same for both the genomes(Table 2). If we count the number of Pfam matches without
assigning any weight to the protein family based on their uniqueness, both the genomes get an
equal score 3. This way we may miss the selection of the genome which carries a protein
family with more unique functions in the reference dataset.

G1 = P1 (1) + P2 (1) + P4 (1) = 3 -> unweighted MiMiC-score
G9 = P1 (1) + P3 (1) + P4 (1) = 3 -> unweighted MiMiC-score
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However, in the case of weighted Pfam score genome G1 gets a higher score as it has a Pfam
p2 which has more score because of its absence in more genomes compared to any other
Pfam (Table 3). The uniqueness of the Pfam p2 makes it a more weighted protein family in the
database.

G1 = P1 (1.1) + P2 (1.9) + P4 (1.7) = 4.7 -> weighted MiMiC-score
G9 = P1 (1.1) + P3 (1.5) + P4 (1.7) = 4.3 -> weighted MiMiC-score

Table 2: Example of unweighted Pfam profile

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Present
-Count

Absent
-Count

Absent
-Score

Absent-
Score

P1 1 1 1 1 1 1 1 1 1 o 9 1 1/10 0.1

P2 1 0 0 0 0 0 0 0 0 0 1 9 9/10 0.9

P3 0 0 0 0 0 1 1 1 1 1 5 0 5/10 0.5

P4 1 1 0 0 0 0 0 0 1 0 3 7 7/10 0.7

Table 3: Example of weighted Pfam profile

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Present
-Count

Absent
-Count

Absent-
Score

Absent-
Score

P1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0 9 1 1/10 0.1

P2 1.9 0 0 0 0 0 0 0 0 0 1 9 9/10 0.9

P3 0 0 0 0 0 1.5 1.5 1.5 1.5 1.5 5 5 5/10 0.5

P4 1.7 1.7 0 0 0 0 0 0 1.7 0 3 7 7/10 0.7

3.6.2 Scoring equations

I made different combinations of match and mismatch for weighted and unweighted scores to
evaluate if the proposed criteria (x/x+y) was better than any other equations or concept of
weighted score (Table 4). All equations were compared in terms of functional coverage
(number of matches in metagenome) and the number of mismatches in the metagenome
(Table 5,6). Following are the equations which were applied on pig gut metagenomes with the
reference dataset PiBAC.
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Table 4: Description of the variables used in calculating MiMiC-score

Variables for score
calculation

Description

x Common number of Pfams between microbial species and
corresponding metagenomes.

y Number of Pfam which are present in microbial species but not in
metagenomes.

w Weighted score given to a protein family in the reference genome
database.
{ PfamPresent + (Pfam absent count across the reference genome
dataset / total number of genome in the reference database) }

xw Weighted match (sum of weighted Pfam matched to metagenome)

yw Weighted mismatch (sum of weighted Pfam which did not match to
metagenome)

3.6.2.1 Unweighted scoring equation
Following is the description of the scoring equation applied by two different concepts with
corresponding titles given to compare each version of the equation.

Table 5: Description of the variables used in the unweighted MiMiC scoring method

Scoring equation Equation description Equation title

max(x) Maximum number of match to metagenome MiMiC-A

max{x/(x+y)} Number of match to metagenome / (Number of
match to metagenome+number of mismatch to
metagenome)

MiMiC-B

max(x/y) Number of match to metagenome/ Number of
mismatch to metagenome

MiMiC-C
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3.6.2.2 Weighted scoring equation
Following are the equations for the weighted score method.

Table 6: Description of the variables used in the weighted MiMiC scoring method

Scoring equation Equation description Equation title

max(xw/yw) { weighted sum of matches to metagenome /
(unweighted sum of matches to metagenome +
weighted sum of mismatches to metagenome) }

MiMiC-Wa

max{ xw / (xw+yw) } {weighted sum of matches to metagenome /
(weighted sum of matches to metagenome +
weighted sum of mismatches)}

MiMiC-Wb

max{ xw / (x+y) } { weighted sum of matches / (sum of matches to
metagenome + unweighted sum of mismatches to
metagenome) }

MiMiC-Wc

max{ xw / (x/yw) } { weighted sum of matches to metagenome /
(unweighted sum of matches + weighted sum of
mismatches) }

MiMiC-Wd

Each weighted equation has 2 more versions of increasing the weighted score and converting
all the values as 10^w and 100^w to increase the exponential of the values.

3.7 Descriptive statistics generated by MiMiC
A number of calculations were performed while calculating the minimal microbial consortium
(Table 7). The whole descriptive statistics reported in the MiMiC output file for each
metagenome is detailed in the table below.

Table 7: Explanation of the output generated by MiMiC

Title of the column in output
table

Description

MetaGenome The metagenomic ID for which the consortium was predicted

Bacteria The RefSeq genome assembly accession or the identification
number of reference genome datasets for special cases.

Percentage Percentage of Pfam matches of metagenome to the selected
species in each iteration in a cumulative manner.
Percentage= (Pfam match to metagenome/total number of
Pfam in metagenome)*100
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Title of the column in output
table

Description

NovelMatch These are the number of Pfam matches to the meta genome
by each species per iteration which were not covered by the
previous one.

ScorePerIteration The MiMiC-score based on which the species was selected.

PfamInGenomePerItration Total remaining number of Pfam in species Pfam vector after
removing the matched Pfam by previous genome. These Pfam
were used to find new novel matches which were not covered in
the previous iteration.

exclusiveMismatchPerIteration Number of Pfam that did not match the metagenome in the
vector of “PfamInGenomePerItration”.

RelativeMatchPerIteration This is reported to observe the relative number Pfam match
compared to the number of mismatch in each iteration.
(“PfamInGenomePerItration”/“exclusiveMismatchPerIteration”)
per iteration.

BactTotalPfam The number of Pfam present in selected species originally before
removing the Pfam in each iteration that match the metageome.

AbsoluteMatch The number of Pfam that matched the original Pfam profile of
microbial species without removing the Pfam in each iteration
that matched the metagenome. The common Pfam numbers
between BactTotalPfam and Pfam in metagenomes.

AbsoluteMismatch The number of Pfam mismatches compared to the original Pfam
profile of species to the metagenome without removing Pfam at
each iteration.
The Pfam in BactTotalPfam not mapped to the original profile of
metagenome.

CumNovelMatch Cumulative values of “NovelMatch” added by each species.

AbsoluteRelativeMatch AbsoluteRelativeMatch is the ratio (AbsoluteMatch /
AbsoluteMismatch) of AbsoluteMatch to AbsoluteMismatch for
each species per iteration.

CumAbsoluteRelativeMatch These are the cumulative added value of
AbsoluteRelativeMatch.

CumExclusiveMismatchPerIteration These are the cumulative added value of
“ExclusiveMismatchPerIteration”.

Rank Rank of species picked in minimal consortium.
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3.8 Threshold for minimal microbial consortium

It is not trivial to make a decision on the number of species to be selected within
minimal consortia. I explored different criteria of suggesting the size of a minimal microbial
consortium. It can be set as a hard cutoff by the user or depending on the size of the reference
dataset it can be run for exhaustive search of Pfam and then apply a knee point on the function
coverage covered by the selected species. The exhaustive search of Pfams in the entire
reference database or a selected dataset could be a computationally expensive task. To
automate the process of selecting the number of species I compared two knee point methods
using R package inflection (Christopoulos 2016) to find the elbow point on the cumulative
function coverage curve. This knee point acts as a threshold of selecting the number of
species for each metagenome. As a bench mark of the two methods of knee point we applied
both the knee point on the cutoff of iteration 50 and 100. In our study, I applied iteration
cutoff 50 with the knee point method uik for the reference NCBI refseq database. With
the reference datasets PiBAC and miBC I applied exhaustive search of Pfam in the
reference dataset and then allowed the knee point uik based cutoff to select minimal
microbial consortia.

3.9 Taxonomic filter in the reference dataset

There is a lack of solid information and background about the source or host of the bacterial
species in NCBI biosample database. Taxonomic based filters could be an alternative to filter
the most closely related species to the ecosystem from the MiMiC reference database.
Taxonomic profiles of all genomes from NCBI RefSeq are provided to select the species more
related to metagenomes. This subset can be used further to generate a minimal microbial
consortium for the corresponding metagenomes.

3.10 Comparison of functional profile of different ecosystem
Comparison of functional profiles of different ecosystems were examined based on Pfam
binary vectors. Distance matrices were generated using the jaccard index (Jaccard 1901).
Multidimensional scaling (MDS) (Mead 1992) plot was performed using cmdscale
(Balakrishnan et al. 2014) on the distance matrix generated by jaccard index (Jaccard 1901).

3.11 Prevalence based analysis
Post analysis included the prevalence of selected species across the group and number of
Pfams in each category. This provides an overview of how similar a minimal microbial
consortium is between two metagenomes. A cumulative graph is generated for each
metagenome to visualize the number of Pfams covered in the metagenome by MiMiC picked
species for each metagenome. The prevalence was calculated by counting the number of
presence of a species in minimal consortia divided by the total number of metagenomes in
specific groups and multiplied by 100. This provide prevalence as a percentage of the
metagenomes in which the species are present.
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4 Results
The result part provides detailed insight into the curated reference genome database, MiMiC
method validation, selection criteria of species, Pfam based classification and prediction of
minimal microbial consortia for different ecosystems.

4.1 Building a non-redundant NCBI-based genome reference
database

4.1.1 Overview of microbial genomes in the RefSeq genome database
As genome assemblies did not have information of taxonomic classification in the NCBI
RefSeq database, I collected all bacterial genome assemblies until February 2019 and merged
them with taxonomic information available within the NCBI taxonomic database using “taxid” as
key identification number. The taxonomic details were created in a separate file obtained from
"lineages-2019-02-20.csv" available at (https://gitlab.com/zyxue/ncbitax2lin-lineages)
(Mahmoudabadi and Phillips 2018). Five main kingdoms exist in the NCBI taxonomy: Bacteria,
Archaea, Eukaryota, Viruses, and Viroids, including 489,796 bacterial, 13,142 archaeal, and
195,721 viral taxonomies to the aforementioned date. An assembly summary updated till 28th
May 2019 and containing 156,800 assemblies was downloaded from NCBI RefSeq
(ftp://ftp.ncbi.nlm.nih.gov/genomes/RefSeq/bacteria/assembly_sromummary.txt). There were
45,567 strains available in the database. Assemblies were given a reference “species_taxid”.
Each strain had a unique “taxid”. Organism names and taxid had the same number of entities. I
found that 7 deprecated assemblies in the RefSeq database and those had to be removed. The
RefSeq genome assemblies update regularly resulting in addition and deprecation of the
assemblies. The assembly_summary.txt file provides the metadata information about the
genomes and their assemblies; however, it lacks certain features like taxonomic classification,
number of genes, number of proteins, genome size and GC% (guanine and cytosine). These
features were then merged from the genomic reports taken from another source
(ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS).

In NCBI the taxid is not species specific, it is assigned to a new strain level entry to the
taxonomic database. In some cases “species_taxid” and “taxid” are same for the bacterium or
archaeal species. In the assembly_summary.txt file of RefSeq, there were 44,853 taxid out of
45,567 that had taxonomy lineage information in the lineage file. Which meant 714 taxid did not
have lineage information. In the end, 156,062 assemblies were found to have proper taxonomic
information merged using assembly_summary.txt (May 2019) and taxonomy lineage (February
2019) which was used as a reference genome database in this work. The
“assembly_accession” is a unique identity given to each genome assembly in the RefSeq
genome database. There is an exponential growth after the year of 2005-06 in the number of
available genome assemblies of bacterial species in NCBI RefSeq bacterial genome database
(Figure 4A). I observed that the number of species is less than the number of genome
assemblies added to the database, which causes redundancy of multiple genome
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assemblies per species (Figure 4B). I looked at the redundancy level of the species and
found that 0.44% species (n=100 reference assemblies) had 61.5% (n=96,526) of total number
of assemblies (n=156,062). The Figure 4C represents the species having most redundant
genome assemblies.

As taxid is not unique to the species, so the redundancy had to be reduced at the level of
species_taxid. There were 44,853 taxid and 22,436 species_taxids in the updated version.
There were 19,978 species that had the similar species_taxid and taxid. There were 2,478
speicies_taxid that had different taxid. There were 18,631 non-redundant species out of 22,436
species. There were 3,805 species that had 137,431 redundant genome assemblies which
made it clear that there is a huge redundancy at the assembly level which needs to be
simplified into a least redundant version. There were 3,805 species (species_taxid) that had
26,222 taxids indicating several strains of a species.

Figure 4: Overview of bacterial genomes deposited in the NCBI reference sequence (RefSeq)
database. (A) Number of genome assemblies per year. (B) Number of species present per year. (C)
Top-25 most redundant bacterial species as an indication of redundancy.

In general, genome assemblies are categorized in four different types described as complete,
scaffold, contig and chromosome. These assembly resolution levels play a major role in the
outcome of the genomic and functional analysis. I showed the number of assemblies resolved
at different levels (Figure 5A) and explained the definition of each category below. A complete
genome assembly includes all chromosomes as gapless sequences including plasmids and
organelles. A complete genome assembly does not contain unplaced and unlocalized
scaffolds. A chromosome level can represent one or more chromosomes from respective
species. This level of assembly could be a complete sequence of chromosomes without gaps
or contigs/scaffolds of chromosomes with gaps. A scaffold is the sequence where contig
sequences were connected across the gaps. Scaffolds are unplaced and can be unlocalized.
Contigs are just assembled reads into larger reads. They were not assembled further into the
scaffold.

Most assemblies were submitted as contigs and scaffolds in the RefSeq. The number of
complete genomes have increased significantly in the last two years. Among the redundant
and non-redundant species, there were further two categories of assemblies which were
classified as representative and reference genome (Figure 5B). I observed that even the
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non-redundant species were classified as representative genomes. There were only 9
non-redundant reference species. The reference genome category is classified from the
complete genome only. However, representative genome assemblies are classified from
all types of assemblies including contigs, scaffolds and chromosomes. Considering only
the species with complete genome was limiting the number and the diversity of the species
available in the genome database to be used to predict the minimal microbial consortia. Based
on the observation of representative genomes, I decided to include the genome assembly
that was the best representative of the species irrespective of the level of assemblies.
Hence, I considered the reference or the representative genome assembly for the redundant
species. Figure 5C represents the reduced redundancy of all bacterial species based on both
reference and representative genome assemblies.

Figure 5: Descriptive statistics of RefSeq bacterial genome database and reducing redundancy.
(A) Total number of genome assemblies (light blue) and corresponding species (dark blue) per assembly
level. (B) The number of reference and representative assemblies categorized into non-redundant and
redundant species at each assembly level. (C) Number of assemblies (light blue) and unique species
(dark blue) reduced to only reference or representative genome assemblies.

4.1.2 Reducing redundancy

4.1.2.1 Based on reference and representative genome
It was important to reduce the redundancy for computational aspects whilst maintaining the
diversity of the database by keeping reference or representative genome assemblies. In the
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redundant assemblies, there were only 100 species (represented by 111 strains), whose
reference genome was available in the database. These 100 species represented 96,526
genome assemblies in the database (Table 8). It was observed that comparatively pathogens
had more redundant species (Figure 4C). It might be because disease specific bacteria are
studied widely compared to other species. There were 2,306 representative genome
assemblies corresponding to 2,270 strains and 2,166 species. There were 2,166 species with
representative genomes covering 29,389 genome assemblies. If a species had more than
one reference genome, redundancy was allowed at that level. Same criteria was applied for the
representative genome assemblies. There were 15 species that had both reference and
representative genomes covering 3,617 assemblies. In total 2,252 species had either reference
or representative genome

4.1.2.2 Based on the best completeness score
After reducing the redundancy based on reference and representative assemblies, there
were 1,554 species which had 15,133 redundant assemblies (Table 8). These species did
not have a representative or the reference genome assembly. In the second step, checkM
scores (Parks et al. 2015) were calculated for this set of assemblies. The assembly with
the maximum completeness was taken into account. There were 20,883 species which
made a non-redundant final set of assemblies, either one assembly per genome or marked as
reference or representative genome. Following is the table of the total number of species
included in the reference genome for the MiMiC analysis. If a species had both types of
genomes as representative or reference genome, I included both the genome assemblies in
the final database. Summing up all the information I ended up with 22,418 species with the
assembly number of 22,584.

Table 8: Redundant assemblies and selection criteria

Number of redundant
species

Number of non-redundant
species

Criteria to remove
redundancy

96,526 100 Reference genome

29,389 2,166 Representative genome

15,133 1,554 Completeness (highest
CheckM-score)

18,631 Already non-redundant

4.1.3 Pfam binary vector of the refined NCBI bacterial genome database
A non-redundant Pfam binary vector was prepared for this set of bacterial genomes in the form
of presence and absence of Pfam in the genome and named it as BactPfamSigDB (Bacterial
Pfam Signature Database). BactPfamSigDB represents the functional profile of the overall
isolated bacterial community present in the NCBI RefSeq database. This database saves a lot
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of time for processing the genomes and serves as a further guideline to understand, curate,
and add the new bacterial species in the future development of the approach.

4.1.4 Pfam binary vectors of archaeal species
Annotated files (translated_cd.faa.gz) of archaeal species were downloaded from NCBI RefSeq
genome database (ftp://ftp.ncbi.nlm.nih.gov/genomes/RefSeq/archaea/) updated until February
2019 (n=977) and the Pfam binary vector were generated for each annotated assembly. All
archaeal assembly accessions were curated and mapped to "assembly_summary.txt" file from
NCBI RefSeq. This way I merged the assembly summary information to the assembly
accession. The taxonomic details were created in a separate file obtained from
"lineages-2019-02-20.csv" available at (https://gitlab.com/zyxue/ncbitax2lin-lineages)
(Mahmoudabadi and Phillips 2018). There were multiple assemblies of archaeal species in
NCBI RefSeq, the same as in the case of Bacteria. The assembly with maximum check-M
completeness score or labeled as "representative/reference", were included in the final
database. Applying above criteria, a non-redundant Pfam binary vector database with the
taxonomic information in a separate file linked with assembly_accession was created for the
archaeal genome dataset. There are 581 species present in the archaeal Pfam binay vector
dataset named and referred as "ArchPfamSigDB" (Archaeal Pfam Signature database) in this
study.

4.1.5 Bacterial and Archaeal Pfam binary vector datasets were merged
together
I merged the bacterial and archaeal Pfam binary vector database comprising 22,999 species.
While looking at the Pfam distribution and the genome size of these species, I saw that species
having fewer Pfams also had relatively smaller genome sizes. Some of these species
appeared to be outliers falling under the lower quartile in Pfam based distribution (Figure 6).
These species (n=295) were removed from the Pfam vector database leaving 22,627 species
in the final version of the MiMiC reference database.

Figure 6: Pfam distribution across single microbial species in the entire genome database
(PfamSigDB). Number of Pfams (y-axis) in each bacterial/archaeal genome. PfamSigDB (A) before and
(B) after removing the outliers (species falling under the lower quartile).
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4.1.6 Taxonomic distribution in final Pfam vector database
In the combined database of bacteria and archaea (n=22,806 assemblies), there were 54
Phyla, 95 classes, 213 orders, 481 families, 2,617 genera, and 22,627 species taxid (Figure
7A). Bacteria covered 48 Phyla, 82 classes, 189 orders, 439 families, 2,484 genera, 22,138
species taxid. In the case of archaea, there were only 5 Phyla, 12 classes, 23 orders, 41
families, 132 genera, and 488 species taxid in the database (Figure 7B).

Figure 7: Taxonomic distribution of the Pfam reference database. (A) Total number of phyla,
classes, orders, families, genera and species-level assemblies in the database. (B) The same data split
into Archaea and Bacteria.

4.1.7 Number of Pfam vectors in MiMiC reference genome datasets
Following table represents the number of genome vectors in each category of the Pfam
reference genome database. I categorized the datasets into six categories, the Pig Intestinal
Bacterial collection (PiBAC), Mouse Intestinal Bacterial Collection (miBC), Human Intestinal
Bacterial Collection (Human gut), NCBI RefSeq Bacterial Collection, NCBI RefSeq Archaeal
Collection, and the combined NCBI Archaeal and Bacterial Collection (Table 9).

Table 9: Number of genome assemblies in PfamSigDB and the host-specific database

Reference dataset Number of species

PiBAC (Wylensek et al. 2020) 111

miBC (Lagkouvardos, Pukall, et al. 2016) 104

Human gut (Zou et al. 2019) 803

NCBI RefSeq (Bacteria) 22,138

NCBI RefSeq (Archaea) 488

NCBI RefSeq (Bacteria +Archaea)* after removing outliers 22,627
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4.2 Impact of genomic features on MiMiC outcome
I observed that the Pfam distribution varied substantially between species. Genomes with
fewer Pfams tend to be of smaller size. I calculated correlations between Pfam distribution and
the genome size as well as other factors like number of genes, proteins and even GC
percentage. The distribution of Pfam was symmetric whereas the genome size, number of
genes and proteins showed a long tail on the right and the GC percentage had bimodal
presentation. The genome size showed a significant correlation of 0.98 (pearson correlation,
p-value=0.001) with number of proteins and Pfams (Figure 8). GC percentage did not show
high correlation to Pfams or proteins. Hence, the genome size of a microorganism can
affect the MiMiC outcome and should be taken into account to avoid bias.

Figure 8: Pairwise correlation analysis for genome size, number of genes, proteins and Pfam.
Correlation values are shown as numbers above the diagonal where the size of the font corresponds to
the value of correlation coefficient. The significance p-value of correlation test is shown as red stars (***
p < 0.0001). The distribution of each factor is shown on the diagonal as histograms. The scatter plots
below the diagonal suggest a linear correlation between the number of genes and proteins to the
genome size.

4.3 Functional profile of different ecosystems can be
distinguished based on Pfam profile
The essential foundation of MiMiC is that the Pfam binary vectors can be used to distinguish
the functional profile of two different ecosystems. To establish that, I used Pfam as a binary unit
to measure the functional profile of metagenomes and microbial species. Mostly, the number of
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Pfams across the metagenomes within an ecosystem showed minor variation except for the
environmental ecosystems soil and ocean (Figure 9A,B). The number of Pfams varied from ca.
2000 to 7000 for soil metagenomes and ca. 3000 to 7500 for ocean while for the other
ecosystems this variation remained under ca. 2000 Pfams (Figure 9B).

I compared Pfam profiles of microbiota from different environments and body sites of different
organisms. Pfam binary vectors of metagenomes from different ecosystems showed
significantly different clusters in multidimensional scaling plot (MDS) (Figure 9C,D). The
distance was calculated using the Jaccard index. I observed that environmental metagenomes
clustered separate from organismal body sites (mouse, pig, human). Additionally, the gut
microbiota of different organisms could also be significantly distinguished from one another
using Pfam profiles (Figure 9C,D).

C D

Figure 9: Pfam-based classification of different ecosystems. (A) Number of metagenomes in each
category. (B) Number of Pfam per metagenome in each category. The Multidimensional scaling (MDS)
plots in (C) all categories and (D) only gut samples based on the Pfam profiles of metagenomes using
the jaccard index distance method (p-value 0.001). Each dot corresponds to a metagenome. The value
of “d” in the MDS plots is the mesh of the grid in each plot.
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4.4 Devising a method for scoring species in MiMiC
I established that Pfam is a valid unit to distinguish ecosystem specific communities. The next
question is to score the species to generate minimal consortium to represent the functionality of
the ecosystem. In this process, MATCHES represent Pfams present in both microbial
genomes and the input metagenome whilst MISMATCHES are the Pfams included in any
given microbial genome but not in the metagenome to be matched. To this end, I used
score=matches/(matches+mismatches) on pig gut metagenomes (n = 284) from pig gut gene
catalog (Xiao et al. 2016) with PiBAC (Pig Intestinal Culture Collection, n=111 species)
(https://www.dsmz.de/pibac) as reference genome dataset. I also explored several other
scoring methods to verify my approach (table 10) explained in method section 3.6.2. I created a
weighted Pfam dataset where the binary Pfam matrix was scored according to the rareness of
the Pfams across the reference dataset (method 3.6.2.2).

Table 10: Different versions of MiMiC

Number Method Name Equation

1 MiMiC A x

2 MiMiC B x/(x+y)

3 MiMiC C x/y

4 MiMiC Wa xw/yw

5 MiMiC Wb xw/(xw+yw)

6 MiMiC Wc xw/(x+y)

7 MiMiC Wd xw/(x+yw)

8 MiMiC Wa_10 10^(xw/yw)

9 MiMiC Wb_10 10^(xw/(xw+yw))

10 MiMiC Wc_10 10^(xw/(x+y))

11 MiMiC Wd_10 10^(xw/(x+yw))

12 MiMiC Wa_100 100^(xw/yw)

13 MiMiC Wb_100 100^(xw/(xw+yw))

14 MiMiC Wc_100 100^(xw/(x+y))

15 MiMiC Wd_100 100^(xw/(x+yw))

I compared the median of Pfam matches (function coverage) in minimal consortia and median
of mismatches in minimal consortia of 284 metagenomes for each MiMiC version. MiMiC
version-A covered the maximum function (Figure 10A). We see three patterns in figure 10A,
upper part is MiMiC_A, middle overlapping part contained MiMiC versions B, Wa, Wa_10,
Wa_100, Wb, Wb_10, Wb_100, Wd, Wd_10 and Wd_100, the third and the lowest contained
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Wc and Wc_100. However, the number of mismatches were also highest in MiMiC-A (Figure
10B). The middle part in the Figure B contained method Wc and Wc_100 whilst the rest of the
methods appeared to be very close to each other or overlapped. I decided to pick a method
which covers maximum function with the minimum mismatch level. Accounting for these
criteria, MiMiC-B, MiMiC-C, MiMiC-Wa, and MiMiC-Wb performed equally well (Figure 10C,D).
The weighted method MiMiC-Wa and MiMiC-Wb did not make any significant difference
compared to the unweighted method MiMiC-B and MiMiC-C. To reduce the unnecessary
computational time, I decided to use unweighted methods. With the assumption that adding
match to mismatch in denominator can help to reduce the genome size effect, I decided
to use the method MiMiC-B (matches/matches+mismatches) for further development in
this study.

Figure 10: Comparison of different MiMiC methods. (A) Percentage of median Pfam coverage of Pig
gut metagenomes by first 10 species selected from the PiBAC bacterial genome collection. MiMiC
method A is on the top. The middle part MiMiC versions B, Wa, Wa_10, Wa_100, Wb, Wb_10, Wb_100,
Wd, Wd_10 and Wd_100 are either very close to each other or overlapped while lowest part Wc and
Wc_100 versions showed different trends (B) The number of mismatches were highest in MiMiC-A. The
middle part in the Figure B contained method Wc and Wc_100 whilst rest of the methods appeared to be
very close to each other or overlapped (C) Comparison of median cumulative Pfam coverage (x-axis)
and median mismatches (y-axis) of all metagenomes by all MiMiC methods. (D) The least plotted line of
Figure C plotted separately in Figure D showing MiMiC methods B, C, Wa and Wb overlapped.
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4.5 Determining the number of species to be proposed in minimal
consortia
Based on the comparative analysis with other versions of MiMiC, I decided to use the method
MiMiC-B. However, there was still an open question to determine the number of species to be
selected to propose a minimal microbial consortium. One way to do this was to define a hard
cutoff (e.g. 10 or 12 species) or decide based on a cumulative function coverage curve
individually for every metagenome. However, hard cutoff could bias the comparative studies
where one condition potentially might have more diverse microbiota than the other. On the
other hand, deciding for every sample individually could also be very exhaustive. To address
this question, I carefully benchmarked various approaches and proposed an automated
species selection criteria in MiMiC. To this end, I first used the MiMiC-B method on all
metagenomes in this study using PfamSigDB (Pfam Signature Database, species = 22,627) as
a reference database and analyzed the number of species covering the functions in each
category at the iteration cutoffs 50 and 100. I observed that the cumulative functional
coverage of metagenomes by MiMiC-picked species turned into plateau and did not add
any distinguishable number of Pfams after approximately 50 iterations in most of the
cases (Figure 11).

The number of species found to be variable within and across the category ecosystems with
the same iteration cutoffs. For instance, the lowest number of species were picked in soil
metagenomes and highest number of species were picked in ocean and pig metagenomes.
This suggested that the hard cutoffs would not work even for the metagenomes within an
ecosystem.

Figure 11: Function coverage of metagenomes by MiMiC derived species. The cumulative sum of
the percentage of Pfams covered over the number of species. Each line is an individual metagenome.
The y-axis is the percentage of Pfam covered in metagenome and x-axis is the rank of species given by
MiMiC.
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Next, I implemented two different knee point methods to determine the elbow point on the
cumulative function coverage curve. With the notion that the species covering most
numbers of Pfam cover more diverse functions of the metagenome, the elbow point on
the curve would suggest a non-significant addition of functions. I looked into the function
coverage at different iteration cutoffs and knee point methods to determine the number of
species to be included in the MiMiC proposed minimal microbial consortia. I applied two knee
point methods uik and d2uik implemented in R package inflection (Christopoulos 2016) to
decide the number of species in minimal consortia. At the same time, to benchmark the
iteration number I set two cutoffs as 50 and 100. I observed that the method d2uik was very
stringent compared to method uik. Method d2uik calculated the knee point at a very low
number of species in both the iteration cutoff 50 and 100 (Figure 12). The average knee point
range was 4 to 6 species at iteration 100 and 4 to 5 at iteration 50 in all the categories after
applying method d2uik (Figure 12). In case of method uik the average keepoint remained 7 to
12 species at iteration 100 and 6 to 10 at iteration 50 in most categories (Figure 12).
Furthermore, I observed that both the methods did not make any significant difference in terms
of adding more numbers of species at 100 iterations compared to 50.

At the iteration 50 and knee point uik it was observed that the maximum number of species
(n=13) were picked in pig gut metagenomes (Xiao et al. 2016) and the least number of species
were picked in soil samples (n=2). Metagenomes within the category and among the
category had different numbers of species picked. This suggested the heterogeneity of
the individuals in human, pig, mice and in environment metagenomes as well.

Figure 12: Number of species derived by MiMiC using different knee point methods. Numbers of
species were calculated per metagenome based on different knee point methods (uik - bottom panel,
d2uik - top panel) and iterations (50 - left panel and 100 - right panel). Box plots represent the number of
species and bar plots represent the median number difference between iteration cutoff 50 and 100.

In addition to deciding the number of species it was important to make sure to give the best
possible function coverage. I compared the function coverage by the number of proposed
species at different iterations and applied knee point methods. The increasing number of
iterations did not make a considerable difference in both the cases of knee point methods. The
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median function coverage difference between iteration 50 to 100 remains 0.48% to 5% at both
the knee point methods. In most cases (mouse, human, soil), it remained under 2.8% (Figure
13). Addition of novel Pfam by new species after 10 species declined extremely in most cases
(Figure 11). MiMiC selected species at knee point uik and iteration number 50 were able
to cover 85% to 95% function coverage in metagenomes including all categories (Figure
13). Which remained lower (75% to 85%) in method d2uik at both the range of iteration
50 and 100.

Figure 13: Comparison of function coverage of metagenome using different knee point methods.
Percentage of metagenomic function covered by MiMiC species in each category based on different
knee point methods (uik - bottom panel, d2uik - top panel) and iterations (50 - left panel and 100 - right
panel). Box plots represent the function coverage and bar plot represents the median function coverage
difference between iteration cutoff 50 and 100. The vertical black line in the boxplots is drawn at 90 to
easily see the relative difference amongst different methods and iteration cutoffs.

Based on these results and the principle of considerably minimum number of species and
maximum number of function coverage, I decided to have a soft cutoff of the knee point
method uik instead of d2uik. Keeping a constant number (50) of iterations across all the
metagenomes while applying the knee point methods makes the approach to select a
sound automated number of the minimum number of species for each metagenome. It is
recommended to use the method uik for knee point determination. However, both the options
were made available to the user to explore the data with multiple choices.

4.7 Evaluation and validation of MiMiC method-B on mock
community
Pfam profile of metagenome from MBARC (Singer et al. 2016) (Mock Bacteria Archaea
Community) mock community was used to evaluate MiMiC version-B. MBARC contains 23
bacterial species and 3 archaeal species. MiMiC version-B was run with the exhaustive
iterations option until all the functions of the metagenome were covered by the reference
species. PfamSigDB (n=22,627) consisting of both bacteria and archaea was used as a
reference to generate the MiMiC proposed minimal consortium (Figure 14).
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Figure 14: Evaluation of MiMiC method-B using MBARC mock community. (A) The cumulative
function coverage of species in the MBARC mock community. The red dotted line corresponds to the
knee point deduced by MiMiC. (B) Similar to (A) where the y-axis shows the number of Pfam
mismatches between a species genome and the metagenome. (C) The taxonomic relative abundance of
each mock community member in the metagenome. Grey color represents the presence and red shows
the absence of the species in the MiMiC derived community. (D) function coverage and (E) mismatches
in 500 randomly selected sets of 26 species where the red line corresponds to the scores of MiMiC
derived species. (F) overall percentage of Pfam coverage (Match) and mismatches of metagenomes by
MiMiC selected species were compared with the random sets. Red dots represent the Pfam coverage
and mismatch by MiMiC picked species. (G) The genomic characteristics of the MiMiC derived species
arranged by rank on the x-axis and the corresponding feature on the y-axis. (E) Pearson’s Correlation
calculation among all the genomic features and species rank. The color gradient from dark to light
represents higher to lower correlation coefficient and the size of the dot corresponds to p-value where
the numbers with “X” marked are non-significant correlation tests.
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The MBARC metagenomic Pfams were covered 100% by 68 species (Figure 14A). The
number of mismatches are reported in Figure 14B. The knee point cutoff gave 25 species and
23 of these 25 species were found to be the source species from MBARC mock community.
These 23 species included 20 bacterial and all 3 archaeal species of the community (Figure
14C). Three species, Nocardiopsis dassonvillei DSM 43111, Pseudomonas stutzeri RCH2, and
Salmonella enterica subsp. arizonae serovar RSK2980 were not present in the MiMiC
outcome. Nocardiopsis dassonvillei DSM 43111 had zero percent (0.00%) relative abundance
in taxonomic profile of MBARC metagenome so it was expected to be absent from the minimal
consortium. This explained that overall MiMiC only missed 2 bacterial species of MBARC in the
consortium generated by MiMiC. I took the first 26 microbial species from MiMiC derived
consortium and compared the union of their Pfam profile with the MBARC metagenome. I
found that these 26 species covered 97.03% of the metagenomic Pfam profile. Only 2.97%
Pfams were not covered by MiMiC generated consortium. This explained that even
considering the large number of species and their diversity, MiMiC was still able to pick
a taxonomically relevant and functionally sound profile to the corresponding
metagenome.

To evaluate further, I compared the match and mismatch of these 26 species with the 500
randomly selected sets of 26 species from the reference genome database (Figure 14D,14E).
In total, MiMiC derived species covered 97.03% function coverage in metagenome while
random sets covered 87.5% on average (Figure 14F). First 2 and last 11 species contributed
more matches compared to the median matches of random sets at the same position. I
observed that there were no mismatches until the first 8 species and thereafter only 1
mismatch per species upto the 14th species. Number of mismatches gradually increased as
the number of matches increased compared to random sets in MiMiC picked species (Figure
14D,E). I generated the union Pfam profile of MiMiC generated consortium and compared it
with the metagenome Pfam profile of MBARC. The median Pfam coverage of random 500 sets
was 87.5% and the median mismatch was 16.63%. The highest Pfam coverage by 500 random
sets was 91.9% and the lowest Pfam coverage was 77%. The highest mismatch was 22% and
the lowest mismatch was 11.84%. The Pfam coverage by MiMiC picked species was higher
than the median and the highest covering random set. Similarly, the mismatch percentage was
lower in MiMiC picked species (2.97%) compared to the median (16.63%) and the lowest
mismatch percentage (11.84%) of the random set (Figure 14F).

I carried out a correlation analysis with the factors such as genome-size, relative abundance of
the species in the community, and number of Pfam (Figure 14G,H). Unsurprisingly,
genome-size is significantly correlated with the number of genes and proteins with the
Pearson’s correlation coefficient 0.96 and 0.97 respectively. However, the relative
abundance, genome size, number of genes, and proteins were not correlated with the
rank of species in MiMiC outcome (Figure H). This suggested that the MiMiC derived
minimal microbial consortium was not affected by such factors. With this evaluation by
the mock community, it was established that MiMiC provides the selection of species
with best function coverage and least mismatch compared to random sets. Moreover,
the MiMiC picked species were taxonomically relevant (92%) to the metagenomic profile.
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4.8 MiMiC performed better than random sets across different
ecosystems
To assess the MiMiC performance on native metagenomes, I compared function coverage per
category by MiMiC picked species with median function coverage of the same number of
randomly picked species (Figure 15).

Figure 15: Comparison of Pfam coverage and mismatches to the random sets. MiMiC matches and
mismatches to the metagenomes are shown with the light green color and median match and mismatch
of random sets are shown in dark green color. The p-value significance of wilcoxon rank sum test is
represented by the number of stars where NS is the non-significant difference between the comparisons.

I generated 100 random sets without replacement for each metagenome. For each set, the
number of Pfam matches and number of Pfam mismatches to the respective metagenome
were calculated and later converted into the percentage of function coverage ((Pfam match to
the metagenome/total number of Pfam in the metagenome)*100)) and percentage of mismatch
((Pfam that did not match to metagenome/total number of Pfam in the metagenome)*100).
Medians of function coverage percentage and median of mismatch percentage of the random
sets to the metagenome were compared with those of MiMiC picked species. Such comparison
provided a ground to evaluate if MiMiC derived minimal consortia had the actual potential to be
functionally close to the native ecosystem.

A Wilcoxon rank sum test was applied to test the difference between the MiMiC picked species
and random sets using “Wilcoxon.test” function in R. Pfam matches were significantly higher
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than the random sets at the p-value of 0.001 in all metagenomes. The difference in the
mismatches between MiMiC picked species and random sets was not significant except pig gut
and ocean samples. These results confirmed that the microbial community proposed by
MiMiC was significantly closer to the native ecosystem than by chance.

4.9 Pfam profile of MiMiC derived minimal microbial consortia
could distinguish the ecosystems
The original Pfam profile of metagenomes from different environments showed distinct clusters
(Figure 9C,D). This explained the heterogeneity of functional profiles within and across the
ecosystems. Considering this I expected that a combined Pfam profile of MiMiC derived
minimal microbial consortium from each metagenome should show a similar pattern. I
generated a Pfam union of MiMiC-selected species for each metagenome and this was
considered as a mimicked function profile of that metagenome. Using this profile I generated a
multidimensional scaling plot (MDS plot) using the jaccard index as a distance calculating
method of different groups. Ocean and soil made a separate cluster from the consortia
from human, mice and pig (Figure 16A). However, there was an overlap of the gut
metagenomes groups. Even then the pig gut metagenomes were more likely separated from
the mouse and human gut metagenomes. This observation reassured that the MiMiC proposed
minimal consortia captures the functionality of the ecosystem.

A B

Figure 16: Pfam profile of minimal consortia of metagenomes selected by MiMiC. The MDS plots of
(A) all categories and (B) only gut samples based on Pfam union profiles of minimal microbial consortia
generated by MiMiC. The colors represent the sample category and each dot is a metagenome.
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4.10 MiMiC-selected species recapitulated differences between
the different environment systems
The microbial community proposed by MiMiC varied across the metagenomes of the same
ecosystem. Certain species were found to be more prevalent within and across the
ecosystems while some were mutually exclusive. I combined the MiMiC species profile of
individual metagenomes in a group and applied the prevalence approach. I selected the top 10
most prevalent species per category and compared them to find the most common and unique
species among ecosystems (Figure 17). Anaerotruncus sp. 1XD22-93 species was prevalent in
more than 50% metagenomes from the mouse and human gut, 40% in the human tongue, and
25% in pig gut. The same species had less than 10% prevalence in environment samples (soil
and ocean). Anaerotruncus sp. 1XD22-93 was isolated from a murine cecal sample
(PRJNA486904). Anaerotruncus genus had been reported in the human tongue and human
intestine as well (B. Sun et al. 2017; Lau et al. 2006). The soil samples had the least prevalent
species whereas gut samples had the most prevalent and common species between different
organisms. Candidatus Kinetoplastibacterium galatii, Thermobifida fusca, Hydrotalea flava
were the most prevalent species and only picked in soil metagenomes. Thermobifida fusca is
an aerobic, thermophilic soil bacterium known to be a degrader of plant cell wall (Lykidis et al.
2007). Prevotella sp. Archaeoglobus profundus, alteromonas sp. 190, Candidatus Pelagibacter
sp. RS39 were picked only in ocean metagenomic samples. Nostoc linckia, Lewinella
nigricans, Mesorhizobium sp. F7 are few more species that were most prevalent in the ocean
and least in gut minimal consortia. Campylobacter sp. 10_1_50, Pasteurella caecimuris,
Rodentibacter myodis, Neisseria sp. HMSC07C12, Campylobacter sp.AAUH-44UCsig-a,
Streptococcus sp. BCA20, were most prevalent and only present in human tongue specific
minimal consortia. Parabacteroides sp. AM44-16, Bacteroides thetaiotaomicron,Clostridium
cavendishii, were only present in human minimal microbial consortia. Prevotella sp. P5-126
was present only in pig gut minimal microbial consortia and prevalent about 50%
metagenomes. Prevotella sp. P5-126 is an anaerobic bacterium. It was isolated from the large
intestine of pig (PRJNA396820). Bacterium D16-50, Streptococcus sp. FDAARGOS_521,
Geosporobacter ferrireducens, were more prevalent in pig gut consortia. Lachnospiraceae
bacterium 28-4, Lactobacillus johnsonii, Bilophila wadsworthia were prevalent only in mouse
gut metagenomes. Lachnospiraceae bacterium 28-4 species is anaerobic and isolated from
mice (PRJNA175982). There was a pattern of high prevalent species that were more specific to
certain groups than less prevalent species.
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Figure 17: Top 10 MiMiC derived species prevalence across ecosystems. The prevalence of the top
10 most prevalent species derived by MiMiC in each category across ecosystems.

4.11 Predicting Minimal microbial consortia for Pig gut
metagenomes

4.11.1 Pfam profiles of pig gut metagenomes could be distinguished based
on their geographical condition

Pigs have been used as model organisms for microbial infectious diseases related studies in
humans (Meurens et al. 2012). I used a collection of 111 bacterial species cultured from pig
intestine (PiBAC) to MiMiC the profile of pig gut metagenome. I used 284 metagenomes from
the study of pig gut gene catalog (Xiao et al. 2016). I processed these metagenomes from raw
reads to protein prediction and generated Pfam binary vector profiles.
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Figure 18: MDS plot of pig gut metagenomes based on full functional profile. The MDS plot of pig
gut metagenomes generated using the full Pfam function profiles. The colors represent the country
source of the metagenomes.

These metagenomes formed distinct clusters based on their source country suggesting country
specificity in their gut microbiota (Figure 18). The samples from France and Denmark showed
higher similarity compared to those from China. All metagenomes were able to be classified
only country wise and not based on facility, gender or diet. I planned our research to predict a
minimal microbial consortium and analyse the geographical (country) effect on pig gut microbial
functions.

4.11.2 Function coverage of pig gut metagenomes by PiBAC species

I looked into the function coverage (Pfam) of metagenomes of pig gut using PiBAC (Wylensek
et al. 2020) dataset as reference. A union Pfam vector was created of 111 PiBAC bacterial
species to be used to match with the Pfam profiles of all the pig gut metagenomes. The Pfam
coverage percentage of each metagenome was calculated by dividing the total number of Pfam
matches by the total number of Pfams in the metagenome. On average more than 90% of
Pfams were covered by 111 bacterial species in the pig metagenome (Figure 19A). The
Pfam coverage was relatively higher in France compared to China and Danish metagenomes
(Figure 19B).
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Figure 19: Pfam coverage of pig gut metagenomes by the PiBAC reference genome datasets for
(A) all metagenomes and (B) per country.

4.11.3 Applying MiMiC to predict the minimal microbial consortia

A minimal microbial consortium was generated for each metagenome using MiMiC. I let the
bacteria to be picked until no Pfam left in the reference genome database which matches to the
metagenome. The species up to the knee point (uik) were considered as the minimal microbial
consortia for the respective metagenomes. On average 20 species were selected from PiBAC
based on knee points for each metagenome.

Surprisingly, 75 of the 111 species were picked in any of the minimal microbial consortium for
all metagenomes (Figure 20A). Some species were more prevalent in specific countries than in
others. The prevalence of the MiMiC picked species were calculated across all three countries
( n=284 ) and within the country group (Figure 20B). I analysed the results setting up different
prevalence cutoffs. There were only 17 species that had a prevalence more than 50% across
all the metagenomes.
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Figure 20: Prevalence analysis of MiMiC derived species. (A) The prevalence of each species across
all the metagenomes and (B) per source country.

Some species were found to be more prevalent in a specific country than the whole
cohort. I included these species by selecting the species present at least in 50% of the
metagenomes of any of the countries. Following this criteria I added 8 more species in our
selection. These 23 species represent the group of species specific to the country and also
most common across the countries. Species Sodaliphilus pleomorphus, Prevotella mizrahii,
Prevotella copri, Waltera intestinalis, Intestinimonas butyriciproducens, Bullifex porci, occured
in more than 75% of metagenomes in each categories. Species Ruthenibacterium
lactatiformans, Roseburia porci, Anaerovibrio slackiae had less than 40% prevalence in China
while more than 75% prevalence in France and Danish metagenomes. Fibrobacter intestinalis
and Sharpea porci were more prevalent in China compared to the France and Danish
metagenomes.
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Figure 21: The prevalence of MiMiC picked species based on 50% cutoff in at least one country.

4.11.4 Function coverage by MiMiC-selected 23 species in pig gut
metagenomes

These 23 species provided a generalized function based minimum microbial consortium for pig
gut metagenomes based on PiBAC culture collection. I calculated the function coverage of pig
gut metagenomes by these 23 species and compared it with the randomly selected species of
the same sample size. The function coverage by these 23 species was not uniform for all the
metagenomes (Figure 21B). On average these species covered 75% of the metagenomic
functions. The most functions were covered in France metagenomes.

Figure 22: The function coverage of pig gut metagenomes by 23 MiMiC picked species. (A) in the
whole metagenomic cohort (B) per source country.
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Additionally, I compared the function coverage by 23 species with the function coverage of 500
random sets from the PiBAC collection for each metagenome. This provided an overview of
how good these 23 species were compared to random sets. Function coverage and
mismatches were calculated for each individual metagenome with each reference set of 23
species of 500 random sets from PiBAC. Medians of function coverage and mismatches were
calculated for each metagenome of 500 random sets of 23 species for each metagenome.
Further median of the median function coverage and median of median mismatches of
randomly picked sets were compared with the MiMiC-selected 23 species.

Figure 23: Comparison of MiMiC derived species with random sets. Function coverage (left) and
mismatches (right) comparison between the MiMiC derived 23 species with randomly selected 23
species. The p-value significance of wilcoxon rank sum test is indicated by stars.

MiMiC-selected 23 species covered a similar number of functions compared to a median of 500
random sets of 23 species in all metagenomes (Figure 23). The functional coverage of
random sets of 23 species was significantly higher compared to original functional
coverage, the cumulative mismatches were also significantly increasing. However, the
increase in the coverage is only 1.2% whereas in case of mismatches, I see an
increment of more than 100% in random sets. MiMiC picked 23 species that might
contribute or cover the same amount of function as in random sets; however, the number of
mismatches were always lower in MiMiC Picked species (23) than in the random sets.
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4.12 Predicting minimal microbial consortia for mice gut
metagenomes

4.12.1 Pfam profiles of mice gut metagenomes can be distinguished based
on their gut location and disease susceptibility

I applied MiMiC on another model organism mouse. I applied MiMiC on a case control
condition like the effect of DSS-colitis susceptibility in mice gut microbiota. For this purpose I
took mice gut metagenomes from colitis susceptible and non-colitis susceptible groups.
Following the DSS treatment, it was found that not all mice developed colitis. I compared the
Pfam profile of metagenomes and found that the conditions formed two distinct clusters (Figure
24B). Furthermore, the Pfam profile of metagenomes from different gut locations (ileum, colon
and cecum) also formed separate clusters (Figure 24A). It was expected as the small intestine is
supposed to harbour more bacterial species compared to ileum and cecum. However, this
finding suggested that there was a possibility to have a distinct consortium representing the
colitis susceptibility in different gut locations.

A B

Figure 24: Pfam profile based classification of mouse gut metagenomes. MDS plot based on Pfam
profile of metagenomes from (A) mice gut locations (colon, cecum, and ileum) and (B) DSS-colitis
(DSSyes) and non-colitis (DSSno) susceptible mice.
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Figure 25: The prevalence of MiMiC picked species in non-colitis susceptible (DSSnoPrevalence)
and DSS-colitis susceptible (DSSyesPrevalence) mice.

4.12.2 Applying MiMiC to predict the minimal microbial consortium

I applied MiMiC on colon and cecum metagenomes to observe the difference between
DSS-colitis susceptible and non-susceptible Pfam profile. I took 36 metagenomic samples
(Colon = 18, Cecum = 18) for disease specific MiMiC study where 24 samples were from
DSS-colitis susceptible and 12 from non-susceptible mice. Minimal microbial consortia were
generated for each metagenome using MiMiC. As a reference dataset I used 104 bacterial
species from in-house mouse intestinal microbial collection. I used the iteration cutoff 50 and
knee point method uik for the selection of minimal consortia. The Pfam profiles varied across
individuals so it was not expected to be identical within condition or group of mice. However,
some bacterial species were found to be specific to the condition while some were commonly
present across all the mice (Figure 25). MiMiC found 49 out of 104 species from the reference
dataset across all the metagenomes with the iteration cutoff 50 and knee point method uik.
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After generating an individual minimal microbial consortium for each metagenome, I calculated
the prevalence of each species between the group of DSS-colitis and non-colitis susceptible
metagenomes.

With the prevalence analysis I found 15 species exclusive to DSS-colitis susceptible
while 7 for non-susceptible mice and 28 present across all (Figure 25). In some cases,
despite the presence of species in both the categories there was a significant difference in the
prevalence between two groups. For example, Lactobacillus murinus was more prevalent
(75%) in non-colitis susceptible than the DSS-colitis susceptible (<20%) mice metagenomes.
Lactobacillus murinus had shown to mediate the anti-inflammaging effects in calorie restricted
mice (Pan et al. 2018). This could be one reason why “Lactobacillus murinus” was picked in
non-colitis (DSSno) specific minimal microbial consortia.

Acetatifactor.muris_CT.m2, Muribaculum.intestinale_YL27, Coriobacteriaceae gen nov DSM
105314, intestinimonas.butyriciproducens_SRB.521.5.1, were some species present in 75%
metagenomes of both the non-colitis and DSS-colitis susceptible mice. Lachnospiraceae.gen
nov DSM 110156, Clostridium.mangenotii_G10.CCK1R4.PYG.100, Muribaculaceae.gen nov
DSM 110163, Coriobacteriaceae gen nov DSM110159, Mogibacterium gen nov DSM 106208,
Paramuribaculum-intestinale DSM100749, NM72.1.8_Lachnospiraceae gen nov DSM 110165,
are 7 species that were prevalent only in non-colitis susceptible mice. Bacteroides sp nov
DSM110164, Lactobacillus.johnsonii_MIII.1B.7.2, Akkermansia.muciniphilia_YL44,
Prevotella.muris DSM 103722, Lactobacillus.vaginalis.DSM.5837...ATCC.49540 are 5 species
that were prevalent in more than 20% colitis susceptible mice gut metagenomes. Several
members of the Prevotella genus had been associated with colitis disease (Iljazovic et al. 2021;
Peaper et al. 2011).The genus Bacteroides had been shown to be increased in DSS induced
colitis group mice (Kanwal et al. 2020). These results suggested that MiMiC was able to
derive species that were functionally common across different conditions as well as the
exclusive species related to certain conditions.

4.13 MiMiC as a bioinformatic pipeline
We established that MiMiC could predict the functionally representative community for an
ecosystem with most related matches from a reference datasets. It allowed to include the
community member with shared function by matching Pfam profile with metagenome and
unique function by excluding the function shared by other community members. I incorporated
all concepts discussed above and integrated them into a bioinformatic pipeline to provide a
quick solution to find a functionally representative minimal microbial community from a given
metagenomic data. As an input, MiMiC needs a functional profile of an ecosystem in the form
of a binary vector. While MiMiC is not a metagenomic processing pipeline, for the ease of
usage, I incorporated most commonly used metagenomic data processing tools into a
simplified pipeline and provided separate scripts to preprocess the metagenomic reads, assign
them to proteins, predict ORFs and scan the Pfams (Figure 26A). The right panel of Figure 26
describes the microbial species included in the building block of the reference datasets. I
included three host specific reference genome datasets from human, mice and pig described in
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the method section. These datasets provide an opportunity to predict a host specific minimal
microbial consortium while species from NCBI refseq genome database provide a wider range.

The middle part of the Figure 26 is the central and core part of MiMiC which takes input from
both the other panels as Pfam binary vectors to provide the best selection of species mimicking
the most functions of metagenome from the left panel. The preprocessing steps to handle
metagenome data are wrapped up as shell scripts while the Pfam parsing is provided as perl
script. The core part of MiMiC to generate minimal microbial consortium is written in R. The
collection of assorted scripts to process individual steps provide flexibility to the user to start
from any step. The final MiMiC output provides summary statistics including species accession,
Pfam matches and mismatches for each iteration, cumulative percentage of Pfam coverage in
metagenome, number of novel Pfams added at every iteration and the MiMiC score used to
determine the species rank. Moreover, the user also has a flexibility to select the number of
species to be printed in the final outcome as a defined number or automated selection by knee
point method. MiMiC will summarise all the observed species until the user defined cutoff and
the rank is given in the descending order of MiMiC-score.

Figure 26: MiMiC infrastructure as a bioinformatic pipeline. The middle panel (B) shows the core
part of MiMiC that takes input as Pfam binary vectors of the metagenome (left A) and reference genome
database (right C) and generates a minimal microbial consortium.
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5 Discussion
Building a model, mimicking an ecology of an environment or human/mice gut microbiota is a
big challenge in the field of microbiological science. Several models have been defined for the
similar purposes like SIHUMI, oligoMM, ASF, and MAMC (Minimal Active Microbial
Consortia)(Puentes-Téllez and Falcao Salles 2018). These consortia were designed for certain
purposes and can not be used for personalisation of minimal microbial consortium for
individual’s need. Here, we propose a computational method to generate an individualized
function based minimal microbial consortium of the metagenome in question.

Often not all the species in an environment have their isolates available and effectively no
genomic reference of their functions. However, borrowing the information from functionally
similar bacterial species could help getting better insights into the functional profiles of a certain
metagenome. These species could be taken as representative and functional proxy of the
bacteria whose genomic information is missing or not able to cultivate. Our function based
minimal microbial consortia opens a new door to the scientific community to generate
personalized, experiment specific, environment specific, and cultivable consortia.

As a matter of fact, it is impossible to devise an experiment directly on the host or huge
environmental ecosystem. Therefore, there is always a need for a defined and representative
synthetic model system which could mimic the environment or host specific microbiota. Most
minimal microbial consortia are designed based on the taxonomic abundance, fermentation
and their ability to be cultured. Here, I looked into a different possibility of selecting species
from a pool of cultivable species based on their function capability instead of their taxonomic
abundance in the ecosystem.

Our primary results support the assumption that the function profile of different ecosystems
using the Pfam binary vector profile can be classified into the distinct cluster of respective
ecosystems. These results provided a positive indication towards our approach that Pfam can
be used to distinguish the metagenome from different ecosystems and can be used for further
implementation to generate a representative minimal microbial consortium.

The MiMiC method serves a purpose of identifying a minimal microbial community for individual
and more personalized needs. However, one needs to be aware of technical artefacts arising
from human handling of the samples while proposing a microbiota of an ecosystem. For
example, genetically similar mice from different vendors tend to have a different microbial
composition (Ericsson et al. 2015). If an experiment is conducted, the response by the
microbial community will vary in different facilities. It is practical to define a minimal microbial
consortium which mimics the functions of a specific environment rather than proposing a single
microbial consortium for different experiments and facilities.

I did detailed comparative analysis of different approaches to rank the representative species
and selected the best approach for further implementation of methods to generate minimal
consortia for different ecosystems. The proposed scoring system ranks the species based on
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the maximum coverage of the functions of the ecosystem while having the least irrelevant Pfam
mismatch.

A huge part of the microbial world is still uncovered despite the rapid evolution in the high
throughput sequencing technologies (Filée et al. 2005; Lloyd et al. 2018). MiMiC as a
bioinformatic method, combining the functional profile of cultivable isolated bacterial genome
will provide an initial solution to the current challenge of selecting bacterium for minimal
microbial consortia from a pool of cultivable species. We initiated the approach to predict the
minimal microbial consortia for two model organisms mouse and pig. A cultivable culture
collection of pig (Wylensek et al. 2020) and mice (Lagkouvardos, Pukall, et al. 2016) provide a
wide range of cultivable species from pig and mice intestine. We demonstrate that these
species cover a significant proportion of metagenomic functions from their host environment.
Pfam annotated profile of bacterial species for pig, mice and human (Zou et al. 2019) intestine
provides a platform to predict host specific culturable minimal microbial consortia. Upon the
success of the applicability of this approach on a host specific reference, we extended our
reference genome database to be more inclusive. We included all bacterial and archaeal
species available in NCBI RefSeq genome database and processed them to the minimum
redundancy. The reduced redundancy provides better precision and lower computational
processing cost. Our reference genome database consists of the best possible assembly
quality genomes for each species. In order to assess the impact of biases due to genome and
annotation quality of the reference genome database, we conducted the correlation study of
these factors with the Pfam annotations. Unsurprisingly, our results show that the genome size
of the microbial species correlates with the number of genes, proteins and Pfams. Given that
the Pfam matches relies on sequence similarity, bigger and better resolved genomes could be
prioritised in the minimal consortium if we consider only the number of Pfam matches between
the genome and the metagenome. This brings another question of deconvoluting the real
representative genome from the genome size bias. In a refined and final version of MiMiC we
considered the number of Pfam mismatches between the microbial species and metagenome
to penalize the calculated MiMiC-score to minimize the bias towards the bigger genome size.
Using this scoring system, first we analysed the MBARC mock community where the ground
truth of the species in the community is known. We could show that our approach allows the
unbiased selection of the species in the rank order of their abundance level in the community.

The MiMiC derived consortium of MBARC mock community represents 97% of functional
profile and 92% taxonomic relevance despite the size of reference database (n=22,627). MiMiC
was able to pick up all three archaeal species which provides an assurance and certainty of the
approach. Furthermore, giving higher priority to the species with the novel function in each
iteration increases the chances of more shared and exclusive function between the species.
The automated species selection by knee point derivation also provides sound results with
respect to the number of species picked in consortium. We also showed that our approach can
not only successfully distinguish hosts but also different environmental ecosystems. In this
work, I investigated minimal microbial consortia from human, pig and mouse gut, different body
parts of humans and also ocean and soil metagenomes. This way demonstrated the wide
applicability of MiMiC on various ecosystems.
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Considering that the MiMiC is a reference genome based approach, it is inevitable that the
proposed representative minimal microbial consortium would depend on the selection and
resolution of the reference dataset and that of the metagenome in question. To make the
selection more specific to the host or relative environment we depend on the taxonomic lineage
and the source from where the bacterium was isolated. These areas are still under refinement
in NCBI and can influence the outcome of the MiMiC. I have created three host specific
databases for human, pig and mouse which can be used to generate the minimal microbial
consortia for the respective host. However, as a useful source for the future development we
provided the taxonomic lineage for all the microbial species used for Pfam reference
databases. To increase the precision of the outcome, a filtered reference dataset can be
created using the taxonomic lineage of the Pfam reference database provided. This way it
allows the MiMiC to predict the minimal microbial consortia from the taxonomically related host
specific dataset.

After scoring the species, the next question is to select the minimal number of representative
species from the given community. Consequently, I evaluated the number of iterations
(species) to be selected with the maximal functional coverage. Generally, we found that the first
50 species provide the considerable representation of functional coverage and good ground to
select the species visually based on their coverage information. Nonetheless, an automated
approach to derive a defined minimal microbial consortium provides a more sensitive and
individualistic approach for each metagenome. To this end, I compared two methods uik and
d2uik from the R package ‘inflection’ to find a knee point on cumulative function coverage of
metagenomes by species in minimal microbial consortia. The results indicate that the function
d2uik gives a more robust knee point and is rarely dependent on the iteration number.
However, it is more stringent with respect to the number of species picked due to detection of
knee points at very low rank of species. On the other end, the method uik depends highly on
the shape of the cumulative function coverage curve and effectively on the number of iterations
the knee point is applied on. Our results indicate that when no less than 50 iterations are
included, the knee point method uik derives substantial number species without discernible
loss of information. However, both the options of knee point and the iteration cutoffs are
provided for the analysis and a user can apply different options and explore the effects of
different choices. The processing time depends on the number of species in the reference
genome database.

As MiMiC output we provide a transparent results table containing the values for different steps
used during the process at each iteration. We provide the reference genome accession for
each species, cumulative function of metagenome covered by microbial species at each
iteration, novel function added to the consortium by species, total number of Pfam present in
microbial species and the metagenome both, Pfam used of species in each iteration, and
absolute number of match and mismatch for each species to the metagenome. These
outcomes provide a transparent view of the results and can be used for further exploration of
the consortia and ecosystem.

For an affirmation of the MiMiC method we compared the MiMiC generated results with the
same number of randomly selected species sets to make sure that consortium derived by
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MiMiC always bring the community members covering significantly more functions than the
average functions covered by random sets. MiMiC generated consortia always performed
better with respect to relative number of Pfam match to metagenome than mismatch regardless
of the choice of reference dataset or the ecosystem from where the metagenome was derived.

Despite the fact that shotgun sequencing of microbial DNA provides a deep insight of microbial
ecology and functions of microbial species present in it, there are several primary factors like
different sequencing technology, sequence length, sequencing depth, which influence the
coverage of microbial DNA in respective samples (Gweon et al. 2019). This could be one
reason which may lead to dissimilar results of the microbiota from the same environment.
Among the 937 metagenomes analysed, we observed that the individual metagenomes from
the same ecosystem do not have a similar microbial consortia profile.

The accuracy of the whole approach of scanning the Pfams which the backbone of MiMiC
ultimately depends on how accurately the sequenced reads can be assembled and the coding
sequences can be predicted. A technical bias can cause a big difference even in technical
replicates from the same source of sample collection of microbial DNA. For example
irrespective of low abundance of Ruminococcus bromii compared to any other highly abundant
species of amylolytic bacteria in human colon (Ze et al. 2012), it has superior capability to
degrade particulate resistant starch and perform a role of keystone species (Ze et al. 2013). A
Microbial sample with low depth of sequencing or with more sequencing error can miss to build
a genome reconstruct or identification of a species through taxonomic or binning tools
compared to the sample with higher depth and coverage of sequencing. Having said this, it is
highly recommended to revisit the goal of the study before sequencing a metagenome and
carefully evaluate the sequencing quality and depth.

Apart from using MiMiC to derive a minimal consortium per metagenome, one can also analyse
the prevalence of the species from MiMiC consortia across several metagenomes from the
same ecosystem for wider applicability. Our results indicate that the prevalence of the species
per ecosystem can be used to identify the most and least prevalent species in the ecosystem
to propose a set of conclusive and a generalized minimal microbial consortium for that
ecosystem. We demonstrated this approach using reference datasets, pig intestinal bacterial
collection (PiBAC), mice intestinal bacterial collection (miBC) and NCBI RefSeq genome
database to generate the minimal microbial consortia for model organism pig, mice and in a
extended study to the human and environmental metagenomes like soil and ocean as well.
Having said this, one can also observe that the soil samples represent higher variability
amongst the metagenomes taken from various sites compared to the metagenomes of living
organisms. The most prevalent species also show the presence in maximum 20% of the
metagenomes of soil while in any of the organismal metagenome samples the prevalence goes
over 60%. This indicates that the organismal ecosystems are comparatively more similar than
the environmental ecosystems.

We demonstrated using MiMiC that 18 species (MiBAC-1) which were selected based on the
pre taxonomic abundance, cover the most function in mouse gut metagenome compared to
both ASF and SIHUMI (Lagkouvardos, Pukall, et al. 2016). However, numbers of species were
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not equal in all the consortia and significantly higher numbers of species in MiBAC-1 could
propose better functional coverage in the mouse gut metagenome.

We found that pig metagenomes profile from different geographical areas can be distinguished
in distinct clusters. In our study, we showed that pig metagenomes from different countries
China, France and Denmark made distinct clusters based on their Pfam profile (Wylensek et al.
2020). We used PiBAC bacterial collection to identify the minimal microbial consortia for the
metagenomic dataset from study of pig gut gene catalog (Xiao et al. 2016). The study
demonstrates that MiMiC derived 23 species cover the maximum function than the randomly
picked set of 23 species. At the same time MiMiC gives an initial ground to consider the
species to be selected in a minimal microbial consortium. We found that there are 36 species
which were not picked by any of the metagenomes. This brings the benefits that MiMiC can
sort out the functionally least important species from the consortia. Besides, the comparison of
23 most prevalent species with random sets gives assurance to MiMiC and the prevalence
approach to predict a generalized set of microbial communities which cover the considerable
range of function in all the metagenomes from different geographical and breeding
backgrounds.

Moreover, MiMiC is able to provide the species which are more prevalent in disease
susceptible mice compared to non susceptible mice. Using miBC we found that some species
were more prevalent in the disease susceptible mice and less prevalent in non susceptible
mice. This suggests that MiMiC is able pick the species which share the similar function in the
different conditions/environment. At the same time it is able to derive the species which are
more susceptible or responsible for the disease or disease-free environment. At the same time
we demonstrated that the mice gut metagenomes can be classified based on the Pfam profile
from different parts of the mouse gut like colon, ileum, and cecum. Same fact is applied to
function annotation. Still there is a need for further exploration of these species and their
function. We hypothesize that common species are responsible for general function and unique
species are the one which are responsible for causing colitis.

Microbial Gene catalogs from different organisms provide a wonderful opportunity to build a
functional profile based on the genes and sequencing data available (Almeida et al. 2021; J. Li
et al. 2014; Xiao et al. 2016, 2015). On the other hand the prokaryotic genomes from different
culture collections and databases make it possible to use the functional profile of individual
species (Wylensek et al. 2020; Lagkouvardos, Pukall, et al. 2016; Zou et al. 2019). Gene
catalogues can be translated into functional profiles as Pfam binary vectors using
preprocessing MiMiC pipeline. Furthermore, MiMiC can be used to provide a minimal set of
cultivable microbial species for human, mice and pig gut microbiota based on gene cataloge
translated profiles. Predicted consortia could further be used in germ free mice to mimic a gut
environment from respective hosts. At the same time projects like MetaHit (Metagenomics of
the Human Intestinal Tract) cover a wide population and diversity of human gut microbiota
including healthy and patient data. MetaHit provides access to microbial profiles from
Inflammatory bowel disease (IBD) Ulcerative colitis (UC) and Crohn's disease (CD). MiMiC can
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be applied to provide a further insight of function based minimal microbial communities specific
to disease or healthy human microbiota.

Behzad D. Karkaria et al. 2021 proposed the automated design of the preselected species
using bacteriocin as anti-microbial peptides to inhibit the similar strain to be outnumbered then
others in the same environment (Karkaria, Fedorec, and Barnes 2021). This method integrated
the quorum sensing, chemostat with bayes approach to monitor the growth of the species in
certain environments. However, it did not provide the ground of how to initiate selecting species
from an ecosystem at first hand. Our approach of MiMiC provides a unique platform to the user
to select the species from an environment taking advantage of the metagenomic sequencing.
MiMiC is implemented as a method using R, perl and shell scripts. The core method of
generating Pfam binary vectors and calculating MiMiC-score are written in R. The Pfam
annotation of metagenomes or genomes are parsed using perl script. A Pfam binary vector of
the reference genome and the metagenome are expected as inputs to the main script of
MiMiC. For the ease of usage, I extended the repository to include scripts to generate the
metagenomic assembly, taxonomic profile, coding sequence prediction and Pfam annotation.
The Pfam binary vectors of the host specific datasets for pig (n=111 species), mice (n=104
species) and human (n=803 species) are provided to be used directly for the host specific
applications. Since all these species are cultivable, the proposed minimal microbial consortia
using these reference datasets provide a cultivable set of microbiome communities. I extended
the reference genome repository to the RefSeq genome database and provided a Pfam binay
vector of 22,627 species. The user can use their own customised reference genome datasets
to predict the functionally best representative species to the metagenome. Benchmarking of the
iteration number cutoff, knee point methods, and different versions of MiMiC provides a
reference guide to the user to set up and use different cutoff and choice of methods. For
example, a minimal microbial consortium can be generated by a defined number of community
members or it can be decided based on the knee point choice. All in all, MiMiC is the
approach first proposed to generate a representative cultivable set of microbiome
communities from metagenome(s). MiMiC provides flexible, transparent and open
source scripts amenable for easy adaptation to the user's need for every feature.
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6 Conclusion and perspective
In this study, I laid the foundation for important building blocks of a bioinformatic
pipeline to select species for automated generation of function-based minimal microbial
consortium. I built a non-redundant prokaryotic reference genome database in terms of Pfam
profile, developed and optimised a method to generate minimal microbial community to
represent an ecosystem, validated this approach on a mock community and proposed minimal
consortia for various ecosystems. I showed that Pfam is a suitable unit to define the function
profile of metagenomes and microbial genomes. The proposed Pfam profiles of several host
specific datasets provide an opportunity to generate minimal microbial consortia of cultured
species for further mechanistic studies. The wide range of processed species-level genomes
from NCBI RefSeq provide an opportunity to explore multiple microbial communities and
generate an individualized consortium. Minimal microbial consortia predicted for pig and mice
intestinal microbiota can provide initial ground to select the strain for further study or designing
synthetic microbial community to mimic the pig and mice intestinal gut microbiota in germ free
models. The evaluation of MiMiC using a mock community (MBARC) provides a sound
validation that MiMiC derived minimal consortia is not only functionally representative, but also
taxonomically.

The core part of MiMiC exists as a flexible wrap up of R scripts which can easily be integrated
as a shiny app. Such interface will enable users from diverse backgrounds to autonomously
explore and interpret their own results. For instance, a user can select taxonomically relevant
reference datasets and analyse the proposed microbial communities tailored to their needs.
There are also other databases providing refined genomic and metadata information which can
be integrated in the current MiMiC reference database (Kyrpides 1999; Mukherjee et al. 2021).
If a user wants to use a pathogen free reference database, this can also be implemented by
flagging the pathogens in the reference database obtaining information from available soure
like https://www.ncbi.nlm.nih.gov/pathogens/organisms/ (McNeil et al. 2007). Apart from the
proposed automated selection of species, the shiny app could provide flexibility for the end
user to choose a custom number of species by looking at the cumulative graph interactively.
Currently, MiMiC uses protein families (Pfam) as a classifier to select functionally closer
species to the native ecosystems, however, in future other means of functional annotations can
be implemented such as EggNOG, COG, GEMs and KEGG. These annotation methods can be
used for special needs such as metabolic pathway based classification, orthologous group and
metabolic models. Currently, MiMiC scoring system relies on metagenomic function coverage.
Nevertheless, the scoring can be customised to suit the annotation method used.

Projects like the integrative Human Microbiome Project (iHMP), MetaHit have opened up
exciting opportunities to better our understanding of human microbiota. Such comprehensive
information will enable researchers to understand the complexity of the microbiota via
proposed minimal consortia with MiMiC.
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