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We calculate the SU(2)×U(1) electroweak static potential between a fermionic triplet in the broken phase 
of the Standard Model in the one-loop order (NLO). The one-loop correction provides the leading non-
relativistic correction to the large Sommerfeld effect in the annihilation of wino or wino-like dark matter 
particles χ0. We find sizeable modifications of the χ0χ0 annihilation cross section and determine the 
shifts of the resonance locations due to the loop correction to the wino potential.
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1. Introduction

It is by now well-known that the Sommerfeld effect due to the 
electroweak Yukawa force [1–3] can lead to a dramatic enhance-
ment of the annihilation cross section of two dark matter (DM) 
particles if their mass is in the TeV range. Contrary to the classic 
Sommerfeld effect for massless gauge boson exchange in QED and 
QCD, which rises as 1/v as the relative velocity of the annihilat-
ing particles decreases, the enhancement due to the Yukawa force 
saturates at small velocities, except near isolated resonances. These 
occur at dark matter mass values, when a zero-energy bound-state 
develops in the spectrum. The phenomenon is quite general and 
also appears for lighter DM, if there is a force carrier with even 
smaller mass [4]. Furthermore, if the DM particle is part of a mul-
tiplet with a small mass splitting, the effect depends sensitively on 
the mass difference [5].

Its main interest is nevertheless due to the fact that it is a 
generic feature of the classic WIMP DM particle, where it arises 
from the well-established Standard Model (SM) interactions. Thus, 
it appears in the so-called minimal models [6] and for TeV scale 
MSSM WIMPs (see, for example, [7–9]). The Sommerfeld effect is 
particularly important for the annihilation rates and relic density 
of the pure wino, an electroweak triplet of fermions of which the 
electrically neutral member is the DM particle [2,3,6,10–12], or a 
mixed but dominantly wino state [13,14]. The pure wino (“wino” 
in the following) model has become a test case for the quantitative 
understanding of large electroweak corrections in the annihilation 
of TeV scale DM particles. In view of the possible detection or ex-
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clusion of the wino particle through measurements of high-energy 
cosmic rays, the wino annihilation rate into photons is of partic-
ular interest. Here electroweak perturbation theory breaks down 
due to electroweak Sudakov logarithms, which must be summed 
in addition to the Sommerfeld corrections. Recent work on ex-
clusive and semi-inclusive photon yields has shown that Sudakov 
logarithms can be controlled with 1% accuracy with NLL’ resum-
mation [15–17]. At this level of precision, the treatment of the 
Sommerfeld effect should be revisited, since, up to the present, all 
calculations have been done with the tree-level exchange poten-
tial, which corresponds to the leading-order (LO) approximation in 
non-relativistic effective field theory (EFT) for the DM particle [8,
18,19].

In this paper we compute the one-loop corrections to the wino 
potential and discuss its effect on the wino pair annihilation cross 
section to photons, χ0χ0 → γ + X . We recall [1–3] that the LO 
potential is given by the matrix

V LO(r) =

⎛
⎜⎜⎝ 0 −√

2α2
e−mW r

r

−√
2α2

e−mW r

r
−α

r
− α2 c2

W
e−mZ r

r

⎞
⎟⎟⎠ . (1)

The I J entry refers to the non-relativistic scattering of wino two-
particle states I → J with I, J = 1, 2 referring to χ0χ0 and χ+χ− , 
respectively. The above matrix describes the scattering of electri-
cally neutral two-particle states in a 1 S0 spin-angular-momentum 
configuration, since the spin-1 configuration is forbidden due to 
the Majorana nature of the χ0. One might expect the one-loop 
correction to the potential to be small due to the smallness of the 
SU(2)×U(1) couplings. However, we shall see that over most of the 
interesting wino mass range from 1 to 10 TeV, the effect on the an-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2019.135112
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:robert.szafron@cern.ch
https://doi.org/10.1016/j.physletb.2019.135112
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2019.135112&domain=pdf


2 M. Beneke et al. / Physics Letters B 800 (2020) 135112
nihilation cross section is significantly larger than the typical 3% of 
an electroweak quantum effect.

In the following we give only a brief overview of technical de-
tails of the computation and then present results for the potential 
and the annihilation cross section into photons. An NLO Sommer-
feld calculation of the relic density involves the potentials for all 
coannihilation channels. We leave this to a longer and more tech-
nical paper.

2. Technical details

The Sommerfeld effect is a low-energy phenomenon that ap-
pears for non-relativistic DM particles. A systematic treatment 
of non-relativistic effects can be given in non-relativistic and 
potential-non-relativistic DM EFT [8,18]. The potential appears in 
the effective Lagrangian

LPNRDM =
∑

i

χ
†
vi(x)

(
iD0(t,0) − δmi + ∂2

2mχ

)
χvi(x)

−
∑

{i, j},{k,l}

∫
d3r V {i j}{kl}(r)χ †

vk(t,x)χ
†
vl(t,x + r)

× χvi(t,x)χv j(t,x + r) (2)

as an instantaneous but spatially non-local interaction of four non-
relativistic wino fields χvi where i = 0, +, −.1 δmi denotes the 
small mass splitting between the χ− and the χ0 state.

Standard non-relativistic power counting for the wino assumes 
α2 ∼ v ∼ mW /mχ , although it is then possible to consider v � α2. 
The potential generated by tree-level gauge boson exchange is then 
a leading-order interaction – as large as the kinetic term. Treating 
this interaction as part of the unperturbed Lagrangian and solving 
the corresponding Schrödinger equation gives the LO Sommerfeld 
effect. Similarly, the radiative mass splitting δmi ∼ mW α2 at the 
one-loop order is of the same order as ∂0 ∼ E ∼ mχ v2, and there-
fore relevant at LO. NLO corrections, that is, corrections suppressed 
by one power of α2, v or mW /mχ to the above Lagrangian arise 
from a) the two-loop correction to the mass splitting, which is 
known [20,21], b) the one-loop correction to the Yukawa/Coulomb 
potential (1), which is the subject of this paper, and, possibly from 
c) potentials with more singular short-distance behavior than 1/r, 
similar to the massless gauge boson case, and d) ultrasoft gauge-
boson radiation. However, the latter two effects do not appear at 
NLO for the same reason as in QCD and QED. Note that there exist 
of course NLO corrections to the annihilation process (see, for ex-
ample, [16,17,22]), but here we are concerned with non-relativistic 
effects.

The potential is technically a matching coefficient between non-
relativistic and potential non-relativistic DM EFT. It is obtained 
from the wino-wino scattering amplitude i T χχ→χχ

i jkl (q) at small 
momentum transfer q. At the one-loop order, the matching coef-
ficient is extracted from the soft region in the method-of-region 
expansion [23], which is automatic, if one replaces the non-
relativistic wino propagators by static propagators i/p0, and picks 
up the poles in the loop-momentum zero-component k0 from the 

1 This defines the potential as a 3 × 3 matrix for the two-particle states i j =
00, +−, −+ in the sector with zero electric charge. This is the most general def-
inition which automatically takes care of the (anti-)symmetrization properties. For 
practical applications it is more conventional to remove the redundant −+ state, to 
project the potential on channels with given spin and angular momentum, and to 
work with the 2 × 2 matrix in the space of two-particle states, see (1). The relation 
between the two conventions is explained in Section 3 of [8]. In the following we 
work with the 2 × 2 matrix formalism (method-2 in [8]).
gauge-boson propagators. The coordinate-space potentials follow 
by taking the Fourier transform

V {i j}{kl}(r) =
∫

d3q

(2π)3
eiq·x i T χχ→χχ

i jkl (q2) , (3)

where r ≡ |x |. From the identity∫
d3q

(2π)3
eiq·x 1

q2 + m2
= e−mr

4πr
, (4)

one recognizes the well-known Yukawa-like potential for ampli-
tudes with exchange of a force carrier of mass m.

Following this procedure, the calculation of the one-loop cor-
rection to the wino potential is standard, and involves the Feyn-
man diagrams shown in Fig. 1. We performed the calculation in 
general covariant gauge with different gauge parameters ξ for the 
W -, Z -boson and photon, and find that the result does not de-
pend on the gauge-fixing parameters, as required.2 The diagrams 
are reduced to a few master integrals, which are then calculated 
analytically. For the gauge boson self-energy diagrams in general 
covariant gauge we used FeynArts [26], FORMCalc [27] and
Package-X [28] and checked the result in Feynman gauge against 
[24]. We adopted the standard on-shell renormalization scheme 
for the electroweak parameters, consisting of mW , mZ and the 
QED coupling αOS(mZ ), since the potential and the Sommerfeld 
effect are purely virtual effects dominated by physics at the elec-
troweak scale. We further checked that as r � 1/mW , the correc-
tion coincides with the one-loop Coulomb potential in the mass-
less theory after switching to the MS renormalization scheme for 
the couplings. As a final check, we confirm the previously known 
expression for the singlet Yukawa potential in a Higgsed SU(2) the-
ory [29,30] by taking the limit mW → mZ and hence sW → 0, 
cW → 1. More precisely, we confirmed the non-renormalized po-
tential (Eq. 16 in [29]) analytically. The renormalized result was 
not compared, as the renormalization scheme was not fully speci-
fied.

3. NLO potential

3.1. Result

We obtain an analytic expression for the one-loop wino po-
tential in momentum space. The Fourier transform (3) to the co-
ordinate space potential is performed analytically where possible, 
however, for a few of the momentum-space functions at the one-
loop order, we did not find the Fourier transform in a closed form, 
and leave it as a one-dimensional integral. The momentum-space 
potential is a lengthy expression, which will be given elsewhere, 
together with the potentials for the charged and spin-triplet chan-
nels required for relic density computations. Instead we provide 
a handy fitting function for the coordinate-space potential in the 
1 S0 channel for charge-zero wino-wino scattering, which corrects 
(1) by

δV (r) =
(

0
√

2 δV (00)→(+−)√
2 δV (00)→(+−) δV (+−)→(+−)

)
, (5)

and can be easily implemented in numerical Sommerfeld codes. 
We note that the potential in the neutral channel χ0χ0 → χ0χ0

2 The tadpole diagrams require the standard electroweak treatment and as ex-
pected do not affect the final result [24]. However, it is useful to keep track of them, 
as they make the coupling and mass counterterms separately gauge invariant [25]. 
We also note that the diagram involving the triple gauge-boson vertex vanishes in 
Feynman gauge, but does not in other gauges.
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Fig. 1. Feynman diagrams for the χ+χ− → χ+χ− scattering channel (excluding field renormalization, counterterm and tadpole diagrams). Arrows on propagators indicate 
charge flow. For the χ0χ0 → χ0χ0 channel, of the above diagrams only the box and crossed box with W -exchange exist and cancel against each other. In the χ0χ0 → χ+χ−
channel, the same topologies as above are possible (with different bosons such that charge flow is respected), except for the crossed box diagram.
Fig. 2. Ratio of the numerical Fourier transform of the potential correction to the 
fitting function in the variable x = mW r for the channel (00) → (+−) (blue/dashed) 
and (+−) → (+−) (red/dot-dashed). The relative difference is in the permille range.

vanishes, because the only two contributing one-loop diagrams, 
the box and the crossed box diagram, cancel each other.

Fitting function in the charged channel We use x = mW r, and define

δV fit
(+−)→(+−) = δV r→∞

(+−)→(+−)

1 + 32
11 x− 22

9

+ δV r→0
(+−)→(+−)

1 + 7
59 x

61
29

+ α

r

[
− 1

30 + 4
135 ln x

1 + 58
79 x− 17

15 + 1
30 x

119
120 + 8

177 x
17
8

]
. (6)

The fitting function is constructed from the asymptotic behaviors

δV r→0
χ+χ−→χ+χ−(r) = α2

2

2πr

(
−β0,SU(2) ln(mW r) + 1960

433

)
, (7)

δV r→∞
χ+χ−→χ+χ−(r) = α2

2πr
(−β0,em) (γE + ln(mZ r)) (8)

at large and small distances and an interpolating term. The coeffi-
cients are rationalized to provide a compact expression, including 
the constant term 1960

433 in (7). β0,SU(2) = 19/6 and β0,em = −80/9
denote the leading-order coefficients of the beta-functions of the 
SU(2) and electromagnetic couplings, and γE = 0.577215 . . . is Eu-
ler’s constant. The fitting function approximates the result of the 
partially numerical Fourier transform to better than 0.1% over the 
entire distance region of interest, as shown in Fig. 2.

The rationalized coefficients of the numerical fitting func-
tion are given for the following parameters: the on-shell elec-
tromagnetic coupling α ≡ αOS(mZ ) = 1/128.943 at the Z -boson 
mass scale, and the gauge-boson masses mW = 80.385 GeV and 
mZ = 91.1876 GeV. The cosine of the Weinberg angle and the 
SU(2) coupling are then determined from cW = mW /mZ and 
α2 = αOS(mZ )/s2

W = 0.0347935. We also need the top quark 
and Higgs boson mass, for which we take the on-shell masses 
mt = 173.1 GeV and mh = 125 GeV. These parameters will also be 
used in the following discussion. For the calculation of the Som-
merfeld enhancement below, we need in addition the two-loop 
mass splitting δmχ = 164.1 MeV between the charged and the 
neutral component of the wino multiplet. The dependence of the 
results on the uncertainties in these parameters is small enough 
to be ignored, except for the top-quark mass, as will be briefly 
discussed below.

Fitting function in the off-diagonal (00) → (+−) channel Because 
the correction to the potential changes sign in this channel near 
x0 = mW r0 = 555

94 , we did not manage with a single fitting func-
tion. Instead we use the piecewise expression

δV fit
(00)→(+−) = 2595α2

2

πr

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

[
− 79

(
L− 787

12

)(
L− 736

373

)(
L− 116

65

)(
L2− 286L

59 + 533
77

)
34

(
L− 512

19

)(
L− 339

176

)(
L− 501

281

)(
L2− 268L

61 + 38
7

)
]

,

x < x0

−exp

[
− 13267

(
L− 76

43

)(
L− 28

17

)(
L+ 37

30

)(
L2− 389L

88 + 676
129

)
5
(

L− 191
108

)(
L− 256

153

)(
L+ 8412

13

)(
L2− 457L

103 + 773
146

)
]

,

x > x0

(9)

with L = ln x = ln(mW r). Fig. 2 shows that the quality of the fit-
ting function is at the few permille level, slightly worse than in 
the charged channel. At small r, one can also use the asymptotic 
behavior δV r→0

χ0χ0→χ+χ− (r) = δV r→0
χ+χ−→χ+χ−(r).

3.2. Discussion

The following discussion of the one-loop corrected wino poten-
tial is based on the exact calculation and does not use the fitting 
functions from above.

The LO and NLO potential, and the NLO correction δV (r) are 
shown in Fig. 3 for the off-diagonal and charged wino-wino scat-
tering channel. At small distances, the one-loop correction is gov-
erned by the correction (7) to the Coulomb potential of the un-
broken SU(2) force, which amounts to about minus O(5–10%) for 
10−2 < mW r < 1 relative to the LO potential. At even smaller r, 
the logarithmic growth of the correction, see (7), can be absorbed 
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Fig. 3. The absolute value of LO and the NLO potential, and of the one-loop cor-
rection δV (r) together with its asymptotic behaviors, all multiplied by r, in the 
off-diagonal and charged wino-wino scattering channel.

by using a running SU(2) coupling, rather than the on-shell cou-
pling. The one-loop term δV (r) in the off-diagonal χ0χ0 → χ+χ−
scattering channel (upper panel in the Figure) turns from posi-
tive to negative for mW r ≥ 6 and its absolute value exceeds the 
tree-level potential at large r. Contrary to the naive expectation, 
the large-r asymptotics of the correction is not of the Yukawa 
form e−mW r/r. This can be understood from the fact that the self-
energy diagram in Fig. 1 probes the transverse gauge-boson self 
energy 
W (−k2) at k2 � m2

W in the large-r limit. Expanding the 
self-energy resummed gauge-boson propagator 1/(k2 + m2

W ,0 −

W (−k2) + δm2

W ), where mW ,0 denotes the bare W mass and 
δm2

W the on-shell counterterm, around k2 = 0, and transforming 
to coordinate space, we obtain the power-like rather than expo-
nential asymptotic behavior

δV r→∞
χ0χ0→χ+χ−(r) = − 9α2

2

πm4
W r5

, (10)

which describes the tail of the NLO potential in the χ0χ0 →
χ+χ− scattering channel well for mW r > 20.3

The behavior of the charged scattering channel (lower panel in 
Fig. 3) at large distances is simpler, since the asymptotic behav-
ior becomes again Coulombic due to the dominance of massless 
photon exchange over the exponentially decaying terms generated 
by diagrams with W and Z exchange. Except in an intermediate 
region around mW r ∼ 1, the potential is described well by the 
asymptotic expressions (7), (8). The correction is around −4% at 

3 We assume that all fermions of the SM, except for the top quark, are massless.
mW r = 10, and grows logarithmically with the QED beta-function 
generated by the massless fermions of the SM.

4. Sommerfeld effect and annihilation cross section

We calculate the Sommerfeld effect at NLO by solving the 
Schrödinger equation with the NLO wino potential employing the 
variable phase method described in [8]. To display the NLO effect 
from the potential, we calculate the semi-inclusive χ0χ0 annihila-
tion cross section into γ + X with the same tree-level approxima-
tion4

� = 2�γγ + �γ Z = 2πα2
2

m2
χ

(
0 0
0 s2

W

)
(11)

to the short-distance annihilation matrix.
In the upper panel of Fig. 4 we show σ v , the annihilation 

cross section times velocity calculated with the LO (solid/blue) 
and the NLO (dash-dotted/red) potential in the mass range mχ =
0.5 . . . 20 TeV for the DM particle, which covers the onset of the 
Sommerfeld enhancement at small masses and the first two res-
onances. We recall that the observed relic density is achieved for 
a wino mass of 2.88 TeV [13]. That the NLO correction is visible 
on a logarithmic plot already indicates that it is significant. The lo-
cation of the first two Sommerfeld resonances shifts from 2.283
(8.773) TeV at LO to 2.419 (9.355) TeV at NLO. Since the reso-
nances both move to larger masses, the NLO correction changes 
sign in the mass range between the resonances and always re-
mains sizeable. This can be seen in the subtended lower panel of 
Fig. 4, which displays the ratio of the NLO to LO annihilation cross 
section. The ratio evidently blows up near the resonances due to 
the location-shift, but it is larger than 20% for wide mass ranges, 
and always larger than the typical 3% for an electroweak loop cor-
rection. The gray/dotted line shows how the annihilation cross 
section is further modified by the resummation of electroweak 
Sudakov logarithms, employing results from [16,17] for photon en-
ergy resolution Eγ

res = mW . The position of the resonances is nearly 
unaffected by Sudakov resummation, however the entire spectrum 
is subject to a further suppression of the cross section.

For completeness, we show in Fig. 5 the accuracy of the annihi-
lation cross section when instead of the exact computation of the 
NLO potential, the fitting functions are used. The error is at most 
0.3% near the first resonance and usually substantially smaller. 
The first (second) resonance position changes by only 0.1 GeV 
(0.2 GeV).

The above results depend on the value of the top quark 
mass through the gauge boson self energies. We adopted the 
on-shell mass, since the characteristic scale for the Sommerfeld 
effect is the electroweak scale. If instead we choose the MS
mass mt(mt) = 163.35 GeV, the NLO resonances are located at 
2.408 TeV, 9.311 TeV, respectively. This amounts to a change of 
about 8% in the size of the shifts from LO to NLO. The overall 
picture remains unaffected. We also performed a renormalization 
scheme conversion to MS to check how the resonance shift is af-
fected by the inclusion of running couplings. We find that the first 
resonance is shifted at NLO from 2.419 TeV to 2.378+0.026

−0.026 GeV. The 
shift results in part from the change in the top quark mass depen-
dence discussed above. The uncertainty is obtained by a variation 
of the scale of αMS(μ) between mZ /2 and 2mZ .

In summary, we computed the NLO correction to the wino po-
tential. We find that the Sommerfeld resonances are shifted by 

4 See [16,17,22] for radiative corrections and Sudakov resummation of this anni-
hilation rate.
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Fig. 4. σ v calculated with the LO (solid/blue) and the NLO (dash-dotted/red) poten-
tial. The lower panel shows the ratio of the NLO to LO result with dark (light) gray
bands to visualize the range where the correction stays below 20% (40%). In (dot-
ted/gray) we show the annihilation cross section with NLL’ Sudakov resummation 
from [17] on top of the NLO Sommerfeld effect.

Fig. 5. Relative error in permille of the Sommerfeld enhanced cross section using 
the full NLO potential vs. the fitting function for the relevant range of values of DM 
mass mχ .

about 6% to larger values, from 2.283 TeV to 2.419 TeV for the first 
resonance, and find sizeable corrections over the entire mass range 
relevant for wino-like DM. This effect is generally larger than a 
typical electroweak loop correction and should be included in pre-
cision predictions of annihilation rates in the wino model, such as 
[15–17]. Furthermore, the size of the effect suggests further inves-
tigation of its relevance for the relic DM abundance, which requires 
the calculation of the NLO potentials in all coannihilation channels.
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