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ABSTRACT

According to the Standard Model (SM) of Particle Physics neutrinos are massless. But ac-
cumulating evidence from neutrino oscillation experiments shows that at least two neutrinos
have a non-zero mass. One way to account for the light, but non-zero left-handed neutrino
(LHN) masses, is through the type-I seesaw mechanism in which right-handed neutrinos
(RHNs) are added to the SM. The resulting LHN masses are inversely proportional to the
RHN masses m, = (Y, (®))2/M, where Y;, denotes the neutrino Yukawa coupling and (®)
the Higgs VEV. For a sizable coupling Y, ~ O(1), the RHN Majorana masses should be
M ~ O(10) GeV to explain the observed neutrino mass scale m, ~ O(0.1)eV. Even
though this seesaw mechanism provides a simple, qualitative scenario in which the active
LHN masses are explained by the existence of a heavy seesaw mass scale, it does not explain
its origin. In this work, the idea of using quantum effects to generate the RHN mass scales is
explored. Using the conjecture that lepton number violation by the RHN mass term occurs
at Planck-scale, it is possible to generate the seesaw scale via two-loop effects. Irrespective
of the exact mass scale at which the RHNs are introduced, using quantum effects to gener-
ate some RHN masses is an interesting possibility to reduce the number of free parameters
in neutrino mass models and thus increase predictivity. The studied two-loop quantum ef-
fects can alter the RHN mass spectrum due to sizable or dominant contributions and thus
significantly affect the low-energy phenomenology of neutrinos. Several realizations of neu-
trino mass models that incorporate radiative generation of RHN masses are investigated.
In detail, the SM extended with two and three RHNs is explored as well as extensions of
the scalar sector of the SM, comprising of a two-Higgs doublet model and an inert scalar
variant. It is shown how lepton violation at the Planck scale is phenomenologically viable
by exploiting two-loop effects and how it can reproduce the observed neutrino parameters
in the considered scenarios.
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ZUSAMMENFASSUNG

Geméf dem Standardmodell (SM) der Teilchenphysik sind Neutrinos masselos. Dennoch
gibt es zunehmend Belege aus Neutrinooszillationsexperimenten, dass mindestens zwei der
Neutrinos eine nicht verschwindende Masse haben. Eine Mdoglichkeit, um die leichten, aber
nicht verschwindenden linkshéndigen Neutrinomassen zu erkldren, ist der Typ-I Seesaw-
Mechanismus, in dem rechtshéndige Neutrinos (RHNs) zum SM hinzugefiigt werden. Die
resultierenden leichten Neutrinomassen sind umgekehrt proportional zu den RHN-Massen
m, = (Y,(®))2/M wobei Y, die Neutrino-Yukawa-Kopplung und (®) den Vakuumer-
wartungswert des Higgs-Bosons bezeichnet. Fiir eine Kopplung von betrichtlicher Grofie
Y, ~ O(1) sollten die RHN-Majoranamassen von der Gréfienordnung M ~ O(10'4) GeV
sein, um die beobachtete Neutrinomassenskala von m, ~ O(0.1)eV zu erkldren. Obwohl
dieser Seesaw-Mechanismus ein einfaches qualitatives Szenario beschreibt, in dem die nicht
verschwindenden aktiven Neutrinomassen durch die Anwesenheit von einer schweren Seesaw-
Massenskala erklart werden, wird ihr Ursprung selbst nicht erkliart. In dieser Arbeit wird
der Ansatz untersucht, Quanteneffekte zu nutzen, um die RHN-Massenskala zu erzeugen.
Nutzt man die Vermutung, dass die Leptonenzahlverletzung durch den RHN-Massenterm
auf der Planck-Skala stattfindet, ist es moglich, die bekannte Seesaw-Skala durch Zwei-
schleifeneffekte zu generieren. Ungeachtet der exakten Massenskala, auf welcher die RHNs
eingefiihrt werden, ist das Ausnutzen von Quanteneffekten, um einige RHN-Massen zu er-
zeugen eine interessante Moglichkeit, um die Anzahl an freien Parametern in Neutrino-
massenmodellen zu reduzieren und dadurch ihre Vorhersagbarkeit zu erhéhen. Die unter-
suchten von RHNs veranlassten Zweischleifen-Quanteneffekte, konnen das Massenspektrum
der RHNs aufgrund von betréichtlichen oder sogar dominanten Beitrdgen signifikant &ndern
und damit die Phéanomenologie bei niedrigen Energien der leichten Neutrinos beeinflussen.
Verschiedene Realisierungen von Neutrinomassenmodellen, die die radiative Erzeugung von
rechtshéndigen Neutrinomassen beinhalten, werden untersucht. Im Einzelnen wird das SM
erweitert mit zwei und drei RHNs betrachtet sowie Erweiterungen des Skalarsektors wie ein
Modell mit zwei Higgs-Dubletts und eine Variante mit inerten Skalaren. Es wird gezeigt,
dass Leptonenzahlverletzung auf der Planck-Skala durch das Ausnutzen von Zweischleifen-
Quanteneffekten phénomenologisch sinnvoll ist und wie es damit mdoglich ist, die beobach-
teten Neutrinoparameter in den betrachteten Szenarien zu reproduzieren.
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Chapter 1

Introduction

The origin of neutrino masses remains one of the biggest puzzles in Particle Physics. Al-
though the Standard Model (SM) of Particle Physics is showing great success in describing
particles as well as their interactions, it predicts neutrinos to be massless particles. From
the experimental observation of neutrino oscillations, we know that at least two of the three
active neutrinos are massive. Neutrino oscillations experiments have also shown that the
mass scale of the neutrinos is by many orders of magnitude smaller than of the other known
fermions, as well as that the neutrino mass hierarchies are much milder than those of other
fermions in the SM.

Neutrino masses may give a hint about high-scale physics and the theoretical structures
underlying the Standard Model. They may be the key to grand unifying theories (GUTs),
supersymmetric models [5-7] or models involving extra space-dimensions [8-10]. Many open
questions in Fundamental Physics like the nature of dark matter [11,12] and dark energy
[13,14], the baryon asymmetry of the Universe [15,16] and the strong C'P problem [17,18],
etc. may be linked to the mechanism behind the generation of light neutrino masses.

Even though a multitude of mechanisms to include massive neutrinos in the SM have
been proposed, the origin of neutrino masses still remains unknown. One of the most
popular and theoretically well-motivated models to introduce neutrino masses into the SM
is the so-called seesaw mechanism (see [19-22]).

In the simplest realization of the seesaw mechanism (type-I seesaw), the SM is extended
with a number of right-handed neutrinos coupling to the left-handed SM lepton doublet
via a Yukawa interaction. The newly introduced right-handed neutrinos are singlets under
the gauge group of the SM, allowing a Majorana mass term for right-handed neutrinos
and a mass scale which can be far above the scale of the electroweak symmetry breaking
(EWSB). Introducing a Yukawa interaction between the left-handed doublet and right-
handed neutrinos, the neutrinos participating in weak interactions obtain tiny masses, as
observed, when the right-handed neutrino (RHN) masses are far above the EWSB scale,
reminiscent of a seesaw.

One of the major drawbacks of the seesaw mechanism is the large number of unknown
parameters introduced by the model, reducing its predictive power. The Yukawa couplings
between the left- and right-handed fields and the Majorana masses of the right-handed
neutrinos are unknown a priori, facing only the constraint to reproduce the observed neu-
trino oscillations parameters. The problem of many free parameters can be approached by
choosing the most minimal set-up which is still able to reproduce the observed data.

In this thesis, quantum effects on the right-handed neutrino parameters are explored and



1 Introduction

it is investigated how these effects can be applied in different neutrino mass models. We
will show that in some scenarios quantum effects play an important role in the low-energy
phenomenology and specifically in enhancing the predictive power of the seesaw model.

This work is structured as follows: In chapter 2 a short review of the Standard Model
of Particle Physics and neutrino physics is given. Since the studied effects will significantly
affect the low-energy neutrino parameters through the seesaw mechanism, chapter 3 is ded-
icated to a review of the type-I seesaw. Chapter 4 investigates how quantum effects can be
used to generate right-handed neutrino masses in the Standard Model extended with RHNs,
prior to exploring the low-energy phenomenology of a minimally extended Standard Model.
As concrete examples, extensions by two and three right-handed neutrinos are considered
in chapter 5. The minimally extended SM scenario requires non-generic assumptions on
the high-scale parameters to be phenomenologically viable. Even though the observed neu-
trino mass scale can be reproduced, the neutrino mass hierarchy is typically too large. This
can be circumvented if the scalar sector is minimally extended. In chapters 6 and 7, RHN
mass generation in models with an extended scalar sector are explored in which low-energy
quantum effects are also considered. It is shown how the observed neutrino mass scale and
mild neutrino mass hierarchy can be reproduced by making generic assumptions on the
high-energy parameters. As extended scalar sector models, a two-Higgs doublet model and
a scotogenic variant with two inert doublets are investigated, respectively. The results of
this work are summarized in the final chapter 8.



Chapter 2

Massive Neutrinos and the
Standard Model

2.1 The Standard Model

The Standard Model (SM) of Particle Physics is an instance of a quantum field theory which
only contains renormalizable operators. It correctly describes the known strong, weak and
electromagnetic interactions. It is based on the gauge principle and constructed to show in-
variance under the Standard Model gauge symmetry group Gias = U(1)y xSU(2), xSU(3)..
All fundamental interactions are mediated by spin-1 gauge bosons as force carriers. Corre-
sponding to the electromagnetic, weak and strong force, there is the photon ~, the W+, Z
bosons, and the eight gluons g. The particle spectrum of the SM is summarized in Table 2.1.
The SM is an example of a chiral gauge theory, which means that left- and right-handed
chiralities have different transformation properties under the gauge group. Left-handed par-
ticles are organized into three isospin doublets, charged under SU(2); while right-handed
particles are SU(2)r-singlets. The different fermion types or flavors of charged leptons
(e, p, T), neutral leptons (ve, vy, vr), up-type quarks (u,c,t) and down-type quarks (d, s,b)
are thus arranged into three generations or families. Right-handed neutrinos are absent in
the SM and would be neutral under the gauge group G123 if added to the SM particle content.

The Standard Model Lagrangian is the most general, renormalizable Lagrangian invari-
ant under the U(1)y x SU(2)r, x SU(3). gauge group, and can be split up into the following
parts (for a review, see [23]):

ESM = ﬁDir‘ac + ﬁYukawa + ﬁGauge + ﬁSCCLlCLT‘ (21)

Here, the gauge part contains all of the gauge boson self-interactions

1 1 1
-5 S = SGa, G, (2.2)

with the field strength tensors By, W, and G%, of the U(1)y,SU(2), and SU(3). gauge
groups respectively defined as

LGauge = BMVB“V -

B, = 9,B, — 8,B,,
Wiy = 0,5 = O,Wj + o W,
G, = 0,Gy — 0,G% + gs f“bCGZGf,, (2.3)
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where €% (with 4,7,k = 1,2,3) and f®¢ (with a,b,c = 1,...,8) are the corresponding
group structure constants of SU(2)r, and SU(3).. The Dirac part of the Lagrangian £p;,qc
contains the kinetic terms and their interactions with the gauge bosons through the covariant
derivative:

Lpirac = iLIPL; + iegiPer; +iQiPQ; + iuriPup; + idp; Pdr; + h.c., (2.4)

where ) = y#D,, with the covariant derivative according to the transformation property of
the fermion field under the SM gauge group (see Table 2.1). For a quark field, the covariant
derivative reads D,, = 0, —iY g1 B,, — iQQWﬁai —igsGyA". Here o and \® are the generators
of the SU(2);, and SU(3). gauge groups (the three Pauli and eight Gell-Mann matrices
respectively) and Y denotes the hypercharge of the quark field. g1, g2 and gs denote the
respective gauge couplings of U(1)y, SU(2)r, and SU(3).. Similarly, the covariant derivative
for a leptonic field would be D,, = 9, — 1Y g1 B, — iggWﬁai, where Y is the hypercharge of
the leptonic field. The scalar sector of the SM contains the spin-0 Higgs field

A 2
EScalar = DMCI)TD“(D - ,Uz2(pT(b — 5 <(I)TCI)> R (25)

with p being the Higgs mass parameter and A is the dimensionless Higgs quartic coupling,
where ;2 < 0 such that the complex scalar field ® acquires a non-zero vacuum expectation
value (VEV) in its neutral direction, breaking the electroweak U(1)y x SU(2)r, group down
to the residual electromagnetic U(1)em group. The VEV of the neutral component of the
Higgs equals (®) = v/v/2 = 174GeV. The Higgs doublet can be parametrized in the
following way

o+
¢ = (;5 (v+h+ z’A)) ’ (2:6)

where h denotes the physical Higgs boson. In the broken phase, the three fields ®* and A
are Nambu-Goldstone bosons which correspond to the three broken generators of U(1)y x
SU(2)r, and get eaten by the three gauge bosons W+ and Z° which thereby acquire a mass.
Due to the residual electromagnetic U(1)en symmetry, the photon stays massless. The fields
Wj, Z, and A, are linear combinations of the Wﬁ’Z’?’ and the B, fields:

1
+ 1 2
Wu _E(WM:FWM)’
7 — 92W3 _ngu
=
Vi + 95

. 92W3 + ng,u

A (2.7)
Y Ve +d
Finally, the Yukawa sector in the Standard Model reads
[rYukawa = — (Yve)ij E‘I)BRJ‘ — (Yu)U @(AI;UR]' — (Yd)ij @‘I)de + h.C.7 (28)

with the charge conjugated Higgs field D = ioy®* (where o9 is the second Pauli matrix)

and the dimensionless Yukawa coupling matrices (Ye,u,d)ij- As consequence of electroweak

4
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Symbol Fields Uy | SU2)L | SU(3).
v v v,
Li ‘ ; 8 ) _% 2 l
e no z T
€R; € MR, TR —1 1 1
c t
Qi ) ) % 2 3
p \5) o \Y)
UR; UR,CR,tR 2 1 3
dpi dr, SR, bR -1 1 3
ot
® 3 2 1
(I)O
B B 0 1 1
Wy
w W 0 3 1
W3
g 9 0 1 8

Table 2.1: Overview of all Standard Model particles and their transformation behavior under the
gauge groups of the SM

symmetry breaking (EWSB), the Yukawa sector generates Dirac masses for quarks and
charged leptons, such that (M, q)ij = v (Y&u’d)ij /v/2. The individual Yukawa coupling
matrices are diagonalized by bi-unitary transformations of the type Y, = U LaDaU;[za7 with
a = e, u,d. The mismatch between the diagonalizations of Y,, and Yy leads to a mixing among
different quark flavors which is captured in the Cabbibo-Kobayashi-Maskawa (CKM) mixing
matrix Uckm = UzuULd.

2.2 Neutrino Oscillations

From the observation of neutrino flavor oscillations,' it follows that at least two neutrinos
are massive particles (see [25-28]). Neutrino mass terms cannot be included in the Standard

'For the (im)possibility of charged lepton oscillations, see [24].
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Model introduced above in a renormalizable manner. The mixing between the different neu-
trino flavors is captured in the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix Upnins
= UeT U,. Mixing between the different mass eigenstates (v, 2,3 with the corresponding
masses M1, ma, mg) and flavor eigenstates (ve,v,,v;) of the neutrinos is characterized by
the unitary transformation

[Va) = (UpMmNS)ail Vi) (2.9)

where a = e, u, 7 and 7 = 1,2,3. Neutrinos are produced and interact as flavor eigenstates,
which are superpositions of the mass eigenstates. A neutrino with energy E in the flavor
state |v,) oscillates into a flavor state |v3) after propagating the distance L in vacuum? with
the transition probability [30]

2

Py 0y (L/E) = [(vslva, L) = , (2.10)

3

—im2 L
N UsilUfe~mizE
i=1

valid for ultra-relativistic neutrinos (like in neutrino oscillations experiments), where U =
Upnns is used as shorthand in this chapter. For antineutrino oscillations the replacement
U — U~ is used, which leads to the identity: P,,.,, = Pyz—p;. From the transition
probability several properties can be deduced:

e Oscillations depend on the mass squared differences Am3;, = m3 — m?, Am3, =

m3 — m?2, not the individual masses.

e The transition probability oscillates with the parameter L/FE.

e Mass squared differences must be non-vanishing in order to have a non-vanishing
transition amplitude.

e For oscillations between flavor states to occur, neutrino mass eigenstates must not
be degenerate and there must be non-vanishing mixing, which means Upyng is not a
diagonal matrix.

e Oscillation probability is invariant under the phase transformation Ua; — €/?2U,;e'%i
(or U — IUJ, where I, J are diagonal phase matrices with e?#¢ on the main diagonal),
which means so-called Majorana phases have no influence on neutrino oscillations.
Only a Dirac phase ¢ can enter into the oscillation probability, which leads to C'P
violation for 6 # {0, 7}, such that P, ., # Pryis-

The leptonic mixing matrix Uppnsg is usually parametrized in the PDG convention [31] with
the three mixing angles (612, 013, 023) and the three C'P violating phases (J,«, ) and is
expressed as a product of three successive rotations

c12€13 512€13 s13e”"
_ i i
Upmns = | —S12¢23 — c12523513€"°  C12C23 — 512523513€" 593C13
i i
512823 — C12¢23513€"°  —C12523 — S12C23513€"  C23C13
x diag(e'®, e, 1), (2.11)

’In medium with varying density neutrino propagation is correctly described by the MSW (Mikheyev-
Smirnov-Wolfenstein) effect. Through coherent forward scattering of neutrinos with the surrounding medium,
neutrinos experience refraction which influences the evolution of the neutrino states. The MSW effect is key
in solving the solar neutrino problem. For more details see [29].
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where the shorthand ¢;; = cos#;; and s;; = sin6;; with 6;; € [0,7/2] and §, «, § € [0, 27] is
used. In case of Dirac neutrinos we have only § as C'P violating phase (sometimes referred
to as Dirac phase), for Majorana neutrinos we have in addition the C'P violating Majorana
phases a and 8. The angles and the Dirac phase can be extracted from the mixing matrix

by using
arctan( g—ﬁ ) , for Up1 #0,
2 =4
or else,
013 = arcsin (|Uss]) ,
arctan ( g—i; ) , for Uss # 0,
O3 =3 .
5 else,
s13¢1209 + 100G
813C12CToC
§ = —arg e (2.12)
512523

where U;; are the entries of the Upyins matrix.

From Eq. (2.10) we see that neutrino oscillations are sensitive to the following six in-
dependent observables: 012, 613, 623, §, Am3, = Am?D and Am32, = Am2,,. Through the
observation of enhanced oscillations in matter by the MSW effect, the sign of Am3; can
be determined experimentally and turns out to be positive Am3, > 0 for the standard
convention that 17 is the dominant component in v.. The sign of Am%l (or Am§2) is yet
unknown and allows for two orderings of the neutrinos mass spectrum. The two possible
arrangements® explaining the oscillation data are

myp < mg < mg normal ordering (NO),

m3 < myp < mg inverted ordering (10),

and can be seen in Fig. (2.1). Current fits to global neutrino oscillation data for the six
neutrino observables for normal and inverted ordering are summarized in Table 2.2 [32,33],
where in case of normal ordering Amgl = Am3, > 0 and correspondingly for inverted
ordering Am?,)l = Am§2 < 0. Normal ordering provides the best fit to the data, while
inverted ordering with Ax? = 10.4 (with respect to the global minimum of x?) is somewhat
disfavored [32,33].

As neutrino oscillations are only sensitive to the mass squared differences, the absolute
neutrino mass scale cannot be determined from oscillation experiments, but a lower bound
can be set by mupper > +/|Am3;|. Since the experimental data indicates non-vanishing
atmospheric Am3; and solar Am3, mass square differences, at least two neutrinos must
be massive, allowing for a massless lightest neutrino. In case of the lightest neutrino being
almost massless mi1 =~ 0, the other two neutrino masses become equal to the solar and atmo-
spheric mass scale mg = \/Am2; ~ 0.0086eV and m3 = \/Am3, ~ 0.0503 eV respectively
(taking values at 10 CL).

For the absolute values of the PMNS matrix elements |Upnng|, current global fits find at
30 CL [32]

0.797 — 0.842 0.518 — 0.585 0.143 — 0.156
[Upnins| = | 0.243 — 0.490 0.473 —0.674 0.651 — 0.772 |, (2.13)
0.295 — 0.525 0.493 — 0.688 0.618 — 0.744

SQuasi-degenerate neutrino masses with mi1 = mg &~ ms (QD) are excluded by experiment.
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Normal Ordering (NO) Inverted Ordering (10)
2
m? 1 IR ™ ¢
3 A 2
$ Ams,
21
mvl A
Am3,
Am3,
2 v
m; 1
2
2
5 Am3, 5 ¥
m,, T mvg--
? ?
0

Figure 2.1: Possible orderings of the neutrino mass spectrum and flavor content of the different
neutrino mass eigenstates.

Normal Ordering Inverted Ordering

bfp +10o 30 range bfp +10o 30 range
sin?fy, | 0.31070:913 0.275 — 0.350 0.31079:513 0.275 — 0.350
sin?fp3 | 0.56370018 0.433 — 0.609 0.56510 039 0.436 — 0.610
sin? 013 | 0.022377050098 | 0.02044 — 0.02435 | 0.0225970-50052 | 0.02064 — 0.02457
dcp/° 221739 144 — 357 282722 205 — 348
Ame | 739493 6.79 — 8.01 7.397021 6.79 — 8.01

o

iy | 425287002 | (4+2.436) — (+2.618) | —2.51070539 | (—2.601) — (—2.419)

Table 2.2: Global neutrino oscillation data for the six neutrino observables, showing the best fit
parameters (bfp) and the corresponding 10 and 3o CL range for normal and inverted ordering of
neutrino masses [32,33].

where the same parametrization as in Eq. (2.11) is used.
The magnitude of C'P violation in neutrino oscillations is characterized by the Jarlskog
invariant* [34]:

ISP =Im (UaiUZ,;U5Us;)

1
= gcos 13 sin 2615 sin 2613 sin 6, (2.14)

“Where invariant means that JST is independent of the phase convention used for the

PMNS matrix, i.e. invariant under phase transformations of the following form: Upmns —
diag(e'®1, e'??, e¥3) Upnns diag(e'®?, €2, 793).



Nature of Neutrinos 2.3

n p
w
_._e B
VL
VL
e
w
n p

Figure 2.2: Neutrinoless double beta decay (0v28) which is only possible if the left-handed neutrinos
have a Majorana mass term. At the cross vertex the effective Majorana neutrino mass is inserted.

with a, 8 = e, u, 7, and 4,5 = 1,2,3. Defining the quantity Aacéj = P(vq = vg) — P(Vq —
73) to measure the C'P violation, it is possible to write

Am3, L Am3,L Am2,L
CP _ CP . 21 . 31 : 32
ALY =+16J, sm( 1B ) sm< 15 > sm( 1B ) , (2.15)

kY

where “4” corresponds to even permutations of («, 3,v) = (e, u, 7) with v # «a, f and “—
to odd permutations. C'P violation occurs only for AS” = 0, which means that J¢¥ # 0 (or
equivalently 60;; # 0,9 # {0,7}) and no two mass eigenstates are degenerate m; # m; [35].
Current global fit analysis finds

JCP = (0.0333 + 0.0019) x sind (2.16)

at the 30 CL for both orderings [32]. Compared to the C'P violation in the quark sector
JqCP = (3.18 £0.15) x 1077 [31] this implies that C'P violation is three orders of magnitude
larger in the leptonic sector assuming 0 # {0, 7}.

2.3 Nature of Neutrinos

The observation of neutrino oscillations proves neutrinos to be massive particles, in contrast
to the SM prediction. As neutral fermions, neutrinos can either acquire a Dirac mass term
by coupling them to a scalar field developing a non-zero VEV or carry a Majorana mass
term if neutrinos are their own antiparticles. The only known experiment to test whether
neutrinos are Dirac or Majorana particles is the observation of neutrinoless double beta
decay® (0v283): (A,Z) — (A,Z £ 2) + 2¢T. In this decay two neutrons decay into two
protons and two electrons, violating lepton number by two units, which is only possible if
neutrinos are Majorana. The Feynman diagram of the process is depicted in Fig. 2.2.

The difficulty of experimentally distinguishing between the Dirac or Majorana nature
of neutrinos is often referred to as the Practical Dirac-Magjorana Confusion Theorem [36].

5Or similar lepton number violating nuclear processes like double electron capture 2e~ + (A4,2) = (A, Z—
2) (0vECEC) and positron emitting electron capture e” + (A, Z) — (4, Z —2) + et (0wBTEQC).



2 Massive Neutrinos and the Standard Model

Experiments involving ultra-relativistic neutrinos (p, > m, ) are not sensitive to the nature
of the neutrino as neutrino neutral weak currents take the same form in the limit of a
vanishing neutrino mass. Looking for lepton number violation in 0v28 that automatically
points to the Majorana nature of neutrinos circumvents this theorem.

In general, while Dirac spinors contain two Weyl spinors with different chirality ¥p =
Y1, + ¥R, Majorana spinors contain a Weyl spinor and its C'P conjugate ¥y = 91 + 9§
(or ¥y = YR + 9§ for the right-handed field). Where charge conjugation is defined as
Pe = C@T with the charge conjugation operator C' = 7?2, satisfying CT = —C and CTC = 1.
Therefore, Majorana spinors fulfill the condition that 9§, = e"1)yr, with the Majorana phase
¢. In the Lagrangian, a Majorana mass term takes the form®

1— 1—
Las = =55 My — SULMUS, (2.17)

violating lepton number by two units. From this it can be shown that a Majorana mass
matrix is a complex symmetric matrix by virtue of C being an antisymmetric operator and
the anticommutativity of the fermion fields. Thus, by rearranging

G My, = (PeMyp)" = —pE(C )T My = gs MTyy, (2.18)

and using @ = —¢EC_1, it must hold that M = M7, Therefore, only one unitary matrix
Uy is required to diagonalize the Majorana mass matrix: M = U]’\‘}DMUJL. Dy denotes
the diagonal matrix. Further, note that ¢% = (¢¥r)¢ = (). In addition to a Majorana
mass term for the left-handed fields, there could also be a Majorana mass term for the
right-handed fields, as well as a Dirac mass term in the Lagrangian:

_ 1— 1—
Lpyym =~y Mpyr — §¢EML¢L — §¢}§MN¢R +h.c, (2.19)

where only the Dirac mass term is invariant under global transformations ©; — €'y,
YR — "R, resembling the conservation of lepton number L. As the SM predicts neutrinos
to be massless particles, the SM conserves lepton number L = L.+ L, + L, as an accidental
(global) symmetry, resulting form the gauge symmetries and field content, to all orders in
perturbation theory”.

A Majorana mass term is only allowed for neutral fermions, as otherwise the conserva-
tion of electric charge (a local gauge symmetry) would be violated. A hint towards Dirac
neutrinos would be the observation of electrically charged neutrinos. An upper bound on
the neutrino charge @), can be set from observing the correlation (or lack thereof) between
the arrival time and the neutrino energy from supernova neutrinos. From the observation of
supernova neutrinos of SN 1987A an upper bound for the neutrino charge was determined:
Q, <2x 107 ¢ [37].

2.4 Number of Neutrinos

The number of active neutrinos N, can be determined from precision measurements of
Z — ff decays (where f denotes a fermion species), since the Z boson is mediating weak

5This is only a general consideration. Explicitly adding a Majorana mass term for the left-handed neu-
trinos v§ My to the SM is not possible due to the SU(2). x U(1)y gauge symmetry.

"In general, the quantum numbers B and L are both anomalous in the SM, i.e. broken by quantum
effects. Only the combination (B — L) is anomaly-free. At high energies and temperatures the SM allows for
non-perturbative transitions that break B, L, (B + L), but respect (B — L), the so-called sphaleron process.
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The Neutrino Mass Scale 2.5

interactions between all Standard Model fermions. By measuring the total Z decay width
and the visible Z decay width from decays into quarks and charged leptons, the invisible Z
decay width is obtained by subtracting the total from the visible width. The invisible width
is from Z decaying into the active neutrino species. The result of Z decay measurements
favors three active neutrinos with high accuracy N, = 2.984 + 0.008 [31]. If additional
neutrinos exist, they must be either sterile (i.e. not participating in weak interactions) or
much heavier (m, > mz/2).

Long-baseline neutrino oscillations experiments with solar (L ~ 108km, E < 15MeV),
atmospheric (20 < L < 10*km, E ~ 1 GeV), reactor (L ~ 0.01—10*km, E ~ 3 MeV) and ac-
celerator (L 2 500km, E' ~ 1 GeV) neutrinos are in line with the three neutrino picture [38].
Short-baseline experiments (with distance-neutrino energy ratios L/E ~ 1km/GeV) like
LSND and MiniBooNE show data in tension with the three neutrino framework. This is
referred to as short-baseline anomaly. Explaining the short-baseline (SBL) data would re-
quire mixing with at least one additional sterile neutrino added to the three active neutrinos
with a mass squared difference of Am3; ~ O(1)eV? [39], so-called (3+1) neutrino models.
It must be noted that SBL results are not necessarily conclusive since there is a strong
tension between experiments measuring the appearance and disappearance of (7) and (Tu).
This appearance-disappearance-tension is reinforced as current 2018 MiniBooNE results
are consistent with previous v, appearance experiments like LSND [40]. As an additional
fourth, sterile neutrino would influence the atmospheric flux of v, neutrinos compared to
the standard scenario of three active neutrinos, the IceCube neutrino telescope is able to
set stringent bounds on Am3; and the mixing. Current IceCube data excludes the allowed
region from the global best fit of Am?; from appearance experiments such as LSND and
MiniBooNE for the global fest fit value of |Ug4|? at 99 % CL [41].

Big Bang Nucleosynthesis (BBN) in standard ACDM cosmology predicts an effective
number of neutrino species of Nesflf\/[ = 3.046, which includes three neutrinos plus extra rel-
ativistic degrees of freedom (from neutrino heating through e~ e annihilations when the
neutrinos were not yet fully decoupled) [42]. If another relativistic species is added e.g. in
form of an additional neutrino, the radiation energy density increases. This leads to a delay
of the epoch of radiation-matter equality, changing the height of the first baryonic acous-
tic oscillation peak of the Cosmic Microwave Background (CMB) angular power spectrum.
Current 2018 CMB data from the Planck satellite constrains the effective number of neu-
trinos to be Neg = 2.997032 (at 95 % CL) and is thus fully consistent with the Standard
Model prediction of three light neutrinos [43]. This result strongly disfavors the existence
of a thermalized eV-scale sterile neutrino, contributing about ANeg >~ 1 to Neg, as required
to explain short-baseline anomalies via mixing between the active neutrinos and one ster-
ile neutrino. The required active-sterile mixing angle to alleviate the short-baseline tension
would lead to thermalization in the early Universe between the active and the sterile species,
such that T}, = Tyierile leading to a contribution of ANyg = 1. There is still the possibility of
light sterile neutrinos not in thermal equilibrium with the active species to evade N.g con-
straints by invoking new physics, e.g. through the introduction of non-standard interactions
(NSIs) beyond the weak force, suppressing the equilibration of light sterile neutrinos [44].

2.5 The Neutrino Mass Scale

Through measurements of the Kurie plot endpoint region of the e~ spectrum from tritium
B-decay *H — 3He™ + e~ + 7 [45, 46], model-independent upper limits on the neutrino

11



2 Massive Neutrinos and the Standard Model

mass scale can be set by measuring the effective electron neutrino mass®

incoherent sum

mg, given by the

3
my =Y |Ueil*m?, (2.20)
=1

where U is the PMNS matrix. Current results by the KATRIN experiment measuring the
B-spectrum close to the endpoint energy at Ey = 18.57keV (the maximal energy of the
emitted e~ if the 7z would be massless) report an upper limit on the absolute neutrino mass
scale of mg < 1.1eV at 90 % CL [47]. This current upper limit set by KATRIN is expected
to further improve through advanced sensitivity down to 0.2eV at 90 % CL after 5 years. A
corollary experiment to KATRIN with the goal of lowering the sensitivity beyond 0.2 eV with
an improved electron spectroscopy technique by using cyclotron radiation is Project 8 [48].
Another model-independent way to potentially measure the v, mass with sub-eV precision
is electron capture (EC) in %3Ho (163Ho + e~ — 193Dy), where the EC decay rate depends
on the electron neutrino mass. The influence of the v.-mass on EC decay rate is largest for
small nuclear Q-values, and as the EC decay of '%Ho has the lowest known Q-value, it is
the best candidate for this measurement [49].

Bounds on the neutrino mass sum ) . (m, ); can also be derived from cosmological data as
massive neutrinos leave footprints on the CMB and on the large-scale structure (LSS) of the
Universe [50]. Combining both CMB and LSS data, the current 2018 Planck results present
an upper limit of ) .(m,); < 0.12eV (at 95 % CL) [43] assuming a degenerate neutrino
mass spectrum. 2018 Planck data finds for the normal hierarchy ) .(m,); < 0.146eV and
inverted hierarchy ) .(m,); < 0.172eV both at 95 % CL [51]. However, the upper bounds
depend on the specific cosmological model and the selection of data sets.

Neutrinoless double beta decay (0v23) is not only a smoking gun for the Majorana
nature of neutrinos but is also able to provide an upper bound on the effective Majorana
mass (mgg), if neutrinos are Majorana particles (for a review, see [52]). As the 0023 is a
second-order weak decay, the rate is proportional to the fourth power of the Fermi constant
G%, as well as the light neutrino masses, which strongly suppresses the decay. The derivation
of the upper bound on the effective Majorana mass is not model-independent and carries
theoretical uncertainties from the calculation of the nuclear matrix element My, relating
the decay rate I'gg with the effective mass: T'gg o< |Mpuc|?(mgg)?. Current 2017 results from
the GERDA experiment searching for 0v3f in "Ge — "Se + 2e~ report a lower bound on
the half-life of T ;5 > 5.3 % 102° yrs which translates to an upper bound for the effective mass
of (mgg) < 0.15—0.33eV (depending on the matrix element), both at 90 % CL [53]. While
the KamLAND-Zen experiment searches for 0v83 in 2%Xe to an excited state of 2°Ba,
reporting in 2016 a lower bound of 77 /5 > 1.07 X 10%6 yrs on the half-life and a corresponding
upper bound on the effective mass of (mgg) < 0.064 — 0.165eV (again, depending on the
matrix element), both also at 90 % CL [54]. The effective Majorana mass is related to the
matrix elements of the PMNS matrix Upyng = U from neutrino oscillations and the mass
eigenstates m; through

. (2.21)

(mgg) =

3
E : 2
Ueimi
i=1

8Measured is not a neutrino mass eigenstate, since the emitted electron neutrino v, is a flavor eigenstate.
As mg depends on all mass eigenstates weighted with the PMNS matrix elements |Ue,'|2, it constraints the
absolute neutrino mass scale.
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Figure 2.3: Mass spectrum of the Standard Model fermions.

From this expression we see that (mgg) depends on the six independent observables form
neutrino oscillations, the two unknown Majorana phases, the mass hierarchy (either NO or
I0) as well as the absolute neutrino spectrum.

2.6 Comparison to the Quark Sector

Experimental evidence presented in the previous sections shows that the neutrino sector is
quite distinct from the quark sector and the charged lepton sector in the Standard Model.
The most striking differences compared to the quark sector are:

e The largest active neutrino mass is in the m, ~ 0(0.1) eV range, while the masses
of the quarks range from a few MeV up to the GeV scale. If neutrinos get their
masses after electroweak symmetry breaking via Yukawa interaction with the Higgs,
the magnitude of the coupling would be 3, ~ 107!2. Compared to the top-quark
coupling y; ~ 1 or even compared to the smallest Yukawa coupling in the SM, the
electron coupling y. ~ 3 x 1079, the value is several orders of magnitude smaller
(for the SM fermion masses see [31]). The SM fermion mass spectrum is depicted in
Fig. 2.3.

e From the mass squared differences the following mass hierarchy in the neutrino sector

is found:

Miargest Am%l N
Mgt |y S g,
M2nd largest |NO myy

2
Mlargest N Amis ~1 (2.22)
—\ AmZ, T 7 .

M2nd largest |10 mas
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2 Massive Neutrinos and the Standard Model

CKM Matrix Entries PMNS Matrix Entries

121 V2 V3
-l - d B
t . . . Vr D . .

Figure 2.4: Illustration of the structure and relative sizes of the CKM and PMNS matrix elements.
While the CKM matrix shows a hierarchical structure, the PMNS entries have comparable sizes.
Colors indicate similar-sized elements within the respective matrices.

which is strikingly milder compared to the mass ratios in the SM fermion sector

mr my

— ~ 17, — ~ 207, — =~ 136,

my, Me Me

M ~gq, Doy s, (2.23)
mg my mq

depicting a completely different pattern of mass ratios with a strong normal hierarchy.

e Compared to the quark sector, the mixing in the lepton sector is also quite different.
While the CKM (Cabibbo-Kobayashi-Maskawa) matrix entries show a clearly hierar-
chical structure, e.g. |Vip| < |Vap| < |Vus|, the PMNS matrix entries seem anarchical.
In Fig. 2.4 the relative sizes of the CKM and PMNS matrix entries are illustrated.
The mixing angles in the PMNS matrix show almost maximal mixing (~ 45°) with the
exception of the 613 angle (fo3 ~ 48.3°, 019 ~ 33.82°, 613 ~ 8.61°), where in the quark-
sector all of the mixing angles are small in size (o3 ~ 2.4°, 919 ~ 13°,913 ~ 0.2°) [31].

Ideally, any neutrino mass model should therefore provide an answer to the following ques-
tions:

e Why are the neutrino masses much smaller than the other fermion masses in the SM?

e Why is the mass hierarchy of the neutrinos much milder than in the rest of the
fermionic sector?

e Why are the mixing angles in the leptonic sector much larger than in the quark sector?

To provide possible answers to these questions will be the goal of the subsequent chapters.
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Chapter 3

The Seesaw Mechanism

Considering Standard Model fields only, Majorana masses for the active neutrinos can be
introduced by allowing for a non-renormalizable dimension-5 operator, which is also known
as the Weinberg operator [55]:

Odim_s = CC“Tﬁ (Li@) (&FL;) the, (3.1)

where ¢, are the dimensionless Wilson coefficients and A is some unknown new physics
scale. The effective mass scale of the neutrinos via Eq. (3.1) after EWSB will be O(v?/A),
with the Higgs VEV v ~ 246 GeV. To reproduce the observed neutrino mass scale of
0(0.1) eV, the suppressing mediator scale A must be of the order O (1014) GeV, assuming
cap ~ O(1). The resulting mass term for the light neutrinos will be of Majorana nature.

The Weinberg operator leading to massive Majorana particles can arise from different
high-energy completions, of which three canonical types of the seesaw mechanisms can be
distinguished

e Type-I Seesaw: Introduces at least two neutral singlet fermions [19-22],
e Type-II Seesaw: Uses a newly introduced SU(2), triplet scalar [56-58],
e Type-II1 Seesaw: At least two new SU(2)r, triplet fermions are added [59],

where combinations of these mechanisms are also possible, e.g. left-right symmetric models
have type-I and type-1I as sources for neutrino masses, or SU(5) GUT models can accom-
modate type-I and type-III [60,61].

Before obtaining the Weinberg operator from an UV completion by integrating out the
heavy right-handed neutrino fields, the basics of the type-I seesaw mechanism are reviewed.

3.1 Vanilla Type-I Seesaw

By extending the Standard Model Lagrangian in Eq. (2.1) with ny right-handed singlet
neutrinos N; (i = 1,...,ny), the following renormalizable terms are allowed under the SM
gauge group:

1 I T
Ly~ §N1&Nz — (YaiLa(I)Ni + iMwNzCNJ + hC) , (32)
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3 The Seesaw Mechanism

with & = i02®*, o = e, 1, 7 and Y denotes the 3 x ny neutrino Yukawa coupling matrix and
M is the complex symmetric ny X ngy Majorana mass matrix for the right-handed neutrinos.
The charge conjugated right-handed neutrino fields are denoted by Nf = iy?N;. Since
the introduced right-handed neutrinos are singlets under the Standard Model gauge group
U(l)y x SU(2)r, x SU(3). ~ (0,1,1), the covariant derivative in the kinetic term coincides
with the partial derivative D,, = 0,. The neutrino Yukawa leads to an additional Dirac
mass term for the neutrinos after the electroweak breaking of symmetry, such that

1— 1 —
Ly~ §NZ¢NZ — <<MD)ai TUaN; + §M1]NZCN] + hC) s (33)

where the Dirac mass matrix is defined as Mp = (®)Y = vY/+/2, with the Higgs vacuum
expectation value v ~ 246 GeV. The non-kinetic part of the Lagrangian can be written in
vector form introducing the general (3 4+ ng) x (3 + ny) Majorana mass matrix 91,

1, — V¢ 1, — (@) M %
EN:—i(y Ne¢)m, (N>+h.c.:2(1/ Ne) (Mg MD> <N)+h.c. (3.4)

The (3 +ny) x (3 + ny) neutrino mass matrix M, is symmetric and can therefore be block-
diagonalized by an unitary transformation of the following form

U*DpU*t 0 )

oT U3 DyU, (8:5)

m, =uUTMU = (
where the matrices Dp and D), indicate the diagonal matrices of Mp and M, respectively.
O is the 3 x 3 null matrix, where all entries are equal to zero.

In order to gain a better understanding of the mass spectrum, let’s assume for a moment
that there is only one generation of each type of neutrino (left- and right-handed). In this
case, 91, becomes a 2 X 2 matrix which is easy to handle since Mp and M are just numbers.
The two eigenvalues of the neutrino mass matrix 1y and 7o are then simply,

M 1 7
ng:?iQ M2+4M12). (36)

Assuming we only have a Dirac mass term in our Lagrangian, then M = 0 and our neutrino
mass spectrum becomes: M1 = Mp and my = —Mp. In this case our neutrinos will be
purely of Dirac nature. We can extend this scenario by allowing a tiny Majorana mass for
the right-handed neutrino only, such that M < Mp. This leads to an almost degenerate
mass spectrum of the form

M
i = £Mp + - + O(M?). (3.7)

The result are so-called pseudo-Dirac neutrinos [62], where the previous Dirac case is recov-
ered in the limit M — 0. The neutrinos behave like a pair of Dirac neutrinos, but cannot
be combined to a standard Dirac pair due to the tiny, but finite mass splitting of M /2. The
overall neutrino mass scale in the pseudo-Dirac scenario is given by Mp, while the order
of the mass splitting between the pairs is M. The non-zero Majorana mass term makes
the pseudo-Dirac pair indeed Majorana neutrinos. Another instance to consider is the case
where the Majorana mass term dominates over the Dirac mass term, such that Mp < M.
From this set-up the following mass spectrum is obtained:

Mp,

Thl ~ M, mg ~ Vi . (38)
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Vanilla Type-1 Seesaw 3.1

This scenario is the well-known type-I seesaw mechanism, first described in [19]. Through the
heaviness of the right-handed neutrino M, the left-handed neutrino obtains a tiny Majorana
mass: —M3 /M. Thereby, the seesaw mechanism explains the smallness of the left-handed
neutrino masses through the heaviness of the singlet right-handed neutrino masses. The
relation in Eq. (3.8) is easily generalized to three or more generations, in general it reads

2
M, ~ —MpM~ME = —%YM‘IYT = U*DmU]. (3.9)

The seesaw relation also generates mixing between the different neutrino flavors. The unitary
matrix U diagonalizing 9, in Eq. (3.5) can be written as the matrix exponential of a skew-

Hermitian matrix (i.e. a matrix with the property: H' = —H):
B O R\ (1-3iRR' R 3

where R is a complex 3 x 3 matrix and 1 is the 3 x 3 identity matrix assuming three
generations of right-handed neutrinos, ny = 3. The Taylor expansion in the second equality
needs R to be small. Using the approximated diagonalization matrix and only keeping the
leading order, the following relations are obtained:

—~MpR' — R*ME + R*"MR' ~ U*DpUT,
MD — R*M ~ @,
RTMp + MHR + M ~ Ui, Dy U], (3.11)
The matrix R is indeed small if the following condition is fulfilled

1> (MpM~1Y)*, (3.12)

Therefore, R* ~ MpM~—!. From Eq. (3.4) we can also find the mixing between active
neutrinos vy, and sterile right-handed neutrinos vg:

VC

1, — .= 1, — = [
—LN D B (v NUu Ut (N) +hec = B (vr vg)M, <1/1Lg> +hec, (3.13)
AN %
()= (%) o0
where the active-sterile mixing is proportional to the size of matrix R, in detail:
| .
V= 1—§RR vy, + RN°. (3.15)
The introduction of sterile right-handed neutrinos N leads to active-sterile mixing and to

the loss of unitarity of the U, matrix in Eq. (3.9), while the unitary PMNS mixing matrix
reads

1
Upnxs = U] <11 — 5 RE ) Uy = UL (1 +n) Uy, (3.16)
with U, diagonalizing the charged lepton mass matrix, such that UeJr]WeM;r U, = diag(m?2, mz, m2).

The amount of unitarity violation in the U, mixing matrix is measured by the parameter
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3 The Seesaw Mechanism

n= —RRT/Q. As long as 7 is small, we can use the approximation UpyNg ~ UJUV. Both,
active-sterile mixing and deviation from unitarity of the U, matrix are phenomenological
implications from the introduction of right-handed neutrinos.

The deviation from unitarity in Eq. (3.16) of U, induces lepton flavor violating (LFV)
processes in the charged lepton sector, which are suppressed by the seesaw scale. LFV in
charged leptons is therefore one of the predictions of the seesaw mechanism. One of the
experimentally best constraint decays in this regard is the upper limit for the branching
ratio BR(ut — etv) < 4.2 x 10713 at 90% CL [63] from the MEG experiment.

The interactions between the neutrinos (v, N) and the vector bosons (W=, Z%) are in-
cluded in the charged current (CC) and neutral current (NC) weak interaction components
of the Lagrangian containing the leptonic fields. In detail, we have for the left-handed
neutrinos

1%
_‘CEC - mm’)’uUpMNs ]Ié WH+h.c.
e -_— V1
= m(% pr 70) U1 +n)U, Zi W+ hee., (3.17)
e _— Ve
—L)¢ = m(% Vu Vr)Yu Z# Z" +h.c.
.
e V1
B m(yl va v3)WuUininsUpins Zz Z" 4 h.c.
e n
~ O cos g 1 v vs) Ul (1+n+n') 0, Zi Z' 4+ he.,  (3.18)

where Oy denotes the Weinberg angle, such that e = g sin 6y with the SU(2)[, gauge boson
coupling go, WH* and Z* are the W-boson and Z-boson fields respectively. In the last line
we see the non-unitarity of the U, mixing matrix showing up, neglecting terms of order
O(n?). The additional term 7 capturing the unitarity violation therefore shows up in decay
widths of W and Z decays. Due to the active-sterile mixing there are also weak CC and
NC interactions between the right-handed neutrinos and the W and Z vector bosons:

Ny

_ 1-—
—,CCC ~ L (eL 1238 TL)’YMRUMM N2 %% + h.C., (319)
V2 sin Oy 2 Ny
e — M
NC
— ~_— (1, . Ny | Z* + h.c., 2
Ly 2sin Oy cos Oy (V u ¥ )%RUM Ni e (3.20)

with the diagonalizing matrix Upys as in Eq. (3.5). The matrix RU); can be seen as the
mixing matrix between the light and the heavy neutrino states.
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Integrating Out Heavy Right-Handed Neutrinos 3.2

3.2 Integrating Out Heavy Right-Handed Neutrinos

If the eigenvalues of Majorana mass matrix M; are far above the electroweak scale, the
right-handed neutrinos IV; cannot be observed experimentally. The right-handed neutrinos
still have an effect on the low-energy physics after they have been integrated out through
effective operators. In case of the type-1 seesaw, the renormalizable ultraviolet completion
at A leading to Eq. (3.1) at low-energy scales i < A, is obtained by adding n, right-handed
neutrinos, Ny, with ¢ = 1,...,ng, to the Standard Model field content:

. . 1
Ly~ NRﬂaNRi — <YaiLaq)NRi + iMijN]%iNRj + h.C.> . (3.21)

The Majorana mass matrix is a symmetric complex ny X ny matrix with n, complex eigen-
values, M; = |M;|e’¥i = x;|M;|, where ¢; denotes the Majorana phase. For convenience it
is possible to work in the basis in which the Majorana mass matrix M is real and diago-
nal. Then the mass eigenstates of the right-handed neutrinos are henceforth denoted by N,
fulfilling the Majorana property N; = N, such that

N; = XNk, + VXN, (3.22)

The part of the Lagrangian containing all right-handed neutrino fields becomes

1—. 1 — . _
Ly = 5NN, - 5 (YmLacb,/X;Ni + VA IED /XiN; + NiMN; + h.c.) . (3.23)
Below the energy scale of the heavy right-handed neutrinos A, an effective Lagrangian can be
constructed by integrating-out the heavy degrees of freedom. The heavy Majorana neutrino

fields still give corrections to the effective theory, but are suppressed by powers of the scale
A,

1
Eeff = ESM + *ﬁdime +

A A2 £d1m 6 + - (324)

where each Lgi—x contains operators of the dimension k. Following [64], the effective
Lagrangian L.g is obtained by integrating-out the Majorana neutrino fields

idet — exp( / Az Leog(z > / DNDNe = Ssm / DNDNe™N, (3.25)

using the equations of motion and setting N = const., since the right-handed neutrinos have
almost no kinetic energy below the scale A,

oL ~
N =5 (za M;) N; (\/? “BT L, + ,/Xma@TLg) —0,
8N ( ) N;=const. N;=const.
oL 1— /5
N =N (19 - ) - (YML VAT + VTR V) —0,
aN ( ) N;=const. 2 N;=const.
(3.26)
and inserting them back into the Lagrangian £x[Ny]. The effective theory becomes:
Leg = Loy + EN[N()], (3.27)
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(0)] D
\ / \ /
\ / D \ / D
\ / \ /
\ ¥ N ¥
\ / \ /
\ M; / N/
-~ ( )
N -\
Loy N Niy, Ls Loy v, Lo

Figure 3.1: Feynman diagrams for the high-scale realization of the type-I seesaw mechanism (left)
and the effective dimension-5 operator for neutrino masses after the heavy right-handed neutrinos
N; have been integrated out (right).

with

* T = dij T T * T a4k
Ln[No] =~ — (\/@fmqﬂLa + \/XijéTLg) 3 Y (YﬂjLﬁcb1 [x; + Y558 ,ﬁxj) .

(3.28)

N |

The propagator of the right-handed neutrinos can be evolved for large M into the following
power series,

1 1 g
- T _ 3.29
id— M M M? (3:29)
Neglecting the dimension-6 and higher-order contributions, the effective dimension-5 con-
tribution becomes

Ln[No] = —% (Y%YT) y (Z%) (Eﬂ’L;) +he.,
_ _%,W (Lj%) (chLg) +he, (3.30)

where x is the ny x ny diagonal Majorana phase matrix. The high-scale phases x from
the heavy Majorana mass matrix are handed down to the low-scale Majorana mass matrix
of the active neutrinos. By integrating-out the heavy fields, the Feynman diagram for the
type-1 seesaw in the left of Fig. 3.1 becomes an effective vertex s,g in the right-hand side
of the figure. After ESWB, the Majorana mass term v§ (M,),z v of the active neutrinos
takes the form

2

v? X T v
Mooy == (V3777),, =~ Hor (3:31)

which is the same result as previously obtained in Eq. (3.9).

3.3 Parameter Counting

In order to have a benchmark on the vanilla type-I seesaw in terms of the necessary pa-
rameters, the number of physical parameters is determined. For the basic type-1 seesaw
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Parameter Counting 3.3

scenario, the SM is extended to include right-handed neutrino fields. The corresponding
leptonic sector of the theory reads:

_ _ _ o~ 1
Liep = LiDL + egilPer + Nig N — (LYecpeR + LY®N + 5NCMN + h.c.) . (3.32)

which is invariant under U(3)ny X U(3)r x U(3), global transformations for vanishing neu-
trino, charged-lepton Yukawa couplings and Majorana mass matrix Y =Y, = M = 0. Three
RHN species are assumed for this analysis. Using the rule presented in [65], the number of
physical parameters can be counted with

# total parameters — # broken generators = # physical parameters. (3.33)

Where the number of moduli in a general complex 3 x 3 matrix like Y is equal to 9 and
the number of moduli in a general symmetric and complex matrix equals to 6, making the
number of total parameters 24. The number of phases equals the number of moduli. For
non-vanishing, general Yukawa couplings and Majorana mass matrix, the global U(3)y x
U(3)r x U(3)e symmetry is broken down to nothing. The number of real generators of
a U(n) matrix equals n(n — 1)/2, which makes nine generators in case of a U(3)? global
symmetry. The number of physical parameters thus equals

(9 + 9 + 6) parameters in total — 9 broken real parameters = 15 physical parameters.
(3.34)

The number of phases in a general U(n) matrix is equal to n(n + 1)/2, which makes 18 in
total for U(3)3. Similarly, the number of physical phases is equal to

(9 + 9+ 6) phases in total — 18 broken phase parameters = 6 physical phases.  (3.35)

In total, the standard seesaw scenario has 21 physical parameters in the leptonic sec-
tor at the high-energy scale: the 9 eigenvalues of the Y., Y and M matrices, as well
as 6 angles and 6 phases. At low energies the number of observable parameters is 12
(013,623,612, 9, v, B, M1, ma, m3, me, my, my). Or if the charged-lepton sector is excluded,
the number for of high-scale parameters is 18, while the low-scale theory consists of 9 phys-
ical parameters. One way to constrain the high-energy theory with the available low-energy
experimental information is to use the parametrization suggested in [66] for the neutrino
Yukawa

2
Y = i\Uij\/DMQ\/DMUT : (3.36)

where Uy is the unitary matrix diagonalizing the RHN mass matrix as in Eq. (3.5) and U, is
unitary matrix diagonalizing the active neutrino mass matrix, given in Eq. (3.9), while Q is
a complex, orthogonal matrix, such that Q7 = 1. The difference of 9 parameters between
the high- and low-energy physics, due to the decoupling of the heavy neutrino degrees of
freedom, is captured in Dj; and €.

After discussing the basics of the seesaw mechanism, the next chapter studies quantum

effects on the RHN masses, before investigating their impact on the low-scale phenomenol-
ogy through the seesaw.
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Chapter 4

Two-Loop Quantum Effects on
Seesaw Parameters

In this chapter, a minimal extension of the SM, adding right-handed singlet neutrinos is
considered. It will be shown that in this generic extension two-loop quantum effects can
have a significant impact on the right-handed neutrino parameters. While the corrections to
the Yukawa couplings are small as expected from two-loop quantum effects, the corrections to
the Majorana mass matrix can be comparable to or even dominate the tree-level contribution
[2,67]. The reason for this striking difference is that the Majorana mass term introduces
violation of total lepton number (by two units). Since the Majorana mass matrix is in general
not protected by any symmetry, large quantum corrections from above the electroweak
scale are possible. After introducing the model, the relevant quantum effects from the
renormalization group equations (RGEs) are investigated.

4.1 Two-Loop Renormalization Group Equations for Right-
Handed Neutrinos

The Standard Model in Eq. (2.1) is expanded to include ny right-handed neutrinos, N; with
i = 1,...,ng, neutral under the SM gauge group. The most general, renormalizable extension
to the SM involving the newly introduced right-handed neutrino fields reads:

1— — 1 _
Ly = 5]\@2@]\@ — <YM‘La(I)NZ‘ + §M¢jNich + h.C.> , (4.1)

where L, with a = e, u, 7 denotes the lepton doublets and = 109®* is the charge conju-
gated Standard Model Higgs field, Y is the 3 x ng neutrino Yukawa coupling matrix and M
is the ny x ny complex symmetric Majorana mass matrix with eigenvalues M.

As long as M = 0 and Y = 0, the Lagrangian in Eq. (4.1) is invariant under global
U(3)r, transformations with L — VL as well as global U(ngy)y transformations of the form
N — WN, where V and W are unitary 3 x 3 and ny X ngy matrices respectively. Assuming
that ny, = 3 and letting ¥ be a general, non-vanishing 3 x 3 Yukawa coupling matrix, it
is sufficient to have only one right-handed neutrino with a non-vanishing tree-level mass
Mz # 0 (while M; = My = 0) to completely break the global U(3)r x U(3)y down to
nothing [2]. This means there is no residual symmetry protecting the lighter right-handed
neutrino masses M; and M, against radiative effects. The radiative masses are generated
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4 Two-Loop Quantum Effects on Seesaw Parameters

through loop corrections and are proportional to the mass scale at which the lepton number
breaking was introduced, Ms. If either Y or Ms stay zero, the symmetry protecting M;
and Ms from quantum corrections would be restored. The same logic applies in the case of
ng =2 or ng > 3.

This reasoning is confirmed by explicitly calculating the corrections to the right-handed
neutrino masses. As shown in [68,69], the calculation at one-loop level only leads to cor-
rections proportional to the tree-level masses, such that in the case of ny = 3, N1 and N»
would stay massless for M; = My = 0 at all scales, even if M3 # 0. It is therefore neces-
sary to consider higher-order contributions to capture the quantum effects leading to the
rank-increasing corrections.

The evolution of the right-handed Majorana mass matrix M with the energy scale p
is described by its beta function. Considering corrections up to the two-loop level, the
renormalization group equation for M is of the form:

dM (1)

4.2
dlog,u ﬁM ) ( )

where B](\}[) and BJ(\Z) denote one- and two-loop beta functions respectively. The full one-loop
beta function [68] and two-loop beta function [3] explicitly read

16728\) = M(YTY) + (YY) M,

(1672)28%) = 4(vTY) T M(YTY) — % [M(YTY)(YTY) + vty (vt Y)TM]

1 1
n {879% n %g% - gTr(YuYJ) - ZTr(YTY)} [M(YTY) n (YTY)TM} :
(4.3)

The beta functions were calculated in the MS renormalization scheme. g; and go denote the
gauge couplings of the U(1)y and SU(2)1, gauge groups respectively, while Y}, is the up-type
Yukawa coupling. The other SM Yukawa couplings (Y, Yy) are neglected. For completeness,
the RGE for the neutrino Yukawa coupling matrix up to the two-loop order is given by

dy (1)
_—_— 4.4
leg BY ) ( )
where ﬁg,l ) and 5§/2) denote the corresponding one- and two-loop beta functions. Taken
from [70,71] and reproduced with SARAH [72, 73], working in the MS scheme, they explicitly
take the form

1672 §, [3TrYYT +Tr(YTY)—Zgl Zg%}Y—F;YYTY,

1 2
(1672)28y = %9% 35 g — 7%(1@1@}) — gT&«(YTY) —12)\|YYTY
1 167271 4
9 9 35 , 23,
2 2 2 2 2
+ [GA - *TT (Y, YJ) ) - ZTT((YTY) ) — 19192 + 2491 - Zgz
; 5 2 15 ; By, a2

(4.5)

24



Two-Loop Renormalization Group Equations for Right-Handed Neutrinos 4.1

where g; is the gauge coupling of SU(3). and A is the quartic coupling in the Higgs potential
in Eq. (2.5). Again, the charged lepton and down-type Yukawa couplings are neglected.

To simplify the RGEs given above, it is convenient to use the following shorthand quantities:

1
Loy
P=—vyly,
_ L (T B, 9 ny_ 3
G = oz (b + od — 5 TYD) - F™(P),
1
Q=01+G)P - P, (4.6)

which allow to rewrite the energy-scale evolution of the Majorana mass matrix as

dM
dlog i

=MQ+Q"M +4PTMP. (4.7)

In order to study the properties of the RGE, it is useful to decompose the Majorana mass
matrix such that M = Uy, D MUJ]:/[, where Ujs denotes an unitary and Dj; a diagonal matrix
which contains the real eigenvalues M; on its main diagonal, with i = 1,...,n,. Defining
the ny X ng quantities P and @ in the basis where M is diagonal, P = U]J(/[PU M and
CAQ = U]TMQUM7 the RGE becomes:

D dU* du!t
d M UT UM M"’D M

Uy = DyQ + QTDy + 4PTDy P, (4.8)

dlog i Mdlogu Mdlog,u

dM; AU U} ~ o
0ij + (UTM ) M; + ( M UM) M; =2Qi; M; + 4ZMkPkiija
g ij k

dlogp " dlog 1 dlog i

where the diagonal components can be separated into a real and an imaginary part

dM,; ~ ~
L oMOu +4> " MR (PZ) , 4.9
dlog,u, Q + zk: khe ki ( )
~2M;Im (T;)) = 43 M;Im (13,3) , (4.10)
k
and equivalently for the off-diagonal elements

(Mj — M;)Re (Tij) = (M; + Mj)Re (@z’j) +4)  MyRe (ﬁkiﬁkzj> ; (4.11)

k
—(Mj + My)Im (Ty;) = (M; — M;)Im (@Zj) +43 MyIm (ﬁkiﬁkj) , (4.12)

k

where T' is skew-Hermitian (in order to preserve the unitarity nature of Uys in the scale
evolution), and satisfies

dUy
dlogp

UnT, (4.13)

TheAHermitian matrices P and CAQ satisfy the property of real-valued diagonal entries,
Im(P;;) = 0, Im(Q;;) = 0, which was used for recasting the RGE.

From splitting up the RGE, the following effects of the RG running by including two-loop
contributions on the Majorana mass matrix can be observed:
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4 Two-Loop Quantum Effects on Seesaw Parameters
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Figure 4.1: Two-loop overlapping Feynman diagram leading to potentially dominant corrections
to right-handed neutrino masses, shown for the case of three right-handed neutrinos.

e From Eq. (4.9) it can be seen how the right-handed neutrinos get mass corrections
proportional to the mass of heavier RHNs. Depending on how hierarchical the tree-
level mass spectrum of the RHNs is, the corrections can be sizable or dominant and
therefore heavily influence the phenomenology of the seesaw mechanism. The effect
arises from the two-loop diagram shown in Fig. 4.1 and is absent in the one-loop
treatment [2,67].

e According to Eq. (4.10), the RG running drives the right-handed mixing matrix Ups
into an infrared quasi-fixed point if the RHN tree-level mass M; at the cut-off energy
scale either vanishes or is dominated by quantum contributions to its physical mass,
such that

3 MyIm (13,31.) ~ 0. (4.14)
kot

e Further infrared quasi-fixed points in the RG running for the right-handed mixing
matrix Ups come from Egs. (4.11) and (4.12). If two RHNs have degenerate tree-level
masses or if their tree-level mass difference is dominated by the quantum contribution
to their physical mass difference, a quasi-fixed point is assumed, such that

>~ M PPy ~ 0, (4.15)
k+i,j

for degenerate vanishing masses M; = M; = 0 and M}, # 0 or
M;Re (@”) + 2 Z M. Re (ﬁkzﬁkz]) ~ (), (4.16)
k

if the masses are degenerate but non-vanishing M; = M; # 0.

The quasi-fixed point of Ups in the RG evolution below the cut-off of the theory can be
explicitly calculated using Eq. (4.13) in the three right-handed neutrino case for M, My <
M3 in leading orders of O(P), assuming real parameters:

1 P3P 0
UM(M) ~——" | —P3;1 Ps 0 . (4.17)

2 2
Pit+Pp\ o o JPL+PG
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Iteratively Solving the Majorana Mass Matrix RGE 4.2

The useful P-matrix is the P-matrix in the basis where the Majorana mass matrix is diag-
onal. Below the cut-off scale, the RG running rotates the P-matrix, such that its elements
for the three right-handed neutrino case read

P22P321+P11P322*2P12P31P32 P12(P321+P§2)+P31P32(P11*Pzz) 0
P2 +P2, P2 +P%,
= 2
P ~ | Pi2(Ps 1+P32)+P51P52(P11 Pa2) P22P32+P11P31+2P12P31P32 ) 2 4.18
(1) T pripr VP + P | (418)

0 VP35 + P Ps3

assuming real-valued parameters and a hierarchical neutrino spectrum at the cut-off.

4.2 TIteratively Solving the Majorana Mass Matrix RGE

In the following, the general solution for the RGE of the Majorana mass matrix is derived.
The RGE for the Majorana mass matrix for the right-handed neutrinos takes the following
general form:

dM (%)

= Bu[M(t)], (4.19)

introducing the convenient scale parameter ¢t = log(u/A), where A is the high-scale cut-off

and By = 6](\}) + B](\? is the beta function up to the two-loop level from Eq. (4.3). The
formal solution to the RGE is then just

M(t) = My +/ Bu[M(t))dt, (4.20)
using as boundary condition the tree-level Majorana mass matrix of the right-handed neu-

trinos M (t = 0) = My at the cut-off. Through the method of Picard iteration, an analytical
solution to the RGE can derived. The iterative steps are defined in the following way

MO = My,  for n=0, (4.21)
M™(t) = My + /O t Bu[MT=Vh)dt'  for  n>0. (4.22)
The first three non-trivial orders in the iteration explicitly read
MO (i) Mﬁ/&4 O (¢)]dt! = Mo+ Bar [Molt, (4.23)
M (t) = My + /O B [MD (")) dt!
= Mo + Ba[Mot + - (5M o Bur)[Mo)t?,
M®(t) = My + /0 B [MP (¢ dt!

= Mo+ fulMolt + 5 (Bar o Bar) [Mole? + 5(Bar o Bar o Bar) Mo, (4:24)

with the notation for a function composition (f o g)(z) = f(g(x)), with which the solution
for the n-th order iteration can be expressed as a power series

"1
M®(t) =y =AM Molt", (4.25)
k=0
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4 Two-Loop Quantum Effects on Seesaw Parameters

defining the Picard sequence for a n-fold composed function 33, := By o Bys o - - - o B with

n—times
B% = M. The beta function of the Majorana mass matrix in Eq. (4.2) is in general of the
structure:

with the coefficients a,;,, = @y, Which contain scalar functions in flavor space depending
on gauge couplings and traces of Yukawa couplings. After four iteration steps of the beta
function in Eq. (4.25) and keeping terms up to the order O(P?), the approximate solution
to the RGE becomes:

M(t) ~ M + awt(MP + PTM)
¢
+2 [a%ot + 2a20} (MPP + PTPTM)
+t [an + a"{ot} PTMP
¢

5

6a30 + 6aioazot + a?oﬂ (MPPP + PTPTPTM>

+ 2 [2a91 + 2a10(a11 + aso)t + a{’ot?] <PTMPP + PTPTMP)

t
2
o
24

6as, + 6<a10(a21 + ago) -+ anago)t + 3a%0(a11 + 2a20)t2 -+ ailotg}

24aso + (1202, + 24a10az0)t + 12a2az0t? + a‘{otﬂ (MPPPP n PTPTPTPTM)

+

< (PTMPPP + PTPTPTMP>

+ —|4ag + 2(a3; + 243, + 4aipan )t + 4a3y(a1; + az)t® + a‘llot?’} PTPTMPP.

=+ N O ~+

(4.27)

Here, some coefficients can readily be identified with the two-loop RGE in Eq. (4.7) and
Eq. (4.6), such that

ago = 0,
a10:1+g+"‘,
1
azm =~ 4,
a1 =4+---. (428)

Higher-order contributions, suppressed by loop factors and corresponding to the generic
(PT)" M P™ structure are indicated by the dots. From the form of Eq. (4.27), the necessary
order to radiatively generate RHN masses can be read off. If M is rank-2 at the cut-off
scale, then terms up to the order O(P?) are enough to increase the rank up to rank-3. If
M at the cut-off is rank-1, O(P?) terms increase the rank by one, and considering terms
up to the order O(P*), will increase the rank by two (assuming generic neutrino Yukawa
couplings).
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Chapter 5

Phenomenological Implications of
Two-Loop Quantum Effects

After discussing the quantum corrections for the right-handed neutrino masses in the renor-
malization group running, the model is investigated phenomenologically in the following.
Before considering the SM extended with three neutrinos, corresponding to the typical three
generation structure of the SM, a simplified scenario with only two right-handed neutrinos
is investigated, similar to the toy model discussed in [2]. This chapter follows closely the
publication [3].

5.1 Two Right-Handed Neutrino Model

Starting with the Lagrangian in Eq. (4.1) with ny = 2 right-handed neutrinos, it is conve-
nient to work in the basis where the Majorana mass matrix M for the RHNs is real and
diagonal at the cut-off scale A, such that

M; 0
M ’ - : 5.1
wl = ) (5.1
with the eigenvalues M; and My ordered in this way: Ms > M;. We keep only terms up to
the order O(P?) in Eq. (4.27), since the leading-order effects are the most interesting. The
Majorana mass matrix M (A) at the scale u < A becomes through the RG running

t
—Z(1-2p) (MPP + PTPTM> Fta+tPTMP, (5.2)

M(t) ~ M + t(MP + PTM>
using again the convenient scale parameter ¢t = log(u/A) as above. In order to focus on the
leading-order effects, terms proportional to an additional loop suppression at order O(P?),
like G, are neglected.

After diagonalizing the matrix in Eq. (5.2), the eigenvalues at the scale u read:

(5.3)

. 2

0 Mo

where the right-handed mixing matrix Up;(u) ~ 1, which does not significantly change in
the running for x4 < A in the two RHN scenario, as can be seen from Eq. (4.9). Below the
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5 Phenomenological Implications of Two-Loop Quantum Effects

energy scale of the heavy RHN p ~ Ms, the theory is described by an effective Lagrangian
(see Sec. 3.2), obtained from integrating-out Nj:

~ 1Ya0Y3

Log =~
eff 2 M22

(chi) (éT L;;) Yo La®N; — %Mnﬁfzvl +he,, (5.4)

where all parameters are evaluated at the scale y >~ Ms and the Yukawa coupling and mass
matrix are redefined accordingly by the quantities

MioY,
Y041 - Yal - JZQ;Q 5
Mo M-
My = M1 — % ; (5.5)
22

which leads to the same result for the physical mass for Vi as above, namely

A
MPYS MH‘ ~ M, — 4Mo P2 log <M> . (5.6)
2

p=Ms

After integrating out N7 at the scale of its physical mass, the Weinberg operator is obtained:

1/ YasY, Yo Y .
—oapa 4 ot 51] (La®) (8715) +he., (5.7)
p=M

Log ~ —= ‘
off 2 M22 pu=Ma Mll

which is evolved down to the electroweak scale before calculating the active neutrino masses.
The RG running of the Weinberg operator is discussed in [74,75]. For the qualitative
discussion, the effects from the running between the M7} s and the EW scale are neglected
and the neutrino mass parameters can be calculated directly. After EWSB, the Majorana
mass term for the active neutrinos becomes (c¢f. Eq. (3.1)):

My~ (YM*lyT)) (5.8)

2 p=Msz

The impact of including the two-loop corrections can significantly alter the phenomenology.
For the lighter RHN mass, the radiative correction in Eq. (5.6) is proportional to the heavy
RHN mass M. This effects stems from the PTMP term in the RGE in Eq. (4.7) which
reappears in the approximate solution for the mass matrix in Eq. (5.2). Depending on the
parameters of the high-scale theory, the quantum corrections to M; may give significant or
dominant contributions and must be considered in these instances.

Two-loop effects have a dominant impact on the right-handed neutrino mass spectrum
in the limit M; = 0 or more generally M; < 4MsP3 log (A/Ms), when the tree-level
contribution M is completely washed-out. The latter is a generic feature if the RHN mass
spectrum at the cut-off is very hierarchical (M is approximately a rank-1 matrix). This
scenario is studied in the following. For the simplified scenario with only one lepton doublet
L; (as discussed in [2]), the active neutrino masses are

Y2 Y2 2
my ~ <12‘ i A) > v
My lp=my My lp=my) 2
02

1672)?
o (yz | 5.9
( 20 4y2 10g(A/M2)> 2My’ (5.9)
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Two Right-Handed Neutrino Model 5.1

where it was used that Yi; ~ Y1 which comes from the fact that Mjs/MaYia ~
Y11Y3/(167%) < Yi1. The result is insensitive to Y31, since the contribution cancels out
due to the dependence of the radiative mass on Y71 as well as to the tree-level mass of N
as it is completely washed-out. In detail,

Yo\ My -
my ~ 0.05eV (06> (1.2><1019GeV> , (5.10)
taking My close to the cut-off, log(A/My) ~ 1 (the Planck scale is chosen as a natural
cut-off to the theory). For a hierarchical mass spectrum in the RHN matrix and a Planck
scale-sized Ms, the ballpark of the experimentally observed values for an active neutrino
mass is reproduced for a Yukawa coupling of order Yis ~ O(1). Also note the parameter
reduction, as the final result is insensitive to Y77 and the exact value of the My tree-level
mass. Furthermore, no new mass scale was introduced by setting the lepton number violat-
ing scale My close to the Planck mass Mp ~ 1.2 x 1019 GeV.

For the SM scenario with three lepton doublets, the left-handed neutrino masses can be
calculated from the neutrino mass matrix M, in Eq. (5.8) with the help of tensor invari-
ants. Due to three active neutrino masses in the theory, the first three tensor invariants
need to be considered. They can be constructed by using the recursive Faddeev—LeVerrier
algorithm. Explicitly, they take the form

2

I, = Tr[M,] = (167%)Tr [M ' P] %

L= % (e - T [M2]) = (167;2)2 (e [P - T (M PM ) 24,
2\3
Iy = é(Tr MJ* = 3T M) T [ME] + 2T [M3] ) = (1677 (me [ )
—3Tr [M'P]Tx [M~'PM~'P] +2Tr [M~'PM~'PM~"P] )26 (5.11)

where M,, is assumed to be a real matrix. For two RHNs and three left-handed doublets,
the invariants become

2
v¢ P
I =mi+mo+mg (167T2)EM—11,
1
gfpupm - P}
4 M7 Moy

13 = mimaoms — 0. (5.12)

I, = mimo + mims + momg =~ (167’(’2)

Here, I3 is exactly zero for 2RHNSs, since m; = 0 (neglecting two-loop quantum corrections
to m; between M; and the EW scale, which only give tiny contributions proportional to the
other light neutrinos [76-79]). For the non-vanishing invariants only the leading orders in
the loop-suppressed P matrix elements are kept. For a general complex M,,, the Hermitian
matrix MZM v 1s constructed to calculate the tensor invariants, such that Iy = Tr[/\/lj,/\/l v =
m3 +m3, Iy = m3m3 (for my = 0), and so on. Assuming a hierarchy in the active neutrino
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5 Phenomenological Implications of Two-Loop Quantum Effects

mass spectrum, the light neutrino masses are

2
v* Py
~ [ ~ (1672 ——’

I o, V2 (P11 Py — P
~ =~ (1 ‘ . 1
ma = = (16m) 5 < P s (5:13)

Formally, the 3 x ny neutrino Yukawa matrix ¥ in Eq. (4.1) can be parametrized in terms
of its singular value decomposition (SVD), such that

Y = UpDyU}, with Dy = diag(y1, ..., yn, ), (5.14)

where Uy, is a 3 x 3 and Ug a ng X ng unitary matrix, while Dy is a 3 X ng rectangular
diagonal matrix with basis-independent, real parameters 0 < y; < ... < Yn, ON its main
diagonal. With this parametrization, the P-matrix defined in Eq. (4.6) becomes for two
RHNs: P = ﬁU rdiag(y?, y%)U;r%. The active neutrino mass eigenstates thus read

(167%)*(yiUTy + y3U3) )v?
ms3 =~ y
8My(y5 — y7)2Uf, Uty log(Ma/A)
2,92,92
Y1Yyav
ma =~ , (5.15)
2Ma(y7UTy + y5U3y)

where the U;; (i, j = 1, 2) denote the elements of Ur, making the active neutrino masses only
dependent on the high-scale mass Ms, the Yukawa eigenvalues and the right-handed mixing
angles in Ugr (Ref. [80] discusses the role of Ug in the low-energy phenomenology of neutrino
masses). As shown for the one left-handed doublet case in Eq. (5.10), the mass mg will be in
the ballpark of experimental values for M, close to the Planck scale and ys of the order O(1)
and generic right-handed mixing angles in Ug. Although this scenario predicts the correct
neutrino mass scale with generic assumptions and two RHNs, the hierarchy between the
active neutrino masses tends to be larger than the observed mild hierarchy (see Eq. (2.22)).
The neutrino mass hierarchy has the following lower bound in the two RHNs scenario:

%’ (167%)2
ma | ™ (y5 — yi)? log(Ma/A)
In order to stay within the experimental upper limit |ms/ms| < 6, the Yukawa couplings

need to be larger than allowed by perturbativity constraints, assuming log(Ms/A) ~ 1, as
above.

(5.16)

A numerical scan plot in Fig. 5.1 shows the heaviest active neutrino mass mg vs. the
active neutrino mass hierarchy, assuming a massive RHN with the reduced Planck mass
My = Mp/ V8r and M; = 0 at A = Mp. The eigenvalues of the neutrino Yukawa are
scanned within the range 1072 < Yo < y1 < VA7 and the right-handed mixing angles in Ug
take on random values between 0 and 27. The experimentally observed neutrino mass scale
ms3 = 0(0.05) eV can be reproduced within the parameter range of the scan, but the mass
hierarchy is too large.

5.2 Three Right-Handed Neutrino Model

In this section, the SM extended with ngy = 3 right-handed neutrinos is considered, with the
neutrino Lagrangian given in Eq. (4.1). Again, the basis is chosen in which the Majorana
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Figure 5.1: Scan plot showing the heaviest active neutrino mass |mg| vs. the mass hierarchy
|ms/ms| in a minimal model with only two RHN and three lepton doublets. For the numerical scan
the initial conditions are My = Mp/\/g, M; = 0 at the cut-off scale A = Mp, while the neutrino
Yukawa eigenvalues are randomly scanned between 1072 < yp < y; < \/E, and the right-handed
mixing angles in Ur take on random values within 0 and 2.

mass matrix for the right-handed neutrinos M is real and diagonal at the cut-off

M, 0 0
M) =0 M o], (5.17)
p=A 0 0 M

where a hierarchical mass spectrum M; < My < M3 is assumed in order to investigate the
influence of two-loop quantum effects. While M3 will receive small radiative corrections,
the tree-level masses M7 and My can receive sizable or dominant corrections. The radiative
corrections to M3 come in leading-order from one-loop effects, explicitly

M
M; ~ Ms + 2MsPs3log <3> . (5.18)
n=>Ms3 A

Below the scale A, the RG evolution correctly describes the energy-scale behavior of the
Majorana mass matrix, which is approximately given by Eq. (4.27), capturing the relevant
two-loop effects. At energies u < Ms it is possible to integrate-out the heavy N3 and describe
the full theory with an effective field theory instead:

_1 Ya3Yﬁ3

where analogous to Eq. (5.5) the double struck quantities define the neutrino Yukawa and
Majorana mass matrix in the effective theory

N g o 1
Log ~ (Za®) (87L5) — YaiLa®N: - SMyNEN; + hie., (5.19)

M,;3Y,
Yai = (Yai - ]@330{3)’
M3 M.
1, = (- 2o, o2
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with 4,7 = 1,2 and couplings evaluated at the scale yn = Mj3. The first term in Eq. (5.19) is
the Weinberg operator which gives a negligible contribution to the lightest active neutrino
mass, m; < 1070 eV (for a Planck scale-sized Ms). Therefore, it is possible to study the

two-loop effects on the low-scale neutrino parameters with sufficient precision using the
following approximation for the effective Lagrangian:

e 1
Leg = —Yo; Lo PN; — iMijNich + h.c. (5.21)

Similar to the technique in Eq. (5.11) used to calculate the mass eigenvalues, the right-
handed mass eigenstates can be obtained from using the tensor invariants, where all param-
eters are assumed to be real and evaluated at = Mas,

Iy = Tr [M] = M;(t) + Ma(t) = My + My + 4MoP3it + AM3( P35y + Pi)t,
I = det [M] = My (t)Ma(t) =~ My Ms + 4 (M7 P3 + M3 P3,) t + 4M3 (M1 Py, + MaP3y) t
+ 32M3 [P (P3) — P3) — (P11 — Pag) Py Py *t?, (5.22)

using the scale parameter ¢ = log(u/A). We keep the leading-orders in the P-matrix (but
still consider terms up to O(P*) in the Picard expansion in Eq. (4.27), to capture all terms
at two-loop level). For the general complex case, the Hermitian quantity MM is considered
instead of M in the invariants above. Generically, for a hierarchical mass spectrum in the
right-handed neutrinos, the following approximation holds

le ~ 1,
p=M3

~ =, 5.23
p=Ms I ( )

M|
Depending on the exact high-scale parameters for the tree-level masses and the neutrino
Yukawa coupling, different terms in Eq. (5.22) are dominant and thus lead to different
right-handed masses and accordingly to a different low-energy phenomenology for the active
neutrinos. In general, the following three distinct scenarios can be identified:

i) All right-handed neutrino masses are well dominated by their tree-level masses — quan-
tum effects lead only to small corrections.

i1) At least one of the RHN tree-level masses is washed-out by quantum effects, while the
other receives corrections.

i11) Both RHN tree-level masses, M; and My, are washed-out by dominant radiative cor-
rections.

The most interesting scenarios involving two-loop effects are clearly i) and i), where
the predictions can significantly deviate from tree-level and even one-loop calculations and
introduce new qualitative features to the phenomenology. Another attractive feature of tree-
level masses dominated by quantum corrections is the enhanced predictivity of the model
due to a lower number of free high-scale parameters. Case i) is the well-studied scenario
corresponding to a type-I seesaw model with minor radiative corrections to the heavy RHN
masses which do not lead to new qualitative features in the low-scale parameters.

In the discussion of the following subsections, the scenarios i) and iii) are investigated
in detail.

34



Three Right-Handed Neutrino Model 5.2

5.2.1 One Right-Handed Neutrino Mass Dominated by Quantum Effects

For the case, where at least one RHN tree-level mass is washed-out by radiative contribu-
tions, either the lightest or next-to-lightest tree-level mass is dominated. In order to obtain
explicit expressions for the right-handed masses, the Egs. (5.22) and (5.23) are used, such
that

Ms
Mi =M ~ 4M3 (P321 + P322) log <A) y
M1P2 + M2P2
M| e R (5.24)
p=Ms P3i + Py

both evaluated at the scale p = M3 and assuming that neutrino masses which stem from
the Dirac term are negligible. This is generically the case for lepton number breaking far
above the EW scale and generic neutrino Yukawa couplings. As either the lightest or next-
to-lightest RHN mass is dominated, depending on the exact high-scale parameters, it is
a priori unspecified which mass is heavier, therefore keeping the labeling general (i = 1,
j=2or j=1,i=2is both possible). For the general complex case, the mass formulas
read accordingly,

My
M, ~ 4 M5 (|Ps1]? + | P32|?) log | ==
o, 5 (] 31|+!32|)0g<A)7
M| Psa|? + M| Ps |?
M‘ ~ 5.25
T =5 | P31]? + | Ps2? (525)

Instead of using the invariants, the mass formulas in Eq. (5.24) can also be obtained from
diagonalizing M ~ Uydiag(M;, M;)U{; in Eq. (5.20) with the unitary 2 x 2 matrix Uy,
which reads in detail

1 P32 Py >
U, ‘ ~ < , 5.26
M =M /P321 + P322 —P31 P32 ( )

and has sizable entries in general (also see Eq. (4.17)). Due to the RG running, the unitary
mixing matrix moves into a quasi-fixed point below the cut-off scale, inducing a sizable
mixing for the initially diagonal mass matrix. The mixing induced by the energy-scale
evolution leads to the linear combination of tree-level masses M; and My in the expression
for M;|,=ns-

The lightest active neutrino will be m; < 1079 eV for M; close to the Planck scale (or at
least be of a negligible size for My, My < M3 compared to the other active neutrino masses).
Therefore, it makes sense to study the two-loop effects on the low-scale parameters within
the framework of the two RHN effective Lagrangian in Eq. (5.21). After integrating-out the
two RHNs, the Majorana mass for the active neutrinos is obtained:

1)2

M, ~ 5

(YM'YT) . (5.27)
Following the same scheme as in Eq. (5.11), the eigenvalues can be calculated with the
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following tensor invariants:

2
I = Tr[M,] = (1672)Tr [M'P] %
1 (1672)2 12 _ _ vt
L= (T M = Te [M3]) = =2 (T [M'P)* = T M PM 'R )
233
Iy = %(Tr M = 3T M) T [MZ] + 2T [M3] ) = (1677 (e 1P’
6
—3Tr [M'P] Tr [M™'PM'P] + 2Tr [M™'PM'PM ™ 'P] ) %, (5.28)
defining P = 161%2 YTY. In the used two RHN approximation, the third invariant exactly

vanishes I3 = 0 which implies mq = 0, and

167202 P22P321 + P11P322 — 2P31 P3o Py
2M;] =1y P§y + P3 7

(16%2)2 vt
4Mi|u=M3MJ|u=M3

Ilzm2+m3:

(P11Py —P3)). (5.29)

I = momg ~

Assuming a hierarchy between the active neutrino masses, the mass spectrum becomes

16m2v? Py P% + P11 P}, — 2P31 P3o Py
2M; | p=nry P§y + P3 7
Ir 167202 (P?,Q1 + P322) (P11P22 - P221)

mg o~ — = , 5.30
T 2M;|y=niy PooP3 + P11 P53, — 2P3 Pso Py (5.30)

me ~ 11 =

and accordingly for the general complex case

167202 PQQ‘Pgl’Q + P11|P32|2 — 2Re (P31P32P21)
2M;| =1 | Ps1[* + [ Ps2|? ’
I,  167%0? (|Ps1|* + |Ps2]?) (P11 Pa2 — | P |?)
T L 2M|u=ny Poa|Ps1]? 4 Pi1|Ps2|? — 2Re (P31 PsaPo1)

me ~ 11 =

(5.31)

Depending on the high-scale parameters, either m, or mg is the heavier active neutrino
mass. Thus, the labeling of the states is a priori unspecified (either & =2, =3 or aw = 3,
B = 2 are possible).

By using the parametrization from Eq. (5.14) for the neutrino Yukawa coupling, such
that P = ﬁ(] rdiag(y?, y3, yg)U;LL, the light neutrino masses can be approximated with

2,2 2
Y0~ Uiy My
o0 UE for 28 >\ /11

Mo = 2,2 (72 p2 )
(16
~ 8M3y3U2; log(Ms/A)’

mg (5.32)

where the parameters are evaluated at the energy scale u = Mj3. Note that (Ps;/Ps32)? >
My /M, is generically expected for a hierarchical RHN mass spectrum at the cut-off with
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Figure 5.2: Random scan plot for the light neutrino masses |mg| (orange) and |ms| (green) vs. the
neutrino Yukawa eigenvalue yo, assuming y3 = 1, y1 = 0, M; =0, M3 = Mp/\/877r, My = 10° GeV
(left plot) or My =1 GeV (right plot) at the scale A = Mp. The right-handed mixing angles in Ug
take on random values within 0 and 2.

M, < M. For a special choice of parameters it still can be possible that M;|,—ps, is dom-
inated by the tree-level mass M7. Considering the generic scenario with explicit numbers,

~ y2 \~2 (Us\ " My -
meq ~ 0.03eV (10_3> <U13> <1 x 109 GeV ’

N y3\~2 (Uss\ ~° M3 -
mg == 0.05eV (1) (0.6) (1.2><1019GeV ’

taking M3 close to the theory cut-off, such that log(A/Ms) ~ 1. The analytical results are
tested by a numerical scan in Fig. 5.2, showing the expected active neutrino masses ms
(orange) and my (green) vs. the neutrino Yukawa eigenvalue yo, while y3 = 1 and y; = 0.
The right-handed mixing angles in Ug take on random values between 0 and 27. The RHN
masses are M3 = Mp//87, My = 0, and My = 10° GeV (left plot) or My = 1 GeV (right
plot) at A = Mp. One of the neutrino masses is in the ballpark of the observed values
for y3 ~ O(1) and M3 = Mp for generic mixing angles. The second neutrino mass shows
considerable sensitivity to the values of My and yo. For the considered scenarios, yo ~ 1072
is necessary if My ~ 10° GeV and in case of My ~ 1 GeV, y3 ~ 1077 is required to reproduce
the observations from oscillation experiments.

For the case shown in the left plot of Fig. 5.2, the whole physical neutrino mass spectrum
is depicted in Fig. 5.3. The fully radiative RHN mass is generically at the seesaw scale
~ 10" GeV, while the second RHN mass can significantly deviate from its tree-level mass
of My = 10° GeV due to mixing effects induced by the RG running. The lightest active
neutrino mass m; lies outside the range of the plot and is O(107%) eV.

(5.33)

5.2.2 Two Right-Handed Neutrino Masses Dominated by Quantum Effects

Generically, for a hierarchical RHN mass spectrum at the cut-off My < Ms <« Mjs, both
RHN tree-level masses M7 and My are washed-out, meaning the quantum corrections pro-
portional to the heavy M3 dominate. In this scenario, the RHN mass matrix at A is well-
approximated by a rank-1 matrix. In order to obtain the eigenvalues below the scale y = M3,
one can either use the tensor invariants in Egs. (5.22) and (5.23) or right away diagonalize
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Figure 5.3: Spectrum of physical neutrino masses in dependence of the neutrino Yukawa eigenvalue
Yo, taking y3 =1, y1 = 0, M3 = Mp/\/§7 M, =0, and M, = 10° GeV at the cut-off energy scale
A = Mp. The right-handed mixing angles in Ug are scanned between 0 and 27. my lies outside the
range of the plot.

M =~ Upydiag(My, Ma)U, where the matrix Up(p = M) is still the same as in Eq. (5.26).
The masses explicitly read,

M3

M. ‘ ~ 4M;y (P + P2)log [ =2 ) |

2|, 3 (P + 32)0g<A)

2
Py (P§) — P3y) — (P11 — Pay) P31P32> M

M ’ ~ &M ( log? [ =2 5.34

! p=DMs ’ P321 + P322 % A ( )

and correspondingly for the complex case,
M3

M ’ ~ AM; (P31 + | Psof?) log | =2

2 3 (| 31\+\32|)0g<A>
My o~ 8M [P (P = P) = (P — Po) Py P log” <Mg> (5.35)

My — 0700 | P31]? + | P32|? A) '

Interestingly, one purely radiative mass arises at order O(P?) and has the same structure as
in Eq. (5.24), while the other is generated at order O(P*), effectively looking like a four-loop
contribution, but can be traced back to the PT M P term in the two-loop RGE in Eq. (4.7).
From general symmetry considerations this term is expected since no protective symmetry is
forbidding these radiative contributions assuming a generic Yukawa structure. The radiative
effects change the rank of the Majorana mass matrix in the running from effectively rank-1
up to the full rank. One might ask, if Mj is created at O(P?*), are there other contributions
beyond the two-loop order in the RGE which might have an impact? So far, only terms with
n+m < 2 in the beta function in Eq. (4.26) were considered. Extending this to higher-order
terms up to O(P*) in the beta function, the expression in Eq. (4.27) was found, which leads
after diagonalizing to the lightest radiative mass
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Figure 5.4: Feynman diagrams beyond the two-loop order contributing rank-increasing terms to
the RGE of the Majorana mass matrix, leading to an at most O(1) correction to the two-loop result.

2
<P21 (P2 — P%) — (P11 — Pa2) P31P32)
Ml‘ >~ 8M3

p=Ms P} + P
M\ dag — a3 M3
X [ og” (4 + 3 og (% (5.36)

From here it can be seen that the higher-order terms only lead to a correction to Eq. (5.34)
which is expected to be at most O(1) for Ms close to the cut-off scale, such that
log(A/M3) ~ 1. The factors ag; and age stem from three- and four-loop diagrams re-
spectively and can be seen in Fig. 5.4. As the corrections do not lead to any new qualitative
features not already captured in the two-loop effects and are expected to be minor, they are
neglected in the further discussion.

Employing the decomposition of the neutrino Yukawa as in Eq. (5.14), making P =
#U rdiag(y?, y3,y3)U 1 , the radiative right-handed neutrino masses become

4 M.
MZ‘MZMP, = mMsygU:% (U5 + U3,) log <A3> ;
~ 8 4,4 U123U 223 2 (M3
MI‘FMS B (167T2)4M3y2y3 (U??l + U3?2) o <A> 7 (5:57)
using the simplifying assumption of a hierarchical neutrino Yukawa spectrum y; < 1o < 93.
From these formulas it can be seen how it is necessary to have at least a rank-2 neutrino
Yukawa in the three RHN case to generate two non-vanishing masses via two-loop effects.
For a mass of M3 well above the EW scale, the heavier RH radiative mass Ma|,—nr,
will be much larger than the Dirac neutrino masses, and thus be identical to the mass
eigenstate of Ny — assuming generic neutrino Yukawa couplings. Due to the effective four-
loop suppression 1/(1672)? and a potentially tiny y3, the lighter radiative mass Mj|,—nz,
may be small enough to expect a sizable mixing between the physical state N; and the
active neutrino states. This instance must be considered when investigating the low-energy
phenomenology of the active neutrino parameters. After integrating out the heavy N3 and
working in the basis where the effective right-handed neutrino mass matrix M is diagonal
by rotating the fields N’ = U&IN , the effective Lagrangian reads

o~ 1.

Lo = —Y! , Lo®N! — 5M¢NZ-’CN{ + h.c., (5.38)
with i,j = 1,2 and Y = YUp;. After integrating out N} at the corresponding scale u = Ma,
the theory is described by
1 nyzY/m

Eeff = -z

SN . 1
5 (LacI>> (chLg> — ¥}y La®Nj — JMNFN + hic. (5.39)
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Below the electroweak symmetry breaking scale, this effective Lagrangian gives rise to a
4 x 4 neutrino mass matrix, in detail:

_ﬁylazylm vy
M, ~ 2 M V2 el (5.40)
%(Y&)T My

To get the masses of the four neutrinos, the neutrino mass matrix can be decomposed into
four rank-1 quantities in the following way:

M, ~mi; ® ’[Lf + matis ® ﬂg + m3 (ﬁg ® ﬁg —Us ® ﬁz) , (541)

where the rank-1 matrices are tensor products of the normalized (but not necessarily or-
thonormal) ; vectors

1 Yoo 0 1 Yo
U = , Uy = , Ug 4 = —— , 5.42
' P, | Y32 ? 0 M 2P, Y, (5:42)

1 +/Py,
and with the three mass parameters m; which are defined to be positive,
2
v° Py

= _ 2 -22 =M P 5.43
my 2 MQ ) mo 1 ms3 = \/* 11 ( )

introducing the 2 x 2 matrix P = Y'Y’ = UJ, Y'YUy;, with Y and Uy as in Egs. (5.20)
and (5.26). The individual P-matrix elements can be written explicitly (also see Eq. (4.18)),

o Poo P2 + P11 P3, — 2P15 P31 Pso

11 = (167%)

Py + P, 7
~ (167 )P22P322 + P11 P} + 2P12 P31 Pso
ch P} + P ’
P13y (P§, + P3,) + P31 P3a(Pr1 — Pyo)
12 = (167%) P2 1 p2 ; (5.44)
31 T 32
and for the general complex case they are
L (167r2)P22|P31|2 + Py1|Pyo|? — 2Re (P}, P31 P32)
! |P31|? + | Psa|? ’
s (167r2)P22|P32|2 + Pi1|Ps1> 4+ 2Re (P, P31 P32)
2 | P31|2 + | Psa|?
P}y ~ (167 }P” Py + i) + Por PP = Poo)| (5.45)
2 | P31 |? + | Psaf? '

Continuing with real-valued parameters, the spectral decomposition of the neutrino Yukawa
reads P = ﬁU rdiag(y?, y3, yg)U;%, for which the P matrix elements simplify to
/ U123 2
1~ myz )
he ~ (U3 + Usp)y3
/o 2U§1U32 2 (5 46)
2T U +U,” .
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In the two RHNs approximation (neglecting effects of the heavy N3 on the low-energy
parameters as in the previous section), the mass matrix M, in Eq. (5.41) is rank-3, such
that det(M,) = 0, leading to a lightest active neutrino that is exactly massless m; = 0.

The characteristic equation for M,, is cubic and the solution for the non-vanishing neu-
trino masses (ms2, ms, and the sterile neutrino mass ms) is complicated and does not give a
feel for the dependence on the high-scale physics. It is therefore much more convenient and
insightful to use degenerate perturbation theory by assuming that one of the three mass
scales m; dominates over the remaining two. In this way, it is possible to derive analyt-
ical expressions for the light neutrino masses which clearly show the dependence on the
high-scale parameters.

5.2.3 Degenerate Perturbation Theory

In this section, it is outlined how the light neutrino mass eigenstates can be calculated
analytically by using degenerate perturbation theory up to the second order. The neutrino
mass matrix in Eq. (5.41) can be cast as

M, = MO 4 smW), (5.47)

where 5/\/1,(,1) is treated as containing perturbation corrections to /\/l,(,o). The small perturba-
tion parameters are two of the three mass scales (my, my, m3), where one of the mass scales
is assumed to be dominating the other two. This generically leads to a 3-fold degenerate
vanishing eigenvalue of the “unperturbed” 4 x 4 neutrino mass matrix MZ(,O) if either

a) mg > my, m3 or
b) my > my, m3 and

to a 2-fold degenerate vanishing eigenvalue for
c) mz > my, my.

According to degenerate perturbation theory, 5./\/11(,1) should be diagonalized in the degen-
erate subspace. Concretely, for the case ms > my, m3, ./\/ll(,o) has one non-vanishing mass

(0)

eigenstate m;’ = my with the corresponding eigenket {|1)} and three vanishing, 3-fold de-
generate mass eigenstates ﬁzgo), ﬁzgo), ffzgo) = 0. The latter have the corresponding orthonor-

mal eigenkets {|2), |3), |4)} spanning the degenerate subspace. The projection operator onto
the degenerate subspace of Ml(,o) is defined as

P=1->_ [k)kl, (5.48)

k¢ D

where the index k runs over all states which are not in the degenerate subspace of /Vll(,o).

The perturbation is then projected onto the degenerate subspace:
SMD = psmDep. (5.49)

The eigenvalues of (5./(/75” do not lift the degeneracy yet, but lead to another non-vanishing
mass eigenstate m;. To fully lift the degeneracy, second-order corrections to the mass
eigenstates must be considered, which can be obtained by diagonalizing the 3 x 3 matrix

(1) (1)
@ _ N~ PIOM. k) (k[6M. |g)
SMP =) PNONND , (5.50)
k¢D P k
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5 Phenomenological Implications of Two-Loop Quantum Effects

where k runs over all states in the non-degenerate subspace and the indices p, ¢ # k corre-
spond to the eigenstates in the degenerate subspace. The equation above takes the following
form for the concrete example
1 1
(IS ML 1) (oM |a)

2
oMD = — o : (5.51)

with p,q = 2,3,4 and yields the non-vanishing eigenvalue —m§ /mg, which fully lifts the
degeneracy. For the case m; > mo, ms, the analytical expressions for the mass eigenstates
can be obtained through the same procedure. Only for ms > mj, mg, first-order degenerate
perturbation theory is sufficient to calculate all non-vanishing mass eigenstates.

5.2.4 Active Neutrino Masses
By applying degenerate perturbation theory for the three cases defined above, we find:

a) mg > my, m3 where the three non-vanishing eigenvalues are,

mg >~ mg = My,

e~ T _ P
3= mo N 2 Ml’
2 o/
v° P
me ~my = —EM—f (5.52)

The lightest right-handed neutrino mass M; is the mass eigenstate of the sterile neu-
trino in the spectrum, while the other two masses are small and suppressed via the
seesaw mechanism. Expressing the neutrino masses in terms of the high-energy pa-
rameters, they read!:

4,4 U2 U2 M.
e ~ 8Ms Y2Y3 3Y23_ 1592 <3>,

(16m2)* Uz, + U3, A
(1672402
ms =~ — )
16 M3y3y4U3; log? (Ms/A)
(167%)%02
my ~ — . 5.53
SMiAUZ, log (Ma/ ) (5%

Using explicit numbers, similar to Eq. (5.33), the neutrino mass eigenstate mso reads

-2 —1
ma| 2 0.05eV ( 1 > (0.6) (1.2 x 1019 GeV) ’ (5:54)

which reproduces the observed neutrino mass scale from neutrino oscillation experi-
ments (where the assumption log (A/Ms3) ~ 1 is used again). Considering the mass
hierarchy between ms and mao,

N (167%)2
 23U351og (A/Ms)’

@‘ (5.55)

ma

Tn the shown calculations some neutrino masses have a negative sign, even if the mass matrix in Eq. (5.41)
is positive semi-definite. A negative mass eigenvalue means that the neutrino has a positive physical mass
(therefore absolute values of the masses are used), but a negative C'P parity. By redefining the matrix
diagonalizing M, , the eigenvalues can always be made positive.
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it is always too large compared to the observed mild hierarchy, even if values of y, close
to the perturbativity limit are chosen due to the two-loop factor in the numerator.

m; > my, m3 leads to the following non-vanishing eigenvalues after using degenerate
perturbation theory up to the second order,
v P,

Ma ML= =5

2 ™2
ve P

1

where an a priori labeling of the mass states is not possible without making assump-
tions on the high-scale parameters. The sterile neutrino with mass mg forms a pseudo-
Dirac pair with the active neutrino with mass mg. Inserting Egs. (5.43) and (5.46),
one finds that mz ~ yov/ V2. Thus, to reproduce the correct neutrino mass scale, the
typical Yukawa size for Dirac neutrinos is needed, namely y» ~ 1072, This choice
implies mg > mo = M;. Expressing the masses in terms of the cut-off parameters,

(1672)20?
8M3y3U3, log (Ms/A)’
v U?
Mg g~ tyg——y | B
7 V) Uiy + U,
where the mass m, is given by Eq. (5.54) and therefore typically lies in the correct
ballpark. The mass hierarchy between m, and pseudo-Dirac pair reads:

2M3y2y3 U} A
_ V2Msyoys o 13 1og< ) (5.58)

64riv P\ U2 + U3, A

Mo

(5.57)

Mq

mg

which can take values smaller or larger than one, but most importantly, can reproduce
the observed mild hierarchy for appropriate parameters. For the final case,

ms > my, mo, the mass matrix M, has the non-vanishing eigenvalues:
v
V2
v’ PPy — PR my
2 P, m3’
leaving the labeling of states unspecified at this point, as the concrete mass ordering

is not determined a priori. One of the active neutrinos forms again a pseudo-Dirac
pair together with the sterile neutrino state, with the following tiny mass splitting:
2 2
ve P
Smg_p o —— 12 5.60
ST T M P (5.60)

Rewriting the neutrino mass formulas in terms of the high-energy parameters, they
become:

/
Ma,s ~ Tmz = £ Py,

mg (5.59)

v U?
Ma,s ~ TYo—= — 3
“° V2 \ U3 + U3,
(1672)20?
mg >~ — , 5.61
’ 8M3zy3Us; log (Ms/A) (561)
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Figure 5.5: Random scan plot showing the light (active and sterile) neutrino masses |mg| (orange),
|ma| (green) and |mg| (blue) vs. the neutrino Yukawa eigenvalue y,. At the cut-off scale A = Mp,
the following parameters are assumed: y3 = 1, y1 = 0, M3 = Mp/\/g and M7 = My = 0. The
mixing angles in Ur take on random values within 0 and 27.

which is identical to the result obtained in the previous case b). Therefore, reproducing
the correct neutrino mass scale as well as the observed neutrino mass hierarchy is
possible for the appropriate high-energy parameters.

A numerical analysis for the discussed scenarios is shown in Fig. 5.5. The scan plot is
obtained from diagonalization of the 6 x 6 neutrino mass matrix (see Eq. (3.4)) after numer-
ically solving the two-loop RGE and shows the mass spectrum of the light neutrinos (active
and sterile), mg, mg and mg, depending on the neutrino Yukawa eigenvalue y,. The values
at the cut-off scale A = Mp are y; =0, y3 = 1, Mg = Mp/\/8771' and M7 = Ms = 0. The
right-handed mixing angles in Ur take on random values between 0 and 27w. Not consid-
ered in the mass spectrum are the much heavier RHNs N3 and Ns as well as the lightest
active neutrino mass mj which is of order O(107%) eV. The three scenarios analyzed above
correspond to the following regimes in the scan plot: a) yo > 1072, b) y2 < 10712 and c¢)
10712 < 95 <1073, Case a) corresponds to the seesaw scenario where both, the atmospheric
and solar neutrino mass are Majorana, but the atmospheric mass scale is predicted to be far
larger than the observed values. Within the parameter space of y3 ~ 10713 — 107!, encom-
passing the region between cases b) and c¢), the observed neutrino mass hierarchy as well as
the correct mass scales can be reproduced. For these two cases either the atmospheric or
the solar neutrino mass scale is of pseudo-Dirac type, while the other is purely Majorana.
Note that in the full parameter space of y2, one light neutrino is always in the ballpark of
the experimentally observed mass scale, by only making mild assumptions on the cut-off
parameters at A = Mp, namely Mz ~ O(Mp) and y3 ~ O(1).
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Neutrinoless Double Beta Decay 5.3

5.3 Neutrinoless Double Beta Decay

In the relevant parameter space yo ~ 10713 — 107 with y3 ~ O(1), which can reproduce
the observed data from neutrino oscillation experiments, the 4 x 4 neutrino mass matrix in
Eq. (5.40) is diagonalized by U. In the limit of vanishing y; compared to yo, this matrix is
well approximated by

Wi Wiz Wia/vV2 Wia/V2
War Waz Waa/V2 Waa/V/2

U~ 5.62
Wi Wiz Waa/vV2 Wi /V2 (562)
0 0 1/vV2 1/v2
for the ordering of neutrino masses |mg| >~ |mg| > mg > m; = 0, and
Wi Wig/V2 Wi/vV2 Wi
Y~ | W2 Wos/V2 Waa/V2 Wag (5.63)

Ws1 Waa/V2 Waa/V2 Wi |’
0 1/vV2  1/v/2 0

for the mass ordering msz > |mg| =~ |ma| > m; = 0. Here, the W;; are the elements of the
unitary 3 x 3 matrix Uy, when the neutrino Yukawa coupling at the cut-off is parametrized
as in Eq. (5.14), namely Y = U LDyUIT%. The effective electron neutrino Majorana mass,
relevant in neutrinoless doublet beta decay (see Sec. 2.5), is then calculated as

<m55> = ‘mlugl + m2ue22 + m3U623 + msuezs .

(5.64)

In the case where the atmospheric mass scale is pseudo-Dirac with mg ~ —mg, the effective
mass becomes

(M) = |mally +m (U —U) | = [matd?

_ (mzwf?)‘, (5.65)

neglecting the tiny mass splitting in Eq. (5.60) between the pseudo-Dirac states, leading
to a cancellation due to opposite CP parity of the nearly degenerate states. When the
atmospheric mass scale is Majorana and the solar mass scale is pseudo-Dirac with mg >~ —mgy
the corresponding expression reads

(mig) = |ma (U2, = U%) + msU?y

= |matdy| = [msW|. (5.66)

again neglecting the tiny mass splitting. In both cases, only the Majorana mass scale of the

purely Majorana neutrino gives a considerable contribution to (mgg) which takes the form

(1672)%0?
ma3 = — 2772
8M3ysUszlog (M3/A)

(5.67)
in terms of the cut-off parameters (c¢f. Eqgs. (5.57) and (5.61)). Putting in concrete numbers,

- W (ys\~2 (Uss) > M3 -
s w10-tey (Wisl) (v 2 (Uss\ " Ms _
(mgg) = 5x 1077 eV < 0.01 ( 1 ) 0.6 12x109GevV ) (5.68)

where Usz is an element of the unitary matrix Ur. The overall scale of (mgg) strongly
depends on the overall size of the matrix element Wi3. The pseudo-Dirac state can be
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5 Phenomenological Implications of Two-Loop Quantum Effects

regarded as a pure Dirac particle, if the tiny mass splitting is neglected, such that v/, =
(Vo + VS) +i(vs + vE)]/v/2, where a = 2 or 3. In this limit &/ can be written as an unitary
3 x 3 matrix, Uy:

Wi Wiz Wiz
Uy~ | Woy Wa Was|, (5.69)
W31 Wia Wis

for the case in which the solar mass scale is pseudo-Dirac. So far, the mixing from the charged
lepton sector was neglected (e.g. by assuming a CKM-like structure U, ~ 1), but which
is necessary to calculate the leptonic mixing matrix Upyns = U;r U,. The relevant matrix
element |W3| for (mgg) is still perturbed by an influence from the charged lepton sector, such
that it is replaced by |U%| from the PMNS matrix in the equations above. As no constraints
are put on the Yukawa structures from imposing flavor symmetries, it is not possible to
make predictions on the leptonic mixing. Assuming generic mixing angles in the lepton
sector, which are neither small nor large, an “anarchic” structure is expected, in qualitative
agreement with the observations from neutrino oscillation experiments (see Eq. (2.13)). Note
that the resulting active and sterile neutrino masses are completely independent from the
left-handed mixing matrix Uy, in Eq. (5.14).

5.4 Parameter Counting

For the analyzed scenarios presented in Sec. 5.2.1 and Sec. 5.2.2, in which radiative effects
are used to generate one and two right-handed neutrino masses respectively, the number
of physical parameters is reduced compared to the standard seesaw scenario (see Sec. 3.3).
Consider the leptonic part of the Lagrangian (with family indices suppressed),

_ _ _ o~ 1
Liep = LilDL +egilPer + Nig N — (LYe<I>eR + LY®N + 5NCMN + h.c.) , (5.70)

invariant under U(3)y x U(3)r, x U(3). global transformations for vanishing Yukawa cou-
plings and Majorana mass matrix, ¥ = Y, = M = 0. By using the rule presented in [65],
the number of physical parameters of the model can be determined.

5.4.1 Quantum Effects Washing Out One Right-Handed Neutrino Mass

When radiative effects dominate at least one RHN mass, as in Sec. 5.2.1, it is enough to
consider the Lagrangian in Eq. (5.70), in which both, Y and M are effectively rank-2 for
ng = 3 at the cut-off, to reproduce the observed neutrino data (see Eq. (5.33)). For this,
the symmetric 3 x 3 Majorana mass matrix can be decomposed in the following way

0 0 0
M=Uy 0o M o UL, (5.71)
0 0 M

where Ujs is a 3 X 3 unitary matrix, which can be parametrized by three angles and three
phases and M; are in general complex mass eigenstates. The number of moduli and phases
is therefore 5. Similarly, a general complex 3 x 3 rank-2 Yukawa matrix can be decomposed
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via the bi-unitary transformation,

00 0
Y=U,|0 o 0]UL, (5.72)
0 0 wys

where U, and Ug, are both 3 x 3 unitary matrices which can be parametrized by three angles
and three phases. The total number of moduli and phases is therefore 8. No assumptions
on the charged lepton Yukawa Y, are made. In this scenario the U(3)y x U(3)r, x U(3).
symmetry is broken down to a residual U(1),,, leaving the lightest active neutrino mass-
less. (Neglecting the impact of quantum effects from the charged lepton sector.) Breaking
U(3)3 — U(1) adds up to 9 broken real parameters and 17 broken phases. The physical
moduli and phases thus amount to

(9 + 8 + 5) parameters in total — 9 broken real parameters = 13 physical parameters,

(9 + 8 + 5) phases in total — 17 broken phase parameters = 5 physical phases. (5.73)

The 18 physical parameters correspond to four eigenvalues (Ma, M3, y2,y3), three angles and
two phases from the neutral lepton sector, and three eigenvalues (ye,y,,yr), three angles
and three phases from the charged lepton sector.

5.4.2 Quantum Effects Washing Out Two Right-Handed Neutrino Masses

When two right-handed neutrinos get significant quantum corrections, as in Sec. 5.2.2, the
Majorana mass matrix effectively only needs to be a complex, symmetric rank-1 matrix,
while the neutral lepton Yukawa coupling is still needs to be a complex rank-2 matrix. In
this minimal scenario is parameter space in which the observed neutrino parameters can
be reproduced, see Eqgs. (5.57) and (5.61). Again, no assumptions on the structure of the
charged lepton Yukawa coupling are made. It is possible to parametrize a complex symmetric
rank-1 matrix as the tensor product of a vector with itself

a a? ab ac
M=(b](a b ¢)=|ab b* bc|, (5.74)
c ac be 2

which amounts to 3 moduli and 3 phases in general. In this scenario the lightest active
neutrino also stays massless, leaving an unbroken U(1),, global symmetry (neglecting the
impact of quantum effects from the charged lepton sector). The number of physical param-
eters equals

(9 + 8 + 3) parameters in total — 9 broken real parameters = 11 physical parameters,

(9 4+ 8 + 3) phases in total — 17 broken phase parameters = 3 physical phases. (5.75)

The 14 physical parameters can be identified with three eigenvalues (M3, y2,y3) and two
angles from the neutral lepton sector, and three eigenvalues (ye,yu,y-), three angles and
three phases coming from the charged lepton sector. This is a significant reduction compared
to the vanilla seesaw scenario with 21 physical parameters.

In Table 5.1 the residual groups for different scenarios involving three right-handed neutrinos
are summarized.
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5 Phenomenological Implications of Two-Loop Quantum Effects

rank [V, ]

1 2 3
= 11 U1)y xU(2),, U(l),, nothing
= 2 U(2),, U(1),, nothing
2
=3 U(2),, U(1),, nothing

Table 5.1: Residual groups after the breaking of the U(3) x U(3) 5 flavor group by a non-vanishing
neutral lepton sector, assuming a generic rank-k Y, coupling (with k& = 1,2, 3). (Neglecting effects
from the other SM fermion sectors.)

5.5 Motivations for Planck-Scale Lepton Number Violation

So far, the assumption of a hierarchical RHN Majorana mass matrix at the Planck scale
was motivated by purely phenomenological arguments. A two-loop suppressed Planck-scale
RHN mass leads to a light neutrino mass in the ballpark of experimentally observed values
through the seesaw mechanism after EWSB [2]

2
my, ~ (1672)2—— ~ 0(0.1) eV, (5.76)
Mp
assuming an order O(1) neutrino Yukawa coupling, where Mp ~ 1.2 x 10*® GeV and the
Higgs VEV has the value v ~ 246 GeV. Note that the neutrino mass in Eq. (5.76) depends
only on two fundamental scales, the electroweak symmetry breaking scale (the Higgs VEV)
and the Planck mass Mp. Without taking advantage of two-loop effects, the resulting neu-
trino mass would be of order O(107%) eV, making intermediary scales necessary to explain
the neutrino oscillation parameters [81].

It has been put forward that the structure of a light neutrino mass matrix induced by
gravity would be “democratic” where the dimensionless coefficients in Eq. (3.1), suppressed
by the scale of gravitational interactions A ~ Mp, take the following form: c,3 = 1. This is
motivated by the flavor-blindness of gravitational interactions [82]. Analogous to this train
of thought, this would mean for gravitationally induced right-handed neutrino masses

11 1
MA)=wMp |1 1 1], (5.77)
11 1

assuming three generations of RHNs, where w ~ O(1). A mass matrix of this structure
is exactly rank-1 and has the corresponding eigenvalues Djy; = diag(0,0,3wMp). Ref. [83]
discusses deviations from this exactly “democratic” texture induced by topological fluctua-
tions (e.g. wormholes) [84,85]. Small corrections to the mass matrix in Eq. (5.77) lead to a
very hierarchical mass spectrum for the right-handed neutrinos M7, <« Ms < M3, where the
heaviest mass is close to the Planck scale, while the other two are non-vanishing but much
lighter, as assumed on a phenomenological basis throughout this work.

In the Standard Model, neutrinos stay massless to all orders of perturbation theory as
well as through non-perturbative effects. This is because the global (B — L) symmetry
is respected throughout the SM. The non-perturbative sphaleron process violates baryon
number B and lepton number L, but not the combination (B — L). The inclusion of gravity
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in perturbation theory does not change this picture, as couplings to gravity also respect the
(B — L) symmetry [86]. But the picture changes if non-perturbative gravitational effects
(like black holes and wormholes) are considered, which violate all global symmetries,” e.g.
lepton number and (B — L) [88-90]. The thought experiment is the following: any number
of particles carrying lepton or baryon number can be thrown into a black hole, but when
the black hole evaporates over time by emitting Hawking radiation, the leptons or baryons
are not recovered. This renders the Planck scale as the natural choice for lepton number
violating Majorana masses. Planck-scale RHN masses are disfavored by the standard seesaw
scenario where the resulting active neutrino masses would be of the order of O(1076) eV [91]
and thus three orders of magnitude too small to explain the experimental observations, but
are favored if two-loop effects analyzed in [1-4] are taken into account.

Another possibility to give a Planck-scale mass to the right-handed neutrinos is via a
Yukawa interaction between a singlet scalar ¢ which obtains a sufficiently large vacuum
expectation value [92,93]. The additional complex scalar o = ((¢) + R +i.J)/+/2 is neutral
under the SM gauge group and carries a charge of L = —2. The corresponding Lagrangian
containing the RHN fields reads (family indices suppressed):

_ S 1
Ly = NigN — <LY<1>N + 5 NYoN + h.c.> : (5.78)

where Y is a general complex matrix and Y, can be taken as a real and symmetric matrix,
without loss of generality. After spontaneous symmetry breaking of the U(1)p_1, symmetry
by the complex scalar field assuming its vacuum expectation value (o) = v,, the right-
handed neutrinos N; get the Majorana mass term M = (0)Y,/v/2. If U(1)p_r, is a global
symmetry, its spontaneous breaking leads to a massless Nambu-Goldstone boson, the CP-
odd Majoron J [92]. If cosmic inflation is driven by the field breaking the U(1)p_1, then
the vacuum expectation value (o) must be trans-Planckian v, ~ O(100 x Mp) [94, 95].
After inflation, the o field settles down at the minimum of the potential and breaks lepton
number by two units, giving rise to massive RH neutrinos. Ref. [96] uses this set-up to
explain inflation, the BAU, dark matter and neutrino masses. For a hierarchical Y,, where
the largest eigenvalue is of order of the charged lepton Yukawa, a similar RHN mass spectrum
as in Eq. (5.77) is obtained. In this way neutrino masses and inflation can be related.

Without any fundamental guiding principle, the assumptions made on the neutrino
Yukawa coupling are generic. While the Majorana mass matrix is approximately democratic,
which is reasonable in absence of any distinguishing principle, the neutrino Yukawa sector
may be anarchic. One may invoke the so-called flavor-blind principle for Yukawas [97],
introduced in order to explain fermion mixing patterns like the empirical Gatto-Sartori-
Tonin relation. It states Yukawa interactions should be introduced in a way such that flavor-
blindness is initially conserved and the global permutation symmetry S?)L X 5’31,% (separate
invariance under the permutation of rows and columns) is initially retained. This maximal
flavor symmetry is then successively and minimally broken in order to increase the rank
and to retain a residual flavor symmetry, 52L X 52R and so on, until all generations become
massive. This suggests a democratic ansatz also for the Yukawa sector.

Considering the SM Yukawa sector, the neutrino Yukawa coupling can have a rank
larger than one and a sizable eigenvalue. In order to simplify the analytical treatment
and as a proxy for a hierarchical Yukawa spectrum, rank-1 couplings are considered in this

2Discrete charges like Zs, which will be used in chapter 7, may still be preserved by non-perturbative
gravitational effects as was argued in [87].
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work whenever possible. In fact, for the considered Planck-scale lepton number breaking
scenarios, the largest neutrino Yukawa eigenvalue should be O(1) (¢f. Eq. (5.76)). Looking
for analogues in the SM, the bottom quark and 7-lepton couplings are of the same order
Yp ~ Y-, thus one might assume that the largest neutrino Yukawa coupling is of the same
order as the top quark coupling, 3 ~ y3. At least one neutrino Yukawa coupling at the
order of the top quark coupling is also generically expected within SO(10) Grand Unifying
Theories [98].
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Chapter 6

Two-Loop Quantum Effects in the
Seesaw Model Extended by a
Second Higgs Doublet

So far, a minimally extended Standard Model by a number of right-handed neutrinos was
considered. Within this extension, two-loop effects in the context of radiative generation
of right-handed neutrino masses were studied. These quantum effects can have a crucial
impact on the neutrino phenomenology if the RHN mass spectrum is hierarchical.

Under the conditions outlined in the previous chapter, a RHN tree-level mass can be
completely washed out by radiative corrections and thus reduced the effective number of
parameters required by the model. In the specific case of three right-handed neutrinos, the
lightest RHN gets radiative contributions effectively at the four-loop level (see Eq. (5.34)).
This suppression may be too large to reproduce the observed neutrino parameters for generic
neutrino Yukawa couplings Y. With the addition of extra scalars, both right-handed neu-
trino masses can be generated at the two-loop level.

There are further theoretical motivations in favor of two-Higgs doublet models (2HDMs).
Well-motivated theories with two Higgs doublets could explain flavor anomalies and the
muon anomalous magnetic moment g — 2 [99]. For successful electroweak baryogenesis
several models involve two Higgses, where the extra doublet explicitly [100] or spontaneously
[101] introduces additional sources of C'P-violation in order to produce the observed baryon
asymmetry of the universe (BAU). The scalar sector is the experimentally least constrained
part of the Standard Model and an extension can address problems left open by the SM.
The discussion of two-loop effects with extended scalar sectors in chapters 6 and 7 follows
closely [4].

6.1 Scalar Potential

In this part, extensions of the Standard Model with three right-handed neutrinos and at
least one additional complex SU(2);, doublet scalar, sharing the same quantum numbers
as the SM Higgs doublet (with hypercharge ¥ = 1), are investigated. The most general
renormalizable scalar potential V' (®1,®9) that can be written down, invariant under the
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SM gauge group, containing two Higgs doublets @, (with a = 1,2), is the following [102]:
V=3280 + > Aabea (‘PZ%) (@1%) , (6.1)
a,b a,b,c,d
where due to the Hermiticity of the potential :“Zb = (,u%a)*
different notation, the scalar potential takes the form

and Agped = Apyg0- Written in a

V (P, ®o) = 12,01 P 2 51Dy — (2,0 ®y + 1 L (afe,) 6.2
(1, 2)-#11 1P1 4 3P Po H12® ;%2 + h.c. +21 1¥1 ()
1 t 2 T T T i
+ 5% (@4@:) + a3 (@l@1) (@ho2) + Ai (f02) (2lay)
1 ta )2 t t t t
+ [2)\5 (@]@5) + 2 (2]1) (2]@5) + 27 (f0r) () +h.c.] .

The couplings ,u,%Q, A5, Ag and A7 can be complex in general, but if the potential should be
invariant under C'P transformations like ®; — i02®], these parameters are required to be
real. For the corresponding quartic couplings, one finds A\ = 2A1111, As = 2A1212 = 2A59;,
etc. With two complex scalar doublets, there are eight scalar fields in total and each doublet
is given by

o
a0 = (\1@ (Vg + Pa + iAa)> ’ (6:3)

with @ = 1, 2. The factor v/2 is a convention for convenient normalization. After spontaneous
symmetry breaking, both doublets acquire their VEVs v; along the neutral direction

Wb WG e

with ground states chosen such that the vacuums are neither C'P violating, nor U(1)em
breaking,' to have the normal electroweak minimum.

The scalar potential in Eq. (6.2) needs to fulfill theoretical constraints in order to be
viable. Perturbativity demands that all quartic couplings in the potential should be less than
47. In connection to unitarity there are also perturbative unitarity limits on the couplings,
demanding that tree-level scalar-scalar scattering is not unitarity violating. This is satisfied
if all eigenvalues of the scalar-scalar S matrix are less than 87 [103]. Going forward without
a detailed analysis of the perturbative unitarity, it is enough to demand that the A; are not
too large and well within the perturbative limit. The bounded-from-below condition which
means there is no direction in field space in which the scalar potential goes to minus infinity
V — —o0, to have a stable global minimum in the potential, must also be fulfilled. The
necessary conditions for the \; parameters, to have a stable vacuum bounded from below
at tree-level are [104]

A1 >0, A3 > —v/ g,
A2 >0, A3+ A — [As] > =V A,
1
2’)\6"‘)\7‘ < 5()\14-)\2)—1-)\34-)\4—1-)\5. (6.5)

1Both non-zero VEVs are real-valued, thus no C'P violation and all charged fields ®; get a zero VEV,
otherwise the breaking of U(1)em would lead to a massive photon.
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These conditions become sufficient in the case of vanishing \g and 7.

Without any additional symmetries associated with the newly introduced complex scalar,
both ®; and ®5 are indistinguishable from each other. Therefore, one can choose to work
in a basis where only one of the scalars is getting a non-zero VEV, the so-called Higgs
basis [102]. This can be done by performing the following rotation of the fields

d, ([ cosB sinB) [Py
((52) - (—sinﬂ cosﬁ) <¢2>’ (6.6)

such that ﬁ(zﬁﬁ = v = /vy + v5 and \/§<<f>2> =0, with v ~ 246 GeV. The rotation angle
is defined as

tan f = 2., (6.7)
U1

a parameter that we will use later on when discussing the phenomenology of the model.

6.2 Two-Loop RGEs for Extended Scalar Sectors

The leading quantum effects on the RHN mass matrix M the in RG evolution are now
studied. The RHN-Lagrangian for the two-Higgs doublet model extended by n, right-
handed neutrinos N; (i = 1, ...,ng) reads:

1 O
Ly = 5 NiidN; - <YOE?)LaNi<I)a + 5 Mi;NEN; + h.c.) : (6.8)

with the complex scalar doublets ®, (a = 1,2), as discussed in the previous section, their
charge conjugate d, = ioo®?, and L, (o = e, u, ) denotes the lepton doublets. The scalar
potential can be seen in Eq. (6.2).

Similarly to Eq. (4.2) for the one-Higgs doublet case, the renormalization group equations
up to two-loop order for the Majorana mass matrix M take the following general form:

dM
dlog

=B + 59, (6.9)

with the one- and two-loop beta functions, 5](\? and B](\?. They read in detail:

B =% [P(““)TM + MPW)} ,

a

2 a a 17 51 aa aa
@;—ZjuwwMﬂw+(8ﬁ+8ﬁ>p<WM+Mﬂ>}
a,b

(a)y,(b)
2ﬁ0;;$0+2ﬂ@wﬂ [POTAL 4 2 P00)]

_iPMWﬂwﬁw+Mﬂwpwq} (6.10)
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where for convenience the following shorthand quantities are defined:

1
(ab) — = y(a)fy(b)
P V@Y O,
Tr (Y(a)y(b)T>
1 9 u tu 3
(ab) _ _ *plab)yplba)y | N ~ ) e (ba) (ab)
QY = (1+G) PWsg — PP e+ 5T (PO) ) P,
1 17 5 51
=163 <8 n+3 S) (6.11)

and the U(1)y and SU(2), gauge couplings couplings are denoted by g; and go respectively.
Yu(a) is the up-type Yukawa coupling to each of the doublets. The charged lepton and down-
type Yukawa couplings to both doublets are neglected. The RGE was calculated working in
the MS renormalization scheme and using the shorthand quantities it be cast as:

a,

dlog i
Equivalently, the energy-scale evolution for the neutrino Yukawa in the 2HDM reads up to
the two-loop level,

dy (@
= 53(/1()@ + 5§/2()a), (6-13)

dlog u
with

1675, = [32%( DY) + ZTr( Ay ® )—%gf—ggi

bty (a a
+y YOy ®iy )+Z§Y( )y Oty ®)
b

13 21 9
(1672285, = {6A%+A§+AZ+A3A4+ )\5+§ 4 Zgg ¥

+ Z [Z{ (2093 iigl + 2592) ( Dy ) < gz> Tr (Y(b)Y(C)T>

2 ~
_ —7Tr ((Y(b)yu(c)T)2> _ ZTr ((Y(b)y(c)T)2) H Y® _ 6, Zy(b)P(ab)(l )
b

2} Y@ _ 193, y(@ plaa)

4
3 ~ 31 45 9 3
2y (a) plaa)2 T2 02 e (a)y (o) 2 (a)y (o)
+3Y@P +<8g1+8g2 ZC:{QTr<Yu Y )+2Tr(Y Y )})
D3 < y Oty @ | y<a>y<b>fy<a>> (2 +40) S Y@ORO (1 5,)
b
+i Z <7y(a> Plba) plab) _ y-(a) Hlab) Blba) _ y-(a) H(bb) Blaa) _ y(b) H(bb)2

_y ) B ple) 4 gy (®) plba) pibh) 7Y<b>ﬁ<aa>15<ba>> (1= 6w). (6.14)

Here, g5 denotes the SU(3). gauge coupling and the A; are the quartic couplings in the
scalar potential in Eq. (6.2), and P = Y@ty (®) At two-loop level the quartic couplings
enter into the Yukawa beta function. The RGEs for the neutrino Yukawa were obtained
using SARAH [72, 73], working in the MS scheme.
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Figure 6.1: Leading two-loop diagram to generate right-handed neutrino masses.

6.3 Effects on Right-Handed Neutrinos

The main impact of two-loop quantum effects can be understood by assuming three RHNs
and a Majorana mass matrix showing strong a hierarchical spectrum at the cut-off energy
scale of the theory,

M, 0 0
M| =0 M o], (6.15)
p=A 0 0 M

where the basis was chosen in which the mass matrix is real and diagonal, such that Uy (A) =
1. Due to the hierarchical spectrum My, Ms <« Ms, the mass matrix well approximates a
rank-1 matrix.

Solving the RGE for the RHN mass matrix in Eq. (6.12) with the method shown in
Sec. 4.2, the solution at the scale p < A, only keeping terms up to the order O (P(“b)Q), can
be cast as

1+Z< aat_|_ P(aa) t2>]

n 4ZP (ba)T prplably 1 0 (P(ab)3> ‘
a,b

1+ Z ( (b0)g + P(bb)2t )] (6.16)

Here, terms beyond O ( ) in Q@) (see Eq. (6.11)) were neglected which only lead to
small corrections to the non-vanishing tree-level masses in M(A). Again, the convenient
scale parameter ¢ = log(u/A) is used. The main one-loop correction to the tree-level mass
Mz at M3z < A from the first line in Eq. (6.16) reads,

M
Ms(p) ~ M + 2M; (P + P ) log <A3> . (6.17)
pu=Ms

But much more interesting are the contributions proportional to M3 to the small tree-level
masses M; and My coming from the second line in Eq. (6.16). Even in the exact rank-1
case (M7 = My = 0), the mass matrix will become rank-3 for generic neutrino Yukawa
couplings due to the POaT prplad) term, coming from the two-loop diagram depicted in
Fig. 6.1. Through the energy-scale evolution, non-vanishing M; and M are created at order
O(P'®)), while in the one doublet scenario in Sec. 5.2.2 M(A) would be at most rank-2 at
order O(P?) and at most rank-3 at the order O(P*) in perturbation theory. The addition
of another Higgs doublet coupling to the RHNs via Y2 provides more flavor symmetry
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breaking parameters, leading to a full rank mass matrix at lower order in perturbation
theory.

At the scale = Ms, the heaviest right-handed neutrino can be integrated out. The
theory is then correctly described by the effective Lagrangian,

_ . 1
Lo~ =23 B8 (L d ) (@{Lg) — YT ®,N; — SMyNEN; + hie., (6.18)

where neutrino Yukawa coupling and RHN neutrino mass matrix of the effective theory

Y@ ~ (Y@ ~ Mz’3Y(§§)>

0% at M ?
33 s
M3 M3
M ~ <Mij - 7M33] > ; (6.19)
p=Ms

with 4,5 = 1,2 are defined (similar to Eq. (5.20)), and all parameters are evaluated at
m = M3.

By integrating out N3, the dimension-5 operator arises in Eq. (6.18), leading to an active
neutrino mass suppressed by M3 (assuming Ms is close to the Planck scale, the resulting
neutrino mass will be > 1076 eV and thus far too small to play a role in explaining neutrino
oscillation experiments), which will be neglected in the following:

. 1
Log ~ Y YL ®,N; — sMiNEN; + hee. (6.20)

To calculate the radiative RHN masses, the tensor invariants can be used:”

I = Tr[M] = M + My = My + Mo,
12 = det [M] = M1M2 = M11M22 - M12M21, (621)

with M defined in Eq. (6.19) and approximately reads

~ 4M;log ( ) Z Py PY, (6.22)
p=Ms3

using that the second term in Eq. (6.19) is small. For RHN masses showing a hierarchy, the
masses can be approximated by using the tensor invariants only:

MQ ~ Il,
u=Ms3

p=Ms3 I

M, (6.23)

2Here, real-valued parameters are assumed, for complex parameters the corresponding invariants are found
by using I; = Tr [M'M] = M? + M3 and I, = det [M'M] = M?M3.
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Since the quantum contributions proportional to M3 dominate over the tree-level masses of
Ni and Ny, the mass eigenstates at the scale p = M3 become:

ba Ms
S e 1)
ab ba cd dc ab cd ba dc
Sl R S N
Ml‘ ~ 40 20O log <3> . (6.24)
— ab ba
w=Ms Z<P§1)P§1)+P§2)Pf§2)) A

a,b

Both radiative masses are generically comparable in size as both arise at order (’)(P(ab)z).
The expression for Ms|,—ns, reproduces the result in Eq. (5.34), obtained in the one doublet
case, by taking the limit Y®) — 0, while M |u=p; would vanish at the given order of
perturbation theory, as expected. Instead of using the invariants, the 2 x2 RHN mass matrix
at the scale 4 = Mj in Eq. (6.19) can also be diagonalized by M ~ Uydiag(M;, M;)Uf,
where

1 P32 P31
UM‘ ~ < , 6.25
p=Ms /P2 +P3, \—Ps1 Pz (6:25)
defining Ps3; = ( b + P?EfQ).
To gain more analytlcal insight compared to the expressions in Eq. (6.24), a rank-1
scenario is considered not just for simplicity, but also as a proxy for the case of hierarchical
neutrino Yukawa matrices. They can be cast in terms of their non-vanishing eigenvalues y,

and a tensor product of two vectors in flavor space u( @) ﬁg), which are normalized to unity:

Y@ = y,a\ o ald)" (6.26)
For the rank-1 symmetric RHN mass matrix, one can equivalently write:

M(A) = M3& @ &7, (6.27)
with ||| = 1 also normalized to unity. From the three vectors in the RHN flavor space,

ﬁgg), @, and the two vectors in the left-handed neutrino flavor space, U(La), four invariant

scalar quantities can be constructed which are related by their relative orientations, namely
(ﬂ,’g) - W), (fc’g) - @), (ﬁg) -ﬁg)), and (_’(1) -ﬁg)). Furthermore, there are three eigenvalues:
y1,y2 and Mj3. The radiative RHN masses can be expressed solely in terms of these seven
invariant quantities:

=) (s 2) (o) (o ) [ (o)

AMzlog (M%) yivs () -5)2 (a7 .5)2 (5- (@) x @2)))2

Ml‘

For vectors normalized to unity, the square of the triple product reads in detail:

(& @) xa2)) =1 (@)’ - @2 5)* @y -uf2)* +2() - ) (@ - @) (i) -

06 () (0 -a) (s ) [ (5 ()
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i x @

Figure 6.2: Sketch of the angles and vectors in the right-handed neutrino flavor space as well as
the parallelepiped spanned by them.

In order to generate two non-vanishing RHN masses, the vectors in flavor space must fulfill
certain properties, which can be inferred from the equations above:

e At least one of the ﬁg) must be non-orthogonal to &, to generate a non-vanishing Ms.

e Generating a non-vanishing M; needs the following conditions fulfilled at the same
time:

1. Both ﬁg) must be non-orthogonal to &.
2. Both ﬁgg) and & are not coplanar.

3. Both U(La) must be non-orthogonal to each other.

Thus, generating Ms needs at least two linearly independent directions in the RHN fla-
vor space, while M; requires three independent directions in RHN flavor space plus two
independent directions in the left-handed neutrino flavor space.

The global flavor group U (3)y xU(3)[, is only broken down to nothing if there are enough
directions in flavor space. If there is alignment between vectors in RHN flavor space, M7 is
vanishing due to a residual U(1)y group. In the case with only one Higgs doublet, a rank-2
neutrino Yukawa is necessary to generate two non-vanishing RHN masses, but the lightest
is effectively only generated at the four-loop level. In the 2HDM it is possible to generate
both at two-loop level because of more directions in flavor space.

The following angles are introduced as flavor-basis independent quantities:

ﬁ(Ll) '11’(5) = cosfy,
ﬁg) ~ﬁg) = cosfp,
ﬂ'g’Z) W = cos b 2, (6.30)

where the relationship among angles in the RHN flavor space is sketched in Fig. 6.2. With
the parametrization above and the three eigenvalues (y1,y2, M3), the physical RHN masses
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4yiys Mol <A> (yl >2+<3/2 )2+22 ( )
=~ — 310 — —S1C1 —S89C9 C7C1C2 (CR — C1C2) | ,
=M (1672)? & M3 Y2 (7 L
4y%y% Molo ( A ) c%c%(l - C4L) (1 - c% - c% - C%z + 2010203)

M3 Y1 2 Y2 2 2
3728101> + (;15202) +2c¢iciea (cr — cic2)

pu=DMs B (16772)2

My

. (6.31)

with the shorthand notation s; = sin6; and ¢; = cos6; (i = 1,2,L, R). The quantum
corrections between u = M3 and the seesaw scale are small, therefore the physical mass
scale of the RHNs N7 and N is determined by

dy?y? A
My = —AY2_ppg10g () . (6.32)
(167?2) Ms

Assuming that lepton number violation is introduced at the Planck scale, the expected mass
scale is around

M M
15 2.2 3 3
Mo ~ 2107 GeVyiy) (1.2 x 1019 Gev> log (1.2 x 1019 Gev> ’ (6.33)

and thus generically reproduces the well-known seesaw scale for neutrino Yukawa couplings
of order O(1).

The analytical results are confirmed by a numerical scan in Fig. 6.3. The plot shows the
ratio of the radiatively generated physical masses of |My/M;| against |Ms|. From numeri-
cally solving the RGEs between A = Mp and p = Mj for initial conditions My = My = 0,
M3 = Mp/+/87 and y; = y» = 1 and taking random angles in flavor space 0y, O, 01,2 at scale
A, the scatter plot was obtained. The two-loop quantum effects captured in the RGE gener-
ate two non-vanishing RHN masses, M; and Ms, both in the ballpark of O(10'*) GeV and
a mass hierarchy |My/M;| generically below O(100), similar to hierarchies in the up-quark
sector.

The results of this section hold irrespective of the concrete tree-level masses of N7 and
Ny or the hierarchy between M7 and My at the cut-off scale A, as long as the quantum
contributions proportional to M3 are dominating. Then, the wash-out effect due to the two-
loop quantum corrections generically produces two RHN masses with a moderate hierarchy,
Mi|y=my ~ Ms|=nr,, which is expected to translate into a mild mass hierarchy for the
active neutrinos.

6.4 Light Neutrino Masses in the General 2HDM Framework

Below the scale of the lightest right-handed neutrino mass, which is expected to be far above
the electroweak scale for generic Yukawa couplings (see Eq. (6.32)), N is integrated out.
The resulting effective Lagrangian reads:

Lo =~ —% DI (Lj%a) (cibTLg) +he,, (6.34)
ab B

(ab)

where the Wilson coefficients 5 are evaluated at scale y = M;:

.(ab)

) (6.35)
p=M

T (Ym)Mle(b)T)
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Figure 6.3: Scan plot from numerically solving the RGE, depicting the RHN mass hierarchy of the
radiative masses |My/M;i| vs. |Maz| within the Planck-scale lepton number breaking framework in
the 2HDM. The initial conditions at A = Mp read: Ms = Mp/\/8n, My = My = 0, y; = yo = 1.
The angles in flavor space take on random values between 0 and 27.

with the double struck quantities defined as in Eq. (6.19) and neglecting the subdominant
contribution suppressed by the heaviest RHN mass, M3. Staying within the rank-1 ansatz
for the neutrino Yukawas, the generated Wilson coefficients can be written as

@
®U (ab)
(ab) L
RO| = q(a 0 Z]P’ , (6.36)

with i, = 1,2 and P(%) = Y(@TY®) Using the notation introduced in Egs. (6.26) and (6.32)
one finds after some algebra,

i (b
 YaUp yiys U%) QU ( i o 1/(1 — cos*0z) a=b,
u=rr, Mo y2yp cos O, cos 0b —cos20/(1—cos*) a#b.

ab)

K

(6.37)

The large separation between M; and the mass scale of the new scalar my can also lead to
significant quantum corrections in the neutrino parameters and must therefore be considered
to correctly describe the low-energy phenomenology. The dominant quantum contributions
to the effective operator £(®® are captured in the energy-scale evolution [74,105-107],

d/ﬁ(ab)
dlog

= Btan), (6.38)

where the beta function for the Wilson coefficients of the Weinberg operator reads at the
one-loop level:

2 2
16%255(@) = —3g§m(ab) + Z aepak D + Z (3Tr (Yflf“)Yu(C)g k() 4 3Ty (Yu(b)YlfC)T) /f(‘w)> ,
c,d=1 c=1

(6.39)

60



Light Neutrino Masses in the General 2HDM Framework 6.4

with the quartic couplings Ay as in Eq. (6.1). Here, the down-type quark and charged
lepton Yukawa couplings have been neglected to focus on the dominant effects only. At the
electroweak scale, in the leading-log approximation, the Wilson coefficient reads

K(ab) _ H(ab)

mpg
+ 6H(ab) 10g <M> . (640)

H=mp p=NM;

After EWSB, the Lagrangian in Eq. (6.34) yields the 3 x 3 active neutrino mass matrix

1 a,
MVZ—Q;KI( b)

which is observed at neutrino oscillation experiments. Effects of the RG running between
the EW scale and the energy scale of the experiment are neglected as the relevant quantum
effects occur between M; and the heavy scalar mass my.

The expected RG effects between the seesaw scale and the new scalar mpyg can be cate-
gorized into three different cases:

Vg Up, (6.41)

H=mg

e Case 1: Each of the tree-level Wilson coefficients x(*®) receives corrections proportional

to themselves, which are at most O(1). The tree-level contribution of (%) to the active
neutrino mass spectrum is then prevailing and the quantum correction does not lead
to new qualitative features.

This is generically the case for VEVs v; ~ v9 and neutrino Yukawa couplings y; ~ s in
the same order of magnitude (staying within the rank-1 ansatz for neutrino Yukawas).

e Case 2: Through the RGEs in Eq. (6.39) different Wilson coefficients (%) mix with
each other. This mixing is induced by “Higgs exchanging interactions” through the
Weinberg operators and is a characteristic feature of models with an extended scalar

sector, introducing new qualitative features to the low-energy phenomenology [107—
110].

This is expected for hierarchical Higgs VEVs v; > vy ~ 0 (i.e. choosing to work in
the Higgs alignment limit) and y; ~ ys.

e (lase 3: The quantum effects lead to corrections to the tree-level Wilson coefficients
which are proportional to themselves, but the operator mixing is suppressed due to
tiny couplings to the second Higgs and thus leads to no new qualitative features.

This is scenario is realized for a strong hierarchy between the neutrino Yukawa cou-
plings y1 > y2, making the result identical to the one-Higgs doublet case, where the
lightest right-handed mass is generated at four-loop level only (for a rank-2 Yukawa
coupling) due to vanishing y2 and is discussed in detail in chapter 5.

In the following, the first two cases are considered, which translate to a scenario in which
the quantum effects from the running between M; and mpy can be neglected and one in
which they can lead to important new phenomenology and thus must be considered.

6.4.1 Negligible Quantum Effects from the x(* Running

Staying within the rank-1 hypothesis (see Eqgs. (6.26) and (6.27)) for the neutrino Yukawas

and the RHN mass matrix at the cut-off A, the active neutrino mass matrix at the scale
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= Mj can be written as sum of four rank-1 matrices

My =N g o))", (6.42)
a,b

with help of Eq. (6.37). Where mass parameters (similar to Eq. (5.43)) are introduced and
defined as follows:

~ Wava)(wove) vy 1 1/(1 — cos*0z) a =D,
Mab = 2,2 X 2 4
2Mo  ygy; cosby cos by —cos?0r/(1 —cos*fy) a#b.

(6.43)

By using the tensor invariants, the light neutrino masses can be extracted from the neutrino
mass matrix:

I =Tr M) =m1 +mg +ms3,

1
I = 3 (Tr [./\/ll,]2 —Tr [M?,]) = mimg + mims + mams ,
I3 = det [Mu] = mimeoms , (6.44)

such that

I = my; + mgg + (myg + moy) cos by,
I = (my1mgy — myamyy ) sin® 6y,
I; =0, (6.45)

follows from Egs. (6.42) and (6.43). Note that m; = 0 exactly vanishes in the approximation
made in Eq. (6.20). In general, m; will be of order O(107%) eV for M3 close to the Planck
scale. Quantum corrections to mj; between M; and the heavy scalar mass mpy will be
proportional to mg, but two-loop suppressed [76-79]. Assuming a hierarchy between the
non-vanishing active neutrinos, the invariants lead to:

Y1Yy2 {yg cos?  yy sin®?f3  2sinBcos B cos? L}
mg >~ I = my Z2 ZZ _ ’

(1 —cos*r) [y1cos20;  ya cos? b cos 01 cos 05
I, sin2g, |22 cos? By yicos?y  2cosbycosbycos® O - (6.46)
Mmoo~ — =m in = = — )
T 0Y1%2 L y1 sin? 8 yo cos? 3 sin 3 cos 3 ’

using Eq. (6.7), where v1 = v cos f and vo = vsin 8. An active neutrino mass scale parameter
is introduced as
1 02

=-_ A
i (6.47)

mo

with My defined in Eq. (6.32). Now, the overall mass scale can be estimated as

mo =~ 0.05eV (%)72 (%) ” <12X%fg%v> - , (6.48)

assuming that log(M3/A) ~ 1. The numerical values are in the ballpark of the experiments
if M3 is around the Planck scale and the neutrino Yukawa couplings are of order O(1).
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From the results in Eq. (6.46) it can be seen how misalignment in the LHN flavor space
between ﬁ%) and ﬂ’(LQ) (i.e. sinfp # 0) is necessary in order to have two non-vanishing
neutrino masses, otherwise M, becomes rank-1.

The active neutrino mass scale of mo and mg is determined by the parameter defined in
Eq. (6.47). For generic mixing angles in the left- and right-handed flavor space, similar-sized

neutrino masses are expected. In detail, the mass hierarchy reads:

y1 cos 01 cos 8 y2 cos f2 sin 8
sin? @y, (1 — cost6r)

. 2
y2 cos 02 sin 8 y1cosbicosfS 3
ms ( + 2 cos’ 0,

: (6.49)

ma2

The predicted hierarchy and neutrino mass scale is independent of the charged lepton
flavor space. So far, no restrictions have been imposed on the flavor structure of the charged
lepton sector. Therefore, it is not possible to make predictions on the PMNS mixing matrix.
Assuming generic misalignment angles at high energies, which are neither small nor maximal,
as done throughout this chapter, will in general lead to an “anarchic” structure in the PMNS
matrix. This is in qualitative agreement with the observed texture of the leptonic mixing
matrix (see Eq. (2.13) and Fig. 2.4).

To confirm the analytical calculations, a numerical random scan is performed. For this,
the two-loop RGE for the RHN mass matrix is solved above the scale M; as well as the one-
loop RGE for the dimension-5 operator below scale M; (neglecting the effects of operator
mixing in Eq. (6.39)). The initial conditions at the cut-off A = Mp are M; = My = 0,
M3 = Mp/+/87 and random angles in flavor space (6r,0g, 01 2) between 0 and 27. For the
neutrino Yukawa couplings and Higgs misalignment angle 3, three different realizations are
considered: i) y; = 1 and tan 8 = 1 (green points), ) y; = 1 and tan S = 0.001 (orange
points), and #i7) y; = 0.001 and tan 5 = 1 (blue points).

As long as y2 ~ y; ~ 1 and tan 8 ~ 1 (green points), the neutrino parameters are well
within the ballpark of the observed values at neutrino oscillation experiments. However,
if y1/y2 and/or tan f strongly deviate from 1, the resulting neutrino mass hierarchy is in
general too large (neglecting the effects from operator mixing).

Even without considering effects from operator mixing below p = M, which typically
milden the neutrino mass hierarchy in cases outlined below, the ballpark of the experimental
values can be reproduced assuming reasonable O(1) parameters.

6.4.2 Non-negligible Quantum Effects from the x(* Running

The second case under consideration is realized in the Higgs alignment limit, in which
tan 8 = wvg/v; ~ 0, such that only one Higgs gets a non-zero VEV which resembles the
Standard Model Higgs. The resulting active neutrino mass matrix in this limit reads

M, = —%Mll)v%, (6.50)
with v;1 = v. The corresponding Feynman diagram leading to the mass term can be seen in
Fig. 6.5. Without the RG effects between scales M1 and mg a huge neutrino mass hierarchy
would be expected (see Eq. (6.49) in the limit 8 — 0). However, operator mixing induced by
the “Higgs exchanging interactions” in Eq. (6.39) can lead to sizable quantum corrections
to kD). The corresponding diagrams leading to operator mixing in Eq. (6.39) are shown in
Fig. 6.6. Quantum corrections to the Wilson coefficient x(11) at the scale mp can be cast
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Figure 6.4: Numerical scan of the active neutrino mass hierarchy between the two heavier active
neutrinos |ms/ms| and |mg| in the Planck-scale lepton number breaking framework for two Higgs
doublets and negligible RGE-induced operator mixing. Using the following parameters at A = Mp:
Mz = Mp//87, y» = 1, random flavor angles between 0 and 27, and y; = 1, tan3 = 1 (green
points), y1 = 1, tan 8 = 0.001 (orange points); y; = 0.001, tan 8 = 1 (blue points).

as:

m(ll)‘ = /1(11)‘ + 6k (6.51)
W= p=>M

where

5k o~ —B 1)

M,y
lo — ] . 6.52
g (mH> (6.52)

Following [108], the expression for the beta function can be written as:

5k ~ Byk(@) 4 k(0BT | pi(22) (6.53)

L, < Lg

11

Figure 6.5: Feynman diagram for the effective operator k1) leading to active neutrino masses
after EWSB.
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Figure 6.6: Corrections to the Wilson coefficients £(??) introducing operator mixing through the
RG running.

showing the structure of the operator mixing from the energy-scale evolution, where the By,
are 3 x 3 matrices and b is a number, which explicitly reads in the leading-log approximation:

s (M

depending on the A5 coupling in the scalar potential (see Eq. (6.2)). The loop-suppression
is ameliorated through the large logarithm log(M;/my) which comes from the separation
between the seesaw scale M; and my. Assuming A5 ~ O(1) and heavy additional scalars
(o2, <I>§t, Ag) above the EW scale with my > v one expects numerically,

M1 mpmg -1
b~ —0.3 )5 log [(1014 GeV> (7o) } . (6.55)

The correction from the vertex renormalization term in Eq. (6.53) basically adds an addi-

tional term proportional to b ﬁ(LZ) ® ﬁ(LQ)T to M, in Eq. (6.50), enabling a mild neutrino
mass hierarchy. The influence of the terms coming from the wave function renormalization
in Eq. (6.53) is subdominant for a sizable A5 and neglected for the moment. The resulting
active neutrino mass matrix M, can be expressed in terms of mass parameters mgy, similar
to Eq. (6.42). For the alignment case tan 3 = 0, they are:

S mo Y5
1 (1 —cos*@r) cos? 6y’
m by? 6.56
Myy = — 0 Y1 ( )

(1 —cos* L) cos? 0y’

mio2 = My = 0.
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Figure 6.7: Same scenario as in Fig. 6.4, but considering the running between M; and my = 10 TeV
for A5 = 1 while neglecting the influence of other couplings in Eq. (6.39). In this case the RG-induced
operator mixing is clearly non-negligible.

Analogously to the previous section, the active neutrino masses can be obtained by using
the tensor invariants in Eq. (6.44) and assuming a hierarchy between the mass eigenstates,
such that

(6.57)

Y12 [ Y2 by }
ms3 >~ —m

0 (1 —cos*r) y1cos?6y  yocos? by

which is proportional to the neutrino mass scale defined in Eq. (6.47), and can reproduce
the observed values. The corresponding mass hierarchy reads:

m3

~

(6.58)

ma|  sin?6;

2
1 Y9 COs 0o Vb 41 cos 01
N 41 cos 01 Y2 cos Oy 7

and is expected to be mild for similar-sized neutrino Yukawa couplings y; ~ w2, generic
misalignment angles in flavor space 61, 6,,0r, and assuming that A\s ~ O(1), such that
b~ O(1).

Including RG effects proportional to A5 mildens the overall neutrino mass hierarchy. The
effect of the energy-scale evolution between M; and my = 10TeV for A5 = 1 can be seen
in Fig. 6.7, where otherwise the same choice of parameters is made as in Fig. 6.4.

In the case of a vanishing A5 < 1, a mild hierarchy can still be produced through RGE-
induced operator mixing in Eq. (6.53) in the 3RHN scenario. A non-vanishing neutrino mass
my is generated beyond the leading-log approximation when solving the RGE in Eq. (6.38)
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through the up-type Yukawa couplings. The corresponding mass parameters read,

2 2 2,4
mo Y3 6ry; | 977y 2
i (1 —cos* @) cos? 64 < 1672 (1672)2 (2+ cos t)> ’
2 2,4
mo yi 977y 2
=— 0 6.59
22 (1 — cos* 61,) cos? 65 (1672)2 oS (6:59)
2 2 2
mg cos” 0r, 3TYy; 67Y;
= = — — 6
iz = ma1 (1 — cos*01) y1y2 cos 61 cos Oz 1672 1672 ) “°7t

defining 7 = log (M7 /m ) and neglecting contributions from quartic or gauge couplings. For

simplification, both up-type Yukawa couplings Yu(a) are assumed to be approximately rank-1
with similar-sized eigenvalues y; and show misalignment characterized by the angle ;. With

2)T}

these assumptions Tr [Yu(l)Yu( = y? cos 0. Using the tensor invariants in Eq. (6.44), the

hierarchy between the active neutrino masses becomes:

mg3

ma

2
— 2cos’ 9L] , (6.60)

N 1 Yo COS O Vd 41 cos 01
"~ sin?05(1 —cos*0z) | Vdy; cos by Y2 cos 02

where the lighter active neutrino is suppressed by

2
3y} M,y
d~ (167r2 log (mH>COSQt> ,
cos 0, 2 My myg \ 1 2
d~007y; ( —— | 1 61
0.07y; < 0.6 > Og{(lO”‘GeV) <10TeV> ’ (6.61)

which allows for mild mass hierarchies if the vectors in LHN flavor space are misaligned,
while the up-type Yukawas lean towards alignment.
The analytical calculations are confirmed by numerical analysis. Fig. 6.8 shows that

RGE-induced operator mixing with the up-type Yukawas Yu(a) is able to ameliorate large
neutrino mass hierarchies in the VEV alignment limit for vanishing A5 and aligned up-type
Yukawa couplings. The effect is not as strong as from a sizable A5, but is still able to
milden the hierarchy if the up-type Yukawas are aligned (cos#; ~ 1) and have similar-sized
eigenvalues.

6.5 Number of Physical Seesaw Parameters in the 2HDM

To determine the number of physical parameters in a scenario with an extended scalar sector,
consider the following Lagrangian containing the RHNs (with family indices suppressed):

_ _ _ _ ~ 1
Ly = LilDL + egiler + NijfN — (LY6<I>16R + LY @Wo,N + S NMN + h.c.> ., (6.62)

which is invariant under U(3)y x U(3)z x U(3)c global transformations as long as V() =
Y. = M = 0 (with Higgs indices a = 1,2). The charged leptons are assumed to couple only
significantly to the Standard Model Higgs ®; to simplify the discussion.

For general non-vanishing rank-1 Yukawas Y (®) a rank-1 RHN mass matrix, as well as
a general Y, matrix, the global U(3)? flavor symmetry is broken down to U(1),,, when all
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Figure 6.8: Parameter scan of the hierarchy of active neutrino masses |ms/ms| against the largest
active neutrino mass |ms| in the 2HDM, for parameter choices of y2 and tan 8 as in Fig. 6.4. Mild
neutrino mass hierarchies are possible for random misalignment angles, using y; = 1, y; = 1, cos 8, =
1 and M3 = Mp/v/8m at A = Mp. Setting \; = X\ = 0.12, while all other quartic couplings,
including A5, are set to zero.

neutrinos, expect the lightest, become massive. (Neglecting the impact of quantum effects
from the charged lepton and quark sector.)

At the high-energy scale, not all input parameters are necessarily physical parameters.
The number of physical parameters can be found using the rule in Eq. (3.33). To employ
this rule consider a general non-symmetric 3 x 3 rank-1 matrix which may be written as the
tensor product of two different vectors

a ad ae af
Y=|(b](d e f)={bd be bf], (6.63)
c cd ce cf

where the following real parametrization can be introduced

a = \/ycosb, b= \/ysinfcos ¢, ¢ = /y cos 0 sin ¢,
d=/ycos, e = +/ysin? cos g, f = +/ycosvsin, (6.64)

amounting to five real parameters (y, 0, ¢, 9, ¢). In the case of the rank-1 Majorana matrix,
we have a general, symmetric 3 x 3 rank-1 matrix, which is just the tensor product of a vector
with itself. Thus, for the rank-1 Majorana mass matrix there are only three parameters in
a general basis (see Eq. (5.74)).

A general U(n) matrix has n(n—1)/2 moduli, therefore breaking U (3)? — U(1) amounts
to six broken real parameters. The number of physical parameters therefore becomes,

(9 + 5+ 5+ 3) parameters in total — 9 broken real parameters = 13 physical parameters.
(6.65)
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rank [Y,,(a)}
1 2 3

1| U(1),, nothing nothing
2| U(1),, nothing nothing

rank [M]

3 |U(1),, nothing nothing

Table 6.1: Residual groups after the breaking of the U(3), x U(3) y flavor group by a non-vanishing
neutral lepton sector in case of the 2HDM and 2ID1HDM (discussed in chapter 7) assuming generic
misalignment. (Neglecting effects from the other SM fermion sectors.)

The calculation is in agreement with the identified parameters in the neutral lepton sector
(Ms,y1,y2,0r1,0R,01,02), necessary to explain the active neutrino masses in the discussed
2HDM framework, plus parameters coming from the charged lepton sector (ye, yu,y-) and
three angles.

For each of the real parameters in Y| Y, and M there can also be one phase. A general
U(n) matrix has n(n + 1)/2 phases, therefore U(3)3 has in total 18 complex phases. The
residual symmetry U(1),, only has one phase. The number of physical phases amounts to

(9 + 5+ 5+ 3) phases in total — 17 broken phase parameters = 5 physical phases, (6.66)

which contains a Majorana phase and a C'P violating phase from the neutral lepton sector
and three C'P violating phases coming from the charged lepton sector. A general overview
of the U(3)ny x U(3)r breaking, neglecting the couplings to other SM fermions, is given in
Table 6.1.

6.6 Flavor-Changing Neutral Currents (FCNCs)

One generic feature of extending the Standard Model scalar sector with least one addi-
tional Higgs doublet are flavor-changing neutral currents (FCNCs) induced by the Yukawa
couplings at tree-level [102]. FCNCs are tightly constrained and required to be small by ob-
servation. FCNCs are absent in the Standard Model since the diagonalization of the lepton
and quark mass matrices also diagonalizes the respective Yukawa matrices.

In a general 2HDM,( v)vhere quarks and leptons couple to both Higgs doublets via generic
a

(

Yukawa interactions Y with i = e, d,u,v), both cannot be simultaneously diagonalized

in general. Even if Y;(l) is transformed into its flavor-diagonal frame, Yi(z) will in general
exhibit off-diagonal elements in the same frame. In general 2HDM scenarios, FCNCs are
absent at tree-level if the Yukawa couplings fulfill the following commutator relations [111]:

[H(ab),H(Cd)] —0, [F(“b),F(Cd)} —0, (6.67)

with H(eb) = Yi(a)TYi(b), Flab) — YZ»(a)Yi(b)Jr and the Higgs indices a, b, ¢,d = 1,2. Then, flavor
is conserved at tree-level in the quark sector for ¢ = u, d and in the lepton sector for i = e, v.
There are several other ways to circumvent tree-level FCNCs in two-Higgs doublet models
without having Abelian H and F quantities which assume non-generic Yukawa structures.
They are outlined briefly in the following:
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e Working in the alignment limit [112], where both Yukawa couplings are aligned in

the flavor space, such that Yi(l) o Yi(Q). In this way, the respective Yukawa interactions
can be diagonalized simultaneously and FCNCs at tree-level are avoided. At higher
loop-order, quantum corrections could still induce small flavor-changing neutral inter-
actions. As shown in the calculations in Sec. 6.3, a certain amount of misalignment
between the neutrino Yukawa couplings Y and Y® is necessary to have sizable
two-loop effects. The other Yukawa couplings in the theory could in principle still be
aligned in flavor space if the ad-hoc assumption of alignment is maintained.

Working in the decoupling limit [113], in which FCNCs are present at tree-level,
but strongly suppressed and thus within the experimental bounds by setting the ex-
tra Higgs doublet far above the electroweak symmetry breaking scale. In this way,
the heavy Higgs state decouples from the low-energy theory, but still can participate
in the mass generation mechanism for the heavy right-handed neutrinos, where the
decoupling limit does not apply. This scenario was considered in Sec. 6.4.

FCNCs by the exchange of a Higgs at tree-level are then suppressed by O(v?/m%),
where v ~ 246 GeV is the electroweak scale and my is the scale of the heavy Higgs.
After the heavy fields are integrated out, the light Higgs in the model behaves just
like the Standard Model Higgs. No additional assumptions on Yukawa interactions
or additional symmetries are necessary in order to suppress flavor effects within this
framework.

Introducing inert Higgs doublets that only couple to the right-handed neutrinos
via Yukawa couplings by introducing an unbroken discrete Zy symmetry under which
all Standard Model particles are left invariant. Inert because these doublets do not
contribute to the spontaneous breaking of symmetry. One realization of this kind of
model was introduced in order to explain the light neutrino masses via quantum effects
and is well-known as the scotogenic model® [12]. In the next chapter, inert scalars
charged under Z (similar to [114]) are introduced which participate in the generation
of radiative masses for the Zs charged right-handed neutrinos. The lightest particle
stabilized by the unbroken discrete symmetry provides a dark matter candidate (the
unbroken Z5 also implies that both inert scalars do not acquire a vacuum expectation
value).
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Chapter 7

Two-Loop Quantum Effects in
Scotogenic Models

After discussing neutrino masses from Planck-scale lepton number breaking in the two-Higgs
doublet model, an inert scalar scenario is considered. In order to have the same benefits of
two scalars coupling to the right-handed neutrinos for the purpose of radiative generation
of RHN masses, two new scalars are added to the SM particle spectrum. Following the
philosophy of addressing more than one problem simultaneously with a single model, inert
doublet models are intriguing because they also provide a viable dark matter candidate
apart from explaining the origin of tiny neutrino masses.

7.1 The Two-Inert Doublet, One-Higgs Doublet Model

In this section, a set-up with neutrino-specific additional doublets 1, with the same gauge
quantum numbers as the SM Higgs in the context of Planck-scale lepton number breaking is
considered, following [4]. The SM symmetry group is extended by a discrete Zs symmetry
under which all SM particles are even and the additional doublets 1, as well as the right-
handed neutrinos N; are odd:

Z
Na 4 —MNa,
N; B - N;, (7.1)
SM & 1+8M,

where SM denotes all Standard Model fields, given in Table 2.1. The lightest Zs-odd particle
is then stabilized by the unbroken discrete symmetry and can be a viable WIMP (weakly
interacting massive particle) dark matter candidate. This is similar to the well-known
“scotogenic model” [12] which originally only involves one additional inert scalar 7. For the
dark matter phenomenology of the considered two-inert doublet, one-Higgs doublet model,
see [115].

Typical for these kinds of models is that all lepton number violations involving SM
particles only are absent at tree-level, but only occur at loop order. Adding one additional
inert Zs-odd scalar generically leads to milder neutrino mass hierarchies compared to the
original realization [114,116]. Since the additional doublets only couple to the RHNs in
the Yukawa sector due to the discrete symmetry, FCNCs are also absent (see Sec. 6.6).
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Field | Zy | Uy | SU2) | SU(3).
Lo |+ | -3 2 1
eri | + -1 1 1
H |+ | 3 2 1
N; | — 0 1 1
M | — | 3 2 1

Table 7.1: Overview of the transformation behavior of the relevant fields in the scotogenic Planck-
scale lepton number breaking scenario.

In the following, a concrete model involving two additional inert doublets and three right-
handed neutrinos is studied. The three scalar doublets of the model and the three RHNs
are reminiscent of the SM fermion sector’s three family structure.

The scalar potential of the model can be separated into three parts:

Voot (@, 11, m2) = V(P) + Vine (P, 11, m2) + Vi (01, 12), (7.2)

where Vg (®) is the potential part of the SM scalar sector given in Eq. (2.5), V;,(m1,72) takes
the same form as the most general 2HDM potential in Eq. (6.2), replacing ®, with 7,, and
the interaction part takes the form:

Vit (®,m1,m2) = %Aéab) (®T<I>) (nlnb) + %Ai"b) ((Iﬁna) (nZ<1>> (7.3)
+ %)\éab) [(@Tna> (@Tnb> + h.c.} ,

with dark scalar indices @ = 1, 2. For the necessary and sufficient conditions on the quartic
couplings for the existence of a stable vacuum for generic scalar potentials, see the algorithm
presented in [117]. To ensure the Zs symmetry stays unbroken, the inert scalars must have
a vanishing VEV: (n,) = 0.

The Lagrangian containing the newly introduced Zs-odd particles reads:

1 AU
Lycoto = Dyl D1 + 51\@@1\@ _ <YO§Z. TN + 5 MiNEN; + h.c.) : (7.4)

where N; (i = 1,2,3) are the RHN fields, L, (o« = e, pu,7) are the lepton doublets and
1o = toan, denotes the charge conjugated dark scalar fields. The relevant particle content
and its transformation behavior under the symmetries is summarized in Table 7.1.

The scalar sector of the model comprises of nine physical fields after the electroweak breaking
of symmetry. Apart from the physical Standard Model Higgs h, there are two neutral and
two charged scalar states for each of the inert scalars. If all the parameters in the scalar
potential in Eq. (7.3) are assumed to be C'P conserving, they must be real. A mixing
between the C'P-even nr, and CP-odd 7, parts of the neutral scalar field components
nY = (g, +inz,) is absent in this case. Since both inert doublets share the same quantum

72



Active Neutrino Masses in the Scotogenic Case 7.2

Na
’—’-\
- ~
e ~
7 N
’ \
N; // Lo N; NN Lp Nj
N 7
\ M3 /
N ’
7
\\ P

- ——

n,

Figure 7.1: Leading two-loop diagram responsible for radiatively generating sizable right-handed
neutrino masses in the inert doublet scenario.

numbers, changes of the basis leave the action invariant and it is possible, without loss of
generality, to work in the basis where the mass matrix (m,)q, is diagonal. In general, the
2 x 2 mass matrices for the real and imaginary neutral fields read after EWSB:

2 2
(M2,) = () 6+ 2 (A 4309 ) = (112) + 2 (3 209, (75

(M2) = (m2,) 6+ 2 (A4 X6 - 2 = (042.)

v? (ab) (ab)
. b+—(A4 ~N7). (76)

2

a

where M, + is the mass matrix of the charged inert scalars. Note that MgR — M,?I =02 )s.

Using the simplifying assumption m%l,m?72 > 122)\%?2)5, two electrically neutral components
have the mass m,, and another two have the mass m,,.

The right-handed neutrino mass matrix M is assumed to have a hierarchical mass spec-
trum at the cut-off A, M} <« My <« Ms, such that it is well approximated by a rank-1
matrix. In this case, the tree-level masses of N; and Ny at p = A are effectively vanishing.
Through two-loop quantum effects, the inert scalars produce non-vanishing masses for Ny
and N, proportional to Ms3. The Feynman diagram responsible for these quantum cor-
rections is given in Fig. 7.1. The generation of non-vanishing masses M; and Ms in the
inert scalar scenario is analogous to the one in the 2HDM case discussed in Sec. 6.3 and the
resulting masses are given by Eq. (6.24).

7.2 Active Neutrino Masses in the Scotogenic Case

As in the previously investigated two-Higgs doublet model, the rank-1 ansatz for both neu-
trino Yukawa couplings Y,,(I), Y,,(Q) in Eq. (7.4) is employed and the same parametrization as
in Eq. (6.26) is used. Working with rank-1 couplings not just simplifies the analytical treat-
ment, but can also be seen as a proxy for hierarchical Yukawa eigenvalues and demonstrates
the predictivity of the considered models through parsimony in free parameters.

After the mass generation of the heavy right-handed neutrinos, all RHNs are integrated
out at their respective mass scale. Below pu = M; a Weinberg operator is obtained, cor-
responding to the neutrino mass generation diagram in Fig. (7.2) for the active neutrinos.
The effective Lagrangian containing the dimension-5 operator reads:

Log ~ —% 3 kas (chi») (ciTLg) +he. (7.7)
op
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Figure 7.2: One-loop diagram responsible for the active neutrino masses in the scotogenic case
with two inert doublets.

For multiple inert doublets, the coefficients of the effective operator take the following form

(a)y,-(b) y (ab)
N Yar Yar As. M, ma, 1 M, M | M,
Kap = Z 2 2 A2 2 _ .2 08 2 | T2 208 2 )
bk 167 mg, M i | mp, —m my, my, M i M hx
(7.8)

working in the right-handed neutrino flavor basis in which the mass matrix M is diagonal.
In general, the inert doublets are either lighter or heavier than the heavy radiative neutrino
masses. In the generically expected case that My > my, ,, the Wilson coefficients become

(a)y,(b) y (ab) 2 2 2
o~ — Z Yo Yo s 1 My, log M. +1og My,
af = 1672 My, | m2, —m3 m2 M? ’

a,b,k b b
y@y® @) 2
Kap = — Y R ED Zjog [ 1) (7.9)
= 1672 My, Mg

where in the second line, similar-sized inert doublet masses m,, ~ m,, = m, are assumed
and the radiative right-handed neutrino mass scale My, defined in Eq. (6.32), is used as an
approximation for the generated masses M; and Ms in the logarithm. After the electroweak
breaking of the symmetry, Eq. (7.7) leads to the active neutrino Majorana mass term:

1

Lo =~ — D (M) v5us + e, (7.10)
a?ﬁ
with!
A @) v my

It is now straightforward to calculate the approximate expression for the largest active
neutrino mass, using the rank-1 assumption for the Yukawa and RHN mass matrices, by
following the same steps as in Sec. 6.4.1. The heaviest active neutrino mass becomes:

s ~ Tr(My) ~ 1 moyiye yz)\éll) . ylAgz) - 9 cosd 0L>\§)12) . Wi;
3= YT 472 (1 —costOp) \yicos?0;  yacos?By  cosBycosbsy & Mg )’
(7.12)

!The presented result differs from [12] and [114] by a factor of 2, which was noted in [118] and [116]. The
convention for the VEV normalization used in [118] is v = (®), whereas [116] uses v = (®)/v/2, which this
the same as used throughout this work. The obtained prefactor agrees with the one in [116].
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which is proportional to the neutrino mass scale parameter in Eq. (6.47) and the one-

loop suppression which is ameliorated by a large logarithm log(m?7 /MZ). Assuming O(1)

couplings for y1,y2 and )\éab), mg in the ballpark of the experimentally observed values for

generic misalignment angles. The corresponding neutrino mass hierarchy reads:

cos f y(11) cos 0 y(22) 3 (12) 2
m3| [TI‘(MV)]Z - [% cos@? )\5 + %COSQ; )‘5 — 2cos 01)‘5 :| (7 13)
-1 2 _ 2y 2 ’
ma 5| Tr(M,)? — Tr(M2)| [/\211))\;22) B ()\ém)) cosl HL] sin? 0,

Here, the same conclusions as in Sec. 6.4.1 hold, where misalignment in the LHN flavor
space is necessary (sinfy, # 0) to get a non-vanishing mg. Apart from this, )\éab) needs to
have two non-vanishing eigenvalues, otherwise the neutrino mass matrix M,, stays rank-1.
Interestingly, the inert scalars are not only the main ingredient for creating radiative masses
for the heavy right-handed neutrinos via two-loop effects (see Fig. 7.1) in this model, but
also participate in the radiative mass generation at one-loop level, see Fig. 7.2, for the
left-handed neutrino sector.

The obtained analytical results are tested numerically by a random parameter scan,
showing the hierarchy between the largest active neutrino masses |mg/ma| vs. |ms| in
Fig. 7.3. Assuming at the cut-off scale A = Mp: M3 = Mp/+/S87, M; = My = 0 and
y1 = y2 = 1. Taking m,, = 100TeV and m,, = 2m,, for the inert doublet masses and
)\éu) = )\?2) =1, )\éu) = )\ézl) = 0. The scan is performed over random angles between 0
and 27 in the flavor space.

Most points in the random scan are within |mg| = 0.01—0.1 eV and the mass hierarchies
are typically mild |ms/mso| < 100. It is thus possible to reproduce the experimentally
observed neutrino parameters, making generic assumptions on the high-scale parameters.
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Figure 7.3: Numerical scan plot of the neutrino mass hierarchy of the two heavier active neutrinos
|ms/ma| vs. |mg| in the scotogenic Planck-scale lepton number breaking framework with two dark
doublets. Taking at A = Mp: M3 = Mp/ \/%, M, = M5 = 0, and assuming inert doublet masses
my, = 100 TeV and m,, = 2m,,. The neutrino Yukawa couplings have the eigenvalues y; = y» =1
and the scan is performed over random misalignment angles in flavor space. For the quartic couplings
)\gll) = )\gz) =1 is assumed, setting all other quartic couplings to zero for simplicity.
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Chapter 8

Conclusions

The origin of neutrino masses is one of the most important open questions of Particle
Physics, requiring physics beyond the Standard Model. The overwhelming evidence from
neutrino oscillation experiments shows that neutrino masses are tiny, albeit non-zero. This
raises questions of the exact mechanism behind the generation as well as about their Dirac
or Majorana nature. By introducing massive neutrinos into the SM, striking differences
with respect to the rest of the fermion sector are observed in mass hierarchies between the
particles and in the patterns of the mixing matrices (see chapter 2). All this suggests a
different mass generation mechanism for neutrinos.

In this work, the idea of lepton number violation at a high-energy scale, like the Planck
scale, was explored in different scenarios. Building on the type-I seesaw model (for a review
see chapter 3), right-handed neutrinos with a hierarchical mass spectrum were introduced
around the Planck scale. The lighter right-handed neutrino masses receive two-loop quantum
corrections which dominate their tree-level masses. Introducing lepton number violation at
Planck scale, the resulting quantum corrections can generate the well-known seesaw scale
for sizable Yukawa couplings, avoiding the introduction of ad-hoc scales. These quantum
corrections from the renormalization group evolution were analyzed in detail (see chapter 4)
and shown that they can lead to a significant impact on the phenomenology within the type-I
seesaw framework (independent of the scale at which the new physics is introduced). The
leading-order quantum effects appear at the two-loop level, at which the corresponding beta
functions have been studied. Usually, quantum corrections are expected to be small, but as a
consequence of total lepton number violation by at least one massive right-handed neutrino,
there is no protective symmetry for the lighter RHNs against large radiative corrections
dominating their tree-level masses.

Within the Planck-scale lepton number violating scenario, at least one light neutrino
mass within the ballpark of experimental values is predicted by making conservative as-
sumptions. The lightest neutrino is suppressed by the Planck scale and is generically of
order O(107°) eV. In chapter 5, constraints on the high-energy parameters were worked out
within a minimally extended SM, in order to reproduce the non-vanishing neutrino masses
necessary to explain the neutrino oscillation data. In the most minimal scenario, one light
neutrino is a pseudo-Dirac particle, while the others are Majorana, in order to be compat-
ible with observations. If another sizable, right-handed neutrino mass is allowed, the light
neutrinos can all be Majorana particles and explain the observations (see Sec. 5.2.1).

Furthermore, the two-loop quantum effects were investigated in two scenarios with an
extended scalar sector. In the first scenario, one additional Higgs-like doublet (see chap-
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ter 6) was considered and in the second, scotogenic scenario, the SM particle spectrum was
extended by two inert scalar particles (see chapter 7). In both frameworks it was shown that
two light neutrino masses in the ballpark of the experimental values and with the observed
mild mass hierarchy can be generated, making reasonable assumptions on the high-scale
parameters. For the extended scalar sector scenarios, the light neutrinos are Majorana par-
ticles. Flavor-changing neutral currents are avoided by either working within the decoupling
limit or by making the newly introduced scalars inert. In the inert case, the dark doublets
take part in two-loop generation of right-handed neutrino masses and in one-loop genera-
tion of the light-neutrino masses. One of the inert doublets provides a viable dark matter
candidate.

Within the standard seesaw framework it is enough to have two right-handed neutrinos
to explain the active neutrino masses, while the third RHN can be as heavy as the Planck
scale. Through two-loop effects, the mass scale of the heaviest RHN and the lighter RHN
masses, responsible for the active neutrino mass scale, are closely related when tree-level
contributions are dominated by quantum corrections proportional to Mjs. Through the
washing-out of tree-level masses due to dominant radiative corrections, the effective number
of parameters is reduced. The result is a higher overall predictivity of the model. The most
minimal set-ups explaining the experimental observations for each scenario were explored in
the spirit of parsimony. Since no assumptions on the flavor structures at high-energies are
made, the expected mixing in the leptonic sector is neither small nor maximal, in accordance
with experimental observations.

At least one light neutrino within the experimental ballpark ms ~ (1672)%v?/Mp ~
0(0.1) eV with O(1) Yukawa couplings is predicted by the type-I seesaw with Planck-scale
lepton number breaking scenario. Furthermore, by minimally extending the scalar sector,
a mild hierarchy between the atmospheric and solar neutrino mass scale is generically ex-
pected. This suggests a possible link between Planck-scale physics and low-energy neutrino
observables. The assumption of introducing lepton number violation at the Planck scale, as
well as some possible motivations — apart from neutrino masses — are discussed in Sec. 5.5.

Solar and atmospheric neutrino oscillation experiments have shown that neutrino masses
are non-vanishing and provide solid evidence for physics beyond the Standard Model. This
work illustrates how the Planck scale is a phenomenologically viable option for the right-
handed neutrino mass scale in seesaw models to explain the light neutrino masses observed
in experiments. The general relevance of two-loop effects on RHN masses for the low-
energy neutrino phenomenology is pointed out. The methods and models presented in this
work may not only be of interest for the discussed Planck-scale lepton number violating
framework, but may find broader applications and may also be incorporated into other
models making use of the seesaw mechanism.
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