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Abstract

In relational database systems, the query engine is a key component to serve the user
workload and also extract the highest performance from underlying hardware. This the-
sis investigates architectures for high-performance query engines which are prepared
for compute-intensive workloads and upcoming high-bandwidth storage devices. As
foundation, we perform an extensive experimental study to compare the two state-of-
the-art engine architectures: vectorization and data-centric code generation. We find
data-centric code generation is suited for compute-intensive queries, yet has shortcom-
ings in terms of compilation time, hardware hazards, and software complexity. To solve
these issues, we present an architecture which enables very fast compilation without
sacrificing peak performance. Further, we address hardware hazards with an optimizer
for the pipelines of data-centric code generation which selectively restructures gener-
ated code and, thus, mitigates branch and cache misses. Finally, we introduce profiling
and debugging techniques to make working with compiling query engines simpler in
practice.





Zusammenfassung

In relationalen Datenbanksystemen ist der Abfragebearbeiter eine Schlüsselkomponen-
te, um die Abfragen der Benutzer zu beantworten und gleichzeitig die höchste Leistung
aus der zugrunde liegenden Hardware zu extrahieren. In dieser Arbeit werden Architek-
turen für hochperformante Abfragebearbeiter untersucht, die auf rechenintensive Abfra-
gen und zukünftige Datenspeicher mit hoher Bandbreite ausgelegt sind. Als Grundlage
führen wir eine umfangreiche experimentelle Studie durch, um die beiden derzeit besten
Abfragebearbeiterarchitekturen zu vergleichen: Vektorisierung und datenzentrische Pro-
grammgenerierung. Wir stellen fest, dass die datenzentrische Programmgenerierung für
rechenintensive Abfragen geeignet ist, jedoch Defizite in Bezug auf Kompilierungszeit,
Hardware-Hazards und Softwarekomplexität aufweist. Zur Lösung dieser Probleme stel-
len wir eine Architektur vor, die eine sehr schnelle Kompilierung ermöglicht, ohne die
Spitzenleistung zu beeinträchtigen. Zudem behandeln wir Hardware-Hazards mit einem
Optimierer für die Datenautobahnen der datenzentrierten Programmgenerierung. Dieser
restrukturiert selektiv die generierten Programme und schwächt so Effekte durch Fehler
der Sprungvorhersage und mangelnde Pufferspeichergröße ab. Schließlich führen wir
Leistungsanalyse- und Fehlerfindungstechniken ein, um die Arbeit mit kompilierenden
Abfragebearbeitern in der Praxis zu vereinfachen.
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1 I N T R O D U C T I O N

The relational model has stood the test of time and relational database systems play
an important role in today’s system architectures [8, 10, 184]. One of the merits of the
relational model is that it separates applications from the specifics of data management.
It creates an interface which lets users specify what they wish to know from the database
in a declarative language, i.e., users describe what information they desire, but not how
to get it. This separation leaves many degrees of freedom to the database system, which
can decide how to extract the requested information from the database. Similarly, users
can put information into the database and the system is free to decide how to store it.
As a consequence, the separation gives database system implementers the freedom to
choose the best strategies for data storage, the best algorithms for query processing, and
overall build a query engine which makes best use of the available hardware. Conversely,
as the query engine mediates between user requests and the data stored on hardware, the
query engine is central to building high-performance database systems. In this thesis,
we study the fastest known query engine architectures and distil an architecture that is
able to leverage new hardware and is prepared for future needs of computing within
relational database systems.

1.1 B AC K G R O U N D

Historically, database systems co-evolved with the available hardware. In the earliest
systems, data was stored on spinning disks and the amount of available main-memory
within a machine was small compared to the amount of data stored. In this setting, when-
ever the query engine processes data, the largest fraction of time was spent retrieving
data from disks. Consequently, the design of query engines focused on optimizing disk
access. Index structures were tailored to minimize the number of disk accesses [12],
algorithms focused on avoiding random access [55], and parallelism was encapsulated
within operators [54].

1.1.1 High-Performance System Architectures

The last two decades saw a groundbreaking shift away from disk focused engines
towards main-memory oriented systems. The price of DRAM kept falling, leading to
projections that DRAM would soon become very cheap and abundantly available [134],
so that all data can be stored in main memory. Consequently, query engines were rebuilt

1
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for the new bottleneck—main memory—which gave rise to a class of high-performance
query engines.

With data stored in DRAM, main memory was not the only bottleneck. Boncz et
al. realized that the number of instructions executed by the CPU and the efficiency of
data caches within the processor became vital for query engine performance. With the
MonetDB/X100 project in 2005, they proposed a vectorized interpreter model, which
pipelines chunks of data through relational operators [17]. On the one hand, working
on chunks amortizes interpreter overhead and, thus, reduces the amount of necessary
instructions. On the other hand, the approach works on a small subset of the data at a
time, which makes efficient use of processor caches.

Another line of research sought to implement fast relational operators by generating
code for each query and compiling it to machine code [87, 121]. Whereas vectorization
of the X100 project was an interpreter-based approach, the idea of code generation was
to eliminate all interpretation overhead and thus use processors most efficiently. This
idea was demonstrated with C/C++ template expansion in the HIQUE database system
in 2010 and was followed in 2011 by the LLVM based data-centric code generation
approach of the HyPer project [121]. Data-centric code generation emphasizes keep-
ing data in registers as long as possible in order to eliminate superfluous move instruc-
tions and make data access as cheap as possible. Data-centric code generation became
the centerpiece of the query engine of the HyPer in-memory database system which
served as foundation of a large body of research on in-memory databases: Multi-version
concurrency control was adapted to efficiently process transactions and run analytical
queries at the same time [126]. The adaptive radix tree showed the way towards fast
in-memory secondary indexing [99], data blocks demonstrated how to build in-memory
storage [91], and morsel-driven parallelism showed how to to implement relational op-
erators that make best use of many available compute cores [97].

1.1.2 Application Interfaces and System Specializations

While query engines and hardware co-evolved, using the relational model and SQL as
interface towards the users was always an option, but by far not the only one. Many data
models and query languages were developed to fit specific use-cases. Object-oriented
databases extended relational database systems with the ability to store complex objects
with types, classes, class hierarchies, and references between objects [72]. Document
database systems focused on providing an interface that directly incorporates applica-
tion data formats such as XML [70, 115] and JSON [25, 106]. Key-value stores reduce
the data model and transaction guarantees to key-value pairs in order to make scaling
the database system to compute clusters feasible [35, 90]. Meanwhile, array data sys-
tems expanded the capabilities of the relational model to store, retrieve, and analyze
large-scale scientific data [34, 21, 194]. Further, graph database systems were created
to update and analyze graphs, e.g., of online social interactions or road networks [109,
52, 65]. In all of these systems, the user-interfacing query language was adapted to fit
the application needs and the underlying query engines were adapted accordingly, e.g.,
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to be massively distributable, to cope with dense and sparse data in scientific applica-
tions, or to deal with the high interconnectedness of graphs and the ensuing random
access requirements of graph analysis algorithms.

1.2 C H A L L E N G E S

1.2.1 Hardware Trends

In the era of main-memory database systems, the primary bottleneck was considered
to be the access to DRAM. The systems built under that assumption are very fast at
transaction processing [126] and data analysis [121]. The pioneering assumption was
that main memory prices will continuously decay, therefore future analytical database
systems can afford to store all data in main memory [73, 134, 175]. While the prediction
has partly come true and machines with large amounts of main memory are available
and used for data storage [45], the growth of data volume outpaces price decay so that
more cost efficient solutions are required [98, 123]. Promising hardware alternatives
are flash-storage and non-volatile memory. Flash storage in the form of solid state
drives (SSDs) currently offers 3 GB/s bandwidth, which can be combined within one
machine into 25 GB/s bandwidth [61]. Access latency compared to spinning disks is
low at around 100 µs, all at a price of 0.25 $/GB [61]. Non-volatile memory offers
even higher bandwidth of 37 GB/s and access latencies of 390 ns at a price of currently
5.2 $/GB [157]. Overall, they offer data access with similar properties to DRAM—very
high bandwidth and fast random access—at a fraction of the price [61, 156].

1.2.2 System Usage Trends

Naturally, the main use for database systems always was storing, altering, and retriev-
ing data. Beyond that, modern systems offer many ways to analyze the stored data. For
data analysis there there seems to be a recurrent theme with database systems: Novel
and experimental data analysis algorithms retrieve data from the database, run their anal-
yses externally, and derive conclusions [160]. Eventually, when the analysis algorithms
are used often enough, engineers notice that moving computation to the data is more
efficient than moving data to the computation. Therefore, they integrate the analyses
into the system’s query engine to optimally push computation to data. This process can
be observed with integrating window functions into the SQL standard, moving scientific
computation to array databases, and integrating concepts for graph-computations such
as map-reduce into database systems.

Recent break-through findings in machine learning [96], especially deep learning,
have enabled successes in the fields of computer vision [88], speech and hand-writing
recognition [63, 46], natural language processing [36], machine translation [30], and
many more. The field of machine learning is currently in a big leap forward and the
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findings are put to use in many branches of industry and in the consumer market [178,
102, 107]. Since machine learning seems very promising, many users want to apply it to
their data, either to train models or to apply already trained models to classify, transcribe,
translate, or make predictions from their data. From the perspective of database systems,
eventually such machine learning techniques must move closer to the data. That means,
query engines will need to integrate machine learning primitives and run computation
directly on the data. There are already advances into this direction, e.g., a language of
machine learning primitives for big data systems [51], an approach to integrate linear
algebra with relational algebra [26], and research into joint optimization of relational
algebra and machine learning operations [158, 159]. Overall, the machine learning trend
indicates that query engines need to support more computation-intensive workloads in
the future [160].

1.3 C O N T R I B U T I O N S

Most likely, the next generation of high-performance database systems will make
use of new storage technologies and support machine learning tasks. Yet, what should a
query engine, that can keep up with the large amounts of available bandwidth and future
needs of computation look like?

In this thesis we perform an extensive experimental study, described in Chapter 2,
which compares the two state-of-the-art query engine architectures: vectorization [17]
and data-centric code generation [121]. The study shows, that for today’s workloads
both architectures have roughly similar performance. We found, in comparison, data-
centric code generation is more efficient for compute-intensive queries, more effective
at transaction processing, and the architecture is a better fit to integrate foreign program-
ming languages. Consequently, we see data-centric code generation as a promising
architecture for future workloads and hardware environments.

However, we also conclude from the study that compilation based approaches have
shortcomings. The comparison with a vectorized engine clearly pinpoints the potential
for improvement. 1) Inherent to code generation is the issue that time must be spent on
compilation for every query, whereas a vectorized engine can start right away. 2) The
aggressive operator fusion of data-centric code generation produces concise code, but
vectorized processing shows that often a different program structure makes better use
of the resources of modern CPUs. 3) Query engines are complex pieces of software
and require performance tuning to make best use of the available resources. The extra
layer of indirection introduced by code generation makes profiling tedious, error prone,
and slow. In contrast, a vectorized engine allows for more direct profiling. 4) In a sim-
ilar vein, debugging a code generator is more complicated than debugging a vectorized
engine. Unmitigated, these issues pose significant drawbacks for a compilation-based
query engine. Therefore, this thesis presents solutions to the forementioned shortcom-
ings. All proposals are implemented and evaluated within the next-generation database
system Umbra [123].
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C O M P I L AT I O N T I M E . From the moment a query arrives at the query engine, sev-
eral preparation steps are necessary before query evaluation on the data starts. In a com-
piling engine this involves generating a program and compiling it to executable machine
code. Depending on the query complexity and database size the preparations can take
even longer than running the query. In Chapter 3, we present an engine architecture—a
code generator, an intermediate program representation, and a compilation backend—
that allow very fast compilation. Our evaluation shows its preparation speed is on par
with interpreter based engines, that means, it is on par with engines that do not generate
machine code at all.

P R O G R A M S T R U C T U R E . Data-centric code generation is effective at generating
code without superfluous instructions. However, the aggressive operator fusion tends
to create long dependency chains, which makes the code prone to cache and branch
misses. In Chapter 4, we introduce an optimizer that optimally cuts pipelines—thus
cuts dependency chains—, boosts parallel memory access, and removes branch misses.
Our evaluation shows that this technique leads to up to 2.6× faster query evaluation and
the optimizer takes care to not degrade query performance.

P E R F O R M A N C E P R O F I L I N G . Compiling query engines first work a high-level
query plan, which they subsequently lower to machine code and finally execute to pro-
duce the query result. Performance profiling the generated code is very complex, as in-
terpreting a performance profile requires many steps to find how generated instructions
relate to the query plan. In Chapter 5, we introduce Tailored Profiling, a performance
profiling approach that automatically maps performance profiles to high-level abstrac-
tions. We show that Tailored Profiling presents profiling views helpful to database users
and developers, with very little runtime overhead.

D E B U G G I N G . The two step process of compilation before runtime also creates a
difficult debugging environment. When stepping through generated code with a debug-
ger, it is often necessary to know why the current instruction was generated, which
operator it implements, etc. Unfortunately, code generation happens in a previous step,
which makes all that information inaccessible to the debugger. In Chapter 6, we pro-
pose a debugger to step through code generation and code execution simultaneously.
We show that it is a powerful tool, as it provides the required context, yet is low-effort
to implement.





2 Q U E RY E N G I N E S : TO V E C TO R I Z E
O R TO C O M P I L E ?

Excerpts of this chapter have been published in [75].
With contributions from Viktor Leis and Peter Boncz.

In most query engines, each relational operator is implemented using Volcano-style
iteration [56]. While this model worked well in the past when disk was the primary bot-
tleneck, it is inefficient on modern CPUs for in-memory database management systems
(DBMSs). Most modern query engines therefore either use vectorization (pioneered
by VectorWise [17, 197]) or data-centric code generation (pioneered by HyPer [121]).
Systems that use vectorization include DB2 BLU [155], columnar SQL Server [92],
and Quickstep [142], whereas systems based on data-centric code generation include
Apache Spark [4] and Peloton [117].

Like the Volcano-style iteration model, vectorization uses pull-based iteration where
each operator has a next method that produces result tuples. However, each next call
fetches a block of tuples instead of just one tuple, which amortizes the iterator call
overhead. The actual query processing work is performed by primitives that execute a
simple operation on one or more type-specialized columns (e.g., compute hashes for a
vector of integers). Together, amortization and type specialization eliminate most of the
overhead of traditional engines.

In data-centric code generation, each relational operator implements a push-based
interface (produce and consume). However, instead of directly processing tuples, the
produce/consume calls generate code for a given query. They can also be seen as oper-
ator methods that get called during a depth-first traversal of the query plan tree, where
produce is called on first visit, and consume on last visit, after all children have been
processed. The resulting code is specialized for the data types of the query and fuses
all operators in a pipeline of non-blocking relational operators into a single (potentially
nested) loop. This generated code can then be compiled to efficient machine code (e.g.,
using the LLVM).

Although both models eliminate the overhead of traditional engines and are highly
efficient, they are conceptually different from each other: Vectorization is based on
the pull model (root-to-leaf traversal), vector-at-a-time processing, and interpretation.
Data-centric code generation uses the push model (leaf-to-root traversal), tuple-at-a-
time processing, and up-front compilation. As we discuss in Section 2.8, other designs
that mix or combine ideas from data-centric compilation and vectorization have been
proposed. In this chapter, we focus on these two specific designs, as they have been
highly influential and are in use in multiple widespread systems.

The differences of the two models are fundamental and determine the organization of
the DBMS’s execution engine source code and its performance characteristics. Because
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changing the model requires rewriting large parts of the source code, DBMS designers
must decide early on which model to use. Looking at recent DBMS developments like
Quickstep [142] and Peloton [117], we find that both choices are popular and plausible:
Quickstep is based on vectorization, Peloton uses data-centric code generation.

Given the importance of this choice, it is surprising that there has not yet been a
systematic study comparing the two state-of-the-art query processing models. In this
chapter, we provide an in-depth experimental comparison of the two models to under-
stand when a database architect should prefer one model over the other.

To compare vectorization and compilation, one could compare the runtime perfor-
mance of emblematic DBMSs, such as HyPer and VectorWise. The problem is, however,
that such full-featured DBMSs differ in many design dimensions beyond the query exe-
cution model. For instance, HyPer does not employ sub-byte compression in its colum-
nar storage [91], whereas VectorWise uses more compact compression methods [198].
Related to this choice, HyPer features predicate-pushdown in scans but VectorWise
does not. Another important dimension in which both systems differ is parallelism.
VectorWise queries spawn threads scheduled by the OS, and controls parallelism using
explicit exchange operators where the parallelism degree is fixed at query optimization
time [7]. HyPer, on the other hand, runs one thread on each core and explicitly sched-
ules query tasks on it on a morsel-driven basis using a NUMA-aware, lock-free queue to
distribute work. HyPer and VectorWise also use different query processing algorithms
and structures, data type representations, and query optimizers. Such different design
choices affect performance and scalability, but are independent of the query execution
model.

To isolate the fundamental properties of the execution model from incidental differ-
ences, we implemented a compilation-based relational engine and a vectorization-based
engine in a single test system (available at [74]). The experiments where we employed
data-centric code-generation into C++1 we call “Typer” and the vectorized engine we
call ”Tectorwise” (TW). Both implementations use the same algorithms and data struc-
tures. This allows an apples-to-apples comparison of both approaches because the only
difference between Tectorwise and Typer is the query execution method: vectorized
versus data-centric compiled execution.

Our experimental results show that both approaches lead to very efficient execution
engines, and the performance differences are generally not very large. Compilation-
based engines have an advantage in calculation-heavy queries, whereas vectorized en-
gines are better at hiding cache miss latency, e.g., during hash joins.

After introducing the two models in more detail in Section 2.1 and describing our
methodology in Section 2.2, we perform a micro-architectural analysis of in-memory
OLAP workloads in Section 2.3. We then examine in Section 2.4 the benefit of data-
parallel operations (SIMD), and Section 2.5 discusses intra-query parallelization on
multi-core CPUs. In Section 2.6, we investigate different hardware platforms (Intel,
AMD, Xeon Phi) to find out which model works better on which hardware. After these

1 HyPer compiles to LLVM IR rather than C++, but this choice only affects compilation time (which we ignore in this chapter
anyway), not execution time.
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quantitative OLAP performance comparisons, we discuss other factors in Section 2.7,
including OLTP workloads and compile time. A discussion of hybrid processing models
follows in Section 2.8. We conclude by summarizing our results as a guide for system
designers in Section 2.9.

2.1 V E C TO R I Z E D A N D C O M P I L E D Q U E R I E S

The main principle of vectorized execution is batched execution [135] on a colum-
nar data representation: every “work” primitive function that manipulates data does not
work on a single data item, but on a vector (an array) of such data items that represents
multiple tuples. The idea behind vectorized execution is to amortize the DBMS’s in-
terpretation decisions by performing as much as possible inside the data manipulation
methods. For example, this work can be to hash 1000s of values, compare 1000s of
string pairs, update a 1000 aggregates, or fetch a 1000 values from 1000s of addresses.

Data-centric compilation generates low-level code for a SQL query that fuses all ad-
jacent non-blocking operators of a query pipeline into a single, tight loop. In order to
understand the properties of vectorized and compiled code, it is important to understand
the structure of each variant’s code. Therefore, in this section we present example oper-
ator implementations, motivate why they are implemented in this fashion, and discuss
some of their properties.

2.1.1 Vectorizing Algorithms

Typer executes queries by running generated code. This means that a developer can
create operator implementations in any way they see fit. Consider the example in Fig-
ure 1a: a function that selects every row whose color is green and has four tires. There
is a loop over all rows and in each iteration, all predicates are evaluated.

Tectorwise implements the same algorithms as Typer, staying as close to it as possible
and reasonable (for performance). This is, however, only possible to a certain degree, as
every function implemented in vectorized style has two constraints: It can (i) only work
on one data type2 and it (ii) must process multiple tuples. In generated code these deci-
sions can both be put into the expression of one if statement. This, however, violates (i)
which forces Tectorwise to use two functions as shown in Figure 1b. A (not depicted)
interpretation logic would start by running the first function to select all elements by
color, then the second function to select by number of tires. By processing multiple el-
ements at a time, these functions also satisfy (ii). The dilemma is faced by all operators
in Tectorwise and all functions are broken down into primitives that satisfy (i) and (ii).
This example uses a column-wise storage format, but row-wise formats are feasible as
well. To maximize throughput, database developers tend to highly optimize such func-

2 Technically, it would be possible to create primitives that work on multiple types. However, this is not practical, as the number of
combinations grows exponentially.
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vec<int> sel_eq_row(vec<string> col, vec<int> tir)
vec<int> res;
for(int i=0; i<col.size(); i++) // for colors and tires
if(col[i] == "green" && tir[i] == 4) // compare both
res.append(i) // add to final result

return res

(a) Integrated: Both predicates checked at once

vec<int> sel_eq_string(vec<string> col, string o)
vec<int> res;
for(int i=0; i<col.size(); i++) // for colors
if(col[i] == o) // compare color
res.append(i) // remember position

return res

vec<int> sel_eq_int(vec<int> tir, int o, vec<int> s)
vec<int> res;
for(i : s) // for remembered position
if(tir[i] == o) // compare tires
res.append(i) // add to final result

return res

(b) Vectorized: Each predicate checked in one primitive

Figure 1: Multi-Predicate Example – The straightforward way to evaluate multiple predi-
cates on one data item is to check all at once (1a). Vectorized code must split the
evaluation into one part for each predicate (1b).

tions. For example, with the help of predicated evaluation ( *res=i; res+=cond) or
SIMD vectorized instruction logic (see Section 2.4.1).

With these constraints in mind, let us examine the details of operator implementa-
tions of Tectorwise. We implemented selections as shown above. Expressions are split
by arithmetic operators into primitives in a similar fashion. Note that for these simple
operators the Tectorwise implementation must already change the structure of the algo-
rithms and deviate from the Typer data access patterns. The resulting materialization of
intermediates makes fast caches very important for vectorized engines.

2.1.2 Vectorized Hash Join and Group By

Pseudo code for parts of our hash join implementations are shown in Figure 2. The
idea for both, the implementation in Typer and Tectorwise, is to first consume all tuples
from one input and place them into a hash table. The entries are stored in row format
for better cache locality. Afterwards, for each tuple from the other input, we probe the
hash table and yield all found combinations to the parent operator. The corresponding
code that Typer generates is depicted in Figure 2a.

Tectorwise cannot proceed in exactly the same manner. Probing a hash table with
composite keys is the intricate part here, as each probe operation needs to test equality
of all parts of the composite key. Using the former approach would, however, violate
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query(...)
// build hash table
for(i = 0; i < S.size(); i++)
ht.insert(<S.att1[i], S.att2[i]>, S.att3[i])

// probe hash table
for(i = 0; i < R.size(); i++)
int k1 = R.att1[i]
string* k2 = R.att2[i]
int hash = hash(k1, k2)
for(Entry* e = ht.find(hash); e; e = e->next)
if(e->key1 == k1 && e->key2 == *k2)
... // code of parent operator

(a) Code generated for hash join

class HashJoin
Primitives probeHash_, compareKeys_, buildGather_;
...

int HashJoin::next()
... // consume build side and create hash table
int n = probe->next()// get tuples from probe side
// *Interpretation*: compute hashes
vec<int> hashes = probeHash_.eval(n)
// find hash candidate matches for hashes
vec<Entry*> candidates = ht.findCandidates(hashes)
// matches: int references a position in hashes
vec<Entry*, int> matches = {}
// check candidates to find matches
while(candidates.size() > 0)
// *Interpretation*
vec<bool> isEqual = compareKeys_.eval(n, candidates)
hits, candidates = extractHits(isEqual, candidates)
matches += hits

// *Interpretation*: gather from hash table into
// buffers for next operator
buildGather_.eval(matches)
return matches.size()

(b) Vectorized code that performs a hash join

Figure 2: Hash Join Implementations in Typer and Tectorwise – Generated code (Fig-
ure 2a) can take any form, e.g., it can combine the equality check of hash table
keys. In vectorized code (Figure 2b), this is only possible with one primitive for each
check.

(i). Therefore, the techniques from Section 2.1.1 are applied: The join function first
creates hashes from the probe keys. It does this by evaluating the probeHash expression.
A user of the vectorized hash join must configure the probeHash and other expressions
that belong to the operator so that when the expressions evaluate, they use data from the
operator’s children. Here, the probeHash expression hashes key columns by invoking
one primitive per key column and writes the hashes into an output vector. The join



12 Q U E RY E N G I N E S : TO V E C TO R I Z E O R TO C O M P I L E ?

function then uses this vector of hashes to generate candidate match locations in the hash
table. It then inspects all discovered locations and checks for key equality. It performs
the equality check by evaluating the cmpKey expression. For composite join-keys, this
invokes multiple primitives: one for every key column, to avoid violating (i) and (ii).
Then, the join function adds the matches to the list of matching tuples, and, in case any
candidates have an overflow chain, it uses the overflow entries as new candidates for the
next iteration. The algorithm continues until the candidate vector is empty. Afterwards,
the join uses buildGather to move data from the hash table into buffers for the next
operator.

We take a similar approach in the group by operator. Both phases of the aggregation
use a hash table that contains group keys and aggregates. The first step for all inbound
tuples is to find their group in the hash table. We perform this with the same technique
as in the hash join. For those tuples whose group is not found, one must be added.
Unfortunately, it is not sufficient to just add one group per group-less tuple as this could
lead to groups added multiple times. We therefore shuffle all group-less tuples into
partitions of equal keys (proceeding component by component for composite keys), and
add one group per partition to the hash table. Once the groups for all incoming tuples are
known we run aggregation primitives. Transforming into vectorized form led to an even
greater deviation from Typer data access patterns. For the join operator, this leads to
more independent data accesses (as discussed in Section 2.3.1). However, aggregation
incurs extra work.

Note that in order to implement Tectorwise operators we need to deviate from the
Typer implementations. This deviation is not by choice, but due to the limitations (i)
and (ii) which vectorization imposes. This yields two different implementations for
each operator, but at its core, each operator executes the same algorithm with the same
parallelization strategy.

2.2 C O M PA R I S O N M E T H O D O L O G Y

To isolate the fundamental properties of the execution model from incidental differ-
ences found in real-world systems, we implemented a compilation-based engine (Typer)
and a vectorization-based engine (Tectorwise) in a single test system (available at [74]).
To make experiments directly comparable, both implementations use the same algo-
rithms and data structures. When testing queries, we use the same physical query plans
for vectorized and compiled execution. We do not include query parsing, optimization,
code generation, and compilation time in our measurements. This testing methodology
allows an apples-to-apples comparison of both approaches because the only difference
between Tectorwise and Typer is the query execution method: vectorized versus data-
centric compiled execution.
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2.2.1 Related Work

Vectorization was proposed by Boncz et al. [17] in 2005. It was first used in Mon-
etDB/X100, which evolved into the commercial OLAP system VectorWise, and later
adopted by systems like DB2 BLU [155], columnar SQL Server [92], and Quickstep [142].
In 2011, Neumann [121] proposed data-centric code generation using the LLVM com-
piler framework as the query processing model of HyPer, an in-memory hybrid OLAP
and OLTP system. It is also used by Peloton [117] and Spark [4].

To the best of our knowledge, this chapter is the first systemic comparison of vector-
ization and data-centric compilation. Sompolski et al. [171] compare the two models
using a number of microbenchmarks, but do not evaluate end-to-end performance for
full queries. More detailed experimental studies are available for OLTP systems. Ap-
puswamy et al. [9] evaluate different OLTP system architectures in a common prototype,
and Sirin et al. [168] perform a detailed micro-architectural analysis of existing commer-
cial and open source OLTP systems.

2.2.2 Query Processing Algorithms

We implemented five relational operators both in Tectorwise and Typer: scan, select,
project (map), join, and group by. The scan operator at its core consists of a (parallel)
for loop over the scanned relation. Select statements are expressed as if branches. Pro-
jection is achieved by transforming the expression to the corresponding C code. Unlike
production-grade systems, our implementation does not perform overflow checking of
arithmetic expressions. Join uses a single hash table3 with chaining for collision detec-
tion. Using 16 (unused) bits of each pointer, the hash table dictionary encodes a small
Bloom filter-like structure [97] that improves performance for selective joins (a probe
miss usually does not have to traverse the collision list). The group by operator is split
into two phases for cache friendly parallelization. A pre-aggregation handles heavy
hitters and spills groups into partitions. Afterwards, a final step aggregates the groups
in each partition. Using these algorithms in data-centric code is quite straightforward,
while vectorization requires adaptations, which we describe in Section 2.1.1.

2.2.3 Workload

In this chapter we focus on OLAP performance, and therefore use the well-known
TPC-H benchmark for most experiments. To be able to show detailed statistics for
each individual query as opposed to only summary statistics, we chose a representative
subset of TPC-H. The selected queries and their performance bottlenecks are listed in
the following:

• Q1: fixed-point arithmetic, (4 groups) aggregation

3 Although recent research argues for partitioned hash joins [11, 161], single-table joins are still prevalent in production systems and
are used by both HyPer and VectorWise.
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• Q6: selective filters
• Q3: join (build: 147 K entries, probe: 3.2 M entries)
• Q9: join (build: 320 K entries, probe: 1.5 M entries)
• Q18: high-cardinality aggregation (1.5 M groups)

The given cardinalities are for scale factor (SF) 1 and grow linearly with it. Of the
remaining 17 queries, most are dominated by join processing and are therefore similar
to Q3 and Q9. A smaller number of queries spend most of the time in a high-cardinality
aggregation and are therefore similar to Q18. Finally, despite being the only two single-
table queries, we show results for both Q1 and Q6 as they behave quite differently.
Together, these five queries cover the most important performance challenges of TPC-H
and any execution engine that performs well on them will likely be also efficient on the
full TPC-H suite [16].

2.2.4 Experimental Setup

Unless otherwise noted, we use a system equipped with an Intel i9-7900X (Skylake
X) CPU with 10 cores for our experiments. Detailed specifications for this CPU can be
found in the hardware section in Table 6. We use Linux as OS and compile our code
with GCC 7.2. The CPU counters were obtained using Linux’ perf events API. Through-
out this chapter, we normalize CPU counters by the total number of tuples scanned by
that query (i.e., the sum of the cardinalities of all tables scanned). This normalization
enables intuitive observations across systems (e.g., “Tectorwise executes 41 instructions
per tuple more than Typer on query 1“) as well as interesting comparisons across other
dimensions (e.g., “growing the data size by a factor of 10, causes 0.5 additional cache
misses per tuple“).

2.3 M I C R O - A R C H I T E C T U R A L A N A LY S I S

To understand the two query processing paradigms, we perform an in-depth micro-
architectural comparison. We initially focus on sequential performance and defer dis-
cussing data-parallelism (SIMD) to Section 2.4 and multi-core parallelization to Sec-
tion 2.5.

2.3.1 Single-Thread Performance

Figure 3 compares the single-threaded performance of the two models for selected
TPC-H queries. For some queries (Q1, Q18), Typer is faster and for others (Q3, Q9)
Tectorwise is more efficient. The relative performance ranges from Typer being faster
by 74% (Q1) to Tectorwise being faster by 32% (Q9). Before we look at the reasons
for this, we note that these are not large differences, especially when compared to the
performance gap to other systems. For example the difference between HyPer and Post-
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Figure 3: Performance – TPC-H SF=1, 1 thread

Cycles IPC Instr. L1 misses LLC misses Branch misses

Q1 Typer 34 2.0 68 0.6 0.57 0.01
Q1 TW 59 2.8 162 2.0 0.57 0.03

Q6 Typer 11 1.8 20 0.3 0.35 0.06
Q6 TW 11 1.4 15 0.2 0.29 0.01

Q3 Typer 25 0.8 21 0.5 0.16 0.27
Q3 TW 24 1.8 42 0.9 0.16 0.08

Q9 Typer 74 0.6 42 1.7 0.46 0.34
Q9 TW 56 1.3 76 2.1 0.47 0.39

Q18 Typer 30 1.6 46 0.8 0.19 0.16
Q18 TW 48 2.1 102 1.9 0.18 0.37

Table 1: CPU Counters – TPC-H SF=1, 1 thread, normalized by number of tuples processed
in that query

gresSQL is between one and two orders of magnitude [84]. In other words, the perfor-
mance of both query processing paradigms is quite close— despite the fact that the two
models appear different from the point of someone implementing these systems. Nev-
ertheless, neither paradigm is clearly dominated by the other which makes both viable
options to implement a processing engine. Therefore, in the following we analyze the
performance differences to understand the strengths and weaknesses of the two models.

Table 1 shows some important CPU statistics, from which a number of observations
can be made. First, Tectorwise executes significantly more instructions (up to 2.4×) and
usually has more L1 data cache misses (up to 3.3×). Tectorwise breaks all operations
into simple steps and must materialize intermediate results between these steps, which
results in additional instructions and cache accesses. Typer, in contrast, can often keep
intermediate results in CPU registers and thus perform the same operations with fewer
instructions. Based on these observations, it becomes clear why Typer is significantly
faster on Q1. This query is dominated by fixed-point arithmetic operations and a cheap
in-cache aggregation. In Tectorwise intermediate results must be materialized, which is
similarly expensive as the computation itself. Thus, one key difference between the two
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Figure 4: Memory Stalls – TPC-H, 1 thread

models is that Typer is more efficient for computational queries that can hold intermedi-
ate results in CPU registers and have few cache misses.

We observe furthermore, that for Q3 and Q9, whose performance is determined by
the efficiency of hash table probing, Tectorwise is faster than Typer (by 4% and 32%).
This might be surprising given the fact that both engines use exactly the same hash table
layout and therefore also have an almost identical number of last level cache (LLC)
misses. As Figure 4 shows, Tectorwise’s join advantage increases up to 40% for larger
data (and hash table) sizes. The reason is that vectorization is better at hiding cache
miss latency, as observed from the memory stall counter that measures the number of
cycles during which the CPU is stalled waiting for memory. This counter explains
the performance difference. On the one hand, Tectorwise’s hash table probing code
is only a simple loop. It executes only hash table probes thus the CPU’s out-of-order
engine can speculate far ahead and generate many outstanding loads. These can even be
executed out of order. On the other hand, Typer’s code has more complex loops. Each
loop can contain code for a scan, selection, hash-table probe, aggregation and more.
The out-of-order window of each CPU fills up more quickly with complex loops thus
they generate less outstanding loads. In addition every branch miss is more expensive
than in a complex loop as more work that is performed under speculative execution is
discarded and must be repeated on a miss. Overall, Tectorwise’s simpler loops enable
better latency hiding.
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Another difference between the two executions models is their sensitivity regarding
the hash function. After trying different hash functions, we settled on Murmur2 for
Tectorwise, and a CRC-based hash function, which combines two 32-bit CRC results
into a single 64-bit hash, for Typer. Murmur2 requires twice as many instructions as
CRC hashing, but has higher throughput and is therefore slightly faster in Tectorwise,
which separates hash computation from probing. For Typer, in contrast, the CRC hash
function improves the performance up to 40% on larger scale factors—even though
most time is spent waiting for cache misses. The lower latency and smaller number
of instructions for CRC significantly improve the speculative, pipelined execution of
consecutive loop iterations, thereby enabling more concurrent outstanding loads.4

As a note of caution, we remark that one may observe from Table 1 that Tectorwise
generally executes more instructions per cycle (IPC) and deduce that Tectorwise per-
forms better. However, this is not necessarily correct. While IPC is a measure of
CPU utilization, having a higher IPC is not always better: As can be observed in Q1,
Tectorwise’s IPC is 40% higher, but it is still 74% slower due to executing almost twice
the number of instructions. This means that one has to be cautious when using IPC to
compare database systems’ performance. It is a valid measure of the amount of free pro-
cessing resources, but should not be used as the sole proxy for overall query processing
performance.

To summarize, looking at the micro-architectural footprint of the two models we
found that (1) both are efficient and fairly close in performance, (2) Typer is more ef-
ficient for computational queries with few cache misses, and (3) Tectorwise is slightly
better at hiding cache miss latency.

2.3.2 Interpretation and Instruction Cache

Systems based on Volcano-style iteration perform expensive virtual function calls and
type dispatch for each processed tuple. This is a form of interpretation overhead as it
does not contribute to the actual query processing work. Generating machine code for
a given query, by definition, avoids interpretation overhead. Vectorized systems like
VectorWise are still fundamentally interpretation-based engines and use Volcano-style
iteration. In contrast to classical database systems, the interpretation overhead is not
incurred for each tuple but is amortized across the eponymous vector of tuples. Each
primitive is specialized for a particular data type and is called for (e.g., 1,000 values).
This amortization is effective: Using a profiler, we determined that across our query set
the interpreted part is less than 1.5% of the query runtime (measured at scale factor 10).
Thus, the DBMS spends 98.5% of its time in primitives doing query processing work.
From Table 1 we observe that vectorized code usually executed more instructions per
tuple than compiled code. Since the vast majority of the query execution time is spent
within primitives, also the time to execute these extra instructions must be spent within
primitives. As primitives know all involved types at compile time, we conclude that

4 Despite using different hash functions, this is still a fair comparison of join performance, as each system uses the more beneficial
hash function.
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Figure 5: Tectorwise Vector Sizes – Times are normalized by 1K vector time.

the extra instructions are not interpretation code that is concerned with interpretation
decisions and virtual function calls. It is rather due to the load/store instructions for
materializing primitive results into vectors.

Recent work has found that instruction cache misses can be a problem for OLTP
workloads [168]. To find out whether this is the case for our two query engines, we
measured L1 instruction cache misses for both systems and found that instruction cache
misses are negligible, thus not a performance bottleneck for OLAP queries. For all
queries measured, the L1 instruction cache (32 KB) was large enough to contain all hot
code.

2.3.3 Vector Size

The vector size is an important parameter for any vectorized engine. So far, our
Tectorwise experiments used a value of 1,000 tuples, which is also the default in VectorWise.
Figure 5 shows normalized query runtimes for vector sizes from 1 to the maximum (i.e.,
full materialization). We observe that small (<64) and large vector sizes (>64 K) de-
crease performance significantly. With a vector size of 1, Tectorwise is a Volcano-style
interpreter with its large CPU overhead. Large vectors do not fit into the CPU caches
and therefore cause cache misses. The other end of the spectrum is to process the query
one column at a time; this approach is used in MonetDB [19]. Generally, a vector size
of 1,000 seems to be a good setting for all queries. The only exception is Q3, which
executes 15% faster using a vector size of 64K.

2.3.4 Star Schema Benchmark

So far, we investigated a carefully selected subset of TPC-H. To show that our findings
are more generally applicable, we also implemented the Star Schema Benchmark (SSB),
which consists of 4 query templates (with different selections) and which is dominated
by hash table probes. We use one thread and scale factor 30 to achieve the runtimes
listed in Table 2.
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Cycles IPC Instr. L1
misses

LLC
misses

Branch
miss

Memory
stalls

Q1.1 Typer 28 0.7 21 0.3 0.31 0.69 6.33
Q1.1 TW 12 2.0 23 0.4 0.29 0.05 2.77

Q2.1 Typer 39 0.8 30 1.3 0.12 0.17 18.35
Q2.1 TW 30 1.5 44 1.6 0.13 0.23 7.63

Q3.1 Typer 55 0.7 40 1.1 0.20 0.24 27.95
Q3.1 TW 53 1.3 71 1.7 0.23 0.41 15.68

Q4.1 Typer 78 0.5 39 1.8 0.31 0.38 45.91
Q4.1 TW 59 1.0 61 2.5 0.32 0.63 19.48

Table 2: Runtime of Typer and Tectorwise on the Star Schema Benchmark

These results are quite similar to TPC-H Q3 and Q9 and show once more that Tectorwise
requires more instructions but has an advantage for join heavy queries due to better hid-
den memory stalls. In general, we find that TPC-H subsumes SSB for our purposes
and in the name of conciseness, we present our findings using TPC-H in the rest of this
chapter.

2.3.5 Tectorwise/Typer versus VectorWise/HyPer

Let us close this section by comparing Actian Vector 5.0 (the current marketing name
for VectorWise) and the research (TUM) version of HyPer (a related system is now with
Tableau). The results are shown in Table 3 use one thread and TPC-H scale factor 1.
The first observation is that HyPer performs similarly to Typer, and Tectorwise’s perfor-
mance is similar to VectorWise. Second, except for Q65, either Typer or Tectorwise are

5 HyPer is faster on Q6 than the other systems because it evaluates selections using SIMD instructions directly on compressed
columns [91].

HyPer VectorWise Typer Tectorwise

Q1 53 71 44 85
Q6 10 21 15 15
Q3 48 50 47 44
Q9 124 154 126 111
Q18 224 159 90 154

Table 3: Production System Performance on TPC-H in comparison to our prototypical imple-
mentations.
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slightly faster than both production-grade systems. It is unsurprising given that these
must handle complex issues like overflow checking (that our prototype ignores).

2.4 DATA - PA R A L L E L E X E C U T I O N ( S I M D )

Let us now turn our attention to data-parallel execution using SIMD operations. There
has been extensive research investigating SIMD for database operations [196, 187, 151,
152, 150, 149, 172, 170]. It is not surprising that this research generally assumes a
vectorized execution model. The primitives of vectorized engines consist of simple
tight loops that can be translated to data-parallel code. Though there has been research
on utilizing SIMD in data-centric code [146, 117], this is more challenging since the
generated code is more complex. We will therefore use Tectorwise as the platform for
evaluating how large the impact of SIMD on in-memory OLAP workloads is. In contrast
to most research on SIMD, we use TPC-H and not micro-benchmarks.

The Skylake X CPU we use for this chapter supports the new AVX-512 instruction set
and can execute two 512-bit SIMD operations per cycle—doubling register widths and
throughput in comparison with prior microarchitectures. In other words, using AVX-
512 one can process 32 values of 32-bit per cycle, while scalar code is limited to 4
values per cycle. Furthermore, in comparison with prior SIMD instruction sets like
AVX2, AVX-512 is more powerful (almost all operations support masking and there are
new instructions like compress and expand) and orthogonal (almost all operations are
available in 8, 16, 32, and 64-bit variants). One would therefore expect significant ben-
efits from using SIMD. In the following, we focus on selection and hash table probing,
which are both common and important operations.

2.4.1 Data-Parallel Selection

A vectorized selection primitive produces a selection vector containing the indexes
of all matching tuples. Using AVX-512 this can be implemented using SIMD quite
easily6. The comparison instruction generates a mask that we then pass to a compress
store (COMPRESSSTORE) instruction. This operation works across SIMD lanes and writes
out the positions selected by the mask to memory.

We performed a micro-benchmark for selection, comparing a branch-free scalar x86
implementation with a SIMD variant. In the benchmark, we select all elements from
an 8192 element integer array which are smaller than a constant. Results for a best-
case scenario, in which all consumed data are 32-bit integers, are present in the L1
cache, and the input is a contiguous vector, are shown in Figure 6a. The observed
performance gain for this micro-benchmark is 8.4×. However, as Figure 6c shows, in a
realistic query with multiple expensive selections like Q6, we only observe a speedup of

6 With AVX2, the selection primitive is non-trivial and either requires a lookup table [149, 91, 117] or complex permutation logic
based on BMI2 [66].
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1.4×—even though almost 90% of the processing time is spent in SIMD primitives. Our
experiments revealed two effects that account for this discrepancy: sparse data loading
due to selection vectors and cache misses due to varying stride. The remainder of this
section discusses these effects.

Sparse data loading occurs in all selection primitives except for the first one. From
the second selection primitive on, all primitives receive a selection vector that deter-
mines the elements to consider for comparison. These elements must be gathered from
non-contiguous memory locations. A comparison of selection primitives with selection
vectors (40% selectivity) is shown in Figure 6b. Performance gains in this case range
only up to a 2.7× (again for 32-bit types). Considering that the selections in Q6 consist
of one initial selection without input selection vector and four subsequent selections that
have to consider a selection vector, we can expect the overall speedup to be closer to
3× than to 8×.

The previous benchmarks only considered data sets which reside in L1 cache. For
larger data sets, accessing memory can become a limiting factor. Figure 7 shows the
interplay of selection performance and input sparsity on a 4 GB data set. Note that the
performance drops for selectivities below 100%, while the scalar and SIMD variants are
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Figure 8: Scalar vs. SIMD Join Probing – in microbenchmarks and full queries.

nearly equal when the is selectivity are below 50%. We also show an estimate of how
many cycles on average are spent resolving cache misses. We observe that most of the
time is spent waiting for data. Thus the memory subsystem becomes the bottleneck of
the selection operation and the positive effect of utilizing SIMD instructions disappears.
In the selection cascade of Q6, only the first selection primitive benefits from SIMD and
selects 43% of the tuples. This leaves all subsequent selections to operate in a selectivity
area where the scalar variant is just as fast.

2.4.2 Data-Parallel Hash Table Probing

We next examine hash join probing, where most of the query processing time is spent
in TPC-H. There are two opportunities to apply SIMD: computing the hash values, and
the actual lookups in the hash table. For hashing we use Murmur2, which consists of
arithmetic operations like integer shifts and multiplications that are available in AVX-
512. We can also apply SIMD to lookups into hash tables by using gather, compress
store, and masking.

A performance breakdown of components necessary for hash joins is shown in Fig-
ure 8. Figure 8(a) shows that for hashing alone a gain of 2.3× is possible. For gather
instructions, shown in Figure 8(b), we observe an improvement of 1.1× (in the best
case). This is because the memory system of the test machine can perform at most
two load operations per cycle—regardless of whether SIMD gather or scalar loads are
used. Figure 8(c) shows that when employing gather and other SIMD instructions to the
Tectorwise probe primitive, a best-case performance gain of 1.4× can be achieved.

With a SIMD speedup of 2.3× for hashing and 1.4× for probing, one may expect an
overall speedup in between. However, as is shown in Figure 8(d) the performance gains
almost vanish for TPC-H join queries. This happens even though the majority of the
time (55% and 65%) is spent in SIMD-optimized primitives. The reason for this behav-
ior can be found in Figure 9. With a growing working set, gains from SIMD diminish
and the execution costs are dominated by memory latency. SIMD is only beneficial
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Figure 9: Join Probe – Interaction of working set size and cost per tuple during Tectorwise
hash table lookup

when all data fits into the cache. We are not the first to observe this phenomenon: Poly-
chroniou et al. [149] found this effect in their study of application of SIMD to database
operators.

2.4.3 Compiler Auto-Vectorization

We manually rewrote Tectorwise primitives using SIMD intrinsics. Given that the
code of most primitives is quite simple, one may reasonably ask whether compilers can
do this job automatically. We tested the GCC 7.2, Clang 5.0, and ICC 18 compilers. Of
these, only ICC was able to auto-vectorize a fair amount of primitives (and only with
AVX-512). Figure 10 shows how successful ICC was in relevant paths for query pro-
cessing. Its vectorized variant reduces the observed number of instructions executed per
tuple by between 20% to 60%. By inspecting traces of the executed code, we confirmed
that automatic vectorization was applied to hashing, selection, and projection primitives.
Hash table probing and aggregation, however, were not transformed. We also show a
variant with automatic and manual SIMD application combined, which has a benefit for
Q3 and Q9.
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Figure 10: Compiler Auto-Vectorization – (ICC 18)
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Unfortunately, these automatic SIMD optimizations do not yield any significant im-
provements in query runtime. Automatic vectorization alone hardly creates any gains
but even introduces cases where the optimized code becomes slower. This means that
even though primitives can be auto-vectorized, this is not yet a fire-and-forget solution.

2.4.4 Summary

We found with AVX-512 it is often straightforward to translate scalar code to data-
parallel code, and observed performance gains of up to 8.4× in micro-benchmarks.
However, for the more complicated TPC-H queries, the performance gains are quite
small (around 10% for join queries). Fundamentally, this is because most OLAP queries
are bound by data access, which does not (yet) benefit much from SIMD, and not by
computation, which is the strength of SIMD. Coming back to the comparison between
data-centric compilation and vectorization, we therefore argue that SIMD does not shift
the balance in favor of vectorization much7.

2.5 I N T R A - Q U E RY PA R A L L E L I Z AT I O N

Given the decade-long trends of stagnating single-threaded performance and growing
number of CPU cores—Intel is selling 28 cores (56 hyper-threads) on a single Xeon
chip—any modern query engine must make good use of all available cores. In the
following, we discuss how to incorporate parallelism into the two query processing
models.

2.5.1 Exchange vs. Morsel-Driven Parallelism

The original implementations of VectorWise and HyPer use different approaches.
VectorWise uses exchange operators [7]. This classic approach [54] keeps its query
processing operators like aggregation and join largely unaware of parallelism. HyPer,
on the other hand, uses morsel-driven parallelism, in which joins and aggregations use
shared hash-tables and are explicitly aware of parallelism. This allows HyPer to achieve
better locality, load-balancing, and thus scalability, than VectorWise [97]. Using the
20 hyper-threads on our 10-core CPU, we measured an average speedup on the five
TPC-H queries of 11.7× in HyPer, but only 7.2× in VectorWise. The parallelization
framework is, however, orthogonal to the query processing model and we implemented
morsel-driven parallelization in both Tectorwise and Typer, as it has been shown to scale
better than exchange operators [97].

Morsel-driven parallelism was developed for HyPer [97] and can therefore be imple-
mented quite straightforwardly in Typer: The table scan loop is replaced with a parallel

7 We note that the benefit of SIMD can be larger when data is compressed [91] and on vector-oriented CPUs like Xeon Phi (see
Section 2.6).
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Threads Typer
ms

Typer
speedup

Tectorwise
ms

Tectorwise
speedup

Ratio

Q1 1 4426 1.0 7871 1.0 0.56
Q1 10 496 8.9 867 9.1 0.57
Q1 20 466 9.5 708 11.1 0.66

Q6 1 1511 1.0 1443 1.0 1.05
Q6 10 243 6.2 213 6.8 1.14
Q6 20 236 6.4 196 7.4 1.20

Q3 1 9754 1.0 7627 1.0 1.28
Q3 10 1119 8.7 913 8.4 1.23
Q3 20 842 11.6 743 10.3 1.13

Q9 1 28086 1.0 20371 1.0 1.38
Q9 10 3047 9.2 2394 8.5 1.27
Q9 20 2525 11.1 2083 9.8 1.21

Q18 1 13620 1.0 18072 1.0 0.75
Q18 10 2099 6.5 2432 7.4 0.86
Q18 20 1955 7.0 2026 8.9 0.97

Table 4: Multi-Threaded Execution – TPC-H SF=100 on Skylake (10 cores, 20 hyper-
threads)

loop and shared data structures like hash tables are appropriately synchronized similar
to HyPer’s implementation [97, 100].

For Tectorwise, it is less obvious how to use morsel-driven parallelism. The runtime
system of Tectorwise creates an operator tree and exclusive resources for every worker.
To achieve that the workers can work together on one query, every operator can have
shared state. For each operator, a single instance of shared state is created. All workers
have access to it and use it to communicate. For example, the shared state for a hash join
contains the hash-table for the build side and all workers insert tuples into it. In general,
the shared state of each operator is used to share results and coordinate work distribution.
Additionally, pipeline breaking operators use a barrier to enforce a global order of sub-
tasks. The hash join operator uses this barrier to enforce that first all workers consume
the build side and insert results into a shared hash table. Only after that, the probe phase
of the join can start. With shared state and a barrier, the Tectorwise implementation
exhibits the same workload balancing parallelization behavior as Typer.

2.5.2 Multi-Threaded Execution

We executed our TPC-H workload on scale factor 100 (ca. 100 GB of data). Table 4
shows runtimes and speedups in comparison with single-threaded execution. Using the
10 physical cores of our Skylake CPU, we see speedups between 8× and 9× for Q1, Q3,



26 Q U E RY E N G I N E S : TO V E C TO R I Z E O R TO C O M P I L E ?

Typer
ms

Tectorwise
ms

Ratio

Q1 923 1184 0.78
Q6 808 773 1.05
Q3 1405 1313 1.07
Q9 3268 2827 1.16
Q18 2747 2795 0.98

Table 5: SSD Results

and Q9 in both systems. Given that modern CPUs reduce clock rates significantly when
multiple threads are used these results are close to perfect scalability. For the scan query
Q6 the speedup is limited by the available read memory bandwidth, and the large-scale
aggregation of Q18 approaches the write bandwidth.

We also conducted these experiments on AWS EC2 machines and found that both sys-
tems scale equally well. However, we observe that when we use a larger EC2 instance
to speed up query execution, the price per query rises. For example, the geometric
mean over our TPC-H queries for a m5.2xlarge instance with 8 vCPUs is 0.0002$ per
query (2027 ms runtime). On an instance with 48 cores it is 0.00034$ per query (534
ms runtime). So in this case, running queries 4× faster costs 1.7× more.

Tectorwise and Typer have similar scaling behavior. Nevertheless, the “Ratio” col-
umn of Table 4, which is the quotient of the runtimes of both systems, reveals an in-
teresting effect: For all but one query, the performance gap between the two systems
becomes smaller when all 20 hyper-threads are used8. For the join queries Q3 and Q9,
the performance benefit of Tectorwise is cut in half, and Tectorwise comes closer to
Typer for Q1 and Q18. This indicates that hyper-threading is effective at hiding some
of the downsides of microarchitecturally sub-optimal code.

2.5.3 Out-Of-Memory Experiments

To compare Tectorwise and Typer at maximum speed, all measurements so far were
in-memory (i.e., all table data was present in main memory). Large OLAP databases
often exceed main memory capacity, which is why we also measured the impact of
fetching the data from secondary storage. To do this, we stored the table data in a RAID
5 array of 3 SATA SSDs providing 1.4 GB/s read bandwidth instead of main memory,
which has a bandwidth of 55 GB/s. Table 5 shows the runtimes with 20 threads on scale
factor 100 when data is read from secondary storage. Comparing these with the in-
memory results (cf. Table 4), we can observe that the performance differences between
the two query engines are slightly smaller but still noticeable (“Ratio” moves closer to

8 Q6 is memory bound and is the only exception. Typer’s branch-free selection implementation consumes
more memory bandwidth resulting in 20% lower performance at high thread counts.
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Intel Skylake AMD Threadripper Intel Knights Landing

Model i9-7900X 1950X Phi 7210
Cores (SMT) 10 (x2) 16 (x2) 64 (x4)
Issue width 4 4 2
SIMD [bit] 2×512 2×128 2×512
Clock rate [GHz] 3.4-4.5 3.4-4.0 1.2-1.5
L1 cache 32 KB 32 KB 64 KB
L2 cache 1 MB 1 MB 1 MB
LLC 14 MB 32 MB (16 GB)
List price [$] 989 1000 1881
Launch Q2’17 Q3’17 Q4’16
Mem BW [GB/s] 58 56 68

Table 6: Hardware Platforms – used in experiments.

one). Furthermore, as expected, the performance of the scan-dominated Q1 and Q6 are
more affected by the slower bandwidth than the performance of the join and aggregation
queries. Overall, we find that our in-memory analysis applies to out-of-memory settings
with modern I/O devices.

2.6 H A R DWA R E

In previous experiments, we solely measured on Intel’s latest microarchitecture Sky-
lake. To find out whether our results also hold for other hardware platforms, we now
also look at AMD with its recent Zen microarchitecture and Intel’s Phi product line.

2.6.1 Intel Skylake X versus AMD Threadripper

Table 6 shows the technical specifications for our Intel and AMD CPUs. Intel Skylake
and AMD Threadripper cost almost the same, which directly allows comparing perfor-
mance per dollar. Both systems also posses an almost equal memory bandwidth. How-
ever, the AMD Threadripper features 16 compute cores, clocked at maximally 4.0 GHz,
while the Intel Skylake clocks at a higher rate of 4.5 GHz but contains only 10 cores.
The differences between these processors is not coincidental but rather represents the
design choices of the overall CPU product palettes of AMD and Intel. AMD offers
more cores per dollar, but has only a quarter of computational SIMD throughput.

In terms of query processing performance our experiments show that both CPU mod-
els are roughly on par in absolute performance. Figure 11 shows the performance (in
queries / second) for our experimental queries and systems both on Skylake and on
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Figure 11: Skylake vs. Threadripper. – SF=100

Threadripper. As both processors have a different core counts the graphs are normal-
ized on the x-axis to show which percentage of the available cores was used to achieve
the runtime. Notably, the performance of both CPUs is very similar for Q6 and Q18 and
the remaining queries are still quite similar (Q1 < 20%, Q3 < 25%, Q9 < 40%). Also
the relative performance of Typer and Tectorwise are quite similar. The join queries
Q3 and Q9 and the selective scan in Q6 are processed faster by Tectorwise. Typer has
an advantage on the computational query Q1. Overall, the performance characteristics
two platforms are quite similar and the relative performance between the two hardware
platforms is almost the same on both CPUs.

The only significant difference between the two platforms is that, although both plat-
forms offer 2-way Simultaneous Multi-Threading (SMT), Intel’s hyper-threading im-
plementation seems to be much better. On the Skylake, we see a performance boost
from hyper-threading for all queries. On the AMD system, the benefit of SMT is ei-
ther very small, and for some queries the use of hyper-threads results in a performance
degradation.

2.6.2 Knights Landing (Xeon Phi)

Despite being from two different hardware manufacturers, Skylake and Threadripper
are quite similar. This cannot be said of the second generation of Intel’s Xeon Phi
product line. This microarchitecture is also called Knights Landing and is designed
as a processor for high-performance computing (HPC). It is an integrated many-core
architecture: There are 64 to 72 cores on each chip, but every core is relatively slow
compared to Xeon cores. On the plus side, each core is equipped with two 512-bit
vector processing units with an aggregate capacity of multiple TFLOPs. That makes it
attractive for HPC applications.

From a database systems perspective, Knights Landing seems promising. Main mem-
ory can directly be accessed using six DDR4 memory channels (in contrast to GPUs
data does not have to copied through PCIe). Each core features a 64 KB L1 cache and
a 1 MB L2 cache that is shared with one neighboring core. Additionally, 16 GB of high-
bandwidth memory, with a bandwidth of around 300 GB per second, is available. The
available memory, number of cores, and the fact that many SIMD resources are available
make the Knights Landing processor seem like a perfect OLAP machine.
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Figure 12: Skylake versus Knights Landing – SF=100.

Naturally, we want to explore this machine’s qualities and see how Tectorwise and
Typer perform in this scenario.

For our experiments on Knights Landing we configured the high-bandwidth memory
as a hardware-managed L3 cache and expose all CPUs as one NUMA node (Quadrant
Mode). A comparison of query processing performance of Knights Landing against
Skylake is shown in Figure 12. Without any changes to the code we observe about the
join queries Q3 and Q9 that Knights Landing’s execution performance is from 0 to 25%
higher than Skylake’s. The relative performance of Tectorwise and Typer is similar on
both CPUs.

For query Q18 Knights Landing’s performance is about 20% lower. On query Q1 it
is about 30% lower. Finally, on Q6 Knights Landing is up to 2× faster. Recall that on
Skylake query Q6 is bandwidth bound. Thus the extra 2 DDR4 channels of Knights
Landing combined with the high-bandwidth memory as cache provide the required re-
sources to get ahead of the Skylake processor. This measurement, however, must be
seen in perspective: Each of our measurements is executed repeatedly. The cache of
16 GB, which can hold the entire working set of query Q6, boosts the performance unre-
alistically. In a real workload the cache would be shared with other queries which would
likely evict much of query Q6’s data. As a frame of reference one may use our measure-
ment of query Q6 with the hardware configured not to have an L3 cache. In that case
Knights Landing’s Q6 performance is only 10% higher than the respective performance
on Skylake. In a mixed workload one can expect the difference to be between these
two. As a summary up to this point, with some queries being slightly faster and others
slightly slower than Skylake, Knights Landings’s performance seems not that great.

To be fair, this platform is designed for heavy use of SIMD instructions. Therefore,
we need to take the measurements with manual SIMD optimizations into account. We
observe that Knights Landing is able to execute a join query up to 50% faster than
Skylake. On the selection query Q6 even a factor of almost 3× is achieved (although
the same remark as for the scalar variant of Q6 applies). However, when taking a step
back and looking at the whole performance picture, we also need to take the cost of
each processor into account. Unfortunately, Knights Landing comes at almost twice the
price of our Intel and AMD processors. Thus when the performance is broken down to
execution speed per dollar, the commodity CPUs come out on top.
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2.7 OT H E R F AC TO R S

So far, we have focused on OLAP workloads and found only moderate performance
differences between the two model—in particular, when properly parallelized. The per-
formance differences are not large enough to make a general recommendation whether
to use vectorization or compilation. Therefore, as a practical matter, other factors like
OLTP performance or implementation effort, which we discuss in this section, may be
of greater importance.

2.7.1 OLTP and Multi-Language Support

The vectorized execution model achieves efficiency when many vectors of values are
processed, which is almost always the case in OLAP, but not in OLTP, where a query
might only touch a single tuple. For OLTP workloads, vectorization has little benefit
over traditional Volcano-style iteration. With compilation, in contrast, it is possible to
compile all queries of a stored procedure into a single, efficient machine code fragment.
This is a major benefit of compilation for OLTP and HTAP systems. Despite already
having a modern vectorized engine (Apollo [92, 93]), the Microsoft SQL Server team
felt compelled to additionally integrate the compilation-based engine Hekaton [48].

Compilation can also be highly beneficial for integrating user-defined functions and
multiple languages into the same execution environment [32, 136, 165].

2.7.2 Compilation Time

A disadvantage of code generation is the risk of compilation time dominating execu-
tion time [185]. This can be an issue in OLTP queries, though in transactional workloads
it can be countered by relying on stored procedures, in which case code-generation can
be done ahead of time. However, compilation time can also become large if the gen-
erated code is large because (optimizing) LLVM compile time is often super-linear to
code size. OLAP queries that consist of many operators will generate large amounts of
code, but also a small SQL query such as SELECT * FROM T can produce a lot of code if
table T has thousands of columns, as each column leads to some code generation. Real-
world data-centric compilation systems take mitigating measures against this. HyPer
switches off certain LLVM optimization passes such as register allocation and replaces
them by its own more scalable register allocation algorithm, and even contains a LLVM
IR interpreter that is used to execute the first morsels of data; if that is enough to answer
the query, full LLVM compilation is omitted [84]. This largely obviates this downside
of compilation—but comes at the cost of additional system complexity. Spark falls back
to interpreted tuple-at-a-time execution if a pipeline generates more than 8 KB Java byte
code.
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2.7.3 Profiling and Debuggability

A practical advantage of vectorized execution is that detailed profiling is possible
without slowing down queries, since getting clock cycle counts for each primitive adds
only marginal overhead, as each call to the function works on a thousand values. For
data-centric compilation, it is hard to separate the contribution of the individual rela-
tional operators to the final execution time of a pipeline, though it could be done using
sample-based code profiling, if the system can map back generated code lines to the
relational operator in the query plan responsible for it. For this reason it is currently
not possible in Spark SQL to know the individual contributions to execution time of
relational operators, since the system can only measure performance on a per-pipeline
basis.

2.7.4 Adaptivity

Adaptive query execution, for instance to re-order the evaluation order of conjunctive
filter predicates or even joins is a technique for improving robustness that can compen-
sate for (inevitable) estimation errors in query optimization. Integrating adaptivity in
compiled execution is very hard; the idea of adaptive execution works best in systems
that interpret a query—in adaptive systems they can change the way they interpret it dur-
ing runtime. Vectorized execution is interpreted, and thus amenable for adaptivity. The
combination of fine-grained profiling and adaptivity allows VectorWise to make various
micro-adaptive decisions [154].

We saw that VectorWise was faster than Tectorwise on TPC-H Q1 (see Table 1); this
is due to an adaptive optimization in the former, similar to [58], that it not present in the
latter. During aggregation, the system partitions the input tuples in multiple selection
vectors; one for each group-by key. This task only succeeds if there are few groups in
the current vector; if it fails the system exponentially backs off from trying this opti-
mization in further vectors. If it succeeds, by iterating over all elements in a selection
vector, i.e. all tuples of one group in the vector, hash-based aggregation is turned into
ordered aggregation. Ordered aggregation then performs partial aggregate calculation,
keeping e.g. the sum in a register which strongly reduces memory traffic, since updat-
ing aggregate values in a hash table for each tuple is no longer required. Rather, the
aggregates are just updated once per vector.

2.7.5 Implementation Issues

Both models are non-trivial to implement. In vectorized execution the challenge is
to separate the functionality of relational operators in control logic and primitives such
that the primitives are responsible for the great majority of computation time (see Sec-
tion 2.1.1). In compiled query execution, the database system is a compiler and consists
of code that generates code, thus it is harder to comprehend and debug; especially if the
generated code is quite low-level, such as LLVM IR. To make code generation main-
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tainable and extensible, modern compilation systems introduce abstraction layers that
simplify code generation [165] and make it portable to multiple backends [136]. For
HyPer, some of these abstractions have been discussed in the literature [124], while
others have yet to be published.

It is worth mentioning that vectorized execution is at some disadvantage when sort-
keys in order by or window functions are composite (consist of multiple columns). Such
order-aware operations depend on comparison primitives, but primitives can only be
specialized for a single type (in order to avoid code explosion). Therefore, such com-
parisons must be decomposed in multiple primitives, which requires a (boolean) vector
as interface to these multiple primitives. This extra materialization costs performance.
Compiled query execution can generate a full sort algorithm specifically specialized to
the record format and sort keys at hand.

2.7.6 Summary

As a consequence of their architecture and code structure compilation and vectoriza-
tion have distinct qualities that are not directly related to OLAP performance:

OLTP
Language
Support

Compilation
Time

Profiling Adaptivity Implementation

Compilation X X (X) Indirection
Vectorization X X X Constraints

On the one hand, compiled queries allow for fast OLTP stored procedures and seam-
lessly integrating different programming languages. Vectorization, on the other hand,
offers very low query compile times, as primitives are precompiled: As a result of this
structure, parts of a vectorized query can be swapped adaptively during runtime and
profiling is easier. Finally, both systems have their own implementation challenges: Im-
plementing operators with code generation introduces an additional indirection, whereas
vectorization comes with a set of constraints on the code, which can be complicated to
handle.

2.8 B E YO N D B A S I C V E C TO R I Z AT I O N A N D DATA -
C E N T R I C C O D E G E N E R AT I O N

2.8.1 Hybrid Models

Vectorization and data-centric code generation are fundamentally different query pro-
cessing models and the applied techniques are mostly orthogonal. That means that a
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Figure 13: Design Space Between Vectorization and Compilation – hybrid models integrate
the advantages of the other approach.

design space, as visualized in Figure 13, exists between them. Many systems com-
bine ideas from both paradigms in order to achieve the “best of both worlds”. We first
describe how vectorization can be used to improve the performance of the compilation-
based systems HyPer and Peloton, before discussing how compilation can help vector-
ization.

In contrast to other operators in HyPer, scans of the compressed, columnar Data
Block format [91] are implemented in template-heavy C++ using vectorization and with-
out generating any code at runtime. Each attribute chunk (e.g., 216 values) of a Data
Block may use a different compression format (based on the data in that block). Us-
ing the basic data-centric compilation model, a scan would therefore have to generate
code for all combinations of accessed attributes and compression formats—yielding
exponential code size growth [91]. Besides compilation time, a second benefit of us-
ing vectorization-style processing in scans is that it allows utilizing SIMD instructions
where it is most beneficial (Section 2.4). Since, Data Blocks is the default storage data
format, HyPer (in contrast to Typer) may be considered a hybrid system that uses vec-
torization for base table selections and decompression, and data-centric code generation
for all other operators.

By default, data-centric code generation fuses all operators of the same pipeline into
a single code fragment. This is often beneficial for performance, as it avoids writing in-
termediate results to cache/memory by keeping the attributes of the current row in CPU
registers as much as possible. However, there are also cases where it would be better
to explicitly break a single pipeline into multiple fragments—for example, in order to
better utilize out-of-order execution and prefetching during a hash join. This is the key
insight behind Peloton’s relaxed operator fusion [117] model, which selectively intro-
duces explicit materialization boundaries in the generated code. By batching multiple
tuples, Peloton can easily introduce SIMD and software prefetching instructions [117].
Consequently, Peloton’s pipelines are shorter and their structure resembles vectorized
code (see Figure 13). If the query optimizer’s decision about whether to break up a
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System Pipelining Execution Year

System R [108] pull interpretation 1974
PushPull [120] push interpretation 2001
MonetDB [19] n/a vectorization 1996
VectorWise [17] pull vectorization 2005
Virtuoso [18] push vectorization 2013
Hique [87] n/a compilation 2010
HyPer [121] push compilation 2011
Hekaton [48] pull compilation 2014

Table 7: Query Processing Models – and pioneering systems.

pipeline is correct (which is non-trivial [101]), Peloton can be faster than both standard
models.

The two previous approaches use vectorization to improve an engine that is princi-
pally based on compilation. Conversely, compilation can also improve the performance
of vectorized systems. Sompolski et al. [171], for example, observed that it is sometimes
beneficial to fuse the loops of two (or more) VectorWise-style primitives into a single
loop—saving materialization steps. This fusion step would require JIT compilation and
result in a hybrid approach, thus moving it towards compilation-based systems in Fig-
ure 13. However, to the best of our knowledge, this idea has not (yet) been integrated
into any system.

Tupleware is a data management system focused on UDFs, specifically a hybrid be-
tween data-centric and vectorized execution, and uses a cost model and UDF-analysis
techniques to choose the execution method best suited to the task [32].

Apache Impala uses a form of compiled execution, which, in a different way, is also
a hybrid with vectorized execution [186]. Rather than fusing relational operators to-
gether, they are kept apart, and interface with each other using vectors representing
batches of tuples. The Impala query operators are C++ templates, parameterized by
tuple-specific functions (data movement, record access, comparison expressions) in, for
example, a join. Impala has default slow ADT implementations for these functions.
During compilation, the generic ADT function calls are replaced with generated LLVM
IR. The advantages of this approach is that (unit) testing, debugging and profiling can
be integrated easily—whereas the disadvantage is that by lack of fusing operators into
pipelines makes the Impala code less efficient.

2.8.2 Other Query Processing Models

Vectorization and data-centric compilation are the two state-of-the-art query process-
ing paradigms used by most modern systems, and have largely superseded the tradi-
tional pull-based iterator model, which effectively is an interpreter. Nevertheless, there
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are also other (more or less common) models. Before discussing the strengths and
weaknesses of these alternative approaches, we taxonomize them in Table 7. We clas-
sify query processing paradigms regarding (1) how/whether pipelining is implemented,
and (2) how execution is performed. Pipelining can be implemented either using the
pull (next) interface, the push (produce/consume) interface, or not at all (i.e., full mate-
rialization after each operator). Orthogonally to the pipelining dimension, we use the
execution method (interpreted, vectorized, or compilation-based) as the second classifi-
cation criterion. Thus, in total there are 9 configurations, and, as Table 7 shows, 8 of
these have actually been used/proposed.

Since System R, most database systems avoided materializing intermediate results us-
ing pull-based iteration. The push model became prominent as a model for compilation,
but has also been used in vectorized and interpreted engines. One advantage of the push
model is that it enables DAG-structured query plans (as opposed to trees), i.e., an oper-
ator may push its output to more than one consumer [120]. Push-based execution also
has advantages in distributed query processing with Exchange operators, which is one
of the reasons it has been adopted by Virtuoso [18]. One downside of the push model is
that it is slightly less flexible in terms of control flow: A merge-sort, for example, has to
fully materialize one input relation. Some systems, mostly notably MonetDB [20], do
not implement pipelining at all—and fully materialize intermediate results. This simpli-
fies the implementation, but comes at the price of increased main memory bandwidth
consumption.

In the last decade, compilation emerged as a viable alternative to interpretation and
vectorization. As Table 7 shows, although compilation can be combined with all 3
pipelining approaches, the push model is most widespread as it tends to result in more
efficient code [177]. One exception is Hekaton [48], which uses pull-based compilation.
An advantage of pull-based compilation is that it automatically avoids exponential code
size growth for operators that call consume more than once. With push-based compila-
tion, an operator like full outer join that produces result tuples from two different places
in the source code, must avoid inlining the consumer code twice by moving it into a
separate function that is called twice.

2.9 C O N C L U S I O N S

To our surprise, the performance of vectorized and data-centric compiled query exe-
cution is quite similar in OLAP workloads. In the following, we summarize some of
our main findings:

< Computation: Data-centric compiled code is better at computationally-intensive queries,
as it is able to keep data in registers and thus needs to execute fewer instructions.

> Parallel data access: Vectorized execution is slightly better in generating parallel
cache misses, and thus has some advantage in memory-bound queries that access
large hash-tables for aggregation or join.
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= SIMD has lately been one of the prime mechanisms employed by hardware architects
to increase CPU performance. In theory, vectorized query execution is in a better
position to profit from that trend. In practice, we find that the benefits are small as
most operations are dominated by memory access cost.

= Parallelization: With find that with morsel-driven parallelism both vectorized and
compilation based-engines can scale very well on multi-core CPUs.

= Hardware platforms: We performed all experiments on Intel Skylake, Intel Knights
Landing, and AMD Ryzen. The effects listed above occur on all of the machines
and neither vectorization nor data-centric compilation dominates on any hardware
platform.

Besides OLAP performance, other factors also play an important role. Compilation-
based engines have advantages in

< OLTP as they can create fast stored procedures and

< language support as they can seamlessly integrate code written in different languages.

Vectorized engines have advantages in terms of

> compile time as primitives are pre-compiled,

> profiling as runtime can be attributed to primitives,

> debugging as query plan interpreters provide sufficient context, and

> adaptivity as execution primitives can be swapped mid-flight.



3 FA S T C O D E G E N E R AT I O N A N D
C O M P I L AT I O N

Excerpts of this chapter have been published in [76].

Query compilation is a widely adopted approach for relational database systems [4,
37, 140, 186, 60]. Creating machine code for every query removes interpretation over-
head and allows the database system to extract the highest performance from the under-
lying hardware. So far, high processing performance was most relevant in the field of
in-memory databases [32, 33, 71, 80, 83, 87, 117, 121, 137, 136, 146]. Yet, the growing
bandwidth capabilities of solid state drives and non-volatile memory (also with large
bandwidth) make query compilation attractive for a growing field of hardware configu-
rations [123, 156, 61].

Compilation works well for large analytical workloads. However, for some use-cases
the extra time spent on compilation—the latency overhead of compilation—can be a
problem. For example, interactive data exploration tools send many queries to the un-
derlying database system; often even multiple queries for a single user interaction. Any
overhead from compilation delays the query response and, especially with a large num-
ber of queries per interaction, becomes noticeable to the user and causes them to idly
wait. Vogelsgesang et al. reported that for the interactive data exploration tool Tableau
some queries, even after careful tuning, still take multiple seconds just in compilation
step of the underlying database system Hyper [185]. The Northstar project also encoun-
tered the issue. They observed that compilation "has an up-front cost, which can quickly
add up" [86] and thus severely deteriorates the interactive user experience.

This chapter presents multiple components for compiling query engines to achieve
low query latency; that is, to minimize the total time spent for query compilation and
execution. Compile time must be addressed in the whole compilation pipeline, thus
we address every component (cf., Figure 14). We introduce 1 Tidy Tuples, a fast code
generation framework, 2 Umbra IR, an efficient program representation, and 3 Flying
Start, a compiler to quickly generate machine code. All components are integrated

Optimizing 
Compiler (LLVM)

Query Plan Query Result

✓
Executable

S R
 100
1010
01

Tidy Tuples
Code Generation

Flying Start
Compiler

Umbra IR
Program Representation

1

2 3

Figure 14: Umbra’s low-latency path from query plan to result. – In this chapter, we explain
how Tidy Tuples, Umbra IR, and Flying Start minimize the time each query spends
on this path—for short-running and long-running queries alike.
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into the database system Umbra [123] and our experiments show that together, they
effectively reduce compilation time and maintain high query execution speed.

The first step toward low query latency is a fast code generator. We present 1 the
Tidy Tuples relational code generator framework. It lowers algebraic operators to Umbra
IR in a single pass for low compilation time and in certain cases utilizes pre-compiled
code to avoid compilation time all-together. Tidy Tuples is a latency-streamlined design
that achieves code generation up to three orders of magnitude faster than competitors
(e.g., 1000× faster than LB2 [177]) while still providing a clean, type-safe, and easy to
understand interface.

The question of how to build a code generator is not yet settled [177, 165, 164], as the
generator must handle the complexity of relational operators, many SQL types, NULL
values, and much more. To handle complexity, a code generator should adhere to the
principles of good software engineering. Tahboub et al. found an elegant way to achieve
this. With the LB2 system [177] they built a well-architected query interpreter in Scala.
The interpreter is based on the data-centric model, but uses callback functions to struc-
ture communication between operators. Employing callback functions is a structural
advancement that provides the data-centric model with the clear structure of Volcano-
style interpreters. Through extensions in the Scala compiler they are able to transform
this interpreter into a code generator so that they get a system with a type safe, easy to
read, well-architected code generator.

Unfortunately, the LB2 approach requires very long code generation times, which
add to query latency. It fundamentally limits query execution speed to three queries per
second. The authors report 299 ms for code generation geometric mean over all TPC-H
queries, and that is even before the compiler started generating machine code, so the
approach is not viable for low query latencies. We transfer the essence of the LB2 code
generator architecture to the systems language C++ and into our Tidy Tuples design.
This way, Tidy Tuples obtains a clear structure, yet achieves code generation more than
1000× faster. Additionally, we contribute abstractions on top of the code generator
that decompose all issues of code generation into a layered structure.

The next component for low query latency is 2 Umbra IR, a custom intermediate
program representation. It is modelled after LLVM’s intermediate representation, but
its data structures are optimized for writing and reading speed. Tidy Tuples uses Umbra
IR as target for the code generator and source for all compilation backends. This reduces
the time to generate programs and to transform them to executables. An alternative, the
commonly used intermediate representation from the LLVM compiler framework, is
expressive and agile. In the compiler framework, it is used as the common format which
all optimization passes edit during compilation. However, we found that its flexibility is
counter-productive for query latency. Therefore, with Umbra IR, we trade off the ability
to arbitrarily transform programs for optimal writing and reading speed.

Lastly, we introduce 3 the novel Flying Start compilation backend which transforms
Umbra IR directly into machine-code. Flying Start reduces query latency in two ways:
It minimizes time spent for compilation as it generates machine-code very quickly. Fur-
ther, it reduces the time spent for execution as the speed of the created machine-code is
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Figure 15: Best of Both Worlds – Umbra’s new query engine combines fast compilation, pre-
viously reserved for bytecode interpreters, with the fast execution speed of native
instructions. For example, in TPC-H query 2 the execution time compared to all
other options is greatly reduced. SF=1, Threads1=4

close to that of thoroughly optimized code. The Flying Start backend is integrated into
Umbra through the adaptive execution technique [84]. This allows Umbra to switch dy-
namically between low-latency compilation with Flying Start and highest-speed query
execution by optimizing compilation with the LLVM compiler framework.

Adaptive execution was introduced first to the HyPer query engine. For query ex-
ecution it has a choice between using intensively optimized code for high-speed exe-
cution and two low-latency compilation backends. For low latency, HyPer can either
use a bytecode interpreter or the optimizing compiler LLVM with most optimizations
turned off (turning optimizations on takes too much compilation time for short-running
queries). In the example of TPC-H query 2, HyPer’s low-latency choices are the top
two in Figure 15. It can either prioritize fast execution, but spend more time in compila-
tion with the LLVM backend, or use the bytecode interpreter for fast compilation at the
cost of slower execution. Unfortunately, in cases like this, both options have significant
shortcomings: Compilation time with LLVM is not amortized and the bytecode inter-
pretation is so slow that it diminishes the gains from its fast compilation. Ultimately,
the query engine is stuck in a performance gap between interpretation and compilation,
with no great choice for low query latency.

With the Flying Start backend we show a solution for the low-latency spectrum, i.e.,
short-running queries. It generates code even faster than HyPer’s bytecode interpreter
and the resulting execution speed is on par with HyPer’s LLVM-generated code. The
Flying Start compilation backend, thus, is able to capture the best of both worlds: It
combines great compilation speed with great execution speed. Effectively, it closes the

1 Umbra and HyPer use a single thread for compilation and multiple threads for query execution.
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performance gap between the two execution options and therefore offers much lower
query latencies than previous approaches.

Tidy Tuples, Umbra IR, and the Flying Start backend represent the foundation of our
new database system Umbra. Together, these three components achieve query laten-
cies for short-running queries that previously were only possible using interpretation.
Overall, experimental results show that the triad is so effective at reducing latency that
Umbra reaches the latency realms of interpretation-based engines like DuckDB and
PostgreSQL, all while keeping the execution speed of state-of-the-art compiling sys-
tems like HyPer for long-running queries.

The chapter is organized as follows: Section 3.1 explains the code generator and the
Tidy Tuples design. Section 3.2 details how our custom intermediate representation
aides fast code generation. Section 3.3 outlines the Flying Start compiler and how it
achieves low compilation time. The impact of these latency optimizations on the per-
formance of Umbra is evaluated experimentally in Section 3.4. Section 3.5 discusses
related work, and Section 3.6 summarizes the main results of this work.

3.1 T I DY T U P L E S : A L OW- L AT E N C Y C O D E G E N -
E R AT I O N F R A M E W O R K

The initial component important for low latency is the code generator—the compo-
nent that lowers relational plans to imperative programs. For maximum speed, we pro-
pose to create programs in a single pass over the input. Unfortunately, performance
optimizations are often at odds with principles of good software engineering, e.g., sepa-
ration of concerns, readability, extensibility, and accessibility to newcomers. This also
applies to building a SQL database system. Such a system must be able to handle ar-
bitrarily complex SQL queries, handle many SQL types, and cope with the intricacies
of NULL values. These requirements are already complex, but paired with the need to
optimize for speed one can quickly clash with software engineering principles.

In this section we present our Tidy Tuples design for a relational code generator. It
caters to the need for speed, but also provides structure to adhere to principles of good
software engineering. Tidy Tuples is a toolbox of complementary components that are
organized into layers. It is a solid base to implement relational operators that are easy
to read and achieve fast execution.

To introduce the architecture, we first take a short look at the life of a query within a
compiling database system in the follwoing Section 3.1.1. Section 3.1.2 starts with an
overview of the layers in the toolbox and their contents. In Section 3.1.3, we demon-
strate the layers using a short example—peeling off abstractions step by step to provide
insight into how the layers fit together. This section shows most clearly how the query
plan is conceptually lowered in multiple steps. Finally, we discuss some important
details, including the SQLValue abstraction in Section 3.1.4 and the low-level code gen-
erator interface in Sections 3.1.5, 3.1.6, and 3.1.7.
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Figure 16: Compilation phases of the compiling system Umbra. – C++ compilation hap-
pens once when the DBMS binary is assembled. Query compilation occurs for every
query, thus happens many times during system runtime.

3.1.1 Background: Compilation Pipeline

Let us first give an overview of the life of a SQL query inside a compiling DBMS,
using the system Umbra as an example. A query is parsed to an abstract syntax tree,
which is then semantically analyzed and translated to relational algebra. The query
optimizer takes the relational algebra tree and creates an optimized physical plan. The
plan describes how to process data to obtain the result. All steps described up to here
are commonly found in any relational database system. Only the following steps are
specific to compiling query execution engines. From the optimized physical plan, the
code generator must create a program so that the execution of the program produces
the query result. To see an illustration of the process, find the query plan in the top left
corner of Figure 17.

Tidy Tuples translates the physical plan operator by operator. It instantiates an op-
erator translator for each algebraic operator which is responsible for generating code
that will execute its algebra operator. Conceptually, operator translators get tuples from
their child operators and pass control to each other following the produce/consume inter-
face [121]. During this translation, every translator appends instructions to a program.
Ultimately, all operator translators together create a program that will produce the query
result. Umbra represents these programs in a custom intermediate representation called
Umbra IR (see Section 3.2).

There are two options for converting a program from Umbra IR into an executable:
The low-latency Flying Start backend (see Section 3.3) or the LLVM-based optimizing
backend [94]. Both produce machine code which computes the query result when ex-
ecuted. Of all the steps involved in this process, the Tidy Tuples framework focuses
on translating algebraic execution plans into IR in a clear, modular, and maintainable
fashion. The remainder of this section explains in detail how Tidy Tuples structures the
code generator.

For the description of the Tidy Tuples framework, it is important to differentiate be-
tween the two compilation phases “system compile time” and “query compile time”
(cf., Figure 16). At system compile time the source code of the DBMS is compiled into
an executable (DBMS) binary. A user can start that binary to run the system. During
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Figure 17: Architecture for a low-latency code generation engine – In the Tidy Tuples code
generation framework each layer offers abstractions to simplify the layers above.

runtime the system accepts SQL queries, compiles a binary for each query, and runs
the query-specific binary to obtain the query result. The distinction between system
compile time and query compile time is relevant for the description of the Tidy Tuples
compilation framework. For example, Tidy Tuples relies on the C++ type system to en-
sure correctness of code generated at query compile time. Naturally, correctness checks
within the C++ type system already happen at system compile time (thus produce no
overhead at query compile time).

3.1.2 Layer Overview

The components of Tidy Tuples are arranged into the five logical layers shown in
Figure 17. Each layer acts as a level of abstraction and can use the tools of lower layers
to implement its functionality so that conceptually a query plan is lowered through the
layers.

• Operator Translators: The top-most layer contains algebra operator translators
which coordinate in produce-consume style [121].

• Data Structures: To handle algorithmic challenges, operator translators use com-
ponents from the data structure layer, e.g., hash tables (i.e., components that gen-
erate code to act on hash tables).

• Tuples: The tuples layer provides operations that work on multiple SQL values,
e.g., packing tuples into a memory efficient format and hashing.



3.1 T I DY T U P L E S : A L OW- L AT E N C Y C O D E G E N E R AT I O N F R A M E W O R K 43

• SQL Values: Operators use the SQL value layer to implement SQL data-type
specific parts in which operations on SQL types are performed. These operations
include addition, substring search, equality comparison, and many more. Further-
more, the SQL value layer offers tools to operate on SQL values with standard-
conform NULL-semantics.

• Codegen API: All these layers directly or indirectly use the Codegen layer to
append instructions to the output program. Codegen offers operations on low-
level types which are close to the hardware, e.g., Int8, UInt64, Double, Ptr<Int8>,
and also seamlessly integrates C++ types and functions. This is exposed through a
statically-typed interface, which ensures that, e.g., the result of a:Int8 + b:Int8

is again of type Int8. Furthermore, the Codegen layer provides constructs to
generate control flow.

Overall, these layers are structured from coarse-grained upper layers to fine-grained
lower layers. The upper layers perform a lot of work for one operation, e.g., insert
all tuples into a hash table, whereas lower layers perform little work for one operation.
Thus, operations on lower layers must emit only very few instructions into the program.
Conversely, operations in upper layers ultimately emit many instructions. However, this
does not mean that the implementation of an upper layer operation must be very lengthy
or emits many instructions directly. Through the Tidy Tuples layering scheme, they can
use components from lower layers so that the upper layer source code is concise and the
intent is expressed directly.

3.1.3 From Operators to Instructions

So far, the overview of the layers gave an abstract description of where tools belong
and how they interact. To make this more tangible, let us walk through snippets of
the code. The walk-through starts at the top layer, at an operator translator, and then
repeatedly zooms in on one element of the implementation at-a-time to reach the next
lower layer until it arrives at the Codegen layer. This should give insight into the code
structure in each layer, how the layers interact, and how they generate code in a single
fast pass.

The walk-through inspects the layers along the example of an in-memory hash-join.
At the top-most abstraction level the hash-join operator translator must take each incom-
ing tuple from the build side and insert it into a hash-table. The translator therefore
needs to generate code to handle many issues. It must hash the keys from the tuple
according to each attribute’s SQL type, it needs to find the spot in the hash-table data
structure where the tuple belongs, memory must be allocated for storing the tuple, and,
finally values must be moved into the allocated spot. Additionally, the source code that
implements all this should be well-structured, reader-friendly, and very fast at generat-
ing code.

Figure 18 shows the proposed Tidy Tuples implementation, which meets all these
requirements. Observe how the hash-join translator, in order to generate code, merely
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has to set up a hash-table2 (Line 5) and insert a tuple (Line 11). All further details are
delegated to lower layers. In the next lower layer, the data structure layer, the hash-table
insert function assembles the keys and values (Lines 20-21), computes a hash (Line 22),
finds the appropriate spot to insert (Line 25), and finally asks the tuple storage compo-
nent to place the tuple into that spot (Lines 27-28). So, again, the layer decomposes the
task and delegates to lower layers. The same mechanic repeats in the Tuples and the
SQL Value layer until the Codegen layer is reached. It is the type-safe foundation on
which all layers above rest.

Overall, the shown organization into layers results in well-structured source code that
separates and orders many concerns. Yet, it requires only a single pass over the physical
query plan to generate a program in low-level intermediate representation.

3.1.4 SQL Values

The explanation in the previous section uses the Codegen interface only for a simple
store instruction (and some arithmetic). This is one of the simplest operations inside a
SQL database system, but clearly, a DBMS needs to support more complex functionality
than that. Strings, dates, intervals, JSON, and fixed-point numerics offer many (some-
times) complex functions that need to be integrated into generated code. One option
would be to implement this functionality in the Codegen layer and provide layers above
that with the complex SQL types they need to work with. However, our design aims to
reduce complexity from top to bottom layers and to keep each layer simple. To keep the
Codegen layer simple, it only offers primitive types plus the means to operate on C++
types. Therefore, we implement the rich semantics of SQL types above the Codegen
layer in the SQL Value layer.

The main interface of the SQL Value layer is the SQLValue class. A SQLValue consists
of a NULL indicator, the value, and a SQL type specifier (e.g., Varchar, Integer). Its gen-
eral interface to invoke operations are the evaluateBinary and evaluateUnary functions
which apply any of the built-in functions. In addition, functions that are frequently used
by programmers are offered explicitly, e.g., equality comparison. This interface serves
two purposes. First, it bridges from the realm of the (at system compile time) generically
typed SQLValue, whose type is determined by the attached type specifier, into the realm
of the statically-typed Codegen. Second, it provides a single place that is responsible
for the intricacies of SQL values and operations. SQLValue handles nullability by also
carrying a NULL indicator, and all operations on SQLValues handle NULL propagation
as dictated by each specific operation. Furthermore, each operation provides overflow
checking and implicit type casting if appropriate.

2 Information Unit (IU) is effectively a reference to a column [118].
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Type Available Operations

(U)Int(8-64) + - * / % ~ & | ^ << >> ashr rotateL rotateR bswap crc32 == ...

Bool lnot && || select == ...

Double + - * / % pow == ...

Data128 build extract

Ptr<T> load store atomicLoad atomicStore atomicXchg atomicCmpXchg refMember

Table 8: Codegen primitive types – Type wrappers and operations on them available in code
generation API

3.1.5 Primitive Types for Code Generation

The SQL Values described in the previous section map SQL types to primitive types
and construct operations on SQL types from operations on primitive types. Codegen
offers a statically-typed interface to work with primitive types and other means to create
programs which we show in the following sections.

Most importantly, Codegen offers classes to generate code for primitive types and
uses C++ operator overloading to make it convenient to use. The types are modeled
after data types that modern CPUs provide and the basic types that are available in C++.
Table 8 lists those types and gives an overview of the main methods they provide to
generate code.

Any of the operations on the primitive types have a statically-typed interface. For
example, the result of a comparison of Doubles is a Bool and the Ptr<Int8>.load()

returns a Int8. This greatly helps to reduce bugs in code generation and reduces the
complexity burden on the programmer as they do not have to keep track of types while
implementing algorithms. To see this static type system in action, let us have a look
at the implementation of our hash function. It generates code to compute a hash of all
given SQLValues. As it operates on multiple SQLValues, it belongs to the Tuples layer.

1 # Tuples layer

2 // Hash.cpp, Hash values

3 UInt64 Hash::hashValues(vector<SQLValue> values) {

4 ... //Concat. all low-level types to 64bit integers

5 //Hash concatenated values into two 32-bit integers

6 UInt64 hash1(6763793487589347598);

7 UInt64 hash2(4593845798347983834);

8 for (UInt64 v : concatenatedValues) {

9 hash1 = hash1.crc32(v); hash2 = hash2.crc32(v);}

10 // Combine the two 32-bit hashes into a 64-bit hash

11 UInt64 hash = hash1 ˆ hash2.rotateRight(32);
12 hash *= 11400714819323198485;

13 ... // Hash the C++ types

14 return hash;

15 }
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Observe how the primitive types from the Codegen interface are used as regular vari-
ables (e.g., Line 9 and 12), and the implementation reads as if the hash function directly
acted on the values to hash them. This makes the implementation accessible to readers,
yet, when executed on, e.g., two 32-bit integers, the following IR code is generated:

1 %1 = zext i64 %int1; Zero extend to 64 bit
2 %2 = zext i64 %int2;
3 %3 = rotr i64 %2, 32; Rotate right
4 %v = or i64 %1, %3; Combine int1 and int2
5 %5 = crc32 i64 6763793487589347598, %v; First crc32
6 %6 = crc32 i64 4593845798347983834, %v; Scnd. crc32
7 %7 = rotr i64 %6, 32; Shift second part
8 %8 = xor i64 %5, %7; Combine hash parts
9 %hash = mul i64 %8, 11400714819323198485; Mix parts

What also becomes apparent in this example is that even though the implementation of
our hash function takes SQLValues as input the generated code is without any remainders
of these abstractions. It merely consists of the necessary instructions to perform the task,
which constitutes very compact code that can be translated and executed efficiently.

3.1.6 Host Language Integration

Previous sections explained how to conceptually lower high-level constructs such
as relational algebra operators, data structures, and SQL types to programs in Umbra
intermediate representation. This code generation process is already fast, as only a
single pass over the query plan is required. It is even faster, though, not to generate
code at all. Instead, in some situations, it is possible to call functions implemented in
the host language, previously compiled at system compile time, without any runtime
performance penalty.

To enable seamless integration between generated and precompiled code, Codegen
provides a system of proxies that lets us generate operations on any C++ class. We can
access data members and call member functions from generated code. Thus, for every
feature to implement, the proxy system offers a choice of whether to write code that
generates code or to implement the functionality in C++ and call it from generated code.
The advantage of the latter option is reduced code generation time.

The use of this technique is shown, e.g., in Figure 18 Line 25. Instead of generat-
ing code to create an entry in a hash-table, manage memory allocation, etc., we call a
precompiled C++ function. This reduces code generation time and removes complexity
from the code generator.

The proxy system is statically typed like the rest of Codegen and therefore offers a
fully typed view of C++ classes. It does not need to be created or maintained manually.
We generate proxies completely automatically during C++ compile time for a predefined
list of classes and functions.

The proxy system has the valuable property that it reduces query compile time by
incorporating precompiled snippets, yet does not sacrifice peak execution performance.
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A function call from generated code into C++ is already quite cheap, as no marshaling is
required (as, e.g., would be necessary when using the JVM). It does, however, come at a
slight cost at runtime because, e.g., register values must be saved, arguments transferred,
and the call stack managed. To avoid this call overhead, the proxy system allows that a
programmer can mark functions to be inlined. The Flying Start backend will ignore this
inlining marker and only profit from lower compilation time. Our optimizing backend,
which aims for peak performance, will react to the marker and inline the function at all
call sites, thus removing any calling overhead. This mechanism provides an elegant way
to implement functionality in C++, use it in generated code, reduce code generation and
compilation time, but without any runtime overhead.

3.1.7 Control Flow

In previous sections, we showed how to lower operations from complex to primitive
types in an architecture that creates clean code and a Codegen that enables fast code
generation. This section shows the last missing piece: How to generate control flow in
a type-safe interface directly into static single assignment (SSA) form. This form is the
preferred program representation for many compilers, especially for our fast compiler
Flying Start, which requires it to calculate value life spans (cf., Section 3.3.3). Gener-
ating SSA directly is important for compilation speed, as it removes the necessity to run
an extra compiler pass.

The Codegen provides classes for three control-flow constructs: If, Loop, and Function.
They need to handle two aspects: Basic blocks and PHI nodes. Umbra IR organizes in-
structions in basic blocks (see Section 3.2). During code generation, there is one current
block to which all operations append.

The first aspect is that control-flow constructs need to set the current basic block, so
that the following instructions are written to the right location. For example, the If first
chooses the then block and when the else block is requested sets it accordingly. When
the If goes out of scope, it wires all basic blocks together to produce the desired control
flow.

Second, Codegen needs to produce static single assignment form. This means that
there are no variables, only names for instruction results. As a substitute for multiple
variable assignment, PHI nodes are used. A PHI node is an instruction at the beginning
of a basic block and has multiple arguments. Depending on which basic block was
executed before the PHI node’s basic block, it chooses one of its arguments as its value.
This is used, for example, to choose values in the presence of control-flow without using
multiple variable assignments. So to produce static single assignment form, the control-
flow constructs offer facilities to construct PHI nodes when needed.

1 # Data Structures layer

2 // Perform a probe and use callback to processhits

3 void ChainingHashTable::probe(

4 Ptr<Proxy<HashTable>> table,

5 vector<SQLValue> key,
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6 FunctionRef<void(...)>& callback){

7 UInt64 hash = Hash::hashValues(key);

8 auto entry = Proxy<HashTable>::lookup::call(table, hash);

9 { // <-- create nested block

10 Loop<Ptr<UInt8>> loop("chain", entry.notNull(), {{entry}});

11 // get SSA handle

12 Ptr<UInt8> iter = loop.getLoopVar<0>();

13 // Compare requested key to the one found in ht

14 vector<SQLValue> found = keyStore.unpack(iter + header);

15 ConsumerScope::testValuesEq(key, found, loop.continueBlock());

16 // Process entry

17 callback(loop.cntBlk(), loop.breakBlk(), iter);

18 loop.continueSequence(); // Go to the next entry

19 Ptr<UInt8> next = Proxy<HashTable>::next::call(table, iter);

20 loop.done(next.notNull(), {next}); // Set next to new loop var

21 } /* <-- close nested block, destruct loop */

22 }

The code above demonstrates how both aspects are handled during a lookup in a
chaining hash table. Traversing the chain of hash-table entries is implemented with the
Loop construct. Within a nested block we instantiate an object of class Loop, named
loop. In its constructor, Loop creates a new basic block for the loop body and sets the
new block as the current block. The constructor arguments are a name for the loop for
debugging purposes, an entry criterion, and a list of variables that can be “updated” in
the loop.

Loops often need to update values in every iteration, for example, they iteratively
follow a pointer or increment a loop counter. In single static assignment form, however,
no values can be updated. Instead, the Loop class internally uses PHI nodes to pass
values to subsequent loop iterations and uses these to present a concept of loop variables
to the user (of the Loop class). In the example above, the constructor argument entry
is the initial value for the first loop variable. Inside the loop we access the first loop
variable with getLoopVar. Behind the scenes, this constructs a PHI node which also
manages updated values in later iterations. The value for the subsequent iteration is
then set in loop.done.

Besides PHI nodes the Loop class creates the loop control flow. The constructor gen-
erates the loop entry along with the entry criterion, in the example, the criterion was
that the entry is not null. The done function connects the last block to the loop head to
form a loop under the condition provided in loop.done. On destruction Loop create a
new basic block for after the loop and thus finalizes the control flow.

We observe that with the help of these control-flow constructs, the code that generates
code becomes easier to write and read. Additionally, they allow to directly create static
single assignment form in a type-safe manner.
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foo:
Functions

start:

yes:

no:

Basic
Blocks

FunArg Int32

Const Int32; 5

CmpGt Bool;  ,   

CondBr Void;  ,  ,

Const Bool; 0 

Ret Bool;   

Instructions

define i1 foo(i32 %x){
start:
%1 = cmpgt i32 5, %x
condbr %1, %yes %no
yes:

ret 1
no:

ret 0
}

Const Bool; 1

Ret Bool;  

Figure 19: Internal Structure of an Umbra IR Program – Instructions, basic blocks, and
functions live in contiguous memory so that 32-bit integers suffice for addressing.

3.2 U M B R A P R O G R A M R E P R E S E N TAT I O N

A second element important for query latency in the compilation pipeline are the
programs the code generator creates. Programs are the main artifact of the compilation
pipeline, thus it is important that the code generator is able to quickly write programs
and the backends can quickly read them.

To support this, we designed an intermediate (program) representation that we call
Umbra IR. It serves as intermediary between code generator and compilation backends.
We took special care that creating programs with Umbra IR is fast. Its data structures
are carefully tuned for low memory allocation cost and compactness of representation to
efficiently utilize processor caches. The reading speed of Umbra IR is optimized with a
low-overhead internal reference format and database-specific instructions. Overall, we
chose trade-offs towards low compile-time, yet still perform some optimizations on-the-
fly when a program is created.

In the following, we present Umbra IR’s internal data layout, the optimizations per-
formed on the IR, and database specific instructions.

3.2.1 Umbra IR Structure

Before going into detail of how Umbra IR contributes to low compilation times this
section gives an overview of the logical structure of IR programs. A program in Umbra
IR consists of functions, basic blocks, and instructions. Functions contain basic blocks
of which one is the entry point of the function—i.e., function execution starts there. The
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example in Figure 19 defines the function foo with the basic blocks start:, yes:, and
no:.

Basic blocks contain sequences of instructions to be executed in the given order. Each
basic block must be terminated by a control flow instruction, for example a conditional
branch as shown at the end of the start: block in Figure 19. The targets of branches are
again basic blocks, so the control flow during execution of a program is determined by
control flow instructions and the basic blocks they point to.

Umbra IR offers instructions for arithmetic, loading and storing values, comparisons,
casts, atomic memory operations, function calls, returns from functions, branches, con-
ditional branches, and switch, similar to optimizing compilers, e.g., LLVM. Putting this
all together in the example in Figure 19, execution would begin with the first block,
compare the function argument %x to 5 and then either branch to block yes: or no:. From
either one of these blocks, execution returns from the function.

3.2.2 Physical Program Layout

To make the creation of and analyses on Umbra IR programs fast we utilize three
properties of the code generation pipeline:

• Code generation mostly appends instructions at the end of basic blocks. We do
not move instructions.

• Code generation has high locality. We generally first complete one basic block/-
function before moving to the next.

• All instructions have the same lifetime as the program.

With the help of these properties we seek to store the program as compactly as possible
to make use of caches, but still allow for quick navigation through the program. We
also want to minimize the number of memory allocations. A careless implementation
can cause thousands of memory allocations during program generation. Naturally, a fast
implementation avoids this as allocations require time.

The first ingredient to Umbra IR’s compact program representation is a variable
length instruction format. All 104 instructions begin with an opcode which identifies
the instruction—and determines its lengths—followed by a type identifier that specifies
the result type. Each instruction then continues with its specific arguments. The exam-
ple in Figure 19 shows the program’s instructions on the right side. They begin with an
opcode and return type followed by a variable number of arguments.

To achieve data locality while reading and writing instructions Umbra IR stores all
instructions of a program in a dynamic array (as illustrated by the box around the instruc-
tions in Figure 19). This keeps instructions grouped together in memory and appending
instructions does not require allocations (most of the time). It also enables us to refer-
ence instructions with a 4-Byte offset into the array. That is particularly helpful as it
saves space when instructions reference each other, but still allows to follow references
with low overhead.
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The basic blocks of a program are similarly stored consecutively in memory. A basic
block contains a dynamic array of instruction offsets which point into the instruction
array and determine which instructions are in the basic block and in which order. This
is depicted in Figure 19 by the dotted arrows. Storage for functions is similar. Each
function, however, only contains the offset of the first basic block. From there, all other
basic blocks are discoverable through the branches at the end of each block.

The shown representation is less flexible than intermediate representations used in
optimizing compilers, e.g., LLVM. However, we find that it yields good cache efficiency
and accelerates the generation of programs and executables from it.

3.2.3 Constants and Dead-Code Removal

The layout of Umbra IR is optimized for fast program generation and is therefore
not well suited for complex restructuring passes. However, there are two important
optimizations.

First, the Umbra IR builder applies constant folding to instructions at the moment they
are appended to the program and deduplicates constants. This potentially decreases the
programs size and reduces the workload of later stages in the compilation pipeline.

Second, a dead code elimination pass removes all instructions whose results are not
used by any other instruction and any unreachable blocks. Employing an explicit dead
code elimination pass gives an advantage in all layers above the Codegen layer. It re-
moves complexity at places in the code generation where we are not completely certain
that there will be a user for the value currently produced. With dead code elimination
the code generator does not have to carefully determine all users beforehand which
makes the generator simpler. As an example for these complexities consider how Tidy
Tuples generates code for this if-then-else construct and how constant folding can help
to eliminate the else branch:

1 Bool cond = Int32(4) * Int32(5) > Int32(15);

2 If test(cond); // Condition is constant

3 Int64 a = ...;

4 test.elseBlock(); // Else branch is dead

5 Int64 b = ...;

6 test.done();

7 Int64 result = test.phi(a,b);

At the time of code generation we know that the else branch will never be taken. Thus,
we could try to not even generate a block for it. However, this would mean that all
the instructions that would usually belong into that block, in this case the instruction
that generates b, could not be placed into the program. All later sections of the code
would then have to handle that any of the values may not exist. This approach would
introduce additional corner-cases, be prone for errors, and code which generates code
in this manner would be hard to understand. We find that a later dead code elimination
pass circumvents those problems.
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3.2.4 DBMS-Specific Instructions

A benefit of using a custom IR is that we can co-design the instruction set with the
database system. Most importantly, instructions can express the intent of operations
so execution backends can create efficient code for them. Also, instructions that occur
frequently can be represented by compact, specific instructions.

Because many arithmetic operations in SQL require overflow checking, Umbra IR
offers checked arithmetic. Check arithmetic branches when an overflow occurs or con-
tinues otherwise. For example, the following performs a 32-bit integer addition of %a

and %b that branches to the basic block %overflow on overflow:

1 %c = checkedsadd i32 %a, %b %continue %overflow

Such specific instructions remove the need for an extra overflow check and lets backends
use the expressed intent to create efficient code.

Umbra IR also combines some instructions in the fashion of inlining to obtain a more
compact representation. The getelementptr instruction calculates addresses within ar-
rays or structures. Load and store instructions are often combined with address calcu-
lation, therefore loads and stores can inline address calculation. Other instructions can
also benefit from this technique. We introduced an instruction isNull which checks if
a value is NULL. It does not require a second argument and thus also no constant for
NULL. For the same reason we introduced instructions for CRC checksums, bit rotation,
and the 128-bit data type introduced in Section 3.1.5.

Overall, the benefits of adding database-specific instructions to Umbra IR is (1) that
it is easier to generate efficient code in the backends and (2) it yields a more compact
program representation.

3.2.5 Comparison to LLVM IR

Compared to HyPer, which uses LLVM’s intermediate representation [94], using a
custom IR is a different approach. It allows to specifically tune the data layout for low-
latency execution and add instructions that more closely express the intent. In terms of
semantics, Umbra IR is closely related to LLVM IR. However, LLVM IR is designed to
be more generic to support a wide variety of optimization passes. Therefore, LLVM IR
has an emphasis on instruction reordering, replacement, and deletion. We observed that
this generality entails a performance penalty which we circumvent with Umbra IR.

3.3 F LY I N G S TA RT C O M P I L E R

The goal of the Flying Start compilation backend is to reduce query latency, that is,
the sum of compile time and query runtime. Flying Start is the default backend3 for

3 Umbra’s compilation backends all use the same Umbra IR program. Thus adding a new backend does
not add complexity to layers above.
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Umbra IR

Direct Translation (1 Pass)
+ Stack Space Reuse
+ Machine Register Allocation
+ Lazy Address Calculation
+ Fuse Comparison and Branch

x86 Machine Code

Live Span Analysis
   (+1 Pass)

Figure 20: Flying Start optimizations – are integrated into a single pass over the input pro-
gram. Allocation optimizations require one preliminary pass to determine value
live spans, thus at most two passes are required for translation.

adaptive execution, therefore compile time should be as low as possible. At the same
time, as a secondary goal, it should create fast code, so it achieves the best combination
of compile time and runtime.

The best way to make code run fast and remove any interpretation overhead is to
directly generate machine code (as opposed to bytecode for an interpreter). However,
generating optimal machine code can be very time consuming. Our approach is to
start out from the most basic machine code generator possible. It maps each Umbra
IR instruction to exactly one sequence of x86-instructions. There are no choices or
optimizations involved, so this is the fastest way to generate machine code from Umbra
IR.

Obviously, the resulting code is completely unoptimized and that impedes the sec-
ondary goal, fast query execution. To investigate cheap optimization opportunities, we
propose the optimizations in Figure 20, which are applied on-the-fly while generating
machine code (denoted with “+”). These optimizations explore the design space in the
vicinity of the fastest compile time and create different compile-time vs. run-time trade-
offs.

The next section gives a short introduction of the adaptive execution technique and
details how Flying Start fits into the compilation pipeline. Subsequent sections show
the basic translator design and introduce the proposed optimizations step by step.

3.3.1 Background: Adaptive Execution

There are multiple ways to execute an intermediate representation. All have different
trade-offs in code generation time and execution time. Generally, interpreters need little
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preparation time but execute slower, while optimizing compilers produce fast code, but
are slow to generate the code.

Kohn et al. created the adaptive execution method which incorporates multiple ex-
ecution backends into the HyPer database system [84]. Adaptive execution switches
dynamically between execution backends at runtime—even half-way through a query—
in order to profit from fast compilation for short-running queries and from fast execu-
tion for long-running queries. Figure 15 exemplarily shows two execution backends of
HyPer with the trade-offs intrinsic to each backend. HyPer’s bytecode interpreter has
slow execution, but compilation does not take long. The LLVM backend (with most
optimizations turned off) needs some time for code generation, but execution is faster.
Additionally, HyPer can employ LLVM with enabled optimizations to generate even
faster code (cf. Figure 27).

Umbra also applies the adaptive execution approach. It has an execution backend
that uses the LLVM optimizing compiler to produce fast executables. Additionally, we
introduce the Flying Start backend for fast compilation.

3.3.2 Minimal Compile-Time Design

Algorithm 1: Basic translation of an add instruction
1 Function compile(Program p) is
2 for Function f ∈ p; Block b ∈ f ; Instruction i ∈ b do
3 translate(i);

4 Function translate(AddInstruction i) is
5 scratch← allocScratchRegister();
6 firstArgSlot← i.firstArg();
7 secondArgSlot← i.secondArg();
8 result← allocStackSlotFor(i);
9 emit "copy firstArgSlot into scratch register";

10 emit "add secondArgSlot onto scratch register";
11 emit "copy scratch register value to result";
12 free(scratch)

The most basic variant of Flying Start uses a single pass over all instructions to gen-
erate machine code. Algorithm 1 shows how a program can be compiled with this
approach. Each instruction is translated by calling the translator function for its type.
Algorithm 1 also shows exemplarily how to translate an Umbra IR add instruction (for
an introduction to Umbra IR see Section 3.2). The translator for add emits a sequence
of instructions that load the inputs from stack, perform the addition, and store the out-
puts.
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To show what this means concretely, let us consider the example Umbra IR snippet of
Figure 21. The compile function emits code for instruction after instruction. Eventually,
it calls the translate function for the add instruction in Line 4:

1 %3 = add i32 %1, i32 %2

Obviously, the translate function in Algorithm 1 is only a sketch. To emit concrete ma-
chine code for the Umbra IR add instruction we must choose actual machine instructions.
The x86 machine-instruction we want to use for the addition operation is the add a, b

instruction. It computes the sum of a and b and stores the result in a. This means the
instruction overrides the first input operand.

The translate function must take this peculiarity into account. To keep the first
operand value available after the add instruction, it must first copy the value to a scratch
register and use the copy as first operand. So, to prepare the translation, it first reserves
a scratch register and also collects bookkeeping information about where the input data
resides on the stack and where the result must be stored. Second, it emits instructions
to copy the first operand from the stack into the scratch register. Then, to perform the
addition, and to copy the result onto the stack. This emits the following machine code
to perform addition:

mov eax, [rsp+firstArgSlot]; Copy arg. into scratch

add eax, [rsp+secondArgSlot]; Add arg. onto scratch

mov [rsp+result], eax; Copy result on stack

Implementing such translators for all Umbra IR instructions yields a program com-
piler that only requires a single pass over the IR to lower it to machine instructions. The
approach has the lowest compile-time because it performs the least work possible to
translate each instruction. However, it has some drawbacks: All values are stored on the
stack, which causes extra memory traffic, it introduces many superfluous copies, and
uses more space on the stack than necessary.

In the following, we devise optimizations to address these issues. They allow us to
quantify the trade-offs towards better code quality at the expense of longer compile time.

3.3.3 Stack Space Reuse

The first optimization that improves the created machine code is using stack space
more efficiently. Flying Start can reuse a stack slot once it knows that the value occupy-
ing the slot is never used again. To obtain this information, we arrange the program’s
basic blocks in reverse post-order and calculate the live spans of all values with the lin-
ear time algorithm described by Kohn et al. [84, 122]. The live span of a value is the
interval from first to last point in the program where the value is live (similar to live
intervals of Poletto and Sarkar [148]). Compared to detailed liveness information, e.g.,
computed by data-flow analysis, live spans are only an approximation. However, live
spans can be calculated in linear time and require little memory space per value, which
makes them ideal for fast compilation.
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1 block1:
2 ...
3 block2:
4 %3 = add i32 %1, i32 %2
5 %5 = add i32 %3, i32 %4
6 %6 = cmpult i32 %5, i32 64
7 condbr %6 %block1 %block3
8 block3:
9 ...

%1,%2
%4

%3

%5

%6

Value Live Spans

Figure 21: Umbra IR snippet — as running example for Flying Start translation.

Flying Start uses live-span information during compilation to reuse stack slots whose
values are not used again. For example in Figure 21, the annotated value live spans on
the right show that after the addition in Line 4 the stack slot of argument %1 will not be
used again. The computation result %3 can reuse that slot. In the next line, %5 can again
reuse the slot and so on.

Generally, reusing stack slots can be cheaply implemented by checking after every
translation of an instruction whether the arguments have reached the end of their live
span. If they have, we return their stack slots to the stack space allocator4.

Stack space allocation introduces additional translation cost as it requires a pass over
the program to determine value live-spans. On the plus side, however, it decreases the
memory footprint of the resulting code and thus increases the cache friendliness. More
importantly, the analysis enables the next (very profitable) optimization.

3.3.4 Machine Register Allocation

A major issue still is that the compiler generates many superfluous mov instructions to
retrieve values from stack and put back results. This behavior is especially unnecessary
for values that are passed between instructions within one block, e.g., for the two con-
secutive additions of Figure 21. For these, the approach of keeping all values on stack
generates six instructions of which the majority is unnecessary data movement:

mov rax, [rsp+slot1]; Data movement

add rax, [rsp+slot2]; Actual operation

mov [rsp+slot1], rax; Data movement

mov rax, [rsp+slot1]; Data movement

add rax, [rsp+slot3]; Actual operation

mov [rsp+slot1], rax; Data movement

A way to eliminate data movement to and from stack is to keep values in machine
registers beyond the boundaries of the translation of a single instruction. Therefore, in

4 To be exact: In some cases we need to keep the value in the stack slot until the end of the loop in which
the value is defined.
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addition to assigning each value a slot on the stack, we also try to assign a machine reg-
ister. This reduces the need for data movement instructions as values reside in registers.
The two additions, for example, can then be implemented with only two instructions:

add r9, r10; Add second arg. onto first

add r9, r11; Add third arg. onto prev. result

Of course, this example shows the ideal case. In reality, there are much fewer registers
available on x86 machines than there are usually values in our Umbra IR programs. In
order to make best use of the available registers we adopt a best effort approach. Out of
the available 16 registers on the target machine, four registers are scratch registers, one
register contains the stack pointer, and the remaining 11 registers store values beyond
the translation of a single IR instruction.

One could try to assign these 11 machine registers to values on a first-come first-
served basis. Unfortunately, this strategy leads to a shortage of available machine reg-
isters for short-lived values and especially inside nested loops. We found it to be more
beneficial to assign machine registers to values that either only live within the block
they were created in or were created in the most deeply nested loop. This heuristic is
cheap to compute from the data already at hand and effectively shifts the register usage
to the passing of intermediate data and into loops. Consequently, it reduces the number
of generated instructions and memory accesses.

3.3.5 Lazy Address Calculation

Besides register allocation, there are two additional minor optimizations. The first
concerns the address calculation instruction getelementptr. Generated code frequently
accesses different elements of one tuple or data structure. For data access Umbra IR
programs use pointer arithmetic with the getelementptr instruction to compute data
locations. This often leads to a chain of multiple address calculation instructions. To
extend the running example of Figure 21, block1 obtains the input data for the example
with these address calculations and load instructions:

1 block1:
2 %tuple = getelementptr i32 %base, %tid;
3 %ptr1 = getelementptr i32 %tuple, i32 8;
4 %ptr2 = getelementptr i32 %tuple, i32 24;
5 %1 = load i32 %ptr1;
6 %2 = load i32 %ptr2;
7 ...

The program first computes a pointer to a tuple, then computes the pointer to the first
and second element with separate getelementptr instructions. If the compiler would
emit machine instructions for each address calculation instruction separately, it would
produce an extra add instruction and use an extra register. However, the x86 instruction
set offers an alternative as it allows to integrate address calculation into instruction
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operands5. To implement the load in Line 5 the compiler can use the mov instruction
with one register and one memory operand:

mov r9, [rdx + offset]

This form of integrated addressing can be achieved by delaying address calculation.
When translating pointer arithmetic instructions the compiler does not fully resolve
them to yield a single pointer value. Instead it keeps the form [base + offset]

(where base is a register6 and offset a constant). This enables the translator to use the
composite form in instruction operands.

3.3.6 Fuse Comparison and Branch

The second minor optimization concerns comparisons and branches. Comparisons in
Umbra IR result in a Boolean value which conditional branches take as input. This is an
elegant construct, but unfortunately, it does not map directly to any machine instructions.
In x86, a comparison sets a special flags register and branches take the flags as input.
Translating comparison and branch instruction separately would produce extra machine
instructions. The compiler would have to retrieve the comparison result from the flags
register, only to move it right back into the flags register when translating the next
instruction:

cmp r9, 64; compare

setlt r13b; retrieve cmp. result from flags register

cmp r13b, 1; put decision into flags register

jnz .block1; branch, depending on flags value

To avoid this situation, we must achieve during translation that the comparison and the
conditional branch are translated adjacently. Also, during the translation of the compar-
ison the compiler must decide whether to leave the result only in the flags register.

An extra reordering and analysis pass over the input program could enforce adjacency,
but the extra pass would come at the expense of compilation time. Instead, within a basic
block we defer translation of all, but load, store and control-flow instructions, e.g., we
defer comparisons. Instructions are translated at the latest possible time, that is when
their results are required by other instructions.

For the above example, the lazy approach first skips the translation of the comparison
instruction. On translation of the branch the compiler notices that the input is not yet
computed. At this point, it starts translating the input and also passes along the request
to put the result into the flags register. Then, in the translation of the comparison it
sees the request, checks if there is only one consumer, and puts the result into the flags
register. The branch instruction can then directly use the flags register:

5 Similar to address inlining in Umbra IR (Section 3.2.4). Unfortunately, we can not rely on that, because
addresses with multiple users can not be inlined.

6 The lifetime of the base register must be extended to cover later uses.
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1 void translateAddInstruction(IRValue v) {

2 AddInstruction* i = get<BinaryInstruction>(v);

3 // Collect book-keeping info

4 Reg value1 = argumentReg(i->arg[0]);// First arg.

5 Reg value2 = argumentReg(i->arg[1]);// Second arg.

6 Reg result = resultReg(v);// Result info

7 // Prepare inputs

8 ScratchReg scratch1(*this);// Acquire scratch reg

9 Operand arg1 = get(value1, scratch1);// To scratch

10 Operand arg2 = get(value2);// Get as mem. operand

11 // Emit main instruction

12 assembler.emit(X86Inst::Add, arg1, arg2);

13 put(result, arg1);// Move result to assigned spot

14 // Destruct Regs and ScratchReg. Yield resources

15 }

Figure 22: Foundation of the Flying Start Backend – This is the core of translation from
Umbra IR to x86. The classes Reg and ScratchReg perform book-keeping of values
and free registers. They determine where inputs are located, where results should
be placed, and which temporary registers to use.

cmp r9, 64; compare

jl .block1; branch, depending on flags value

On-demand instruction translation can also pass requests from value users to producers
and in this case also guarantees that there is no user of the flags register in between
comparison and branch.

3.3.7 Implementation of Flying Start

So far, Algorithm 1 presented the code emitter in a fairly abstract fashion. Our actual
implementation in C++, is very similar. Figure 22 shows an implementation of the
translation of the Umbra IR addition instruction.

We use the classes Reg and ScratchReg to keep track of input and result data (Lines 4-
6), and to allocate scratch registers (Line 8). To emit machine instructions our imple-
mentation uses the asmJIT library [81]. It provides the ability to directly assemble x86
instructions. E.g., in Line 12 the translator emits the add instruction from the running ex-
ample into a buffer. Appending multiple instructions to this buffer forms the translated
program.

All the described optimizations fit very well into this code structure. For example,
the register allocation heuristic is hidden in the bookkeeping class Reg. Lazy address
calculation and fusing comparisons and branches require only small additions.

Figure 23 shows an implementation of the book-keeping functions for instruction
translation. Observe how the function resultReg decides right at the moment of in-
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1 Reg resultReg(IRValue v) {// get location for result

2 if (notConst(v)) {

3 if (registersAvailable() &&

4 (onlyLiveInCurrentBlock(v) ||

5 loopIsDeepestNest())) { // heuristic

6 Location& l = allocateRegister(v);

7 return Reg(RegisterVariable, v, l, this);
8 } else {

9 Location& l = allocateStackSlot(v);

10 return Reg(StackVariable, v, l, this);
11 }

12 } // else ...

13 }

14 Reg argumentReg(IRValue v, LocationHint h = None) {

15 if (notConst(v)) {

16 Location& l = lookupValueLocation(v);

17 // On-demand instruction translation

18 // with hint where to place result,

19 // e.g., in flags register

20 if (!l.assigned) translate(v, h);

21 return Reg(l.type, v, l, this);
22 } // else ...

23 }

24 Reg::~Reg() { // Destructor of Reg

25 if (--location.references == 0)

26 // return register or stack slot to allocator

27 freeResources();

28 }

Figure 23: On-the-fly optimizations in Flying Start – integrate with the book-keeping in-
frastructure. Register allocation takes place during value placement (resultReg).
Branches and comparisons are fused with hints in deferred instruction translation
(argumentReg). Freeing of resources is managed in the destructor of the book-
keeping class ~Reg.
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struction translation where to place computation results. Either the allocation heuristic
decides to put the value into a machine register or the result is placed on the stack. Sim-
ilarly, fusion of comparisons and branches is handled behind the scenes. The function
argumentReg also handles deferred translation of instructions. When the result of an
instruction %b is required, e.g., during instruction translation of %a = add(%b, %c),
function argumentReg checks if %b is already computed. If not, the instruction is trans-
lated on-demand. At this point, the caller of argumentReg can pass a placement hint for
the value. E.g., a branch instruction can instruct a compare instruction to place its result
in the flags register, skipping a placement on the stack or in another machine register.

Our implementation of Flying Start targets the widely used x86 instruction set. Dur-
ing translation Umbra IR instructions are compiled into semantically equivalent x86
instructions. For other target architectures, e.g., ARM processors, a target specific im-
plementation is necessary. Specifically, the individual translation of Umbra IR instruc-
tions to the target instruction set must be adapted. Fortunately, a lot of the infrastructure
for translation, such as live span analysis, register allocation, book keeping, and scratch
register handling can be reused.

3.4 E VA L UAT I O N

This section evaluates the quantifiable properties of Tidy Tuples and Flying Start,
confirming these performance hypotheses:

• The design achieves very low overall query latency over all database sizes and
across multiple machine configurations (Section 3.4.2).

• Umbra IR speeds up code generation (Section 3.4.3).

• The Flying Start backend dominates multiple state-of-the-art alternatives (Section
3.4.4).

• The optimizations in the Flying Start backend all provide performance benefits
(Section 3.4.5).

3.4.1 Experimental Setup

All experiments were run on a machine with a 10-core Intel Skylake X i9-7900X
clocked at 3.4 GHz and a turbo boost of 4.5 GHz. The processor provides 20 hyper-
threads, an L1-cache of 32 kB for every core and a last-level cache of 14 MB. The ma-
chine has 128 GB of DRAM with an aggregate bandwidth of 56 GB/s and uses Ubuntu
19.04 with kernel 5.0.0 as operating system. The TPC-H benchmark serves as workload
with scale factors from 0.001 with 10 thousand tuples to scale factor 30 with about 260
million tuples. PostgreSQL was installed with version 11.7 and configured to use up
to 20 workers per query. Further, index and bitmap scans are disabled to obtain query
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Figure 24: Flying Start achieves low query latency over a wide range from tiny to large
datasets. – Over geometric mean of queries per second over all 22 TPC-H queries
Flying Start out-performs even DuckDB, MonetDB, and PostgreSQL, which do not
spend any time on code generation and compilation. Threads7=20

plans comparable to Umbra. DuckDB was compiled from commit aec86f6; MonetDB
was installed in version 11.33.11.

3.4.2 Query Latency: Compile Time + Runtime

The goal of Tidy Tuples and Flying Start is to minimize the query latency of com-
piling query engines. That is, minimizing compilation overhead while at the same time
processing queries as fast as possible. This section we evaluates to what extent that goal
is achieved.

Compilation time can be traded for execution time, to a certain degree. Tidy Tuples
and Flying Start constitute a specific design point in that trade-off. Whether a cho-
sen trade-off is beneficial depends on the ratio of compilation time and execution time
within a query. For a given system, compilation time is directly determined by the query.

7 Currently, DuckDB can only use one thread for execution. Nevertheless, it provides an interesting com-
parison on small datasets.
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Execution time depends on the data set size and the amount of resources/threads used
for processing. To evaluate the trade-off in a variety of scenarios we use the TPC-H
benchmark8. It provides representative OLAP queries that cover a range of compilation
time characteristics. To influence the execution time we vary the data set size and num-
ber of available threads. In combination, these factors cover many scenarios to evaluate
the compiletime-runtime trade-off.

The experiments use the database system Umbra, in which we implemented Tidy Tu-
ples and Flying Start. The following state-of-the-art systems serve as a reference to put
Umbra’s performance into perspective. HyPer serves as a representative of compiling
systems. It already uses multiple execution backends to achieve low latency, which
makes it a strong competitor. The experiments use PostgreSQL as an instance of clas-
sical tuple-at-a-time interpreters with no compilation overhead9. Modern interpreter-
based based engines are represented by MonetDB and DuckDB, which are built with
high-performance vectorized execution engines [19, 153].

The impact of data set size (on the trade-off) is shown in Figure 24. The experiments
show that Umbra with Flying Start provides high query throughput over a wide range
of data set sizes—consistently out-performing the competitors. Thus, Tidy Tuples and
Flying Start effectively minimize query latency. The y-axis of the plot shows the ge-
ometric mean of query throughput over all 22 TPC-H queries, a metric for how many
queries each system can execute per second. The measured time includes compilation
time and execution time. Compilation time is a major factor especially for queries on
small data sets, as shown in the top half of Figure 24. On these, there is not a lot of
time spent in execution to amortize the time spent on generating code. Yet, Umbra with
Flying Start answers queries on small data sets faster than the interpreter-based systems,
which spend no time to generate code at all. On larger data sets execution time becomes
an important factor. The quality and speed of generated code are relevant here. As
shown in the bottom half of Figure 24, Flying Start produces sufficient code quality to
out-perform other approaches on data sets with up to hundreds of millions of tuples. Al-
together, Umbra processes queries with high speed over all data set sizes, which means
the trade-off is beneficial for a large range of scenarios.

The other important factor in the trade-off is the number of threads used for execu-
tion. Figure 25 shows Umbra’s execution time depending on the number of threads.
As a reference point it also shows the fastest competitor, Monet DB. Note, Umbra’s
execution phase can make use of multiple threads and operators use morsel-driven par-
allelisation [97]. The compilation phase, with code generation and compilation, uses
only a single thread.

In a broad view over all TPC-H queries (Geo.M.), Umbra is able to respond to queries
faster than the other systems when using a single thread for execution up to using all

8 At the time of writing, Umbra does not have a high-performance transaction processing implementa-
tion. Thus, we can not yet compare on OLTP benchmarks. Umbra’s relational operator implementations,
however, are prepared to integrate well with transaction processing—similar to HyPer’s operators. For
example, Umbra does not use precomputed values or dictionary encoding for query processing.

9 We manually decorrelated queries for PostgreSQL for a fair comparison.



3.4 E VA L UAT I O N 65

Geo.M. Q1 Q9 Q6 Q2

1 5 10 HT 1 5 10 HT 1 5 10 HT 1 5 10 HT 1 5 10 HT

0

1

2

3

0

1

2

3

0

5

10

15

0

10

20

30

40

50

0

2

4

6

Execution Threads

O
v
e

ra
ll 

T
im

e
 [
m

s
]

Monet DB Umbra Execution Time Compilation Time

Figure 25: Umbra with Flying Start achieves low query latency across machine configura-
tions. – In geometric mean (Geo.M.) Umbra answers queries faster than the fastest
competitor Monet DB. This is already the case when only one thread is available
for query processing and holds true with additional threads. Query latency is low
over the full range of long running (Q1, Q9) and short running (Q6,Q2) queries as
well as queries with short (Q1,Q6) and long (Q9,Q2) compile time. SF=0.1

available threads. Figure 25 also shows detailed performance results for queries which
are chosen to cover the full range of runtime/compile time characteristics. There are
long running (Q1, Q9) and short running (Q6, Q2) queries to examine the interaction of
overall query runtime and number of threads. Both groups have a query with low (Q1,
Q6) and high (Q9, Q2) compilation time to additionally vary the compile time/runtime
ratio within each group and thus cover the whole spectrum. Notably, in call cases code
generation and execution provides faster overall query response time than the fastest
interpreter-based approach.

Overall, we observe that Umbra’s latency optimizations work very well. They allow
Umbra to reach far into the low latency realms of query engines that do not compile
at all. Furthermore, note that the latency optimizations do not interfere with query ex-
ecution speed. The combination of Flying Start and the optimizing compiler backend
outperform the competitors in all cases. From this, we conclude that our latency opti-
mizations are effective.

3.4.3 Compilation Time

Now that we have seen that the overall design achieves good query latency let us
focus on how time is spent in the query compilation phase, i.e., before query execution.

Table 9 shows a breakdown of query processing time for Umbra with Flying Start
and its competitors on the little TPC-H data set at scale factor 0.01. Umbra timing is
split into the planning phase (“plan”), the code generation phase (“cdg.”), machine code
generation (“x86”), and query execution (“exec.”). The planning phase includes query
parsing, semantic analysis, and algebraic optimization. Creation of Umbra IR happens
in the code generation phase and the machine code generation phase produces x86 in-
structions. Similarly for the competitor HyPer, yet instead of generating machine code,
it produces bytecode (“bc.”) for its interpreter. For the interpreting engines DuckDB,
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Figure 26: Flying Start compiles large queries quickly. – LLVM needs considerably longer.
Note, that the y-axis scales are orders of magnitude apart. SF=1, Threads=1

MonetDB, and PostgreSQL the table only distinguishes between plan and execution.
Finally, it also lists the time for the sum of all components (“Σ”).

For Umbra, we observe that once the query plan is prepared, execution (“exec.”) on
the little dataset does not take long—it is even shorter than query preparation. All com-
petitors spend more time during execution. The time Umbra spends before execution, to
prepare the executable, though, is slightly more than the competitors. On average Um-
bra takes 0.66 ms to prepare, whereas DuckDB and MonetDB only need 0.47 ms and
0.53 ms respectively. This puts Umbra with Tidy Tuples and Flying Start well within the
same order of magnitude of query preparation time as interpreter engines, even though
Umbra additionally performs all the steps required for machine code generation.

Compared to HyPer, the most similar system as it also spends time on code genera-
tion, we observe that Umbra starts faster. HyPer needs 1.33 ms on average to prepare
for a query and Umbra only 0.66 ms. The main difference here is that HyPer generates
LLVM’s intermediate representation and Umbra uses its Umbra IR representation. The
effect clearly shows in the differences of code generation time (“cdg.”), where Umbra
is more than 2× faster than HyPer. A similar, but smaller, effect is visible during gener-
ation of the executable (“x86” and “bc.”). Flying Start is faster at x86 generation than
HyPer at bytecode generation. We conclude that Umbra IR speeds up code generation
and thus serves its purpose well as it effectively reduces Umbra’s query latency.

Up to this point, we compared compile times of Umbra with external competitors.
An internal alternative to the Flying Start compiler is the LLVM compiler, which Um-
bra uses adaptively to get optimized code for long-running queries (cf., Section 3.3.1).
Figure 26 compares the compilation times on queries with different numbers of joins. In
this experiment joins the TPC-H table nation multiple times on itself with the predicate
n1.n_name = n2.n_name and n2.n_name = .... For a join query with 2000 joins
Umbra generates 108000 Umbra IR instructions, of which the vast majority is in a single
function. Figure 26 shows that LLVM needs a considerable amount of time to compile
such large programs (150 seconds). Even without any optimizations and LLVM’s fast
instruction selection compilation takes 4 seconds. Flying Start, in comparison, only re-
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lation and achieved execution time for Umbra’s and HyPer’s execution modes on
TPC-H query 3. SF=1, Threads=20

quires less than 0.04 seconds to compile the program. Thus, any such query compiled
with Flying Start gets a considerable head start to an LLVM-compiled query.

3.4.4 Runtime Performance Robustness

The previous section established that the compilation times of Flying Start are com-
petitive with interpreter engines. Let us now explore the compile time versus execution
speed that it offers.

Recall from Section 3.3.1 that Umbra and HyPer both use adaptive execution to run
the generated code and to balance compilation time and runtime. The systems use
multiple compilation backends that offer different compilation and execution speeds.
HyPer switches between the three backends bytecode Interpreter, LLVM unoptimized,
and LLVM optimized. Umbra only uses the Flying Start backend and LLVM for thor-
oughly optimizing machine code.

How all these runtime backends perform is depicted in Figure 27 for the example of
TPC-H query 3 at scale factor 1. Among HyPer’s execution backends, bytecode inter-
pretation provides the lowest compilation time, albeit with a noticeable execution time
penalty. HyPer’s next best option is to use the LLVM compiler with almost all opti-
mizations turned off. This yields good execution performance, but comes with a higher
compile time10. Note, that it is already apparent, that Umbra’s Flying Start backend

10 In Figure 27 Umbra’s LLVM backend compiles faster than HyPer’s. Umbra generates more but shorter
functions than HyPer, thus reduces compile-time in LLVM optimization passes with super-linear runtime
in function size. This effect does not apply to the Flying Start backend, thus the shown comparison is fair.
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Backend Comparison Compilation Execution

Umbra
Flying Start vs. LLVM O3 108× faster 1.2× slower

HyPer
Interpreter vs. LLVM O3 91× faster 4.1× slower
LLVM O0 vs. LLVM O3 6× faster 1.3× slower

Table 10: The Flying Start backend out-performs both HyPer’s interpreter- and unopti-
mized LLVM backends. – On geometric mean over all TPC-H queries Flying Start
is preferable to HyPer’s options. SF=1, Threads=20

offers a better choice. It is on par with the bytecode interpreter’s compilation time and
the runtime performance of LLVM (unoptimized) machine code. Hence, Flying Start
combines the advantages of HyPer’s two low-latency backend options into only one.

When expanding the view from this one example query to all the TPC-H queries, we
see a similar picture in the trade-offs in Table 10. In comparison to fully optimizing the
machine code with LLVM, on geometric mean over all queries the Flying Start backend
offers 108× faster compilation at the low cost of only 1.2× slower execution. This all
happens in a single compilation backend. For Umbra’s competitor HyPer, this option
is split in two: The Hyper interpreter backend provides 91× faster compilation at the
cost of 4.1× slower execution. The alternative cheap compilation backend with LLVM
offers 6× faster compilation producing code that executes 1.3× slower.

To summarize, HyPer must juggle three execution backends. As shown in Figure 27
each backend provides a different trade-off between compilation time and runtime. The
results can be observed in Figure 24, where every backend yields the fastest overall exe-
cution speed over a limited range of scenarios. Thus, the system must carefully choose
the correct one of three backends, as a wrong choice can gravely impede execution per-
formance. Umbra, on the other hand, only has to choose from two backends. Flying
Start combines the best of the bytecode interpreter and the unoptimized LLVM backend.
It is as fast in generating code as the interpreter and as fast in execution as the unopti-
mized LLVM backend. Consequently, it is safe to always begin execution with Flying
Start and, if necessary, shift into high gear by using the optimizing compiler. As the
difference in execution speed between the backends is only 1.2×, a wrong choice only
has a small impact on execution time and the performance cliff in a sense becomes a
small performance step.

3.4.5 Flying Start Optimizations

We described in Section 3.3 that the Flying Start backend uses four optimizations to
improve the speed of the generated code. We measured the effect of each optimization
on compilation and execution time for all TPC-H queries.
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Figure 28: Effect of Optimizations on Compile- and Runtime – in the Flying Start backend.
SF=1, Threads=1

Figure 28 shows the results for execution time on some exemplary and interesting
queries and also of the geometric mean over all 22 queries. Observe that the biggest
effect is achieved by register allocation. On average it provides a 32% reduction of
execution time. Interestingly, in the Umbra LLVM backend, register allocation also pro-
vides the largest performance benefit among the applied optimizations (cf., Figure 29).
Switching from fast instruction selection to the default instruction selection enables ma-
chine specific optimizations, such as register allocation and instruction scheduling. Fur-
ther optimizations only have a small effect on the runtime. In other words, the largest
optimization potential is covered by Flying Start’s register allocation.

Given that register allocation has such a large impact, an interesting idea to improve
Flying Start would be to use a better register allocator than the already applied heuristic.
An allocation scheme often used in fast compilers is Linear Scan [148]. In a single
pass over all lifetime intervals it decides which values live in registers. To compare
with our allocation heuristic, we added Linear Scan to the Flying Start backend. Linear
Scan produces good allocations; the machine code produced with linear scan leads to
1% faster query execution on TPC-H (cf. Figure 30). However, allocation with Linear
Scan takes 14% more compilation time. This presents an interesting trade-off, yet in
the interest of low compile time for now we chose not to add Linear Scan to the Flying
Start default optimizations.

The experiment shows that some queries profit more from optimizations than oth-
ers. Query 1 shows the largest gains, as most of its work is in expression evaluation.
Thus, keeping intermediate values in registers increases the CPU’s instruction through-
put. Third, address calculation and comparison-branch fusion provide only a moderate
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effect. The benefit is most pronounced on query 18. Overall, we observe that every one
of the optimizations increases execution speed.

The quality of the machine code generated by Flying Start is good in comparison
to the fully optimized code from LLVM. As Figure 31 shows, performance metrics of
Flying Start code for TPC-H queries are well within the same order of magnitude as the
corresponding LLVM-generated machine code. Previous experiments already showed
that the execution speed of Flying Start code is close to the speed of highly optimized
code. This also shows in Figure 31, in which the amount of cycles to execute queries
with Flying Start is on median about 1.6× higher than with highly optimized code. No-
tably though, the number of instructions executed is about 2.3× higher, which means
that Flying Start produces some amount of extra instructions. Fortunately, also the num-
ber of instructions executed per cycle (IPC) is 1.4× higher. The processor is able to
execute more instructions in parallel within each cycle which reduces the negative ef-
fect of extra instructions. Branch miss-predictions and last level cache (LLC) misses are
about the same for both compilers. The size of the generated code from Flying Start is
about 2.4× larger than optimized code. Overall, Flying Start generates some superflu-
ous instructions, yet the hardware is able to partly compensate that. More importantly,
Flying Start code triggers the same amount of hardware hazards, i.e., branch-misses and
cache-misses, as optimized code, but triggers no additional hardware hazards.

Another optimization that Umbra performs is to eliminate dead (unused) code. Tech-
nically, it is an optimization applied during the code generation process, not by Fly-
ing Start, yet it effects compile- and runtime performance. Figure 32 shows TPC-H
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compile- and runtime with and without dead code elimination (DCE). As explained in
Section 3.2.3, Tidy Tuples uses dead code elimination to simplify structure of the code
generation layer. These experiments show that dead code elimination is a rather quick
pass compared to the remaining compilation time. Also, as DCE removes about 4% of
instructions, it reduces the following compile- and runtime, thus recaptures some of the
time spent on the optimization pass.

For all optimizations there is a compilation time price to pay, as shown in the bottom
of Figure 28. We note that the only optimization that comes at a measurable cost is
the value-lifetime computation which is first used for the stack reuse optimization. On
average, it adds 45% to compilation time. Interestingly, all further optimizations more
than offset their cost. Any one of these optimizations helps reduce the number of emitted
instructions and consequently reduces the time necessary to write machine code.

Given that lifetime computation adds about 45% to compilation time one may also
choose to skip it and therefore not employ any of the four optimizations. In Umbra,
however, we use it, because it makes the query engine more robust. It prevents that
queries with many intermediate values have an unnecessarily large memory footprint.
Additionally, it reduces the performance cliff towards the optimizing compiler. To sum-
marize, the optimization in Flying Start increase the execution speed and robustness of
the query engine.
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3.4.6 Implementation Effort

Building a compiling SQL query engine from scratch is a large undertaking and Tidy
Tuples is meant to structure such an effort and serve as a guideline. To give an idea of
the size of the code generator in Umbra, Table 11 lists the lines of C++ code required
to implement components of Tidy Tuples and Flying Start. Lines with comments and
documentation do not count towards the lines of code. We also exclude lines which
only contain opening or closing curly braces to account for a peculiarity of the used
code style.

The shown components follow the structure of Tidy Tuples as presented in Sec-
tion 3.1.2. Lines of code are separately counted for C++ header files, C++ implemen-
tation files, and unit tests that directly test the functionality of the component (integra-
tion tests for the entire system are not listed). Operator translators include table scan,
nested-loop join, hash join, multi-way join, group-join, group by, sort, map, select, set
operations, expressions, recursive views, and many more. Each of the operators in turn
may need to handle multiple variants of the operator. For example, the hash join trans-
lator can produce inner, outer, semi, mark [125], and single [125] joins. Thereof all,
but the inner join have different right join and left join implementations. Overall, there
are many concepts in relational queries and their efficient implementation often requires
attention to detail. In our experience with the implementation of Umbra, that detail and
the inherent complexity is structured well by the Tidy Tuples design.

3.5 R E L AT E D W O R K

There are two state-of-the-art query processing paradigms: vectorization and compi-
lation. Vectorization reduces the overhead of Volcano-style interpreters by performing
an operation on many tuples at the same time. It was pioneered in MonetDB [19] and
improved upon by MonetDB/X100 [17]. As vectorized engines are interpreters, they
can use Volcano-style interpretation and generally have a reputation of being easier to
build. Furthermore, because they do not generate machine code, they can potentially
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Component Headers C++ Tests

Operator translators 2,360 8,347 3,225
→ Hash-join translator 53 597 88
→Map translator 17 31 55
Data structures 187 399 113
Tuples 172 1,019 2,205
→ Hash 57 320 66
SQL Values 772 6,834 2,283
Codegen 975 1,049 690
Σ Tidy Tuples 4,466 17,648 8,516
Umbra IR 812 2,348 476
Flying Start 399 3,790 1,072
Σ All 5,677 23,786 10,064

Table 11: Lines of Code of Tidy Tuples and Flying Start – listed seperately for header files,
implementation files and unit tests for the respective component. Arrows (→) denote
examples from within the previous component; the component line-counts already
include the example counts.

have lower query latency—while being efficient for analytical workloads [75]. How-
ever, there are drawbacks with complicated expressions and especially when only few
tuples are in a query, as is commonly the case in transaction processing.

Compilation-based engines eliminate interpretation overhead by generating query-
specific machine code. An architecture for generating machine code was shown with the
HyPer system [121, 124]. This approach was criticized as too low-level [80] and, in the
context of LegoBase, an alternative approach was proposed. Instead of generating code
from the query plan in one single step, LegoBase gradually lowers it through a cascade
of intermediate representations to the effect that each lowering by itself is less com-
plex [165]. Using multiple representations was then criticized as adding unnecessary
complexity [177]. A solution was presented by using the idea of the Futamura projection
to specialize an interpreter to obtain a code generator. The LB2 system uses Scala lan-
guage features and compiler extensions to implement this idea and create an interpreter
engine as well as a code generator, derived from the same code base. Further research
on the structure of relational code generators has shown that, besides HyPer’s produce-
consume model, Volcano-style communication between operators can also be used for
code generators. However, extensive compiler optimizations are required to obtain effi-
cient code from code generators with Volcano-style iterators [163]. An alternative to
distinguishing between interpreters and code generators is to use micro-specialization
on an interpreter system [192, 193]. Kohn et al. presented the adaptive execution ap-
proach for HyPer, which combines an interpreter and a code generator to achieve low
latency for cheap queries and fast execution speeds for expensive queries [84].
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The work presented in this chapter builds on all of these contributions. Tidy Tuples
features a layered architecture of abstractions that conceptually incorporates the gradual
lowering of LegoBase, but still achieves code generation in a single step. It also uses
a code generator interface, as promoted with LB2 that utilizes the host language’s type
system. With this code generator interface, the code that performs operator translation
closely resembles an interpreter. Unlike LB2, however, we stop short of building an
interpreter and always use an explicit code generator. This allows us to tightly control
the optimizations that we perform at SQL compile time. An example of these optimiza-
tions was shown in the hash function generation in Section 3.1.5 and tuple storage in
Section 3.1.3. Also it enables us to immediately create code in static single assignment
form so that we can skip an optimization pass at a later stage. In addition, our code
generator seamlessly integrates generated code with host language code—a feature that
would be hard to realize efficiently between machine code and the Java VM. To achieve
low query latencies we propose a lightweight compiler instead of using an interpreter.
Further, we advocate to use the produce-consume model (or LB2’s callback interface)
for code generation to circumvent the optimization effort required to obtain efficient
code from code generators with Volcano-style iteration. We show that this approach
enables low query latencies that reach into the realm of interpreted and vectorized en-
gines. In addition, it provides the benefit of removing the performance cliff between
interpretation and optimizing compilers.

Compilers that are focused on minimal compilation time have been used in other ar-
eas before and our approach relies on ideas from the compiler community [147, 148, 40,
145]. Notably, destination driven code generation is an approach that generates machine
code directly from the abstract syntax tree (AST) of an input language [40]. It uses one
register to transfer intermediate values (in expression evaluation) between neighboring
nodes in the AST and thus often achieves that values need not be transferred into mem-
ory. During AST traversal every user of a value is visited before the value is calculated
and there is exactly one user for every intermediate value (due to the tree structure). The
Flying Start backend builds on these ideas, but operates in a different setting. Each value
in Umbra IR can have multiple users and the value lifetimes potentially span whole func-
tions. From the view point of one instruction the inputs and their recursive inputs form
a DAG instead of a tree. This removes the “one user” property for intermediate values
and requires additional analysis for value lifetimes. Further, Umbra IR builds on ideas
from the sea-of-nodes programs representation [31]. Umbra IR programs are structures
as control-flow graphs where basic blocks are vertices and edges represent control flow.
As in the sea-of-nodes representation, the arguments of Umbra IR instructions directly
point their defining instructions. Unlike the sea-of-nodes representation, Umbra IR in-
structions stay attached to their basic blocks, as Tidy Tuples takes care to generate code
that does not require a code-motion optimization.

The Chrome browser contains a WebAssembly compiler backend that is also inspired
by destination driven code generation. The V8 Liftoff backend aims for low latency
in code generation and creates code in only a single pass [62]. WebAssembly uses a
stack machine model which takes instruction arguments from a stack and puts results
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back onto the stack. This implicitly encodes the lifetime of intermediate values and
Liftoff can leverage this information to manage with only a single pass. Liftoff thus
depends on the compiler that generates WebAssembly to encode lifetimes. The Flying
Start backend cannot do this, as its compiler is executed right ahead of it in the same
compilation pipeline. Similarly, Flounder IR is a program representation that relies on
the code generator to encode value lifetimes [49]. The proposed design for Flounder
IR is to estimate values lifetimes with relational operator lifetimes. For Umbra IR and
Flying Start, we observed for TPC-H queries that operator lifetimes overestimate the
lifetimes and lead to a shortage of available registers.

LuaJIT is a fast just-in-time compiler for the dynamically typed language Lua. Execu-
tion starts with interpreting Lua bytecode [138]. A tracer then finds code sections worth
compiling and creates a statically typed IR [139]. This IR, much like the Umbra IR,
contains features and instructions that are very specific to Lua. A backend with multiple
compiler passes can lower the IR to machine code.

Destination driven code generation, Liftoff, and LuaJIT rely on certain properties of
their input programs and so does the Flying Start backend. It profits from the fact that
the produce/consume interface generates efficient and short code. Values are typically
loaded from memory only once and are then used in multiple places by reference to only
a single Umbra IR handle. In addition, constant folding is performed on-the-fly during
program generation. The Flying Start backend is tailored to these qualities and makes
use of them to save compilation time.

3.6 S U M M A RY

This chapter presented the Tidy Tuples architecture, the Umbra IR program represen-
tation, and the Flying Start compiler backend to minimize query latency in compiling
relational database systems. They optimize the whole execution pipeline from the ar-
rival of a query plan to when the result is ready.

The Flying Start compilation backend showed that very fast machine code generation
is possible and the generated code executes queries only slightly slower than highly op-
timized code. Furthermore, Umbra IR, a customized intermediate representation with
optimized data structures helps reduce the time spent for generating code and transfer-
ring code into machine instructions. Lastly, Tidy Tuples structure code generators so
that complexity is well managed, yet code generation is very fast and thus contributes
to lower query latency.

We implemented the proposed optimizations in the database system Umbra. An eval-
uation found that the optimizations are effective at lowering query latency. The experi-
ments showed that Umbra’s compilation latency becomes competitive with systems that
do not compile at all, e.g., DuckDB and MonetDB. At the same time, the execution
speed of Umbra is on par with state-of-the-art query engines.

To conclude, we advocate the use of a fast compiler that directly generates machine
code and in some cases, falls back to an optimizing compiler. This approach reaches the



3.6 S U M M A RY 77

low-latency realms of interpreter engines and at the same time keeps a high execution
speed in larger datasets. Such a query engine can compile very quickly and produces
machine code that makes efficient use of the processors. It is thus well equipped to
optimally use the large bandwidth provided by main memory and new storage hardware,
e.g., SSDs and Persistent Memory. Its low query response time makes it predestined
for a burst of many small queries intermixed with large queries—as regularly happens
during interactive database use.
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Relational database systems have arrived in the age of high-bandwidth processing,
where data already resides in main memory or is available from very fast storage tech-
nologies such as SSDs [61] and NVRAM [156], whose bandwidths almost match main
memory speed. To make best use of the large bandwidth, analytical database query en-
gines generate code for their query plans and rely on compiler technology to remove all
overhead and to generate optimized machine code.

A remaining source of inefficiency in this architecture is that data-intensive process-
ing is prone to hardware hazards, such as cache misses due to large working sets and
branch misses caused by unpredictable base data. In the analytical TPC-H benchmark,
for example, a quite large fraction of cycles is spent resolving hazards (cf. Figure 33)
instead of processing data. The problem is known in the database community, which
proposed mitigation techniques that can be applied to operators [82, 44, 117] and is also
addressed from the side of the computer architecture community. Hardware vendors
constantly increase the capabilities of processor-internal branch prediction and out-of-
order execution capabilities to reduce branch-misses and hide cache misses [179, 3, 69].
Both, software and hardware based mitigations have merits—and no approach domi-
nates for all use cases—any specific situation warrants specific solutions and a data
processing engine must pick wisely to achieve the highest performance.
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Option A, employing software based mitigations, means changing the structure of
programs to avoid branch and cache misses. The relaxed operator fusion (ROF) tech-
nique does this for compiling RDBMS [117]. It inserts buffers between relational op-
erators, thus creates leeway to construct branch-free code and gives opportunity for a
lookahead for prefetch instructions. ROF is an effective mitigation technique, yet must
be employed cautiously, as it potentially increases processing cost due to extra data
materialization.

Option B, hardware mitigation, consists of the branch predictor and out-of-order
(OOO) speculative execution capabilities built into essentially any mainstream server
CPU [3, 69]. Out-of-order execution continues processing instructions after a cache
miss, potentially finding more instructions with cache misses, which are then also sent
to the CPU’s memory subsystem. The memory subsystem can process requests in paral-
lel and help the OOO engine hide large parts of the hazardous cache misses. This system
is even always on—there is no programmer intervention required. Unfortunately, out-of-
order execution is not a panacea. It relies on finite resources which limit the scenarios
where OOO is very effective. For example, an Intel Skylake CPU has an out-of-order
buffer of 228 instructions. At 4 instructions issued per cycle, this buffer fills up behind
an unresolved last-level cache miss in 57 cycles. Assuming DRAM access takes 400
cycles the resulting processor stall is still 343 cycles—a gap not hidden by OOO due to
limited resources.

Both mitigation options are effective when certain preconditions are met. However,
explicit software based mitigations always compete with hardware based mitigations.
Therefore, any decision about software mitigation must weigh cost and gains, and also
consider how much hardware built-in mitigation already hides (without any extra cost).

In this chapter, we present an optimization approach to mitigate hardware hazards
in data processing pipelines. It leverages ROF and decides where to place buffers in a
pipeline in order to prefetch data or remove branch misses. We also introduce a cost
function for the optimizer which models the out-of-order execution capabilities, the
probabilistic nature of cache misses, and data dependencies between cache misses. It
allows the optimizer to make an informed choice of whether to rely on hardware capabil-
ities or to adjust the generated code for better performance. Our evaluation shows that
the optimizer’s choices achieve a speedup of up to 2.6× for some TPC-H queries and the
optimizer never introduces buffers which significantly degrade execution performance.

4.1 P R I O R W O R K

To meet the demand and opportunities presented by large amounts of available main
memory and bandwidth from fast storage devices, highly efficient relational query eval-
uation engines were developed [121, 117, 17]. They outperform previous architectures
as they eliminate any query interpretation overhead, make good use of available CPU re-
sources, and ultimately keep up with the large bandwidth available to ship data to CPUs.
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Nevertheless, a remaining source of inefficiency, thus unused potential, during query
evaluation on large datasets, are hardware hazards such as branch and cache misses.

4.1.1 Hazard Mitigation in Hardware

Hazards are problematic for many workloads, also beyond data processing. There-
fore, processor designers put mechanisms into their architectures to lessen hazard ef-
fects. Most server processors today are built as superscalar out-of-order processors [69,
3] which execute multiple instructions in each cycle and use a derivation of Tomasulo’s
algorithm [179] to delay instructions with missing inputs and continue execution with
others. This helps to hide hazards such as L1 and L2 cache accesses and can help to
greatly reduce the penalty for L3 and DRAM accesses if the circumstances are right. Un-
fortunately, these hardware remedies can not completely hide hardware hazards, which
makes software tuning necessary for many data-intensive workloads.

4.1.2 Hazard Mitigation in Software

For database systems there are many proposed techniques to circumvent the effect of
hardware hazards. Algorithm specific approaches change broader algorithmic features
to cater to hardware specifics, e.g., partitioning joins [11, 166, 112, 113] or B-Trees
optimized for prefetching [28]. Yet, there are also more widely applicable techniques
that fit multiple use cases. Group prefetching, asynchronous memory access chaining,
and interleaved multi-vectorization are general approaches to deal with cache misses,
e.g., from data structure access, and with dependent cache misses, e.g., from tree traver-
sals [27, 82, 44]. Predication is a technique to remove branch misses, e.g., from selec-
tion predicates, bloom filters, or joins. Further, for general purpose programming the
Cimple domain specific language offers a programming model which lets programmers
intuitively formulate algorithms that Cimple decomposes into small tasks [78]. Those
can be scheduled independently to hide cache misses and remove branch misses. A
trait common to these techniques is that to circumvent hazards they require multiple
concurrent and mutually independent strands of work, which they use for lookahead,
rescheduling, or interleaving.

4.1.3 Data-Centric Code Generation

A prevalent code generation technique for relational operator plans is data-centric
code generation [121]. It seeks to generate the most efficient code by keeping data in
registers as long as possible so that as many operations as possible can be performed
while the data is cheaply available. For the example operator plan in Figure 34, this
means when the scan S produces a tuple, as many operations as possible are performed
on it. The selection operator processes it, and in case selected it is joined right away with
relations Y and X and then processed by the aggregation operator. In data-centric code
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Figure 34: Buffers to Relax Operator Fusion.—To evaluate an operator tree, data-centric code
generation eagerly fuses as many operators as possible into a so-called pipeline.
However, strategically refraining from aggressive fusion can produce faster code,
as cutting pipelines helps mitigate hardware hazards.

generation such a set of operators—which subsequently work on a tuple—is called a
pipeline. While data-centric code generation is able to create concise code for relational
operators, i.e., with very few superfluous moves, eagerly fusing all operators has a down-
side: The resulting code works on a single tuple at a time, which makes the previously
described mitigation techniques for hardware hazards not applicable.

This can be solved by placing small buffers at profitable positions in compiled pipe-
lines [117, 195]. Extra buffers essentially weaken operator fusion, hence Menon et
al. named the technique Relaxed Operator Fusion (ROF). In the example of Figure 34
one might insert a buffer at position 1 , e.g., to introduce predication to the selection
operator and, then, remove branch misses, or to issue prefetch instructions for the hash
table of the following join with Y and, thus, reduce cache misses. While ROF is an
effective tool to reduce hardware hazards on super-scalar out-of-order CPUs it is yet
unclear how an automatic optimizer can decide where to place ROF buffers in a query
plan. This chapter answers that question, specifically how to decide whether to place a
buffer or to rely on the processor’s internal hazard remedies.

4.1.4 Hardware Performance Models

For the proposed optimizer we introduce a cost function to predict pipeline perfor-
mance on super-scalar out-of-order processors. There are database specific cost mod-
els [111] and models for general purpose computing [23], yet those do not incorporate
enough detail of processor internals to yield enough information for our needs, i.e., do
not model memory level parallelism in detail.

Instead, we build on achievements from the computer architecture community: In an
effort to predict the performance of various processor design alternatives Eyerman et al.
created the mechanistic processor performance model [43].
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In the mechanistic model the processor frontend issues instructions to the execution
backend. If the inputs to a given instruction are available, the backend executes it di-
rectly. Otherwise, the instruction is deferred and executed when all inputs finally arrive.
Since delaying instructions may upend the original program order, the processor keeps
track of instruction order in the reorder buffer (ROB). All instructions in flight within
the backend have a slot in the reorder buffer. The processor continuously removes the
oldest instruction from the ROB, once it is executed, and makes its effect visible to the
rest of the system.

In the mechanistic model hardware hazards divide instruction processing into inter-
vals. Processing runs at full speed up to a miss event, e.g., a cache miss. From the miss
event on, processing continues until the reorder buffer is full. Processing must then stall
until the event is resolved.

For a given instruction stream this model predicts the execution time as the number
of instructions in the stream divided by the number of instructions processable per cycle
(IPC) plus the sum of all stall cycles from miss events. Interestingly, the sum of stall cy-
cles can be determined well from a given instruction stream. Eyerman et al. investigate
how miss events interact with each other and show that in the model a last-level cache
miss hides subsequent cache misses which occur within the out-of-order window. They
also show this model is able to predict processor performance.

The model was subsequently refined to a model named interval simulation to esti-
mate the runtime of complete programs on hypothetical hardware by simulating caches
and branch predictors [50]. Another line of work extends the interval model to the
analytical processor performance model, which uses performance profiles of program
executions on an existing architecture to predict the performance of hypothetical archi-
tectures [174]. Similar to our approach the analytical model takes statistics into account,
yet is not able to capture the probabilistic relationship of dependent cache misses.

4.2 P I P E L I N E O P T I M I Z E R F O R DATA - C E N T R I C

C O D E

Cache misses occur in many algorithms and slow down processing. To compensate,
modern CPUs use a number of facilities.

First, modern CPUs use out-of-order execution, which was pioneered with Tama-
sulo’s algorithm [179]. CPUs that use out-of-order execution still need to execute in-
structions as if they were executed in the program order which they achieve by keeping
track of instructions in an out-of-order buffer of fixed length. Consequently, the number
of instructions that can be executed after a waiting instruction is limited by the size of
the out-of-order buffer. The typical size of an out-of-order buffer is currently around
200 instructions, e.g., Intel’s Skylake architecture uses a 224 instruction buffer [69]. As-
suming a processor can execute 4 instructions every cycle, this window will fill after 55
cycles, thus the processor must stall. Therefore, typically an L1 and L2 access can be
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hidden completely without stalling, whereas L3 and DRAM accesses cause a stall of 45
and 275 cycles (on the Skylake-X machine used in the evaluation of this chapter).

The second hardware feature that hides the cost of cache misses is that multiple cache
misses can be resolved in parallel. The amount of parallelism is limited by the number
of buffer slots that track cache misses, so called Miss Status Hold Registers (MSHR).
AMD’s Zen3 architecture uses 24 MSHR per core [3]. Intel’s Haswell architecture
uses 10 MSHR per core; no official numbers are published for the Skylake architecture,
but our experiments in the evaluation indicate that the number has not increased [69].
Combined with out-of-order execution, parallel memory access helps reduce the cost
of cache misses: A single DRAM access causes a processor stall for 275 cycles. If
the program manages to cause 9 more DRAM accesses within the out-of-order window,
10 memory accesses are in flight at the same time. Once the first memory access is
resolved the processor moves the out-of-order window forward until it reaches the next
memory access instruction. By that time the memory system just resolved the memory
request, so that no further processor stall occurs [43]. Overall, one stall due to memory
access can overlap and hide up to 10 (or 24 for AMD) DRAM accesses, reducing the
amortized cost for a DRAM access to theoretically 27.5 cycles. Note, however, that by
no means does this reduce the cost for every cache miss. Rather, to reach this scenario,
the program structure must be tailored to create memory access overlap.

Unfortunately, to make best use of out-of-order capabilities processors would ideally
require a long instruction stream. Actual programs, however, don’t have long instruc-
tion streams, rather, there are jumps after a few instructions. To create a long instruc-
tion stream anyway, modern processors speculate about the outcome of branches and
continue execution tentatively [3, 69]. Whenever the actual branch outcome becomes
known, the processor compares the actual outcome to the speculated outcome. In case
the speculation was wrong, the processor discards the work done after the branch and
continues in the other direction. Such an event is called branch-miss, and can be quite
costly with about 25 cycles of wasted work.

As query engines also suffer from cache and branch misses, researchers have inves-
tigated how to reduce the impact of those hazards [11, 166, 112, 113, 28]. Besides
changing the processing algorithms, there are two techniques to reduce the impact of
hazards for given query processing algorithms:

• Prefetch memory locations to remove cache misses

• Predicate decisions to create "branch-free" code

Compiling query engines especially suffer from cache and branch misses, because
any interpretation overhead is removed and cache and branch misses are left to take a
large chunk of execution time. For example in TPC-H, as shown at the outset of this
chapter in Figure 33, for many queries more than 50% of cycles are spent resolving hard-
ware hazards. To apply prefetching and predication to generated code, the technique of
relaxed operator fusion (ROF) [117] inserts buffers between operators. Operators can
cooperate with these buffers, e.g., to achieve a lookahead for prefetching or to employ
predication for a selection operator.
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4.2.1 Problem Formulation

Unfortunately, placing buffers between operators is a trade off. On the one hand,
there is an opportunity to gain execution speed by removing hardware hazards. On the
other hand, materializing data to a buffer introduces extra costs for writing to memory
and later on restoring the data, thus creating the risk that the introduced costs outweigh
the achieved gains.

In a simple case, deciding on inserting a buffer is the choice whether removing a
branch miss that occurs for 10% of tuples pays off, given that inserting a buffer entails
writing 16 Bytes and reading them afterward. Here, the possible gain is removing a
branch-miss that costs 25 cycles/miss * 0.1 misses/tuple = 2.5 cycles/tuple at the cost of
introducing 2 writes to memory at 2 writes per cycles = 1 cycle + 2 reads from memory
at 1 read per cycle = 2 cycles. Assuming that no other hazards appear in the pipeline,
for this case inserting a buffer is beneficial.

Consider a more complex case where in a pipeline 40% of tuples incur a cache miss
and must access DRAM. If we were to place a buffer before the cache miss, we can
introduce prefetching and reduce the access penalty by up to a factor of the maximum
memory parallelism possible with the processor. By placing a buffer, we can therefore
reduce the cost of the memory access, but introduce extra costs for materializing to a
buffer and later reading from the buffer. Whether buffering and prefetching is profitable
depends on the alternative: The processor’s out-of-order capabilities try to overlap cache
misses and consequently reduce the individual miss penalties—at no extra cost of ma-
terializing to memory. As out-of-order execution is limited by the available resources
within the processor its effectiveness depends on the program structure, in this case the
pipeline length and whether there are already buffers in the pipeline around the position
we consider in this example. Overall, inserting a buffer for prefetching is only profitable
when the resulting execution time is lower than what out-of-order execution can already
achieve on the program, which in turn depends on the pipeline structure and other buffer
placements.

Generally, deciding whether to insert a buffer is complex since any decision logic
needs to take into account the cost of materialization and weigh against the possible
gains through less branch misses and cache misses. Further, the processor’s out-of-
order execution capabilities try to achieve the same—at no extra cost. As a result, the
decision logic, must also take into account that buffers compete with hardware features.
In general, inserting a buffer does not always improve the situation.

In the following we present a strategy to optimize buffer placement. The strategy
relies on a cost function that predicts the processing time for pipeline sections and places
buffers to cut the pipeline at optimal positions. The employed cost function is presented
afterward in Section 4.3.
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Algorithm 2: Top down buffer placement
1 Function optBuffers(start: int, end: int, operators : array) : (double, int) is
2 minCost← cost(start, end, operators);
3 minBuff← −1;
4 for bufPos ∈ [start + 1, end[ do
5 costFront← opt(start, bufPos, operators).cost;
6 costBack← optBuffers(bufPos, end, operators).cost;
7 costOfPipelineWithBuffer← costFront + costBack;
8 if costOfPipelineWithBuffer < minCost then
9 minCost← costOfPipelineWithBuffer;

10 minBuff← bufPos;

11 return (minCost, minBuff);

4.2.2 Dynamic Programming Approach

As shown, the decision whether to place a buffer depends among other things on
where buffers were placed before and after. Thus, a buffer placement cannot be decided
locally. Rather, any decision must take previous decisions into account. We propose
to solve this optimization problem with the dynamic programming approach shown in
Algorithm 2. This algorithm computes an optimal buffer placement plan under the cost
function cost. The strategy is to first compute the cost of the pipeline without any
buffers (Line 2). Then, the algorithm inserts a buffers at the first possible position and
determines the cost of the resulting pipeline as the sum of the optimal pipeline before
and after the buffer. It then continues with the second buffer position and so on and
keeps track of the minimal cost and corresponding buffer placement. The optimal cost
of a sub-pipeline is determined by a recursive call to the optimize function. Note, that
optBuffers computes the cost from start to end (excluding end) and in case end is not the
array end the cost includes writing to a buffer. Similarly, when start is not the beginning
of the array the cost includes reading from a buffer.

Algorithm 3 shows a non-recursive variant of the optimization algorithm. It computes
the cost for the smallest sub-problems and uses those to iteratively construct optimal
solutions for larger sub-problems until a solution for the whole problem is found. This
algorithm evaluates the cost function O(n2) times and performs O(n3) computations
of combined pipeline costs.

4.3 C O S T F U N C T I O N

The dynamic programming optimizer from Section 4.2 requires a cost function to
compute the cost of a pipeline or sub-pipeline. As we want to minimize the amount of
cycles spent on processing the pipeline, we propose a cost function that estimates the
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Algorithm 3: Bottom up buffer placement
Input :An array of operators that form a pipeline
Output :An optimal buffer placement plan

1 ops← operators.size();
2 costs← two-dimensional array of size ops× ops
3 for l ∈ [1, ops] do
4 for start ∈ [0, ops− l] do
5 end← start + l;
6 minCost = cost(start, end, operators);
7 minBuff← −1;
8 for bufPos ∈ [start + 1, end[ do
9 costOfPipelineWithBuffer← costs(start, bufPos).cost + costs(bufPos,

end).cost;
10 if costOfPipelineWithBuffer < minCost then
11 minCost← costOfPipelineWithBuffer;
12 minBuff← bufPos;

13 costs(start, end)← (minCost, minBuff);

amount of cycles one tuple spends in a pipeline. It takes into account branch misses,
cache misses, dependencies between cache misses, and how speculative out-of-order
execution hides branch and cache misses. In the following we present how to construct
such a cost function, beginning with a basic case and adding solutions to more compli-
cated issues incrementally.

4.3.1 Processor Model

The cost function estimates the required number of cycles that one tuple spends in
a given segment of an operator pipeline. A pipeline segment is a sequence of one or
more operators that process the tuple. Consequently, the generated code consists of a
sequence of machine instructions that implement the operators, as shown in Figure 35.
The foundation of the cost function is that in case there are no hazards the CPU’s process-
ing speed is only limited by the issue width, retirement width, and resources available in
the processor’s backend. Intel’s Skylake microarchitecture, for example, can issue and

Scan Map Join Group By

Figure 35: Machine instruction sequence that implements the relational operators in a pipeline.
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retire 4 instructions per cycles (IPC). For many instructions relevant for data processing
it can even process 4 per cycles. Notable deviations are load instructions with an IPC of
2 and store instructions with an IPC of 1. The "no-hazards" model yields the following
cost function:

Costno−hazards =
loads

IPCload
+

stores
IPCstore

+
other

IPCother
(1)

In this model the processor is assumed to work at maximum speed, so the instruction
throughput can be derived from the number of loads, stores, and other instructions di-
vided by their respective IPC (for a given processor).

4.3.2 Pipeline Runtime with Hazards

In reality, processors often incur situations in which they cannot perform at their
theoretical maximum speed. A branch-miss for example flushes the execution pipeline
and consequently discards work of a few cycles. Cache misses delay the execution of a
load instruction. An L1 miss is usually hidden by out-of-order execution. A last-level
cache (LLC) miss, however, cannot be hidden and causes execution in the processor to
stall. Eyerman et al. observed that the processor executes at full speed until it completely
stops at a stall [43]. Once the stall is resolved execution continues with full speed
(cf., Figure 36). Thus, stalls divide execution into intervals of full speed and full stop.
Eyerman et al. accordingly call this processor model the interval model.

The cost of a single LLC miss in the interval model is determined as follows. When
the processor issues a load instruction with a cache miss, this instruction is placed into
the front of the out-of-order (OOO) buffer and the memory subsystem fetches the re-
quired data from a lower cache or DRAM. This takes latency Lc time. Meanwhile, the
processor continues execution with subsequent instructions and also places those into
the out-of-order buffer. Once the load instruction with the LLC miss reaches the end of

Time [cycles]

IPC
LLC-miss

OOO-buffer full

Miss resolved

DRAM Latency

OOO / w

Processor Stall

Figure 36: Single LLC miss in interval model [43].
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Figure 37: Multiple LLC misses in close proximity are completely hidden in the interval
model.

the out-of-order buffer, the processor can not yet retire it, as the data is still outstanding.
The processor continues execution until the out-of-order buffer is full. Then processing
stalls until data arrives from DRAM and execution continues. Consequently, the cost of
a single LLC miss is the memory latency minus the time to fill the out-of-order buffer:

Csingle−miss = LDRAM −
InstrOOO

IssueWidth
(2)

Interestingly, the amortized penalty for multiple subsequent LLC misses can be much
lower. When there are multiple LLC misses in close proximity the memory subsystem
can service these misses in parallel, as shown in Figure 37. Eyerman et al. found that
the penalty from these misses overlap completely. Thus, subsequent misses are totally
hidden behind the first miss and the penalty occurs only once. The number of misses
that can be hidden is only limited by the number of outstanding memory requests s
which the processor can track simultaneously. On current Intel architectures one core
can track 10 requests, on AMD architectures one core can track 16 requests [69, 3].
Therefore, the cost for n misses within one out-of-order window is the cost of a single
miss for each group of at most s misses:

Cmulti−miss =
⌈n

s

⌉
· Csingle−miss (3)

For a pipeline with a single cache miss this overlapping can reduce the amortized
cache miss cost. Initially, we presented a pipeline as a sequence of instructions that
process one tuple. Note, however, that once the instruction sequence is finished exe-
cution jumps back to the beginning of the sequence to process the next tuple, yielding
a very long instruction stream that repeats over and over. Consequently, even when
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Next tuple

... ...

OOO Window

Memory Access

Acces \w Cache Miss

Figure 38: Pipeline execution repeats so that multiple iterations can fit into the processor’s
out-of-order (OOO) window.

there is only a single cache miss in a pipeline, this miss can overlap with misses from
subsequent iterations (cf., Figure 38). In this case the amortized cost for a cache miss is

Camortized =
Csingle−miss

min(i, s)
(4)

where i = InstrsOOO/InstrsPipeline is the number of pipeline iterations that fit into the
out-of-order window.

Eyerman et al. also estimate the cost of a branch miss [43]. They observe that after a
mispredicted branch no useful instructions are executed. The situation is only corrected
when the branch is resolved. Thus, the cost of a branch miss consists of the time to
resolve the branch miss and the time to flush the processor frontend

Cbr−m = Cresolve + C f lush (5)

The time to resolve a branch miss depends on the data dependencies that determine the
branch condition and how fast they can be retired from the out-of-order window. Since
with our approach we do not want to explore dependencies of each instruction, we
assume a fixed branch resolve time for every branch and hence use a constant processor
specific branch miss cost Cbr−m.

With these penalties for cache and branch misses we estimate the cost for a pipeline
with a b branch misses and one cache miss as

C f ixed = Cno−hazards + Camortized + b · Cbr−m. (6)

4.3.3 Probabilistic Model

We introduced a cost function that captures how out-of-order execution hides cache
misses. Yet, the cost function assumes that a cache miss occurs in every pipeline iter-
ation. This is not a given in all workloads. Rather, one memory access in the pipeline
will incur a cache miss only a fraction of times. Therefore, we model a memory access
as Bernoulli experiment of which the outcome is a cache miss with probability p and a
cache hit with probability 1− p.

In case there are multiple memory accesses in a pipeline we assume they are statisti-
cally independent. We also assume memory accesses from multiple pipeline iterations
to be independent. An independence assumption is reasonable for our use case, as Van
den Steen et al. observed that there are two types of cache miss patterns [174]: In the
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Figure 39: Memory accesses are random variables X1, ...Xn with cache miss probability p.

first type cache misses occur in bursts when data was freshly mapped to memory and
then accessed. In the second type cache misses occur uniformly distributed and inde-
pendent over all memory accesses when the working set exceeds the cache size. In our
data processing case, input data is scanned linearly, which lets hardware prefetchers
prevent cache misses, and access to intermediate results, e.g., hash tables for joins, is
first produced within a query plan and then accessed in a following step. Should cache
misses occur with these accesses then they occur because the working set is larger than
the cache, thus individual misses are uniformly distributed and independent.

A probabilistic view yields the following cost model for a pipeline with one mem-
ory access with cache miss probability p (cf. Figure 39). Let n = dOOO/instrse
instances of the pipeline fit into the out-of-order window, then n memory accesses fit
into the window. We denote the memory accesses with the random variables X1, ..., Xn
which each have cache miss probability p. The processor model states that a cache miss
completely hides the following cache misses within the out-of-order window. To get the
amortized cost of a cache miss, we consider the case where the memory access X1 has
a cache miss X1 = miss. When X1 has a cache miss, out-of-order execution continues
to evaluate the succeeding pipeline iterations, so that the memory accesses X2, ..., Xn
are executed and possible cache misses are hidden behind the stall caused by the miss
of X1. Therefore, the amortized cost for the miss of X1 is Csingle−miss divided by the
expected number of misses within the out-of-order window, which is the miss of X1
plus the expected number of misses of X2, ..., Xn

Camort(X1 = miss) =
Csingle−miss

1 + E(X2 + ... + Xn)
=

Csingle−miss

1 + (n− 1)p
(7)

We assume the cost of X1 = hit to be zero, thus the expected amortized cost for one
memory access is

E(Camort(X1)) = P(X1 = miss) · Camort(X1 = miss) + 0 · Camort(X1 = hit)

= p
Csingle−miss

1 + (n− 1)p
(8)

4.3.4 Multiple Cache Misses and Data Dependencies

The previous section modelled a pipeline with a single memory access that poten-
tially causes a cache miss. Naturally, a generated pipeline can consist of more than one
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Figure 40: Dependent memory accesses within a pipeline

memory access, e.g., as shown in Figure 40. These accesses can depend on each other,
as denoted by the arrows.

Dependencies arise when, e.g., the data loaded with one memory access is used to
compute the address for another memory access. For a CPU, even with out-of-order
processing, such a data dependency means that dependent memory accesses can not be
overlapped, i.e., can not be hidden. That means that a chain of cache misses must be
processed one miss at a time. Similarly, a directed acyclic graph (DAG) of cache misses
is processed one wave at a time (cf. Figure 41) where cache misses within a wave can
be hidden behind the first miss. Albeit, there is a cache miss penalty for every wave.

The wave placement in which all nodes are solid circles assumes that every memory
access is a cache miss. However, in the probabilistic model each access has a cache
miss probability p, so depending on if accesses actually incur a miss, there are many
combinations in which the accesses with their dependencies can be scheduled on the
waves. Two example schedules are shown in Figure 41. The dashed nodes in the graph
do not incur a cache miss and can therefore be scheduled on the same wave as their
input.

1
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2 3

4 5

1 2
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1

4 5

2 3
Wave
0

1

2

Figure 41: Out-of-order execution schedules dependent memory accesses in waves.
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Each wave with at least one cache miss incurs the stall penalty Csingle−miss, which, as
shown in the previous section, can be amortized with the cache misses from subsequent
pipeline iterations. To simplify slightly, we assume that all cache misses within one
wave and one pipeline overlap completely. This lets us compute the amortized cost Cw
for a wave w with Equation 8 and the probability pw that there is at least one cache miss
in wave w

Cw = pw ·
Csingle−miss

1 + (n− 1)pw
(9)

where n is the number of pipeline iterations that fit into one out-of-order window. Con-
sequently, the cost for a DAG of memory accesses is

CDAG = ∑
w

Cw = ∑
w

pw ·
Csingle−miss

1 + (n− 1)pw
(10)

To compute the probability pw that there is at least one cache miss at wave w for a
given DAG we first observe that out-of-order execution issues all memory accesses as
soon as all inputs are ready. This schedules all cache misses in the lowest possible wave
so that all input cache misses are at lower waves (accesses with cache hits can be at the
same wave). For any given arrangement of cache misses this fills all waves with cache
misses so that the last memory access node of the DAG is pushed to the last wave after a
cache miss (in case there is no single last node we can create an artificial node with cache
miss probability p = 0 and all nodes not used as input as children). This means, there is
at least one cache miss at wave w if the last node is at depth D > w. Consequently, the
probability pw that there is at least one miss at wave w is the probability that the root
node is at a depth larger than w:

pw = P(Droot > w) = 1− P(Droot ≤ w) (11)

The probability P(Di ≤ w) that the depth Di of node i is smaller than w can be derived
with the inputs of i and by considering both memory access outcomes:

P(Di ≤ w) = pi · P(D1 ≤ w ∧ ...∧ Dk ≤ w)

+ pi · P(D1 ≤ w− 1∧ ...∧ Dk ≤ w− 1)
(12)

Here, pi is the cache miss probability of access i and D1, ..., Dk are the depths of the
inputs of access i. Unfortunately, it is computationally expensive to evaluate the joint
probability P(D1 ≤ w ∧ ... ∧ Dk ≤ w) for a DAG as the Di are not necessarily inde-
pendent.

Dependency structure in a tree

Let us first consider the simpler case where the dependence structure is a tree. Here,
the depths D1, ..., Dk are computed from non-overlapping paths and are thus statistically
independent. Therefore, the joint probability is

P(D1 ≤ w ∧ ...∧ Dk ≤ w) =
k

∏
j=1

P(Dj ≤ w) (13)
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so the depth of a node can be determined with

P(Di ≤ w) = pi ·
k

∏
j=1

P(Dj ≤ w) +

{
pi ·∏k

j=1 P(Dj ≤ w− 1) ; w ≥ 0

0
(14)

which yields a recursive algorithm to compute the depth probability from the depth
probabilities of the inputs and lower depths.

Approximation for dependency DAG

If we use the above approach—which is accurate on trees—to calculate P(Di ≤ w)
on a DAG we underestimate the probability. This provides a lower bound. Conversely,
we can reduce the DAG to a tree by deleting edges until every node only has one incom-
ing edge. The tree algorithm then overestimates P(Di ≤ w), which is an upper bound.
We estimate P(Di ≤ w) for DAGs by taking the average of the lower and upper bound.

4.4 E VA L UAT I O N

Previous sections introduced an optimization approach to decide whether to apply
operator fusion or to insert buffers between operators. This section analyzes the opti-
mization approach. We implemented the buffer optimizer and buffering operators in the
relational database system Umbra, to be able to test effects in a full-fledged system.

First, we evaluate in Section 4.4.2 whether the buffer optimizer places buffers that
are able to reduce query runtime on three analytical benchmarks: TPC-H [182], TPC-
DS [181], and the star schema benchmark (SSB) [131]. We also investigate whether
buffering indeed reduces hardware hazards and whether this is the reason for perfor-
mance improvement. Second, we check in Section 4.4.3 the quality of the optimizer’s
decisions as to whether there are cases in which it degrades query performance or misses
optimization opportunities. Third, we examine how well the cost function predicts ac-
tual processor behavior in Section 4.4.4.

4.4.1 Experimental Setup

All experiments were run on a machine with an Intel i9-7900X CPU with 10 cores
at 3.3 GHz and 14 MB of last-level cache. This processor is built with the Skylake
architecture, which has 2-fold simultaneous multi-threading and 10 slots in the line fill
buffer (LFB) in each core. The benchmarks are TPC-H, TPC-DS, and SSB and are each
used at scale factor 10 (unless otherwise noted). We only consider TPC-DS queries
without window functions, as those are currently not supported in Umbra. By default
all experiments are done with one execution thread.

The pipeline optimizer inputs are retrieved by a preceding run of the query to deter-
mine tuple counts for each operator and to sample branch misses and last-level cache
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Figure 42: Query execution times with and without buffering for selected TPC-H queries

misses with the processor’s internal performance measurement unit (PMU). The profil-
ing samples are then automatically mapped to relational operators and from there used
as inputs for the pipeline optimizer. While this strategy is not useful for a production-
ready database system, for the purpose of this evaluation it emulates that the pipeline
optimizer is integrated into adaptive execution [84]: Ideally, in the first compilation step
a query is compiled with the Flying Start backend of Chapter 3 and while the query
is running, the PMU collects samples. When adaptive execution decides to recompile
the query with more expensive optimizations, the profile is analyzed and used for the
pipeline optimizer. Currently, our prototype implementation is not yet able to perform
these steps, thus, for this evaluation we emulate the behavior by preceding each query
with a performance profiling run.

4.4.2 Captured Improvements

We evaluate the buffer optimizer on a large set of 111 analytical queries from three
benchmarks to capture a wide variety of scenarios.

TPC-H Benchmark

Of the 22 TPC-H queries, optimized buffering provides a performance improvement
by at least 1.2× for 13 queries. Query runtimes for these 13 queries with and without
buffers are shown in Figure 42. Each query is annotated with the execution speed im-
provement that buffering provides. The remaining queries from the benchmark have a
performance improvement of less than 1.2×, yet for all the queries the optimizer chose
a buffering plan that is at least as fast as using no buffers at all.

The reason for performance improvement with buffering can be understood from Fig-
ure 43. It shows how much fewer cycles per tuple the processor spends to resolve hard-
ware hazards when optimized buffers are enabled. The cycle count is derived from the
number of branch misses recorded by the PMU during query execution. The cycle count
is estimated by assuming that each branch miss takes around 25 cycles to resolve. The
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Figure 43: Reduced cycles per query on TPC-H

PMU event cycle_activity.stalls_l3_miss directly reports the LLC stall cycles.
All event counts are divided by the number of tuples scanned in the query.

Observe, how for the join-heavy queries 3,4, and 9 the stall cycles waiting for memory
can be significantly reduced, leading to faster query execution from between 1.4× to
1.8×. Further, query 13 performs a group-join on a hash-table with 1.5 million entries
and incurs∼ 2 LLC misses per tuple. Buffers are able to greatly reduce this cost by 292
stall cycles per tuple.

A reduction of branch misses also reduces query runtimes. Query 6, for example,
only consists of a table scan, selections, and an aggregation. The selection predicates
are rather unpredictable for the CPU, thus cause ∼ 7 misprediction resolve cycles per
scanned tuple. The optimization inserts buffers after these predicates and is able to
completely remove any branch miss cycles.

Star Schema Benchmark

The star schema benchmark consists of one large fact table and multiple significantly
smaller dimension tables. There are four basic queries 1*, 2*, 3*, and 4* which each
join the fact table with one, three, three, and four dimension tables respectively. Each
basic query has variations, which with increasing variant number (.*) find less join part-
ners for the fact table. This entails, that hash tables become smaller with increasing
variant number.

Figure 44 shows that buffering is beneficial for all but query 23. Figure 45 reveals that
for 1* the performance improvement is mainly generated from reducing branch misses.
These stem from predicates evaluated on the fact table, which the optimizer cushions
with a buffer. Queries 21, 31, 31, and 42 benefit from a reduction in cache miss cost.
These occur due to prefetching of hash tables when buffers are placed before the lookup.
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Figure 44: Query execution times with and without buffering for SSB queries
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Figure 45: Reduced cycles per query on SSB
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Figure 46: Query execution times with and without buffering for selected TPC-DS queries
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Figure 47: Reduced cycles per query on TPC-DS

TPC-DS Benchmark

TPC-DS is a large benchmark with 99 queries of which Umbra can currently execute
76. We found that only for the 8 queries of Figure 46 does optimized buffering provide
a performance improvement of 1.3× or more. The corresponding cycle improvements
are shown in Figure 47.

4.4.3 Optimization Optimality

The number of configurations available to the buffer optimizer is quite large, as for a
query with n possible buffer positions it chooses a subset of positions to insert buffers.
With n positions there are 2n distinct buffer configurations. In such a large optimization
space it is quickly infeasible to execute all configurations.

As alternative, we explore the optimization space starting from three vantage points:
All buffers off, all buffers on, and the configuration chosen by the optimizer. We mea-
sure the runtime of the base configurations. Then, we generate new configurations by
starting from a base configuration and toggle one buffering option, i.e., to insert a buffer
when there is none, or remove the buffer otherwise. We also measure these derived con-
figurations. This allows us to explore the surroundings of the base configuration in the
optimization space and provides at least a local indication if there are any optimization
opportunities that the optimizer did not leverage.

Overall Outcome.

Figure 48 shows the result of these experiments. Each dot represents the measure-
ment of one buffer configuration; the one chosen by the optimizer is marked with a
diamond. The vertical axis signifies how much faster the configuration can be executed
in comparison to using no buffers at all. In addition, the point density is indicated by an
underlying violin plot.
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Figure 49: Alternative strategy of inserting all possible buffers vs. optimizing buffers

Importantly, the optimizer is always able to pick a buffer configuration as least as
fast as using no buffers at all. That means, processing performance is never degraded
by unprofitable buffers. Further, for all of the queries the configuration chosen by the
optimizer is very close to the fastest alternative. We conclude that the optimization
approach is effective at picking beneficial configurations.

Alternative: All Buffers On.

The results suggest an alternative strategy to using an optimizer: For a number of
queries, enabling all buffers is just as fast as the optimizer’s configuration. We could
just insert buffers whenever possible. In many cases this approach seems competitive
or even better than the optimizer’s choice. After all, minor inefficiencies caused by
some unprofitable buffers are easily hidden by the gains of profitable buffers. However,
adding buffers everywhere fails when buffering in general is not very profitable, e.g.,
in TPC-H queries 1,2,11, and 19. Here, adding all possible buffers lets the query run
slower than without any buffers. In other cases, too many buffers merely reduce the
overall optimization profit, e.g., in TPC-H query 17 and TPC-DS queries 37 and 82.
Figure 49 also shows that inserting all possible buffers is detrimental on a number of
TPC-DS queries.

Missed Opportunities

While the optimizer is often able to pick a very good plan, in a few instances it misses
opportunities to reduce the query runtime further. Figure 48 shows that for example for
SSB queries 3.3 and 3.4 there are faster buffer configurations available. In query 3.4
there exists a configuration that outperforms all other options by only inserting a single
buffer S. Curiously, this buffer is placed after the first join were it has no opportunities
to reduce branch or cache misses.

For query 3.4 the join order optimizer chooses to first join the lineorder table (∼
60 M tuples) with the supplier table (creating a hash table with 164 tuples). This join
reduces the amount of tuples in the rest of the pipeline from 60 M to ∼500k. That
means that only 0.8% of the scanned tuples from lineorder reach the buffer S, thus the



4.4 E VA L UAT I O N 101

Cache Misses 1 0 Experiment Cost Func.

 44 cycles

374 cycles

Skylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-XSkylake-X

0

100

200

300

400

0 50 100 150 200

Instructions in Pipeline

C
y
c
le

s
 p

e
r 

It
e

ra
tio

n

 27 cycles

273 cycles

SkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylakeSkylake

0

100

200

300

0 50 100 150 200

Instructions in Pipeline

C
y
c
le

s
 p

e
r 

It
e

ra
tio

n

 39 cycles

296 cycles

Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.Sandy Br.

0

100

200

300

0 50 100 150 200

Instructions in Pipeline

C
y
c
le

s
 p

e
r 

It
e

ra
tio

n

 27 cycles

435 cycles

AMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD ZenAMD Zen

0

100

200

300

400

500

0 50 100 150 200

Instructions in Pipeline

C
y
c
le

s
 p

e
r 

It
e

ra
tio

n

Figure 50: Processors hide cache miss penalties with out-of-order execution in short pipelines.

cost of materializing to the buffer is incurred seldomly. Further, buffer S detaches the
first, heavily-used part of the pipeline from the rest. The buffer optimizer does not place
any buffers around the first join, so that execution takes 12 cycles and 24 instructions per
tuple. With buffer S execution time reduces to 11 cycles and 23 instructions per tuple.
Thus with buffer S, which detaches the busy front of the pipeline from the rest, the
LLVM compiler is able to generate better machine code, resulting in higher execution
speed. The buffer optimizer misses the opportunity as its cost function does not cover
optimization effects from the underlying compiler.

4.4.4 Cost Function Accuracy

As an essential part of the optimizer we introduced a cost function to predict the
execution time of a pipeline on a modern out-of-order processor. The cost function
models cache miss hiding, random behavior, and data dependencies. In this section we
evaluate experimentally how the cost function fits real processors.

Cache Miss Hiding

The basic assumption of the cost function is that out-of-order processors can hide
multiple cache misses and resolve them while stalling only once. Thus, the stall penalty
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Table 12: Microarchitecture attributes of used processors [3, 47, 69]. LLC-miss penalty and
number of MSHR for Skylake and Skylake-X was determined experimentally.

Arch. LLC-miss
penalty [cycles]

MSHR ROB Integer
Registers

observed OOO
Window

Skylake-X 374 10 224 180 130
Skylake 273 10 224 180 148
Sandy Bridge 296 10 168 160 130
Zen 435 16 192 168 140

is amortized over multiple cache misses (cf., Equation 4), so that when multiple pipeline
iterations fit into the out-of-order window each iteration incurs a reduced (amortized)
cache miss cost.

To check whether this is indeed the case on actual processors, we perform the fol-
lowing experiment: We place a load instruction that always incurs a last-level-cache
miss into a loop and add padding instructions after the load—we simulate a pipeline as
depicted in Figure 38. The load reads from an array that covers 4 million cache lines
and every loop iterations reads at a random offset. With the array much larger than
the last-level cache the loads almost always get a cache miss. The padding instructions
are addition instructions, which processors usually process at full issue width. More
padding instructions simulate a longer pipeline, thus fewer pipeline iterations fit into
the out-of-order window. Less padding instructions simulate a shorter pipeline, thus
more iterations (and cache misses) fit into the window.

Figure 50 shows the result of this experiment for processors with four different mi-
croarchitectures. Skylake-X and Skylake represent Intel’s current generation architec-
ture, respectively for the server and client market. Sandy Bridge is an older Intel ar-
chitecture. Zen is a recent architecture from AMD. For each of these architectures we
performed the experiment and varied the amount of instructions in the pipeline (x-axis)
and measured how long the execution takes (y-axis). Notably, the runtime graph exhibits
a staircase pattern. From left to right, the experiment adds instructions to the pipeline.
Whenever the amount of instructions exceeds a threshold so that one less pipeline iter-
ation fits into the out-of-order window, one less cache miss is hidden. This makes the
amortized cost higher and reflects in a new step in the staircase pattern. We conclude
that out-of-order processors are able to hide subsequent cache misses.

As the cost function is built on this assumption and the assumption holds on modern
processors, the cost function is able to predict the pipeline execution time accurately
(dashed lines in Figure 50). However, the size of the out-of-order window seems to
not be limited by the size of the reorder buffer, but by the much smaller, empirically
determined values of Table 12. The window size may thus be limited by the number of
available integer register names. With this adaptation the cost function is able to predict
the processor behavior well.
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Figure 51: Processors hide cache miss penalties with out-of-order execution in short pipelines,
also with probabilistic occurrence.

Figure 50 also shows the runtime for the experiment for the case in which the load
instruction always accesses the same offset, thus incurs no cache miss. The difference
between the experiment with one and no cache miss is exactly the amortized number of
cycles the processor stalls due to the cache miss. Consequently, from this experiment
we can determine the cache miss stall penalty (right-hand side) and the amortized stall
penalty with maximum cache miss hiding (left-hand side). Observe how for Skylake
there is a factor of 10× between these values, as Skylake is limited by having only 10
miss status hold registers (MSHR) per core to keep track of L1 misses. For Zen, there is
a factor of 16× between the values. Its limit of 16 MSHR allows for more amortization.

Probabilistic Model

For a given load instruction one pipeline iteration does not necessarily experience a
cache miss every time, rather a cache miss only occurs a fraction of the iterations. The
cost function takes this into account by considering a cache miss as a random variable
with a miss probability p and with an updated cost function that models the expected
number of hidden cache misses for amortizing the cost (cf., Equation 8).

To check whether this accurately reflects processor behavior, we extend the previous
experiment so that a given fraction f of offsets are not randomly distributed but 0. Loads
from offset 0 will not have a cache miss, as it is accessed relatively often. We can thus
achieve a cache miss probability p by setting f = p. The result of this experiement is
shown in Figure 51. The processor is still able to hide multiple cache misses, as evident
from the staircase pattern. Also, the cost function is able to predict this behavior fairly
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Figure 52: Dependent misses with multiple probabilities

well. We conclude that the probabilistic model (Equation 8) adequately predicts actual
processor behavior.

Data Dependencies

The last missing piece for the cost function is the processor behavior when there are
multiple load instructions in a pipeline—each with a cache miss probability—and the
load instructions have data dependencies amongst each other. The cost function captures
this through Equation 10.

To check whether this reflects processor behavior, we again extend the experiment.
A pipeline can now contain multiple load instructions, each of which depends on the
previous instruction and has a cache miss probability p. The data dependency is cre-
ated with the following method: Before the experiment, the data array is filled with
random numbers. Each load instruction loads one of those random numbers, which is
then combined into the offset for the subsequent load instruction—creating a data de-
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pendency. For combination we use the crc32 instruction to hash two values into one and
afterwards we multiply with the offset to make sure that every intended cache hit (offset
= 0) remains a cache hit even after hashing.

The result of this experiment1 is shown in Figure 52. With cache miss probability
p = 100% a cache miss stall occurs for every load in the dependence chain. However,
when multiple pipeline iterations fit into the out-of-order window the processor is able
to hide cache misses of the (independent) chains of those iterations, again showing a
staircase pattern. In the case of p = 100% the processor is even hiding cache misses of
other chains, but at the same chain depth.

With p < 100% this is no longer necessarily the case. As explained in Section 4.3.4
the cost function expects that there are cases when cache misses from different levels
hide each other. This leads to an overall effect that misses at the start of the chain
have a lower amortized cost, as they are likely to hide more other cache misses. Cache
misses further down the chain have higher amortized cost, as they are less likely to hide
other misses. Overall, the experiement shows that for p < 100% the actual processor
behavior is very close to the dependent cache miss hiding predicted by the cost function.
Vice versa, we conclude that the cost function adequately models processor behavior in
the presence of probabilistic cache misses and data dependencies.

4.5 S U M M A RY

In data-intensive processing hardware hazards are a large source of inefficiency that
slow down processing. There are mitigation mechanisms built into every modern pro-
cessor, and also known software techniques to avoid hazards. Unfortunately, both mech-
anisms compete and both have their merits—that means both have use cases where they
are the better option.

In this chapter, we have shown for the case of compiling relational query engines how
to plan and optimize hazard mitigations. Specifically, we presented a cost function to
predict processor behavior and the impact of hazards. We also proposed an optimizer
which leverages the cost function to place software mitigations when hardware mecha-
nisms on their own are not fully efficient.

Our evaluation shows that the cost function accurately models processor behavior
and allows the optimizer to pick effective mitigations. On analytical benchmarks the
optimizer is able to let queries run up to 2.6× faster, while producing no significant
slow-down for queries where mitigations are unnecessary.

1 The cycles per iteration count of Figure 52 does not include extra work due to hashing overhead. For long
load chains the experiment experienced more L1 misses due to the extra memory traffic of reading the
input offsets for each load. We removed this overhead from the experiment results for clarity.
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Compilation in relational query engines splits query evaluation into a compilation and
an execution phase, which creates challenges during performance tuning and profiling.
This is not only a problem in compiling relational query engines, but in any setting
where computation steps are first optimized in an internal logical representation and then
translated to executable programs. Internal representations exist in many forms and with
different characteristics, yet a common denominator is that computation is expressed as
operators which are connected to form a graph to describe the overall dataflow.

Dataflow graphs are a powerful abstraction for a variety of applications and work-
loads: from more traditional systems like databases and compilers, to more widely
adopted computing frameworks for big-data [191, 119, 114], graph- and stream-pro-
cessing [167, 24], and machine- or deep-learning [1, 141]. It allows developers to ex-
press on a high abstraction level the data dependencies between various tasks and map
computations to (pipelines of) operators [162].

Although they have a long history, dataflow computing systems are even more rele-
vant today, in particular when deploying computations onto various hardware platforms
and accelerators. Using such an expressive high abstraction layer allows the system
stack to absorb the complexity of generating efficient code and mapping it onto the
available hardware resources, as opposed to burdening the developer. In fact, such com-
piling and code-generating dataflows are what many believe the only way to address the
increasing heterogeneity of the underlying computing resources and allow the domain-
expert developers to focus on the important task at hand using a DSL at an abstraction
layer they are most comfortable and productive at, without worrying about low-level
details [95, 29, 64, 136, 146]. The key to this success is that the background-process
involves progressive layering of optimization steps for dataflow graphs that generate
lower-level intermediate representations (cf. Figure 53), which eventually lead to a
high-performant and efficient binary program.

While this has many advantages, with each optimization layer/step we lose semantic
knowledge about the (higher-level abstraction) dataflow so that some critical tasks, like
debugging and performance profiling, become intractable. Most profiling tools today
primarily operate on a much lower level and report metrics on an assembly instruction-
or function- granularity [68, 2, 188, 103]. While for systems experts the task to map
the information provided from these profilers to the low-level code they have written
is rarely an issue, the problem becomes less trivial when anyone needs to read perfor-
mance profiling for machine generated code and interpret it in terms of higher-level
abstractions.

107
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Figure 53: Layered organization of compiling dataflow systems on the left and profiling results
of our novel Tailored Profiling approach on the right.

With today’s technology, debugging and profiling computer systems is often a non-
trivial task with a number of challenges: First, existing software systems are quite com-
plex and involve many components that interact when the dataflow computation is being
executed. A source line could be used by multiple components, some of which may be
from external libraries, so backtracking which one invoked it can take time. Second, re-
verse engineering and backtracking an instruction’s path through a long list of optimiza-
tion steps can be a daunting task at best, while almost intractable in general. Third, even
for an experienced systems-developer it is difficult to say where exactly the recorded
assembly instruction belongs to or what kind of data resides at a given memory address.
Fourth, many of the above points become trickier with code generation, because we
introduce more layers of indirection.

Yet, high-level performance profiling reports are be very valuable to anyone working
on the dataflow graph (or any of the intermediate optimization layers): On the one
end of the abstration-layer spectrum, the domain expert (cf. top right of Figure 53)
may wish to know how much time is spent on different parts of the dataflow graph,
or which operation is the most expensive one. Furthermore, the optimizer developer
could potentially identify which particular segment of the pipline of fused operators
is the bottleneck and what causes it – perhaps reordering the operations or breaking
the pipeline can significantly reduce the runtime. On the other end of the spectrum,
the lower-level compiler expert could use insights indicating which part of the pipeline
causes control- or data-hazards and tweak the code generation to potentially avoid them
in the future.

In this chapter, we present how to performance debug and profile compiling dataflow
systems with Tailored Profiling—a way that is understandable and brings value to any
user working on a selected abstraction layer. To achieve understandable profiling we
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begin by analyzing the state of the art to identify the (source of the) problem of the se-
mantic gap between the dataflow graph and it’s subsequent transformations in the lower
abstraction layers (cf. Section 5.2). We then list the key requirements a dataflow per-
formance profiler should meet and present our high-level design for a generic dataflow
systems profiler in Section 5.3. Although at first thought it may seem counter-intuitive,
compiling dataflow systems are as much part of the solution as they were part of the
problem. In fact, one of our key insights is to extend the compilation steps to also an-
notate the generated code with meta-data. We can then use this meta-data to bridge the
semantic gap and map the profiling results back to the desired abstraction layer. This
enables us to post-process the data and present it at a granularity that brings the best
insights to the developer. In Section 5.4, we detail the specific steps that were needed
to build our prototype as part of the high-performance compiling DBMS Umbra. As
appropriate profiling is already challenging, we focused our prototype implementation
on single-machine CPU computations. We discuss the benefits of our approach in the
context of a few compelling use-cases and evaluate the performance overheads and ac-
curacy of our implementation in Section 5.5.

5.1 Q U E RY E N G I N E S A N D P E R F O R M A N C E T U N -
I N G

5.1.1 Dataflow systems

Dataflow graphs have seen a resurgence, as in recent years a number of influential
data processing systems were built that use dataflow graphs at their core [191, 119, 114,
24, 1, 141]. In the following, we call these systems data-flow systems.

Dataflow graphs are a flexible way to compose programs from operators that act on
data. Operators are connected to other operators, thus the result of an operator forms
the input to further operations. Overall, the construction forms a graph with operators
as vertices that pass data along the edges [162].

The popular machine learning framework TensorFlow, for example, uses the dataflow
graph abstraction in their user API. Users explicitly construct a graph of machine learn-
ing operators that pass along tensors with training data. Similarly, Spark offers the
DataSet API to let users combine analytical operators into complex queries.

An advantage of dataflow graphs is that on the user facing side of a system, the
graphs create an abstract and composable interface. Furthermore, internally the system
can perform high-level optimizations on the graph structure.

5.1.2 Code Generation

Data-flow graphs are used for high-level logical optimization. Systems can automati-
cally restructure the graph to minimize computation time.
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To apply dataflow graphs to input data systems must execute the operators in the
graph. Operator execution can, e.g., be done by interpretation in which operator im-
plementations are generic and configured according to the dataflow graph to act on the
input data.

An alternative—applied to get the highest performance from the underlying hardware—
is to generate machine code specifically for each dataflow graph, thus removing any in-
terpretation overhead. Most systems organize machine code generation not in a single
step from dataflow graph to machine instructions, but in a layered approach with multi-
ple intermediate representations (IRs) and successive lowerings [95, 29, 64, 136, 191].
An abstract version of such a layered approach is shown in the dataflow system on the
left of Figure 53. The top-most graph layer is translated into more concrete intermedi-
ate representations, which widely vary depending on the actual system. E.g., Voodoo
proposes to use a vector algebra to reason about data partitioning, instruction level and
thread parallelism [146]. TVM uses low level loop programs to reason about control
flow, but still abstract from concrete hardware [29]. Such IR levels are usually followed
by imperative program representations which target specific hardware instructions.

Every IR is designed to support a set of optimizations which reorder and restructure
the program to obtain better execution behavior. A particular effect of these optimiza-
tions is that when optimizations move instructions, some program parts originally gen-
erated by one dataflow graph operator become intertwined with instructions from other
operators. This effect is commonly referred to as operator fusion.

5.1.3 Profiling Tools

To analyze the performance characteristics of complex computer systems and find
tuning opportunities, developers typically rely on profiling tools. Some commonly used
profilers are Intel VTune Profiler [68], Linux perf [103], Flame Graphs [57] and OPro-
file [133]. These tools output the performance profile of the system software for a given
workload, and show the utilization of various micro-architectural hardware features. To
do that, profilers use the processor’s Performance Monitory Units (PMUs) to collect
samples of selected hardware events (e.g., stalled CPU cycles, cache- or TLB-misses,
memory accesses, etc.) and map them to the assembly instructions that triggered them.
Often, to make the output more user-friendly, the profilers will generate a performance
report on a source line- or function- granularity. Recently, Intel introduced the Proces-
sor Event Based Sampling mode (PEBS) [67], where the processor itself records the
samples and writes them into a dedicated buffer in memory, without raising an interrupt.
This significantly improves the precision of the profiling samples and reduces the over-
head, as the kernel is only involved when the buffer is full. In such cases, the interrupt
handler writes out the samples to memory and clears the buffer for further sampling.
In the default mode, PEBS just records the instruction pointer (IP) of the executed in-
struction at the sampling time-point, but one can also configure it to record the full
call-stack. For the rest of this chapter, we will use the default mode unless explicitly
stated otherwise.
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5.2 P R O F I L I N G DATA F L OW S Y S T E M S

In this chapter we address the challenge of profiling dataflow systems and getting
more value out of the process for all parties involved. Dataflow graphs are a powerful
abstraction that allows domain experts express the computation they need to perform on
data in the form of graph nodes and edges. The rest of the system stack then absorbs the
complexity of computing the optimal execution plan and generating high performant
code that is optimized for the underlying hardware platform. As discussed in Section
2.2, very often this compilation and optimization process undergoes a series of trans-
formation steps, each optimizing on a metric that brings us closer to generating fast
executable binary. Many of these optimization and transformation steps are designed
by developers with different fields of expertise. And at each step, any information that
identifies the hotspots and bottlenecks in the system (e.g., where and how the time is
spent, how the operations interact with one another, how efficiently the different opera-
tions use the underlying compute/memory/IO resources, etc.) would be of great use to
developers that want to fine-tune the system.

5.2.1 Shortcomings of Current Tools

However, with the current tools this task is not trivial. Even in the simple(r) case
where the dataflow runs on a single machine, does not rely on heavy I/O for data ex-
change, synchronization and communication, and only uses the CPU (and not offload
computation to accelerators) the problem of mapping the low-level profiling detail to
higher-level concepts and abstraction layers is a challenge. To understand the problem
better, we make the following observations.

P R O F I L E R S O N LY AG G R E G AT E O N L OW- L E V E L I R First, profilers operate
only on the lowest level – the hardware-specific executable and its libraries. As a result,
the performance profiles they generate can only aggregate the recorded events on an
assembly-level or source-line / function call granularity. While this is useful informa-
tion for a low-level systems engineer working on compilers and code-gen, the data is
too raw for anyone working with higher-level constructs and concepts (cf. Figure 54).
These developers would then have to reverse-engineer through multiple-layers of code-
generation to find where these instructions belong to, in order to create a holistic pic-
ture of the performance profile suitable for their job. For example, the developer of a
database query optimizer is used to the concepts constituting a query plan – relational op-
erators and pipelines. He is not interested in the costs of each LLVM IR instruction, but
the total costs per operator or an operator pipeline. Having that aggregated knowledge
could help him reorder the execution of the operators in a pipeline [127], potentially
fuse-operators into one [121, 29] or introduce more pipeline breakers [117]. With the
present tool-support, he would have to reconstruct these profiles manually. This step
can easily become very involved, ineffective and error-prone. Hence, the more complex
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Figure 54: Layers of intermediate representation for the Umbra database system. With today’s
profilers developers with expertise on different layers must all use profile reports on
the lowest IR level.

the system is, the less likely it becomes that someone like the top-level domain expert
will be able to identify the most critical component of their dataflow graph.

P R O F I L I N G R E P O R T S OV E R A L L S TAT I S T I C S F O R A N E V E N T Second,
profilers often fail to leverage the time dimension recorded along with the collected
samples. Hence, the developers miss an opportunity to get extra hints on when (in
addition to where) the hotspots occur. This is very important for performance tuning
pipelines where multiple operations can be active at the same time (e.g., processing data
in a pipeline stream). Being able to monitor how efficiently the resources are being used
on a time granularity, and correctly attribute them to the exact operation that uses them
is not only valuable for the system-stack developers, but also for provisioning resources
to different operators at runtime (e.g., for streaming dataflow engines [105]).

M E M O RY T R AC I N G I S C O S T LY A N D D O N E B Y A N OT H E R TO O L Third,
low-level profilers are seldomly used to gather memory traces – the set of addresses
accessed during the execution of a program. This is unfortunate, as that piece of infor-
mation can be very valuable to developers. For instance, getting access to which (part
of a) data structure was accessed when most of the cache-misses are recorded and by
which operation (e.g., that keeps information on the properties of the algorithm’s mem-
ory access patterns) can help a developer into reorganizing the data in a different data
structure, or be more careful about the skew-distribution and data partitioning among
the executing threads. Typically, memory tracing is done on a system-level which has
two problems: One, it comes with a big performance overhead making it impractical for
complex dataflow systems aiming to minimize the job’s response time. Two, the output
is in a format that maps the frequency of access requests to memory addresses, mak-
ing it too raw for anyone working on higher abstraction levels. It is again a job left to
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Select s.id,
avg(s.price/

s.vat_factor/
s.prod_costs)

From sales s, products p
Where s.id = p.id and

p.category = 'Chip'
Group By s.id;

Γs.id,avg(...)

onp.id=s.id

σcat.=′Chip′ sales s

products p

(a) Example query in SQL (b) Dataflow graph for the query.

1 for each tuple t1 in sales s
2 if t1 has match in onp.id=s.id [t1.id]
3 aggregate t1 in hashtable of Γs.id

(c) Pseudo code for the execution of the blue pipeline of Figure 55b.

Figure 55: Example query with corresponding dataflow graph and generated code.

the developer to reconstruct and map how the memory accesses link to the higher-level
constructs they operate on.

L AC K O F H O L I S T I C S O L U T I O N Lastly, all of the above-identified limitations
of existing profilers (and memory tracing tools) are because they operate completely
decoupled from the rest of the compilation and optimization process (Figure 54). In
fact, the whole focus during the lowering and optimization process is on generating
highly optimized code and as a result the system does not keep track of the higher-
level concepts. For instance, in the step of lowering a database query plan to LLVM-
IR, the codegen produces low-level loops that execute operations and fuses multiple
operators together, thereby losing the abstraction concept of operators per-se and the
dependency between them. As a result, the profilers cannot re-establish the link because
the boundaries of the higher-level constructs are often blurred in the IR of lower layers
(e.g., due to operator fusion). This is an important observation as to why profiling
dataflows on multiple abstraction layers becomes such a puzzle for any developer.

To make things more clear, let us walk through an example that highlights the differ-
ent steps needed to identify a potential bottleneck in a code-generating database system.

5.2.2 The Missing Link: An Example

The dataflow system in our example is the relational database system Umbra, which
generates machine code to achieve maximum in-memory processing speed. It lowers
user requests through a series of optimization layers.

The query in Figure 55a, for example, is first parsed and then internally represented
as the dataflow graph in Figure 55b. The dataflow graph is then lowered into imperative
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1 loopTuples:
2 0% %localTid = phi [%1, %loopBlocks %2, %contScan]
3 0.1% %3 = getelementptr int8 %state, i64 320
4 0.1% %4 = getelementptr int8 %3, i64 262144
5 2.2% %5 = load int32 %4, %localTid
6 2.3% %7 = crc32 i64 5961697176435608501, %5
7 1.5% %8 = crc32 i64 2231409791114444147, %5
8 1.2% %9 = rotr i64 %8, 32
9 2.3% %10 = xor i64 %7, %9

10 2.2% %11 = mul i64 %10, 2685821657736338717
11 1.2% %12 = shr %11, 16
12 2.4% %13 = getelementptr int8 %5, i64 %12
13 32.1% %14 = load int32 %40, i64 %13
14 0.2% %15 = isnotnull ptr %12
15 0.3% condbr %15 %loopHashChain %nextTuple
16 loopHashChain:
17 0.1% %hashEntry = phi [%12, %loopTuples %99, %contProbe]
18 0.2% %16 = getelementptr int8 %hashEntry, i64 16
19 1.1% %17 = load int32 %16
20 0.3% %18 = cmpeq i32 %5, %17
21 0.2% condbr %18 %else %contProbe
22 else:
23 0.5% %19 = getelementptr int8 %0, i64 786432
24 2.2% %20 = load int32 %19, %localTid
25 9.8% ; ... // load values %22, %24, %26
26 9.5% %27 = sdiv i32 %22, %24
27 9.6% %28 = sdiv i32 %27, %26
28 2.9% %30 = crc32 i64 5961697176435608501, %20
29 2.4% %31 = crc32 i64 2231409791114444147, %20
30 1.3% %32 = rotr i64 %31, 32
31 1.4% %33 = xor i64 %30, %32
32 2.3% %34 = mul i64 %33, 2685821657736338717
33 1.7% %35 = and i64 %34, 1023
34 1.9% ; ... // find entry
35 2.2% store int32 %20, %37
36 0.2% %38 = getelementptr int8 %37, %4
37 2.1% store int32 %28, %38
38 ...

Figure 56: Performance profile of the actually generated program in LLVM IR for the marked
pipeline of Fig. 55b.

program form. In this case, into LLVM IR, the intermediate representation of the LLVM
optimizing compilation framework [94]. LLVM then lowers the IR program down to
executable machine code.

Before discussing performance profiles of the generated code, let us shortly inspect
the structure of the generated code. The operators of Fig 55b marked in blue form a
pipeline of operators that directly pass tuples to each other during execution. Concep-
tually, the system generates the pseudo-code of Figure 55c, where the scan operator
loops over the tuples of the input table (Line 1), passes each tuple to the join opera-
tor (Line 2), which in case of a match forwards the tuple to the aggregation operator
(Line 3). In reality, however, the system produces the much more detailed LLVM IR
shown in Figure 56.

Now, when profiling the example query the profiler will report the results on line- or
function-level of the IR program as shown in Figure 56. Each line is annotated with
the number of collected samples the profiler attributes to the corresponding source line.
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This approximates the execution cost of each instruction. Observe, how this profile view
is rather low-level. At first glance, it is apparent that a lot of time is spent on the load
instruction in Line 13. However, it takes quite some time and expertise to realize that
this instruction implements the directory lookup of the chaining hashtable used in the
join operator. Further, it is easy to miss that in total an even higher number of samples
belong to the aggregation operator, as those samples are spread out over Lines 23-37.
In short, the initial impulse to focus on improving the join operator would miss the fact
that the group by operator is the dominating cost factor.

Unfortunately, a report of samples on a function level—as most profilers offer— does
not remedy the situation either. Operator fusion tightly couples operators of the whole
pipeline into a single function, leaving the function aggregation level too coarse to ob-
tain any useful insights. Additionally, neither the function nor the source level view,
though, lend themselves to visualize a time dimension.

5.3 A B S T R AC T I O N A P P R O P R I AT E P R O F I L I N G

As shown in the previous section today’s profilers present reports mainly on the low-
est abstraction level. This covers only a fraction of information needs of the different
experts involved in building dataflow systems. Here, we present our profiling approach
that caters to everyone involved.

We list the desired features in Section 5.3.1, propose a solution in Section 5.3.2, and
present its advantages in Section 5.3.3.

5.3.1 Requirements from an Ideal Profiler

A profiler should report results at a granularity familiar to the reader of the report.
Specifically, the report should be in terms they already use while interacting with the
system. Such terms could be operators from the dataflow graph or vectors, loops, etc.
from lower optimization layers.

While these terms can be quite high-level the profiler should not hide details due to ag-
gregation. Information that is available in profiling samples, e.g., timestamps, accessed
memory addresses etc. should still be presented to the reader.

Beyond the right format, a profiling report should also accurately reflect the actual
behavior of the executed computation. That means, first, association of samples with
high-level components must be correct. Second, the sampling frequency must be high
enough to not miss any behavior, e.g., due to aliasing effects. Third, the performance
overhead of sampling should be low, so that the behavior of the profiled process can be
observed undisturbed.

In the next section, we present a profiler that meets these demands. Our solution relies
on hardware profiling support to supply accurate, low-overhead samples with instruction
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for tuple t in table T
  if t[1] > 5
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isnotnull ptr %12
... Hashjoin

Tagging Dictionary

Figure 57: Tailored Profiling requires small extensions to collect a tagging dictionary during
code generation and to enable Register Tagging. With this, it can generate high-
level performance reports for all parties involved.

pointers and timestamps, and requires that each low-level component can be mapped to
exactly one component on the next-higher abstraction level (cf. Section 5.3.2).

5.3.2 Tailored Profiling

With Tailored Profiling we bridge the semantic gap between the low-level results
traditional profilers produce and the developers’ need for reports on higher abstraction
levels. Tailored Profiling supports all requirements listed in Section 5.3.1 and requires
no conceptual changes of the dataflow system.

Solution overview

Tailored Profiling solves traditional profilers’ shortcomings by tracking the lineage
of the low-level IR code generation across the many compilation steps to enable linking
the profiling samples to higher abstraction levels. Our approach, illustrated in Figure 57,
achieves this by: 1) tracing the links between concepts of the different abstraction lev-
els throughout the lowering process and 2) storing the links in an Tagging Dictionary.
After profiling, 3) a post-processing phase uses the dictionary to annotate the collected
samples with abstraction information and 4) produce a profile meeting the needs of the
selected developer.

Tagging Dictionary

The Tagging Dictionary is populated during the lowering of the dataflow graph and
consists of multiple logs, one for each lowering step as illustrated in Figure 58. Each log
is filled during its respective lowering phase, and contains an entry for each lower-level



5.3 A B S T R AC T I O N A P P R O P R I AT E P R O F I L I N G 117

DataJIT
Dataflow System

Dataflow Graph

Imperative Program

Machine IR

Machine Instructions

Execution
ProfilingResult

C
om

pi
la

tio
n 

En
gi

ne

Tagging
Dictionary

Multi-Level Profiler

Operator 1

Source Location 1

Instruction 6

Native Sample Sa
m

pl
e 

P
ro

ce
ss

in
g

Imp. Program ➜ Dataflow Graph:
Source Loc. 1 => Operator 1
Source Loc. 2 => Operator 1
Source Loc. 3 => Operator 2
Source Loc. 4 => Operator 3
Source Loc. 5 => Operator 3
...
Machine IR ➜ Imp. Program:
Instruction 3 => Source Loc. 1
Instruction 4 => Source Loc. 1
Instruction 7 => Source Loc. 3
Instruction 8 => Source Loc. 4
Instruction 9 => Source Loc. 6

Add Entries

Add Entries

Lookup

Look
up

Debu
g Info

Figure 58: Tailored Profiling applies the Tagging Dictionary to report the profiling results on
higher abstraction levels. During the compilation of the query the Tagging Dictio-
nary is created. After the execution the profiler uses the Tagging Dictionary to map
the native samples to higher abstraction levels.

component that links it to the corresponding higher-level component. To capture the
links, the system’s compilation engine keeps track of the currently active component
on the higher-level and adds an entry to the Tagging Dictionary whenever a lower-level
component is created.

Looking back at the example of Figure 55: Here, the higher-level components are
operators in the dataflow graph. Lower-level components are lines of imperative source
code, e.g., as shown in Figure 55c. When the dataflow engine lowers the scan operator,
the operator generates the for loop of Line 1. Because the engine tracks this process, it
notes in the tagging dictionary that source line 1 belongs to the scan operator. During
further translation, the engine also tracks that Line 2 belongs to the join operator and
Line 3 belongs to group by.

Challenges with Shared Source Locations

The Tagging Dictionary implicitly makes the assumption that every lower-level com-
ponent is constructed and used by exactly one higher-level component, i.e., every source
location in the generated code belongs to exactly one operator in the dataflow graph.
With this assumption we can map every profiling sample to one source location and,
thus, to exactly one operator.

The assumption is true for most of the generated code, however, it is possible that two
operators share a source location. This happens, for example, in Umbra’s join operator.
It calls a pre-compiled function to insert entries into a hashtable. Two instances of
the join operator thus share all source locations of the pre-compiled function. Yet, any
given profiling sample must be attributed to only one of the two operators, so we need
to disambiguate at shared source locations. This can either be achieved with call-stack-
sampling or our novel Register Tagging approach.

C A L L - S TAC K I N S P E C T I O N . The default approach on how a profiler can disam-
biguate shared code locations is by using call-stack sampling that records the entire
call-stack with each sample. Having the call-stack stored in the Tagging Dictionary
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1 ...
2 prevValue = setTag(op1); // set op1 as currently active
3 insert(); // call shared code location
4 setTag(prevValue); // reset to previously active op
5 ...

Figure 59: Register Tagging uses a processor register to trace the component that calls the
shared function. The register is reserved for exclusive use by Register Tagging.

can then help us identify the higher-level component for each function that executes the
shared code location. One drawback of the approach is that call-stack sampling suffers
either from high performance overhead or is limited to a low sampling frequency (cf.
Section 5.5). The positive aspects of it are that it can be applied without any alteration
of the generated code and when hardware support for register value sampling is not
available.

R E G I S T E R TAG G I N G . As an alternative, we propose a novel light-weight ap-
proach that we refer to as Register Tagging. The key idea is to disambiguate the source
location by storing an operator tag in a machine register. During sampling, the pro-
filer checks the disambiguation tag when necessary, as modern x86 processors have the
ability to record register values along with a profiling sample.

Linking back to our example, where two joins share the function insert, just before
the first join calls the common function, the Register Tagging would generate code that
moves a unique identifier for the first join into the tag register (shown in Figure 59).
Note, that on setting the tag in Line 2 we remember the previous value of the tag in
order to reset the value after the function call (Line 4). Register Tagging also instructs
the compiler to not use the tag register for any other purposes, to avoid overriding the
value. Ultimately, when a profiling sample is taken from the insert function, the value
of the tag register is also captured so that we can uniquely identify the caller.

One set-back for Register Tagging, is that it relies on hardware profiling support to
capture register values (and hence would not work for dataflow systems that run in
managed runtime like JVM) and is also invasive with respect to the code generation
engine. But, the amount of changes to the code generation process are quite small
and in return we get a much lower overhead compared to call-stack sampling without
compromising accuracy.

Generating Tailored Profiling Reports

Applying Tailored Profiling, the profiler aggregates the samples at the abstraction
level meeting the developer’s needs. Therefore, the profiler processes the samples and
maps them to the needed higher abstraction levels in a bottom-up approach using the
Tagging Dictionary as illustrated in Figure 58. For example to map a sample contain-
ing Instruction7 to the dataflow graph the profiler proceeds as as follows: At first
the profiler looks up the entry of Instruction7 in the Tagging Dictionary to map it to
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Γ (34%)

on (58%)

σ (1%) sales (4%)

products (3%)

(a) Query plan from Figure 55b
annotated with each opera-
tor’s costs.

1 loopTuples:(tablescan 2.4% hash join 45.7%)
2 ... hash join

13 32.1% %14 = load int32 %40, i64 %13 hash join
14 0.2% %15 = isnotnull ptr %12 hash join
15 0.3% condbr %15 %loopHashChain %nextTuple hash join
16 loopHashChain: (hash join 1.9%)
17 0.1% %hashEntry = phi [%12, %loopTuples...] hash join
18 0.2% %16 = getelementptr int8 %hashEntry, ... hash join
19 1.1% %17 = load int32 %16 hash join
20 0.3% %18 = cmpeq i32 %5, %17 hash join
21 0.2% condbr %18 %else %contProbe hash join
22 else: (group by 50.0%)
23 0.5% %19 = getelementptr int8 %0, i64 786432 group by
24 2.2% %20 = load int32 %19, %localTid group by
25 9.8% ; ... // load values %22, %24, %26 group by
26 9.5% %27 = sdiv i32 %22, %24 group by
27 9.6% %28 = sdiv i32 %27, %26 group by
28 ...

(b) Excerpt of the performance profile from Figure 56 ex-
tended using the data from the Tagging Dictionary. Note,
the percentages are based only on the samples of the blue
pipeline.

Figure 60: Tailored Profiling provides the profiling reports on developers’ abstraction levels.

its imperative program component, which is Source Location 3. Then, the profiler
can lookup the dataflow graph operator of Source Location 3 in the corresponding
log of the Tagging Dictionary to map the sample to Operator 2. For samples contain-
ing shared instructions, the profiler first retrieves the unique calling instruction either
from Register Tagging or the call-stack-sampling. Then, the profiler can just apply the
Tagging Dictionary for the call instruction to map the sample to the needed higher ab-
straction level as described in the example.

5.3.3 Benefits of Tailored Profiling

To show the advantages and practical impact of our approach, let us revisit the exam-
ple from Section 5.2.2 and apply Tailored Profiling this time.

For domain experts the profiler maps the samples to the dataflow graph, in this ex-
ample the query plan, and aggregates them per operator as shown in Figure 60a. The
domain expert can then inspect the annotated query plan to learn about the costs of each
operator, derive decisions to reconfigure the database system and fine tune SQL queries.

For the optimizer developer the operator plan is also a familiar abstraction. They can
compare the profiling results of different query plans for the same query to evaluate the
cardinality estimates of the optimizer and refine the query plan optimizations.

The operator developer—even though they are familiar with the low-level results of
the IR program—still benefits from Tailored Profiling. The profiler enriches the profil-
ing results as shown in Figure 60b. It annotates each instruction with its operator and
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Figure 61: Tailored Profiling associates each sample with an operator and thus determines op-
erator activity over the query runtime.

aggregates the costs of each operator on different granularities, e.g., on basic blocks and
functions. Thereby, the costs of each operator is provided as a frame of reference to
avoid missing expensive operations distributed across multiple instructions.

Aggregating to appropriate levels enables an additional, cross-cutting feature. The
components from each level provide an ideal base to visualize the performance profile
over time. For example, the profiler can show operator activity over time, as shown in
Figure 61. The operator developer can inspect this to learn about the interaction between
operators and detect temporal hotspots. Then they can use the profiler to narrow down
on the next lower abstraction level, i.e., limit the results to the time interval of the
hotspot. With visualization over time developers can pinpoint bottlenecks that would
otherwise be hidden in aggregation.

5.4 I N T E G R AT I O N W I T H U M B R A

We implemented Tailored Profiling in the compiling data-flow system Umbra to
demonstrate its feasibility and advantages. In this section we discuss implementation
details of our prototype.

Umbra is a high-performance relational database system, which compiles queries
with data-centric code generation based on the produce & consume model [121, 123,
117, 191]. Umbra’s query engine is implemented in C++ and lowers dataflow graphs
through LLVM IR to machine instructions. Thus, the engine runs queries by executing
native instructions, which allows the profiler to directly use hardware features, such as
PEBS, to collect samples.
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5.4.1 Correspondence Tracing

As introduced in Section 5.3.2, Tailored Profiling requires to keep track of high-level
constructs in the compilation phase. In case of Umbra, the compilation phase lowers a
relational algebra operator tree to an imperative program in LLVM IR. This translation
step is implemented in the produce & consume model. Keeping track of high-level
constructs (i.e., relational algebra operators) is integrated into the translation step.

In produce & consume, each operator is responsible to generate the code that imple-
ments the operator functionality. When operators are composed into an operator tree,
e.g., as shown in Figure 55b, they need to pass tuples amongst each other. This happens
through the interface of produce and consume functions. An operator can ask its input
operator to produce tuples, i.e., generate code to produce tuples, by calling the input’s
produce function. The input generates code to prepare a tuple, then passes the tuple to
the operator’s consume function.

Within this code generation process, we always keep track of the operator that cur-
rently generates code. The active operator only changes when either produce or con-
sume is called, thus on entry of either function, we set the active operator to the called
operator and reset to the previous value on exit. Then, whenever an instruction is gener-
ated in the LLVM IR program, we add an entry to the Tagging Dictionary to associate
the instruction with the active operator.

Even through the described procedure seems to require many changes to the code
generator, this is not necessarily the case. In Umbra, for example, produce, consume,
and instruction generation are all funnelled each through a single code location, which
we use to update the active operator and the Tagging Dictionary.

5.4.2 Register Tagging

Umbra applies Register Tagging to attribute samples of shared code locations to their
correct operator. The system therefore guards each call to a shared code location with
inline assembly instructions that execute the tagging.

Let us pick up the example from Figure 59 to show how it works. Umbra includes
the insert into the generated code of an operator by generating a function call instruc-
tion. Register Tagging is applied by adding inline assembly instructions implementing
setTag before and after the call instruction. These inline assembly instructions extract
the register’s previous value and write the tag into the register.

The system ensures only Register Tagging alters the used register by removing it
from allocation in the compilers. Umbra itself is compiled with gcc and the system uses
LLVM compiler framework [94] to lower the generated code from LLVM IR to native
instructions. For gcc the system reserves the register using the ffixed flag and we have
modified the LLVM compiler framework to exclude it as well. Only the inline assembly
instructions of Register Tagging can therefore access the register.



122 P R O F I L I N G C O M P I L I N G Q U E RY E N G I N E S

5.4.3 Precise Timestamps for Profiling Samples

Tailored Profiling requires profiling samples with a reliable timestamp to report re-
sults with a time dimension. Umbra therefore uses the Linux kernel’s perf API [104] to
record profiling samples with PEBS.

However, the sample timestamps provided by the Linux kernel seem to not repre-
sent the sampling time point correctly which we observed in initial experiments. As
workaround, we directly extract the processor’s internal timestamp counter (TSC) from
the samples from the PMU [67]. The TSC has cycle-grained resolution and is already
collected in PEBS samples of processors since Skylake, though currently dropped by
the Linux kernel during sample formatting. We therefore modified the Linux kernel
with a workaround to include the TSC in the formatted samples and convert it to ns
using a kernel module [15].

5.5 E VA L UAT I O N

In this section we evaluate the advantages of Tailored Profiling as well as its accuracy
and runtime overhead.

Tailored Profiling’s major feature is to produce profiling reports at the right abstrac-
tion level for the developer, which is hard to quantify and very subjective. Thus, instead
of success metrics, we show the value of Tailored Profiling with use cases for different
users. Afterwards, we evaluate its accuracy and the induced overhead in Sections 5.5.3
to 5.5.4.

5.5.1 Experimental Setup

We use the TPC-H benchmark [182] with a scale factor of 1 (dataset size 1 GB) for
the use-cases, and scale factor 10 (dataset size 10 GB) to measure performance and
accuracy. We execute all queries single-threaded with Umbra. The use-cases are ex-
ecuted on a machine with an Intel Core i7-7700K running at 4.2 GHz (turbo boost of
4.5 GHz), 32 GB DRAM and Ubuntu 19.10. The performance experiment test machine
has an Intel Core i9-9900X with 3.5 GHz (turbo boost of 4.4 GHz), 64 GB DRAM and
Ubuntu 20.04. We use Linux perf version 5.2 [103] to profile with PEBS, disable sample
throttling and transfer the samples to Tailored Profiling with perf script. To profile
costs and operator activity, we use the event INST_RETIRED.PREC_DIST and record a
sample every 5000 events. For memory access patterns, we capture a sample every
1000 loads of the MEM_INST_RETIRED.ALL_LOADS event.
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Select l_orderkey, avg(l_extendedprice)
From lineitem, orders
Where o_orderdate < '1995-04-01'
and o_orderkey = l_orderkey

Group By l_orderkey;

Γl_orderkey,avg(...) (65.1%)

ono_ord...=l_ord... (32.4%)

σo_ord<′1995...′ (0.3%) lineitem (1.6%)

orders (0.6%)

(a) Example query (b) Query plan with cost profile

Figure 62: Tailored Profiling can aggregate samples up to query plan level—a concept database
users are familiar with.

5.5.2 Use Cases

To show the utility of Tailored Profiling, let us present a number of use cases where
Tailored Profiling is employed on different abstraction levels and by engineers in differ-
ent roles.

Domain Expert

In the first use case, a user of Umbra investigates why the query from Figure 62a runs
slower than expected.

At a familiar abstraction level, Tailored Profiling enables the user to view how much
compute time each operator takes, as shown in Figure 62b. Here, they can quickly grasp
the overall execution plan for the query. The report reveals that 65% of the runtime are
spent in the aggregation operator and 32% in the join operator.

To speed up the query, the user can now make an informed decision on whether to,
e.g., introduce index structures to reduce the cost of the join computation. Alternatively,
they may decide to take computational shortcuts and add a sampling operator in order
to reduce the number of tuples that reach the aggregation operator.

Note that most database systems have a feature that seemingly offers the same view.
The explain analyze command counts how many tuples each operator processes and
visualizes the statistics in an operator tree. However, even though the tuple count is
a decent approximation, our sampling approach captures the actual time spent in each
operator.

Optimizer Developer

As a second use case, we inspect the work of an expert in the Umbraquery optimizer.
They investigate the performance of a query with the two alternative plans, as shown
in Figure 63. Both plans have identical intermediate result size, so with the standard
cost function the optimizer could choose either plan. Choosing the left one (Figure 63a)
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(a) Plan chosen by the optimizer. (b) Alternative, faster plan.

Figure 63: Alternative query plans for the optimizer developer’s SQL query from Section 5.5.2.

seems like a good option as the query plan first probes the smaller hashtable (expect-
ing fewer cache-misses) which will consequently reduce the number of tuples that also
probe the (more expensive) larger hashtable. Yet, this results in a slower runtime than
the alternative.

As this is counter-intuitive, the developer wants to identify the cause and refine the
cost function. The developer thus applies Tailored Profiling to inspect the operator
activity over time in the probing pipeline (cf. Figure 64). The report confirms that
the alternative plan is faster. Moreover, starting at 70 ms in the alternative plan the
join on orders becomes dominant while in the original plan becoming negligible. After
this hint, further investigation reveals that lineitem is scanned in the order of the join
attribute, which leads to a situation where first the join on orders finds a match for all
tuples and passes them to the next operator. Then, starting at 70 ms, the join on orders
eliminates all tuples so the hashtable for partsupp is not probed at all, yielding an overall
behavior that is easy to predict by branch predictors, which is especially beneficial for
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Figure 64: Operator activity over time for the plans of Figure 63.
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Figure 65: Profile of memory access patterns for the operators of Figure 62b. Each point de-
notes a sample with time (from query start) and accessed address (offset from lowest
address the operator accesses).

hardware with out-of-order execution capabilities. The optimizer developer can now
decide whether to extend to cost function with such data-layout and hardware-specific
properties.

Operator Developer

In the first use case, we have seen how a user of the database system can get a higher-
level overview on the performance of the query (recall Figure 62). An operator devel-
oper, who is responsible for implementing efficient operators, needs a more detailed
view of the internals. Very often they are interested in the data access patterns, which
can play a big role on the actual performance of the algorithm.

Tailored Profiling makes use of hardware sampling support to also record the ad-
dresses with every memory access. With the Tagging Dictionary the instruction that ini-
tiated the memory access can be associated with an operator, and as a result we can get
an accurate memory access profile for each operator (Figure 65). The operator developer
can inspect the memory profile and compare it to their expectations. In this example,
the table scans on orders and lineitem show a linear data access pattern over time, which
is ideal for hardware prefetchers etc. The join and group by operators access memory
in a more widespread fashion, as a result of using hashtables in their implementation.
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Figure 66: Performance overhead of the profiling approaches for TPC-H query 16.

This can be used as a starting point for further investigation, e.g., into a memory access
profile with cache-miss information, or for considering alternative operator algorithms.

5.5.3 Runtime Overhead

Our approach to Tailored Profiling incurs three sources of runtime overhead:

First, while profiling, the hardware sampling mechanism stores samples in a memory
buffer, which occasionally must be flushed by the operating system. Figure 66 shows
how the sampling overhead increases with sampling frequency. At our default setting
of taking a sample every 5000 cycles (0.7 MHz) the overhead is 35%.

Second, the amount of information included in the samples potentially increases the
overhead. Figure 66 also shows the overhead for additionally sampling register values,
as required for Register Tagging. When sampling every 5000 cycles the overhead grows
to 38%. Call-stack sampling—the alternative to Register Tagging—incurs an overhead
of 529%. In comparison, the overhead of Register Tagging is moderate.

Third, reserving one register for Register Tagging slows down query execution, as the
compiler generates worse code. On average over all 22 TPC-H queries, we observed an
overhead of 2.8%.

Further overhead from profiling occurs in form of storage space required for the
recorded samples and the Tagging Dictionary. Samples with IP, timestamp, and reg-
ister values require 54 Bytes (when adding call-stack information 265 Bytes). Thus, at
a sampling frequency of 0.7 MHz we need to store 77 MB per second. Each entry in the
Tagging Dictionary is a triple of operator, pipeline, and source line, which we represent
with 24 Bytes. With one triple per LLVM IR instruction—of which there are on average
∼1320 in a TPC-H query—the dictionary requires ∼30 kB.

Overall, we observe that the induced overhead is rather low, as we never encountered
any interference of profiling overhead with query execution and the performance profiles
are very plausible.
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Attribution Amount of Samples

Umbra 98.0%
→ Operators 95.4%
→ Kernel Tasks 2.6%
No attribution 2.0%

Table 13: Amount of samples attributed to Umbra by Tailored Profiling over all TPC-H queries.

5.5.4 Accuracy

To validate the correctness of Tailored Profiling reports, we check the accuracy of our
approach and evaluate the accuracy of the samples recorded by PEBS.

To test the accuracy of the profiling reports, we profiled all 22 TPC-H queries with
Tailored Profiling and report the amount of samples covered by the Tagging Dictio-
nary’s mapping in Table 13. The experiment shows that our approach can attribute 98%
of the samples to Umbra’s higher abstraction levels and the Kernel (e.g., for memory
allocations). Further investigation reveals that the remaining 2% belong to other system
libraries, for which we did not apply Register Tagging.

An astute reader may have already observed that the Tailored Profiling can only at-
tribute samples correctly when the sampled instruction pointer is accurate. We cross-
checked the sampled instruction pointers with Register Tagging by applying the tagging
not only for shared code locations, but also for all instructions in generated code. Our
test over all TPC-H queries yields no mismatches, thus, the instruction pointer matches
the Register Tagging for all samples. Furthermore, we evaluate the sample accuracy
empirically by profiling the query execution for different profiling events. We cross-
checked whether the instruction pointers in the samples occur at instructions that could
plausibly cause the sampled event, e.g., samples for load-misses always point to loads
and branch-misses contained either the branching instruction or the preceding compare
causing the misprediction.

Finally, we evaluate the accuracy of the sampled timestamps for Tailored Profil-
ing’s time dimension. For this, we profiled the query execution taking a sample every
5000 cycles and check the TSCs of consecutive samples. In our experiment, the TSC
values reflect the sampling distance (max. deviation ∼40 cycles) and adapt accordingly
when we vary it. Ultimately, Tailored Profiling’s timing information depends on the
accuracy provided by the hardware. In our experience, for TSC based time appears to
provide a precise resolution reflecting the samples’ recording time.

Overall, our validation yields very small inaccuracies and confirms the reliability of
Tailored Profiling’s reports and time dimension.
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Component Lines Added Lines Before

Umbra Code Gen. 56 ∼ 22, 000
Tailored Profiling 1,686 0
→ Sample Processing 1,176 0
→ Visualization 510 0

Σ 1,742 ∼ 22, 000

Table 14: Lines of code of our prototype implementation of Tailored Profiling.

5.5.5 Implementation Effort

Integrating our approach is lightweight and requires only small additions to the dataflow
system as shown in Table 14. Tailored Profiling leverages existing profilers to record
samples and processes the profiling samples with the Tagging Dictionary to map them
to higher abstraction levels.

We, thus, need to add the Tagging Dictionary mechanism and Register Tagging into
the dataflow system and populate the Tagging Dictionary during the lowering process,
as shown Figure 57. Integrating the dictionary into Umbra required only 50 lines of
code, while the Register Tagging needed 6 lines. The main implementation effort went
into mapping the profiling samples to higher abstraction levels, followed by creating
the visualizations of the developer tailored views. Modifying the kernel for samples
with TSC timestamps needed just 1 line of code, and reserving a register in the LLVM
compiler framework took only 2 lines.

P O R TA B I L I T Y. Porting our approach to a different compiling dataflow system re-
quires minor effort: adding the Tagging Dictionary mechanism into the system, creating
a dictionary log for each lowering step and, depending on the runtime environment, ei-
ther integrating Register Tagging or using call-stack sampling. The most critical part
would be that the reports created by Tailored Profiling will need to be adapted to the
system’s abstraction levels.

C O N F I G U R AT I O N T R A D E - O F F . Depending on the dataflow system’s runtime
environment and requirements, one can either rely on using callstack sampling or Reg-
ister Tagging. Some dataflow systems that run on managed runtimes (e.g., Spark on
JVM) can primarily rely on callstack sampling, while others can decide on the trade-off
between profiling resolution and reserving machine registers.

To make that decision we need to consider the number of lowering steps that the
system employs without a unique mapping between the higher- and lower-level compo-
nents. For each of those lowering steps, Register Tagging requires one exclusive register
for disambiguation, which comes with a performance overhead. Thus, we need to make
the trade-off between reserving more registers or switching to call-stack sampling.
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5.6 R E L AT E D W O R K

Most research on profiling and work on profilers focuses on software that is compiled
ahead of time (i.e., without compilation at runtime), for example vTune, Hotspot, Linux
perf, HPCToolkit etc. [68, 2, 188, 103]. Their frame of reference for a performance
profile is software source code. Consequently, they present profiles in terms of assembly,
source lines, and function calls. Hotspot and vTune also offer an interactive view to
zoom in on function specific profiles or time intervals. Users can also choose which
hardware events to record and view. Further, there are profilers built to analyse specific
events. The Intel PIN tool, for example, monitors memory bandwidth utilization and
Noll et al. presented a profiler to visualize memory access patterns [79, 128, 110].

Meanwhile, hardware vendors constantly improve the selection of events available for
profiling, increase the accuracy, and reduce the overhead [69]. How these improvements
translate into practice is constantly investigated [130, 38, 5, 129, 42]. Overall, there are
a large variety of events available to profilers for which the TMAM method offers a
guideline for categorization and interpretation [190, 169].

These profiling tools are already useful and will most likely even improve further in
the future. For a large number of dataflow systems [191, 119, 114, 24, 1, 141], which
increasingly use compilation techniques to achieve high performance [95, 29, 64, 136]
having the power of profiling tools is essential for informed tuning decisions. Previous
approaches to the problem include manual analysis of profile components to attribute
samples to operators [128], replaying execution in a simulator [180], tracking memory
allocations to map samples to data-structures [144], and call-stack sampling within the
Java virtual machine [176]. All of these approaches, however, fall short of providing a
universal operator mapping that works for any abstraction level and can at the same time
be sampled with low overhead and sufficient frequency to show behavior over time.

5.7 S U M M A RY

For profiling, extensive hardware support is available with a large selection of events
and data to record. Such input is essential to make well-informed decisions when pro-
filing dataflow systems. However, we showed that current profiling technology is not
able to adequately present performance profiles to fit the needs of everyone involved in
building and using dataflow systems.

As a solution, we advocate to use Tailored Profiling, an approach that tracks high-
level query concepts through dataflow systems’ compilation pipeline and leverages the
tracked information to post-process profiling samples. Tailored Profiling raises the ab-
straction level of profiling reports to the concepts readers of those reports are familiar
with and, thus, can interpret reports easier and more accurately. Interestingly, we found
that raising the abstraction level clears the way to adding more information to profiling
reports while keeping them understandable. For example, including a time dimension
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for the operator activity or visualizing data access patterns is possible with Tailored
Profiling.

F U T U R E W O R K Our research into Tailored Profiling focused on analyzing software
running on a single CPU. Interesting further avenues of research are cases in which the
software is not running, e.g., because it is blocked waiting for I/O or waiting for a lock to
be released. Further, integrating samples from multiple servers or compute accelerators
may pose challenges in unification and visualization. Another issue is, that in our im-
plementation users of the profiler still need to be well versed in hardware behavior and
choose appropriate analyses. Even though Tailored Profiling offers predefined views, it
might be interesting to create an automatic user guidance, akin to TMAM [190], which
determines problems and bottlenecks automatically per operator and over time.
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Excerpts of this chapter have been published in [77].

With the advent of in-memory databases, high-bandwidth solid state drives, and re-
cently also persistent memory [61], high-performance relational query execution en-
gines compile machine code for query execution. This approach creates optimal code
for each query and thus makes best use of available computing resources [75]. Con-
sequently, code generating execution engines are able to make the most of the large
available bandwidth.

Query execution in a compiling query engine is done in a two-step process (cf. Fig-
ure 67). First, the engine generates code for the query plan. Second, the machine’s
processors execute this code to compute the query result [121]. For the developer of
a compiling engine this two-step process can become a challenge. When, during de-
velopment, they find their computation results are wrong, they need debugging tools to
efficiently triangulate the cause of the fault.

Conventional debuggers support the search of errors by allowing the developer to stop
the execution at any point. The developer can then inspect the program state, view the
value of variables, explore data structures, and examine the call-stack to decide whether
the observed behavior is as expected or already affected by an error. To make this
process efficient, the debugger should show the developer a full view of the program
state in the source language and the format that the developer wrote it. In other words,
the debugger should present the state in terms the developer is familiar with.

In a compiling query engine, however, this integrated experience is not possible with
a regular debugger. A compiling engine splits the query execution into the two phases
shown in Figure 67: Compile time, which generates code for a query plan and compiles
it to machine instructions, and runtime, which runs the machine instructions to produce
the query result. To debug this two-level setup, most toolchains already offer the means
to step through either the code generator or the runtime code. However, the link between
the generated code and the source code that generated it, is missing. Without the link
the developer is missing most of the query context.

Currently, there are two limitations that cause this disconnect: First, current debug-
gers are not built for this kind of debugging. GDB, for example, supports only to stop
at one position in the machine code and map that position to one source location. There
is currently no support to handle a second source location that generated the first source
location. Second, as generating code and running it is a two-step process, there is a
lifetime issue between multiple source locations. When the debugger stops a multi-level
program, it can map the current program state to a source line on the first level. Map-
ping also to a second source line that generated the first source line is difficult, because
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Figure 67: Compiling relational engines process queries in two steps: Code generation and
execution. Conventional debuggers can only attach to one step, so that debugging
execution misses lots of context information. Our multi-level debugger provides this
context.

the second source line was executed much earlier in time. That means that the current
program state does correspond to the first source line, but not to the second. Therefore,
the debugger can’t use the program state to inspect the call-stack and variables for the
second source line. To this day, we are not aware of any debuggers that fully bridge this
gap.

In this chapter, we present how to build a multi-level debugger that can reconnect an
arbitrary number of source levels and fully inspect the program state at any level. This
allows us to provide the required context at any point in the program and thus signif-
icantly boost developer productivity. Our solution is built in large parts from existing
debugging technology, so implementing it for any mature compiler-debugger toolchain
is only a small development effort. We propose to use a time-travelling debugger to
bridge between generated code and generating code and to use unique markers during
code generation to reliably perform the connection.

We show that our approach is feasible by implementing it for the Umbra database sys-
tem [123]. During the development of Umbra’s query engine the multi-level debugger
setup has proven immensely useful.

6.1 I N T E R AC T I V E D E B U G G I N G

Locating the root cause of a failure in a relational query engine works much the same
as in any other large code base. A developer first tries to isolate the smallest scenario
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1 select count(*)
2 from
3 RotatingTomatoes rt,

4 MovieDatabase mdb

5 where
6 rt.name = mdb.name and
7 rt.rating = mdb.rating and
8 mdb.reviews > 10;

(a) Query – How many movies receive
the same rating in both sources?

Г

rt

mdb

σ

(b) Execution plan.

Figure 68: Example query with execution plan.

that exhibits the erroneous behavior. Then, they create and refine hypotheses about
the cause of the failure and accept or reject them based on observations. This way
they trace back from the observably wrong behavior to the root cause. To execute that
process efficiently the developer requires debugging tools that can stop the program at
a location and observe variables, data-structures, the call-stack, etc.

To show how this process can be applied to a relational query engine and to introduce
our proposed tooling, we use a running example: Assume that there are two sources
of movie ratings, Rotating Tomatoes and the Movie Database. Our example query in
Figure 68a counts how many movies receive the same rating in both sources. Also, it
only considers movies with more than 10 reviews in the Movie Database. Unfortunately,
our example database system returns a wrong result for this query. It returns count = 0,
even though through inspection of the data set we found a movie that fulfills the criteria.

As a first step to find the fault, we check whether the database frontend works cor-
rectly. We find that it produces the reasonable execution plan shown in Figure 68b.
Therefore, we decide to search for the error in the execution of that plan (as opposed to
in the creation of the plan).

In the remainder of this section, we discuss the process and information required for
a debugging workflow to find such errors. First, we examine how to debug an execu-
tion engine that is built as a Volcano-style interpreter. Here we show how debugging an
execution engine should work and which context should be available. Second, we con-
trast that workflow with debugging an execution engine built with code generation. We
show that context information is lost between compile-time and runtime and propose a
solution to reconstruct it for debugging purposes.

6.1.1 How Debugging Should Work: Volcano-style Interpreter

Conventional debuggers are already well suited to debug query execution engines
that are built as Volcano-style interpreters. In this section we show how the debugging
workflow works and the context information that is available.
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1 Tuple JoinOperator::next()

2 hashTable.buildFrom(leftChild)

3 # Probe with tuples from right side

4 while(right = rightChild.next())

5 for(left in hashTable.find(right))

6 yield left.concat(right)

(a) The join operator in a Volcano-style inter-
preter retrieves tuples from left and right
child, passes matches to parent.
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next()

next()

next()

next()

(b) Tuple passing between operators
by next() calls.

Figure 69: Control flow of Volcano-style query processing and implementation of the hash join
operator.

In a Volcano-style interpreter, the execution plan is represented in an object-oriented
fashion as tree of operators [56]. These operators execute the query plan and are, thus,
also well suited for conventional debugging. Figure 69b shows such an operator tree
for the example plan. The execution of the plan is coordinated through a small iterator
interface between operators. Each operator calls next() on its child operators to receive
the next tuple. When the call returns, the operator performs its own work and passes the
tuple on. In this manner, tuples are passed between operators until the query result is
computed.

This happens, for example, in the next() implementation of the hash join operator
in Figure 69a. First, the operator builds a hash table for all the tuples from its left child
operator. Second, the operator iterates all the tuples from the right child. For each,
it searches matching tuples in the hash table and passes any matches on to the parent
operator.

When a developer searches for an error, e.g., for the query plan in Figure 69b, they
can attach a debugger to the database executable. They can set a breakpoint, e.g. in the
hash join operator, so that the debugger stops right in the operator code. By using the
debugger’s stepping features they can follow a single tuple through multiple operators.
At any point when the debugger stops at a breakpoint the developer is able to inspect
variables and data structures that the operator uses for query processing. This lets
the developer check whether the actual query execution still matches their expectation.
Furthermore, the debugger allows to unwind the call-stack and thus not only inspect
the current operator, but also operators higher up in the query plan. That context helps
to understand the current step and allows the developer to decide whether the current
program state is still ok or already affected by the error.

Recall that in the example query an error causes count to be zero. A good starting
point for debugging might be to set a breakpoint in the hash join in Line 5. Once the
debugger stops there, we could inspect the hashTable and check whether it contains
any tuples. If so, we can also look at some of those tuples and check if the placed data
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1 void JoinOperator::consume(
2 ConsumerScope scope)
3 # probe side consume
4

5 hashTable.find(keys, scope, entry -> {
6 ConsumerScope nestedScope(scope)
7 unpack(leftValues, entry, nestedScope)
8 parent.consume(nestedScope)
9 })

(a) Code-generator for join hash table
lookup.
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consume()

consume()

consume()

(b) Control flow
with produce-
consume in the
last pipeline.

1 ...
2 block2:
3 %2 = load double %col, %localTid
4 %3 = fptosi i64 %2
5 %4 = sitofp double %3
6 %5 = cmpne double %4, %2
7 condbr %5 %block3 %block1
8 block3:
9 %6 = crc32 i64 596...501, %3

10 %7 = crc32 i64 223...147, %3
11 %8 = rotr i64 %7, 32
12 %9 = xor i64 %6, %8
13 %10 = call i64 TextRt::hash(%4924, %9)
14 %11 = call ptr HT::lookup(%ht, %10)
15 %12 = isnotnull ptr %11
16 condbr %12 %block4 %block1

(c) Snippet code generated for the
example query.

Figure 70: Code generation with produce-consume fuses all operators of a pipeline into one
function.

is ok. In case it is, we could then decide to step into the hash table’s find function and
investigate further. A debugging workflow as just described is already well supported
by conventional debuggers, e.g., gdb, lldb, Visual Studio debugger, etc.

6.1.2 Debugging Code Generating Engines

In contrast to Volcano-style interpreters, compilation-based engines execute a query
plan in a two-step process. This results in high query execution speed, but also entails
that the previously described debugging workflow—stepping through the operators—is
not possible.

Background: Code Generation and Execution

In the first step—called compile time—the execution engine generates code for the
query plan and compiles it to machine code. In Umbra we generate a custom interme-
diate representation, modelled after LLVM IR, that we call Umbra IR and which we
will use in our example. The architecture we use for code generation is the produce-
consume method [121]: To generate code for an operator tree the topmost operator calls
produce() on its child operators. The response from the child operator is that eventu-
ally it calls back the operator’s consume() function and passes an input tuple. Here, the
operator has access to the input tuple and generates code to process it. After the code
generation, the code is passed to a compiler to produce natively executable machine
code.

When again applying this to the example of a hash join we get the implementation
of Figure 70a. The consume() function gets a scope in which it can find all the values
that previous operators produced. It uses these to generate a hash table lookup with the
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join keys. In this example, the hashTable takes care of generating code for hashing
the keys, lookup, etc. All matching hash table entries are then passed to the lambda
function in Lines 6 to 8. Our implementation then takes the values from the found entry,
puts them into a nested scope, and passes them on to the next operator. In contrast to
interpretation based engines, we traverse the operator tree during code generation and,
instead of directly processing tuples, we produce code to process tuples.

As the second step—called (query) runtime—the generated code is executed to pro-
cess tuples and compute the query result. In this step all the effort invested at compile
time pays off through high-speed execution of native code.

Missing Debug Context at Query Runtime

Due to this two-part process, the debugging situation in a code generating query en-
gine is very different. We can use a conventional debugger to place breakpoints in the
generated code, e.g., in Umbra we can place breakpoints in Umbra IR, step through the
IR program and inspect the values. Figure 70c shows an excerpt of code that the hash
join operator generates for the example query. Here, we could set a breakpoint Line 3
where data is loaded from memory. By stepping to the next line with the debugger, we
can then trace the execution and print values, but we can only guess which operator
generated the instructions and what the values mean.

Generally, this method can work for an expert developer who knows the code genera-
tor very well and is familiar with what the generated code usually looks like and which
patterns usually occur. In that case, stepping through Umbra IR only helps to find the
most obvious programming mistakes. However, if the fault is caused by a more com-
plex interaction of operators, the IR quickly becomes a confusing place. The experience
of debugging Umbra IR that is generated from a query plan is very much similar to
stepping through x86-assembly that was generated from C++, but without any debug
information to link the assembly to C++ source lines. Furthermore, newcomers to a
code generating project lack the experience to read and understand the rather low-level
intermediate representation and it can represent a high entry barrier.

Reconstructing Context

What this situation calls for is that the developer gets context information about the
operator that generated the code and which specific purpose it serves. All that context is
available in the code generation phase. Unfortunately, due to the two-step process, the
context information is at query runtime no longer available to a conventional debugger.
In this situation we believe that the debugging experience can be greatly improved by
providing developers with the necessary context when debugging generated code. Ide-
ally, the same information about context, operators, and variables as when debugging a
Volcano-style interpreter should be available.

To make this possible and supply the necessary context at query runtime, we propose
to build a multi-level debugger. The required components are a time-travelling debug-
ger and unique identifiers that map instructions in the generated code back to the code
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generation. The time-travelling debugger allows us to record the program execution and
to replay code generation as often as necessary. With unique identifiers we can navigate
to the generation of specific instructions in the replay. That is, we can stop the replay
when, e.g., instruction 5 (Line 6) is appended to the program.

To put it all together, during query runtime we can set breakpoints and step through
generated code with a conventional debugger. If at any line of generated code we need
to understand which operator generated it and why, we use the time-traveling debugger
to replay the recording of the code-generation process up to exactly where the line is
generated. This reconstructs the exact program state during code generation and we
can inspect it with all the usual debugging tools so that we can explore all the required
context.

Debugging the Example Query

We can use this approach to debug the example query: We set a breakpoint in the
generated code (as previously) in Line 3 of Figure 70c. The debugger breaks at that
position and we start stepping line by line to reach the bottom part of the snippet where
the instructions seem related to a hash table lookup. Unfortunately, execution does not
reach to that point. The conditional branch in Line 7 always branches to %block1 and
thus never continues to %block3. At this point, we need to decide whether that behavior
is ok, but we don’t understand why the branch is there and what the comparison in
Line 6 should accomplish.

In order to get the missing context information we start an additional debugger session
with the time-travelling debugger and replay to the point where Line 6 is generated.
By unwinding the call-stack from there, we observe that the join operator is currently
performing a hash-table lookup (Line 5 in Figure 70a). Next, we go down in the call-
stack and learn that the hash table currently collects the join keys to compute a hash
from them. But why are there two floating-point conversions in the code? We inspect
the join keys that are just being hashed and learn that they are of type string and double!
A short check of the other side of the join reveals that those join keys are of type string
and integer.

Going down one more stack frame into the function that collects keys for hashing, we
learn that the rating value is casted from double to integer in order to compute the hash
for the equality comparison. The cast implementation performs one cast to integer and
another cast back to double. Only when the round-trip cast gives the same value as the
original double value for rating there can be a join partner from the left side. Otherwise,
the double value is outside the domain of integers. From the current position on the
call-stack we also learn that Line 6 is generated for the comparison of round-trip casted
value to the original value and that the comparison result is stored in a variable named
outsideDomainIndicator. We can then use the time-travelling debugger session to
step forward and follow the uses of outsideDomainIndicator. This way, we learn that
the hash table uses it to skip the lookup. The current code performs a lookup when the
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value is outside the domain, however, it should be the other way around. This is easily
fixed, e.g., by negating the indicator.

We have seen in this process, that generated code can be rather low-level and piecing
together what it should accomplish can be like solving a puzzle. Thus, the ability to
connect the generated code back to the code generator is an invaluable tool to debug
complicated cases.

6.2 E VA L UAT I O N

In this section we check the following hypotheses:

• Creating a multi-level debugger using time-travelling debuggers is feasible.

• The effort to implement such a solution is low.

• The runtime overhead of the time-travelling debugger is acceptable for database
system development.

6.2.1 Multi-level Debugging for Umbra

We implemented the proposed solution for Umbra [123], our code-generating database
system. Umbra is written in C++ and generates Umbra IR as intermediate representa-
tion. We use the LLVM compiler framework to generate optimized machine code from
Umbra IR. Our existing infrastructure uses LLVM’s debug information mechanisms to
attach debug information to the machine code. This already enables us to use a debug-
ger, e.g., the GNU debugger gdb, to stop the program at query runtime, step through the
generated code, and print variables from Umbra IR.

To extend this setup for multi-level debugging, we employ Mozilla’s RR debug-
ger [132]. RR is a deterministic time-travelling debugger based on gdb. It can record a
program execution, in this case how Umbra processes a query, and replays it any num-
ber of times exactly as during the recording. During a replay it offers all features of gdb,
e.g., breakpoints, printing and stepping. We chose RR because it is readily available and
light-weight, but other time-travelling debuggers may also be used for this.

As RR is based on gdb we extended RR through gdb’s Python interface. We imple-
mented a goto-instruction command. It takes one instruction identifier (from the
generated code) as argument and replays execution to the point where the instruction is
generated. The command’s core is a temporary conditional breakpoint:

1 gdb.execute("tb IRProgram.cpp:972 if ip == " + instructionId)

This sets a breakpoint at the source location where instructions are appended to Umbra’s
intermediate representation. The condition on the breakpoint ensures that the debugger
only stops when the requested instruction is generated (otherwise it would stop at every
instruction).
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Figure 71: GDB on the left, stepping through generated code. RR on the right, providing
context from the code generator

With this tooling we can run two debug sessions side-by-side as shown in the screen-
shot in Figure 71. In the left panel, we use gdb to step through the execution of generated
code. In the right panel, we used the goto-instruction command to navigate to the
source code that generated the code in the left panel. Note that the full context of the
generated code is available in the time-travelling session on the right. In the shown
example it is possible to unwind the call-stack and reach the implementation of the
hash-join operator. It is also possible to go down in the stack to lower abstraction layers
of the code generator and observe which instruction is generated. At all positions in
the code we can print variables and inspect data structures. Additionally, the debugger
offers the ability to step forwards and backwards through the code generation process.
This implementation shows that the concept is feasible and in our experience it proved
useful for the development of Umbra.

6.2.2 Implementation Effort

To estimate the effort to build a multi-level debugger, let us note that implement-
ing the core functionality—the goto-instruction command—only takes 11 lines of
Python code. It already gives users the ability to replay to the generation of a specific
instruction and provides all the necessary context.

Additionally, we added a convenience feature that, after replaying to the point where
one instruction was generated, unwinds the call-stack to the first operator translator.
That code location gives a quick overview of where the translation process currently
stands and the developer finds operator objects there to inspect.

We can also control RR from other programs to show context information. An http
interface exposes the goto-instruction command so that it can be triggered from
outside RR. For example it can be controlled from a gdb session that debugs the query
runtime or from a text editor where a developer inspects the generated code.

When also accounting for these additional features, the Python plugin to RR has 74
lines of code. After the initial investigation and development of the core ideas for the
multi-level debugger, the implementation took less than a week of work. Given this
short time and how short the implementation is, we conclude that the overall effort to
build such a tool is rather low.
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6.2.3 Runtime Overhead

In the default setup our multi-level debugger uses RR to record the whole process of
query execution. It records query parsing, optimization, code generation, compilation,
and execution. In order to be able to replay that exact behavior, RR must record also all
the data that is loaded from disk, thus write a copy of it into a recording file. Obviously,
in the context of a database system this can amount to large volumes of data, which
ultimately impacts the recording and replaying speed.

For example running TPC-H query 1 at scale factor 1 with Umbra generates 467 MB
of recorded data. The runtime without recording is 1 second, wheres with recording
it is 10 seconds, so the introduced overhead is a factor of 10x slow-down. This large
overhead may be acceptable for some tricky debugging cases, where the full power of
RR’s deterministic replay features are actually helpful.

However, we find that if we want to use the multi-level debugger as a fast-paced tool
that is quick to provide feedback to developers it is sufficient to only create a recording
of the code generation process with RR. Afterward we start a new debugging session
with the conventional debugger gdb to step through the execution quickly and use the
previous recording to provide context. That approach generates a smaller recording of
254 MB and only takes 2 seconds. In the majority of cases we found the latter technique
to be adequate, as the two program runs perform the exact same operations. Thus the
RR recording supplies accurate information at a low runtime overhead.

6.3 R E L AT E D W O R K

6.3.1 Debugging Relational Code Generators

In a comparison of interpreting and compiling query engines we observed that a major
difference between the approaches is that interpreters are debuggable with conventional
tools [75].

Kohn et al. propose as an approach to debug compiling query engines to collect
information about the call-stack at compile time [85]. This information can then be
used in a purpose-built debugger. It executes the generated code with a virtual machine,
can step through it, and uses the collected call-stack information to provide context from
compile time. Consequently, the available context is limited to the collected information.
It is not possible to inspect variables and data structures from compile time. In contrast,
our approach is more comprehensive, as all context that is available at compile time
is also available for debugging. It is even possible to step through compile time code
while debugging runtime code. Furthermore, our approach is easier to build as it reuses
available tools and when those are improved it is directly reflected in our debugger.

Another approach to debugging compiling query engines is presented by Tahboub et
al. with the LB2 system [177]. Although LB2’s primary goal is not ease of debugging,
it offers an elegant way around the two-phase problem of code generators. LB2 uses
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extensions to the Scala compiler to instantiate a (somewhat) Volcano-style interpreter
and also a code generator for relational queries from the same source base. That means
that implementing an operator once yields an interpreter and a compiler. Conveniently,
debugging can thus be performed mostly in the interpreter with conventional debuggers.
This approach is an excellent idea, however, the reported code generation times of LB2
are on average 300× longer than those we observe in Umbra. Thus, for reasons of
practicality, we stay with our C++ and LLVM based approach instead of switching to
Scala, and make use of our multi-level debugger.

6.3.2 Time Travel Debuggers

Recording program execution and replaying the exact execution deterministically was
an active research field for at least two decades. The proposed record and replay tech-
niques are powerful, yet the user must consider certain trade-offs between available
techniques. Engblom provides a comprehensive overview and classification [41].

One group of techniques works in user-space and replays execution at the machine
level, thus they are simple to deploy. PinPlay [143], iDNA [14], UndoDB [183] and
TotalView ReplayEngine [53] use binary instrumentation to track data coming in from
outside the bounds of recording. RR [132], on the other hand, intercepts system calls
to record their effects and traps certain non-deterministic instructions. As this approach
does not account for inter-thread data races, RR forces execution to use only a single
thread at each point in time, thus slowing execution of highly parallel programs.

Other approaches to record and replay include extending language runtime environ-
ments [6], frameworks [22] or libraries [59], OS Kernel support [173, 89, 13], and
replayable virtual machines [39, 189]. However, these solutions are too intrusive or
heavy-weight for a multi-level debugger.

6.4 F U T U R E W O R K

Our current multi-level debugger implementation with RR already serves us well, yet
certain aspects can still be improved. Using RR snapshots for the goto-instruction

command may enable us to jump to instruction creation instead of replaying from
the start. Furthermore, to reduce the overhead of RR, especially when handling large
databases, it may be interesting to move code generation to a separate process and only
record that.

6.5 S U M M A RY

We showed that debugging compiling query engines with the currently available tools
can be a lengthy and involved process. We identified that the main issue of debugging
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code generators is that at query runtime essential context information from query com-
pile time is missing. This makes debugging a relational code generator a daunting task
for newcomers and experts alike.

As a solution, we proposed to build a multi-level debugger that supplies the necessary
context. It facilitates a more efficient debugging process and also can also serve as an
exploratory tool for beginners. We showed how to build a multi-level debugger from
existing technology with low engineering effort and proved its feasibility as Umbra’s
debugger.



7 C O N C L U S I O N S A N D F U T U R E
W O R K

For the space of high-performance analytical relational query engines, we have shown
that on today’s hardware and for today’s workloads engine-architectures based on vec-
torization and based on data-centric code generation are roughly on par from a perfor-
mance perspective. As we believe compilation based approaches are more versatile and
better equipped for future computation-intensive workloads, we contributed solutions
to the design’s shortcomings. Tidy Tuples and the Flying Start compilation backend
have shown that very fast code generation and compilation is possible, almost hiding
compilation overhead completely. With the pipeline optimizer we demonstrated how
automatic, hardware and data-specific tuning can significantly improve the structure of
generated programs and, thus, use hardware resources even more efficiently. Finally,
Tailored Profiling and multi-level debugging point the way to more productive user and
developer tools and increase the utility of data-centric code generation for production
systems and software engineering teams.

The presented findings and solutions also pave the way for further interesting avenues
of research. The Flying Start compiler has shown that fast compilation is possible, yet
our implementation is tailored to the x86 instruction set. When porting to the ARM
instruction set, a large fraction of the infrastructure, such as register allocation etc., can
be reused. However, implementing instruction translation manually is still an engineer-
ing effort. An interesting avenue of inquiry would be to automatically generate a fast
compiler from a semantic description of the input language and the target instruction
set. This could significantly reduce the maintenance effort.

The buffer optimizer uses a cost model for super-scalar out-of-order processors to
weigh optimization alternatives in data-centric pipelines. It might be interesting to ap-
ply this cost function to optimizations in other data processing languages, e.g., to the
Voodoo vector algebra [146]. Similar to data-centric pipelines it could benefit from
precise hazard prediction.

In multi-level debugging we proposed to use time-travelling debuggers to replay code
generation and execution simultaneously. The recording unit of the time travelling de-
bugger can, however, become overwhelmed by queries on large amounts of data. It
may instead be worthwhile to investigate ways for selective recording or coordinating
recording with database internal snapshots to enable cooperative fast forward to keep
the debugging process lightweight and fast.

Finally, this theses does not cover how to integrate micro-adaptivity [154] to compil-
ing engines. There are, however, interesting adaptivity mechanisms in the NoisePage
database system, which allow runtime adaptation of the initial query plan [116]. An in-
teresting idea might be to combine their proposed probabilistic counters and adaptivity
strategies with Flying Start’s ability to quickly generate code for alternative execution
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plans or update existing programs with variations more suitable to the current data char-
acteristics.
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