
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Implementation and Evaluation of Verlet
List-based Methods in AutoPas

Tina Vladimirova

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Implementation and Evaluation of Verlet
List-based Methods in AutoPas

Implementierung und Evaluierung von Verlet
List-basierten Methoden in AutoPas

Author: Tina Vladimirova

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Fabio Alexander Gratl, M.Sc.

Date: 15.02.2021

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 15.02.2021 Tina Vladimirova

Acknowledgements

I would like to thank my advisor Fabio Gratl for providing valuable feedback and constant
support.

iv

Abstract

MD simulations can take days to compute, thus optimizing their performance is an
important task. AutoPas is an open-source C++ library which tunes MD simulations
and chooses the optimal algorithm for any given scenario. In the context of AutoPas, we
implement the pairwise Verlet algorithm, which aims to improve on the existing Verlet lists
neighbor identification algorithm. Other relevant components are added as well, such as
a Structure of Arrays representation for the particle data. The new algorithm addresses
the issue of scattered memory access and is designed to be well suited for shared memory
parallelization. Our evaluation indicates that the pairwise Verlet algorithm performs well for
a dense scenario or a larger interaction range between particles. However, other scenarios
or other configurations such as the Structure of Arrays data layout appear to worsen its
performance.

v

Zusammenfassung

Die Berechnung von Molekulardynamik Simulationen kann bis zu einigen Tagen dauern,
somit ist die Optimierung von ihrer Performanz eine wichtige Aufgabe. AutoPas ist eine
open-source C++ Bibliothek, die MD Simulationen tunet und den optimalen Algorith-
mus wählt für jedes gegebene Szenario. Im Kontext von AutoPas, wir implementieren
den paarweisen Verlet-Listen Algorithmus, dessen Ziel ist, den existierenden Verlet-Listen
Nachbarschaftssuchalgorithmus zu verbessern. Andere relevante Komponente werden auch
hinzugefügt, wie eine Structure of Arrays Datenrepräsentierung für die Partikeldaten. Der
neue Algorithmus zielt, gestreute Speicherzugriffe zu minimieren und passend für Shared-
Memory-Parallelisierung zu sein. Unsere Evaluierung zeigt, dass der paarweise Verlet-
Algorithmus gute Performanz aufweist für Szenarien mit hoher Dichte oder einen größeren
Interaktionsbereich. Dagegen scheinen andere Szenarien oder Konfigurationen wie Structure
of Arrays die Performanz zu verschlechtern.

vi

Contents

Acknowledgements iv

Abstract v

Zusammenfassung vi

I. Introduction and Background 1

1. Introduction 2

2. Theoretical background 3
2.1. Molecular dynamics . 3

2.1.1. Short-range interactions . 3

2.1.2. Newton’s 3rd law . 4

2.2. AutoPas . 4

2.2.1. Containers . 4

2.2.2. Data layout . 7

2.2.3. Traversals . 8

3. Related work 11

II. Implementation 12

4. Neighbor lists for VerletListsCells 13
4.1. VLC container . 13

4.1.1. Overview of the data structure . 13

4.1.2. Implementation before the refactoring 13

4.2. Refactoring . 14

4.2.1. Neighbor lists . 15

4.2.2. Main container . 16

5. Pairwise Verlet neighbor list 17
5.1. Motivation . 17

5.2. Algorithm . 17

5.3. Implementation . 18

5.3.1. Rebuilding . 18

5.3.2. Force calculation . 21

vii

6. SoA for VLC container 22
6.1. Neighbor list in SoA layout . 22

6.1.1. Rebuilding . 22
6.1.2. Force calculation . 22

6.2. List generation . 23

7. c08 traversal 25

III. Results 27

8. Testing setup 28

9. Performance in AoS data layout 30
9.1. c01 traversal . 30

9.1.1. Observations . 30
9.1.2. Analysis . 32

9.2. c18 and c08 traversals . 33
9.2.1. Observations . 33
9.2.2. Analysis . 36

10.Performance in SoA data layout 37
10.1. c01 traversal . 37

10.1.1. Observations . 37
10.1.2. Analysis . 38

10.2. c18 and c08 traversals . 39
10.2.1. Observations . 39
10.2.2. Analysis . 40

IV. Conclusion 42

11.Conclusion and outlook 43

V. Appendix 44

A. Measurements 45

Bibliography 53

Part I.

Introduction and Background

1

1. Introduction

The field of molecular dynamics aims to study the behaviour of a system of molecules over
time. [HD18] [SSR07] This system could take the form of a gas, liquid, or solid, or include
multiple bodies in different states. Example scenarios in practice include flow through a
nanotube and protein folding. Simulating molecular dynamics phenomena has an advantage
over physical experiments because it allows experts to observe scenarios that would otherwise
be too expensive, dangerous or difficult to set up in a laboratory.1 Thus, MD simulation is
important for progress in the fields of molecular biology, drug discovery, materials science,
etc. [DM11] [HD18] [SSR07]

Discussing the main characteristics of an MD simulation model will provide insight into the
challenges the field presents. Interactions between particles are modeled through force fields
[GST+19], which makes this problem a case of the more general N-body problem. Each
body interacts with every other body, which leads to an unfavorable complexity of O(N2).
MD simulations typically include millions to billions of molecules on a nanometer scale, and
a scenario of a few real-time seconds needs to be segmented into timesteps as small as 10−15

seconds. Consequently, a typical MD simulation can take several days to compute.1

Modern computers are able to employ parallelization to reduce the runtime of a computation-
ally intensive program, but this reveals a new category of problems such as race conditions and
load balancing. Moreover, some staple MD algorithms were developed with older, single-core
architectures in mind. [GST+19] [Gon12] Choosing the suitable algorithms, parallelization
strategies and data representations can significantly improve the performance of a simulation.

This work is developed in the context of the AutoPas library. AutoPas is an open-source
C++ library which aims to tune and optimize the performance of an N-body simulation. It
works as a black box and selects the best combination of neighbor interaction algorithms,
parallelization strategies, particle storage, etc. in order to achieve optimal performance for a
given scenario. [GST+19]
In this project we expand the library with the pairwise Verlet algorithm [Gon12]. This algo-
rithm is used for short-range interactions between particles and builds on the existing Verlet
list algorithm. Other components are also added or adapted, such as suitable parallelization
strategies and data representations. The performance of the new components is measured
and compared to existing ones for a variety of scenarios.
The goal of implementing these components is to improve cache efficiency and parallelization
and consequently the simulation runtime. In comparison to the classic Verlet list, the
pairwise Verlet algorithm was developed with multi-core architectures in mind, which are
nowadays the norm in high-performance computing. [Gon12]

1https://www5.in.tum.de/lehre/praktika/pse/ws17/Vorbesprechung.pdf

2

https://www5.in.tum.de/lehre/praktika/pse/ws17/Vorbesprechung.pdf

2. Theoretical background

This chapter provides relevant background knowledge about the physical aspect of molecular
dynamics and describes some main components of the AutoPas library.

2.1. Molecular dynamics

2.1.1. Short-range interactions

The main focus of this work are the short-range interactions between particles. The
interaction between two particles i and j is typically modeled by the Lennard-Jones potential:

U(rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

where rij is the distance between the two particles, ε is the energy parameter (strength of
the potential), and σ is a size parameter (zero crossing). [Gra21]

Figure 2.1 shows the change in the potential in relation to rij . With the growth of rij
the particles repel each other and then attract each other before the potential converges to
zero. We define a cutoff radius rc as a distance between the particles where Uij is very near
to zero. AutoPas utilizes this by discarding short-range interactions between particles that
are at a larger distance than rc in order to avoid interactions with a negligible effect on the
system. Therefore, the force calculation is optimized from a complexity of O(N2) to O(N).
[GST+19]

Figure 2.1.: Relationship between rij (the distance between particles i and j) and the
Lennard-Jones potential U(rij)

a

ahttps://en.wikipedia.org/wiki/Lennard-Jones_potential; edited

3

https://en.wikipedia.org/wiki/Lennard-Jones_potential

2. Theoretical background

2.1.2. Newton’s 3rd law

Newton’s 3rd law of motion can be applied to most N-body problems. In the case of particle
interactions, the force from the interaction of particle i with particle j Fij has the same
magnitude as the force of interaction of particle j with particle i, but they are oriented in
opposite directions. In short:

Fij = −Fji

This enables us to implement another optimization: the force between two particles may be
calculated only once and applied to both particles in the respective directions. Thus, the
amount of force calculations can be reduced by half. [GST+19]

2.2. AutoPas

2.2.1. Containers

Containers in AutoPas deal with storing the particles and more importantly, determining
which pairwise interactions between particles will be taken into account.

Algorithms

There are three main algorithms for selecting the interaction pairs which are relevant to this
work: direct sum, linked cells and Verlet lists.

(a) Direct Sum (b) Linked Cells (c) Verlet Lists

Figure 2.2.: Three main containers in AutoPas. Direct Sum: the force is computed between
the red particle and the blue particles in its red circle (with a radius of rc).
Linked Cells: The red particle from the red base cell interacts with the blue
particles, which are located in the blue neighboring cells and lie within the cutoff
radius rc. Verlet Lists: The red particle saves all particles within the yellow
circle in its neighbor list. It interacts only with the ones in the red circle defined
by rc. [GST+19]

Direct sum is the most intuitive algorithm, it simply calculates the distance between every
pair of particles and computes their interactions if their distance is smaller than the
cutoff radius rc (Subsection 2.1.1). For every single particle, the algorithm sums up all
the forces from its interactions with the other particles, hence the name direct sum.

4

2. Theoretical background

This method has a complexity of O(N2), but it is also the easiest to implement and
has no memory overhead because only the particle data needs to be stored. A visual
depiction can be seen in Figure 2.2a. [GST+19]

Linked cells divides the domain into cells and stores the particles in that manner. The
length of the cell is typically constrained to be larger or equal to rc. In that case,
for a given base particle, the algorithm checks the distance to all other particles
located in the current cell and all of the neighboring cells, depicted in red and blue
respectively in Figure 2.2b. Similarly to direct sum, if the distance is smaller than
rc, the force is computed and applied. Otherwise, if the cell length is smaller than rc,
the algorithm considers more cells outside of the direct neighbors. It is also possible
to use asymmetrical cells to divide the domain, but this work is focused primarily on
symmetric cells. [GST+19]
The main advantage of the linked cells algorithm is that the particles of a cell are
stored contiguously in memory, which enables more effective distance calculations
since the cutoff checks are done for all particles of a cell. Moreover, in combination
with the SoA data layout (Subsection 2.2.2) the algorithm is especially well suited for
vectorization, as the corresponding attribute of each particle is also stored contiguously.
Finally, the complexity of this algorithm can be reduced to O(N) if the number of
cells is selected proportionally to the number of particles. [GST+19]
While the linked cells algorithm performs significantly less distance calculations than
direct sum, 84% of them are nevertheless avoidable. We can compare the search
volume to the volume of the sphere defined by rc, also called interaction sphere.

rc sphere

search volume
=

4
3πr

3
c

(3rc)3
≈ 0.155

The volume of the interaction sphere makes up less than 16% of the volume of the
total search space, thus there is about 84% probability that a distance calculation is
unnecessary and the potential partner is not in range of rc. [GST+19]

Verlet lists attempts to fix this problem by introducing a skin which goes around the sphere
defined by rc, seen in yellow on Figure 2.2c. The size of the skin is represented by
a factor s > 0. The distance between a particle and all other particles within range
rc · s are computed and their data is stored in neighbor lists. Each particle has a
neighbor list where its potential interaction partners are stored. In each iteration the
distance between the pre-computed pairs is calculated and compared to rc, in the
same manner as the previous two algorithms. Since the particles are moving and the
potential partners might leave the desired range, the neighbor lists need to be rebuilt
periodically. [GST+19]
The amount of unnecessary distance calculations for this algorithm depends on the
skin factor:

rc sphere

search volume
=

4
3πr

3
c

4
3π(rc · s)3

=
1

s3

For example, for s = 1.2 the ratio is ≈ 58% and for s = 1.1 it is ≈ 75%. Therefore, the
proportion of unneeded checks is 42% and 25% respectively, in any case an improvement
to the linked cells algorithm. In the standard Verlet lists algorithm all pairs of particles

5

2. Theoretical background

need to be considered in the building of the neighbor lists, which brings the complexity
to O(N2). An improved method uses the linked cells algorithm with a cell size ≥ rc · s
to construct the Verlet lists. The cell size guarantees that the search sphere will include
only the base cell and its neighboring cells. Therefore, it is enough to use linked cells
to find potential partners instead of searching through the whole domain. [GST+19]

Implementation in AutoPas

We will briefly discuss the container hierarchy in AutoPas and its methods most relevant to
this work. A simplified visual representation of the hierarchy can be seen in Figure 2.3.

Figure 2.3.: Simplified container hierarchy in AutoPas. ParticleContainerInterface

declares the methods rebuildNeighborLists() and iteratePairwise().
VerletListsLinkedBase is a base class for VerletLists and
VerletListsCells, another Verlet lists-based container.
DirectSum and LinkedCells inherit from the CellBasedParticleContainer

class.

At the top of the hierarchy is ParticleContainerInterface, the base class for all contain-
ers. It includes methods for adding and removing particles, setters and getters for rc and
skin, etc. Most notably, this interface declares the methods rebuildNeighborLists() and
iteratePairwise().
The rebuildNeighborLists() method, as the name suggests, is responsible for the peri-
odic rebuilding of the neighbor lists for containers that use such data structures. More
specifically, the method is implemented by the Verlet lists container and other containers
which are based on the Verlet lists neighbor selection algorithm. The iteratePairwise()

method iterates over each pair of particles using a traversal algorithm, passed to it as an
argument, and applies a functor to those pairs. Traversals and functors are discussed in
more detail in Subsection 2.2.3. These methods are left empty in higher-level classes or
containers which do no make use of them, such as rebuildNeighborLists() in the linked
cells container. Since components such as traversals and neighbor lists data structures are
specific to each container, these methods are implemented on the lowest levels of the hierarchy.

At the next level of the hierarchy, directly inheriting from ParticleContainerInterface is

6

2. Theoretical background

the class CellBasedParticleContainer. It serves as a base class for containers that divide
the domain in cells. The linked cells container is derived from this class, as well as the direct
sum container, which stores particles in a single cell.

The VerletListsLinkedBase class also inherits directly from ParticleContainerInterface.
It uses a LinkedCells object to store particles in cells, while also functioning as a base
class for Verlet lists-based containers. Thus, the Verlet lists container is implemented on
top of this class in its improved version explained in Section 2.2.1. Another subclass is the
VerletListsCells container, which implements a Verlet list-based approach while making
use of linked cells. The details of this container will be discussed in Chapter 4.

2.2.2. Data layout

The structures used to store the particle data are an important aspect of the simulation
setup. AutoPas has two data layouts that we are interested in for the purposes of this work:
Array of Structures (AoS) and Structure of Arrays (SoA).

Figure 2.4.: A visual representation of the AoS and SoA data layouts. On the left is shown
an array of particle objects which store position and force along the three axes.
On the right is a structure of arrays, where each array is dedicated to a single
particle attribute. [GST+19]

AoS is the default data layout in AutoPas. It stores an array of particle objects, which
contain attributes such as position and force along the x, y and z axes. The array of
structures is depicted on the left side on Figure 2.4. This data representation is easy to work
with, but it is the less efficient option in the context of cache efficiency and vectorization.
SIMD (Single Instruction, Multiple Data) vectorization is a feature of modern processors:
an operation can be carried out on a whole vector of data as a single instruction. In the
case of AoS, when the same property is accessed among multiple particles and loaded into
a vector register, the program has to make jumps in memory to reach the relevant part
of each particle’s data. This gather operation requires unnecessary slow memory accesses.
The same applies when the program is loading information from the memory into the
cache, also known as cache prefetching. The cache contains the full data of a few particles,
while storing only the relevant information for more particles would be more cache efficient.
Trying to access the necessary data for a given particle if that portion is not in the cache re-

7

2. Theoretical background

sults in a cache miss and provokes more slow memory accesses to retrieve that data. [GST+19]

The SoA data layout solves this issue by storing arrays for each particle attribute and
wrapping these arrays into a structure, as depicted on the right side of Figure 2.4. Thus,
the data layout loads the same information for multiple particles contiguously into memory.
This order makes cache prefetching more effective compared to AoS, as the cache loads the
same amount of data, but now that includes only one property for more particles. A main
disadvantage of SoA is that it is less intuitive than AoS. Additionally, AutoPas stores the
data in an AoS layout and using SoA requires converting from and to AoS in every iteration.
AoS is also at an advantage if we need to access single particles, because the whole data for
the particle is contiguous. Nevertheless, SoA is generally considered the more efficient data
layout, because force calculations tend to benefit more from storing the same information
for multiple particles consecutively. [GST+19]

2.2.3. Traversals

Parallelization is a key component in MD simulations since it has the potential to improve
their runtimes significantly. It is important to distribute the workload evenly among the
threads, but also to maximally utilize the available computational resources. In AutoPas the
traversals control in what order the particles are iterated over and how the force calculation
is parallelized.

Algorithms

For this work we are interested in the traversals based on domain coloring, where each cell
is assigned a color and all cells of the same color are processed in parallel. The coloring
eliminates scenarios where a thread processing a cell would access data which is being
modified by another thread, thus ensuring protection against race conditions. We will
discuss the base steps for three possible colorings: c01, c18 and c08.

(a) c01 base step (b) c18 base step (c) c08 base step

Figure 2.5.: Base steps in AutoPas traversals. The c01 base step includes an interaction
with all neighbors. The c18 base step includes only interactions with neighbors
with a bigger cell index. The c08 base step is a variation of the c18 base step
which allows less cells to be locked in a base step. [Gra21]

8

2. Theoretical background

c01 The c01 base step depicted in Figure 2.5a is the most intuitive, as it simply interacts a
base cell with all of its neighbors. The newton3 optimization is not applicable in this
case, hence the computed forces are only applied to the base cell and its partners are
not modified. This allows a high degree of parallelization: only one color is used for
the whole domain and all cells can be processed at the same time with a high enough
number of threads. [Gra21]

c18 This base step is a logical consequence of the newton3 optimization. A base cell interacts
only with its neighbors with a higher index, as seen in Figure 2.5b. However, all of
the necessary interactions are still taking place because the rest of the neighbors (with
a lower index) interact with the current base cell in their own base steps. Although
it cannot be parallelized to the degree of c01, it has the advantage of computing
only half as many interactions in total. However, in contrast to the c01 base step,
the forces are applied to both cells, which means more cells need to be locked to
prevent race conditions. The 2D variant uses six colors Figure 2.6a, while in 3D 18
colors are necessary to enable the parallelized interaction along the z axis. Adding
a third dimension creates the need for nine instead of six colors in each slice along
the z axis to account for interactions with cells from the next slice. Furthermore, the
color scheme must be alternated over each pair of slices to prevent base cells from
neighboring slices from being processed at the same time. Consequently, a base step
requires synchronized access to a block of size 3 x 3 x 2. [Gra21]

c08 The c08 traversal is similar to c18, but it manages to use less locks by constraining the
interaction block to a size of 2 x 2 x 2. This works because the c08 base step includes
interactions which do not involve the base cell. In comparison to the c18 base step,
some interactions have been ”moved” to another cell’s base step to make the block
more compact. As illustrated on Figure 2.5c, the interaction 13 ↔ 17 would have been
a part of cell 13’s base step, but with c08’s modification it can be processed in cell
12’s base step. Similarly to c18, the 2D coloring uses four colors Figure 2.6b, while
the 3D coloring needs to alternate the scheme over the z axis resulting in eight colors
overall. In general, this coloring requires 2d colors when d is the number of dimensions.
[Gra21]

(a) c18 coloring in 2D (b) c08 coloring in 2D

Figure 2.6.: 2D domain coloring for traversals in AutoPas [Gra21]

9

2. Theoretical background

These base step schemes can be applied to a container according to the respective data
structure and thus a traversal is formed. Every container has a list of applicable traversals
since not every base step can be applied to any container and the implementations are
container-specific.
AutoPas implements another types of traversals as well, namely sliced traversals, which are
based on slicing the domain along a dimension in a certain way. This type of traversal is
not relevant to this work so we will not go into detail. [Gra21] [GST+19]

Implementation in AutoPas

We will shortly describe the traversal hierarchy and the general pipeline for the force calcu-
lation.
The traversal hierarchy starts with a TraversalInterface which declares the main meth-
ods for the pipeline: initTraversal(), traverseParticlePairs(), and endTraversal().
While initTraversal() and endTraversal() deal with setting up the traversal, for instance
triggering a conversion from AoS to SoA and back, traverseParticlePairs() contains the
bulk of the traversal implementation. Thus, it is usually implemented in the lowest levels of
the traversal hierarchy.
Since we are interested in domain colorings, we will explain that part of the hierarchy
in greater detail. The CBasedTraversal class is the base class for color-based traversals,
derived from the CellPairTraversal class. It defines a parallelized loop which iterates over
the domain in strides and applies a given loop body. Subclasses are derived from this class
for the different colorings (c01, c18, c08, etc.). They specify the strides for that parallelized
loop so that the particular coloring pattern will be applied over the domain.
The traversal implementations for a particular container are at the lowest positions in the
hierarchy. They typically inherit from an interface defining the coloring, as well as a traversal
interface for the container. The implementation of traverseParticlePairs() calls the
main traversal method from the superclass for the respective coloring and implements a
loop body to pass to it.
The traversals receive multiple template arguments, one of them being a pairwise functor.
The functor can be a force calculation functor (Lennard-Jones or Lennard-Jones AVX) or
another type of operation involving pairs of particles. The functor itself typically inherits
from the Functor class and has an implementation for AoS and SoA data layouts. The
traversal implementation iterates over pairs of particles or cells and calls on the functor’s
respective AoS or SoA implementation.

10

3. Related work

This work is motivated by P. Gonnet’s research on neighbor selection algorithms and his
exploration of the pairwise Verlet algorithm. [Gon12] Testing and performance measurements
of the pairwise Verlet and other algorithms in Gonnet’s work has been done with the mdcore
package 1. The package contains the core code for simple MD simulations. The library has
not been changed since 2017 and the documentation is currently inaccessible.

Additionally, papers describing AutoPas have been important in understanding the li-
brary and the context of this work. [GST+19] [Gra21]

Some MD simulation packages implement neighbor lists in the sense of standard global
Verlet. For example the HOOMD package2 and the LAMMPS package3 implement the
traditional Verlet neighbor lists. They support different particle types with different cutoffs.
Thus, it is possible to use multiple neighbor lists for the different pairs’ cutoffs. However,
these projects do not implement anything related to the pairwise Verlet algorithm discussed
in this work.

1https://github.com/AndySomogyi/mdcore
2https://hoomd-blue.readthedocs.io/en/stable/nlist.html
3https://lammps.sandia.gov/doc/neighbor.html

11

https://github.com/AndySomogyi/mdcore
https://hoomd-blue.readthedocs.io/en/stable/nlist.html
https://lammps.sandia.gov/doc/neighbor.html

Part II.

Implementation

12

4. Neighbor lists for VerletListsCells

In this chapter we discuss the refactoring of the VerletListsCells (VLC) container. This
process facilitates the implementation of the pairwise Verlet algorithm, which is the main
motivation for this work, in Chapter 5. Section 4.1 explains the main characteristics of
the VLC container in terms of data structure and specific implementation, and Section 4.2
delves into the refactoring of the container.

4.1. VLC container

4.1.1. Overview of the data structure

The VLC container builds on top of the Verlet lists idea (Subsection 2.2.1) by once again
only searching through the sphere defined by rc ·s around a particle for its potential partners.
However, it uses the principle of the linked cells algorithm to store particles and their list of
partners, also called neighbor lists. More specifically, the container saves particles in their
respective cells, but it attaches a global neighbor list to each particle. The global neighbor
list contains all potential partners of the given particle, regardless of which cell they belong
to, in the same manner as the Verlet lists algorithm. Figure 4.1 illustrates the structure of a
base cell’s neighbor lists for a specific scenario.

Figure 4.1.: Visual representation of the VerletListsCells container and its neighbor lists

In summary, a given particle and its attached neighbor lists are stored according to the
cell that particle belongs to, however the partner particles are stored collectively in the
particle’s neighbor list, regardless of their location.

4.1.2. Implementation before the refactoring

In this subsection we will discuss the implementation of the VLC container before the
refactoring was done.

13

4. Neighbor lists for VerletListsCells

The VerletListsCells class inherits from the VerletListsLinkedBase class (Subsec-
tion 2.2.1). This means the Verlet lists neighbor search algorithm is implemented in its
improved version. Furthermore, while the actual particle data is stored in an internal linked
cells data structure, the neighbor lists discussed in this and further sections store particle
pointers. In the case of the VLC container, the neighbor lists are represented by a 2D vector
of pairs, where a pair consists of a particle pointer and its neighbor list.

As already mentioned, a Verlet lists-based container has two main functionalities, namely the
periodic rebuilding of the neighbor lists and the pairwise iteration for force calculations, rep-
resented respectively by the methods rebuildNeighborLists() and iteratePairwise().
In the case of this container, the rebuilding method iterates over the neighbor lists data

Figure 4.2.: Class diagram of VerletListsCells before refactoring

structure and reserves memory for each particle and its neighbor list. Afterwards, a generator
functor is initialized and passed to a build traversal, which is responsible for iterating over
the domain and generating the neighbor lists. The traversal employs the generator functor
the same way it would use a force calculation functor, as discussed in Subsection 2.2.3.
However, instead of calculating the force between given particles p1 and p2, the interaction
in the AoS functor consists of particle p2 being inserted into particle p1’s neighbor list. The
implementation of an SoA functor for list generation is discussed in Section 6.2, as it had
not been implemented yet at that point.
The iteratePairwise() method takes a traversal pointer as an argument and applies it if
it is suitable for the current container. The method attempts to cast the traversal argument
to a VLCTraversalInterface type. If the cast is successful, then the given traversal is
compatible with the VLC container. Otherwise, an exception is thrown. The pairwise
iteration is delegated to the body of the traversal and that is where the force calculation is
carried out.

4.2. Refactoring

The first step in this project was refactoring the existing VLC container. Our goal was to
abstract the implementation of the neighbor lists structure and allow the container to work
with other neighbor list types as well.
Decoupling the neighbor lists from the container is desirable, as it allows greater code reuse
and general simplicity when new functionality is added in the future. The pairwise Verlet
algorithm has significant similarities to the VLC container, which would allow us to add
that algorithm as a second neighbor list type to this container. The algorithm and how it
compares to VLC will be discussed in Chapter 5. Furthermore, this opens the possibility

14

4. Neighbor lists for VerletListsCells

for future improvements. Varying the neighbor list would have an advantage over adding a
separate container because switching the neighbor list would be simpler and more efficient
than instantiating a new container altogether.

4.2.1. Neighbor lists

As discussed in Subsection 2.2.1, AutoPas containers have a template argument for the type
of particle. Therefore, we started by adding a second template argument to indicate the
type of neighbor list. The functionality related to the existing neighbor lists was extracted
into a new class VLCAllCellsNeighborList. Similarly, the generator functor was moved
from an existing helper class for VLC to a new VLCAllCellsGeneratorFunctor class. The
names of the classes indicate that a particle’s partners are stored in a global neighbor list,
as discussed in Section 4.1.

An interface class for the VLC neighbor list was created to define a clear structure and
facilitate the addition of other neighbor lists. The general architecture is illustrated on
Figure 4.3 and includes a default destructor and methods to build the neighbor lists. The

Figure 4.3.: Class diagram for the VerletListsCells container. The red group signifies the
generator functors and the green group shows the neighbor list hierarchy. The
orange components are the ones added in this iteration.

2D vector for the neighbor lists is moved from the VLC container to the new neighbor list
as a private attribute and a getter method is added to allow access from the outside. These
components will be added to each neighbor list separately instead of being inherited from
VLCNeighborListInterface, since the type of the neighbor list data structure depends on
the neighbor list class and cannot be defined in advance.
The buildAoSNeighborList() method substitutes the first part of VLC’s implementation
of rebuildNeighborLists(), namely initializing and reserving memory in the neighbor
lists. This method makes an internal call to the private method applyBuildFunctor()

which deals with creating and applying the generator functor as the second component of
the building of the lists.

15

4. Neighbor lists for VerletListsCells

4.2.2. Main container

The VLC container preserves its structure inherited from VerletListsLinkedBase. We add
an object of type NeighborList to use the functionality of the neighbor lists. Although the
only neighbor list type possible at that point is VLCAllCellsNeighborList, this allows us to
add a second neighbor lists type in the next section and use it with the same container. VLC
implements rebuildNeighborLists() in a facade-like manner by delegating the call to the
respective neighbor list’s buildAoSNeighborList() method. Since the compiler generates
code for all possible types that match the NeighborList template argument, the correct
implementation of that method will be found through the template argument type deduction.
The iteratePairwise() method remains unchanged for now as the main functionality is
located in the respective traversal classes.

16

5. Pairwise Verlet neighbor list

5.1. Motivation

The main idea of the pairwise Verlet algorithm is to improve on the global Verlet lists (VL)
algorithm (Subsection 2.2.1). VL does not work well for shared-memory parallel simulations,
because memory is accessed in a scattered way and that causes excessive cache misses. For
the VL algorithm particles are stored in one global list regardless of their location in the
domain, and the same goes for each particle’s partners. Therefore, iterating through a given
particle’s neighbor list requires nonuniform jumps in memory, which could be avoided if
the particles are stored cell-wise. Moreover, in a shared-memory parallel program, as the
name suggests, threads share a memory bus and higher-level caches. Thus, transferring
information between cores is costly and that amplifies VL’s memory access issue. [Gon12]
In the context of AutoPas, the pairwise Verlet algorithm improves on other neighbor selection
algorithms as well. For instance, the VerletListsCells container, discussed in Chapter 4,
stores particles in a cell-wise manner, but the neighbor lists contain partners from multiple
neighbor cells similarly to the global VL algorithm. Since the partner particles are stored
regardless of their location, algorithms which require knowing which cell a partner particle
belongs to cannot be implemented. For example, the c08 traversal base step (Subsection 2.2.3)
relies on interactions between specific cells which do not involve the base cell. That would
require calculating the force only for the partners located in a particular cell and updating
the rest of the neighbor list in other base steps. The pairwise Verlet lists algorithm gives us
that additional information. We have already discussed the advantages of VL over linked
cells in terms of search volume, so this container retains the advantages of the VL technique
while additionally improving data locality.
Last but not least, this algorithm has not been explored a lot by previous works and it is
curious for us to analyze its advantages and drawbacks for various scenarios.

5.2. Algorithm

The essence of this algorithm is that it creates local Verlet lists which describe only the
interaction between a given pair of cells. The lists are constrained to particles within this
pair of cells instead of particles scattered across multiple neighboring cells. The pseudocode
in Algorithm 1 describes the procedure of building a pairwise neighbor list for a pair of cells
cellA and cellB.

If a base cell cellA is interacting with cellB, each particle from cellA is paired with a
neighbor list filled with its potential interaction partners from cellB. The individual neighbor
lists for each particle of cellA form the local Verlet list for this pair of cells. [Gon12]
In the building phase a suitable traversal is chosen to iterate over the domain and create
such neighbor lists for each pair of neighboring cells. If newton3 optimization is turned off,

17

5. Pairwise Verlet neighbor list

Algorithm 1: Building pairwise neighbor lists - pseudocode

Input: base cell A and partner cell B
Output: local Verlet list for the pair of cells A and B

1 Function buildPairwiseVerletLists(cellA, cellB):
2 for particle i ∈ cellA do
3 for particle j ∈ cellB do

// Checks if distance between two particles is within rc · s
4 if dist(i, j) < rc · s then
5 neighborList[i].store(j);

6 return neighborList

an interaction needs to be carried out in both directions. In that case the interaction in
Algorithm 1 needs to be carried out once more, this time with cellB as the base cell and
cellA as its neighboring cell. If the optimization is turned on, then the traversal defines
for each interaction between two cells, which one is the base cell, whose particles own the
neighbor lists, and which cell is the neighbor, whose particles are inserted into the base cell’s
neighbor lists.

5.3. Implementation

The implementation of this algorithm was realized in the VLCCellPairNeighborList class,
which inherits from VLCNeighborListInterface. The neighbor list class should be a second
possible match to the NeighborList template argument of the VLC container, an alternative
to VLCAllCellsNeighborList. We will follow the structure of the interface explained in
Chapter 4 to describe the implementation.

5.3.1. Rebuilding

The data structure to store the neighbor lists is a three-dimensional vector of pairs. The
first two dimensions define the base cell and its current partner cell. For each cell pair, the
third dimension defines a vector of pairs. The pairs consist of a particle pointer and its
neighbor list, where the main particle is from the base cell and the neighbor list contains
particles pointers from the partner cell. A graphical illustration of the data structure can be
seen on Figure 5.1.

Rebuilding of the neighbor lists

Using the same concept as Section 4.2, the buildAoSNeighborList() method deals with
initializing the data structure and reserving memory in advance in order to make the filling
of the list more efficient.
We begin by defining the size of the neighbor list data structure in each dimension. The first
dimension has the same size as the number of cells of the domain. The second dimension
requires an estimation of how many neighbors each cell has, including itself. In the standard

18

5. Pairwise Verlet neighbor list

Figure 5.1.: Sketch of pairwise Verlet’s data structure

case a cell has 26 neighbors (apart from itself), a 3 x 3 x 3 block without the base cell in
the center. However, AutoPas allows a cell’s side length to be less than rc · s, which would
change the number of cells a base cell interacts with. Thus, we count how many cells fit
in the sphere defined by rc · s. The result shows how many cells should be reserved in the
second dimension, for every base cell. If the newton3 optimization is on, the result can be
halved and the interaction of the base cell with itself also has to be accounted for. Finally,
for each cell pair we create a vector of the same length as the number of particles in the
base cell. In the vector we insert a pair for each particle of the base cell, where the first
element of the pair is a pointer to that particle and the second element is an empty vector,
later to be filled with neighbor pointers. Figure 5.1 provides an overview of the 3D vector
and its size in each dimension.

Since each base cell has its own vector of neighboring cells, the local indices for each of
these vectors (0 to number of neighboring cells) need to be mapped to the actual domain
cells. In other words, the program has the global indices of the base cell and its partner cell
and it needs to know where to find the corresponding neighbor list, or what the local index
of the partner cell is in the base cell’s vector. For this we use a vector of maps which saves
the dependency between a local neighbor index and the corresponding global cell index for
each base cell. Additionally, we have a map from particle to cell which is necessary in the
neighbor lists generation.

Neighbor lists generation

After the reservation phase, the initialized vector is sent to the new generator func-
tor class VLCCellPairGeneratorFunctor. The generator functor works similarly to the
VLCAllCellsGeneratorFunctor. The AoS functor includes an interaction between two
particles i and j, where the maps allow us to find the cells these particles belong to and
consequently the cell pair’s neighbor lists. Particle j is added to particle i’s neighbor list,
attached to the corresponding cell pair. An SoA functor for neighbor list generation is
discussed in Section 6.2.
As already mentioned in Section 5.2, the way the lists are built is influenced by the build
traversal used and the newton3 optimization. In our implementation we have chosen lc-c18

19

5. Pairwise Verlet neighbor list

as a build traversal because of its simplicity and because of the guarantee that the base
cell will always have an index smaller than or equal to the index of its partnering cell.
Consequently, for a pair of interacting cells, the smaller index will store the neighbor lists,
while the partner particles will come from the neighboring cell with the larger index. If the
newton3 optimization is off, the traversal will call the AoS functor again with the particles
switched, thus both will be contained in each other’s neighbor lists.

Figure 5.2.: Class diagram for the new pairwise Verlet container. The red group signifies
the generator functors and the green group shows the neighbor list hierarchy.
The orange components are the ones added in this iteration.

20

5. Pairwise Verlet neighbor list

5.3.2. Force calculation

The force calculation is carried out in VLCTraversalInterface. Similarly to the VLC
container, the loop body implemented in the respective VLC traversal subclass is responsible
for the force calculation of a given base cell. For the pairwise Verlet neighbor lists the
base step consists of iterating over all of a given base cell’s neighbors and through the
respective particle-neighbor list pairs. Each particle pair is then sent to the AoS functor of
the respective force calculation functor where the force between them is computed. Since
all VLC traversals so far were based either on the c18 (newton3 on) or the c01 (newton3
off) base step, no further iteration variants are required. Listing 5.1 is a code snippet which
contains the base step implementation for a given cell index.

1 void p ro c e s sCe l l L i s t s Imp l (VLCCellPairNeighborList<Par t i c l e> &neighborL i s t ,
unsigned long c e l l I ndex , PairwiseFunc to r ∗pairwiseFunc to r) {

2 auto &i n t e r n a l L i s t = ne ighborL i s t . getAoSNeighborList () ;
3 for (auto &c e l l P a i r : i n t e r n a l L i s t [c e l l I n d e x]) {
4 for (auto &[pa r t i c l eP t r , ne ighbors] : c e l l P a i r) {
5 Pa r t i c l e &p a r t i c l e = ∗ pa r t i c l eP t r ;
6 for (auto neighborPtr : ne ighbors) {
7 Pa r t i c l e &neighbor = ∗neighborPtr ;
8 pairwiseFunc to r−>AoSFuncto r (p a r t i c l e , neighbor , useNewton3) ;
9 }

10 }
11 }
12 }

Listing 5.1: Force calculation iteration for one base cell

21

6. SoA for VLC container

We have discussed the advantages of the SoA data layout in Subsection 2.2.2. In summary,
the SoA data layout is beneficial for cache efficiency in the force calculation phase and is
more appropriate for vectorization than AoS. The VLC container and all additions and
changes from chapters 4 and 5 only included the AoS data layout. In this chapter we discuss
the implementation of the SoA data layout for both neighbor lists of the VLC container.
Section 6.1 describes the representation of the neighbor lists in an SoA data layout and
section 6.2 explains how the neighbor list generation can be implemented in an SoA functor
which generates the neighbor lists in AoS from an internal linked cells SoA representation.

6.1. Neighbor list in SoA layout

6.1.1. Rebuilding

We have established that the particle data in AutoPas is stored in an AoS data layout by
default. The data structure can be converted to SoA layout for the force calculation, and
then transformed back to AoS.
Using the same principle, we add a method to the VLC neighbor list classes which generates
SoA neighbor lists from the already filled AoS neighbor lists. The SoA neighbor lists
thus have the same multi-dimensional vector structure as the AoS ones, albeit with a few
differences. First, a particle is stored through its index instead of a particle pointer in order
to be compatible with the force calculation functors for SoA. The force calculation will be
described in more detail in Subsection 6.1.2. Additionally, an aligned allocator has to be
added so that the particle data is alilgned with cache-line boundaries.

The generateSoAFromAoS() method iterates over all dimensions of the AoS neighbor
lists and allocates the same amount of memory for the SoA neighbor lists. Inside the 2D
vector for AllCells or 3D vector for CellPair respectively, the method adds the particle
indices corresponding to the particle pointers from the same spot in the AoS neighbor lists.
To make that step possible, we iterate over the particles in advance and initialize a map of
particle pointers to global particle indices.
If the data layout is SoA, generateSoAFromAoS() is called from rebuildNeighborLists()

in the VLC container after the call to buildAoSNeighborList(). This guarantees that the
AoS neighbor lists will have been filled and the conversion to SoA will thus be successful.

6.1.2. Force calculation

In each traversal, the data gets loaded into an SoA object before the iteration and extracted
afterwards. The SoA object stores attributes selected in advance for each particle. The
particle data is stored in an SoA format in that SoA object, and the indices from the
neighbor lists are used to fetch the data for the correct particles.

22

6. SoA for VLC container

Figure 6.1.: Class diagram for the new SoA components. The newly added methods are
colored in orange.

The force calculation can be done with the existing SoAFunctorVerlet which was created
to compute the interaction between a particle and its neighbor list in the SoA format. It
takes as arguments the loaded SoA object, the main particle’s index, a neighbor list which is
also filled with indices, and a newton3 option. The functor fetches the data of the neighbors
from the SoA at the respective indices and pushes them into a buffer meant specifically for
the neighbors. Afterwards, this buffer can be vectorized and the force is computed. [Gra21]
The SoA functor makes the neighbor lists iteration simpler than the AoS version, as we have
one less level of loop nesting and do not need to iterate over the particles of each neighbor
list, instead we directly pass the whole neighbor list to the SoAFunctorVerlet.

6.2. List generation

Until this point we had generated the neighbor lists using the generator functor’s AoSFunctor.
It used particle information in AoS format to fill neighbor lists, also in AoS format. This
section explains how to generate AoS neighbor lists from particle information in SoA format
instead. Apart from the idea that using the SoA representation might be more efficient, we
also want to maintain consistency among all functors and provide both an AoS and an SoA
implementation.
In our generator functors for AllCells and CellPair we implement SoAFunctorSingle()
and SoAFunctorPair(), which are inherited from the Functor class and take SoAView

objects as arguments. An SoAView object provides a ”window” view on the SoA between
two given indices, which is used in our case to represent a cell. The SoAFunctorSingle()

implements the interaction of a cell with itself and SoAFunctorPair() handles the interaction
between two cells.
The pipeline goes as follows:

1. The particle data is loaded from the internal linked cells structure into SoA format.

23

6. SoA for VLC container

The build traversal lc-c18 takes care of this, hence we do not need to implement a
conversion. It gives the SoAViews to the generator functor for each pair of interacting
cells according to the c18 base step and newton3 option.

2. The two cells in SoA format interact. Similarly to the AoS list generation, these
SoA functors generate neighbor lists for a cell interacting with itself or for a pair of
interacting cells. For each particle from the first cell, all particles from the second cell
are checked for distance and inserted into the first particle’s neighbor list if in range.
The particle pointers for the neighbor lists are fetched from the SoA representation
which includes 4 attributes, namely the pointer and the three positions to perform the
distance check.

3. The build traversal handles the extraction of the SoA data, thus converting back to
AoS.

This gives us two ways to generate AoS neighbor lists, either from an AoS or an SoA particle
representation. This is also reflected in the VLC container, where we add a constructor
argument to indicate which data layout will be used for the building phase.

24

7. c08 traversal

We have discussed the advantages of c08-based traversals over other domain colorings in
Subsection 2.2.3. Furthermore, in Section 5.1 we explained why VLCCellPairNeighborList

would allow the implementation of such a traversal, while the AllCells neighbor list would
not. This section describes the implementation of the c08 traversal for the pairwise Verlet
neighbor list.

The core idea of the c08 base step remains the same: interactions from the c18 base
step are moved to another cell’s base step to reduce the number of cells that need to be
locked per base step. If we have the indices of all pairs of cells which should interact in a
base step, we can implement this traversal by fetching the respective neighbor lists from the
3D vector and passing them through a force calculation functor as usual.
We have to define a separate iteration loop from the one in VLCTraversalInterface. We
want to include the necessary interactions which take place outside of the base cell and
exclude the pairs which are making the interaction block bigger than 2 x 2 x 2.

The VerletListsLinkedBase container uses an underlying linked cells data structure and
the linked cells container has its own implementation of a c08 traversal. This allows us
to reuse some of the lc-c08 implementation for this traversal. The lc-c08 implementation
includes the main traversal class and an LCC08CellHandler. The cell handler computes
which offsets should be added to given base cell’s index to find all of the interacting pairs
for a base step. These offsets are only computed once and can be applied to any base cell.
Thus, we can reuse these offsets in our traversal, since the mechanism does not change. We
create a traversal class VLCCellPairC08Traversal and our own cell handler which inherits
from LCC08CellHandler. Figure 7.1 describes the class structure of the new c08 traversal
and all related classes.

Figure 7.1.: Class diagram for the addition of the c08 traversal for
VLCCellPairNeighborList

25

7. c08 traversal

VLCCellPairC08Traversal inherits from C08BasedTraversal, explained in Subsection 2.2.3,
and implements traverseParticlePairs() as follows:

1. We load the SoA object at the beginning of the iteration, if the data layout requires it.

2. A c08 traversal is triggered. We pass a loop body to it, which calls the cell handler’s
processCellListsc08 for a given cell index.

3. The filled SoA object is emptied, if the data layout is SoA.

The cell handler’s processing method reuses computed offsets from the LCC08CellHandler
super class. For a given base cell, we iterate over the offset pairs and add them to our base cell
index. Thus, the interacting cell pairs’ indices are computed and we can fetch the local Verlet
lists for this pair. Afterwards, as usual, we either pass each particle pair to the AoSFunctor

or give the whole neighbor list and the main particle index to SoAFunctorVerlet.
If the newton3 optimization is off, we have to switch the cells and perform the force compu-
tation again for each pair of different cells.

Since this traversal is only applicable to VLCCellPair but not VLCAllCells, we made
a new traversal interface to help us check for container compatibility. The new class we
created is called VLCCellPairTraversalInterface and it will be used as a base class for
traversals which are only compatible with the VLCCellPair neighbor list. Consequently,
VLCTraversalInterface will be used for traversals which are compatible with both neighbor
lists.
We change the implementation of rebuildNeighborLists() to accommodate for the dif-
ferent traversal interfaces and the difference between the neighbor lists. We add a method
setUpTraversal() to each neighbor list class where the casts to the respective traversal
interfaces are done. The AllCells neighbor list keeps the old implementation because
nothing has changed. The CellPairs implementation first attempts to cast to the new
VLCCellPairTraversalInterface interface - it is successful only if the traversal is c08 for
CellPair. If it does not work, we try casting to VLCTraversalInterface and if that does
not work either, then the traversal is incompatible we throw an exception.

26

Part III.

Results

27

8. Testing setup

We have tested the experimental scenarios on the CoolMUC-2 LRZ cluster. It has 812 nodes
and each node supports up to 28 threads. Each CPU has 14 cores and the 28 threads are a
result of hyperthreading, which allows 2 threads per core.
We have tested with one, four, eight, 16, and 24 threads. Independently of the number of
cores, we decided to spread out the numbers of threads evenly and add a point for four
threads to gain more insight into the initial speedup.

We have set two main scenarios, a grid and a gaussian random generator. The scenarios are
tested with the delta T parameter set to 0, which means the particles do not move and the
measurements are more consistent among the iterations. The experiments last 100 iterations
to avoid any random variances. The standard experiment has 125000 particles. For the grid
scenario this translates to 50 particles per dimension. The standard particle spacing of 1.225
makes the domain be automatically generated with a side length of 56.12505. The average
density for this scenario is about 71% (number of particles divided by volume). The gaussian
scenario has the same amount of particles. We tuned the domain size to result in a similar
single-threaded performance to the grid scenario in order for the two to be comparable. The
result is a domain side length of 92 with a mean of 46 and a standard deviation of 18.5. The
resulting average density is approximately 16%.
We have included a secondary scenario for some cases where the original scenario was
considered too small. The new scenario has a million particles. For the grid this results
in a domain side length of 112.25025. For the gaussian scenario the domain side length
was increased to 185 with a mean of 92.5 and a standard deviation of 37 in order to keep a
similar density.

The experiments were done for two values of rc, namely 5 and 3.5. The bigger radius
is on the high end of the range of usually used values of rc. 3.5 is a representative of
smaller to medium rc. We used a skin factor of 1.2. The tested traversals are our familiar
variations of domain coloring: c01 (without newton3 optimization) and c18 and c08 with a
newton3 optimization. We mainly compare the performances of VerletLists and the VLC
containers with its two neighbor lists, VLCAllCells and VLCCellPair. For VerletLists

we test its only traversal vl-list-iteration as an equivalent to c01. The performance of the
LinkedCells container was also measured, although it usually performs differently and
incomparably to the Verlet lists-based containers. We will discuss results for the AoS and
the SoA data layouts.
The runtime measurements described in the next sections refer to the force calculation time
in non-tuning iterations. The neighbor lists were only built once in the beginning of the
simulation. The time used to build the neighbor lists was recorded and subtracted from the
timer to be able to truly compare the efficiency of the containers.
For most of the experiments the measurements were done with five samples and trimmed

28

8. Testing setup

mean of the middle three elements was taken to make sure outliers are not shifting the
result too much. For some later experiments three samples were taken and their mean was
recorded.

29

9. Performance in AoS data layout

The LinkedCells container is generally much slower than VerletLists, VLCAllCells and
VLCCellPair. Figure 9.1 illustrates the scale of their difference.

Figure 9.1.: Runtime comparison of containers including LinkedCells for a grid scenario
with 125000 particles with c01-based traversal and rc = 5

Thus, this chapter will analyze and compare the performance of the other three containers
in more depth.

9.1. c01 traversal

9.1.1. Observations

Grid generator

We compare the runtime performance of the three chosen containers for a homogenous
grid scenario. The bigger radius rc = 5 yields VLCCellPair as a clear leader in runtime
speed, as we can see on Figure 9.2. It has a speed advantage of 5 to 7% over VLCAllCells.
For example, a large relative difference can be seen for 24 threads, where VLCAllCells’s
computation lasts 4.47s compared to 4.19s for VLCCellPair.
VLCCellPair also achieves a speedup of more than 30% over VerletLists for a small
number of threads. For eight threads, VerletLists needs 14.4s while VLCCellPair makes
the computation in 10.95s. However, VerletLists has a greater speedup and it gets
closer to the other containers’ performance for a rising number of threads. For 24 threads,
VerletLists performs the computation in 4.92s compared to VLCCellPair’s 4.19s, which
makes the speedup achieved by VLCCellPair only 17%. The total speedup over 24 threads
is 18.78 times for VerletLists and 16.55 and 16.6 times respectively for VLCCellPair and
VLCAllCells.

30

9. Performance in AoS data layout

For a smaller rc of 3.5, VLCCellPair and VLCAllCells perform similarly and we can-
not definitively determine which container is more efficient. The runtime performance graph
on Figure 9.3 shows virtually no difference between the blocks in grey and yellow. For
eight threads VLCCellPair computes for 5.71s and VLCAllCells is slightly faster with 5.65s,
while for 16 threads the runtime is respectively 3.06s and 3.12s.

Figure 9.2.: Runtime comparison of con-
tainers for a grid scenario
for 125000 particles with c01-
based traversal and rc = 5

Figure 9.3.: Runtime comparison of con-
tainers for a grid scenario
for 125000 particles with c01-
based traversal and rc = 3.5

VerletLists once again has the best total speedup of 13.8 times, compared to VLCCellPair
and VLCAllCells’s 10.5 and 9.4 respectively. While the speedups are lower than the ones
for rc = 5, the differences between them are more pronounced. A visual representation
of the speedups for both values of rc can be seen on Figures Figure 9.4 and Figure 9.5.
The lines on Figure 9.5 show a more drastic difference between the speedups above eight
threads. VLCCellPair has a 30% speed advantage over VerletLists for one thread where
the runtimes are 35.62s and 27.36 s respectively. However, the difference shrinks with a
rising number of threads and VerletLists reaches VLCCellPair’s speed for 24 threads with
2.58s and 2.6s respectively.

Figure 9.4.: Speedup comparison of con-
tainers for a grid scenario
for 125000 particles with c01-
based traversal and rc = 5

Figure 9.5.: Speedup comparison of con-
tainers for a grid scenario
for 125000 particles with c01-
based traversal and rc = 3.5

31

9. Performance in AoS data layout

Gaussian generator

Since the gaussian scenario is inhomogenous, similar characteristics can be seen albeit
generally weaker than the grid scenario.

Figure 9.6.: Runtime comparison of con-
tainers for a gaussian genera-
tor scenario for 125000 parti-
cles with c01-based traversal
and rc = 5

Figure 9.7.: Runtime comparison of con-
tainers for a gaussian genera-
tor scenario for 125000 parti-
cles with c01-based traversal
and rc = 3.5

For rc = 5 VLCAllCells has the best performance with a very small advantage over
VLCCellPair of under 5% for more than one thread. This can be seen on Figure 9.6, where
the grey block is slightly lower than the yellow one for one thread and slightly higher for
all other numbers of threads. Nevertheless, VLCCellPair maintains an improvement on
VerletLists from 25% for one thread (runtime of 87.64s and 69.88s respectively) to about
10% for 24 threads (4.64s and 4.18s). This decrease is once again due to VerletLists’s
superior parallelization speedup of 18.9 times.
A rc = 3.5 makes this pattern even clearer with VLCAllCells consistently leading in
performance, as can be seen on Figure 9.7. VLCAllCells performs the same computation for
85 to 90% of VLCCellPair’s runtime for up to 16 threads. However, for a higher number of
threads VLCCellPair starts catching up. The runtime for VLCCellPair and VLCAllCells

for 24 threads is 2.32s and 2.19s respectively.
Once again, VerletLists’s superior speedup allows it to catch up to VLCCellPair for a
relatively high number of threads.

9.1.2. Analysis

Generally, VLCCellPair seems to be the most efficient choice when the neighbor lists contain
a lot of particles, in this case for a higher rc and a denser grid scenario. Increasing the skin
factor or the particle density would have a similar effect. Consequently, a lower rc and a
lower density make VLCAllCells prevail over VLCCellPair. VLCCellPair is less beneficial
in the case of shorter neighbor lists possibly because of the higher complexity of its data
structure. The iteration requires an extra nested loop level in comparison to VLCAllCells,
which could be inefficient for lists consisting of only a few particles. Additionally, large lists
could be more suitable for VLCCellPair because in VLCAllCells the partner particles have
to be fetched from different cells, which is not the case for VLCCellPair. However, this
tradeoff could be lost when there are not a lot of particles in these neighbor lists to begin

32

9. Performance in AoS data layout

with.
VerletLists is more efficiently parallelizable than both containers because its parallelization
strategy is based on distributing single neighbor lists among the threads rather than cells
containing multiple neighbor lists. However, VLCCellPair still performs better in most cases
possibly due to its more efficient memory access discussed in Chapter 5.

9.2. c18 and c08 traversals

In this section we compare the performance of VLCAllCells and VLCCellPair for the c18
traversal and add VLCCellPair’s c08 traversal to the experiment. In comparison to the c01
section, we utilize the newton3 optimization. The VerletLists container does not support
the use of the newton3 optimization, so including it in this section would be unnecessary.

9.2.1. Observations

Grid generator

The grid scenario once again shows good results for VLCCellPair.

Figure 9.8.: Runtime comparison of con-
tainers for a grid scenario for
125000 particles with c18 and
c08-based traversals and rc =
5

Figure 9.9.: Runtime comparison of con-
tainers for a grid scenario for
125000 particles with c18 and
c08-based traversals and rc =
3.5

For a rc of 5 VLCCellPair’s c18 traversal is consistently performing better than the
equivalent traversal for VLCAllCells. A visual representation can be seen on the grey
and yellow blocks in Figure 9.8. The advantage of VLCCellPair rises from 6-7% for a low
number of threads to 13% for 24 threads. The runtime for eight threads is 6.48s and 6.91s for
VLCCellPair and VLCAllCells respectively. For a higher number of threads VLCCellPair’s
speedup rises faster than VLCAllCells’s speedup, reaching 14.6 and 13.7 respectively. Con-
sequently, for 24 threads the runtimes are 2.82s and 3.2s for VLCAllCells. To confirm the
results of this experiment, we conducted a larger experiment with a million particles, as de-
scribed in Chapter 8. The previous experiment included a large cutoff and skin and thus only
about 1000 cells. Therefore, a domain coloring with 18 colors would not provide sufficient
load for a high number of threads. This experiment shows similar results for the relationship
between VLCAllCells and VLCCellPair’s performance with c18, which can be seen on

33

9. Performance in AoS data layout

Figure 9.10.: Runtime comparison of containers for a grid scenario for a million particles
with c18 and c08-based traversals and rc = 5

Figure 9.10. The speedups once again increase rapidly between eight and 16 threads and
end up at 19 times for VLCCellPair and 17.9 times for VLCAllCells. The runtime for eight
threads is 50.39s for VLCCellPair and 54.34s for VLCAllCells, while the performance for 24
threads is respectively 18.27s and 20.58s, so the difference grows from almost 8% to over 12%.

In the next stage we add the c08 traversal for VLCCellPair to our experiment, which
is represented as a purple block in Figure 9.8. It performs similarly to c18 for a low number
of threads but brings up to 20% improvement on c18’s runtime for 24 threads, where the
results are 2.82s and 2.34s. Due to the relatively small number of cells in this scenario, these
measurements might not be an accurate representation of the situation since c08 has more
load per thread than c18.
The million particle experiment depicted on Figure 9.10 shows a slightly different pattern,
where VLCCellPair’s c08 traversal mainly performs very similarly to c18 and has a very
small advantage of under 5% for a high number of threads. The runtimes for eight threads
are 50.39s and 49.97s respectively for c18 and c08, where the difference is negligible. For 24
threads we see a slightly clearer advantage of c08 with results 18.27s and 17.54s.

The usual smaller experiment with rc = 3.5 is shown on Figure 9.9. For c18 the slight
advantage of VLCCellPair is confirmed. VLCCellPair and VLCAllCells start virtually
equal on a single thread with 15.51s and 15.55s. However, VLCCellPair scales better and
the results for 24 threads are 1.28s and 1.6s, which shows a clear advantage for VLCCellPair.
VLCCellPair’s c08 traversal starts out slower than c18 with 16.54s compared to 15.51s for a
single thread. However, c08 catches up for a high number of threads and improves slightly
on the runtime performance (less than 10%) with runtimes of 1.19s for c08 and 1.28s for
c18 for 24 threads. This is a similar pattern to the million particle experiment with rc = 5
which confirms the trend.

34

9. Performance in AoS data layout

Gaussian generator

For rc = 5 with the gaussian generator, the situation is similar to the grid scenario. However,
the speedups are generally weaker here.

Figure 9.11.: Runtime comparison of con-
tainers for a gaussian scenario
for 125000 particles with c18
and c08-based traversals and
rc = 5

Figure 9.12.: Runtime comparison of con-
tainers for a gaussian scenario
for 125000 particles with c18
and c08-based traversals and
rc = 3.5

VLCCellPair improves on VLCAllCells by more than 10% for a high number of threads
and it speeds up slightly better as well. A visual representation of the data can be seen
on fo the grey and the yellow blocks. At eight threads the runtime results are 6.65s and
7.09s for VLCCellPair and VLCAllCells respectively, which goes to 4.79s and 5.35s for 24
threads, showing the increasing advantage of VLCCellPair.
VLCCellPair’s c08 improves on c18 significantly for VLCCellPair and a high number of
threads. This is depicted on where a noticeable difference can be seen between the grey and
the purple block. The difference for 24 threads is as high as 60% with a runtime of 2.9s for
c08 compared to c18’s 4.79s for 24 threads. However, this might be an effect of the scenario,
since the number of cells is relatively low and density is lower than the grid as well.
We compare the results to a million particle experiment with a gaussian generator, described
briefly in Chapter 8. It shows a slightly weaker advantage of VLCCellPair’s c18 over
VLCAllCells c18 reaching a maximum of 7% for 24 threads with runtimes 17.48s and 18.73s.
However, c08’s performance is slightly weaker than c18 until 24 threads where it catches
up. For eight threads c08’s runtime is 50s compared to c18’s 47.47s with a 5% gap. For
24 threads c08 catches up with 17.26s to c18’s 17.48s. A visual comparison is depicted on
Figure 9.13 where the purple block is somewhat taller or equal to the grey block, in contrast
to Figure 9.2.1. For rc = 3.5 once again a lower density and smaller cells and neighbor lists
allow VLCAllCells to take the lead. VLCCellPair catches up for a higher number of threads
because of its superior speedup. Figure 9.12 illustrates the grey block starting out taller
than the yellow one and eventually catching up and surpassing it. In terms of measurements,
the performance for four threads is 5.4s for VLCCellPair and 5.14s for VLCAllCells, while
the runtimes for 24 threads are 1.42s and 1.39s, demonstrating a small advantage or at least
equivalent performance of VLCCellPair.
VLCCellPair with c08 is mostly slower than c18, as seen in Figure 9.12, and catches up with
the rising number of threads. It starts out slower than c18 for a single thread with runtime
of 19.47s as opposed to 16.43s. However, its high speedup allows it to catch up and become
marginally better than c18 for 24 threads, namely 1.38s for c08 compared to 1.41s for c18.

35

9. Performance in AoS data layout

Figure 9.13.: Runtime comparison of containers for a gaussian scenario for a million particles
with c18 and c08-based traversals and rc = 5

9.2.2. Analysis

These results reinforce the idea that VLCCellPair’s advantage increases with longer neighbor
lists. They also demonstrate that VLCCellPair’s c18 traversal parallelizes better than
VLCAllCells’s c18 for a high number of threads. The speedup for VLCCellPair over 24
threads is larger even when its single-thread performance is better than VLCAllCells. In
other words, the high speedup is not a result of a bad single-thread performance. It is worth
noting that the newton3 optimization is used here, which means half as many neighbor lists
are used for VLCCellPair in comparison to c01.
VLCCellPair’s c08 does not achieve a strong improvement over c18. c08 is beneficial for
scenarios with a relatively small number of cells, where a c18 coloring does not give threads
a high enough load.

36

10. Performance in SoA data layout

We test the same scenarios with the SoA data layout. It is worth noting that the list building
time is significantly longer here possibly because of the conversion of the neighbor lists from
SoA to AoS, which is not parallelized.

10.1. c01 traversal

10.1.1. Observations

LinkedCells clearly has the best runtime performance over all scenarios, as can be seen
for example on Figure... . It will serve as a baseline for visual comparison of the other
containers’ performances.

Grid generator

Figure 10.1.: Runtime comparison of con-
tainers for a grid scenario for
125000 particles with a c01-
based traversal and rc = 5 for
SoA

Figure 10.2.: Runtime comparison of con-
tainers for a grid scenario for
125000 particles with a c01-
based traversal and rc = 3.5
for SoA

For rc = 5 in the grid scenario VLCAllCells and VerletLists are performing very simi-
larly for small number of threads. VerletLists has a small advantage over VLCAllCells

which fluctuates but stays under 10%. This relationship can be seen in Figure 10.3 in the
yellow and orange blocks. For example, for 16 threads VerletLists runs for 8.72s and
VLCAllCells runs for 8.96s, so the difference between them is inconsequential.
VLCCellPair, depicted as a gray block on Figure 10.3, is performing significantly slower
than the other containers. VLCAllCells is performing the same work for 75 to 85% of
VLCCellPair’s runtime. The largest difference in our data is for eight threads where
VLCAllCells’s 16.2s makes up 76% of VLCCellPair’s 21.12s. It is worth noting that the

37

10. Performance in SoA data layout

difference sinks slightly for 24 threads, because VLCCellPair has a better speedup, es-
pecially for a high number of threads. The higher speedup however might be a result of
VLCCellPair’s worse single-thread performance of 110.07s compared to VLCAllCells’s 91.9s.

A rc of 3.5 makes VLCAllCells’s advantage over VLCCellPair even larger, although it
sinks again for 16 and 24 threads after reaching its highest point at eight threads. For
eight threads VLCCellPair runs for 12.7s compared to VLCAllCells’s 7.39s. In contrast,
VLCCellPair’s runtime for 24 threads is 5.64s and VLCAllCells runs for 4.7s.
VerletLists also maintains a small advantage over VLCAllCells which reaches its highest
point for 24 threads, where VLCAllCells’s 4.7s are improved upon by VerletLists’s 3.83s.

Gaussian generator

Figure 10.3.: Runtime comparison of con-
tainers for a gaussian scenario
for 125000 particles with a
c01-based traversal and rc =
5 for SoA

Figure 10.4.: Runtime comparison of con-
tainers for a gaussian scenario
for 125000 particles with a
c01-based traversal and rc =
3.5 for SoA

We go on to the less dense gaussian scenario. For rc = 5, it is worth noting that
LinkedCells’s performance is slightly worse than the grid scenario in contrast to the other
containers which have a slightly shorter runtime here. VLCAllCells is once again performing
faster than VLCCellPair where it takes about 70% of VLCCellPair’s runtime and the
difference decreases again for 16 and 24 threads. For eight threads VLCCellPair lags behind
VLCAllCells with 19.79s and 13.75s respectively. In contrast, for 24 threads the runtimes
are 6.26s and 6.1s.
VLCAllCells and VerletLists perform very similarly with no consistent winner. For
example, the runtime for 16 threads is 7.92s for VerletLists and 7.87s VLCAllCells.
For rc = 3.5 the pattern is similar. VLCAllCells has an even bigger lead on VLCCellPair

which shrinks again for a higher number of threads. The performance of VLCAllCells for
eight threads is 7.5s, while VLCCellPair is almost twice as slow with 13.73s. VLCAllCells
and VerletLists are competing closely again with VerletLists having a small edge for
four, eight and 16 threads.

10.1.2. Analysis

These results repeat the pattern from AoS c01 where the gap between VLCAllCells

and VLCCellPair grows in favor of VLCAllCells’s performance for sparser scenarios or

38

10. Performance in SoA data layout

shorter lists. The difference is that VLCAllCells already performs significantly better than
VLCCellPair in the SoA data layout, likely once again due to VLCCellPair’s more complex
data structure. The larger number of smaller neighbor lists could be hindering efficient
vectorization, especially if they are smaller than the vector size. Additionally, iterating
over VLCCellPair’s larger number of neighbor lists simply requires more instructions. More
testing has to be done in regard to vectorization and the number of particles outside of the
rc which still get vectorized in SoAFunctorVerlet.
Similarly to the equivalent AoS scenario, VerletLists reaches and sometimes surpasses
VLCAllCells, possibly due to its highly parallelizable traversal.

10.2. c18 and c08 traversals

10.2.1. Observations

Grid generator

Figure 10.5.: Runtime comparison of con-
tainers for a grid scenario for
125000 particles with c18 and
c08-based traversals and rc =
5

Figure 10.6.: Runtime comparison of con-
tainers for a grid scenario for
125000 particles with c18 and
c08-based traversals and rc =
3.5

For c18 grid rc = 5 VLCAllCells maintains an advantage over VLCCellPair albeit weaker
than c01. The results from this experiment are depicted in Figure 10.5. VLCAllCells

completes the same computation as VLCCellPair for 85 to 95% of VLCCellPair’s run-
time. For example, the runtime for eight threads is 11.81s for VLCCellPair and 10.3s for
VLCAllCells, demonstrating that the difference between the containers is smaller than in
the c01 scenario. VLCCellPair’s c08 traversal achieves a speedup over c18 only for a higher
number of threads. Until eight threads it is actually slightly slower, for example 11.81s for c18
and 11.97s for c08. The runtime for 24 threads is respectively 5.96s for c18 and 5.39s for c08,
showing a more significant difference. It is possible that once again the smaller amount of
cells skews the results in favor of c08 because it has enough load per thread in contrast to c18.

For r = 3.5 the advantage of VLCAllCells over VLCCellPair grows slightly compared
to the scenario with the bigger radius. VLCAllCells’s runtime makes up about 60 to 70%
of VLCCellPair’s runtime, for example 4.66s for VLCCellPair and 3.23s for VLCAllCells

for 16 threads.

39

10. Performance in SoA data layout

The c08 traversal does not achieve a speedup for this scenario, as can be seen on Figure 10.6.
VLCCellPair’s c18 is consistently faster, although the difference decreases again for a high
number of threads. The performance for 24 threads is 3.87s and 3.95s, showing that c08 has
almost caught up to c18.

Gaussian generator

The gaussian generator shows similar relationships in a slightly less pronounced manner.

Figure 10.7.: Runtime comparison of con-
tainers for a gaussian scenario
for 125000 particles with c18
and c08-based traversals and
rc = 5

Figure 10.8.: Runtime comparison of con-
tainers for a gaussian scenario
for 125000 particles with c18
and c08-based traversals and
rc = 3.5

For a rc of 5 the advantage of VLCAllCells over VLCCellPair is now smaller, the results
getting as close as 7.47s and 8s respectively for 24 threads. VLCCellPair’s c08 performs
similarly to c18 up to eight threads, where the runtimes are 11.3s and 11.78s. Afterwards it
speeds up faster and the runtimes for 24 threads are 8s and 5.97s where c08 has a noticeable
advantage. A visual representation of the result from this scenario can be seen on Figure 10.7.

A smaller rc of 3.5 has a similar effect to shrinking the radius in the grid scenario. It
makes the gap between VLCAllCells and VLCCellPair increase again with their clos-
est results for 24 threads being 3.57s and 4.6s. VLCAllCells’s runtime is about 78% of
VLCCellPair’s runtime, showing a larger difference in contrast to the one in the grid scenario.
This relationship depicted in Figure 10.8.
Here the c08 traversal does not add a speedup at all, instead starting at 31.9s for a single
thread significantly slower than c18’s 27.58s. With an increasing number of threads c08
starts catching up to c18 but does not manage to surpass it, their runtimes being 4.6s and
5s respectively.

10.2.2. Analysis

These results show the same main characteristics we have described for c01, although slightly
less pronounced. VLCAllCells’s c18 is consistently performing better than VLCCellPair’s
c18 and the difference between them grows with the decrease of rc. However, it stays generally
smaller than in the equivalent scenarios for c01. VLCCellPair’s c18 maintains its slower
runtime due to its omplex structure and other factors, as discussed in Subsection 10.1.2.

40

10. Performance in SoA data layout

The c08 traversal for VLCCellPair is scaling better than c18, but that is largely due to its
slow performance on a single thread. It seems that it is speeds up more than c18 for a high
number of threads. More tests should be done with a higher number of threads and various
numbers of particles and cells to allow deeper analysis.

41

Part IV.

Conclusion

42

11. Conclusion and outlook

Throughout the course of this thesis, we have discussed the drawbacks of the standard Verlet
lists algorithm and other Verlet lists-based neighbor identification algorithms. The pairwise
Verlet algorithms aims to solve them by storing particles and their neighbors in local neighbor
lists, attached to each pair of interacting cells. We have described the implementation of
the algorithm in the context of the AutoPas library. The implementation also includes a
refactoring of the existing VerletListsCells container to allow it to be used with different
neighbor lists. We have extended both of VerletListsCells’s neighbor lists with an SoA
data representation, since they were previously only available in an AoS data layout. Finally,
we have added a c08 traversal implementation for the new VLCCellPairNeighborList,
which was previously not possible for the VerletListsCells container.

The performance of the new components was evaluated through experiments on a ho-
mogenous and a non-homogenous scenario. The results for the AoS data layout imply that
the newly implemented VLCCellPair has an advantage over other containers for scenarios
with higher density or a larger interaction sphere containing more particles. However, the
SoA representations of VerletListsCells’s neighbor lists perform worse than existing
containers, possibly due to their increasingly complicated internal data structures. The c08
traversal shows a minimal if any improvement over existing traversals apart from a few
specific scenarios.

Opportunities for future work involve further testing for a larger variety of numbers of
particles and cells. It could also be useful to record the length of the neighbor lists and
relate that data to the runtime performance measurements. Furthermore, the vectorization
should be tested in more depth. More specifically, it should be investigated how many
particles which are in the skin but not in range of rc get vectorized anyway. Aditionally,
a mechanism can be implemented for the VerletListsCells container to switch between
directly between neighbor lists without treating them as two different containers. This would
allow the program to attach a new neighbor list to the same container without instantiating
a new container.

43

Part V.

Appendix

44

A. Measurements

lc vl pair-vlc all-vlc

1thr 343.001 92.27777 69.25184 74.23159

4thr 90.623 28.24345 21.59087 22.6331

8thr 44.80333 14.39547 10.94407 11.61568

16thr 23.67733 7.263862 5.90605 6.245913

24thr 16.38333 4.914659 4.185186 4.470103

Table A.1.: AoS grid c01 r5

45

A. Measurements

lc vl pair-vlc all-vlc

1thr 132.2327 35.62301 27.36077 26.99466

4thr 37.01367 12.9084 10.75693 10.86769

8thr 18.39733 6.814098 5.708789 5.652336

16thr 9.515667 3.361244 3.062866 3.122032

24thr 6.814 2.582559 2.603976 2.874748

Table A.2.: AoS grid c01 r3.5

lc vl pair-vlc all-vlc

1thr 293.4523 87.63786 69.87526 72.11787

4thr 77.91633 26.62959 22.21482 21.79346

8thr 38.80567 13.44605 11.54507 11.2556

16thr 20.16667 7.062128 6.066742 5.958575

24thr 13.749 4.641154 4.175116 4.042463

Table A.3.: AoS gaussian c01 r5

lc vl pair-vlc all-vlc

1thr 112.8363 35.48398 28.08733 25.31884

4thr 32.282 12.33534 11.01785 9.525487

8thr 15.813 6.482511 5.780759 4.901681

16thr 8.362333 3.356375 3.05047 2.659253

24thr 5.828667 2.30728 2.320137 2.187162

Table A.4.: AoS gaussian c01 r3.5

lc-c18 pair-vlc-c18 all-vlc-c18 lc-c08 pair-vlc-c08
1thr 184.6427 41.12838 43.70488 183.6307 40.98779
4thr 48.22967 11.98281 12.90938 46.534 11.59045
8thr 25.19767 6.484162 6.911332 23.55067 6.170517
16thr 14.21767 3.679921 4.036005 12.255 3.204321
24thr 10.973 2.824812 3.197444 8.506333 2.339864

Table A.5.: AoS grid c08 and c18 r5

lc-c18 pair-vlc-c18 all-vlc-c18 lc-c08 pair-vlc-c08
1thr 70.94067 15.51134 15.55486 70.17333 16.54312
4thr 19.01633 4.949728 5.333517 18.39333 5.23006
8thr 9.690333 2.636085 2.799546 9.305667 2.752693
16thr 5.021 1.503901 1.747318 4.778 1.462444
24thr 3.538667 1.284146 1.598824 3.277667 1.19197

Table A.6.: AoS grid c08 and c18 r3.5

46

A. Measurements

pair-vlc-c18 all-vlc-c18 pair-vlc-c08
1thr 347.3191 368.9896 347.7056
4thr 98.71118 110.3123 98.96622
8thr 50.38971 54.34377 49.9715
16thr 26.10418 28.41782 25.50508
24thr 18.27272 20.57875 17.5418

Table A.7.: AoS grid c08 and c18 r5 for a million particles

lc-c18 pair-vlc-c18 all-vlc-c18 lc-c08 pair-vlc-c08
1thr 157.838 40.41814 41.81303 157.6693 41.40479
4thr 40.911 11.58701 12.07228 39.99567 12.0161
8thr 23.36933 6.654232 7.094235 20.173 6.153588
16thr 17.89433 5.034938 5.551584 11.74833 3.606895
24thr 17.26067 4.791941 5.354592 9.891333 2.900221

Table A.8.: AoS gaussian c08 and c18 r5

lc-c18 pair-vlc-c18 all-vlc-c18 lc-c08 pair-vlc-c08
1thr 61.332 16.42832 15.55358 60.893 19.47416
4thr 16.64933 5.404432 5.135573 15.979 6.606346
8thr 8.396333 2.867629 2.753634 8.031333 3.464581
16thr 4.539 1.619676 1.693575 4.077333 1.837433
24thr 3.522 1.417217 1.568516 2.808667 1.384068

Table A.9.: AoS gaussian c08 and c18 r3.5

pair-vlc-c18 all-vlc-c18 pair-vlc-c08
1thr 327.0787 339.0069 334.878
4thr 95.12653 98.4587 99.65673
8thr 47.4746 48.96924 50.00657
16thr 24.74828 26.22618 25.60723
24thr 17.48364 18.72616 17.25847

Table A.10.: AoS gaussian c08 and c18 r5 for a million particles

lc vl pair-vlc all-vlc
1thr 55.686 92.55919 110.0698 91.90398
4thr 14.413 28.00099 38.69611 30.4222
8thr 7.189667 15.85064 21.11923 16.20724
16thr 3.679667 8.721519 11.39006 8.963648
24thr 2.513667 6.684405 8.466011 7.134246

Table A.11.: SoA grid c01 r5

47

A. Measurements

lc vl pair-vlc all-vlc
1thr 22.58667 34.04288 47.86673 32.85955
4thr 6.452667 11.49797 22.24536 13.21039
8thr 3.25 6.875309 12.70454 7.393243
16thr 1.671667 4.521446 7.290292 5.0428
24thr 1.169667 3.83015 5.639666 4.697018

Table A.12.: SoA grid c01 r3.5

lc vl pair-vlc all-vlc
1thr 59.159 74.64619 93.62867 73.68063
4thr 15.749 23.46404 35.43848 24.68823
8thr 7.933333 13.28738 19.78533 13.75439
16thr 4.046333 7.917509 11.27627 7.874818
24thr 2.763333 6.103584 8.120661 6.262046

Table A.13.: SoA gaussian c01 r5

lc vl pair-vlc all-vlc
1thr 30.365 28.60979 48.03111 27.59629
4thr 8.915667 10.88278 23.48876 12.07942
8thr 4.517 6.697428 13.72939 7.504649
16thr 2.369333 4.926437 8.172642 5.131123
24thr 1.637333 5.101712 6.500943 4.782827

Table A.14.: SoA gaussian c01 r3.5

lc-c18 pair-vlc-c18 all-vlc-c18 lc-c08 pair-vlc-c08
1thr 35.21167 60.71523 55.41704 34.603 61.74105
4thr 9.357667 20.64794 18.23532 8.980667 22.02496
8thr 4.897 11.8144 10.30863 4.569 11.96761
16thr 2.775667 7.214153 6.416066 2.408 7.118758
24thr 2.139667 5.959052 5.580674 1.699667 5.390563

Table A.15.: SoA grid c18 and c08 r5

lc-c18 pair-vlc-c18 all-vlc-c18 lc-c08 pair-vlc-c08
1thr 36.92233 53.42051 45.04526 36.564 55.95169
4thr 9.981 19.11642 15.83673 9.796 21.07208
8thr 5.507333 11.30134 9.514928 4.983333 11.78433
16thr 3.981667 8.506459 7.805402 2.746 7.005136
24thr 3.613333 8.012931 7.472682 2.239333 5.972975

Table A.16.: SoA gaussian c18 and c08 r5

48

A. Measurements

lc-c18 pair-vlc-c18 all-vlc lc-c08 pair-vlc-c08
1thr 14.40767 27.4465 19.6966 14.25033 30.31907
4thr 4.092 12.71996 7.940469 3.901333 13.68618
8thr 2.122667 7.436246 4.826174 2.034333 7.978481
16thr 1.143 4.661499 3.227044 1.068 5.052022
24thr 0.840333 3.866012 2.691053 0.749667 3.950691

Table A.17.: SoA grid c18 and c08 r3.5

lc-c18 pair-vlc-c18 all-vlc-c18 lc-c08 pair-vlc-c08
1thr 20.1 27.58032 17.92252 19.91667 31.91475
4thr 6.056333 12.39603 8.589706 5.800667 14.73217
8thr 3.169333 7.603854 5.581374 3.001667 8.539324
16thr 1.723667 5.278422 3.941323 1.637 5.90581
24thr 1.274667 4.600653 3.570039 1.164 5.013003

Table A.18.: SoA gaussian c18 and c08 r3.5

49

List of Figures

2.1. Lennard-Jones potential . 3

2.2. Three main containers in AutoPas. Direct Sum: the force is computed
between the red particle and the blue particles in its red circle (with a radius
of rc). Linked Cells: The red particle from the red base cell interacts with the
blue particles, which are located in the blue neighboring cells and lie within
the cutoff radius rc. Verlet Lists: The red particle saves all particles within
the yellow circle in its neighbor list. It interacts only with the ones in the red
circle defined by rc. [GST+19] . 4

2.3. AutoPas container hierarchy . 6

2.4. Data layout visual representation . 7

2.5. Base steps in AutoPas traversals. The c01 base step includes an interaction
with all neighbors. The c18 base step includes only interactions with neighbors
with a bigger cell index. The c08 base step is a variation of the c18 base step
which allows less cells to be locked in a base step. [Gra21] 8

2.6. 2D domain coloring for traversals in AutoPas [Gra21] 9

4.1. VLC sketch . 13

4.2. vlc class diagram before refactoring . 14

4.3. vlc after refactoring . 15

5.1. Sketch for pairwise Verlet . 19

5.2. Clalss diagram for pairwise Verlet . 20

6.1. Class diagram for SoA . 23

7.1. Class diagram for pairwise c08 . 25

9.1. grid c01 r5 runtime with linked cells . 30

9.2. grid c01 r5 runtime . 31

9.3. grid c01 r3.5 runtime . 31

9.4. grid c01 r5 speedups . 31

9.5. grid c01 r3.5 speedups . 31

9.6. gaussian c01 r5 runtime . 32

9.7. gaussian c01 r35 runtime . 32

9.8. grid c18 and c08 r5 runtime . 33

9.9. grid c18 and c08 r35 runtime . 33

9.10. grid c18 and c08 r5 runtime for a million particles 34

9.11. gaussian c18 and c08 r5 runtime . 35

9.12. gaussian c18 and c08 r3.5 runtime . 35

50

List of Figures

9.13. gaussian c18 and c08 r5 runtime for a million particles 36

10.1. grid c01 r5 soa runtime . 37
10.2. grid c01 r3.5 soa runtime . 37
10.3. gaussian c01 r5 soa runtime . 38
10.4. gaussian c01 r3.5 soa runtime . 38
10.5. grid c18 and c08 r5 soa runtime . 39
10.6. grid c18 and c08 r3.5 soa runtime . 39
10.7. gaussian c18 and c08 r5 soa runtime . 40
10.8. gaussian c18 and c08 r3.5 soa runtime . 40

51

List of Tables

A.1. AoS grid c01 r5 . 45
A.2. AoS grid c01 r3.5 . 46
A.3. AoS gaussian c01 r5 . 46
A.4. AoS gaussian c01 r3.5 . 46
A.5. AoS grid c08 and c18 r5 . 46
A.6. AoS grid c08 and c18 r3.5 . 46
A.7. AoS grid c08 and c18 r5 for a million particles 47
A.8. AoS gaussian c08 and c18 r5 . 47
A.9. AoS gaussian c08 and c18 r3.5 . 47
A.10.AoS gaussian c08 and c18 r5 for a million particles 47
A.11.SoA grid c01 r5 . 47
A.12.SoA grid c01 r3.5 . 48
A.13.SoA gaussian c01 r5 . 48
A.14.SoA gaussian c01 r3.5 . 48
A.15.SoA grid c18 and c08 r5 . 48
A.16.SoA gaussian c18 and c08 r5 . 48
A.17.SoA grid c18 and c08 r3.5 . 49
A.18.SoA gaussian c18 and c08 r3.5 . 49

52

Bibliography

[DM11] Jacob Durrant and J McCammon. Molecular dynamics simulations and drug
discovery. BMC biology, 9:71, 10 2011.

[Gon12] Pedro Gonnet. Pairwise verlet lists: Combining cell lists and verlet lists to
improve memory locality and parallelism. Journal of Computational Chemistry,
33(1):76–81, 2012.

[Gra21] Gratl, Fabio Alexander and Seckler, Steffen and Bungartz, Hans-Joachim and
Neumann, Philipp. N Ways to Simulate Short-Range Particle Systems: Auto-
mated Algorithm Selection with the Node-Level Library AutoPas. Computer
Physics Communications, 2021.

[GST+19] Fabio Gratl, Steffen Seckler, Nikola Tchipev, Hans-Joachim Bungartz, and Philipp
Neumann. Autopas: Auto-tuning for particle simulations. pages 748–757, 05
2019.

[HD18] Scott A. Hollingsworth and Ron O. Dror. Molecular dynamics simulation for all.
Neuron, 99(6):1129–1143, 2018.

[SSR07] Ralf Schneider, Amit Sharma, and A. Rai. Introduction to Molecular Dynamics,
volume 739, pages 3–40. 10 2007.

53

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction and Background
	Introduction
	Theoretical background
	Molecular dynamics
	Short-range interactions
	Newton's 3rd law

	AutoPas
	Containers
	Data layout
	Traversals

	Related work

	Implementation
	Neighbor lists for VerletListsCells
	VLC container
	Overview of the data structure
	Implementation before the refactoring

	Refactoring
	Neighbor lists
	Main container

	Pairwise Verlet neighbor list
	Motivation
	Algorithm
	Implementation
	Rebuilding
	Force calculation

	SoA for VLC container
	Neighbor list in SoA layout
	Rebuilding
	Force calculation

	List generation

	c08 traversal

	Results
	Testing setup
	Performance in AoS data layout
	c01 traversal
	Observations
	Analysis

	c18 and c08 traversals
	Observations
	Analysis

	Performance in SoA data layout
	c01 traversal
	Observations
	Analysis

	c18 and c08 traversals
	Observations
	Analysis

	Conclusion
	Conclusion and outlook

	Appendix
	Measurements
	Bibliography

