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Abstract—Wire Arc Additive Manufacturing (WAAM) offers
the possibility to build up large-scale metal parts. Data which
is obtained from a multivariate sensor system in-situ must be
analyzed automatically to ensure an early and reliable detection
of defects to reduce the costs due to production scrap. For
that reason, a modular anomaly detector for multivariate time
series in WAAM was investigated in this paper. The approach
adressed major topics in real-life data sets of industrial
applications such as miscellaneous signal sample rates, lack of
synchronization and concept drift. A reference data set based
on an anomaly-dependently splitted time horizon was defined
to reduce the sensitivity loss of the detector after an anomaly.
To avoid the need for labeled data, an unsupervised anomaly
detection method based on neural networks was used. Hence,
no time and costs for artificial defect creation on the machine
tool are required when implementing the approach in industrial
applications.

Keywords-Anomaly Detection, Time Series, Multivariate, Ad-
ditive Manufacturing, Machine Learning

I. INTRODUCTION

Anomaly detection represents an emerging topic in digital

manufacturing [1]. Defects must be detected within a short

period of time to ensure a safe and secure operation of costly

production machines and a high quality of the outcome

to prevent costs due to increased maintenance, preventable

downtime, and avoidable production scrap [2].

In particular, for additive manufacturing (AM), defect detec-

tion based on process monitoring data allows to detect part

internal defects as the build-up procedure is conducted layer

upon layer. Especially for large-scale parts, hereby, costly

and complicated non-destructive testing after the production

can be avoided [3]. An AM technology for the production

of large-scale metal parts is arc welding based Wire Arc

Additive Manufacturing (WAAM). Here, the Cold Metal

Transfer (CMT) process is commonly used, as it allows low

heat input and thus, lower residual stresses caused by heat

[4]. Potential defects in WAAM are among others oxidation,

lack of fusion and form deviations. To detect these defects

in WAAM, this study introduces a framework for defect

detection based on a context-sensitive unsupervised anomaly

detection method for multivariate time series. The main

contributions of this article are the following:

• The architecture of a statistic approach for anomaly

detection in multivariate data streams in the scope of

industrial applications is introduced.

• Time series with different sample rates and concept

drift are addressed by defining a time horizon as

reference. The time horizon can be divided to prevent

lower detection sensitivity after an occurred anomaly.

• The proposed approach is validated using a real-life

data set acquired in the WAAM process.

• Three types of neural networks are presented as pre-

diction and evaluation models of the anomaly detection

framework. Upon applying a dimensional reduction on

image data, data fusion is conducted by calculating an

anomaly score which is representing the probability of

a defect.

The remainder of this article is structured as follows. In

Section II, technical terms are introduced. In Section III,

related work in the area of anomaly detection in time series

is presented. Section IV reveals the architecture of the

statistic approach. Section V is dedicated to the experimental

implementation and validation in the industrial WAAM use

case. In Section VI, the results are discussed and Section

VII summarizes the work.

II. DEFINITIONS

In this paper, the definitions for the following technical

terms are considered:

• Time Series: Time series appear as sequencial data [5].

Hence, a time series
��

T is a temporally ordered set of

n variables with i as the index of the latest value as

noted in equation 1 [6].

��

T = t[i], ..., t[i− n] (1)

• Anomaly: Anomalies are indicated by an abnormal

behaviour compared to the normal behaviour. The term

outlier is often used as synonym for anomalous data.

By definition, anomalies occur rarely. [5], [7]

• Concept Drift: Concept drift occurs when the normal

system behavior changes over time [8].
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III. RELATED WORK

Anomaly detection can be conducted supervised, semi-

supervised, or unsupervised [5].

For supervised methods, anomaly labels must be available.

Here, the imbalance in the data set due to the rareness of

anomalies must be considered [5], [7]. Rule-based systems

are created by transferring previously defined characteristics

of labeled anomalies into rules to detect outliers with the

same characteristics in new data sets [8].

In the semi-supervised case, training data includes labeled

normal behavior. Detection models rise an alarm when data

patterns do not fit to the normal behavior. Salvador et al.

introduced such an approach for a rule-based anomaly de-

tector [9]. Ahrens et al. proposed a distance-based approach

by searching for similarities in the normalized data. [10]

(Semi-)Supervised techniques are often unsuitable for real-

world applications as anomalies are often neither labeled nor

completely known [11]. By contrast, unsupervised methods

benefit from the defined rareness of anomalies by consid-

ering the corpus of data as normal [5]. Techniques such

as thresholding, exponential smoothing [12], unsupervised

clustering [13] or change point detection methods [14] are

used. Malhotra et al. presented a Long Short Term Memory

(LSTM) model to detect anomalies in data of a Space

Shuttle valve [15]. Chauhan et al. used LSTMs for anomaly

detection in medical data of an electrocardiogram [16]. Yen

et. al. proposed a method based on convolutional LSTMs to

decrease the reduction in accuracy due to concept drift in

computer system logging data [8]. Jin et al. presented a con-

volutional neural network to detect anomalies in sequential

infrared images with synthetic anomalies [17]. Ahmad et

al. suggested the use of an hierarchical temporal memory

(HTM) and calculated the likelihood of anomalies based

on the difference between the predicted and the real data.

By including a Gaussian convolutional kernel, not perfectly

synchronized multivariate time series were combined. [18]

In the application of AM, research in anomaly detection

focuses on the technology of laser powder bed fusion

and fused deposition modeling [19]. For WAAM, anomaly

detection was conducted on the data of multiple sensors such

as current [20], acoustic [21] and thermal [22] emissions as

well as on the visual appearance of the weld bead [23], [24].

Chen et al. fused multi-sensor data in welding processes by

using a fuzzy integral method [25].

IV. ANOMALY DETECTION FRAMEWORK

In industrial use cases, the artificial creation of data

containing defects is costly and time-consuming and there-

fore unwanted. Hence, the shortage of labeled anomalies

is evident. However, a large data set for mostly normal

system behavior is usually available. For that reason, unsu-

pervised anomaly detection methods are a valid choice for

industrial use cases as no previously labeled data is needed.

In this study, a modular unsupervised anomaly detection

method for multivariate time-series
���

Tq with q = 1, ..., k
was investigated. First, unsupervised trained models were

used to predict the consecutive time step xpred,q . Then, the

reconstruction error edq was calculated. The error stream

served as input to a likelihood estimation algorithm which

generated an anomaly score DM . DM was determined using

a reference data set which was adjusted depending on the

information from the feedback loop. The anomaly score was

then used as indicator for defects tannot in the process. The

modular approach is shown in Figure 1 and detailed in the

following subsections.

A. Prediction models

Each sensor creates a time series
��

T q with a sample rate fq .

The values are normalized in real-time based on the measur-

ing range of the sensor. The signal
��

T q = tq[i], ..., tq[i−n] of

sensor q serves as input to a signal specific prediction model

such as ARIMA or a neural network. The training is based

on an unlabeled initial data set. The prediction model must

be chosen accordingly to consider different scenarios such

as periodic patterns. The output of each model is a stream of

predictions ��x pred,q[i, ..., i−n] which represent the expected

subsequent values.

B. Error distances

The predicted values are compared to the values of the

real signal tq[i]. The error is calculated by equation (2)

and is called error distance edq[i] in the following. To

calculate the error distance for multidimensional data such

as images, the root mean square error along the pixel matrix

is chosen, indicating the cumulated deviations between the

pixels of the real and the reconstructed images. Hereby, the

error distance conducts the dimensional reduction and for

instances, reduces an image to a scalar value.

edq[i] = tq[i]− xpred,q[i] (2)

Depending on the characteristics of the input data, a con-

volutional kernel can be applied on the resulting error

distance streams to realize a moving average or a Gaussian

filter. Hereby, noise is filtered and minor synchronization

differences between various time series are balanced. An

averaging kernel also increases the chance of correlating

anomalous peaks with minor delays in different time series.

With each time step, a new error distance is calculated,

resulting in an error distance stream
��

edq for each signal.

Depending on the chosen prediction model, concept drift

can result in an increase of the error distance.

C. Anomaly score

To conduct the outlier detection, a Bregman distance

between the current data point and a reference data set is

calculated. Therefore, the statistical distributions for the past

error distances of all signals are considered by implementing
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Figure 1. Approach of the proposed multivariate anomaly detector

the Mahalanobis Distance DM of equation (3). The Maha-

lanobis Distance is scalar invariant and thus, can be used for

data streams with different scales.

DM (x) =

√
(ed[i]− μ)T ∗ S−1 ∗ (ed[i]− μ) (3)

As part of this distance, the covariance matrix S as well as

the vector μ with the means μq of the k error distance

streams is needed. In case of online monitoring, these

variables depend on m time steps in the past. As not all

sensors necessarily offer the same sample rate, m is adapted

to each time series individually. For that reason, a time

horizon HT which depicts a reference data set for the

calculation of DM is defined. When no concept drift exists

or it has already been included in the initial data set, HT

can be based on the validation part of the initial data set.

Otherwise, HT is created based on a sliding window with a

predefined offset o to the latest time step i. To allow online

monitoring, the choice of o must comply to equation 4.

o > 0 (4)

The choice of HT defines the ground truth for the anomaly

detection and influences the sensitivity of the detector.

Without any changes, anomalies affect the sensitivity of

the following time steps. To face this problem, the time

horizon is divided into w parts as shown in Figure 2 by

p1 and p2 and as noted in equation (5). As only past data

without anomalous behavior are considered, HT does not

contain anomalies. The information about the anomalous

behavior is obtained by a feedback loop (see Figure 1) which

provides information of the final anomaly evaluation for

past time steps. Hereby, a reduction of the sensitivity after

an anomaly is prevented and long-term anomalies such as

machine failures can also be detected reliable.

HT = p1 + ...+ pw (5)

For a known sample rate fq , the signal specific number of

time steps mq is calculated by equation (6).

mq = HT ∗ fq (6)

Based on HT , μ and S are calculated by equations (7), (8),

(9) and (10) with r = 1, ..., k and s = 1, ..., k.

μq =
1

mq
∗

mq∑
j=1

edq[i− j] (7)

σ2
rr =

1

mr − 1
∗

mr∑
j=1

(edr[i− j]− μr)
2 (8)

σ2
rs =

1

mr − 1
∗

mr∑
j=1

(edr[i−j]−μr)∗ (eds[i−j]−μs) (9)

S = (ed[i]− μ [i]) ∗ (ed[i]− μ [i])T

=

⎛
⎜⎜⎜⎝

σ2
1,1 a1,2 · · · a1,s

a2,1 σ2
2,2 · · · a2,s

...
...

. . .
...

ar,1 ar,2 · · · σ2
r,s

⎞
⎟⎟⎟⎠

(10)

DM is an indicator for the predictability of the data. If

the data is less predictable, an anomaly is more probable.

By introducing a sliding window as reference, a constant

increase of the error distance due to concept drift only has

minor effects on the anomaly detection itself. However, if

the models are sensitive to concept drift, retraining must be

initialized. A model change can be avoided by implementing

self-adaptable models or continuous learning.

D. Detection threshold

A threshold filter is applied on the anomaly score to

detect defects. Here, a conflict of objective between the

optimization of classification accuracy for normal data and

the chance of misclassifying abnormal data is present. The

p1p2
normal
abnormal

I [/]

time [s]

o

i

Figure 2. Example of a divided time horizon HT into p1 and p2 and
offset o from the latest time step i
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threshold is defined as maximum anomaly score in the

test data of the initial data set. Alternatively, an adaptive

threshold based on the sum of mean and standard deviation

of the reference data set can be introduced.

V. IMPLEMENTATION IN WIRE ARC ADDITIVE

MANUFACTURING

As described in [26], an electrical sensor provided syn-

chronized current and voltage data of the WAAM process

with a sample rate of 3200Hz. Optical data of the region

of deposition were provided by an 8-bit gray-scale welding

camera with a sample rate of 50Hz.

Three types of defects were created along the build-up

procedure by forcing either an oxidation due to a reduced

inert gas flow, a lack of fusion due to a polluted substrate

and form deviations in the build-up process because of

insufficient material deposition in the previous layer. These

defects resulted in anomalies in the time series and were

meant to be detected by the proposed approach. The signals

were normalized by the measuring area of each sensor.

A. Prediction models

The time series were analyzed by three types of machine

learning models to emphasize the modular concept.

1) Current prediction: The current and voltage data

showed repetitive patterns. Deviations from these patterns

indicated an anomalous behaviour. A neural network with

LSTMs was used to predict the current data. The model

structure as well as the hyperparameters were optimized with

a Bayesian Hyperparameter Optimization (HPO), resulting

in a model architecture consisting out of two layers with 68

LSTM cells each and one fully-connected layer with ReLU

activation function and the hyperparameter set in Table I.

The unlabeled training data comprised 60000 time steps

Table I
HYPERPARAMETERS OF MACHINE LEARNING MODELS

Parameter LSTM model Conv1D model Autoencoder
Input time steps 33 348 1

Output time steps 1 1 1

Batch size 71 20 20

Optimizer Adam Adam RMSprop

Learning rate 1.8 e-04 1.4 e-04 1 e-03

Dropout 9.5 e-04 1.1 e-01 None

Epochs 50 100 10

of a previous additive layer without forced anomalies. The

current time series as well as its prediction and the resulting

error are illustrated in Figure 3. Three CMT cycles can be

seen. For the first cycle, the model fitted well to the data.

The following two cycles had a slightly different duration

and thus, the predicted values did not fit perfectly to the

real data, especially in case of high gradients. A root mean

square error (rmse) of rmseLSTM = 9.00e−3 was achieved

with test data.

cu
rr

en
t

[/
]

0

0.4
Original
Prediction
Error

0 40time [ms]

v
o
lt

ag
e

[/
]

0.25

0

Figure 3. Normalized not synchronized current and voltage time series
(blue), their predictions (orange) and the resulting error distances (green)

2) Voltage prediction: To predict the voltage data, a

model based on one-dimensional convolutional (Conv1D)

elements was chosen, optimized by a Bayesian HPO and

trained on the voltage data with the same time period as

the LSTM model. The final model architecture consisted of

five layers with a Conv1D layer as input layer and a fully

connected layer with ReLU activation function as output

layer. The hyperparameters can be seen in Table I. Three

CMT cycles of the voltage data as well as their predictions

and the resulting error distances are illustrated in Figure 3.

The prediction in the first cycle fitted well while deviations

between the real values and the predicted ones arised in the

areas of higher gradients in the following two cycles. A rmse

of rmseConv1D = 10.11e− 3 was achieved.

3) Video evaluation: The video data was evaluated with

an autoencoder. Hence, instead of a prediction, an image

reconstruction was accomplished. The size of the input data,

showcased by the upper six images in Figure 4, was reduced

to 200x300 pixels to decrease the computational complexity

of the task. The autoencoder consisted of an encoder-decoder

structure with eight layers each. The encoder and decoder

part included six convolutional 2D layers and two max

pooling respectively up sampling layers. The chosen hyper-

parameters can be seen in Table I. In Figure 4, a comparison

of original images of the normal (a,d,e,f) and abnormal

(b,c) process with the reconstructed images is shown. The

reconstructed images fitted well in case of normal behavior.

When an anomaly occurred, the autoencoder had to deal

with unlearned details, resulting in a worse fit.

B. Error distance

In Figure 5, the error distances for three additive layers

are shown. An averaging kernel with a window length of

64 was applied on the error distances of current and voltage

for synchronization. Hereby, anomalous peaks in the error

distances of the electrical data were correlated to peaks in

the error distance of the images despite having minor delays

in the data acquisition. In layer 1 (blue) oxidation took

places. This anomaly was visible in all error distances. Same

can be concluded for layer 2 (red). Here, the oxidation of

the previous layer resulted in further anomalies. In layer 3
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welding camera; circled annotations correspond to the images in Figure 4

C. Anomaly Score and Anomaly Threshold

Data fusion was conducted by implementing the methods

of section IV-C. In Figure 6, DM as well as a threshold

are illustrated for the three layers. The anomalous behavior

1st layer

3rd layer

2nd layer

time [s]
0 3 96 12

M
D

[/
]

0

0

0

1000

2000

1000

Figure 6. Mahalanobis Distance of three layers of a wall which was
manufactured by WAAM with forced anomalies

is evident. The defects were unambiguously identified by

implementing the threshold filter. False positives or false

negatives were removed by adjusting the threshold and

changing HT to receive a higher or lower sensitivity of

the anomaly detector. Adjustments of the threshold also

influenced the splits of HT as mentioned in Section IV-C.

VI. DISCUSSION

The proposed approach detects defects due to oxidation,

polluted surfaces and form deviations in industrial WAAM

data. The anomaly score in Figure 6 showed a good match

with the real defects. However, also the error distances

have a strong correlation to the real defects even without

computing the likelihood of the event. Hence, it can be stated

that the LSTM and Conv1D models are a valid choice for

the proposed application. In the third layer, the image error

distance showed only minor deviations in case of a defect

in comparison to the ones of the electrical data. By taking

a closer look on the error distances of the voltage and the

current, the voltage error distance offered the most obvious

peaks in case of anomalies. Both models showed a similar

loss of rmseLSTM and rmseConv1d for the test data set.

The autoencoder had the lowest loss even if the model was

trained for only 10 epochs. Due to the higher complexity,

the prediction time per time step of the LSTM model was

slightly higher than the one of the Conv1D model as noted

in Table II. The prediction time of the autoencoder surpasses

both by a factor of 10 because of the higher dimensionality

of the input data. The prediction time can be further re-

Table II
CHARACTERISTICS OF THE MACHINE LEARNING MODELS

LSTM Conv1D Autoencoder
Loss (rmse) 9.00 e-3 10.11 e-3 1.98 e-3

Prediction time per instance 29.2ms 23.4ms 340.8ms

duced by either decreasing the model complexity to reduce

the computational requirements for model execution or by

increasing the computational performance of the hardware.

In industrial environments, the computational performance

can be increased by using edge computing.
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To receive the shown results, extensive hyperparameter

tuning was needed. For instance, a Bayesian HPO was

conducted to obtain the model parameters. In addition,

parameters such as HT must be set manually. The sensitivity

of the detector highly depends on the right choice of these

values. However, as soon as the right parameters are defined,

concept drift can be addressed as minor inaccuracies of the

initial models are compensated. In WAAM, concept drift

occurs for the voltage data due to a changed inert gas

flow. In the presented data, concept drift occurred after the

oxidation had been forced as a higher inert gas flow was

reached, resulting in a different voltage level and hence, a

worse fit of the prediction model with an increased rmse

of rmseConv1D−Drift = 13.97e − 03. However, anomaly

detection based on the initial model was still possible,

indicating a low sensitivity in case of concept drift.

In many applications, the combination of several time series

improves the anomaly detection. In WAAM, the voltage time

series provides enough information to detect many anoma-

lies. However, the combination with current and camera

data is needed to obtain additional information about the

anomaly, to introduce redundancy into the monitoring sys-

tem and to increase detection reliability. To detect additional

anomalies such as pores and to evaluate the robustness of

the approach, further research must be conducted.

VII. CONCLUSION

In this study, a modular, unsupervised anomaly detection

approach for multivariate time series data was investigated. It

was based on the Mahalanobis distance and adressed major

topics in real-life data sets of industrial applications such as

miscellaneous signal sample rates, lack of synchronization,

and concept drift. To avoid a reduced sensitivity of the de-

tector system after an anomaly occurs, a dynamic reference

data set based on an anomaly dependently splitted time

horizon was defined. The proposed approach was validated

on industrial WAAM data and showed the capability of de-

tecting anomalies due to oxidation, form deviations as well

as polluted surfaces. Prediction models based on LSTMs and

Conv1D cells as well as an autoencoder were chosen and

verified as valid choice.
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