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Abstract—Modern society has become increasingly reliant
on the omnipresent cyber-physical systems (CPSs), making it
paramount that the contemporary autonomous and decentralized
CPSs (e.g., robots, drones and self-driving cars) act reliably
despite their exposure to a variety of run-time uncertainties. The
sources of uncertainties could be internal, i. e., originating from
the systems themselves, or external—unpredictable environments.
Self-adaptive CPSs (SACPSs) modify their behavior or structure
at run-time in response to the uncertainties mentioned above. The
adaptation relies on gained knowledge from the observations that
the SACPSs make during their operation. As a result, to build
the knowledge, the need for run-time observations aggregation
and reasoning emerges since the observations made by decen-
tralized CPSs are uncertain, partial, and potentially conflicting.
In response, in this paper, we propose a novel methodological
approach for deriving or aggregating knowledge from uncertain
observations in SACPSs utilizing the Subjective Logic. The
effectiveness of the proposed approach is demonstrated through
extensive evaluation on an in-house, multi-agent system from the
robotics domain.

Index Terms—uncertainties, subjective logic, knowledge aggre-
gation, self-adaptive systems, cyber-physical systems

I. INTRODUCTION

Cyber-physical systems (CPSs) are software-intensive sys-
tems that control, communicate, and coordinate various pro-
cesses in the physical and the digital worlds. Over the
past decades, the boundary between the digital and physical
has become increasingly blurry, accompanied by the rising
prominence of CPSs. This process was further accelerated
by the rapidly decreasing costs of embedded systems, which
ultimately led to the omnipresence of CPSs as seen today.
Nowadays, CPSs come in all shapes and sizes with applica-
tions as diverse as self-driving cars, smart homes, and entire
robotic fleets, including autonomous robots and UAVs [6, 18].

As modern society increasingly relies on CPSs, these sys-
tems must act reliably even when faced with different run-time
uncertainties. For instance, internal system uncertainties, i.e.,
different software or hardware faults and failures, as well as
external uncertainties, e.g., uncertain and changing environ-
ments or execution contexts [21, 24, 28] in which the systems
operate. Further, due to the limited range of their sensors,
CPSs can only observe their context partially, which introduces
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another uncertainty dimension in the systems. A common
approach to deal with uncertain and changing conditions at
run-time while preserving the system’s performance is to make
CPSs self-adaptive.

In architecture-based self-adaptation [8, 12, 17, 40], a self-
adaptive system—including self-adaptive CPS (SACPS)—is
comprised of a managed element and an adaptation logic.
The managed element can be either a software system or
a CPS. If the SACPS consists of multiple autonomous and
decentralized CPSs (i.e., managed elements), we refer to it
as a Multi-Agent SACPS (MA-SACPS). On the other hand,
the adaptation logic gives the managed element the ability to
self-adapt and is commonly implemented using the MAPE-K
feedback loop [17, 31, 32]. MAPE-K relies on four separate
modules that Monitor, Analyse, Plan and Execute adaptations
based on a shared Knowledge element. Furthermore, every
system operates in a context. The context is the relevant part
of the environment that can be observed, but not controlled.
The knowledge (K) should keep models of both (1) the context
in which the CPSs are operating, and (2) the CPSs themselves.
These models should be continuously updated at run-time to
reflect the dynamic changes in both the context and the CPSs;
therefore, they need to be models at run-time (models @RT).

Models@RT [3, 4, 10, 38] are a promising approach for
managing complexity at run-time, also considered as adapta-
tion mechanisms for realizing self-adaptive systems. In past
efforts, Floch et al. [10] and Bennaceur et al. [3] have
identified the need for reasoning mechanisms as part of the
models @RT, based on which the models are updated; however,
no concrete solutions have been proposed. Concretely, the
authors recognize as open research challenges: 1) the need for
creating run-time models, and updating them in response to
changes in the system and system’s context; and 2) the need for
reasoning (i.e., information or knowledge aggregation) based
on which the models are updated.

Problem. MA-SACPSs are exposed to a variety of run-time
uncertainties resulting in inaccurate and partial observations,
which potentially lead to conflicting observations made by
different CPSs. This can impact the overall performance of the
adaptive system. Consequently, there is a need for reasoning



by effectively aggregating the different observations before

updating K. This can be seen as an uncertainty resolution

strategy applied at run-time.

Gaps. Although knowledge representation, aggregation and
reasoning are essential for building MA-SACPSs [41], there is
a scarcity of approaches for modeling K that allow capturing
uncertain and conflicting observations from multiple, decen-
tralized CPSs, to effectively aggregate the observations and
eventually update the K. Additionally, in prior works, knowl-
edge modeling has been typically treated as a domain-specific
task [11], leading to ad-hoc solutions to its aggregation.

Solution. In this paper, we present a methodological ap-
proach for knowledge aggregation and reasoning in MA-
SACPSs that is domain-independent and can deal with rea-
soning on uncertain, partial, and conflicting observations.
Concretely, our approach uses Subjective Logic (SL) [14, 15]
to update the knowledge in the adaptation logic at run-time by
aggregating observations of the context made by each CPSs
in a MA-SACPS:s.

Contribution. Building on our previous work in which we
introduced the idea of knowledge aggregation via Subjective
Logic [25], in this paper we detail and extensively evaluate our
fully developed approach. Succinctly, we make the following
contributions:

(i) We present our fully developed SL-based approach for
knowledge aggregation and reasoning in MA-SACPSs.

(i) We provide an open-source implementation of a in-house
ROS-based multi-robot system, which acts as a testbed
for different scenarios involving uncertain and conflicting
observations in the robotics domain.

(iii) We evaluate the effectiveness and sensitivity of the pro-
posed SL-based approach through extensive controlled
experiments.

Organization. In Section II we describe the class of use
cases from the CPSs domain to which our approach is appli-
cable, and a use case instantiation used as a running example
throughout the rest of the paper. Section III summarizes
the necessary background, before giving an overview of the
approach in Section IV. In Section V we briefly describe the
implementation of the approach, followed by the evaluation
in Section VI. Section VII discusses related work, before
concluding the paper in Section VIIL

II. USE CASE
A. Class of Use Cases

Our proposed solution applies to any use case where multi-
ple CPSs need to collaborate and coordinate processes assum-
ing decentralized, partial and uncertain monitoring and central-
ized analysis. For example, mobile CPSs that autonomously
traverse an environment to discover and attain tasks (e.g.,
robots or drones), or stationary agents that might have over-
lapping ranges of sensing (e.g., radio antennas). The CPSs
could operate in two-dimensional (e.g., robots, self-driving
cars) or three-dimensional environments (e. g., drones, UAVs).
The dimension of the environment consequently defines how
the context is modeled.

The complex and heterogeneous nature of CPSs of-
ten requires the SACPS to consist of multiple MAPE-K
loops [25, 27, 41]. The use of multiple, interconnected MAPE-
K loops leads to numerous challenges, one of which is
the coordination of the control loops [39]. One possible
solution is the use of design patterns [41] for distributed
self-adaptive systems. In our paper, we assume that the
considered CPSs are capable of independently monitoring
the context in which they operate and simultaneously exe-
cute actions, i.e., performing the M and E phases of the
MAPE-K on a local level. The decentralized phases of the
MAPE-K inside the managed elements (the CPSs) are con-
trolled by a single, centralized instance of planning (P),
analysis (A), and knowledge (K) in the adaptation logic.
Concretely, the MAPE-K loops in-
side the adaptation logic are struc-
tured according to the Master-
Slave pattern (see Figure 1), pre-
viously proposed by Weyns [41].
To motivate the need for reason-
ing or knowledge aggregation, the
centralized MAPE-K loop needs
to reason on the uncertain, par-
tial and potentially conflicting ob-
servations made by the decentral-
ized monitoring, which, once ag-
gregated, become knowledge.

Fig. 1.

Master-Slave pattern
of the MAPE-K loop (updated
from [41]).

B. Running example

The running example comprises of one or multiple robots
operating in a room, in which dirt patches are continuously
spawned with unknown location patterns and frequencies. The
dirt patches represent cleaning tasks for the robots. Each robot
is able to autonomously move to its destinations (i.e., the
tasks’ locations) while avoiding 1) static obstacles (e.g., walls,
furniture, etc.), and 2) dynamic obstacles (e.g., other robots,
humans) along its way. The robots fulfill their mission by
discovering and cleaning the dirt i.e., completing the tasks
without collision. They explore the room and detect new tasks
in a distributed manner with a scanner, e. g., a LIDAR sensor.
In addition to simply keeping the room clean, we also want
to improve the performance or the quality of this cleaning
process, €. g., cleaning the room in the shortest possible time.

However, the robots are subjected to external and internal
uncertainties, manifested via the continuous appearance of
tasks in the room—with unknown location patterns and differ-
ent sensor uncertainties that cannot be anticipated during the
design of the system. Due to the technical limitations of their
sensors, the robots only monitor a limited range around them
and can discover the newly appearing tasks only if they are
within their range of observation. The partiality of the robots’
observations introduces inefficiency to the overall system
performance. Additionally, due to the sensor technology being
imprecise and faulty, each robot might mistakenly sense a dirt
task when there is none, and on the contrary, fail to sense an
actual task. This potentially results in different robots holding



Fig. 2. Grid map and partial robots’ observations, adopted from [25]

different opinions regarding the space they observe, which
requires appropriate conflict resolution during the aggregation
process.

The partial observations made by each robot are sent
periodically to the centralized part of the adaptation logic,
for instance, a Cleaning Controller (see Figure 3), in
which the received observations are aggregated. The resulting
aggregated knowledge, in terms of the presence of dirt tasks
in the room, is the “best”, most complete representation of the
dynamic and uncertain context (i.e., the room) at a specific
time. Optimizing the collective monitoring and analysis by
obtaining the best representation of the state of the room,
allows the performance of the full MAPE-K loop to also be
improved and potentially optimized.

We model the context as a grid map with a size equal to the
room’s size (see Figure 2). A context variable (wfi) captures
whether a dirt task occupies a specific cell of the grid map
or not; therefore, there are as many context variables as cells
in the map of the room. The figure also shows the robots’
observation ranges and the tasks for the robots depicted in
yellow hexagons.

III. BACKGROUND
A. Run-time Uncertainties

In dynamic and adaptive systems, such as SACPSs, sources
of uncertainty occur in one of the following three phases:
requirements, design and run-time phase [30]. In this paper,
we only consider uncertainty sources that occur in the run-time
phase. We also classify the sources of run-time uncertainties
as 1) internal—originating from the self-adaptive system it-
self, i.e., sensor failure, sensor imprecision, sensor noise and
effectors, and 2) external, e. g., unpredictable environment.

In this work, we specifically focus on inaccuracy and
inconsistency (stemming from sensor failure, imprecision, and
sensor noise), and unpredictable environment. Ramirez et al.
[30] define sensor failure as “a sensor inability to measure or
report the value of a property”, while inconsistency is defined
as “two or more values of the same property that disagree with
each other”. Additionally, it is often infeasible 1) for the CPSs

to observe the complete environment (i. e., context) in which
they operate, due to the technical limitations of their sensors,
e.g., limited sensor range, and 2) for the developers of the
MA-SACPS to anticipate at system’s design all the possible
states of the context, which the systems will encounter during
its operation. Consequently, the unpredictability of the envi-
ronment will ultimately impart some partiality and uncertainty
onto the MA-SACPS through its monitoring architecture.

B. Subjective Logic

When we assume an objective world, we can use binary
logic to assert propositions about a state of the world to be
either false or true. Nonetheless, it is practically impossible to
determine with absolute certainty whether a given proposition
is true or false. Through probability calculus, which takes
argument probabilities in the range [0,1], we are able to reflect
subjectivity by allowing propositions to be partially true.
However, due to the lack of sufficient evidence, we are often
unable to estimate probabilities with confidence. Furthermore,
whenever the truth of a proposition is assessed, it is always
done by an individual, and it cannot be considered to represent
a general and objective belief. In order to reflect as faithfully
as possible the perceived world in which we are immersed, a
formalism to express degrees of uncertainty about beliefs is
needed; said formalism shall also include belief ownership to
reflect the subjective nature of beliefs [14, 15].

Subjective Logic (SL) [14, 15] is a framework for artificial
reasoning, based on probabilistic logic and Dempster-Shafer
theory of evidence [9, 33]. In recent years, SL has gained
prominence because of its capability to deal with the degree of
(un)certainty of propositions, inherently allowing 1) uncertain-
ties representation as part of the fundamental building block
of SL, called Subjective Opinions (see Section III-B1)), and
2) reasoning about the uncertainties through a process of Belief
Fusion in which multiple Subjective Opinions are aggregated
based on the selected fusion operator (see Section I1I-B2). For
further explanation on SL please refer to [15, 25].

1) Subjective Opinions: A subjective opinion expresses a
belief about a state variable X which takes its value from a
domain X. This domain represents all the possible states X
can be. A binary domain X = {z,Z} is a type of domain
that consists of two complementary states  and z. In our
running example, the state-space is a binary domain where
the complementary states correspond to context variables
(i.e., cells) in the grid map being occupied or unoccupied
{z = occupied, T = unoccupied} by a task. If the domain
of a subjective opinion is binomial, it is called a binomial
subjective opinion. For the sake of brevity, the theoretical
discussion of subjective logic is limited to binomial subjective
opinions, as they are the only relevant in our case.

Definition 1 (Binomial Opinion [15]). Let X = {z,Z} be
a binary domain with binomial random variable X € X. A
binomial opinion about the truth of value X is the ordered
quadruplet w, = (b, dz, s, as ), where the additivity require-
ment b, + d, + u, = 1 is satisfied, and where the respective



parameters are defined as
b,.: belief mass in support of x being true (i.e. X = z),
d,: disbelief mass in support of x being false (i.e. X =),
uy: uncertainty mass representing the vacuity of evidence,
a,: base rate, i.e., probability of x being true without any
evidence.

Binomial opinions that have w, = 1 and w, = 0 are
referred to as a vacuous and dogmatic opinions, respectively.
The projected probability of a binomial opinion about value
x is defined by: P(z) = b, + ugay.

2) Belief Fusion: Through a process of belief fusion, mul-
tiple opinions regarding the same proposition are merged or
aggregated into a single, collective opinion. For instance, in
our running example, multiple robots R;, Ra,..., Ry issue
opinions wft wkz ... w?~ for the same cell x, and these
opinions need to be conveniently aggregated in a single
opinion. Belief fusion can be realized using different oper-
ators [15, 37]: averaging belief fusion, cumulative belief fu-
sion, weighted belief fusion, consensus & compromise fusion,
and belief constraint fusion operator. Each of these fusion
operators emphasizes different aspects when fusing multiple
opinions. Subsequently, the choice of the operator depends
on the aggregation’s objective. In our use-case, the observa-
tions are made independently by multiple agents; thus, their
opinions can be treated as independent pieces of evidence.
Furthermore, compromises between said opinions are desired,
such that the aggregated opinion is as accurate as possible. As
a result, we choose the Cumulative Belief Fusion (CBF) and
Consensus & Compromise Fusion (CCF) operators, although
the implementation of the approach (further explained in
Section V) supports all the other operators. In the following,
we briefly summarize the two selected fusing operators.

Cumulative Belief Fusion (CBF) treats the individual opin-
ions that are aggregated as independent pieces of evidence
for the same proposition. This cumulatively increases the
belief and/or disbelief value of the aggregated opinion while
reducing its uncertainty. It is most suitable for combining
multiple non-conflicting opinions. Namely, applying CBF to
non-conflicting, uncertain opinions reduces the uncertainty of
the resulting opinion.

Consensus & Compromise Fusion (CCF) maintains the
shared belief masses between all the aggregated opinions.
For conflicting opinions, a compromise is found, which has
increased uncertainty. This operator is helpful for identifying
a set of shared beliefs among all agents. The fused opinion
would represent the set of causes that all opinions agree on.

The belief fusion aims to solve potential conflicting observa-
tions while increasing the observations’ confidence according
to the chosen fusion operator. To demonstrate this point,
we provide a sample calculation for a pair of agreeing and
disagreeing opinions w!, w? on a same context variable
in Table I.! We can see that when the opinions that are
being aggregated agree, CBF creates an aggregated opinion
whose belief increases that of the sources. CCF tries to find

IFor the mathematical definition of CBF and CCF see [16, 37].

TABLE I
AGGREGATING TWO OPINIONS wl, w2.

Agreeing Opinions Conflicting Opinions

Param. | wl! w2 CBF CCF | w} w2 CBF CCF
b 085 052 084 080 | 085 018 072 035
dy 0.10 018 0.1 011 | 0.10 052 024 0.14
Ug 005 030 005 009 | 005 030 004 051
ag 050 050 050 050 | 050 050 050 0.50
P(z) | 088 028 086 084 | 0.88 028 074 0.6l

compromises between opinions, which is why their belief and
disbelief values are in between the belief masses of w! and
wf/,. Additionally, with both fusion operators, we can observe
improvement in the confidence of the aggregated observations,
i.e., the uncertainty mass in the aggregated opinion decreases
compared to the individual uncertainty masses of each robot’s
opinions. When the opinions are in conflict, CBF tries to
maximize their belief masses. It is important to note that
this process of aggregating conflicting opinions reduces the
uncertainty of the aggregated opinion when using CBF, which
can be undesirable. In contrast, CCF actively increases the
uncertainty when opinions are conflicting. As a result, the re-
sulting projected probability P(x) is reduced when using CCF
compared to CBF. This example showcases the different ways
the two operators handle conflicts: whereas CBF essentially
follows the strong opinion, CCF strives for a compromise. As
we will see in our robotic use case, this difference manifests in
the tradeoff between taking decisions fast (about whether a dirt
is detected and should be cleaned) and taking decisions that
are sound (since more than one robot agrees on the matter).

IV. APPROACH

In our approach, the MA-SACPS consists of several MAPE-
K loops structured according to the master-slave pattern [41]
As shown in Figure 3, the Monitor and Executor elements
of the MAPE-K loops are distributed among the decentral-
ized agents, controlled by centralized Analyzer, Planner and
Knowledge elements, each element explained in the following.

A. Monitor

Each managed element (i.e., CPS) in the MA-SACPS
comprises a Monitor component. The Monitor observes the
context in which the CPS operates, and additionally, it does
(a minimal) monitoring of the CPS itself, e. g., it reports on
the current position of the system in the context. Since the
CPS cannot observe the entire context, it only provides partial
observations that are subjected to uncertainties. Based on
these observations, the Subjective Opinion Creator—contained
within the Monitor—creates binomial subjective opinions (see
Section III-B1) about the context variables that are within the
agent’s range. These binomial subjective opinions are then
independently forwarded to the centralized Analyzer.

In our running example each robot contains a Monitor
component. It periodically senses the position of the robot, and
detects the presence of dirt tasks in the room. As explained
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Fig. 3. High-level overview of the approach for reasoning in MA-SACPSs,
adopted from [25].

above, each Monitor creates binomial subjective opinions
about the context variables (is a cell occupied or not), for all
the cells that are within the observation range of the robot at
a specific point in time. The process of creating the subjective
opinions is described in the following.

1) Subjective Opinion Creator: Every agent (A;) creates a
subjective opinion w? for every context variable x (i.e., grid
cell) that is within its vision R. x can be either occupied or
unoccupied by a task, and according to Definition 1 we define
an opinion w, = (b, dy, Uz, a;) as following:

b= {
4.~ {

where r is the distance between the agent and the cell
and R is the agent’s sensor range. This definition facilitates
an uncertainty that increases linearly with the measurement
distance up to an maximum value of 0.99. This value was
chosen deliberately, since the observations at the edge of
sensor range can be considered highly uncertain, but can
still contribute towards the knowledge aggregation; hence,
we assign an uncertainty value of 0.99 instead of a totally
uncertain opinion (i.e., u, = 1). Moreover, the polar nature
between belief b, and disbelief d, was chosen to reflect the
fact that agent can either detect a grid cell to be occupied or
unoccupied by a task, and not a combination of both. The base
rate a, is always considered to be the default base rate for a
binary domain, i.e., a, = 0.5. Finally, no subjective opinions
are issued for (i) cells which are occupied by static obstacles

1 —ux, for x = occupied

T
0.0, otherwise Uz = TN (*7 O-99>

R
1 — ux, for x = unoccupied

0.0, otherwise a; =0.5

(e.g., walls), (ii) cells that lie outside of the detection range
of the agent.

B. Analyzer

The Analyzer is a centralized component in which the rea-
soning takes place, with aim to solve any potential conflicting
observations, while increasing the confidence of the observa-
tions according to the chosen subjective logic operator. The
Analyzer contains the Knowledge Aggregator, which collects
and fuses all the subjective opinions that are issued by the
Subjective Opinion Creators in the decentralized agents. The
aggregated opinions are used to update the run-time context
model in K.

In our running example the Analyzer is a component
in the Cleaning Controller. It combines the partial
observations by aggregating the multiple binomial subjective
opinions from different robot about the context variables that
are within their sensing range. In particular, it is responsible
for combining the opinions made by all the robots for all the
cells that they are observing using the subjective logic opera-
tors. The process of aggregating multiple binomial subjective
opinions is discussed next.

1) Knowledge Aggregator: This is a centralized node
that aggregates the observations of the individual agents
(A1, As, ... AN). The aggregated observations from all the
agents are stored in the context model in the Knowledge,
modelled as a grid map (see Section II-B). Upon system
initialization, every context variable corresponding to each cell
in the grid map is initialized with a vacuous subjective opinion:
Wy = (0,07 1, %) This initialization has the following two
purposes: (i) a vacuous opinion will inform the analyzer that
there is no previous knowledge about the context variables,
and (ii) when the first knowledge aggregation is executed, the
existing vacuous opinions do not influence the aggregation
result.

The knowledge aggregation takes place every time the Sub-
jective Opinion Creator of an agent publishes new subjective
opinions for the context variables of the cells observed by
the agent. Namely, the Knowledge Aggregator extracts the
opinions that were previously stored for each context variable
in the grid (wg), and fuses them with the newly created
opinion from each agent (w:+), resulting in a new aggregated
opinion (wg$99) per context variable. The context variable x
in the grid map is then updated based on aggregated opinion
(wg99), and this depicts is the overall process for updating
the context model @RT (i. e., the grid map) in K. The process
is executed with the same frequency for all the agents, and
if multiple agents issue new opinions for the same context
variable (w2, w2 w3 ... ) at the same time, then all of
those opinion are together fused with the opinion from the
grid (wg).

The opinions are combined according to the following
three schemes: CBF Scheme, CCF Scheme and Combination
Scheme. The first two schemes are based on the CBF and CCF
fusing operators, previously explained in Section III-B2:



CBF Scheme : w299 = CBF(w?, wi)

€T

CCF Scheme : w®9 = CCF (w?, w’?)

However, preliminary testing revealed that these two SL
operators cannot support long-term knowledge aggregation
(see Section VI-B). In response, as part of this work, we
have proposed a third scheme—Combination (Comb.) Scheme,
defined as following:

w99 — {CCF(wg,wa

€T

CBF(wd,w.), otherwise.

where u(w?) is the uncertainty of context variable, k is a
constant and OT(wﬁi) is the opinion type of the new opinion,
defined as:

OT () = occupied, if b(wAi) > d(wi)
‘ unoccupied, if b(wi) < d(w),

where b(w?i) and d(wZ2) are the belief and disbelief of
the new opinion. In a nutshell, the combination scheme will
always use the CBF operator, except when the new and grid
opinions are conflicting and the uncertainty of the grid opinion
is less than a given constant £ = 0.1. We derived £ numerically
based on how many opinions need to be aggregated to change
the opinion from unoccupied to occupied while still respecting
the real-time capabilities of the knowledge aggregation (KA).
Due to space limitations, the numerical calculation is not part
of this paper.

C. Planner and Executor

The Planner is a centralized component in our approach
that is responsible for selection of the adaptation actions or
plans, which are later executed by the Executor components
housed in every agent. The Planner relies on the aggregated
knowledge, i.e., it uses the (updated) context model @RT to
determine the actions for all the agents, in order for the
MA-SACPS to adapt and accomplish the adaptation goals in
the most efficient way. We do not prescribe how to perform
the planning: any planning approach (e.g., rule-based, goal-
oriented) can be used within our approach. Finally, each
decentralized agent has an Executor component responsible for
executing the actions previously determined by the Planner.

In our running example the Planner is part of the centralized
Cleaning Controller, which receives as input the ag-
gregated knowledge of the context. The aggregated knowledge,
in terms of the presence of dirt tasks in the room, is the “best”,
most complete representation of the dynamic and uncertain
context (i.e., the room) that is only partially observed at
a specific time. Accordingly to it, the Planner assigns the
discovered tasks to the robots. The outcome of the Planner
is finally sent to the Executor in each robot. Each Executor
contains an adaptive priority queue of the locations of the dirt
tasks assigned to the specific robot. In our implementation,
the queues of the robots are modified at run-time, based on
the distance of the robot closest to the newly appeared task.

Each robot picks the next task in its queue, and navigates
autonomously to the corresponding cell.

V. IMPLEMENTATION

As part of this work, to investigate the usefulness of
knowledge aggregation (KA) in MA-SACPSs, and to assess
the correctness and the effectiveness of our proposed solution,
we have implemented a testbed motivated by the running
example from Section II-B. Since robotics is an intrinsically

), ifw(wd) < kNOT(wd) # OT(w;‘i)heterogeneous domain, setting up a multi-robot system 1is a

challenge in itself. In response, in this paper, we provide a
ROS-based, multi-robot system simulated in Gazebo [1, 19].
Namely, our implementation enables simulation of 1) a custom
number of robots, and 2) the context in which they operate.
Our running example concretely includes simulating a room
with static (e. g., walls, corridors, furniture, etc.) and dynamic
object i. e., the tasks that continuously appear for the robots in
the room. The robots that we simulate are TurtleBot 3 Burger?.
Furthermore, Gazebo relies on well-established physics en-
gines, which enable simulations with high fidelity that closely
resemble real-world robotics systems and their environments,
with a physically correct representation of the robots, including
their size and volume, frictions, as well as their sensors
and actuators. Finally, the robots use Adaptive Monte Carlo
Localization (AMCL) for localization and navigation.

Although we built a simulated robotics system, implement-
ing realistic sensing (just how a real robot would sense its
surroundings) was a prerequisite to constructing the subjective
logic observations aggregation. As a result, the realistic sens-
ing required more complex implementation to add different
types of sensor uncertainties compared with, for example,
“mocked” sensing in which modelling and adding the sensor
noise would have been more simplistic. In the initial imple-
mentation of the robotic system, previously presented in [25],
the sensor noise was sampled from a Gaussian distribution
and only affected the border of the sensor beam. Although
the former implementation did introduce some sensor noise
in the system, it did not support the uncertainties from
our running example (see Section II-B and Section III-A).
Concretely, it was insufficient to support and prove the need
for knowledge aggregation since it was incapable of creating
conflicting observations within the sensor range. Consequently,
we implemented a more sophisticated sensing model, in which
the conflicting observations result from false positive (FP)
tasks (tasks being observed by a robot that do not exist in
reality) or false negative (FN) tasks (tasks not being observed
when they in reality exist). Tasks that exist and the robots can
observe are true positives (TP) in this setting.

The source code of the complete implementation and the
installation instructions are available on the following link:
https://github.com/tum-i4/Aggregatio. For the SL-based calcu-
lations, we used an open-source Java implementati0n3.

Zhttps://www.turtlebot.com/
3https://github.com/vs-uulm/subjective-logic-java



VI. EVALUATION

In this section, we first explain the evaluation setup before
discussing the obtained results.

We identified the following three research questions that
guided our evaluation:

RQI1. How do the different SL aggregation schemes influence
the KA in MA-SACPSs?

RQ2. Can SL-based KA in MA-SACPSs correct faulty mea-
surements?

RQ3. How does the value of the threshold impact the SL-based
KA in MA-SACPSs?

In RQ1, we investigate the feasibility of different SL aggre-
gation schemes for KA in our approach. In RQ2, we evaluate
the effectiveness of our approach’s best aggregation scheme
(derived from RQ1) on the core problem, i. e., reducing uncer-
tainties and resolving conflicts introduced by inconsistent and
faulty measurements. In RQ3, we investigate the sensitivity of
our approach to the main parameter for decision making, i.e.
the expected probability P(x) of the context variables.

A. Experimental Setup

To answer the identified research questions, we have created
three main experiments (see Table II), conducted based on
240 different simulation runs. Each experiment addressed one
research question, and all the simulation runs lasted for 45
minutes in real-time. In all experiments, the dimension and
the layout (e.g., corridors, walls, etc.) of the room in which
the robots operate, along with the robots’ initial positions and
their sensor range, are held constant. The dimensions of the
room and the sensor range of the robots were chosen in a way
that at any given time the robots can only partially observe
the room there are in. In particular, we chose a room size of
10 x 10m, since the robots can only detect obstacles up to a
distance of 3.5m.

Furthermore, we ran simulations under different settings,
controlling: (i) the SL aggregation schemes for KA (part of
the adaptation logic), (ii) the number and the properties of the
robots (i.e., the managed elements), and (iii) the appearance
of the tasks in the room (i.e., the context). With respect to
the first point, we experimented with different subjective logic
operators and thresholds values. The threshold is the projected
probability P(x) value for each detected task, necessary to
be reached in order for the task to be promoted to a goal
for the robots. With respect to the second point, we varied
the number of robots and their sensing capabilities controlled
by the false positive (FP) probability of each robot. The FP
probability captures the percentage of faulty observations per
robot. Finally, with respect to the environment, we varied the
rate of appearance of true positives (TP) (in seconds) and the
location of appearance of the tasks. A seed value controls
the location of the appearance of the tasks, used to replicate
the same distribution of tasks within the room in different
experiments. To increase the validity of the results, we have
run each experiment five times with different seed values.
Using these variables, we explored the capabilities of SL-based
KA and its impact on the performance of the MA-SACPS.

TABLE II
DESIGN OF THE THREE EXPERIMENTS OF THE EVALUATION.

Topic of Investigation

Parameter
RQI1 RQ2 RQ3
Experiment 1 2 3
KA CBF, CCF, [No, Comb., Comb.
Comb. Comb.]
Threshold 0.8 0.8 0.2, 0.4, 0.6, 0.8
No. of Robots 2 [1, 2, 5] 2
FP Prob. Ry 0 0.1,0.2, ... 0.9 [0.2, 0.5, 0.8]
Ro 0 0.1 [0.2, 0.5, 0.8]
Rate of TP (s) 15, 60 60 60
Location (seed) | 71, 72, ... 75 71, 72, ... 75 71,72 ... 75

The rows in Table II represent the values of the variables
used for a specific experiment. When multiple values are
given per variable, then every possible combination is tested
individually. For example, in Experiment 1 the CBF, CCF and
Comb. operators are individually tested for all seed values. On
the contrary, the square brackets indicate that these parameters
are varied simultaneously. For example, in Experiment 2, when
one robot is used, no knowledge aggregation is performed,
whereas for two and five robots, the Comb. operator is used.
Similarly, in Experiment 3 both robots 2, and R, will have a
FP probability of 0.2 in the first experiment, 0.5 in the next,
etc. When using more then two robots, the additional robots
will have the same FP probabilities as robot two (R2). Finally,
when Knowledge Aggregation is ‘No’, a task is classified as a
goal after a single measurement, i. e., after it has been initially
observed by one of the robots.

B. Experiment 1: Feasibility of different SL aggregation
schemes

We initially aimed at the evaluation to use either CBF
or CCF as operators for KA. Since CCF is desired when
opinions are conflicting (see Section III-B2), the preliminary
experiments quickly showed that it is hard to achieve extreme
beliefs or disbeliefs when opinions are agreeing. This made
it very difficult to surpass the required threshold needed for
a task to be propagated as a goal and resulted in only a
few tasks being completed. Subsequently, the focus shifted
towards the CBF operator, which performed quite well. The
cumulative aggregation method of CBF is ideal when opinions
agree, and it is even capable of handling conflicting opinions to
some degree. However, further analysis revealed that the task
completion rate using CBF slowly deteriorates and eventually
stops when running long simulations. We first explain this
phenomenon via an analytical discussion and then show the
results of the experiment.

1) Analytical Discussion: As discussed in Section III-B2,
when fusing two opinions using CBF, the resulting opinion
will have an uncertainty that is lower than that of the source
opinions independent of whether the opinions agree or dis-
agree. This property means that consecutive applications of
CBF to fuse opinions issued by the robots will continuously
decrease the uncertainty of the opinions of the context vari-



ables stored in the grid map. As the uncertainty decreases,
the impact of a new opinion on the opinion in the grid map
decreases as well, and after some time the grid opinions
become too entrenched to change regardless of measurements.
This demonstrates that this property is crucial when designing
MA-SACPSs that need a support of a long-term KA.

The process that was described above can be demonstrated
analytically with a few simple steps. First, consider three
opinions: w?* = (0,0,1,0.5), w2® = (0.7,0,0.3,0.5), and
wi™¢ = (0,0.7,0.3,0.5) where the occupied and unoccupied
opinions are in conflict with one another, and w399 is the
opinion of a context variable stored in the grid map. Initially,
upon system initialization, w399 = w>*“. Subsequently, the
occupied opinion is aggregated with the base opinion, resulting
in a new base opinion. This process is repeated 30 times.
Afterward, the unoccupied opinion is aggregated with the
base opinion for 30 times. These two steps of aggregating
30 occupied and 30 unoccupied opinions are repeated four
times. Figure 4 plots the projected probability P(z) of the
w299 opinion after each single aggregation (blue line). It can
be seen from the figure that as the number of aggregated
opinions increases, the effect of aggregating 30 occupied
opinions diminishes significantly. The second peak occurs only
60 aggregations after the first peak and yet has a projected
probability of about 40% less than the first peak after 30
aggregations. In our experiments, we consider a threshold of
80%, and opinions are issued every second. Thus, if a task is
spawned at the first simulation minute (after 60 aggregations
took place), even if the grid opinion has a projected probability
of 50% and the robot measures the task for 30 seconds, it
would still not reach the threshold and become a goal. As the
figure shows, this gets even worse with time.

—— CBF
Comb.
0.8
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0.4 4

P(x)
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Fig. 4. The projected probability P(x) shows that the effect of an individual
opinion diminishes with time when using the CBF operator, and how the
Comb. scheme overcomes this problem.

To address this issue, we have derived a new aggregation
scheme (Comb.) using a combination of the CBF and CCF
operators, which maintains the CBF operator’s cumulative
property but facilitates a faster switch in opinion when faced
with contradicting opinions, and does not deteriorate with
time. The proposed aggregation scheme was previously dis-
cussed in Section IV. Figure 4 shows that with the Comb.
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Fig. 5. Number of tasks completed using CBF, CCF and Comb. Schemes.
The different symbols correspond to the different seed values.

scheme, the occupied and unoccupied opinions have equal
impact on the opinion in the grid map and that their impact
does not diminish over time.

2) Experimental Results: In this section, we experimentally
assess RQI. For that purpose, we set the FP probabilities to
zero to demonstrate that the observed behaviors are solely
related to the length of the simulation time and not to any
uncertainty sources. The CBF, CCF, and Comb. aggregation
schemes were each tested using the same five seeds with a
threshold of 80% and a TP spawn interval of 15 and 60
seconds. The time at which the tasks have been completed was
measured—Figure 5 shows the cumulative count of completed
tasks over time. The different symbols correspond to the
different seeds that have been tested at the spawning interval
of 60 seconds. The results clearly show that independent of
the location of the tasks, we can observe the same behavior:
Comb. completes tasks at a relatively steady rate throughout
the simulation. In contrast, the CBF operator only works well
for the first few minutes before completely stopping. Lastly,
the CCF operator performs the worst, which is expected as it is
designed to find compromises and not aggregate observations
cumulatively. The same behavior has been observed with a
spawning interval of 15 seconds (plot not shown).

In summary, while addressing RQ1, we came up with the
interesting finding that long-term KA is not feasible by using
the original SL operators in isolation, based on which we
proposed the new scheme—Comb. These experiments enabled
us to prove some of the theoretical limitations of the CBF and
CCF operators (Section III-B2) in an application from practice.

C. Experiment 2: Effectiveness of the KA

In this experiment, we investigate the effectiveness of the
proposed combination scheme for KA by evaluating if the
approach can correct the behavior of a robot with a faulty
sensor. In this experiment, R; is considered to be the faulty
robot subjected to a FP probability that ranges from 10% to
90% with a 10% step. Our baseline case is a single robot (R;)
that does not use KA. The other two cases consist of two and
five robots and use the Comb. aggregation scheme for KA.
All robots except R; are assumed to operate nominally with
a FP probability of 10%. The measured metric is the number
of FP and TP tasks that are completed by R;.*

4By “completing” a FP task, we mean that the robot actually navigated to
the place where the dirt was supposed to be.
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Fig. 7. The variation of the gain of robot 1 with FP probability when using
two or five robots. The gain increases with FP probability, which demonstrates
the effectiveness of the KA in correcting faulty observations.

Lets us first consider the tests when the FP probability of
R, is 50%. Figure 6 plots the fraction of tasks completed by
R, for the three different cases. As one would expect, about
half of the completed tasks are TPs without KA, when only
one robot is present. This fraction is significantly increased to
about 70% when adding an additional robot and using KA.
Adding even more robots further raises the TP fraction of
tasks completed by R;. This trend is expected since more
robots make more independent observations, making it easier
to correct faulty measurements. The bar charts further indicate
that the gain in TP fraction per added robot is diminishing as
the number of robots increases, which also makes sense as the
extra vision gained per robot also decreases.

Instead of plotting a bar-chart for every FP probability case,
we calculate the gain in TP fraction of robot R; as follows:

nrp(R;)
nepp(Ri)+nrp(R;)

nrp(R;)

Gain(R;,ng) = Rrr (R P ||

ngr
where nrp and npp is the number of TP and FP tasks
completed by robot R; and ng is the number of robots in
a multi-robot case. In particular, we calculate Gain(R;,np)
for ng = 2 and ng = 5. The results in Figure 7 show that
the gain in the TP fraction increases together with the FP
probability for both cases—with two and five robots.

In summary, with respect to RQ2, we can conclude that
SL-based KA enables the correction of faulty measurements
made by a robot. In particular, even a single well-functioning
robot can rectify the wrong measurements of another, faulty
robot to a significantly extent. We have also observed that (i)

increasing the number of well-functioning robots improves the
accuracy of collective sensing; (ii)) KA becomes increasingly
effective as the faulty observations increase.

D. Experiment 3: Sensitivity analysis of the impact of the
threshold value

The third experiment explores the impact of the threshold
value on the behavior of the MA-SACPS. All simulations
use two robots, and the FP probabilities are varied between
0.2, 0.5, and 0.8. Each of these variations is tested with four
different thresholds ranging from 0.2 to 0.8 with a step of 0.2.
As a metric, the number of completed TP and FP tasks are
measured and averaged across the different seed values, based
on which the average TP and FP fraction of completed tasks
is calculated as follows:

FPF=1-TPF

where nrp and npp are the average number of completed
TP and FP tasks, and N = npp + ngp is the total number
of tasks completed in a particular test. Moreover, the average
number of completed tasks (N) and the range in the number
of completed tasks (Ny,qe — Npmin) are determined over five
runs. The results from the experiment are depicted in Table III.

First, the table shows that increasing the threshold leads
to an increased T'PF for all the FP probabilities that have
been tested. This indicates that the accuracy of the KA
in MA-SACPS can be tuned using the threshold. This is
expected, since the threshold dictates the minimum certainty
the MA-SACPS must have to pursue the completion of a task.
Nonetheless, the impact of the threshold on T'PF is relatively
small: changing it from 0.2 to 0.8 induces an increase of
only 3.4% in TPF in the 0.2 probability case; 12.3% in the
0.5 probability case; and 3.8% in the 0.8 probability case.
Furthermore, we can also observe another trend in the average
number of completed tasks. Unsurprisingly, as the threshold
increases, the number of completed tasks decreases.

In summary, with respect to RQ3, we conclude that the
value of the threshold has an impact to SL-based KA, but
a relative small one, and in any case a smaller impact than
the number of collaborating robots. We also observed a clear
trade-off between the accuracy of KA and the number of
completed tasks.

E. Threads to validity

In order to have more realistic and comparable experiments,
we kept the appearance rate of TP constant between runs
since we wanted to explore how different FP probabilities
and aggregation schemes respond to the same context (same
ground truth of TP in the room). As a result, different FP
probabilities result in a different number of tasks, i.e., higher
FP probabilities generate more tasks in the room. This can
be problematic for high FP probabilities as a high density of
tasks restricts robots’ observations, which severely limits the
KA. These effects limit the validity of experiments at very
high FP probabilities.



TABLE III
RESULTS FROM EXPERIMENT 3.

FP Prob.  Threshold | TPF FPF N Nmaz — Nmin

0.2 0.769 0231 53.6 7

0.2 0.4 0.773 0226 494 6
' 0.6 0.794 0206 45.6 5
0.8 0.803  0.197 40.6 11

0.2 0.455 0545  79.6 31

05 0.4 0.485 0515 418 64
' 0.6 0.532 0468 50.0 41
0.8 0578 0422 25.6 57

0.2 0205 0.795 93.6 68

0.8 0.4 0.200  0.800 435 36
' 0.6 0219  0.781 474 86
0.8 0243  0.757  29.6 67

For example, in Experiment 2, the slight decreases at the
end of Figure 7 are probably due to the aforementioned drop
in the experiments’ validity as the FP probability increases. In
Experiment 3, we observed that the impact of the threshold
is smaller than we have initially anticipated. Namely, at
small FP probabilities (Table III), one would expect only a
small improvement due to KA as faults rarely occur. On
the contrary, at larger FP probabilities, one would expect a
more considerable increase in the TPF than what is exhibited
by the results. The same effect can be observed in the last
column of Table III, which shows the difference between the
maximum and the minimum number of tasks completed for
the five different seed values. This clearly demonstrates that
the results fluctuate a lot more as the FP probability increases.
For example, for a threshold of 0.8 at a FP probability of 0.2
the range in N (N0 — Noin) is 27% of N, whereas a FP
probability of 0.8 with the same threshold has a range in NV
that is 226% of its N. Subsequently, high FP probabilities
require a lot more testing for accurate results. Furthermore, in
Experiment 3, we concluded that there is a trade-off between
the accuracy of KA and the number of tasks it completes.
Based on this trade-off, one can conjecture that there is an
optimal threshold that maximizes the number of completed
TP tasks and varies with the FP and FN probabilities. In our
experiment, the increase in 7' PF' is too small to facilitate such
a movement of the maximum; however, more extensive and
statistically significant tests might prove this hypothesis.

VII. RELATED WORK

Knowledge/information aggregation. The need for knowl-
edge aggregation arises in fields as varied as sensor fusion,
expert system development and most prominently in multi-
agent systems [26]. Across the field of multi-agent systems,
knowledge is the information gained by agents’ observations,
often referred to as belief or belief base [26]. A belief is
represented as propositional logic-based formalism [13, 26].
Grégoire and Konieczny in [13] present a survey about the
approaches dealing with logic-based information fusion and
discuss its relationship to multi-agent negotiation. Methods for
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belief merging are discussed in [20, 26, 34, 36]. These methods
provide a general basis for knowledge aggregation; however,
they have been only studied in the field of information systems.
To the best of our knowledge, no knowledge aggregation
technique has previously been used in the frame of SACPSs.

Sensor fusion. Munz and Dietmayer [22] proposes an
approach to enhance the detection performance of a sensor
fusion system measured in terms of detection rate versus false
alarm rate. For that purpose, an algorithm is used which
directly incorporates the DST-based sensory information. In
[35], DST is also used to model the sources of uncertainty
before applying the evidence fusion. However, the past ap-
proaches are mainly concerned with the aggregation of data in
a single system, where the set of sensors are the multi-sources;
rather than the aggregation of information or knowledge across
multiple independent systems in a multi-agent system setup for
self-adaptation purposes. Sensor fusion merges concrete sensor
information, whereas, in our paper, we aggregate knowledge—
which are two fundamentally different methods. Additionally,
SL has not been used as a framework for fusing sensor
information before, both generally and in the frame of self-
adaptive systems.

Mitigating uncertainties in self-adaptive systems. As
discussed in Section III-A, in this work, we focus on the
following run-time uncertainties: sensor inconsistency, sensor
failure, and unpredictable environment. Although the past liter-
ature proposes different mitigation strategies for sensor failure
[5, 11] and unpredictable environment [2, 5, 7, 11, 23, 29],
to the best of our knowledge, no solutions have previously
tackled sensor inconsistency. Almost all existing uncertainties
mitigation strategies are based upon one or multiple feedback
loops, i.e., the different MAPE-K phases [5] that are not
modified beyond their design-time specifications. Also, they
are often designed for a specific application [23]. The most
prominent framework for mitigating uncertainties is Rainbow
[11], which focuses on architectural reusability. Rainbow
focuses on isolating the feedback loop from the managed
system as much as possible, enabling system-independent but
knowledge-specific infrastructure. Furthermore, the framework
does not support run-time modification of the adaptation logic,
which disables the framework to deal with uncertain situations
and changing conditions that were not anticipated during
its design, as we do in our paper. In comparison to the
past solutions, our approach presents a run-time uncertainly
resolution strategy that tackles sensor inconsistency, as well
as sensor failure and unpredictable environments.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a domain-independent
methodological approach for knowledge aggregation and rea-
soning of decentralized monitoring in MA-SACPS, which
inherently produce partial, faulty and potentially conflicting
context observations. The proposed approach allows capturing
uncertainty at run-time on a local level, and effective reasoning
and knowledge aggregation for global decision-making. The
conducted experiments revealed that i) no single SL operator



is capable of providing long-term real-time KA capabilities,
ii) the proposed SL-based KA approach is capable of cor-
recting the observations of a faulty agent, and iii) there is a
trade-off between the number of tasks that are completed and
the accuracy of the agents, and the threshold can be used to
tune the accuracy of KA to a desired level.

As future work, we want to find a threshold, if one exists,

that

maximizes the number of completed TP tasks, which

varies with the FP probabilities. Since the FP probabilities
result from the agents’ interaction with the environment, the
existence of a maximum would render the threshold as another
parameter that can be optimized in real-time, ultimately posing
another possibility for self-adaptation. Alternatively, one can
also evaluate different and more advanced combinations of SL
operators and different room sizes and layouts to improve the
performance of KA even further, or investigate how KA with
SL differs from reasoning with other non-monotonic logics.
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