
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik

Formalizing and Modeling Traffic Rules
Within Interactive Behavior Planning

Klemens Esterle

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Jan Křetínský

Prüfer der Dissertation: 1. Prof. Dr.-Ing. habil. Alois Knoll

2. Prof. Dr. techn. Daniel Watzenig

Die Dissertation wurde am 29.03.2021 bei der Technischen Universität München eingereicht und

durch die Fakultät für Informatik am 18.08.2021 angenommen.

Abstract

This thesis addresses behavior planning for autonomous vehicles in highly dense scenarios,

which are challenging because of the necessary interactions with other agents. Here, autonomous

vehicles need to flow with traffic but also adhere to all traffic rules – even complex priority

rules like the zipper merge. Two problems arise from that: First, traffic rules are fuzzy and

not mathematically defined, making them incomprehensible to machines. Without proper

formalization, satisfaction cannot be monitored in simulation or testing nor implemented for

planning. Second, the planning component needs to integrate those rules, but no interaction-

aware planning algorithm exists that provides a mechanism to enforce the compliance to rules,

which depend on the behavior of multiple interacting participants.

This work approaches the first problem by introducing a methodology to formalize traffic

rules in a formal language. Temporal logic is used as a formal specification language to capture a

wide range of traffic rules. The rules are evaluated on public traffic data. The second problem is

addressed by designing rule-compliance to traffic rules for two orthogonal interactive planning

algorithms. The first approach monitors the rules within a randomized search of a decision tree.

It exploits the structure of the decision tree by encoding temporal rule information in the tree

node. A simulation-based evaluation toolchain helps to study the effects of modeling a specific

rule. This way, contradictions in the rules can be identified and fed back to the rule formalization

stage. As randomized solution methods may be challenging for certifying the algorithm, a

second approach based on optimal control is presented. The novel model formulation is solved

using Mixed-Integer Programming and approximates the rules to be part of the optimization.

The effectiveness of the rule approximation is demonstrated in simulation.

Summary: This work first identifies all applicable traffic rules, formalizes them, and provides

a simulation toolchain to evaluate them. Then, two orthogonal methods for interactive planning

are developed that assert traffic rules adherence during planning.

iii

Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Verhaltensplanung für autonome Fahrzeuge in

dichten Szenarien, welche aufgrund der darin notwendigen Interaktionen mit anderen Agenten

eine Herausforderung für bestehende Systeme darstellen. In solchen Szenarien müssen autonome

Fahrzeuge mit dem Verkehr mitschwimmen, aber auch alle Verkehrsregeln einhalten – selbst

komplexe Vorfahrsregeln wie das Reißverschlussverfahren. Daraus ergeben sich zwei Probleme:

Erstens sind die Verkehrsregeln unscharf und nicht mathematisch definiert, was eine maschinelle

Auswertung verhindert. Ohne Formalisierung kann die Einhaltung weder in Simulationen

oder realen Tests überwacht werden, noch innerhalb eines Planungsalgorithmus implementiert

werden. Zweitens muss die Planungskomponente diese Regeln integrieren, aber es existiert kein

Interaktionen modellierender Planungsalgorithmus, der einen Mechanismus zur Einhaltung von

Regeln bietet, die vom Verhalten mehrerer interagierender Teilnehmer abhängen.

Diese Arbeit nähert sich dem ersten Problem durch die Einführung einer Methodik zur Formal-

isierung von Verkehrsregeln in einer formalen Sprache. Dabei wird temporale Logik als formale

Spezifikationssprache verwendet, um eine breite Palette von Verkehrsregeln zu beschreiben. Die

Regeln werden mittels öffentlicher Verkehrsdaten ausgewertet. Das zweite Problem wird durch

den Entwurf der Regelkonformität für zwei orthogonale interaktive Planungsalgorithmen behan-

delt. Der erste Ansatz überwacht die Regeln während einer zufallsbasierten Suche innnerhalb

eines Entscheidungsbaums, und nutzt dessen Struktur aus, indem er zeitliche Regelinformatio-

nen in den Baumknoten kodiert. Ein simulationsbasiertes Evaluierungswerkzeug hilft dabei,

die Auswirkungen der Modellierung einer bestimmten Regel zu untersuchen. Auf diese Weise

können Widersprüche in den Regeln identifiziert und in die Phase der Regelformalisierung

zurückgeführt werden. Da zufallsbasierte Lösungsmethoden eine Herausforderung für die

Zertifizierung des Algorithmus darstellen kann, wird ein zweiter Ansatz vorgestellt, der auf einer

Optimalsteuerung basiert. Die neuartige Modellformulierung wird mittels gemischt-ganzzahliger

Programmierung gelöst und approximiert die Regeln als Teil des Optimierungproblems. Die

Wirksamkeit der Regelapproximation wird in der Simulation demonstriert.

Zusammenfassung: Diese Arbeit identifiziert zunächst alle anwendbaren Verkehrsregeln,

formalisiert sie und stellt ein Simulations-Werkzeug zur Verfügung, um die Einhaltung der

Regeln zu bewerten. Im Anschluss werden zwei orthogonale Methoden für die interaktive

Verhaltensplanung entwickelt, welche die Einhaltung der Verkehrsregeln während der Planung

durchsetzen.

v

Contents

Acronyms 3

List of Symbols 5

1. Introduction 9

1.1. Motivation . 9

1.2. State of the Art . 10

1.2.1. State of the Art on Behavior Planning . 10

1.2.2. State of the Art for Ensuring Traffic Rules Within Planning 13

1.2.3. State of the Art for Traffic Rule Formalization 14

1.3. Contributions . 15

1.4. Publications . 16

1.5. Structure of this Thesis . 17

2. Preliminaries 19

2.1. Benchmarking Behavior in Simulation . 19

2.1.1. Overview and Contribution . 19

2.1.2. BARK in a Nutshell . 20

2.1.3. Behavior Modeling for Realism in Simulation 22

2.1.4. Evaluator Concept for Benchmarking . 23

2.2. Monte Carlo Tree Search . 24

2.2.1. Monte Carlo Tree Search for Behavior Planning 24

2.2.2. Monte Carlo Tree Search in BARK . 24

3. Formalization of Traffic Rules for Machine Interpretability 27

3.1. Overview and Contribution . 27

3.2. Legal Analysis of German Traffic Rules on Dual Carriageways 27

3.2.1. Regulations on Speed . 28

3.2.2. Regulations on the Use of Roads and Lanes 30

vii

Contents

3.2.3. Regulations on Overtaking . 31

3.2.4. Regulations on a Safe Distance . 33

3.2.5. Regulations on Being Overtaken . 34

3.2.6. Regulations on Priorities . 34

3.3. Identifying a Suitable Language for Machine Interpretability 35

3.3.1. Characteristics of Traffic Rules in Dense Highway Scenarios 35

3.3.2. Selection of a Formalization Language . 36

3.4. Formalizing Traffic Rules Using Linear Temporal Logic 38

3.4.1. Linear Temporal Logic for Codification . 38

3.4.2. Atomic Propositions for Concretization . 38

3.4.3. Codified Rules . 39

3.5. Conclusion . 42

4. Evaluating Traffic Rules in Linear Temporal Logic on Recorded Drives 43

4.1. Overview and Contribution . 43

4.2. Linear Temporal Logic on Finite Traces . 43

4.3. Automaton-based Verification of LTLf Formulas . 44

4.4. Runtime Monitoring of Traffic Rules . 44

4.4.1. Rule Violations . 44

4.4.2. Open Rule Monitor . 45

4.5. Evaluation . 45

4.5.1. Evaluation Methods and Dataset Processing 45

4.5.2. Evaluation of Violation on Recorded Drives 46

4.6. Conclusion . 53

5. Monitoring of Traffic Rules Within Interactive Behavior Planning 55

5.1. Overview and Contribution . 55

5.2. Related Work . 56

5.3. Problem Formulation and Assumptions . 56

5.4. Approach . 57

5.4.1. Rule Monitoring Within Monte Carlo Tree Search 57

5.4.2. Costs for a Violation Penalty . 58

5.4.3. Multi-Objective Reward Function with Priorities 58

5.5. Experiments and Results . 59

5.5.1. Experimental Setup . 59

5.5.2. Zipper Merge in Merging Scenario . 61

5.5.3. Quantitative Evaluation . 62

5.6. Conclusion . 64

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules 67

6.1. Overview and Contribution . 67

6.2. Related Work . 68

viii

Contents

6.3. Problem Formulation and Assumptions . 72

6.4. Region-based Linearization Approach of Nonlinear Constraints 72

6.4.1. Discretized and Disjunctive Modeling of the Orientation 72

6.4.2. Over-Approximating the Collision Shape . 74

6.4.3. Modeling the Non-Holonomics . 75

6.5. Fitting Method of Linear Polynomials . 76

6.5.1. Fitting the Front Axle Position . 76

6.5.2. Fitting the Curvature . 78

6.6. Formulating the Planning Problem as Linear Dynamic Game 78

6.6.1. Formulating the Vehicle Model as Constraints 79

6.6.2. Modeling the Non-Holonomy as Constraints 80

6.6.3. Approximating the Front Axle Position as Constraints 81

6.6.4. Constraints Limiting the Model to Stay on the Road 81

6.6.5. Formulating Collision Avoidance as Constraints 82

6.6.6. Multi-Agent Collision Constraints . 83

6.6.7. Traffic Rules . 86

6.6.8. Joint Cost Function for Reference Tracking 90

6.6.9. Optimization Problem . 90

6.6.10. Receding Horizon Formulation . 90

6.7. Experiments and Results . 91

6.7.1. Preserving the Non-Holonomy . 91

6.7.2. Staying Within the Road Boundaries . 92

6.7.3. Avoiding Dynamic Obstacles . 93

6.7.4. Planning for Multiple Agents . 96

6.7.5. Evaluation on Traffic Rules . 96

6.7.6. Benchmark . 99

6.8. Conclusion . 103

7. Comparison of Planning Approaches for Traffic Rule Integration 105

7.1. Comparison of Planning Approaches . 105

7.1.1. Characteristics of Model . 105

7.1.2. Characteristics of Solution Method . 106

7.1.3. Possible Extensions of Solution Method . 108

7.2. Comparison of Implemented Rules . 108

7.3. Conclusion . 110

8. Future Work 111

8.1. Traffic Ruleset . 111

8.2. Functional Improvements for MCTS with Rules . 112

8.3. Performance Improvements for MIQP . 113

8.4. Functional Improvements for MIQP with Rules . 114

ix

Contents

9. Conclusion 115

A. Appendix 117

A.1. Parameters for Dataset Evaluation . 117

A.2. Parameters for MOBIL-based Behavior Model . 118

A.3. Parameters for MCTS-based Planner Evaluation . 118

A.4. Parameters for MIQP-based Planner Evaluation . 119

List of Figures 121

List of Tables 123

List of Algorithms 125

Bibliography 127

x

Contents

1

Acronyms

BARK Behavior Benchmarking Framework.

BOV Being Overtaken.

DFA Deterministic Finite Automaton.

DIST Distance.

IDM Intelligent Driver Model.

LO Lexicographical Ordering.

LS Lane Selection.

LTL Linear Temporal Logic.

LTLf Linear Temporal Logic on finite traces.

MCTS Monte Carlo Tree Search.

MDP Markov Decision Process.

MILP Mixed-Integer Linear Programming.

MIP Mixed-Integer Programming.

MIQP Mixed-Integer Quadratic Programming.

MIQP-SA Single Agent Variant of the MIQP-based planner.

MOBIL Minimizing Overall Braking Induced by Lane Changes.

MTL Metric Temporal Logic.

ODD Operational Design Domain.

OV Overtaking.

POMDP Partially Observable Markov Decision Process.

PRIO Priority.

3

Acronyms

QP Quadratic Programming.

RRT Rapidly Exploring Random Tree.

RSS Responsibility Sensitivity Safety Model.

SA Single Agent.

SA-Lex Single Agent Variant of MCTS with Lexicographic Ordering.

SD Safe Distance.

SQP Sequential Quadratic Programming.

STL Signal Temporal Logic.

StVO Strassenverkehrsordnung.

TLO Thresholded Lexicographical Ordering.

UCT Upper Confidence Bounds for Trees.

ZIP Zipper Merge.

4

List of Symbols

Notation Description

(·)(k) value (·) at discrete step k

(·)(t) value (·) at continuous time t

(·)i value (·) of agent i

(·)j value (·) of agent j

(·)base base

(·)col collision

(·)lat lateral

(·)max maximum

(·)mean mean

(·)ref reference

(·)sd safe distance

(·)zip zipper merge

(·)br brake

(·)x value in x-direction

(·)y value in y-direction

(·) upper bound

(·) lower bound

a action

a joint action

a acceleration

A action space

A joint action space

A set of agents

αij true iff respective parts of agent i and agent j are not colliding

5

List of Symbols

Notation Description

B behavior

B behavior model

Be behavior model of ego agent

Bo behavior model of other agent

β
r
x x value of region r upper region borderline

βr
x

x value of region r lower region borderline

β
r
y y value of region r upper region borderline

βr
y

y value of region r lower region borderline

c conclusion

CUCT exploration constant

d distance

D desired safety distance between two agents

D slack-softened safety distance between two agents

δ automata transition function

ςp(o) true iff vehicle does not collide with obstacle o at the reference point p

e(λ) true iff vehicle is not inside the environment sub-polygon λ

ϵv threshold for velocity

F set of accepting automata states

FinLane lane matching parameter

γ discount factor

Γ non-convex environment polygon

j jerk

k discrete time step

κ curvature

K number of time steps

l line segment

L wheelbase

λ convex environment sub-polygon

L label function

Λ deterministic finite automaton

m number of rules

6

List of Symbols

Notation Description

M Big-M constant

Ndense number of agents used for dense label calculation

NA number of agents

N number of node visits

o obstacle

Σ automaton alphabet

p position in Cartesian space

p premise

p finite LTL formula

P polygon

P linear polynome

Π set of atomic propositions

π atomic proposition

Ψ true iff no region change is allowed

φ LTL formula

q automaton state

q automata state vector

Q state-action-value function

Q set of automata states

r region

Rcc radius of collision circle

Rdense radius used for dense label calculation

r reward

r reward vector

ρ(r) true iff vehicle is in region r

ϱr vehicle is allowed to be in region r

s state

s environment state

S environment state space

σ symbol

t time

treact reaction time

tstop time needed to brake to standstill

7

List of Symbols

Notation Description

θ orientation

τ threshold vector for TLO

τ threshold for TLO

△ cumulative discounted reward

u input

v velocity

vstop velocity theshold for stopping

V set of vehicles

V tree node

w word being a sequence of symbols

wlane lane width

W penalty function

ω weight

w orientation rate

x vehicle state

xdes desired state

xex executed state

X vehicle state space

Ξcurr current lane corridor

Ξleft left lane corridor

Ξref reference lane corridor

Ξright right lane corridor

ζ(o) true iff vehicle collides with soft obstacle o

ξ ij slack for vehicle-to-vehicle collision check of vehicles i and j

z product state

8

1
Introduction

1.1. Motivation

Autonomous vehicles promise an increase of safety, time and cost efficiency of transport. The

development of autonomous vehicles has made great progress in the last decade since the

DARPA Urban Challenge [1–3]. However, all vehicles on the street are still prototypes, mostly

overseen by test drivers. One of the key challenges for certification is that humans participate

in traffic as well. Major problems arise in dense, dynamic situations, where the autonomous

vehicle needs to operate in close interaction with vehicles, that are controlled by humans. Since

most planning algorithms do not consider the interactions with human drivers, the number of

disengagements on freeways and in urban areas, where higher traffic density requires more

interactions, is especially large [4].

Traffic rules have been designed to help humans manage the otherwise chaotic traffic environ-

ment. If all vehicles were fully autonomous, the current set of rules could be reduced or adapted.

In a transition period with mixed traffic however, autonomous vehicles will have to obey the

same rules as humans, i.e., the planned behavior is collision-free and lawful [5]. Specifically,

the scope of a behavior planning component for autonomous driving is calculating a plan to

safely navigate through traffic reaching a desired state within the perceived horizon. Recent

efforts to certify autonomous vehicles lead to the question of how an autonomous vehicle shall

be programmed to obey traffic rules, and how this can be demonstrated in a structured and

methodological manner.

The research line of interactive behavior planning addresses planning in dense situations with

human drivers but has mostly ignored the aspect to obey traffic rules other than collision pre-

vention and speed compliance. Figure 1.1 shows a possible system architecture if the interactive

behavior planner (denoted performance planner) were not to consider all traffic rules at planning

time. In that case, a traffic rules monitor would need to check the generated behavior plan regarding

rule compliance at runtime. In the case of a detected rule violation, a decision module would

need to switch to the safety planner – a planner that must come up with a behavior backup plan

that is lawful – possibly by coming to a standstill. If the performance planner does not consider

the rules, its behavior plan might yield violations quite often. How often will the decision

9

1. Introduction

performance planner

traffic rules monitor

behavior

without traffic rules

safety planner

plan

decision module

behavior

backup plan

Figure 1.1.: Simplex architecture for a rule-compliant system, if the traffic rules are not considered at

planning time.

module need to switch to the safety planner? How acceptable will the backup plan of the safety

planner be? Essentially, simplex architectures can be used to guarantee safety for safety-critical

systems. However, such architectures are not desirable when monitoring properties that will

be violated regularly. A better solution would be to assert rule compliance in the planning

component directly.

Previous work proposed combining model checking techniques for traffic rule satisfaction

with motion planning in static environments [6]. However, dense scenarios remain difficult

for motion planning approaches as they cannot anticipate human reactions correctly. With a

focus on interactive behavior planning, this thesis aims to develop methods for rule compliant

behavior that explicitly take the other vehicles’ reaction into account.

1.2. State of the Art

The following section consists of a review of state-of-the-art planning and traffic rule modeling

techniques for autonomous vehicles.

1.2.1. State of the Art on Behavior Planning

In this work, behavior of a controlled agent (from here on denoted ego agent) refers to it’s desired

future trajectory encoding the agent’s strategy to reach a short-term goal, e.g., changing lanes.

The trajectory may not be executable without deviations due to tracking errors or environmental

influences. Schwarting et al. [7] distinguish between three different categories for planning and

decision making: Sequential planning, behavior-aware planning, and end-to-end planning,

see Figure 1.2.

Non-Interactive Planning Sequential planning is the traditional approach known from robotics,

where planning is separated into a behavior layer and a motion or trajectory planner. The

behavioral layer passes a high-level decision or maneuver to the motion planner, which computes

a feasible trajectory for the next couple of seconds. In the days of DARPA’s Urban Challenge,

the behavior layer was often realized as a state machine, often summarized under the term

rule-based [1, 2]. These approaches did well in the DARPA scenario at low speed with only

10

1.2. State of the Art

perception
behavioral layer

(e.g., rule-based [2],
cell decomposition [8])

prediction

motion planning
(e.g., sampling [9],

local optimization [10])

feedback
control

perception interactive behavior planning feedback
control

end-to-end planning
(e.g., RL [11, 12])

sensor
input

control
output

world
model

maneuver trajectory

maneuver prediction

world
model

trajectory

Figure 1.2.: Overview of three types of planning architectures (taken, reproduced and modified from

Schwarting et al. [7]). This thesis focuses on interactive behavior-aware planning (highlighted

in blue). The behavioral layer (dashed) might be omitted for some search or sampling-based

motion planning approaches.

a few other traffic participants, but do not generalize well to new scenarios and unforeseen

situations. More recent implementations may employ geometric approaches based on cell

decomposition [8, 13]. However, as they do not plan in continuous space, they cannot guarantee

the maneuver’s feasibility. Sontges et al. [14] propose to employ reachability analysis to ensure

the feasibility of the maneuver.

One line of direction for motion planning is constrained local optimization, where a vehicle

model is forward propagated, and collision avoidance to static and dynamic obstacles is modeled

as constraints [15–17]. The optimizer minimizes a cost function to find suitable inputs to

the vehicle model along the discretized planning horizon. Instead of employing a vehicle

model, Ziegler et al. [10] utilize a geometric approach and impose the vehicle’s non-holonomy

characteristics as constraints. While the properties of the optimized trajectory in terms of

smoothness would be preferable, the problem is usually not convex, which is why a maneuver

selection from the behavioral layer is required [16]. Thus, practical applications mostly consider

evasive maneuvers, where the combinatorial non-convex problem can be simplified to a convex

problem by the help of heuristics [17].

Discrete search- and sampling-based algorithms known from path planning can, in general, be

applied to the spatiotemporal state space. They do not require a behavioral layer, although it may

be beneficial to limit the search space, as additional knowledge can improve the convergence of

the subsequent motion planning methods.

Graph search methods discretize the state or action space yielding a graph, which can be solved

using search-based algorithms like [18], or carefully engineered heuristic [19]. Approaches where

the graph representation is created only by feasible motion primitives are called lattice plan-

ners [20, 21]. McNaughton et al. [20] apply dynamic programming to solve the spatiotemporal

problem. In structured environments, the input space can be discretized to sample road-aligned

primitives [21]. Path-velocity decomposition simplifies the problem, i.e., a path planner obtains a

collision-free path around static obstacles and a longitudinal motion planner along that path

prevents collisions with dynamic obstacles [18].

11

1. Introduction

Incremental search algorithms do not rely on an initial discretization to obtain a graph. Random-

ized sampling-based approaches like Rapidly Exploring Random Tree (RRT) or its extension

RRT* [9, 22] incrementally construct a search tree by randomly sampling new states. No analytic

function exists for a non-holonomic vehicle model to connect two sampled states in the spa-

tiotemporal state space, which Jeon et al. [23] circumvent by using numerical approximations to

connect the states. However, the resulting trajectory using RRT* may not be feasible with such

an approximation.

All methods above have in common that they use a two-step approach for planning, essentially

separating planning and prediction: First, the other vehicles are predicted along a time horizon of

a couple of seconds. Second, the reaction of the ego vehicle is planned based on this prediction.

However, as long as autonomous vehicles share the road with human drivers, they need to make

decisions in an interactive (“What will the other car do if I do this?”) and cooperative manner,

without any inter-vehicle communication, as otherwise dead-locks or dangerous situations may

arise. In a situation like a highway merge, where there is no gap to merge in, but a vehicle may

be willing to make space, a prediction model unaware of the ego agent’s intention to merge

in may predict the car to continue at the same velocity, leaving the planning module with no

predicted room to merge.

Interactive Behavior Planning Game-theoretic approaches offer an elegant way to model

interactions and dependencies between agents [24–26]. Based on the collaborative assumption,

considering every agent’s costs, the ego agent can incorporate future interactions with human-

driven vehicles into its planning scheme. A decision tree often realizes the game theoretic setting

by sampling primitive actions.

Bahram et al. [24] formulate an extensive-form game where the other traffic participants are

part of the environment. While the framework is highly flexible, the approach does not ensure

convergence to an optimal solution. Schwarting et al. [26] use iterative dynamic programming

to solve a multi-agent dynamic, non-zero-sum game. They explicitly model partial observability

of the intention of others. The proposed belief-space variant of the iterative Linear Quadratic

Gaussian algorithm can be executed in real-time. The exact costs and dynamics of other agents

are assumed to be known, and the algorithm converges to a potentially sub-optimal Nash

equilibrium. Lenz et al. [25] solve a multi-agent, non-zero-sum dynamic game using Monte

Carlo Tree Search (MCTS). A cooperation factor serves as a tuning parameter in the ego agents’

cost function. The formulation is highly flexible and can incorporate any transition function for

modeling the environment. Kessler et al. [27] use motion primitives to generate a multi-agent

motion tree. Applying Mixed-Integer Linear Programming (MILP) to the tree yields an optimal

cooperative behavior for a set of agents. Evestedt et al. [28] combine sampling of trajectory

candidates from [21] with an iterative prediction of the other traffic participants. Although

decision trees are a convenient method to represent game-based formulations, they have one

major disadvantage. Due to the search-space discretization, they may fail to obtain valid solutions

in convoluted solution spaces, such as dense and complex scenarios.

12

1.2. State of the Art

Optimal control approaches, which promise to make efficient use of the solution space, have

employed Mixed-Integer Programming (MIP) for cooperative multi-agent planning [29–31], as it

can find an optimal solution to the usually combinatoric problem. Frese et al. [29] formulate a

multi-agent optimal control problem and solve it using MILP. Eilbrecht et al. [30] formulate a

two-layered approach of iterative conflict resolution using a cooperative cost function, where

the underlying trajectory of each agent is optimized for each agent separately. However, both

approaches [29, 30] only work for straight driving on straight roads, as they cannot encode the

non-holonomy in the optimization problem. Similar problems can be expected from [31], where

the abstracted discrete lateral action and state space will complicate applying this approach in

reality. To summarize, while the logical properties mirror the nature of – often logical – traffic

constraints in a continuous state space in theory [32], there exists no formulation that can be

applied to arbitrary roads or driving situations.

Reinforcement Learning can be used to learn a policy. Here, interactions do not need to

be modeled explicitly using models or multi-agent settings, but can be learned implicitly. To

enable the generalization to unforeseen environments, past works employed prediction or formal

methods for safe exploration [33–35], counterfactual reasoning for safe execution [36], learning

on abstract semantic representations [37], or fusing RL with search-based methods [38–40].

However, safety, non-interpretability, and efficiency of training data are just some of the problems

that remain before such approaches can eventually be applied in safety-critical applications.

End-To-End Planning Both sequential planning and interactive planning operate on an explicit

world model, a semantic representation built from the fused perception, consisting of lanes,

objects, and other traffic participants. On the other side, end-to-end-planning does not try to

construct a world model or explicitly define prediction or interaction models but aims to learn

them implicitly. Although there have been some real-world demonstrations [11, 12], verification

of such approaches proves to be even more challenging than traditional ones, as it does not allow

for any component-wise verification.

1.2.2. State of the Art for Ensuring Traffic Rules Within Planning

This section summarizes what has been proposed in the literature to model rule satisfaction

within a planning method.

Behavioral layers that are based on fine state machines allow modeling rules of the road.

Practical demonstrations showed rules such as stopping at a stop sign or priorities at intersec-

tions [1]. However, their decoupling from motion planning and their lack of interaction limit

their usefulness in dense and complex environments.

Search- and sampling-based motion planning techniques can integrate traffic rules by incorpo-

rating their penalty in the cost function. Previous work proposed combining model checking

techniques for traffic rule satisfaction with motion planning in static environments [6]. However,

dense scenarios have proved difficult for such motion planning approaches since they do not

consider the interactions with human drivers. This will prevent rules that depend on the other

agent’s future state to provide an accurate violation penalty in advance. An extension of [6]

13

1. Introduction

to a two-player game, that models both ego agent and the environment (i.e., human drivers)

as separate trees, has been proposed in [41]. However, the approach is limited to rules that

depend on only one agent, such as “do not cross solid centerlines” or “do not travel in the

wrong direction”, which only depend on the ego vehicle itself and do not contain a temporal

dependency. It cannot incorporate rules such as keeping a safe distance or merging in a zipper

fashion. For learning-based methods, the penalty for a rule violation can also be integrated into

the reward function during offline training [42]. However, these methods provide no guarantees

for rule compliance during online evaluation.

Another direction has been to represent legal aspects such as speed limits or traffic lights

as geometric obstacles in space-time [43], often forming spatiotemporal driving corridors that

vehicles are allowed to operate in. However, while such an approach works for static rules which

can be easily mapped to constraints, it does not scale to more complex behavioral rules with

multiple agents.

Karlsson et al. [44] present a sampling-based rule-satisfying algorithm that models interac-

tions, where they model other agents as a Markov Decision Process (MDP). However, their

approach relies on a state discretization that will not translate well to dense, complex scenarios.

Cai et al. [45] define rules as part of a protocol in a multi-agent environment that all agents

follow. However, their approach operates in a discretized action and state space, whereas this

work aims for an interactive planning algorithm in continuous state space.

To summarize, current literature only consists of approaches that (1) are based on non-

interactive planning and do not translate to interactive behavior planning, (2) can only incorporate

rules that rely on the ego agent, e.g., to stay on the right lane, to not enter forbidden areas, and

to maintain the speed limit or (3) rely on a discrete state space into cells, that will not work well

for real applications. There exists no approach that integrates complex behavioral rules into an

interactive behavior planning algorithm.

1.2.3. State of the Art for Traffic Rule Formalization

Traffic rules, which are written in natural language, are often fuzzy and not specified at a level

of detail to be comprehensible for machines. Without proper formalization, satisfaction cannot

be decided, nor can satisfaction be proved in a safety case for certification.

Works to formalize traffic rules have come from three different communities: First, the planning

community, which tries to develop a planner that can follow all applicable rules. Here, the rules

are checked on potential predicted outcomes [6, 46, 47]. Second, the safety community, which

has tried to establish contracts consisting of a set of rules, which every vehicle should adhere

to prove safety [48, 49]. Third, the legal community, which tries to analyze recorded traces to

identify liability, which is relevant to insurance companies [50–52].

Vanholme et al. [46] were the first to perform a detailed analysis of the applicable rules for

highway driving based on the Vienna Convention on Road Traffic. However, they did not provide

a concrete formalization for most of the behavioral rules, such as “overtaking” or “right of way”.

Decastro et al. [48] formalized the rules regarding lane selection and overtaking. However, they

did not consider rules that depend on multiple agents, such as “right of way” or “zipper merge”.

14

1.3. Contributions

Rizaldi et al. [51] provide a formula for a safe distance and use it for the safe overtaking

rule [52]. The Responsibility Sensitivity Safety Model (RSS) [49] has formalized the notion of

a safe distance and priority. Arechiga [53] employ quantitative semantics about safe distance

satisfaction from RSS.

Inspired by the fact that traffic rules shall yield safety and progress to all its participants,

the recent work of Pal et al. [54] has tried to design a multi-agent simulation environment for

learning such rules emergently instead of implementing them explicitly. However, demonstrating

rule compliance within a safety case might be difficult if the learned rules are not really clear

even to the developer.

Lanelet2 [55], a map framework for highly automated driving, provides an interface called

“regulatory elements” to retrieve traffic signs, traffic light, speed limits, and right of way. For

the “right of way”, Lanelet2 provides the lanes on which vehicles have the right of way. More

elaborate rules, that rely not only on the position of the ego vehicle, such as “overtaking”,

“distance keeping”, or “zipper merge”, are not included.

To summarize, most publications may have provided up to a few traffic rules but have not

aimed for a comprehensive formalized set of traffic rules, including an operational domain

analysis. The only exception is the recent work of Maierhofer et al. [56], which focused on

interstate roads.

1.3. Contributions

Existing motion planning methods capable of satisfying traffic rules cannot model interactions,

whereas interactive planning methods have not considered complex behavioral traffic rules that

depend on the future behavior of multiple agents. No comprehensive machine-interpretable

ruleset exists that can be used for planning. This thesis aims to develop a methodology to

identify, formalize, model, and evaluate traffic rules within interactive behavior planning. An

optimization-based model is developed and solved using MIP. The solver’s properties promise

to ease the integration of traffic rules. However, to use this solver, the formalized traffic rules

must be approximated and cannot be used directly. Thus, a second approach is developed to

integrate traffic rules within sampling-based interactive planning. Both approaches are examined

in simulation.

This thesis presents the following four major contributions:

1. Methodology for formalization of traffic rules: The proposed methodology allows cap-

turing traffic rules from legal texts in a machine-interpretable language. It consists of an

informal graphic abstraction and the transfer of the rules to a logical language. A ruleset for

a specific operational driving domain is obtained by following the methodology, and a rule

monitor framework is provided to check trajectories on rule satisfaction. The framework is

embedded in an open-source simulator. The traffic rules are evaluated on human data to

check the rules on plausibility and provide insight into how humans follow these rules.

15

1. Introduction

2. Interactive planning using optimal control: The proposed optimization program solves a

linear differential game for a set of interacting agents using MIP. A disjunctive formulation

preserves the vehicle model’s non-holonomic motion properties for any orientation and

arbitrary formed roads.

3. Traffic rules satisfaction in interactive planning: The proposed optimization-based

approach cannot incorporate the rule monitors directly. Modeling rule compliance is

demonstrated for a rule subset, where the desired property is realized by either cal-

culating a forbidden space before optimization or by encoding it in the reference. In

contrast, sampling-based interactive planning methods do not have the same limitations as

optimization-based methods in terms of the cost function. As any function can be used

to calculate the cost, this work makes direct use of the rule monitor, which creates an

automaton for each rule. The state of the rule automaton is encoded within the decision

tree to efficiently evaluate the rules.

4. Simulation-based validation: The proposed methods to model rule satisfaction are studied

in simulation. Within this thesis, an open-source simulator has been developed. It allows

evaluating the ramifications of modeling a particular rule on the violation itself, but also

collision and progress metrics.

1.4. Publications

This thesis is based on the following publications:

1. K. Esterle, V. Aravantinos, and A. Knoll. “From Specifications to Behavior: Maneuver

Verification in a Semantic State Space.” In: 2019 IEEE Intelligent Vehicles Symposium (IV).

2019, pp. 2140–2147

2. K. Esterle, T. Kessler, and A. Knoll. “Optimal Behavior Planning for Autonomous Driving:

A Generic Mixed-Integer Formulation.” In: 2020 IEEE Intelligent Vehicles Symposium (IV).

2020, pp. 1914–1921

3. J. Bernhard, K. Esterle, P. Hart, and T. Kessler. “BARK: Open Behavior Benchmarking in

Multi-Agent Environments.” In: 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). 2020, pp. 6201–6208

4. K. Esterle, L. Gressenbuch, and A. Knoll. “Formalizing Traffic Rules for Machine Inter-

pretability.” In: 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS). 2020,

pp. 1–7

5. K. Esterle, L. Gressenbuch, and A. Knoll. “Modeling and Testing Multi-Agent Traffic Rules

within Interactive Behavior Planning.” In: IROS 2020 Workshop "Perception, Learning, and

Control for Autonomous Agile Vehicles". 2020

16

1.5. Structure of this Thesis

6. T. Kessler, K. Esterle, and A. Knoll. “Linear Differential Games for Cooperative Behavior

Planning of Autonomous Vehicles Using Mixed-Integer Programming.” In: 2020 59th IEEE

Conference on Decision and Control (CDC). 2020, pp. 4060–4066

1.5. Structure of this Thesis

The relationship of the building blocks of this thesis is shown in Figure 1.3. In Chapter 3, a

subset of traffic rules for Germany is formalized. Linear Temporal Logic is used as a formal

language to codify behavior. Chapter 4 introduces the basics to evaluate Linear Temporal Logic

on finite traces. A runtime monitor is implemented for each formalized rule. The rules are

analyzed on a public dataset of interactive scenarios. By this, levels of satisfaction for each

respective rule are obtained.

rules within interactive planning

Simulation and Benchmarking Framework BARK (Section 2.1)

traffic rules
formalization (Chapter 3)

rule-compliance by human
drivers (Chapter 4)

monitoring during
search (Chapter 5)

constraints in
optimization (Chapter 6)

comparison of
approaches (Chapter 7)

insight on rule satisfaction

formalized rules

formalized
rules

Figure 1.3.: Relationship of chapters of this thesis.

Chapter 5 and Chapter 6 provide two orthogonal ways to model traffic rules as part of an

interactive behavior planner. In Chapter 5, a concept is presented to monitor multi-agent and

time-dependent traffic rules at runtime within the sampling-based MCTS. Specifically, the

proposed method models non-Markovian traffic rules within MCTS. To study the effect of

modeling a certain traffic rule within a set of rules, the ruleset is treated to be priority-ordered

and incorporated to MCTS by leveraging methods from multi-objective optimization theory. In

Chapter 6, the rules are realized as constraints in an optimal control approach. Both approaches

are implemented within the Behavior Benchmarking Framework (BARK), which is described in

Section 2.1. Chapter 7 compares the approaches from Chapter 5 and Chapter 6 in terms of the

rules that can be modeled, the engineering effort for integrating the rules, the computational

effort for additional rules, and more. Finally, future directions for research are given.

17

2
Preliminaries

This chapter introduces the simulation and behavior benchmarking framework BARK. It is a

multi-agent environment tailored to develop interactive behavior models and allows to easily

exchange and reuse behavior models for planning, prediction and simulation. BARK already

offers a range of behavior models, which can be used for predicting and simulating other agents.

It provides efficient collision checking and realistic maps. The work of this thesis has been

integrated into BARK to conduct experiments. After the introduction of BARK follows the theory

and base implementation of MCTS, upon which Chapter 5 will build.

2.1. Benchmarking Behavior in Simulation

2.1.1. Overview and Contribution

Predicting and planning interactive behaviors in complex traffic situations presents a challeng-

ing task. Especially in scenarios involving multiple traffic participants that interact densely,

autonomous vehicles still struggle to interpret situations, which eventually compromises the

autonomous vehicle’s mission goal. As driving tests are costly and challenging scenarios are

hard to find and reproduce, simulation is widely used to develop, test, and benchmark behavior

models. However, most simulations rely on datasets and simplistic behavior models for traffic

participants and do not cover the full variety of real-world, interactive human behaviors. This

section introduces BARK, an open-source behavior benchmarking environment designed to

mitigate the shortcomings stated above. In BARK, behavior models can be used for planning,

prediction, and simulation.

This section is based on the author’s joint work with Julian Bernhard, Patrick Hart and Tobias

Kessler [58].

19

2. Preliminaries

Bi(k)← PlanBehavior(ObservedWorldi(k))

xi
ex(k + 1)← Execute(Bi(k))

ObservedWorldi(k)

World::Step(∆t)

Agenti

x1,...,NA
ex (k + 1)World(k)

World(k + 1)
Benchmark Runner

Figure 2.1.: BARK’s simulation loop is handled by the benchmark runner holding the current world state

at discrete world time k. In each iteration, the benchmark runner calls World::Step(∆t).

This function generates an ObservedWorld for each agent and passes it to the agent’s internal

BehaviorModel Bi which generates a behavior Bi(k). The behavior is passed to the agent’s

ExecutionModel calculating the next executed agent state xi
ex(k + 1). The next world state at

time t(k + 1) = t(k) + ∆t integrates the updated agent states for all agents of size NA and is

returned to the Benchmark Runner (modified graphic from [58], ©2020 IEEE).

2.1.2. BARK in a Nutshell

BARK focuses on providing a software framework for the systematic evaluation and improvement

of behavior models. The same implementations can be used to either plan the motion of a vehicle,

predict other vehicles’ motions, and forward simulate a driving scenario. For example, a traffic

model, such as the Intelligent Driver Model (IDM) [62], can, on the one hand, be used to populate

a simulation with agents but also as a generative model to predict other agents’ motion from

the viewpoint of the ego vehicle. To ensure this, BARK models the world as a multi-agent

system with agents performing simultaneous movements in the simulated world. Figure 2.1

visualizes the core concept of BARK’s simulation. A benchmark runner calls the simulated

world’s step-function at fixed, discrete world time-steps. Each agent then plans its next action

using its behavior model, which only has access to the agent’s observation of the world, called

observed world. This observed world may not necessarily be equal to the simulator’s correct

world. The concept of simultaneous movement ensures that a behavior model can plan based on

reproducible input information. It avoids timing artifacts that may occur in message-passing,

middleware-based simulation architectures.

BARK uses behavior models not only for behavior planning but also for predicting other agents

in the world. As the observed world of each planner derives from the actual world, it can be used

to obtain predictions by calling ObservedWorld::Step(∆t) multiple times. All agents in this

observed world behave according to their prediction configuration. Figure 2.2 visualizes BARK’s

observed world model. By deriving an observed world with various prediction configurations

from the actual world definition, the behavior planner’s potential errors caused by inaccurately

predicting other traffic participants can be systematically examined.

BARK provides several state-of-the-art behavior models ranging from conventional planning to

machine learning approaches. BARK’s current behavior model implementation will be discussed

in Section 2.1.3. The following section will take a more detailed look at other BARK components.

20

2.1. Benchmarking Behavior in Simulation

ObservedWorld0

ObservedWorld1

World

Observe(Agent1)

Observe(Agent0)

PerturbationsAgent Observing Agent

Figure 2.2.: Each agent in BARK employs an observed world for planning its behavior. Each observed

world holds an observing agent (depicted in blue) from whose perspective the observation

is being made. Perturbations can be injected by, e.g., exchanging the other agents’ behavior

models and model parameters in the observed world (modified graphic from [58], ©2020 IEEE).

World and Observed World Model The World model contains the map, all objects, and agents.

Object lists represent static and dynamic objects. This work will refer to dynamic objects as

agents in the following. The ObservedWorld model, on the other hand, reflects the world that is

perceived by an agent i. BARK’s ObservedWorld model accounts for the fact that the observing

agent has no access to other agents’ actual (world) behavior model. BARK can model different

degrees of observability by either entirely restricting access to the world behavior model or only

by perturbing the world behavior model’s parameters. Additionally, occlusions and sensor noise

can be introduced in the ObservedWorld model.

Agent Models Figure 2.1 shows the two main interfaces of an agent:

• Bi(k)←Agent::PlanBehavior(ObservedWorldi(k)): calls the agent’s behavior model Bi,

which generates a behavior trajectory Bi(k) =
(
xi

des(k), xi
des(k + 1), . . . , xi

des(k + K)
)
, being

a sequence of desired future physical agent states xi
des(k) = (t, px, py, θ, v) between current

simulation world time t(k) and at least the end time of the simultaneous movement

t(N) ≥ t(k) + ∆t. The time discretization of the behavior trajectory can be arbitrary.

• xi
ex(k + 1) ← Agent::Execute(Bi(k)): calls the agent-specific execution model deter-

mining the agent’s next state xi
ex(k + 1) in the world based on the generated behavior

trajectory Bi(k). The interface could allow examining the robustness of behavior planners

against execution errors systematically. As of now, an interpolation-based is employed as

an execution model.

To implement these two primary interfaces, an agent holds the following additional agent-

specific information:

• GoalDefinition: BARK considers agents to be goal-driven. It provides an abstract goal

specification with several inherited types of agent goals, e.g., geometric goal regions or

lane-based goals. Each agent holds a single goal definition instance.

21

2. Preliminaries

• RoadCorridor: During initialization, an agent computes the roads and corresponding lanes

necessary to reach its goal. The topology information on how roads are connected is

extracted from the map. Also, the geometric data of the map, such as lane boundaries,

are being discretized. This precomputation avoids computational overhead during the

simulation.

• Polygon: A two-dimensional polygon defines the shape of the agent.

Scenario A BARK scenario contains a list of agents with their initial states, behavior models,

execution models, and a goal definition for each agent. Further, it contains a map file in the

OpenDrive format. To support the benchmark of a behavior model, each scenario specifies

which agent is considered the “controlled” agent during the simulation. A BARK scenario does

not explicitly specify how agents will behave over time, e.g., using predefined maneuvers or

trajectories.

BARK provides a scenario generation module for configuring sets of scenarios. This modu-

larized concept allows to model a variety of scenario types and enables an easy extension with

novel scenario types.

Software Design BARK has a monolithic, single-threaded core, written in C++. Most of the ex-

pensive calculations (e.g., geometry functions) are part of the core. The core of BARK is wrapped

in Python using pybind [63] including pickling support for all C++ types. Scenario generation

and benchmarking, as well as service methods for parameter handling and visualization, are

implemented in Python. A simulator step is entirely deterministic, which enables the simulation

and experiments to be reproducible. Bazel [64] is being used as the build system. Its sandboxed

build environment simplifies the reproducibility of experiments since dependency versions can

be tracked easily over multiple repositories.

2.1.3. Behavior Modeling for Realism in Simulation

BARK contains a set of reference implementations for behavior models from the literature. All

behavior models inherit from the abstract BehaviorModel class:

class BehaviorModel {

public:

...

virtual Trajectory Plan(float delta_time, const ObservedWorld& world)) = 0;

...

};

Behavior models overload the Plan(·) function and return a time-dependent state trajec-

tory. Since all behavior models share the same interface, this makes them easily exchangeable.

By accessing the ObservedWorld, a behavior model can query egocentric semantic informa-

tion, e.g., GetLeftLane()→GetCenterLine(), as well as semantic relations to other agents,

e.g., GetAgentInFront(). Together with the Evaluator concept and implemented standard

22

2.1. Benchmarking Behavior in Simulation

behavior models, this allows for rapid prototyping and development of new behavior models in

BARK. The relevant behavior models for this work are highlighted in the following.

Intelligent Driver Model The popular IDM [62] is an easy-to-implement vehicle-following

model often used in microscopic traffic simulation. To model maintaining a gap from the vehicle

in front, it leverages the spacing between the agents, speed asymmetries, and realistic braking

profiles. The model cannot handle lane changes, intersections, and unstructured scenarios. To

support larger world step times in BARK, the IDM implementation assumes that the preceding

vehicle maintains a constant velocity throughout a world simulation step.

MOBIL Model For multi-lane scenarios, the Minimizing Overall Braking Induced by Lane

Changes (MOBIL) model was implemented in BARK, a decision-making entity to trigger lane

changes to improve traffic flow [65]. It maintains a politeness factor, which captures how much

other agents would be slowed down by a potential lane change. In case of a lane change decision,

the centerline of the respective left or right driving corridor is started to be tracked [66]. The

longitudinal motion is controlled using the IDM.

2.1.4. Evaluator Concept for Benchmarking

For the systematic development of behavior models, BARK supports large scale evaluation of

behavior models over a collection of scenario sets. The benchmark runner shown in Figure 2.1

allows to evaluate specific behavior models with different parameter configurations over the

entire benchmarking database. The evaluation is based on an abstract evaluator interface

calculating a Boolean, integer or real-valued metric based on the current simulation world state.

The existing evaluators in BARK are:

• StepCount: returns the step count the scenario is at.

• GoalReached: checks if a controlled agent’s GoalDefinition is satisfied.

• DrivableArea: checks whether the agent is inside its RoadCorridor.

• Collision: checks whether any agent or only the currently controlled agent collides.

• GoalDistance: calculates an euclidean distance to the GoalDefinition.

Evaluators can be used for benchmarking and internally by the behavior models, e.g., for the

reward calculation in search- or reinforcement learning-based planners. The BenchmarkRunner

runs each scenario of the database evaluating world states of the simulation. It terminates the

scenario run based on criteria defined with respect to the evaluators.

23

2. Preliminaries

Selection Expansion Simulation Backpropagation

node that is

not fully expanded
new expanded

leaf node Vl
Default Policy

Tree Policy

Figure 2.3.: Four steps performed for each iteration of the MCTS algorithm (taken, reproduced and modified

from [67]).

2.2. Monte Carlo Tree Search

2.2.1. Monte Carlo Tree Search for Behavior Planning

Monte Carlo Tree Search (MCTS) is an online tree search method to approximate the solution

of sequential decision problems via sampling [67]. Each node V of the search tree maintains

four information: The state s, the incoming action a, the state-action-value Q, and the number of

visits N. Throughout the search, the estimate of Q(s, a), which maps the expected cumulative

reward of performing action a in state s, is updated iteratively. Each iteration consists of selection,

expansion, rollout (also called simulation), and backup, which are illustrated in Figure 2.3.

For selecting a new node, the tree is traversed following the tree policy until a leaf node, i.e., a

node with untried actions, is reached. During expansion, an untried action is applied, and the

resulting child node is added to the tree. A value estimate is obtained from the newly expanded

node using a heuristic rollout: Based on a default policy, actions are applied until a terminal state

is reached. The observed value is backed up to the root node and used to update Q(s, a). The

search is repeated until some predefined computation budget (time or iterations) is reached.

Finally, the best performing root action is returned.

MCTS has been adapted to interactive driving by using information sets assuming simul-

taneous movements of traffic participants [25, 38]. Lenz et al. [25] apply it to the context of

cooperative planning, meaning that they introduce a joint cost function, which minimizes the

costs for all agents. The size of the search tree grows exponentially with the number of agents.

Thus, only a subset of all agents is included in the joint action, while the actions of the remaining

agents are based on a predefined model. A special case of this is called Single-Agent MCTS,

where all other agents are predicted using this model.

2.2.2. Monte Carlo Tree Search in BARK

A single-agent variant of MCTS based on a template-based open-source library [68] has been

implemented in BARK and was presented in [58]. Algorithm 1 shows the implementation in

pseudocode. With a slight abuse of notation, s(V) yields state s of node V. Effectively, s(V) is an

24

2.2. Monte Carlo Tree Search

instance of ObservedWorld. During expansion and simulation, a new child node V′ is obtained

from the function BarkStep(V, a), where action a is applied for the controlled agent, and the

others behave according to their behavior model. The other agents can be configured to follow

any available behavior model in BARK. These are set via the prediction setup of the observed

world before the MCTS algorithm is started. As a selection strategy, Upper Confidence Bounds

for Trees (UCT) is used, which balances exploitation and exploration:

SelectUct(s) := arg max
a∈A

 Q(s, a)︸ ︷︷ ︸
Exploitation

+ CUCT

√
2 lnN(s)
N(s, a)︸ ︷︷ ︸

Exploration

 , (2.1)

where N(s, a) is the number of times action a has been selected from state s, N(s) = ∑a N(s, a)

denotes the total node visit, and CUCT denotes a constant to tune the exploration. During the

simulation phase, random actions are selected for the ego agent.

A reward r(s, s′, a) is given for each transition from s to s′ when applying a. The cumulative

discounted reward follows as

△ =
K

∑
0

γkr(k), (2.2)

where K denotes the number of steps and γ denotes a discount factor.

25

2. Preliminaries

Algorithm 1 MCTS algorithm with UCT selection strategy (adopted from [67]).

1: function MctsSearch(s0)

2: create root node V0 from state s0

3: while within computational budget do

4: Vl ← TreePolicy(V0) ▷ Selection and Expansion

5: △ ← DefaultPolicy(Vl) ▷ Simulation

6: BackUp(Vl ,△) ▷ Backpropagation
return arg maxa∈A

(
Q(s0, a)

)
7: function TreePolicy(V)

8: while s(V) is non-terminal do

9: if V has untried actions then ▷ Expansion

10: randomly choose action a from untried actions

11: add V′ ← BarkStep(V, a) as new child node to V

12: else ▷ Selection

13: select best child node V′ from best action a ← SelectUct(s(V))

14: V ← V′
return V

15: function DefaultPolicy(V)

16: △ ← 0

17: while s(V) is non-terminal do

18: randomly choose action a

19: V′ ← BarkStep(V, a)

20: s← s(V) and s′ ← s(V′)

21: △ ← △+ γr(s, s′, a)

22: V ← V′
return △

23: function BackUp(V′,△)

24: (V, a)← parent of V′ and action leading from V to V′

25: while V ̸= ∅ do

26: s← s(V) and s′ ← s(V′)

27: N(s, a)← N(s, a) + 1

28: Q(s, a)← Q(s, a) + △−Q(s,a)
N(s,a)

 Update node statistics

29: △ ← r(s, s′, a) + γ△
30: V′ ← V

31: (V, a)← parent of V′ and action leading from V to V′

26

3
Formalization of Traffic Rules for Machine

Interpretability

3.1. Overview and Contribution

Traffic regulations such as the Strassenverkehrsordnung (StVO) [69], which is the German

concretization of the Vienna Convention on Road Traffic [70], define rules all drivers should

obey. These traffic rules are often fuzzy and subject to interpretation, encouraging the need

for a formalized machine-interpretable definition of traffic rules. No work has yet provided a

comprehensive and consistent set of traffic rules for a specific operational domain. Likewise,

there is no methodology to derive such rules.

Based on the operational design domain of dual carriageways in Germany, this chapter

provides an analysis of the applicable traffic rules. Characteristics of these rules are then

aggregated and used to identify a suitable machine-interpretable formalism into which the

natural language shall be translated. The contributions of this chapter are

• a methodology to formalize traffic rules from legal texts to a formal language and

• a formalized set of traffic rules for dual carriageways.

The chapter is based on the author’s previously published work [59].

3.2. Legal Analysis of German Traffic Rules on Dual

Carriageways

At first, the Operational Design Domain (ODD) needs to be defined. This thesis analyzes traffic

rules for a passenger vehicle. The vehicle does not exceed 3.5 tons, is legally allowed to drive

on motorways, and has no trailer. The formalization will be based on the German Road Traffic

Regulations StVO1, while also including references to the Vienna Convention on Road Traffic [70].

Specifically, rules applicable to dual carriageways will be analyzed, such as highways. Rules that

1An English translation of the StVO is available at https://germanlawarchive.iuscomp.org/

27

https://germanlawarchive.iuscomp.org/

3. Formalization of Traffic Rules for Machine Interpretability

1 definition of ODD

premise

3 identifying exceptions

p1 c

2 breaking down rule

conclusion

negated exception

p1 c

p2

resembles

(p1 ∧ p2) =⇒ c
Boolean formula

Figure 3.1.: Legal analysis to identify abstract Boolean formulas.

include pedestrians or cyclists will not be considered. Without limiting the generality, this work

assumes right-handed traffic and the carriageways to be structurally separated.

This work focused on behavioral rules for road users, especially for multiple road users

involved. Thus, the following special cases will not be considered:

• parking, breakdowns, and towing,

• necessary post-accident actions including clearing,

• signaling such as indicator signals or lighting,

• regulatory signs, including lane markings, informatory signs, traffic installations, and

• limited visibility.

To identify all relevant rules and remove ambiguity in them, the following methodology will

be used:

1. Identify a rule and separate it into an initial premise and a conclusion. If there is no

premise, start with “always”.

2. Identify all exceptions to the premise. Use negated exceptions to update the premise.

Using Boolean algebra, the initial premise and exceptions can be combined by conjunction. A

graphical representation is used for identification and aggregation. Implications are illustrated

by an arrow. Exceptions are marked in red. Figure 3.1 summarizes this process.

3.2.1. Regulations on Speed

This section analyzes speed regulations.

Rule 3.2.1.1: Keep Control

“A person operating a vehicle may only travel at a speed that allows them to be in constant

control of their vehicle” [§3(1) StVO].

Control is lost if vehicle tires cannot exert the required forces on the road. This happens when

the lateral or longitudinal accelerations exceed the limits of the friction circle. This is not only a

rule but also a safety requirement for any autonomous vehicle. Hence, this work assumes control

algorithms to limit the requested accelerations accordingly.

28

3.2. Legal Analysis of German Traffic Rules on Dual Carriageways

Rule 3.2.1.2: Above Minimum Speed

“No motor vehicle must, without good reason, travel so slowly as to impede the flow of

traffic” [§3(2) StVO; similar to VC 13.4].

Decastro et al. [48] define “impeding the traffic flow” as |vi − vmean| > ϵv, where vmean denotes

the average speed of the surrounding vehicles and ϵv denotes a threshold.

Rule 3.2.1.3: Below Speed Limit

Adhere to the "maximum permissible speed" [§3(3) StVO].

This work assumes the maximum speed limit to be available from a map.

Rule 3.2.1.4: No Stopping

On motorways and motor roads, “stopping is prohibited, including on verges” [§18(8) StVO].

Motorways are roads that are only allowed for motor vehicles and have specific entry and exit

terminals [70]. They usually consist of separate carriageways for two-way traffic. Motor road is

an old-fashioned name for motorway [71]. The road type is assumed to be available. Figure 3.2

shows the codified speed limit rules.

Premise

Conclusion

always

on motorways

above minimum speed

keep control

below speed limit

no stopping

Figure 3.2.: Speed limit rules separated into premise and conclusion (graphic from [59], ©2020 IEEE).

29

3. Formalization of Traffic Rules for Machine Interpretability

3.2.2. Regulations on the Use of Roads and Lanes

This section analyzes rules that specify which lanes should be used by motorists.

Rule 3.2.2.1: Keep Right

“Keep as far to the right as possible” [§2(2) StVO; similar to VC 10.3].

This is often referred to as “staying on the right side”. However, in dense traffic, drivers might

ignore the keep-right directive:

Rule Exception 3.2.2.1: Dense Traffic with Multiple Lanes

“This might be ignored on carriageways with several lanes for one direction, [...] if traffic

density justifies” [§7(1) StVO].

Wuthishuwong et al. [72] define traffic density as the number of vehicles per lane that measure

to the 1 km length of the observed street. However, there are currently no threshold values for

dense traffic that autonomous vehicles could use. Another exception is made within built-up

areas2 on roads that are no motorways:

Rule Exception 3.2.2.2: Built-up Area

“On carriageways with several marked lanes for one direction of traffic [...] within built-up

areas – with the exception of motorways – [...], vehicles [...] are free to choose their lane,

even at no dense traffic” [§7(3) StVO].

An exception to the keep-right directive exists for outside built-up areas on roads with more

than two lanes for one-way traffic.

Rule Exception 3.2.2.3: Outside Built-up Area With Three or More Lanes

“Outside built-up areas [with] three lanes for one direction of traffic, vehicles may, in

derogation from the rule that they must keep as far to the right as possible, [stay in] the

middle lane in places where – even if only now and then – a vehicle is stationary or moving

in the nearside lane. On carriageways with more than three lanes marked in this way for

one direction of traffic, the same applies to the second lane from the right” [§7(3c) StVO].

However, this exception brings in a new rule. By using this exception as a non-negated premise,

a new rule can be defined as “keep outside the left-most lane”. Figure 3.3 shows the codified

lane selection rules.

2“Inside a built-up area” is a synonym for inner-city.

30

3.2. Legal Analysis of German Traffic Rules on Dual Carriageways

Premise

Conclusion

always

not dense traffic

(not in build-up area)

or (on motorway)

(in build-up area)

or (#lanes < 3)

(not in build-up area)

and (#lanes ≥ 3)

keep in the

right-most lane

keep outside the

left-most lane

Figure 3.3.: Lane selection rules separated into premise and conclusion (graphic from [59], ©2020 IEEE).

3.2.3. Regulations on Overtaking

An explicit definition for overtaking is missing in the StVO and in the Vienna Convention on

Road Traffic. Whereas Rizaldi et al. [52] define overtaking as the process of changing lanes,

passing a vehicle, and returning to the initial lane, court rulings have clarified that passing a

vehicle is already considered overtaking [73]. This work follows this definition and replaces

overtaking with passing whenever necessary.

Rule 3.2.3.1: Speed Advantage During Overtaking

Only overtake if the ego vehicle travels “at a speed substantially higher than that of the

vehicle to be overtaken” [§5(2) StVO].

As the term “substantially higher speed” is vague, court rulings have since clarified the minimal

speed advantage for trucks to be 10 km/h [74]. Missing other concrete values, this work will use

this value for passenger vehicles as well.

Rule 3.2.3.2: Overtaking Maneuver

“Make sure that traffic approaching from behind is not endangered. [Keep] a sufficient

lateral distance [...] from other road users [...]. Move back to the right-hand side of the road

as soon as possible” [§5(4) StVO; similar to VC 11.2a, VC 11.4].

This overtaking rule can be divided into three parts. First, when changing to the outer lane,

traffic shall not be jeopardized. Rizaldi et al. [52] define this as keeping a safe distance to the

new follower. Second, sufficient lateral space will be inherently satisfied by a motion planner.

Thus, it will not be considered explicitly in the following. Third, a vehicle shall move back as

soon as possible. Following Rizaldi et al. [52], the phrase “as soon” means when a safe distance

to the new follower can be established. However, as stated before in Section 3.2.2, there are

multiple exceptions to this rule. This rule will be relaxed in this work and interpreted as “do

not return to the initial lane before a safe distance can be established”. This means that when

performing a lane-change, a safe distance to the rear vehicle should be ensured.

31

3. Formalization of Traffic Rules for Machine Interpretability

Rule 3.2.3.3: No Passing on the Right Side

Only “overtake [...] on the left side” [§5(1) StVO; similar to VC 11.1].

This rule will be interpreted to apply to the passing of a vehicle. The rule then also implies

that vehicles on the right lane should not travel faster than those on the left. However, there are

several exceptions for special lane types:

Rule Exception 3.2.3.1: Diverging Lane

“Where lanes diverge from the main carriageway [...] vehicles turning off may [...] travel

faster than traffic on the main carriageway” [§7a(1) StVO].

Rule Exception 3.2.3.2: Acceleration Lane

“On motorways and other roads outside built-up areas, vehicles may travel faster in

acceleration lanes than traffic on the main carriageway” [§7a(2) StVO].

Rule Exception 3.2.3.3: Deceleration Lane

“If traffic on the main carriageway is moving slowly or is stationary, vehicles in a deceleration

lane may overtake at a moderate speed” [§7a(3) StVO].

There is another exception for built-up areas:

Rule Exception 3.2.3.4: Build-up Area

“On carriageways with several marked lanes for one direction of traffic [...] within built-up

areas – with the exception of motorways – [...], traffic on the right may move faster than

traffic on the left” [§7(3) StVO].

The condition for several lanes can be skipped, as overtaking would not be possible anyway (for

dual carriageways). Also, there are exceptions for dense traffic:

Rule Exception 3.2.3.5: Dense Traffic

In dense traffic, “traffic on the right (nearside lane, middle lane) may move faster than traffic

on the left” [§7(2) StVO].

Rule Exception 3.2.3.6: Dense Traffic

Vehicles queues at low speed or standstill may be overtaken “on the right” [§7(2a) StVO;

similar to VC 11.6].

This work argues that the above two exceptions essentially have the same meaning if overtaking

is interpreted as passing: In dense traffic, passing vehicles on the right side is allowed. Figure 3.4

shows the codified overtaking rules.

32

3.2. Legal Analysis of German Traffic Rules on Dual Carriageways

Premise Conclusion

lane change

always

not on diverging lane

not on acceleration lane

not dense traffic

(not in build-up area)

or (on motorway)

not at substiantially

higher speed

safe distance

to rear vehicle

no passing on

the right side

no passing

Figure 3.4.: Overtaking rules separated into premise and conclusion (modified graphic from [59], ©2020

IEEE).

3.2.4. Regulations on a Safe Distance

A driver shall always keep a safe distance to a preceding vehicle:

Rule 3.2.4.1: Safe Distance

“A person operating a vehicle moving behind another vehicle must, as a rule, keep a

sufficient distance from that other vehicle so as to be able to pull up safely even if it

suddenly slows down or stops” [§4(1) StVO; similar to VC 13.5].

This rule has been treated frequently in literature [6, 46, 49, 51], although implementations vary

in the order of state derivatives used to calculate the distance. Estimating the maximum possible

braking deceleration is also not clearly defined and may change depending on the road surface.

Figure 3.5 shows the codified distance rule.

Premise Conclusion

always
safe distance to

preceding vehicle

Figure 3.5.: Safe distance rule separated into premise and conclusion (graphic from [59], ©2020 IEEE).

33

3. Formalization of Traffic Rules for Machine Interpretability

3.2.5. Regulations on Being Overtaken

A vehicle being overtaken shall obey to the following:

Rule 3.2.5.1: Being Overtaken

A vehicle “being overtaken must not increase the vehicle’s speed” [§5(6) StVO].

Being overtaken will be defined to be close to a vehicle on the left lane, which is similar to the

definition used in [48]. This is sufficient, as overtaking on the right is prohibited. Figure 3.6

shows the codified rule when being overtaken.

Premise Conclusion

being overtaken no accelerating

Figure 3.6.: Being overtaken rule separated into premise and conclusion (graphic from [59], ©2020 IEEE).

3.2.6. Regulations on Priorities

This section deals with priority rules. Giving way means that a driver “continues or resumes his

advance or maneuver if by so doing he might compel the drivers of other vehicles to change

the direction or speed of their vehicle abruptly” [70]. If a vehicle has the right of way, the other

drivers shall be giving way.

Rule 3.2.6.1: Right of Way

On “motorways and motor roads [...] traffic on the main carriageway has the right of way”

[§18(3) StVO; similar to VC 25.2].

Rule 3.2.6.2: Zipper Merge

“If, on roads with several lanes for one direction, uninterrupted travel in one of the lanes

is not possible, or if a lane comes to an end, vehicles traveling in the adjacent lane must

allow vehicles in the other lane to change lanes immediately before the road narrows, in

such a way as to let them join their line of traffic in turn after each vehicle traveling in the

uninterrupted lane” [§7(4) StVO].

The rule demands that vehicles should merge at the end of the lane in an alternating zip fashion

from both lanes. Following the zipper merge has proved to reduce congestion while ensuring

the safety of motorists, as the complexity in changing lanes is removed. Some US states have

begun adopting this concept [75]. If a driver in a continuing lane does not obey the zipper

merge, a driver wishing to merge is not allowed to enforce it [76]. Thus, if an accident occurs

during the zipper merge, the blame is often shared [76, 77]. The zipper merge does not apply

on accelerating lanes of motorways [78], where right of way has been identified to be valid.

Figure 3.7 shows the codified priority rules.

34

3.3. Identifying a Suitable Language for Machine Interpretability

Premise Conclusion

on motorway

(#lanes>1) and

(travel flow in one

lane interrupted)

lane ends

(not on motor-

way) or (not on

acceleration lane)

right of way

zipper merge

Figure 3.7.: Priorities rules separated into premise and conclusion (modified graphic from [59], ©2020

IEEE).

3.3. Identifying a Suitable Language for Machine

Interpretability

Logical languages are a formal way to represent rules. A logical language needs (1) to be

expressive enough to codify natural language and (2) to have a mechanism for model-checking

the formulas.

3.3.1. Characteristics of Traffic Rules in Dense Highway Scenarios

Some rules are only based on the ego agent, such as staying below the speed limit or to keep in

the rightmost lane. Other rules however need to be evaluated with respect to the other vehicles

within the sensor range. For example, keeping a safe distance or not passing on the right side

require to be evaluated with respect to each other agent. Even more, some rules depend on two

or more other agents, such as the zipper merge. Table 3.1 shows the number of other agents for

each rule.

Some rules only depend on the current time instance, which means that they can be evaluated

without any past information, such as the safe distance rule, staying below the speed limit or

to keep in the rightmost lane. Other rules however state a temporal evolution of a scene. For

example, an overtaking maneuver cannot be detected based on only one time instance. Likewise,

rules such as the right of way or the zipper merge cannot be evaluated based on only one instance

of the scene. This can be viewed as non-Markovian property. Creating a Markovian state from

this by also including the last two or three time instants is not sufficient here, as this would

depend on the rule and the specific scene. Thus, the markovian property should be achieved by

encoding historical information on a more abstract level.

This thesis refers to these rules as multi-agent, time-dependent traffic rules. Selecting a common

formalization concept to cover the formalization of all these rules will be the subject of the

following section.

35

3. Formalization of Traffic Rules for Machine Interpretability

Table 3.1.: Number of other agents the respective rules depend on. The rule classes are Lane Selection (LS),

Overtaking (OV), Distance (DIST), Being Overtaken (BOV) and Priority (PRIO).

Class Rule Number of other agents

VEL Below speed limit 0

VEL No stopping 0

LS keep in rightmost lane 0

LS keep outside leftmost lane 0

OV no passing on the right side 1

OV safe lane change 1

OV speed advantage during overtaking 1

DIST safe distance 1

BOV being overtaken 1

PRIO right of way 1

PRIO zipper merge 2

3.3.2. Selection of a Formalization Language

Different techniques on how to model the rules have been employed in the past. To identify the

limitations of a specific formalism, Table 3.2 maps the most relevant formalization works in the

literature to the identified rules from the legal analysis.

Vanholme et al. [46] use inequality comparisons of real numbers to express the rules. However,

they do not provide a concrete formalization for most behavioral rules, such as overtaking,

right of way or the zipper merge. Decastro et al. [48] also use inequality comparisons of real

numbers to formalize lane selection rules, overtaking rules, and others. Their overtaking rules

rely on velocity instead of a sequence of positions and thus circumvent the formalism’s lack of

a temporal operator. However, Decastro et al. [48] do not consider rules such as right of way

on four-way intersections or the zipper merge, where this approach would not work anymore.

RSS also uses inequality comparisons of real numbers but only consists of the notion of a safe

distance and priority [49]. They also formulate right of way for priority lanes.

Castro et al. [6] use Linear Temporal Logic (LTL) to express traffic rules such as “do not cross

solid centerlines” or “do not travel in the wrong direction”, which only depend on the ego

vehicle itself and do not contain any temporal aspect. Rizaldi et al. [51] define a safe distance

and prove its correctness using a theorem prover. In [52], they employ this safe distance function

for the safe overtaking rule, which they formulate in LTL.

The recent work of Maierhofer et al. [56] provides one of the most complete rule sets so far.

It has been published at the same time as the work [59] of this thesis’ author. Maierhofer

et al. use Metric Temporal Logic (MTL) [79], which is an extension of LTL. Compared to LTL,

time-constrained versions replace the temporal operators. It thus allows specifying properties to

be true within a time interval instead. Other works rely on Signal Temporal Logic (STL) [80] to

obtain quantitative semantics about rule satisfaction [53, 81]. Such quantitative semantics might

be beneficial for relaxing the requirements to satisfy a rule.

36

3.3. Identifying a Suitable Language for Machine Interpretability

Table 3.2.: Rule formulations in the literature. The works of Vanholme et al. [46], Decastro et al. [48],

Shalev-Shwartz et al. [49], Rizaldi et al. [52], [56] and Koschi et al. [82] are categorized along

the technology being used, namely inequality comparison of real numbers ir , LTL ltl , MTL

mtl , and set theory set . If the rule is mentioned but a clear description of the implementation

is missing, it is denoted by X. If a rule has not been discussed in the publication, this is denoted

by –.

Class Rule [46] [48] [49] [52] [56] [82]

VEL below speed limit ir ir – – mtl set

VEL no stopping – ir – – mtl set

LS keep in rightmost lane X ir – – – –

LS keep outside leftmost lane X ir – – – –

OV safe lane change X ir – ltl – –

OV no passing on the right

side

X ir – – mtl –

OV speed advantage during

overtaking

– – – – – –

DIST safe distance ir ir ir ltl mtl set

BOV being overtaken – ir – – –

PRIO right of way X – ir – – set

PRIO zipper merge – – – – – –

Koschi et al. [82] formulate illegal sets, which are occupancies that the traffic rule forbids to

enter. However, they only express non-temporal rules such as speed regulations or right of way

for vehicles in priority lanes.

To summarize, previous works have adopted inequality constraints or set theory to express

rules that can be evaluated based on only a single time instance [46, 48]. However, some rules

need to include past time instances, which is why other works identified Temporal Logics as a

suitable formal language to specify traffic rules [6, 47, 50, 56]. During this work’s legal analysis,

conjunction, disjunction, negation, and implication proved to be powerful and useful operators

for formalizing rules, which calls for formal logic usage. LTL is a discrete formal logic to reason

not just about an absolute truth but about truths that might hold only at some points in time. It

can thus be used to represent temporal (non-Markovian) properties. As LTL is the most mature

temporal logic in tool support, this work decided to use LTL. However, this work’s formalized

rules can easily be transferred to other formal logic such as MTL.

37

3. Formalization of Traffic Rules for Machine Interpretability

3.4. Formalizing Traffic Rules Using Linear Temporal Logic

After the legal analysis of the rules, they will now be formalized in a formal language. Similar

to [52], this thesis will distinguish the formalization between codification (representing natu-

ral language specifications as logical entities) and concretization (concretely interpreting the

symbols).

3.4.1. Linear Temporal Logic for Codification

Let Π be a set of atomic propositions. The powerset of Π, i.e., the set of all subsets of Π, is

denoted by 2Π. Formally, the language φ of LTL formulas is defined as

φ ::= π | ¬φ | φ1 ∧ φ2 |φ1 ∨ φ2|φ1 =⇒ φ2 | ◦φ | φ1Uφ2 |□φ |♢φ, (3.1)

where π ∈ Π denotes an atomic proposition, ¬ (resp. ∧, ∨, =⇒) denote the Boolean operators

“not”, “and”, “or” and “implies”, and ◦ (resp. U, □, ♢) denote the temporal operators “next”,

“until”, “globally” (or “always”), “finally” (or “eventually”). See [83] for a definition of the

semantics.

3.4.2. Atomic Propositions for Concretization

First, suitable atomic propositions need to be defined. Then, a function to calculate them needs

to be provided. While this is trivial for some labels, such as collision or speed limit violation, it

is certainly not for others, such as the notion of a safe distance. To prove correctness of the safe

distance function, Rizaldi et al. [51] used a theorem prover.

This work defines a labeling function

L : S → 2Π, (3.2)

that maps state s ∈ S to a subset of propositions in Π. Table 3.3 shows the atomic propositions

used in this thesis. They are evaluated based on the observed scene (from simulation or dataset

replay) before passing them to the rule monitor, which will check the rule formula at each time

step. The labeling function to calculate them has been added to the BARK framework. The

relational position labels are calculated according to Figure 3.8, i.e., in a partially overlapping

manner. Maps are currently an important part of automated driving and can provide location

information (built-up vs. non-built-up) and road types (road, highway) [55]. Special lane types

such as diverging or accelerating lanes are thus assumed to be available from a map.

right(i↣j)left(i↣j)behind (i↣j)in-front(i↣j)

j j
jj

i
i

i

i

Figure 3.8.: Relational position labels, which describe that vehicle i located in the gray area is in

in-front/behind/left/right to vehicle j (graphic from [59], ©2020 IEEE).

38

3.4. Formalizing Traffic Rules Using Linear Temporal Logic

Table 3.3.: Atomic propositions and their respective interpretations from the perspective of vehicle i in

relation to another vehicle j.

π ∈ Π Interpretation

dense(i) i is closer than Rdense to Ndense or more vehicles

succ(i↣j) i is the successor of j
right(i↣j) i is to the right of j
left(i↣j) i is to the left of j
in-front(i↣j) i is in the front of j
behind (i↣j) i is behind of j
merged (i) i has passed a static merging point, from which on a merge is not possible anymore

sd-front(i) i has a safe distance to the preceding vehicle

sd-rear (i) i has a safe distance to the following vehicle

collide(i) i is colliding with road boundaries or any other vehicle or obstacle

lane-change(i) i is crossing a lane boundary

near (i↣j) i is closer than dnear to j
near-lane-end (i) i has less than srem remaining to the end of the lane

acc(i) i accelerates with a > alim

below-speed(vlim)(i) i drives at a velocity below vlim

speed-adv (i↣j) i is faster than j and some threshold vdiff

built-up(i) i is within a built-up area

motorway (i) i is on a road type: motorway

div-lane(i) i is on a lane type: diverging lane

acc-lane(i) i is on a lane type: acceleration lane

rightmost-lane(i) i is in the rightmost lane

leftmost-lane(i) i is in the leftmost lane

on-road (i) i is on the road

num-lanes-ge(n)(i) i is on a road with n or more parallel lanes in the same direction

3.4.3. Codified Rules

The rules will be formalized as close as possible to the legal analysis. Humans might have

relaxations of those rules in mind, i.e., under which circumstances they would not follow a

specific rule. However, this should not be included in the codified rules as this would yield

coding the desired behavior for a particular scenario into a formalized rule. Table 3.4 shows the

formalized rules, which will be discussed in the following. The codification of right of way (see

Section 3.2.6) is left to future work. The rules are written from the viewpoint of a vehicle i.

Velocity The rule φvel1 to stay below a maximum speed limit is trivial: The always operator □

requires the value of below-speed(vmax)(i) to hold true at all times. The rule to not stop requires

to not stay below a speed limit vstop. However, this shall only hold if the predecessor has not

stopped.

Lane Selection The formalized lane selection rules φls1 and φls2 follow directly from the legal

analysis in Figure 3.3 and the usage of De Morgan’s laws. If the respective premises hold true,

the vehicle must be in the rightmost lane (φls1) and not in the leftmost lane (φls2). The always

operator □ ensures that the rules must hold true at all times.

39

3. Formalization of Traffic Rules for Machine Interpretability

Table 3.4.: Formalized rules in LTL.

Class Rule Formula φ

VEL below speed

limit

φvel1 = □ below-speed(vmax)(i)

VEL no stopping φvel2 = □
(
¬
(
succ(i↣j) ∧ below-speed(vstop)(j)) =⇒ ¬below-speed(vstop)(i)

)
LS keep in

right-most lane

φls1 = □
(
¬dense(i) ∧ (¬built-up(i) ∨motorway (i)) ∧ (built-up(i) ∨ ¬num-lanes-ge(3))

=⇒ rightmost-lane(i)
)

LS keep outside

left-most lane

φls2 = □
(
¬built-up(i) ∧ num-lanes-ge(3) =⇒ ¬leftmost-lane(i)

)

OV no passing on

the right side

φov1 = □
(
¬div-lane(i) ∧ ¬acc-lane(i) ∧ ¬dense(i) ∧ (¬built-up(i) ∨motorway (i))

=⇒ ¬(behind (i↣j) ∧ ◦(behind (i↣j)Uright(i↣j)Uin-front(i↣j))
))

OV safe lane change φov2 = □
(
lane-change(i) =⇒ sd-rear (i)

)
OV speed advantage

for overtaking

φov3 = □
(
behind (i↣j) ∧ ◦(behind (i↣j)Uleft(i↣j)Uin-front(i↣j))

=⇒ (
near (i↣j) =⇒ speed-adv (i↣j)))

DIST safe distance φsd = □ sd-front(i)

BOV being overtaken φbov = □
(
right(i↣j) ∧ near (i↣j) =⇒ ¬acc(i)

)
PRIO zipper merge φzip =

((
¬rightmost-lane(i) ∧ ¬rightmost-lane(j))U(

left(i↣k) ∧ ¬in-front(i↣k)

∧ near (i↣k) ∧ near-lane-end (k) ∧ succ(i↣j) ∧ ¬merged (i)))
=⇒ □

(
merged (i) ∧ on-road (k) =⇒ ¬succ(i↣j) ∨ behind (i↣k)

)

Overtaking Based on the previous legal analysis, three rules are formalized for overtaking (see

Table 3.4). To forbid passing on the right side, φov1 uses the temporal sequence of relational

position behind – right – front:

φov1 = □
(premise where rule applies︷ ︸︸ ︷
¬div-lane(i) ∧ ¬acc-lane(i) ∧ ¬dense(i) ∧ (¬built-up(i) ∨motorway (i))

=⇒ ¬
(
behind (i↣j) ∧ ◦(behind (i↣j)Uright(i↣j)Uin-front(i↣j))

)︸ ︷︷ ︸
forbidden overtaking sequence

)

By formulating behind (i↣j) ∧ ◦(·), only complete overtakes are allowed, and partial ones where

the vehicles already start side by side are removed. In contrast to the author’s previous work [47],

the relational labels are defined as partially overlapping, which changes the meaning of the rule

from overtaking to passing. The always operator □ ensures that the premise will be checked

each time and not stay at false, if, e.g., the traffic is dense for some time and then dissolves.

The safe lane change rule requires a safe distance to the rear vehicle when performing a

lane change. Thus, φov2 covers the rules in [52], where overtaking is defined as the process of

changing lanes and passing, and for which a safe rear distance at the beginning and finish of the

overtake has to hold.

The third formula φov3 ensures that a vehicle shall only overtake if it has a significant speed

advantage over the other vehicle:

40

3.4. Formalizing Traffic Rules Using Linear Temporal Logic

φov3 = □
(overtaking sequence︷ ︸︸ ︷
behind (i↣j) ∧ ◦(behind (i↣j)Uleft(i↣j)Uin-front(i↣j)) =⇒

(
near (i↣j) =⇒ speed-adv (i↣j))︸ ︷︷ ︸

speed advantage check if close

)

If there is no significant speed advantage while they are close, there will be a penalty once

the overtaking vehicle has passed the other. Note that for the rule to be violated, the speed

advantage only has to be false once during the overtake, and not necessarily at the end of the

overtake. The regulations do not provide any exceptions to φov3 . It will thus be considered to be

valid in built-up areas as well.

Safe Distance The rule to ensure a safe distance of vehicle i to any preceding vehicle in front

(denoted (·) f) is formalized using the safe distance definition in [52], which is defined as follows:

di
safe0

= vi · treact −
(vi)2

2 · ai
br,max

(3.3a)

di
safe1

= vi · treact −
(vi)2

2 · ai
br,max

+
(v f)2

2 · a f
br,max

(3.3b)

di
safe2

=
(v f + a f

br,max · treact − vi)
2

2 · (a f
br,max − ai

br,max)
− v f · treact −

1
2

a f
br,max · t

2
react + vi · treact (3.3c)

di
safe3

= vi · treact −
(vi)2

2 · ai
br,max

− v f · treact −
1
2

a f
br,max · t

2
react, (3.3d)

where abr,max < 0 and

v f ∗ =

v f + a f
br,max · treact if treact ≤ ti

stop

0 otherwise.
(3.4)

The time durations to brake to standstill are defined as:

ti
stop = −vi/ai

br,max (3.5a)

t f
stop = −v f/a f

br,max (3.5b)

t f ∗
stop = −v f ∗/a f

br,max (3.5c)

The safe distance label then follows as

sd-front(i) :=

⊤ if (d(i↣ f) > di

safe0
) ∨

(
(treact ≤ t f

stop) ∧ (d > di
safe3

)
)

d > di
safe2

else if (treact≤ t f
stop) ∧ (ai

br,max > a f
br,max) ∧ (v f ∗<vi) ∧ (ti

stop < t f ∗
stop)

d > di
safe1

otherwise,

(3.6)

where d(i↣ f) denotes the longitudinal distance between the rear end of the front vehicle and the

front end of the ego vehicle. The final rule formula φsd is simple: a safe distance has to hold true

at all times.

41

3. Formalization of Traffic Rules for Machine Interpretability

Being Overtaken When being overtaken, acceleration shall be prohibited. Being overtaken

could be defined as a temporal sequence of relational positions. However, with this rule, the

proximity check already serves this work’s needs, as it is computationally cheaper with less

labels needed to be calculated.

Zipper Merge For the zipper merge, the driver on the non-ending lane is supposed to let the

driver on the ending lane in. This work defines a zipping situation as a situation where a vehicle i

is close and to the left but not in front of a vehicle k, which is in an ending or blocked lane.

In addition, vehicle i follows another vehicle j and has not passed the final merging point yet.

Figure 3.9 shows the naming conventions for this rule. The inclusion of the label near-lane-end (k)

ensures that vehicles that merge early, meaning they merge far ahead of the lane ending, will not

count into the rule. The rule can be formalized as

φzip =
(

φzip,premU
(zipping situation︷ ︸︸ ︷
left(i↣k)∧¬in-front(i↣k)∧near (i↣k)∧ near-lane-end (k)∧succ(i↣j)∧¬merged (i)))

=⇒ □
(
merged (i) ∧ on-road (k) =⇒ ¬succ(i↣j) ∨ behind (i↣k)

)
with φzip,prem =

(
¬rightmost-lane(i) ∧ ¬rightmost-lane(j)). If a zipping situation has been detected

and vehicles i and j have not been in the rightmost lane before, the rule shall guarantee the

following: Once vehicle i has merged and vehicle on-road (k) has not left the road, vehicle i must

• either not follow vehicle j directly (as vehicle k from the other lane has merged in-between

and has become the new predecessor of vehicle i, or as vehicle j has left the lane to the left)

• or vehicle i must be behind of vehicle k (as vehicle k has merged before j).

3.5. Conclusion

This chapter formalized traffic rules for dual carriageways according to German traffic regu-

lations. For this, a methodology for a legal analysis was presented, which was used to codify

these rules. The rule formalization and especially the description of labels using mathematical

functions inevitable yields ambiguities, which was approached by studying and including court

rulings. This work shall help to start a discussion to remove these ambiguities. Going forward,

the traffic law should be tightened by agreeing to the same formalized rules.

i j

k

near lane endrightmost lane
merged

last merging

opportunity ki ji

k

j

Figure 3.9.: Naming convention of vehicles i, j, k during a zipper merge and the temporal evaluation of a

sequence that satisfies φzip,prem.

42

4
Evaluating Traffic Rules in Linear Temporal

Logic on Recorded Drives

4.1. Overview and Contribution

In this chapter, the previously formalized rules are evaluated on recorded traces of human drivers,

which can help to identify errors in the formalized rules. Eventually, once the formalization

process has been completed, it provides valuable insight into the extent to which humans follow

these rules. For this, the theory on Linear Temporal Logic on finite traces (LTLf) is introduced,

followed by the theory on automata-based verification of such formulas. A concept to evaluate a

traffic rule in LTLf using a rule monitor is then presented. The main contributions in this chapter

are

• a generic framework for monitoring a set of traffic rules which has been embedded in

BARK and

• insights on the extent to which humans follow these rules.

The methodology and parts of the results are based on the author’s previously published

works in [47] and [59]. The experiments have been extended to include all formalized rules of

this work.

4.2. Linear Temporal Logic on Finite Traces

In the context of continuously re-planning over a receding horizon, LTLf is used since it provides

a formalism to reason over bounded periods of time. It uses the same syntax as LTL, which was

introduced in Section 3.4.1. The definition of the semantics of LTLf can be found in [84].

Following the categorization of Manna et al. [85], this work considers formulas with obligation

properties, which include safety and guarantee properties. Safety formulas can be represented as

□p, whereas guarantees are generally captured by ♢p, where p is a finite LTL formula consisting

of only atomic propositions, the operators ¬,∨,∧, =⇒ , ◦, and past-LTL operators. Note that

past-LTL operators are not used in this work.

43

4. Evaluating Traffic Rules in Linear Temporal Logic on Recorded Drives

4.3. Automaton-based Verification of LTLf Formulas

Automata-based model checking will be used to verify if a trace satisfies the LTLf formula. Given

a formula in LTLf, a Deterministic Finite Automaton (DFA) can be constructed that recognizes

words satisfying the formula. For the LTLf formula to be translated into a DFA, this work follows

the concept of [84]. An additional atomic proposition alive is introduced to the formula before

translation to the automaton. This symbol will be set to true initially and set to false once the

end of the trace has been reached. The automaton is defined over the alphabet Σ = 2Π, i.e., the

powerset of atomic propositions of the LTLf formula.

Definition 1 (DFA). A DFA is a tuple Λ = (Q, q0, Σ, δ, F), where

• Q is a set of states

• q0 ∈ Q is the initial state

• Σ is a finite alphabet

• δ : Q × Σ→ Q is a transition function

• F ⊆ Q denotes a set of accepting (or final) states.

A label function L yields a symbol σk ∈ Σ at a given time instance k. For a word w, given as

a sequence of symbols σk σk+1 . . . , and a DFA Λ, the automaton state is sequentially updated

from the initial automaton state with respect to δ and w. Therefore, if the automaton halts in an

accepting state, w satisfies the formula.

4.4. Runtime Monitoring of Traffic Rules

4.4.1. Rule Violations

Previous work [6, 86] introduced a weighted transition for rule violation to the automaton.

During planning, each rule automaton is evaluated over the word w, and the weight equals the

penalty for the respective rule. Specifically, a self-looping automaton is used in [6], i.e., a weighted

transition to the same state is added for a violating transition. However, this formulation does

not allow the modeling of violations that cause a penalty once vs. violations that accumulate

penalties over time. To account for this, Schluter et al. [86] extended [6] by defining an explicit

violation symbol.

Although violations of safety properties can be detected on partial traces, a safety property □p

will never be satisfied again after being violated. Consequently, violating a safety property leads

to a non-accepting state in the automaton that only has a self-loop. Thus, the automaton cannot

be brought back to an accepting state once it has registered a violation. To obtain penalties for

consecutive rule violations, such as multiple times overtaking on the right [47], the automaton

44

4.5. Evaluation

is reset to its initial state after a violation occurred. Formally, Λ = (Q, q0, Σ, δ, F) is modified to

Λ = (Q, q0, Σ, δ, F), where

δ(q, σ) :=

q0 if ∀σ′ ∈ Σ : δ(δ(q, σ), σ′) = δ(q, σ) ∧ δ(q, σ) /∈ F

q′ ∈ F if q = q0 ∧ alive /∈ σ

δ(q, σ) otherwise.

(4.1)

4.4.2. Open Rule Monitor

Implementation-wise, Spot [87], a C++ library for model checking, is used to translate the

formalized LTL formula to a deterministic finite automaton, and to manipulate the automaton.

Each formula is captured in a RuleMonitor, which has been published as open-source [88] as

part of this work. To monitor rule compliance throughout the simulation, the RuleMonitor is

encapsulated in an EvaluatorLTL object, which implements BARK’s abstract evaluator interface

(see Section 2.1.4). The violation count is incremented if the modified automaton Λφ gets reset to

its initial state (violation of a safety property □p) or the automaton does not halt in an accepting

state (violation of a guarantee property ♢p).

4.5. Evaluation

Evaluating the formalized rules on recorded drives of humans will help to validate the formalized

rules and also provide valuable insight into the extent to which humans follow the rules.

The INTERACTION dataset [89], which focuses on dense interactions, is used to analyze the

compliance of each vehicle to the traffic rules. To the best of the author’s knowledge, [51, 56]

form the only works that evaluated their respective formalized traffic rules on recorded drivers.

4.5.1. Evaluation Methods and Dataset Processing

The approach is studied in the benchmarking framework BARK, which was introduced in

Section 2.1. The rule monitors from Section 4.4.2 are used to monitor rule compliance throughout

the simulation, effectively replaying the dataset.

Behavior Model for Dataset Tracking To get real-world data into the simulation, a BARK

behavior model was implemented that tracks recorded trajectories. The simulation can be started

at an arbitrary timestamp and include all or only a subset of recorded vehicles.

Recorded Drives The two-lane German merging scenario DR_DEU_Merging_MT and the

three-lane road lower part of the Chinese highway merging scenario DR_CHN_Merging_ZS

will be analyzed. The two scenarios are summarized in Table 4.1. The formalized rules from

the German traffic code are evaluated on DR_CHN_Merging_ZS, although differences between

the two countries’ local rulesets can be expected. To understand the dataset first, Figure 4.1

shows the distributions of the mean velocity, the vehicle’s mean gap distance to the preceding

45

4. Evaluating Traffic Rules in Linear Temporal Logic on Recorded Drives

Table 4.1.: Analyzed scenarios from the INTERACTION dataset.

Scenario Name DR_DEU_Merging_MT DR_CHN_Merging_ZS (lower)

Country Germany China

Location Built-up Built-up

Carriageway Dual Dual

Road Type Road Motorway

Max. Speed Limit 50 km/h ≈ 14 m/s 80 km/h ≈ 22 m/s

Number of vehicles 483 3178

Lanes 2→ 1 3→ 2

Table 4.2.: Validity of the rules in the analyzed scenarios from Table 4.1.

Class Rule DR_DEU_Merging_MT DR_CHN_Merging_ZS (lower)

VEL below speed limit yes yes

VEL no stopping yes yes

LS keep in right-most lane no (built-up and not motorway) yes

LS keep outside left-most lane no (built-up) no (built-up)

OV no passing on the right side no (built-up and not motorway) yes

OV safe lane change yes yes

OV speed advantage for overtaking yes yes

DIST safe distance yes yes

BOV being overtaken yes yes

PRIO zipper merge yes yes

vehicle, and the number of vehicles present at the same time. These distributions are valuable

when interpreting the rule violation data and selecting reasonable model parameters when

re-simulating the scenarios in closed loop. The scenario DR_DEU_Merging_MT shows one

homogeneous driving class that represents urban traffic. Up to 20 cars drive in the scenario at

the same time at 4 m/s to 12 m/s. The gap between vehicles, which can be observed most from

the data, is about 10 m. The scenario DR_CHN_Merging_ZS (lower), on the other hand, consists

of two major driving classes: A slow and dense part, which is presumably a traffic jam, and

a higher speed part where most vehicles are driving at 15 m/s to 20 m/s. The recorded road

section is larger for DR_CHN_Merging_ZS (lower), which together with more lanes explains the

higher number of vehicles being present simultaneously in contrast to DR_DEU_Merging_MT.

4.5.2. Evaluation of Violation on Recorded Drives

For the evaluation, the rule evaluator’s parameters are set according to Table A.1. Different

values of the threshold dnear for the “zipper merge” rule and the “being overtaken” rule are being

used for the two locations. The threshold srem is location-dependent, as it is tightly coupled with

the lane geometry. In comparison to the Chinese map, the ending lane in the German map gets

narrow much earlier. The “safe distance” label is parametrized with the values from [51]. Only

passenger vehicles with a maximum length of 5 m are included, which yields small differences

in comparison to the results published in [59].

46

4.5. Evaluation

0 5 10 15 20 25

mean velocity [m/s]

0

2

4

6

8

10

12

14

16

n
or
m
a
li
ze
d
h
is
to
g
ra
m

[%
]

DR DEU Merging MT DR CHN Merging ZS (lower)

(a) Normalized histogram of the mean velocity.

0 20 40 60 80 100 120

mean gap distance [m]

0

5

10

15

20

25

30

35

40

n
or
m
a
li
ze
d
h
is
to
g
ra
m

[%
]

DR DEU Merging MT DR CHN Merging ZS (lower)

(b) Normalized histogram of the mean gap distance to the

preceding vehicle.

0 10 20 30 40 50 60 70 80

number of agents

0

5

10

15

20

25

30

n
or
m
a
li
ze
d
h
is
to
g
ra
m

[%
]

DR DEU Merging MT DR CHN Merging ZS (lower)

(c) Normalized histogram of the number of vehicles.

Figure 4.1.: Distributions of mean velocity, mean gap distance and the number of vehicles from the dataset.

To illustrate one of the more complex rules, Figure 4.2 and 4.3 show two examples for rule

violations of the zipper merge rule. For simplicity, only the truth values of the labels for the

relevant vehicles are shown. A crossed hatch indicates a violation. In Figure 4.2, vehicles 7 and 8

are initially side by side. However, vehicle 8 drives faster and passes vehicle 7 instead of leaving

the gap to let vehicle 7 merge in a zipper fashion. Eventually, once vehicle 8 has merged, the

rule evaluator returns false, as its predecessor is still vehicle 6. In Figure 4.3, vehicle 268 should

let vehicle 271 in but does not leave a gap. After nudging in the other lane first, vehicle 271

ultimately slows down and lets vehicle 268 pass. Once vehicle 268 has merged, the rule evaluator

returns false, as its predecessor is still vehicle 263.

These two examples already show the value of testing the rules on real data: There invariably

exist edge cases, such as vehicle 267 leaving the drivable area by crossing solid lane markings

and overtaking on the right, that one did not think of when formalizing the rules. Still, the

rules need to be formulated soundly despite such irrational behavior. Another challenge of

writing sound temporal rules is that they need to work despite the continuous emerging of new

vehicles on the map, which is of course similar to vehicles emerging within the field of view of

an autonomous vehicle.

47

4. Evaluating Traffic Rules in Linear Temporal Logic on Recorded Drives

Figure 4.2.: Zipper merge violation in DR_DEU_Merging_MT by vehicle 8 of trackfile 9. The snapshots are

depicted at a 1 s time increment. The valuations of the atomic propositions are shown on the

left. While vehicles 7 and 8 are initially side by side, vehicle 8 drives faster and passes vehicle 7

instead of leaving the gap to let vehicle 7 merge in a zipper fashion. Eventually, once vehicle 8

has merged, the rule evaluator returns false, as its predecessor is still vehicle 6. The violation is

illustrated by a crossed hatch.

48

4.5. Evaluation

Figure 4.3.: Zipper merge violation in DR_CHN_Merging_ZS (lower) by vehicle 268 of trackfile 8. The

snapshots are depicted at a 5 s time increment. The valuations of the atomic propositions are

shown on the left. Vehicle 268 should let vehicle 271 in, but does not leave a gap. After nudging

into the other lane first, vehicle 271 eventually slows down and lets vehicle 268 pass. Once

vehicle 268 has merged, the rule evaluator returns false, as its predecessor is still vehicle 263.

The violation is illustrated by a crossed hatch.

49

4. Evaluating Traffic Rules in Linear Temporal Logic on Recorded Drives

For the quantitative analysis, the percentage of rule violation per vehicle is calculated as

rule violation per vehicle :=

∑
i∈V

1, if φ = ⊥ at least once

0, otherwise

|V| , (4.2)

where V denotes the set of all vehicles in the dataset. Table 4.2 displays the validity of the rules

within the two scenarios based on the map-based features from Table 4.1.

Figure 4.4 shows the results of the quantitative evaluation. Violations of close to 100% would

probably indicate an error in the formalization. The evaluation is performed for step sizes of

0.1 s, 0.3 s, and 0.5 s. The results do not show any significant discrepancies for various step sizes,

which enables their use in planning modules, that might have a planning step size above 0.1 s.

In the Chinese scenario, about 85% of the vehicles do not always keep in the rightmost lane. If

the number of violations is that high, three reasons are possible: First, China’s local law might be

different in that it does not include this rule in this scenario. Second, the local interpretation of

dense traffic might be different or, third, the rule’s priority to human drivers might be rather low.

About 10% of the vehicles in the German scenario and 6% of the cars in the Chinese scenario

do not perform a safe lane change. This shows that human drivers either underestimate the

safe distance when changing lanes or accept some level of risk to drive fluently within the bulk.

Similar things can be said for the safe distance, where 27 to 32% of the vehicles violate the safe

distance at least once.

The rule to have a “speed advantage for overtaking” is being violated in the Chinese scenario

by more than 13% of the vehicles, whereas no violations can be observed in the German

scenario. This could either stem from the distinct regulations, different local interpretation of

what significant speed advantage means, or is due to the differences of the traffic situations

(the Chinese scenario’s road section is more extensive than the German scenario’s, making a

completed overtaking more likely). About 1% of the vehicles in the German scenario violate the

zipper merge rule. In the Chinese scenario, less than 1% do not merge according to this rule.

Such a small number indicates that most human drivers follow this rule very well.

The analysis reveals that human drivers violate the formalized rules. However, violation of a

single rule should not be used directly to assign blame. Assuming that rule violations happen

out of the necessity of the situation and not on purpose, one would be tempted to include all

those situational exceptions into the formalized rule. Unfortunately, this would effectively mean

codifying the vehicle’s desired behavior for each scenario, which is not desirable due to the sheer

number of possible scenarios. Instead, if the ruleset is complete, these exceptions will arrive

implicitly by introducing weights or priorities between the rules and evaluating the full ruleset

instead of a single rule. It might be required to re-simulate or re-plan a short section before a

violation to study whether other alternatives were available.

Correlations This paragraph aims to identify correlations between the rule violations and the

traffic situation. The correlation study can help gain insight into the rules and identify definitions

gaps if, e.g., correlations are identified that seem implausible. Specifically, the distributions used

50

4.5. Evaluation

80

85

90

DR DEU Merging MT,Ts=0.1s

DR DEU Merging MT,Ts=0.3s

DR DEU Merging MT,Ts=0.5s

DR CHN Merging ZS (lower),Ts=0.1s

DR CHN Merging ZS (lower),Ts=0.3s

DR CHN Merging ZS (lower),Ts=0.5s

no stopping max. speed
limit

keep in
rightmost

lane

no passing
on the right

side

safe lane
change

speed adv.
during

overtaking

safe distance being
overtaken

zipper
merge

rule

0

5

10

15

20

25

30

35

40

rules not applicable in
DR DEU Merging MT
rules not applicable in
DR DEU Merging MT

v
v
e
h
ic

le
[%

]

Figure 4.4.: Rule violations in the dataset for two different locations and three different evaluation time step

sizes.

to characterize the traffic situation are the gap distance to the preceding vehicle, the vehicle’s

average velocity, whether the vehicle changed lanes, and the number of vehicles being present

simultaneously. The Pearson correlation coefficient is employed, where a correlation factor

of +1 indicates a strong positive correlation, a correlation factor of 0 indicates no correlation,

and a correlation factor of −1 indicates a strong negative correlation. Figure 4.5 shows the

results. As the Chinese dataset is more diverse in terms of mean velocity and the number of

vehicles present simultaneously, the results from DR_CHN_Merging_ZS (lower) might yield more

convincing correlations. For those rules that were not applicable or where not enough violations

were detected, no correlation coefficient can be computed, and the field is left blank.

The “no stopping” rule is sometimes violated when the traffic jam has started to resolve, such

that the vehicle in front has started to drive again, but the rear vehicle is slow to start as well.

Thus not surprisingly, a correlation of this rule’s violations can be observed with parameters

describing a traffic jam (slow velocity, many vehicles). The “safe lane change” rule correlates

with vehicles doing at least one lane change for both scenarios DR_DEU_Merging_MT and

DR_CHN_Merging_ZS (lower), which is an obvious link. The gap distance, which is one indicator

for traffic density, negatively correlates with the safe distance. Subsequently, the smaller the gap

distance, the more often the safe distance is violated. However, the correlation is only slight, as

the velocity also plays into the safe distance formula.

The slower the vehicles are driving, the more often they accelerate when “being overtaken”.

This might stem from the fact that slow vehicles are being overtaken more often. Also, the slower

the cars are driving, the more often they do not have a significant “speed advantage during

overtaking”. These two rules also correlate with the number of simultaneous vehicles.

For other rules such as “zipper merge”, “maximum speed limit”, or “lane selection”, no

significant correlations can be observed between the violations and the dataset’s properties.

Essentially, the evaluation did not prompt any implausibilities for the formalized rules.

51

4. Evaluating Traffic Rules in Linear Temporal Logic on Recorded Drives

at least one
lane change

gap velocity number of agents

no stopping

max. speed
limit

keep in
rightmost lane

no passing on
the right side

safe lane
change

speed adv.
during overtaking

safe distance

being
overtaken

zipper
merge

0.095 -0.13 -0.36 0.3

0.48 -0.079 -0.027 0.12

-0.022 -0.28 -0.028 0.15

0.17 -0.082 -0.17 0.15

-0.086 -0.054 -0.038 0.091

(a) Correlations for DR_DEU_Merging_MT dataset.

at least one
lane change

gap velocity number of agents

no stopping

max. speed
limit

keep in
rightmost lane

no passing on
the right side

safe lane
change

speed adv.
during overtaking

safe distance

being
overtaken

zipper
merge

0.084 -0.2 -0.33 0.36

0.078 0.05 0.11 -0.057

-0.18 0.016 -0.066 0.045

0.17 -0.083 -0.096 0.11

0.5 -0.15 -0.073 0.1

-0.076 -0.32 -0.5 0.48

0.18 -0.28 -0.1 0.12

0.21 -0.29 -0.46 0.52

-0.011 -0.068 -0.082 0.091

(b) Correlations for DR_CHN_Merging_ZS (lower) dataset.

Figure 4.5.: Correlations between observed rule violations and traffic characteristics such as the gap distance

to the preceding vehicle, the average velocity, whether or not the vehicle changed lanes, and the

number of vehicles.

Lane Matching The evaluation of real data in lane-based functions is difficult, as the matching

between the data and the map might be inaccurate. Thus the calculations that depend on an

accurate matching to lanes might introduce errors to the results. The labels for the safe distance

sd-front, sd-rear and for the succeeding relation succ rely on an accurate lane matching

inLane(lane, agent) =

⊤, if Plane ∩Pagent ̸= ∅ ∧ |d⊥| < wlane ·FinLane

⊥, otherwise,
(4.3)

where Plane, Pagent denote the respective polygons, d⊥ the perpendicular distance of the lane’s

centerline to the ego agent’s rear axle point, wlane the width of the lane, and FinLane a parameter

to control the accuracy of the lane matching. Figure 4.6 illustrates the lane matching for two

other vehicles. At FinLane = 0.0, no lateral offset of the vehicle to the centerline is allowed for it

to be viewed as being in the lane. Contrary at FinLane = 2.0, all vehicles whose shape intersects

with the lane polygon will be matched to that lane, as the maximum allowed lateral offset is

twice the lane width. Note that the lane matching definition is not exclusive, which means that a

vehicle might be inside two lanes.

Figure 4.7 displays the evaluation of the “safe lane change” rule, the “safe distance” rule, and

the “zipper merge” rule for different lane matching parameters FinLane. The evaluation reveals

d1

d2

i
centerline

j

j

Figure 4.6.: Lane matching calculation for the labels sd-front(i), sd-rear (i), succ(i↣j) based on the lateral

distance to the centerline of the ego vehicle’s lane.

52

4.6. Conclusion

safe lane
change

safe distance zip merge

rule

0

5

10

15

20

25

30

35

vi
o
la
ti
o
n
p
er

a
g
en

t
[%

]

0.0 0.1 0.3 0.5 0.7 1.0 2.0

Figure 4.7.: Violations per time of the safe lane change and the “safe distance” rule when varying the lane

matching parameter of the preceding vehicle calculation on DR_DEU_Merging_MT.

how sensitive the labels and subsequent rule evaluations are to inaccurate lane matching and

that the quantitative results inherently hold some uncertainty. FinLane = 0.5 was used for the

experiments above, which means that the vehicle must be with at least one half within the lane.

Note that correct lane matching for rule evaluations is even more critical when evaluating the

rules in a car online from perceived and noisy object lists.

4.6. Conclusion

The evaluation of real data helped to concretize the calculation of the labels iteratively. However,

some of the parameters should be defined in a collaborative initiative of rule makers and

engineers. The evaluation showed that humans violate formal traffic rules to varying extents.

Still, the violation of a single rule does not necessarily imply a driver’s fault. The driver may

have violated the rule in order to satisfy another. Codifying such situational exceptions into the

rules would be cumbersome and error-prone due to the sheer number of possible scenarios.

Instead, these exceptions will arrive implicitly with a complete ruleset by introducing weights

or priorities between the rules and evaluating the entire ruleset instead of a single rule. As a

next step, false negatives and false positives need to be identified by extending the evaluation

to other scenarios. To automate this step, the datasets’ rule violations should be labeled and

made public. This would ease the collaboration with legal experts to verify the legal analysis

and extend it to cover all regulations. Also, the rules should be evaluated and tested on locally

recorded data from a car, which is different in terms of the perception horizon than the statically

recorded traffic data from the INTERACTION dataset that was used in this chapter.

This work lays the foundation for integrating traffic rules into a planning component and

leveraging formalization benefits to evaluate the rules’ compliance.

53

5
Monitoring of Traffic Rules Within Interactive

Behavior Planning

5.1. Overview and Contribution

Traffic rules often depend on the actions of other agents or the past. Merging scenarios have

proven challenging due to the dense interaction with others, combined with the eventual lane

ending, prompting the need for the driver to make a decision. Game-theoretic approaches

offer an elegant way to model such interactions. This chapter proposes a game-based planning

approach that monitors traffic rules depending on multiple agents and past information at

planning time. To solve this formulation, Monte Carlo Tree Search (MCTS) is used. Evaluating

time-dependent traffic rules violates the Markov property, i.e., it does not rely only on the current

state but also on previous states. This raises the question how to integrate those rules in MCTS,

which relies on the Markov property to be computationally efficient. The main contributions of

this chapter are

• a method to monitor multi-agent and time-dependent traffic rules within MCTS,

• a framework to evaluate the effect of modeling a specific traffic rule within a set of rules by

implementing a thresholded lexicographical ordering within MCTS, and by using the exact

same rule monitor to plan and evaluate a scenario run and

• a study of the ramifications on collision, progress, and the violation of rules in the simulated

scenarios when modeling the applicable traffic rules within MCTS.

This chapter is based on the author’s previously published work [60]. The results have

been updated to more realistic model parameters for the other traffic participants, including a

comparative study to real traffic data.

55

5. Monitoring of Traffic Rules Within Interactive Behavior Planning

5.2. Related Work

Multiple goals, such as collision and safety metrics, various traffic rules, and comfort metrics,

should be considered to drive safely. Some of these goals are favored over others. Expressing

the preference using a weighted sum scalarization is tedious, sometimes even impossible.

Therefore, Castro et al. [6] realize the preference relation through a Lexicographical Ordering

(LO). Compared to a weighted sum scalarization, their method does not require adapting the

weights of all the cost terms when adding or modifying goals.

Previous work extended RRT* to follow traffic rules [6]. However, the approach does not con-

sider interactions. The problem has been extended to the coordination of multiple vehicles [90],

but assumes explicit communication. Chaudhari et al. [41] define a two-player non-zero-sum

non-cooperative game. Both the ego agent and the environment (the other agents) try not to

violate any traffic rules expressed in LTL. Each agent builds up a tree as in [6]. The separated

planning trees prohibit the approach from incorporating rules that depend on other agents than

the ego agent, such as the safe distance or zipper merge rule.

To account for the road rules in interactive planning, Karlsson et al. [44] employ a decoupled

approach of interaction-aware joint prediction with sampling-based motion planning. However,

the discrete joint prediction does not consider the road rules, which will create discrepancies

in dense, complex scenarios between the predicted ego-motion (not rule-compliant) and the

planned motion of the rules-aware motion planner.

LTL-based runtime verification on full traces of MCTS has been proposed [91], i.e., the

evaluation of the LTL formula always starts at the initial node. The authors employ rules that

only depend on the ego agent and demonstrate the approach for an intersection. However, their

approach does not allow for incorporating multi-agent rules, nor does it make efficient use of

the search tree to evaluate the rules.

To summarize, no work exists that allows studying multi-agent traffic rules in dense scenarios

by modeling it as part of the interactive planning problem.

5.3. Problem Formulation and Assumptions

In a lane-merging scenario populated with multiple agents, this work aims to plan the behavior

of a single agent Bi(k) = (xi
des(k), xi

des(k + 1), . . . , xi
des(k + K)), i.e. the generation of a sequence

of desired future dynamic states, while obeying the traffic rules. This work assumes perfect

observation of the dynamic state of the other agents and the map, as well as perfect localization

within that. Thus, the ‘des‘ subscript is dropped in the following. This setting of interactive

behavior planning is treated as a dynamic game, that formally consists of:

• A set of agents A , each agent i having a dynamic state xi ∈ Xi,

• An environment state s ∈ S = ×Xi with state space S,

• Agent 1 (referred to as “ego agent”) having an action space A1 with discrete actions,

56

5.4. Approach

• Agents 2...NA (referred to as “other agents”) following a behavior model Bo, that determines

the agent’s action at
i ∼ Bo(st).

Based on the joint action of all agents, the environment state s transitions to s′. The ego agent

gets a reward r(s, s′, a) after joint action a ∈ A = ×Ai is applied. The goal is to find an optimal

action a for the ego vehicle that maximizes its cumulative reward in Equation (2.2) along a

planning horizon of K steps, where the reward incorporates penalties for discomfort, traffic rule

violation, and collision. MCTS is used to obtain an approximation of the optimal solution using

sampling since obtaining an optimal solution of the decision problem is infeasible due to the

size of the state space.

The formalized traffic rules from Chapter 3 shall be employed, which are formulated in

LTLf. Some of these traffic rules such as the zipper merge or overtaking do not rely only on

the current state s but also on previous information. To be used in an interactive planning

framework as described above, this work aims to find a Markovian formulation for evaluating

the history-dependent rules for each agent.

5.4. Approach

This section presents this work’s method for monitoring traffic rules within interactive behavior

planning based on MCTS. It is described how to obtain a reward for the rule violation, and how

to extend MCTS to rewards in a lexicographical ordering.

5.4.1. Rule Monitoring Within Monte Carlo Tree Search

To allow for a valuation of the traffic rules given in LTLf, the environment state s is labeled to

the atomic propositions described in Section 3.4. To monitor temporal rules within MCTS, the

straightforward way is to evaluate the run from the root node for each expansion and simulation

step. However, this will significantly limit the performance of the MCTS. Instead, this work

exploits the structure of the decision tree by augmenting the tree nodes of the MCTS with the

automaton state. Thus, non-Markovian properties captured in LTL can be efficiently verified

during the MCTS by encoding necessary historical information into the automaton’s state.

At first, each φi formula is translated into their corresponding DFA representation Λi, which

was introduced in Section 4.4. Instead of combining them to a single product automaton, they

are considered as independent automata, which is advantageous for the time complexity of

finding a valid transition. The states of m automata form the automata state vector q

q =
(

q1 . . . qm

)T
. (5.1)

With the joint state s and the automata state vector q, the combined state z

z(k) =
(

s(k) q(k)
)T

(5.2)

can be defined.

57

5. Monitoring of Traffic Rules Within Interactive Behavior Planning

a1 a2

runtime t

z(t = t2)

z(k) = (s(k), q(k))

a1 a2

a1

z(k + 2)

z(k + K)

z(k + 1)

z(t = t3)

active automaton state q

applying action a

last transition

rollout

Figure 5.1.: The evolution of the product state z for a single rule monitor. An MCTS planning step is

depicted exemplary at t2. The state of the rule automaton q is tracked along both planning time

and runtime (graphic from [60], ©2020 IEEE).

The successor state is then defined by

z(k + 1) =

s(k + 1)

δ1
(
q1(k),L(s(k + 1))

)
...

δm
(
qm(k),L(s(k + 1))

)

 , (5.3)

where s(k + 1) is defined by the joint action a. Figure 5.1 illustrates the evolution of the product

state z during MCTS and over time for a single rule monitor.

5.4.2. Costs for a Violation Penalty

Let a given rule formalized in LTL φ be represented by automaton Λφ. The weighting function

W : Q × Σ→ defines the penalty for violating that rule, assigning each transition a scalar weight:

W(q, σ) :=

ωφ if ∀σ′ ∈ Σ : δ(δ(q, σ), σ′) = δ(q, σ) ∧ δ(q, σ) /∈ F

ωφ if alive /∈ Σ ∧ q /∈ F

0 otherwise.

(5.4)

A penalty ωφ is returned, if the modified automaton Λφ gets reset to its initial state (violation

of a safety property □p) or the automaton does not halt in an accepting state (violation of a

guarantee property ♢p). Finally, the reward for violating φ is then defined as

r(s(k), s(k + 1)) = W(q,L(s(k + 1))). (5.5)

5.4.3. Multi-Objective Reward Function with Priorities

To model the multi-objective reward (e.g., safety, legal, comfort) and to prevent weight-tuning

for a scalar reward, the reward elements is treated as a vector:

r =
(
r1 . . . rn

)T
(5.6)

58

5.5. Experiments and Results

If goals are meant to be traded off among each other, a weighted sum scalarization is performed

for these. While Wang et al. [92] try to find elements on the Pareto-optimal front, the multi-

objective formulation simplifies if the objective vector is ordered according to the priority levels.

An entry at index i in the reward vector denotes a higher priority than at index i + 1.

UCT for Vectorized Rewards To incorporate a vectorized reward to the MCTS, the MCTS

selection strategy is modified by computing the UCT value per reward vector element.

Relaxed Lexicographical Order If employing strict LO, the selection would favor tree branches

that are suboptimal in terms of all other criteria over tree branches, where one single outcome was

a collision (if that is the top-level priority). To account for the inaccuracy of the sampling-based

approximation of the optimal solution, a relaxation of LO called Thresholded Lexicographical

Ordering (TLO) is implemented [93]. Comparing two reward vectors r, r′ according to TLO is

defined as

r ⪯TLO r′ ⇐⇒ ∃i : ri ≤ r′i ∧ ∀j < i : (rj > τj ∧ r′j > τj) ∨ rj = r′j , (5.7)

where ⪯TLO denotes the thresholded lexicographic comparison. TLO uses a threshold vector τ

to determine if a goal is sufficiently met. If a goal of the same priority in two compared vectors

is sufficiently met, i.e., it is above the threshold in both vectors, the next lower priority objective

is considered for comparison. Otherwise, strict LO is applied.

Figure 5.2 shows comparison using TLO as an example. At first, the values at index 0 (collision

penalty) are compared. The FastDec and KeepGap actions’ cumulative reward estimates are above

the threshold and are thus next compared at index 1 (rule violation penalty). At index 1, both

remaining actions are below the threshold, and thus action KeepGap with the highest Q-value

element is selected.

KeepVel: (−0.32 −0.10 −122.8)

Acc: (−0.46 −0.04 −104.3)

Dec: (−0.23 −0.09 −149.4)

FastDec: (−0.03 −0.13 −227.3)

KeepGap: (−0.06 −0.12 −219.9)

KeepVel −0.32 −0.10 −122.8

Acc −0.46 −0.04 −104.3

Dec −0.23 −0.09 −149.4

FastDec: (−0.03 −0.13 −227.3)

KeepGap: (−0.06 −0.12 −219.9)

1 Comparison at i=0 (collision) 2 Comparison at i=1 (rule violation)

τ0 = −0.19 τ1 = −0.02

3 both remaining
actions are below
threshold at i=1,
strict LO applies,
best action: KeepGap

Q0 for FastDec
and KeepGap
above threshold,
TLO at next idx

Figure 5.2.: Cumulative reward comparison for a reward vector with the three elements collision, rule

violation, and comfort.

5.5. Experiments and Results

5.5.1. Experimental Setup

The approach will be studied using the open-source benchmarking framework BARK proposed

in [58] and introduced in Section 2.1. The code of the proposed planning method has been

59

5. Monitoring of Traffic Rules Within Interactive Behavior Planning

published as open-source [94]. The RuleMonitor from Section 4.4.2 is used to translate the

formalized LTL formula to a DFA, and to manipulate the automaton. The rule monitoring

and the multi-objective reward function are implemented on top of a template-based MCTS

library [68]. Each scenario run is initialized with the same random seed.

Variants To study the adherence to the Safe Distance (SD) and Zipper Merge (ZIP) rules, the

following variants will be compared:

• SA as a scalar single agent variant of MCTS with penalties for collision and comfort,

• SA-Lex as a lexicographic baseline implementing the same rewards as SA, but as a vector-

ized reward,

• SA-Lex (ZIP) extending SA-Lex by including a penalty for the ZIP rule,

• SA-Lex (SD) extending SA-Lex by including a penalty for the SD rule,

• SA-Lex (ZIP>SD) and SA-Lex (SD>ZIP) extending SA-Lex by including a penalty for the

ZIP and the lower-prioritized SD rule, and vice versa.

A base reward

rbase = ra + rlat + r∆v + rϕ (5.8)

is defined which consists of penalties for

• longitudinal acceleration ra = −ωaa2∆t,

• lateral acceleration rlat = −ωlat|w|v2∆t and

• difference to desired velocity r∆v = −ωv|v − vref|∆t

with respective weights ω□, velocity v, reference velocity vref, acceleration a, orientation rate w

and time increment ∆t. The convergence of MCTS can be accelerated by incorporating additional

domain knowledge. Following Kurzer et al. [95], a potential function

ϕ(k) = −ωϕ|v − vref|∆t (5.9)

and the potential-based shaping function

rϕ = γϕ(k + 1)− ϕ(k) (5.10)

are defined. rcol denotes the penalty for not colliding. rsd and rzip denote the penalties for

violating the SD and ZIP rules, respectively. The ZIP rule requires vehicles on a continuing lane

to let vehicles on an ending lane merge in a zipper fashion. The SD rule requires to leave a safe

distance to the vehicle in front. Both rules have been defined in Chapter 3. Table 5.1 shows the

reward vectors of these variants.

Action Space The discrete action space for the ego agent is modeled as lane keeping at constant

acceleration for a ∈ {0m/s2, 1m/s2,−2m/s2,−8m/s2}, lane changing at constant velocity, and

gap keeping KeepGap based on IDM [62]. The parameters for the KeepGap primitive are shown in

Table A.3.

60

5.5. Experiments and Results

Table 5.1.: Variants of Be showing the reward vector r and its size.

Be Reward vector r size(r)

SA r = (rcol + rbase)
T 1

SA-Lex r = (rcol rbase)
T 2

SA-Lex (ZIP) r = (rcol rzip rbase)
T 3

SA-Lex (SD) r = (rcol rsd rbase)
T 3

SA-Lex (ZIP>SD) r = (rcol rzip rsd rbase)
T 4

SA-Lex (SD>ZIP) r = (rcol rsd rzip rbase)
T 4

Behavior Model for Others The actions of the other vehicles are calculated using the behavior

model Bo, for which BARK’s rule-based model BehaviorMobilRuleBased is used, with IDM as

a longitudinal and MOBIL [65] as a lateral model, and a lane filtering mechanism on top of

MOBIL. The model has been introduced in Section 2.1.3. To cause challenging situations for the

ego vehicle, the other vehicles will travel at a desired speed of 10 m/s, which is slower than the

ego vehicle at 14 m/s. Table A.2 shows all parameters of the model.

Rule Evaluators BARK provides an abstract evaluator class that calculates a given metric

such as collision or step count based on the simulated world state. Section 4.4.2 extended this

evaluator concept to evaluate arbitrary LTL formulas on finite traces. Each rule is captured in a

RuleMonitor, which can be used to monitor compliance throughout the simulation. Both the

behavior model (for planning) and the evaluator (for simulation) employ the same RuleMonitor.

This allows to investigate whether the model to plan the behavior of the ego agent Be truly

satisfies the modeled rules.

5.5.2. Zipper Merge in Merging Scenario

The following experiment examines the variants of Be in a merging scenario. Figure 5.3 shows

the unfolding of the scenario over time, as well as the velocity, the traveled distance, and the

zipper merge violation of the ego agent.

In Figure 5.3a, Be is not modeled to follow any rules. The ego vehicle closes the gap to its

preceding vehicle, leaving no space for the vehicle in the right lane to merge. In Figure 5.3b,

SA-Lex (ZIP) models the ZIP rule, which lets it slow down to let the vehicle from the right merge

in. As this variant of the ego agent must not keep a safe distance, it slows down just as much to

prevent a collision but does not retain any additional space. SA-Lex (SD) on the other hand slows

down to maintain a safe distance to the vehicle in front, but this is not enough to make enough

room to let the vehicle from the right merge in. It violates the ZIP rule five steps later than the

variants SA and SA-Lex did, which can be observed from Figure 5.3e. Only SA-Lex (SD>ZIP) in

Figure 5.3d combines both desired attributes. It slows down to satisfy the zipper merge and also

keeps a safe distance to the new preceding vehicle that just merged.

The experiment illustrates the behavior when different rules are modeled. If the rules are

not in conflict, modeling them together yields the combined behavior of what was observed

61

5. Monitoring of Traffic Rules Within Interactive Behavior Planning

separately for each rule before. To confirm this observation, the variants will be studied in the

following in a quantitative evaluation.

5.5.3. Quantitative Evaluation

The approach is studied using real-world data from the INTERACTION dataset [89]. Specifically,

the German scenario DR_DEU_Merging_MT is used. However, it is not sufficient to replace the

behavior model of the agent under test and just replay the other agents since the other agents

would not react to the model under test anymore. Thus, the vehicles’ initial configuration will

be preserved from the dataset. Their behavior is then simulated according to Bo. Of course, this

closed-loop simulation does not precisely mimic the traffic from the dataset. To gain more insight,

Figure 5.4 compares the model-based simulation and the dataset replay for the distributions of

mean velocity and gap distance between the vehicles. While the traffic travels at similar speeds,

the observed gaps in the dataset indicate that the parameters controlling the gap distance of

IDM could be decreased even more. Despite this, the carefully tuned model parameters for Bo

in Table A.2 yield closed-loop scenarios that mimic real traffic adequately enough for the studies

of this work.

Each vehicle is simulated as the ego agent in one scenario. The ego agent is controlled by the

behavior model Be. The scenario ends if (1) the ego agent collides with another agent, (2) the

maximum number of steps are reached or (3) the ego agent reaches the goal region. The goal

region is created from the last pose of the agent in the dataset. Only in the latter case (goal

reached), the scenario is passed successfully. The simulation step size is 0.25 s. Figure 5.5 shows

the resulting evaluation framework. Be is evaluated for 200 and 500 search iterations as the

termination criteria of an MCTS planning step. Figure 5.6 shows the share of controlled agents

to collide, successfully reach the goal region (within a maximum scenario duration of 30 s), and

violate the ZIP or SD rule.

Nearly no collisions can be observed. This indicates that MCTS with high-level actions can

approximate the solution well if the predicted and simulated behavior match. SA and SA-Lex do

violate the ZIP rule at about 16 to 19%, which shows that this rule will not be satisfied implicitly

and motivates its explicit modeling. SA-Lex (SD) violates it to some less extent, as keeping a

safe distance all the time sometimes leaves enough space for the merging vehicle to fit in. The

variants not implementing the SD rule usually do not leave much space to the front vehicle, as

the correct prediction model yields an accurate estimate of what will happen given a specific

action, as long as the tree is explored enough. However, to obey the SD rule and be prone to

human drivers’ unexpected actions, it must be modeled within the planner. The remaining safe

distance violations stem from unsafe initial states at the beginning of the scenario. The variants

SA-Lex (ZIP>SD) and SA-Lex (SD>ZIP) do not cause any violations of the zipping rule and also

keep a safe distance for most scenarios. The results for both are similar, indicating that there

exists no tradeoff in the generated scenarios between the SD and ZIP rule.

When varying the number of search iterations, the results remain mostly unchanged for the

variants SA, SA-Lex and SA-Lex (SD). With more search iterations, Be becomes more certain

about which actions will prevent rule violations. This then often yields more conservative

62

5.5. Experiments and Results

(a) Be = SA-Lex. (b) Be = SA-Lex (ZIP).

(c) Be = SA-Lex (SD). (d) Be = SA-Lex (SD>ZIP).

0

1

Z
ip
p
er

M
er
g
e

V
io
la
ti
o
n

SA SA-Lex SA-Lex (Zip) SA-Lex (SD) SA-Lex (SD > Zip)

2

4

6

8

10

12

14

v
[m

/
s]

0 2 4 6 8 10 12 14

time [s]

0

20

40

60

80

100

s
[m

]

(e) Violation of the Zipper Merge, velocity and traveled distance are shown for the ego agent over time.

Figure 5.3.: Merging scenario with the ego vehicle (red) on the left lane. The ego agent needs to let the

vehicle in to satisfy the zipper merge rule. The experiment is performed with four variants of

Be. Past agent states are shown with increasing transparency.

63

5. Monitoring of Traffic Rules Within Interactive Behavior Planning

0 2 4 6 8 10 12

mean velocity [m/s]

0

2

4

6

8

10

12

n
or
m
a
li
ze
d
h
is
to
g
ra
m

[%
]

simulated (model-based) dataset replay

(a) Normalized histogram of mean velocity.

0 20 40 60 80 100

mean gap distance [m]

0

5

10

15

20

25

n
or
m
a
li
ze
d
h
is
to
g
ra
m

[%
]

simulated (model-based) dataset replay

(b) Normalized histogram of mean gap distance to the

preceding vehicle.

Figure 5.4.: Distributions of mean velocity, mean gap distance in simulated scenarios using Bo as behavior

model for the other agents. The distributions are compared to the dataset from Table 4.1.

decisions. The slight increase of collisions for SA-Lex (SD) is because of some scenarios, where

Be does not merge early (prohibited due to the safe distance) and eventually is being hit by Bo

from behind. In these dense lane-ending scenarios, the shortcomings of rule-based simulation

models become apparent. Going forward, more elaborate models will be needed to validate

driving functions in simulation. In addition, a notion of fault could help to distinguish between

errors in Bo and Be for collision cases.

5.6. Conclusion

This chapter investigated how interactive behavior planning for an autonomous vehicle can be

modeled to obey the traffic rules and how this can be evaluated and tested. The interaction was

modeled as a dynamic game. MCTS was used to solve the problem and fused with ideas from

model checking and multi-objective optimization.

The proposed method was evaluated systematically in simulation for a merging scenario at

dense traffic. Two rules were selected for the evaluation: keeping a safe distance and merging in

dataset with

N vehicles

simulate 1 step:

others: Bo

traffic rules

monitors

evaluate:N scenarios

(starting

positions)

collision, rules,

number of steps

ego agent: Be

repeat until ending

criteria reached

using using

Figure 5.5.: Framework to evaluate the MCTS-based behavior of the ego agent Be in a closed-loop simula-

tion. The initial starting positions for the vehicles are taken from the dataset. The other vehicles

are simulated using a behavior model Bo. The traffic rule monitors are used within Be and to

evaluate the simulation (graphic from [60], ©2020 IEEE).

64

5.6. Conclusion

0

2
%

C
o
ll
is
io
n

200 iterations 500 iterations

0

50

100

%
S
u
cc
es
s

0

10

20

%
Z
ip
p
er

M
er
g
e

V
io
la
ti
o
n

SA SA-Lex SA-Lex (ZIP) SA-Lex (SD) SA-Lex (ZIP > SD) SA-Lex (SD > ZIP)

Variants

0

25

50

75

%
S
D

V
io
la
ti
o
n

Figure 5.6.: Benchmark of the variants for Be. The comparison of SA-Lex (ZIP>SD) and SA-Lex (SD>ZIP)

with reversed priorities shows that both modeled rules can be satisfied at the same time and

thus no tradeoff between those rules is necessary in these scenario.

a zipper fashion. None of these rules were satisfied by the planning implicitly. When modeled

within planning, the rules were not violated anymore in most scenarios. Some residual violations

stem from inevitable situations, where for example, SD was violated at the start of the simulation

already. Interestingly, by prioritizing SD higher than ZIP and vice versa, the simulation revealed

that they are not contradicting in the studied scenarios. Such evaluations can help to identify

contradictions in the rules.

To summarize, the proposed method allows modeling the satisfaction of multi-agent rules

within planning. Such rules apply to more than one agent, whose future motion is modeled

interactively. With the proposed method and evaluation toolchain, multi-agent time-dependent

traffic rules can be studied on whether they have been correctly formalized and on the rules’

ramifications on safety and progress.

65

6
Optimal Interactive Behavior Planning Satisfying

Traffic Rules

6.1. Overview and Contribution

The interactive behavior planning problem is usually solved using iterative or sampling-based

algorithms, such as the MCTS-based approach from Chapter 5. However, even if converging to a

Nash equilibrium, the result will often be only sub-optimal and only work well for a limited set

of scenarios due to discretizations of the action or state space. Furthermore, these algorithms

often rely on a random sampling of the solution space or lack guarantees of convergence and

thus pose open questions towards such systems’ certification.

Alternatively, optimal control theory provides deterministic solution algorithms converging

to an optimum. Optimization-based methods incorporate a model of the kinematics, which is

forward propagated for a planning time horizon, and usually formulate constraints to account for

feasibility and safety while constructing a cost function to account for comfort and other desired

aspects. Although continuous local optimization such as Sequential Quadratic Programming

(SQP) has been applied for trajectory planning [10], local optimality of the solution limits their

usage for interactive behavior planning.

Instead, MIP offers multiple benefits that are favorable for optimal behavior planning. First,

MIP will yield a globally optimal solution, whereas SQP only guarantees a local optimum.

Secondly, it allows logical and integer constraints to be incorporated, whereas they usually lead

to numerical issues with continuous solvers. Logical constraints are certainly favorable when

formulating rules as part of the optimization problem. However, MIP cannot use a non-linear

vehicle model, such as the bicycle model. Past studies used second- or third-order integrators to

mitigate that [29, 32]. However, these proposed methods can only be used on a small subset of

scenarios, namely straight roads, and become invalid in any other environment (roundabouts,

intersections), or even during obstacle avoidance at low speeds, as the valid scope of the model

formulation is limited. Outside of the valid model scope, safety is at risk, and eventually, a

collision can occur.

67

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

This chapter’s aim is to formulate traffic rule satisfaction for an optimization-based method.

Due to the shortcomings of the existing methods to build upon, a novel optimization program is

presented as well. Specifically, a linear differential game is defined for a set of interacting agents.

The desired properties of collision-freeness and rule-satisfaction are realized as hard and soft

constraints. The problem is solved to optimality using Mixed-Integer Quadratic Programming

(MIQP). The model applies to the full-fledged range of orientations. A disjunctive formulation of

the orientation enables to formulate linear constraints to prevent agent-to-agent collision while

preserving the vehicle model’s non-holonomic motion properties. Soft constraints account for

prediction errors. The contributions of this chapter are

• linear over-approximating collision constraints,

• linear non-holonomy constraints of the vehicle,

• the methodology to compute all model parameters by linear least-square fits,

• a set of linear constraints as inter-agent collision check,

• a methodology to handle inaccurate models of other agents using soft constraints,

• a methodology to model hard or soft traffic rule satisfaction as part of the optimization

program,

• a study of the feasibility of the model regarding non-holonomy and

• an analysis evaluating the consequences of the linearizations of the traffic rule formulations.

The work on behavior planning for single agents is based on the author’s joint work with

Tobias Kessler [57]. The extension of the formulation to multiple agents by formulating collision-

constraints between multiple agents and a joint cost function is based on the author’s joint work

with Tobias Kessler [61]. This chapter extends these publications by encoding traffic rules within

the planning formulation and a detailed evaluation studying the capabilities and limitations of

the model.

6.2. Related Work

Ziegler et al. [10] proposed an optimal control formulation for single-agent trajectory planning,

where they use the cost functionals and constraints shown in Table 6.1. They employ a triple

integrator as a vehicle model while bounding the curvature to account for non-holonomy. The

Bertha-Benz drive showed the applicability of the triple integrator model if correctly constrained.

Their approach yields a nonlinear optimization problem, which is solved using SQP but only

finds a local optimum. Motivated by that, approaches for maneuver planning [8, 13] have focused

on finding the correct maneuver in a preliminary step. However, these approaches usually rely

on a geometric partitioning of the workspace and thus scale poorly, and cannot be extended to

account for interactive or cooperative planning.

68

6.2. Related Work

Table 6.1.: Comparison of continuous optimal control formulations. Linear functionals are expressed using

1 , quadratic using 2 , and all other nonlinear functionals using n . The counterparts 1 , 2 ,

and n express functionals that are not (and cannot be) implemented. For the respective validity

scope of the model, the models are compared along the possibility to formulate cost functionals

that this work assumes to be desirable, mostly following [10]. j□ denote the cost terms, κ the

curvature, v the velocity, and a the acceleration.

Source Ziegler et al. [10] Gutjahr et al. [15] Nilsson et al. [96]

Problem formulation SQP Quadratic Programming
(QP) for long, lat each

QP for x, y each

Model triple integrator Frenet bicycle model double integrator
Reference frame Cartesian, fixed Frenet, streetwise Cartesian, fixed
Multi-agent no no no
Validity of the formulation any road or orientation any road or orientation straight roads, vehicle

orientation must be aligned
with road

Non-holonomy constraint κ, n κ, 1 1 by coupling vx , vy

Acceleration constraint |a| 2 1 n

Collision shape disks disks road-aligned rectangle
Other obstacles/ agents as (·) disks disks road-aligned rectangle
“Ego-to-others” constraint n 1 1

Road can be (·) everything everything rectangle
“Ego-to-road” constraint n 1 1

jveloctiy as in [10] n 2 2 in x-direction
jacceleration as in [10] 2 2 2 in x- and y-direction
jjerk as in [10] 2 2 2 (if triple integrator)
jyawrate as in [10] n 2 using κ̇ 1 n
jreference as in [10] n 2 n

Nilsson et al. [96] introduce two QP formulations, supposedly for longitudinal and lateral

control of a single vehicle based on a linear double integrator model. To account for non-

holonomy, they use a linear inequality constraint that couples lateral and longitudinal velocity.

However, this is only valid for small yaw angles and will yield non-drivable trajectories at

intersections and roundabouts for example, since the road curvature is not taken into account.

Thus, the model formulation must be seen in Cartesian coordinates and not in streetwise

coordinates. The separation into consecutive optimization calls yields sub-optimal solutions and

limits the solution space, as it prohibits constraints or costs on states in x- and y-direction at

the same time. For example, velocity costs can only be formulated in the x-direction, which is

sufficient for a straight road but does not resemble the longitudinal velocity in any other setting.

The approach thus does not translate to any real scenario.

Gutjahr et al. [15] introduce two longitudinal and lateral QP in the Frenet frame based on the

bicycle model. The model yields good results for driving in static environments. Similar to

Ziegler et al. [10], this approach relies on a maneuver selection, as shown by Esterle et al. [16].

However, the transformation of the static environment and dynamic obstacles to local coordinates

is computationally costly. With an increasing number of obstacles, the transformation outweighs

69

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

Table 6.2.: Comparison of discrete optimal control formulations. Linear functionals are expressed using

1 , quadratic using 2 , and all other nonlinear functionals using n . The counterparts 1 , 2 ,

and n express functionals that are not (and cannot be) implemented. For the respective validity

scope of the model, the models are compared along the possibility to formulate cost functionals

that this work assumes to be desirable, mostly following [10]. j□ denote the cost terms, κ the

curvature, v the velocity, and a the acceleration.

Source Qian et al. [32] Frese et al. [29] Fabiani et al. [31]

Problem formulation MIQP MILP MIQP
Model double integrator double integrator double integrator (lon.),

discrete (lat.)
Reference frame Cartesian, fixed Cartesian, fixed Frenet, streetwise
Multi-agent yes, see [100] yes yes
Validity of the formulation only valid on straight road, vehicle orientation must be aligned with road

Non-holonomy constraint 1 by coupling vx , vy ay , 1 no

Acceleration constraint |a| n approximated as 1 1

Collision shape road-aligned rectangle road-aligned rectangle road-aligned rectangle
Other obstacles/ agents as (·) road-aligned convex

polygon
road-aligned rectangle rectangle (if in same lane)

or points (if in other lane)
“Ego-to-others” constraint 1 1 1

Road can be (·) non-convex non-convex rectangle
“Ego-to-road” constraint 1 1 1

jveloctiy as in [10] 2 in x-direction n 2 in lon. direction
jacceleration as in [10] 2 in x- and y-direction 2 , approximated as 1 2 in lon. direction
jjerk as in [10] 2 (if triple integrator) 2 2 in lon. direction
jyawrate as in [10] n n n
jreference as in [10] n n 2 (reference lane)

the benefits of the fast QP. As with [96], the separation in consecutive optimization calls yields

sub-optimal solutions and limits the solution space.

Table 6.1 compares the continuous optimization works [10, 15, 96] in regards to their appli-

cability for optimal multi-agent planning. Essentially, none of these formulations can be used.

Extending [10, 15, 96] to multiple agents would yield a nonlinear problem, which prohibits the

use of local solvers to find a global optimum. Likewise, the desirable nonlinear cost functionals

and nonlinear constraints of [10] already prohibit the use of a mixed-integer solver, whereas the

formulation of [96] has limited validity.

Miller et al. [97] base their work on [15] and formulate two consecutive longitudinal and lateral

programs using MIQP similar to [96], but in local streetwise coordinates instead. However, the

approach cannot account for any model-based prediction or multi-agent planning, as the agents

would need to rely on separate local coordinate systems. Translating these into each other would

yield nonlinear equations and prohibit using a QP or MIQP solver.

Frese et al. [29] propose a double integrator based on MILP for multiple agents, leveraging the

solver’s capability of yielding a global solution. That comes with the restrictions that both only

linear constraints and objective functions can be formulated. Thus, the discrete optimization

formulations are analyzed in Table 6.2 in terms of linear, quadratic, and nonlinear functionals.

The vehicle’s non-holonomy is assured by limiting an approximation of the lateral acceleration.

70

6.2. Related Work

However, that is only accurate for small yaw angles and yields a lot of invalid solutions [98].

The collision checks with an arbitrary road polygon are modeled using a disjunctive collision

check with convex polygons. They also propose to check for collision using rectangle-based

vehicle-approximation of consecutive states, with each variant introducing a lot of invalid

trajectories [98].

Qian et al. [32] apply the double integrator to MIQP. Similar to Nilsson et al. [96], they use

a Cartesian reference frame and model the non-holonomy by bounding the velocity vy. That

leaves them to use longitudinal and lateral and x and y synonymously, which is only valid for

straight roads and if the vehicle is road-oriented. Even when evading an obstacle, the yaw angle

may exceed 20◦, which can yield bends in the optimized trajectories that cannot be executed

with a real vehicle. Thus, the work is limited to straight roads and straight driving, whereas

turning at intersections is impossible. With the quadratic cost function of an MIQP, differences

to longitudinal or lateral values (such as acceleration) are only possible if the reference signal is

zero (such as for acceleration). Thus, deviations from the absolute velocity cannot be expressed.

Eiras et al. [99] also employ a double integrator optimization within MIQP. While they perform

a coordinate transformation of the reference from Cartesian to streetwise coordinates, lane

boundaries, and vehicle states, they also do not model the non-holonomies, possibly leading to

infeasible bends in the optimized trajectory. Burger et al. [100] extend the work of Qian et al. [32]

to the cooperative multi-agent setting by extending the state space to multiple agents. However,

the shortcomings of the formulation are inherited as well. Burger et al. [101] extends this optimal

control approach by an intention estimation. Essentially, they solve the optimization problem for

both intentions (cooperative vs. non-cooperative) while ensuring both optimal solutions match at

the front section so that switching between both solutions is possible if the intention estimation

was inaccurate.

Fabiani et al. [31] propose using a mixed state and action space, with a double integrator in the

longitudinal direction and a discrete lane change action in the lateral direction. Their approach

cannot ensure the feasibility of the lateral action regarding kinematics and collision-freeness,

which they try to overcome by using heuristic rules. However, these only work for the simple

use case of straight roads and will not translate to arbitrary scenarios.

Wolff et al. [102] synthesize the trajectory by formulating an MILP. They propose a method to

transform linear temporal logic constraints to mixed-integer constraints. In this way, temporal

constraints can be integrated into the optimization program without creating an abstraction to

verify the LTL formula. However, their rules are limited to reach-avoid tasks, and the vehicle

model is a linearized bicycle model not transferable to any real-world environment.

Table 6.2 summarizes the findings of identifying optimal multi-agent planning formulations.

By limiting the validity of the formulations to straight roads with the vehicle orientation aligned

to the road, [31, 32, 100, 101] certainly leverage the advantages of MIP (global solution, logical

constraints). However, no method currently exists that is valid in generic environments.

71

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

6.3. Problem Formulation and Assumptions

This chapter aims to find a control strategy in an environment with multiple agents, subject to

the following set of assumptions. Firstly, only one agent is controlled, and perfect observation of

the dynamic state of other agents and their goals is assumed. Secondly, a perfect perception of

the map is assumed and the ego agent’s localization within that. Thirdly, other agents do not

behave destructively, e.g., not aim for collisions. The problem then consists of

• multiple agents with continuous actions,

• a scene consisting of all individual states, road geometry, and obstacle information,

• each agent tries to achieve its own goals, without adversarial behavior, and

• perfect observation of states at t0.

This is formulated as a multi-agent, non-zero-sum, differential game [103] with

• a set of agents A with continuous actions, and

• a joint, non-zero-sum cost function.

The strategy is executed in a receding horizon fashion. The time horizon of one planning iteration

is discretized into N steps with a time interval ∆t. The discrete time step is denoted by k and the

range of N steps by K . Thus, the goal is to find a sequence of actions for the ego vehicle that

minimizes its costs while avoiding collisions with the environment.

6.4. Region-based Linearization Approach of Nonlinear

Constraints

Following Qian et al. [32], the vehicle is modeled as a third-order point-mass system with

positions px(t), py(t), velocities vy(t), vy(t), and accelerations ax(t), ay(t) as states. Jerk in

both directions jx(t) and jy(t) are inputs of the model. To express the vehicle model as linear

constraints, all nonlinearities have to be eliminated. The following section introduces how the

proposed model guarantees validity for all orientations and how it performs collision checks.

6.4.1. Discretized and Disjunctive Modeling of the Orientation

Although the state space does not contain the vehicle’s orientation θ, the orientation is required

for an adequate collision check in Cartesian coordinates within the optimization problem. Perfect

traction is assumed and therefore vehicle and tire slip are neglected. The orientation can be

calculated via θ = atan(vy/vx). However, this equation is nonlinear, as are the trigonometric

operations

sin(θ) = sin(atan(vy/vx)) (6.1a)

cos(θ) = cos(atan(vy/vx)), (6.1b)

72

6.4. Region-based Linearization Approach of Nonlinear Constraints

vx

vy

vxmax

vymax

β
x

β
y

βx

βy Region i

(0, 0)

Region 1

Region N
4

. . .

...

Figure 6.1.: Construction of region i described through two lines (0, 0) − (β
x
, β

y
) and (0, 0) − (βx, βy)

following Equation (6.2) (graphic from [57], ©2020 IEEE).

which are necessary to calculate the front axle position. To formulate collision constraints,

Equation (6.1) needs to be linearized. For the model to be valid for orientations θ ∈ [0, 2π], the

orientation is discretized by introducing regions in the (vx, vy) plane, see Figure 6.1. The regions

are defined by the area between two line segments starting at the origin. Consequently, for

every (vx, vy) point within a region i, the following inequalities hold with region-dependent line

parameters:

β
x
vy ≥ β

y
vx (6.2a)

βxvy ≤ βyvx (6.2b)

Subsequently, model equations will be formulated that are valid in each region, i.e., approximat-

ing the front axle position and the curvature. Figure 6.2 summarizes the proposed method of

piecewise linear approximation.

Most motion planners limit the maximum longitudinal and lateral acceleration, deceleration,

and jerk for driving comfort reasons. From these desired values in the vehicle’s driving direc-

tion, region-specific bounds are computed in global x, y coordinates by rotating the original

longitudinal and lateral limits along with the vehicle orientation. As the orientation angle, the

1 inference of orientation

from vehicle model

2 discretize orientation

in the vx , vy plane

3 piecewise linear approx. of

sin(θ), sin(θ), cos(θ), cos(θ), κ

sin(θ) = sin(arctan(vx
vy
))

cos(θ) = cos(arctan(vx
vy
))

θ

vx

vy Front axle

Curvaturevx

vy

θ1

θ2

θ3
θ4

Figure 6.2.: Methodology overview of piecewise linear approximation of sine, cosine and curvature based

on a discretization of the possible orientations of the vehicle. The blue shading in the last step

indicates the approximation of the front axle position and the curvature.

73

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

mean angle of the respective region is chosen. By this, compliance with the original bounds in

driving direction is ensured in terms of absolute values and directions.

6.4.2. Over-Approximating the Collision Shape

If the orientation were to be known, a popular approach to approximate the vehicle shape

would be to use three circles with radius Rcc for the rear axle, middle position, and front axle

similar to [10], as this facilitates efficient collision checking to arbitrary polygons. When aiming

for a linear vehicle model, the true (highly nonlinear) orientation is unknown. With only an

approximated orientation at hand, but not wanting to underestimate any collisions, upper and

lower bound of the sine and cosine of the orientation will be calculated. Figure 6.3 illustrates

this concept. With that and the vehicle’s wheelbase L, upper and lower bounds for the x and y

position of the front axle are calculated:

Region 1

Region 2

Region 3

Region 4

θ

f (θ)

upper bound

lower bound

Figure 6.3.: Exemplary nonlinear function and the respective piecewise linear upper and lower bounds

(graphic from [57], ©2020 IEEE).

fx := px + L cos(θ) (6.3a)

fx := px + L cos(θ) (6.3b)

fy := py + L sin(θ) (6.3c)

fy := py + L sin(θ) (6.3d)

Permuting fx, fx with fy, fy yields four circles for the front axle, which represent an over-

approximation of the true front axle circle, as shown in Figure 6.4. For now, the middle point

of the vehicle is not modeled, as this would increase the complexity of the model. However, a

similar approach can be applied to the mid axle. Two methods for obtaining bounds for the sine

and cosine are presented in the following.

Constant Approximation A constant approximation of the sine using the maximum and

minimum orientation for each region is proposed:

sin(θ)=̃max[sin(atan(β
r
y, β

r
x)), sin(atan(βr

y
, βr

x
))] (6.4a)

sin(θ)=̃min[sin(atan(β
r
y, β

r
x)), sin(atan(βr

y
, βr

x
))] (6.4b)

74

6.4. Region-based Linearization Approach of Nonlinear Constraints

fx

fy

fy

fx
x

y

py

px

fy

fx

v

θl

r

Figure 6.4.: Vehicle model with wheelbase l and disk-based collision-shape of radius Rcc. The variables in

red are unavailable in the MIQP model formulation. The orientation θ is defined clockwise

(graphic from [57], ©2020 IEEE).

The cosine can be calculated accordingly. With a higher number of regions, the error for this type

of approximation will decrease. Note that this is only valid as long as a region is not defined

over multiple quadrants since sine and cosine are only monotonic functions within a quadrant.

Velocity-Dependent Approximation As MIP only allows for linear constraints, only a linear

combination of the state variables can be used. The sin(θ) term is upper bounded by a first order

polynomial

sin(θ)=̃p00 + p10vx + p01vy := Pr
sin(vx, vy) (6.5)

depending on region r with three parameters p□. Linear polynomials for the lower bound of

the sinus Pr
sin function and the bounds of the cosine Pr

cos and Pr
cos are fitted analogously.

The methodology on how to compute these parameters p□ is introduced in Section 6.5.1. This

approximation will lead to a front axle position that depends on the respective velocity terms.

However, that is not the case if the orientation is calculated analytically and thus leads to high

errors for low velocities.

6.4.3. Modeling the Non-Holonomics

Previous MIQP formulations [30, 32, 100] have approximated the non-holonomics by bounding

acceleration in x- and y-direction and by coupling the velocities via

vy ∈ [vx tan(θmin), vx tan(θmax)], (6.6)

with θmin and θmax being the valid orientation range of that model. However, decoupled

acceleration bounds cannot yield a non-holonomic behavior. Ziegler et al. [10] calculate the

curvature using

κ =
vxay − vyax

3
√

v2
x + v2

y

(6.7)

75

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

-1

20

-0.5

20

0

10

0.5

0

1

0
-10

-20 -20

Figure 6.5.: Plot of sin(θ) = sin(atan(vy/vx)) with respect to vx and vy. The function is obviously highly

nonlinear but can be approximated in a piecewise linear fashion (graphic from [57], ©2020

IEEE).

and formulate the bound constraints κ ∈ [κmin, κmax]. However, Equation (6.7) is highly non-

linear and thus curvature constraints cannot be expressed as a linear constraint for MIQP. To

obtain constraints dependent on ax, ay, the curvature limits κmax, κmin are transformed using

Equation (6.7) to

κmax

vx
3
√

v2
x + v2

y +
vy

vx
ax ⪖ ay (6.8a)

κmin

vx
3
√

v2
x + v2

y +
vy

vx
ax ⪕ ay. (6.8b)

The concept of region-wise linearization described in 6.4.1 can then be applied to obtain linear

constraints. Two linear polynomials for upper Pr
κ and lower Pr

κ are fitted for bounding the

curvature as shown in Section 6.5.2.

6.5. Fitting Method of Linear Polynomials

This section describes the fitting of the parameters in 6.4.2 and 6.4.3. The use of MIP only

allows linear constraints. The non-linear functions are thus approximated per region. This yields

polynomials of the form of Equation (6.5).

6.5.1. Fitting the Front Axle Position

Section 6.4.2 motivated the need to linearize the trigonometric functions Equation (6.1a) and

Equation (6.1b), which depend on vx and vy. Both sine and cosine are highly nonlinear, as can

be seen in Figure 6.5 for the sine function. The problem is formulated to find a piecewise upper

bound to a two-dimensional nonlinear function of vx and vy as a linear least-squares problem

with linear constraints. Figure 6.6 shows the obtained errors from the fitting. For the upper

76

6.5. Fitting Method of Linear Polynomials

-20

-10

0

10

20

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 6.6.: Errors of the piecewise linear fitting using 32 regions of upper □UB and lower bounds □LB

trigonometric functions (graphic from [57], ©2020 IEEE).

and lower bounds of the sine function Pr
sin, Pr

sin and cosine function Pr
cos, Pr

cos, the orientation

error is always below 0.16 rad. Due to

sin(vx = 0, vy → ±0) = ±∞ (6.9a)

cos(vx → ±0, vy = 0) = ±∞, (6.9b)

the largest error occur close to the origin. For higher velocities, the errors are significantly smaller

due to a better approximation of the non-linear function. Table 6.3 shows the positional error

of the front axle for a variety of orientations in the first quadrant compared to the constant

approximation (denoted by const.). It can be observed that the upper and lower bound always

have different signs, which means that the actual axle position is always within these bounds. This

shows the validity of the over-approximation of the front axle. As expected, the error becomes

smaller with an increasing number of regions, as smaller linear sections are used to approximate

the non-linear functions. In general, the error of the velocity-dependent approximation is less

than for the constant approximation. For velocities ⪅ 0.1 m/s, a constant approximation yields

smaller errors, as motivated by Equation (6.9). Implementing an optimal transition strategy

between the two approximations is the subject of future work.

77

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

Table 6.3.: Absolute positional errors (fx − [fx, fx]) and (fy − [fy, fy]) for the approximation of the front

and rear axle in meters using 32 regions.

θ v 16 regions 32 regions 64 regions 128 regions

0◦

const.
x 0.21, 0.00 0.05, 0.00 0.01, 0.00 0.00, 0.00

y 0.00, -1.07 0.00, -0.55 0.00, -0.27 0.00, -0.14

0.1 m
s

x 0.20, -0.01 0.07, -0.01 0.01, -0.01 0.01, -0.01

y 0.01, -0.97 0.01, -0.52 0.01, -0.09 0.01, -0.01

20 m
s

x 0.01, -0.08 0.01, -0.03 0.01, -0.01 0.01, -0.01

y 0.01, -0.01 0.01, -0.01 0.01, -0.01 0.01, -0.01

45◦

const.
x 0.00, -0.61 0.00, -0.35 0.00, -0.18 0.00, -0.09

y 0.91, 0.00 0.42, 0.00 0.20, 0.00 0.10, 0.00

0.1 m
s

x 0.01, -0.61 0.01, -0.36 0.01, -0.17 0.01, -0.03

y 0.89, -0.01 0.43, -0.01 0.18, -0.01 0.03, -0.01

20 m
s

x 0.04, -0.19 0.02, -0.12 0.02, -0.06 0.01, -0.02

y 0.27, -0.11 0.14, -0.05 0.06, -0.02 0.02, -0.01

90◦

const.
x 0.00, -1.07 0.00, -0.55 0.00, -0.27 0.00, -0.14

y 0.21, 0.00 0.05, 0.00 0.01, 0.00 0.00, 0.00

0.1 m
s

x 0.01, -0.98 0.01, -0.53 0.01, -0.10 0.01, -0.01

y 0.20, -0.01 0.07, -0.01 0.01, -0.01 0.01, -0.01

20 m
s

x 0.01, -0.01 0.01, -0.01 0.01, -0.01 0.01, -0.01

y 0.01, -0.08 0.01, -0.03 0.01, -0.01 0.01, -0.01

6.5.2. Fitting the Curvature

As discussed in Section 6.4.3, the curvature constraints are approximated by Equation (6.8). The

polynomials Pr
κ are fitted on

κmax

vx
3
√

v2
x + v2

y ≡Pr
κ ≥ ay −

vy

vx
ax (6.10a)

κmin

vx
3
√

v2
x + v2

y ≡Pr
κ ≤ ay −

vy

vx
ax (6.10b)

and used in inequality constraints bounding a
9

as Equation (6.10) indicates. The term vy/vx in

the MIQP formulation is approximated by the mean orientation within the respective region

using the region boundaries, see Equation (6.2). The larger the regions (the fewer number of

regions), the higher the error will be. Then, two unconstrained linear least-square problems

minimize the error to Equation (6.10a), yielding the linear polynomial Pr
κ , and Equation (6.10b),

yielding the linear polynomial Pr
κ .

6.6. Formulating the Planning Problem as Linear Dynamic Game

In this section, a differential game is formulated without restricting the model’s validity scope

and then solved using MIQP. The linear constraint formulation yields a linear differential game.

The vehicle motion model is expressed as discrete linear constraints. Using binary variables,

collision-freeness and a correct non-holonomic motion of each vehicle is ensured. A joint objective

function keeps the solution close to the reference.

78

6.6. Formulating the Planning Problem as Linear Dynamic Game

Table 6.4.: Decision variables used throughout this chapter, with discrete time dependency k, region

dependency r, environment dependency λ, and obstacle dependency o.

Variable Range

px(k), py(k) free

vx(k), vy(k) [v, v]
ax(k), ay(k) [a, a]
ux(k), uy(k) [u, u]

fx(k), fx(k), fy(k), fy(k) free

ξ
ij
x (k), ξ

ij
y (k) [0, D(k)]

ζ(k, o) binary

ρ(k, r) binary

Ψ(k) binary

e(k, λ) binary

ςp(k, o) binary

α
ij
1 (k), α

ij
2 (k), α

ij
3 (k), α

ij
4 (k) binary

Subsequently, decision variables used in the following are shown in Table 6.4. The sub-

script □ref denotes the respective reference. A discrete time range from k2 to kN is optimized

with ∆t increment. K denotes the discrete time horizon [k1, . . . , kN]. All decision variables are

initialized with the current state of the vehicle at k1. The speed is bounded by the minimal and

maximal values v and v from the fitting, as the approximations are only valid there. A slack

is used for the agent-to-agent collision check and bounded by the desired threshold D. The

subscript □
9

denotes the respective term for both x- and y-direction. In the following, this

notation will be used for the equations’ compactness wherever it does not lead to ambiguity.

6.6.1. Formulating the Vehicle Model as Constraints

The vehicle dynamics are defined by:
p
9
(ki+1)

v
9
(ki+1)

a
9
(ki+1)

 =

1 ∆t ∆t2/2

0 1 ∆t

0 0 1

p
9
(ki)

v
9
(ki)

a
9
(ki)

+

∆t3/6

∆t2/2

∆t

 u
9
(ki) ∀ki ∈ [k1, . . . , kN−1] (6.11)

With this linear model, correct non-holonomic motion and correct acceleration and steering angle

limits are only valid around a small reference orientation. By introducing validity regions, the

proposed approach overcomes this limitation, see Section 6.4.1. The set of regions covering the

entire orientation range of 360◦ degrees is denoted by R. Region-dependent parameters are

denoted in the following by the superscript □r.

The binary decision variable ρ(k, r) shall define in which region r the vehicle is in at time k. It

is set according to the two lines defining the region, cf. Equation (6.2). The solution is forced to

lie in exactly one region:

∑
r∈R

ρ(k, r) = 1 ∀k ∈ K (6.12)

79

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

Since with an increasing number of regions, the evaluation time of the model increases as well,

the optimization is restricted a-priori to only use a set of allowed regions. A parameter ϱr is

pre-computed accordingly. Non-allowed regions are those that cannot physically be reached

anyway within the planning horizon. To implement logical constraints, the well-known technique

of introducing a big constant M to switch inequalities is used. The intuitive explanation of

M(1− ρ(k, r)) is “this equation is active if and only if region r is active at time step k”. The

following set of constraints sets the active region:

βr
x
vy(k) ≥ βr

y
vx(k)−M(1− ρ(k, r)) (6.13a)

β
r
xvy(k) ≤ β

r
yvx(k) + M(1− ρ(k, r)) (6.13b)

∀k ∈ K , ∀r ∈ R, if ϱr(r) = 1

Regions marked as impossible by ϱr may not be selected. With this implementation, the model

formulation is generic for all scenarios.

ρ(k, r) = 0 ∀k ∈ K , ∀r ∈ R, if ϱr = 0 (6.14)

Region-dependent limits on acceleration and jerk are imposed to make sure to always meet

the correct absolute possible acceleration and jerk. As acceleration a
9

and jerk u
9

are defined

in a fixed Cartesian system, the limits are rotated with the regions. Equation (6.15) states the

constraints for the acceleration, the formulation for jerk is alike. Note that the speeds are

naturally bounded correctly by Equation (6.13).

a
9
(k) ≤ ar

9
+ M(1− ρ(k, r)) (6.15a)

a
9
(k) ≥ ar

9
−M(1− ρ(k, r)) (6.15b)

∀k ∈ K , ∀r ∈ R, if ϱr = 1

6.6.2. Modeling the Non-Holonomy as Constraints

To ensure a correct non-holonomic movement, the lateral acceleration is limited using the

maximally available curvature per region as motivated in Section 6.4.3. Lower and upper linear

approximation polynomials Pr
κ and Pr

κ are fitted, that depend on vx, vy, and the region r. The

following constraints model the inequalities bounding the curvature κ, as stated in Equation (6.8):

ay(k)−
βr

y
+ β

r
y

βr
x
+ β

r
x

ax(k) ≤Pr
κ(vx(k), vy(k)) + M(1− ρ(k, r)) + MΨ(k) (6.16a)

ay(k)−
βr

y
+ β

r
y

βr
x
+ β

r
x

ax(k) ≥Pr
κ(vx(k), vy(k)) + M(1− ρ(k, r)) + MΨ(k) (6.16b)

∀k ∈ K , ∀r ∈ R, if ϱr = 1

80

6.6. Formulating the Planning Problem as Linear Dynamic Game

At very low vehicle speeds, too tight curvature constraints limit the acceleration so that accelera-

tions other than zero are not possible. In contrast, too loose curvature constraints will violate the

non-holonomy. Therefore, a minimum speed limit is added. If either |vx| or |vy| is below that

limit, region changes are not allowed, which is indicated by setting the binary helper variable Ψ

to true.

ρ(ki, r)− ρ(ki−1, r) ≤ 1−Ψ(ki) (6.17a)

ρ(ki, r)− ρ(ki−1, r) ≥ −1 + Ψ(ki) (6.17b)

∀ki ∈[k2, . . . , kN], ∀r ∈ R

6.6.3. Approximating the Front Axle Position as Constraints

In Section 6.4.2, it was introduced how to approximate lower and upper bounds for the position

of the front axle of the vehicle. Using this idea, this section formulates constraints performing an

(over-)approximative collision check for the front axle instead of computing the intersection or

distance of the actual vehicle shape with obstacles or the environment. The lower and upper

bounds f
9

, f
9

of the actual, unknown, front position (fx, fy) are calculated for the current

region r where l denotes the wheelbase of the vehicle. Only the equations for the upper bounds

are stated here. The lower bound constraints are formulated alike:

M(ρ(k, r)−1) ≤ fx(k)− px(k)− lPr
cos(vx(k), vy(k)) (6.18a)

M(1−ρ(k, r)) ≥ fx(k)− px(k)− lPr
cos(vx(k), vy(k)) (6.18b)

M(ρ(k, r)−1) ≤ fy(k)− py(k)− lPr
sin(vx(k), vy(k)) (6.18c)

M(1−ρ(k, r)) ≥ fy(k)− py(k)− lPr
sin(vx(k), vy(k)) (6.18d)

∀ki ∈ K , ∀r ∈ R, if ϱr(r) = 1

6.6.4. Constraints Limiting the Model to Stay on the Road

This section introduces how the vehicle is enforced to stay within an environment modeled as an

arbitrary, potentially non-convex closed polygon Γ [29]. The environment is deflated with the

radius of the collision circles, see Figure 6.7.

Non-convex environment polygons are split into several convex sub-polygons λ. The vehicle is

enforced to be in at least one of these convex sub-polygons. These sub-polygons are represented

by a set of line segments, where a line segment between two points al and bl is denoted by l. With

this strategy, the polygon-to-polygon collision check narrows down to a point-to-polygon check.

The rear axle position p
9

and the lower and upper bounds of the front axle position, namely

the four points (fx, fy), (fx, fy), (fx, fy), and (fx, fy), are enforced to be within the environment

polygon. Each set of constraints is formulated in a similar manner, Equation (6.19) states the

equations for the point (px, py). The decision variable e models that all five points do not collide

81

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

Rcc

λ1
λ2 λ3

λ4

Rcc

obstacle o1

environment polygon Γ

deflated environment polygon

inflated obstacle

Figure 6.7.: Schematic sketch showing how the environment polygon Γ is shrinked by the collision circle

radius Rcc and split into several convex polygons λ□ and how obstacles o□ are inflated with

Rcc. (modified graphic from [57], ©2020 IEEE)

with the environment sub-polygon λ at time k. By l
9

, this work denotes bl
9
− al
9

for x and y

respectively.

lx(py(k)− al
y)− ly(px(k)− al

x) ≤ −Me(k, λ) (6.19a)

lx(fy(k)− al
y)− ly(fx(k)− al

x) ≤ −Me(k, λ) (6.19b)

lx(fy(k)− al
y)− ly(fx(k)− al

x) ≤ −Me(k, λ) (6.19c)

lx(fy(k)− al
y)− ly(fx(k)− al

x) ≤ −Me(k, λ) (6.19d)

lx(fy(k)− al
y)− ly(fx(k)− al

x) ≤ −Me(k, λ) (6.19e)

∀k ∈ K , ∀l ∈ λ, ∀λ ∈ Γ

The following constraint ensures that all vehicle points are at least within one of the environment

polygons:

∑
λ∈Γ

e(k, λ) ≤ |Γ| − 1 ∀k ∈ K , (6.20)

where |Γ| denotes the number of convex sub-environments.

6.6.5. Formulating Collision Avoidance as Constraints

The vehicle must not collide with an arbitrary number of static or dynamic convex obstacle

polygons. Obstacles are thus inflated with the radius of the collision circles Rcc, cf. Figure 6.7.

Let l again denote one line segment of one obstacle o within the set of obstacles O with

startpoint al and endpoint bl . The vehicle rear axle position p
9

and the four permutations of

the front axle bounds are enforced to be collision-free. In contrast to the environment, which is

assumed as constant over time, the obstacle polygons may vary their position and shape over

time but preserve the polygon topology. The decision variables ς
9

indicate whether none of

the five points collide with obstacle o. Equation (6.21) states the inequalities for point (px, py)

constraining ςp. The four points representing the collision shape approximation of the front axle

f
9

are each taken into account by four more sets of similar decision variables ς
9

and sets of

inequalities:

lx(py(k)− al
y)− ly(px(k)− al

x) ≤ Mςp(k, l) ∀k ∈ K , ∀l ∈ o, ∀o ∈ O (6.21)

82

6.6. Formulating the Planning Problem as Linear Dynamic Game

1 Vehicle Shape Approximation

vehicle shape circle-based

over-approximation

of front and rear axle

bounding collision circles

by rectangles

introduce additional

safety margin as

soft constraint

2 Four Permuted Agent-to-Agent Collision Checks

front to front front to rear rear to front rear to rear

Figure 6.8.: Approximation of the vehicle shape to formulate the agent-to-agent collision check based on the

rectangles of the respective agents. The black area indicates a collision. The gray area indicates

colliding safety margins.

Denoting the number of line segments in a sub-polygon by |o|, each of the five points are enforced

to not lie within an obstacle:

∑
l∈o

ςp(k, l) ≤ |o| − 1 ∀k ∈ K , ∀o ∈ O (6.22)

6.6.6. Multi-Agent Collision Constraints

Each vehicle’s shape is approximated for the agent-to-agent collision constraint. In the proposed

linear model, the actual vehicle’s orientation is unavailable. However, with the region-based

formulation, a lower- and upper-bounding rectangle can be computed for the front axle’s center.

In the following, the superscript □i refers to the respective variable of the agent i. For

collision avoidance, the vehicle shape is approximated by circles with radius Ri
cc, one around the

rear axle center, and four for the front axle approximation. To avoid agent-to-agent collisions,

the proposed approach over-approximates these circles with axis-aligned squares again, as

sketched in Figure 6.8. A better approximation of the circles, such as two rectangles, yields more

constraints and binary variables, increasing the runtime without providing a huge benefit. Thus,

four sets of constraints are formulated: The first prevents collisions between the rear parts of two

agents. The second prevents collisions between the rear part of the first and the front part of the

second agent, the third vice versa. The fourth prevents collisions between the front parts of both

agents for each pair of agents.

83

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

Rear-To-Rear Collision The rear-part-to-rear-part collision constraint of two agents Ai and Aj

is based on the following logical formula. The sum of both radii is defined as Ri+j := Ri + Rj. A

collision occurs at one time step k if and only if

pi
x(k) ≥ pj

x(k)− Ri+j∧

pi
x(k) ≤ pj

x(k) + Ri+j∧

pi
y(k) ≥ pj

y(k)− Ri+j∧

pi
y(k) ≤ pj

y(k) + Ri+j. (6.23)

Intuitively, Equation (6.23) states that a collision occurs if both the absolute distance in x-direction

|pi
x(k)− pj

x(k)| and y-direction |pi
y(k)− pj

y(k)| is smaller than Ri+j. Logical negation yields that

two agents do not collide at time step k if and only if

pi
x(k) ≤ pj

x(k)− Ri+j∨

pi
x(k) ≥ pj

x(k) + Ri+j∨

pi
y(k) ≤ pj

y(k)− Ri+j∨

pi
y(k) ≥ pj

y(k) + Ri+j. (6.24)

This is transformed to linear constraints using a set of four decision variables α
ij
□, one for each

inequality and an appropriately chosen big constant M:

pi
x(k) ≤ pj

x(k)− Ri+j + Mα
ij
1 (k) (6.25a)

pi
x(k) ≥ pj

x(k) + Ri+j −Mα
ij
2 (k) (6.25b)

pi
y(k) ≤ pj

y(k)− Ri+j + Mα
ij
3 (k) (6.25c)

pi
y(k) ≥ pj

y(k) + Ri+j −Mα
ij
4 (k) (6.25d)

3 ≥
4

∑
a=1

α
ij
a (k) ∀ k ∈ K (6.25e)

Equation (6.25e) represents the logical formulas in Equation (6.24) by coupling the four con-

straints in Equation (6.25a) - Equation (6.25d) and makes sure no more than three are active, and

hence no rear part-to-rear part collision occurs.

To cope with agents that are not controlled directly (e.g., human-driven vehicles), the computed

motion will not exactly match the reality. This yields prediction errors for the uncontrolled

agents, possibly leading to infeasible optimization problems or imminent collisions. To consider

these prediction errors, an additional safety distance for the ego agent to all uncontrolled agents

is introduced as a soft constraint. Inspired by the formulation in [104], slack variables ξ are

introduced to the agent-to-agent collision constraints. With the desired safety distance of both

agents D(k) and a set of slack variables ξx(k), ξy(k) ∈ [0, D(k)], the slack-based safety distance

for the rear-to-rear collision check can be defined as

D
ij
9,RR

(k) := D(k)− ξ
ij,RR
9

(k). (6.26)

84

6.6. Formulating the Planning Problem as Linear Dynamic Game

Using this, Equation (6.25) can now be modified to

pi
x(k) ≤ pj

x(k)− Ri+j −D
ij
x,RR(k) + Mα

ij
1 (k) (6.27a)

pi
x(k) ≥ pj

x(k) + Ri+j +D
ij
x,RR(k)−Mα

ij
2 (k) (6.27b)

pi
y(k) ≤ pj

y(k)− Ri+j −D
ij
y,RR(k) + Mα

ij
3 (k) (6.27c)

pi
y(k) ≥ pj

y(k) + Ri+j +D
ij
y,RR(k)−Mα

ij
4 (k) (6.27d)

3 ≥
4

∑
a=1

α
ij
a (k) ∀ k ∈ K . (6.27e)

The slack variables will be included in the cost function (see Section 6.6.8). The optimizer will

then seek to keep the slack variables as small as possible. Consequently, in Equation (6.27), the

additional slack-based safety distance D will be as high as possible. With this concept, fatal

prediction errors (immanent collisions) are mitigated. Note that adding a hard safety margin

only leads to more conservative behavior and does not prevent the optimization problem from

becoming infeasible.

Rear-To-Front Collision To prevent collisions between the rear part of agent Ai and the front

part of agent Aj, logical constraints similar to 6.23 are formulated: A collision occurs at k if and

only if

pi
x(k) ≥ fx

j(k)− Ri+j∧

pi
x(k) ≤ fx

j
(k) + Ri+j∧

pi
y(k) ≥ fy

j(k)− Ri+j∧

pi
y(k) ≤ fy

j
(k) + Ri+j. (6.28)

Here, the point (pi
x, pi

y) of agent Ai is forced to be outside the front axle approximation rectangle

of agent Aj, which gets enlarged by the sum of the collision circle radii. The set of constraints is

formulated as described for the rear-part-to-rear-part collision case. This can again be formulated

as a set of five constraints with appropriate decision variables:

pi
x(k) ≤ fx

j(k)− Ri+j + Mα
ij
5 (k) (6.29a)

pi
x(k) ≥ fx

j
(k) + Ri+j −Mα

ij
6 (k) (6.29b)

pi
y(k) ≤ fy

j(k)− Ri+j + Mα
ij
7 (k) (6.29c)

pi
y(k) ≥ fy

j
(k) + Ri+j −Mα

ij
8 (k) (6.29d)

3 ≥
8

∑
a=5

α
ij
a ∀ k ∈ K (6.29e)

Another analog set of constraints prevents collisions between the rear part of Aj and the front

part of Ai. This can be derived from 6.29 by interchanging the agent’s indices:

85

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

pj
x(k) ≤ fx

i(k)− Ri+j + Mα
ij
9 (k) (6.30a)

pj
x(k) ≥ fx

i
(k) + Ri+j −Mα

ij
10(k) (6.30b)

pj
y(k) ≤ fy

i(k)− Ri+j + Mα
ij
11(k) (6.30c)

pj
y(k) ≥ fy

i
(k) + Ri+j −Mα

ij
12(k) (6.30d)

3 ≥
12

∑
a=9

α
ij
a ∀ k ∈ K (6.30e)

After weighing the potential benefit with the computational restrictions, the soft constraints for

the rear-to-front and front-to-rear collision constraints have not been implemented, as the soft

constraints front-to-front and rear-to-rear should be sufficient to push the agents away from each

other.

Front-to-front collision Collisions between the fronts of agents Ai and Aj are avoided utilizing

the same strategy but enforcing the center point of the front axle approximation rectangle of Aj

to preserve sufficient distance to the front axle approximation rectangle of Ai. Concretely, the

sufficient distance is defined as Ri+j plus the size of the approximation rectangle of agent Aj.

Hence, no front-part-to-front-part collision occurs at time step k if and only if

1
2
(

fx
j
(k) + fx

j(k)
)
≤ fx

i(k)− Ri+j − 1
2
(

fx
j
(k)− fx

j(k)
)
∨

1
2
(

fx
j
(k) + fx

j(k)
)
≥ fx

i
(k) + Ri+j +

1
2
(

fx
j
(k)− fx

j(k)
)
∨

1
2
(

fy
j
(k) + fy

j(k)
)
≤ fy

i(k)− Ri+j − 1
2
(

fy
j
(k)− fy

j(k)
)
∨

1
2
(

fy
j
(k) + fy

j(k)
)
≥ fy

i
(k) + Ri+j +

1
2
(

fy
j
(k)− fy

j(k)
)
. (6.31)

Equation (6.31) is used again to derive a set of constraints as in the rear-to-rear collision case,

that satisfy the slack-controlled safety distance.

0 ≤ fx
i(k)− fx

j
(k)− Ri+j −D

ij
x,FF(k) + Mα

ij
13(k) (6.32a)

0 ≥ fx
i
(k)− fx

j(k) + Ri+j +D
ij
x,FF(k)−Mα

ij
14(k) (6.32b)

0 ≤ fy
i(k)− fy

j
(k)− Ri+j −D

ij
y,FF(k) + Mα

ij
15(k) (6.32c)

0 ≥ fy
i
(k)− fy

j(k) + Ri+j +D
ij
y,FF(k)−Mα

ij
16(k) (6.32d)

3 ≥
16

∑
a=13

α
ij
a (k) ∀ k ∈ K . (6.32e)

6.6.7. Traffic Rules

In this section, a set of traffic rules is selected to be implemented as part of the optimization to

show the feasibility of the modeling approach. The optimization program cannot incorporate

86

6.6. Formulating the Planning Problem as Linear Dynamic Game

the penalty for violating a rule from the RuleMonitor, as MIQP does not allow nonlinear terms

in the cost function. Thus, the rules need to be re-modeled in the optimization program.

Lane Selection – Keep in Right-Most Lane The reference trajectory, which is included in the

cost function, is generated based on the centerline of the reference lane corridor Ξref. Thus,

the rule to keep in the right-most lane can be realized by selecting Ξref. Algorithm 2 shows

the selection algorithm, where a function to check the validity and existence of a lane corridor

isValid(·) and a function to return the remaining length of a lane corridor lengthUntilEnd(·)
are assumed to be available. A Boolean flag keepRight is used to enable the lane selection rule.

Otherwise, the reference lane corridor is only changed if the current lane corridor is coming to

an end, preferably right than left.

Algorithm 2 Selection of a reference lane corridor

Input ego position p, current, left and right lane corridors Ξcurr, Ξleft, Ξright, flag to activate

“keep in right-most lane” rule keepRight

Output target lane corridor Ξref

dref ← vref · ∆t · N
dend,curr ← lengthUntilEnd(Ξcurr, p)

if keepRight ∧ isValid(Ξright) then

Ξref ← Ξright

else

if isValid(Ξright) ∧ (dend,curr < dref)∧(lengthUntilEnd(Ξright, p) > dend,curr) then

Ξref ← Ξright

else if isValid(Ξleft) ∧ (dend,curr < dref)∧ (lengthUntilEnd(Ξleft, p) > dend,curr) then

Ξref ← Ξleft

else Ξref ← Ξcurr

This rule can be seen as a soft rule, as it is included as the reference deviation in the cost

function and not modeled as an optimization constraint. The vehicle will presumably obey this

rule consistently if there are no slower vehicles in front. Otherwise, the costs for not following

the desired speed part of the reference trajectory may exceed the costs for deviating from Ξref.

Safe Distance The “safe distance” rule enforces to keep a safe distance to the preceding

vehicle. In this work, the required safe distance is calculated in a pre-processing step before the

optimization. A joint prediction is used, which is obtained by calling ObservedWorld::Step(∆t)

multiple times. Here, the other agents are predicted based on their respective behavior model.

For the ego agent’s behavior model, a constant velocity lane following model is employed, as this

resembles the velocity encoded in the reference trajectory. If the prediction model was different,

for example by using an IDM, which would introduce gap keeping, it would invalidate the soft

safe distance constraint in the optimization model.

87

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

safe distance

ego

other

s

t

Figure 6.9.: The path-time diagram shows how the safe distance is established between the ego vehicle (red)

and the preceding vehicle (blue). A ghost vehicle is introduced (gray), which serves as a convex

obstacle constraint for the ego vehicle.

The safe distance of an agent i to an agent f in front is then calculated following Equation (6.33),

which is an overapproximation of the checker in Section 3.4.3, if assuming equal maximum

braking distances a f
br,max = ai

br,max:

dsafe1 = vi · treact −
(vi)2

2 · ai
br,max

+
(v f)2

2 · a f
br,max

(6.33)

This process is repeated along the planning horizon. The method is displayed in Figure 6.9.

Based on the safe distance dsafe1 , an occupancy of the shape of a vehicle is calculated, which the

ego vehicle is not allowed to enter. This occupancy can be interpreted as a ghost vehicle, with

which the vehicle must not collide. They are modeled as dynamic convex obstacle polygons

within the optimization.

The described implementation so far resembles a hard constraint. If a safe distance cannot be

established, this results in a failing optimization. This work thus modifies the obstacle constraint

implementation to allow for soft constraints as well. Specifically, Equation (6.22) is changed,

where a slack variable ζ is used to lift the constraint of the five points (representing the vehicle

shape) not to lie within the obstacle. As hard constraints are still desirable for collision avoidance

with dynamic obstacles, the optimization program is formulated to differentiate between soft

and hard obstacles. The constraint follows as:

∑
l∈o

ςp(k, l)− ζ(k, l) ≤ |o| − 1 if o is soft (6.34a)

∑
l∈o

ςp(k, l) ≤ |o| − 1 otherwise (6.34b)

∀k ∈ K , ∀o ∈ O

Overtaking – No Passing on the Right Side To prevent right-side passing, an area the ego

vehicle must not enter is calculated in a pre-processing step before the optimization. First, a

88

6.6. Formulating the Planning Problem as Linear Dynamic Game

ego other

forbidden area

Figure 6.10.: Exemplary scene showing how the forbidden area for the “no-right-passing” rule is calculated.

The ego vehicle is not allowed to enter this area.

joint prediction via ObservedWorld::Step(∆t) is applied for one time step. The IDM is used

as a behavior model for the ego vehicle. Of course, it would also be possible to predict the ego

vehicle based on the optimizer’s solution from the previous time step. However, the correct

interpretation of this rule in the optimization is not as sensitive to the longitudinal prediction

model as with the “safe distance” rule. If one of the other agents is not in the right-most lane, the

projected rectangle area of the agent’s vehicle shape into the right lane is blocked. This concept is

illustrated in Figure 6.10. The polygon is added to the optimization as a convex obstacle polygon.

Repeating this along the time horizon yields a set of dynamic convex obstacle polygons, which

resemble the time-space-constraints to prevent right-side passing.

89

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

6.6.8. Joint Cost Function for Reference Tracking

When formulating an MIQP problem, the objective function has to be a sum of squared or

linear terms. Therefore, the absolute velocity (or acceleration) cannot be used in the objective,

since with |v| =
√
(v2

x + v2
y), the term (|v| − |vref|)2 is not quadratic. Likewise, costs on the

angular velocity would result in non-quadratic terms. Moreover, as no distance to the objects

is calculated in the model, such distance terms cannot be used in the cost function. Thus, the

proposed formulation makes use of the position distances to the vehicle’s reference to track the

reference. Note that this yields a tracking of a reference trajectory and not a reference path. The

trajectory reference is a sequence of x and y coordinates along the discrete time k, calculated

from a reference path and reference speed in a preprocessing step.

The optimization problem’s objective is to minimize the sum of individual cost functions per

agent. The individual cost function term Ji of agent Ai are formulated as

Ji = ∑
k∈K

(
ωp

(
pi

x(k)− pi
x,ref(k)

)2
+ ωp

(
pi

y(k)− pi
y,ref(k)

)2
+ ωuui

x(k)
2 + ωuui

y(k)
2

+ωζ ∑
o∈O

∑
l∈o

ζ i(k, l)2
)

(6.35)

to track the reference trajectory and penalize the jerk and the violation ζ of the soft obstacle

constraints. Suitable cost terms q□ balance the solution. The overall cost function is then defined

as

J = ∑
i∈A

Ji + ωξ ∑
k∈K

∑
i∈A , j∈A \i

(
ξ

ij
x (k) + ξ

ij
y (k)

)2 (6.36)

with the second term penalizing high values of the slack variables using the weighting factor ωξ .

6.6.9. Optimization Problem

The joint cost function Equation (6.36) for all controlled agents shall be minimized. Collecting

all constraints from above, the final optimization problem can be written as

minimize (6.36)

subject to (6.11), (6.12), (6.13), (6.14), (6.15), (6.16), (6.17), (6.18),

(6.19), (6.20), (6.21), (6.34), (6.27)(6.29)(6.30)(6.32)

Note that Equation (6.34) is used instead of Equation (6.22), which is different than in the

author’s publications [57, 61] due to the implementation of the “safe distance” rule in this work.

The formulation is a standard MIQP model that can be solved with an off-the-shelf solver.

Acceleration a
9

and jerk u
9

are bound with constant values a, a and u, u, which are calculated

from the minima and maxima of the region-dependent limits ar
9

, ar
9

and ur
9

, ur
9

, respectively.

6.6.10. Receding Horizon Formulation

At each time step, an instance of the MIQP model is solved. The algorithm is executed in a

receding horizon fashion and, therefore, only the first step of the optimized trajectory will be

90

6.7. Experiments and Results

executed (as the step sizes of simulation and planning are equal). The states of each agent and

the current region of each agent are set as initial conditions. Adding the latter helps to avoid

infeasible problems on the region boundaries. In such cases, where the initial region is possibly

ambiguous due to numerical inaccuracies, the optimization is started for both possible regions.

6.7. Experiments and Results

The proposed optimization model will now be evaluated. For this, the proposed optimization

program has been implemented as a behavior model within BARK. Section 6.7.1 proves, that

the result of the optimization is a drivable trajectory for a non-holonomic vehicle model. This

evaluation has been published in [57]. Then, the model is shown to yield a trajectory that

stays within the road boundaries (Section 6.7.2) and can avoid dynamic obstacles, i.e., maneuver

predictions of other agents (Section 6.7.3). Then, rule compliance of the “safe distance” rule

and the “no passing on the right side” rule are shown for two selected scenarios (Section 6.7.5).

Finally, Section 6.7.6 provides a benchmark of the developed model, where variants with the

“safe distance” rule as a soft and hard rule are compared to a variant without any rule.

A model with 32 regions and velocity-dependent front axle approximation is used. Table A.4

summarizes the parameters used within the following experiments. CPLEX 12.10 as a commercial

off-the-shelf MIQP solver is used [105]. The experiments run on a laptop with Intel Core i7-9850H

(6 physical cores, 12 threads @ 2.6 GHz) and 32 GB RAM. The code of the proposed planning

method has been published as open-source [106].

6.7.1. Preserving the Non-Holonomy

To show the effectiveness of the proposed constraints guaranteeing non-holonomic motions, two

different reference trajectories will be optimized, both forming a circle to perform a 90-degree

turn. While it is preferable to generate reference trajectories with valid curvatures only, this

experiment is used to confirm that the proposed model preserves the non-holonomy. The

same property is also necessary for obstacle avoidance. As baseline algorithms for comparison,

two SQP-based optimization models are implemented, one using a standard bicycle model

and another using the same triple integrator as this work’s MIQP model but with a nonlinear

curvature constraint, following Equation (6.7).

Figure 6.11a shows the results for a constant turning radius that the proposed vehicle model

can follow. The optimization yields a trajectory that closely follows the reference. The solution

is close to the solutions obtained from the SQP optimizer. The slight difference towards the

SQP solution using the integrator model arises from the different ways to model the curvature

constraint. The difference towards the SQP solution using the bicycle model arises from possibly

non-equivalent weights.

The second reference in Figure 6.11b models a turning radius that is too small (the curvature of

the reference exceeding the limits). As desired, the proposed model does not follow the reference

and yields a trajectory that stays within the curvature bounds. As the curvature approximation

polynomials are fitted for each region’s mean orientation (see Section 6.5.2), the solution can

91

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

0 5 10 15
0

5

10

15

x[m]

y[
m
]

Reference
Ours
SQP (bicycle)
SQP (nl. κ constr.)

0 5 10 15
0

5

10

15

x[m]

y[
m
]

Rear axle
Front axle
Approx. rectangle

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

0

0.1

t[s]

κ
[1

/
m
]

Reference
Ours
Limits

(a) Results for a kinematically feasible references.

0 2 4 6 8 10
0

2

4

6

8

x[m]

y[
m
]

Reference
Ours
SQP (bicycle)
SQP (nl. κ constr.)

0 5 10 15
0

2

4

6

8

10

x[m]

y[
m
]

Rear axle
Front axle
Approx. rectangle

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

0

0.1

t[s]

κ
[1

/
m
]

Reference
Ours
Limits

(b) Results for a kinematically infeasible references.

Figure 6.11.: If the reference is feasible, the proposed model stays within the curvature bounds (lower) and

shows as good trajectory tracking behavior as the reference implementations using an SQP

optimizer does (upper left). The front axle position is always within the lower/upper bound

approximation rectangles of the front axle (upper right). If the reference is infeasible, all three

optimization solutions cannot track the reference despite operating at maximum curvature

(graphics from [57], ©2020 IEEE)

possibly exceed the curvature bound at the region boundaries slightly. However, this could easily

be mitigated using a safety margin on the curvature constraints for the fitting.

The experiment shows that the model can indeed respect the curvature constraint, even when

operating on a non-feasible reference. Thus, the proposed model is the first to yield kinematically

valid solutions using an MIQP-based solver that generalizes to various road geometries.

6.7.2. Staying Within the Road Boundaries

This example considers a lane ending scenario, where the ego vehicle drives at the speed of

10 m/s and needs to change lanes. The reference trajectory represents the centerline of the right

lane traveling at the reference speed. Figure 6.12 shows that the optimizer finds trajectories that

stay within the road boundaries. This work implemented a simple logic to select the reference

lane corridor: If the vehicle is close to a lane end, the reference corridor changes, cf. Algorithm 2.

At the beginning of the scenario, the right lane corridor gets selected. As the lane corridor is

getting narrow, following the centerline would result in leaving the road. The optimizer can

handle this successfully and yields a trajectory that stays within the road boundaries. Despite

the reference trajectory not being continuous, the solution safely remains within the steering

angle limits. Both the rear axle and the over-approximated front axle position stay within the

shrunk road area. Note that the space in the single lane is limited. By increasing the number of

regions, the approximation rectangles of the front axle would get smaller.

The experiment shows that the model can respect road boundaries and find a solution that

stays within.

92

6.7. Experiments and Results

Figure 6.12.: Merging scenario with MIQP-based planner staying within the road boundaries. World

configuration are shown at t = 0s, t = 1.25s, t = 2.5s and t = 3.75s. The environment

polygon - is shrunk and split into several convex polygons - - . Both the rear axle and

the over-approximated front axle position stay within the shrunk road area. The reference

trajectory is shown in red. The planned trajectory is shown as , with the states displayed

as dots. Past agent states are shown with increasing white transparency.

6.7.3. Avoiding Dynamic Obstacles

This example considers the lane ending scenario again, where the ego vehicle has a speed of

10 m/s and needs to change lanes. In Figure 6.13, two other vehicles in the left lane are traveling

at 10 m/s. Deterministic predictions of those two traffic participants are obtained and included

as dynamic obstacles in the optimization. The optimizer finds solutions that allow the ego vehicle

to change lanes and fit in-between the two other cars. Figure 6.13b shows that the acceleration

and the steering angle stays within limits. The velocity remains close to the reference speed of

10 m/s. However, as the reference speed is imposed indirectly through the non-smooth reference

trajectory, the real motion differs slightly.

In Figure 6.14, the two other vehicles are traveling at 15 m/s, while the ego vehicle is still

driving at 10 m/s. By predicting the two traffic participants and including them as dynamic

obstacles, the optimizer realizes that following the trajectory as in the previous example would

yield a crash. The ego vehicle decides to slow down and merge after the rear car has passed. The

velocity slightly drops to 9.5 m/s. Still, the ego vehicle adheres to the acceleration and steering

bounds.

The experiment shows that the success of the optimization program to find non-colliding

solutions that respect the actor limits of the car does not depend on the reference (if given

enough time to the optimizer). This is certainly desirable and different from local optimization

techniques, as discussed in Section 6.2.

93

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

(a) World configuration at t = 0s, t = 1.25s, t = 2.5s and t = 3.75s. The ego vehicle and its reference

trajectory are shown in red. The planned trajectory is shown as , with the states displayed as dots.

The predicted states of the other vehicles are shown as , where the increasing size indicates the

predicted time progress. Past agent states are shown with increasing white transparency.

9.0

10.0

11.0

v
[m

/
s]

-2.5

0.0

a
[m

/
s2
]

0.00 1.00 2.00 3.00 4.00 5.00

time [s]

-0.20

0.00

0.20

δ
[r
a
d
]

(b) The executed actions for the bicycle model and the resulting velocity are shown in blue. The respective limits are

shown in red.

Figure 6.13.: Merging scenario with two dynamic obstacles on the left lane. The ego agent controlled by the

MIQP-based behavior model changes lanes and fits in-between the two vehicles on the left

lane.

94

6.7. Experiments and Results

(a) World configuration at t = 0s, t = 1.25s, t = 2.5s, t = 3.75s and t = 4.5s. The ego vehicle and its reference

trajectory are shown in red. The planned trajectory is shown as , with the states displayed as dots.

The predicted states of the other vehicles are shown as , where the increasing size indicates the

predicted time progress. Past agent states are shown with increasing white transparency.

9.0

10.0

11.0

v
[m

/
s]

-2.5

0.0

a
[m

/
s2
]

0.00 1.00 2.00 3.00 4.00 5.00

time [s]

-0.20

0.00

0.20

δ
[r
a
d
]

(b) The executed actions for the bicycle model and the resulting velocity are shown in blue. The respective limits are

shown in red.

Figure 6.14.: Merging scenario with two dynamic obstacles on the left lane. Both other agents travel faster

than the ego agent. The ego agent controlled by the MIQP-based behavior model slows down

and changes lanes after both vehicles have passed.

95

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

6.7.4. Planning for Multiple Agents

In the example presented in Figure 6.15b, two vehicles are driving close by. If the ego agent

would not plan cooperatively or anticipate the other agent’s reactions, it could just keep its

velocity. However, both agents are configured to plan using the multi-agent variant of the

MIQP-based planner, i.e., Be = Bo. The optimization aims to find a joint solution that stays

within the road, respects each agent’s model’s constraints, and prevents collision between the

agents.

Figure 6.15b displays the velocity of both agent’s over time. The optimal cooperative solution’s

velocity is symmetric, i.e., agent 2 accelerates up to a velocity of 11 m/s, whereas agent 0 slows

down to a velocity below of 9 m/s. This way, agent 0 can change lanes and merge before agent 2

instead of slowing down and possibly stopping to let agent 2 pass.

The experiment shows that the optimization program can successfully find optimal solutions

for cooperative driving that satisfy the respective constraints of each agent. Going forward, the

multi-agent cost function needs to be tuned to mimic the actual behavior of others, which is not

necessarily fully cooperative.

6.7.5. Evaluation on Traffic Rules

No Passing on the Right Side The following experiment demonstrates the effectiveness of the

“no passing on the right side” rule. Figure 6.16 shows the experiment, which is conducted on a

straight road with two lanes. The ego vehicle travels at 15 m/s and approaches a slower vehicle

at 10 m/s from behind. In Figure 6.16a, the planner is modeled without the rule. Despite the

reference (red) staying in the left lane, the optimizer can find a solution that avoids the blue car

on the right. As only obstacle avoidance has been modeled – and no distance that would push

the solution away from the obstacle – the solution comes very close to the other car, as it aims to

minimize its deviation to the faster reference. Once the ego vehicle reaches the right lane, the

reference switches to that lane. Eventually, the ego vehicle passes the blue car, which would

violate the rule.

Figure 6.16b shows the variant with the rule. The blue crosses in the right lane indicate the

forbidden occupancy due to the rule. As the ego vehicle is not allowed to enter those, there is not

much speed benefit that can outweigh the steering and displacement costs from the reference.

Thus, the ego vehicle stays in the left lane, closing up as close as possible to the other car.

The experiment shows that the optimization program yields solutions that satisfy the “no

passing on the right side” rule. As the rule is modeled as a hard constraint, its satisfaction does

not depend on the reference or cost function weights. More specifically, despite the reference

favoring a continuation at 15 m/s, the vehicle slows down and respects the rule.

96

6.7. Experiments and Results

(a) World configuration at t = 0s, t = 1.25s, t = 2.5s, t = 3.75s and t = 4.5s. The reference trajectories for

both agents are shown in red. The planned trajectories are shown as , with the states displayed as

dots.

8.0

10.0

12.0

v
[m

/
s]

agent id 0 2

-1.0

0.0

1.0

a
[m

/
s2
]

0.00 1.00 2.00 3.00 4.00 5.00

time [s]

-0.03

0.00

0.03

δ
[r
a
d
]

(b) The executed actions for the bicycle model and the resulting velocity are shown for both agents.

Figure 6.15.: Merging scenario with two agents close by. Both agents are controlled by the MIQP-based

behavior model, which plans for both agents simultaneously.

97

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

(a) World configuration at 0 s, 1 s, 2 s, 3 s, 4 s without the

rule “no passing on the right side”.

(b) World configuration at 0 s, 1 s, 2 s, 3 s, 4 s with the rule

“no passing on the right side”. The blue crosses

on the right lane indicate the projected posi-

tion of the blue vehicle to the right lane, which are

forbidden for the ego vehicle to collide with.

Figure 6.16.: Two-lane road scenario with a slower preceding vehicle at 10 m/s in front of the ego vehicle

(red), which is traveling at 15 m/s. The ego agent is controlled by the MIQP-based behavior

model. If the rule “no passing on the right side” is not modeled, the ego agent changes lanes

to proceed at a faster speed. If the rule is modeled, the space right next to the other agent is

forbidden, leaving the ego agent to stay behind the other vehicle.

98

6.7. Experiments and Results

Safe Distance To showcase the effectiveness of the safe distance modeled as a soft constraint,

two vehicles shall drive on a straight road at the same speed. In Figure 6.17a, the cars are placed

too close to each other so that the safe distance is initially violated. If the safe distance were

modeled as a hard constraint, the optimization would fail, as the optimizer would not be able to

find a solution. The scenario is simulated with and without the rule being violated. Figure 6.17b

shows the calculated safe distance (calculated according to Equation (6.33)) between the vehicles

and the actual distance between the vehicles. Essentially, if the distance is larger than the safe

distance, no penalty will result from the soft rule constraint in the cost function. The optimizer

thus seeks to find solutions that eventually lead to the rule not being violated any more. At the

first three time instances, the safe distance is below the actual distance, which leads to the rule

evaluator showing a violation until k = 3.

If the rule is not modeled, the ego vehicle keeps traveling at the same speed, merely following

the reference, as the only other constraint is to stay within the road boundaries and not collide

with the front vehicle. If the rule is included, the ego vehicle slows down immediately to establish

a safe distance. Once this is accomplished, it continues to drive at the reference speed again. The

additional constraint for the safe distance, however, increases the complexity of the optimization.

Based on repeating the simulation 10 times, the solution time’s mean and standard deviation

(the time it takes for the optimizer to calculate the solution) are calculated and displayed in

Figure 6.17b. It can be seen that the solution time is generally higher than without the rule being

considered.

The experiment shows that the soft safe distance rule implementation can prevent the vehicle

from driving too close and re-establish a safe distance. This is unquestionably necessary when

considering other vehicles to potentially cut-in before the ego vehicle.

6.7.6. Benchmark

For benchmarking the Single Agent Variant of the MIQP-based planner (MIQP-SA), a comparable

experimental setup as in Section 5.5 is used. The vehicles’ initial starting positions are extracted

from the INTERACTION dataset and simulated using the behavior model Bo, for which the

parameters are shown in Table A.2. The German merging scenario is adopted, which is the

same map used throughout most of the chapter’s evaluations. The same rule evaluators as

in Section 5.5 are being utilized to evaluate the simulation run, but not as part of the planner.

Figure 6.18 presents the resulting evaluation framework.

Three variants of the optimization-based planner are examined in the following:

• MIQP-SA as a single agent variant of MIQP without any rules,

• MIQP-SA (SD-soft) with the SD rule as a soft constraint and

• MIQP-SA (SD-hard) with the SD rule as a hard constraint.

The maximum solution time available to the optimizer is varied from 2 s to 100 s. If the

optimizer cannot find a solution within this time, the optimizer stops, the scenario is terminated

99

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

(a) Initial world configuration at 0 s.

5.0

10.0

15.0

sa
fe

d
is

ta
n

ce
[m

]

rule on off

13.0

14.0

15.0

d
is

ta
n

ce
[m

]

0

0

1

S
D

vi
o

la
ti

o
n

14.0

15.0

v
[m

/
s]

-1.0

0.0

1.0

a
[m

/
s2

]

0.0 1.0 2.0 3.0 4.0 5.0

time [s]

1.0

2.0

so
lu

ti
o

n
ti

m
e

[s
]

(b) Time series for the safe distance, the distance between the rear end of the front vehicle and the front end of the ego

vehicle, the velocity, acceleration time, and the solution time of the optimizer.

Figure 6.17.: Two-lane scenario with a preceding vehicle in front of the ego vehicle (red). Both vehicles are

traveling at 15 m/s. The MIQP-based behavior model controls the ego agent. Two variants are

compared: The first with the rule “safe distance” modeled as a soft rule, the second without

the rule. Initially, the ego vehicle is too close to the other vehicle, effectively violating the “safe

distance” rule. With the rule as a soft constraint, the vehicle slows down and establishes a safe

distance again.

dataset with

N vehicles

simulate 1 step:

others: Bo

traffic rules

monitors

evaluate:N scenarios

(starting

positions)

collision, rules,

number of steps

ego agent: Be

repeat until ending

criteria reached

using

Figure 6.18.: Framework to evaluate the MIQP-based behavior of the ego agent Be in a closed-loop simula-

tion. The initial starting positions for the vehicles are taken from the dataset. The other vehicles

are simulated using a behavior model Bo. The traffic rule monitors are used to evaluate the

simulation.

100

6.7. Experiments and Results

0

20

40
N
u
m
b
er

o
f
S
te
p
s

Regions:32, Sol.Time:2s Regions:32, Sol.Time:10s Regions:32, Sol.Time:100s

0

25

50

75

%
S
u
cc
es
s

MIQP-SA MIQP-SA (SD-soft) MIQP-SA (SD-hard)

Variants

0

50

100

%
P
la
n
n
in
g

fa
il
ed

Figure 6.19.: Benchmark of the MIQP-based planner of the variants implementing no rule, the safe distance

as a soft rule, and hard rule. The maximum solution time available to the optimizer is varied

from 2 s to 100 s.

and labeled as Planning failed. If the ego agent reaches the goal region, placed at the end of the

merging map, within the maximum number of steps, the scenario is marked as Success.

Figure 6.19 shows the obtained results. With 100 s to find a solution, MIQP-SA succeeds in

84 % of the scenarios. For the remaining scenarios, the planner could not find a solution within

the time limit. The success rate drops to 11 % for a maximum solution time of 10 s and is at 1 %

for 2 s. This can be explained by the complexity of the scenario, with sometimes up to 8 cars,

which are all being processed as dynamic obstacles in the optimization. A better scheme to select

only relevant cars would certainly reduce the overall planning time. Considering the rule as a

soft constraint in MIQP-SA (SD-soft) further reduces the success rate from 84 % to 71 %, as the

time limit is met more often. The MIQP-SA (SD-hard) variant is hardly useful at all, as it results

in a lot of infeasible scenarios. The number of simulation steps increases with more successfully

passed scenarios, as failing scenarios are terminating early.

Figure 6.20 shows the percentage of the safe distance violation of the MIQP-based planner

during the benchmark. Only the subset of the scenarios, where each variant’s scenarios terminate

with success, is used for a fair comparison. MIQP-SA yields numerous safe distance violations.

If compared to MIQP-SA (SD-soft), the violations improve from 62 % to 52 %. When traveling

at 10 m/s and assuming the front vehicle travels at the same velocity, this already results in a

safe distance of 10 m. Such an initial distance is not available in some of the extracted scenarios.

Another reason for the residual violations of MIQP-SA (SD-soft) is the initial determination of

the preceding vehicle before each optimization start, which will cause errors when leaving the

lane. Also, the assumption of constant velocity for the ego vehicle introduces errors. The former

could be improved by adding the soft safe distance constraint for the vehicle on the neighboring

lane at the cost of increased runtime. In contrast, the latter might be improved by reusing the

planners’ previous solution for the joint prediction to determine the safe distance. As expected,

MIQP-SA (SD-hard) does not yield any rule violations when considering the subset where even

101

6. Optimal Interactive Behavior Planning Satisfying Traffic Rules

MIQP-SA MIQP-SA (SD-soft)

Variants

0

20

40

60

%
S
D

V
io
la
ti
o
n

Evaluation over common scenarios of
MIQP-SA, MIQP-SA (SD-soft)

that end with success

Regions:32, Sol.Time:100s

MIQP-SA MIQP-SA (SD-soft) MIQP-SA (SD-hard)

Variants

0

5

10

15

20

%
S
D

V
io
la
ti
o
n

Evaluation over common scenarios of
MIQP-SA, MIQP-SA (SD-soft), MIQP-SA (SD-hard)

that end with success

Regions:32, Sol.Time:100s

Figure 6.20.: Percentage of safe distance being violated at once per scenario from the benchmark of the

MIQP-based planner of the variants implementing no rule, the safe distance as a soft rule and

as a hard rule.

the hard safe distance rule can find a solution. Presumably, the scenarios which even the hard

rule variant can solve are characterized by less dense traffic with enough space between the

vehicles. Positively, MIQP-SA (SD-soft) is also able to solve nearly all of these scenarios without

a violation. Less than 1 % violates the safe distance – an indicator that the penalty for softening

the rule might have to be set even higher. MIQP-SA still has about 17 % rule violations.

Figure 6.21 shows the average planning time of the MIQP-based planner during the bench-

mark. Again, the subset of scenarios is used, where each variant’s scenarios terminate with

success. Otherwise, in complex scenarios where one variant failed early and the other was

eventually successful, these time-consuming scenarios would presumably worsen the variant’s

average planning time. The average planning time increases from 6 s for MIQP-SA to 12 s

for MIQP-SA (SD-soft) for a maximum solution time of 100 s. This shows that the additional

constraints significantly slow down the optimization program.

The subset where all three variants end successfully is much smaller. In those scenarios,

the average planning time only increases from 4 s (MIQP-SA) to 5.5 s (MIQP-SA (SD-soft)).

Presumably, those scenarios are easier to solve, i.e., there exists enough space to the preceding

MIQP-SA MIQP-SA (SD-soft)

Variants

0

2

4

6

8

10

12

P
la
n
n
in
g
ti
m
e
[s
]

Evaluation over common scenarios of
MIQP-SA, MIQP-SA (SD-soft)

that end with success

Regions:32, Sol.Time:100s

MIQP-SA MIQP-SA (SD-soft) MIQP-SA (SD-hard)

Variants

0

1

2

3

4

5

6

P
la
n
n
in
g
ti
m
e
[s
]

Evaluation over common scenarios of
MIQP-SA, MIQP-SA (SD-soft), MIQP-SA (SD-hard)

that end with success

Regions:32, Sol.Time:100s

Figure 6.21.: Average planning times from the benchmark of the MIQP-based planner of the variants

implementing no rule, the safe distance as a soft rule and as a hard rule.

102

6.8. Conclusion

vehicle or no preceding vehicle at all. In such scenarios, the safe distance constraint does

not limit the solution very much. The runtime drops from 5.5 s for MIQP-SA (SD-soft) to 4.5 s

for MIQP-SA (SD-hard). The soft rule’s decision variables are part of both constraint and cost

function, which makes the problem more difficult to solve.

Still, the average planning time is well below the maximum planning time. This shows that

only a fraction of the scenarios require such a long planning time and opens the door for runtime

improvements by limiting the number of agents to be used as obstacle constraints.

The experiment shows that the MIQP-based planner can solve a wide range of perturbations

of the merging scenario with different numbers of vehicles and placements within the map. It

also shows that the modeling of the rules is working. However, it also identifies the runtime

as the most significant remaining drawback. There exist various ways to improve the runtime.

Firstly, the MIQP solver could be warm-started using the solution from the previous receding

horizon instance [107], either by reusing and extrapolating the decision variables or by a more

advanced strategy, such as warm-starting the cuts or the branch-and-bound tree. Secondly, the

optimization problem could be simplified, e.g., by selecting only relevant agents as obstacles or

by employing a better reference trajectory. Strategies for runtime improvements will be discussed

in more detail in Section 8.3.

6.8. Conclusion

This chapter introduced a novel optimization program for the multi-agent behavior planning

problem and realized multiple traffic rules as part of the formulation. The optimization program

is solved using MIQP. The formulation generates correct non-holonomic motion for arbitrary

road curvatures and all possible orientations of the vehicle. Using linear overapproximations of

the collision shape, the formulation prevents collisions with static obstacles, dynamic obstacles,

and collisions between the controlled vehicles. The introduction of slack variables to the collision

constraints makes the method robust against inaccuracies of the modeled future motion of other

agents. The traffic rules are expressed as linear constraints within the optimization problem or

encoded in the reference. The effectiveness of this formulation of the traffic rules was evaluated

on a wide set of merging scenarios. Here, the effectiveness and computational costs of modeling

the safe distance rule as a soft and hard rule were compared.

The novel method obtains globally optimal solutions without any randomness of the solution.

This is certainly a favorable feature for validation and certification. The solutions are kinemati-

cally valid and respect the traffic rules. Future work should study what an inaccurate prediction

means for the approximated rules and the feasibility of the optimization in general.

103

7
Comparison of Planning Approaches for Traffic

Rule Integration

The two approaches presented in Chapter 5 and Chapter 6 to model traffic rule satisfaction are

dual to each other. This chapter compares those two approaches and the formalized rules that

were implemented for each planning approach.

7.1. Comparison of Planning Approaches

7.1.1. Characteristics of Model

Vehicle Model and Action Space The selection of a suitable vehicle model dictates the action

space. Besides that, the action space can be continuous or discrete. Continuous action space is

preferred, as any discretization yields a reduced solution space, which becomes problematic

in dense scenarios. The optimal control approach using MIQP relies on a triple integrator

vehicle model that is being forward propagated over the planning horizon. Thus, no action

space discretization is required. The ability to employ the vehicle model for MIQP comes at

the downside of some approximations: The front axle is over-approximated, which reduces

the solution space in dense scenarios. There, the approximation accuracy can be traded for an

increase in the complexity of the problem (number of regions), which then becomes problematic

for real-time usage. MCTS, on the other hand, allows the sampling of arbitrary actions and even

motion primitives, such as gap keeping and lane changing. Still, the action space is discrete, and

the size of a balanced search tree grows exponentially with the number of actions. Thus, similar

to MIQP, the MCTS-based approach holds a trade-off between the size of the solution space and

the complexity of the problem (number of actions). Still, the continuous action space of MIQP is

certainly more favorable than the discretized actions of MCTS.

Interaction Modeling Interactive behavior for the MIQP-based approach can be achieved by

following two different directions. Either, other agents are included in the planning (multi-

agent), which works well if the costs and the reference are correct. Still, the optimization time

105

7. Comparison of Planning Approaches for Traffic Rule Integration

Table 7.1.: Comparison of the planning approaches of this work.

Criteria MCTS (Chapter 5) MIQP (Chapter 6)

Characteristics
of Model

Vehicle Model arbitrary integrator in Cartesian frame
Vehicle Model Approx. none required front axle for collision checking,

curvature constraint
Action Space discrete continuous
Interaction Modeling decision tree multi-agent planning or two-step of joint

prediction and planning
Planning horizon 20× 0.5 s = 10 s 20× 0.25 s = 5 s
Rule Enforcement arbitrary penalty for non-linear cost

function
linear constraints or cost term for
quadratic cost function

Rule Priorities vectorized reward with TLO not implemented

Characteristics
of Solution

Method

Optimality asymptotically optimal w.r.t. action space optimal w.r.t. vehicle model
Randomness yes no
Completeness complete w.r.t. action space complete w.r.t. vehicle model
Anytime yes no
Real-time (<1 Hz) no no

Possible
Extensions of

Solution Method

Parallelization yes yes
Guidance of Solution yes (default policy, tree policy) yes (branches, cuts)
Warmstart no, but history heuristics yes (initializing decision variables)

Other Commercical Solver no yes

quickly becomes intractable for real-time use cases for more than two agents. Another direction

is to employ a joint prediction of the ego agent and the other agents and solve the resulting

single-agent problem. The MCTS-based approach is more flexible, as the decision tree structure

allows to employ any generative model within the joint planning.

Rule Enforcement and Priorities The flexible MCTS allows to evaluate the RuleMonitor inside

the search tree and include the violation penalty in the reward function. The rules’ priorities

are realized by defining the reward as a vector and applying TLO to it. The optimization

program solved by MIQP cannot include the rule violation penalty from a non-linear function

such as the RuleMonitor. Thus, the rules are either encoded in the reference (lane selection)

or calculated as spatiotemporal occupancies based on a joint prediction. This work chose a

planning horizon of 5 s for the MIQP-based approach, which was sufficient for the rules covered,

but might be increased to the 10 s horizon used for MCTS to realize rules that rely on multiple

agents. Although this work’s MIQP-based approach does not incorporate rule priorities, it would

certainly be possible to realize a multi-objective optimization using MIQP and even apply LO to

the cost function [105]. Thus, a practical implementation of the MIQP-based approach would

not need to pass up this desirable rule satisfaction feature. The comparison is summarized in

Table 7.1.

7.1.2. Characteristics of Solution Method

Optimality Optimality is a well-known criterion for planning algorithms [103], which describes

the algorithm’s ability to find the global optimum for some quality criterion subject to the given

constraints, and not only a local optimum from the non-convex solution space. Optimality is

106

7.1. Comparison of Planning Approaches

desirable not only because of being the best solution but also because of the solution’s consistency

in a replanning scheme. The optimal control approach combined with MIQP as a solution method

can solve even non-convex problems and enable the MIQP-based planning approach to yield

optimal solutions. Optimality here means optimal with respect to the employed vehicle model

and the made approximations, which is not necessarily the optimal solution of the problem

itself. For search-based methods such as MCTS, obtaining an optimal solution usually requires

an exhaustive search over the state space. The UCT selection strategy of MCTS creates an

asymmetric search tree that asymptotically converges to the optimal solution [67]. However,

practically, the termination criteria for real-time applications will prohibit this. Even if UCT were

to find the optimum, the optimal solution would only be optimal with respect to the selected

action set. Increasing the action set improves this but increases the tree branching factor, which

will reduce the ability to find the optimal solution in real-time even more.

Randomness in Solution Method The MIQP-based approach does not have any randomness

in the solution method. When terminating early, however (as was done in the benchmark in

Section 6.7.6), the result depends on the available computational resources during runtime.

On the other hand, the MCTS variant used within this work uses random action selection

and random action sampling for the default policy. The same random seed was used for all

evaluations to initialize the pseudorandom number generator in this work. However, this might

still yield different results across various hardware platforms.

Completeness Completeness describes the algorithm’s ability to find a solution if one exists in

a finite amount of time. The MIQP-based planner is capable of doing so and can thus be classified

as complete. However, as the vehicle model’s approximations reduce the solution space, it is

only complete with respect to the vehicle model. Such completeness cannot be achieved with

search-based or sampling-based methods [103]. The MCTS operates on a finite action space,

meaning that even an exhaustive search would only be resolution complete.

Anytime Anytime describes the algorithm’s ability to find a feasible solution quickly, which

will usually be suboptimal. The solution is continually improved given more time [108]. MCTS

allows to do so: The search can be stopped at any time to provide the best solution so far

and be continued after that. An MIQP solver does not offer this out of the box. However, the

optimization can be terminated early if a valid but sub-optimal solution was found already and

restarted again afterward (by initializing all decision variables). Practically, one would prefer to

start the optimization with an updated perception instead of improving the solution based on

the previous perception information.

Real-Time This work focuses not on real-time execution but on fusing rule satisfaction with

state-of-the-art planning methods. Thus, the code has not been optimized in terms of runtime.

Consequently, none of the two presented methods runs at a frequency below 1 Hz. The following

section will discuss possible extensions that the respective solution methods allow. Chapter 8

will then discuss performance improvements.

107

7. Comparison of Planning Approaches for Traffic Rule Integration

7.1.3. Possible Extensions of Solution Method

Parallelization IBM’s CPLEX solver, which this work used to solve the MIQP problem, dis-

tributes the problem solving on multiple cores [105]. The experiments of this work have been

executed on a laptop with 6 physical cores. The MCTS implementation used in this work only

operates on one core, but MCTS is well-suited to be parallelized thanks to the independent

nature of the simulation runs. This then requires incorporating and synchronizing the results

from the simulations into the search tree, which has led to different parallelization techniques of

MCTS. An overview is given in [67].

Guidance of Solution and Warmstart The two solution methods of this work have not been

optimized towards performance. The popularity of MCTS lies in its highly flexible nature. Vari-

ous possible extensions exist for MCTS to guide the solution, which usually means incorporating

domain knowledge or even situational knowledge or data: For example, more realistic traffic

models for the rollout phase can be learned from human data as in [109]. Another direction is

to inform the selection process of the tree policy by sampling the actions from a distribution of

human actions [109]. Directly warmstarting MCTS (i.e., reusing the tree from the last planning

step) is difficult, as the tree’s statistics will not be valid anymore. Past work has studied history

heuristics, which correlate with the concepts presented to guide the solution: Using historic

information to improve action selection and using historic information to improve the rollout [67].

The MIQP problem is solved using CPLEX’s commercial implementation of a branch & cut

search method [105], which is a combination of a cutting plane method and a branch & bound

algorithm. It maintains a search tree of nodes, which are subproblems of the original problem.

The root node is the continuous relaxation of the problem. Suppose the solution has at least one

fractional variable. In that case, the solver will find cuts, i.e., new constraints to the problem that

are supposed to remove areas of the feasible region containing fractional solutions. A branch

yields two child nodes from a parent node, usually by altering the bounds on a variable in a

dual manner for the two child nodes. Essentially, the branch & cut search method consists of

performing branches and applying cuts to the nodes of the tree. Tuning the branching strategy

and cuts of the solver to the specific problem can certainly reduce the solution time. Practical

information on performance tuning can be found in CPLEX’s documentation [105]. Warmstarting

the optimization is possible, as the initial states of all decision variables can be set. For example,

the previous step’s solution could be forward integrated and used to initialize the problem.

To summarize, there exist various directions to accelerate the planning algorithms. Even a

combination of the approaches could be explored, i.e., guiding the CPLEX solver using MCTS

as in [110]. If meaningful planning time accelerations were achieved, such a combination of

approaches would undoubtedly be desirable to leverage both approaches’ respective strengths.

7.2. Comparison of Implemented Rules

This section compares the realized traffic rules within the two planning approaches. They are

summarized in Table 7.2 and will now be discussed in detail.

108

7.2. Comparison of Implemented Rules

Table 7.2.: Comparison of rules within planning approaches of this work. Possible implementations of

not-implemented (abbreviated as n.i.) rules are depicted in blue.

Class Rule MCTS (Chapter 5) MIQP (Chapter 6)

VEL below speed limit reward penalty n.i. – soft constraint based on joint prediction

LS
keep in right-most lane reward penalty reference for cost function

keep outside left-most lane reward penalty n.i. – substract lane from road polygon

OV

no passing on the right side reward penalty hard constraint based on joint prediction

safe lane change reward penalty n.i. – soft constraint based on joint prediction

speed adv. for overtaking reward penalty n.i. – reference for cost function

DIST safe distance reward penalty soft constraint based on joint prediction

BOV being overtaken reward penalty n.i. – soft constraint based on joint prediction

PRIO zipper merge reward penalty n.i. – soft constraint based on joint prediction

combined with rule state calculation in ’plan’

function

The flexible nature of MCTS allows to include all rules that were formalized and studied

in Chapter 3 and Chapter 4. This is not the case for MIQP, which has restrictions for the cost

function and constraints. These restrictions require to approximate the rules instead of reusing

the rule monitors. A subset of all identified rules was realized in Chapter 6 to demonstrate the

approach. For completeness purposes, Table 7.2 shows the possible concepts for implementing

the remaining rules. By performing a joint prediction first, most rules can be viewed as additional

occupancies and modeled as soft or hard constraints, corresponding to soft rules (e.g., the “safe

distance” rule) and hard rules (e.g., “no passing on the right side”). Essentially, choosing whether

to model the rule as a soft or hard constraint comes down to identifying whether inaccurate

predictions can lead to the problem becoming infeasible (such as with the “safe distance” in

Section 6.6.7), which of course is not desirable and requires the use of a soft rule.

Staying below the speed limit could theoretically be realized by penalizing the exceedance

in the cost function, but an accurate quadratic formulation of this is not possible in this work’s

MIQP program, and approximations might bear undesirable side effects. While the reference

trajectory inherently encodes a reference velocity, the selected weights do not impose a speed

limit at the moment, and increasing those weights to follow the trajectory too much would

yield suboptimal behavior in terms of acceleration and jerk at other times. Thus, a viable

implementation should realize the speed limit as an additional soft obstacle over time.

Having a significant speed advantage during overtaking could theoretically be implemented

as a soft occupancy constraint. This occupancy would be behind the vehicle, imposing a certain

speed. An alternative would be to represent this rule through the reference trajectory. If there

is enough space in the front during overtaking, the vehicle will follow the reference’s speed.

Keeping outside the left-most lane could be realized by subtracting the left lane polygon from

the road polygon. Thus, the vehicle would not be allowed to enter the left lane at all. Similar to

the “safe distance” rule, the “safe lane change” rule and the “being overtaken” rule could be

implemented as soft constraints based on a joint prediction.

109

7. Comparison of Planning Approaches for Traffic Rule Integration

The zipper merge is probably the most delicate one, as it will be the most difficult to model

in the MIQP-based planner. While soft constraints can realize forbidden areas over time, this

rule’s temporal characteristic requires the rule state to be calculated outside of the optimization

problem based on the past states. It has to be seen how much inevitable inaccuracies in the joint

prediction will affect the rule.

To summarize, MIQP’s ability to incorporate logical constraints and to solve non-convex

problems is certainly favorable. However, modeling the rules as part of the multi-agent problem

is often impossible without undesirable approximations or simplifications. Thus, this work

decided to model the rules in MIQP for each agent separately based on a joint prediction. This

two-step approach might work well for rules that only rely on the ego agent but will eventually

depend on a very accurate joint prediction for multi-agent rules. In contrast, the MCTS-based

approach presented in this work is well-equipped to model rules between multiple agents and

offers various probabilistic extensions towards uncertain intentions, agent models, or transition

models.

7.3. Conclusion

The MIQP-based planner has advantages over MCTS in terms of action space, optimality,

completeness, and the lack of randomness. However, the flexible nature of MCTS promises to

mitigate some of these shortcomings: For example, accelerating the convergence through learned

heuristics will improve the runtime and should allow increasing the action space. More actions,

in turn, would absorb some of the disadvantages of the discretized action space.

MCTS is certainly more favorable to incorporate additional penalties for adhering to traffic

rules. There is no restriction to the function that calculates this penalty, whereas the MIQP-based

approach will either require carefully designed approximations and linearizations or rely on an

additional prediction.

Eventually, the choice of a suitable algorithm should depend on the ODD and the safety

argument used for certification. For extensive ODDs for SAE Level 4 or Level 5 vehicles with a

large set of multi-agent road rules, the MCTS-based will be preferable. However, following the

characteristics discussed above, certifying an MCTS-based algorithm with its possibly learned

extensions to make it real-time capable might be more complicated than certifying the MIQP-

based approach. Instead, the MIQP-based approach could be deployed in limited ODDs such

as retirement communities or autonomous parking garages [111]. Reduced speeds, a lower

number of agents, and a compact ruleset would not expose the MIQP-based approach’s current

disadvantages (runtime, dependence on accurate joint prediction) and would allow leveraging

its advantages (optimality, lack of randomness) sooner than later.

110

8
Future Work

This chapter outlines future research questions that evolve from this thesis. Section 8.1 describes

further steps for the formalization of traffic rules. Functional improvements of the MCTS-based

approach are given in Section 8.2. A detailed overview over runtime improvements for MCTS

can be found in [109]. Then, Section 8.3 describes possible improvements for the runtime of the

MIQP-based approach. Section 8.4 on the other hand describes functional extensions and the

validation of the MIQP approach in the real world.

8.1. Traffic Ruleset

Extend Operational Driving Domain This work excluded particular objects from the ODD,

like road signs, road markers, pedestrians and cyclists. The priority rule was not formalized,

as the used dataset of this work did not offer scenarios to test and validate this rule. Thus, the

formalized ruleset is not complete yet, and neither is the ODD. Future work should formalize

rules for those objects and extend the ODD to more scenarios.

Establish Priorities for Ruleset This thesis motivated priorities between rules and demon-

strated how to implement them in interactive planning. Future work will need to define those

priorities for a complete ruleset, cf. [112]. The priorities could, for example, be learned from

data, synthesized from simulation [54], or defined by regulators.

Traffic Rule Data Recorder A possible use case of a formalized ruleset aside from the planning

algorithm is a rule violation data recorder similar to a flight data recorder that can be studied

after a crash occurred. For both planning and recording, the rules would need to operate on

perceived data with a limited horizon. So far, the rules have only been evaluated on statically

recorded data. Do the formulations still work with a new and updating receding horizon, or do

they have to be tweaked? Is it possible to assign blame after a collision by strictly evaluating the

ruleset and checking which driver eventually violated a rule? Or will it be necessary to simulate

the last seconds before a collision to identify viable legal options that would have prevented the

crash?

111

8. Future Work

Extension of Rules To Irrational and Forbidden Behavior of Others In this work, a methodol-

ogy was presented to formalize traffic rules from legal texts, with an emphasis on not adding

any subjective interpretation or exceptions that are not clearly stated. However, as the legal texts

usually do not describe any scenarios specifically, they do not include exceptions for other traffic

participants’ misbehavior, where a rule may subsequently be dropped. Essentially, the traffic

rule formulations must be made robust against such irrational or forbidden behavior of others.

Future work should study this by defining the nominal behavior of other agents. The first steps

following this idea have been taken in the context of set-based prediction [82]. The premises of

this work’s rules could be extended to exclude the irrational behavior of others.

Probabilistic Evaluation of Rules The perceived data in a car will always be noisy. This

work did a study on lane matching accuracy and its implication on rule satisfaction. Slight

deviations of the location might make the difference between violation or not. Further work

should study whether rules could be defined in a belief state and use uncertainty information

from perception frameworks. A viable direction for this could be STL, which is an extension of

LTL, that replaces boolean predicates by real-valued predicates, and discrete time instances by

continuous constrained time. This would increase the robustness of the formalized rules against

noisy input data.

8.2. Functional Improvements for MCTS with Rules

Uncertain Intentions and Prediction Models This work’s MCTS formulation did not address

model uncertainties. The formalism of an MDP allows addressing any model uncertainties.

For example, the traffic participant’s transition from the current state to the next state can be

modeled probabilistically. An extension to the MDP is the Partially Observable Markov Decision

Process (POMDP). While MDPs model the state to be known, POMDPs estimate the state from

an observation. MCTS can be used to approximate the solutions of such problems. For example,

the intention of other traffic participants [109] or their level of cooperation [113] can be modeled

to be non-observable. Bernhard et al. [114] models parameters of the other agent’s model as a

discrete distribution to become robust against potentially inaccurate model parameters. As a

next step, these approaches need to be fused with this work’s ruleset compliance within MCTS.

Other Violation Signals The LTL-based rule evaluation only distinguishes between 0 (no

violation) and 1 (violation). This essentially yields sparse rewards, similar to collision or goal

achievement. Reward shaping can be used to tailor the reward to the specific problem, such as

distance to goal or the potential-based reward shaping in Section 5.5. Robustness semantics over

STL can yield quantitative semantics about rule satisfaction between 0 and 1 [53, 115]. Applying

those robustness semantics to MCTS could improve the convergence of the search.

112

8.3. Performance Improvements for MIQP

8.3. Performance Improvements for MIQP

Section 7.1 already discussed the performance limitations of this work’s MIQP-based approach.

Nevertheless, the following topics should be approached to lift this burden.

Reference The optimization’s cost function depends on the deviation towards the reference

trajectory. In this work, this reference was very basic: The reference speed was used to interpolate

future points on the reference line, disregarding the agent’s current state, model constraints,

or other agents. Improving the reference should make it easier for the solver to converge to a

feasible solution in less time. The reference could for example come from a feasible solution

from the previous time step or be obtained from a search-based method such as the MCTS-based

method from this work.

Road Polygon The decomposition of a usually non-convex road polygon to multiple convex

polygons is another potential bottleneck. Essentially, fewer environment polygons mean fewer

constraints in the optimization and less time required to find the solution. This work employed

Boost’s Voronoi diagram implementation to obtain triangles and then merged the triangles

to convex polygons. More sophisticated decomposition schemes or the acceptance of more

imprecise approximations of the original road shape scheme could significantly reduce the

solution time.

Solver Tuning Advances in solver theory have led the commercial off-the-shelf CPLEX solver to

achieve a speedup of factor 90 in 14 years from 1998 to 2012 [116]. In addition to the anticipation

of more advanced future solvers, the solver could be tuned to the problem at hand. Section 7.1

already proposed possible ways to improve the convergence of a generic off-the-shelf solver,

such as branching and cutting. Past studies have aimed to learn this [117], which could be a

viable way to introduce domain knowledge to the solver.

Fitting As discussed before, the number of regions of the polynomial fits is a tuning parameter

of the proposed model. More regions yield a better approximation of the nonlinear functions.

For the front axle approximation, it essentially means trading accuracy for complexity. However,

there are other ways to increase the approximation accuracy: Reducing the maximum velocity

limits the operational range of the fit, thus increasing accuracy for the remaining operational

points. Consequently, for low-speed vehicles like people movers or cargo vehicles, the fit’s

inaccuracy could be decreased, enabling the usage of less than the 32 regions in the evaluations

of this work, which in return would speed up the optimization.

Simplifications The proposed optimization program solves the insufficiencies of past opti-

mization models from the literature. This work demonstrated what is possible using MIQP

optimization. To apply this model in reality, the model’s complexity could be simplified by

reducing the number of steps while keeping the planning horizon constant. Contrary to the

MCTS, this should not significantly reduce the solution space thanks to the continuous action

113

8. Future Work

space. Similar to the two-stage optimization approach from Eiras et al. [99], MIQP could then

serve as the coarse high-level optimization, and a fast local optimization could further improve

and smooth the solution.

8.4. Functional Improvements for MIQP with Rules

The MIQP-based planning approach has only been used in simulation so far. The following steps

should be taken to transfer the approach from simulation to reality.

Integration in Autonomous Driving Stack Kessler et al. [118] proposed the opportunity for

research institutions to validate their planning algorithms in real-world scenarios by integrating

the algorithms to the open-stack Apollo platform. The proposed MIQP-based planner should be

integrated into the framework. This way, state-of-the-art components from Apollo like perception,

routing or control could be re-used.

Multi-Agent Cost Function Human drivers will presumably not match the cooperative cost

function of the autonomous vehicle. To address this, Kessler et al. [61] introduced a cooperation

factor to the multi-agent cost function to model the other’s behavior between altruistic and

egoistic. Future work should focus on estimating such a cooperation factor and the cost terms

online or learn them offline from situational data.

Planning Under Model Inaccuracies The real-world application will yield inaccuracies in the

assumed model and inaccuracies in the perceived world state. The extra soft distance to the

front-to-front collision check is one way to address such inaccuracies that could be transferred

to other aspects of the optimization model. Uncertainty measures from the perception pipeline

could be used to parametrize the soft constraints online. Another direction could be to integrate

the MIQP-based planning approach as a nominal planning method to safe planning layers based

on reachable sets [119] or RSS [49].

Rule-Compliant Prediction Most of the rules implemented in this work’s MIQP-based ap-

proach rely on an initial joint prediction of all vehicles. This prediction does not consider traffic

rules yet. Incorporating them into the prediction could make those predictions more accurate

and allow to drop rule compliance in the subsequent planning step if another agent behaves

irrationally, e.g., violates a rule.

114

9
Conclusion

This thesis studied how to model traffic rules within interactive behavior planning. Chapter 3

proposed a methodology to formalize traffic rules in a machine-interpretable way. This method-

ology involves an abstraction to premise and conclusion, which eases the iterative identification

of exceptions to the rules. The rules were then formalized in temporal logic. In Chapter 4, the

rules were evaluated on recorded human drives to validate the rules and study human drivers’

rule compliance. Then, rule adherence was realized for two orthogonal algorithms for interactive

planning. First, a rule-compliant algorithm based on MCTS was developed in Chapter 5. The

integration of the rule violation monitoring into the tree allows evaluating the rules within

the search efficiently. To respect the priorities in the approximate solution algorithm, TLO is

used. The resulting algorithm can realize compliance with the full formalized ruleset. The

evaluation studied the rule satisfaction and the ramifications of modeling the respective rules in a

merging scenario. An optimal control approach has some significant advantages over tree search

methods. As no generic global optimization method exists, Chapter 6 proposed a formulation

based on MIQP. To facilitate this, approximations for collision-checking and non-holonomy

were introduced. Based on the proposed approach, a subset of traffic rules was formalized as

constrains in the MIQP-based approach.

In summary, this dissertation contains the following theoretical contributions:

T1 The introduction of a methodology to formalize traffic rules in a machine-interpretable

way from legal texts to a formal language.

T2 The combination of a game-theoretic solution approximation algorithm based on sampling

with an automata-based evaluation of LTL formulas. The proposed method can realize

adherence to a priority-based ruleset.

T3 The introduction of a novel optimization program that plans cooperatively for multiple

agents and can avoid dynamic predictions. Traffic rule adherence was implemented and

demonstrated for three rules: No overtaking on the right side, keeping a safe distance, and

keeping on the right.

115

9. Conclusion

Moreover, the practical contributions of this work are:

P1 The presentation of a consistent ruleset with nine rules for a well-defined ODD. The traffic

rules can be applied and checked in simulation or replay of real traffic data.

P2 The presentation of a study to which extent human drivers follow the rules based on real

traffic data.

P3 The development of the simulation and benchmarking framework BARK, which was

developed as a joint effort. BARK shall serve other researchers as a platform for developing

behavior planning algorithms and benchmarking them against each other to obtain a fair

comparison.

P4 The extension of BARK’s benchmarking to evaluate traffic rule satisfaction for arbitrary

LTL formulas.

P5 The implementation of both planning algorithms in C++ and their integration into BARK.

Various simulations of synthetic and recorded traffic scenarios were conducted to demon-

strate the rule adherence of both algorithms.

These two planning algorithms of this work represent two promising but distinct classes of

algorithms. By studying rule-compliance for both, the advantages and shortcomings were

identified, compared and discussed in Chapter 7. However, more research is necessary for

further functional and runtime improvements of the underlying planning algorithms before

running them on a real autonomous vehicle. Likewise, the formalization focused on a subset of

the full road rules and should be tested with noisy and receding horizon data on a real car.

116

A
Appendix

A.1. Parameters for Dataset Evaluation

Table A.1 shows the rule evaluator’s parameters for the INTERACTION dataset analysis on rule

violations in Section 4.5.2.

Table A.1.: Parameters of the rule evaluators used for the dataset evaluation.

Label Description Parameter with value

near-lane-end threshold indicating lane ending (DR_DEU_Merging_MT) srem = 55 m

near-lane-end threshold indicating lane ending (DR_CHN_Merging_ZS (lower)) srem = 20 m

near threshold indicating proximity used for “zipper merge” rule dnear = 5 m

near threshold indicating proximity used for “being overtaken” and

“speed advantage” rule

dnear = 3 m

acc threshold indicating an acceleration alim = 0.5 m/s2

speed-adv threshold indicating speed advantage vdiff = 10 km/h

dense threshold indicating dense traffic Ndense = 8

dense radius in which vehicles are counted Rdense = 20 m

sd-front, sd-rear reaction time treact = 1 s

sd-front, sd-rear maximum deceleration abr,max = −7.84 m/s2

below-speed(vstop) velocity threshold for “no stopping” rule vstop = 1 m/s

117

A. Appendix

A.2. Parameters for MOBIL-based Behavior Model

Table A.2 shows the parameters of the BehaviorMobilRuleBased model, which was used in the

evaluations in Section 5.5 and Section 6.7.

Table A.2.: Parameters of BehaviorMobilRuleBased for Bo. The lane change rules serve as an additional

filter of the lanes to which MOBIL can change.

Parameter Unit Value

IDM

Desired velocity [m/s] 10

Maximum acceleration [m/s2] 1.7

Desired time headway [s] 1.5

Comfortable deceleration [m/s2] 2

Minimum distance [m] 2

Lane change rules

Min. rear distance [m] 0.5

Min. front distance [m] 1

Time Gap [s] 0.5

MOBIL

Politeness Factor [1] 0

Safe deceleration [m/s2] 12

Acceleration threshold [m/s2] 0.2

A.3. Parameters for MCTS-based Planner Evaluation

Table A.3 shows the parameters of the KeepGap directive, which was used as a discrete action for

the MCTS-based planner in the evaluations in Section 5.5.

Table A.3.: Parameters of KeepGap directive.

Parameter Unit Value

IDM

Desired velocity [m/s] 14

Maximum acceleration [m/s2] 1.7

Desired time headway [s] 2.5

Comfortable deceleration [m/s2] 2

Minimum distance [m] 2

118

A.4. Parameters for MIQP-based Planner Evaluation

A.4. Parameters for MIQP-based Planner Evaluation

Table A.4 shows the parameters of the MIQP-based planner in the evaluations in Section 6.7.

Table A.4.: Parameters of MIQP-based behavior planner.

Description Parameter with value

Desired Velocity 10 m/s

Number of Regions 32

Number of Steps N = 20

Number of Neighbouring Possible Regions 3

Time step size 0.25 s

Maximum Solution Time 100 s

Constant Agent Safety Distance D = 3 m

Minimum Region Change Speed 2.0 m/s

Wheel Base l = 2.7 m

Radius of disks for vehicle shape Rcc = 1 m

Agent to Agent Slack Weight ωξ = 30.0

Soft Obstacle Slack Weight ωζ = 2× 103

Jerk Weight ωu = 0.5

Position Weight ωp = 2.0

Maximum Longitudinal Acceleration 2 m/s2

Maximum Braking Acceleration 4 m/s2

Maximum steering angle 0.25 rad

119

List of Figures

1.1. System architecture for a performance planner without traffic rules 10

1.2. Planning architectures overview . 11

1.3. Relationship of chapters of this thesis . 17

2.1. BARK’s simulation loop . 20

2.2. BARK’s concept of an observed world . 21

2.3. One iteration of the MCTS algorithm . 24

3.1. Legal analysis of traffic rules . 28

3.2. Premise and conclusion for speed limit rules . 29

3.3. Premise and conclusion for lane selection rules . 31

3.4. Premise and conclusion for overtaking rules . 33

3.5. Premise and conclusion for safe distance rules . 33

3.6. Premise and conclusion for being overtaken rules 34

3.7. Premise and conclusion for priority rules . 35

3.8. Relational position labels. 38

3.9. Naming convention during a zipper merge . 42

4.1. Distributions of traffic characteristics from the dataset 47

4.2. Zipper merge violation in DR_DEU_Merging_MT . 48

4.3. Zipper merge violation in DR_CHN_Merging_ZS (lower) 49

4.4. Rule violations in the dataset . 51

4.5. Rule correlations with traffic characteristics . 52

4.6. Lane matching calculation . 52

4.7. Lane matching study for rule violations . 53

5.1. Evolution of product state for single rule monitor within MCTS planning 58

5.2. Cumulative reward comparison . 59

5.3. MCTS-based planner satisfying the zipper merge rule 63

121

List of Figures

5.4. Distributions of other agents in closed-loop scenarios 64

5.5. Framework to evaluate rule satisfaction of MCTS in closed-loop simulation 64

5.6. Benchmark of the MCTS variants implementing various rule sets 65

6.1. Construction of regions for linear approximation 73

6.2. Methodology overview of piecewise linear approximation 73

6.3. Piecewise linear approximation of a nonlinear function 74

6.4. Linear vehicle model with unavailable variables . 75

6.5. Sine function from velocity-based orientation estimation 76

6.6. Errors of the piecewise linear fitting . 77

6.7. Deflation and inflation of environment and obstacles for collision checking 82

6.8. Approximation of the vehicle shape for the agent-to-agent collision check 83

6.9. Safe distance constraint as a ghost vehicle . 88

6.10. No right passing constraint as forbidden area . 89

6.11. Satisfaction of the non-holonomy constraint . 92

6.12. MIQP-based planner staying within the road boundaries 93

6.13. MIQP-based planner merging in between the other vehicles 94

6.14. MIQP-based planner merging after the other vehicles 95

6.15. MIQP-based planner planning for multiple agents 97

6.16. MIQP-based planner with the “no passing on the right side” rule 98

6.17. MIQP-based planner with the “safe distance” rule 100

6.18. Framework to evaluate rule satisfaction of MIQP in closed-loop simulation 100

6.19. Benchmark of the MIQP-based planner . 101

6.20. Safe distance violations from the benchmark of the MIQP-based planner 102

6.21. Average planning times from the benchmark of the MIQP-based planner 102

122

List of Tables

3.1. Number of other agents relevant for traffic rules . 36

3.2. Rule formulations in the literature . 37

3.3. Atomic propositions . 39

3.4. Formalized rules . 40

4.1. Analyzed scenarios from the INTERACTION dataset 46

4.2. Validity of the rules in the analyzed scenarios . 46

5.1. Variants of MCTS with different rule sets . 61

6.1. Comparison of continuous optimal control formulations 69

6.2. Comparison of discrete optimal control formulations 70

6.3. Absolute positional errors for the approximation 78

6.4. Decision variables . 79

7.1. Comparison of planning approaches of this work 106

7.2. Comparison of rules within planning approaches of this work 109

A.1. Parameters of the rule evaluators . 117

A.2. Behavior model parameters for other traffic participants 118

A.3. Parameters of gap keeping directive . 118

A.4. Parameters of MIQP-based behavior planner for experiments 119

123

List of Algorithms

1. MCTS algorithm with UCT selection strategy . 26

2. Selection of a reference lane corridor . 87

125

Bibliography

[1] M. Montemerlo et al. “Junior: The Stanford entry in the Urban Challenge.” In: Journal of

Field Robotics 25.9 (2008), pp. 569–597.

[2] C. Urmson et al. “Autonomous driving in urban environments: Boss and the Urban

Challenge.” In: Journal of Field Robotics 25.8 (2008), pp. 425–466.

[3] S. Kammel et al. “Team AnnieWAY’s autonomous system for the 2007 DARPA Urban

Challenge.” In: Journal of Field Robotics 25.9 (2008), pp. 615–639.

[4] F. Favarò, S. Eurich, and N. Nader. “Autonomous vehicles’ disengagements: Trends,

triggers, and regulatory limitations.” In: Accident Analysis and Prevention 110 (2018),

pp. 136–148.

[5] M. Wood et al. “Safety first for automated driving.” In: Aptiv, Audi, BMW, Baidu, Continen-

tal Teves, Daimler, FCA, HERE, Infineon Technologies, Intel, Volkswagen (2019).

[6] L. I. R. Castro et al. “Incremental sampling-based algorithm for minimum-violation

motion planning.” In: 52nd IEEE Conference on Decision and Control. 2013, pp. 3217–3224.

[7] W. Schwarting, J. Alonso-Mora, and D. Rus. “Planning and Decision-Making for Au-

tonomous Vehicles.” In: Annual Review of Control, Robotics, and Autonomous Systems 1.1

(2018).

[8] P. Bender, Ö. Ş. Taş, J. Ziegler, and C. Stiller. “The combinatorial aspect of motion

planning: Maneuver variants in structured environments.” In: 2015 IEEE Intelligent Vehicles

Symposium (IV). 2015, pp. 1386–1392.

[9] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. “Anytime motion planning

using the RRT*.” In: 2011 IEEE International Conference on Robotics and Automation. 2011,

pp. 1478–1483.

[10] J. Ziegler, P. Bender, T. Dang, and C. Stiller. “Trajectory planning for Bertha—A local,

continuous method.” In: 2014 IEEE intelligent vehicles symposium proceedings. 2014, pp. 450–

457.

[11] M. Bojarski et al. “End to End Learning for Self-Driving Cars.” In: pre-print (2016). arXiv:

1604.07316.

[12] A. Kendall et al. “Learning to Drive in a Day.” In: 2019 International Conference on Robotics

and Automation (ICRA). 2019, pp. 8248–8254.

127

https://arxiv.org/abs/1604.07316

Bibliography

[13] F. Altché and A. De La Fortelle. “Partitioning of the free space-time for on-road navigation

of autonomous ground vehicles.” In: 2017 IEEE 56th Annual Conference on Decision and

Control (CDC). 2018, pp. 2126–2133.

[14] S. Sontges and M. Althoff. “Computing possible driving corridors for automated vehicles.”

In: 2017 IEEE Intelligent Vehicles Symposium (IV). 2017, pp. 160–166.

[15] B. Gutjahr, C. Pek, L. Gröll, and M. Werling. “Recheneffiziente Trajektorienoptimierung

für Fahrzeuge mittels quadratischem Programm.” In: At-Automatisierungstechnik 64.10

(2016), pp. 786–794.

[16] K. Esterle, P. Hart, J. Bernhard, and A. Knoll. “Spatiotemporal Motion Planning with

Combinatorial Reasoning for Autonomous Driving.” In: 2018 21st International Conference

on Intelligent Transportation Systems (ITSC). 2018, pp. 1053–1060.

[17] C. Pek and M. Althoff. “Fail-Safe Motion Planning for Online Verification of Autonomous

Vehicles Using Convex Optimization.” In: IEEE Transactions on Robotics 37.3 (2020), pp. 798–

814.

[18] C. Hubmann, M. Aeberhard, and C. Stiller. “A generic driving strategy for urban envi-

ronments.” In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems

(ITSC). 2016, pp. 1010–1016.

[19] C. Chen, M. Rickert, and A. Knoll. “Kinodynamic motion planning with Space-Time

Exploration Guided Heuristic Search for car-like robots in dynamic environments.”

In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015,

pp. 2666–2671.

[20] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee. “Motion planning for au-

tonomous driving with a conformal spatiotemporal lattice.” In: 2011 IEEE International

Conference on Robotics and Automation. 2011, pp. 4889–4895.

[21] M. Werling, S. Kammel, J. Ziegler, and L. Groll. “Optimal trajectories for time-critical

street scenarios using discretized terminal manifolds.” In: The International Journal of

Robotics Research 31.3 (2012), pp. 346–359.

[22] S. Karaman and E. Frazzoli. “Incremental Sampling-based Algorithms for Optimal Motion

Planning.” In: Robotics Science and Systems VI 104.2 (2010).

[23] J. H. Jeon, S. Karaman, and E. Frazzoli. “Anytime computation of time-optimal off-road

vehicle maneuvers using the RRT.” In: 2011 50th IEEE Conference on Decision and Control

and European Control Conference. 2011, pp. 3276–3282.

[24] M. Bahram, A. Lawitzky, J. Friedrichs, M. Aeberhard, and D. Wollherr. “A Game-Theoretic

Approach to Replanning-Aware Interactive Scene Prediction and Planning.” In: IEEE

Transactions on Vehicular Technology 65.6 (2016).

[25] D. Lenz, T. Kessler, and A. Knoll. “Tactical Cooperative Planning for Autonomous Vehicles

using Monte-Carlo Tree Search.” In: 2016 IEEE Intelligent Vehicles Symposium (IV). 2016,

pp. 447–453.

128

Bibliography

[26] W. Schwarting, A. Pierson, S. Karaman, and D. Rus. “Stochastic Dynamic Games in Belief

Space.” In: IEEE Transactions on Robotics (2021).

[27] T. Kessler and A. Knoll. “Cooperative Multi-Vehicle Behavior Coordination for Au-

tonomous Driving.” In: 2019 IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 1953–

1960.

[28] N. Evestedt, E. Ward, J. Folkesson, and D. Axehill. “Interaction aware trajectory planning

for merge scenarios in congested traffic situations.” In: 2016 IEEE 19th International

Conference on Intelligent Transportation Systems (ITSC). 2016, pp. 465–472.

[29] C. Frese and J. Beyerer. “A comparison of motion planning algorithms for cooperative

collision avoidance of multiple cognitive automobiles.” In: 2011 IEEE intelligent vehicles

symposium (IV). 2011, pp. 1156–1162.

[30] J. Eilbrecht and O. Stursberg. “Cooperative driving using a hierarchy of mixed-integer

programming and tracking control.” In: 2017 IEEE Intelligent Vehicles Symposium (IV). 2017,

pp. 673–678.

[31] F. Fabiani and S. Grammatico. “Multi-vehicle automated driving as a generalized mixed-

integer potential game.” In: IEEE Transactions on Intelligent Transportation Systems 21.3

(2020), pp. 1064–1073.

[32] X. Qian, F. Altché, P. Bender, C. Stiller, and A. de La Fortelle. “Optimal trajectory planning

for autonomous driving integrating logical constraints: An MIQP perspective.” In: 2016

IEEE 19th international conference on intelligent transportation systems (ITSC). 2016, pp. 205–

210.

[33] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer. “Safe Reinforcement

Learning with Scene Decomposition for Navigating Complex Urban Environments.” In:

2019 IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 1469–1476.

[34] D. Isele, A. Nakhaei, and K. Fujimura. “Safe Reinforcement Learning on Autonomous

Vehicles.” In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

2018, pp. 1–6.

[35] H. Krasowski, X. Wang, and M. Althoff. “Safe Reinforcement Learning for Autonomous

Lane Changing Using Set-Based Prediction.” In: 2020 IEEE 23rd International Conference on

Intelligent Transportation Systems (ITSC). 2020, pp. 1–7.

[36] P. Hart and A. Knoll. “Counterfactual Policy Evaluation for Decision-Making in Au-

tonomous Driving.” In: IROS 2020 Workshop Perception, Learning, and Control for Autonomous

Agile Vehicles. 2020.

[37] P. Hart and A. Knoll. “Graph Neural Networks and Reinforcement Learning for Behavior

Generation in Semantic Environments.” In: 2020 IEEE Intelligent Vehicles Symposium (IV).

2020, pp. 1589–1594.

[38] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov. “Combining neural networks and

tree search for task and motion planning in challenging environments.” In: 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). 2017, pp. 6059–6066.

129

Bibliography

[39] P. Weingertner, M. Ho, A. Timofeev, S. Aubert, and G. Pita-Gil. “Monte Carlo Tree Search

With Reinforcement Learning for Motion Planning.” In: 2020 IEEE 23rd International

Conference on Intelligent Transportation Systems (ITSC). 2020, pp. 1–7.

[40] J. Bernhard, R. Gieselmann, K. Esterle, and A. Knoll. “Experience-Based Heuristic Search:

Robust Motion Planning with Deep Q-Learning.” In: 2018 21st International Conference on

Intelligent Transportation Systems (ITSC). 2018, pp. 3175–3182.

[41] P. Chaudhari, T. Wongpiromsarny, and E. Frazzoli. “Incremental minimum-violation

control synthesis for robots interacting with external agents.” In: 2014 American Control

Conference. 2014, pp. 1761–1768.

[42] J. Talamini, A. Bartoli, A. D. Lorenzo, and E. Medvet. “On the impact of the rules on

autonomous drive learning.” In: Applied Sciences (Switzerland) 10.7 (2020).

[43] Z. Ajanovic, B. Lacevic, B. Shyrokau, M. Stolz, and M. Horn. “Search-Based Optimal

Motion Planning for Automated Driving.” In: 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). 2018, pp. 4523–4530.

[44] J. Karlsson and J. Tumova. “Intention-aware motion planning with road rules.” In: 2020

IEEE 16th International Conference on Automation Science and Engineering (CASE). 2020,

pp. 526–532.

[45] K. X. Cai, T. Phan-Minh, S.-J. Chung, and R. M. Murray. “Rules of the Road: Towards

Safety and Liveness Guarantees for Autonomous Vehicles.” In: pre-print (2020). arXiv:

2011.14148.

[46] B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar. “Highly Automated Driving

on Highways Based on Legal Safety.” In: IEEE Transactions on Intelligent Transportation

Systems 14.1 (2012), pp. 333–347.

[47] K. Esterle, V. Aravantinos, and A. Knoll. “From Specifications to Behavior: Maneuver

Verification in a Semantic State Space.” In: 2019 IEEE Intelligent Vehicles Symposium (IV).

2019, pp. 2140–2147.

[48] J. Decastro et al. “Counterexample-Guided Safety Contracts for Autonomous Driving.”

In: Workshop on the Algorithmic Foundations of Robotics (WAFR). 2018.

[49] S. Shalev-Shwartz, S. Shammah, and A. Shashua. “On a Formal Model of Safe and Scalable

Self-driving Cars.” In: pre-print (2018). arXiv: 1708.06374.

[50] A. Rizaldi and M. Althoff. “Formalising Traffic Rules for Accountability of Autonomous

Vehicles.” In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems.

2015, pp. 1658–1665.

[51] A. Rizaldi, F. Immler, and M. Althoff. “A formally verified checker of the safe distance

traffic rules for autonomous vehicles.” In: NASA Formal Methods Symposium. 2016, pp. 175–

190.

[52] A. Rizaldi et al. “Formalising and Monitoring Traffic Rules for Autonomous Vehicles in

Isabelle/HOL.” In: International conference on integrated formal methods. 2017, pp. 50–66.

130

https://arxiv.org/abs/2011.14148
https://arxiv.org/abs/1708.06374

Bibliography

[53] N. Arechiga. “Specifying Safety of Autonomous Vehicles in Signal Temporal Logic.” In:

2019 IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 58–63.

[54] A. Pal, J. Philion, Y.-H. Liao, and S. Fidler. “Emergent Road Rules In Multi-Agent Driving

Environments.” In: pre-print (2021). arXiv: 2011.10753.

[55] F. Poggenhans et al. “Lanelet2: A high-definition map framework for the future of

automated driving.” In: 2018 21st International Conference on Intelligent Transportation

Systems (ITSC). 2018, pp. 1672–1679.

[56] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff. “Formalization of Interstate

Traffic Rules in Temporal Logic.” In: 2020 IEEE Intelligent Vehicles Symposium (IV). 2020,

pp. 752–759.

[57] K. Esterle, T. Kessler, and A. Knoll. “Optimal Behavior Planning for Autonomous Driving:

A Generic Mixed-Integer Formulation.” In: 2020 IEEE Intelligent Vehicles Symposium (IV).

2020, pp. 1914–1921.

[58] J. Bernhard, K. Esterle, P. Hart, and T. Kessler. “BARK: Open Behavior Benchmarking in

Multi-Agent Environments.” In: 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). 2020, pp. 6201–6208.

[59] K. Esterle, L. Gressenbuch, and A. Knoll. “Formalizing Traffic Rules for Machine Inter-

pretability.” In: 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS). 2020,

pp. 1–7.

[60] K. Esterle, L. Gressenbuch, and A. Knoll. “Modeling and Testing Multi-Agent Traffic

Rules within Interactive Behavior Planning.” In: IROS 2020 Workshop "Perception, Learning,

and Control for Autonomous Agile Vehicles". 2020.

[61] T. Kessler, K. Esterle, and A. Knoll. “Linear Differential Games for Cooperative Behavior

Planning of Autonomous Vehicles Using Mixed-Integer Programming.” In: 2020 59th IEEE

Conference on Decision and Control (CDC). 2020, pp. 4060–4066.

[62] M. Treiber, A. Hennecke, and D. Helbing. “Congested traffic states in empirical obser-

vations and microscopic simulations.” In: Physical Review E - Statistical Physics, Plasmas,

Fluids, and Related Interdisciplinary Topics 62.2 (2000), pp. 1805–1824.

[63] Jakob, Wenzel. pybind. Version 11. url: https://github.com/pybind/pybind11/.

[64] Google. Bazel. url: https://bazel.build/.

[65] A. Kesting, M. Treiber, and D. Helbing. “General lane-changing model MOBIL for car-

following models.” In: Transportation Research Record 1999.1 (2007), pp. 86–94.

[66] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun. “Autonomous automobile

trajectory tracking for off-road driving: Controller design, experimental validation and

racing.” In: 2007 American Control Conference. 2007, pp. 2296–2301.

[67] C. Browne et al. “A survey of monte carlo tree search methods.” In: IEEE Transactions on

Computational Intelligence and AI in games 4.1 (2012), pp. 1–43.

131

https://arxiv.org/abs/2011.10753
https://github.com/pybind/pybind11/
https://bazel.build/

Bibliography

[68] J. Bernhard. MA-MCTS: A configurable library for Multi-Agent Monte Carlo Tree Search in

C++. url: https://github.com/juloberno/mamcts/.

[69] Bundesministeriums der Justiz und für Verbraucherschutz. Straßenverkehrs-Ordnung

(StVO). 2013.

[70] United Nations Economic Commission for Europe. Convention on road traffic. United

Nations Conference on Road Traffic. 1968.

[71] Collins. “Motor Road.” In: Collins English Dictionary. url: https://www.collinsdictionary.

com/dictionary/english/motor-road/ (visited on 01/03/2021).

[72] C. Wuthishuwong and A. Traechtler. “Coordination of multiple autonomous intersections

by using local neighborhood information.” In: 2013 International Conference on Connected

Vehicles and Expo (ICCVE). 2013, pp. 48–53.

[73] BGH. Beschluss vom 03.05.1968 – 4 StR 242/67. 1968.

[74] OLG Zweibrücken. Beschluss vom 16.11.2009 - 1 SsRs 45/09. 2009.

[75] A. Marshall. Nice Minnesotans Don’t Get the Cruelly Efficient Zipper Merge. Visited on

2020–05-29. 2016. url: https://www.wired.com/2016/06/nice-minnesotans-dont-

get-cruelly-efficient-zipper-merge/.

[76] AG Düsseldorf. Urteil vom 17.11.2006 – 41 C 3418/06. 2006.

[77] LG München I. Beschluss vom 07.06.2002 – 17 S 22537/01. 2002.

[78] P. Zollner. Reissverschlussverfahren. Visited on 2021–02-01. 2020. url: https://www.adac.

de/verkehr/recht/verkehrsvorschriften-deutschland/reissverschlussverfahren/.

[79] R. Alur and T. A. Henzinger. “Real-time logics: complexity and expressiveness.” In: [1990]

Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science. 1990, pp. 390–401.

[80] O. Maler and D. Nickovic. “Monitoring temporal properties of continuous signals.” In:

Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Springer, 2004,

pp. 152–166.

[81] K. Cho, T. Ha, G. Lee, and S. Oh. “Deep Predictive Autonomous Driving Using Multi-

Agent Joint Trajectory Prediction and Traffic Rules.” In: 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). 2019, pp. 2076–2081.

[82] M. Koschi and M. Althoff. “Set-based prediction of traffic participants considering oc-

clusions and traffic rules.” In: IEEE Transactions on Intelligent Vehicles 6.2 (2020), pp. 249–

265.

[83] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

[84] G. De Giacomo and M. Y. Vardi. “Linear Temporal Logic and Linear Dynamic Logic on

Finite Traces.” In: Twenty-Third International Joint Conference on Artificial Intelligence. 2013.

[85] Z. Manna and A. Pnueli. “A hierarchy of temporal properties.” In: Proceedings of the ninth

annual ACM symposium on Principles of distributed computing. 1990, pp. 377–410.

132

https://github.com/juloberno/mamcts/
https://www.collinsdictionary.com/dictionary/english/motor-road/
https://www.collinsdictionary.com/dictionary/english/motor-road/
https://www.wired.com/2016/06/nice-minnesotans-dont-get-cruelly-efficient-zipper-merge/
https://www.wired.com/2016/06/nice-minnesotans-dont-get-cruelly-efficient-zipper-merge/
https://www.adac.de/verkehr/recht/verkehrsvorschriften-deutschland/reissverschlussverfahren/
https://www.adac.de/verkehr/recht/verkehrsvorschriften-deutschland/reissverschlussverfahren/

Bibliography

[86] H. Schluter, P. Schillinger, and M. Burger. “On the Design of Penalty Structures for

Minimum-Violation LTL Motion Planning.” In: 2018 IEEE Conference on Decision and

Control (CDC). 2018, pp. 4153–4158.

[87] A. Duret-Lutz et al. “Spot 2.0 — a framework for LTL and ω-automata manipulation.”

In: International Symposium on Automated Technology for Verification and Analysis. 2016,

pp. 122–129.

[88] Esterle, Klemens and Gressenbuch, Luis. Rule Monitor. url: https://github.com/bark-

simulator/rule-monitoring/.

[89] W. Zhan et al. “INTERACTION Dataset: An INTERnational, Adversarial and Cooperative

moTION Dataset in Interactive Driving Scenarios with Semantic Maps.” In: pre-print

(2019). arXiv: 1910.03088.

[90] J. Karlsson, C.-I. Vasile, J. Tumova, S. Karaman, and D. Rus. “Multi-vehicle motion

planning for social optimal mobility-on-demand.” In: 2018 IEEE International Conference

on Robotics and Automation (ICRA). 2018, pp. 7298–7305.

[91] J. Lee, A. Balakrishnan, A. Gaurav, K. Czarnecki, and S. Sedwards. “WiseMove: A

Framework to Investigate Safe Deep Reinforcement Learning for Autonomous Driving.”

In: International Conference on Quantitative Evaluation of Systems. 2019, pp. 350–354.

[92] W. Wang and M. Sebag. “Multi-objective monte-carlo tree search.” In: Asian conference on

machine learning. 2012, pp. 507–522.

[93] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker. “Empirical evaluation

methods for multiobjective reinforcement learning algorithms.” In: Machine Learning 84.1

(2011), pp. 51–80.

[94] Esterle, Klemens and Gressenbuch, Luis. Planner Rules Mcts. url: https://github.com/

bark-simulator/planner-rules-mcts/.

[95] K. Kurzer, C. Zhou, and J. Marius Zollner. “Decentralized cooperative planning for

automated vehicles with hierarchical Monte Carlo tree search.” In: 2018 IEEE Intelligent

Vehicles Symposium (IV). 2018, pp. 529–536.

[96] J. Nilsson, M. Brannstrom, J. Fredriksson, and E. Coelingh. “Longitudinal and Lateral Con-

trol for Automated Yielding Maneuvers.” In: IEEE Transactions on Intelligent Transportation

Systems 17.5 (2016), pp. 1404–1414.

[97] C. Miller, C. Pek, and M. Althoff. “Efficient Mixed-Integer Programming for Longitudinal

and Lateral Motion Planning of Autonomous Vehicles.” In: 2018 IEEE Intelligent Vehicles

Symposium (IV). 2018, pp. 1954–1961.

[98] C. Frese. “Planung kooperativer Fahrmanöver für kognitive Automobile.” PhD thesis.

Karlsruhe Institute of Technology, 2012.

[99] F. Eiras, M. Hawasly, S. V. Albrecht, and S. Ramamoorthy. “A Two-Stage Optimization

Approach to Safe-by-Design Planning for Autonomous Driving.” In: pre-print (2020).

arXiv: 2002.02215.

133

https://github.com/bark-simulator/rule-monitoring/
https://github.com/bark-simulator/rule-monitoring/
https://arxiv.org/abs/1910.03088
https://github.com/bark-simulator/planner-rules-mcts/
https://github.com/bark-simulator/planner-rules-mcts/
https://arxiv.org/abs/2002.02215

Bibliography

[100] C. Burger and M. Lauer. “Cooperative Multiple Vehicle Trajectory Planning using MIQP.”

In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). 2018,

pp. 602–607.

[101] C. Burger, T. Schneider, and M. Lauer. “Interaction aware cooperative trajectory planning

for lane change maneuvers in dense traffic.” In: 2020 IEEE 23rd International Conference on

Intelligent Transportation Systems (ITSC). 2020, pp. 1–8.

[102] E. M. Wolff, U. Topcu, and R. M. Murray. “Optimization-based trajectory generation with

linear temporal logic specifications.” In: 2014 IEEE International Conference on Robotics and

Automation (ICRA). 2014, pp. 5319–5325.

[103] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[104] B. Gutjahr, L. Gröll, and M. Werling. “Lateral Vehicle Trajectory Optimization Using

Constrained Linear Time-Varying MPC.” In: IEEE Transactions on Intelligent Transportation

Systems 18.6 (2016), pp. 1586–1595.

[105] IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual. 2017.

[106] Esterle, Klemens and Kessler, Tobias. Mixed-Integer Behavior and Motion Planning. url:

https://github.com/bark-simulator/planner-miqp/.

[107] T. Marcucci and R. Tedrake. “Warm Start of Mixed-Integer Programs for Model Predictive

Control of Hybrid Systems.” In: IEEE Transactions on Automatic Control (2020).

[108] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli. “A Survey of Motion Plan-

ning and Control Techniques for Self-Driving Urban Vehicles.” In: IEEE Transactions on

Intelligent Vehicles 1.1 (2016), pp. 33–55.

[109] D. Lenz. “Motion Planning for Highly-Automated Vehicles under Uncertainties and

Interactions with Human Drivers.” PhD thesis. TU Munich, 2018.

[110] A. Sabharwal, H. Samulowitz, and C. Reddy. “Guiding combinatorial optimization with

UCT.” In: International conference on integration of artificial intelligence (AI) and operations

research (OR) techniques in constraint programming. 2012, pp. 356–361.

[111] T. Kessler et al. “Roadgraph Generation and Free-Space Estimation in Unknown Struc-

tured Environments for Autonomous Vehicle Motion Planning.” In: 2018 21st International

Conference on Intelligent Transportation Systems (ITSC). 2018.

[112] A. Censi et al. “Liability, Ethics, and Culture-Aware Behavior Specification using Rule-

books.” In: 2019 International Conference on Robotics and Automation (ICRA). 2019, pp. 8536–

8542.

[113] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller. “A Belief State Planner for

Interactive Merge Maneuvers in Congested Traffic.” In: 2018 21st International Conference

on Intelligent Transportation Systems (ITSC). 2018, pp. 1617–1624.

[114] J. Bernhard and A. Knoll. “Robust Stochastic Bayesian Games for Behavior Space Cover-

age.” In: Robotics: Science and Systems (RSS), Workshop on Interaction and Decision-Making in

Autonomous-Driving. 2020.

134

https://github.com/bark-simulator/planner-miqp/

Bibliography

[115] L. Gressenbuch and M. Althoff. “Predictive Monitoring of Traffic Rules.” In: 2021 IEEE

International Intelligent Transportation Systems Conference (ITSC). 2021.

[116] O. Günlük. Lecture notes ORF 523: Cutting Planes for Mixed-Integer Programming: Theory and

Practice. Visited on 2021–02-01. 2018. url: http://www.princeton.edu/~aaa/Public/

Teaching/ORF523/ORF523_Lec17_guest.pdf.

[117] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. “Learning to Branch.” In: International

conference on machine learning. 2017, pp. 344–353.

[118] T. Kessler et al. “Bridging the Gap between Open Source Software and Vehicle Hardware

for Autonomous Driving.” In: 2019 IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 1612–

1619.

[119] C. Pek, S. Manzinger, M. Koschi, and M. Althoff. “Using online verification to prevent

autonomous vehicles from causing accidents.” In: Nature Machine Intelligence 2.9 (2020),

pp. 518–528.

135

http://www.princeton.edu/~aaa/Public/Teaching/ORF523/ORF523_Lec17_guest.pdf
http://www.princeton.edu/~aaa/Public/Teaching/ORF523/ORF523_Lec17_guest.pdf

	Contents
	Acronyms
	List of Symbols
	Introduction
	Motivation
	State of the Art
	State of the Art on Behavior Planning
	State of the Art for Ensuring Traffic Rules Within Planning
	State of the Art for Traffic Rule Formalization

	Contributions
	Publications
	Structure of this Thesis

	Preliminaries
	Benchmarking Behavior in Simulation
	Overview and Contribution
	BARK in a Nutshell
	Behavior Modeling for Realism in Simulation
	Evaluator Concept for Benchmarking

	Monte Carlo Tree Search
	Monte Carlo Tree Search for Behavior Planning
	Monte Carlo Tree Search in BARK

	Formalization of Traffic Rules for Machine Interpretability
	Overview and Contribution
	Legal Analysis of German Traffic Rules on Dual Carriageways
	Regulations on Speed
	Regulations on the Use of Roads and Lanes
	Regulations on Overtaking
	Regulations on a Safe Distance
	Regulations on Being Overtaken
	Regulations on Priorities

	Identifying a Suitable Language for Machine Interpretability
	Characteristics of Traffic Rules in Dense Highway Scenarios
	Selection of a Formalization Language

	Formalizing Traffic Rules Using Linear Temporal Logic
	Linear Temporal Logic for Codification
	Atomic Propositions for Concretization
	Codified Rules

	Conclusion

	Evaluating Traffic Rules in Linear Temporal Logic on Recorded Drives
	Overview and Contribution
	Linear Temporal Logic on Finite Traces
	Automaton-based Verification of LTLf Formulas
	Runtime Monitoring of Traffic Rules
	Rule Violations
	Open Rule Monitor

	Evaluation
	Evaluation Methods and Dataset Processing
	Evaluation of Violation on Recorded Drives

	Conclusion

	Monitoring of Traffic Rules Within Interactive Behavior Planning
	Overview and Contribution
	Related Work
	Problem Formulation and Assumptions
	Approach
	Rule Monitoring Within Monte Carlo Tree Search
	Costs for a Violation Penalty
	Multi-Objective Reward Function with Priorities

	Experiments and Results
	Experimental Setup
	Zipper Merge in Merging Scenario
	Quantitative Evaluation

	Conclusion

	Optimal Interactive Behavior Planning Satisfying Traffic Rules
	Overview and Contribution
	Related Work
	Problem Formulation and Assumptions
	Region-based Linearization Approach of Nonlinear Constraints
	Discretized and Disjunctive Modeling of the Orientation
	Over-Approximating the Collision Shape
	Modeling the Non-Holonomics

	Fitting Method of Linear Polynomials
	Fitting the Front Axle Position
	Fitting the Curvature

	Formulating the Planning Problem as Linear Dynamic Game
	Formulating the Vehicle Model as Constraints
	Modeling the Non-Holonomy as Constraints
	Approximating the Front Axle Position as Constraints
	Constraints Limiting the Model to Stay on the Road
	Formulating Collision Avoidance as Constraints
	Multi-Agent Collision Constraints
	Traffic Rules
	Joint Cost Function for Reference Tracking
	Optimization Problem
	Receding Horizon Formulation

	Experiments and Results
	Preserving the Non-Holonomy
	Staying Within the Road Boundaries
	Avoiding Dynamic Obstacles
	Planning for Multiple Agents
	Evaluation on Traffic Rules
	Benchmark

	Conclusion

	Comparison of Planning Approaches for Traffic Rule Integration
	Comparison of Planning Approaches
	Characteristics of Model
	Characteristics of Solution Method
	Possible Extensions of Solution Method

	Comparison of Implemented Rules
	Conclusion

	Future Work
	Traffic Ruleset
	Functional Improvements for MCTS with Rules
	Performance Improvements for MIQP
	Functional Improvements for MIQP with Rules

	Conclusion
	Appendix
	Parameters for Dataset Evaluation
	Parameters for MOBIL-based Behavior Model
	Parameters for MCTS-based Planner Evaluation
	Parameters for MIQP-based Planner Evaluation

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

