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Abstract

The main objective of this thesis is to analyse the dynamical behaviour of different
linear and non-linear stochastic heat equations using analytical and probabilistic
techniques. We begin with the linear setting of the parabolic Anderson model on
a random tree with a stationary random potential, where we characterize the in-
termittent long-time behaviour of solutions. Then we continue to analyse coupled
systems of non-linear stochastic heat equations on continuous spatial domains with
time-dependent additive and multiplicative random perturbations given by Wiener
processes. Here, we derive the existence of random attractors by means of random
dynamical system theory. Finally, we characterize fluctuations around the slow
manifold of a linear fast-slow system with a slowly varying parameter perturbed by
an infinite-dimensional Wiener process.

Zusammenfassung

In dieser Doktorarbeit analysieren wir das dynamische Verhalten von verschiede-
nen linearen und nicht-linearen stochastischen Wärmeleitungsgleichungen. Zunächst
befassen wir uns mit dem linearen parabolischen Anderson Modell, definiert
auf einem zufälligen Baum und gestört durch ein stationäres zufälliges Poten-
tial. Wir zeigen, dass sich Lösungen im Laufe der Zeit auf einen einzel-
nen Knoten lokalisieren. Anschließend beschäftigen wir uns mit gekoppelten
Systemen von nicht-linearen stochastischen Wärmeleitungsgleichungen auf kon-
tinuierlichen Räumen mit zeitabhängigen additiven und multiplikativen zufälligen
Störungen in Form von Wiener Prozessen. Wir charakterisieren das Langzeitverhal-
ten von Lösungen anhand von zufälligen Attraktoren mit Hilfe der Theorie von
zufälligen dynamischen Systemen. Abschließend konzentrieren wir uns auf eine
stochastische Wärmeleitungsgleichung mit einem langsam variierenden Parameter
und beschreiben Fluktuationen der Lösung um die langsame Mannigfaltigkeit.
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Introduction

In the year 1807 J. B. Fourier (1768-1830) formulated in his seminal manuscript
‘Théorie de la Propagation de la Chaleur dans les Solides’ (later publsihed in [Fou22])
amongst others the partial differential equation (PDE) describing the process of heat
conduction, today known as the heat equation. It reads as follows

ρc
∂T (t, x)

∂t
= ∇ ·K∇T (t, x), (0.1)

where T = T (t, x) stands for the temperature at a point x ∈ D ⊂ R3 in a solid
body at time t ≥ 0. The constants K, ρ and c describe the thermal conductivity,
the density and the specific heat capacity of the solid, respectively. Equation (0.1)
can be derived from a physical conservation law, which states that the change in
heat content in D per unit time is equal to the flux of heat through the boundary
(in the absence of sinks and sources), together with the laws that (a) the heat
flow is proportional to the temperature gradient and that (b) the heat content is
proportional to the temperature. A historical perspective on Fourier’s work on heat
propagation can be found in [Nar99].

Assuming that the thermal conductivity is homogeneous within the body and
defining the thermal diffusivity d := K

cρ (also called diffusion constant), equation
(0.1) reduces to

∂tu(t, x) = d∆u(t, x), (t, x) ∈ R+ × Rn, (0.2)

where we have used the letter u for the generic unknown function in a partial
differential equation and where we consider an n-dimensional spatial domain Rn
instead of the real world space D ⊂ R3. Equation (0.2) is the simplest representative
of the class of parabolic partial differential equations and it forms its conceptual
foundation. For every bounded initial condition u(0, x) = u0(x) equation (0.2)
possesses a unique continuous solution given by the convolution of the heat kernel
with the initial condition, that is

u(t, x) =
1

(4πdt)n/2

∫
Rn
e−
|x−y|2

4dt u0(y) dy. (0.3)

Adding a time and/or space dependent suitable function f(t, x) to the equation
allows to model sources and sinks of heat, i.e.

∂tu(t, x) = d∆u(t, x) + f(t, x), (t, x) ∈ R+ × Rn. (0.4)

1



2 INTRODUCTION

We refer to (0.4) as an inhomogeneous heat equation and f is often referred to as a
forcing term. The (inhomogeneous) heat equation models not only the conduction
of heat in space but it can be used to describe the dynamics of the density of any
diffusing material, and thus appears in the analysis of numerous physical, biological
or social systems (also often referred to as diffusion equation).

Non-linear processes play a major role in natural systems. Thus, to capture the
relevant dynamics it is often essential to include non-linear terms in a model. We
formulate the non-linear heat equation as

∂tu(t, x) = d∆u(t, x) + F (u(t, x)), (t, x) ∈ R+ × Rn, (0.5)

where F (u) is a suitable, possibly non-linear function in u. Equations of this form
are also often called reaction-diffusion equations in the applied sciences, as they
model the dynamics of concentrations of chemical substances that diffuse in space,
while undergoing reactions (which depend on the current local concentration). The
interplay or competition between the two central processes, diffusion and non-linear
reaction, may lead to complex dynamical phenomena. Due to their importance
in applications there is an extensive literature available on this type of equations
(see for example the monographs [Smo94,Vol14,GR11,CD17,Per15] amongst many
others).

Most real-world physical systems are subject to some kind of random fluctua-
tions, which may enter at different ‘levels’: for example as internal fluctuations, as a
random external forcing or as environmental noise. Internal fluctuations are mainly
caused by microscopic effects such as molecular collisions and electric fluctuations.
These microscopic effects are usually combined into a random perturbation in the
dynamics of the macroscopic observables. That is, to do justice to all these effects,
one may include random terms into the macroscopic modelling equation of a physi-
cal system, leading to stochastic or random partial differential equations (SPDEs or
RPDEs), whose solutions are random objects. Here, one often uses the term random
PDE when the randomness appears as a random parameter, while the term SPDE
usually refers to a PDE combined with some stochastic process, which requires some
form of stochastic integration. Further insight into the modelling aspect of spatially
extended physical systems by SPDEs may for example be found in [GOS12]. The
beginnings of the mathematical theory of SPDEs can be traced back at least to the
early 1970s, with initial works by e.g. E. Cabaña [Cn70], A. Bensoussan and R.
Temam [BT72] and É. Pardoux. For a historical perspective on this field we refer
to [Zam20].

Let us now take a closer look at the stochastic heat equation

∂tu(t, x) = d4u(t, x) + σ(u(t, x))ξ(t, x), (t, x) ∈ (0,∞)× Rn,
u(0, x) = u0(x),

(0.6)

where (ξ(t, x) : t > 0, x ∈ Rn) is a random field in space and time, σ : R → R
is a suitable, non-random function and u0(x) is a non-random initial condition.
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For the choices σ(u) ≡ 1 and σ(u) = u, equation (0.6) is called the stochastic
heat equation with additive noise and with linear multiplicative noise, respectively.
The unabated interest in the stochastic heat equation and its non-linear variants
stems not only from its wide-ranging applications in modelling, such as in astro-
physics [Jon99] and neurophysiology [Wal81], to name just a few; but also from
its connection to particle systems [Mue15, CM94] and its relation to the famous
Kardar-Parisi-Zhang equation for interface growth via the Cole-Hopf transforma-
tion [Hai13] and to the stochastic Burger’s equation [CM94]. Note that equation
(0.6) can be considered as a multiparameter stochastic equation and the solution is
a one-dimensional random field [Wal86], or as the solution to an infinite-dimensional
stochastic differential equation and the solution is a stochastic process taking values
in an infinite-dimensional function space, see also (0.8) for the standard notation in
this interpretation. This latter approach was mainly developed by G. Da Prato and
J. Zabczyk [DPZ92] and it is often referred to as the semigroup approach. As out-
lined in the next paragraph, the lack of regularity of random terms greatly influences
the concept and analysis of solutions to (0.6).

Let us consider the case with additive noise; in this setting equation (0.6) can
be regarded as a heat equation with a random inhomogeneity. If the randomness is
caused by internal microscopic fluctuations on a very small scale, one may assume
that it is completely uncorrelated in space and time. Then, a suitable mathematical
model for the noise is given by the so-called space-time white noise. Space-time
white noise is a mean zero Gaussian random field, which is formally characterised
by the correlation function

E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y).

Note that ξ is a distribution instead of a function (generalized Gaussian noise). In
particular, its action on space-time test functions f, g has covariance

E[ξ(f)ξ(g)] = 〈f, g〉L2(R+×Rn).

For d = 1, u(0, x) ≡ 0, σ ≡ 1 the solution to (0.6) is given by the space-time
convolution of the heat kernel with the random inhomogeneity

u(t, x) =

∫ t

0

1

(4π|t− s|)n/2

∫
Rn
e
− |x−y|

2

4(t−s) ξ(s, y) dy ds. (0.7)

It turns out that the solution is a centred Gaussian, whose variance is finite if and
only if n = 1. In this case, u(t, x) is for fixed x almost surely α-Hölder continuous
for any α < 1/4 and for fixed t it is almost surely α-Hölder continuous for any
α < 1/2. For n > 1 the solution is not a function but a distribution. In particular
in connection with non-linear problems this may cause problems as products of
distributions may be ill-defined, i.e. it might not be clear what is actually meant
for a distribution to be a solution in this setting. Such equations are called singular
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stochastic equation and dealing with them leads to the highly active fields of rough
paths, paracontrolled calculus and regularity structures [Hai14, GIP15]. To avoid
such subtleties we will consider more regular types of noise within this thesis. That
is, we consider noise which is spatially coloured, i.e. spatially correlated. Formally,
this may be expressed as

E[ξ(t, x)ξ(s, y)] = δ(t− s)f(x, y),

with some correlation function f , see Chapter 3 for details.
As mentioned above, one may view, just like in PDE theory, a randomly per-

turbed heat equation as a stochastic ordinary differential equation (SODE) in an
infinite-dimensional Hilbert space H. It is in fact possible to define suitable Hilbert
space valued Wiener processes (W (t))t≥0, such that the non-linear heat equation
with additive noise can be written as

du = (d4u+ F (u)) dt+ dW (t). (0.8)

and the solution u(t) is an element in H. The SPDE (0.8) can be analysed by
means of infinite-dimensional Itô integration theory, as developed in [DPZ92]. We
will introduce this approach in more detail in Chapter 3. A major source of research
problems arises from asking how the noise influences the presumably complex dy-
namical behaviour, e.g. pattern formation, of such a non-linear equation. Hereby,
it can not only be observed that effects governing the deterministic counterpart are
perturbed by the noise, but also new phenomena, so-called noise-induced phenom-
ena, which are not present in the deterministic setting, may appear.

Let us also take a brief look at the heat equation with linear multiplicative noise,

∂tu(t, x) = d4u(t, x) + u(t, x)ξ(t, x), (t, x) ∈ (0,∞)× Rn,
u(0, x) = u0(x),

(0.9)

where again (ξ(t, x) : t > 0, x ∈ Rn) is a random field in space and time. Equa-
tion (0.9) is also sometimes called the parabolic Anderson model (PAM) in a wider
sense. One may differentiate between a stationary case, meaning here that ξ is
time-independent, and a non-stationary case, meaning that ξ is time-dependent. In
the stationary setting we arrive at,

∂tu(t, x) = d4u(t, x) + u(t, x)ξ(x), (t, x) ∈ (0,∞)× Rn

u(0, x) = u0(x),
(0.10)

and the random field (ξ(x) : x ∈ Rn) is called a random potential. This equation
may be seen as a model for the spread of mass in a static random environment. The
solution to the PAM (0.10) is well-known to exhibit an intermittency effect, meaning
that almost all the solution is asymptotically concentrated in a small number of
disjoint regions. More details on this phenomenon can be found in Chapter 2.
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In this thesis we will analyse different types of linear and non-linear stochastic
heat equations from different points of view. The overall goal is to seek a better
understanding of the dynamical behaviour of solutions using various analytic and
probabilistic techniques. This work consists of three main results, which can be
found in the Chapters 2, 5 and 6. We now give a short summary of each result and
an outline of the structure of this thesis.

We begin with a brief introduction to random trees in Chapter 1. The main
purpose of this chapter is to introduce and characterise critical Galton-Watson trees
conditioned to survive with an offspring distribution in the domain of attraction of
a stable law, as this will be the spatial domain on which we work in Chapter 2. This
chapter is based on joint work with Eleanor Archer.

In Chapter 2 we analyse the parabolic Anderson model with a stationary ran-
dom potential given by a family of iid random variables on a discrete spatial domain,
namely on a random tree. The intermittency phenomenon that we mentioned above
is on Zn relatively well understood by now. In particular, the strength of the lo-
calisation behaviour depends on the tail decay of the random potential and several
different regimes have been identified. We consider in this chapter the heavy-tailed
Pareto potential that causes a very pronounced intermittency effect. Indeed, on
Zn it was shown in [KLMS09] that the solution to the PAM with Pareto potential
localises eventually almost surely on only two sites and with high probability on one
single site.

Motivated by the increasing interest in dynamics on networks, it is an intriguing
task to consider the PAM on other graphs different from Zn. In Chapter 2 we there-
fore analyse the intermittency behaviour of the PAM on critical Galton-Watson trees
conditioned to survive T∞. This extends the current literature since the underlying
graph is now random with non-uniform volume growth and unbounded degree. We
prove that, similar to the Zn setting, the PAM with Pareto potential on the tree
model T∞ localises with high probability in one single vertex for time going to in-
finity. The proof relies on a spectral analysis of the Anderson Hamiltonian 4+ ξ(·)
and the representation of the solution by a Feynman-Kac formula.

Chapter 2 is based on joint work with Eleanor Archer.

After Chapter 2 we switch over to reaction-diffusion equations on continuous
spatial domains and with time-dependent random perturbations for the rest of the
thesis. For this, we introduce relevant concepts and results in the fields of SPDEs
and random dynamical system theory in Chapters 3 and 4, respectively.

In Chapter 5 we analyse the long-term behaviour of certain systems of stochas-
tic reaction-diffusion equations using the random dynamical systems approach (see
Chapter 4). More precisely, we derive the existence of random attractors, i.e. ran-
dom invariant compact sets of the phase space towards which solutions of the system
evolve. The first type of systems that we consider are so-called partly dissipative
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reaction-diffusion systems with additive noise (Section 5.2), meaning that they con-
sist of a coupling between a SPDE and a SODE, i.e. they have the general form

du1 = (d∆u1 − h(x, u1)− f(x, u1, u2)) dt+B1 dW1,
du2 = (−σ(x)u2 − g(x, u1, u2)) dt+B2 dW2,

(0.11)

where W1,2 are Wiener processes, the σ, f, g, h are given functions, B1,2 are suitable
operators, d > 0 is a parameter and the equation is posed on a bounded open
domain D ⊂ Rn. Systems of this form appear in numerous models in the natural
sciences such as the spatial Morris-Lecar model [ML81] in neuroscience, the cubic-
quintic Allen-Cahn equation [Kue15a] in elasticity, and the Barkley model [Bar91]
for spiral waves used in cardiac dynamics.

As will be outlined in Chapter 4 the existence of a random attractor follows from
the existence of a compact absorbing set for the corresponding random dynamical
system. To derive the existence of a bounded absorbing set, we impose certain
regularity assumptions on the noise and growth conditions on the reaction terms in
(0.11). Due to the absence of the regularizing effect of the Laplacian in the second
component we have to perform a certain splitting technique for the compactness
argument.

In Section 5.3 we perform a similar analysis for system (0.11), however, this time
we consider a multiplicative perturbation by a Brownian motion in the Stratonovich
sense.

In Section 5.5 we consider the stochastic Field-Noyes system, again with a mul-
tiplicative perturbation by a Brownian motion in the Stratonovich sense. This
reaction-diffusion system arrives in chemical kinetics and possesses a non-linear
coupling between components (which is not covered by the analysis in the previ-
ous sections). We show that non-negativity is preserved under the flow and make
explicit use of this information in order to derive a random attractor in this setting.

Note that Chapter 5 is based on joint works with Christian Kuehn and Alexandra
Neamţu and that results in Section 5.2 were jointly published in [KNP20].

In Chapter 6 we are concerned with a finer resolution of the dynamical be-
haviour of stochastic reaction-diffusion equations compared to the existence proofs
of random attractors in the previous chapter. Here, we focus on fast-slow systems,
that is, coupled systems where different components evolve on widely different time
scales. Suppose that a deterministic fast-slow ODE system exhibits a hyperbolic at-
tracting slow manifold, then there exists an exhaustive theory on how sample paths
of the corresponding SODE system (perturbed by Brownian motion) behave close
to this manifold. Namely, there exists exponential estimates on the probability that
sample paths leave a certain neighbourhood around the manifold. We would like
to extend this theory to fast-slow SPDEs of reaction-diffusion type and thereby
contribute to a finer characterisation of the dynamical behaviour of these systems.
As a first step towards this goal, we consider in Chapter 6 a linear SPDE with a
non-autonomous reaction term on a bounded domain. In our approach we use a



INTRODUCTION 7

finite-dimensional Galerkin approximation of this equation, which can be treated
by the corresponding SODE theory, and then we pass in a suitable way to the
limit with infinite modes. By this means, we are able to show that, similar to the
finite-dimensional setting, the probability of a sample path to leave a certain neigh-
bourhood around the corresponding deterministic slow manifold is exponentially
small in the size of this neighbourhood.

Chapter 6 is based on joint work with Manuel Gnann and Christian Kuehn; and
results in Section 6.4 were jointly published in [GKP19].

Finally, notations are listed after Chapter 6 and some classical results are stated
in the appendices, to which we may refer throughout the thesis. Note that constants
may always change from line to line if their precise value is not relevant. If not
mentioned otherwise constants are assumed to be positive and finite.
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Chapter 1

Random trees

Random trees are fundamental objects in probability theory. In the following we
give a brief overview on this topics, where we restrict ourselves to discrete trees. The
main purpose of this chapter is to define critical Galton-Watson trees conditioned to
survive with an offspring distribution in the domain of attraction of a stable law and
to derive several estimates for these objects, which will be needed in the following
Chapter 2. This chapter is based on joint work with Eleanor Archer.

1.1 Discrete trees

Discrete, plane, rooted trees are connected graphs with no cycles where one vertex
is designated as the root of the tree. They can be defined with the so-called Ulam-
Harris formalism introduced in [Nev86]. For that, let us define

U :=
⋃
n≥0

Nn,

with the convention that N0 = {∅}. Furthermore, we set for u = (u1, ..., un) ∈ U ,
n ≥ 1, |u| = n and |∅| = 0. We also define the concatenation of two elements u =
(u1, ..., un), v = (v1, ..., vm) ∈ U as uv = (u1, ..., un, v1, ..., vm). If u = ∅ respectively
v = ∅ we set uv = v respectively uv = u. We call v an ancestor of u if there exists
∅ 6= w ∈ U such that u = vw. This genealogical relation is denoted as v ≺ u.

Definition 1.1. A tree T is a subset of U such that

(i) ∅ ∈ T ,

(ii) If v ∈ T and v = uj for some j ∈ N, then also u ∈ T ,

(iii) For every u ∈ T there exists ku ∈ N0 ∪ {∞} such that uj ∈ T if and only if
1 ≤ j ≤ ku.

9
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The vertex ∅ is the root of the tree T , which we will also often denote as O in
the following. The number ku denotes the number of offspring of the vertex u, in
particular its degree is given by deg(u) = ku + 1. A vertex u ∈ T is a leaf if ku = 0.
Furthermore, for u ∈ T we define the subtree Tu of T as

Tu := {v ∈ U : uv ∈ T}.

We also impose a lexicographic order on T , that is, for u, v ∈ T , we say v < u if
either v ≺ u or v = wjv′ and u = wiu′ with j < i for some i, j ∈ N and w, u′, v′ ∈ U .
We define the height and the generation size at level n of a tree T as

Height(T ) := sup{|u|, u ∈ T}, zn(T ) := #{u ∈ T : |u| = n},

where #A denotes the cardinality of a set A. Finally, let us set T to be the set of
all discrete rooted trees as defined above.

The following figure depicts a finite tree with Ulam-Harris labelling.

∅

(1) (2) (3)

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (3, 1)

(3, 1, 1) (3, 1, 2) (3, 1, 3)

Figure 1.1: Finite tree T with Ulam-Harris labelling, note that Height(T ) = 3 and
z2(T ) = 6.

1.2 Galton-Watson trees

Random trees are trees formed by stochastic processes. In this section we will
introduce the canonical example of a random tree, the Galton-Watson tree, which
describes the genealogy of a Galton-Watson process. These processes were primarily
studied by the French scientist I.-J. Bienaymé (1796-1878) and the British scientists
F. Galton (1822-1911) and H. W. Watson (1827-1903). We refer to [Har63] and
[AN12] for detailed presentations of this topic.

Let (Ω,F ,P) be a probability space.

Definition 1.2 (Galton-Watson process (GWP)). Let (Zn)n≥0 be a sequence of
integer-valued random variables, recursively defined by

Zn :=

Zn−1∑
k=1

Xn,k, n ≥ 1,
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where {Xn,k : n, k ≥ 1} are iid integer-valued random variables with common dis-
tribution (pn)n≥0 and independent of Z0. Then (Zn)n≥0 is called Galton-Watson
process (GWP) with offspring distribution (pn)n≥0 and Z0 ancestors.

Let X have the offspring distribution (pn)n≥0, i.e. P(X = n) = pn and let
m := E[X] =

∑∞
n=1 npn be its mean. We call the corresponding Galton-Watson

process sub-critical if m < 1, critical if m = 1 and super-critical if m > 1.

Remark 1.3. Every GWP with Z0 = k ancestors is the sum of k independent GWPs
with Z0 = 1 ancestors and the same offspring distribution. We always consider the
case Z0 = 1 from now on.

For each n ≥ 0, the random variable Zn is interpreted as the size of the nth
generation of a given population. The population is called extinct at generation n
if Zn = 0 and we define the extinction event

Ext := {∃n ∈ N : Zn = 0} = lim
n→∞

{Zn = 0}.

Note the following fundamental theorem.

Theorem 1.4 (see e.g. [AN12]). We consider a GWP with offspring distribution
(pn)n≥0 and we assume

0 < p0 ≤ p0 + p1 < 1. (1.1)

If m ≤ 1 we have P(Ext) = 1, i.e. the process is almost surely extinct. If m > 1 we
have P(Ext) = q with 0 < q < 1, i.e. the process has a positive probability to not get
extinct (i.e. to survive).

Remark 1.5.

(i) The proof is based on the fact that the extinction probability is a fixed point of
the generating function of the corresponding process. The statement can then
be derived easily by using elementary properties of the generating function.

(ii) In the trivial cases p0 = 0 and p0 = 1 it holds P(Ext) = 0 and P(Ext) = 1,
respectively.

(iii) If 0 < p0 < 1 and p0 + p1 = 1 it holds P(Ext) = 1.

Definition 1.6 (Galton-Watson tree). A Galton-Watson tree T with offspring dis-
tribution p = (pn)n≥0 and root O is a T-valued random variable with law Pp satis-
fying the following properties

(i) Pp(kO = n) = pn for all n ≥ 0.

(ii) Let v1, v2... denote the offspring of O, then the subtrees Tv1 , ..., Tvn are inde-
pendent under the conditional probability Pp(·|kO = n) and distributed as the
original tree T , i.e. with law Pp.
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Remark 1.7.

(i) For any probability measure p on N0 there exists a unique probability measure
Pp on the set of plane trees satisfying the properties in Definition 1.6, see
[Nev86].

(ii) Let T be a Galton-Watson tree with root O and law Pp. Let (Zn)n≥0 be
a Galton-Watson process with offspring distribution p and a single ancestor.
Then (zn(T ))n≥0 and (Zn)n≥0 have the same distribution.

(iii) In other words, a Galton-Watson tree T can be associated to a Galton-Watson
process (Zn)n≥0 with offspring distribution (pn)n≥0 and single ancestor. The
construction goes as follows: Start with the ancestor (or root) and suppose
that individuals in a given generation have offspring independently of the past
and of each other according to the distribution (pn)n≥0. The vertex set of T is
the entire collection of individuals, edges are the parent-offspring bonds and
Zn is the number of individuals in the nth generation of T .

(iv) We will omit the subscript p in Pp.

1.3 Offspring distribution in the domain of attraction
of a stable law

In the following we recall the notion of distributions in the domain of attraction of
a β-stable distribution. We refer to [Fel71] for further details.

Definition 1.8 (β-stable distribution). Let µ be a probability distribution on R and
let X1, X2, ... be iid random variables with distribution µ. Then we call µ β-stable
with index β ∈ (0, 2] if there exist a sequence (bn)n≥1 such that

X1 +X2 + ...+Xn
D
= n1/βX1 + bn, for all n ∈ N. (1.2)

µ is called strictly β-stable if (1.2) holds with bn = 0 for all n ∈ N.

Remark 1.9.

(i) If β = 2, then µ is a Gaussian distribution.

(ii) If β = 1, then bn = (c+ − c−)n log(n), for n ∈ N, c+, c− ≥ 0. If additionally
c+ = c−, then µ is a Cauchy distribution.

It turns out that stable distributions are those that appear as limits of sums of
iid random variables.
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Definition 1.10 (Domain of attraction). Let µ be a probability distribution on R
that is not concentrated in one point and let Z be a random variable with distri-
bution µ. Let X,X1, X2, ... be iid random variables with distribution PX and set
Sn := X1 + X2 + ... + Xn. Then PX belongs to the domain of attraction of µ,
denoted as Dom(µ), if there exist sequences of real numbers (an)n≥1 and (bn)n≥1

such that
Sn − bn
an

→ Z in distribution for n→∞.

If µ is stable with index β ∈ (0, 2] and one can choose an = n1/β we say that PX

lies in the domain of normal attraction of µ.

Proposition 1.11 (see [Fel71, VI.1]). Let µ be a probability distribution on R that
is not concentrated in one point. It holds Dom(µ) 6= ∅ if and only if µ is stable.
Then µ ∈ Dom(µ).

Remark 1.12. If, in the setting of Definition 1.10, E[X] <∞ and E[X2] <∞ then
PX lies in the domain of normal attraction of the Gaussian distribution (β = 2) by
the classical central limit theorem.

A useful characterization is given in the following.

Theorem 1.13 (cf. [Fel71, XVII.5 Corollary 2]). Let 0 < β < 2. The distribution
of a positive random variable X belongs to the domain of attraction of a β-stable
distribution if and only if the tail probability P(X > x) varies regularly with exponent
−β as x→∞, i.e.

P(X > x) ∼ x−βL(x),

where L(x) varies slowly (see Definition B.7).

Proposition 1.14 (see [Fel71, XVII.5]). If PX lies in the domain of attraction
of a stable distribution with index β, then E[|X|γ ] < ∞ for all γ ∈ (0, β) and
E[|X|γ ] =∞ in case γ ≥ β and β < 2.

Now, let (pn)n≥0 be an offspring distribution with m =
∑∞

n=0 pnn = 1 (critical)
in the domain of attraction of a stable law µ with index β ∈ (1, 2). We will ignore
slowly varying fluctuations in the offspring distribution, that is, we always assume
that the function L(x) in Theorem 1.13 is equal to a positive constant. Let (Zn)n≥0

be the corresponding Galton-Watson process started from Z0 = 1. Define the non-
extinction probability of the nth generation qn := P(Zn > 0), then by [Sla68, Lemma
2]

qβ−1
n c ∼ 1

(β − 1)n
, for some c > 0. (1.3)

In this setting the following asymptotic behaviour can be established for the asso-
ciated critical Galton-Watson tree T . Note that V (T ) stands for the volume of the
tree, i.e. the total number of vertices it contains.
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Lemma 1.15. There exist constants c, c′ <∞ such that, as n→∞,

P(V (T ) ≥ n) ∼ cn
−1
β , (1.4)

P(Height(T ) ≥ n) ∼ c′n
−1
β−1 . (1.5)

Proof. The relation (1.4) has been proved in [Kor12, Lemma 1.11] and the relation
(1.5) follows from (1.3).

Some simulations by I. Kortchemski of critical Galton-Watson trees with off-
spring distributions in the domain of attraction of a β-stable law can be found in
Figure 1.2.

Figure 1.2: Simulations by I. Kortchemski of Galton-Watson trees, conditioned on
having a large fixed number of vertices, with a critical offspring distribution in the
domain of attraction of an β-stable law with β = 1.1, 1.5, 1.9, 2 (from top to
bottom and left to right), see https://igor-kortchemski.perso.math.cnrs.fr/

images.html.

Remark 1.16. Recall that P(X ≥ n) ∼ n−β if and only if limn→∞
P(X≥n)
n−β

= 1.
In particular, this means that for every ε > 0 there exists an Nε such that for all

https://igor-kortchemski.perso.math.cnrs.fr/images.html
https://igor-kortchemski.perso.math.cnrs.fr/images.html
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n ≥ Nε

n−β(1− ε) ≤ P(X ≥ n) ≤ (1 + ε)n−β.

Furthermore, defining

c1 := min

{
1− ε, min

0<n<Nε

{
P(X ≥ n)nβ

}}
,

c2 := max

{
1 + ε, max

0<n<Nε

{
P(X ≥ n)nβ

}}
,

then P(X ≥ n) ∼ n−β also implies that for all n > 0

n−βc1 ≤ P(X ≥ n) ≤ c2n
−β.

We will often use these kinds of bounds in the following.

Furthermore, we will also need the following lemmas later on.

Lemma 1.17 (see [Arc20, Lemma 3.1]). Let (Xi)i≥1 be iid random variables where
P(X1 ≥ x) ∼ cx−β for some β ≤ 1. Then

(i) If β < 1, then there exists a constant c′ <∞ such that for each n ≥ 2

P

(
n∑
i=1

Xi ≥ n1/βλ

)
≤ c′λ−β,

as n→∞.

(ii) If β = 1, then there exists a constant c′ <∞ such that for each n ≥ 2

P

(
n∑
i=1

Xi ≥ n1/βλ log(n)

)
≤ c′λ−β,

as n→∞.

Lemma 1.18. Let X be a random variable and β < 1 such that P(X ≥ x) ∼ c′x−β
as x→∞. Then there exists 0 < c <∞ such that

1−E[exp{−θX}] ∼ cθβ as θ → 0.

Proof. The statement follows from [Kor04, Theorem 8.2, Section IV].
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1.4 Kesten’s tree

In this subsection we will state Kesten’s construction of infinite Galton-Watson
trees [Kes86]. Note that in case of a super-critical offspring distribution one can
easily define an infinite tree by simply conditioning the corresponding standard
Galton-Watson tree on surviving. However, this conditioning does not make sense
for sub-critical or critical Galton-Watson trees since their probability to survive is
zero. Thus, from now on we assume that p = (pn)n≥0 is an offspring distribution
with mean m ≤ 1. We define its size-biased version p∗ = (p∗n)n≥0 as

p∗n :=
npn
m

, for n ≥ 0.

Definition 1.19 (Kesten’s tree, cf. e.g. [AD14a]). A Kesten’s tree T ∗ associated
to the probability distribution p is a two-type Galton-Watson tree distributed as
follows:

• Each individual is either of type normal or of type special.

• The root O of T ∗ is special, we call it s0.

• A normal individual produces normal individuals according to p.

• A special individual produces offspring according to the size-biased distribu-
tion p∗. If the number of children is finite, one of them is chosen uniformly at
random. This individual is of type special, the rest of the produced individuals
are of type normal. We denote the special vertex of the nth generation as sn.
If the number of children is infinite, then all children are normal.

GWT

GWT

GWT
GWT

GWT GWT

GWT
GWT

s0 s1 s2 s3 s4

Figure 1.3: Sketch of Kesten’s tree with critical offspring distribution. Uncon-
ditioned critical Galton-Watson trees (GWT’s) grow out of the infinite backbone
s0, s1, s2, ...

Let us now restrict to the case m = 1, i.e. critical offspring distributions. Then,
P-almost surely the special vertices form a unique one-ended infinite backbone of
T ∗. In other words T ∗ ∈ T∞, where T∞ denotes the set of plane rooted trees
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with a single (one-ended) infinite path to infinity. Moreover, each of the subtrees
emanating from the children of the backbone vertices are independent unconditioned
Galton-Watson trees with offspring distribution (pn)n≥0. We let s0, s1, s2, ... denote
the ordered vertices of the backbone, so that s0 is the root, and sn is at distance n
from the root, see Figure 1.3.

Let us define

T(h) := {T ∈ T : Height(T ) ≤ h},

and the restriction function from T to T(h), that is for T ∈ T

rh(T ) := {u ∈ T, |u| ≤ h}.

Then a sequence of random trees (Tn)n≥1 converges in distribution with respect to

the so-called local topology towards a random tree T , denoted as Tn
(d)→ T , if and

only if

∀h ∈ N,∀t ∈ T(h), lim
n→∞

P(rh(Tn) = t) = P(rh(T ) = t).

Kesten proved that Galton-Watson trees with critical offspring distribution (pn)n≥0

conditioned on reaching at least height n (surviving until generation n) converge in
distribution to Kesten’s tree with distribution (pn)n≥0 for n going to infinity. That
is Kesten’s tree is the local limit in distribution of such conditioned Galton-Watson
trees. More precisely,

Theorem 1.20 (Kesten’s theorem, see [Kes86, Jan12]). Let p = (pn)n≥0 be a crit-
ical offspring distribution that satisfies (1.1). Let T be a Galton-Watson tree with
offspring distribution p and T ∗ Kesten’s tree associated to p. Furthermore, for every
n let Tn be a random tree distributed as T conditionally on having height at least n.
Then

Tn
(d)→ T ∗,

in the local topology as defined above.

Remark 1.21.

(i) It can be shown that conditioning critical Galton-Watson trees on differ-
ent events can also lead to convergence in distribution to Kesten’s tree,
see [AD14b] for details.

(ii) In the sub-critical case m < 1, P-almost surely the spine of Kesten’s tree is
finite and one vertex has infinite degree. Similar local limit theorems can be
proved, we refer to [Jan12,AD14a] for further details.
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1.5 Critical Galton-Watson trees conditioned to survive
T∞

This section is based on joint work with Eleanor Archer. We consider here the
critical Galton-Watson tree conditioned to survive (as defined above) with root O
and with an offspring distribution (pn)n≥0 that is in the domain of attraction of
a β-stable law µ with β ∈ (1, 2]. Furthermore, for simplicity, we assume that the
slowly varying function L(x) in Theorem 1.13 is equal to some constant c > 0. We
denote this tree as T∞.

In the following we will denote the number of offspring of a vertex v, i.e. kv, also
as Off(v). Note that the size-biased distribution (p∗n)n≥0 belongs to the domain of
attraction of the same stable law with index β − 1.

• In particular, in case β ∈ (1, 2), (pn)n≥0 has finite mean and infinite variance
and for a normal vertex v ∈ T∞ we have

P(Off(v) ≥ n) ∼ cn−β. (1.6)

Furthermore, in that case (p∗n)n≥0 has infinite mean and for a special vertex
s, we can conclude that

P(Off(s) ≥ n) ∼ cn−(β−1). (1.7)

• Now, in case β = 2, (pn)n≥0 has finite mean and either infinite variance, in
which case for a normal vertex v

P(Off(v) ≥ n) ∼ cn−2,

or finite variance in which case (from Markov’s inequality) we know

P(Off(v) ≥ n) = O(n−2).

Likewise, the distribution (p∗n)n≥0 has then either infinite mean and for a
special vertex we have

P(Off(s) ≥ n) ∼ cn−1,

or it has finite mean and

P(Off(s) ≥ n) = O(n−1).

We will restrict from now on for the rest of the chapter to the case β ∈ (1, 2).
That is, equations (1.6) and (1.7) are the relevant identities for the tails of the
offspring distribution. This way we avoid the inclusion of certain logarithmic cor-
rection terms, which would appear for example when applying Lemma 1.17 (ii) for
the size-biased offspring distribution in the β = 2 setting, and thus we will not have
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to distinguish different cases throughout the analysis. Furthermore, note that for
any v 6= O we have deg(v) = Off(v) + 1 and therefore, for a normal vertex v, using
(1.6), for n→∞

P(deg(v) > n)

cn−β
=

P(Off(v) > n− 1)

c(n− 1)−β
1

(1− 1/n)β
→ 1,

that is, the same kind of tail decay holds for the distribution of the degree. Likewise,
the tail decay of the degree distribution for a special vertex s is given by (1.7).

In the following we will derive several estimates for this tree model, which we
will need in Chapter 2.

1.5.1 Properties of T∞

Given r > 0, we denote by Br the closed ball of radius r around the root in T∞ and
by V (Br) the volume of this ball (i.e. the number of vertices it contains). If the
ball with radius r in T∞ is centred at v 6= O it is denoted as B(v, r). Furthermore,
we denote by Ar the connected component containing O obtained after removing
the vertex sr from T∞. We also let Sp(r) denote the set of offspring of the vertices
s0, s1, . . . , sr−1 and V (Sp(r)) its volume. Moreover, we define Sp∗(r) as the set of the
offspring of the vertices s0, ..., sr−1 excluding the vertices s1, ..., sr, again V (Sp∗(r))
denotes the volume of this set. More generally, if A ⊂ T∞, we let V (A) denote the
number of vertices in A. For the subtree Tv, v ∈ T∞, we denote by BTv

r the ball of
radius r around v in Tv. We derive the following volume estimates.

Proposition 1.22. Let β ∈ (1, 2). Take λ, r > 1. Then for any ε > 0, there exist
constants 0 < C <∞ (may be different for each of the following bounds) such that

(i) P
(
V (Br) ≥ λr

β
β−1

)
≤ Cλ−(β−1−ε),

(ii) P
(
V (Br) ≥ λr

β
β−1

)
≥ Cλ−

(β−1+ε)
2−β , for r sufficiently large,

(iii) P
(
V (Ar) ≥ λr

β
β−1

)
≤ Cλ

−(β−1)

β2 ,

(iv) P
(
V (Br) ≤ λ−1r

β
β−1

)
≤ Ce−cλ

β−1
β

, for r, λ sufficiently large.

Proof. (i) and (ii) are taken from [CK08, Proposition 2.5].

(iii) Due to the construction of T∞ (recall Subsection 1.4) we can write

V (Ar) = r +
∑

v∈Sp∗(r)

V (Tv) ≤
∑

v∈Sp(r)

V (Tv), (1.8)



20 CHAPTER 1. RANDOM TREES

where (Tv)v∈Sp(r) is a collection of independent copies of (unconditioned)

Galton-Watson trees, so that P(V (Tv) ≥ n) ∼ cn
−1
β for v ∈ Sp(r) by Lemma

1.15. Moreover, the degree distribution on the backbone is size-biased, so we
have

V (Sp(r)) =

r−1∑
i=0

Off(si),

where Off(si) denotes the number of offspring of vertex si and recall from (1.7)

that P(Off(si) ≥ x) ∼ cx−(β−1) for β ∈ (1, 2). Then, since r < r
β
β−1λ for all r,

we have by (1.8) that for β ∈ (1, 2)

P
(
V (Ar) ≥ r

β
β−1λ

)
≤ P

 ∑
v∈Sp(r)

V (Tv) ≥ r
β
β−1λ


≤ P

(
V (Sp(r)) ≥ r

1
β−1λ

1
β2

)
+ P

 ∑
v∈Sp(r)

V (Tv) ≥ r
β
β−1λ

1
β λ

β−1
β

∣∣∣V (Sp(r)) ≤ r
1

β−1λ
1
β2


≤ Cλ

−(β−1)

β2 ,

where the bounds in the final line follow from Lemma 1.17 (i).

(iv) Assume for convenience that r is even. Again, by the construction of T∞
the subtrees Tv emanating from each vertex v ∈ Sp∗(r/2) are independent
Galton-Watson trees with offspring distribution (pn)n≥0. Therefore,

V (Br) ≥
∑

v∈Sp∗(r/2)

V (BTv
r/2).

Moreover, again by Lemma 1.15, for each v ∈ Sp∗(r/2) we have P(V (Tv) ≥
n) ∼ cn−

1
β . Furthermore,

V (Sp∗(r/2)) =

r/2−1∑
i=0

(Off(si)− 1), (1.9)

i.e. V (Sp∗(r/2)) is given by the sum of 1
2r random variables in the domain of

attraction of a (β − 1)-stable law, compare with (iii). Thus for some θ > 0,
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using Markov’s inequality and the law of total expectation, we have

P
(
V (Br) ≤ r

β
β−1λ−1

)
≤ P

 ∑
v∈Sp∗(r/2)

V (BTv
r/2) ≤ r

β
β−1λ−1


≤ E

exp

−θ ∑
v∈Sp∗(r/2)

V (BTv
r/2)


 exp

{
θr

β
β−1λ−1

}

≤ E

[(
E[exp{−θV (Tv)}] + P

(
Height(Tv) ≥

1

2
r

))V (Sp∗(r/2))
]

exp
{
θr

β
β−1λ−1

}
≤ E

[(
E[exp{−θZ̃1}] + cr

−1
β−1

)Z1
] 1

2
r

exp
{
θr

β
β−1λ−1

}
,

where Z̃1 has 1
β -stable tails and Z1 has (β−1)-stable tails. Moreover, it follows

for such random variables from Lemma 1.18 that E[exp{−θZ̃1}] ≤ 1−c′θ
1
β and

E[exp{−φZ1}] ≤ Ce−cφ
β−1

for all sufficiently small θ, φ and some constants

C, c, c′ > 0. Therefore, taking θ = r
−β
β−1λ and assuming λ ≥

(
2 c
c′

)β
yields for

r sufficiently large

P
(
V (Br) ≤ r

β
β−1λ−1

)
≤ E

[(
E[exp{−θZ̃1}] + cr

−1
β−1

)Z1
] 1

2
r

exp
{
θr

β
β−1λ−1

}
≤ E

[(
1− c′r

−1
β−1λ

1
β + cr

−1
β−1

)Z1
] 1

2
r

e

≤ E

[(
exp

{
−c
′

2
r
−1
β−1λ

1
β

})Z1
] 1

2
r

e

≤ e
(
C ′e−cr

−1λ
β−1
β

) 1
2
r

≤ C ′′e−cλ
β−1
β
.

Corollary 1.23. Let β ∈ (1, 2). P-almost surely for any ε > 0 it holds

(i)

lim sup
n→∞

V (Br)

r
β
β−1 (log r)

1+ε
β−1

= 0,
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(ii)

lim sup
r→∞

V (Ar)

r
β
β−1 (log r)

β2+ε
β−1

= 0,

(iii)

lim inf
r→∞

V (Br)

r
β
β−1 (log log r)

− β
β−1

> 0.

Proof. We consider the first identity. Let δ > 0 be arbitrary, set rn := 2n and

λn := δ
C (log rn)

1+ε
β−1−ε with C := 2

β
β−1

+ 1+ε
β−1−ε . Then we compute using Proposition

1.22 (i) that

∞∑
n=0

P

(
V (Brn) ≥ λnr

β
β−1
n

)
≤ C ′

∞∑
n=0

(log rn)−(1+ε) <∞.

Thus by Borel-Cantelli (see Lemma A.1) we can conclude that along the sequence
rn eventually almost surely

V (Brn) <
δ

C
r

β
β−1
n (log rn)

1+ε
β−1−ε < δr

β
β−1
n (log rn)

1+ε
β−1−ε .

Furthermore, for r ∈ [rn, rn+1] eventually almost surely

V (Br) < V (Brn+1) <
δ

C
2

β
β−1 r

β
β−1
n (log rn + log(2))

1+ε
β−1−ε

≤ δ

C
2

β
β−1

+ 1+ε
β−1−ε r

β
β−1
n (log rn)

1+ε
β−1−ε

≤ δr
β
β−1 (log r)

1+ε
β−1−ε .

That is, for any δ > 0
V (Br)

r
β
β−1 (log r)

1+ε
β−1−ε

< δ.

Hence, the first identity follows for some ε′ > 0 that we rename ε. The other
two identities of the Corollary follow in a similar manner from (iii) and (iv) of the
previous Proposition 1.22.

Proposition 1.24. Let Z∗r denote the size of the rth generation of T∞. For every
ε > 0 there exists a constant c such that for all r ≥ 1, λ > 0

P
(
Z∗r ≥ λr

1
β−1

)
≤ cλβ−1−ε.

Proof. This statement has been proved in [CK08, Proposition 2.2].
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Let m > 0 and let us define for r > 0 the set

Cr :=

{
v ∈ T∞ : |v| =

(
1− 1

(log r)m

)
r, ∃u ∈ T∞ : |u| = r, v ≺ u

}
, (1.10)

that is, the set of vertices in generation
(

1− 1
(log r)m

)
r that have a descendant in

generation r. We derive the following volume estimate for this set, which we will
need later on.

Lemma 1.25. Let k > 0 and K := k + m
β−1 . For ε > 0 there exists a constant C

such that for r sufficiently large

P
(
V (Cr) ≥ (log r)K

)
≤ C(log r)−(k−ε)(β−1−ε).

Proof. We set r∗ :=
(

1− 1
(log r)m

)
r. Let Z∗r∗ denote the size of the r∗th generation

of T∞ and let vi, i = 1, ..., Z∗r∗ denote the vertices of this generation. Furthermore,
let Tvi denote the subtrees starting at vi. Then

V (Cr) =
∑

w∈{v1,...,vZ∗
r∗
}

1

{
Height(Tw) ≥ r

(log r)m

}

= 1 +
∑

w∈{v1,...,vZ∗
r∗
}\{sr∗}

1

{
Height(Tw) ≥ r

(log r)m

}
,

where we have used that the subtree Tsr∗ is infinite. Note that the subtrees Tw, w ∈
{v1, ..., vZ∗

r∗
} \ {sr∗}, are unconditioned Galton-Watson trees. Recall from Lemma

1.15 that for vi 6= sr∗ , P(Height(Tvi) ≥ x) ∼ cx
−1
β−1 , i.e. V (Cr) is stochastically

dominated by a random variable with distribution 1 + Binom(Z∗r∗ − 1, pr) where

pr = c′r
− 1
β−1 (log r)

m
β−1 for some constant c′. Thus

P(V (Cr) ≥ (log r)K)

≤ P(Z∗r∗ ≥ r
1

β−1 (log r)k−ε) + P
(
X ≥ (log r)K − 1

)
, (1.11)

where X ∼ Binom(r
1

β−1 (log r)k−ε − 1, pr). Applying Proposition 1.24 we obtain for
the first term in (1.11) that for ε > 0 there exists a constant c such that

P(Z∗r∗ ≥ r
1

β−1 (log r)k−ε) ≤ c

[
(log r)k−ε

(
1− 1

(log r)m

)− 1
β−1

]−(β−1−ε)

≤ c(log r)−(k−ε)(β−1−ε).
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The second term in (1.11) is estimated by a Chernoff bound (see Lemma A.3). Let
θ > 0, then

P(X ≥ (log r)K − 1)

≤ E[eθX ]

eθ((log r)K−1)

≤
exp

(
(r

1
β−1 (log r)k−ε − 1)c′r

− 1
β−1 (log r)

m
β−1 (eθ − 1)

)
exp (θ((log r)K − 1))

≤
exp

(
c′(log r)

k−ε+ m
β−1 (eθ − 1)

)
exp(θ(log r)K − θ)

≤ exp(c′(log r)
k+ m

β−1
−ε
eθ − θ(log r)K + θ),

and since K = k + m
β−1 the second term in (1.11) can be upper bounded by the

first one for r large enough. That is, combining both terms, we deduce that for any
ε > 0, there exists C <∞ such that for r large enough

P
(
V (Cr) ≥ (log r)K

)
≤ C(log r)−(k−ε)(β−1−ε).

We will also need the following result concerning a uniform vertex in Br.

Lemma 1.26. Let β ∈ (1, 2). Let vr be a uniform vertex in Br.

(i) Fix some constant κ <∞ such that B(vr, κ) ⊂ Br. For any ε > 0 there exists
c > 0 (depending on κ) such that

P(V (B(vr, κ)) ≥ λ) ≤ cλ−(β−1−ε).

In particular for every function f with f(r)→∞ as r →∞ it follows

P(V (B(vr, κ)) ≥ f(r))→ 0, as r →∞.

(ii) Let m ∈ N. For any ε > 0 we have for r sufficiently large

P(deg(vr) ≥ m) ≤ c′′m−(β−1)r
−(1−ε)
β−1 + Ce−cr

ε/β
+ c′m−β,

for some constants c, c′, c′′, C.

Proof. (i) Let P κ(vr) denote the ancestor of vr that is exactly κ∧|vr| generations
before it. Let TPκ(vr) be the subtree of T∞ rooted at P κ(vr).
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• If P κ(vr) 6= si for all i ∈ {0, 1, 2, ..., r}. Then TPκ(vr) is almost surely
a finite subtree conditioned on having height at least κ. The offspring
distribution along the leftmost path that contains vr and has maximal
height (of all the paths that visit vr) can be stochastically dominated by
the size-biased distribution (e.g. see [GK98, Lemma 2.1]).

• If there exists i ∈ {0, 1, ..., r} such that P κ(vr) = si, then TPκ(vr) is
almost surely infinite with backbone si, si+1, ... and it is conditioned to
reach vr in one of the unconditioned Galton-Watson trees grafted to the
T∞-backbone (if vr is not on the backbone itself). Again the offspring
distribution along the leftmost path that contains vr and has maximal
height (of all the paths that visit vr) can also be stochastically dominated
by the size-biased distribution.

In any case, the volume of B(vr, κ) can be upper bounded by the volume of
two balls B1

2κ, B
2
2κ with radius 2κ around the origin of T 1

∞, T 2
∞, where T 1

∞ and
T 2
∞ are distributed like T∞. That is

P(V (B(vr, κ)) ≥ λ) ≤ P
(
V (B1

2κ) + V (B2
2κ) ≥ λ

)
≤ P

(
2 sup
i=1,2

V (Bi
2κ) ≥ λ

)
≤ 2P(2V (B2κ) ≥ λ) ≤ cλ−(β−1−ε),

by Proposition 1.22 (i), where c is some constant that depends on κ.

(ii) We calculate for r sufficiently large

P(deg(vr) ≥ m)

= P (deg(vr) ≥ m|∃i ∈ {0, 1..., r} : vr = si) P (∃i ∈ {0, 1..., r} : vr = si)

+ P (deg(vr) ≥ m|vr 6= si∀i ∈ {0, 1, ..., r}) P (vr 6= si∀i ∈ {0, 1, ..., r})

≤ c′m−(β−1)P
(
∃i ∈ {0, 1..., r} : vr = si|V (Br) ≥ r

β−ε
β−1

)
+ P

(
V (Br) ≤ r

β−ε
β−1

)
+ c′m−β

≤ c′m−(β−1) r + 1

r
(β−ε)
β−1

+ Ce−cr
ε/β

+ c′m−β

= c′′m−(β−1)r
−(1−ε)
β−1 + Ce−cr

ε/β
+ c′m−β,

where we have used Proposition 1.22 (iv).

We also give a bound on the diameter of Ar, which is defined as

Diam(Ar) := sup{|u− v| : u, v ∈ Ar}.
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Proposition 1.27. P-almost surely, for any ε > 0

lim sup
r→∞

Diam(Ar)

r(log r)β+ε
= 0.

Proof. By conditioning on the heights of the subtrees grafted to the infinite backbone
of T∞, it follows from the definition of Ar that

P(Diam(Ar) ≥ 2rλ)

≤ P

(
sup

v∈Sp∗(r)
Height(Tv) ≥ rλ

)

≤ P

(
sup

v∈Sp∗(r)
Height(Tv) ≥ rλ

∣∣∣V (Sp∗(r)) ≤ r
1

β−1λp

)
+ P

(
V (Sp∗(r)) ≥ r

1
β−1λp

)
≤ r

1
β−1λpP (Height(T ) ≥ rλ) + P

(
V (Sp∗(r)) ≥ r

1
β−1λp

)
,

where T denotes an unconditioned Galton-Watson tree. We invoke Lemma 1.15 and
Lemma 1.17 (i) (recall the definition of Sp∗(r) and (1.9)) to compute further

P(Diam(Ar) ≥ 2rλ) ≤ c′r
1

β−1λp(rλ)
−1
β−1 + cλ−p(β−1)

≤ c′λp−
1

β−1 + cλ−p(β−1)

≤ Cλ
−1
β ,

where we chose p = 1
β(β−1) in the last line. Now fix ε > 0 and set ε̂ = ε

2 . Choose

λr = (log r)β+ε̂ and consider the sequence rn := 2n. Since

∞∑
n=0

P(Diam(Arn) ≥ 2rnλrn) ≤ C
∞∑
n=0

(log rn)−(1+ε̂/β) <∞,

we can infer from Borel-Cantelli that along the sequence (rn)n we have eventually
almost surely

Diam(Arn)

rn(log rn)β+ε̂
≤ 2.

For r ∈ [rn, rn+1] we can invoke a monotonicity argument, that is there is a c > 0
such that eventually almost surely

Diam(Ar)

r(log r)β+ε̂
≤

Diam(Arn+1)

rn(log rn)β+ε̂
≤

Diam(Arn+1)
rn+1

2 (log rn+1

2 )β+ε̂
≤ c

2

Diam(Arn+1)

rn+1(log rn+1)β+ε̂
≤ c.

Thus there exists r0 such that for all r ≥ r0 we have

Diam(Ar)

r(log r)β+ε
=

1

(log r)ε̂
Diam(Ar)

r(log r)β+ε̂
≤ c

(log r)ε̂
;

as the right hand side converges to 0 for r →∞, the statement follows.
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We will also need the following estimate on the sum of the logarithm of the
degrees. Let us define Γr as the set of all direct paths between two vertices in Br.
Furthermore, for γ ∈ Γr, let |γ| denote the length of the path.

Lemma 1.28. There exist deterministic constants B, B̃ < ∞ such that P-almost
surely,

sup
γ∈Γr

{∑
v∈γ

log(deg v)−
(
B̃|γ|+B log r

)}
≤ 0

for all sufficiently large r. In particular, since for γ ∈ Γr, |γ| ≤ r, P-almost surely

sup
γ∈Γr

∑
v∈γ

log(deg v) ≤ B̃r +B log r,

for sufficiently large r.

Proof. Let ε > 0 and let us define c := β − 1 − ε > 0 and B > 1
c

(
2β+ε
β−1 + ε

)
.

Note that E[(deg v)c] < ∞ for all v ∈ Br (recall Proposition 1.14). We set A :=
log E[(deg v)c] < ∞ and B̃ := A

c . Also note that the degrees of distinct vertices
are independent of each other due to the Galton-Watson structure. We define for

γ ∈ Γr, λγ := B log r
|γ| + B̃ and vr := r

β+ε
β−1 . With this, we calculate

P

(∑
v∈γ

log(deg v) ≥ λγ |γ|

)
≤ E

[
exp

(
c
∑
v∈γ

log(deg v)

)]
exp(−cλγ |γ|)

≤ exp (A|γ| − cλγ |γ|)
= r−cB.

Note that |Γr| ≤ V (Br)
2. Applying a union bound yields

P

(
sup
γ∈Γr

{∑
v∈γ

log(deg v)− λγ |γ|

}
≥ 0

)

= P

(
sup
γ∈Γr

{∑
v∈γ

log(deg v)− λγ |γ|

}
≥ 0

∣∣∣∣∣V (Br) ≤ vr

)
P(V (Br) ≤ vr)

+ P

(
sup
γ∈Γr

{∑
v∈γ

log(deg v)− λγ |γ|

}
≥ 0

∣∣∣∣∣V (Br) > vr

)
P(V (Br) > vr)

≤ v2
rr
−cB + P(V (Br) > vr)

≤ r−ε + Cr−ε/2

≤ C ′r−ε/2,

where we have used Proposition 1.22 (i). The statement now follows by applying
Borel-Cantelli along the subsequence rn = 2n, and then applying monotonicity if
r ∈ [2n, 2n+1].
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1.5.2 Random walk on T∞

Given a particular realisation of T∞, we let X = ((Xm)m≥0,Pv, v ∈ T∞) be the
continuous time, variable speed random walk on T∞ started at v ∈ T∞. This process,
generated by the discrete Laplacian, is strong Markov. In particular, the jump
times, started at a vertex w ∈ T∞ are exponentially distributed random variables
with parameter deg(w). That is, the mean jump time at a vertex w is 1

deg(w) . In the
case where X is started from the root O of T∞, we just write P for the law of X.

Let A ⊂ T∞. We denote the first exit time from A as τA, i.e.

τA := inf{t ≥ 0 : Xt /∈ A}.

Given a vertex v ∈ T∞, we let

Hv := inf{s ≥ 0 : Xs = v},

denote the first hitting time of v.

Proposition 1.29. Conditionally on T∞, we have for v ∈ T∞ with |v| = r that

(i)

P(Hv ≤ t) ≤ exp{−r([log r − log t− 1] ∨ 0)},

(ii) and for r > 3
2 t and r sufficiently large

P(Hv ≤ t) ≥

(∏
u≺v

1

deg(u)

)
exp{−r[log r − log t]}.

Proof.

(i) Let O = v0 ≺ v1 ≺ . . . ≺ vr = v denote the ordered ancestors of v. To
reach v from v0, the random walk must first pass through each of the points
v1, . . . , vr−1. When it reaches the point vi, the time to jump to vi+1 will
stochastically dominate an Exp(1) random variable (since it can only reach vi+1

through one edge which rings at rate 1). The time delay for the random walk to
reach v will thus be greater than

∑
u≺v Eu, where (Eu)u≺v is a sequence of iid

Exp(1) random variables. Hence, using Stirling’s formula n! ≥
√

2πnn+1/2e−n,
for all n = 1, 2, 3, ..., and the fact that for P ∼ Poi(t) it holds

P

(∑
u≺v

Eu ≤ t

)
= P(P ≥ r),
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we obtain

P(Hv ≤ t) ≤ P

(∑
u≺v

Eu ≤ t

)
= P(P ≥ r)

= e−t

(
tr

r!
+

∞∑
i=r+1

ti

i!

)

= e−t
tr

r!

(
1 +

∞∑
i=r+1

ti−rr!

i!

)

≤ e−t t
r

r!

(
1 +

∞∑
i=1

ti

i!

)

=
tr√

2πrr+1/2e−r

≤ exp{−r[log r − log t− 1]}.

(ii) We lower bound the probability of hitting v in time t by the probability of
going directly to v in time t, i.e. taking the direct path. Accordingly, let
again O = v0 ≺ v1 ≺ . . . ≺ vr = v denote the ordered ancestors of v, and let
(Ei)

r−1
i=0 be independent random variables, where Ei ∼ Exp(deg(vi)) for each

i = 0, ..., r − 1.

Then, if 3t < 2r, since all vertices except perhaps v0 have degree at least 2,
we have for all sufficiently large r that

P

(
r−1∑
i=0

Ei ≤ t

)
≥

r−1∏
i=0

P
(
Ei ≤

t

r

)
=

r−1∏
i=0

(
1− e−

t
r

deg vi
)

≥
(

1− e−
t
r

)(
1− e−

2t
r

)r−1

≥
(
t

r

)r
= e−r(log r−log t).

Since 1 − e−2x ≥ 73
67x and 1 − e−x ≥ 1

2x if x ≤ 2
3 and for large enough

r, (73
67)r−1 1

2 ≥ 1. Therefore, lower bounding the desired probability by the
probability of taking a direct path to v in time less than t, we deduce that

P(Hv ≤ t) ≥
r−1∏
i=0

1

deg(vi)
exp{−r[log r − log t]}.
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We can now also derive the following results for the exit times of Ar and Br.

Corollary 1.30. Conditional on T∞, for all t > 0

P(τAr ≤ t) ≤ exp{−r([log r − log t− 1] ∨ 0)}.

Proof. Since the random walk can exit Ar only through sr we have by using Propo-
sition 1.29 that

P(τAr ≤ t) = P(Hsr ≤ t) ≤ exp{−r([log r − log t− 1] ∨ 0)}.

For the exit time of Br let us define d := β
β−1 , q := d

α−d , α > d and

r(t) :=

(
t

log t

)q+1

, a(t) :=

(
t

log t

)q
.

These constants and scaling functions will appear in Chapter 2, where α will be
coming from the random potential of the parabolic Anderson model. For now, let
us just note these definitions and we continue to prove the following bound for the
exit time probability for a ball of radius r − 1.

Lemma 1.31. Take any f, p > 0. With high P-probability for t→∞, we have for
all r ∈ [r(t)(log log t)−f , r(t)(log t)p] that

P
(
τBr−1 ≤ t

)
≤ exp

{
−r log

( r
et

)
+ o (r(t))

}
.

Proof. Let ε > 0. Let m > p+1, k > m+δ
β−1−ε +2ε for 0 < δ < 1 and set K := k+ m

β−1 .
Recall the definition of Cr from (1.10) and by Lemma 1.25 we have for r large enough

P
(
V (Cr) ≥ (log r)K

)
≤ C(log r)−(k−ε)(β−1−ε).

Now, since the random walk needs to visit a vertex in Cr before it can exit the ball
Br−1, we can lower bound the exit time of the set Br−1 by the hitting time of the
set Cr. On the high probability event {V (Cr) ≤ (log r)K}, we can thus compute
using Proposition 1.29, for r sufficiently large

P
(
τBr−1 ≤ t

)
≤ P(∃v ∈ Cr : Hv ≤ t)

≤
∑
v∈Cr

P(Hv ≤ t)

≤ V (Cr) exp

{
−
(

1− 1

(log r)m

)
r

[
log
( r
et

)
+ log

(
1− 1

(log r)m

)]}
≤ (log r)K exp

{
−
(

1− 1

(log r)m

)
r

[
log
( r
et

)
− 2

(log r)m

]}
≤ exp

{
K log log r −

(
1− 3

(log r)m

)
r log

( r
et

)}
, (1.12)
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where we have used that log(1 − x) ≥ −2x for x < 1/2. We define r̃(t) :=
r(t)(log log t)−f and R̃(t) := r(t)(log t)p. Now, in order to show that (1.12) holds
with high probability simultaneous for all r ∈ [r̃(t), R̃(t)], we define the sequence

rn :=

(
1− 1

(log R̃(t))m

)n
R̃(t),

for 0 ≤ n ≤ Nt := dlog(R̃(t))m+δe. Then r0 = R̃(t) and for t large enough, using
that for any constant c′ it holds exp(−xδ) ≤ x−c′ for x sufficiently large, we have

rNt ≤ exp

(
− log(R̃(t))m+δ

log(R̃(t))m

)
R̃(t) = exp(−(log(R̃(t)))δ)R̃(t)

≤ 1

(log R̃(t))2p
R̃(t) ≤ Cr(t) log(t)−p ≤ r̃(t).

Then, taking a union bound, we have that

P

(
∃n ≤ Nt : P

(
τBrn−1 ≤ t

)
≥ exp

{
K(log log rn)−

(
1− 3

(log rn)m

)
rn log

(rn
et

)})
≤ P

(
∃n ≤ Nt : V (Crn) ≥ (log rn)K

)
≤
∑
n≤Nt

c(log rn)−(k−ε)(β−1−ε)

≤
∑
n≤Nt

c

[
log(R̃(t)) + n log

(
1− 1

(log R̃(t))m

)]−(k−ε)(β−1−ε)

≤
∑
n≤Nt

c

[
log(R̃(t))− n 2

(log R̃(t))m

]−(k−ε)(β−1−ε)

≤
∑

n≤2 log(R̃(t))m+δ

c

[
log R̃(t)

(
1− 4

(log R̃(t))1−δ

)]−(k−ε)(β−1−ε)

≤ C
[
log(R̃(t))

]m+δ−(k−ε)(β−1−ε)
.

Since k > m+δ
β−1−ε + 2ε this probability converges to zero as t → ∞, i.e. with high

P-probability

P
(
τBrn−1 ≤ t

)
≤ exp

{
K(log log rn)−

(
1− 3

(log rn)m

)
rn log

(rn
et

)}
for all n ≤ Nt. (1.13)
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Now, on the event in (1.13), we have for all r ∈ [r̃(t), R̃(t)] with r ∈ [rn+1, rn] that

P
(
τBr−1 < t

)
≤ P

(
τBrn+1−1 < t

)
≤ exp

{
K log log rn+1 −

(
1− 3

(log rn+1)m

)
rn+1 log

(rn+1

et

)}
≤ exp

{
K log log r − rn

(
1− 1

(log R̃(t))m

)
log
(rn+1

et

)
+

3r log
(
r
et

)
(log rn+1)m

}

≤ exp

{
K log log r − r log

(
r

et

(
1− 1

(log R̃(t))m

))
+

r log
(
r
et

)
(log R̃(t))m

+
3r log

(
r
et

)
(log rn+1)m

}

≤ exp

{
−r log

( r
et

)
+K log log r +

2r

(log R̃(t))m
+

r log
(
r
et

)
(log R̃(t))m

+
3r log

(
r
et

)
(log rn+1)m

}
.

(1.14)

We compute further

K log log r ≤ K log log(R̃(t)) = K log log (r(t)(log t)p) = o(r(t)),

and

3r log
(
r
et

)
(log rn+1)m

≤
3r log

(
r
et

)
(log rNt)

m
=

3r log
(
r
et

)[
log

((
1− 1

(log(R̃(t)))m

)Nt
R̃(t)

)]m
≤

3r log
(
r
et

)[
log
(
R̃(t)

)
− 2Nt

(log(R̃(t)))m

]m
≤

3r log
(
r
et

)[
log
(
R̃(t)

)(
1− 4

log(R̃(t))1−δ

)]m
≤
Cr log

(
r
et

)
(log R̃(t))m

. (1.15)

Finally, we compute

r log
(
r
et

)
(log R̃(t))m

≤
R̃(t) log

(
R̃(t)
et

)
(log R̃(t))m

=
r(t)(log t)p log

(
r(t)(log t)p

et

)
(log(r(t)(log t)p))m

≤ Cr(t) (log t)p+1(
log

((
t

log t

)q+1
))m

≤ Cr(t)(log t)p+1−m

= o(r(t)), (1.16)
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where we have used that m > p+ 1 by assumption. In particular, we can conclude
from (1.15) and (1.16) that the last three terms in (1.14) are also of order o(r(t)),
i.e. with high P-probability as t→∞ we have for all r ∈ [r̃(t), R̃(t)]

P
(
τBr−1 ≤ t

)
≤ exp

{
−r log

( r
et

)
+ o (r(t))

}
.
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Chapter 2

The parabolic Anderson model
with Pareto potential on critical
Galton-Watson trees

We prove that the solution to the parabolic Anderson model with Pareto potential on
a critical Galton-Watson tree conditioned to survive with an offspring distribution
in the domain of attraction of a stable law localises with high probability in one single
vertex for time going to infinity. This chapter is based on joint work with Eleanor
Archer.

2.1 Introduction

In a very general form the parabolic Anderson model denotes the parabolic initial
value problem

∂tu(t, v) = 4u(t, v) + ξ(t, v)u(t, v), (t, v) ∈ (0,∞)× S,
u(0, v) = u0(v), v ∈ S,

where S is a space equipped with a Laplacian and (ξ(t, v) : t > 0, v ∈ S) is a possibly
time-dependent random field. That is, we are dealing with a stochastic heat equation
with multiplicative noise, see the Introduction. Here, we are only interested in the
stationary case, i.e. where the potential is time-independent and furthermore we
consider a discrete space, say Zd, and localised initial data. We will thus generally
refer to the following problem as the parabolic Anderson model (PAM) on Zd.

Definition 2.1 (Parabolic Anderson model (PAM) on Zd).

∂tu(t, z) = ∆u(t, z) + ξ(z)u(t, z), (t, z) ∈ (0,∞)× Zd,
u(0, z) = 1{z = 0}, z ∈ Zd,

(2.1)

35
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where

(∆f)(z) =
∑
y∼z

[f(y)− f(z)], z ∈ Zd, f : Zd → R, (2.2)

denotes the discrete Laplace operator and (ξ(z) : z ∈ Zd) is a collection of inde-
pendent identically distributed random variables, called the random potential. The
probability measure associated to ξ will be denoted as P and the corresponding
expectation as E .

The PAM is a classical model for the spread of particles in an inhomogeneous
random environment, with applications including population dynamics and chemical
reactions, see [CM94] for details. Even though the discrete model on Zd may, in
some cases, from the modelling point of view only be an approximation to a physical
system in continuous space, many qualitative phenomenon of the model are the
same on Zd and Rd. The PAM can be derived as the evolution equation for the
expected number of particles at a given site and time of a branching random walk
in random environment, see Subsection 2.2.2 for details. A comprehensive survey
of results on the model can be found in the book [Kön16]. We also refer to the
surveys [GK05,Mör09] for an overview.

One of the most interesting phenomenon that can be observed in the PAM is
a localisation behaviour of the solution. That is, for t large, the solution becomes
concentrated in a few disjoint islands, outside of which the contribution to the total
mass

U(t) :=
∑
z∈Zd

u(t, z),

is negligible. This effect is called intermittency. The size and number of islands
depend on the tail decay of the potential, which leads to several different regimes
[vdHKM06]. Note that with a constant, non-random potential, a diffusion process
will spread most of its mass at time t over a ball with radius of order

√
t, i.e. it

is indeed the randomness of the potential that drives the localisation behaviour in
the PAM. We will discuss this phenomenon in Subsection 2.2.1 in more detail. In
this chapter, we will focus on a setting with a Pareto-distributed potential, that is
with polynomially decaying tails, for which a strong intermittency effect can be
observed. More precisely, in [KLMS09] it was shown that the solution to (2.1) with
Pareto potential localises eventually almost surely at two sites. The authors also
derived that with high probability the solution actually localises at one site only
for time going to infinity (this result was also proven earlier in the unpublished
preprint [KMS06] by different tools).

Motivated by e.g. biological models on network, it is an intriguing task to
analyse the PAM and its intermittency behaviour on other graphs besides Zd. In
this chapter we are especially interested in random graphs, or more precisely, Galton-
Watson trees combined with a Pareto-distributed potential. In order to consider the
long-time behaviour of the PAM on a Galton-Watson tree, it is natural to restrict
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to the case of an infinite tree. The most natural candidate for such a tree would be
a super-critical Galton-Watson tree as it has a positive probability to survive (see
Theorem 1.4). However, in the case of a Pareto potential the exponential volume
growth in a super-critical Galton-Watson tree causes the solution of the PAM to blow
up, almost surely. We will therefore consider the PAM on critical Galton-Watson
trees that are conditioned to survive, see Subsection 1.5 for the precise definition of
our tree model T∞. Moreover, we choose an offspring distribution in the domain
of attraction of a β-stable law, i.e. β is the main parameter controlling the random
tree. We note that T∞ has unbounded degree and non-uniform volume growth,
which makes the analysis more delicate compared to the Zd case. Furthermore, the
random tree introduces another layer of randomness into the model and most results
are stated in the joint probability law of the potential and the tree.

In our main Theorem 2.14, we show, in a similar manner as in [KMS06] for the
Zd case, that the solution of the PAM on T∞ with Pareto potential localises with
high probability in one single vertex as time goes to infinity. This is joint work with
Eleanor Archer.

The only other work on the PAM on a random tree, at least that we know of,
is given in [dKd20]. There, the authors consider super-critical Galton-Watson trees
with a bounded degree assumption together with a random potential that has a
double exponential tail. In particular, they analyse the large t asymptotics of the
total mass, which gives information about the localisation and the structure of the
localisation set, see Subsection 2.2.1. Apart from that, we know of two other works
where the PAM is considered on deterministic graphs different from Zd, namely on
sequences of the complete graph [FM90] and the hypercube [AGH20] (note that both
have unbounded degree in the limit, though to cancel out this effect the Laplace
operator was multiplied by a suitable pre-factor in both settings).

The rest of this chapter is structured as follows: In Section 2.2 we will summarize
a few aspects of the PAM on Zd and provide the corresponding references. We will
continue with Section 2.3, where we introduce the PAM on the tree T∞ (defined in
Section 1.5). After deriving estimates on the extremal values of the Pareto potential
with parameter α on T∞, we will establish the existence/non-existence for a non-
negative solution of the PAM on T∞ for α < β

β−1 / α >
β
β−1 . In the last Subsection

2.3.4 we will state our main theorem and give details on the proof strategy. We
continue with Section 2.4, where we will derive estimates for the maximizer of the
potential and for the concentration site that will be essential for the main proofs.
The aim of Section 2.5 is twofold, firstly to derive a concentration result for the
principal eigenfunction of the Hamiltonian appearing in the PAM on a bounded set
and secondly to infer a relation between the solution of the PAM and the principal
eigenfunction allowing to transfer the concentration result to the solution. We com-
bine the auxiliary results from the previous sections in Section 2.6, where the main
theorem about the one point localisation of our model will be proved. Finally, we
conclude this chapter with an outlook on future research in Section 2.7.
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Note that all results in this chapter are based on joint work with Eleanor Archer.

2.2 The parabolic Anderson model on Zd

The parabolic Anderson model is named after the physicist P. W. Anderson (1923-
2020). In particular, it is the parabolic analogue to the Schrödinger equation (on
Zd) in quantum mechanics with the so-called Anderson Hamiltonian H := ∆ + ξ(·),

i
∂ψ

∂t
= Hψ, ψ(0, z) = ψ0(z) ∈ `2(Zd);

describing the dynamics of the wave function of an electron inside a semiconductor,
which is assumed to have random impurities described by the random potential
ξ. Anderson’s research [And58] revealed that the wave function may concentrate
on small domains, which is today known as Anderson localisation. The spectral
properties of the Anderson Hamiltonian play a central role in the understanding of
this phenomenon and a related spectral analysis will also be relevant for proving
intermittency effects in the PAM, see Subsection 2.2.1. For further physical back-
ground we also refer to [Mol91] and for theoretical background on random operators
to [AW15].

The existence of a non-negative solution to (2.1) is established in the following
theorem.

Theorem 2.2 (see [CM94,GM90]). Assume that the random potential fulfils

E

[(
ξ(0) ∨ 2

log(ξ(0) ∨ 2)

)d]
<∞. (2.3)

Then (2.1) has a unique non-negative solution.

Remark 2.3. Since we will be working with a Pareto-distributed potential later on,
let us note that if (ξ(z) : z ∈ Zd) is a family of iid random variables with Pareto
distribution with parameter α > 0, that is

P(ξ(0) < x) = 1− x−α, x ≥ 1,

then condition (2.3) translates to α > d.

One of the main probabilistic tools for analysing the PAM is the representation
of the solution via a Feynman-Kac formula.

Definition 2.4 (Feynman-Kac formula). Under condition (2.3) the solution to (2.1)
is given by

u(t, z) = E0

[
exp

{∫ t

0
ξ(Xs)ds

}
1{Xt = z}

]
, (t, z) ∈ R+ × Zd, (2.4)

where (Xs)s∈[0,∞) is a time-continuous random walk on Zd with generator ∆ starting

at 0 ∈ Zd under E0.
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The expectation in the Feynman-Kac formula is taken with respect to the ran-
dom walk and the solution is still random with respect to the potential. This formula
already suggests that sites that can be reached quickly by the random walk and that
have a large potential value contribute heavily to the mass of the solution.

2.2.1 Intermittency

The parabolic Anderson model (2.1) with iid random potential exhibits a concen-
tration property, called (geometric) intermittency [GKM07]. That is, the solution
is concentrated for t large, on a few, small, remote islands, which carry most of
the total mass U(t). These islands are called relevant islands and identifying their
number, size and location constitutes the main task in characterising the intermit-
tency phenomenon. It is assumed that the heavier the tails of the distribution of
the potential, the smaller the number of relevant islands and the smaller their size.
That is, the intermittency effect becomes more pronounced.

The analysis of this effect often relies on a spectral decomposition of the solution
in a large box, i.e. an expansion with respect to the eigenfunctions of the Anderson
Hamiltonian. Let HB denote the Anderson Hamiltonian on a finite set B ⊂ Zd
with Dirichlet boundary conditions. Let φ1, φ2, ..., φ|B| be the eigenfunctions for the
decreasingly ordered eigenvalues λ1, ..., λ|B| of HB. Note that the eigenfunctions
form an orthonormal basis of `2(B). We set φi(z) = 0 for z ∈ Bc and i = 1, ..., |B|.
Then the solution uB of (2.1) in B admits the representation

uB(t, ·) =

|B|∑
k=1

etλkφk(0)φk(·), t ∈ (0,∞). (2.5)

Heuristically, intermittency can now be explained as follows: As the Anderson lo-
calisation predicts, the eigenfunctions of H belonging to eigenvalues close to the
boundary of the spectrum are exponentially concentrated in small areas that are
randomly located. Assuming that this also holds on the large box B, we expect
φk to be small outside a small neighbourhood around its centre xk and further-
more, due to the exponential term etλk , summands in (2.5) with large k become
negligible against the leading terms etλ1 , etλ2 , .... Since the concentration centres xk
are also predicted to be far away from each other, the solution uB is well approx-
imated around xk by the summand etλkφk(0)φk(xk + ·), i.e. uB has high values
on a few (only small values of k relevant), small islands that are well separated in
space. See [Kön16] for more heuristics on the intermittency phenomenon. For a
rigorous proof the solution is considered on time-dependent boxes Bt that grow for
t → ∞ and the spectral analysis is combined with the probabilistic expansion via
the Feynman-Kac representation.

Let us review some known results on geometric intermittency in the PAM. In
[GKM07] the authors showed that for potentials with double exponential tails and
heavier tails with finite exponential moments, the contribution to the total mass
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coming from outside a random number of relevant islands is eventually almost surely
negligible. They also proved that for potentials with tails heavier than the double
exponential tail (i.e. including Pareto and Weibull distributions) the localisation
islands consist of single sites. Later the number of localisation islands were specified
for the Pareto and Weibull distribution. In the setting with Pareto potential (no
finite exponential moments) with parameter α > d it was shown that eventually
almost surely the non-negligible contribution to the total mass is coming from at
most two single sites [KLMS09] and moreover that with high probability it is indeed
only one site. Likewise, in [ST14] localisation in one site with high probability was
shown for the setting with the Weibull potential (i.e. P(ξ(0) > x) ∼ exp(−xγ))
with parameter 0 < γ < 2. The authors also conjecture that almost surely the
solution localises in only two sites. The case with Weibull potentials with parameter
γ ≥ 2 was settled in [FM14]. Again, the solution is eventually localised with high
probability in one single site.

Remark 2.5. The localisation in two points is the strongest form of localisation
that can hold almost surely. This is due to the fact that the localisation sites are
time-dependent, i.e. there will be a sequence of transition times when the solution
’jumps’ from one site to another, meaning that both sites contain non-negligible
mass at that time.

A related notion of intermittency is given in terms of large time asymptotics of
the moments of the total mass; more precisely, it is expressed as a faster growth
rate of higher moments. That is, if all exponential moments E [exp(λξ(0))], λ > 0,
exist, then all moments of the total mass E [U(t)p], t, p > 0, exist and the PAM is
called intermittent if

lim sup
t→∞

E [U(t)p]1/p

E [U(t)q]1/q
= 0, for 0 < p < q. (2.6)

This notion was motivated by the statistical physics literature, see for example
[ZMRS87]. Furthermore, properties of the relevant islands are on a heuristic level
reflected in the asymptotic expansion of E [U(t)] for large t, cf. [GK05]. For many
potentials the large t asymptotics of both the moments of U(t) (annealed setting)
and of U(t) itself (almost sure setting, or quenched setting) have been analysed, see
for example [BK01,GM90,GM98] and also [vdHKM06]. Note that the definition via
(2.6) can not be applied to the PAM with Pareto potential since this distribution
does not possess any exponential moments. We therefore apply the more explicit,
geometric notion of intermittency from above. For a heuristic relation between these
two notions we refer to [GM90] and [BC95, Section 2.4].

2.2.2 Branching random walk in random environment

There exist a close relationship between the PAM and a branching process in random
environment defined on Zd, see for example [GM90]. Suppose that at time t = 0
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there exist a single particle at the site z that starts to move according to the law of a
nearest neighbour, time-continuous simple random walk on Zd. Furthermore, at each
site x the particle splits into two particles at a rate ξ(x), where ξ = (ξ(x) : x ∈ Zd)
is a family of iid random variables (the random environment). Each descendant
evolves and splits according to the same laws but independently of each other.
Let N(t, x) denote the total number of particles that occupy the site x at time
t. Furthermore, for a fixed realization of the random potential ξ we denote the
probability law and the expectation over the branching and migration mechanisms
as Pz and Ez, respectively. Then u(t, z) := Ez[N(t, 0)] satisfies (2.1), i.e. it solves
the parabolic Anderson model on Zd. That is, one may say that the PAM is the
thermodynamic limit of this particle system. Due to the symmetry of the Anderson
operator it holds u(t, z) = Ez[N(t, 0)] = E0[N(t, z)], that is, on a particle level the
solution of the PAM can be regarded as the mean number of particles present at
site z at time t given that the branching random walk started with a single particle
at the origin.

The branching system itself has been the subject of intesive research. Very
recently the setting with Pareto potential has been studied in great detail in [OR16,
OR17,OR18]. Amongst others, the authors showed that a process that only depends
on the random environment ξ, the so-called lilypad process, governs many aspects of
the system such as the hitting times of sites, the number of particles and the support
in a rescaled version. We also refer to the recent survey [Kön20] on branching random
walks in random environment.

2.2.3 Continuous space, time-dependent potentials

There are also many interesting research works on the PAM defined on a continu-
ous space and/or with a time-dependent potential. We will mention a few below,
however, this is by no means a complete list.

The analysis of intermittency in the PAM on a continuous spatial domain, in
particular on Rd, was initiated in [Szn93, Szn98], where Brownian motion among
(time-independent) Poisson traps has been analysed. The traps are constructed
by setting the potential equal to −∞ in neighbourhoods of sites of a homogeneous
Poisson point process. In [CM95] the authors analyse intermittency in the sense
of (2.6) for the PAM with a homogeneous ergodic random field ξ on Rd. Gaussian
potentials with certain regularity properties were studied in [GK00,GKM00]. Very
recently, in [KPvZ20] the PAM with a Gaussian space white noise potential (time-
independent) in R2 has been investigated, in particular, the almost sure large time
asymptotic behaviour of the total mass was analysed.

The PAM with time-dependent random fields on Zd is subject of the monograph
[CM94].

Finally, settings with time-dependent potentials in continuous space have been
analysed, for example, in the following works: In [BC95] the authors showed inter-
mittency behaviour for the PAM with space-time white noise in R. The same model
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is subject of the recent work [CKNP20], where the authors proved spatial ergodicity
and a central limit theorem for the solution. In [HHNT15] stochastic heat equations
in Rd with more general multiplicative centred Gaussian noise are analysed. We also
refer to the book [Kho14]. Finally, in [CK19] the authors investigate intermittency
for the stochastic heat equation with Lévy noise.

2.3 The parabolic Anderson model on T∞

Let T∞ be the critical Galton-Watson tree conditioned to survive with an offspring
distribution in the domain of attraction of a β-stable law with β ∈ (1, 2), as char-
acterized in Section 1.5. We now define the parabolic Anderson model with Pareto
potential on this tree. That is, from now on we consider

∂tu(t, v) = ∆u(t, v) + ξ(v)u(t, v), (t, v) ∈ (0,∞)× T∞,
u(0, v) = 1{v = O}, v ∈ T∞,

(2.7)

where O denotes the root of T∞, 4 is the discrete Laplacian, i.e.

(∆f)(v) =
∑
y∼v

[f(y)− f(v)], v ∈ T∞, f : T∞ → R,

and (ξ(v) : v ∈ T∞) is a collection of independent Pareto-distributed random vari-
ables with parameter α, i.e. for any v ∈ T∞

P(ξ(v) > x) = x−α.

Note that we have two sources of randomness in this model, coming from the
random potential and the underlying random tree. We sample the tree first, and
then independently sample the potential; i.e. the law of the potential P is defined
under the law of the tree P and results are given in the product law P× P.

It turns out that the quotient β
β−1 plays a similar role as the dimension d for the

parabolic Anderson model on the d-dimensional lattice. Therefore we set from now
on

d :=
β

β − 1
.

In the following subsections we will first derive bounds for the maximal value of
the potential ξ on T∞. Subsequently, we will verify the existence of a Feynman-Kac
representation of the solution to (2.7) for certain parameter values in Subsections
2.3.2-2.3.3. Then we will state the main localisation theorem and outline the proof
strategy in Subsection 2.3.4.

2.3.1 Extremal values of the potential ξ

In the following we will derive upper and lower bounds on the maximal potential ξ
in certain subsets of T∞.
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Lemma 2.6. It holds for any r, λ > 1

P× P
(

sup
v∈Ar

ξ(v) ≥ rd/αλ
)
≤ Cλ−

α
1+βd ,

P× P
(

sup
v∈Br

ξ(v) ≥ rd/αλ
)
≤ C ′λ−

α−ε
d ,

for some constants C,C ′.

Proof. Using Proposition 1.22 (iii), we compute

P× P
(
∃v ∈ Ar : ξ(v) > r

1
α

β
β−1λ

)
≤ r

β
β−1λ

αβ2

β−1+β2 P× P
(
ξ(O) > r

1
α

β
β−1λ

)
+ P

(
V (Ar) ≥ r

β
β−1λ

αβ2

β−1+β2

)
< r

β
β−1λ

αβ2

β−1+β2 r
− β
β−1λ−α + Cλ

− α(β−1)

β−1+β2

= Cλ
− α(β−1)

β−1+β2 .

The same kind of proof works for Br.

Lemma 2.7. P× P-almost surely, for any ε > 0 we have that

lim
r→∞

supv∈Ar ξ(v)

r
1
α

β
β−1 (log r)

1
α

(
β2

β−1
+1+ε

) = 0 (2.8)

and

lim
r→∞

supv∈Br ξ(v)

r
1
α

β
β−1 (log r)

d+ε
α

= 0. (2.9)

Proof. Let ε > 0 be arbitrary and set c := 2
1
α

(
2 β2

β−1
+1+ε

)
. Using Lemma 2.6 we

deduce for any δ > 0

P× P

(
∃v ∈ Ar : ξ(v) >

δ

c
r

1
α

β
β−1 (log r)

1
α

(
β2

β−1
+1+ε

))

≤ Cδ−
α

1+βd (log r)
− 1
α

(
β2

β−1
+1+ε

)
α

1+β2/(β−1)

= Cδ
− α

1+βd (log r)−1−ε′ ,

with ε′ = ε
1+β2/(β−1)

> 0. This probability is summable along rn = 2n, that is

∞∑
n=1

P× P

(
∃v ∈ Arn : ξ(v) > δr

1
α

β
β−1

n (log rn)
1
α

(
β2+β−1+ε′
β(β−1)

+1+ε′
))

< δ
− α

1+βdC

∞∑
n=1

(n log 2)−1−ε′ <∞,
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and thus by Borel-Cantelli eventually P× P-almost surely

supv∈Arn ξ(v)

r
1
α

β
β−1 (log rn)

1
α

(
β2

β−1
+1+ε

) ≤ δ

c
< δ.

Now, let r ∈ [rn, rn+1], n large enough. Since V (Ar) < V (Arn+1) we have

supv∈Ar ξ(v)

r
1
α

β
β−1 (log r)

1
α

(
β2

β−1
+1+ε

) < supv∈Arn+1
ξ(v)

r
1
α

β
β−1

n (log rn)
1
α

(
β2

β−1
+1+ε

)

≤ 2
1
α

(
2 β
β−1

+1+ε
) supv∈Arn+1

ξ(v)

r
1
α

β
β−1

n+1 (log rn+1)
1
α

(
β2

β−1
+1+ε

)
< δ.

Thus,

lim sup
r→∞

supv∈Ar ξ(v)

r
1
α

β
β−1 (log r)

1
α

(
β2

β−1
+1+ε

) = 0,

and because of non-negativity, the limit is also zero.

The same kind of proof works for Br.

2.3.2 Existence of solutions for α > β
β−1

Given a particular realisation of T∞, let us denote by X = ((Xm)m≥0,Pv, v ∈ T∞)
the continuous time, variable speed random walk on T∞ started at v ∈ T∞, as
characterised in Subsection 1.5.2. Note again that the law Pv is defined under the
law P and we write P for the random walk starting in the root O.

Furthermore define

u(t, z) = EO
[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt = z}

]
, t > 0, z ∈ T∞. (2.10)

Heuristically, the expectation on the right hand side considers paths that start at the
root and end in z at time t, where in the exponential the potential values that the
walker encounters on its path are accumulated and weighted by the times it spends at
the respective vertices. A classical result by Gärtner and Molchanov [GM90, Lemma
2.2] yields that if u(t, z) <∞ for all (t, z) ∈ (0,∞)×T∞, then u(t, z) is a non-negative
solution to the Cauchy problem (2.7). Hence, to establish existence of a solution
we need to guarantee that the Feynman-Kac formula (2.10) does not explode. For
that we will compare the likelihood of the random walk exiting the set Ar with the
maximum potential it should encounter on the set Ar.
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Proposition 2.8. Take α > β
β−1 . Then, P×P-almost surely, the Cauchy problem

(2.7) possesses a unique non-negative solution u : (0,∞) × T∞ → [0,∞) given by
the Feynman-Kac formula

u(t, z) = EO
[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt = z}

]
, t > 0, z ∈ T∞. (2.11)

Proof. In fact we can bound the total mass for all times. Decomposing according to
how far the random walk progresses along the backbone up until time t, and then
substituting the results of Lemma 2.7 and Corollary 1.30, we see that P×P-almost
surely,

U(t) = EO
[
exp

{∫ t

0
ξ(Xs) ds

}]
≤
∞∑
r=0

P(τAr ≤ t) exp

{
t sup
v∈Ar

ξ(v)

}

≤ C
∞∑
r=0

exp{−r[log r − log t− 1]} exp

{
tr

1
α

β
β−1 (log r)

1
α

(
β2

β−1
+1+ε

)}
,

and for α > β
β−1 the right hand side is finite. Existence thus follows from Lemma

2.2 in [GM90].
A potential ξ is called percolating from below if for each k ∈ R the level set

{v ∈ T∞ : ξ(v) ≤ k} contains an infinite connected component, see [GM90]. Now,
P-almost surely a random potential ξ is non-percolating from below. By Lemma
2.3 in [GM90] this implies the uniqueness of the solution.

2.3.3 Non-existence of solutions for α < β
β−1

For technical reasons let us now consider the sets

T̃∞ := {v ∈ T∞ : deg v ≤ 4},
Ãr := {v ∈ Ar : deg v ≤ 4}.

Lemma 2.9. For a realisation of T∞, it holds

V (Ã2r \ Ãr) ≥
1

2
V (A2r \Ar).

Proof. Let n denote the number of vertices in A2r \ Ar. Since A2r \ Ar is a tree, it
contains n− 1 edges. It therefore follows that∑

v∈A2r\Ar

deg v − 2 = 2(n− 1),
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where we have subtracted 2 from the left-hand side since we have removed one child
of s2r−1 and the parent of sr to construct A2r \ Ar. Then, letting N denote the
number of vertices in A2r \Ar with degree at least 4, it follows that

4N ≤
∑

v∈A2r\Ar

deg v = 2n,

so that N ≤ n
2 . This concludes the proof.

Lemma 2.10. Let λ ≥ 1. For any ε > 0 there exists a constant C > 0 such that
for r sufficiently large

P
(
V (Ã2r \ Ãr) ≥ r

β
β−1λ

)
≥ Cλ−

(β−1+ε)
2−β .

Proof. By Lemma 2.9 we have that

V (Ã2r \ Ãr) ≥
1

2
V (A2r \Ar) ≥

1

2
V (B2r \Ar),

and by construction V (B2r \ Ar) has the same distribution as V (Br). Hence, the
statement is a consequence of Proposition 1.22 (ii).

Now let vr be the vertex in Ã2r\Ãr such that ξ(vr) = supv∈Ã2r\Ãr ξ(v) (this

maximum is almost surely unique for all r > 0).

Lemma 2.11. There exist constants C2, C3 > 0 such that

P× P(lim sup
r→∞

Er) = 1,

where the event Er is defined as follows

Er :=

{
V (Ã2r \ Ãr) ≥ C2r

β
β−1 ,Diam(Ã2r \ Ãr) ≤ C3r, sup

v∈Ã2r\Ãr
ξ(v) ≥ r

β
α(β−1) (log r)1/α

}
.

Proof. We calculate, using Lemma 2.10, and the elementary relation P (A ∩ B) ≥
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P (A)− P (Bc) for a probability function P and events A,B,

P× P(Er)

≥ P
(
V (Ã2r \ Ãr) ≥ C2r

β
β−1 ,Diam(Ã2r \ Ãr) ≤ C3r

)
P× P

(
sup

v∈Ã2r\Ãr
ξ(v) ≥ r

β
α(β−1) (log r)1/α

∣∣∣V (Ã2r \ Ãr) ≥ C2r
β
β−1 ,Diam(Ã2r \ Ãr) ≤ C3r

)
≥
[
P
(
V (Ã2r \ Ãr) ≥ C2r

β
β−1

)
−P

(
Diam(Ã2r \ Ãr) ≥ C3r

)]
1−

(
1− r−

β
β−1 (log r)−1

)C2r
β
β−1


≥
[
C ′C

−β−1+ε
2−β

2 − C ′′C
−1
β

3

] [
1− e−C2(log r)−1

]
≥ K(log r)−1

for sufficiently large r, provided C2, C3 are chosen appropriately (i.e. such that the
first bracket is positive) and where we have used that 1 − e−2x ≥ x for x small
enough. We have also used that Diam(Ar) ∼ Diam(A2r \Ar) ≥ Diam(Ã2r \ Ãr) and
that by the proof of Proposition 1.27 we know

P(Diam(Ar) ≥ 2rλ) ≤ Cλ
−1
β .

Now set rn := 2n, then the events (Ern)n≥1 are mutually independent and

∞∑
n=1

(P× P)(Ern) ≥ K
∞∑
n=1

(n log 2)−1 =∞.

Then applying the second Borel-Cantelli lemma (see Lemma A.2) we have

P× P(lim sup
r→∞

Er) ≥ P× P(lim sup
n→∞

Ern) = 1,

what concludes the proof.

Proposition 2.12. Take α < β
β−1 . Then, P× P-almost surely u(t, z) = ∞ for all

z ∈ T∞ and all t > 0.

Proof. By the same argument as in [GM90, Theorem 2.1b)], it is sufficient to show
that

sup
z∈T̃∞

EO
[
e
∫ t
0 ξ(Xs)ds1{Xt = z}

]
=∞. (2.12)
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To see this, first note that, by reversibility, it follows that for any w ∈ T̃∞,

EO
[
e
∫ t
0 ξ(Xs)ds1{Xt = w}

]
� Ew

[
e
∫ t
0 ξ(Xs)ds1{Xt = O}

]
. (2.13)

Here the restriction to vertices of degree at most 4 ensures that the appropriate
comparative constants are uniform over w ∈ T̃∞, and depend only on degO. Then,
for any v ∈ T∞

u(3t, v) = EO
[
e
∫ 3t
0 ξ(Xs)ds1{X3t = v}

]
≥ sup

w∈T̃∞
EO
[
e
∫ 3t
0 ξ(Xs)ds1{Xt = w,X2t = O,X3t = v}

]
= sup

w∈T̃∞
EO
[
e
∫ t
0 ξ(Xs)dse

∫ 2t
t ξ(Xs)dse

∫ 3t
2t ξ(Xs)ds1{Xt = w,X2t = O,X3t = v}

]
≥ c

[
sup
w∈T̃∞

u(t, w)2

]
u(t, v),

where we have used independence and (2.13).
Now, to prove (2.12), we let vr be the point in Ã2r \ Ãr maximising the potential

and we let r be large enough and r ≥ 3
2(t − 1). Then, by Proposition 1.29 (ii), we

have since |vr| ≥ r ≥ 3
2(t− 1) and r sufficiently large that

u(t, vr) = EO
[
e
∫ t
0 ξ(Xs)ds1{Xt = vr}

]
≥ exp{ξ(vr)}P(Hvr ≤ t− 1, Xs = vr∀s ∈ [Hvr , t])

≥

(∏
u≺vr

1

deg(u)

)
e−|vr|[log |vr|−log(t−1)]e−4teξ(vr)

= exp

{
−
∑
u≺vr

log(deg u)− |vr|[log |vr| − log(t− 1)]− 4t+ ξ(vr)

}
.

Now, on the event Er it holds vr ∈ B(2+C3)r, thus by Lemma 1.28 it holds almost
surely for r large enough and some constant C1 > 0∑

u≺vr
log(deg u) ≤ B̃(2 + C3)r +B log((2 + C3)r) ≤ C1r.

Therefore, on the event Er for r large enough

u(t, vr) ≥ exp

{
−C1r − C3r[log(C3r)− log(t− 1)]− 4t+ r

β
α(β−1) (log r)1/α

}
.

If β
β−1 > α this diverges as r → ∞. Thus, since Er occurs infinitely often P × P-

almost surely by Lemma 2.11, this establishes (2.12).

Remark 2.13. If α = β
β−1 the term above converges. However, one might be able to

tweak the exponents in order to obtain non-existence in this case as well, at least
with positive probability.
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2.3.4 Main theorem and proof strategy

Having established the existence of solutions, we are ready to state the main theorem
concerning the localisation of the solution in one vertex with high probability for
t→∞.

Theorem 2.14. Let α > β
β−1 and let u be the unique non-negative solution to (2.7).

There exists a process (Ẑt)t≥0 with values in T∞ such that

u(t, Ẑt)

U(t)
→ 1 in P× P-probability as t→∞. (2.14)

Remark 2.15. The solution can not be localised at one vertex for all large times
almost surely. This is clear since the process Ẑt is not eventually constant, hence, at
jump times of the process the solution has to relocalise continuously from one site
to another during which it is concentrated in more than one vertex, cf. [KLMS09,
Remark 1].

The proof strategy is similar to the one for the localisation result on Zd as
given in [KMS06]. We will define the process Ẑt as the maximiser of the following
functional

ψt(z) := ξ(z)− |z|
t

log

(
|z|
et

)
, z ∈ T∞. (2.15)

Now, according to the Feynman-Kac representation of the solution, the paths that
move quickly to a vertex with a high potential and then stay there for a long time
contribute the most to the total mass. Thus the functional (2.15) can be seen as
balancing between the ’reward’ of visiting a vertex z with potential ξ(z) and the
’cost’ of hitting that vertex in time t (which increases with the distance from the
root). It is thus plausible that the maximiser of this functional over all vertices
in T∞ will define the localisation process. To prove this, we will split the solution
u(t, z) into three parts, that is, we distribute the paths in the Feynman-Kac formula
into three categories

(i) those that leave a certain time-dependent ball by time t, they constitute
u1(t, z);

(ii) those that do not leave this ball, but also not visit the ’optimal’ site Ẑt, they
constitute u2(t, z);

(iii) and those that do not leave the ball and visit Ẑt, they constitute u3(t, z).

It will turn out, that u1(t, z) and u2(t, z) do not contribute to the total mass for
t going to infinity. Heuristically, for u1(t, z) this is due to the fact that the box is
chosen large enough, such that leaving it is too ’costly’; while u2(t, z) is negligible
since the contribution from the second optimal site, i.e. the second maximiser of
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(2.15), is negligible compared to the one from Ẑt. It is thereby crucial that the time-
dependent radius of the ball is chosen in such a way that Ẑt is with high probability
also the site of the maximal potential within this ball at time t. Finally, by means
of a localisation result for the principal eigenfunction of the Anderson Hamiltonian,
we will show that u3(t, z) localises on Ẑt, which concludes the argument.

Before starting with the analysis, let us recall the following definitions, which
will appear throughout the following pages, d := β

β−1 , q := d
α−d and

r(t) :=

(
t

log t

)q+1

, a(t) :=

(
t

log t

)q
. (2.16)

Here, r(t) is the distance scale for the localisation site, while a(t) is the scale for
the maximum of the random functional (2.15), see Proposition 2.21. These scaling
functions are the same as in the setting in Zd, see [KLMS09].

2.4 The concentration site

2.4.1 Maximizer of the potential ξ

In Section 2.5 we will prove a concentration result for the principal eigenfunction of
the Hamiltonian appearing in the PAM. To understand the concentration result for
this eigenfunction, we first need to derive some properties of the maximizer of the
potential. Let us thus define for a finite set Λ ⊂ T∞

ZΛ := arg max
z∈Λ
{ξ(z)},

Z̃Λ := arg max
z∈Λ
{ξ(z)− deg(z)}.

Note that these maximizers are almost surely unique. Furthermore, we also define
the following gaps

gΛ := ξ(ZΛ)− max
z∈Λ,z 6=ZΛ

{ξ(z)},

g̃Λ := ξ(Z̃Λ)− deg(Z̃Λ)− max
z∈Λ,z 6=Z̃Λ

{ξ(z)− deg(z)}.

Henceforth, we will consider Λ = Br and we start by proving an almost sure lower
bound for the gap gBr .

Lemma 2.16. P× P-almost surely, for any ε > 0 there exists rε <∞ such that

gBr ≥ c′r
β

α(β−1) (log r)
−(1+ε)
α

for all r ≥ rε. In particular, almost surely gBr →∞ as r →∞.
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Proof. We will start by proving the following: Let (Xi)
n
i=1 be i.i.d. Pareto random

variables with parameter α, and let mn = arg max1≤i≤nXi, gn = sup1≤i≤nXi −
sup1≤i≤n,i6=mn Xi. Then P(gn ≤ y) ≤ e−(2y)−αn + αny−αe−y

−α(n−1).
Recall that X1 has the cumulative distribution function F (x) = 1 − P(X1 ≥

x) = 1 − x−α, and the density f(x) = αx−(α+1). The maximum of X1, . . . , Xn has
density fXmn (x) = nf(x)F (x)n−1 and distribution FXmn (x) = (F (x))n, so that for
y sufficiently large

P(gn ≤ y)

≤ P(Xmn ≤ 2y) + P(gn ≤ y|Xmn ≥ 2y)

= F (2y)n +

∫ ∞
2y
P(gn ≤ y|Xmn = x)fXmn (x)dx

= F (2y)n +

∫ ∞
2y

nf(x)F (x)n−1

1−
∏

1≤i≤n,i 6=mn

P(Xi < x− y|Xi < x)

dx

= F (2y)n +

∫ ∞
2y

nf(x)F (x)n−1

[
1−

(
F (x− y)

F (x)

)n−1
]

dx

= (1− (2y)−α)n +

∫ ∞
2y

αnx−(α+1)
[
(1− x−α)n−1 − (1− (x− y)−α)n−1

]
dx,

defining h(x) := (1− x−α)n−1 we calculate further for y sufficiently large

P(gn ≤ y)

≤ (1− (2y)−α)n +

∫ ∞
2y

αnx−(α+1)

(∫ x

x−y
h′(r)dr

)
dx

≤ (1− (2y)−α)n +

∫ ∞
2y

αnx−(α+1)yh′(x− y)dx

≤ (1− (2y)−α)n + αny−α[1− (1− y−α)n−1]

≤ (1− (2y)−α)n + αny−α(1− y−α)n−1

≤ e−(2y)−αn + αny−αe−y
−α(n−1),

where we have used that h′(x) is decreasing for x sufficiently large and that 1− (1−
y−α)n−1 ≤ (1 − y−α)n−1 for y sufficiently large. If y = 1

2δn
1
α (log n)

−1
α for δ < 1,

then we have for all n ≥ Nδ

P(gn ≤ y) ≤ (1 + α2αδ−α)(log n)n−δ
−α
.

The right hand side is summable since δ−α > 1. Therefore, since the volumes of the
sets (Br)r≥1 are strictly increasing, we deduce by Borel-Cantelli that

P× P
(
gBr ≤

1

3
(V (Br))

1
α (log(V (Br))

−1
α i.o.

)
= 0.
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Since it also follows from Corollary 1.23 (iii) that there exists c > 0 such that

P
(
V (Br) ≤ cr

β
β−1 (log log r)

− β
β−1 i.o.

)
= 0,

we deduce that, P× P-almost surely, for any ε > 0 there exists rε <∞ such that

gBr ≥ c′r
β

α(β−1) (log r)
−(1+ε)
α

for all r ≥ rε.

The following Lemma shows that with high probability the sites ZBr and Z̃Br
coincide.

Lemma 2.17. As r →∞,

P× P(ZBr = Z̃Br)→ 1.

Proof. We instead show that P × P(degZBr ≤ gBr) → 1. This proves the result,
since on this event we have for all z ∈ Br with z 6= ZBr that

[ξ(ZBr)− deg(ZBr)]− [ξ(z)− deg z] = [ξ(ZBr)− ξ(z)]− [deg(ZBr)− deg z]

≥ gBr − gBr + 1,

from which it follows that Z̃Br = ZBr (uniquely).
Since the potential is independent of the tree, we have that ZBr is uniform on

the vertices of Br. By Lemma 1.26 (ii) we have for r sufficiently large

P× P(deg(ZBr) ≥ m) ≤ c′′m−(β−1)r
−(1−ε)
β−1 + Ce−cr

ε/β
+ c′m−β.

In particular, choosing mr = c′r
β−ε

α(β−1) we get that for r large enough

P× P(deg(ZBr) ≥ mr) ≤ cr
−
(

(β−ε)
α

+
(1−ε)
β−1

)
+ c′r

−β(β−ε)
α(β−1) ,

and by Lemma 2.16 for r →∞

P× P(gBr ≤ mr)→ 0.

We therefore have that

P× P(deg(ZBr) ≥ gBr) ≤ P× P(deg(ZBr) ≥ mr) + P× P(gBr ≤ mr)→ 0.

With this result we are able to lower bound the gap g̃Br by gBr/2 with high
probability.
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Corollary 2.18. As r →∞,

P× P
(
g̃Br ≥

gBr
2

)
→ 1. (2.17)

Proof. In the proof of Lemma 2.17 we can choose a deterministic sequence mr →∞
so that P × P(gBr ≤ 2mr) → 0 as r → ∞. With P × P(deg(ZBr) ≥ mr) → 0, it
then follows that

P× P(2 deg(ZBr) ≤ gBr)→ 1.

On the event {ZBr = Z̃Br} ∩ {2 deg(ZBr) ≤ gBr} we have

g̃Br = ξ(ZBr)− deg(ZBr)− max
z∈Br\{ZBr}

{ξ(z)− deg(z)}

≥ gBr − deg(ZBr) ≥
gBr
2
,

i.e. (2.17) follows by invoking Lemma 2.17.

Later on, given a finite Λ ⊂ T∞, it will be useful to define the following set

V h
Λ := {v ∈ Λ \ {Z̃Λ} : ξ(v) > ξ(Z̃Λ)− deg Z̃Λ}. (2.18)

We can show that for Br this set is empty with high probability.

Lemma 2.19. As r →∞,

P× P(V h
Br = ∅)→ 1.

Proof. On the event {ZBr = Z̃Br} ∩ {degZBr ≤ gBr} we have for z 6= ZBr = Z̃Br[
ξ(Z̃Br)− deg(Z̃Br)

]
− ξ(z) = [ξ(ZBr)− ξ(z)]− [deg(ZBr)] ≥ gBr − gBr = 0.

Hence, since {degZBr ≤ gBr} ⊂ {ZBr = Z̃Br} ∩ {degZBr ≤ gBr} the statement
follows as in Lemma 2.17.

2.4.2 Maximizer of the functional ψt

As motivated earlier the maximizer of the functional (2.15) will turn out to be the
localisation process. That is, let us properly define

Ẑt := arg max
z∈T∞

ψt(z).

Note that we will also denote Ẑt as Ẑ
(1)
t . We also define the second maximizer Ẑ

(2)
t

as
Ẑ

(2)
t := arg max

z∈T∞\{Ẑ(1)
t }

ψt(z).
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Lemma 2.20. P× P-almost surely, Ẑt is well defined.

Proof. By Lemma 2.7 for any ε > 0 there exists r0 large enough such that almost
surely

sup
v∈Ar

ξ(v) ≤ r
1
α

β
β−1

+ε
, for all r ≥ r0.

Let t be fixed and let ε ∈
(

0, 1− 1
α

β
β−1

)
, then 1

α
β
β−1 + ε < 1 and in particular there

exists r1(t) > 0 such that for r ≥ r1(t)

r
1
α

β
β−1

+ε − r

t
log
( r
et

)
< 0, for all r ≥ r1(t).

Set r(t) = max{r0, r1(t)}, then

sup
|z|≥r(t)

ψt(z) ≤ sup
|z|≥r(t)

[
sup
v∈A|z|

ξ(v)− |v|
t

log

(
|v|
et

)]
≤ sup

r≥r(t)

[
r

1
α

β
β−1

+ε − r

t
log
( r
et

)]
< 0.

Hence, almost surely, ψt is positive only for finitely many z and therefore it attains
its maximum.

Proposition 2.21. With high P× P-probability as t→∞, for any f > 0, 0 < g <
fd
2α , B > (q+1)β

α(β−1) we have

(i) r(t)(log log(t))−f ≤ |Ẑt| ≤ r(t)(log log t)B,

(ii) a(t)(log log(t))−g ≤ ψt(Ẑt) ≤ a(t)(log log t)
Bd
α .

Proof.

(i) Upper bound. Choose 0 < ε < d − α, A > 1
α

(
1

β−1−2ε + 1
)
, B > (q + 1)A,

set Nt := ε−1 (ε+2)
(β−1) log 2 log log t, Ñt := B log log log t

log 2 , and consider a sequence of

radii rn := 2nr(t). We will show that, with high probability as t→∞:

(a) supv∈Brn ξ(v) ≤ rn
3et log

(
rn
3et

)
for all n > Nt,

(b) supv∈Brn ξ(v) ≤ r
d
α
n (log log r(t))A for all Ñt ≤ n ≤ Nt.

We deal with case (a) first. First recall from Corollary 1.23 (i) that P-almost

surely, V (Br) ≤ r
β
β−1 (log r)

1+ε
β−1 for all sufficiently large r. P-almost surely, we
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can therefore write for all sufficiently large t that

P
(
∃n ≥ Nt, v ∈ Brn : ξ(v) ≥ rn

3et
log
( rn

3et

))
≤
∑
n≥Nt

V (Brn)P
(
ξ(O) ≥ rn

3et
log
( rn

3et

))
≤
∑
n≥Nt

r
β
β−1
n (log rn)

1+ε
β−1

( rn
3et

)−α
log
( rn

3et

)−α
≤
∑
n≥Nt

Cn
1+ε
β−1 2

−n(α− β
β−1
−ε)

2−nε(log t)
1+ε
β−1 ,

where C > 0 is some constant. Since n ≥ Nt, we have by our choice of Nt that

2nε ≥ (log t)
ε+2
β−1 , so that

P
(
∃n ≥ Nt, v ∈ Brn : ξ(v) ≥ rn

3et
log
( rn

3et

))
≤
∑
n≥Nt

Cn
1+ε
β−1 2

−n(α− β
β−1
−ε)

(log t)
−1
β−1

≤ C(log t)
−1
β−1

∑
n≥1

n
1+ε
β−1 2

−n(α− β
β−1
−ε)

→ 0,

as t→∞. This proves (a).

We now turn to (b). By our choice of A, we can compute, using Proposition
1.22 (i),

P× P
(
∃n ∈ [Ñt, Nt], v ∈ Brn : ξ(v) ≥ r

d
α
n (log log r(t))A

)
≤

∑
n∈[Ñt,Nt]

[
P
(
V (Brn) ≥ rdn(log log r(t))

1
β−1−2ε

)
+rdn(log log r(t))

1
β−1−2εP

(
ξ(O) ≥ r

d
α
n (log log (r(t))A

)]
≤ Nt

[
(log log r(t))

−(β−1−ε)
β−1−2ε + (log log r(t))

1
β−1−2ε (log log (r(t))−Aα

]
= ε−1 (ε+ 2)

(β − 1) log 2
log log t

[
(log log r(t))

−(β−1−ε)
β−1−2ε + (log log r(t))

1
β−1−2ε

−Aα
]

→ 0,

as t → ∞. This establishes (b). As a consequence of (a) and (b), we now
claim that the following holds with high probability as t→∞:
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(a′) supv∈(BrNt
)c ψt(v)→ −∞,

(b′) supv∈BrNt \BrÑt
ψt(v)→ −∞.

Here (Br)
c denotes the complement of the ball Br in T∞. Note that (a′)

is a straightforward deduction from (a). Indeed, if v ∈ (BrNt )
c with |v| ∈

[2nr(t), 2n+1r(t)], for n > Nt, we have that

ψt(v) ≤ sup
z∈B2n+1r(t)

ξ(z)− |v|
t

log

(
|v|
et

)
≤ rn+1

3et
log
(rn+1

3et

)
− |v|

t
log

(
|v|
et

)
≤ 2|v|

3et
log

(
2|v|
3et

)
− |v|

t
log

(
|v|
et

)
≤ −1

3

|v|
t

log

(
|v|
et

)
→ −∞,

as t→∞, which establishes (a′). Point (b) similarly implies that

ξ(v) ≤ sup
z∈Brn+1

ξ(z) ≤ r
d
α
n+1 (log log r(t))A ≤ (2|v|)

d
α (log log r(t))A ,

for all v ∈ BrNt \BrÑt with |v| ∈ [2nr(t), 2n+1r(t)]. For each such v, we clearly

have |v| ≥ 2Ñtr(t) = (log log t)Br(t), so we can write

ψt(v)

≤ (2|v|)
d
α (log log r(t))A − |v|

t
log

(
|v|
et

)
=
|v|
t

(
2
d
α t|v|

d
α
−1 (log log r(t))A − log

(
|v|
et

))
≤ |v|

t

(
2
d
α t

(
t

log t

)−1

(log log t)B( dα−1) (log log r(t))A

− q log t+ (q + 1) log log t+ 1
)

=
|v| log t

t

(
2
d
α (log log t)

B
(
−1
q+1

)
(log log r(t))A − q +

(q + 1) log log t

log t
+

1

log t

)
.

This latter quantity converges to −∞ as t → ∞ by our choice of B. This
therefore establishes (b′). To complete the proof of (i) we therefore note
that ψt(O) ≥ 0 for all positive t, which means that, on the high proba-
bility events considered above, the maximiser of ψt inside the ball B

2Ñtr(t)

is strictly greater than that outside the ball B
2Ñtr(t)

, which implies that

|Ẑt| ≤ 2Ñtr(t) = (log log t)Br(t).
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Lower bound. Let f > 0 and 0 < ε < fd
2α . To prove the lower bound, we

take g := fd
2α − ε, in particular f > g, and we set f(t) := (log log t)−f , g(t) :=

(log log t)−g. We show that with high probability as t→∞:

(a) supv∈Br(t)f(t)
ψt(v) ≤ r(t)d/α(log log t)−

fd
2α ,

(b) supv∈Br(t)\Ar(t)g(t) ψt(v) ≥ Cr(t)d/α(log log t)−g.

For every δ > 0 with high probability it holds (see Lemma 2.6)

sup
v∈Br(t)f(t)

ξ(v) ≤ [r(t)f(t)]d/α (log log t)δ,

and thus for δ = fd
2α with high probability

sup
v∈Br(t)f(t)

ψt(v) ≤ r(t)d/α(log log t)−
fd
2α .

This establishes (a). We now continue to prove (b). Let rn := r(t)2−n

for 1 ≤ n ≤ g log(3)(t) be a sequence of decreasing radii (from r(t)/2 to

r(t)2−g log(3)(t) ≥ r(t)g(t)) and let M := 1
β−1
2−β+2ε

. Note that the volumes of the

sets B2rn \ Arn are mutually independent and distributed as the volumes of
the sets Brn . Thus by Proposition 1.22 (ii) there exists c2 > 0 such that

P× P
(
@n ≤ g log(3)(t) : V (B2rn \Arn) ≥ rdn(log(3)(t))M

)
≤
[
1− c2(log(3)(t))

−M
(
β−1
2−β+ε

)]g log(3)(t)

≤ exp
{
−c2g log(3)(t)(log(3)(t))−(1−ε′)

}
(2.19)

→ 0 for t→∞.

Hence with high probability there exists a n ≤ g log(3)(t) such that V (B2rn \
Arn) ≥ rdn(log(3)(t))M . On this event and with this n we calculate further

P× P
(
@v ∈ B2rn \Arn : ξ(v) > k

rn
t

log
(rn
et

))
≤
[
1− k−α r

−α
n

t−α

(
log
(rn
et

))−α]rdn(log(3)(t))M

≤ exp
{
−k−α2n(α−d)r(t)d−αtα(log(3)(t))Mq−α log(t)−α

}
= exp

{
−k−α2n(α−d)(log(3)(t))Mq−α

}
(2.20)

→ 0 for t→∞.
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Thus with high probability there exists a v ∈ V (B2rn \Arn) such that ξ(v) >

k rnt log
(
rn
et

)
. Since |v| ≤ 2rn this yields ξ(v) > k′ |v|t log

(
|v|
et

)
with k′ = k/3.

It follows further for this v and k > 3, using that |v| ≥ r(t)2−g log(3)(t)

ψt(v) = ξ(v)− |v|
t

log

(
|v|
et

)
≥ (k′ − 1)

|v|
t

log

(
|v|
et

)
≥ (k′ − 1)

(log log(t))−gr(t)

t
log

(
(log log(t))−gr(t)

et

)
.

Hence, since for 1 ≤ n ≤ g log(3)(t) we have B2rn \ Arn ⊂ Br(t) \ Ar(t)g(t), it
holds for t large enough

sup
v∈Br(t)\Ar(t)g(t)

ψt(v)

≥ (k′ − 1)

(
t

log t

)q+1 1

t(log log(t))g
log

(
(log log(t))−gr(t)

et

)
≥ (k′ − 1)

(
t

log t

)q 1

log(t)(log log(t))g
(q − ε̃) log(t)

= (k′ − 1)r(t)d/α
(q − ε̃)

(log log(t))g
, (2.21)

i.e. statement (b) follows. From (a) and (b) we conclude that with high
probability for t→∞

sup
v∈Br(t)f(t)

ψt(v) < sup
v∈Br(t)\Ar(t)g(t)

ψt(v)

and therefore with high probability for t→∞

|Ẑt| > r(t)f(t) = r(t)(log log t)−f .

(ii) It follows from the upper bound in part (i) and with Lemma 2.6 that for any
δ > 0, we have with high probability,

ψt(Ẑt) ≤ sup
v∈A

r(t)(log log(t))B

ξ(v) ≤ r(t)
d
α (log log t)

Bd
α

+δ = a(t)(log log t)
Bd
α

+δ.

Similarly, it follows from the proof of the lower bound in part (i) that with
high probability,

ψt(Ẑt) ≥ sup
v∈Br(t)\Ar(t)g(t)

ψt(v) ≥ (k′ − 1)r(t)d/α
(q − ε̃)

(log log(t))g

= (k′ − 1)(q − ε̃)a(t)(log log(t))−g.
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We can eliminate the constant by adding some sufficiently small δ to g, that
is for any δ > 0 we have with high probability

ψt(Ẑt) ≥ a(t)(log log(t))−(g+δ).

For ε > 0 and ε small enough such that 1+3ε
α < 1 − 2ε let ht, t ∈ (0,∞), be a

function such that (log(t))−(1−2ε) < ht < (log(t))−
1+3ε
α . In particular, limt→∞ ht =

0. Furthermore, we define the random radius

Rt := |Ẑt|(1 + ht).

This will be the radius of the ball with respect to which we will split the solution for
the localisation argument in Section 2.6 (also recall the proof strategy as outlined in
Subsection 2.3.4). The reason why these decay conditions on ht are necessary will
become clear in the proofs of Lemma 2.22 and Proposition 2.31.

We now show that with high probability Ẑt is equal to ZBRt , i.e. the maximizer
of ψt is also the maximizer of the potential ξ in the ball with radius Rt.

Lemma 2.22.
lim
t→∞

P× P(Ẑt = ZBRt ) = 1.

Proof. We start by proving that for t sufficiently large

{Ẑt 6= ZBRt} ⊂

{
gBRt <

2|Ẑt|ht
t

log

(
|Ẑt|
et

)}
.

On the event {Ẑt 6= ZBRt} we calculate

gBRt = ξ(ZBRt )− max
v∈BRt\ZBRt

ξ(v)

≤ ξ(ZBRt )− ξ(Ẑt)

= ψ(ZBRt ) +
|ZBRt |
t

log

( |ZBRt |
et

)
− ψ(Ẑt)−

|Ẑt|
t

log

(
|Ẑt|
et

)

<
Rt
t

log

(
Rt
et

)
− |Ẑt|

t
log

(
|Ẑt|
et

)

=
|Ẑt|
t

[
(1 + ht) log

(
|Ẑt|(1 + ht)

et

)
− log

(
|Ẑt|
et

)]

≤ |Ẑt|
t

[
ht log

(
|Ẑt|
et

)
+ (1 + ht) log (1 + ht)

]

≤ 2|Ẑt|
t

ht log

(
|Ẑt|
et

)
,
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where we have used that t is sufficiently large. Setting r1(t) := r(t)(log log(t))−f

and r2(t) := r(t)(log log(t))B, for some B > q+1
α(β−1) , this implies

{Ẑt 6= ZBRt} (2.22)

⊂
{
|Ẑt| /∈ [r1(t), r2(t)]

}
∪

{
gBRt <

2|Ẑt|ht
t

log

(
|Ẑt|
et

)
, |Ẑt| ∈ [r1(t), r2(t)]

}
.

We now show that almost surely for t sufficiently large{
|Ẑt| ∈ [r1(t), r2(t)]

}
⊂

{
gBRt ≥

2|Ẑt|ht
t

log

(
|Ẑt|
et

)}
.

On the event
{
|Ẑt| ∈ [r1(t), r2(t)]

}
it follows by definition that Rt ∈ [r1(t)(1 +

ht), r2(t)(1 + ht)]. Now, by Lemma 2.16, almost surely for ε > 0 there exist t0 <∞
such that for all t ≥ t0 and t large enough

gBRt ≥ c
′R

d/α
t (logRt)

− 1+ε
α

≥ c′r(t)d/α(log log(t))−fd/α(1 + ht)
d/α log

(
r(t)(1 + ht)

(log log(t))f

)− 1+ε
α

≥ c′ r(t) log(t)

t
(log log(t))−fd/α[log r(t) + log(2)]−

1+ε
α

≥ C r(t) log(t)

t
(log(t))−

1+2ε
α , (2.23)

for some C > 0. Furthermore, on the event
{
|Ẑt| ∈ [r1(t), r2(t)]

}
we also have

2|Ẑt|ht
t

log

(
|Ẑt|
et

)
≤ 2ht

r(t)(log log(t))B

t
log

(
r(t)(log log(t))B

et

)
≤ 2(q +B)

r(t) log(t)

t
(log log(t))Bht. (2.24)

Now, we can choose ε > 0 small enough such that ht < (log t)−
1+3ε
α by definition

of ht. Hence, on the event
{
|Ẑt| ∈ [r1(t), r2(t)]

}
for t sufficiently large it holds, by

(2.23) and (2.24), that

gBRt ≥
2|Ẑt|ht
t

log

(
|Ẑt|
et

)
.

In particular, (2.22) then implies that almost surely there exists t0 such that for all
t ≥ t0 {

|Ẑt| ∈ [r1(t), r2(t)]
}
⊂ {Ẑt = ZBRt}.

Applying Proposition 2.21 (i) concludes the proof of the statement.
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2.4.3 The gap

In this subsection we prove that the gap between the potential at the ’optimal’ site

Ẑ
(1)
t and at the ’second best’ site Ẑ

(2)
t is asymptotically large.

Lemma 2.23. For any ε > 0 there exist tε <∞ and δε > 0 such that for all t ≥ tε

P× P
(
ψt(Ẑ

(1)
t )− ψt(Ẑ(2)

t ) < δεa(t)
)
< ε.

Proof. Let us first prove the following claim.

Claim: For any given δ > 0 we can choose c > 0 such that P×P
(
|Ẑ(1)
t | < cr(t)

)
≤ δ.

Proof of Claim: The proof of this claim follows along the lines of the proof of the
lower bound in Proposition 2.21 (i). Let δ > 0 be given. We have for c < c̃ < 1 and
with rn = 2−nr(t) for n ≤ log(c̃−1)

P× P
(
|Ẑ(1)
t | > cr(t)

)
≥ P× P

(
sup

v∈Bcr(t)
ψt(v) < sup

v∈Br(t)\Ac̃r(t)
ψt(v)

)
≥ 1− [P1 + P2 + P3]

with

P1 := P× P

(
sup

v∈Bcr(t)
ψt(v) > C3r(t)

d/α

)
,

P2 := P× P
(
@n ≤ log(c̃−1) : V (B2rn \Arn) ≥ C4r

d
n

)
,

P3 := P× P
(
@v ∈ B2rn \Arn : ψt(v) > C3r(t)

d/α
∣∣∣

∃n ≤ log(c̃−1) : V (B2rn \Arn) ≥ C4r
d
n

)
,

for C3, C4 > 0. Now, from a similar calculation as for (2.20) (with k = 4) we have
for ε > 0

P× P
(
@v ∈ B2rn \Arn : ξ(v) > 4

rn
t

log
(rn
et

) ∣∣∣∃n ≤ log(c̃−1) : V (B2rn \Arn) ≥ C4r
d
n

)
≤ exp

{
−4−α2n(α−d)(q − ε)−αC4

}
.

We now choose C4 such that this probability is smaller than δ/3. Furthermore,
we set C3 := (4/3 − 1) q−ε̃c̃ for some ε̃ > 0, and by comparison with (2.21) we can
conclude that for this choice of C4 and C3 it holds P3 ≤ δ/3. Regarding P2 we can
choose c̃ according to (2.19) such that

P2 ≤ exp

{
−c2 log(c̃−1)C

−
(
β−1
2−β+ε

)
4

}
< δ/3.
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Finally, by Lemma 2.6 we may choose c small enough such that P1 ≤ δ/3 and c < c̃.
This concludes the argument and proves the claim.

We can now prove the statement of the Lemma. Let ε > 0. We can choose
ηε > 0, χε > 0 and tε such that for all t ≥ tε we have

(
1−

[
cr(t)
t log

(
cr(t)
et

)]−1
)α
− ηε

(1 + χε)α
≥ 1− ε. (2.25)

Furthermore, according to the claim above we can choose c such that

P× P
(
|Ẑ(1)
t | < cr(t)

)
≤ ηε

(1 + χε)α
. (2.26)

Also note that there exists 0 < ε′ < q and τε′ sufficiently large such that for t ≥ τε′

c
r(t)

t
log

(
c
r(t)

et

)
= c

a(t)

log(t)
log

(
ctq

e(log t)q+1

)
≥ c a(t)

log(t)
log
(
tq−ε

′
)

= c(q − ε′)a(t). (2.27)

Now, let t′ε := max{tε, τε′} and set δε := (q − ε′)cχε. Let z ≥ 0 and x := δεa(t). We
calculate using (2.26) and the elementary relation P (A|B) ≤ P (A) + P (Bc) for a
probability function P and events A,B,

P× P
(
ψt(Ẑ

(1)
t ) > x+ z

∣∣∣ψt(Ẑ(2)
t ) ∈ [z − 1, z]

)
≥ P× P

(
ψt(Ẑ

(1)
t ) > x+ z

∣∣∣ψt(Ẑ(2)
t ) ∈ [z − 1, z], ψt(Ẑ

(1)
t ) > z − 1, |Ẑ(1)

t | > cr(t)
)

−P× P(|Ẑ(1)
t | ≤ cr(t))

≥ inf
T∈T∞

inf
v∈(BT

cr(t)
)c
P
(
ψt(Ẑ

(1)
t ) > x+ z

∣∣∣ψt(Ẑ(2)
t ) ∈ [z − 1, z], ψt(Ẑ

(1)
t ) > z − 1, Ẑ

(1)
t = v

)
− ηε

(1 + χε)α
,

where BT
r denotes the ball of radius r in the tree T .
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Thus, we obtain for t ≥ t′ε

P× P
(
ψt(Ẑ

(1)
t ) > x+ z

∣∣∣ψt(Ẑ(2)
t ) ∈ [z − 1, z]

)
≥ inf

T∈T∞
inf

v∈(BT
cr(t)

)c
P
(
ψt(v) > x+ z

∣∣∣ψt(Ẑ(2)
t ) ∈ [z − 1, z], ψt(v) > z − 1

)
− ηε

(1 + χε)α

= inf
T∈T∞

inf
v∈(BT

cr(t)
)c
P
(
ψt(v) > x+ z

∣∣∣ψt(v) > z − 1
)
− ηε

(1 + χε)α

= inf
T∈T∞

inf
v∈(BT

cr(t)
)c

P (ψt(v) > x+ z)

P (ψt(v) > z − 1)
− ηε

(1 + χε)α

= inf
T∈T∞

inf
v∈(BT

cr(t)
)c

P
(
ξ(v) > x+ z + |v|

t log
(
|v|
et

))
P
(
ξ(v) > z − 1 + |v|

t log
(
|v|
et

)) − ηε
(1 + χε)α

= inf
T∈T∞

inf
v∈(BT

cr(t)
)c

x+ z + |v|
t log

(
|v|
et

)
z − 1 + |v|

t log
(
|v|
et

)
−α − ηε

(1 + χε)α

≥

−1 + cr(t)
t log

(
cr(t)
et

)
x+ cr(t)

t log
(
cr(t)
et

)
α

− ηε
(1 + χε)α

≥

 1−
[
cr(t)
t log

(
cr(t)
et

)]−1

1 + x
[
cr(t)
t log

(
cr(t)
et

)]−1


α

− ηε
(1 + χε)α

,

where in the calculation above we have used the fact that

f(z, r) =

(
z − 1 + r

t log
(
r
et

)
x+ z + r

t log
(
r
et

))α ,
is increasing in z for fixed r and increasing in r for fixed z. By applying (2.27) and
(2.25) we obtain

P× P
(
ψt(Ẑ

(1)
t ) > x+ z

∣∣∣ψt(Ẑ(2)
t ) ∈ [z − 1, z]

)

≥

(
1−

[
cr(t)
t log

(
cr(t)
et

)]−1
)α
− ηε

(1 + χε)α
≥ 1− ε.

It follows that for any ε > 0 there exists t′ε <∞ and δε > 0 such that for all t ≥ t′ε

P× P
(
ψt(Ẑ

(1)
t )− ψt(Ẑ(2)

t ) > δεa(t)
)
≥ 1− ε,

this concludes the proof.



64 CHAPTER 2. PAM ON CRITICAL GWT

From the previous Lemma we can infer the following corollary.

Corollary 2.24. If δt → 0 as t→∞, then

P× P
(
ψt(Ẑ

(1)
t )− ψt(Ẑ(2)

t ) < δta(t)
)
→ 0 as t→∞.

2.5 Spectral results

In this section we derive a concentration result for the principal eigenfunction of
the Anderson Hamiltonian restricted to a suitable subset of T∞. More precisely,
take some finite, connected set Λ ⊂ T∞, and consider equation (2.7) restricted to Λ
with zero boundary condition. The corresponding solution uΛ admits the spectral
representation (cf. [MP16, Proposition 3.10])

uΛ(t, v) =

V (Λ)∑
k=1

eλ
(k)
Λ tφ

(k)
Λ (O)φ

(k)
Λ (v)

‖φ(k)
Λ ‖22

, t > 0, v ∈ Λ, (2.28)

where λ
(1)
Λ ≥ . . . ≥ λ

(|Λ|)
Λ and φ(1), . . . , φ

(|Λ|)
Λ are the respective eigenvalues and

corresponding orthogonal eigenfunctions of the Anderson Hamiltonian restricted
to the class of functions supported on Λ, which we will denote as HΛ, also recall
Subsection 2.2.1. As before, we also have the Feynman-Kac representation for the
solution on Λ, namely

uΛ(t, v) = EO
[
exp

{∫ t

0
ξ(Xs) ds

}
1{Xt = v, τΛ > t}

]
, t > 0, v ∈ Λ.

Due to this dual representation, it is possible to transfer concentration results for

the principal eigenfunction φ
(1)
Λ to the solution uΛ. The objective of this section is

therefore to prove such a concentration result. To do this, we will use the following
path representation of the principal eigenfunction.

Lemma 2.25. (see [MP16, Proposition 3.3]). For any x, y ∈ Λ,

φ
(1)
Λ (x)

φ
(1)
Λ (y)

= Ex
[
exp

{∫ Hy

0
(ξ(Xs)− λ(1)

Λ ) ds

}
1{Hy < τΛ}

]
.

In particular, if φ
(1)
Λ is normalised so that φ

(1)
Λ (y) = 1, for some y ∈ Λ, then

φ
(1)
Λ (x) = Ex

[
exp

{∫ Hy

0
(ξ(Xs)− λ(1)

Λ ) ds

}
1{Hy < τΛ}

]
. (2.29)

Henceforth, we consider Λ = Br and we assume that φ
(1)
Br

is normalised so that

φ
(1)
Br

(Z̃Br) = 1. We will show that φ
(1)
Br

is concentrated around the vertex Z̃Br . We
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first prove a lemma showing that we can restrict to a direct path in (2.29). For this,
let us define the set of all paths from x ∈ Br to Z̃Br as Γx,r and, furthermore, let
us denote the direct path from x ∈ Br to Z̃Br , excluding the endpoint Z̃Br , as γx,r.
We also introduce the notation π(X[0,t]), to denote the path that consists of all the
sites visited by the random walk (Xs)s≥0 between times 0 and t.

Lemma 2.26. For all x ∈ Br,

P× P

φ(1)
Br

(x) ≤
∏

v∈γx,r

deg v

g̃Br

→ 1 as r →∞.

Proof. The proof follows a similar strategy to [KLMS09, Lemma 2.3]. Firstly, it
follows from the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson
Hamiltonian that

λ
(1)
Br

= sup{〈(ξ + ∆)f, f〉`2(T∞) : f ∈ `2(T∞), supp(f) ⊂ Br, ||f ||2 = 1}
≥ sup

z∈Br
{〈(ξ + ∆)δz, δz〉`2(T∞)}

= sup
z∈Br
{ξ(z)− deg(z)}

= ξ(Z̃Br)− deg(Z̃Br),

here ‖ · ‖2 denotes the `2(T∞) norm. Then, by Lemma 2.25, we have

φ
(1)
Br

(x) = Ex
[
exp

{∫ HZ̃Br

0
(ξ(Xs)− λ(1)

Br
) ds

}
1{HZ̃Br

< τBr}
]

≤ Ex
[
exp

{∫ HZ̃Br

0
(ξ(Xs)− [ξ(Z̃Br)− deg(Z̃Br)] ds

}
1{HZ̃Br

< τBr}
]
.

Now, let (Tv)v∈Br denote a set of independent exponentially distributed random
variables, each with respective parameter deg(v), i.e. Tv ∼ Exp(deg(v)). Further-
more, note that every path γ ∈ Γx,r contains the set γx,r. Recall the definition of
the set V h

Br
in equation (2.18). On the event {V h

Br
= ∅} we have that for every

v ∈ Br \ {Z̃Br}

deg v

deg v − [ξ(v) + deg Z̃Br − ξ(Z̃Br)]
≤ 1.
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Hence, we can compute, on the event {V h
Br

= ∅}, that

φ
(1)
Br

(x)

≤ Ex
[
exp

{∫ HZ̃Br

0
(ξ(Xs)− [ξ(Z̃Br)− deg Z̃Br ]) ds

}
1{HZ̃Br

< τBr}
]

≤
∑
γ∈Γx,r

Px
(
π
(
X[0,HZ̃Br

]

)
= γ

) ∏
v∈γ\{Z̃Br}

Ex
[
exp

{
Tv[ξ(v) + deg Z̃Br − ξ(Z̃Br)]

}]
≤
∑
γ∈Γx,r

Px
(
π
(
X[0,HZ̃Br

]

)
= γ

) ∏
v∈γ\{Z̃Br}

deg v

deg v − [ξ(v) + deg Z̃Br − ξ(Z̃Br)]

≤
∏

v∈γx,r

deg v

g̃Br

∑
γ∈Γx,r

Px
(
π
(
X[0,HZ̃Br

]

)
= γ

) ∏
v∈γ\({Z̃Br}∪γx,r)

deg v

deg v − [ξ(v) + deg Z̃Br − ξ(Z̃Br)]

≤
∏

v∈γx,r

deg v

g̃Br
,

where we have used that the moment generating function of X ∼ Exp(λ) is given by
E[etX ] = λ

λ−t for t < λ. The statement now follows by invoking Lemma 2.19.

We will also need the following Lemma concerning the degrees of vertices in the
direct path γx,r.

Lemma 2.27. (i) There exist constants B, B̃ such that for any C > 0

P× P

 sup
x∈Br\B(Z̃Br ,C)

 ∑
v∈γx,r

log(deg v)− [B log(r) + B̃|γx,r|]

 ≤ 0

→ 1,

as r →∞.

(ii) For any B̂, C > 0

P× P

 sup
x∈B(Z̃Br ,C)∩Br\{Z̃Br}

 ∑
v∈γx,r

log(deg v)− B̂ log log(r)

 ≤ 0

→ 1,

as r →∞.

Proof. We work conditionally on Z̃Br . Note that this is a uniform vertex in Br.

(i) The statement follows from Lemma 1.28.

(ii) Let ε > 0 and let us define c := β − 1 − ε > 0. Note that E[deg vc] < ∞
for all v ∈ Br. We set A := log E[deg vc] < ∞. Working backwards along
the path γx,r starting at Z̃Br and ending at x, the degrees of the vertices are
independent of each other. Let x ∈ B(Z̃Br , C) ∩ Br \ {Z̃Br}. This implies
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1 ≤ |γx,r| ≤ C. We define for B̂ > 0, χx,r := B̂ log log r
|γx,r| and f(r) := (log r)cB̂/2.

We can now compute

P

 ∑
v∈γx,r

log(deg v) ≥ χx,r|γx,r|


≤ E

exp

c ∑
v∈γx,r

log(deg v)

 exp(−cχx,r|γx,r|)

≤ exp
(
A|γx,r| − cB̂ log log r

)
≤ exp(AC) log r−cB̂.

Applying a union bound yields

P

 sup
x∈B(Z̃Br ,C)∩Br\Z̃Br

 ∑
v∈γx,r

log(deg v)− χx,r|γx,r|

 ≥ 0


≤ exp(AC)f(r) log r−cB̂ + P(V (B(Z̃Br , C)) > f(r)),

= exp(AC)(log r)−cB̂/2 + P(V (B(Z̃Br , C)) > f(r)).

Invoking Lemma 1.26 we can conclude that the right hand side converges to
0 for r →∞.

We are now able to show that the principal eigenfunction is concentrated in Z̃Br
with high probability.

Lemma 2.28.

‖φ(1)
Br
‖22

∑
z∈Br\{Z̃Br}

φ
(1)
Br

(z)→ 0 in P× P-probability as r →∞.

Proof. We work conditionally on Z̃Br . Let ε > 0 and let us define c := β−1−ε > 0.
Let B and B̃ be the constants appearing in Lemma 2.27 (i), that is, in particular it

holds B > 1
c

(
2β+ε
β−1 + ε

)
(see the proof of Lemma 1.28), and we set

Cα,β :=
2α(β − 1)

β

(
B +

β + ε

β − 1
+ ε

)
.

We split the sum into two parts, which we bound separately in the following,∑
x∈Br\{Z̃Br}

φ
(1)
Br

(x) =
∑

x∈Br\B(Z̃Br ,Cα,β)

φ
(1)
Br

(x) +
∑

x∈B(Z̃Br ,Cα,β)∩Br\{Z̃Br}

φ
(1)
Br

(x).

(2.30)
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Part 1: In particular, for x ∈ Br \ B(Z̃Br , Cα,β) it holds |γx,r| ≥ Cα,β. We set

vr := r
β+ε
β−1 . On the event sup

x∈Br\B(Z̃Br ,Cα,β)

 ∑
v∈γx,r

log(deg v)− [B log(r) + B̃|γx,r|]

 ≤ 0

 ∩ {V (Br) ≤ vr}

∩
{
g̃Br ≥

c′

2
r

β
α(β−1) (log r)

−(1+ε)
α

}
∩

φ(1)
Br

(x) ≤
∏

v∈γx,r

deg v

g̃Br
for all x ∈ Br

 ,

we calculate for sufficiently large r

∑
x∈Br\B(Z̃Br ,Cα,β)

φ
(1)
Br

(x)

≤
∑

x∈Br\B(Z̃Br ,Cα,β)

∏
v∈γx,r

deg v

g̃Br

=
∑

x∈Br\B(Z̃Br ,Cα,β)

exp

 ∑
v∈γx,r

[log(deg(v))− log(g̃Br)]


≤

∑
x∈Br\B(Z̃Br ,Cα,β)

exp

(
B log(r) + B̃|γx,r| − |γx,r|

(
log(c′/2) +

β log r

α(β − 1)
− 1 + ε

α
log log r

))

≤ vr exp

(
− log r

[
Cα,β

β

2α(β − 1)
−B

]
− Cα,β

[
β log r

2α(β − 1)
− 1 + ε

α
log log r − B̃

])
≤ r−ε exp

(
−Cα,β

[
β

2α(β − 1)
log r − 1 + ε

α
log log r − B̃

])
,

and the right hand side converges to 0 for r → ∞. Note that we have assumed
c′ > 2, as we can choose c′ large enough according to Lemma 2.16.

Part 2: Let f(r) := log(r) and B̂ > 0. On the event

 sup
x∈B(Z̃Br ,Cα,β)∩Br\{Z̃Br}

 ∑
v∈γx,r

log(deg v)− B̂ log log r

 ≤ 0


∩ {V (B(Z̃Br , Cα,β)) ≤ f(r)}

∩
{
g̃Br ≥

c′

2
r

β
α(β−1) (log r)

−(1+ε)
α

}
∩

φ(1)
Br

(x) ≤
∏

v∈γx,r

deg v

g̃Br
for all x ∈ Br

 ,



2.5. SPECTRAL RESULTS 69

we calculate similar to the first part for sufficiently large r∑
x∈B(Z̃Br ,Cα,β)∩Br\{Z̃Br}

φ
(1)
Br

(x)

≤
∑

x∈B(Z̃Br ,Cα,β)∩Br\{Z̃Br}

exp

 ∑
v∈γx,r

[log(deg(v))− log(g̃Br)]


≤ f(r) exp

(
B̂ log log r −

(
log(c′/2) +

β

α(β − 1)
log r − 1 + ε

α
log log r

))
≤ (log r)1+B̂+(1+ε)/αr

− β
α(β−1) ,

and the right hand side converges to zero as r →∞. Again, we have assumed c′ > 2.

Thus, invoking Proposition 1.22, Lemma 1.26, Lemma 2.26, Lemma 2.27 and
Corollary 2.18 it follows that both parts of the sum (2.30) converge to zero in
P × P-probability as r → ∞. This completes the proof, since this also shows that
for all sufficiently large r

‖φ(1)
Br
‖22 =

∑
x∈Br

φ
(1)
Br

(x)2 = φ
(1)
Br

(Z̃Br)
2 +

∑
x∈Br\{Z̃Br}

φ
(1)
Br

(x)2

≤ 1 +

 ∑
x∈Br\{Z̃Br}

φ
(1)
Br

(x)

2

≤ 2.

As mentioned above, we want to transfer the concentration result for the prin-
cipal eigenfunction to the solution of the PAM on a suitable set. Let us set

uBr,Z̃Br
(t, v) := E0

[
exp

{∫ t

0
ξ(Xs)ds

}
1{Xt = v}1{τBr > t}1{HZ̃Br

≤ t}
]
,

(2.31)
that is, the contribution to the solution of the PAM, which comes from paths in the
Feynman-Kac formula that do not leave Br and also visit the vertex Z̃Br . Then the
following holds conditionally on T∞.

Lemma 2.29. For all v ∈ T∞ and t > 0 we have

uBr,Z̃Br
(t, v) ≤ uBr,Z̃Br (t, Z̃Br)‖φ

(1)
Br
‖22φ

(1)
Br

(v). (2.32)

The Lemma was proved in [GKM07, Theorem 4.1] (in a more general form) for
Zd and it works in the same way for T∞. Nevertheless, for completeness, we will
give the proof here as well.
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Proof. For notational convenience we set Λ := Br. First note that (2.32) follows
trivially for v /∈ Λ as the left hand side is zero in this case. For v = Z̃Λ, (2.32)

follows due to the normalisation φ
(1)
Λ (Z̃Λ) = 1. Hence, we only need to prove the

estimate for v ∈ Λ \ {Z̃Λ}.
Thus, let v ∈ Λ \ {Z̃Λ} and we compute using time reversal and the Markov

property of the random walk

uΛ,Z̃Λ
(t, v)

= Ev
[
exp

{∫ t

0
ξ(Xs)ds

}
1{Xt = 0}1{τΛ > t}1{HZ̃Λ

≤ t}
]

= Ev
[
exp

{∫ HZ̃Λ

0
ξ(Xs)ds

}
1{HZ̃Λ

≤ t}1{τΛ > HZ̃Λ
}

×EZ̃Λ

[
exp

{∫ t−u

0
ξ(Xs)ds

}
1{Xt−u = 0}1{τΛ > t− u}

]
u=HZ̃Λ

 . (2.33)

Furthermore we have by time reversal and the Markov property at time u

uΛ,ZΛ
(t, Z̃Λ)

= EZ̃Λ

[
exp

{∫ t

0
ξ(Xs)ds

}
1{Xt = 0}1{τΛ > t}

]
≥ EZ̃Λ

[
exp

{∫ u

0
ξ(Xs)ds

}
1{Xu = Z̃Λ}1{τΛ > t}

]
× EZ̃Λ

[
exp

{∫ t−u

0
ξ(Xs)ds

}
1{Xt−u = 0}1{τΛ > t− u}

]
≥ eλ

(1)
Λ uφ

(1)
Λ (Z̃Λ)φ

(1)
Λ (Z̃Λ)

‖φ(1)
Λ ‖22

× EZ̃Λ

[
exp

{∫ t−u

0
ξ(Xs)ds

}
1{Xt−u = 0}1{τΛ > t− u}

]
, (2.34)

where we have used the spectral representation (2.28) in the last inequality. Re-
arranging (2.34) we obtain a upper bound for the expectation, which we plug into

(2.33) for u = HZ̃Λ
(also recall the normalisation φ

(1)
Λ (Z̃Λ) = 1). Using (2.29) we

can thus conclude

uΛ,Z̃Λ
(t, v) ≤ Ev

[
exp

{∫ HZ̃Λ

0
ξ(Xs)ds

}
1{HZ̃Λ

≤ τΛ}e
−λ(1)

Λ HZ̃Λ‖φ(1)
Λ ‖

2
2uΛ,Z̃Λ

(t, Z̃Λ)

]
= ‖φ(1)

Λ ‖
2
2uΛ,Z̃Λ

(t, Z̃Λ)Ev
[
exp

{∫ HZ̃Λ

0
(ξ(Xs)− λ(1)

Λ )ds

}
1{HZ̃Λ

≤ τΛ}
]

= ‖φ(1)
Λ ‖

2
2uΛ,Z̃Λ

(t, Z̃Λ)φ
(1)
Λ (v),

and the proof is complete.
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2.6 Localisation with high probability

As motivated in Subsection 2.3.4 we split u(t, v) into three parts

u1(t, v) = E0

[
exp

{∫ t

0
ξ(Xs)ds

}
1{Xt = v}1{τBRt ≤ t}

]
,

u2(t, v) = E0

[
exp

{∫ t

0
ξ(Xs)ds

}
1{Xt = v}1{τBRt > t}1{HẐt

> t}
]
,

u3(t, v) = E0

[
exp

{∫ t

0
ξ(Xs)ds

}
1{Xt = v}1{τBRt > t}1{HẐt

≤ t}
]
,

then clearly it holds u(t, v) = u1(t, v) + u2(t, v) + u3(t, v). We will show that the
contributions to the total mass of each of these terms away from the site Ẑt vanishes,
with high probability as time goes to infinity.

We first give a lower bound for the total mass U(t).

Proposition 2.30. With high P× P-probability as t→∞ for every ε > 0

logU(t) ≥ tψt(Ẑt) + o

(
ta(t)

(log t)1−ε

)
.

Proof. Note that for t large enough we can invoke Proposition 1.29 (ii), thus we
have for any ρ ∈ (0, 1) that

U(t) ≥ u(t, Ẑt)

≥ P
(
HẐt
≤ ρt,Xs = Ẑt∀s ∈ [HẐt

, HẐt
+ (1− ρ)t]

)
exp{ξ(Ẑt)(1− ρ)t}

≥ P
(
HẐt
≤ ρt

)
exp{−tdeg(Ẑt) + ξ(Ẑt)(1− ρ)t}

≥ exp

−|Ẑt| log

(
|Ẑt|
ρt

)
−
∑
u≺Ẑt

log(deg u)− tdeg(Ẑt) + ξ(Ẑt)(1− ρ)t

 .

Note from Lemma 1.28 that there exists a constant C such that P-almost surely,∑
u≺Ẑt log(deg u) ≤ C|Ẑt| for all sufficiently large t. Thus, using Proposition 2.21

(i), we can infer

P× P

∑
u≺Ẑt

log(deg u) ≥ r(t)(log log t)B+1

→ 0 as t→∞,

for B > q+1
α(β−1) . Similarly, it follows from Lemma 2.22 and the fact that ZBRt is a

uniform vertex in BRt that P × P
(

deg(Ẑt) ≥ log log t
)
→ 0 as t → ∞ by invoking
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Lemma 1.26. Therefore, setting ρ = e
log t we deduce that with high probability as

t→∞,

U(t) ≥ exp

{
−|Ẑt| log

(
|Ẑt|
ρt

)
− r(t)(log log t)B+1 − t log log t+ ξ(Ẑt)(1− ρ)t

}

= exp

{
tψt(Ẑt)− |Ẑt| log log t− r(t)(log log t)B+1 − t log log t− et

log t
ξ(Ẑt)

}
.

Furthermore, we have by Proposition 2.21 (i) and the proof of (ii) that, with high
probability for t→∞,

|Ẑt| log log t+ r(t)(log log t)B+1 + t log log t+
etξ(Ẑt)

log t

≤ 2r(t)(log log t)B+1 + a(t) log log t+
eta(t)

log t
(log log t)

Bd
α

+δ

= ta(t)

[
2(log log t)B+1

log t
+

log log t

t
+ e

(log log t)
Bd
α

+δ

log t

]
,

which completes the proof.

We are now able to prove that the contribution from u1 to the total mass is
asymptotically negligible as t→∞.

Proposition 2.31.∑
v∈T∞ u1(t, v)

U(t)
→ 0 in P× P-probability as t→∞.

Proof. Let

p > max

{
q + 1, (q + 1)

1

α

(
β2

β − 1
+ 1 + ε

)}
. (2.35)

We first note that it is sufficient to bound the sum over all v ∈ Br(t)(log t)p . Indeed,
similar to the proof of Proposition 2.8 we have for any ε > 0 that P × P-almost
surely for t sufficiently large∑

v∈(Br(t)(log t)p )c

u1(t, v)

≤
∑

r≥r(t)(log t)p

P(τAr ≤ t) exp{t sup
v∈Ar

ξ(v)}

≤
∑

r≥r(t)(log t)p

exp
{
−r log

( r
et

)}
exp

{
tr

d
α (log r)

1
α

(
β2

β−1
+1+ε

)}
.
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Now note that for r = r(t)(log t)p and t sufficiently large we have

r log
( r
et

)
= r(t)(log t)p log

(
r(t)(log t)p

et

)
= r(t)(log t)p log(tq(log t)p−q−1/e)

≥ qr(t)(log t)p+1,

and, using that d
α + 1

q+1 = 1,

tr
d
α (log r)

1
α

(
β2

β−1
+1+ε

)
= r(t)(log t)1+ pd

α (log(r(t)(log t)p))
1
α

(
β2

β−1
+1+ε

)

≤ Cr(t)(log t)
1+ pd

α
+ p
q+1
−δ

= Cr(t)(log t)1+p−δ,

for some δ > 0 (since we have a strict inequality in (2.35)). In particular this means
that for t large enough

tr
d
α (log r)

1
α

(
β2

β−1
+1+ε

)
<

1

2
r log

( r
et

)
. (2.36)

Since

d

dr

{
−1

2
r log

( r
et

)
+ tr

d
α (log r)

1
α

(
β2

β−1
+1+ε

)}
< 0,

for r large enough, (2.36) actually holds for all r ≥ r(t)(log t)p and t sufficiently
large. Thus we have for t sufficiently large

∑
v∈(Br(t)(log t)p )c

u1(t, v) ≤
∑

r≥r(t)(log t)p

exp

{
−1

2
r log

( r
et

)}
.

Now, since for every r ≥ r(t) and t large enough

exp

{
−1

2
(r + 1) log

(
r + 1

et

)}
≤ exp

{
−1

2
log
( r
et

)}
exp

{
−1

2
r log

( r
et

)}
≤ 1

1 + 1
2 log

(
r(t)
et

) exp

{
−1

2
r log

( r
et

)}

≤ 1

2
exp

{
−1

2
r log

( r
et

)}
,
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we obtain

∑
v∈(Br(t)(log t)p )c

u1(t, v) ≤
∑
r≥r(t)

exp

{
−1

2
r log

( r
et

)}

≤ exp

{
−1

2
r(t) log

(
r(t)

et

)}∑
r≥0

1

2r

≤ 2 exp

{
−1

2
r(t) log

(
r(t)

et

)}
→ 0,

as t→∞. Since U(t) ≥ 1 eventually almost surely, this shows that the contribution
of u1 outside the ball of radius r(t)(log t)p is asymptotically negligible as t→∞.

We next prove that, with high probability as t→∞,

log

 ∑
v∈Br(t)(log t)p

u1(t, v)


≤ max

{
tψt(Ẑ

(2)
t ), tξt(Ẑ

(1)
t )−Rt log

(
Rt
et

)}
+ o

(
ta(t)

log t

)
. (2.37)

To do this, first note that by definition of u1, Proposition 2.21 and Lemma 1.31, we
have with high probability that

log

 ∑
v∈Br(t)(log t)p

u1(t, v)


≤ log

 ∑
r∈[Rt,r(t)(log t)p]

E
[
exp

{
t sup
v∈Br

ξ(v)

}
1

{
sup
s≤t
|Xs| = r

}]
≤ log

 ∑
r∈[Rt,r(t)(log t)p]

exp

{
t sup
v∈Br

ξ(v)

}
P
(
τBr−1 ≤ t

)
≤ max

r∈[Rt,r(t)(log t)p]

{
t sup
v∈Br

ξ(v) + log
(
P
(
τBr−1 ≤ t

))}
+ log (r(t)(log t)p)

≤ t max
r∈[Rt,r(t)(log t)p]

{
sup
v∈Br

ξ(v)− r

t
log
( r
et

)}
+ o

(
ta(t)

log t

)
,

where we have used that for positive real numbers x1, ..., xn it holds

log

(
n∑
i=1

xi

)
≤ max

i=1,...,n
{log(xi)}+ log(n).
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Let r̂(t) ∈ [Rt, r(t)(log t)p] denote the radius for which the maximum is attained,

and v̂(t) = arg max{ξ(v) : v ∈ Br̂(t)}. If v̂(t) = Ẑ
(1)
t , then

t max
r∈[Rt,r(t)(log t)p]

{
sup
v∈Br

ξ(v)− r

t
log
( r
et

)}
= tξ(Ẑ

(1)
t )− r̂(t) log

(
r̂(t)

et

)
≤ tξ(Ẑ(1)

t )−Rt log

(
Rt
et

)
.

Otherwise, i.e. if v̂(t) 6= Ẑ
(1)
t , we have

t max
r∈[Rt,r(t)(log t)p]

{
sup
v∈Br

ξ(v)− r

t
log
( r
et

)}
= tξ(v̂(t))− r̂(t) log

(
r̂(t)

et

)
≤ tξ(v̂(t))− |v̂(t)| log

(
|v̂(t)|
et

)
= tψt(v̂(t))

≤ tψt(Ẑ(2)
t ).

This establishes (2.37). To complete the proof, we invoke Proposition 2.30 and note
that, with high probability as t→∞ for ε > 0∑

v∈T∞ u1(t, v)

U(t)

≤ exp

{
max

{
tψt(Ẑ

(2)
t ), tξ(Ẑ

(1)
t )−Rt log

(
Rt
et

)}
− tψt(Ẑ(1)

t ) + o

(
ta(t)

(log t)1−ε

)}
= exp

{
max

{
t
(
ψt(Ẑ

(2)
t )− ψt(Ẑ(1)

t )
)
, |Ẑ(1)

t | log

(
|Ẑ(1)
t |
et

)
−Rt log

(
Rt
et

)}

+o

(
ta(t)

(log t)1−ε

)}
.

Now, recall from Corollary 2.24 that for any function ηt with ηt → 0 as t→∞, we
have that for t→∞

P× P
(
ψt(Ẑ

(1)
t )− ψ(Ẑ

(2)
t ) < ηta(t)

)
→ 0.

In particular, choosing ηt = (log t)−
1
2 and choosing ε < 1

2 gives that

t
(
ψt(Ẑ

(2)
t )− ψt(Ẑ(1)

t )
)

+ o

(
ta(t)

(log t)1−ε

)
→ −∞

in probability as t→∞.
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To deal with the second term, note that since Rt = |Ẑ(1)
t |(1 + ht) and since we

can choose ε small enough such that ht ≥ (log t)−(1−2ε), we have by Proposition
2.21 that, with high probability, for t sufficiently large

Rt log

(
Rt
et

)
− |Ẑ(1)

t | log

(
|Ẑ(1)
t |
et

)
+ o

(
ta(t)

(log t)1−ε

)

≥ |Ẑ(1)
t |ht log

(
|Ẑ(1)
t |
et

)
+ o

(
ta(t)

(log t)1−ε

)
≥ C|Ẑ(1)

t |ht log t+ o

(
ta(t)

(log t)1−ε

)
≥ Cta(t)

(log log t)−f

(log t)1−2ε
+ o

(
ta(t)

(log t)1−ε

)
,

which diverges as t→∞. This completes the proof.

Likewise, the contribution from u2 to the total mass is asymptotically negligible
as t→∞, as we will show in the following proposition.

Proposition 2.32.∑
v∈T∞ u2(t, v)

U(t)
→ 0 in P× P-probability as t→∞. (2.38)

Proof. We split the sum into two parts, that is, for f > 0,∑
v∈T∞

u2(t, v)

≤ E
[
exp

{∫ t

0
ξ(Xs)ds

}
1{H

Ẑ
(1)
t
> t}1{τBRt > t}

]
≤
∑
r≤Rt

E
[
exp

{∫ t

0
ξ(Xs)ds

}
1{H

Ẑ
(1)
t
> t}1{sup

s≤t
|Xs| = r}

]

=
∑

r≤r(t)(log log(t))−f

E
[
exp

{∫ t

0
ξ(Xs)ds

}
1{H

Ẑ
(1)
t
> t}1{sup

s≤t
|Xs| = r}

]

+
∑

r(t)(log log(t))−f≤r≤Rt

E
[
exp

{∫ t

0
ξ(Xs)ds

}
1{H

Ẑ
(1)
t
> t}1{sup

s≤t
|Xs| = r}

]
.

(2.39)

For the first sum in (2.39), we note that by Lemma 2.6 with high P×P-probability
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as t→∞ it holds

log

 ∑
r≤r(t)(log log(t))−f

E
[
exp

{∫ t

0
ξ(Xs)ds

}
1{H

Ẑ
(1)
t
> t}1{sup

s≤t
|Xs| = r}

]
≤ log

 ∑
r≤r(t)(log log(t))−f

exp

t sup
v∈Br\{Ẑ(1)

t }
ξ(v)




≤ t sup
v∈B

r(t)(log log(t))−f

ξ(v) + log(r(t)(log log(t))−f )

= o

(
ta(t)

(log log t)c

)
,

for some fd
α > c > 0. Furthermore, we know by Proposition 2.21 that with high

P× P-probability for t→∞, for B > q+1
α(β−1)

Rt = |Ẑ(1)
t |(1 + ht) ≤ r(t)(log log(t))B(1 + ht) ≤ r(t)(log(t))p,

for some p > 0. Thus, for the second sum in (2.39) we can invoke Lemma 1.31, that
is, with high P× P-probability as t→∞

log

 ∑
r(t)(log log(t))−f≤r≤Rt

E

exp

t sup
v∈Br\{Ẑ(1)

t }
ξ(v)

1{sup
s≤t
|Xs| = r}


≤ log

 ∑
r(t)(log log(t))−f≤r≤r(t)(log t)p

exp

t sup
v∈Br\{Ẑ(1)

t }
ξ(v)

P(τBr−1 ≤ t)


≤ max

r∈[r(t)(log log(t))−f ,
r(t)(log t)p]

t sup
v∈Br\{Ẑ(1)

t }
ξ(v) + log(P(τBr−1 ≤ t))

+ log(r(t)(log(t))p)

≤ max
r∈[r(t)(log log(t))−f ,

r(t)(log t)p]

t sup
v∈Br\{Ẑ(1)

t }
ξ(v)− r log

( r
et

)
+ o(r(t))

+ log(r(t)(log(t))p)

≤ t max
r∈[r(t)(log log(t))−f ,r(t)(log t)p]

 sup
v∈Br\{Ẑ(1)

t }
ξ(v)− r

t
log
( r
et

)+ o(r(t)).

As argued in Proposition 2.31 we can conclude that

t max
r∈[r(t)(log log(t))−f ,r(t)(log t)p]

 sup
v∈Br\{Ẑ(1)

t }
ξ(v)− r

t
log
( r
et

) ≤ tψt(Ẑ(2)
t ).
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Hence, we have established that with high P× P-probability for t→∞

log

(∑
v∈T∞

u2(t, v)

)
≤ tψt(Ẑ(2)

t ) + o

(
ta(t)

(log log t)c

)
. (2.40)

As outlined in Proposition 2.31, we can conclude from (2.40) by using Proposition
2.30 and Corollary 2.24 (with ηt = (log log t)−c/2) that in P × P-probability for
t→∞ ∑

v∈T∞ u2(t, v)

U(t)
→ 0.

This concludes the proof.

Finally, we show that u3 localises in Ẑt = Ẑ
(1)
t with high P × P-probability as

t→∞. For this, the spectral results that we derived in Section 2.5 become relevant.

Proposition 2.33.∑
v∈T∞\{Ẑt} u3(t, v)

U(t)
→ 0 in P× P-probability as t→∞.

Proof. Note that on the event {Ẑt = Z̃BRt}, u3 is of the form (2.31) with r = Rt.
Thus, by Lemma 2.29 it follows

u3(t, v) ≤ u3(t, Ẑt)‖φ(1)
BRt
‖22φ

(1)
BRt

(v).

Hence, ∑
v∈T∞\{Ẑt} u3(t, v)

U(t)
≤

∑
v∈T∞\{Ẑt} u3(t, Ẑt)‖φ(1)

BRt
‖22φ

(1)
BRt

(v)

u3(t, Ẑt)

= ‖φ(1)
BRt
‖22

∑
v∈T∞\{Ẑt}

φ
(1)
BRt

(v),

i.e. the statement of the proposition follows by Lemma 2.28 and Lemma 2.22,
Lemma 2.17.

Proof of Theorem 2.14. As u(t, v) = u1(t, v) + u2(t, v) + u3(t, v), the statement of
Theorem 2.14 is a direct consequence of Propositions 2.31, 2.32 and 2.33.

2.7 Outlook

In this chapter we showed that the parabolic Anderson model with Pareto potential
on T∞ localises with high probability in one vertex for t going to infinity. We
conjecture that, just like in Zd [KLMS09], our model will almost surely localise in
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two vertices. The almost sure analysis is more delicate in the following sense. In
order to deal with rare events in an almost sure setting, a more complex random
functional ψt needs to be defined. In particular, it will be crucial to make the role
of the degree of the vertices explicit in ψt, because the larger the degree of a vertex
the smaller is the probability that the random walk remains at that site for a long
time. Furthermore, the proof of Theorem 2.14 relied heavily on the fact that the

gap between ψt(Ẑ
(1)
t ) and ψt(Ẑ

(2)
t ) is with high probability asymptotically large

(Lemma 2.23). Such a result can not hold almost surely, recall Remark 2.5. It is
therefore crucial to consider the first three maximizers of a suitable functional for
the almost sure setting and show that the gap between ψt(Ẑ

(2)
t ) and ψt(Ẑ

(3)
t ) is

eventually almost surely large. This will lead to a finer splitting of the solution with
respect to certain sets of paths in the Feynman-Kac representation. This is work in
progress together with Eleanor Archer.

There are many other aspects of the model investigated above that we would
like to analyse in the future. One questions concerns the so-called ageing. A system
is aeging if the time span it stays in a certain state increases with time, i.e. one
can tell the age of the system by observing it at the present time. In the context
of the parabolic Anderson model we talk about ageing if the frequency with which
the localisation site Ẑt is changing is decreasing over time. For the PAM on Zd
with Pareto potential this was investigated in [MOS11], where the authors showed
a linearly increasing dependency between the periods in which the solution nearly
stays constant and time.

Another objective of future research is to consider different potentials for the
PAM on T∞. In particular, we would like to investigate whether, as in the Zd case,
also the Weibull distribution leads to one point localisation with high probability. An
even further step would be to consider potentials with lighter tails, where localisation
is less pronounced and the intermittency analysis becomes much more subtle.

Although the results of this chapter are restricted to critical Galton-Watson trees
and in certain proofs we take advantage of the tree structure, we anticipate that the
PAM should exhibit similar behaviour on other critical random graphs, such as the
Uniform Infinite Planar Triangulation, critical Erdős-Rényi graphs, and the critical
configuration model.
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Chapter 3

Stochastic partial differential
equations

The purpose of this chapter is twofold. Firstly, to give a relatively broad insight into
the field of SPDEs, and secondly, to state certain specific results in this area that
will be needed later on. For this reason the level of detail may very throughout the
chapter. The presentation is by no means exhaustive and the interested reader is
referred to the monographs [DPZ92,LR15,GM10,DW14,Cho14] and the references
therein.

3.1 Stochastic analysis

3.1.1 Wiener processes

One of the most widely used stochastic process to incorporate noise in differen-
tial equations is the Wiener process, named after the American mathematician N.
Wiener (1894 - 1964). Figure 3.1 shows the familiar image of a sample path of a
real-valued Wiener process, also called Brownian motion. This process is defined as
follows.

Definition 3.1 (Brownian motion). A real-valued stochastic process (B(t))t≥0 on
some probability space (Ω,F ,P) is called Brownian motion or real-valued Wiener
process, if the following three conditions are fulfilled

(i) B(0) = 0,

(ii) B has P-almost surely continuous trajectories,

(iii) For t0 = 0 < t1 < ... < tn, the increments B(ti) − B(ti−1), 1 ≤ i ≤ n, are
independent with law N (0, ti − ti−1).

81
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Figure 3.1: Sample path of a real-valued Brownian motion.

Remark 3.2. Without condition (ii) the process is sometimes called pre-Brownian
motion. In fact, by Kolmogorov’s theorem every pre-Brownian motion has a modifi-
cation whose sample paths are continuous, and even locally Hölder continuous with
exponent 1

2 − δ for every δ ∈
(
0, 1

2

)
(see Lemma A.5).

As outlined in the Introduction, we will often consider SPDEs of evolutionary
type whose state space is an infinite-dimensional function space. Hence, the infinite-
dimensional extension of the real-valued Wiener process, as defined below, will be a
central object. For a detailed overview on this topic, we refer to [DQS11].

In the following let (H, ‖ · ‖H) be a separable Hilbert space with scalar product
〈·, ·〉H and let (Ω,F ,P, (Ft)t≥0) be a filtered complete probability space.

Definition 3.3 (Isonormal process, see [vN08]). An H-isonormal process W is a
family W = {W(h) : h ∈ H} of real-valued random variables defined on (Ω,F ,P)
such that

(i) For every h ∈ H the random variableW(h) has Gaussian law with mean zero.

(ii) E[W(h1)W(h2)] = 〈h1, h2〉H for every h1, h2 ∈ H.

Note that all isonormal processes are linear.

Example 3.4 (Brownian motion). Let H = L2([0, T ]) and W be the associated H-
isonormal process. Then B(t) := W(1[0,t]) defines a real-valued Brownian motion
on [0, T ].

Definition 3.5 (H-cylindrical Brownian motion). Set HT := L2([0, T ];H). A HT -
isonormal process is called a H-cylindrical Brownian motion on [0, T ].
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Example 3.6 (Spatially homogeneous Gaussian noise, cf. [DQS11, Section 2.2]).
Let U be the completion of C∞0 (Rd) with respect to the semi-norm ‖ · ‖U associated
to the semi-inner product

〈ϕ1, ϕ2〉U =

∫
Rd

Λ(dx)(ϕ1 ∗ ϕ̃2)(x), ϕ1, ϕ2 ∈ C∞0 (Rd),

where ∗ denotes convolution, ϕ̃2(x) = ϕ2(−x) and Λ is a symmetric, non-negative
definite measure on Rd. U is a separable Hilbert space. Then W, the UT -isonormal
process or U -cylindrical Brownian motion on [0, T ], is called white in time, spatially
homogeneous Gaussian noise. In particular, if Λ(dx) = f(x)dx then, for h1, h2 ∈
UT ,

E [W(h1)W(h2)] =

∫ T

0
〈h1(t), h2(t)〉U dt

=

∫ T

0

∫
Rd

∫
Rd
h1(t, x)f(x− y)h2(t, y) dx dy dt,

what explains the notion spatially homogeneous (or translation invariant). This is
a type of spatially coloured/correlated noise.

Definition 3.7 (Cylindrical Wiener process, see [DQS11]). Let Q ∈ L(H) be sym-
metric (self-adjoint) and non-negative definite. A cylindrical Wiener process on H
is a family of real-valued random variables WH := {WH(t)h : t ≥ 0, h ∈ H} such
that

(i) (WH(t)h)t∈R+ is a real-valued Brownian motion for all h ∈ H.

(ii) For all t1, t2 ∈ R+ and h1, h2 ∈ H we have

E[WH(t1)h1 WH(t2)h2] = min{t1, t2}〈Qh1, h2〉H .

Q is called the covariance operator. In case Q = IdH , we call WH a standard
cylindrical Wiener process.

To every H-cylindrical Brownian motion, we can associate a standard cylindrical
Wiener process according to the following proposition.

Proposition 3.8 (see [DQS11, Proposition 2.5]). Let WH be a H-cylindrical Brow-
nian motion. For t ∈ [0, T ] and h ∈ H we set

WH(t)h :=WH(1[0,t] ⊗ h),

where ⊗ denotes the tensor product, as we can identify HT with L2([0, T ]) ⊗ H.
Then {WH(t)h : t ∈ [0, T ], h ∈ H} is a standard cylindrical Wiener process on H.
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Remark 3.9. In particular, to every spatially homogeneous Gaussian noise that is
white in time (Example 3.6) we can associate a cylindrical Wiener process in a
particular Hilbert space.

Example 3.10 (Space-time white noise). Let H := L2(D) with D ⊂ Rd open.
A standard cylindrical Wiener process on H provides the mathematical model for
space-time white noise. In particular, we have

E [WH(t1)h1 WH(t2)h2] = min{t1, t2}〈h1, h2〉L2(D).

Loosely speaking, space-time white noise on D is the time derivative of a standard
cylindrical Wiener process on H. We refer to [PZ07, Section 7.1.2] for details.

Remark 3.11. Let (ek)k∈N be an orthonormal basis of H and (βk)k∈N be a sequence
of independent Brownian motions. Then

WH(t)h :=

∞∑
k=1

〈h, ek〉Hβk(t), for h ∈ H,

defines a cylindrical Wiener process on H. However, the series

∞∑
k=1

βk(t)ek,

does not necessarily converge in L2((Ω,F ,P);H), i.e. it does not necessarily describe
a genuine H-valued Gaussian process.

The following definition gives a straightforward extension of the real-valued
Wiener process to H-valued Wiener processes. This characterization is based on
trace-class operators; see Appendix C.2 for details on nuclear and Hilbert-Schmidt
operators.

Definition 3.12 (Q-Wiener process). Let Q ∈ L(H) be non-negative definite, sym-
metric and of trace class. A H-valued stochastic process (WQ(t))t∈[0,T ] on (Ω,F ,P)
is called Q-Wiener process if

(i) WQ(0) = 0.

(ii) WQ has P-almost surely continuous trajectories.

(iii) The increments WQ(t)−WQ(s) are independent and have Gaussian laws with
mean zero and covariance operator (t−s)Q, for all 0 ≤ s ≤ t ≤ T . This means,
that for any h ∈ H and 0 ≤ s ≤ t ≤ T , the real-valuesd random variable
〈WQ(t)−WQ(s), h〉H is Gaussian with mean zero and variance (t−s)〈Qh, h〉H .
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Proposition 3.13 (Representation of a Q-Wiener process, see [LR15, Proposition
2.1.6]). Let (ek)k∈N be an orthonormal basis of H where Qek = λkek, k ∈ N. Then
a H-valued stochastic process (WQ(t))t∈[0,T ], is a Q-Wiener process if and only if

WQ(t) =
∑
k∈N

√
λkβk(t)ek, t ∈ [0, T ], (3.1)

with independent Brownian motions βk, k ∈ {n ∈ N : λn > 0} on a probability space
(Ω,F ,P). That is, the series converges in L2((Ω,F ,P), H) for every t ∈ [0, T ].
The series converges in L2((Ω,F ,P);C([0, T ], H)), i.e.

lim
n→∞

E

 sup
t∈[0,T ]

∥∥∥∥∥
n∑
k=1

√
λkβk(t)ek −WQ(t)

∥∥∥∥∥
2

H

 = 0.

In particular, this means that the process has a P-a.s. continuous version.

Definition 3.14. A Q-Wiener process (WQ(t))t∈[0,T ] is called a Q-Wiener process
with respect to the filtration (Ft)t∈[0,T ], if WQ is adapted to the filtration and
WQ(t)−WQ(s) is independent of Fs for all 0 ≤ s ≤ t ≤ T .

Remark 3.15. The covariance of WQ is given as

E[〈WQ(t),WQ(s)〉H ] = E

[∑
k∈N

λkβk(t)βk(s)〈ek, ek〉H

]
=
∑
k∈N

λkE[βk(t)βk(s)] = min{s, t}Tr Q <∞,

for s, t ∈ [0, T ]. In particular, the variance is given by E[‖WQ(t)‖2H ] = tTr Q. The
operator Q is the covariance operator (at time t = 1).

By Proposition 3.13 a H-valued Q-Wiener process can be represented as the
following series

WQ(t) =
∑
k∈N

βk(t)ak,

where (βk)k∈N are independent real-valued Wiener processes and (ak)k∈N is an or-
thonormal basis of Q1/2(H) =: H0. This series converges in L2((Ω,F ,P), H) because
the embedding operator H0 ↪→ H is Hilbert-Schmidt. We will denote the space of
all Hilbert-Schmidt operators between two separable Hilbert spaces U and K as
(L2(U,K), ‖ · ‖L2(U,K)), see Appendix C.2 for a precise definition. There is a natural
way to associate to every H-valued Q-Wiener process a cylindrical Wiener process
on H. More precisely, for any h ∈ H, t ≥ 0, we set

WH(t)h := 〈WQ(t), h〉H , (3.2)
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Then {WH(t)h : t ≥ 0, h ∈ H} is a cylindrical Wiener process on H with covariance
operator Q.

However, not every cylindrical Wiener process can be associated to a Q-Wiener
process. More precisely, recall from Remark 3.11 that a cylindrical Wiener process
on H can be defined via

WH(t)h =

∞∑
k=1

〈h, ek〉Hβk(t), for h ∈ H.

However, the series
∞∑
k=1

βk(t)ek, (3.3)

might not converge in L2((Ω,F ,P);H). In particular, the following theorem holds.

Theorem 3.16 (see [MP14, p.177]). Let H be a separable Hilbert space and WH a
cylindrical Wiener process on H with covariance Q. Then the following are equiva-
lent

(i) WH is associated to a Q-Wiener process (WQ(t))t≥0, in the sense of (3.2).

(ii) For any t ≥ 0, h 7→ WH(t)h defines a Hilbert-Schmidt operator from H to
L2(Ω,F ,P).

(iii) Tr Q <∞.

Nevertheless, there always exist a larger Hilbert space H ′ and a Hilbert-
Schmidt embedding operator J : H ↪→ H ′, such that the series (3.3) converges
in L2((Ω,F ,P), H ′), see [DPZ92, Section 4.1.2] or [LR15, Section 2.5] for more de-
tails. In particular, this means that if B ∈ L(H ′, H) is Hilbert Schmidt, then
(BWH(t))t≥0 defines a H-valued Q = BB∗-Wiener process.

Remark 3.17.

(i) To define Wiener processes on the whole of R+ we simply concatenate inde-
pendent copies of Wiener processes on intervals [0, T ].

(ii) Assume that (W1(t))t≥0 and (W2(t))t≥0 are two independent Q-Wiener pro-
cesses. Then

W (t) =

{
W1(t) , t ≥ 0

W2(−t) , t < 0

is a two-sided Q-Wiener process (W (t))t∈R that vanishes at zero.

(iii) In the following, we will often omit the subscripts for WQ or WH and simply
denote a Q-Wiener or a cylindrical Wiener process as W . Furthermore, by
referring to a cylindrical Wiener process in the following we always mean the
standard cylindrical Wiener process.
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3.1.2 Stochastic integration in Hilbert spaces

The stochastic integral with respect to a H-valued Q-Wiener process is defined as
the natural generalization of the Itô integral with respect to a real-valued Brownian
motion, as for example introduced in [Oks03]. In this subsection we will give a rough
outline of the construction and we refer the reader to the monographs [LR15,GM10,
DPZ92] for excellent, in-depth presentations of the topic.

As before, let (H, ‖·‖H) denote a separable Hilbert space and let (Ω,F ,P) denote
a probability space.

Itô integral with respect to Q-Wiener processes

The construction of the Itô integral with respect to a H-valued Q-Wiener process
(WQ(t))t∈[0,T ] (adapted to the normal filtration F = (Ft)t∈[0,T ]) begins with the
definition for so-called elementary processes. Let (K, ‖·‖K) denote another separable
Hilbert space. An elementary, L(H,K)-valued process is of the form

Ψ(t, ω) = ψ(ω)10(t) +

n−1∑
j=0

ψj(ω)1(tj ,tj+1](t),

with 0 = t1 < ... < tn = T , n ∈ N, where ψ, ψj , j = 0, ..., n − 1, are F0-,
Ftj -measurable L(H,K)-valued random variables that take only a finite number of
values and 1A(t) denotes the indicator function on a subset A ⊂ R+. Let E(L(H,K))
denote the set of all L(H,K)-valued elementary processes. For Ψ ∈ E(L(H,K)) the
Itô integral is defined as

Int(Ψ)(t) :=

∫ t

0
Ψ(s)dWQ(s)

=

n−1∑
j=0

ψj (WQ (min{t, tj+1})−WQ (min{t, tj})) , for t ∈ [0, T ].

Int(Ψ)(t) is a continuous, square-integrable martingale with respect to the filtration
F (see [LR15, Proposition 2.3.2]). We denote by M2

T (K) the space of K-valued
continuous, square integrable martingales M(t), t ∈ [0, T ], which, equipped with the
norm

‖M‖M2
T (K) := sup

t∈[0,T ]

(
E
[
‖M(t)‖2K

])1/2
=
(
E
[
‖M(T )‖2K

])1/2
, (3.4)

becomes a Banach space [LR15, Proposition 2.2.9]. Note that the second equality
in (3.4) follows since ‖M(t)‖2K is a sub-martingale. Furthermore, calculating the
M2

T (K) norm of Int(Ψ) yields the so-called Itô isometry [LR15, Proposition 2.3.5]

‖Int(Ψ)‖2M2
T (K) = E

[∫ T

0
‖Ψ(s)Q1/2‖2L2(H,K)ds

]
=: ‖Ψ‖2T , (3.5)
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where we recall that (L2(H,K), ‖·‖L2(H,K)) denotes the space of all Hilbert-Schmidt
operators from H to K. Note that ‖ · ‖T is only a semi-norm on E(L(H,K)) and
in order to obtain a norm we switch to equivalence classes of elementary processes
without changing the notation. Then,

Int : (E(L(H,K)), ‖ · ‖T )→ (M2
T (K), ‖ · ‖M2

T (K)),

is an isometric transformation.

In a second step the abstract completion E(L(H,K)) of E(L(H,K)) is charac-
terised. More precisely, E(L(H,K)) can be explicitly represented as

N 2
W (0, T ;K) := {Ψ : [0, T ]× Ω→ L2(H0,K) : Ψ is predictable and ‖Ψ‖T <∞} .

Here, H0 denotes the separable Hilbert space H0 = Q1/2(H) with scalar product

〈u0, v0〉H0 := 〈Q−1/2u0, Q
−1/2v0〉H ,

see [LR15, Chapter 2] for details. Note that with this definition the ‖ · ‖T -norm can
be written as

‖Ψ‖2T = E
[∫ T

0
‖Ψ(s)‖2L2(H0,K)ds

]
.

Furthermore, predictable means here that Ψ is PT /B(L2(H0,K)) measurable where
PT is defined as

PT := σ ({(s, t]× Fs : 0 ≤ s < t ≤ T, Fs ∈ Fs} ∪ {{0} × F0 : F0 ∈ F0}) ,

where σ(S) denotes the σ-algebra generated by the family of sets S. Now, as
E(L(H,K)) is dense in E(L(H,K)), there is a unique and isometric extension of
the Itô integral to N 2

W (0, T ;H). That is,

Int : (N 2
W (0, T ;H), ‖ · ‖T )→ (M2

T (K), ‖ · ‖M2
T (K)).

is linear and isometric. Furthermore, we have for Ψ ∈ N 2
W (0, T ;H) that

E[Int(Ψ)(t)] = 0, t ∈ [0, T ].

Finally, by a localisation procedure the definition of the Itô integral can be further
extended to the set

NW (0, T ;K) := {Ψ : [0, T ]× Ω→ L2(H0,K) : Ψ is predictable with

P
(∫ T

0
‖Ψ(s)‖2L2(H0,K)ds <∞

)
= 1

}
,

which is called the set of stochastically integrable processes. Note that for Ψ ∈
NW (0, T ;H) the integral Int(Ψ) defined by this procedure is only a continuous K-
valued local martingale.
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Itô integral with respect to cylindrical Wiener processes

Let WH := {WH(t)h : t ∈ [0, T ], h ∈ H} be a standard cylindrical Wiener process
on H. According to Subsection 3.1.1 there exists another Hilbert space H ′ and a
Hilbert-Schmidt embedding H ↪→ H ′ such that

WH(t) =
∞∑
k=1

βk(t)ek, (3.6)

where (βk(t))k≥1 are independent Brownian motions, (ek)k≥1 is an orthonormal
basis of H and the series converges in L2((Ω,F ,P), H ′). Let J be the corresponding
Hilbert-Schmidt embedding operator. In particular, (3.6) is a H ′-valued Q1 := JJ∗-
Wiener process. Now, for predictable Ψ : [0, T ]× Ω→ L2(H,K) with

P
(∫ T

0
‖Ψ(s)‖2L2(H,K)ds <∞

)
= 1,

the stochastic integral with respect to WH is defined as∫ t

0
Ψ(s)dWH(s) :=

∫ t

0
Ψ(s) ◦ J−1dWH(s), t ∈ [0, T ]. (3.7)

In particular, since

Ψ ∈ L2(H,K)⇔ Ψ ◦ J−1 ∈ L2(Q
1/2
1 (H ′),K),

the right hand side of (3.7) is well defined as described above, see [LR15, Section
2.5] for further details. Consequently, the Itô isometry holds, that is,

E

[∥∥∥∥∫ t

0
Ψ(s) dWH(s)

∥∥∥∥2

K

]
= E

[∫ t

0
‖Ψ(s)‖2L2(H,K) ds

]
, for t ∈ [0, T ]. (3.8)

Itô formula

An indispensable tool for stochastic calculus in infinite dimension is the Itô formula,
which can be regarded as the stochastic analogon to the fundamental theorem of
calculus.

Definition 3.18 (Itô process). Let (WQ(t))t be a H-valued Q-Wiener process and
Ψ ∈ NW (0, T ;K) a stochastically integrable process. Furthermore, let Φ : Ω ×
[0, T ] → K be P-a.s. Bochner integrable and F-measurable. Finally, let X(0) be a
F0-measurable K-valued random variable. Then

X(t) = X(0) +

∫ t

0
Φ(s)ds+

∫ t

0
Ψ(s)dWQ(s), t ∈ [0, T ],

is well-defined and called Itô process.
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Theorem 3.19 (Itô formula, see [DPZ92, Theorem 4.32]). Let X : Ω× [0, T ]→ K
be an Itô process and F : [0, T ]×K → R continuous. Furthermore, let the Fréchet
derivatives Ft, Fx, Fxx be continuous and bounded on bounded subsets of [0, T ]×K.
Then the following Itô formula holds P-a.s. for all t ∈ [0, T ]

F (t,X(t)) = F (0, X(0)) +

∫ t

0
〈Fx(s,X(s)),Ψ(s)dWQ(s)〉K

+

∫ t

0
[Ft(s,X(s)) + 〈Fx(s,X(s)),Φ(s)〉

+
1

2
Tr
[
Fxx(s,X(s))(Ψ(s)Q1/2)(Ψ(s)Q1/2)∗

]]
ds.

Remark 3.20. A similar Itô formula can be proved for cylindrical Wiener processes,
see [GM10].

Stochastic Fubini theorem

Let again (H, ‖ · ‖H) and (K, ‖ · ‖K) be separable Hilbert spaces.

Theorem 3.21 (Stochastic Fubini theorem, [DPZ92, Theorem 4.33]). Let (E, E) be
a measurable space and µ be a finite positive measure on this space. Let (WQ(t))t
be a H-valued Q-Wiener process on a filtered probability space (Ω,F , (Ft)t,P). Fur-
thermore, assume that

Φ : ([0, T ]× Ω× E,PT × E)→ (L2(H0,K),B(L2(H0,K))),

(t, ω, x) 7→ Φ(t, ω, x),

is a measurable mapping. Here, we have again defined H0 := Q1/2H. If∫
E
‖Φ(·, ·, x)‖Tµ(dx) <∞,

then P-a.s.∫
E

[∫ T

0
Φ(t, x) dWQ(t)

]
µ(dx) =

∫ T

0

[∫
E

Φ(t, x) µ(dx)

]
dWQ(t).

Stratonovich integral

We recall that in the SODE setting the definition of the stochastic integral of a
suitable integrand f with respect to a Brownian motion depends on the choice of
the approximation via elementary functions. More precisely, when choosing f(tj) as
the value for the interval [tj , tj+1], the construction leads to the Itô integral ; whereas
when choosing the midpoint, i.e. f((tj + tj+1)/2), this leads to the Stratonovich
integral, see [Oks03] for details. Compared to Itô integrals, Stratonovich integrals
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are not martingales, however, they have the advantage that they obey the ordinary
chain rule and no second order terms appear as in the Itô formula.

The same holds true when considering Stratonovich integrals of Hilbert space
valued integrands. That is, let H be a separable Hilbert space, (B(t))t≥0 be a real-
valued Wiener process and let Φ(t, ·) : H → H be a Fréchet differentiable mapping
and (u(t))t≥0 be some H-valued process. Then the transformation between the
Stratonovich integral (where the differential is denoted as ◦ dB(s)) and the Itô
integral reads as follows∫ t

0
Φ(s, u(s))◦dB(s) =

∫ t

0
Φ(s, u(s)) dB(s) +

1

2

∫ t

0
Φ(s, u(s))Φu(s, u(s)) ds, (3.9)

where Φu is the Fréchet derivative of Φ with respect to u, see [DW14, Section 4.5].
Hence, by adding or subtracting a correction term one can transform a Stratonovich
integral into an Itô integral and vice versa. In particular, if the integrand does not
depend on u, we observe that the correction term vanishes. Thus, for stochastic
differential equations with additive noise terms there is no difference in interpreting
the stochastic differential in the Stratonovich or Itô sense.

3.2 Semi-linear stochastic partial differential equations

Let us fix a probability space (Ω,F ,P). We are interested in semi-linear Itô SPDEs.
More precisely, let (H, ‖ ·‖H) and (K, ‖ ·‖K) be two separable Hilbert spaces. Then,
we will consider equations of the form

du(t) = [Au(t) + F (t, u(t))] dt+B(t, u(t)) dW (t), t ∈ [0, T ],

u(0) = u0,
(3.10)

under the following assumptions

Assumptions 3.22.

(i) A : D(A) ⊂ H → H is the generator of a C0-semigroup (S(t))t≥0 of linear
operators on H (see Appendix C.3),

(ii) W is a standard cylindrical Wiener process on K,

(iii) F : [0, T ]×H → H is B([0, T ])⊗ B(H)/B(H)-measurable,

(iv) B : [0, T ]×H → L2(K,H) is B([0, T ])⊗ B(H)/B(L2(K,H)) measurable,

(v) u0 is H-valued and F0-measurable, where (Ft)t≥0 is the filtration generated
by the Wiener process.
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3.2.1 Solution concepts

There are several different notions of solutions to equation (3.10), see for example
[Tap13] for an overview.

Definition 3.23 (Strong solution). A D(A)-valued predictable process u(t), t ∈
[0, T ], is called strong solution of equation (3.10) if for all t ∈ [0, T ]

u(t) = u0 +

∫ t

0
[Au(s) + F (s, u(s))] ds+

∫ t

0
B(s, u(s)) dW (s), P− a.s.

In particular, the integrals on the right hand side have to be well-defined, that is

P
(∫ T

0
‖u(s)‖H + ‖Au(s)‖H + ‖F (s, u(s))‖H + ‖B(s, u(s))‖2L2(K,H) ds <∞

)
= 1.

Definition 3.24 (Weak solution). A H-valued predictable process u(t), t ∈ [0, T ],
is called weak solution of equation (3.10) if for every test function ξ ∈ D(A∗) and
every t ∈ [0, T ]

〈u(t), ξ〉 = 〈u0, ξ〉+

∫ t

0
〈u(s), A∗ξ〉+ 〈F (s, u(s)), ξ〉 ds

+

∫ t

0
〈B(s, u(s)), ξ〉 dW (s), P− a.s.

Note that (A∗,D(A∗)) denotes the adjoint of (A,D(A)) on H and H is identified
with its dual. Again, it is assumed that

P
(∫ T

0
‖u(s)‖H + ‖F (s, u(s))‖H + ‖B(s, u(s))‖2L2(K,H) ds <∞

)
= 1.

Definition 3.25 (Mild solution). A H-valued predictable process u(t), t ∈ [0, T ],
is called mild solution of equation (3.10) if for every t ∈ [0, T ] Duhamel’s formula
holds, i.e. P−a.s.

u(t) = S(t)u0 +

∫ t

0
S(t− s)F (s, u(s)) ds+

∫ t

0
S(t− s)B(s, u(s)) dW (s),

and

P
(∫ T

0
‖u(s)‖H + ‖F (s, u(s))‖H + ‖B(s, u(s))‖2L2(K,H) ds <∞

)
= 1.

Definition 3.26 (Stochastic convolution). The stochastic integral in the mild for-
mulation is called stochastic convolution.

Every strong solution is also a weak solution. Furthermore, we have the following
relation between weak and mild solutions.
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Lemma 3.27 (see [Tap13, Prop. 5.9, 5.11]). Every weak solution to (3.10) is a mild
solution to (3.10). Every mild solution u of (3.10) for which

E
[∫ T

0
‖B(s, u(s))‖2L2(K,H) ds

]
<∞,

is also a weak solution to (3.10).

Remark 3.28.

(i) For more details on how the different concepts are related we refer to [Tap13,
DPZ92,GM10].

(ii) For non-linear operators A there exists also the widely used concept of varia-
tional solutions, see [LR15] for details.

3.2.2 Existence of mild solutions

Let us briefly state the main existence result of mild solutions to SPDEs of the form
(3.10). We will need the following assumptions.

Assumptions 3.29. There exists a constant C > 0 such that for all u, v ∈ H, t ∈ [0, T ]
and almost all ω ∈ Ω it holds

(i)

‖F (t, ω, u)− F (t, ω, v)‖H + ‖B(t, ω, u)−B(t, ω, v)‖L2(K,H) ≤ C‖u− v‖H ,

(ii)
‖F (t, ω, u)‖2H + ‖B(t, ω, u)‖2L2(K,H) ≤ C

2(1 + ‖u‖H).

Theorem 3.30 (see [DPZ92, Thm. 7.2]). Let Assumptions 3.22 and Assumptions
3.29 hold. Then problem (3.10) possesses a unique (up to equivalence) mild solution
u. Moreover, u has a continuous modification.

3.2.3 Stochastic convolution

We fix a probability space (Ω,F ,P). Let H,K be Hilbert spaces, A be an operator
that generates a C0 semigroup (S(t))t≥0 on H and let B ∈ L2(K,H). Furthermore,
let (W (t))t≥0 denote a standard cylindrical Wiener process on K, adapted to the
normal filtration (Ft)t≥0. The solution to the following linear equation is called
Ornstein-Uhlenbeck process

du = Au dt+B dW, (3.11)

and with initial condition u(0) = 0 it is simply given by the stochastic convolution

u(t) =

∫ t

0
S(t− s)B dW (s), t ∈ [0, T ]. (3.12)
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Note that a useful tool to work with the stochastic convolution is given by the
following integration by parts formula

u(t) =

t∫
0

S(t− s)B dW (s)

= BW (t) +A

t∫
0

S(t− s)BW (s) ds

= −A
t∫

0

S(t− s)B(W (t)−W (s)) ds+ S(t)BW (t).

Space and time regularity of Ornstein-Uhlenbeck processes on Hilbert spaces are
closely linked. More precisely, interpreted as a evolution process on an infinite-
dimensional space, the time regularity depends on the functional space under con-
sideration. In the following we state some well-known regularity results for stochastic
convolutions.

Proposition 3.31 (see [DP12, Prop. 2.2 & 2.3]). In the setting described above,
u(t) is a Gaussian random variable with mean zero and covariance operator Qt,
where

Qtx :=

∫ t

0
S(s)BB∗S∗(s)x ds, for x ∈ H, (3.13)

where (S∗(t))t≥0 is the semigroup generated by A∗. Furthermore, the process u(·) is
adapted and mean square continuous, i.e.

sup
t∈[0,T ]

E(‖u(t)‖2H) <∞.

One can actually show a stronger result, namely that u(·) is P-almost surely
continuous.

Proposition 3.32 (cf. [DPZ92, Thm 5.11]). In the setting described above, u has
almost surely continuous sample-paths in H and for p > 0

E

(
sup
t∈[0,1]

‖u(t)‖pH

)
<∞. (3.14)

In case A generates an analytic semigroup stronger regularity results can be
proved. In particular, sample paths are Hölder continuous, as stated in the following
proposition.

Proposition 3.33 (see [DPZ92, Theorem 5.15]). Assume that, in the setting above,
the semigroup (S(t))t≥0 is analytic and let α ∈ (0, 1/2). Then for arbitrary δ ∈ (0, α)
the sample paths of u are in Cδ([0, T ];H).
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Moreover, we will need the following result later on in Chapter 5, cf. [DPZ92,
Theorem 5.25].

Proposition 3.34. Consider equation (3.11) with H = L2(D), where D is bounded.
Assume that the spectrum of A lies entirely in the open left half plane and that
A generates an analytic semigroup (S(t))t≥0 = (exp(tA))t≥0 on Lp(D), for any
p ≥ 1, and that D((−A)γ) can be identified with the Sobolev space W 2γ,p(D), for
any γ > 0. Furthermore, let the eigenfunctions {ek}∞k=1 of A form a complete
orthonormal system of H with |ek(x)|2 < κ for some κ > 0 and for all k and x ∈ D.
Let B ∈ L(K,H) and assume that the operator Qt defined in (3.13) is of trace class.
Set Q = BB∗. Furthermore, let K = H and assume that there exist sequences
{λk}∞k=1 and {δk}∞k=1 such that

Aek = −λkek, and Qek = δkek, k ∈ N.

Finally, we assume that there exists α ∈
(
0, 1

2

)
such that

∞∑
k=1

δkλ
2α+1
k <∞. (3.15)

Then

E

(
sup
t∈[0,1]

‖u(t)‖pp

)
<∞.

Proof. For completeness we give the proof here. Note that using the well-known
factorization formula (see [DPZ92, Theorem 5.10]), we have for (t, x) ∈ [0, T ] ×D
and α ∈ (0, 1/2)

u(t) =
sin(πα)

π

∫ t

0
exp ((t− τ)A) (t− τ)α−1y(τ) dτ,

with

y(τ, x) =

∫ τ

0
exp ((τ − s)A) (τ − s)−αB dW (s, x)

=

∞∑
k=1

∫ τ

0
exp ((τ − s)A) (τ − s)−αBek(x)dβk(s)

=
∞∑
k=1

∫ τ

0
exp (−(τ − s)λk) (τ − s)−α

√
δkek(x)dβk(s),

where we have used the formal representation W (s, x) =
∑∞

k=1 βk(s)ek(x) of the
cylindrical Wiener process, with {βk}∞k=1 being a sequence of mutually independent
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real-valued Brownian motions. y(τ, x) is a real-valued Gaussian random variable
with mean zero and variance

E
[
|y(τ, x)|2

]
= E

[ ∞∑
k=1

(∫ τ

0
exp (−(τ − s)λk) (τ − s)−α

√
δk dβk(s)

)2

|ek(x)|2
]

=

∞∑
k=1

δk|ek(x)|2E

[(∫ τ

0
exp (−(τ − s)λk) (τ − s)−α dβk(s)

)2
]

=

∞∑
k=1

δk|ek(x)|2
∫ τ

0
exp (−2sλk) s

−2α ds,

where we have used Parseval’s identity and the Itô isometry. Our assumption on
the boundedness of the eigenfunctions {ek}∞k=1 yields together with (3.15) that

E
[
|y(τ, x)|2

]
<
∞∑
k=1

δkκ
2

∫ ∞
0

exp (−2sλk) s
−2α ds

= κ222α−1Γ(1− 2α)
∞∑
k=1

δkλ
2α−1
k <∞.

Hence, E
[
|y(τ, x)|2m

]
≤ Cm for Cm > 0 and every m ≥ 1 (note that all odd

moments of a Gaussian random variable are zero). Thus we have

E
[∫ T

0

∫
D
|y(τ, x)|2mdxdτ

]
≤ TCm|D|,

i.e., in particular for all p ≥ 1 we have y ∈ Lp([0, T ] × D) P-a.s.. Now, since A
generates an analytic semigroup and its spectrum lies entirely in the open left half
plane and by the assumed identification of the interpolation spaces with Sobolev
spaces, we can conclude using Lemma C.21 that

‖ exp(tA)x‖W γ,p ≤ Ct−γ/2e−δt‖x‖p ≤ Ct−γ/2‖x‖p, for x ∈ Lp(D).

Choosing γ = α we observe

‖u(t)‖W γ,p(D)

≤ sin(πα)

π

∫ t

0
(t− τ)α−1‖ exp ((t− τ)A) y(τ, ·)‖W γ,p(D) dτ

≤ C sin(πα)

π

∫ t

0
(t− τ)α−1(t− τ)−α/2‖y(τ, ·)‖p dτ

≤ C sup
τ∈[0,t]

‖y(τ, ·)‖p
∫ t

0
(t− τ)α/2−1 dτ,
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and thus

E

(
sup
t∈[0,1]

‖u(t)‖p

)

≤ C E

(
sup
t∈[0,1]

sup
τ∈[0,t]

‖y(τ, ·)‖p

)∫ 1

0
τα/2−1 dτ

= C E

(
sup
τ∈[0,1]

‖y(τ, ·)‖p

)
.

Now, the right hand side is finite as all moments of y(τ, x) are bounded uniformly
in x, τ , see above. Due to embedding of Lebesgue spaces on a bounded domain we
have that

E

(
sup
t∈[0,1]

‖u(t)‖p

)
<∞ implies E

(
sup
t∈[0,1]

‖u(t)‖pp

)
<∞.

Remark 3.35. Alternatively, one can analyse the regularity of the stochastic convo-
lution (3.12) using the integration by parts formula as stated above.

3.3 Galerkin approximation of SPDEs

We refer to [LPS14] for a comprehensive presentation of numerical methods for
solving SPDEs. Here, we only recall the spectral Galerkin approximation, as this
will play a role later on.

Let us consider the special case of a semi-linear evolution equation on a Hilbert
space H with additive noise of the form

du(t) = [Au(t) + F (u(t))] dt+ σ dW (t), t ∈ [0, T ],

u(0) = u0,
(3.16)

where σ > 0 and

(i) A : D(A) ⊂ H → H has a complete orthonormal set of eigenfunctions (φj)j∈N
and corresponding eigenvalues λj > 0, where λj+1 ≥ λj ,

(ii) W is a H-valued Q-Wiener process, where the eigenfunctions of the covariance
operator are given by (φj)j∈N,

(iii) F : H → H is Lipschitz continuous,

(iv) u0 ∈ H.
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For the spectral Galerkin approximation of a SPDE we define a finite-dimensional
subspace Vm := span{φ1, ..., φm} that is spanned by the first m eigenfunctions of A.
Furthermore, we define the orthogonal projection Pm : H → Vm. In particular, for
u ∈ H [LPS14, Lemma 1.41]

Pmu =

m∑
j=1

ûjφj , ûj := 〈u, φj〉,

and
‖Pmu‖H ≤ ‖u‖H , ‖u− Pmu‖H → 0, as m→∞.

Then, we seek the so-called Galerkin approximation um(t) ∈ Vm that satisfies the
equation

dum(t) = [Amum(t) + PmF (um)] dt+ σPm dW (t), (3.17)

with Am := PmA and with initial data u0
m := Pmu0.

Now, (3.17) is an SDE on a finite-dimensional space and one can apply for
example the Euler-Maruyama method with a stepsize ∆t to find an approximation
um,n of um(tn) with tn := n∆t. That is starting with u0

m we consider the iteration

um,n+1 = um,n −∆tAmum,n+1 + ∆tPmF (um,n) + σPm∆Wn,

with ∆Wn :=
∫ tn+1

tn
dW (s).

Remark 3.36. In more general settings with multiplicative noise and where the eigen-
functions of Q and A do not coincide the approximation becomes more involved,
see [LPS14, Section 10.6].



Chapter 4

Random dynamics

4.1 Random dynamical systems

In this section we describe the theory of random dynamical systems; for a compre-
hensive reference book on this topic we refer to [Arn13].

4.1.1 Metric dynamical systems

We begin with the concept of a metric dynamical system, which serves as a gener-
alized model of noise and its time-evolution.

Definition 4.1 (Metric dynamical system (MDS)). Let (Ω,F ,P) be a probability
space and let θ = {θt : Ω → Ω}t∈R be a family of P-preserving transformations
(meaning that θtP = P for all t ∈ R), which satisfy for all t, s ∈ R that

(i) (t, ω) 7→ θtω is (B(R)⊗F ,F)-measurable,

(ii) θ0 = IdΩ,

(iii) θt+s = θtθs = θt ◦ θs (group property).

Then (Ω,F ,P, θ) is called a metric dynamical system (MDS).
A MDS is called ergodic if invariant sets F ∈ F , that is sets satisfying θtF = F

for all t ∈ R, have either full or zero measure, i.e. P(F ) ∈ {0, 1}.

Example 4.2 (MDS associated to a Q-Wiener process). Consider the follow-
ing canonical probability space (Ω,F ,P): For a separable Hilbert space H set
Ω := C0(R;H); i.e. the sample space consists of all continuous functions on R
with values in H that vanish at the origin. Furthermore, let F := B(Ω) be the Borel
σ-algebra induced by the compact-open topology on Ω. As probability measure P on
F , we choose the Wiener measure induced by the trace-class covariance operator on
H. Furthermore, let us introduce the Wiener shift on C0(R;H), defined by

θtω(·) := ω(·+ t)− ω(t). (4.1)

99
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For A ∈ F , s, t ∈ R we verify

θtP({ω : ω(s) ∈ A}) = P({ω : θtω(s) ∈ A})
= P({ω : ω(s+ t)− ω(t) ∈ A}) = P({ω : ω(s) ∈ A}),

i.e. θt is a P-preserving transformation. Furthermore,

θ0ω(s) = ω(s)− ω(0) = ω(s),

and

θt+sω(r) = ω(r + t+ s)− ω(t+ s) = θt(ω(r + s)− ω(s)) = θt(θsω(r)),

for t, s, r ∈ R. Thus the quadruple (Ω,F ,P, θ) defines a MDS. By using Kol-
mogorov’s 0-1 law one can show that the MDS is ergodic.

For an ergodic MDS the following form of Birkhoff’s ergodic theorem holds, see
for instance [Wal00] for a proof.

Theorem 4.3 (Birkhoff’s ergodic theorem). Let (Ω,F ,P, θ) be an ergodic MDS.
Let X : Ω → R be an integrable random variable. Then there exists a θ-invariant
set Ω′ ∈ F of full P-measure such that for every ω ∈ Ω′

lim
t→±∞

1

t

∫ t

0
X(θsω) ds = EX.

4.1.2 Temperedness

A key concept in the theory of random dynamical systems is that of temperedness,
which we are going to introduce now.

Definition 4.4 (Tempered random variable). Let (Ω,F ,P, θ) be a MDS. A random
variable X : Ω→ [0,∞) is called tempered (from above), if there exists a set of full
P-measure Ω′ such that for every ω ∈ Ω′ it holds

lim
t→±∞

log+X(θtω)

|t|
= 0, (4.2)

where log+(x) = max{0, log(x)} for x ≥ 0. A random variable X : Ω → (0,∞] is
called tempered from below if X−1 is tempered.

Remark 4.5.

(i) Property (4.2) is equivalent to

lim
t→±∞

e−c|t|X(θtω) = 0, for any c > 0. (4.3)
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(ii) If θ is ergodic, then the only alternative to (4.2) is

lim sup
t→±∞

log+X(θtω)

|t|
=∞,

i.e., the stationary random process X(θtω) either grows sub-exponentially or
blows up.

(iii) Note that for a tempered random variable the set Ω′ of full P-measure on
which (4.2) holds is θ invariant.

We will also make use of the following sufficient condition for the temperedness
of a positive random variable.

Proposition 4.6 (see [Arn13, Proposition 4.1.3]). Let (Ω,F ,P, θ) be a MDS and
let X : Ω→ [0,∞) be a random variable. If

E

(
sup
t∈[0,1]

X(θtω)

)
<∞,

then X is tempered.

Proof. For completeness we give the proof here. Let ε > 0 be arbitrary and define
for n ∈ N the event

En :=

{
sup

n≤t≤n+1

log+X(θtω)

t
> ε

}
.

Then, by using the P-invariance of the MDS, we compute

∞∑
n=1

P(En) ≤
∞∑
n=1

P
(

sup
n≤t≤n+1

log+X(θtω) > εn

)

=
∞∑
n=1

θ−nP
(

sup
n≤t≤n+1

log+X(θtω) > εn

)

≤
∞∑
n=1

P
(

1

ε
sup

0≤t≤1
log+X(θtω) > n

)
≤
∫ ∞

0
P
(

1

ε
sup

0≤t≤1
log+X(θtω) > x

)
dx

≤ 1

ε
E
(

sup
0≤t≤1

log+X(θtω)

)
≤ 1

ε
E
(

sup
0≤t≤1

X(θtω)

)
<∞.

Hence, by Borel Cantelli for all ε > 0

P
(

log+X(θtω)

t
> ε i.o.

)
= 0

and thus the statement for t → ∞ follows. A similar argument holds for t → −∞.
This concludes the proof.
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We also note that products and sums of tempered random variables are tempered
random variables as well. More precisely, it holds

Lemma 4.7 (see [Arn13, 4.1.2 Lemma]). Let (Ω,F ,P, θ) be a MDS. The set of
tempered random variables X : Ω→ [0,∞) is a commutative ring with unit element.

We will use the Hausdorff semi-distance to measure the distance between two
sets.

Definition 4.8 (Hausdorff semi-distance). Let (X, d) be a metric space, then the
Hausdorff semi-distance between two non-empty subsets A,B ∈ 2X is given by

dist(A,B) := sup
v∈A

inf
ṽ∈B

d(v, ṽ)

and the distance between v ∈ X and B ∈ 2X is given by dist(v,B) := dist({v},B).

Let V be a separable Banach space with norm ‖ · ‖.

Definition 4.9 (Random set). Let (Ω,F ,P) be a probability space. A set-valued
map K : Ω→ 2V is called a random set on V if for all v ∈ V the map

ω 7→ dist(v,K(ω))

is measurable. A random set K is called closed or compact if for every ω ∈ Ω the
set K(ω) is closed or compact.

Definition 4.10 (Tempered set). Let (Ω,F ,P, θ) be a MDS. A bounded random
set A is called tempered with respect to θ provided that for all ω ∈ Ω

lim
t→∞

exp (−βt) sup
a∈A(θ−tω)

‖a‖ = 0 for all β > 0.

Remark 4.11. Let A be a random set and let ρ : Ω→ (0,∞) be a tempered random
variable. If for all ω ∈ Ω

A(ω) ⊂ B(0, ρ(ω)),

then A is a tempered set.

4.1.3 Random dynamical systems

Definition 4.12 (Random dynamical system (RDS)). A random dynamical system
(RDS) on a separable Banach space V over a metric dynamical system (Ω,F ,P, θ)
is a map

ϕ : R+ × Ω× V → V ; (t, ω, v) 7→ ϕ(t, ω, v),

which is (B(R+) ⊗ F ⊗ B(V ),B(V ))-measurable, such that ϕ(0, ω) = IdV for all
ω ∈ Ω and

ϕ(t+ s, ω, v) = ϕ(t, θsω, ϕ(s, ω, v)),
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for all s, t ∈ R+, v ∈ V and ω ∈ Ω. This last condition is called cocycle property,
see Figure 4.1.

We say that ϕ is a continuous or differentiable RDS if v 7→ ϕ(t, ω, v) is continuous
or differentiable for all t ∈ R+ and every ω ∈ Ω.

ϕ(s, ω, ·)
ϕ(t, θsω, ·)

ϕ(t+ s, ω, ·)

ϕ(s, ω, v)

ω
θsω θs+tω

Ω

v
ϕ(t, θsω, ϕ(s, ω, v))
= ϕ(t+ s, ω, v)

{ω} × V {θsω} × V {θs+tω} × V

Figure 4.1: Illustration of the cocycle property, adapted from [Arn13, Fig. 1.2.].

Remark 4.13.

(i) The framework of random dynamical systems can be regarded as a general-
ization of the concept of non-autonomous deterministic dynamical systems,
see [CH17] for further insight.

(ii) Definition 4.12 justifies the notion of the metric dynamical system as the
driving force for the temporal evolution of the noise.

(iii) Finite-dimensional stochastic differential equations generate random dynami-
cal system (see [Arn13, Chapter 1] and [Kun97, Section 4.5]). However, this
does not hold in full generality for SPDEs since Kolmogorov’s continuity the-
orem fails for random fields that are parametrized by an infinite-dimensional
Hilbert space [MZZ06]. Nevertheless, in the special cases of linear multiplica-
tive or additive noise it is possible to transform SPDEs into PDEs with random
coefficients, which can be solved for every ω. More details on this approach
can be found in 4.3 and 4.5.

(iv) Apart from the classical approach to generate a RDS from a SPDE via a trans-
formation into a PDE with random coefficients as mentioned in (iii), there is
also a possibility to use the concept of pathwise mild solutions as explored
in [KNS20]. This allows to use the random dynamical systems approach for
certain SPDEs that can not be handled via a Doss-Sussmann type transfor-
mation, e.g. because the differential operator depends on time and random
coefficient ω.
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A related notion is that of stochastic flows.

Definition 4.14 (Stochastic flow). Let (Ω,F ,P, θ) be a metric dynamical system
and let V be a Banach space. A family of mappings

S(t, τ, ω) : V → V for t ≥ τ ∈ R, ω ∈ Ω,

is called a stochastic flow if the following conditions are fulfilled

(i) S(t, s, ω)S(s, τ, ω) = S(t, τ, ω) for all τ ≤ s ≤ t and ω ∈ Ω,

(ii) S(t, τ, ω) = S(t− τ, 0, θτω) for all τ ≤ t and ω ∈ Ω,

(iii) The map (t, τ, ω, v) 7→ S(t, τ, ω)v is (B(R) ⊗ B(R) ⊗ F ⊗ B(V ),B(V ))-
measurable.

If the map v 7→ S(t, τ, v) is continuous for all τ ≤ t and ω ∈ Ω, then S is called a
continuous stochastic flow.

4.2 Random attractors

One of the main concepts to analyse the long-term behaviour of a random dynamical
system is that of random attractors. A random attractor is defined as a compact
invariant subset of the phase space with a certain pullback attraction property.
This pullback approach is comparable to the concept of an attractor for a non-
autonomous deterministic dynamical system, see Remark 4.13. We will present the
precise mathematical formalism of random attractors in the following.

Random attractors have been introduced and intesively studied by Crauel and
Flandoli [CF94], Debussche [Deb97, CDF97] and Schmalfuss [Sch92], amongst oth-
ers.

Within this section we assume that ϕ is a random dynamical system on a sepa-
rable Banach space (V, ‖ · ‖) over a metric dynamical system (Ω,F ,P, θ).

Definition 4.15 (Attracting and absorbing set). Let A and B be random sets.

(i) B is said to pullback attract A for the RDS ϕ, if for every ω ∈ Ω

dist(ϕ(t, θ−tω,A(θ−tω)),B(ω))→ 0 for t→∞.

(ii) B is said to absorb A for the RDS ϕ, if for every ω ∈ Ω there exists a (random)
absorption time tA(ω) such that for all t ≥ tA(ω)

ϕ(t, θ−tω,A(θ−tω)) ⊂ B(ω).

(iii) Let D be a collection of random sets, which is closed with respect to set
inclusion. A set B ∈ D is called D-absorbing/D-pullback attracting for the
RDS ϕ, if B absorbs/pullback attracts every random set in D.
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Remark 4.16. Let A be a random set. If for every v ∈ A(θ−tω) and every ω ∈ Ω it
holds

lim sup
t→∞

‖ϕ(t, θ−tω, v)‖ ≤ ρ(ω), (4.4)

where ρ > 0 is a tempered random variable, then for any δ > 0 the random set B
defined via

B(ω) := B(0, ρ(ω) + δ), for ω ∈ Ω,

is a tempered absorbing set for A. This is a convenient criterion to derive the
existence of an absorbing set via a-priori estimates of the random dynamical system.

An attractor will be defined relative to a universe of sets that get attracted, the
so-called basin of attraction. We choose the set of all tempered random subsets of
V , denoted as T , as the universe under consideration.

Definition 4.17 (Random pullback attractor). A random set A ∈ T is called a
T -random pullback attractor for the RDS ϕ if it possesses the following properties

(i) A(ω) is compact for every ω ∈ Ω,

(ii) A is pullback invariant, i.e., ϕ(t, ω,A(ω)) = A(θtω) for all t ≥ 0,

(iii) A is T -pullback attracting.

B(θ−t2ω) B(θ−t1ω) B(ω)

ϕ(t2, θ−t2ω,B(θ−t2ω))

ϕ(t1, θ−t1ω,B(θ−t1ω))

θ−t2ω
θ−t1ω ω

Ω

A(θ−t2ω)
A(ω)

= ϕ(t2, θ−t2ω,A(θ−t2ω))

{θ−t2ω} × V
{θ−t1ω} × V {ω} × V

Figure 4.2: Illustration of the pullback invariance of the random attractor A and
the pullback attraction of a set B by the attractor, adapted from [CH17, Fig. 4.1].

Both, the invariance and the attraction property, are defined in the pullback
sense, i.e. states are moved from −t to 0 while t → ∞; see Figure 4.2 for an
illustration. It is this pullback convergence that allows to analyse fixed fibres of the
omega-limit sets, see the definition below.
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Definition 4.18 (Omega-limit set). For a random set K we define the omega-limit
set as

ΩK(ω) :=
⋂
T≥0

⋃
t≥T

ϕ(t, θ−tω,K(θ−tω)).

Note that ΩK(ω) is closed by definition.

A very useful criterion for the existence of a random pullback attractor is given
by the following theorem, a proof of which can be found in [FS96, Theorem 3.5].
The result is a generalisation of [AS96,CF94,Sch92].

Theorem 4.19. Let ϕ be a continuous RDS over (Ω,F ,P, θ) and assume that there
exists a compact random set B ∈ T that absorbs every set D ∈ T , i.e. B is T -
absorbing. Then there exists a unique T -random attractor A, which is defined by

A(ω) = ΩB(ω), for each ω ∈ Ω.

Remark 4.20. Note that if a RDS associated to a SPDE exhibits a random attractor,
then there exists an invariant measure (see [CF94, Section 4]).

Remark 4.21. For many deterministic dynamical systems one can show that the
dimension of the associated attractor is finite. In particular, this means that only
a finite number of degrees of freedom is relevant for the long-term behaviour of the
system. In [Deb98,Deb97] a method, based on global Lyapunov exponents, to deduce
bounds on the dimensions of random attractors has been developed. However, so far
only for few random systems it was possible to establish the finiteness of a random
attractor [CLR01]. For lower bounds on the dimension of the attractor, one may also
try to find invariant manifolds that lie within the attractor and whose dimension
can be bounded.

4.3 Conjugacy

We introduce the notion of conjugated random dynamical systems. Again let (V, ‖·‖)
denote a separable Banach space.

Proposition 4.22 (see [CKS04, Lemma 2.2]). Let ϕ1 be a continuous RDS on V
over a metric dynamical system (Ω,F ,P, θ) and let T : Ω × V → V be a mapping
with the following properties:

(i) For fixed ω ∈ Ω the mapping v 7→ T (ω, v) is a homeomorphism on V .

(ii) For fixed v ∈ V the mappings ω 7→ T (ω, v) and ω 7→ T−1(ω, v) are measurable.

Then the mapping

(t, ω, v) 7→ ϕ2(t, ω, v) := T (θtω, ϕ1(t, ω, T−1(ω, v)))

defines a RDS, which is called conjugate to the RDS ϕ1.
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There is a simple connection between random attractors of two conjugate RDS.

Theorem 4.23 (see [IS01, Theorem 2.1]). Let ϕ1 be a continuous RDS on V over the
MDS (Ω,F ,P, θ) and let ϕ2 be a RDS conjugated to ϕ1 via the mapping T . Let A1 be
a random attractor for the RDS ϕ1. Furthermore, assume that {T (D)|D ∈ T } ⊂ T ,
where T is the set of tempered subsets (i.e. T−1 preserves temperedness). Then
A2(ω) := T (ω,A1(ω)) is a random attractor for ϕ2.

Remark 4.24. A widely used strategy to show the existence of random attractors
for stochastic partial differential equations is to find a suitable mapping that trans-
forms the equation into a partial differential equation with random coefficients. If
this PDE generates a random dynamical system ϕ1 and if the mapping fulfils the
conditions in Proposition 4.22, then the stochastic equation also generates a ran-
dom dynamical system ϕ2. In particular, it is sufficient to derive the existence of
a random attractor for ϕ1 as this implies the existence of a random attractor for
the stochastic equation. These kinds of transformations are often based on suitable
Ornstein-Uhlenbeck processes, which we are going to characterise further in the next
section, see also Subsection 3.2.3. Details about the transformations can be found
in Subsection 4.5.

4.4 Ornstein-Uhlenbeck processes

Recall that we have defined Ornstein-Uhlenbeck processes in a general setting in
Subsection 3.2.3. Here we will look at two special cases, namely real-valued Ornstein-
Uhlenbeck processes and Hilbert space valued Ornstein-Uhlenbeck processes associ-
ated to Q-Wiener processes, and show additional properties that are useful in the
the theory of random dynamical systems.

4.4.1 Real-valued Ornstein-Uhlenbeck processes

We consider the ergodic MDS (Ω,F ,P, θ) associated to the two-sided real-valued
Brownian motion (B(t))t∈R, see Example 4.2. The elements of Ω are identified with
the paths of the Brownian motion, i.e. W (t, ω) = ω(t) for ω ∈ Ω.

Let us consider the following equation

dz = −z dt+ dω. (4.5)

The stationary solution to this equation is given by an Ornstein-Uhlenbeck process
as detailed in the following.

Proposition 4.25 (cf. [CKS04, Lemma 4.1]). There exists a θ-invariant subset
Ω ∈ F of Ω of full P-measure such that for every ω ∈ Ω

lim
t→±∞

|ω(t)|
|t|

= 0
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and the random variable given by

z(ω) := −
∫ 0

−∞
exp(τ)ω(τ)dτ,

is well-defined. Furthermore, for ω ∈ Ω the mapping

(t, ω) 7→ z(θtω) = −
∫ 0

−∞
exp(τ)θtω(τ)dτ,

is a stationary solution of (4.5) with continuous trajectories.

For ω ∈ Ω we have the following identities

(i) limt→±∞
|z(θtω)|
|t| = 0,

(ii) limt→±∞
1
t

∫ t
0 z(θτω)dτ = 0,

(iii) limt→±∞
1
t

∫ t
0 |z(θτω)|dτ = E|z| <∞.

Proof. For completeness we give the proof here. By the law of the iterated logarithm
there exists a set of full measure Ω̃ ⊂ F such that for any ω ∈ Ω̃

lim sup
t→±∞

|B(t, ω)|√
2|t| log log |t|

= 1.

Thus, for every ω ∈ Ω̃

0 ≤ lim
t→±∞

|ω(t)|
|t|

≤ lim sup
t→±∞

|ω(t)|√
2|t| log log |t|

√
2 log log |t|√
|t|

,

and the first statement follows. Furthermore, the sub-linear growth of ω ∈ Ω̃ guar-
antees that the integral

z(ω) := −
∫ 0

−∞
exp(τ)ω(τ)dτ, (4.6)

is well-defined for all ω ∈ Ω̃. A solution to

dz = −z dt+ dB(t)

is given by the stochastic convolution

(ω, t) 7→
∫ t

−∞
exp(−(t− τ))dB(τ, ω). (4.7)
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Using integration by parts we obtain for s ≤ t∫ t

s
exp(−(t− τ))dB(τ, ω)

= exp(0)B(t, ω)− exp(−(t− s))B(s, ω)−
∫ t

s
exp(−(t− τ))B(τ, ω)dτ

= ω(t)− exp(s− t)ω(s)−
∫ 0

s−t
exp(τ)B(τ + t, ω)dτ

= ω(t)

∫ 0

s−t
exp(τ)dτ + exp(s− t)(ω(t)− ω(s))−

∫ 0

s−t
exp(τ)B(τ + t, ω)dτ

= exp(s− t)(ω(t)− ω(s))−
∫ 0

s−t
exp(τ)θtω(τ)dτ.

Letting s→ −∞ the right hand side tends to z(θtω) for those ω satisfying the above
growth condition, while the left hand side tends to (4.7). Hence z(θtω) is a version
of the solution (4.7). The stationarity of this solutions follows by the invariance of
the Wiener measure P with respect to θ.

To prove continuity of the trajectories t 7→ F (t) := −
∫ 0
−∞ exp(τ)ω(t+τ)dτ+ω(t),

we only need to show that the integral term is continuous as ω(t) is continuous
by definition. Define f(τ, t) := exp(τ)ω(τ + t), then t 7→ f(τ, t) is continuous
for every τ ∈ R. Let t0 ∈ R and (tn)n∈N be a sequence with limn→∞ tn = t0.
Define fn(τ) := f(τ, tn), then limn→∞ fn(τ) = f(τ, t0) because of continuity. Let
g(τ) := exp(τ) supξ∈[t0−1,t0+1] |ω(τ+ξ)|, then g(τ) is integrable and for n sufficiently
large |fn(τ)| ≤ g(τ) for τ ∈ (−∞, 0]. By Lebesgue’s dominated convergence theorem
we therefore have

lim
n→∞

F (tn) = F (t0),

i.e. the trajectories are continuous.
Finally, we will prove the three identities given at the end of the proposition.

(i) By the law of the iterated logarithm for ω ∈ Ω̃ and 1/2 < δ < 1 there exists a
constant Cδ,ω > 0 such that

|ω(τ + t)| ≤ Cδ,ω + |τ + t|δ ≤ Cδ,ω + |τ |δ + |t|δ, τ < 0.

Thus,

lim
t→±∞

|z(θtω)|
|t|

= lim
t→±∞

1

|t|

∣∣∣∣−∫ 0

−∞
exp(τ)ω(t+ τ)dτ + ω(t)

∣∣∣∣
≤ lim

t→±∞

1

|t|

∫ 0

−∞
exp(τ)|ω(τ + t)|dτ + lim

t→±∞

|ω(t)|
|t|

≤ lim
t→±∞

∫ 0

−∞
exp(τ)

Cδ,ω + |τ |δ + |t|δ

|t|
dτ + 0 = 0.
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(ii) From (4.6) it follows Ez = 0. Furthermore, the expectation of the absolute
value of a Gaussian random variable is finite, i.e. E|z| < ∞. By Birkhoff’s
ergodic theorem (see Theorem 4.3) there exist a θ invariant set Ω′ ∈ F of full
P-measure such that for ω ∈ Ω′

lim
t→±∞

1

t

∫ t

0
z(θτω)dτ = Ez = 0.

(iii) Again by the Birkhoff’s ergodic theorem there exists a θ invariant set Ω◦ ∈ F
of full P measure such that for every ω ∈ Ω◦ the stated identity holds.

Finally we set Ω := Ω̃ ∩ Ω′ ∩ Ω◦. Then for every ω ∈ Ω the above statements hold,
P(Ω) = 1 and Ω is θ invariant. This completes the proof.

Remark 4.26. We now consider the restriction of the Wiener shift onto Ω, denoted
as θ. Likewise, we restrict

F := {Ω ∩ F, F ∈ F}

and P is the restriction of the Wiener measure to this σ-algebra. Then (Ω,F ,P, θ)
defines again a metric dynamical system. For further analysis we will always consider
this MDS, however, for convenience, we will denote it again as (Ω,F ,P, θ).

4.4.2 Ornstein-Uhlenbeck processes in Hilbert spaces

We now consider the metric dynamical system (Ω,F ,P, θ) associated to a two-sided
Q-Wiener process (W (t))t∈R with trace class covariance operator Q on a separable
Hilbert space (H, ‖ · ‖), see Example 4.2. Again, we identify W (t, ω) = ω(t) for
ω ∈ Ω and we consider the equation

dz = −µz dt+ dω, (4.8)

with µ > 0. The following generalization to Proposition 4.25 holds

Proposition 4.27 (cf. [KS99, Lemma 2.5]). There exists a θ-invariant set Ω ∈ F
of full P-measure such that for ω ∈ Ω the mapping

(t, ω) 7→ z(θtω) = −µ
∫ 0

−∞
exp(µτ)θtω(τ) dτ,

is a stationary solution of (4.8) with continuous trajectories in H. Furthermore,
for ω ∈ Ω

(i) limt→±∞
‖z(θtω)‖
|t| = 0,

(ii) For any k > 0

lim
t→±∞

1

t

∫ t

0
‖z(θτω)‖k dτ = E‖z‖k.
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Proof. For completeness we give the proof here. The first statement follows by
a similar calculation as in the beginning of the proof of Proposition 4.25. The
continuity of the trajectories was proved in Proposition 3.32.

Furthermore, by applying Itô’s formula (see Theorem 3.19) with the functional
F (u) = 1

2‖u‖
2 we obtain

‖z(θtω)‖2 = ‖z(ω)‖2 + 2

∫ t

0
〈z(θsω), dW (s)〉H ds− 2µ

∫ t

0
‖z(θsω)‖2 ds+ t TrQ.

Taking expectations and noting that E‖z(θtω)‖2 = E‖z(ω)‖2 by the stationarity of
z it follows

2µ

∫ t

0
E‖z(ω)‖2 ds = t TrQ

and thus E‖z(ω)‖2 = TrQ
2µ <∞.

(i) By Doob’s inequality we have

E sup
t∈[0,1]

‖z(θtω)‖2 ≤ CE‖z(θ1ω)‖2 = CE‖z‖2 <∞

and with a similar argument as in the proof of Proposition 4.6 the statement
follows.

(ii) As mentioned above it holds E‖z‖2 = TrQ
2µ , and since z is Gaussian similar

estimates hold for any k > 0. The statement thus follows by Birkhoff’s ergodic
theorem (Theorem 4.3).

4.5 Doss-Sussmann transformations

As mentioned above for certain SPDEs it is possible to transform them into random
PDEs, via a so-called Doss-Sussmann-type transformation, [Dos77,Sus78]. However,
this kind of transformation is only possible for SPDEs with additive or linear mul-
tiplicative noise. In the following we will give examples for the transformation in
both cases.

4.5.1 Additive noise

We consider the equation

du = [Au+ f(u)]dt+ dW,

where W denotes a Q-Wiener process on a Hilbert space H and A generates an
analytic semigroup on H. Let (Ω,F ,P, θ) be the associated metric dynamical system
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and let us identify W (t, ω) = ω(t) for ω ∈ Ω. The unique stationary solution of the
linear equation

dz = Az dt+ dω,

is given by the Ornstein-Uhlenbeck process

z(θtω) =

∫ t

−∞
e(t−s)Adω.

The following Doss-Sussmann-type transformation

v(t) = u(t)− z(θtω),

yields a non-autonomous random PDE for each ω ∈ Ω, namely

dv

dt
= Av + f(v + z(θtω)).

Applications of Doss-Sussmann-type transformations in the case with additive noise
can be found (amongst others) in [GLR11, You17, PY19, BH10, BLW09]. We also
refer to Section 5.2.4.

4.5.2 Linear multiplicative noise

We consider the following Stratonovich SPDE with multiplicative noise

du = [Au+ f(u)]dt+ u ◦ dB,

where B is a real-valued Brownian motion. Again, let (Ω,F ,P, θ) be the associated
MDS and let z(θtω) denote the one-dimensional Ornstein-Uhlenbeck process solving
(4.5). Then

v(t) = exp(−z(θtω))u(t),

satisfies the following random PDE for each ω ∈ Ω

dv

dt
= Av + z(θtω)v + exp(−z(θtω))f(exp(z(θtω))v).

Applications in the linear multiplicative setting can, for instance, be found in [TY16,
CGALdlC17,CL08,Pha20,CLR00,WZ11] and we also refer to Section 5.3.



Chapter 5

Random attractors for
stochastic partly dissipative
systems

We prove the existence of global random attractors for a class of so-called stochastic
partly dissipative systems. These systems consist of two reaction-diffusion equations,
where the diffusion constant vanishes in one of them. Both equations are linearly
coupled and perturbed by (additive or multiplicative) noise. The result for additive
noise (Section 5.2) was published in [KNP20] (joint work with Christian Kuehn
and Alexandra Neamţu). Similarly, we prove the existence of a random attractor
for the stochastic Field-Noyes system, a reaction-diffusion system with a non-linear
coupling between different components. This chapter is based on joint works with
Christian Kuehn and Alexandra Neamţu.

5.1 Introduction

Coupled deterministic reaction-diffusion systems appear in many models for the
dynamical behaviour of biological, chemical and physical systems, see [Mur07] for
an overview. They allow for many interesting spatio-temporal phenomena such as
pattern formation [Tur90] and oscillatory behaviour, see also [Kin13].

Having a diffusive behaviour in only one component, leads to so-called partly
dissipative systems of the form

∂u1
∂t = d∆u1 + f(x, u1, u2),
∂u2
∂t = g(x, u1, u2),

(5.1)

where f and g are suitable functions, the so-called reaction terms, and d > 0 is a dif-
fusion constant. Famous examples of such systems are the Hodgkin-Huxley [HH52]

113
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and FitzHugh-Nagumo systems [Fit61, NAY62], which model the signal transmis-
sion across axons in neuroscience [ET10]. Other examples in the biological con-
text concern the modelling of interactions between cellular or intracellular pro-
cesses and diffusion growth factors, for instance in the field of carcinogenesis,
see [MCK08,MCK06].

The mathematical analysis of reaction-diffusion systems often concerns the ex-
istence of solutions, bifurcations, properties of solutions (e.g. positivity) and their
long-term behaviour. Due to their importance in the applied sciences a vast body of
literature on theses equations has been accumulated over the years, see for example
the monographs [Smo94,Vol14,GR11]. The analysis of partly dissipative systems of
the form (5.1) can in parts be more complicated as the semigroup associated to the
problem is no longer compact. In [Mar89] such systems have been analysed on a
bounded domain and, under certain polynomial growth assumptions on the reaction
terms, the existence of a global attractor that captures the long-term behaviour of
solutions has been proved. Furthermore, bounds on the Hausdorff and fractal di-
mension of this attractor have been derived in the same work. In [RBW00] a similar
partly dissipative systems was analysed, however, on Rn. Again, the authors proved
the existence of a global attractor using that the solutions are uniformly small at
infinity for large times. In [Wan09a] a pullback attractor for a non-autonomous
version of the FitzHugh-Nagumo system on unbounded domain was derived.

In many situations a stochastic version of the reaction-diffusion system provides
a more realistic model of the underlying physical system [GOS12], see also [GSB11]
in the context of modelling electrically active cells and recall the Introduction. It is
thus of great interest to study random and stochastic reaction-diffusion models in a
mathematical rigorous way. The type of noise and the way in which it is integrated
into a system plays a central role and can lead to widely different effects.

In this chapter, we study a class of stochastic partial differential equations with
a partly dissipative structure, that is, systems of the form

du1 = (d∆u1 + f(x, u1, u2)) dt+B1(x, u1, u2) dW1,
du2 = g(x, u1, u2) dt+B2(x, u1, u2) dW2,

(5.2)

where W1,2 are Wiener processes, the f, g are given functions, B1,2 are operator-
valued, ∆ is the Laplace operator and d > 0 is the diffusion constant. The equation
is posed on a bounded open domain D ⊂ Rn, u1,2 = u1,2(t, x) are the unknowns for
(t, x) ∈ [0, Tmax) × D, and Tmax is the maximal existence time. The assumptions
on the reactions terms will be chosen similar to those imposed on the deterministic
system analysed in [Mar89], see Section 5.2 for the precise setting. Firstly, we will
consider an additive random perturbation by a Wiener process, that is, we choose

B1(x, u1, u2) = B1, B2(x, u1, u2) = B2,

where B1 and B2 are fixed bounded linear operators. Secondly, in Section 5.3 we will
consider the same system with a linear multiplicative perturbation by a real-valued
Brownian motion in the Stratonovich sense.
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In both cases, the goal will be to analyse the long-term behaviour of solutions
using the random dynamical systems approach as introduced in Chapter 4. To this
end, we will transform the stochastic equations into random equations that generate
a random dynamical system, for which we can show the existence of a random
attractor by deriving a compact absorbing set (cf. Theorem 4.19). More precisely,
certain regularity assumptions on the noise terms together with the assumptions on
the reaction terms allow us to compute a-priori bounds of the solution, which are
used to construct a bounded absorbing set. Due to the absence of the regularizing
effect of the Laplacian in the second component, a compact embedding result can
not be applied directly in order to obtain a compact absorbing set. For this reason
a more refined compactness argument based on a suitable splitting technique needs
to be derived, similar to the deterministic setting, see [Mar89,Tem12].

Let us now briefly summarise, without claiming completeness, previous results
on stochastic reaction-diffusion systems with a partly dissipative structure. The
analysis focused so far mainly on the specific stochastic FitzHugh-Nagumo system
and its variants. In [BM08] the authors proved the existence and uniqueness of
mild solutions for this system on the bounded domain (0, 1) where the additive
random perturbation is given by a Q-Wiener process in both components. Fur-
thermore, they showed the existence of an invariant ergodic measure associated to
the transition semigroup. In [SS16] a similar neuronal model was analysed, here,
a reaction-diffusion equation, additively perturbed by a cylindrical Wiener process,
is coupled to a system of ODEs, which itself is driven by multiplicative noise. The
authors prove existence and uniqueness of variational solutions under local Lipschitz
and monotonicity assumptions on the reaction terms. They also discuss a numerical
approximation scheme. In [HSZS18] deterministic PDEs are coupled to a SDE mod-
elling acid-mediated tumor invasion. The authors focus on global well-posedness of
the problem and simulations of solutions. Furthermore, we emphasize that other
dynamical aspects for similar systems have been investigated, e.g. inertial manifolds
and master-slave synchronization in [CS10].

Regarding the asymptotic behaviour of solutions in terms of random attractors,
to the best of our knowledge, only the FitzHugh-Nagumo system has been analysed
in detail. In [Wan09b] the existence of a random attractor for the FitzHugh-Nagumo
system perturbed by additive real-valued Wiener processes on unbounded domain
is proved. Furthermore, in [AW13b] respectively [AW13a] a non-autonomous ver-
sion of the stochastic FitzHugh-Nagumo system on unbounded domain is analysed,
and amongst others the existence of a random attractor is shown in case of ad-
ditive respectively multiplicative real-valued Wiener noise. The regularity of the
attractor is further studied in [LY16] for the additive setting and in [ZG17] for
the multiplicative setting. Furthermore, in [ZW16] the authors consider a similar
non-autonomous version of the FitzHugh-Nagumo system driven by multiplicative
real-valued Wiener-processes, however, here defined on a bounded domain, and they
show the existence of random attractors under slightly different assumptions. The
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setting with a non-autonomous FitzHugh-Nagumo system with real-valued multi-
plicative noise on unbounded thin domains was analysed in [SWLW19]. Finally, a
result with colored noise for the non-autonomous system on a bounded domain can
be found in [GW18].

In this chapter we will develop a more general theory of stochastic partly dissi-
pative systems, that is, we will allow for a whole class of reaction terms, similar to
that analysed by [Mar89] in the deterministic setting. Moreover, in the case with
additive noise we will extend the theory to infinite-dimensional noise.

However, this class of reaction terms only includes systems where the coupling
between different components is linear. Nevertheless, there are many reaction-
diffusion equations appearing in the natural sciences with a non-linear coupling,
for example the Field-Noyes system [NFK72, FKN72, FN74], which describes the
Belousov-Zhabotinskii reaction in chemical kinetics. Marion analysed in a second
part of her work in [Mar87] (fully dissipative) and [Mar89] (partly dissipative) deter-
ministic reaction-diffusion systems that exhibit an invariant region and she proved
the existence of a global attractor for such systems as well. As a first step towards
extending such a result to the stochastic setting we will consider in Section 5.5 the
fully dissipative stochastic Field-Noyes system and prove the existence of a random
attractor as well.

Let us summarise the structure of this chapter: In Section 5.2 we will analyse
partly dissipative systems with an additive random perturbation given by a Wiener
process. We will start by stating our precise assumptions (Subsection 5.2.1) and
by formulating the system as an abstract Cauchy problem (Subsection 5.2.2) for
which solutions exists locally in time (Subsection 5.2.3). Subsequently, in Subsection
5.2.4 we transform the stochastic problem into a random equation via an Ornstein-
Uhlenbeck process and formulate the associated random dynamical system. The
existence of a bounded absorbing set for this system will be derived in Subsection
5.2.5 and the compactness argument mentioned above can be found in Subsection
5.2.6. The next section, Section 5.3, contains the same analysis for the setting
with multiplicative Stratonovich noise. We will give two concrete examples arising
from applications that fall into the class of analysed systems in Section 5.4. In
the following Section 5.5 we analyse the fully dissipative stochastic Fields-Noyes
model, a system with non-linear coupling, in a similar fashion as in Section 5.2 and
5.3. Finally, in Section 5.6 we conclude this chapter with an outlook on further
interesting research questions that we plan to approach in the future.

5.2 Stochastic partly dissipative systems with additive
noise

Note that this section is based on [KNP20], joint work with Christian Kuehn and
Alexandra Neamţu; in particular, all the technical calculations are copied from there.
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Let D ⊂ Rn be a bounded open set with regular boundary, set H := L2(D)
and let U1, U2 be two separable Hilbert spaces. We consider the following coupled,
partly dissipative system with additive noise

du1 = (d∆u1 − h(x, u1)− f(x, u1, u2)) dt+B1 dW1,

du2 = (−σ(x)u2 − g(x, u1)) dt+B2 dW2,
(5.3)

where u1,2 = u1,2(t, x), (t, x) ∈ [0, T ] × D, T > 0, W1,2 are cylindrical Wiener
processes on U1 respectively U2, and ∆ is the Laplace operator. Furthermore, B1 ∈
L(U1, H), B2 ∈ L(U2, H) and d > 0 is a parameter controlling the strength of the
diffusion in the first component. The system is equipped with non-random initial
conditions

u1(0, x) = u0
1(x) ∈ L2(D), u2(0, x) = u0

2(x) ∈ L2(D),

and a Dirichlet boundary condition for the first component

u1(t, x) = 0 on [0, T ]× ∂D.

We will denote by A the realization of the Laplace operator with Dirichlet boundary
conditions, more precisely we define the operator A : D(A)→ L2(D) as Au = d∆u
with domain D(A) := H2(D) ∩H1

0 (D) ⊂ L2(D).

Remark 5.1. Note that A is a self-adjoint operator that possesses a complete or-
thonormal system of eigenfunctions {ek}k∈N of L2(D). Within this chapter we
assume that there exists κ > 0 such that |ek(x)|2 < κ for all k ∈ N and x ∈ D. This
holds for example when D = [0, π]n.

5.2.1 Assumptions

For the deterministic reaction terms appearing in (5.3) we impose the following
assumptions.

Assumptions 5.2. (Reaction terms)

(i) h ∈ C2(Rn × R) and there exist δ1, δ2, δ3 > 0, p > 2 such that

δ1|u1|p − δ3 ≤ h(x, u1)u1 ≤ δ2|u1|p + δ3. (5.4)

(ii) f ∈ C2(Rn × R× R) and there exist δ4 > 0 and 0 < p1 < p− 1 such that

|f(x, u1, u2)| ≤ δ4(1 + |u1|p1 + |u2|). (5.5)

(iii) σ ∈ C2(Rn) and there exist δ, δ̃ > 0 such that

δ ≤ σ(x) ≤ δ̃. (5.6)
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(iv) g ∈ C2(Rn × R) and there exists δ5 > 0 such that

|gu(x, u1)| ≤ δ5, |gxi(x, u1)| ≤ δ5(1 + |u1|), i = 1, . . . , n. (5.7)

In particular, Assumptions 5.2 (i) and (iv) imply that there exist δ7, δ8 > 0 such
that

|g(x, ξ)| ≤ δ7(1 + |ξ|), for all ξ ∈ R, x ∈ D, (5.8)

|h(x, ξ)| ≤ δ8(1 + |ξ|p−1), for all ξ ∈ R, x ∈ D. (5.9)

Remark 5.3. Assumptions 5.2 are identical to those given in [Mar89], except that
in the deterministic setting only a lower bound on σ was assumed.

We always consider an underlying filtered probability space denoted as
(Ω,F , (Ft)t≥0,P) that will be specified later on. In order to guarantee certain regu-
larity properties of the noise terms, we make the following additional assumptions.

Assumptions 5.4. (Noise)

(i) We assume that B2 : U2 → H is a Hilbert-Schmidt operator. In particular, this
implies that Q2 := B2B

∗
2 is a trace class operator and B2W2 is a Q2-Wiener

process.

(ii) We assume that B1 ∈ L(U1, H) and that the operator Qt defined by

Qtu =

∫ t

0
exp (sA)Q1 exp (sA∗)u ds, u ∈ H, t ≥ 0,

where Q1 := B1B
∗
1 , is of trace class. Hence, B1W1 is a Q1-Wiener process as

well.

(iii) Let U1 = H. There exists an orthonormal basis {ek}∞k=1 of H and sequences
{λk}∞k=1 and {δk}∞k=1 such that

Aek = −λkek, Q1ek = δkek, k ∈ N.

Furthermore, we assume that there exists α ∈
(
0, 1

2

)
such that

∞∑
k=1

δkλ
2α+1
k <∞.

Remark 5.5. Assumptions 5.4 guarantee that the stochastic convolution is a well-
defined process with sufficient regularity properties, see Lemma 5.10. As an example,
one could choose B1 = (−A)−γ/2 with γ > n

2 − 1 to ensure that Assumptions 5.4
(ii)-(iii) hold for α with 2α < γ − n

2 + 1, see [DP12, Chapter 4].
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5.2.2 The Cauchy problem

We will formulate problem (5.3) as an abstract Cauchy problem. Let us define the
following product space

H := L2(D)× L2(D);

with the norm ‖(u1, u2)>‖2H = ‖u1‖22 +‖u2‖22 this becomes a separable Hilbert space.
Let 〈·, ·〉H denote the corresponding scalar product. Furthermore, we set

V := H1
0 (D)× L2(D),

with the norm ‖(u1, u2)>‖2V = ‖u1‖2H1(D) + ‖u2‖22. We define the following linear
operator

A :=

(
A 0
0 −σ(x)

)
,

where A : D(A) ⊂ H → H with D(A) = D(A) × L2(D). Since all the reaction
terms are twice continuously differentiable they obey in particular the Carathéodory
conditions [Zei89]. Thus, the corresponding Nemytskii operator is defined by

F((u1, u2)>)(x) :=

(
F1((u1, u2)>)(x)
F2((u1, u2)>)(x)

)
,

:=

(
−h(x, u1(x))− f(x, u1(x), u2(x))

−g(x, u1(x))

)
,

where F : D(F) ⊂ H→ H and D(F) := H. By setting

W :=

(
W1

W2

)
, B :=

(
B1

B2

)
, and u :=

(
u1

u2

)
,

we can rewrite the system (5.3) as an abstract Cauchy problem on the space H

du = (Au+ F(u)) dt+ B dW, (5.10)

with initial condition

u(0) = u0 :=

(
u0

1

u0
2

)
. (5.11)

5.2.3 Mild solutions and the stochastic convolution

We are interested in mild solutions to (5.10)-(5.11). First of all, let us note the
following

Lemma 5.6. A generates an analytic semigroup {exp (tA)}t≥0 on H.
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Proof. Consider

A =

(
A 0
0 0

)
︸ ︷︷ ︸

=:A1

+

(
0 0
0 −σ(x)

)
︸ ︷︷ ︸

=:A2

.

It is well known that A1 generates an analytic semigroup on H [RR06, Theorem
12.40]. Furthermore, A2 is a bounded multiplication operator on H. Hence the
statement follows by Lemma C.22.

Remark 5.7. Also note that A withD(A) = W 2,p(D)∩W 1,p
0 (D) generates an analytic

semigroup {exp (tA)}t≥0 on Lp(D) for every 1 < p < ∞ and −A is a positive,
sectorial operator [SY02, Theorem 38.2]. In particular, we have for u ∈ Lp(D) that
for every α ≥ 0 there exists a constant Cα > 0 such that

‖(−A)α exp (tA)u‖p ≤ Cαt−α exp (−δt) ‖u‖p, for all t > 0,

where δ > 0, see Lemma C.21. Furthermore, the domain D((−A)α) can be identified
with the Sobolev space W 2α,p(D) and thus we have in our setting for t > 0

‖ exp (tA)u‖Wα,p(D) ≤ Cαt−α/2 exp (−δt) ‖u‖p. (5.12)

The stochastic convolution corresponding to (5.10) is given by (see [Nag89,
Proposition 3.1])

WA(t) =

∫ t

0

(
exp ((t− s)A) 0

0 exp (−(t− s)σ(x))

)(
B1

B2

)
dW(s)

=

( ∫ t
0 exp ((t− s)A)B1 dW1(s)∫ t

0 exp (−(t− s)σ(x))B2 dW2(s)

)
.

This is a well-defined H-valued Gaussian process. Furthermore, Assumptions 5.4
(i) and (ii) ensure that WA(t) is mean-square continuous and Ft-measurable, see
Theorem 3.31.

Remark 5.8. As WA is a Gaussian process, we can bound all its higher-order mo-
ments, i.e. for p ≥ 1 we have

sup
t∈[0,T ]

E‖WA(t)‖pH <∞. (5.13)

This follows from the Kahane-Khintchine inequality, see [vN08, Theorem 3.12].

Proposition 5.9. Let Assumptions 5.2 and 5.4 (i)-(ii) hold. Then a mild solution

u(t) = exp(tA)u0 +

∫ t

0
exp((t− s)A)F(u(s)) ds+WA(t),

of (5.10)-(5.11) exists locally-in-time in

L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2([0, T ];V)),

for some T > 0.
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Proof. Since the reactions terms are locally Lipschitz continuous, the existence of
local in time solutions follows from classical SPDE theory, see for example [DW14,
Theorem 4.17] and the comments thereafter.

5.2.4 Associated RDS

We consider H := L2(D)× L2(D) and let T denote the set of all tempered subsets
of H. In the sequel, we consider the fixed canonical probability space (Ω,F ,P)
corresponding to a two-sided H-valued Wiener process, see Example 4.2. Here P
is the distribution of the trace class Wiener process W̃ (t) := (W̃1(t), W̃2(t)) =
(B1W1(t), B2W2(t)) (extended to t ∈ R), where we recall that B1 and B2 fulfil
Assumptions 5.4. We identify the elements of Ω with the paths of these Wiener
processes, more precisely

W̃ (t, ω) := (W̃1(t, ω1), W̃2(t, ω2)) = (ω1(t), ω2(t)) =: ω(t), for ω ∈ Ω.

Together with the Wiener shift the quadruple (Ω,F ,P, θ) defines a metric dynamical
system.

Let us now consider the following equations

dz1 = Az1 dt+ dω1, (5.14)

dz2 = −σ(x)z2 dt+ dω2. (5.15)

The stationary solutions of (5.14)-(5.15) are given by the following Ornstein-
Uhlenbeck processes (see Subsection 4.4.2)

(t, ω) 7→ z1(θtω) =

t∫
−∞

e(t−s)A dω1(s) =

0∫
−∞

e−sA dθtω1(s), (5.16)

(t, ω) 7→ z2(θtω) =

t∫
−∞

e−(t−s)σ(x) dω2(s) =

0∫
−∞

esσ(x) dθtω2(s). (5.17)

Here, we observe that for t = 0

z1(ω) =

0∫
−∞

e−sA dω1(s), z2(ω) =

0∫
−∞

esσ(x) dω2(s).

In the following we will need a spatial regularity result of the Ornstein-Uhlenbeck
processes (5.16)-(5.17). For this, Assumption 5.4 (iii) is crucial.

Lemma 5.10. Suppose that Assumptions 5.2 and 5.4 hold. Then for every p ≥ 1

‖z1(ω)‖pp and ‖z2(ω)‖22

are tempered random variables.
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Proof. Using the assumption 0 < δ ≤ σ(x) ≤ δ̃, the statement for ‖z2(ω)‖22 follows
by the same argument as in the proof of Proposition 4.27 (i). Furthermore, under
Assumptions 5.4 all conditions required in Proposition 3.34 are fulfilled (in particular
recall Remark 5.7) and from there we can infer

E

(
sup
t∈[0,1]

‖z1(θtω)‖pp

)
<∞,

i.e., temperedness of ‖z1(ω)‖pp follows by Proposition 4.6.

Remark 5.11.

(i) Note that Assumption 5.4 (iii) together with the boundedness of ek for k ∈ N
were essential for the proof of Proposition 3.34. One can extend such state-
ments for general open bounded domains in D ⊂ Rn, according to Remark 5.27
and Theorem 5.28 in [DPZ92].

(ii) One can show in a similar way as in the proof of Proposition 3.34 that z1 ∈
W 1,p(D) and in particular also ‖∇z1(ω)‖pp is a tempered random variable for
all p ≥ 1.

Let us perform the following Doss-Sussmann transformation

v(t) = u(t)− z(θtω),

where v(t) = (v1(t), v2(t))>, z(ω) = (z1(ω1), z2(ω2))> and u(t) = (u1(t), u2(t))> is a
solution to (5.10)-(5.11). Then v(t) satisfies the following random equation for each
ω ∈ Ω

dv

dt
= Av + F(v + z(θtω)), (5.18)

v(0) = u0 − z(ω) =: v0. (5.19)

Component-wise this reads as follows

dv1(t)

dt
= d∆v1(t)− h(x, v1(t) + z1(θtω))− f(x, v1(t) + z1(θtω), v2(t) + z2(θtω)),

(5.20)

dv2(t)

dt
= −σ(x)v2(t)− g(x, v1(t) + z1(θtω)). (5.21)

In the equations above no stochastic differentials appear, hence they can be consid-
ered path-wise, i.e., for every ω instead just for P-almost every ω. For every ω (5.18)
is a deterministic equation, where z(θtω) can be regarded as a non-autonomous,
time-continuous perturbation. In particular, we have
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Lemma 5.12. The map ψ : R+ × Ω×H→ H with

ψ(t, ω, (v0
1, v

0
2)) :=

(
v1(t, ω, v0

1)
v2(t, ω, v0

2)

)
, (5.22)

defines a continuous RDS over the MDS (Ω,F ,P, θ).

Proof. [CV96] guarantees that for all v0 = (v0
1, v

0
2)> ∈ H there exists a weak solution

v(·, ω, v0) ∈ C([0,∞),H) with v1(0, ω, v0
1) = v0

1, v2(0, ω, v0
2) = v0

2. Moreover, the
mapping H 3 v0 7→ v(t, ω, v0) ∈ H is continuous and also the measurability with
respect to ω is guaranteed. In particular, ψ is jointly measurable with respect to
(t, ω, v0). Furthermore, note the equivalence of weak and mild solutions [Bal77,
Już14]. The cocycle property can be verified easily using the mild formulation. We
have

v(t, ω, v0) = etAv0 +

∫ t

0
e(t−r)AF(v(r, ω, v0) + z(θrω)) dr,

and thus

ψ(t, θsω, ψ(s, ω, v0))

= etAψ(s, ω, v0) +

∫ t

0
e(t−r)AF(v(r + s, ω, v0) + z(θs+rω)) dr

= etA
(
esAv0 +

∫ s

0
e(s−r)AF(v(r, ω, v0) + z(θrω))dr

)
+

∫ t

0
e(t−r)AF(v(r + s, ω, v0) + z(θs+rω)) dr

= e(t+s)Av0 +

∫ s

0
e(t+s−r)AF(v(r, ω, v0) + z(θrω))dr

+

∫ t+s

s
e(t+s−r)AF(v(r, ω, v0) + z(θrω)) dr

= ψ(t+ s, ω, v0).

Lemma 5.13. The map ϕ : R+ × Ω×H→ H with

ϕ(t, ω, (u0
1, u

0
2)) :=

(
u1(t, ω, u0

1)
u2(t, ω, u0

2)

)
defines a continuous RDS over the MDS (Ω,F ,P, θ), conjugated to the RDS ψ.

Proof. Define the mapping T : Ω×H→ H by

T (ω, v) = v + z(ω).
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Clearly this map fulfils conditions (i) and (ii) from Proposition 4.22, where
T−1(ω, v) = v − z(ω). Thus, together with Lemma 5.12,

ϕ(t, ω, (u0
1, u

0
2)) : = T (θtω, ψ(t, ω, T−1(ω, u0)))

= ψ(t, ω, T−1(ω, u0)) + z(θtω)

= ψ(t, ω, u0 − z(ω)) + z(θtω)

=

(
u1(t, ω, u0

1)
u2(t, ω, u0

2)

)
,

defines a continuous RDS over the MDS, conjugated to the RDS ψ.

The RDS ϕ is associated to the stochastic partly dissipative system (5.10) and
conjugated to the RDS ψ. In the following we will prove the existence of a random
attractor for the RDS ψ. By Theorem 4.23 this implies the existence of a random
attractor for ϕ, i.e. for our original stochastic system.

5.2.5 Bounded absorbing set

In the following we will prove the existence of a bounded absorbing set for the RDS
(5.22). In the calculations we will make use of some standard analytical inequalities,
which are stated in Appendix B.1.

Lemma 5.14. Suppose Assumptions 5.2 and 5.4 hold. Then there exists a set
B ∈ T such that B is a bounded T -absorbing set for the RDS ψ.

Proof. To show the existence of a bounded absorbing set, we want to make use of
Remark 4.16, i.e. we need an a-priori estimate in H. Let v = (v1, v2)> be the
solution of (5.18), then

1

2

d

dt

(
‖v1‖22 + ‖v2‖22

)
=

1

2

d

dt
‖v‖2H =

〈
d

dt
v, v

〉
H

= 〈Av + F(v + z(θtω)), v〉H
= 〈dAv1, v1〉+ 〈F1(v + z(θtω)), v1〉 − 〈σ(x)v2, v2〉+ 〈F2(v + z(θtω)), v2〉
= −d‖∇v1‖22−〈h(x, v1 + z1(θtω)), v1〉︸ ︷︷ ︸

=:I1

−〈f(x, v1 + z1(θtω), v2 + z2(θtω)), v1〉︸ ︷︷ ︸
=:I2

− δ‖v2‖22−〈g(x, v1 + z1(θtω)), v2〉︸ ︷︷ ︸
=:I3

,

where we have used (5.6). We now estimate I1-I3 separately. Deterministic constants
denoted as C,C1, C2, ... may change from line to line. Using (5.4) and (5.9) we
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calculate

I1 = −
∫
D
h(x, v1 + z1(θtω))v1 dx

= −
∫
D
h(x, v1 + z1(θtω))(v1 + z1(θtω)) dx

+

∫
D
h(x, v1 + z1(θtω))z1(θtω) dx

≤ −
∫
D
δ1|u1|p dx+

∫
D
δ3 dx+

∫
D
|h(x, v1 + z1(θtω))||z1(θtω)| dx

≤ −δ1‖u1‖pp + C + δ8

∫
D

(1 + |u1|p−1)|z1(θtω)| dx

= −δ1‖u1‖pp + C + δ8‖z1(θtω)‖1 + δ8

∫
D
|u1|p−1|z1(θtω)| dx

≤ −δ1‖u1‖pp + C + C1‖z1(θtω)‖22 +
δ1

2
‖u1‖pp + C2‖z1(θtω)‖pp

= −δ1

2
‖u1‖pp + C + C1

(
‖z1(θtω)‖22 + ‖z1(θtω)‖pp

)
.

Furthermore, with (5.5) we estimate

I2 = −
∫
D
f(x, v1 + z1(θtω), v2 + z2(θtω))v1 dx

≤
∫
D
|f(x, v1 + z1(θtω), v2 + z2(θtω))||u1 − z1(θtω)| dx

≤
∫
D
δ4(1 + |u1|p1 + |u2|)|u1| dx

+

∫
D
δ4(1 + |u1|p1 + |u2|)|z1(θtω)| dx

=

∫
D
δ4(|u1|+ |u1|p1+1) dx+

∫
D
δ4|u1||u2| dx+ δ4‖z1(θtω)‖1

+

∫
D
δ4|u1|p1 |z1(θtω)| dx+

∫
D
δ4|u2||z1(θtω)| dx

≤
∫
D
δ4(|u1|+ |u1|p1+1) dx+

∫
D
δ4|u1||u2| dx+ δ4‖z1(θtω)‖22 + C

+

∫
D

δ4

2
|u1|p1+1 dx+ C1‖z1(θtω)‖p1+1

p1+1 +

∫
D
δ4|u2||z1(θtω)| dx

≤
∫
D
δ4

3

2
(|u1|+ |u1|p1+1) dx+

∫
D
δ4|u1||u2| dx+ C

+ C1

(
‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1

)
+

∫
D
δ4|u2||z1(θtω)| dx.
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With (5.8) we compute

I3 = −
∫
D
g(x, v1 + z1(θtω))v2 dx

≤
∫
D
|g(x, u1)||u2 − z2(θtω)| dx

≤
∫
D
δ7(1 + |u1|)|u2| dx+

∫
D
δ7(1 + |u1|)|z2(θtω)| dx

=

∫
D
δ7(1 + |u1|)|u2| dx+ δ7‖z2(θtω)‖1 +

∫
D
δ7|u1||z2(θtω)| dx

≤
∫
D
δ7(1 + |u1|)|u2| dx+ δ7‖z2(θtω)‖22 + C +

∫
D
δ7|u1||z2(θtω)| dx.

Combining the estimates for I2 and I3 yields

I2 + I3

≤
∫
D
δ7(1 + |u1|)|u2| dx+

∫
D
δ7|u1||z2(θtω)| dx+

∫
D
δ4

3

2
(|u1|+ |u1|p1+1) dx

+

∫
D
δ4|u1||u2| dx+

∫
D
δ4|u2||z1(θtω)| dx

+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1

)
≤ (δ4 + δ7)

∫
D

(1 + |u1|)|u2| dx+

∫
D
δ7|u1||z2(θtω)| dx+

∫
D
δ4

3

2
(|u1|+ |u1|p1+1) dx

+

∫
D
δ4|u2||z1(θtω)| dx+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1

)
≤ δ

16
‖u2‖22 + C2

∫
D

(1 + |u1|)2 dx+

∫
D
δ7|u1||z2(θtω)| dx

+

∫
D
δ4

3

2
(|u1|+ |u1|p1+1) dx+

∫
D
δ4|u2||z1(θtω)| dx

+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1

)
=

δ

16
‖u2‖22 + δ4

3

2

∫
D

(
|u1|+ |u1|p1+1 + C2(1 + |u1|)2

)
dx

+

∫
D
δ7|u1||z2(θtω)| dx+

∫
D
δ4|u2||z1(θtω)| dx

+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1

)
≤ δ

16
‖u2‖22 + C2

∫
D

(1 + |u1|q) dx+
δ1

8
‖u1‖22 +

δ

16
‖u2‖22

+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1

)
,

where we have used that for q = max{p1 + 1, 2} < p there exists a constant C2 such
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that

C1

(
|ξ|+ |ξ|p1+1 + C(1 + |ξ|)2

)
≤ C2(|ξ|q + 1), for all ξ ∈ R. (5.23)

Thus,

I2 + I3

≤ δ

8
‖u2‖22 +

δ1

8
‖u1‖22 +

δ1

4
‖u1‖pp

+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1

)
≤ δ

4
‖v2‖22 +

δ13

8
‖u1‖pp + C

+ C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1

)
.

Hence, in total we obtain

1

2

d

dt
(‖v1‖22 + ‖v2‖22)

≤ −d‖∇v1‖22 −
δ1

2
‖u1‖pp − δ‖v2‖22 +

δ

4
‖v2‖22 +

δ13

8
‖u1‖pp

+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1 + ‖z1(θtω)‖pp
)

= −d‖∇v1‖22 −
δ1

8
‖u1‖pp −

3δ

4
‖v2‖22

+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖22 + ‖z1(θtω)‖p1+1

p1+1 + ‖z1(θtω)‖pp
)

≤ −d
2
‖∇v1‖22 −

d

2c
‖v1‖22 −

3δ

4
‖v2‖22 + C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖pp

)
(5.24)

and thus

d

dt
(‖v1‖22 + ‖v2‖22) ≤ −C2

(
‖v1‖22 + ‖v2‖22

)
+ C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖pp

)
.

(5.25)
Applying Gronwall’s inequality yields

‖v1‖22 + ‖v2‖22
≤
(
‖v0

1‖22 + ‖v0
2‖22
)

exp (−C2t) + C3 (1− exp (−C2t))

+ C1

∫ t

0
exp (−C2(t− s))

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds

≤
(
‖v0

1‖22 + ‖v0
2‖22
)

exp (−C2t) + C3

+ C1

∫ t

0
exp (−C2(t− s))

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds. (5.26)
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We replace ω by θ−tω (note the P-preserving property of the MDS) and carry out a
change of variables

‖v1(t, θ−tω, v
0
1(θ−tω))‖22 + ‖v2(t, θ−tω, v

0
2(θ−tω))‖22

≤
(
‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−C2t) + C3

+ C1

∫ t

0
exp (−C2(t− s))

(
‖z2(θs−tω)‖22 + ‖z1(θs−tω)‖pp

)
ds

≤
(
‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−C2t) + C3

+ C1

∫ 0

−t
exp (C2s)

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds.

Thus for arbitrary D ∈ T and (v0
1, v

0
2)(θ−tω) ∈ D(θ−tω)

‖ψ(t, θ−tω, (v
0
1, v

0
2)(θ−tω))‖2H

≤
(
‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−C2t) + C3

+ C1

∫ 0

−t
exp (C2s)

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds.

Since D ∈ T we have

lim sup
t→∞

(
‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−C2t) = 0.

Hence,

lim sup
t→∞

‖ψ(t, θ−tω, (v
0
1, v

0
2)(θ−tω))‖2H

≤ C3 + C1

∫ 0

−∞
exp (C2s)

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds

=: ρ(ω). (5.27)

Due to the temperedness of ‖z1(ω)‖pp for p ≥ 1 and ‖z2(ω)‖22, the improper integral
above exists and ρ(ω) > 0 is a tempered constant. As described in Remark 4.16, we
can define for some ε > 0

B(ω) = B(0, ρ(ω) + ε).

Then B = {B(ω)}ω ∈ T is a T -absorbing set for the RDS ϕ with finite absorption
time tT (ω) = supD∈T tD(ω).

Remark 5.15. The random radius ρ(ω) depends on the restrictions imposed on the
non-linearity and the noise. These were heavily used in Lemma 5.14 in order to
derive the expression (5.27) for ρ(ω).

In order to make use of Theorem 4.19 we have to show the existence of a compact
T -absorbing set. So far we have only shown the existence of a bounded absorbing
set, which is, being a ball in an infinite-dimensional Hilbert space, not compact.
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5.2.6 Compact absorbing set

The classical strategy to find a compact absorbing set in L2(D) for a reaction-
diffusion equation is the following: Firstly, one needs to find an absorbing set in
L2(D). Secondly, this set is used to find an absorbing set B in H1(D) and due
to compact embedding H1(D) ⊂⊂ L2(D) (see Theorem C.2), B defines a compact
absorbing set in L2(D).

In the given setting the construction of an absorbing set in H1(D) is more
complicated as the regularizing effect of the Laplacian is missing in the second
component of (5.18). That is, solutions with initial conditions in L2(D) will in
general only belong to L2(D) and not to H1(D).

To overcome this difficulty, we split the solution of the second component into
two parts: one, which is regular enough, in the sense that it belongs to H1(D) and
another one, which asymptotically tends to zero in L2(D). This splitting method
has been used by other authors in the context of partly dissipative systems as well,
see for instance [Mar89,Wan09a]. Let us now explain the strategy for our setting in
more detail. We consider the equations

dv1
2(t)

dt
= −σ(x)v1

2(t)− g(x, v1(t) + z1(θtω)), v1
2(0) = 0, (5.28)

and
dv2

2

dt
= −σ(x)v2

2, v2
2(0) = v0

2, (5.29)

and one can easily verify that v2 = v1
2 + v2

2 solves (5.21). Note at this point that
we associate the initial condition v0

2 ∈ L2(D) to the second part. Now, let D =
(D1,D2) ∈ T be arbitrary and v0 = (v0

1, v
0
2) ∈ D. Then

ψ(t, θ−tω, v
0(θ−tω)) =

(
v1(t, θ−tω, v

0
1(θ−tω))

v2(t, θ−tω, v
0
2(θ−tω))

)
=

(
v1(t, θ−tω, v

0
1(θ−tω))

v1
2(t, θ−tω, 0)

)
︸ ︷︷ ︸

=:ψ1(t,θ−tω,v0
1(θ−tω))

+

(
0

v2
2(t, θ−tω, v

0
2(θ−tω))

)
︸ ︷︷ ︸

=:ψ2(t,θ−tω,v0
2(θ−tω))

.

If we can show that for a certain t∗ ≥ tD(ω) there exist tempered random variables
ρ1(ω), ρ2(ω) such that

‖v1(t∗, θ−t∗ω, v
0
1(θ−t∗ω))‖H1(D) <ρ1(ω), (5.30)

‖v1
2(t∗, θ−t∗ω, 0)‖H1(D) <ρ2(ω), (5.31)

then by compact embedding ψ1(t∗, θ−t∗ω,D1(θ−t∗ω)) is a compact set in H. If,
furthermore,

lim
t→∞
‖v2

2(t, θ−tω, v
0
2(θ−tω))‖2 = 0, (5.32)
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then ψ2(t, θ−tω,D2(θ−tω)) can be regarded as a (random) bounded perturbation
and ψ(t, θ−tω,D(θ−tω)) is compact in H as well, see [Tem12, Theorem 2.1]. Then,

ψ(t∗, θ−t∗ω,B(θ−t∗ω)) (5.33)

is a compact absorbing set for the RDS ψ. We will now prove the necessary estimates
(5.30)-(5.32).

Lemma 5.16. Let Assumptions 5.2 and 5.4 hold. Let D2 ⊂ L2(D) be tempered and
u0

2 ∈ D2. Then

lim
t→∞
‖v2

2(t, θ−tω, v
0
2(θ−tω))‖22 = 0.

Proof. The solution to (5.29) is given by

v2
2(t) = v0

2 exp (−σ(x)t)

and thus

lim
t→∞
‖v2

2(t, θ−tω, v
0
2(θ−tω))‖22 = lim

t→∞

∥∥v0
2(θ−tω) exp (−σ(x)t)

∥∥2

2

≤ lim
t→∞
‖v0

2(θ−tω)‖22 exp (−δt)

≤ lim
t→∞

(
‖u0

2(θ−tω)‖22 + ‖z2(θ−tω)‖22
)

exp (−δt) = 0,

as u0
2 ∈ D2 and ‖z2(ω)‖22 is a tempered random variable.

We now prove boundedness of v1 and v1
2 in H1(D). Therefore we need some

auxiliary estimates. First, let us derive uniform estimates for u1 ∈ Lp(D) and for
v1 ∈ H1(D).

Lemma 5.17. Let Assumptions 5.2 and 5.4 hold. Let D1 ⊂ L2(D) be tempered and
u0

1 ∈ D1. Assume t ≥ 0, r > 0, then∫ t+r

t
‖u1(s, ω, u0

1(ω))‖pp ds ≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds

+ ‖v1(t, ω, v0
1(ω))‖22 + ‖v2(t, ω, v0

2(ω))‖22, (5.34)

∫ t+r

t
‖∇v1(s, ω, v0

1(ω))‖22 ds ≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds

+ ‖v1(t, ω, v0
1(ω))‖22 + ‖v2(t, ω, v0

2(ω))‖22, (5.35)

where C,C1 are deterministic constants.



5.2. ADDITIVE NOISE 131

Proof. From (5.24) we can derive

d

dt
(‖v1‖22 + ‖v2‖22)

≤ −d‖∇v1‖22 −
δ1

4
‖u1‖pp + C + C1

(
‖z2(θtω)‖22 + ‖z1(θtω)‖pp

)
,

and thus by integration

d

∫ t+r

t
‖∇v1(s, ω, v0

1(ω))‖22 ds+
δ1

4

∫ t+r

t
‖u1(s, ω, u0

1(ω))‖pp ds

≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds

+ ‖v1(t, ω, v0
1(ω))‖22 + ‖v2(t, ω, v0

2(ω))‖22.

The two statements of the lemma follow directly from this estimate.

Lemma 5.18. Let Assumptions 5.2 and 5.4 hold. Let D1 ⊂ L2(D) be tempered and
u0

1 ∈ D1. Assume t ≥ r, then∫ t+r

t
‖u1(s, ω, u0

1(ω))‖2p−2
2p−2 ds

≤ C6r +

∫ t+r

t−r
C2‖z1(θsω)‖p

2−p
p2−p + C3‖z2(θsω)‖22 + C4‖v2(s, ω, v0

2(ω))‖22 ds

+ C5‖v1(t− r, ω, v0
1(ω))‖22 + C5‖v2(t− r, ω, v0

2(ω))‖22, (5.36)

where C2, C3, C4, C5, C6 are deterministic constants.

Proof. Multiplying equation (5.20) by |v1|p−2v1 and integrating over D yields

1

p

d

dt

∫
D
|v1|p dx

= d

∫
D

∆v1(t)|v1|p−2v1 dx−
∫
D
h(x, v1(t) + z1(θtω))|v1|p−2v1 dx

−
∫
D
f(x, v1(t) + z1(θtω), v2(t) + z2(θtω))|v1|p−2v1 dx

= −d(p− 1)

∫
D
|∇v1|2|v1|p−2 dx−

∫
D
h(x, v1(t) + z1(θtω))|v1|p−2v1 dx

−
∫
D
f(x, v1(t) + z1(θtω), v2(t) + z2(θtω))|v1|p−2v1 dx

≤ −
∫
D

(
δ1

2p
|v1|p − C − C1(|z1(θtω)|2 + |z1(θtω)|p)

)
|v1|p−2 dx

+

∫
D
|f(x, v1(t) + z1(θtω), v2(t) + z2(θtω))||v1|p−2v1 dx,
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where we have used the inequality

h(x, v1 + z1)v1 ≥
δ1

2p
|v1|p − C − C1(|z1|2 + |z1|p),

which can be proved by using conditions (5.4) and (5.9)

h(x, v1 + z1)v1 = h(x, v1 + z1)(v1 + z1)− h(x, v1 + z1)z1

≥ δ1|v1 + z1|p − δ3 − |h(x, v1 + z1)||z1|
≥ δ1|v1 + z1|p − δ3 − (δ8 + δ8|v1 + z1|p−1)|z1|
≥ δ1|v1 + z1|p − C − C1|z1|2 − δ1/2|v1 + z1|p − C2|z1|p

=
δ1

2
|v1 + z1|p − C − C1(|z1|2 + |z1|p)

≥ δ1

2
||v1| − |z1||p − C − C1(|z1|2 + |z1|p)

≥ δ1

2p
|v1|p − C − C1(|z1|2 + |z1|p).

We compute further, using condition (5.5) and the relations p−1, p−2, p1 +p−1 <
2p− 2

1

p

d

dt

∫
D
|v1|p dx

≤ −
∫
D

δ1

2p
|v1|2p−2 dx+ C

∫
D
|v1|p−2 dx

+ C1

∫
D

(|z1(θtω)|2 + |z1(θtω)|p)|v1|p−2 dx

+

∫
D
δ4(1 + |v1 + z1(θtω)|p1 + |v2 + z2(θtω)|)|v1|p−2v1 dx

≤ −
∫
D

δ1

2p
|v1|2p−2 dx+ C

∫
D
|v1|p−2 dx+ C1

∫
D
|v1|p−1 dx

+ C2

∫
D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx

+

∫
D
δ4

(
|v1|p−1 + C3

(
|v1|p1+p−1 + |z1(θtω)|p1 |v1|p−1 + |v2||v1|p−1 + |z2(θtω)||v1|p−1

))
dx

≤ −
∫
D

δ1

2p
|v1|2p−2 dx+

δ1

2p4

∫
D
|v1|2p−2 dx+ C6

+ C2

∫
D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx

+

∫
D
C3(|z1(θtω)|p1 |v1|p−1 + |v2||v1|p−1 + |z2(θtω)||v1|p−1) dx.
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Hence we have

1

p

d

dt

∫
D
|v1|p dx+

∫
D

3

4

δ1

2p
|v1|2p−2 dx

≤ C6 + C2

∫
D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx

+

∫
D
C3(|z1(θtω)|p1 + |v2|+ |z2(θtω)|)|v1|p−1 dx

≤ C6 + C2

∫
D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx+

∫
D

1

4

δ1

2p
|v1|2p−2 dx

+

∫
D
C3(|z1(θtω)|p1 + |v2|+ |z2(θtω)|)2 dx,

and thus

1

p

d

dt

∫
D
|v1|p dx+

∫
D

1

2

δ1

2p
|v1|2p−2 dx

≤ C6 + C2

∫
D

(|z1(θtω)|2p−2 + |z1(θtω)|p2−p) dx

+

∫
D
C3(|z1(θtω)|2p1 + |v2(t)|2 + |z2(θtω)|2) dx. (5.37)

We arrive at the following inequality

1

p

d

dt
‖v1‖pp+

δ1

2p+1
‖v1‖2p−2

2p−2 ≤ C6+C2‖z1(θtω)‖p
2−p
p2−p+C3‖z2(θtω)‖22+C3‖v2‖22, (5.38)

and thus

d

dt
‖v1‖pp ≤ C6 + C2‖z1(θtω)‖p

2−p
p2−p + C3‖z2(θtω)‖22 + C3‖v2‖22 −

δ1

2p+1
‖v1‖pp. (5.39)

With (5.34) we have∫ t+r

t
‖v1(s, ω, v0

1(ω))‖pp ds =

∫ t+r

t
‖u1(s, ω, v0

1(ω))− z1(θsω)‖pp ds

≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds

+ C2‖v1(t, ω, v0
1(ω))‖22 + C2‖v2(t, ω, v0

2(ω))‖22.

Thus by applying the uniform Gronwall Lemma to (5.39) we have

‖v1(t+ r, ω, v0
1(ω))‖pp

≤ rC6 +

∫ t+r

t
C2‖z1(θsω)‖p

2−p
p2−p + C3‖z2(θsω)‖22 + C4‖v2(s, ω, v0

2(ω))‖22 ds

+ C5‖v1(t, ω, v0
1(ω))‖22 + C5‖v2(t, ω, v0

2(ω))‖22. (5.40)



134 CHAPTER 5. RANDOM ATTRACTORS

Now integrating (5.38) between t and t+ r yields∫ t+r

t
‖v1(s, ω, v1(ω))‖2p−2

2p−2 ds

≤ C6r +

∫ t+r

t
C2‖z1(θsω)‖p

2−p
p2−p + C3‖z2(θsω)‖22 + C3‖v2(s, ω, v0

2(ω))‖22 ds

+ C‖v1(t, ω, v0
1(ω))‖pp,

and thus for t ≥ r using (5.40)∫ t+r

t
‖v1(s, ω, v1(ω))‖2p−2

2p−2 ds

≤ C6r +

∫ t+r

t−r
C2‖z1(θsω)‖p

2−p
p2−p + C3‖z2(θsω)‖22 + C4‖v2(s, ω, v0

2(ω))‖22 ds

+ C5‖v1(t− r, ω, v0
1(ω))‖22 + C5‖v2(t− r, ω, v0

2(ω))‖22.

In total this leads to∫ t+r

t
‖u1(s, ω, v1(ω))‖2p−2

2p−2 ds

≤ C6r +

∫ t+r

t−r
C2‖z1(θsω)‖p

2−p
p2−p + C3‖z2(θsω)‖22 + C4‖v2(s, ω, v0

2(ω))‖22 ds

+ C5‖v1(t− r, ω, v0
1(ω))‖22 + C5‖v2(t− r, ω, v0

2(ω))‖22

+

∫ t+r

t
‖z1(θsω)‖2p−2

2p−2 ds

≤ C6r +

∫ t+r

t−r
C2‖z1(θsω)‖p

2−p
p2−p + C3‖z2(θsω)‖22 + C4‖v2(s, ω, v0

2(ω))‖22 ds

+ C5‖v1(t− r, ω, v0
1(ω))‖22 + C5‖v2(t− r, ω, v0

2(ω))‖22,

and this finishes the proof.

Remark 5.19. One can also use appropriate shifts within the integrals on the left
hand sides in (5.34), (5.35), (5.36) to obtain simpler forms of the ω-dependent
constants on the right hand side, see for instance [Wan09b, Lemma 4.3, 4.4]. More
precisely, in case of (5.34) one can for instance obtain an estimate of the form

t+r∫
t

‖u1(s, θ−t−rω, u
0
1(θ−t−rω))‖pp ≤ c(1 + ρ̃(ω)),

where ρ̃(ω) is a random constant. Nevertheless such estimates hold for every ω,
independent of the shift that one inserts inside the integral on the left hand side.
Without the appropriate shifts on the left hand sides, as in the lemmas above, the
constants on the right hand sides depend on the shift.
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Next, we are going to show the boundedness of v1 in H1(D).

Lemma 5.20. Let Assumptions 5.2 and 5.4 hold. Let D = (D1,D2) ∈ T and
u0 ∈ D. Assume t ≥ tD(ω) + 2r for some r > 0 then

‖∇v1(t, θ−tω, v
0
1(θ−tω))‖22 ≤ ρ1(ω), (5.41)

where ρ1(ω) is a tempered random variable.

Proof. We recall that v1 satisfies equation (5.20) and thus we can compute

1

2

d

dt
‖∇v1‖22 =

〈
d

dt
v1,−∆v1

〉
= 〈d∆v1 − h(x, v1 + z1(θtω))− f(x, v1 + z1(θtω), v2 + z2(θtω)),−∆v1〉
= −d‖∆v1‖22 + 〈h(x, v1 + z1(θtω)),∆v1〉+ 〈f(x, v1 + z1(θtω), v2 + z2(θtω)),∆v1〉

≤ −d‖∆v1‖22 +

∫
D
δ8(1 + |u1|p−1)|∆v1| dx+

∫
D
δ4(1 + |u1|p1 + |u2|)|∆v1| dx

≤ −d‖∆v1‖22 + C

∫
D

(2 + |u1|p−1 + |u1|p1 + |u2|)|∆v1| dx

≤ −d
2
‖∆v1‖22 + C

∫
D

(1 + |u1|p−1 + |u1|p1 + |u2|)2 dx

≤ −d
2
‖∆v1‖22 + C

∫
D

(1 + |u1|2p−2 + |u2|2) dx

= −d
2
‖∆v1‖22 + C1 + C‖u1‖2p−2

2p−2 + C‖u2‖22

≤ −dc
2
‖∇v1‖22 + C1 + C‖u1‖2p−2

2p−2 + C‖u2‖22.

We want to apply the uniform Gronwall Lemma. Therefore, note

d

dt
‖∇v1(t, ω, v0

1(ω))‖22︸ ︷︷ ︸
:=y(t)

≤ −dc︸︷︷︸
:=g(t)

‖∇v1(t, ω, v0
1(ω))‖22

+ C1 + C‖u1(t, ω, u0
1(ω))‖2p−2

2p−2 + C‖u2(t, ω, u0
2(ω))‖22︸ ︷︷ ︸

:=h(t)

.

We calculate ∫ t+r

t
g(s) ds ≤ 0,

and∫ t+r

t
‖∇v1(s, ω, v0

1(ω))‖22 ds ≤ Cr + C1

∫ t+r

t

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds

+ C2

(
‖v1(t, ω, v0

1(ω))‖22 + ‖v2(t, ω, v0
2(ω))‖22

)
,
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where we have applied Lemma 5.17. By Lemma 5.18 for t ≥ r

∫ t+r

t
‖u1(s, ω, u0

1(ω))‖2p−2
2p−2 ds

≤ C6r +

∫ t+r

t−r
C2‖z1(θsω)‖p

2−p
p2−p + C3‖z2(θsω)‖22 + C4‖u2(s, ω, v0

2(ω))‖22 ds

+ C5‖v1(t− r, ω, v0
1(ω))‖22 + C5‖v2(t− r, ω, v0

2(ω))‖22.

Now, the uniform Gronwall Lemma yields for t ≥ r

‖∇v1(t+ r, ω, v0
1(ω))‖22

≤ C + C1

∫ t+r

t

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds

+ C2

(
‖v1(t, ω, v0

1(ω))‖22 + ‖v2(t, ω, v0
2(ω))‖22

)
+ C3

∫ t+r

t−r
‖z1(θsω)‖p

2−p
p2−p + ‖z2(θsω)‖22 + ‖u2(s, ω, v0

2(ω))‖22 ds

+ C4

(
‖v1(t− r, ω, v0

1(ω))‖22 + ‖v2(t− r, ω, v0
2(ω))‖22

)
+ C5

∫ t+r

t
‖u2(s, ω, u0

2(ω))‖22 ds

≤ C + C1

∫ t+r

t−r
‖u2(s, ω, u0

2(ω))‖22 ds+ C2

∫ t+r

t−r
‖z1(θsω)‖p

2−p
p2−p + ‖z2(θsω)‖22 ds

+ C3

(
‖v1(t, ω, v0

1(ω))‖22 + ‖v2(t, ω, v0
2(ω))‖22

+‖v1(t− r, ω, v0
1(ω))‖22 + ‖v2(t− r, ω, v0

2(ω))‖22
)
.

That is, for t ≥ 0 we have

‖∇v1(t+ 2r, ω, v0
1(ω))‖22

≤ C + C1

∫ t+2r

t
‖v2(s, ω, u0

2(ω))‖22 ds

+ C2

∫ t+2r

t
‖z1(θsω)‖p

2−p
p2−p + ‖z2(θsω)‖22 ds

+ C3

(
‖v1(t+ r, ω, v0

1(ω))‖22 + ‖v2(t+ r, ω, v0
2(ω))‖22...

+‖v1(t, ω, v0
1(ω))‖22 + ‖v2(t, ω, v0

2(ω))‖22
)
.

Let us recall that our goal is to find a t∗ ≥ tD(ω) such that (5.30) holds. Now assume
that t ≥ tD(ω). We replace ω by θ−t−2rω (again note the P-preserving property of
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the MDS), then

‖∇v1(t+ 2r, θ−t−2rω, v
0
1(θ−t−2rω))‖22

≤ C + C1

∫ t+2r

t
‖v2(s, θ−t−2rω, u

0
2(θ−t−2rω))‖22 ds

+ C2

∫ t+2r

t
‖z1(θs−t−2rω)‖p

2−p
p2−p + ‖z2(θs−t−2rω)‖22 ds

+ C3

(
‖v1(t+ r, θ−t−2rω, v

0
1(θ−t−2rω))‖22 + ‖v2(t+ r, θ−t−2rω, v

0
2(θ−t−2rω))‖22

+‖v1(t, θ−t−2rω, v
0
1(θ−t−2rω))‖22 + ‖v2(t, θ−t−2rω, v

0
2(θ−t−2rω))‖22

)
.

As t ≥ tD(ω) we know by the absorption property that there exists a ρ̃(ω) such that

‖v1(t, θ−tω, v
0
1(θ−tω))‖22 ≤ ρ̃(ω),

and thus replacing ω by θ−2rω

‖v1(t, θ−t−2rω, v
0
1(θ−t−2rω))‖22 ≤ ρ̃(θ−2rω).

Similarly, we know that

‖v1(t+ r, θ−t−rω, v
0
1(θ−t−rω))‖22 ≤ ρ̃(θ−rω),

and thus by replacing ω by θ−rω

‖v1(t+ r, θ−t−2rω, v
0
1(θ−t−2rω))‖22 ≤ ρ̃(θ−2rω).

The same arguments hold for v2. Furthermore, as t ≥ tD(ω) and we know from
Lemma 5.14 that there exists a tempered random variable ρ̂(ω) such that for s ∈
(t, t+ 2r)

‖v2(s, θ−sω, u
0
2(θ−sω))‖22 ≤ ρ̂(ω)

and thus

t+2r∫
t

‖v2(s, θ−t−2rω, u
0
2(θ−t−2rω))‖22ds

≤
t+2r∫
t

ρ̂(θs−t−2rω) ds =

2r∫
0

ρ̂(θτ−2rω) dτ =

0∫
−2r

ρ̂(θyω)dy.

With similar substitutions in the integral over ‖z1(θs−t−2rω)‖p
2−p
p2−p and

‖z2(θs−t−2rω)‖22 we arrive at

‖∇v1(t+ 2r, θ−t−2rω, v
0
1(θ−t−2rω))‖22

≤ C + C1

0∫
−2r

ρ̂(θyω)dy + C2

∫ 0

−2r
‖z1(θyω)‖p

2−p
p2−p + ‖z2(θyω)‖22 dy + C3ρ̃(θ−2rω),
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where the right hand side is independent of t. Due to the temperedness of all terms
involved, they can be combined into one tempered random variable ρ1(ω) such that
for t ≥ tD(ω) + 2r =: t∗ we have

‖∇v1(t, θ−tω, v
0
1(θ−tω))‖22 ≤ ρ1(ω),

this concludes the proof.

We are now able to prove the boundedness of the first term of v2 in H1(D).

Lemma 5.21. Let Assumptions 5.2 and 5.4 hold. Let D = (D1,D2) ∈ T and
u0 ∈ D. Assume t ≥ tD(ω) + 2r for some r > 0. Then we have

‖∇v1
2(t, θ−tω, 0)‖22 ≤ ρ2(ω), (5.42)

where ρ2(ω) is a tempered random variable.

Proof. Remember that v1
2 satisfies the equation (5.28) and thus

1

2

d

dt
‖∇v1

2‖22 = 〈 d

dt
v1

2,−∆v1
2〉

= 〈−σ(x)v1
2 − g(x, v1 + z1),−∆v1

2〉
= 〈σ(x)v1

2,∆v
1
2〉︸ ︷︷ ︸

=:L1

+ 〈g(x, v1 + z1),∆v1
2〉︸ ︷︷ ︸

=:L2

.

We estimate L1 and L2 separately

L1 =

∫
D
σ(x)v1

2∆v1
2dx = −

∫
D
∇(σ(x)v1

2) · ∇v1
2dx

≤ −δ‖∇v1
2‖22 −

∫
D
∇σ(x)v1

2 · ∇v1
2dx,

and

L2 =

∫
D
g(x, v1 + z1)∆v1

2 dx = −
∫
D
∇g(x, v1 + z1) · ∇v1

2 dx

= −
∫
D

(∇g(x, v1 + z1) + ∂ξg(x, v1 + z1)∇(v1 + z1)) · ∇v1
2 dx,

where in the last equation the gradient is to be understood as

∇g(x, v1 + z1) = (∂x1g(x, v1 + z1), ..., ∂xng(x, v1 + z1))>.

Hence,

d

dt
‖∇v1

2‖22 + 2δ‖∇v1
2‖22

≤ 2

∫
D

∣∣∇σ(x)v1
2 +∇g(x, v1 + z1) + ∂ξg(x, v1 + z1)∇(v1 + z1)

∣∣ |∇v1
2| dx

≤ 1

δ

∫
D

∣∣∇σ(x)v1
2 +∇g(x, v1 + z1) + ∂ξg(x, v1 + z1)∇(v1 + z1)

∣∣2 dx+ δ‖∇v1
2‖22,
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and further with (5.7)

d

dt
‖∇v1

2‖22 + δ‖∇v1
2‖22

≤ 1

δ

∫
D

n∑
i=1

(
|∂xiσ(x)v1

2|+ |∂xig(x, v1 + z1)|+ |∂ξg(x, v1 + z1)∂xi(v1 + z1)|
)2

dx

≤ 1

δ

∫
D

n∑
i=1

(
C|v1

2|+ δ5(1 + |v1 + z1|) + δ5|∂xi(v1 + z1)|
)2

dx

≤ 2

δ
(C + δ5)2n

∫
D

(
|v1

2|+ 1 + |v1 + z1|
)2

dx+
2δ2

5

δ

∫
D

n∑
i=1

|∂xi(v1 + z1)|2 dx

=
2

δ
(C + δ5)2n

∫
D

(
|v1

2|+ 1 + |v1 + z1|
)2

dx+
2δ2

5

δ
‖∇(v1 + z1)‖22

≤ C1 + C2(‖v1
2‖22 + ‖v1‖22 + ‖z1‖22) + C3(‖∇v1‖22 + ‖∇z1‖22),

where C := max1≤i≤n maxx∈D |∂xiσ(x)|. Next, we apply Gronwall’s inequality while
taking the initial condition into account and we obtain for t ≥ 0

‖∇v1
2‖22 ≤

∫ t

0

[
C1 + C2(‖v1

2‖22 + ‖v1‖22 + ‖z1‖22) + C3(‖∇v1‖22 + ‖∇z1‖22)
]

× exp ((s− t)δ) ds. (5.43)

We have from (5.24) the following equation

d

dt
(‖v1‖22 + ‖v2‖22) +M(‖v1‖22 + ‖v2‖22) + d‖∇v1‖22

≤ Ĉ + C̃(‖z2(θtω)‖22 + ‖z1(θtω)‖pp), (5.44)

where M = min{d/c, δ} and certain constants Ĉ, C̃. We multiply (5.44) by exp(Mt)
and integrate between 0 and t∫ t

0
exp(Ms)

d

ds
(‖v1‖22 + ‖v2‖22)ds+M

∫ t

0
exp(Ms)(‖v1‖22 + ‖v2‖22)ds

+ d

∫ t

0
exp(Ms)‖∇v1‖22ds

≤
∫ t

0
Ĉ exp(Ms)ds+ C̃

∫ t

0
exp(Ms)(‖z2(θsω)‖22 + ‖z1(θsω)‖pp)ds.

This yields ∫ t

0
exp(M(s− t))‖∇v1(s, ω, v0

1(ω))‖22ds

≤ 1

d
exp(−Mt)(‖v0

1(ω)‖22 + ‖v0
2(ω)‖22) + Ĉ

+ C̃

∫ t

0
exp(M(s− t))(‖z2(θsω)‖22 + ‖z1(θsω)‖pp)ds, (5.45)
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as well as

‖v1(t, ω, v0
1(ω))‖22 + ‖v2(t, ω, v0

2(ω))‖22
≤
(
‖v0

1(ω)‖22 + ‖v0
2(ω)‖22

)
exp (−Mt) + Ĉ

+ C̃

∫ t

0
exp (M(s− t))

(
‖z2(θsω)‖22 + ‖z1(θsω)‖pp

)
ds.

In particular, from the last estimate we obtain

∫ tD(ω)

0
(‖v1(s, θ−tω, v

0
1(θ−tω)‖22 + ‖v2(s, θ−tω, v

0
2(θ−tω))‖22) exp(M(s− t))ds

≤
∫ tD(ω)

0

(
‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−Mt) ds+ Ĉ

∫ tD(ω)

0
exp(M(s− t))ds

+ C̃

∫ tD(ω)

0

∫ s

0
exp (M(τ − t))

(
‖z2(θτ−tω)‖22 + ‖z1(θτ−tω)‖pp

)
dτds

≤
(
‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−Mt) tD(ω) + Ĉ

+ C̃tD(ω)

∫ tD(ω)

0
exp (M(τ − t))

(
‖z2(θτ−tω)‖22 + ‖z1(θτ−tω)‖pp

)
dτ. (5.46)

where we have replaced ω by θ−tω after integrating and we have used that t ≥ tD(ω).
Now, replacing ω by θ−tω in (5.43), noting that δ ≥M and assuming that t ≥ tD(ω),
we compute using (5.45)

‖∇v1
2(t, θ−tω, 0)‖22

≤ C1

δ
+ C2

∫ t

0

[
‖v1

2(s, θ−tω, 0)‖22 + ‖v1(s, θ−tω, v
0
1(θ−tω))‖22 + ‖z1(θs−tω)‖22

+‖∇v1(s, θ−tω, v
0
1(θ−tω))‖22 + ‖∇z1(θs−tω)‖22

]
exp ((s− t)M) ds

≤ C1 + C2

∫ tD(ω)

0

[
‖v1

2(s, θ−tω, 0)‖22 + ‖v1(s, θ−tω, v
0
1(θ−tω))‖22

]
exp ((s− t)M) ds

+ C2

∫ t

tD(ω)

[
‖v1

2(s, θ−tω, 0)‖22 + ‖v1(s, θ−tω, v
0
1(θ−tω))‖22

]
exp ((s− t)M) ds

+ C3 exp(−Mt)(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) + C4

∫ t

0
exp(M(s− t))

× (‖z2(θs−tω)‖22 + ‖z1(θs−tω)‖pp + ‖z1(θs−tω)‖22 + ‖∇z1(θs−tω)‖22)ds,
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and using (5.46) as well as the absorption property, this can be estimated further

‖∇v1
2(t, θ−tω, 0)‖22

≤ C1 + C2

(
‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−Mt) tD(ω)

+ C5tD(ω)

∫ tD(ω)

0
exp (M(τ − t))

(
‖z2(θτ−tω)‖22 + ‖z1(θτ−tω)‖pp

)
dτ

+ C2

∫ t

tD(ω)
ρ(ω) exp ((s− t)M) ds

+ C3 exp(−Mt)(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22)

+ C4

∫ 0

−∞
exp(Ms)(‖z2(θsω)‖22 + ‖z1(θsω)‖pp + ‖z1(θsω)‖22 + ‖∇z1(θsω)‖22)ds

≤ C1 + C2(tD(ω))
(
‖v0

1(θ−tω)‖22 + ‖v0
2(θ−tω)‖22

)
exp (−Mt) + C3ρ(ω)

+ C4(tD(ω))

∫ 0

−∞
exp(Ms)

× (‖z2(θsω)‖22 + ‖z1(θsω)‖pp + ‖z1(θsω)‖22 + ‖∇z1(θsω)‖22)ds.

Finally, since ‖z2(θsω)‖22, ‖z1(θsω)‖pp, ‖z1(θsω)‖22, ‖∇z1(θsω)‖22 (see Lemma 5.10 and
Remark 5.11) and ‖v0

1(θ−tω)‖22, ‖v0
2(θ−tω)‖22 (by assumption) are tempered random

variables, we can combine the right hand side into one tempered random variable
ρ2(ω) and this concludes the proof.

Theorem 5.22. Let Assumptions 5.2 and 5.4 hold. The random dynamical system
defined in Lemma 5.13 has a unique T -random attractor A.

Proof. By the previous lemmas there exist a compact absorbing set given by (5.33)
in T for the RDS ψ. Thus Theorem 4.19 guarantees the existence of a unique T -
random attractor. By conjugacy the existence of a unique T -random attractor for
ϕ follows.

5.3 Stochastic partly dissipative systems with multi-
plicative noise

In this section we analyse the same partly dissipative system as before, however,
this time we perturb it by linear multiplicative noise. Note that the general strategy
to prove the existence of an attractor is similar to the case with additive noise.

Again, let D ⊂ Rn be a bounded open set with regular boundary. We con-
sider the following partly dissipative system perturbed by the same multiplicative
Stratonovich noise in both components

du1 = (d∆u1 − h(x, u1)− f(x, u1, u2)) dt+ u1 ◦ dB,

du2 = (−σ(x)u2 − g(x, u1)) dt+ u2 ◦ dB,
(5.47)
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where u1,2 = u1,2(t, x), (t, x) ∈ [0, T ] × D, T > 0, (B(t))t∈R is a two-sided, real-
valued Wiener process. The symbol ◦ indicates that the equation is understood in
the Stratonovich sense. The system is equipped with initial conditions

u1(0, x) = u0
1(x) ∈ L2(D), u2(0, x) = u0

2(x) ∈ L2(D),

and a homogeneous Dirichlet boundary condition for the first component. We make
the same assumptions on the reaction terms as in the setting with additive noise,
that is, throughout this section let Assumptions 5.2 hold. Again, we let A denote
the realization of the Laplace operator with Dirichlet boundary conditions.

5.3.1 Associated RDS

We consider the MDS (Ω,F ,P, θ) associated to the two-sided Brownian motion,
as defined in Example 4.2. Let (t, ω) 7→ z(θtω) denote the stationary Ornstein-
Uhlenbeck process defined via

dz = −z dt+ dω. (5.48)

Let u(t) = (u1(t), u2(t))> be a solution of (5.47) and consider the following Doss-
Sussmann transformations

v1(t) := exp(−z(θtω))u1(t), (5.49)

v2(t) := exp(−z(θtω))u2(t). (5.50)

Using the chain rule, we verify that v1 and v2 satisfy the following equations

dv1 = exp(−z(θtω))du1 − exp(−z(θtω))u1 ◦ dz1(θtω)

= d∆v1dt+ v1z(θtω)dt− exp(−z(θtω))(h(x, exp(z(θtω))v1)

+ f(x, exp(z(θtω))v1, exp(z(θtω))v2)) dt, (5.51)

and

dv2 = exp(−z(θtω))du2 − exp(−z(θtω))u2 ◦ dz(θtω)

= −σ(x)v2dt+ v2z(θtω) dt− exp(−z(θtω))g(x, exp(z(θtω))v1)dt. (5.52)

Furthermore, the transformed initial conditions read

v0
1(x) := v1(0, x) = exp(−z(ω))u0

1(x),

v0
2(x) := v2(0, x) = exp(−z(ω))u0

2(x).

Remark 5.23. The setting where the equations are perturbed multiplicatively by
finitely many real-valued Wiener processes can be treated analogously by adapting
the transformation (5.49)-(5.50) accordingly.
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Lemma 5.24. The map ψ : R+ × Ω×H→ H,

ψ(t, ω, (v0
1, v

0
2)) := (v1(t, ω, v0

1), v2(t, ω, v0
2))>,

defines a continuous RDS over the MDS (Ω,F ,P, θ).

Proof. The Lemma can be proved similar to Lemma 5.12.

Lemma 5.25. The map ϕ : R+ × Ω×H→ H,

ϕ(t, ω, (u0
1, u

0
2)) := (u1(t, ω, u0

1), u2(t, ω, u0
2))>,

defines a continuous RDS over the MDS (Ω,F ,P, θ).

Proof. The argument is similar to the proof of Lemma 5.13; here, with the trans-
formation T : Ω×H→ H

T (ω, v) := exp(z(ω))v.

As in the case for additive noise, we will first derive the existence of an absorbing
set for the RDS ψ and subsequently we will use a splitting argument to construct a
compact absorbing set.

5.3.2 Bounded absorbing set

Lemma 5.26. Let Assumptions 5.2 hold. Then there exists a bounded T -absorbing
set B for the RDS ψ.

Proof. Let (v1, v2) be a solution of (5.51)-(5.52), then we compute

1

2

d

dt
(‖v1‖22 + ‖v2‖22)

= −d‖∇v1‖22 + z(θtω)(‖v1‖22 + ‖v2‖22)−
∫
D
σ(x)|v2|2dx

− exp(−z(θtω))

∫
D
h(x, exp(z(θtω))v1)v1dx︸ ︷︷ ︸
=:I1

− exp(−z(θtω))

∫
D
f(x, exp(z(θtω))v1, exp(z(θtω))v2))v1dx︸ ︷︷ ︸

=:I2

− exp(−z(θtω))

∫
D
g(x, exp(z(θtω))v1)v2dx︸ ︷︷ ︸
=:I3

.
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By using the boundedness of σ(x), we derive

−
∫
D
σ(x)v2

2(t)dx ≤ −δ‖v2‖22.

Furthermore, making use of Assumptions 5.2 we compute

I1 =− exp(−2z(θtω))

∫
D
h(x, exp(z(θtω))v1) exp(z(θtω))v1dx

≤ exp(−2z(θtω))

∫
D
δ3 − δ1|v1 exp(z(θtω))|pdx

=C1 exp(−2z(θtω))− δ1 exp(−2z(θtω))‖u1‖pp,

I2 ≤ exp(−z(θtω))δ4

∫
D

(1 + | exp(z(θtω))v1|p1 + | exp(z(θtω))v2|)v1dx

= exp(−2z(θtω))δ4

∫
D

(1 + |u1|p1 + |u2|)|u1|dx,

and

I3 = − exp(−2z(θtω))

∫
D
g(x, u1)u2dx

≤ δ7 exp(−2z(θtω))

∫
D

(1 + |u1|)|u2|dx.

Combining the last two estimates yields

I2 + I3 ≤ exp(−2z(θtω))(δ4 + δ7)

∫
D
|u1|+ |u1|p1+1 + (1 + |u1|)|u2|dx

≤ exp(−2z(θtω))(δ4 + δ7)

∫
D
|u1|+ |u1|p1+1 + C(1 + |u1|)2 +

δ

2(δ4 + δ7)
|u2|2dx

≤ exp(−2z(θtω))
δ

2
‖u2‖22 + exp(−2z(θtω))C

∫
D

1 + |u1|qdx

≤ δ

2
‖v2‖22 + exp(−2z(θtω))C + exp(−2z(θtω))

δ1

2
‖u1‖pp,

where we have used equation (5.23) as in the case with additive noise. In total, we
arrive at

d

dt
(‖v1‖22 + ‖v2‖22) ≤ −2d‖∇v1‖22 + 2z(θtω)(‖v1‖22 + ‖v2‖22)− 2δ‖v2‖22 (5.53)

+ C exp(−2z(θtω))− 2δ1 exp(−2z(θtω))‖u1‖pp
+ δ‖v2‖22 + exp(−2z(θtω))δ1‖u1‖pp

≤ −2d

c
‖v1‖22 + 2z(θtω)(‖v1‖22 + ‖v2‖22)− δ‖v2‖22

+ C exp(−2z(θtω))− δ1 exp(−2z(θtω))‖u1‖pp
≤ (2z(θtω)− C1)(‖v1‖22 + ‖v2‖22) + C exp(−2z(θtω)),
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where we have used Poincaré’s inequality. Applying Gronwall’s inequality we obtain

‖v1(ω)‖22 + ‖v2(ω)‖22 ≤ (‖v0
1(ω)‖22 + ‖v0

2(ω)‖22) exp

(∫ t

0
(2z(θτω)− C1)dτ

)
+

∫ t

0
C exp(−2z(θsω)) exp

(∫ t

s
(2z(θτω)− C1)dτ

)
ds

= (‖v0
1(ω)‖22 + ‖v0

2(ω)‖22) exp

(
2

∫ t

0
z(θτω)dτ − C1t

)
+

∫ t

0
C exp

(
−2z(θsω) + 2

∫ t

s
z(θτω)dτ − C1(t− s)

)
ds.

We replace ω by θ−tω and perform a change of variables

‖v1(t, θ−tω, v
0
1(θ−tω))‖22 + ‖v2(t, θ−tω, v

0
2(θ−tω))‖22

≤ (‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp

(
2

∫ t

0
z(θτ−tω)dτ − C1t

)
+

∫ t

0
C exp

(
−2z(θs−tω) + 2

∫ t

s
z(θτ−tω)dτ − C1(t− s)

)
ds

= (‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp

(
2

∫ 0

−t
z(θτω)dτ − C1t

)
+ C

∫ t

0
exp

(
−2z(θs−tω) + 2

∫ 0

s−t
z(θτω)dτ − C1(t− s)

)
ds

= (‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp

(
2

∫ 0

−t
z(θτω)dτ − C1t

)
+ C

∫ 0

−t
exp

(
−2z(θsω) + 2

∫ 0

s
z(θτω)dτ + C1s

)
ds.

Now, let D ∈ T be an arbitrary tempered set and (v0
1, v

0
2)(θ−tω) ∈ D(θ−tω). By

(4.3) we have

lim
t→∞

(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp(−C1/2t) = 0.

Furthermore, by Proposition 4.25 (ii)

lim
t→∞

1

t

∫ 0

−t
2z(θτω)dτ = 2 lim

t→−∞

1

t

∫ t

0
z(θτω)dτ = 0,

thus for every ω ∈ Ω and every 0 < ε < C1/2 there exists t0 such that for all t ≥ t0∣∣∣∣1t
∫ 0

−t
2z(θτω)dτ

∣∣∣∣ < C1/2− ε,
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and thus

exp

(
−C1/2t+

∫ 0

−t
2z(θτω)dτ

)
= exp

(
t

(
−C1/2 +

1

t

∫ 0

−t
2z(θτω)dτ

))
< exp(−εt).

Hence,

lim
t→∞

exp(−C1/2t) exp

(∫ 0

−t
2z(θτω)dτ

)
= 0,

and we have in total

lim
t→∞

(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp(−C1t) exp

(∫ 0

−t
2z(θτω)dτ

)
= 0. (5.54)

Therefore, we obtain

lim
t→∞
‖v1(t, θ−tω, v

0
1(θ−tω))‖22 + ‖v2(t, θ−tω, v

0
2(θ−tω))‖22

≤ C
∫ 0

−∞
exp

(
−2z(θsω) +

∫ 0

s
2z(θτω)dτ + C1s

)
ds =: ρ(ω)2.

By Proposition 4.25 (i) and (iii) for any ε > 0 and t < 0 small enough

|z(θs+tω)| < ε|s+ t|,
∫ 0

t
|z(θτω)| − E|z(ω)|dτ < ε|t|.

Thus for any c > 0 we have for t < 0 small enough

exp(ct)ρ(θtω)2

≤ exp(ct)C

∫ 0

−∞
exp

(
−2ε(t+ s) + 2

∫ 0

s+t
|z(θτω)| − E|z(ω)|dτ

+2

∫ 0

t
|z(θτω)| − E|z(ω)|dτ + sE|z(ω)|+ C1s

)
ds

≤ exp(ct− 6εt)C

∫ 0

−∞
exp (−4εs+ sE|z(ω)|+ C1s) ds,

that is, choosing ε < min{c/6, (E|z(ω)| + C1)/4}, the right hand side converges to
zero for t→ −∞. A similar argument can be made for t→∞. It follows, that ρ(ω)
is a tempered random variable.

Hence, there exists η > 0 such that

B(ω) = B(0, ρ(ω) + η)

is a bounded, tempered T -absorbing set for the RDS ψ. We denote the absorption
time as tD(ω).
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5.3.3 Compact absorbing set

We perform a splitting argument as in the case with additive noise. Consider the
equations

dv1
2(t)

dt
= −σ(x)v1

2(t) + v1
2(t)z(θtω)− exp(−z(θtω))g(x, exp(z(θtω))v1), (5.55)

with v1
2(0) = 0 and

dv2
2(t)

dt
= −σ(x)v2

2(t) + v2
2(t)z(θtω) = (z(θtω)− σ(x))v2

2(t), (5.56)

with v2
2(0) = v0

2.

Lemma 5.27. Let Assumptions 5.2 hold. Let D ⊂ L2(D) be tempered. Then for
v0

2 ∈ D we have
lim
t→∞
‖v2

2(t, θ−tω, v
0
2(θ−tω))‖22 = 0.

Proof. The solution to (5.56) is given by

v2
2(t) = v0

2 exp

(∫ t

0
(z(θsω)− σ(x))ds

)
and thus

lim
t→∞
‖v2

2(t, θ−tω, v
0
2(θ−tω))‖22

= lim
t→∞

∥∥∥∥v0
2(θ−tω) exp

(∫ t

0
z(θs−tω)ds− tσ(x)

)∥∥∥∥2

2

≤ lim
t→∞

exp(−2δt) exp

(
2

∫ 0

−t
z(θsω)ds

)
‖v0

2(θ−tω)‖22

= 0,

where for the last equality the same argument that was used to prove equation (5.54)
can be applied.

Lemma 5.28. Let Assumptions 5.2 hold. Let D ∈ T and (v0
1, v

0
2) ∈ D. Then, for

t ≥ tD(ω) and r > 0∫ t+r

t
‖∇v1(s, θ−t−rω, v

0
1(θ−t−rω))‖22ds ≤ R(ω) (5.57)

and ∫ t+r

t
‖v1(s, θ−t−r, v

0
1(θ−t−rω))‖ppds ≤ R̂(ω) (5.58)

where R(ω), R̂(ω) are tempered random variables.
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Proof. From (5.53) we have

d

dt
(‖v1‖22 + ‖v2‖22)

≤ −2d‖∇v1‖22 + (2z(θtω)− C1)(‖v1‖22 + ‖v2‖22) + C exp(−2z(θtω)).

Applying Gronwall’s inequality over the interval [t, t+ r] yields

‖v1(t+ r)‖22 + ‖v2(t+ r)‖22

≤ (‖v1(t)‖22 + ‖v2(t)‖22) exp

(∫ t+r

t
(2z(θsω)− C1)ds

)
+

∫ t+r

t
(C exp(−2z(θsω)− 2d‖∇v1(s)‖22) exp

(∫ t+r

s
(2z(θτω)− C1)dτ

)
ds,

and thus

∫ t+r

t
2d‖∇v1(s)‖22 exp

(∫ t+r

s
(2z(θτω)− C1)dτ

)
ds

≤ (‖v1(t)‖22 + ‖v2(t)‖22) exp

(∫ t+r

t
2z(θsω)ds− C1r

)
+

∫ t+r

t
C exp(−2z(θsω)) exp

(∫ t+r

s
(2z(θτω)− C1)dτ

)
ds.

Now, we replace ω by θ−t−rω and obtain

∫ t+r

t
2d‖∇v1(s, θ−t−rω, v

0
1(θ−t−rω))‖22 exp

(
−2 max
−r≤τ≤0

|z(θτω)| − C1r

)
ds

≤
∫ t+r

t
2d‖∇v1(s, θ−t−rω, v

0
1(θ−t−rω))‖22 exp

(∫ t+r

s
(2z(θτ−t−rω)− C1)dτ

)
ds

≤ (‖v1(t, θ−t−rω, v
0
1(θ−t−rω))‖22 + ‖v2(t, θ−t−rω, v

0
2(θ−t−rω))‖22)

× exp

(∫ t+r

t
2z(θs−t−rω)ds− C1r

)
+

∫ t+r

t
C exp(−2z(θs−t−rω)) exp

(∫ t+r

s
(2z(θτ−t−rω)− C1)dτ

)
ds,
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and therefore, making use of t ≥ tD(ω),∫ t+r

t
‖∇v1(s, θ−t−rω, v

0
1(θ−t−rω))‖22 ds

≤ 1

2d
(‖v1(t, θ−t−rω, v

0
1(θ−t−rω))‖22 + ‖v2(t, θ−t−rω, v

0
2(θ−t−rω))‖22)

× exp

(∫ t+r

t
2z(θs−t−rω)ds− C1r

)
exp

(
2 max
−r≤τ≤0

|z(θτω)|+ C1r

)
+

1

2d

∫ t+r

t
C exp(−2z(θs−t−rω)) exp

(∫ t+r

s
(2z(θτ−t−rω)− C1)dτ

)
ds

× exp

(
2 max
−r≤τ≤0

|z(θτω)|+ C1r

)
≤ 1

2d
ρ(θ−rω)2 exp

(
4 max
−r≤τ≤0

|z(θτω)|
)

+ exp

(
2 max
−r≤τ≤0

|z(θτω)|+ C1r

)
× 1

2d

∫ 0

−r
C exp(−2z(θsω)) exp

(∫ 0

s
(2z(θτω))dτ + C1s

)
ds

≤ 1

2d
ρ(θ−rω)2 exp

(
4 max
−r≤τ≤0

|z(θτω)|
)

+ exp

(
2 max
−r≤τ≤0

|z(θτω)|+ C1r

)
× 1

2d

∫ 0

−r
C exp

(
4 max
−r≤s≤0

|z(θsω)|
)

exp (C1s) ds

≤ 1

2d
ρ(θ−rω)2 exp

(
4 max

0≤τ≤r
|z(θ−τω)|

)
+ C exp

(
6 max

0≤s≤r
|z(θ−sω)|+ C1r

)
(1− exp (−C1r))

=: R(ω).

Now, ρ(ω) is tempered and so is ρ(θ−rω). Furthermore, by Proposition 4.25 (i) we
have for K > 0

lim
t→±∞

log(exp(K max0≤τ≤r |z(θt−τω)|))
|t|

= K lim
t→±∞

max0≤τ≤r |z(θt−τω)|
|t|

= 0.

Therefore, recalling Lemma 4.7, R(ω) is a tempered random variable and (5.57)
follows. Likewise, (5.53) yields

d

dt
(‖v1‖22 + ‖v2‖22)

≤ −δ1 exp((p− 2)z(θtω))‖v1‖pp + (2z(θtω)− C1)(‖v1‖22 + ‖v2‖22) + C exp(−2z(θtω)),

and with a similar argument as used above we can also show (5.58).
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Lemma 5.29. Let Assumptions 5.2 hold. Let D ∈ T and (v0
1, v

0
2) ∈ D. Further-

more, let r > 0 be arbitrary. Then for t ≥ tD(ω) + r we have

∫ t+r

t
‖v1(s, θ−t−rω, v

0
1(θ−t−rω))‖2p−2

2p−2 ds ≤ Q(ω),

where Q(ω) is a tempered random variable.

Proof. We multiply (5.51) by |v1|p−2v1 and integrate over D. Making use of As-
sumptions 5.2, we compute

1

p

d

dt

∫
D
|v1|pdx

= d

∫
D
4v1|v1|p−2v1dx+ z(θtω)

∫
D
|v1|pdx

− exp(−z(θtω))

∫
D
h(x, exp(z(θtω))v1)|v1|p−2v1dx

− exp(−z(θtω))

∫
D
f(x, exp(z(θtω))v1, exp(z(θtω))v2)|v1|p−2v1dx

≤ −d(p− 1)

∫
D
|∇v1|2|v1|p−2dx+ z(θtω)

∫
D
|v1|pdx

− exp(−2z(θtω))

∫
D
|v1|p−2(δ1| exp(z(θtω))v1|p − δ3)dx

+ exp(−z(θtω))

∫
D
δ4(1 + | exp(z(θtω))v1|p1 + | exp(z(θtω))v2|)|v1|p−1dx

≤ z(θtω)

∫
D
|v1|pdx+ δ3 exp(−2z(θtω))

∫
D
|v1|p−2dx

− δ1 exp((p− 2)z(θtω))

∫
D
|v1|2p−2dx+ δ4 exp(−z(θtω))

∫
D
|v1|p−1dx

+ δ4 exp((p1 − 1)z(θtω))

∫
D
|v1|p1+p−1dx+ δ4

∫
D
|v2||v1|p−1dx

≤ z(θtω)

∫
D
|v1|pdx−

δ1

4
exp((p− 2)z(θtω))

∫
D
|v1|2p−2dx+ δ4

∫
D
|v2||v1|p−1dx

+ C1 exp(C2|z(θtω)|)

≤ z(θtω)

∫
D
|v1|pdx−

δ1

4
exp((p− 2)z(θtω))

∫
D
|v1|2p−2dx+

δ1

8
exp((p− 2)z(θtω))

×
∫
D
|v1|2p−2dx+ C3 exp(C4|z(θtω)|)‖v2‖22 + C1 exp(C2|z(θtω)|).
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Rearranging the terms further yields

1

p

d

dt

∫
D
|v1|pdx

≤ δ1(p− 2)

8
z(θtω)

∫
D
|v1|2p−2dx+ C4z(θtω)− δ1

8
exp((p− 2)z(θtω))

×
∫
D
|v1|2p−2dx+ C1 exp(C2|z(θtω)|)(1 + ‖v2‖22)

≤ δ1(p− 2)

8
z(θtω)

∫
D
|v1|2p−2dx− δ1

8
((p− 2)z(θtω) + 1)

∫
D
|v1|2p−2dx

+ C4|z(θtω)|+ C1 exp(C2|z(θtω)|)(1 + ‖v2‖22)

≤ −δ1

8

∫
D
|v1|2p−2dx+ C1 exp(C2|z(θtω)|)(1 + ‖v2‖22). (5.59)

Therefore

d

dt
‖v1‖pp ≤ −

∫
D
|v1|pdx+ C1 exp(C2|z(θtω)|)(1 + ‖v2‖22) + C3

= −‖v1‖pp + C1 exp(C2|z(θtω)|) + C1 exp(C2|z(θtω)|)‖v2‖22 + C3.

Now, applying the uniform Gronwall lemma we obtain

‖v1(t+ r, ω, v0
1(ω))‖pp

≤ 1

r

∫ t+r

t
‖v1(s, ω, v0

1(ω))‖ppds+ C1

∫ t+r

t
exp(C2|z(θsω)|)ds

+ C1

∫ t+r

t
exp(C2z(θsω))‖v2(s, ω, v0

2(ω))‖22ds+ C3r,

and replacing ω by θ−t−rω yields for t ≥ tD(ω)

‖v1(t+ r, θ−t−rω, v
0
1(θ−t−rω))‖pp

≤ 1

r

∫ t+r

t
‖v1(s, θ−t−rω, v

0
1(θ−t−rω))‖ppds+ C1

∫ t+r

t
exp(C2|z(θs−t−rω)|)ds

+

∫ t+r

t
C1 exp(C2z(θs−t−rω))‖v2(s, θ−t−rω, v

0
2(θ−t−rω))‖22ds+ C3r

≤ 1

r
R̂(ω) + C1r exp(C2 max

0≤s≤r
|z(θ−sω)|)

+ C1r exp(C2 max
0≤s≤r

|z(θ−sω))| max
0≤s≤r

ρ(θ−sω)2 + C3r

=: S(ω), (5.60)

where we have used (5.58) and the absorption property from Lemma 5.26. By similar
arguments as in the proof of Lemma 5.28 S(ω) is a tempered random variable.
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Now, (5.59) also yields

d

dt
‖v1‖pp ≤ −

δ1

8
‖v1‖2p−2

2p−2 + C1 exp(C2|z(θtω)|)(1 + ‖v2‖22).

Integrating between t and t+ r

δ1

8

∫ t+r

t
‖v1(s, ω, v0

1(ω))‖2p−2
2p−2ds

≤ ‖v1(t, ω, v0
1(ω))‖pp +

∫ t+r

t
C1 exp(C2|z(θsω)|)(1 + ‖v2(s, ω, v0

2(ω))‖22)ds,

replacing ω by θ−t−rω, yields further

∫ t+r

t
‖v1(s, θ−t−rω, v

0
1(θ−t−rω))‖2p−2

2p−2ds

≤ C‖v1(t, θ−t−rω, v
0
1(θ−t−rω))‖pp

+

∫ t+r

t
C1 exp(C2|z(θs−t−rω)|)(1 + ‖v2(s, θ−t−rω, v

0
2(θ−t−rω))‖22)ds

≤ C‖v1(t, θ−t−rω, v
0
1(θ−t−rω))‖pp

+ C1 exp(C2 max
0≤s≤r

|z(θ−sω)|)
(
r +

∫ t+r

t
‖v2(s, θ−t−rω, v

0
2(θ−t−rω))‖22ds

)
.

For t ≥ tD(ω) + r we can conclude with (5.60) and with the absorption property
from Lemma 5.26∫ t+r

t
‖v1(s, θ−t−rω, v

0
1(θ−t−rω))‖2p−2

2p−2ds

≤ CS(θ−rω) + C1 exp(C2 max
0≤s≤r

|z(θ−sω)|)(r + r max
0≤s≤r

ρ(θ−sω)2)

=: Q(ω),

where Q(ω) is tempered. This concludes the proof.

Lemma 5.30. Let Assumptions 5.2 hold. Let D ∈ T and (v0
1, v

0
2) ∈ D. Assume

that t ≥ tD(ω) + 2r for some r > 0, then

‖∇v1(t, θ−tω, v
0
1(θ−tω))‖22 ≤ ρ1(ω), (5.61)

where ρ1(ω) is tempered.
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Proof. We take formally the inner product of d
dtv1 with −4v1 and calculate

1

2

d

dt
‖∇v1‖22 =

〈
d

dt
v1,−4v1

〉
= −d‖4v1‖22 − z(θtω)

∫
D
v14v1dx

+ exp(−z(θtω))

∫
D
δ8(1 + | exp(z(θtω))v1|p−1)|4v1|dx

+ exp(−z(θtω))

∫
D
δ4(1 + | exp(z(θtω))v1|p1 + | exp(z(θtω))v2|)|4v1|dx

= −d‖4v1‖22 + z(θtω)

∫
D
∇v1∇v1dx+ C exp(−z(θtω))

×
∫
D

(1 + | exp(z(θtω))v1|p1 + | exp(z(θtω))v2|+ | exp(z(θtω))v1|p−1)|4v1|dx

≤ −d‖4v1‖22 + z(θtω)‖∇v1‖22 +
d1

2
‖4v1‖22 + C exp(−2z(θtω))

×
∫
D

(1 + | exp(z(θtω))v1|p1 + | exp(z(θtω))v2|+ | exp(z(θtω))v1|p−1)2dx

≤ −dc
2
‖∇v1‖22 + z(θtω)‖∇v1‖22

+ C exp(−2z(θtω))

∫
D

(1 + | exp(z(θtω))v2|2 + | exp(z(θtω))v1|2p−2)dx,

and thus

d

dt
‖∇v1‖22
≤ (2z(θtω)− dc)‖∇v1‖22

+ C1 exp(−2z(θtω)) + C2‖v2‖22 + C exp((2p− 4)z(θtω))‖v1‖2p−2
2p−2︸ ︷︷ ︸

=:h(t)

.

Now, we apply once more the uniform Gronwall lemma and we obtain for t ≥ r

‖∇v1(t+ r, ω, v0
1(ω))‖22

≤
(

1

r

∫ t+r

t
‖∇v1(s, ω, v0

1(ω))‖22ds+

∫ t+r

t
C1 exp(−2z(θsω))

+ C2‖v2(s, ω, v0
2(ω))‖22 + C exp((2p− 4)z(θsω))‖v1(s, ω, v0

1(ω))‖2p−2
2p−2ds

)
× exp

(∫ t+r

t
(2z(θsω)− dc)ds

)
.
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Replacing ω by θ−t−rω, we obtain for t ≥ r + tD(ω)

‖∇v1(t+ r, θ−t−rω, v
0
1(θ−t−rω))‖22

≤
(

1

r

∫ t+r

t
‖∇v1(s, θ−t−rω, v

0
1(θ−t−rω))‖22ds+

∫ t+r

t
h(s, θ−t−rω)ds

)
× exp

(∫ t+r

t
(2z(θs−t−rω)− dc)ds

)
≤
(

1

r
R(ω) +

∫ t+r

t
C1 exp(−2z(θs−t−rω)) + C2‖v2(s, θ−t−rω, v

0
2(θ−t−rω))‖22

+ C exp((2p− 4)z(θs−t−rω))‖v1(s, θ−t−rω, v
0
1(θ−t−rω))‖2p−2

2p−2ds
)

× exp

(∫ 0

−r
2z(θsω)ds

)
≤
(

1

r
R(ω) +

∫ 0

−r
C1 exp(−2z(θsω))ds+

∫ t+r

t
C2‖v2(s, θ−t−rω, v

0
2(θ−t−rω))‖22ds

+C

∫ t+r

t
exp((2p− 4)z(θs−t−rω))‖v1(s, θ−t−rω, v

0
1(θ−t−rω))‖2p−2

2p−2ds

)
× exp

(∫ 0

−r
2z(θsω)ds

)
≤
(

1

r
R(ω) + C1r exp(2 max

0≤s≤r
|z(θ−sω)|) +

∫ t+r

t
C2‖v2(s, θ−t−rω, v

0
2(θ−t−rω))‖22ds

+C exp((2p− 4) max
0≤τ≤r

|z(θ−τω)|)
∫ t+r

t
‖v1(s, θ−t−rω, θ−t−rω)‖2p−2

2p−2ds

)
× exp

(
2r max

0≤s≤r
|z(θ−sω)|

)
≤
(

1

r
R(ω) + C1r exp(2 max

0≤s≤r
|z(θ−sω)|) +

∫ t+r

t
C2ρ(θs−t−rω)2ds

+C exp

(
(2p− 4) max

0≤τ≤r
|z(θ−τω)|

)
Q(ω)

)
exp

(
2r max

0≤s≤r
|z(θ−sω)|

)
≤
(

1

r
R(ω) + C1r exp(2ε max

0≤s≤r
|z(θ−sω)|) + C2r max

0≤s≤r
ρ(θ−sω)2

+C exp

(
(2p− 4) max

0≤τ≤r
|z(θ−τω)|

)
Q(ω)

)
exp

(
2r max

0≤s≤r
|z(θ−sω)|

)
= ρ1(ω)

The temperedness of all terms involved imply the temperedness of ρ1(ω). Hence,
for t ≥ tD + 2r the statement follows.
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Lemma 5.31. Let Assumptions 5.2 hold. Let D ∈ T and (v0
1, v

0
2) ∈ D. Assume

that t ≥ tD + 2r for some r > 0. Then

‖∇v1
2(t, θ−tω, 0)‖22 ≤ ρ2(ω), (5.62)

where ρ2(ω) is a tempered random variable.

Proof. The proof is very similar to the one for the analogous lemma in the case of
additive noise. We have

1

2

d

dt
‖∇v1

2‖22 =

〈
d

dt
v1

2,−∆v1
2

〉
=
〈
(z(θtω)− σ(x))v1

2 − exp(−z(θtω))g(x, exp(z(θtω))v1),−∆v1
2

〉
=
〈
(σ(x)− z(θtω))v1

2,∆v
1
2

〉︸ ︷︷ ︸
=:L1

+
〈
exp(−z(θtω))g(x, exp(z(θtω))v1),∆v1

2

〉︸ ︷︷ ︸
=:L2

.

We estimate L1 and L2 separately,

L1 =

∫
D

(σ(x)− z(θtω))v1
2∆v1

2dx

= −
∫
D
∇((σ(x)− z(θtω))v1

2)∇v1
2dx

≤ (z(θtω)− δ)‖∇v1
2‖22 −

∫
D
∇σ(x)v1

2∇v1
2dx,

and

L2 =

∫
D

exp(−z(θtω))g(x, exp(z(θtω))v1)∆v1
2 dx

= − exp(−z(θtω))

∫
D
∇g(x, exp(z(θtω))v1) · ∇v1

2 dx

= − exp(−z(θtω))

×
∫
D

(∇g(x, exp(z(θtω))v1) + ∂ξg(x, exp(z(θtω))v1) exp(z(θtω))∇v1) · ∇v1
2 dx.

Hence,

d

dt
‖∇v1

2‖22 + 2(δ − z(θtω))‖∇v1
2‖22

≤ 1

δ

∫
D

(
|∇σ(x)v1

2|+ | exp(−z(θtω))∇g(x, exp(z(θtω))v1) + ∂ξg(x, exp(z(θtω))v1)∇v1|
)2

dx

+ δ‖∇v1
2‖22,
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and further with (5.7)

d

dt
‖∇v1

2‖22 + (δ − 2z(θtω))‖∇v1
2‖22

≤ 1

δ

∫
D

n∑
i=1

(
|∂xiσ(x)v1

2|+ exp(−z(θtω))|∂xig(x, exp(z(θtω))v1)|

+|∂ξg(x, exp(z(θtω))v1)∂xiv1|)2 dx

≤ 1

δ

∫
D

n∑
i=1

(
C|v1

2|+ δ5 exp(−z(θtω))(1 + exp(z(θtω))|v1|) + δ5|∂xiv1|
)2

dx

≤ 2

δ
(C + δ5 exp(−z(θtω)))2n

∫
D

(
|v1

2|+ 1 + exp(z(θtω))|v1|
)2

dx

+
2δ2

5

δ

∫
D

n∑
i=1

|∂xiv1|2 dx

≤ (C + C1 exp(−2z(θtω)))(‖v1
2‖22 + 1 + exp(2z(θtω))‖v1‖22) + C3‖∇v1‖22

≤ C1 + C2 exp(−2z(θtω)) + C3 exp(2|z(θtω)|)(‖v1
2‖22 + ‖v1‖22) + C4‖∇v1‖22,

where C := max1≤i≤n maxx∈D |∂xiσ(x)|.
Next, we apply Gronwall’s inequality while taking the initial condition into ac-

count and we obtain for t ≥ 0

‖∇v1
2‖22

≤
∫ t

0

[
C1 + C2 exp(−2z(θsω)) + C3 exp(2|z(θsω)|)(‖v1

2‖22 + ‖v1‖22) + C4‖∇v1‖22
]

× exp

(∫ t

s
(2z(θτω)− δ)dτ

)
ds. (5.63)

We have by (5.53), where M = min{δ, d/c},

d

dt
(‖v1‖22 + ‖v2‖22)

≤ −d‖∇v1‖22 + (2z(θtω)−M)(‖v1‖22 + ‖v2‖22) + C exp(−2z(θtω)).

Using Gronwall, this yields in particular∫ t

0
‖∇v1‖22 exp

(∫ t

s
(2z(θτω)−M)dτ

)
ds

≤ 1

d
(‖v0

1‖22 + ‖v0
2‖22) exp

(∫ t

0
(2z(θsω)−M)ds

)
+ C

∫ t

0
exp(−2z(θsω)) exp

(∫ t

s
(2z(θτω)−M)dτ

)
ds, (5.64)



5.3. MULTIPLICATIVE NOISE 157

as well as

‖v1‖22 + ‖v2‖22

≤ 1

d
(‖v0

1‖22 + ‖v0
2‖22) exp

(∫ t

0
(2z(θsω)−M)ds

)
+ C

∫ t

0
exp(−2z(θsω)) exp

(∫ t

s
(2z(θτω)−M)dτ

)
ds.

Using the last estimate, we obtain

∫ t

0
exp(2|z(θsω)|)(‖v1

2‖22 + ‖v1‖22) exp

(∫ t

s
(2z(θτω)−M)dτ

)
ds

≤ 1

d

∫ t

0
exp(2|z(θsω)|)(‖v0

1‖22 + ‖v0
2‖22) exp

(∫ s

0
(2z(θτω)−M)dτ

)
× exp

(∫ t

s
(2z(θτω)−M)dτ

)
ds

+ C

∫ t

0
exp(2|z(θsω)|)

∫ s

0
exp(−2z(θτω)) exp

(∫ t

τ
(2z(θrω)−M)dr

)
dτ

× exp

(∫ t

s
(2z(θτω)−M)dτ

)
ds

≤ 1

d
(‖v0

1‖22 + ‖v0
2‖22) exp(−Mt) exp

(∫ t

0
2z(θτω)dτ

)∫ t

0
exp(2|z(θsω)|)ds

+ C

(∫ t

0
exp(2|z(θsω)|) exp(M(s− t)) exp

(∫ t

s
2z(θτω)dτ

)
ds

)2

(5.65)

Now, using (5.64) and (5.65) and replacing ω by θ−tω we have from (5.63)

‖∇v1
2(t, θ−tω, 0)‖22

≤
∫ t

0
[C1 + C2 exp(−2z(θs−tω))] exp

(∫ t

s
(2z(θτ−tω)− δ)dτ

)
ds

+ C3

∫ t

0
exp(2|z(θs−tω)|)(‖v1

2(s, θ−tω, 0)‖22 + ‖v1(s, θ−tω, v
0
1(θ−tω))‖22)

× exp

(∫ t

s
(2z(θτ−tω)− δ)dτ

)
ds

+ C4

∫ t

0
‖∇v1(s, θ−tω, v

0
1(θ−tω))‖22 exp

(∫ t

s
(2z(θτ−tω)− δ)dτ

)
ds,
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and thus

‖∇v1
2(t, θ−tω, 0)‖22

≤
∫ t

0
[C1 + C2 exp(−2z(θs−tω))] exp

(∫ 0

s−t
(2z(θτω)dτ

)
exp(δ(s− t)) ds

+ C3(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp(−Mt) exp

(∫ t

0
2z(θτ−tω)dτ

)
×
∫ t

0
exp(2|z(θs−tω)|)ds

+ C4

(∫ t

0
exp(2|z(θs−tω)|) exp(M(s− t)) exp

(∫ t

s
2z(θτ−tω)dτ

)
ds

)2

+ C5(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp

(∫ t

0
(2z(θs−tω)−M)ds

)
+ C6

∫ t

0
exp(−2z(θs−tω)) exp

(∫ t

s
(2z(θτ−sω)−M)dτ

)
ds

≤
∫ 0

−∞
[C1 + C2 exp(−2z(θsω))] exp

(∫ 0

s
(2z(θτω)dτ

)
exp(δs) ds

+ C3(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp(−Mt) exp

(∫ 0

−∞
2z(θτω)dτ

)
×
∫ 0

−∞
exp(2|z(θsω)|)ds

+ C4

(∫ 0

−∞
exp(2|z(θsω)|) exp(Ms) exp

(∫ 0

s
2z(θτω)dτ

)
ds

)2

+ C5(‖v0
1(θ−tω)‖22 + ‖v0

2(θ−tω)‖22) exp(−Mt) exp

(∫ 0

−∞
2z(θsω)ds

)
+ C6

∫ 0

−∞
exp(−2z(θsω)) exp

(∫ 0

s
2z(θτω)dτ

)
exp(Ms)ds.

The right hand side can be combined into one tempered random variable ρ2(ω).

With the previous lemma the existence of a random attractor for the random
dynamical system ψ follows directly from Theorem 4.19 and by Theorem 4.23 this
leads to

Theorem 5.32. Let Assumptions 5.2 hold. Then the random dynamical system ϕ
generated by (u1, u2) has a unique T -random attractor A.
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5.4 Applications

We will give here two applications that fall into the class of systems considered in
our analysis above.

5.4.1 FitzHugh-Nagumo system

Let us consider the famous stochastic FitzHugh-Nagumo system, that is, in the
additive noise setting

du1 = (ν1∆u1 − p(x)u1 − u1(u1 − 1)(u1 − α1)− u2) dt+ B1dW1,
du2 = (α2u1 − α3u2) dt+ B2dW2,

(5.66)

with D = [0, 1] and αj ∈ R, j ∈ {1, 2, 3}, are fixed parameters and p ∈ C2(D). Here,
W1, W2 are cylindrical Wiener processes and we assume that Assumptions 5.4 are
satisfied. In the setting with multiplicative noise the system reads

du1 = (ν1∆u1 − p(x)u1 − u1(u1 − 1)(u1 − α1)− u2) dt+ u1 ◦ dB,
du2 = (α2u1 − α3u2) dt+ u2 ◦ dB,

(5.67)

where here B denotes a real-valued Wiener process. As mentioned earlier, this sys-
tem models the signal propagation in a neuron; in particular, the variable u1 denotes
the electrical potential and u2 is the so-called recovery variable that is associated
with the local concentration of potassium ions.

Such systems have been considered under various conditions by numerous au-
thors, see the references mentioned in Section 5.1. Our Assumptions 5.2 regarding
the reaction terms are satisfied in this example as follows: Identifying the terms in
(5.66) and (5.67) with the terms given in (5.3) we have

h(x, u1) = p(x)u1 + u1(u1 − 1)(u1 − α1), f(x, u1, u2) = u2,

σ(x)u2 = α3u2, g(x, u1) = −α2u1.

We have σ(x) = α3 and |f(x, u1, u2)| = |u2| , i.e., (5.6) and (5.5) are fulfilled.
Furthermore, |∂ug(x, u1)| = |α2| and |∂xig(x, u1)| = 0 for i = 1, . . . , n, hence (5.7)
is satisfied. Finally, as a polynomial with odd degree and negative coefficient for
the highest degree, h fulfils (5.4). Thus the analysis above guarantees the existence
of global mild solutions and the existence of a random pullback attractor for the
stochastic FitzHugh-Nagumo system on a bounded domain in both, the additive
and multiplicative linear noise setting.

5.4.2 The driven cubic-quintic Allen-Cahn model

The cubic-quintic Allen-Cahn (or real Ginzburg-Landau) equation is given by

∂tu = ∆u+ p1u+ u3 − u5, u = u(t, x), (5.68)
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where (t, x) ∈ [0, T ) × D, p1 ∈ R, is a fixed parameter and we will take D as
a bounded open domain with regular boundary. The cubic-quintic polynomial
non-linearity frequently occurs in the modelling of Euler buckling [VGVC07], as
a re-stabilization mechanism in paradigmatic models for fluid dynamics [MD14], in
normal form theory and travelling wave dynamics [KS98, DB94], as well as a test
problem for deterministic [Kue15c] and stochastic numerical continuation [Kue15c].
If we want to allow for time-dependent slowly-varying forcing on u and sufficiently
regular additive noise, then it is actually very natural to extend the model (5.68) to

du1 =
(
∆u1 + p1u1 + u3

1 − u5
1 − u2

)
dt+B1 dW1,

du2 = ε(p2u2 − q2u1) dt+B2 dW2,
(5.69)

where p2, q2, 0 < ε � 1 are parameters and B1, B2, W1, W2 are chosen as in the
previous example. One easily checks again that (5.69) fits our general framework as
h(x, u1) = −p1u1 − u3

1 + u5
1 satisfies the crucial assumption (5.4). The same holds

in the linear multiplicative noise setting, when the system reads

du1 =
(
∆u1 + p1u1 + u3

1 − u5
1 − u2

)
dt+ u1 ◦ dB,

du2 = ε(p2u2 − q2u1) dt+ u2 ◦ dB,

with real-valued Wiener process B.

5.5 Non-linear coupling: The stochastic Field-Noyes
system

Assumptions 5.2 exclude systems with a non-linear coupling between different com-
ponents. However, there are many systems relevant for applications that exhibit
such a structure. In the following we will analyse one of them, namely the Field-
Noyes system, in greater detail and show that here as well we can derive the existence
of a random attractor.

The Belousov-Zhabotinsky reaction is an oscillating reaction that was discovered
in the early 1950s by the biochemist B. Belousov (1893-1970), and it was further
investigated by the biophysicist A. Zhabotinsky (1938-2008). When performed in a
stirred container, oscillations in the concentrations of reactants and products cause
a periodic change of color of the solution (temporal oscillation). Performed in a
shallow, unstirred petri dish also spatio-temporal oscillations can be observed. The
Belousov-Zhabotinsky reaction is a classical example of non-equilibrium thermody-
namics that drives pattern-formation in natural systems.

R. Field, E. Körös and R. Noyes developed a mathematical model, today known
as the Field-Noyes model, to describe the chemical mechanism of the oscillating
Belousov-Zhabotinsky reaction in a simplified way [FKN72,FN74]. This model reads



5.5. STOCHASTIC FIELD-NOYES SYSTEM 161

as follows
∂u

∂t
= a4u+ ε−1(qw − uw + u− u2),

∂v

∂t
= b4v + u− v,

∂w

∂t
= d4w + δ−1(−qw − uw + cv),

(5.70)

in (0,∞) × D, where D ⊂ R3 is a bounded domain with regular boundary. Here,
u denotes the concentration of Bromous acid (HBrO2), v the concentration of
Cerium(4+) (Ce4+) and w denotes the concentration of the Bromide ion (Br−1).
The letters ε, q, δ, c as well as a, b, c, d denote positive constants. This deterministic
system has been analysed intensively; see for example [Yag09, Chapter 10], where
the existence of global solutions and attractors has been derived.

Again, we would like to analyse a stochastic version of (5.70) and, in particular,
investigate the long-term behaviour of solutions in terms of a random attractor. We
choose a perturbation by a linear multiplicative noise in the Stratonovich sense. In
particular, the influence of the state dependent noise becomes smaller the smaller the
concentration of the respective chemical, which seems to be a reasonable modelling
assumption for noise induced by internal fluctuations. That is, we consider the
following system in (0,∞)×D with D ⊂ Rn open, bounded with regular boundary

du = a∆u dt+ 1/ε(qw − uw + u− u2) dt+ σu ◦ dB,

dv = b∆v dt+ (u− v) dt+ σv ◦ dB,

dw = d∆w dt+ 1/δ(−qw − uw + cv) dt+ σw ◦ dB,

(5.71)

where (B(t))t∈R is a two-sided, real-valued Wiener process on a probability space
(Ω,P,F). Furthermore, σ > 0 controls the intensity of the noise. We equip the
system with non-negative initial conditions u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0,
w(0, x) = w0(x) ≥ 0 for x ∈ D and Neumann boundary conditions on ∂D

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0,

where n denotes the unit outward normal. As before, the dependence of u, v, w on
(t, x, ω) ∈ (0,∞) ×D × Ω will often be omitted or be indicated only partially. We
choose in this section n = 3, as we will need a certain Sobolev embedding later on
(see (5.72)) and since this choice also makes sense from a modelling point of view.

Similar systems with multiplicative noise have been analysed for example in
[Pha20] (stochastic Hindmarsh-Rose equations) and in [TY16] (stochastic Brussela-
tor system). In both publications the existence of a random attractor was shown
for the respective system.

Remark 5.33. Note that, as we consider here a well stirred solution, we include the
Laplace operator in every component as opposed to the partly dissipative structure
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from the previous sections. However, we anticipate that the partly dissipative case
could be handled again by a suitable splitting technique, as it was done in the
deterministic setting in [Mar89].

5.5.1 The Cauchy problem

First of all, we will rewrite (5.71) as an abstract Cauchy problem on a Hilbert space.
Let us define the spaces

H := L2(D)× L2(D)× L2(D), V := H1(D)×H1(D)×H1(D),

I :=


h1

h2

h3

 ∈ H : h1, h2, h3 ≥ 0

 .

We denote the norm on H as ‖ · ‖H and on V as ‖ · ‖V . Furthermore, we set

g := (u, v, w)>, g0 := (u0, v0, w0)>,

and we define the following operator in H

A :=

a∆− 1
ε 0 0

0 b∆− 1 0
0 0 d∆− q

δ

 ,

understood as the realization under homogeneous Neumann boundary conditions,
i.e.

D(A) =


h1

h2

h3

 : h1, h2, h3 ∈ H2(D),
∂h1

∂n
=
∂h2

∂n
=
∂h3

∂n
= 0 on ∂D

 .

By classical theory A generates an analytic semigroup on H that we denote as
(T (t))t≥0, see for example [Yag09, Theorem 2.19]. Note that the domains of frac-
tional powers of the sectorial operator −A are given, for 3/4 < η < 1, as

D((−A)η) =


h1

h2

h3

 : h1, h2, h3 ∈ H2η(D),
∂h1

∂n
=
∂h2

∂n
=
∂h3

∂n
= 0 on ∂D

 ,

and for 0 ≤ η < 3/4 as

D((−A)η) =


h1

h2

h3

 : h1, h2, h3 ∈ H2η(D)

 ,
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see [Yag09, Theorem 16.7]. We now fix some η with 3/4 < η < 1 and define the
non-linear operator f : D((−A)η)→ H as

f(g) := (f1(g), f2(g), f3(g))> :=

1/ε(qw − uw + 2u− u2)
u

1/δ(−uw + cv)

 .

In particular, we have by Sobolev embedding (see Theorem C.1 and recall that the
space dimension is n = 3) that

D((−A)η) ⊂ H2η(D)×H2η(D)×H2η(D) ⊂ C(D)× C(D)× C(D). (5.72)

With these definitions let us rewrite (5.71) as an abstract Cauchy problem on the
Hilbert space H

dg = (Ag + f(g))dt+ σg ◦ dB, t > 0,

g(0) = g0 ∈ I.
(5.73)

5.5.2 Random PDE system

As in the previous sections, we will transform the system of SPDEs (5.71) into
a system of random PDEs. Let (Ω,F ,P) denote the canonical probability space
associated to the Brownian motion and we identify B(t, ω) = ω(t) for ω ∈ Ω. We
define the following transformations

U(t) := exp(−σω(t))u(t),

V (t) := exp(−σω(t))v(t),

W (t) := exp(−σω(t))w(t).

(5.74)

Remark 5.34. For σ > 0 the stochastic process X(t) = exp(−σB(t)) is a solution
to the Stratonovich SDE dX(t) = −σX(t) ◦ dB(t). This follows immediately from
Itô’s formula and the conversion between Itô and Stratonovich differentials (see also
Subsection 3.1.2)

dX(t) = −σ exp(−σB(t)) dB(t) +
1

2
σ2 exp(−σB(t)) dt

= −σX(t) dB(t) +
1

2
(−σ)(−σX(t)) dt

= −σX(t) ◦ dB(t).

Using Remark 5.34 one can easily verify that the transformed random system is
given as

∂tU = a∆U − 1

ε
U + F1(U, V,W, t),

∂tV = b∆V − V + F2(U, V,W, t),

∂tW = d∆W − q

δ
W + F3(U, V,W, t),

(5.75)
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with the non-autonomous reaction terms

F1(U, V,W, t) :=
1

ε
(qW − exp(σω(t))UW + 2U − exp(σω(t))U2),

F2(U, V,W, t) := U,

F3(U, V,W, t) :=
1

δ
(− exp(σω(t))UW + cV ),

and with initial conditions in I

U(0, x) = exp(−σω(0))u0(x) = u0(x),

V (0, x) = exp(−σω(0))v0(x) = v0(x),

W (0, x) = exp(−σω(0))w0(x) = w0(x),

and homogeneous Neumann boundary conditions.

Remark 5.35. Note that for the transformation in (5.74) we used the Brownian
motion B(t, ω) instead of the corresponding Ornstein-Uhlenbeck process as used in
the transformation (5.49)-(5.50) in Section 5.3. Using directly the Brownian motion
has the advantage that no additional terms appear in the transformed equations,
like the v1z(θtω) in (5.49) and v2z(θtω) in (5.50).

Defining G := (U, V,W )>, G0 := (U(0, ·), V (0, ·),W (0, ·))> and F (G, t) :=
(F1(G, t), F2(G, t), F3(G, t))>, we can formulate the transformed problem as a non-
autonomous initial value problem on H

dG

dt
= AG+ F (G, t), t > 0

G(0, ω; 0, G0) = G0 = exp(−σω(0))g0 = g0 ∈ I,
(5.76)

where we denote the mild solution at time t with initial condition G0 at time 0 as
G = G(t, ω; 0, G0). The following two propositions establish the existence of local
solutions to (5.76) and their non-negativity.

Proposition 5.36. For any G0 ∈ H problem (5.76) possesses a unique local mild
solution G ∈ C([0, TG0 ], H), where TG0 > 0 depends on ‖G0‖H , satisfying the vari-
ation of constants formula

G(t) = T (t)G0 +

∫ t

0
T (t− s)F (G(s), s)ds, 0 ≤ t ≤ TG0 .

Proof. We want to invoke a classical existence result for local solutions of abstract
non-autonomous Cauchy problems in Banach spaces as stated in [Yag09, Chapter 4,
Section 6]. For that we need to ensure that the following local Lipschitz condition
is fulfilled [Yag09, Equation (4.51)]

‖F (G, t)− F (G̃, s)‖H
≤ ϕ(‖G‖H + ‖G̃‖H)(

‖(−A)η(G− G̃)‖H +
(
‖(−A)ηG‖H + ‖(−A)ηG̃‖H + 1

)[
|t− s|+ ‖G− G̃‖H

])
,
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for (G, t), (G̃, s) ∈ D((−A)η) × [0, T ], where ϕ is a continuous, increasing function
and T > 0. We compute

‖ exp(σω(t))U2 − exp(σω(s))Ũ2‖2
≤ ‖ exp(σω(t))U2 − exp(σω(t))Ũ2‖2 + ‖ exp(σω(t))Ũ2 − exp(σω(s))Ũ2‖2

≤ exp

(
σ sup
s∈[0,T ]

|ω(s)|

)
‖U2 − Ũ2‖2 + |exp (σω(t))− exp (σω(s))| ‖Ũ2‖2.

Now, with |U2 − Ũ2| ≤ (|U |+ |Ũ |)|U − Ũ | we have for U, Ũ ∈ H2η invoking (5.72)

‖U2 − Ũ2‖2 ≤ (‖U‖∞ + ‖Ũ‖∞)‖U − Ũ‖2
≤ (‖U‖H2η + ‖Ũ‖H2η)‖U − Ũ‖2.

Furthermore, using the local Lipschitz continuity of the exponential function and
the Hölder continuity of the Brownian motion with some exponent δ < 1

2 (recall
Remark 3.2) we have

| exp(σω(t))− exp(σω(s))| ≤ C|ω(t)− ω(s)| ≤ C ′|t− s|δ ≤ C ′|t− s|.

Thus we can conclude

‖ exp(σω(t))U2 − exp(σω(s))Ũ2‖2

≤ exp

(
σ sup
s∈[0,T ]

|ω(s)|

)
(‖U‖H2η + ‖Ũ‖H2η)‖U − Ũ‖2 + C ′|t− s|‖Ũ‖H2η‖Ũ‖2.

Furthermore, for U, Ũ ,W, W̃ ∈ H2η we can derive similarly

‖UW − ŨW̃‖2 ≤ C(‖W‖H2η‖U − Ũ‖2 + ‖Ũ‖H2η‖W − W̃‖2),

and thus we obtain

‖ exp(σω(t))UW − exp(σω(s))ŨW̃‖2

≤ exp

(
σ sup
s∈[0,T ]

|ω(s)|

)
C(‖W‖H2η‖U − Ũ‖2 + ‖Ũ‖H2η‖W − W̃‖2)

+ C ′|t− s|‖Ũ‖H2η‖W̃‖2.

Having these estimates for the non-linear parts of F , we can easily deduce that for
G, G̃ ∈ D((−A)η) , t, s ∈ [0, T ]

‖F (G, t)− F (G̃, s)‖H
≤ C(‖G‖H + ‖G̃‖H)(‖(−A)ηG‖H + ‖(−A)ηG̃‖H + 1)(|t− s|+ ‖G− G̃‖H),
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and thus by [Yag09, Chapter 4, Section 6] for every G0 ∈ H there exist a unique
local solution up to a time TG0 in C([0, TG0 ], H). The theorem also provides the
estimate

t‖ −AG(t)‖H + ‖G(t)‖H ≤ CG0 , 0 < t ≤ TG0 , (5.77)

for some constant CG0 > 0.

Proposition 5.37. Let G0 ∈ I and let G be the local mild solution of (5.76). Then
G(t) ≥ 0 for all 0 < t ≤ TG0.

Proof. The proof works analogously to the proof for the deterministic system, see
[Yag09, Chapter 10, Section 2.2]; we provide it for the sake of completeness. Let
G = (U, V,W )> be the local solution given by Proposition 5.36. We consider the
following non-linear operator

F̃ (G, t) =

1
ε (qW − exp(σω(t))UW + 2U − exp(σω(t))U2)

|U |
1
δ (− exp(σω(t))UW + cV )


and the corresponding Cauchy problem

dG̃

dt
= AG̃+ F̃ (G̃, t),

G̃(0) = G0.

(5.78)

The existence of a local solution G̃ = (Ũ , Ṽ , W̃ )> up to a time T̃G0 to this problem
follows from the same arguments as outlined in Proposition 5.36. We now verify
that G̃ ∈ I.

(i) We define the following non-negative, cut-off function

H(v) :=

{
1
2v

2 ,−∞ < v < 0

0 , 0 ≤ v <∞
,

then ϕ(t) :=
∫
DH(Ṽ (t))dx is continuously differentiable with

ϕ′(t) = b

∫
D
H ′(Ṽ )∆Ṽ dx+

∫
D
H ′(Ṽ )(|Ũ | − Ṽ )dx.

Now note that H ′(Ṽ ) ≤ 0, H ′(Ṽ )Ṽ ≥ 0 and∫
D
H ′(Ṽ )∆Ṽ dx = −

∫
D
∇H ′(Ṽ ) · ∇Ṽ dx = −

∫
D
|∇H ′(Ṽ )|2dx ≤ 0,

thus ϕ′(t) ≤ 0. Therefore ϕ(t) ≤ ϕ(0) and since ϕ(0) = 0 we have ϕ(t) ≡ 0,
i.e. Ṽ (t) ≥ 0 for 0 ≤ t ≤ T̃G0 .
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(ii) Let us set ψ(t) :=
∫
DH(W̃ (t))dx, then

ψ′(t) = d

∫
D
H ′(W̃ )∆W̃dx+

∫
D
H ′(W̃ )

1

δ
(−qW̃ − exp(σω)ŨW̃ + cṼ )dx

≤ −exp(σω)

δ

∫
D
H ′(W̃ )ŨW̃dx,

where we have used that ∫
D
H ′(W̃ )∆W̃dx ≤ 0,

and H ′(W̃ ) ≤ 0, H ′(W̃ )W̃ ≥ 0, as well as Ṽ ≥ 0. Thus, using that 0 ≤
H ′(W̃ )W̃ ≤ 2H(W̃ ),

ψ′(t) ≤ exp(σω)

δ

∫
D
|Ũ |2H(W̃ )dx ≤ exp(σω)

δ
‖Ũ‖∞ψ(t).

Now making use of (5.77) (which also holds for the local solutions of the
modified Cauchy problem (5.78)) we have

‖Ũ(t)‖∞ ≤ C‖(−A)ηG̃(t)‖H ≤ CG0t
−η,

and thus by Gronwall’s inequality

ψ(t) ≤ ψ(0) exp

(
2

∫ t

0
exp(σω(s))‖Ũ(s)‖∞ds

)
≤ ψ(0) exp

(
2CG0

∫ t

0
exp(σω(s))s−ηds

)
.

Noting the P-a.s. continuity of Brownian motion sample paths, we can con-
clude from ψ(0) = 0 that ψ(t) ≡ 0, i.e. W̃ (t) ≥ 0 for 0 < t ≤ T̃G0 .

(iii) Finally, consider χ(t) :=
∫
DH(Ũ(t))dx. By similar arguments as before we

derive

χ′(t)

= a

∫
D
H ′(Ũ)∆Ũdx+

∫
D
H ′(Ũ)

1

ε
(Ũ + qW̃ − exp(σω)ŨW̃ − exp(σω)Ũ2)dx

≤ 2

ε

∫
D

(1 + exp(σω)|W̃ |+ exp(σω)|Ũ |)H(Ũ)dx

≤ 2

ε
(1 + exp(σω)‖W̃ (t)‖∞ + exp(σω)‖Ũ(t)‖∞)χ(t),

and we can conclude as before that χ(t) ≡ 0, i.e. Ũ(t) ≥ 0 for 0 < t ≤ T̃G0 .
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Having established the componentwise P-a.s. non-negativity of G̃ we can deduce
that F (G̃(t), t) = F̃ (G̃(t), t) for 0 ≤ t ≤ T̃G0 . This implies that G(t) = G̃(t) for
0 ≤ t ≤ T̃G0 , where G(t) is the unique solution of (5.76). That is for T̃G0 ≥ TG0 the
proof is finished. For T̃G0 < TG0 consider

T0 = sup{0 < T ≤ TG0 : U(t), V (t),W (t) ≥ 0 for all 0 < t ≤ T}.

The continuity of ϕ(t), ψ(t), χ(t) implies that also V (T0),W (T0), U(T0) ≥ 0 and if
T0 = TG0 we are finished. If T0 < TG0 we repeat the procedure with initial time T0

and initial value G(T0), this would give us τ > 0 such that U(t), V (t),W (t) ≥ 0 for
T0 ≤ t ≤ T0 + τ , which is a contradiction, hence T0 = TG0 .

Remark 5.38. In particular, M = [0,∞) × [0,∞) × [0,∞) can be considered as an
invariant set for the system, that is, starting in M, the local solution will stay in
M P-a.s.. This knowledge will allow us to obtain the necessary a-priori estimates
that guarantee that solutions exist globally in time, see the following subsection.

Remark 5.39. We also note that the solution continuously depends on the initial
data by classical results. Furthermore, we note that the mild and weak solution
coincide as in the partly dissipative setting from Subsection 5.2, see [Bal77, Już14].
In the following we refer to solutions always in this mild/weak framework.

5.5.3 Global existence of solutions

In this subsection we will deduce that solutions to the random PDE system exist
not only locally, but globally in time. Recall that our transformed system reads as
follows with some initial time t0

dG

dt
= AG+ F (G, t), t > t0, (5.79)

G(t0, ω; t0, Gt0) = Gt0 = exp(−σω(t0))g0 ∈ I, (5.80)

and we denote the solution at time t as G = G(t, ω; t0, Gt0), starting at t0 with Gt0 .

Proposition 5.40. For any given random variable ρ(ω) > 0, there is a time −∞ <
τ(ρ, ω) ≤ −1 such that for any t0 ≤ τ(ρ, ω) and for any initial data g0 ∈ I with
‖g0‖H ≤ ρ(ω), the solution G(t, ω; t0, Gt0) of (5.79)-(5.80) uniquely exists on [t0,∞).

Proof. The proof works similarly to the proof of [Pha20, Lemma 2.2 and Lemma
2.3]. Let ρ(ω) > 0 and ‖g0‖H ≤ ρ(ω). Multiplying equation (5.79) componentwise
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by G and integrating over D yields for the first component

1

2

d

dt

∫
D
|U |2dx+ a

∫
D
|∇U |2dx+

1

ε

∫
D
U2dx

=
1

2

d

dt

∫
D
|U |2dx− a

∫
D

∆UUdx+
1

ε

∫
D
U2dx

=

∫
D

1

ε
(qWU − exp(σω)U2W + 2U2 − exp(σω)U3)dx

≤
∫
D

1

ε

(
q2

4
exp(−σω)W + 2U2 − exp(σω)U3

)
dx,

where we have used that qWU ≤ exp(σω)W (q2/4 exp(−2σω) +U2). For the second
component we obtain

1

2

d

dt

∫
D
|V |2dx+ b

∫
D
|∇V |2dx+

1

2

∫
D
V 2dx

=
1

2

d

dt

∫
D
|V |2dx− b

∫
D

∆V V dx+
1

2

∫
D
V 2dx

=

∫
D

(UV − 1

2
V 2)dx

≤
∫
D
U2 − 1

4
V 2dx,

and finally for the third component

1

2

d

dt

∫
D
|W |2dx+ d

∫
D
|∇W |2dx+

q

δ

1

2

∫
D
W 2dx

=
1

2

d

dt

∫
D
|W |2dx− d

∫
D

∆WWdx+
q

δ

1

2

∫
D
W 2dx

=

∫
D
−q
δ

1

2
W 2 − 1

δ
exp(σω)UW 2 +

c

δ
V Wdx

≤
∫
D
−q
δ

1

4
W 2 +

c2

qδ
V 2dx,

where we have used the non-negativity of the local solution as derived in Proposition
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5.37. Now set ξ = 4c2

qδ and combine the three estimates from above

1

2

d

dt

∫
D

(U2 + ξV 2 +W 2)dx+

∫
D

(a|∇U |2 + b|∇V |2 + d|∇W |2)dx

+
1

2

∫
D

(
2

ε
U2 + ξV 2 +

q

δ
W 2

)
dx

≤
∫
D
U2

(
2

ε
− 1

ε
exp(σω)U + ξ

)
+W

(
q2

4ε
exp(−σω)− q

δ

1

4
W

)
dx

≤
∫
D

(
2

ε
+ ξ

)3 4

27
ε2 exp(−2σω) +

q3δ

16ε2
exp(−2σω)dx

= |D|
(

2

ε
+ ξ

)3 4

27
ε2 exp(−2σω) + |D| q

3δ

16ε2
exp(−2σω)

= C exp(−2σω), (5.81)

where we have used

U2

(
2

ε
+ ξ

)
≤ exp(σW )

ε
U3 +

(
2

ε
+ ξ

)3 4

27
ε2 exp(−2σω),

and
1

ε
q exp(−σω)W ≤ 1

δ
W 2 +

q2δ

4ε2
exp(−2σω).

Thus, we have

d

dt

(
‖U‖22 + ξ‖V ‖22 + ‖W‖22

)
+ 2M(‖∇U‖22 + ‖∇V ‖22 + ‖∇W‖22) (5.82)

+ µ
(
‖U‖22 + ξ‖V ‖22 + ‖W‖22

)
≤ C exp(−2σω),

where we have set µ := min{2/ε, 1, q/δ} andM := min{a, b, d}. Applying Gronwall’s
inequality yields

‖U‖22 + ξ‖V ‖22 + ‖W‖22 ≤ exp(−µ(t− t0)) exp(−2σω(t0))(‖u0‖22 + ξ‖v0‖22 + ‖w0‖22)

+ C

∫ t

t0

exp(−(t− s)µ) exp(−2σω(s))ds,

that is, with ξ = min{1, ξ}, ξ = max{1, ξ}, we have for t ≥ t0

‖G(t, ω; t0, Gt0)‖2H ≤
ξ

ξ
exp(−µ(t− t0)) exp(−2σω(t0))‖g0‖2H

+ C

∫ t

−∞
exp(−(t− s)µ) exp(−2σω(s))ds. (5.83)
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Let us take t = −1, then

‖G(−1, ω; t0, Gt0)‖2H ≤
ξ

ξ
exp(µ− µ|t0| − 2σω(t0))ρ(ω)2

+ C

∫ −1

−∞
exp(µ+ µs) exp(−2σω(s))ds.

By the sub-linear growth of the Brownian motion (see Proposition 4.25) the integral
on the right hand side converges. Furthermore, for any ρ(ω) > 0 and for a.e. ω
there exists a time τ(ρ, ω) ≤ −1 such that for any t0 ≤ τ(ρ, ω)

1− 2σω(t0)

µt0
≥ 1/2, and exp(µ(1− 1/2|t0|))

ξ

ξ
ρ(ω)2 ≤ 1.

Thus, with exp(−µ|t0| − 2σω(t0)) = exp
(
−µ|t0|(1− 2σω(t0)

µt0
)
)

it follows

‖G(−1, ω; t0, g0)‖H ≤ r0(ω),

where r0(ω) :=
√

1 + C
∫ −1
−∞ exp(µ+ µs) exp(−2σω(s))ds.

We can also integrate (5.82) over [−1, t] then we obtain

‖G(t, ω; t0, g0)‖2H ≤
ξ

ξ
‖G(−1, ω; t0, g0)‖2H + C

∫ t

−1
exp(−2σω(s))ds (5.84)

≤ ξ

ξ
r0(ω)2 + C

∫ t

−1
exp(−2σω(s))ds,

thus for a.e. ω ∈ Ω and any T > −1 the weak solution uniquely exists for t ∈
[t0, T ] and does not blow up. Uniqueness follows from the uniqueness of the local
solution.

5.5.4 RDS and bounded absorbing set

In the following we will define a random dynamical system associated to the original
problem (5.73) and derive the existence of a bounded absorbing set.

Lemma 5.41. S(t, τ, ω)g0 = exp(σω(t))G(t, ω; τ,Gτ ) defines a stochastic flow.

Proof. Recall Definition 4.14. Proposition 5.40 ensures that G(t, ω; τ,Gτ ) uniquely
exists on [τ,∞), and therefore S(t, τ, ω)g0 as well. By the uniqueness of solutions
we have for τ ≤ s ≤ t and ω ∈ Ω

S(t, s, ω)S(s, τ, ω)g0 = S(t, s, ω) exp(σω(s))G(s, ω; τ,Gτ )

= exp(σω(t))G(t, ω; s,G(s, ω, τ,Gτ ))

= exp(σω(t))G(t, ω; τ,Gτ )

= S(t, τ, ω)g0.
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Furthermore, let (T (t))t≥0 denote the semigroup generated by A. Using the mild
formulation of solutions we show that

S(t− τ, 0, θτω)g0

= exp(σθτω(t− τ))G(t− τ, θτω; 0, G0)

= exp(σω(t)− σω(τ)) [T (t− τ)g0

+

∫ t−τ

0
T (t− τ − r) exp(−σθτω(r))f(exp(σθτω(r))G(r))dr

]
= exp(σω(t)) [T (t− τ) exp(−σω(τ))g0

+

∫ t−τ

0
T (t− τ − r) exp(−σω(r + τ))f(exp(σθτω(r))G(r))dr

]
= exp(σω(t)) [T (t− τ) exp(−σω(τ))g0

+

∫ t

τ
T (t− r) exp(−σω(r))f(exp(σθτω(r − τ))G(r − τ))dr

]
= exp(σω(t)) [T (t− τ) exp(−σω(τ))g0

+

∫ t

τ
T (t− r) exp(−σω(r))f(exp(σω(r)− σω(τ))G(r − τ))dr

]
= exp(σω(t))G(t, ω; τ,Gτ )

= S(t, τ, ω)g0.

The measurability condition can be verified easily, since the solution is continuous
with respect to the initial conditions and measurable with respect to ω, see also
[GLR11, Theorem 1.4].

Now we can define a random dynamical system associated to our SPDE system.

Lemma 5.42. The mapping ϕ : R+ × Ω × H → H defined via ϕ(t, ω, g0) =
S(t, 0, ω)g0 defines a RDS over the MDS (Ω,F ,P, θ) associated to the original prob-
lem (5.73).

Proof. We have ϕ(0, ω, g0) = S(0, 0, ω)g0 = g0 and the cocycle property can be
verified as follows

ϕ(t, θsω, ϕ(s, ω, g0)) = S(t, 0, θsω)ϕ(s, ω, g0)

= S(t, 0, θsω)S(s, 0, ω)g0

= S(t+ s, s, ω)S(s, 0, ω)g0

= S(t+ s, 0, ω)g0

= ϕ(t+ s, ω, g0).
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Note that we work here directly with the RDS associated to the SPDE instead
of a conjugated RDS associated to the random PDE, as we did in Subsections 5.2
and 5.3. Let us denote by T the set of all tempered subsets of H.

Proposition 5.43. There exists a bounded T -absorbing set for the RDS ϕ given by
the ball B(ω) := B(0, R0(ω)), where R0(ω) is a tempered random variable as defined
in (5.85).

Proof. The proof works similarly to the proof of [Pha20, Theorem 2.6]. Let
B(0, ρ(ω)) be an arbitrary tempered set and g0 ∈ B(0, ρ(θ−tω)). Note that

ϕ(t, θ−tω, g0) = S(t, 0, θ−tω)g0 = S(0,−t, ω)g0 = G(0, ω;−t, G−t).

Now, by (5.84)

‖G(0, ω;−t, G−t)‖2H ≤
ξ

ξ
‖G(−1, ω;−t, G−t)‖2H + C

∫ 0

−1
exp(−2σω(s))ds,

and by (5.83)

‖G(−1, ω;−t, G−t)‖2H

≤ ξ

ξ
exp(−µ(−1 + t)) exp(−2σω(−t))‖g0‖2H

+ C

∫ −1

−∞
exp((1 + s)µ) exp(−2σω(s))ds

≤ ξ

ξ
exp(µ) exp

(
−µt

2

(
1− 4σ

µ

ω(−t)
−t

))
exp(−µt/2)ρ(θ−tω)2

+ C

∫ −1

−∞
exp((1 + s)µ) exp(−2σω(s))ds.

Now, due to the sub-linear growth property of the Brownian motion and the tem-
peredness of ρ, we have

lim
t→∞

exp

(
−µt

2

(
1− 4σ

µ

ω(−t)
−t

))
= 0

and

lim
t→∞

exp(−µt/2)ρ(θ−tω)2 = 0.

Thus, there exist a finite random time T (ρ, ω) > 1 such that for all t ≥ T (ρ, ω)

‖G(−1, ω;−t, G−t)‖2H ≤ 1 + C

∫ −1

−∞
exp((1 + s)µ) exp(−2σω(s))ds = r2

0(ω).



174 CHAPTER 5. RANDOM ATTRACTORS

Therefore for t ≥ T (ρ, ω)

‖ϕ(t, θ−tω, g0)‖2H = ‖G(0, ω;−t, G−t)‖2H

≤ ξ

ξ
r2

0(ω) + C

∫ 0

−1
exp(−2σω(s))ds =: R0(ω)2. (5.85)

Thus B(ω) := B(0, R0(ω)) is a bounded tempered absorbing set for the RDS ϕ.

Let us set T (ω) := supB(0,ρ(ω))∈T T (ρ, ω) as the total absorption time for the
universe T .

5.5.5 Compact absorbing set

Having the Laplace operator in every component of (5.75) we can, in contrast to
the partly dissipative systems from Sections 5.2 and 5.3, derive in this setting an
absorbing set in V for the full RDS ϕ, without invoking any splitting technique. Due
to compact embedding this allows us to directly derive the existence of a compact
absorbing set.

Proposition 5.44. There exists a random variable R(ω) > 0 such that for any
given random variable ρ(ω) > 0 there is a finite time 0 < T̂ (ρ, ω) such that if g0 ∈ I
with ‖g0‖H ≤ ρ(ω), then

‖ϕ(t, θ−tω, g0)‖V ≤ R(ω), for t > T̂ (ρ, ω). (5.86)

Proof. The proof works similarly to the proof of [Pha20, Lemma 3.1 and 3.2]. Mul-
tiplying (5.79) by −4G and integrating over D yields for the first component

1

2

d

dt
‖∇U‖22 + a‖4U‖22

= −1

ε

∫
D
qW4Udx+

1

ε

∫
D

exp(σω)UW4Udx− 1

ε

∫
D
U4Udx

+
1

ε

∫
D

exp(σω)U24Udx

≤ a

8

∫
D
4U2dx+

2

a

(q
ε

)2
∫
D
W 2dx+

a

8

∫
D
4U2dx+

2

a

(
exp(σω)

ε

)2 ∫
D
U2W 2dx

+
a

8

∫
D
4U2dx+

2

a

1

ε2

∫
D
U2dx+

a

8

∫
D
4U2dx+

2

a

(
exp(σω)

ε

)2 ∫
D
U4dx,
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and thus

d

dt
‖∇U‖22 + a‖4U‖22

≤ 4

a

(q
ε

)2
‖W‖22 +

4

a

1

ε2
‖U‖22 +

4

a

(
exp(σω)

ε

)2

‖U‖44 +
2

a

(
exp(σω)

ε

)2

‖U‖44

+
2

a

(
exp(σω)

ε

)2

‖W‖44

=
4

a

(q
ε

)2
‖W‖22 +

4

a

1

ε2
‖U‖22 +

6

a

(
exp(σω)

ε

)2

‖U‖44 +
2

a

(
exp(σω)

ε

)2

‖W‖44.

For the second component we obtain

1

2

d

dt
‖∇V ‖22 + b‖4V ‖22 = −

∫
D
U4V dx+

∫
V4V dx

≤ b

2
‖4V ‖22 +

1

2b
‖U‖22 − ‖∇V ‖22,

and thus

d

dt
‖∇V ‖22 + b‖4V ‖22 ≤

1

b
‖U‖22 − 2‖∇V ‖22.

Finally, for the third component we compute

1

2

d

dt
‖∇W‖22 + d‖4W‖22

=
q

δ

∫
D
W4Wdx+

exp(σω)

δ

∫
D
UW4Wdx− c

δ

∫
D
V4Wdx

≤ −q
δ
‖∇W‖22 +

d

4
‖4W‖22 +

1

d

(
exp(σω)

δ

)2 ∫
D
U2W 2dx+

d

4
‖4W‖22

+
1

d

( c
δ

)2
‖V ‖22,

that is

d

dt
‖∇W‖22 + d‖4W‖22

≤ 2

d

( c
δ

)2
‖V ‖22 − 2

q

δ
‖∇W‖22 +

2

d

(
exp(σω)

δ

)2

‖U‖44 +
2

d

(
exp(σω)

δ

)2

‖W‖44.
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Combining these three inequalities we arrive at

d

dt
(‖∇U‖22 + ‖∇V ‖22 + ‖∇W‖22) + (a‖4U‖22 + b‖4V ‖22 + d‖4W‖22)

+ 2‖∇V ‖22 + 2
(q
δ

)
‖∇W‖22

≤
(

1

b
+

4

aε2

)
‖U‖22 +

2

d

( c
δ

)2
‖V ‖22 +

4

a

(q
ε

)2
‖W‖22

+

(
6

a

(
exp(σω)

ε

)2

+
2

d

(
exp(σω)

δ

)2
)
‖U‖44

+

(
2

a

(
exp(σω)

ε

)2

+
2

d

(
exp(σω)

δ

)2
)
‖W‖44.

Now we have the Sobolev embedding H1(D) ↪→ L4(D) (cf. Theorem C.1), i.e. there
exists χ > 0 such that

‖U‖44 ≤ χ(‖U‖22 + ‖∇U‖22)2 ≤ 2χ(‖U‖42 + ‖∇U‖42),

and
‖W‖44 ≤ 2χ(‖W‖42 + ‖∇W‖42).

Thus we obtain the following inequality

d

dt
‖∇G(t, ω; τ,Gτ )‖2H
≤ C1‖G(t, ω; τ,Gτ )‖2H + C2 exp(2σω)‖G(t, ω; τ,Gτ )‖4H

+ C2 exp(2σω)‖∇G(t, ω; τ,Gτ )‖2H‖∇G(t, ω; τ,Gτ )‖2H ,

where C1 = max
{(

1
b + 4

aε2

)
, 2
d

(
c
δ

)2
, 4
a

( q
ε

)2}
, C2 =

(
6
a

(
1
ε

)2
+ 2

d

(
1
δ

)2)
2χ. We want

to apply the uniform Gronwall lemma to this inequality. We therefore note the
following. Let t∗ ∈ [−2,−1]. Let g0 ∈ B(ω) (that is we can assume ρ(ω) = R0(ω)
due to the absorption property) and recall that Gτ = exp(−σω(τ))g0.

(i) We prove that there exists a time T ∗(R0(ω)) < −2 such that for any τ ≤
T ∗(R0(ω)) and t ∈ [−2, 0]

‖G(t, ω; τ,Gτ )‖H ≤ ρ1(ω), (5.87)

where ρ1(ω) is a positive random variable defined below. From (5.83) we have
for t = −2

‖G(−2, ω; τ,Gτ )‖2H ≤
ξ

ξ
exp(2µ− µ|τ | − 2σω(τ))R2

0(ω)

+ C

∫ −2

−∞
exp(2µ+ sµ) exp(−2σω(s))ds.
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As in the proof of Proposition 5.40, we note that by the sub-linear growth
property of the Wiener process and the temperedness of R0(ω) there exist a
T ∗(R0(ω)) ≤ −2 such that for any τ ≤ T ∗(R0(ω)),

1− 2σω(τ)

µτ
≥ 1/2, exp(µ(2− 1/2|τ |))ξ

ξ
R2

0(ω) ≤ 1.

Thus for τ ≤ T ∗(R0(ω))

‖G(−2, ω; τ,Gτ )‖2H ≤
ξ

ξ
exp

(
2µ− µ|τ |

[
1− 2σω(τ)

µτ

])
R2

0(ω)

+ C

∫ −2

−∞
exp(2µ+ sµ) exp(−2σω(s))ds

≤ 1 + C

∫ −1

−∞
exp(µ+ sµ) exp(−2σω(s))ds

= r0(ω)2.

Now integrating (5.82) over [−2, t] for t ∈ [−2, 0] yields

‖G(t, ω; τ,Gτ )‖2H +
2M

ξ

∫ t

−2
‖∇G(s, ω; τ,Gτ )‖2Hds

≤ ξ

ξ
‖G(−2, ω; τ,Gτ )‖2H + C

∫ t

−2
exp(−2σω(s))ds

≤ ξ

ξ
r0(ω)2 + C

∫ 0

−2
exp(−2σω(s))ds

=: ρ1(ω).

This establishes (5.87).

(ii) Now, by (5.81), for t ∈ [t∗,−1], we can deduce that for any τ < T ∗(R0(ω))∫ t+1

t
‖∇G(t, ω; τ,Gτ )‖2Hds ≤ ξ

ξ2M
ρ1(ω) +

C

2Mξ
exp

(
2σ sup

s∈[−2,0]
|ω(s)|

)
=: κ1(ω)

(iii) Furthermore, for t ∈ [t∗,−1], we can deduce that for any τ < T ∗(R0(ω))∫ t+1

t
C2 exp(2σω(s))‖∇G(t, ω; τ,Gτ )‖2Hds

≤ C2 exp

(
2σ sup

s∈[−2,0]
|ω(s)|

)
κ1(ω) =: κ2(ω).
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(iv) And finally for t ∈ [t∗,−1], we can deduce that for any τ < T ∗(R0(ω))∫ t+1

t
C1‖G(t, ω; τ,Gτ )‖2H + C2 exp(2σω)‖G(t, ω; τ,Gτ )‖4Hds

≤ C1ρ1(ω) + C2 exp

(
2σ sup

s∈[−2,0]
|ω(s)|

)
ρ1(ω)2 =: κ3(ω).

Now, applying the uniform Gronwall lemma yields for all t ∈ [t∗ + 1, 0] and τ <
T ∗(R0(ω))

‖∇G(t, ω; τ,Gτ )‖2H ≤ (κ1(ω) + κ3(ω))eκ2(ω) =: R1(ω)2.

Therefore for t > T̂ (ρ, ω) := max{|T ∗(R0(ω))|, T (ρ, ω)}

‖ϕ(t, θ−tω, g0)‖V = ‖G(0, ω;−t, G−t)‖V

=
√
‖G(0, ω;−t, G−t)‖2H + ‖∇G(0, ω;−t, G−t)‖2H

=
√
R1(ω)2 +R0(ω)2 =: R(ω).

The existence of a random attractor is now a straightforward consequence.

Theorem 5.45. There exists a unique T -random attractor for the random dynam-
ical system ϕ.

Proof. By Proposition 5.44 there exist a bounded absorbing set in V and due to the
compact embedding V ↪→ H (Theorem C.2) this implies that there exists a compact
absorbing set. The statement thus follows by Theorem 4.19.

5.6 Outlook

In this chapter we have derived the existence of random attractors for different
stochastic (partly dissipative) reaction-diffusion systems with different types of
Wiener noise, i.e. additive and multiplicative and different forms of couplings, i.e.
linear and non-linear. There are several directions in which this research could be
extended in the future.

As mentioned before, in [Mar89, Mar87] the existence of random attractors for
general partly/fully dissipative autonomous reaction-diffusion systems that possess
an invariant region has been derived. It would be desirable to extend this theory
to the stochastic setting, as started in Subsection 5.5 (see Remark 5.38). More
specifically, in the deterministic setting the invariant region is used in order to derive
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a bounded absorbing set. That is, let us for simplicity look at a one component
reaction-diffusion equation on D ⊂ Rn

∂tu = d4u+ f(x, u), (5.88)

where f is sufficiently regular and assume that M ⊂ R is a closed convex region
that is positively invariant and c = sup(x,u)∈D×M |f(x, u)| is finite. Assume that

u(0, x) = u0(x) and u0 ∈ L2(D,M). Then multiplying (5.88) by u and integrating
over the spatial domain D yields

1

2

d

dt
‖u‖22 + d‖∇u‖22 =

∫
D
f(x, u)udx ≤ c|D|1/2‖u‖2.

Using the Poincaŕe inequality and Young’s inequality one can infer that

d

dt
‖u‖22 + C1‖u‖22 ≤ C2,

for some constants C1, C2 > 0. Thus by Gronwall a bounded absorbing set in the
form of a closed ball in L2(D,M) can be derived easily. Now, consider the following
stochastic equation, where B is a real-valued Wiener process

du = (d4u+ f(u))dt+ u ◦ dB, (5.89)

which can be converted by a standard Doss-Sussmann transformation into the ran-
dom equation

∂tU = d4U + exp(−B(t))f(exp(B(t))U). (5.90)

Suppose that the solution remains non-negative for non-negative initial conditions
and that f is bounded on [0,∞), then we could do a similar analysis as above, i.e.
we would arrive at

d

dt
‖U‖22 + C1‖U‖22 ≤ C2 exp(−2B(t)),

that is, we would have the analogue of equation (5.82) that we encountered for the
Field-Noyes system and just like there we could infer the existence of a bounded
absorbing set for (5.90). Note that for the Field-Noyes system we only showed that
a priori the solution will remain non-negative for non-negative initial conditions,
however a priori the non-linearity is not bounded on [0,∞)3. Thus we had to
make explicitly use of the structure of the non-linearity in order to derive (5.82).
Nevertheless, one may be able to generalize the result that we have obtained for the
Field-Noyes system to a larger class of stochastic reaction-diffusion equations whose
solutions preserve the non-negativity of the initial condition and whose non-linearity
obeys a certain structure, see for example [Kot92].

Concerning systems with general invariant regions let us note that there are
few results available on deterministic invariant regions for stochastic equations.
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In [CV04] the authors considered systems of semi-linear stochastic equations, whose
deterministic counterpart possesses a bounded invariant set. They showed through
a Wong-Zakäı type approximation that there exist uniformly bounded approximate
solutions to their stochastic systems, what then allowed them to employ determinis-
tic techniques to derive the existence of an invariant region for the stochastic system.
One may be able to use this result for the derivation of a random attractor for these
systems by invoking similar thoughts as described above. Note however, that the
restrictions on the non-linear terms in [CV04] are rather strict and do not allow for
non-linear couplings between components. That is, this result could have not been
applied for the Field-Noyes system. Another starting point might be to consider
random invariant regions, however, in this case, a different approach compared to
the one above will probably be needed.

Of course, it would be desirable to not only establish the existence of random at-
tractors for the systems covered in this chapter but also to characterise the attractors
further. That is, first of all, it would be useful to find bounds on the dimensions
of the random attractors and to compare them to the determinisitc results, see
Remark 4.21. Another possibility would be to show that a random exponential at-
tractor exists. These are compact subsets of the phase space that are attracting at
an exponential rate and, since they are of finite fractal dimension and contain the
global random attractor, their existence would already imply that the global ran-
dom attractor has finite fractal dimension as well, see [CS17]. Furthermore, a finer
resolution of the dynamics might be possible by analysing invariant manifolds of the
system, see for example [DLS03, CS10]. In the following chapter, we will explore
this possibility in so-called fast-slow SPDE systems, where the dynamics evolve on
two well-separated time scales. More precisely, we will characterise the fluctuations
of sample paths around an hyperbolic attracting slow manifold of the corresponding
deterministic system.



Chapter 6

Fast-slow stochastic partial
differential equations

In this chapter we consider one of the simplest representatives of fast-slow SPDEs,
namely a linear SPDE with a slowly varying parameter. We prove that for a short
period of time the probability for the sample paths to leave a uniform neighbourhood
around the stable slow manifold (which is simply the zero solution in this case) is
exponentially small. This chapter is based on joint work with Manuel Gnann and
Christian Kuehn, which was published in [GKP19].

6.1 Introduction

Fast-slow systems consist of a pair of coupled ordinary differential equations
(ODE’s), where one of the equations contains a very small scaling parameter ε in
the derivative. This leads to the phenomenon that the coupled sub-processes evolve
on well-separated time scales. As this kind of behaviour can be observed in many
physical and biological systems, fast-slow systems naturally arise as an important
tool for mathematical modelling. Real-world examples include

• Ocean-atmosphere systems in climate models, where the slow variable de-
scribes the state of the ocean and the fast variable describes the state of the
atmosphere.

• Predator-prey systems in ecology when the reproduction rates of predator and
prey differ strongly.

• Enzymatic reactions, where the enzyme’s concentration evolves much faster
than the concentration of other involved reactants.

The mathematical analysis of fast-slow systems is well-established and several
asymptotic and geometric techniques have been developed throughout the years.

181
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We refer the reader to the following monographs for a thorough background
[Eck11, Kue15b, KC12, O’m91, Ver05]. One of the most interesting dynamical be-
haviours that can be observed in non-linear fast-slow systems is that of relaxation
oscillations. These are periodic motions of the system due to an alternation in fast
and slow phases, see Example 6.8 below for more details.

As outlined in the Introduction, by adding a noise term to a differential or
partial differential equation a physical system can often be modelled more realis-
tically. It is thus not surprising that stochastic fast-slow systems were intensively
analysed as well. Applications range again from neuroscience [LSG99,SRT04], over
climate science [BPSV82, MTvdE01, Has76], to ecology [SMSG07, SK18], among
many other areas. In particular, the sample path viewpoint, developed by Berglund
and Gentz [BG06], yields a very successful technique to analyse these systems and
to characterise noise-induced phenomena. In their theory they focus on random
perturbations given by a real-valued Brownian motion or a finite sum of Brownian
motions, see Section 6.3 for more details. In [EKN20] the authors started to extend
this theory to stochastic fast-slow systems driven by fractional Brownian motion
(fBM). A fBM is a centred Gaussian process that is parametrized by the so-called
Hurst parameter H ∈ (0, 1). For H 6= 1/2 the increments of the corresponding
process are no longer independent but correlated, allowing to model long-range de-
pendencies.

It would be very desirable to have a generalization of the theory by Berglund
and Gentz to fast-slow SPDEs. Examples of such systems arising in applications are
the FitzHugh-Nagumo SPDE [GOS12,BK16], slowly-driven amplitude/modulation
equations [Blö07, GK15], and degenerate controlled SPDEs [LPS15, LSP18]. There
are certainly many other important examples as most PDEs arising in applications
have parameters, which quite often are slow variables, and those PDEs should fre-
quently have noise terms, e.g. due to internal or external fluctuations. We formulate
an important class of such equations as follows

du = [Au+ f(u, v, ε)] dt+ σ dW,

dv = εg(u, v, ε) dt,
(6.1)

where A is a differential operator that generates a strongly continuous semigroup
on a Hilbert space space H and W is a H-valued Q-Wiener process. As a first step
towards such a generalization, we consider the situation where the system is reduced
to a scalar linear non-autonomous SPDE. This is already the theoretical analogue
to the key step in the SODE theory of Berglund/Gentz; see the linearized parts of
the estimates in [BG06, Section 5.1.2].

We investigate the SPDE on a bounded interval so that the solution can be
expressed by a Fourier series and the SPDE is naturally reformulated as an infinite-
dimensional system of SODEs. The linear reaction term consists of a time-dependent
coefficient and a non-local operator that generates linear couplings between the first
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k∗ − 1 modes. Thus, it is natural to split the system into two parts: the first
part consisting of the first k∗ − 1 coupled low-frequency modes and the second part
consisting of infinitely many decoupled high-frequency modes. Both components are
estimated by Bernstein-type inequalities and the limiting process in the second part
is approached by an iteration argument. The probability to exit a suitably chosen
neighbourhood around the stable slow manifold of the system can then be estimated
by convolving the corresponding probabilities for finite and high frequencies. In
particular, we are able to show that for a short period of time this probability is
exponentially small with respect to the size of the neighbourhood. Systems of the
form presented here arise not only directly in numerical spectral Galerkin methods
for SPDEs [Kue15c] but also in the context of inertial manifolds defined via a finite
number of effective Fourier modes; see [Tem12] for the classical deterministic setting.

The remaining part of this chapter is structured as follows: In Section 6.2 we
will formally define fast-slow systems and introduce the corresponding terminology.
Subsequently, in Section 6.3 we will consider the stochastic counterpart in finite
dimensions and, in particular, present relevant parts of the theory by Berglund and
Gentz. In Section 6.4 we consider the extension to SPDE’s as described above. Re-
sults in this section were published in [GKP19] (joint work with Manuel Gnann and
Christian Kuehn). More precisely, in Subsection 6.4.1 we define the setting at hand
in detail and we derive the finite-dimensional approximation in Subsection 6.4.2.
The main result and technical contributions are contained in Subsections 6.4.3-6.4.7.
Lastly, we provide a summary and an outlook on future research in Section 6.5.

6.2 Deterministic fast-slow systems

In this section we briefly introduce the terminology of fast-slow systems. We keep
this section short and we refer the reader to [Kue15b] and the references mentioned
therein for a detailed presentation of the theory.

Definition 6.1. A fast-slow system is a system of ODE’s of the following form

εdu
dτ = f(u, v, ε),
dv
dτ = g(u, v, ε),

(6.2)

where u respectively v are unknown Rm- respectively Rn-valued functions, f : Rm×
Rn × R→ Rm and g : Rm × Rn × R→ Rn are sufficiently regular vector fields and
0 < ε � 1 is the so-called time-scale parameter. We refer to u as the fast variable,
to v as the slow variable and to τ as the slow time scale. By defining the fast time
scale t := τ/ε we can transform (6.2) into the equivalent system

du
dt = f(u, v, ε),
dv
dt = εg(u, v, ε).

(6.3)



184 CHAPTER 6. FAST-SLOW SPDES

A first approach towards analysing the dynamics of a fast-slow system is to take
the so-called singular limit, that is setting ε = 0. Depending on the time scale this
leads to two different subsystems:

Definition 6.2. The singular limit of (6.2) yields a differential algebraic equation,
the so-called slow subsystem

0 = f(u, v, 0),
dv
dτ = g(u, v, 0).

(6.4)

The flow generated by this system is called the slow flow. Taking the singular limit
in (6.3) results in the so-called fast subsystem

du
dt = f(u, v, 0),
dv
dt = 0.

(6.5)

This is a parameterized ODE and the generated flow is called the fast flow. Note
that the two subsystems (6.4) and (6.5) are not equivalent any more.

The main idea is to analyse invariant objects of the two limiting subsystems
and then use perturbation methods to characterise the dynamics of the full systems
(6.2) and (6.3) for ε > 0 sufficiently small. This approach is often termed Geometric
Singular Perturbation Theory (GSPT). A key object in this theory is defined in the
following.

Definition 6.3. The set

C0 = {(u, v) ∈ Rm × Rn : f(u, v, 0) = 0},

is called the critical set. If C0 is a manifold, we call it the critical manifold.

The critical set consists of equilibria of the fast subsystem and also determines
the phase space of solutions of the slow subsystem. It can be further characterised
in the following way.

Definition 6.4. We call a point p = (u, v) ∈ C0 hyperbolic if the matrix (Duf)(p, 0)
has no eigenvalues with vanishing real part. Here Du denotes the total derivative
with respect to u. We call a subset S ⊂ C0 normally hyperbolic if all p ∈ S are
hyperbolic.

If all eigenvalues of (Duf)(p, 0) have negative real part for all p ∈ S, we call S
attracting. Similarly, if all eigenvalues of (Duf)(p, 0) have positive real part for all
p ∈ S, we call S repelling. A normally hyperbolic subset S where the eigenvalues of
(Duf)(p, 0) have both positive and negative real parts, is called of saddle-type.

Here, we focus on the case where the critical manifold is given locally by a graph
of the slow variable, that is for an open subset D0 ⊂ Rn we can write

C0 = {(u∗(v), v) ∈ Rm × Rn : u∗ : D0 → Rm, f(u∗(v), v, 0) = 0, v ∈ D0}. (6.6)
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Remark 6.5. Note that for a normally hyperbolic critical manifold such a local
representation is always guaranteed by the implicit function theorem.

Assume that C0 is normally hyperbolic attracting. In this case solutions to (6.2)
starting close to the critical manifold will approach C0 in a time of order ε| log ε|.
During this time interval the fast flow provides a reasonable approximation for
the dynamics. For larger times solutions remain in an ε-neighbourhood of C0 and
they are well approximated by the slow flow. This result of an exponentially fast
convergence towards an ε-neighbourhood of a normally hyperbolic attracting critical
manifold is due to Tihonov [Tik52] and Gradshtein [Gra53]. Furthermore, Fenichel
provided by means of a geometrical approach insight into the dynamics within this
neighbourhood in terms of an invariant manifold. Recall that a manifold M in a
phase space is invariant with respect to a flow φt if φt(m) ∈ M for all m ∈ M and
t ∈ R.

Theorem 6.6 (Fenichel’s theorem [Fen79]). Let the critical manifold of the fast-
slow system (6.2) be given by (6.6). Assume that C0 is normally hyperbolic and
that f, g ∈ Ck(Rm × Rn × R), 1 ≤ k < ∞. Then there exists ε0 > 0 such that for
all 0 < ε ≤ ε0 there exists a locally invariant Ck-smooth manifold, called the slow
manifold,

Cε = {(u, v) ∈ Rm × Rn : u = u(v, ε) := u∗(v) +O(ε), v ∈ D0}. (6.7)

Furthermore, Cε has the same local stability properties with respect to the fast vari-
able as C0.

Remark 6.7. In the normally hyperbolic case Fenichel’s theorem is one of the main
tools for analysing dynamical phenomena in fast-slow systems. In settings with a
non-hyperbolic critical manifold other methods have been developed such as the
so-called blow up method, see for instance [Kue15b] and [EK20] for a recent result
in the infinite-dimensional setting.

Example 6.8 (Van der Pol equation). A classical example of a fast-slow system is
generated by the famous Van der Pol equation

u′′ + µ(u2 − 1)u′ + u = a, (6.8)

where µ � 1 is a parameter and a > 0 is a constant forcing term. Transforming
this second order ODE into a system of first order equations

εu′ = v − u3

3 + u,
v′ = a− u,

(6.9)

where we have set ε := 1/µ2, reveals the typical fast-slow structure. Let us consider
the unforced setting with a = 0. The critical manifold is given by the cubic curve
C0 = {(u, v) ∈ R2 : v = u3

3 − u} with its two fold points F1 = (−1,+2/3) and F2 =
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(1,−2/3), see the blue graph on the right side in Figure 6.1. We can furthermore
identify a normally hyperbolic repelling part of the critical manifold, namely Cr0 =
C0 ∩ {−1 < u < 1}, and two normally hyperbolic attracting parts, that is C1

0 =
C0 ∩ {u < −1} and C2

0 = C0 ∩ {u > 1}.
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Figure 6.1: Numerical solution of (6.9) with ε = 0.1, a = 0 and initial conditions
u(0) = 0, v(0) = 2 using a simple Euler method. We observe relaxation oscillations
of the fast and slow variables.

In the singular limit of the fast subsystem

du
dt = v − u3

3 + u,
dv
dt = 0,

v is a constant parameter, and depending on its value the dynamics of the fast
variable u exhibits one, two or three equilibrium points lying on the critical manifold.
Thus trajectories start with a fast motion towards the attracting branches C1

0 or C2
0 .

The slow subsystem, given by

0 = v − u3

3 + u,
dv
dτ = −u,

describes the flow on the critical manifold in the singular limit ε = 0. That is
trajectories starting on C0 move upward on C1

0 and downward on C2
0 according to

du
dτ = − u

u2−1
. Approaching one of the fold points, let us say F1, the trajectory jumps

in the fast subsystem to the drop point (2, 2/3) ∈ C2
0 . Then it continues along C2

0

towards F2, where it jumps back to the drop point on C1
0 . Thus we observe a periodic

orbit in the singular limits ε = 0. This alternation between slow dynamics and fast
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dynamics in the form of jumps between generic fold points and normally hyperbolic
drop points, is called a relaxation oscillation. If the full dynamics converge in the
singular limit ε → 0 to such a behaviour, or conversely the periodic orbit for ε = 0
persists as an attracting limit cycle for ε > 0, we call the full system a relaxation
oscillator. For the Van der Pol system this is indeed the case, which can be observed
in simulations of the full dynamics, see Figure 6.1 left.

6.3 Stochastic fast-slow systems

Definition 6.9. Let (Ω,F ,P) be some probability space. A general stochastic fast-
slow system has the form

du = 1
εf(u, v) dτ +

σf√
ε
F (u, v) dB,

dv = g(u, v) dτ + σgG(u, v) dB,
(6.10)

where (u, v) = (u(τ, ω), v(τ, ω)) ∈ Rm × Rn, ω ∈ Ω and B = B(τ, ω) is a k-
dimensional vector of iid Brownian motions defined on (Ω,F ,P). Furthermore,
0 < ε, σf , σg � 1 are small parameters, the maps f, g, F,G are assumed to
be sufficiently smooth and all maps have suitable domains and ranges, that is
F : Rm+n × R → Rm×k, G : Rm+n × R → Rm×k, f : Rm+n → Rm and
g : Rm+n → Rn. The parameter ε controls the time scale separation between the
fast u variables and the slow v variables, while the parameters σf and σg regulate
the noise level. We further define the ratio ρ := σg/σf .

The solution of (6.10) is a stochastic process (u(τ, ω), v(τ, ω)) depending both
on time τ ∈ R+ and the realisation ω ∈ Ω. There are two major viewpoints for
analysing solutions: Either one is interested in the distribution of the corresponding
random variables for fixed times τ or the goal is to characterise the behaviour of
sample paths, that is the temporal evolution of solutions for fixed realisation ω. We
will focus here on the latter one.

Remark 6.10. Note that as we are mainly interested in sample paths we often omit
the dependency on ω ∈ Ω in our notations, e.g. we write (u(τ), v(τ)) for solutions
of (6.10).

Example 6.11 (Stochastic Van der Pol equation). We pick up once more the stan-
dard example of the Van der Pol system (6.9) and perturb the fast variable by a
Brownian motion B(t)

du = (v − u3

3 + u) dt+ σ dB,
dv = −εu dt.

(6.11)

Using a simple Euler-Maruyama method we can derive a numerical solution of
(6.11) and we plot a corresponding sample path, see Figure 6.2.
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Figure 6.2: Numerical solution of (6.11) with ε = 0.1 and initial conditions u(0) = 0,
v(0) = 2 using a simple Euler-Maruyama method.

A fundamental theory to rigourously analyse the behaviour of sample paths for
stochastic fast-slow systems was developed by Berglund and Gentz [BG06, BG03,
BG02]. In their work they not only analyse the dynamics near an attracting normally
hyperbolic manifolds, but they also treat the cases where the fast subsystem admits
bifurcation points or periodic orbits. Here, we focus on the normally hyperbolic
attracting case and in the following we will briefly summarize the main result by
Berglund and Gentz in this setting, following [BG06, Section 5].

In the case where the critical set of the associated deterministic system is a
normally hyperbolic attracting manifold, Fenichel’s Theorem yields the existence of
a locally invariant slow manifold Cε that is normally hyperbolic attracting as well.
In this setting and under sufficiently small noise, it can be observed that a typical
sample path of (6.10) starting near Cε is going to fluctuate around Cε and also slowly
drifts according to a stochastic perturbation of the slow subsystem. We will make
this precise in the following, whereby we closely follow [BG06, Section 5].

Let us fix the following assumptions for the system (6.10).

Assumptions 6.12.

(i) Regularity : Let D ⊂ Rm × Rn be open and f ∈ C2(D,Rm), g ∈ C2(D,Rn),
F ∈ C1(D,Rm×k) and G ∈ C1(D,Rn×k). Furthermore, f, g, F,G and all their
existing derivatives are uniformly bounded in D by a constant M .

(ii) Critical manifold : There exists a connected open subset D0 ⊂ Rn and u∗ ∈
C(D0,Rm) such that

C0 = {(u, v) ∈ D : u = u∗(v), v ∈ D0}
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is a critical manifold of the corresponding deterministic system.

(iii) Stability : The critical manifold C0 is normally hyperbolic attracting.

(iv) Non-degeneracy : The matrix FF> is positive definite.

By Fenichel’s Theorem there exists a locally invariant manifold of the determin-
istic system

Cε = {(u, v) ∈ D : u = u(v, ε) := u∗(v) +O(ε), v ∈ D0}.

In the following we will construct a suitable neighbourhood around Cε. Using Itô’s
formula one can derive a SODE for the evolution of the deviation ξ = u− u(v, ε) of
sample paths from the slow manifold [BG06, Equation (5.1.5)]. The following is a
linear approximation of this SODE, where v is replaced by its deterministic version
vd

dξ0 = 1
εA(vd, ε)ξ0 dτ +

σf√
ε
F0(vd, ε) dB,

dvd = g(ū(vd, ε), vd) dτ,
(6.12)

with

A(v, ε) = Duf(ū(v, ε), v)− εDvū(v, ε)Dug(ū(v, ε), v),

F0(v, ε) = F (ū(v, ε), v)− ρ
√
εDvū(v, ε)G(ū(v, ε), v).

With an initial condition (ξ0(0), vd(0)) = (0, vd(0)) the solution to the first equation
in (6.12) is given by the stochastic convolution

ξ0(τ) =
σf√
ε

∫ τ

0
U(τ, s)F0(vd, ε) dB(s),

where U(τ, s) denotes the principal solution to ξ̇ = 1
εA(vd, ε)ξ. Now, ξ0(τ) is

Gaussian with zero mean and covariance Cov(ξ0(τ)). In order to define a suit-
able neighbourhood within which the solution stays with high probability, it seems
reasonable to use this covariance as an indicator for admissible deviations from
the invariant manifold. In particular, it can be shown that the scaled covariance
X(τ) := 1

σ2
f
Cov(ξ0(τ)) is a solution to the deterministic fast-slow system

εdX
dτ = A(v, ε)X +XA(v, ε)> + F0(v, ε)F0(v, ε)>,
dv
dτ = g(ū(v, ε), v).

(6.13)

As, for ε sufficiently small, the eigenvalues of A(v, ε) have strictly negative real parts
by Assumptions 6.12 (iii), [BG06, Lem. 5.12] ensures that the critical manifold of
(6.13) is normal hyperbolic attracting and it is given by {X∗(v, ε), v ∈ D0} with

X∗(v, ε) =

∫ ∞
0

exp(sA(v, ε))F0(v, ε)F0(v, ε)> exp(sA(v, ε)>) ds.
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Again, Fenichel’s theorem implies the existence of an invariant manifold

{X̄(v, ε), v ∈ D0},

with
X̄(v, ε) = X∗(v, ε) +O(ε).

Assumption 6.12 (iv) guarantees that X̄(v, ε) is invertible and thus we can define
the following set, describing a neighbourhood around the slow manifold

B(r) :=
{

(u, v) ∈ D : 〈u− ū(v, ε), X̄(v, ε)−1(u− ū(v, ε))〉 < r2, v ∈ D0

}
. (6.14)

Definition 6.13. We define the following exit times

τB(r) := inf{τ > 0 : (u(τ), v(τ)) /∈ B(r)},
τD0 := inf{τ > 0 : v(τ) /∈ D0}.

Berglund and Gentz proved that sample paths are likely to stay for exponential
long time spans within B(r), see Figure 6.3 for an illustration. More precisely, they
have proved the following theorem.

Theorem 6.14 (cf. [BG06, Theorem 5.1.6]). Let u(0) = u(v(0), ε) and denote by
Pu(0),v(0) the law of the process (u(τ), v(τ))τ≥0 starting in (u(0), v(0)) at time τ = 0.
Under Assumptions 6.12 there exist constants ε0,∆0, r0, c, c1, L > 0 such that for
all ε ≤ ε0, ∆ ≤ ∆0, r ≤ r0, all γ ∈ (0, 1) and all τ ≥ 0

Pu(0),v(0)
(
τB(r) < τ ∧ τD0

)
≤ Cr/σf ,m,n,γ,∆(τ, ε)e−κr

2/(2σ2
f ), (6.15)

where
κ := γ

[
1− c1(r + ∆ + nερ2σ2

f/r
2 + e−c/ε/(1− γ))

]
,

and

Cr/σf ,m,n,γ,∆(τ, ε) := L
(1 + τ)2

∆ε

[
(1− γ)−m + em/4 + en/4

] (
1 + r2/σ2

f

)
.

Remark 6.15. The proof of Theorem 6.14 starts with a change of variables in (6.10)
to ξ and vd and a Taylor expansion of the resulting system. Then, precise estimates
for the linear terms of the representation of the solution are derived, while the
non-linear terms are treated as small perturbations. Another key ingredient is to
consider the dynamics first on small time intervals where stochastic convolutions can
be approximated by Gaussian martingales before glueing short time approximations
to larger scales via the Markov property.

Remark 6.16. Clearly, estimate (6.15) is useless for an infinite-dimensional system,
as the constant Cr/σf ,m,n,γ,4 would explode for n or m going to infinity. Thus,
a direct transfer of this result to an SPDE interpreted as an infinite-dimensional
SODE system fails.
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u2

u1

v
B(r)

u(v, ε)

Figure 6.3: Sketch of a sample path inside an ellipsoidal neighbourhood B(r) in the
finite-dimensional SODE setting with two fast and one slow variable. In the SPDE
setting, we are going to view the u-direction as infinite-dimensional.

A key estimate in the proof of Berglund and Gentz is given by the following
Bernstein-type inequality, which we will also need in the SPDE setting.

Proposition 6.17 (see [BG06, Lemma B.1.3]). Let ϕ : R→ R be Borel measurable
and such that

Φ(t) :=

∫ t

0
ϕ(τ)2 dτ

exists. Furthermore, let B(τ) be a real-valued Brownian motion. Then the following
estimate holds:

P
(

sup
0≤s≤t

∫ s

0
ϕ(τ)dB(τ) ≥ c

)
≤ exp

(
− c2

2Φ(t)

)
. (6.16)

Proof. Using Itô’s formula one can derive that for any γ > 0

Ms = exp

(∫ s

0
ϕ(τ)dB(τ)− 1

2

∫ s

0
γ2ϕ(τ)2dτ

)
,

is an exponential martingale with E [Mt] = 1. Then Doob’s martingale inequality
(see Theorem A.4) yields

P
(

sup
0≤s≤t

∫ s

0
ϕ(τ)dB(τ) ≥ c

)
≤ P

(
sup

0≤s≤t
Ms ≥ exp

(
cγ − 1

2

∫ t

0
γ2ϕ(τ)2dτ

))
≤ exp

(
−cγ +

1

2

∫ t

0
γ2ϕ(τ)2dτ

)
,

and the right hand side is maximal for the choice γ = c/Φ(t).
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6.4 Sample path estimates for fast-slow SPDE systems

As mentioned in Section 6.1, we would like to extend the sample path theory from
the previous section to fast-slow SPDE systems. We will consider a linear setting
as described below. Note that this section is based on [GKP19], which is joint work
with Manuel Gnann and Christian Kuehn, and all the technical calculations are
copied from there.

6.4.1 The linear setting

We consider the Hilbert space H := L2([0, L]) for some L > 0 and a probability
space (Ω,F ,P). We will focus on the following special case of equation (6.1): we

choose A = ∂2

∂x2 , g ≡ 1 and f(u, s, ε) = a(s)u(s) + Bu(s), with a : R → R being
bounded and measurable and B being a non-local operator as defined below. After
changing to the slow time scale s, we arrive at the following equation

du(s) =
1

ε

[
∂2

∂x2
u(s) + a(s)u(s) +Bu(s)

]
ds+

σ√
ε

dW (s), (6.17)

which is interpreted as a linear evolution equation in H. Note that W is a H-valued
Q-Wiener process. We equip the equation with homogeneous Dirichlet boundary
conditions, i.e, we have u(s, 0) = u(s, L) = 0 for all s ∈ [0, t], for some t > 0.
Furthermore, we assume as initial condition u(0, x) = 0 for all x ∈ [0, L].

The differential operator The domain of the operator A = ∂2

∂x2 in L2([0, L])
under homogeneous Dirichlet boundary conditions is given by

D(A) = H2([0, L]) ∩H1
0 ([0, L]).

D(A) is dense in L2([0, L]) and A has a complete orthonormal set of eigenfunctions

{φk}k :=

{
x 7→

√
2

L
sin

(
kπ

L
x

)}
k

, k ≥ 1,

in L2([0, L]) with associated eigenvalues µk := −k2π2

L2 for k ≥ 1. In particular, A
generates a strongly continuous semigroup (S(s))s≥0, S(s) = esA, in L2([0, L]).

The noise term Let {ek}k denote the eigenfunctions of the trace-class covariance
operator Q : H → H with associated non-negative eigenvalues {λk}k, so that

Qek = λkek for all k ≥ 1. (6.18)

We assume that the eigenvalues are ordered as λ1 ≥ λ2 ≥ .... The eigenfunctions
form a complete orthonormal system of H. By Proposition 3.13 we have the repre-
sentation

W (s) =
∞∑
k=1

√
λkBk(s)ek, (6.19)
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where {Bk}k is a sequence of independent real-valued Brownian motions on
(Ω,F ,P). In the following we assume that there exist c > 0 and p > 1 such that

λk ≤ ck2−p.

In particular, the relation between the eigenvalues of A (|µk| ∼ k2) and the eigenval-
ues of the trace-class covariance operator Q (which decrease monotonically to zero
as k →∞, since the trace is finite) guarantees that the deterministic decay towards
zero of the drift term dominates the noisy fluctuations in the higher modes.

The non-local operator B The operator B is defined via its action on the
eigenfunctions {φk}k in the following way for some fixed k∗

Bφk(x) =

{∑k∗−1
`=1 b`kφ`(x) , k ≤ k∗ − 1,

0 , k ≥ k∗.
(6.20)

Mild solution The operator L(s) := 1
ε

[
∂2

∂x2 + a(s) +B
]

generates a strongly con-

tinuous evolution family (R(s, r))0≤r≤s≤t and (6.17) admits a unique mild solution

in L2([0, L]) (cf. [Ver10], where a cylindrical Wiener process is considered) given by
the stochastic convolution

u(s) =
σ√
ε

∫ s

0
R(s, r) dW (r). (6.21)

Remark 6.18. Note that due to the explicit time dependence of the integrand, (6.21)
is not a martingale. Thus one can not directly apply suitable martingale inequalities
to bound the solution. In the one-dimensional setting by Berglund and Gentz [BG06,
Chapter 3] this problem is tackled by approximating the solution locally by Gaussian
martingales, see [BG06, Proposition 3.1.5]. However, their procedure is based on a
certain splitting of the one-dimensional semigroup, which is not valid for a generic
operator-valued evolution family. Thus, a direct transfer of the one-dimensional
result to the Hilbert space norm of the SPDE solution is not possible.

6.4.2 Spectral Galerkin approximation

In this subsection, we derive a finite-dimensional approximation of (6.17). For this
we make the following additional assumption.

Assumptions 6.19. The operators A and Q commute.

We use the spectral Galerkin approximation as introduced in Subsection 3.3.
That is, we consider the orthogonal projections onto the the m-dimensional space
Vm := span{φ1, ..., φm} for some m ≥ k∗. Note that by Assumptions 6.19 we
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can assume φk = ek for all k. According to (3.17) the m-dimensional Galerkin
approximation um(s) of (6.21) satisfies

dum =
1

ε
Pm

[
∂2

∂x2
um + a(s)um +Bum

]
ds+

σ√
ε
Pm dW. (6.22)

Then, under suitable assumptions, um(s) converges in the L∞-topology to u(s) as
m→∞ (see [BJ13] for the details regarding this convergence). We calculate for

Pmu(s) =

m∑
k=1

ûk(s)φk, ûk(s) :=

∫ L

0
φk(x)u(s, x) dx,

by using integration by parts∫ L

0
φk(x)

∂2

∂x2
u(s, x) dx =

∫ L

0

∂2

∂x2
φk(x)u(s, x) dx

= µk

∫ L

0
φk(x)u(s, x) dx = µkûk(s),

hence we obtain

Pm
∂2

∂x2
u(s) =

m∑
k=1

µkûk(s)φk.

Similarly, we also project the noise term using (6.19)

PmW (s) =

m∑
k=1

√
λkBk(s)φk,

as ∫ L

0
φk(x)

∞∑
j=1

√
λjBj(s)φj(x) dx =

∞∑
j=1

√
λjBj(s)

∫ L

0
φk(x)φj(x) dx

=
√
λkBk(s).

Furthermore, the non-autonomous part of the drift term gives

Pma(s)u(s) =

m∑
k=1

a(s)ûk(s)φk,

and

PmBu(s) =

k∗−1∑
`=1

k∗−1∑
k=1

b`kûk(s)φ`.

In total, (6.22) is equivalent to the following finite-dimensional system of SODEs
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(
dU1(s)
dU2(s)

)
=

1

ε

(
J1(s) 01

02 J2(s)

)
︸ ︷︷ ︸

=:J(s)

(
U1(s)
U2(s)

)
︸ ︷︷ ︸

=:Um(s)

ds+
σ√
ε

(
F1 01

02 F2

)(
dB1(s)
dB2(s)

)
, (6.23)

where 01 ∈ R(k∗−1)×(m−k∗+1) and 02 ∈ R(m−k∗+1)×(k∗−1) are matrices filled with
zeros,

J1(s) :=


µ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 µk∗−1

+ a(s) idk∗−1 +


b11 b12 . . . b1k∗−1

b21
. . .

. . .
...

...
. . .

. . . bk∗−2
k∗−1

bk∗−1
1 . . . bk∗−1

k∗−2 bk∗−1
k∗−1


︸ ︷︷ ︸

=:B

,

(6.24)

J2(s) :=


µk∗ + a(s) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 µm + a(s)

 . (6.25)

Furthermore, U1(s) := (û1(s), . . . , ûk∗−1(s))>, U2(s) := (ûk∗(s), . . . , ûm(s))>,

F1 := diag(
√
λ1, . . . ,

√
λk∗−1), F2 := diag(

√
λk∗ , . . . ,

√
λm),

and
B1(s) = (B1(s), . . . , Bk∗−1(s))>, B2(s) = (Bk∗(s), . . . , Bm(s))>.

Here, diag(a1, ..., an) denotes the n×n diagonal matrix with entries a1, ..., an on the
diagonal and idn is the n× n identity matrix.

From now on let the following assumptions hold.

Assumptions 6.20.

(i) Ji,j ∈ C1([0, t],R), for all i, j = 1, ...,m and the derivatives are uniformly
bounded by a constant M .

(ii) a− < a(s) < a+ for all s ∈ [0, t] where a−, a+ ∈ R.

(iii) µ1 + a+ + ‖B‖op =: −κ < 0.

(iv) λk 6= 0 for all k = 1, ...,m.

Note that the deterministic attracting slow manifold of (6.23) is given by Cε =
{Um(s) = 0} for s ∈ [0, t] since Um(s) ≡ 0 solves the problem without noise for any
ε > 0 and any s ∈ [0, t], and Assumption 6.20 (iii) guarantees that Cε is attracting.
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6.4.3 Main result

We consider equation (6.17) on the spatial interval [0, L], L > 0, and time interval
[0, t], where we assume for Λ > 0

t = Λε,

together with homogeneous Dirichlet boundary conditions and initial condition
u(0) = 0, as discussed in Section 6.4.1. Let u be the mild solution to this problem
and let um be the m-dimensional Galerkin approximation, as discussed in Section
6.4.2. Furthermore, let Assumptions 6.19 and 6.20 hold.

Notations It is helpful to introduce some notation to deal with various constants
appearing in the following arguments. Let

C1 := C1(γ) := C
κ+ β

(k∗ − 1)3σ2λ1
exp (2Λ(κ− κ− 2β)) exp

(
−2γ

κ
(κ+ β)

)
, (6.26)

where γ > 0 is chosen arbitrarily, C, β are constants depending on the particular
form of B and κ, κ are lower and upper bounds on the eigenvalues of J1(s) (see
Section 6.4.5 for details). Likewise, for arbitrary γ̃ > 0 we define

C2 = C2(γ̃) :=
cc̃ exp (−2γ̃)π2

σ2L2
, (6.27)

where c > 0 is the constant such that k2

λk
≥ ckp, and c̃ > 0 is chosen such that

|µk + a+| ≥ c̃|µk|. We also introduce the notation

H∗(k) :=
ln
(

2
⌈

Λ
γ̃ |a− + µk|

⌉)
C2kp

, (6.28)

and we note that, defining Hm
∗ := H∗(k∗ +m) for m ∈ N, we have

∑∞
m=0H

m
∗ <∞.

Furthermore, we define

η∗ :=
∞∑
m=0

Hm
∗ +

2p

(p2 − 1)C2
+ 2δ, (6.29)

where δ is chosen such that 1
C2δ
≥ 1, and

ζ∗ :=
ln (2dΛκ/γe)

C1
, (6.30)

as well as

ξ∗ :=
1

C2δ

exp (−C2k
p
∗δ)

1− exp
(
−C2pk

p−1
∗ δ

) . (6.31)
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Main result Our main result then reads as follows

Theorem 6.21. Let γ, γ̃ > 0 be arbitrary. For H ≥ η∗ + ζ∗ we have

P
(

sup
0≤s≤t

‖u(s)‖2 ≥ H
)

≤ exp (−C1 (H − η∗ − ζ∗))

+ ξ∗C1
| exp (−C1(H − η∗ − ζ∗))− exp (−C2k

p
∗(H − η∗ − ζ∗)) |

|C1 − C2k
p
∗|

, (6.32)

where ‖ · ‖ = ‖ · ‖L2([0,L]) and all the constants are defined as above. The case
C1 = C2k

p
∗ is to be understood in the sense of taking the derivative.

Remark 6.22. Theorem 6.21 tells us the following: For H large enough, the probabil-
ity that the solution to equation (6.17) deviates more than H from the deterministic
slow manifold Cε within an ε-small time interval, is exponentially small in H. The
larger p, i.e., the faster the eigenvalues of the covariance operator Q decrease, the
smaller is the lower bound on H for which we can guarantee this exponential decay.

Remark 6.23. The left hand side of (6.32) is equivalent to the exit time probability
P
(
τB(H) < t

)
, where

B(H) =
{
u ∈ H : ‖u‖2 < H

}
.

Since we have not rescaled our neighbourhood by the noise process, as compared to
the approach by Berglund and Gentz (see (6.14)), the principal eigenvalue λ1 of the
covariance operator appears on the right hand side of (6.32) (in the constant C1).

Proof strategy Let us briefly outline the strategy of the proof. Note that by
Parseval’s identity we have for H > 0

P
(

sup
0≤s≤t

‖u(s)‖2 ≥ H
)

= P

(
sup

0≤s≤t

∞∑
k=1

|ûk(s)|2 ≥ H

)
. (6.33)

For readability we write uk(s) for ûk(s) from now on. The main idea to prove
Theorem 6.21 is to split the infinite sum in (6.33) into two parts, one containing the
first k∗−1 components and the other one containing the last m−k∗+1 components,
where we let m tend to infinity. We call the first sum the finite-frequency part and
the second sum the high-frequency part. The two parts can be estimated as follows

Proposition 6.24. For arbitrary γ > 0 we have for H ≥ ζ∗

P

(
sup

0≤s≤t

k∗−1∑
k=1

|uk(s)|2 ≥ H

)
≤ exp (−C1(H − ζ∗)) . (6.34)
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Proposition 6.25. For arbitrary γ̃ > 0 we have for H ≥ η∗

P

 ∞∑
k=k∗

sup
0≤s≤t

|uk(s)|2 ≥ H

 ≤ ξ∗ exp (−C2k
p
∗(H − η∗)) . (6.35)

Proposition 6.24 will be proved in Section 6.4.5. In order to prove Proposition
6.25 we will use one-dimensional estimates for each component, which we will then
combine iteratively, see Section 6.4.6. Finally, to prove Theorem 6.21 we will con-
catenate the estimates for the finite-frequency part and the high-frequency part, i.e.,
Propositions 6.24 and 6.25, see Section 6.4.7.

Remark 6.26. Note that similar estimates for one-dimensional and (finite) multi-
dimensional SODE systems have been proved in [BG06]. We use a similar strategy
for the proofs, however, in a way which is tailor-made for the setting at hand.

6.4.4 Auxiliary results

Before proving Propositions 6.24, 6.25 and Theorem 6.21 we provide a couple of
auxiliary results. The following proposition will become crucial for obtaining es-
timates on the distribution of the sum of two random variables when exponential
estimates for each individual random variable are given.

Proposition 6.27. Let X, Y be two independent non-negative random variables
on a probability space (Ω,F ,P) with absolutely continuous cumulative distribution
functions. Assume that the following two estimates hold

P (X ≥ H) ≤
n∑
i=0

ξX(i) exp (−κX(i)(H − ηX)) , for all H ≥ ηX , (6.36a)

P (Y ≥ H) ≤ ξY exp (−κY (H − ηY )) , for all H ≥ ηY , (6.36b)

where n ∈ N, ξX(i), ξY , κX(i), κY > 0, ηX , ηY ≥ 0 for i = 0, . . . , n. Then, for
H ≥ ηX + ηY we have

P (X + Y ≥ H)

≤ P (Y ≥ H − ηX)

(
1−

n∑
i=0

ξX(i)

)
+

n∑
i=0

ξX(i) exp (−κX(i)(H − ηX − ηY ))

−
n∑
i=0

ξY ξX(i)κX(i)
exp (−κX(i)(H − ηX − ηY ))− exp (−κY (H − ηX − ηY ))

κX(i)− κY
,

(6.37)

where the case κX(i) = κY for an i ∈ {1, . . . , n} is to be understood in the sense of
taking the derivative.
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Proof. For simplicity we assume κX(i) 6= κY for all i ∈ {1, . . . , n} in what follows.
Further assume H ≥ ηX +ηY . As X and Y are independent we can use the convolu-
tion formula for the cumulative distribution function of the sum of two independent
random variables, that is

P (X + Y ≥ H)

= 1− P (X + Y < H)

= 1−
∫ H

0

(
d

dH1
(1− P (Y ≥ H1))

)
(1− P (X ≥ H −H1)) dH1

= 1 +

∫ H

0

d

dH1
P (Y ≥ H1) dH1 −

∫ H

0

(
d

dH1
P (Y ≥ H1)

)
P (X ≥ H −H1) dH1

= P (Y ≥ H)−
∫ H

0

(
d

dH1
P (Y ≥ H1)

)
P (X ≥ H −H1) dH1.

Using that d
dH1

P (Y ≥ H1) ≤ 0 and (6.36a), we calculate further

P (X + Y ≥ H)

= 1− P (X + Y < H)

≤ P (Y ≥ H)

−
∫ H−ηX

0

(
d

dH1
P (Y ≥ H1)

)[ n∑
i=0

ξX(i) exp (−κX(i)(H −H1 − ηX))

]
dH1

−
∫ H

H−ηX

d

dH1
P (Y ≥ H1) dH1

= P (Y ≥ H − ηX)

−
∫ H−ηX

0

(
d

dH1
P (Y ≥ H1)

)[ n∑
i=0

ξX(i) exp (−κX(i)(H −H1 − ηX))

]
dH1︸ ︷︷ ︸

=:I1

.

(6.38)

With integration by parts and by applying equation (6.36b), we can estimate I1

further as follows
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I1 = −

[
P (Y ≥ H1)

n∑
i=0

ξX(i) exp (−κX(i)(H −H1 − ηX))

]H−ηX
H1=0

+

∫ H−ηX

0
P (Y ≥ H1)

[
n∑
i=0

ξX(i)κX(i) exp (−κX(i)(H −H1 − ηX))

]
dH1

≤ −P (Y ≥ H − ηX)
n∑
i=0

ξX(i) +
n∑
i=0

ξX(i) exp (−κX(i)(H − ηX))

+

∫ nY

0

n∑
i=0

ξX(i)κX(i) exp (−κX(i)(H −H1 − ηX)) dH1

+

∫ H−ηX

ηY

ξY exp (−κY (H1 − ηY ))[
n∑
i=0

ξX(i)κX(i) exp (−κX(i)(H −H1 − ηX))

]
dH1

= −P (Y ≥ H − ηX)

n∑
i=0

ξX(i) +

n∑
i=0

ξX(i) exp (−κX(i)(H − ηX − ηY )) + I2,

with

I2 : =

∫ H−ηX

ηY

ξY exp (−κY (H1 − ηY ))[
n∑
i=0

ξX(i)κX(i) exp (−κX(i)(H −H1 − ηX))

]
dH1

=

n∑
i=0

ξY ξX(i)κX(i) exp (κY ηY − κX(i)H + κX(i)ηX)

∫ H−ηX

ηY

exp (H1(κX(i)− κY )) dH1

= −
n∑
i=0

ξY ξX(i)κX(i)
exp (−κX(i)(H − ηX − ηY ))− exp (−κY (H − ηX − ηY ))

κX(i)− κY
.

Inserting I2 into I1 and estimating I1 as above in equation (6.38) concludes the
proof.

We will further need the following results for the iteration step in the high-
frequency estimate.
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Lemma 6.28. For n ∈ N let {xk}nk=0 be distinct non-negative real numbers. Then

n∑
i=0

n∏
m=0,m 6=i

xm
xm − xi

= 1, (6.39a)

n∑
i=0

n∏
m=0,m 6=i

1

xm − xi
= 0. (6.39b)

Proof of (6.39a). Define the auxiliary function f : R→ R

f(x) :=
n∑
i=0

n∏
m=0,m 6=i

1− x/xm
1− xi/xm

.

Then for k = 0, ..., n we have

f(xk) =

n∑
i=0

n∏
m=0,m 6=i

1− xk/xm
1− xi/xm

=
n∑

i=0,i 6=k

n∏
m=0,m 6=i

1− xk/xm
1− xi/xm

+
n∏

m=0,m 6=k

1− xk/xm
1− xk/xm

=

n∑
i=0,i 6=k

 n∏
m=0,m6=i,m 6=k

1− xk/xm
1− xi/xm

 1− xk/xk
1− xi/xp︸ ︷︷ ︸

=0

+1 = 1.

Now, f(x)−1 is a polynomial of degree n with n+1 roots, i.e., f(x)−1 ≡ 0. Hence,

1 = f(0) =

n∑
i=0

n∏
m=0,m 6=i

1

1− xi/xm
=

n∑
i=0

n∏
m=0,m 6=i

xm
xm − xi

.

Proof of (6.39b). We prove the second identity by induction. For the base case
n = 1 we have

n∑
i=0

n∏
m=0,m 6=i

1

xm − xi
=

1

x1 − x0
+

1

x0 − x1
= 0.
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Now, let (6.39b) hold for arbitrary but fixed n ∈ N (inductive hypothesis). Then

n+1∑
i=0

n+1∏
m=0,m 6=i

1

xm − xi

=
1

xn+1 − xn

[
n+1∑
i=0

xn+1 − xi∏n+1
m=0,m 6=i(xm − xi)

−
n+1∑
i=0

xn − xi∏n+1
m=0,m 6=i(xm − xi)

]

=
1

xn+1 − xn

 n∑
i=0

1∏n
m=0,m 6=i(xm − xi)

−
n+1∑

i=0,i 6=n

1∏n+1
m=0,m 6=i,m 6=n(xm − xi)


=

1

xn+1 − xn
[0− 0] = 0,

where we have used the inductive hypothesis in the last line.

Corollary 6.29. For k∗ ∈ N, a, b, c ∈ N let us define the following quotient

Qab,c :=
(k∗ + a)p

(k∗ + b)p − (k∗ + c)p
, (6.40)

which will appear in the estimate for the high-frequency part. For n ∈ N it holds

n∑
i=0

n∏
n=0,m 6=i

Qmm,i = 1, (6.41a)

n+1∑
i=0

n+1∏
m=0,m 6=i

Q0
m,i = 0, (6.41b)

1−Qii,n+1 = Qn+1
n+1,i, (6.41c)

n∑
i=0

 n∏
m=0,m 6=i

Qmm,i

Qii,n+1 =

n∏
m=0

Qmm,n+1. (6.41d)

Proof. Identities (6.41a) and (6.41b) follow directly from Lemma 6.28. The third
identity (6.41c) can be easily verified by direct calculation

1−Qii,n+1 =
(k∗ + i)p − (k∗ + n+ 1)p

(k∗ + i)p − (k∗ + n+ 1)p
− (k∗ + i)p

(k∗ + i)p − (k∗ + n+ 1)p

=
−(k∗ + n+ 1)p

(k∗ + i)p − (k∗ + n+ 1)p
= Qn+1

n+1,i.
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The identity (6.41d) follows from

n∑
i=0

 n∏
m=0,m6=i

Qmm,i

Qii,n+1

=
n∏

m=0

(k∗ +m)p

[
−

n∑
i=0

n+1∏
m=0,m 6=i

1

(k∗ +m)p − (k∗ + i)p

]

=
n∏

m=0

(k∗ +m)p

[
−
n+1∑
i=0

n+1∏
m=0,m 6=i

1

(k∗ +m)p − (k∗ + i)p︸ ︷︷ ︸
=0 by (6.41b)

+

n∏
m=0

1

(k∗ +m)p − (k∗ + n+ 1)p

]

=
n∏

m=0

(k∗ +m)p

(k∗ +m)p − (k∗ + n+ 1)p
=

n∏
m=0

Qmm,n+1.

6.4.5 Finite-frequency estimate

Proof of Proposition 6.24. We begin by estimating the eigenvalues of the matrix
J1(s). Let ψ(s) be an eigenvalue of J1(s) = diag(µ1, . . . , µk∗−1) + a(s)idk∗−1 + B
with corresponding normalized eigenvector w (‖w‖2 = 1), i.e. J1(s)w = ψ(s)w.
Note that ‖ · ‖2 denotes the Euclidean norm of vectors in Rk∗−1 and ‖ · ‖op is the
operator norm on the space Rk∗−1×k∗−1. We have

‖B‖op ≥ ‖Bw‖2
= ‖diag(ψ(s)− a(s)− µ1, . . . , ψ(s)− a(s)− µk∗−1)w‖2
≥ min

k=1,...,k∗−1
|ψ(s)− a(s)− µk|.

This estimate yields an upper and a lower bound on ψ(s):

ψ(s) ≤ a(s) + max
k=1,...,k∗−1

µk + ‖B‖op ≤ a+ + µ1 + ‖B‖op =: −κ,

ψ(s) ≥ a(s) + min
k=1,...,k∗−1

µk − ‖B‖op ≥ a− + µk∗−1 − ‖B‖op =: −κ,

with 0 < κ < κ (cf. Assumption 6.20 (iii)). Now, let U1(s) be the solution to the
k∗ − 1-dimensional system

U1(s) =
1

ε
J1(s)U1(s) +

σ√
ε
F1 dB1(s).
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Using Duhamel’s principle the solution can be represented as follows

U1(s) =
σ√
ε

∫ s

0
exp

(
1

ε
α(s, τ)

)
F1 dB1(τ),

with α(s, τ) :=
∫ s
τ J1(r) dr. Furthermore, define α(s) := α(s, 0). Since we have an

upper and a lower bound for the eigenvalues of J1(s), we can obtain the following
estimates ∥∥∥∥exp

(
1

ε
α(s)

)∥∥∥∥
op

≤ C exp
(
−s
ε

(κ− β)
)
, (6.42)

(
exp

(
−1

ε
α(τ)

))
i,j

≤ C exp
(τ
ε

(κ+ β)
)
, (6.43)

where the constant β ≥ 0 comes from the polynomial part appearing in non-
diagonalizable matrices and C,C are time-independent constants.

Let us now introduce a partition of the time interval [0, t] by 0 = s0 < s1 <

. . . < sN = t with step size sj+1 − sj = εγ
κ and N =

⌈
tκ
εγ

⌉
, for some γ > 0. Using

(6.42) we can estimate the probability as follows

P

(
sup

0≤s≤t

k∗−1∑
k=1

|uk(s)|2 ≥ H

)

≤
N−1∑
j=0

P

(
sup

sj≤s≤sj+1

∥∥∥∥ σ√ε
∫ s

0
exp

(
1

ε
α(s, τ)

)
F1 dB1(τ)

∥∥∥∥2

2

≥ H

)

≤
N−1∑
j=0

P

(
sup

sj≤s≤sj+1

(k∗ − 1)2σ2

ε
max

1≤k≤k∗−1
λk

∥∥∥∥exp

(
1

ε
α(s)

)∥∥∥∥2

op∥∥∥∥∫ s

0
exp

(
−1

ε
α(τ)

)
ek dBk(τ)

∥∥∥∥2

2

≥ H

)

≤
N−1∑
j=0

P

(
sup

sj≤s≤sj+1

(k∗ − 1)3σ2λ1C
2

ε exp
(

2
εs(κ− β)

)
max

1≤k,`≤k∗−1

∣∣∣∣∫ s

0

(
exp

(
−1

ε
α(τ)

)
ek

)
`

dBk(τ)

∣∣∣∣2 ≥ H
)

≤
N−1∑
j=0

max
1≤k,`≤k∗−1

P

(
sup

sj≤s≤sj+1

∣∣∣∣∫ s

0

(
exp

(
−1

ε
α(τ)

)
ek

)
`

dBk(τ)

∣∣∣∣2

≥
Hε exp

(
2
εsj(κ− β)

)
(k∗ − 1)3σ2λ1C

2

)
.
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Applying the Bernstein inequality from Proposition 6.17 and using (6.43), we cal-
culate further

P

(
sup

0≤s≤t

k∗−1∑
k=1

|uk(s)|2 ≥ H

)

≤
N−1∑
j=0

max
1≤k,`≤k∗−1

2 exp

(
− Hε

(k∗ − 1)3σ2λ1C
2

exp
(

2
εsj(κ− β)

)
2
∫ sj+1

0

(
exp

(
−1
εα(τ)

)
ek
)2
`

dτ

)

≤
N−1∑
j=0

2 exp

(
−C Hε

(k∗ − 1)3σ2λ1
exp

(
2

ε
sj(κ− β)

)
1

2
∫ sj+1

0 exp
(

2τ
ε (κ+ β)

)
dτ

)

≤
N−1∑
j=0

2 exp

(
−C H(κ+ β)

(k∗ − 1)3σ2λ1
exp

(
2

ε
sj(κ− κ− 2β)

)
exp

(
−2γ

κ
(κ+ β)

))

≤ 2

⌈
Λκ

γ

⌉
exp

(
−C H(κ+ β)

(k∗ − 1)3σ2λ1
exp (2Λ(κ− κ− 2β)) exp

(
−2γ

κ
(κ+ β)

))
= exp (−C1 (H − ζ∗)) ,

where C = 1

C2C
2 and C1, ζ∗ are defined in (6.26) and (6.30).

6.4.6 High-frequency estimate

To obtain an estimate for the high-frequency part we are going to derive estimates
for each component uk(s) with k ≥ k∗ and then concatenate them via Proposition
6.27. First note that we have the following estimate for one single mode

Lemma 6.30. For all k ≥ k∗ we have

P
(

sup
0≤s≤t

|uk(s)|2 ≥ H
)
≤ exp (−C2k

p(H −H∗(k))) , (6.44)

where C2, H∗(k) are defined in (6.27) and (6.28).

Proof. Let k ≥ k∗, the equation for the k-th component reads

duk(s) =
1

ε
(µk + a(s))uk(s) ds+

σ√
ε

√
λk dBk(s), (6.45)

and using Duhamel’s principle its solution can be represented as

uk(s) =
σ√
ε

∫ s

0
exp

(
αk(s, τ)

ε

)√
λk dBk(τ), (6.46)
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with αk(s, τ) =
∫ s
τ (µk + a(r)) dr. We have the following estimate∫ s

0
exp

(
2αk(s, τ)

ε

)
dτ

≤
∫ s

0
exp

(
2

ε

∫ s

τ
(µk + a+) dr

)
dτ

=

∫ s

0
exp

(
2

ε
(µk + a+)τ

)
dτ

=
ε

2

1

µk + a+

[
exp

(
1

ε
(µk + a+)s

)
− 1

]
≤ ε

2|µk + a+|
. (6.47)

Now fix γ̃ > 0 and we introduce a k-dependent partition 0 = sk0 < sk1 < . . . < skN = t

of [0, t] = [0, εΛ] with −αk(skj+1, s
k
j ) = εγ̃ for 0 ≤ j < Nk =

⌈
|αk(t)|
εγ̃

⌉
. Then, using

the Bernstein inequality (Proposition 6.17) and estimate (6.47), we obtain

P
(

sup
0≤s≤t

|uk(s)|2 ≥ H
)

= P
(

sup
0≤s≤t

∣∣∣∣ σ√ε
∫ s

0
exp

(
αk(s, τ)

ε

)√
λk dBk(τ)

∣∣∣∣ ≥ √H)

≤
Nk−1∑
j=0

P

 sup
skj≤s≤skj+1

∣∣∣∣∫ s

0
exp

(
−αk(τ)

ε

)
dBk(τ)

∣∣∣∣
≥
√
Hε

σ
√
λk

inf
skj≤s≤skj+1

exp

(
−αk(s)

ε

))

≤
Nk−1∑
j=0

2 exp

− Hε

σ2λk

infskj≤s≤skj+1
exp (−2αk(s)/ε)

2
∫ skj+1

0 exp (−2αk(τ)/ε) dτ


≤

Nk−1∑
j=0

2 exp

− Hε

2σ2λk

exp
(

2αk(s
k
j+1, s

k
j )/ε

)
∫ skj+1

0 exp
(

2αk(s
k
j+1, τ)/ε

)
dτ


≤

Nk−1∑
j=0

2 exp

(
− Hε

2σ2λk
exp (−2γ̃)

2|µk + a+|
ε

)

≤ 2

⌈
|αk(t)|
εγ̃

⌉
exp

(
−H
σ2

exp (−2γ̃)
c̃π2

L2
ckp
)

= exp (−C2k
p(H −H∗(k)))

where C2 and H∗(k) have been defined in (6.27) and (6.28).
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We are now going to prove an estimate on a finite sum of components with index
k ≥ k∗. This will be used to prove Proposition 6.25 by finding a bound independent
of the number of addends n.

Proposition 6.31. Let n ∈ N. For H ≥
∑n

m=0H
m
∗ we have

P

(
n∑
i=0

sup
0≤s≤t

|uk∗+i(s)|2 ≥ H

)

≤
n∑
i=0

exp

(
−C2(k∗ + i)p

(
H −

n∑
m=0

Hm
∗

))
n∏

m=0,m 6=i
Qmm,i

 , (6.48)

where Qmm,i has been defined in Corollary 6.29.

Proof. We prove the statement inductively. The base case n = 0 directly follows
from Lemma 6.30. Now, let (6.48) hold for arbitrary but fixed n (inductive hypoth-
esis). Note that

∑n
i=0 sup0≤s≤t |uk∗+i(s)|2 and sup0≤s≤t |uk∗+n+1(s)|2 are indepen-

dent. Furthermore, by the inductive hypothesis we have for the sum the estimate
given in equation (6.48) and for the (k∗ + n + 1)th component we have by Lemma
6.30

P
(

sup
0≤s≤t

|uk∗+n+1(s)|2 ≥ H
)
≤ exp

(
−C2(k∗ + n+ 1)p(H −Hn+1

∗ )
)
. (6.49)

Now, applying Proposition 6.27 with ξX(i) =
∏n
m=0,m 6=iQ

m
m,i, ξY = 1, κX(i) =

C2(k∗+ i)p, κY = C2(k∗+n+1)p, ηX =
∑n

m=0H
m
∗ and ηY = Hn+1

∗ , where i = 0...n,

yields for H ≥
∑n

m=0H
m
∗ +Hn+1

∗ =
∑n+1

m=0H
m
∗

P

(
n+1∑
i=0

sup
0≤s≤t

|uk∗+i(s)|2 ≥ H

)

= P

(
n∑

i=0

sup
0≤s≤t

|uk∗+i(s)|2 + sup
0≤s≤t

|uk∗+n+1(s)|2 ≥ H

)

≤ P
(

sup
0≤s≤t

|uk∗+n+1(s)|2 ≥ H −H∗
)1−

n∑
i=0

n∏
m=0,m 6=i

Qm
m,i


︸ ︷︷ ︸

=0 by (6.41a)

+ exp

(
−C2(k∗ + n+ 1)p

(
H −

n∑
m=0

Hm
∗ −Hn+1

∗

))
n∑

i=0

∏n
m=0,m 6=iQ

m
m,iC2(k∗ + i)p

C2(k∗ + i)p − C2(k∗ + n+ 1)p

+

n∑
i=0

exp

(
−C2(k∗ + i)p

(
H −

n∑
m=0

Hm
∗ −Hn+1

∗

))
 n∏

m=0,m6=i

Qm
m,i −

∏n
m=0,m6=iQ

m
m,iC2(k∗ + i)p

C2(k∗ + i)p − C2(k∗ + n+ 1)p

 .
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The last line can be estimated further as follows

P

(
n+1∑
i=0

sup
0≤s≤t

|uk∗+i(s)|2 ≥ H

)

= exp

(
−C2(k∗ + n+ 1)p

(
H −

n+1∑
m=0

Hm
∗

))
n∑

i=0

n∏
m=0,m6=i

Qm
m,iQ

i
i,n+1︸ ︷︷ ︸

=
∏n

m=0 Qm
m,n+1 by (6.41d)

+

n∑
i=0

exp

(
−C2(k∗ + i)p

(
H −

n+1∑
m=0

Hm
∗

))
n∏

m=0,m6=i

Qm
m,i

(
1−Qi

i,n+1

)︸ ︷︷ ︸
=Qn+1

n+1,i by (6.41c)

= exp

(
−C2(k∗ + n+ 1)p

(
H −

n+1∑
m=0

Hm
∗

))
n+1∏

m=0,m 6=n+1

Qm
m,n+1

+

n∑
i=0

exp

(
−C2(k∗ + i)p

(
H −

n+1∑
m=0

Hm
∗

))
n+1∏

m=0,m6=i

Qm
m,i

=

n+1∑
i=0

exp

(
−C2(k∗ + i)p

(
H −

n+1∑
m=0

Hm
∗

))
n+1∏

m=0,m 6=i

Qm
m,i,

where we have used results of Corollary 6.29.

We are now able to prove Proposition 6.25.

Proof of Proposition 6.25. Applying Proposition 6.31 yields

P

(
n∑
i=0

sup
0≤s≤t

|uk∗+i(s)|2 ≥ H

)
≤ exp (−C2k

p
∗H)

n∑
i=0

exp

(
−C2[(k∗ + i)p − kp∗]H + C2(k∗ + i)p

n∑
m=0

Hm
∗

)
n∏

m=0,m 6=i
Qmm,i

 .
Note that

n∏
m=0,m 6=i

Qmm,i =
i−1∏
m=0

Qmm,i

n∏
m=i+1

Qmm,i = (−1)i
i−1∏
m=0

Qmi,m

n∏
m=i+1

Qmm,i.

By monotone convergence we have

P

 ∞∑
k=k∗

sup
0≤s≤t

|uk(s)|2 ≥ H

 ≤ exp (−C2k
p
∗H) lim

n→∞

n∑
i=0

[
(−1)isni

]
, (6.50)
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where

sni = exp

(
−C2[(k∗ + i)p − kp∗]H + C2(k∗ + i)p

n∑
m=0

Hm
∗

)
i−1∏
m=0

Qmi,m

n∏
m=i+1

Qmm,i

≥ 0.

In what follows, we derive an upper bound for sni being uniform in n

i−1∏
m=0

Qmi,m = exp

(
−

i−1∑
m=0

ln

((
k∗ + i

k∗ +m

)p(
1−

(
k∗ +m

k∗ + i

)p)))

≤ exp

∫ i

0
ln

 1

1−
(
k∗+m
k∗+i

)p
 dm


= exp

(
−(k∗ + i)

∫ 1

k∗/(k∗+i)
ln(1− xp) dx

)

≤ exp

(
(k∗ + i)

∫ 1

k∗/(k∗+i)
xp dx

)

= exp

(
k∗ + i

p+ 1
− kp+1

∗
(p+ 1)(k∗ + i)p

)
(6.51)

and

n∏
m=i+1

Qmm,i =

n∏
m=i+1

(
1 +

(k∗ + i)p

(k∗ +m)p − (k∗ + i)p

)

≤ exp

(
n∑

m=1

ln

(
1 +

(
k∗ + i

m

)p))

= exp

(
ln (1 + (k∗ + i)p) +

n∑
m=2

ln

(
1 +

(
k∗ + i

m

)p))

≤ (1 + (k∗ + i)p) exp

(∫ n

1
ln

(
1 +

(
k∗ + i

m

)p)
dm

)
≤ (1 + (k∗ + i)p) exp

(
(k∗ + i)

∫ n/(k∗+i)

1/(k∗+i)

1

yp
dy

)

= (1 + (k∗ + i)p) exp

(
1

1− p

(
(k∗ + i)p

np−1
− (k∗ + i)p

))
≤ (1 + (k∗ + i)p) exp

(
1

p− 1
(k∗ + i)p

)
for all n ≥ 1. (6.52)
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Now, let δ > 0 such that 1
C2δ
≥ 1. Then

(1 + (k∗ + i)p) ≤ 1

C2δ
exp (C2δ(k∗ + i)p) . (6.53)

By inserting the estimates (6.51) and (6.52) into sni and applying (6.53) we obtain
uniformly in n ≥ 0

sni ≤ exp

(
−C2[(k∗ + i)p − kp∗]H + C2(k∗ + i)p

∞∑
m=0

Hm
∗

)

exp

(
k∗ + i

p+ 1
− kp+1

∗
(p+ 1)(k∗ + i)p

)
(1 + (k∗ + i)p) exp

(
(k∗ + i)p

1

p− 1

)

≤ exp

(
−C2[(k∗ + i)p − kp∗]H + C2(k∗ + i)p

∞∑
m=0

Hm
∗

)
1

C2δ
exp (C2δ(k∗ + i)p) exp

(
(k∗ + i)p

p− 1
+
k∗ + i

p+ 1
− kp+1

∗
(p+ 1)(k∗ + i)p

)

≤ 1

C2δ
exp (C2k

p
∗H) exp

(
− kp+1

∗
(p+ 1)(k∗ + i)p

)

exp

(
−C2(k∗ + i)p

(
H −

∞∑
m=0

Hm
∗ −

1

(p− 1)C2
− 1

(p+ 1)C2
− δ

))

≤ 1

C2δ
exp

(
C2k

p
∗

( ∞∑
m=0

Hm
∗ +

1

(p− 1)C2
+

1

(p+ 1)C2
+ δ

))

exp

(
−C2pk

p−1
∗ i

(
H −

∞∑
m=0

Hm
∗ −

1

(p− 1)C2
− 1

(p+ 1)C2
− δ

))
,

where we have used (k∗ + i)p ≥ kp∗ + pkp−1
∗ i in the last line. Consequently, we get

for H ≥ η∗

lim
n→∞

n∑
i=0

sni

≤ 1

C2δ
exp

(
C2k

p
∗

( ∞∑
m=0

Hm
∗ +

1

(p− 1)C2
+

1

(p+ 1)C2
+ δ

)) ∞∑
i=0

exp
(
−C2pk

p−1
∗ iδ

)
=

1

C2δ
exp

(
C2k

p
∗

( ∞∑
m=0

Hm
∗ +

2p

(p2 − 1)C2
+ δ

))
1

1− exp
(
−C2pk

p−1
∗ δ

)
=: ξ∗ exp (C2k

p
∗η∗) ,

where ξ∗ and η∗ are defined in (6.31) and (6.29). Together with (6.50) this completes
the proof.
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6.4.7 Combining finite- and high-frequency estimates

Proof of Theorem 6.21. As outlined before, we split the sum of the components into
the finite- and the high-frequency part and obtain

P
(

sup
0≤s≤t

‖u(s)‖2 ≥ H
)

= P

(
sup

0≤s≤t

∞∑
k=1

|uk(s)|2 ≥ H

)

≤ P

 sup
0≤s≤t

k∗−1∑
k=1

|uk(s)|2 + sup
0≤s≤t

∞∑
k=k∗

|uk(s)|2 ≥ H


≤ P

 sup
0≤s≤t

k∗−1∑
k=1

|uk(s)|2 +
∞∑

k=k∗

sup
0≤s≤t

|uk(s)|2 ≥ H

 . (6.54)

Now using Proposition 6.24 and 6.25 we can once more apply Proposition 6.27 with
n = 0, ξX(0) = 1, ξY = ξ∗, κX(0) = C1, κY = C2k

p
∗, ηX = ζ∗, ηY = η∗, and we

obtain for H ≥ η∗ + ζ∗

P
(

sup
0≤s≤t

‖u(s)‖2 ≥ H
)

≤ exp (−C1 (H − η∗ − ζ∗))

− ξ∗C1
exp (−C1(H − η∗ − ζ∗))− exp (−C2k

p
∗(H − η∗ − ζ∗))

C1 − C2k
p
∗

,

where the case C1 = C2k
p
∗ is to be understood in the sense of derivatives.

6.5 Outlook

In our main result, Theorem 6.21, we have established that it is possible in a sim-
plified setting to extend finite-dimensional fast-slow SODE bounds [BG06] near
normally hyperbolic slow manifolds to the infinite-dimensional SPDE setting. In
particular we have obtained exponential bounds on the probability to stay near a
slow manifold. Our proof has shown that it is possible to naturally extend finite-
dimensional results to the SPDE (6.17) using a splitting approach into finitely many
(‘low’) frequency modes as stated in Proposition 6.24 and infinitely many (‘high’)
frequency modes as covered by Proposition 6.25. Furthermore, the key idea is to
make use of the growth relation between the eigenvalues coming from the determin-
istic drift term and the eigenvalues of the covariance operator of the noise. The
splitting and the iterative treatment of the high-frequency modes are the key steps
in the proof. Those steps could be directly converted into a numerical method.
Indeed, just keeping the low-frequency modes corresponds to a Galerkin truncation.
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Yet, our approach is only a first step towards providing a detailed theory of
multiple time scale SPDEs. There are a few direct possible generalizations. For
example, it is evident that the decay in the eigenvalues of the operator A and the
spectrum of Q are the key objects, which have to be balanced, to obtain exponential
error estimates. Hence, we can allow for more general linear operators A with
suitable spectra.

Another next natural step would be to allow linear couplings between the fast
and the slow variable, i.e., systems of the form (where we set B ≡ 0){

du = 1
ε [Au+ p1u+ p2v] ds+ σ√

ε
dW,

dv = [p3u+ p4v] ds,
(6.55)

with parameters p1, p2, p3, p4 ∈ R. In this case one obtains in the Galerkin approxi-
mation 2× 2-blocks along the diagonal and the eigenvalues of this block-structured
matrix can easily be computed. Under certain assumptions on the eigenvalues and
with an iterative scheme similar to the one presented here, we expect to obtain expo-
nential bounds on the sample paths as well. In addition, it is natural to conjecture
that suitable regular perturbations of order O(ε) of the coefficients are not going to
alter the results presented here.

However, there are also several extensions, which are substantially more tech-
nical. In particular, dealing with non-linear terms and introducing a general slow
SODE including non-linear terms.

One might also ask, whether a more direct approach that avoids the Galerkin
approximation technique applied above may lead to fruitful results regarding the
concentration of sample paths for fast-slow SPDEs. A first step would be to define
the slow manifold of the corresponding deterministic fast-slow PDE system. For
that one might be able to use the recent work [HK20], where the authors lift the
classical Fenichel theory to the infinite-dimensional setting. Another step would be
to derive suitable Bernstein-type estimates in the infinite-dimensional setting.



Notations

Symbol Description/Definition

N The natural numbers.
Z The integers.
R The real numbers.
R+ R+ := {x ∈ R : x ≥ 0}.
C The complex numbers.
i The complex number

√
−1.

log(3)(t) log(3)(t) := log log log(t).
|x| Euclidean norm of a vector x or graph distance of a vertex

x in a graph.
x> Transpose of a vector x.
⊗ Tensor product.
1A(x), x ∈ X The indicator function of a subset A ⊂ X.
1{E} Notation for indicator random variable in Chapter 2.
δ(x) The Dirac delta-function.
B(x, r) In a metric space (M,d) the symbol for a ball of radius r > 0

centred at x ∈M , i.e. B(x, r) := {m ∈M : d(m,x) ≤ r}.
B(r), Br Br = B(r) := B(0, r).
2X Power set of X.
dist(A,B) Hausdorff semi-distance between two sets A and B.
B(X) Set of all Borel sets of a topological space X.
Id Identity.
A∗ Adjoint of an operator A.
Tr Q Trace of an operator Q.
D(A) Domain of an operator A.
L(U,H) Space of bounded linear operators from U to H.
L(H) L(H) := L(H,H).
L2(H,H ′) Space of Hilbert-Schmidt operators from H to H ′.
L1(H,H ′) Space of trace class operators from H to H ′.
C(D) Space of continuous functions on D.
‖ · ‖∞ The supremum norm of a real-valued bounded function f

on a domain D given by ‖f‖∞ := sup{|f(x)| : x ∈ D}.
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Symbol Description/Definition

Cp(D) Space of continuous functions on D that have continuous
first p derivatives, p ∈ N.

Cγ(D) For γ ∈ (0, 1] space of γ-Hölder continuous functions on D,
that is for f ∈ Cγ(D) there exists C > 0 such that for all
x, y ∈ D: |f(x)− f(y)| ≤ C|x− y|γ .

C∞(D) Space of smooth functions on D.
C∞0 (D) Space of smooth functions on D that vanish at infinity.
C0(R, U) U separable Hilbert space, continuous functions on R with

values in U that vanish at the origin.
`2(I) Space of square summable sequences with index set I,

`2(I) :=
{

(xi)i∈I ∈ RI :
∑

i∈I |xi|2 <∞
}

.
Lp(D) The Lebesgue spaces on a domain D with norm ‖ ·‖p, p ≥ 1.
Lp([0, T ];H) Space of Lp-functions on [0, T ] with values in H.
W k,p(D) Sobolev space of order k ∈ N, defined as

W k,p(D) := {u ∈ Lp(D) : Dαu ∈ Lp(D) ∀|α| 6 k} ,

with multi-index α, where the norm is given by

‖u‖Wk,p(D) :=


(∑

|α|6k ‖Dαu‖pLp(D)

) 1
p

1 6 p <∞;

max|α|6k ‖Dαu‖L∞(D) p =∞.

W k,p
0 (D) Functions in W k,p(D) that vanish at the boundary ∂D in

the sense of traces.
Hk(D) Hk(D) := W k,2(D).
Hk

0 (D) Functions in Hk(D) that vanish at the boundary ∂D in the
sense of traces.

H2
per([0, L]) H2

per([0, L]) := {u ∈ H2([0, L]) : u(0) = u(L)}
M2

T (K) Space of K-valued continuous, square integrable martingales
M(t), t ∈ [0, T ].

iid independent and identically distributed.
a.s. almost surely.
i.o. infinitely often.
τA The first exit time of a stochastic process (Xt)t≥0 from a set

A, i.e. τA = inf{t ≥ 0 : Xt /∈ A}.
Hv The first hitting time of a site v by a stochastic process

(Xt)t≥0, i.e. Hv = inf{t ≥ 0 : Xt = v}.
X
D
= Y The random variables X and Y are equal in distribution.

Xn
D→ X The sequence of random variables (Xn)n≥1 converges in dis-

tribution to X for n→∞.
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Symbol Description/Definition

X ∼ Dist The random variable X is distributed according to Dist.
L(X) Law of a random variable X.
N (µ, σ2) Gaussian law with mean µ and variance σ2.
Bernoulli(p) Bernoulli distribution with parameter p.
Binom(n, p) Binomial distribution with parameters n and p.
Exp(λ) Exponential distribution with parameter λ.
Poi(λ) Poisson distribution with parameter λ.
Dom(µ) Domain of attraction of a stable law µ.
f(x) � g(x) There exist constants c1, c2 such that |f(x)| ≤ c1|g(x)| and

|g(x)| ≤ c2|f(x)| for all x.
f(x) = O(g(s)) There exist a constant c such that |f(x)| ≤ c|g(x)| for all x.

Also denoted as O in Chapter 6.
f(x) ∼ g(x) The functions f and g are asymptotically equal as x → ∞,

that is limx→∞
f(x)
g(x) = 1.

f(x) = o(g(x)) limx→∞
f(x)
g(x) = 0.

T Set of all discrete, plane, rooted trees.
T∞ Set of all discrete, plane, rooted trees with a single (one-

ended) path to infinity.
v ∼ w For vertices v, w in a graph means that v and w are nearest

neighbours.
v ≺ w Fort vertices v, w is a tree means that v is an ancestor of w.
O Root of a tree.
V (Λ) Volume, i.e. total number of vertices, of Λ ⊂ G, for a graph

G.
Tu Subtree Tu := {v ∈ T : u ≺ v}, where T ∈ T and u ∈ T .
Height(T ) Height(T ) := sup{|u|, u ∈ T} for T ∈ T, where | · | is the

graph distance.
Diam(Λ) Diam(Λ) := sup{|u − v| : u, v ∈ Λ}, where Λ ⊂ G, for a

graph G with graph distance | · |.
deg(v) Degree of a vertex v.
Off(v) Number of offspring of a vertex v in a tree, also denoted as

kv.
T∞ Critical GWT conditioned to survive with offspring distri-

bution in the domain of attraction of a β-stable law, see
Subsection 1.5.

s0, s1, s2, ... Infinite backbone of T∞.
Ar Connected component containing O obtained after removing

the vertex sr+1 from T∞.

T̃∞ T̃∞ := {v ∈ T∞ : deg v ≤ 4}.
Ãr Ãr := {v ∈ Ar : deg v ≤ 4}.
ZB ZB := arg maxv∈B ξ(v), see Chapter 2.
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Symbol Description/Definition

Z̃B Z̃B := arg maxv∈B[ξ(v)− deg(v)], see Chapter 2.

Ẑt = Ẑ
(1)
t Ẑt := arg maxv∈T∞ ψt(v), see Chapter 2.

gΛ gΛ := ξ(ZΛ)−maxz∈Λ,z 6=ZΛ
{ξ(z)}.

g̃Λ g̃Λ := ξ(Z̃Λ)− deg(Z̃Λ)−maxz∈Λ,z 6=Z̃Λ
{ξ(z)− deg(z)}.

r(t) r(t) :=
(

t
log t

)q+1
, q = d

α−d , d = β
β−1 .

a(t) a(t) :=
(

t
log t

)q+1
= r(t)d/α, q = d

α−d , d = β
β−1 .



Appendix A

Probability theory

For completeness we state here a couple of classical results from probability theory,
which we apply or refer to at certain points within this thesis.

Lemma A.1 (Borel-Cantelli Lemma I, see [Fel68]). Let E1, E2, ... be a sequence of
events in some probability space. If

∞∑
n=1

P(En) <∞,

then

P
(

lim sup
n→∞

En

)
= 0.

Lemma A.2 (Borel-Cantelli Lemma II, see [Fel68]). Let E1, E2, ... be a sequence of
independent events in some probability space. If

∞∑
n=1

P(En) =∞,

then

P
(

lim sup
n→∞

En

)
= 1.

Lemma A.3 (Chernoff bound for binomial random variable). Let X ∼ Binom(n, p)
and θ > 0, then

P(X ≥ a) ≤ enp(e
θ−1)

eθa
.

Proof. Let X1, ..., Xn be independent random variables with Bernoulli(p) distribu-
tion. Then

E[eθX1 ] = (1− p)e0 + peθ = 1 + p(eθ − 1) ≤ ep(eθ−1),
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hence using Markov’s inequality and X =
∑n

i=1Xi

P(X ≥ a) = P(eθX ≥ eθa) ≤ E[eθX ]

eθa
=

∏n
i=1 E[eθXi ]

eθa
=
enp(e

θ−1)

eθa
.

Theorem A.4 (Doob’s martingale inequality, [BG06, Lemma B.1.2]). Suppose that
(Mt)t≥0 is a positive sub-martingale with continuous paths. Then, for any L > 0
and t > 0 it holds

P
(

sup
0≤s≤t

Ms ≥ L
)
≤ 1

L
E[Mt].

Theorem A.5 (Kolmogorov’s lemma, see [LG16, Lemma 2.9]). Let X = (X(t))t∈I
be a stochastic process indexed by a bounded interval I ⊂ R, and taking values in a
complete metric space (E, d). Assume that there exist q, ε, C > 0 such that for every
s, t ∈ I

E [d(X(t), X(s))q] ≤ C|t− s|1+ε.

Then there exists a modification X̃ of X whose sample paths are Hölder continuous
with exponent α for every α ∈ (0, ε/q). This means that for every ω ∈ Ω and every
α ∈ (0, ε/q), there exists a finite constant Cα(ω) such that for every s, t ∈ I we have

d(X̃(t, ω), X̃(s, ω)) ≤ Cα(ω)|t− s|α.

In particular, X has a continuous modification.
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Analysis

B.1 Useful inequalities

Lemma B.1 (ε-Young inequality). For x, y ∈ R, ε > 0, p, q > 1, 1
p + 1

q = 1, we
have

|xy| ≤ ε|x|p +
(pε)1−q

q
|y|q.

Lemma B.2 (Minkowski’s inequality). Let p > 1 and x, y ∈ R, then

|x+ y|p ≤ 2p−1(|x|p + |y|p).

Lemma B.3 (Gronwall lemma). Let ϕ, α and β be real-valued functions on (t0,∞).
Furthermore, α, β are continuous and ϕ is differentiable. If

ϕ′(t) ≤ α(t) + β(t)ϕ(t),

then

ϕ(t) ≤ ϕ(t0) exp

(∫ t

t0

β(τ)dτ

)
+

∫ t

t0

α(s) exp

(∫ t

s
β(τ)dτ

)
ds, for all t ≥ t0.

Lemma B.4 (Uniform Gronwall lemma [Tem12, Ch. 3, Lemma 1.1]). Let ϕ, α, β
be positive locally integrable functions on (t0,∞) such that ϕ′ is locally integrable on
(t0,∞) and which satisfy

ϕ′(t) ≤ α(t) + β(t)ϕ(t), for t ≥ t0,∫ t+r

t
β(s)ds ≤ a1,

∫ t+r

t
α(s)ds ≤ a2,

∫ t+r

t
ϕ(s)ds ≤ a3, for t ≥ t0,

where r, a1, a2, a3 are positive constants. Then

ϕ(t+ r) ≤
(a3

r
+ a2

)
exp (a1) , for all t ≥ t0.
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Remark B.5. The uniform Gronwall lemma provides, in contrast to the normal Gron-
wall lemma, an estimate that is uniform in t ≥ t0 and thus guarantees boundedness
for t→∞.

Lemma B.6 (Poincaré’s inequality). Let 1 ≤ p <∞ and let D ⊂ Rn be a bounded
open subset. Then there exists a constant c = c(D, p) such that for every function
u ∈W 1,p

0 (D)
‖u‖p ≤ c‖∇u‖p.

B.2 Slowly and regularly varying functions

Definition B.7 (Slowly and regularly varying functions). A measurable function
L : (0,∞)→ (0,∞) is called slowly varying at infinity respectively at zero if for all
a > 0

lim
x→∞

L(ax)

L(x)
= 1 respectively lim

x→0+

L(ax)

L(x)
= 1.

A measurable function R : (0,∞) → (0,∞) is called regularly varying at infinity
respectively at zero if for all a > 0 the limit

lim
x→∞

R(ax)

R(x)
respectively lim

x→0+

R(ax)

R(x)

is finite but non-zero.

Remark B.8. Every regularly varying function R is of the form

R(x) = xβL(x),

where β ∈ R and L is a slowly varying function.
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Functional Analysis

C.1 Embedding theorems

Theorem C.1 (Sobolev embeddings, see [Tri78]). Let D ⊂ Rn be bounded with
Lipschitz boundary. Let 1 < p <∞ and 0 ≤ s <∞.

(i) If 0 ≤ s < n/p, then we have the continuous embedding

W s,p(D) ⊂ Lr(D),

where p ≤ r ≤ pn
n−ps .

(ii) If s = n/p, then we have the continuous embedding

Wn/p,p(D) ⊂ Lr(D),

where p ≤ r <∞.

(iii) If s > n/p, then we have the continuous embedding

W s,p(D) ⊂ C(D).

Theorem C.2 (Rellich-Kondrachov compactness theorem). Let D ⊂ Rn be bounded
with Lipschitz boundary. Then H1(D) is compactly embedded in L2(D), i.e.

H1(D) ⊂⊂ L2(D).

C.2 Nuclear and Hilbert-Schmidt operators

We restrict ourselves to the Hilbert space setting. Thus, let (H, ‖·‖H) and (U, ‖·‖U )
be two separable Hilbert spaces. The following standard definitions and propositions
can be found for example in [PR07, Appendix B] or [DPZ92, Appendix C].
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Definition C.3. (Nuclear operator) T ∈ L(U,H) is called nuclear or trace class if
there exists a sequence (aj)j∈N in H and a sequence (bj)j∈N in U such that T has
the representation

Tx =

∞∑
j=1

aj〈bj , x〉U , for all x ∈ U,

and
∞∑
j=1

‖aj‖H‖bj‖U <∞.

Remark C.4. A nuclear operator is a compact operator.

Proposition C.5. The space of all nuclear operators from U to H is denoted by
L1(U,H). Endowed with the norm

‖T‖L1(U,H) := inf


∞∑
j=1

‖aj‖H‖bj‖U : Tx =

∞∑
j=1

aj〈bj , x〉U , x ∈ U

 ,

this is a Banach space. We also use the abbreviation L1(U) := L1(U,U).

Definition C.6. (Trace) Let T ∈ L(U) and let (ek)k∈N be a complete orthonormal
system of U . We define

Tr T :=
∞∑
k=1

〈Tek, ek〉U ,

if the series is convergent. Tr T is called the trace of the operator.

Proposition C.7.

(i) If T ∈ L1(U) then Tr T is well-defined and independent of the choice of the
orthonormal basis (ek)k∈N.

(ii) We have |Tr T | ≤ ‖T‖L1(U) for all T ∈ L1(U).

(iii) If T ∈ L1(U), S ∈ L(U), then TS ∈ L1(U) and

Tr TS = Tr ST ≤ ‖T‖L1(U)‖S‖L(U).

Proposition C.8. A non-negative operator T ∈ L(U) is of trace class if and only
if for an orthonormal basis (ek)k∈N on U it holds

∞∑
k=1

〈Tek, ek〉U <∞.

In this case Tr T = ‖T‖L1(U).
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Definition C.9. (Hilbert-Schmidt operator) T ∈ L(U,H) is called Hilbert-Schmidt
operator if

∞∑
k=1

‖Tek‖2H <∞,

where (ek)k∈N is an orthonormal basis of U .

Proposition C.10. We denote the set of all Hilbert-Schmidt operators from U to
H as L2(U,H). Equipped with the norm

‖T‖L2(U,H) :=
∞∑
k=1

‖Tek‖2H ,

this is a Hilbert space.

Proposition C.11. Let G be a separable Hilbert space. Let S ∈ L(H,G) and
T ∈ L2(U,H), then ST ∈ L2(U,G).

Proposition C.12. Let G be a separable Hilbert space. Let S ∈ L2(H,G) and
T ∈ L2(U,H), then ST ∈ L1(U,G) and

‖ST‖L1(U,G) ≤ ‖S‖L2(H,G)‖T‖L2(U,H).

Remark C.13. Clearly, we have the inclusion L1(U,H) ⊂ L2(U,H) ⊂ L(U,H).

C.3 Semigroups of operators

We refer to the book [Paz12] for a comprehensive presentation of the theory of
semigroups of linear operators. All definitions and propositions listed below can be
found therein or in [RR06, Chapter 12]. In the following, we always assume that X
is a Banach space with norm ‖ · ‖X and ‖ · ‖ denotes the operator norm on L(X).

Definition C.14 (Semigroup). Let X be a Banach space. A family of bounded
linear operators {T (t)}t≥0 in X is called a semigroup if the following two properties
hold

(i) T (0) = Id,

(ii) T (t+ s) = T (t)T (s), for all t, s ≥ 0.

Definition C.15 (Infinitesimal generator). Let X be a Banach space. Let {T (t)}t≥0

be a semigroup of bounded linear operators on X. The linear operator A defined by

Au = lim
t↓0

T (t)u− u
t

,

on the domain D(A) =
{
u ∈ X : limt↓0

T (t)u−u
t exists

}
, is called the infinitesimal

generator of the semigroup.
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C.3.1 C0-semigroups

Definition C.16 (C0-semigroup). Let X be a Banach space. A family of bounded
linear operators {T (t)}t≥0 in X is called a strongly continuous semigroup or C0-
semigroup, if

(i) {T (t)}t≥0 is a semigroup,

(ii) limt↓0 T (t)u = u for every u ∈ X, i.e. t 7→ T (t)u is continuous at t = 0.

Theorem C.17. For each C0-semigroup {T (t)}t≥0, there are constants M ≥ 1 and
ω ≥ 0 such that

‖T (t)‖ ≤M exp (ωt) , for all t ≥ 0, (C.1)

where ‖ · ‖ denotes the operator norm.

Definition C.18. ((Quasi-)contraction semigroup)
A C0-semigroup {T (t)}t≥0 is called

1. a quasicontraction semigroup if ‖T (t)‖ ≤ exp (ωt) for some ω, i.e. the growth
estimate (C.1) is satisfied with M = 1.

2. a contraction semigroup if ‖T (t)‖ ≤ 1, i.e. the growth estimate (C.1) is satis-
fied with M = 1 and ω = 0.

Remark C.19. If {T (t)}t≥0 is a quasicontraction semigroup with growth estimate
‖T (t)‖ ≤ exp (ωt), then {S(t)}t≥0 given by S(t) := exp (−ωt)T (t) for all t ≥ 0 is a
contraction semigroup. Hence, every quasicontraction semigroup can be transformed
into a contraction semigroup.

C.3.2 Analytic semigroups

Definition C.20 (Analytic semigroup). Let X be a Banach space. A C0-semigroup
{T (t)}t≥0 in X is called an analytic semigroup if the following holds:

(i) For some δ ∈ (0, π/2), T (t) ∈ L(X) can be extended to all t ∈ ∆δ := {t ∈ C :
|argt| < δ} ∪ {0} and for t ∈ ∆δ the conditions (i)-(ii) of Definition C.16 hold.

(ii) For t ∈ ∆δ\{0}, the mapping t 7→ T (t)x is analytic for every x ∈ X.

Some of the key properties of analytic semigroups are summarized in the follow-
ing lemmas.

Lemma C.21. (cf. [RR06, Lemma 12.36]) Let A be the generator of an analytic
semigroup {exp(At)}t≥0 on a Banach space X and assume that the spectrum of
A lies entirely in the open left half-plane. Then there exists δ > 0 and constants
M,M1,Mn such that

‖ exp(At)‖ ≤Me−δt,
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‖A exp(At)‖ ≤M1 exp(−δt)/t,

‖An exp(At)‖ ≤Mn exp(−δt)/tn, for n ∈ N.

Furthermore, let α > 0, then for every x ∈ D((−A)α), we have

exp(At)(−A)αx = (−A)α exp(At)x,

and
‖(−A)α exp(At)‖ ≤Mαt

−αe−δt.

Lemma C.22 (Perturbations of analytic semigroups, see [RR06, Thm 12.37]). Let
A be the generator of an analytic semigroup on X. Then there exists δ > 0 such
that, if B is any operator such that

(i) B is closed and D(B) ⊃ D(A),

(ii) ‖Bu‖X ≤ a‖Au‖X + b‖u‖X for u ∈ D(A) and a ≤ δ,

then A+B also generates an analytic semigroup.
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and intermittency. Electron. J. Probab., 20, 2015.

[HK20] F. Hummel and C. Kuehn. Slow Manifolds for Infinite-Dimensional
Evolution Equations. arXiv preprint arXiv:2008.10700, 2020.

[HSZS18] S. A. Hiremath, C. Surulescu, A. Zhigun, and S. Sonner. On a coupled
SDE-PDE system modeling acid-mediated tumor invasion. Discrete
Contin. Dyn. Syst. Ser. B, 23(6):2339–2369, 2018.

[IS01] P. Imkeller and B. Schmalfuss. The conjugacy of stochastic and ran-
dom differential equations and the existence of global attractors. J.
Dyn. Differ. Equ., 13(2):215–249, 2001.



234 BIBLIOGRAPHY

[Jan12] S. Janson. Simply generated trees, conditioned Galton–Watson trees,
random allocations and condensation. Probab. Surv., 9:103–252,
2012.

[Jon99] B. J. T. Jones. The origin of scaling in the galaxy distribution.
Monthly Notices of the Royal Astronomical Society, 307(2):376–386,
1999.
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