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Abstract

Most mammalian tissues consist of millions of cells that strongly differ in their phenotype. To fulfil

specific functions and collectively guarantee an organ’s functionality, every tissue requires balanced

cell populations, which is realised by a process called tissue homeostasis. So far it is only partly un-

derstood how this balance is maintained throughout life, and which mechanisms cause an imbalance

that eventually leads to disease. In recent years, various elaborate experimental studies and so-

phisticated mathematical models investigating tissue homeostasis have been developed. Modelling

approaches were however often not data-driven and thus led to rather qualitative than quantitative

results. Furthermore they often focused on a small subset of the respective tissue’s cell types and

considered only one particular model hypothesis, hence only few provided a comprehensive picture

of the tissue homeostasis process.

This thesis aims to gain mechanistic insights into two important adult tissue homoeostasis processes:

neurogenesis and hematopoiesis. I thus developed mathematical models that describe homoeostasis

as a chemical reaction network (i) stochastically on the single cell level by formulating a Markov

jump process, deriving the chemical master equation, and using moment equations as an approxi-

mation and (ii) deterministically on the cell population level by using differential equations, which

incorporate auxiliary states to realistically model transition times. For both approaches I derived

the likelihood function under a suitable noise model assumption to infer unknown model parameters

from experimental observations. To identify plausible and implausible division and differentiation

mechanisms I derived several competing models of neurogenesis and hematopoiesis, respectively,

with varying parameter complexity. For these competing models I analysed structural and practical

parameter identifiability, and performed a quantitative comparison by using scoring methods such

as the Bayesian and Akaike information criterion.

The developed neurogenesis model revealed that in aged mice, the emptying dormant stem cell

pool is compensated by shifting the division mode towards almost exclusively asymmetric stem cell

divisions, and by prolonging quiescent stem cell phases. This explains how neurogenesis gradually

declines in late adulthood. For understanding human blood cell production I conducted a quantita-

tive comparison between the classical lineage hierarchy model and nine alternative models. Overall,

the classical model outperformed all others with respect to its selection criteria scores. Additionally,

my approach revealed that hematopoietic stem cell and common myeloid progenitor proliferation

decreases throughout life, which explains the previously observed decline in blood production with

age. For patients suffering from the hematopoietic disorder myelodysplastic syndrome, I uncovered

dysfunctions in proliferation, differentiation and cell death with cell type resolution, and a large

heterogeneity between patients.

In conclusion, data-driven modelling and model selection is a powerful tool to reveal homoeostatic

mechanisms of tissues, and age-related changes from time-resolved cell count data. The application

to case-control data can uncover dysfunctional homeostatic mechanisms and their heterogeneity in

diseased individuals.



Zusammenfassung

Die meisten Gewebe von Säugetieren bestehen aus Millionen von Zellen, die sich in ihrem Phänotyp

funktionell stark unterscheiden. Um gemeinschaftlich die Funktionsfähigkeit von Organen zu

gewährleisten, müssen die verschiedenen Zellpopulationen des Gewebes ausbalanciert sein. Dies

wird durch den Prozess der sogenannten Gewebehomöostase realisiert. Bisher ist nur in Ansätzen

bekannt, wie dieses Gleichgewicht über das gesamte Leben aufrecht erhalten wird und welche Mech-

anismen es im Krankheitsfall stören. In den letzten Jahren wurden diverse wohldurchdachte Ex-

perimente durchgeführt und ausgeklügelte mathematische Modelle hergeleitet, welche die Gewebe-

homöostase untersuchen. Solche Modellierungsansätze waren jedoch oft nicht datengetrieben und

führten zu vornehmlich deskriptiven und weniger quantitativen Resultaten. Da sie zudem meist

nur eine kleine Teilmenge der Zelltypen und eine bestimmte Modellhypothese in Betracht gezogen

haben, lieferten nur wenige ein umfassendes Bild des homöostatischen Prozesses.

Diese Dissertation verfolgt das Ziel, Einblicke in die Mechanismen zweier bedeutender Gewebe-

homöostaseprozesse, der Neurogenese und Hämatopoese, zu gewinnen. Dazu habe ich math-

ematische Modelle entwickelt, die Homöostase als Reaktionsnetzwerk beschreiben und zwar (i)

stochastisch auf Einzelzellebene durch Herleitung eines Markov-Sprungprozesses, Formulierung der

chemischen Mastergleichung und Approximation mit Momentengleichungen und (ii) deterministisch

auf Zellpopulationsebene mit Hilfe von Differentialgleichungssystemen, die Behelfs-Kompartimente

beinhalten um Übergangszeiten realistisch zu modellieren. Für beide Modellierungsansätze leitete

ich die Likelihood-Funktion unter der Annahme eines geeigneten Fehlermodells her. Um plausible

Zellteilungs- und Differenzierungsmechanismen zu inferieren, stellte ich verschiedene Modelle der

Neurogenese bzw. der Hämatopoese mit variierender Komplexität auf. Für diese analysierte ich

strukturelle und praktische Parameteridentifizierbarkeiten und führte einen quantitativen Vergleich

mittels dem Akaiken und dem Bayesianischen Informationskriterium durch.

Die hergeleiteten Neurogenesemodelle deckten auf, dass bei älteren Mäusen der fast entleerte,

ruhende Stammzellpool durch eine Verschiebung des Teilungsmodusses zu fast ausschließlich asym-

metrischen Stammzellteilungen und durch eine Verlängerung der Ruhephasen kompensiert wird.

Diese altersbedingten Veränderungen entschlüsseln mechanistisch, wie Neurogenese im späten Erwach-

senenalter stetig abnimmt. Um menschliche Blutzellproduktion zu verstehen, führte ich einen quan-

titativen Vergleich zwischen dem klassischen Abstammungshierarchie-Modell und neun Alternativ-

modellen durch. Insgesamt übertraf das klassische Modell alle alternativen Modelle hinsichtlich der

Werte zweier Informationskriterien. Darüber hinaus zeigte mein Ansatz, dass die Proliferationsak-

tivität der Stammzellen und der gemeinsamen myeloischen Vorläuferzellen mit dem Alter abnimmt.

Dies erklärt den zuvor experimentell beobachteten altersbedingten Rückgang der Blutzellproduk-

tion. Bei Patienten, die unter der hämatopoetischen Erkrankung Myelodysplastisches Syndrom

leiden, deckte ich Fehlfunktionen im Proliferations-, Differenzierungs- und Zelltodverhalten der

verschiedenen Zelltypen und eine diesbezüglich große Heterogenität zwischen den Patienten auf.

Der datengetriebene Modellierungs- und Modellvergleichsansatz erweist sich zusammenfassend als

ein effektives Werkzeug, um Mechanismen der Gewebehomöostase sowie altersbedingte Veränderungen

anhand von experimentellen zeitaufgelösten Zell-Anzahl-Daten aufzudecken. Die Anwendung auf

Fall-Kontroll-Datensätze ermöglicht es Fehlfunktionen bei diesbezüglichen Erkrankungen und Un-

terschiede zwischen Patienten aufzudecken.
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1 Introduction

Every living organism arises from a single cell. In complex, multicellular organisms such as humans,

this cell is an embryonic stem cell [Chakraborty and Agoramoorthy, 2012]. Stem cells differ from

other cells as they are able to divide and renewing themselves, and they are unspecialised but can

give rise to more specialized, mature and functional cells of the various tissues of an organism,

i.e. neurons, blood cells, or skin cells. These properties describe processes which are biologically

termed cell proliferation and cell differentiation and they are necessary to form tissues and whole

organisms during development, and to maintain a balanced cell population size within tissues during

adulthood [Hui et al., 2011].

To gain insights about tissue forming and maintaining processes, but also to better understand

diseases related to disturbed tissue formation or maintenance, biologists nowadays experimentally

observe cells in a living organism in vivo or in a defined culture media in vitro and classify them

according to their degree and type of specialization. The insights these experiments can reveal are

however limited as not everything can be measured or observed and resources such as time, work

forces and experimental costs are limited.

The research field of systems biology aims to overcome these obstacles by applying mathematical

modelling to gain mechanistic insights about biological systems. The biological system of interest

consists of several components, which can be molecules, cells, organs, organisms, or entire species.

The mathematical model, which serves an abstraction of the respective biological process, ideally

describes the dynamical behaviour of the system by capturing the most important underlying

mechanisms to a certain degree. To construct such a model or a set of plausible models, findings

from literature are employed to define the system components, or states of the components and

possible transitions between them. By comparing the observations of the mechanistic model(s)

to the respective experimentally measured observations, the model(s) can further be specified.

Unknown model parameters can be determined and alternative models can be compared to each

other in order to reject implausible ones. The identified model can then be used to observe the

systems behaviour that cannot be investigated experimentally or at least not with the available

resources. It thereby serves as a tool to test several hypotheses and to make predictions.

Systems biology is thereby exploiting the information observed in an experiment, which often brings

light into the dark for many fundamental research questions. In recent years, systems biology has

majorly contributed to understand the bigger picture in healthy and diseased individuals and is in

general a promising approach to further decode the structural and functional organization of cells.

In my thesis, I use a systems biology approach to mechanistically understand cell division and

differentiation processes and to decode differences that arise during ageing or in diseased organisms.

In section 1.1, I will introduce the main principles and achievements of cell biology. Section 1.2

gives a short introduction about mechanistic mathematical models and sections 1.3 and 1.4 provide

an overview of the research questions I address in my thesis and an outline of my dissertation.



2 CHAPTER 1. INTRODUCTION

1.1 Cell biology

For the past two centuries, many researchers have dedicated their work to understand how the

body creates itself out of a single cell and the mechanisms by which a specific tissue renews itself

throughout life. The progress in the field of molecular biology yielded many experimental techniques

and devices to study and analyse cells. Nowadays it is not doubted that every organism consists

of different organs which are itself assembled by cells and that these cells are specialized according

to their function. This section gives an overview of the main principles and achievements in cell

biology.

The smallest unit of a living thing was named ’cell’ by Robert Hooke in 1665, who observed them

under a microscope, but it took more than a century until the importance of cells was realized. In

the 1830s, Matthias Schleiden and Theodor Schwann postulated that all plants and animals consist

of one or more cells and that cells are the structural unit of life. Another tenet of cell theory was

introduced by Rudolf Virchow two decades later, in 1855. It states that cells can arise only by

division from a pre-existing cell [Karp, 2004]. In the following century, it has been revealed that

every organism inherits a construction plan from its parents which is termed desoxyribose nucleic

acid (DNA) and determines an organisms genotype [Alberts et al., 1989]. The DNA is stored in

the nuclei of all its cells in eukaryotes and freely available in prokaryotes, which do not obtain a

nucleus [Karp, 2004]. It is composed of many nucleotide sequences, which are termed genes and

which can be accessed independently by the cell. To run a specific genetic program, a subset of

genes can be expressed by first copying the respective sequence, which is termed RNA transcript,

and then translating it into proteins which can then fulfil a specific function. If a gene is highly

expressed it is said to be up-regulated and if not it is said to be down-regulated [Alberts et al.,

1989]. Although all cells of an organism share the same genotype, every cell runs its own program

to fulfil specific functions. As a result, some cells obtain different observable physical properties,

which can be a different morphology such as shape or size, and is referred to the term phenotype.

In order to better understand and analyse cell systems, biologists sought to classify cells into distinct

cell types for more than 150 years [Regev et al., 2017]. These cell types can be defined based on a

cells phenotype, its location within the tissue of the respective organism, its relationship to other

cells, its functions and its molecular properties such as the expression of certain genes, which are

in this context termed marker genes. Irrespective of the studied tissue, the respective cells can

be classified as stem cells, progenitors or mature cells (see concept of tissue organisation in Figure

1.1).

In case a cell exhibits the property of self-renewal and if it in addition is able to produce any

mature cell type of the respective tissue, it is called a stem cell. The process a cell undergoes when

transitioning from a rather unspecialised cell type to a more specialized cell type is termed cell

differentiation. Progenitors describe cells which are also able to self-renew but are neither fully

differentiated nor undifferentiated. These fully differentiated cells are termed mature cells and are

in general not able to self-renew.

According to its differentiation possibilities, every cell has a certain potency [Singh et al., 2016].

A cell is said to be uni-potent if it has exactly one and multi-potent if it has several possibilities
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to transit to a more specialized cell type. Stem cells have the highest potency and exhibit often

but not always a multi-potent cell identity which means they can give rise to any cell type of the

respective lineage, either directly or indirectly via progenitor cells. In comparison to stem cells,

progenitors obtain a lower potency but can be both, uni-potent or multi-potent depending on the

considered tissue. The various tissues in an organism all result from totipotent embryonic stem

cells, which obtain the highest cell potency and can give rise to any cell type of the organism

[Hima Bindu and Srilatha, 2011].
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Figure 1.1: Tissue organization conceptually described by five distinct cell layers with decreasing
potency. Adult tissue homeostasis is described by three distinct cell layers, which are multipotent
stem cells, oligo- or unipotent progenitors and nullpotent mature cells.

A structured overview of the potency of tissue specific cell types is provided by the developmental

history of differentiated cells which is called cell lineage or hierarchy. Cell lineages can change during

development according to the change in cellular function [Stent, 1985]. While in the embryonic

phase the tissue is developed, in adults the purpose shifts towards tissue homeostasis and repair

[Karp, 2004, Passier, 2003]. Tissue homeostasis describes the process of maintaining a balanced cell

population within the tissue, which is achieved by cells via balancing proliferation, differentiation,

and cell death. Upon injury or in diseased tissues, this balance is disturbed. Especially in age-

related diseases, cells of the respective tissue often acquired mutations, i.e. modifications in the

DNA of cells, which give them a fitness advantage towards other competing cells in the tissue.

This process is also referred to clonal dominance and thought to be the cause of an imbalanced

homeostasis [Lee and Abdel-Wahab, 2014] (see Figure 1.2).
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mutation
cell without mutation
cell with mutation

time

proliferation

cell death

Figure 1.2: Scheme illustrating how a cell population of initially non-mutated (grey) cells (left)
evolves over time, while cells are underlying proliferation and cell death and being subject to
eventual mutations. Due to a fitness advantage of a single or a few mutated (red) cells (middle)
clonal dominance can be achieved (right).

While modelling homeostasis of healthy and diseased tissues, proliferation, differentiation, and cell

death are taken into account as these three processes influence the number of cells of the various

cell types of the respective tissue. Pre-existing knowledge of the cell lineages can be incorporated as

an assumption into the model. By assuming cell differentiation is coupled to cell division, one can

distinguish between symmetric and asymmetric cell division [Blanpain and Simons, 2013, Greulich

and Simons, 2016, Nowak et al., 2003, Watson et al., 2015, Yang et al., 2015]. If upon division,

a stem or progenitor cell produces two daughter cells of the same cell type, a symmetric division

takes place and if the daughter cells are of different cell types an asymmetric division occurs (see

Figure 1.3).

symmetric
divisions

asymmetric 
division

Figure 1.3: Under the assumption that a cell can only differentiate upon division, a mother cell
(white) can divide according to one of the three shown division modes. It can divide symmetrically
(left) into two daughter cells of the same cell type (white), or another cell type (grey), or alterna-
tively divide asymmetrically (right) into a daughter cell of the same cell type (white) and one of
another cell type (grey).

For some cell systems this assumption is not valid, i.e. for the differentiation of oligodendrocyte

progenitor cells to oligodendrocytes, which are located in white and grey matter tissues in the

central nervous system. For oligodendrocytes, differentiation and migration, or cell death has to

occur before cells in the environment are able to fill the empty space with their progeny upon

proliferation [Hughes et al., 2013].

While studying cell division and differentiation processes one aims to identify differences between

cell types, individuals, or cohorts. The respective experimental data is always subject to technical

noise but also contains biological variability on the single cell level. This cellular heterogeneity

is present even if cells are genetically identical [Altschuler and Wu, 2010], as it is induced by

interactions between cells or with the environment [Sutherland, 1988, Wills et al., 2017]. These

molecular interactions lead to regulatory processes, i.e. up- or down-regulation of genes, which
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introduce transcriptomic differences between single cells and result in different phenotypes [Komin

and Skupin, 2017]. In addition, cellular heterogeneity can also result from genetic modifications,

i.e. accumulated mutations in diseased cells such as cancer stem cells. Dependent on the number

and composition of mutations present within each stem cell, there exists a huge variability between

these malignant clones originating from different stem cells [Altschuler and Wu, 2010].

For many research questions, the goal is to detect the biological variability between single cells or

cell populations in order to gain mechanistic insights [Altschuler and Wu, 2010]. If one observes a

population of cells on the single cell level, one can identify and measure the morphology, function

or behaviour of single cells, or of several sub-populations which are each a relatively homogeneous

group of cells, that obtain similarities. If one however studies a cell population in a bulk experiment,

this single-cell behaviour is not observable as these experiments only represent the average behaviour

of the cell population. While modelling cell populations that have been observed in bulk, one might

thus not be able to model the biological process very detailed but instead only describe the mean

population, or sub-population behaviour. One the one hand, the challenge in experimental design

is to make the biological variability of interest detectable, i.e. design the experiment such that the

biological signal is not less prominent in the data than technical noise resulting from measurement

errors. On the other hand, the challenge in mathematical modelling is then to capture the most

important details of the underlying biological process and to describe the technical noise resulting

from the experiment realistically in order to detect the signal of interest, namely the biological

variability between cells or groups of cells.

1.2 Mechanistic mathematical models

Biological processes are in general complex and it is often difficult to understand the global be-

haviour from experimental measurements that were observed locally from some of its parts. In

addition, solving specific research questions is often challenging because not everything can be

measured technically or accurately as experimental techniques are in practice limited. Testing each

and every hypothesis about the system of interest experimentally is in most cases intractable as it

would be expensive and very time consuming to perform each experiment.

Following the philosophy of Galileo Galilei, mechanistic mathematical models aim to make measur-

able what cannot be measured directly by experimentalists [Hasenauer, 2020]. They can be used

as an abstract representation of a specific biological process in order to answer specific questions

[Klipp, 2010]. The model contains the system’s states, which are in the scope of my dissertation

cell types or cell states, such as active and inactive regarding proliferation, and all possible transi-

tions between the states. Model transitions represent the rate at which the system jumps from one

state to another and are stated in cells per time unit. The states and transitions together define

the model structure. If the model structure is unknown, one can derive a set of plausible models

with different structures. Mechanistic models thereby incorporate established knowledge about the

respective system of interest, but also allow to specify unknown model properties such as struc-

ture and parametrization of transition rates. The unknown model parameters can in principle be
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inferred by comparing the model to functions of experimental observations of some system states,

but this highly depends on the model’s structure and which states are measured and at which time

points. If for instance measurements are uninformative or data quality is poor, parameter inference

can be problematic. This can be studied by analysing structural and practical parameter identi-

fiability of a model or a set of models (see 2.2.3). However, to identify the parameters for which

model and experimental data agree best, a cost function needs to be specified and optimized. Also

optimization can be challenging and highly depends on the optimization problems structure. If the

optimization problem is non-convex, it is often only possible to solve it locally instead of globally

and thus requires a multi-start procedure (see section 2.2.1.2). In case optimization is successful,

the resulting parameter estimates will give insight about how fast the transitions occur, i.e. relat-

ing to cell differentiation processes how fast cells divide, differentiate, die, and get inactivated or

activated or which cell division mode, i.e. symmetric or asymmetric division occurs most likely for

a certain cell type. In order to quantitatively determine plausible model structures one can perform

model selection or averaging (see section 2.3). Beyond answering biological questions, the resulting

model can be used for simulations and serve to make predictions (see section 2.1.7). Therefore it

first needs to be validated, ideally based on independent data, to ensure that it faithfully predicts

the systems behaviour [Klipp, 2010] (see Figure 1.4).

Research questions: 
1) How fast do A cells divide?
2) How fast do A cells differentiatiate into B cells?
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Figure 1.4: Overview of a systems biology approach to solve a division and differentiation process
related research question by inferring model dynamics from experimental data.

In the context of healthy and diseased tissue homeostasis, mathematical models have already proven

to be a useful tool to investigate underlying mechanisms of intrinsic cell fate regulation [Greulich

and Simons, 2016, Ritsma et al., 2014] or tumour growth [Lan et al., 2017, Roeder et al., 2006] for
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various kinds of experimental data, resulting for instance from time-lapse microscopy, fluorescence

activated cell sorting (FACS), single-cell RNAseq or clonal lineage tracing analysis. Depending on

the type of experimental data, different modelling approaches, such as chemical reaction networks

(CRNs) [Watson et al., 2015], stochastic processes [Nowak et al., 2003, Roeder et al., 2006], gene

regulatory networks (GRNs) [Herberg and Roeder, 2015, Kalmar et al., 2009], pseudo-temporal

ordering [Trapnell et al., 2014] or factor graph models [Niederberger et al., 2015], were used to

describe healthy and malignant homeostasis.

As model assignment is not unique, but instead always depends on the problem, the purpose,

and the intention of the investigator [Klipp, 2010], existing models can only answer some specific

questions and are tailored to a specific tissue and region. Often these models consider only some

cell types of the analysed lineage but do not provide a comprehensive picture of the homeostatic

process of the respective lineage.

In this thesis, I develop a computational modelling and model selection approach which allows for

the comprehensive study of tissues on the macroscopic cellular level as it can be tailored and applied

to an arbitrary number of cell types of any tissue of interest from which single cell or bulk (several

cells) count measurements were derived. In case of single cell measurements, the process is described

by a stochastic model (see section 2.1.2), whereas in case of bulk measurement deterministic models

(see section 2.1.3) are the mathematical approach of choice. As two applications I will derive models

to describe adult neurogenesis and hematopoiesis to solve the biologically driven research questions

introduced in section 1.3.

1.3 Research questions

Cell division and differentiation processes can be studied on various biological scales and for various

tissues and regions. In the scope of this dissertation an approach for the data-driven modeling and

model selection for cell division and differentiation processes on the macroscopic level was devel-

oped. This mathematical approach was applied to two cell systems, namely adult neurogenesis and

adult healthy and malignant hematopoiesis.

While studying adult neurogenesis in mice, I focused on a particular brain region, called the

subependymal zone (SEZ). About this region it is known that less neurons are produced in adult

mice, i.e. neurogenesis is declining with age. The main goal is to answer the question: how is this

declining tissue homeostasis mechanistically achieved with age in the SEZ (see Figure 1.5)? To

reach this goal I want to derive a set of models considering all possible combinations of cell type

specific division modes. The first subaim is to identify plausible and implausible models to identify

which division mode is used when stem- and progenitor cells divide. In addition, I want to estimate

all model parameters that change during ageing from experimental quasi time-resolved cell count

data and to investigate if the division mode (see Figure 1.3) changes with age for the proliferating

cell types. The experimental data used for parameter estimation stem from a collaboration with

experimentalists who repeatedly measured the progeny of single neural stem cells in vivo in the

SEZ of young and aged adult mice.
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Project I: Adult neurogenesis in mice

How is declining tissue homeostasis mechanistically achieved with age in the SEZ?
- Derive a set of models which incorporate different combinations of cell type specific division modes 
- Estimate model parameters and identify those that change during ageing 
- Investigate if and how the cell type specific division mode changes with age

Project II: Adult healthy and perturbed hematopoiesis in humans

Which lineage hierarchies describe healthy human hematopoiesis best?
- Derive and implement a set of models describing competing lineage hierarchies of hematopoiesis
- Quantitatively identify the lineage hierarchies describing healthy human hematopoiesis best 

Which rates change with age in healthy individuals? 
- Estimate rates based on the best performing model and data from healthy individuals with varying ages
- Compare rate estimates and test influence of age on rates

Which rates change in diseased hematopoiesis?
- Identify dysregulated rates for all cell types affected in CHIP donors and MDS patients 
- Identify subgroups of MDS cases which behave similar based on available clinical information

Research questions and aims 

Figure 1.5: Overview of projects, research questions and aims of this dissertation.

In the adult hematopoiesis project I addressed several research questions with my modeling and

parameter inference approach (see Figure 1.5). Over the past years, the hematopoietic lineage has

often been debated and several alternative direct differentiation transitions for mice and a few for

human have been suggested. As there is no established ground truth, the first question is: which

lineage hierarchies describe healthy human hematpoiesis best? Thus my goal is to derive and

implement a set of models describing competing lineage hierarchies as highly resolved as possible.

Subsequently, I want to quantitatively identify the lineage hierarchies, that describe healthy human

hematopoiesis best and the ones that can be rejected based on experimental time-resolved cell count

data. The experimental data used in this project stem from a collaboration with clinicians who

measured the progeny of thousands of human bone marrow cells of healthy donors in vitro (i.e. in a

bulk cell culture) repeatedly. The best performing model is then used to answer the question: which

proliferation, differentiation, and cell death rates change with age in healthy individuals? Finally, I

want to study perturbed hematopoiesis and analyse experimental cell count data of cultured bone

marrow cell samples of donors with a clonal hematopoiesis of indeteminate potential (CHIP) and

of patients suffering from myelodysplastic syndromes (MDS). MDS is an age-related hematopoietic

disorder, which is characterized by ineffective hematopoiesis and peripheral cytopenia (i.e. lack of

mature blood cells in the peripheral blood) and can lead to acute myeloid leukaemia. Mutations

in hematopoietic stem cells are thought to be causative events in MDS but are also found in aged

individuals without evidence of an hematological disease, a clinical entity known as CHIP. I want

to solve the question: which rates are disturbed in CHIP donors and MDS patients compared to

healthy age-matched individuals? I want to identify if stem or progenitor cells of the bone marrow or

both are affected to investigate how clonal dominance (see Figure 1.2) could be achieved. Therefore,
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I want to uncover which cell types and which cell differentiation, proliferation and death processes

are changed in comparison to healthy for every CHIP/ MDS case individually. Subsequently,

I wanted to identify subgroups of MDS cases which behave similar based on available clinical

information.

1.4 Overview of this thesis

In my dissertation I want to solve the research questions listed in section 1.3. My goal is to derive

mathematical models which describe how cells of a specific tissue are organized and maintained

throughout life, and which also allow to analyse how they are changed during ageing or upon

perturbation, e.g. in diseased individuals.

In this thesis I provide an approach in which the respective cell division and differentiation process

can be modelled with stochastic or deterministic biochemical reaction network models (see section

2.1), thereby allowing to describe time resolved single cell and bulk cell count measurements. In

both modelling approaches, I will consider cell types or cell states as the systems components and

introduce parameters to describe the transition between them with rates. By fitting sets of derived

models to time-resolved cell count measurements stemming from an experiment, I want to gain

mechanistic and structural insights about the underlying homeostatic process of the respective

tissue. I will introduce existing parameter estimation techniques, discuss the pitfalls of parameter

inference (see section 2.2) in this context and introduce and apply state of the art model uncertainty

and identifiability analysis techniques (see section 2.2.3), which are important to investigate the

(non-)uniqueness, precision and accuracy of resulting parameter estimates and the consequential

uncertainty of model simulations. Moreover, I will introduce existing strategies to perform model

selection and model averaging (see section 2.3) and explain how these can be used to assess the

probability of several biologically plausible mathematical models and how these strategies can be

used to either rank by or combine competing models.

As specific applications, I studied adult murine neurogenesis (see chapter 3) and adult human

healthy and perturbed hematopoiesis (see chapter 4). For these two tissue homeostasis processes

I derived and implemented mathematical models, performed parameter inference, identifiability

analysis, model selection, in silico analysis, and the analysis of data and modelling results. These

applications thereby answer the research questions introduced in section 1.3 and resulted in the

publications listed in the beginning of my dissertation. The results from chapters 3 and 4 will be

discussed and possible future directions will be outlined at the end of my dissertation (see chapter

5).



2 Methods

The goal of this thesis is to design models which are detailed enough to describe the available data,

but are also a simplified representation of the underlying process and thus provide a framework to

draw general conclusions. The model specification highly depends on the choice of the modelling

approach, which should be in line with the experimental set-up used to observe the data. In

addition, each model should ideally be designed in such a way that the parameters are identifiable

and parameter results should not only contain the optimal values but also the estimates uncertainty

resulting from the optimization analysis. Because prior knowledge about the process is often limited

and over-fitting should be prevented, it can often be useful to define a set of possible models with

varying complexity, instead of considering only one, and quantitatively compare them.

In this chapter, I introduce both, stochastic (see section 2.1.2) and deterministic (see section 2.1.3)

mechanistic modelling approaches and the algorithms which can be used for model simulations

(see section 2.1.7). The main goal of this thesis is to answer specific biological questions that can

be formulated as parameter estimation problems and partly require the comparison of different

models. Hence, parameter inference methods (see section 2.2), parameter identifiability and model

uncertainty (see section 2.2.3), and model selection and averaging approaches (see section 2.3) are

introduced in this chapter.

2.1 Model specification and simulation

To describe cell state transitions in continuous time and for discrete (in case of cell counts) or con-

tinuous (in case of cell concentrations) response, compartmental models [Burnham and Anderson,

2003] are a reasonable choice. One distinguishes between stochastic compartmental models (see

section 2.1.2), which consider stochastic influences on single cells, and deterministic compartmental

models (see section 2.1.3), which describe the mean behaviour of a cell population.

In order to describe a system’s behaviour, one first needs to define the system’s states, which rep-

resent a snapshot of the system at a given time by a set of state variables [Klipp, 2010] e.g. cell

types or cell states of a particular lineage. Subsequently, all possible transitions between the states

are defined by constants or functions which can be either parametrized or fixed according to prior

knowledge. This leads to the following definition of a mechanistic model:

Definition 2.1. Mechanistic models describe the evolution of one or several state variables x =

(x1, x2, ..., xns) over time t = (t1, ..., tnt), which depend on unknown parameters θ = (θ1, ...θnθ) ∈ P
and known constants k = (k1, ..., knk) ∈ C. A particular mechanistic model M(θ) consists of

model dynamics ẋ = f(x,θ,k) and model observables yM = h(x,θ,k), which were experimentally

measured.

Example 2.2. Let us consider a simple compartmental model describing four possible transitions

of two cell types x1 = [A] and x2 = [B]:
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(i) the proliferation of cell type A,

(ii) the differentiation of cell type A to B,

(iii) the death of cell type A,

(iv) the death of cell type B,

which is schematically depicted in Figure 2.1.

 Proliferation
 Differentiation
 Death
 

A B

Figure 2.1: Model scheme describing transitions of a simple two cell-type model.

This particular model M(θ) is defined by the observables, e.g. the measured cell abundances of

cell type A and/or B and the dynamics, e.g. the evolution of cell abundances x1(t) = [A] and

x2(t) = [B] over time.

The dynamics should be described stochastically or deterministically, dependent on the number of

cells involved.

2.1.1 Chemical reaction networks

We will consider the system of interest as chemical reaction network (CRN), which allows us to

formulate all possible transitions as reactions in terms of mass-action kinetics.

Definition 2.3. A CRN can be defined as a triple (S, C,R), where S is the set of chemical species,

C ⊆ RS+ is the set of complexes and R is the set of reactions in the network. The set of reactions

describes all possible transitions and contain as elements relations on C denoted by c→ c′ that must

satisfy the following three conditions:

(i) C cannot contain elements of the form c→ c,

(ii) for any c ∈ C, there exists some c′ ∈ C such that either c→ c′ or c′ → c holds,

(iii) the union of the supports of all c ∈ C is S,

where RI+ denotes the set of formal sums s =
∑

i∈I si · i in which all si are strictly positive and I is

an arbitrary finite set and the support of an element s ∈ RI is defined by supp(s) = {i ∈ I : si 6= 0}
[Craciun and Pantea, 2008].

Example 2.4. In the simple two cell type example 2.1, species are cell states (S = {A,B}),

complexes are C = {A,B, 2A, ∅}, reaction rate constants are kr = (α, β, γA, γB), and the reactions
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R are defined by

R1 : A
α−−→ B (differentiation),

R2 : A
β−−→ 2 A (proliferation),

R3 : A
γA−−→ ∅ (cell death),

R4 : B
γB−−→ ∅ (cell death),

where ∅ is the empty set.

2.1.2 Stochastic compartmental models

Cellular dynamics are often driven by external and internal mechanisms, which are either not ex-

plicitly known and cannot be captured by the model, or would in most cases be too detailed and

beyond the scope of the analysed system and are therefore on purpose not modelled [Bachar et al.,

2013]. However, neglecting these influences while analysing bulk data is in most cases reasonable

as they will disappear on average but for the analysis of single cell data they may drastically affect

the analysis, as every cell runs its own program [Klipp, 2010].

To model cell division and differentiation processes, one can consider all possible transitions (pro-

liferation, differentiation or cell death) as individual random events and model the probabilistic

evolution of the state variable, i.e. the cell abundance of a particular state, over time as a stochas-

tic process.

Definition 2.5. A stochastic process is a sequence of random variables {Xi(ti)} , i = 0, 1, ..., n.

Each of these random variables takes values from the same state space X and the system is com-

pletely described by a set of joint probability density P (X0(t0), X1(t1), ..., Xn(tn)) [Bachar et al.,

2013, Gardiner, 2009].

One distinguishes between discrete-time and continuous-time and between continuous and discrete

state space stochastic processes [Gardiner, 2009, Klipp, 2010]. Moreover, one can assume the

random variables to be completely independent such that the joint probability density is equal to

the product of the individual probability densities of the random variables:

P (X0(t0), ..., Xn(tn)) =
n∏
i=0

P (Xi(ti)), (2.1)

or alternatively assume some sort of dependency between the random variables as it is for instance

assumed for the Markov process [Gardiner, 2009, Klipp, 2010].

2.1.2.1 Markov jump process

The Markov process assumes that the present system’s state determines its future random behaviour

[Gardiner, 2009, Klipp, 2010]. The Markov assumption is formulated in terms of the conditional
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probabilities

P (Xn+1(tn+1)|X0(t0), ..., Xn(tn)) = P (Xn+1(tn+1)|Xn(tn)). (2.2)

Thus, transition probabilities between the present and the future state do not depend on states in

the past [Klipp, 2010].

A continuous-time Markov process can be used to describe the biochemical random processes of a

reaction network (S, C,R). Within a short time interval [t, t + ∆t], each possible event r occurs

with probability p(r), that depends on the current state of the system and the reaction and is

approximated by the so called propensity p(r) of reaction Rr ∈ R, r = 1, ..., nr:

p(r) ≈ a(r)(x).

In this case the process is called a Markov jump process, because whenever an event occurs,

the system jumps from a particular state to the next one according to Rr [Klipp, 2010]. This

mathematical formulation leads to the definition of the Chemical master equation.

2.1.2.2 Chemical master equation

The stochastic evolution of the state vector x can be described by the chemical master equation

(CME) [Gillespie, 1992, Klipp, 2010]. In detail, the CME describes the change of the probability

to be in a certain state at a certain time point P (x|t) over time and can be written as

dP (x|t)
dt

=

nr∑
r=1

a(r)(x− ν(·,r))P (x− ν(·,r)|t)− a(r)(x)P (x|t), (2.3)

where ν(·,r) indicates the rth column of the stoichiometric matrix and a(r) the rth entry of the

propensity vector. Both can be derived from the reactions Rr ∈ R of the CRN (S, C,R):

Rr :

ns∑
i=1

ν−i,r · Si
kr−−→

ns∑
i=1

ν+
i,r · Si, r = 1, ..., nr, (2.4)

where νi,r = ν+
i,r − ν

−
i,r ∈ Z and kj is the reaction constant of the rth reaction [Bachar et al., 2013,

Klipp, 2010].

Example 2.6. For the two cell type example considered above (see Figure 2.1), the propensity

vector is

a(x) =


α · [A]

β · [A]

γA · [A]

γB · [B]
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and the stoichiometric matrices are given by

ν = (ν+ − ν−) =

[ R1 R2 R3 R4

A 0 2 0 0

B 1 0 0 0

]
−

[ R1 R2 R3 R4

A 1 1 1 0

B 0 0 0 1

]
=

[ R1 R2 R3 R4

A −1 1 −1 0

B 1 0 0 −1

]

which results in the CME

dP (x|t)
dt

= α · [A+ 1] · P (x1 = [A+ 1], x2 = [B − 1]|t)− α · [A] · P (x1 = [A], x2 = [B]|t)

+β · [A− 1] · P (x1 = [A− 1], x2 = [B]|t)− β · [A] · P (x1 = [A], x2 = [B]|t)

+γA · [A+ 1] · P (x1 = [A+ 1], x2 = [B]|t)− γA · [A] · P (x1 = [A], x2 = [B]|t)

+γB · [B + 1] · P (x1 = [A], x2 = [B + 1]|t)− γB · [B] · P (x1 = [A], x2 = [B]|t).

For some models, the CME can be solved analytically, see for instance Jahnke and Huisinga [2007].

Within the scope of a Bachelor’s thesis [Rösch, 2018], we investigated four rather simple stochastic

cell cycle models and could derive the analytic solution of the CME by using the probability

generating function representation, which was however not trivial for some of the considered models.

In general, the solution of the CME is analytically and numerically intractable [Resat et al., 2009],

due to the large or infinite number of possible states x. This often restricts the choice of the

inference approach that is used to estimate model parameters θ (see section 2.2.3), as likelihood-

based parameter inference (see section 2.2.1) requires a solution of the CME. If the solution of the

CME is intractable, one can use a likelihood-free inference approach (see section 2.2.2) and simply

forward simulate the system for several values of θ to compare the model output to the data

set. Alternatively, one can transform the CME into a deterministic model described by a closed-

form ODE system (see section 2.1.2.3), that can easily be solved and used for model simulations

and maximum likelihood estimation. The trick in the latter approach is to calculate the moment

equations from the CME, which l captures the stochasticity of the system if not only the first but

also higher order moments are considered.

2.1.2.3 Approximation by moment equations

The moment equations can be directly calculated from the CME. The first and second order

moments (mean µ·, variance and covariance C·,·) are defined by

µi(t) := E[Xi(t)] =
∑
xi

xiP (x|t)

Ci,j(t) := Cov[Xi(t), Xj(t)] =
∑
xi,xj

(xi − µi(t))(xj − µj(t))TP (x|t),
(2.5)
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with i, j = 1, 2, ..., ns denoting the cell state index [Engblom, 2006]. One can calculate the deriva-

tives to get the evolution equations for the first and second order moments:

dµi(t)

dt
=

nr∑
r=1

ν(i,r)

a(r)(µ(t),θ) +
1

2

∑
l1,l2

∂2a(r)(µ(t),θ)

∂xl1∂xl2
Cl1,l2(t)


dCi,j(t)

dt
=

nr∑
r=1

(
ν(i,r)

∑
l1

∂a(r)(µ(t),θ)

∂xl1
Cl1,j(t) + ν(j,r)

∑
l2

∂a(r)(µ(t),θ)

∂xl2
Ci,l2(t)

)

+

nr∑
r=1

ν(i,r)ν(j,r)

a(r)(µ(t),θ) +
1

2

∑
l1,l2

∂2a(r)(µ(t),θ)

∂xl1∂xl2
Cl1,l2(t)

 ,

(2.6)

with initial conditions µi(0), Ci,j(0), i, j = 1, 2, ..., ns. For any parameter vector θ, the first and

second order moment can be generated by solving the first and second order moment equations (see

equation 2.6). As the ith moment depends on the (i+ 1)th moment, the ODE system of moment

equations is in general not closed but rather an infinite set of coupled differential equations. To

solve this issue, one can apply moment closure as an approximation method [Kuehn, 2016]. Note,

that if the reaction propensities are linear in cell states, the resulting ODE system is a linear system

and can be solved exactly, without applying moment closure.

Example 2.7. The simple two cell-type model 2.1 has reaction propensities linear in cell states

and its moment equations are given by the linear ODE system

dµ1(t)
dt

dµ2(t)
dt

dC1,1(t)
dt

dC1,2(t)
dt

dC2,2(t)
dt

 =


−α+ β − γA 0 0 0 0

α −γB 0 0 0

α+ β + γA 0 2(−α+ β − γA) 0 0

−α −γB α −α+ β − γA − γB 0

α −γB 0 2α −2γB




µ1(t)

µ2(t)

C1,1(t)

C1,2(t)

C2,2(t)

 .

2.1.3 Deterministic compartmental models

For large cell populations, the stochastic effects resulting from the behaviour of single cells can

cancel each other and are less prominent in the observed mean population behaviour. Therefore one

can neglect the stochasticity of the system and model its dynamics with a deterministic approach

and a set of differential equations [Klipp, 2010, Kremling, 2012]. In case the set of differential

equations depends on only one variable, ordinary differential equations (ODE) are used to model

the biological system.

Definition 2.8. An ODE of nth order is given by x(n) = f(t, x, x(1), ..., x(n−1)), where n is the

highest derivative of x. A number of coupled ODEs describes an ODE system. An ODE system is

linear if the right-hand side can be written as linear combination of the derivatives of x [Robers,

2018]. In case the right-hand side of the ODE system does not depend on time it is said to be

autonomous.

To model cell division and differentiation, one can consider a CRN of cell states and mass action

kinetics.
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Definition 2.9. A mass-action CRN is a quadrupel (S, C,R, k), where (S, C,R) is a CRN, k ∈ RR+
is the vector of reaction rate constants and the respective ODE system describes the evolution of

the state vector x = [xS1 , ..., xSns ] defined by

ẋ =

nr∑
r=1

(ν+
(·,r) − ν

−
(·,r)) · kr ·

ns∏
i=1

x
ν−
(i,r)

Si
, (2.7)

where nr is the number of reactions and ns is the number of species considered in the network

[Craciun and Pantea, 2008].

Example 2.10. For the simple two cell type model 2.1, the change in the number of A and B cells

over time is described by the following ODE system:

ẋ =

(
ẋA

ẋB

)

=

(
−1

1

)
· α · x1

A · x0
B +

(
1

0

)
· β · x1

A · x0
B +

(
−1

0

)

· γA · x1
A · x0

B +

(
0

−1

)
· γB · x0

A · x1
B

=

(
−(α− β + γA) 0

α −γB

)
·

(
xA(t)

xB(t)

)
.

Note, that this ODE system corresponds to the equations for the mean in the moment equations

(see equation 2.7).

Each cell division and differentiation process considered within the scope of this dissertation de-

scribes the transition from one cell state to another state (cell differentiation and death), or to the

same state (proliferation). From this follows that ν−(i,r) ∈ {0, 1}∀i. Such systems are always de-

scribed by a 1st order non-autonomous homogeneous linear ODE system with constant coefficients

{ai,j}i,j=1,...,ns which can be written as

ẋi =
d

dt
xi

= ai1(θ,k, t) · x1(t) + ai2(θ,k, t) · x2(t) + . . . ain(θ,k, t) · xn(t) (2.8)

= fi(x,θ,k, t), i = 1, ..., ns

and in matrix notation

ẋ = A(θ,k, t) · x (2.9)

[Robers, 2018].
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2.1.4 Existence and uniqueness of the solution of first-order ODE systems

While studying differentiation processes the solution of the corresponding ODE system is of interest

[Klipp, 2010] as it is either partly or completely defining the observables and thus required for

parameter inference, model validation and model predictions.

For 1st order homogeneous linear ODE systems, the following theorem about the existence of a

solution holds [Robers, 2018]:

Theorem 2.11. If A(θ,k, t) is continuous on some interval I = (b1, b2) - that is, if ai,j(θ,k, t)

is a continuous function on I ∀i, j = 1, 2, ..., ns, then there exist ns linearly dependent solutions of

the homogeneous linear system ẋ = A(θ,k, t) · x on the interval I.

The general solution of a 1st order homogeneous linear ODE system is defined as follows [Robers,

2018]:

Definition 2.12. Let x1, x2, ..., xns be linearly independent solutions of the homogeneous linear

system ẋ = A(θ,k, t) · x on the interval I and c1, ..., cns arbitrary scalar constants. The linear

combination x(t) = c1 · x1(t) + c2 · x2(t) + ... + cns · xns(t) is called the general solution of the

homogeneous linear system on I.

The general solution can be easily calculated using the following theorem [Klipp, 2010, Robers,

2018]:

Theorem 2.13. If λ1, ..., λns are the eigenvalues (not necessarily distinct) of a constant matrix

A ∈ Rn and if v1, ..., vn are associated linearly independent Eigenvectors, then the general solution

of the homogeneous linear system ẋ = A · x is

ẋ(t) = c1 · v1 · eλ1t + · · ·+ cns · vns · eλns t, (2.10)

where c1, ..., cns are arbitrary constants.

Example 2.14. For the simple two cell type model, the general solution can be calculated by first

calculating the eigenvalues and eigenvectors of matrix A.

A · vi
!

= λivi ∀i = 1, ..., ns ⇐⇒ det(A− Iλ)
!

= 0

det

(
−(α− β + γA)− λ 0

α −γB − λ

)
!

= 0

leads to solutions λ1 = γB and λ2 = β − α − γA for eigenvalues and v1 =

(
0

1

)
and v2 =
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−(α−β+γA−γB)

α

1

)
for the corresponding eigenvectors. The general solution is:

(
xA(t)

xB(t)

)
=

(
−c2 · α−β+γA−γB

α · e(β−α−γA)t

c1 · eγBt + c2 · e(β−α−γA)t

)
(2.11)

Definition 2.15. A linear system initial value problem (IVP) consists of solving the system of ns

first-order equations

ẋ1(t) = a11(θ,k, t) · x1(t) + a12(θ,k, t) · x2(t) + . . . a1ns(θ,k, t) · xns(t)
...

ẋns(t) = ans1(θ,k, t) · x1(t) + ans2(θ,k, t) · x2(t) + . . . ansns(θ,k, t) · xns(t)

subject to ns initial conditions x1(c) = d1, ..., xns(c) = dns, c ∈ R

Theorem 2.16. If the functions aij(t) i, j = 1, ..., ns are all defined and continuous on the interval

I = (b1, b2) and if c ∈ I, then there exists a unique solution to the linear system initial value problem

on the interval I.

For first-order non-autonomous non-linear ODE systems, the above stated definitions and theorems

can be formulated more generally [Robers, 2018].

Definition 2.17. A system of ns first-order differential equations

ẋi = fi(x,θ,k, t), i = 1, ..., ns

has a solution on the interval I = (b1, b2), if there exists a set of ns functions {xi(t), ..., xns(t)},
which all have continuous first derivatives on the interval

I. The set of functions {xi(t), ..., xns(t)} is then called solution of the system on the interval I.

Definition 2.18. An IVP for a system of first-order differential equations consists of solving a

system of equations of the form

ẋi = fi(x,θ,k, t), i = 1, ..., ns

subject to a set of constraints, called initial conditions of the form

x1(c) = d1, ..., xns(c) = dns , c ∈ R.

For such IVPs, the solution is unique under certain circumstances, as the following theorem states:

Theorem 2.19. Let R = (t, x1, ..., xns)|m < t < n and ai < yi < bi, i = 1, ..., ns where m,n, ai.bi

are all finite real constants. If

(i) each of the ns functions fi(t, x1, ..., xns), i = 1, ..., ns is a continuous function of t, x1, x2, ...,

and xns in R,



2.1. MODEL SPECIFICATION AND SIMULATION 19

(ii) each of the n2
s partial derivatives ∂fi

∂yj
, i, j = 1, ..., ns is a continuous function of t, x1, x2, ...,

and xns in R, and

(iii) (c, d1, ..., dns) ∈ R,

then there exists a unique solution to the linear system initial value problem

ẋi = fi(x,θ,k, t), x1(c) = d1, ..., xns(c) = dns

on some interval I = (c− h, c+ h) where I is a subinterval of (m,n).

Finding the solution of an IVP for a system of first-order differential equations on a specified

interval requires numerical methods [Robers, 2018].

2.1.5 Numerical integration methods and stiff ODE systems

Solving an ODE system requires the numerical integration of the respective ODEs. Given the IVP

ẋ = f(x(t),θ,k, t), x(t0) = x0,

one aims to find x : [t0, T ]→ Rn.

This is achieved by stepwise approximating the solution x(t) with

x(ti+1) = x(ti) +

∫ ti+1

ti

f(x(t),θ,k, t)dx

= x(ti) + Ii. (2.12)

Therefore, one can apply explicit or implicit integration methods [Butcher, 2016].

Definition 2.20. A numerical integration method is explicit if x can directly be calculated by com-

putation of known quantities, i.e. by evaluating f(x(t),θ,k, t), and is implicit otherwise [Butcher,

2016].

Some numerical integration methods are listed in table 2.1, where hi := ti+1 − ti defines the step

size [Butcher, 2016].
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method name Ii xi+1

ex
p

li
ci

t forward Euler ≈ hif(xi(ti),θ,k, ti) = xi + hif(x,θ,k, ti)

modified ≈ hif(xi(
ti+ti+1

2 ),θ,k, ti+ti+1

2 ) = xi
forward Euler +hif(xi + hi

2 f(x,θ,k, ti),θ,k, ti + hi
2 )

im
p

li
ci

t

backward Euler ≈ hif(x(ti+1),θ,k, ti+1) = xi + hif(x,θ,k, ti+1)

modified = xi
backward Euler +hif(xi+xi+1

2 ,θ,k, ti + hi
2 ))

Crank-Nicolson ≈ hi 1
2(f(x(ti),θ,k, ti) = xi + hi

1
2(f(xi,θ,k, ti)

+f(x(ti+1),θ,k, ti+1)) +f(xi+1,θ,k, ti+1))

Heun ≈ hi 1
2(f(x(ti),θ,k, ti) = xi + hi

1
2(f(xi,θ,k, ti)

+f(x(ti+1),θ,k, ti+1)) +f(xi + hif(xi,θ,k, ti),θ,k, ti+1))

Table 2.1: Explicit and implicit numerical integration methods.

The above mentioned methods can be generalized as implicit and explicit Runge-Kutta methods

[Butcher, 2016, Griffiths and Higham, 2010]. Besides, there exist some multi-step procedures, which

attempt to increase efficiency by exploiting information from previous steps. Multi-step methods

are for instance Adams-Bashforth methods (explicit), Adams-Moulton method (implicit), or the

backward differentiation formula (implicit), which approximate either f(x,θ,k, t) or x(t) by a

lagrange polynomial to approximate the integral I [Griffiths and Higham, 2010]. These methods

can also be combined [Yang et al., 2005]. The Adams-Bashforth-Moulton method for instance,

approximates f(x,θ,k, t) by a lagrange polynomial, calculates a predicted estimate of xi+1 and

then repeats this procedure with using the predicted estimate for evaluating f to calculate the

corrected estimate xi+1 [Yang et al., 2005].

Although implicit methods require more computational effort, they are useful for solving stiff prob-

lems. A differential equation is said to be stiff if the magnitudes of ẋ1(t), ..., ẋns(t) are significantly

different [Yang et al., 2005] and are thus hard to solve numerically. For chemical reaction networks,

the resulting IVPs often result in stiff problems if the reactions obtain both very high, and very

low rates and are thus on various time scales [Hairer and Wanner, 1996]. Although there is no

clear distinction between a stiff and a non-stiff differential equation, one can determine its degree

of stiffness if it is possible to transform the ODE system into a linear time-invariant state equation

of the form

ẋ = Ax(t) +Bu(t), x(0) = x0,

where u(t) is the input, and A and B are matrices of coefficients. The stiffness measure is then

calculated from the negative real parts of the eigenvalues λi of matrix A:

η(A) =
max |Re(λi)|

min |Re(λi)| 6= 0
.
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The higher the value for η(A), the higher the unbalance between fast and slow mode and the more

stiff the equation.

By increasing the step size, one can observe the numerical stability of the solution for a particular

method. For stiff equations the step-size should be chosen carefully in order to avoid numerical

instability [Yang et al., 2005]. In general, the stability properties of implicit methods allow for

the accurate determination of the solution with quite large time-step sizes, even if the problem is

stiff. In contrast, if the usually less computationally demanding explicit methods are applied to

stiff problems, they are forced to apply a small step size due to their constrained stability area and

require a much longer computation time in this case [Hairer and Wanner, 1996, Hirschfelder et al.,

1954].

Fortunately, there are strategies to efficiently deal with stiff equations by adaptively determining

the step size, as implemented in MATLAB for several ode solver build-in routines, which saves

computation time [Yang et al., 2005].

2.1.6 Transition time distributions for compartmental models

For stochastic and deterministic compartmental models, the transition times from one compart-

ment to another are per definition exponentially distributed [Matis and Wehrly, 1990]. As has

been observed experimentally (e.g. [Filipczyk et al., 2015]), cell processes such as proliferation,

differentiation and cell death require a certain time and are rather Erlang than exponentially dis-

tributed. Thus, the distribution of transit times as it is assumed in compartmental models might

not be accurate enough to model cell proliferation, differentiation and cell death. To describe

these cell processes more accurately, one can introduce intermediate compartments for each cell

type compartment while specifying the model. This model adaptation results in Erlang distributed

transition times between the cell type compartments, as the following theorem states.

Theorem 2.21. Let T be an exponentially distributed random variable T ∼ exp(λ) representing

the transition time for the next reaction to occur. The sum of k exponentially distributed transition

times Y =
∑k

i=1 Ti, k ∈ N is then Erlang(k, λ) distributed.

Proof. Let Ti ∼ exp(λ), i = 1, ..., k and Y =
∑k

i=1 Ti ∼ Erlang(k, λ), λ ∈ R be random variables

with probability density functions fT (x, λ) and fY (x, k, λ), respectively. As the moment generating

function of a random variable X with probability density function f(x,θ) is defined as

φX(s) = E(esX)

=

∫ ∞
−∞

esxf(x,θ)dx, s ∈ R (2.13)

[Bachar et al., 2013, van Kampen, 2007] and as for the generating function of the sum of independent

random variables Xi

Z =
k∑
i=1

Xi,
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it holds that

φZ(s) = E(es(
∑k
i=1 Xi) = E(

k∏
i=1

esXi)
independentXi

=
k∏
i=1

E(esXi) =
k∏
i=1

φXi(s), (2.14)

we can show that the above stated theorem holds by deriving the moment generating functions of

random variables T and Y . From

φT (s) =

∫ ∞
−∞

estf(t, λ)dt =

∫ ∞
0

estλe−λtdt =

[
λ

s− λ
e(s−λ)t

]∞
0

= lim
t→∞

λ

s− λ
e(s−λ)t − λ

s− λ
=

λ

λ− s
=

1

1− s
λ

= (1− sλ−1)−1, s < λ

and

φY (s) =

∫ ∞
−∞

esyf(y, k, λ)dy, s ∈ R =

∫ ∞
0

esy
1

Γ(k)
λkyk−1e−λydy =

λk

Γ(k)

∫ ∞
0

e(s−λ)yyk−1dy

=
λk

Γ(k)

([
1

s− λ
e(s−λ)yyk−1

]∞
0

−
∫ ∞

0
(k − 1)yk−2 1

(s− λ)2
e(s−λ)ydy

)
=

λk

Γ(k)

([
1

(s− λ)2
e(s−λ)y(k − 1)yk−2

]∞
0

−
∫ ∞

0
(k − 2)(k − 1)yk−3 1

(s− λ)2
e(s−λ)ydy

)
=

λk

Γ(k)

∫ ∞
0

(k − 1)!
1

(s− λ)k−1
e(s−λ)ydy =

λk

(k − 1)!

[
(k − 1)!

(s− λ)k−1

1

s− λ
e(s−λ)y

]∞
0

=

(
λ

λ− s

)k
= (1− sλ−1)−k

it follows that

φY (s) = (1− sλ−1)−k =

k∏
i=1

(1− sλ−1)−1 =

k∏
i=1

φTi(s)

Alternatively one can directly integrate any time distribution such as Erlang or lag-exponential,

by deriving a Volterra integral equation representation of the generating function, which is at

least feasible for very simple stochastic models that can be analytically solved with the probability

generating function representation [Rösch, 2018]. For more complicated stochastic models, one can

use a sampling based inference method such as approximate Bayesian computation (see section

2.2.2) for fitting the model to measurements, which allows to specify any time distribution while

simulating from the model (see section 2.1.7 and 2.2.2).

2.1.7 Model simulation

In order to perform numerical parameter inference, a fast and efficient simulation of the model

observables is required which can then be compared to the experimental observations during op-

timization. In addition, model validation, i.e. comparison of the model to independent data or

observations not used for inference, and model predictions require simulations of the model for the
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optimal parameter vector.

In case of deterministic models, for which the observables are defined as the solution of the ODE

system, the model can simply be forward simulated by evaluating the solution at the respective

time points for the parameters of interest.

For stochastic CRN models, one can simulate individual realizations of the underlying random pro-

cesses with the stochastic simulation algorithm (SSA), which is also known as Gillespie algorithm

[Gillespie, 1976]. The idea is to simulate every reaction explicitly such that each realization is a

sample of the solution of the CME. Based on an initial model state, transition times are drawn

from the underlying reaction time distributions for all possible reactions that could occur in the

next step. The lowest transition time determines which reaction takes place, leading to the next

model state. This is repeated until a stopping criteria is fulfilled, e.g. that the number of reactants

is equal to zero, the maximum simulation time has been exceeded, or the maximum number of

simulation steps is reached. Formally, the Gillespie algorithm can be formulated as follows:

Gillespie algorithm

Step 0 Initialize the sampling time t0 = 0 and the iteration counter i = 0, and specify a stopping

time tstop. Determine the initial state x0 and calculate the reaction probability density

function for this initial state according to

P (τ, r) = ar(x0) exp

(
M∑
k=1

ak(x0)τ

)
.

Step 1 Generate a random pair (τ, r) according to the joint probability density function P (τ, r),

i.e. with the direct method by

(i) drawing r1 ∼ U(0, 1) and calculating τ = 1∑M
k=1 ak(xi)

ln
(

1
r1

)
, and

(ii) drawing r2 ∼ U(0, 1) and finding reaction r that fulfills

r−1∑
k=1

ak(xi) < r2

M∑
k=1

a(xi) ≤
r∑

k=1

ak(xi).

Step 2 Update t(i+1) = ti+ τ , xi+1 = xi+ν(.,r) and a(xi+1) = a(xi+ν(.,r)) according to reaction

Rr. Set i = i+ 1.

Step 3 If t < tstop or xi = 0 terminate the calculation, otherwise return to Step 1.

Simulating realizations of the solution of the CME often requires a high numerical effort [Gillespie,

2001, Klipp, 2010]. To improve the efficiency and speed of the algorithm, several attempts have been

made in previous years. A commonly used approach is τ -leaping, which updates the propensity

vector not after each reaction but only after an interval of length τ [Cao et al., 2006]. Moreover,

R-leaping has been suggested which predefines the number of reaction firings [Auger et al., 2006].

Both methods can be combined to S-leaping [Lipková et al., 2018]. Furthermore, it has been shown

that the recycling of random numbers for instance could reduce the simulation time by 25% without

significantly reducing the accuracy [Yates and Klingbeil, 2013].
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2.2 Parameter inference

Parameter inference approaches aim to identify the values of the parameter vector θ = (θ1, ..., θnθ)

for which the model best describes the data and can thereby be interpreted as model calibration to

the experimental measurements. In this section I will introduce likelihood-based and likelihood-free

optimization approaches and methods to analyse parameter identifiability and model uncertainty.

2.2.1 A likelihood-based approach: maximum likelihood estimation

If a closed-form solution exists for the model observables yM(θ, tk) the likelihood LD(θ) of a

particular modelM(θ) can be calculated in order to assess how wellM(θ) explains the experimental

data yD(tk) for a certain set of parameters θ.

Definition 2.22. The Likelihood function L corresponds to the probability of observing the data

yD(tk) given the model M(θ) and is defined by

LD(θ) = P (D|θ) =

nt∏
k=1

P (yD(tk)|yM(θ, tk), ω)

independent yj
=

nt∏
k=1

ny∏
j=1

P (yDj (tk)|yMj (θ, tk), ω), (2.15)

where nt is the number of time points tk and ny the number of observables yMj (θ, tk) and data

points yDj (tk) at time tk.

Accordingly, the log-likelihood function is defined by

`D(θ) =

nt∑
k=1

ny∑
j=1

logP (yDj (tk)|yMj (tk), ω), (2.16)

where ω describes parameters of the underlying noise distribution [Fröhlich et al., 2018].

Definition 2.23. The maximum likelihood estimate of the unknown parameter vector θ is defined

as the solution of the following optimization problem:

θ̂
ML

= arg max
θ

subject to M

`D(θ). (2.17)

Maximum likelihood estimation (MLE) thereby identifies the parameter values θML for which the

conditional probability of observing the data given the model M(θ) is maximized. The resulting

estimate obtains as statistical properties consistency, asymptotic normality and efficiency [Bachar

et al., 2013]. For specification of the likelihood function, a certain noise model needs to be assumed

(see section 2.2.1.1). Moreover, to solve the optimization problem (see equation 2.17) an appropriate

optimization algorithm needs to be specified, which depends on the properties of the specified

optimization problem (see section 2.2.1.2).



2.2. PARAMETER INFERENCE 25

2.2.1.1 Noise models

The difference between measured and predicted output is defined as residual vector

r(t,θ) = yD(t)− yM(t,θ). (2.18)

If the model would describe the experimental system accurately and precisely, the model solutions

for the parameters would fit the data exactly and the residuals would be equal to zero [Droste,

1998]. In practice, this is usually not the case as both, experimental data and model observables

underlie uncertainties. The observed data is noisy due to human or technical measurement errors,

and inherent biological variation. Model uncertainty is further explained and discussed in section

2.2.3.

While solving the optimization problem introduced in 2.2.1, one needs to specify a noise distribution

in order to account for the uncertainty in the data and accurately estimating the parameters. The

residual distribution assumption should ideally agree with its true underlying assumption. Table

2.2 lists a couple of noise models which can be applied for modelling biological processes. Additive

Error model Likelihood function LD(θ)

Additive normal noise

yDj (tk) = yMj (tk) + εj,k
nt∏
k=1

ny∏
j=1
N (yDj |yMj , σ2

j,k)

with εj,k ∼ N (0, σ2
j,k) =

nt∏
k=1

ny∏
j=1

1√
2πσj,k

exp

{
− (yDj (tk)−yMj (tk,θ))2

2σj,k

}

Multiplicative log-normal noise

yDj (tk) = yMj (tk) · νj,k
nt∏
k=1

ny∏
j=1

logN (yDj |yMj , σ2
j,k)

with νj,k ∼ logN (0, σ2
j,k) =

nt∏
k=1

ny∏
j=1

1√
2πσj,k

exp

{
− (log(yDj (tk))−log(yMj (tk,θ)))2

2σj,k

}

Additive laplace noise

yDj (tk) = yMj (tk) + εj,k
nt∏
k=1

ny∏
j=1
Laplace(yDj |yMj , b)

with εj,k ∼ Laplace(0, b) =
nt∏
k=1

ny∏
j=1

1
2b exp

{
− |y

D
j (tk)−yMj (tk,θ)|

b

}
Table 2.2: Selection of noise distributions useful for maximum likelihood estimation (MLE).

normally distributed noise (see table 2.2) is widely used for modelling continuous observables of

biological processes and can therefore be used if cell concentrations are modelled. If the moments

of the cell concentrations or counts are modelled, the assumption of additive normally distributed

noise is also valid as it can be shown that the moments are asymptotically normal [Moore, 1986]. In

case the data observables are likely to be outlier corrupted, it is recommended to use a more heavy-

tailed noise distribution than the normal distribution, such as the Laplace distribution (see table

2.2) or Student’s t distribution [Maier et al., 2017]. As all these distributions are symmetric, and
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can observe negative values. For continuous model observables that take exclusively positive values

(e.g. concentrations), one should rather model the noise with a positively skewed distribution, such

as the log-normal distribution (see table 2.2). For modelling noise of discrete count data describing

the independent events occurring with a time-invariant rate, the Poisson distribution might be a

good choice if the event of interest is rather rare. However, for events that occur more often, the

inherent Poisson assumption of the distribution variance equal to the distribution mean usually

does not hold.

Whether the noise distribution assumption agrees with its true underlying distribution can be

investigated while optimizing the log-likelihood function by comparing calculated and theoretical

quantiles. In a Q-Q-plot of the respective calculated and theoretic quantiles, the values should

roughly lie on a line to conclude that the noise distribution assumption is fulfilled.

For a certain optimization problem, one might be able to directly calculate the noise parameters

from the data. If the data set is rather small one should consider to apply bootstrapping and

repeatedly estimate the noise parameter based on subsets of the data. If this is not possible and

the noise parameters have to be estimated while performing MLE, the unknown noise parameters

can either be instances of the parameter vector θ and estimated together with reaction rates and

scaling constants, or they can be analytically approximated during optimization in each evaluation

of the log-likelihood function by using hierarchical optimization [Loos et al., 2018]. The idea in

hierarchical optimization is to use the sufficient condition for an optimum

∇n`D(θ, n)|n̂=0 (2.19)

in order to derive the analytic approximation of the noise parameter n. The resulting approxima-

tions of n for all noise models considered in table 2.2 are shown in table 2.3.

Error model Approximation of noise parameter
in hierarchical optimization

Additive normal noise

yDj (tk) = yMj (tk) + εj,k
nt∏
k=1

ny∏
j=1
N (yDj |yMj , σ2

j,k)

with εj,k ∼ N (0, σ2
j,k) σ̂j = 1

nt

∑nt
k=1(yDj (tk)− yMj (tk,θ))2, j = 1, ..., nt

Multiplicative log-normal noise

yDj (tk) = yMj (tk) · νj,k
nt∏
k=1

ny∏
j=1

logN (yDj |yMj , σ2
j,k)

with νj,k ∼ logN (0, σ2
j,k) σ̂j = 1

nt

∑nt
k=1(log(yDj (tk))− log(yMj (tk,θ)))2, j = 1, ..., nt

Additive laplace noise

yDj (tk) = yMj (tk) + εj,k
nt∏
k=1

ny∏
j=1
Laplace(yDj |yMj , b)

with εj,k ∼ Laplace(0, b) b̂j = 1
nt

∑nt
k=1 |yDj (tk)− yMj (tk,θ)|, j = 1, ..., nt

Table 2.3: Analytic approximation for noise parameters for selection of noise distributions used in
maximum likelihood estimation (MLE).
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2.2.1.2 Optimization procedures

Once the likelihood function is defined, the aim is to infer the unknown parameters θ by solving

the optimization problem introduced in equation 2.17.

Definition 2.24. An optimization problem is given by:

minimize
subject to

fi(θ)≤bi,i=1,...,m

f0(θ), (2.20)

where the vector θ = θ1, ..., θnθ is the optimization variable, the function f0 : Rnθ → R is the

objective function, the functions fi : Rnθ → R are the (in)equality constraint functions and the

constants bi are the limits for the constraints. A vector θ is called optimal, or a solution of the

optimization problem, if it has the smallest objective function value among all vectors that satisfy

the constraints [Boyd and Vandenberghe, 2004].

To solve an optimization problem, one can use a broad range of specified gradient-based algorithms,

such as gradient or steepest decent methods, several Newton methods, interior point methods or

trust-region-reflective methods [Boyd and Vandenberghe, 2004] with largely varying performance

and applicability. In general one aims to reliably, i.e. accurately and precisely infer parameters

with minimal computation time. The effectiveness of an optimization algorithm very much depends

on the structure of the problem. Therefore it is helpful to define classes of optimization problems.

One distinguishes between linear, convex, and non-linear optimization problems according to the

following definitions.

Definition 2.25. An optimization problem is called

(a) linear if the objective and constraint functions are linear, i.e. satisfy

fi(αx+ βy) = αfi(x) + βfi(y), i = 1, ...,m, ∀x,y ∈ Rnθ and ∀α, β ∈ R.

(b) convex if the objective and constraint functions are convex, i.e. satisfy the inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y) ,i = 1, ...,m, ∀x,y ∈ Rnθ and ∀α, β ∈ R≥0

with α+ β = 1.

(c) non-linear if the objective and constraint functions are not linear and not known to be

convex [Boyd and Vandenberghe, 2004].

Additional important properties for optimization algorithm effectiveness are the number of vari-

ables and constraints, and the sparsity of the problem, i.e. the constraint function dependency on

only a small number of variables [Boyd and Vandenberghe, 2004].

According to the definition above any linear optimization problem belongs to the class of convex op-

timization problems. Convex problems such as least squares optimization problems can in general

be solved reliably and effectively, e.g. with interior point methods even for hundreds of variables

and thousands of constraints in at most a few tens of seconds [Boyd and Vandenberghe, 2004].
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However, this does not hold for non-linear optimization problems as even simple looking problems

with only a few variables can be extremely challenging and more complex problems with hundreds

of variables can even be intractable [Boyd and Vandenberghe, 2004]. In contrast to least-squares

problems, MLE optimization problems are often non-convex. This of course depends on the noise

model and the model observables’ structure.

To solve even non-convex optimization problems efficiently and effectively, one could use algorithms

which solve the non-linear optimization problem not globally, but only locally. Such algorithms can

be fast and even handle large-scale non-linear problems since they only require differentiability of

the functions fi, i = 0, 1, ...,m, but they require a good initial guess for the parameter vector, i.e. a

starting value and are sensitive to this starting value and algorithm parameter settings. Specifying

the algorithm and its settings often requires experimenting [Boyd and Vandenberghe, 2004].

Local optimization algorithms can be combined with multi start procedures which sample a number

of starting values from the whole parameter space and solve (simultaneously) several local opti-

mization problems to potentially obtain the global optimum. Such approaches require a certain

number of starting values and the implementation of an appropriate sampling method (e.g. latin

hypercube sampling [Eliáš and Vořechovskỳ, 2016]) for obtaining uniformly distributed starting

values in order to efficiently capture the whole parameter space. To ensure that the optimization

procedure converged to the global optimum, one should check if the optimal value and maximum

objective function value is observed several times for different starting values. [Boyd and Vanden-

berghe, 2004] suggests techniques to formulate an optimization problem as a convex optimization

problem. Moreover, an optimizer algorithms performance can be remarkably improved by log-

transformation of the parameters, which has been suggested by [Raue et al., 2013], [Villaverde

et al., 2019b] and [Kreutz, 2016] and further investigated in [Hass et al., 2019], as it often results

in (more) convex optimization problems. Importantly, avoiding the estimation of noise parameters

remarkably improves the convergence during optimization and simplifies the problem one aims to

solve as it reduces the number of parameters [Loos et al., 2018].

2.2.2 A likelihood-free approach: approximate Bayesian computation

In case the likelihood does not exist in a closed form or is too costly to evaluate, approximate

Bayesian computation (ABC) algorithms can be used to approximate the posterior distribution

P (θ|yD) of the parameters θ given the data yD in order to estimate model parameters [Toni et al.,

2009].

The main idea in ABC is to repeatedly generate Monte Carlo samples from the uncertain param-

eter distribution which can then be used to simulate from the specified model M(θ) and subse-

quently assess the model agreement with experimental data to re-specify the parameter distribution

P (θ|yD)[Prescott and Baker, 2018]. The aim of an ABC algorithm is to converge to an accurate

approximation of the posterior distribution P (θ|yD). As in general ABC requires a large amount

of simulations, it is computationally expensive [Sisson, 2018] and several approaches have been

suggested to reduce the computational costs and improve the performance by using parallelisation,

low-fidelity models, abortion of unpromising simulations, and by exploring the parameter space

more efficiently by using markov chain monte carlo (MCMC) or sequential monte carlo (SMC)
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[Del Moral et al., 2006, Prescott and Baker, 2018, Sisson, 2018]. One of the first algorithms that

has been suggested is the ABC rejection sampler.

The ABC rejection sampler first samples the unknown parameter vectors from a prior distribution

P (θ) and subsequently calculates the model observables yM(θ) for each parameter vector according

to the specified simulation modelM(θ). The model observables are then compared to the observed

values by evaluating a distance function d(yD, yM) and if the distance function value is lower than

a predefined threshold, the respective parameter vector gets accepted [Toni et al., 2009].

ABC rejection algorithm

Step 0 Sample θ∗ from a prior distribution P (θ).

Step 1 Simulate yM(θ∗) from f(y|θ∗).
Step 2 If d(yD, yM(θ∗)) ≤ ε, accept θ∗, otherwise reject θ∗. Continue with Step 0.

If the prior distribution is very different from the unknown posterior distribution, the acceptance

rate is very low and the computational cost very high. This is avoided by ABC MCMC, which

generates the distribution P (θ|d(yD, yM) ≤ ε) by a Markov chain [Toni et al., 2009].

ABC MCMC algorithm

Step 0 Set i = 0 and initialize θi with values from the parameter space.

Step 1 Propose θ∗ according to a proposal distribution q(θ|θi).
Step 2 Simulate yM(θ∗) from f(y|θ∗).
Step 3 If d(yD, yM(θ∗)) ≤ ε, continue with Step 4, otherwise set θi+1 = θi and continue with Step

5.

Step 4 Set θi+1 = θ∗ with probability

α = min

(
1,
P (θ∗)q(θi|θ∗)
P (θi)q(θ

∗|θi)

)
and θi+1 = θi with probability 1− α.

Step 5 Set i = i+ 1 and continue with Step 1.

The Markov chain may get stuck in regions of low probability due to low acceptance probability

and correlated samples [Toni et al., 2009]. The problems of ABC rejection sampler and the ABC

MCMC approach can partly be overcome by using ABC SMC algorithm for which several versions

exist [Del Moral et al., 2006, Sisson, 2018].

In approximate Bayesian computation sequential monte carlo (ABC SMC), the posterior distri-

bution is determined sequentially. In each step, an intermediate distribution of parameter values

θ(1), ...,θ(N), which are called particles, is calculated. The parameter values for the current inter-

mediate distribution are drawn with weights from the previous distribution and are perturbed with

a kernel function. In each round, the weights for the next round are calculated and a gradually

stricter threshold is applied for the distance acceptance, such that after a few steps this interme-
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diate distributions of parameter values converges against the posterior distribution [Filippi et al.,

2013, Toni et al., 2009].

ABC SMC algorithm

Step 0 Initialize thresholds ε1, ..., εT as descending sequence and set the population indicator

t = 0.

Step 1 Set the particle indicator i = 1.

Step 2 If t = 0, sample θ∗∗ independently from P (θ), otherwise sample θ∗ from the previous

population θ
(i)
t−1 with weights wt−1 and perturb the particle to obtain θ∗∗ ∼ Kt(θ|θ∗),

where Kt is a perturbation kernel. If P (θ∗∗) = 0 repeat Step 2, otherwise simulate yM(θ∗)

from f(y|θ∗∗) and if d(yD, yM(θ∗)) ≥ εt repeat Step 2.

Step 3 Set θ
(i)
t = θ∗∗ and calculate the weight for particle θ

(i)
t :

w
(i)
t =

 1, if t = 0

P (θ
(i)
t )∑N

j=1 w
(j)
t−1Kt(θ

(j)
t−1,θ

(i)
t )
, if t > 0.

(2.21)

If i < N , set i = i+ 1 and go to Step 2.

Step 4 Normalize the weights w
(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

. If t < T set t = t+ 1 and continue with Step 1.

From the last population of particles, i.e. the approximation of the posterior distribution, one can

determine the posterior mean, posterior median and/ or maximum a posteriori (MAP) estimate

θ̂
MAP

= argmax
θ

P (θ|yD) = argmax
θ

P (yD|θ)P (θ)

P (yD)
. (2.22)

as point estimates and quantiles of the posterior distribution as (1−α)% credibility intervals. The

MAP estimator is consistent, which means it converges to the true value for large sample sizes.

Moreover it is an asymptotically normal estimator but not an efficient estimator as it is biased

towards the prior distribution P (θ) [Bachar et al., 2013, Schwartz, 1965].

2.2.3 Identifiability and uncertainty analysis

Every mathematical model M(θ) underlies uncertainty due to several reasons. Although the pa-

rameters θ are assumed to obtain fixed optimal values, different parameter values, different com-

binations of parameter values, or different model structures can lead to approximately the same

values in model observables and therefore also to the same objective function values during opti-

mization. In addition, uncertainty can result from the experimental data, as every observation is

noisy due to measurement errors. Thus, not every model parameter might be uniquely identifiable

while performing parameter inference. To be aware which parameters are unidentifiable and which

model states are unobservable from the experimental data it is necessary to perform an identifi-

ability and uncertainty analysis. An unidentifiable model can lead to wrong parameter estimates

and subsequently to meaningless or misleading predictions [Villaverde and Banga, 2017] even in
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an ideal scenario of nearly noise-free experimental data with many observations. Thus, the model

should always be designed in such a way that its parameters θ ∈ P can in principle be inferred

from the experimental data.

To tell apart uncertainties resulting from model structure and the ones resulting from both, the

model specification and experimental data, one distinguishes between structural and practical pa-

rameter identifiability.

2.2.3.1 Structural identifiability

A model is structurally identifiable if it is possible to determine parameter values from measure-

ments of the model output [Villaverde et al., 2016]. Structural identifiability analysis assumes ideal

data (noise-free with a large sample size) and can be performed while specifying the model before

the experiment is conducted and is therefore also termed a priori identifiability analysis. It can

even be used to design the experiment [Walter, 1987] as it is independent of the exact parameter

values but rather related to the model structure and type of input [Chis et al., 2011].

Definition 2.26. A parameter θ is structurally

(i) uniquely (globally) identifiable from a set of observables yM = h(x, θ, k) if it can be eval-

uated uniquely from the equations for yM plus any other information about θi, such that

for any θ∗ ∈ P it holds

M(θ) =M(θ∗)⇒ θ = θ∗.

(ii) locally identifiable from yM if it has a countable number n ≥ 1 of solutions and non-

uniquely identifiable if n > 1. Local identifiability is fulfilled if for almost any θ∗ ∈ P,

there exists a neighbourhood V(θ) of θ such that

θ∗ ∈ V(θ) and M(θ) =M(θ∗)⇒ θ = θ∗.

(iii) unidentifiable from yM if it has an infinite number of solutions, that is for almost any

θ∗ ∈ P, there exists no neighbourhood V(θ) of θ such that

θ∗ ∈ V(θ) and M(θ) =M(θ∗)⇒ θ = θ∗.

[Chis et al., 2011, Davidescu and Jørgensen, 2008, Walter, 1987, Walter and Pronzato,

1997]

If all model parameters θi, i = 1, ..., nnθ are identifiable, the model M(θ) is said to be identifiable.

Sometimes only combinations of subsets of the parameter vector θ (i.e. the product of two param-

eters) are identifiable but not its single components [Walter, 1987].

To analyse a models’ structural identifiability various methods have been suggested in previous
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years, i.e. power series expansion of the solution [Pohjanpalo, 1978] or differential algebra ap-

proaches [Ljung and Glad, 1994], which lead to global results but are often only applicable to linear

or simple non-linear systems [Chis et al., 2011].

Local identifiability approaches are the Taylor series expansion of the sensitivity matrix [Srinath

and Gunawan, 2010, Yao et al., 2003] and the differential geometry approach that uses the gener-

ating series expansion of the observables based on Lie derivatives [Brendel et al., 2006, Villaverde

and Banga, 2017, Walter and Pronzato, 1996].

Others [Brendel et al., 2006, Craciun and Pantea, 2008, Davidescu and Jørgensen, 2008] investi-

gated structural identifiability analysis of dynamic reaction networks. Craciun and Pantea [2008]

and Brendel, Bonvin, and Marquardt [2006] defined a reaction rate constant kr as identifiable if the

respective column of the stoichiometric matrix ν(·,r) is linear independent of the remaining columns

of the stoichiometric matrix. If the reaction rate constant however depends on several parameters

θi, one still cannot conclude that all θi are identifiable. Davidescu and Jørgensen [2008] combine

this approach with the Lie derivative approach, which allows the structural identifiability analysis

of all parameters that define the reaction rate. In general, the algebraic manipulations involved

in identifiability assessment can become tedious or even impossible, especially for larger systems

[Chis et al., 2011].

To assess the structural identifiability of cell differentiation processes, we focus on a method intro-

duced by Villaverde and Banga [2017] which is a differential geometry approach and can be used for

the local identifiability analysis of state space ODE models by considering structural identifiability

as generalization of observability. A model is observable if it is possible to reconstruct the states

x of the model from its observables yM = h(x,θ,k). In this case two different states would lead

to two different outputs and thus observability can be assessed by analysing if the mapping from

yM = h(x,θ,k) to x is locally unique. This is done by determining the rank of the generalized

observability-identifiability matrix O(x̃) which is defined based on Lie derivatives and given by

O(x̃) =



∂
∂x̃h(x̃)

∂
∂x̃(Lfh(x̃))
∂
∂x̃(L2

fh(x̃))
...

∂
∂x̃(Lns+nθ−1

f h(x̃))


(2.23)

where x̃ = [x,θ], the Lie derivatives are defined by

Lfh(x) = ∂h(x)
∂(x) f(x, u) +

∑∞
j=0

∂h(x)

∂u(j+1)

and

Lifh(x) =
∂Li−1

f h(x)

∂(x) f(x, u) +
∑∞

j=0

∂Li−1
f h(x)

∂u(j) u(j+1), (2.24)

and u(j) denotes the jth derivative of the input [Villaverde and Banga, 2017]. The Lie derivatives

thereby evaluate the change of the observables h(x) along the model dynamics f(x, u). The model
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contains unidentifiable parameters or unobservable states if

rank(O(x̃)) < ns + nθ.

Which parameters are non-identifiable and which states are unobservable can be identified by

eliminating the jth column of the generalized observability-identifiability matrix and observing the

ranks of the full O(x̃) and the reduced matrix O(x̃)·,−j . The j-th parameter is non-identifiable if

rank(O(x̃))− rank(O(x̃)·,−j) = 1.

2.2.3.2 Practical identifiability

If a parameter cannot be uniquely identified from the available experimental data, it is said to be

practically unidentifiable [Gábor et al., 2017]. This unidentifiability can occur due to poor data

quality, low sample size, lack of influence of the observables or an interdependence among parame-

ters. Practical identifiability, which is also termed a posteriori identifiability, describes a parameter

estimation accuracy and precision problem under the assumption that all model parameters are

structurally identifiable [Walter, 1987]. One aims to quantify how accurate the parameter estimates

are, given a certain model and data set.

Figure 2.2: Profile likelihood (PL) for an identifiable (left) and an unidentifiable (right) parameter
compared to the threshold values defining the 90%, 95% and 99% confidence interval assuming a
χ2

1 distribution.

By solving the optimization problem with the frequentist’s approach, i.e. by using maximum

likelihood estimation (see section 2.2.1), one accounts for data uncertainty during optimization by

specifying a noise model. Thus, by re-optimizing the likelihood function at θML
j for all remaining

parameter components θi, i 6= j, the profile likelihood (PL) and parameter confidence intervals can

be computed, as the following definition states.

Definition 2.27. The PL of parameter component j is defined by

PL(θj) = max
θj 6=i

LD(θ).
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The PL-based confidence interval of parameter component j at confidence level α is then given by

CIj,α =

{
θj

∣∣∣∣∣ PL(θj)

LD(θ̂
ML

)
> exp(−∆α

2
)

}
, (2.25)

where the threshold ∆α is given by the α-quantiles of the inverse cumulative density function of a

χ2
1 distribution for a sufficiently large number of observations [Kreutz et al., 2013].

In case the negative PL exceeds the threshold in at least one direction, it is practically non-

identifiable [Kreutz et al., 2013]. Figure 2.2 illustrates the negative log-transformed PL function

of an identifiable (left) and an unindentifiable (right) parameter and the respective 90%, 95% and

99% confidence intervals assuming a χ2
1 distribution. For the unidentifiable parameter (bottom)

the lower bound of the confidence intervals are smaller than the lower parameter bound.

Several other approaches [Gábor et al., 2017, Gunawan et al., 2006, Yao et al., 2003, Zak, 2003]

use the properties of the sensitivity matrix which can be derived from the output function of the

model M(θ) and is defined as follows.

Definition 2.28. The sensitivities s of the output vector (y1, ..., yno) is given by the first order

derivative of the model output with respect to the parameters and defined by

slj =
∂yj(t)

∂θl
.

The sensitivities reflect how much the output will be affected by changes in the respective parameter

value and reveal which group of parameters will cause a proportional change to the output [Srinath

and Gunawan, 2010].

A particular practical identifiability assessment approach, which is based on sensitivity analysis

was suggested by Gábor, Villaverde, and Banga [2017]. While calculating the root mean squared

sensitivity for each parameter and comparing it to a threshold, parameters are considered to be

either influential or non-influential to the output.

Let

Q(θ) =

Ne∑
i=1

Ni,y∑
j=1

Ni,j,t∑
k=1

wikj(y
M
ijk(θ, tk)− yDijk)2

be the cost function used while optimizing parameters θ, where Ne is the number of experiments,

Ni,y the number of observed quantities in the i-th experiment, Ni,j,t the number of measured time

points of the j-th observed quantity in the i-th experiment and wijk denote the weights. The scaled

sensitivities for an output j and a parameter l are defined by s̃lj =
√
wj

∂yj
∂θl

. The root mean squared

sensitivity is then defined as

s̃msqri =

√√√√ 1

ND

ND∑
j=1

s̃2
lj , l = 1, ..., nθ, ND =

Ne∑
i=1

Ni,y∑
j=1

Ni,j,t∑
k=1

1.

Their method also investigates the interplay among influential parameters by calculating a collinear-
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ity index which is defined by

CIK =
1

min||α||=1||s̃Kα||
.

A value of 20 means that 95% of the variation in the model output caused by changing one of

the parameter in the subset can be compensated by changing the other parameter in the set. The

collinearity of parametric sensitivities can result in an unidentifiable model. Subsequently they

define the largest identifiable set which is the subset of parameters whose elements are influential

and whose sensitivity vectors are not collinear (CIK < 20).

The sensitivity analysis outcome does not only depend on parameters and model structure, but

also the choice of initial conditions and external stimuli [Gábor et al., 2017, Villaverde et al., 2018].

Poor experimental data can corrupt parameter identifiability.

2.3 Model selection

While studying biological systems with mathematical models, one aims to find a model that details

the most important biological properties of the process, such that it can explain the experimental

data well enough, but that is also reduced to the key principles, such that it leads to a good

prediction [Klipp, 2010]. Based on the considered process, one has to decide which prior knowledge

to incorporate, which model structure and level of complexity to consider, and which parameter

boundaries and constraints to assume while performing parameter inference. A model with low

complexity will obtain a low variance but a high bias and under-fit the data as it can describe the

data precisely but not accurately. Any additional model parameter will result in a more complex

model that will be able to more accurately describe the data and thereby decrease the bias, but will

also increase the variance and thereby the chance to over-fit the data. This should be prevented as

model predictions could be misleading and wrong. In general, one aims to find the model complexity

that minimizes the variance and the bias and thereby balance goodness of fit and parsimony, which

is known as bias-variance trade-off (see Figure 2.3).

In order to find the necessary model complexity to explain the data well enough but at the same

time avoid over-fitting, one can consider several models with varying complexities and perform

model selection [Guthery, 2008]. Applying model selection can also be useful to test and rank

several pre-existing biological theories in order to investigate which one is most likely given the

data set. In order to define the set of competing models one could alternatively (or additionally)

use a computational strategy such as step wise model selection procedures (see section 2.3.1).

This section introduces various possibilities to assess model performance on the given data set

and thereby computationally compare and rank competing models (see sections 2.3.2 and 2.3.4).

The result will of course depend on the predefined set of candidate models, which are abstract

descriptions of the underlying process. No matter how complex a model is, it will never be an

exact copy of the underlying biological process [Klipp, 2010]. Thus, model selection will in general

not lead to identifying the ’true’ model [Burnham and Anderson, 2004], but dependent on the set

of candidate models it could help to identify a (set of) model(s) which provide(s) a sufficiently

good approximation of the reality [Burnham and Anderson, 2003] and can be useful to answer the
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respective biological questions (see section 2.3.3). Subsequent model validation, i.e. comparison to

data not used for the parameter inference and model selection, is always recommended.

model complexity (number of parameters)

er
ro

r

bias2

variance

total error

underfitting               overfitting

Figure 2.3: Bias-variance trade-off showing variance (blue line) increases and bias2 (green line)
declines with increasing model complexity resulting in a total error (black line) which is minimal
for medium model complexity. Model is underfitted for too few parameters and overfitted for too
many parameters.

2.3.1 Stepwise model selection procedures

Step wise model selection procedures are a useful tool to define the set of plausible models and

are either implemented as forward or backward parameter selection procedures. Forward selection

begins with a very simple model with low complexity, which is termed null model, and subsequently

adds the parameter(s) that improve(s) the model fit the most. Backward selection begins with the

most complex model, which is termed the full model, and step wise eliminates the parameter(s)

with the lowest impact on the model performance.

The step wise procedure can be computationally demanding if one tests all possible combinations

of the parameter which is included or removed in each step. The procedure of identifying the order

in which parameters should be added or removed from the model can be optimized by applying reg-

ularization techniques such as ridge, lasso or elastic net, which have first been introduced for linear

regression problems [Hoerl and Kennard, 1970, Tibshirani, 1996, Zou and Hastie, 2005]. The idea is

to add a parameter dependent penalization term which is proportional to some penalty strength λ

to the objective function (see equation 2.15) while solving the least squares optimization problem,

such that for a given penalty strength the penalization term is smaller the closer the parameter

values are to zero. By choosing different values of λ one can force more or less parameters to be

close to zero. In forward selection, λ is reduced successively to force less parameters to zero and in

backward selection λ is increased successively to force more parameters to zero.

In maximum likelihood estimation, one can adopt this idea and integrate various penalty terms

or even a combination of penalty terms [Chamroukhi and Huynh, 2018] while defining a penalized

log-likelihood function.

Definition 2.29. Let `D(θ) be the log-likelihood function which one aims to maximize in order to
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solve the optimization problem

θ̂
ML

= arg max
θ

subject to M

`D(θ).

The penalized log-likelihood function is then defined as

˜̀
D(θ) =

nt∑
k=1

ny∑
j=1

logP (yDj (tk)|yMj (tk), ω)− p(λ, θi), (2.26)

where p(λ, θi) is the penalty function (see table 2.4) and T is the index set containing all indices of

parameters which could be excluded or included in the model.

Regularization technique Penalty function p(λ, θi) Properties

Lasso/ λ ·
∑

i∈T |θi| Promotes sparsity of coefficients
L1 regularization (forces θi to zero)

Ridge/ λ ·
∑

i∈T |θi|2 Promotes smaller coefficients
L2 regularization (supports finding of reasonable θi)

Elastic net/ λ1 ·
∑

i∈T |θi| Combines properties of
combined L1 and L1 and L2 regularization
L2 regularization +λ2 ·

∑
i∈T |θi|2

Table 2.4: Regularization techniques which can be used for variable selection in MLE.
It can be shown that L1 regularization can be probabilistically interpreted as optimizing the like-

lihood function with a Laplacian prior [Park and Casella, 2008]. However, to compare the set of

models which one obtained by regularized MLE, one can either use scores (introduced in section

2.3.2), or conduct likelihood ratio tests (see section 2.3.4).

2.3.2 Model selection scores

A score which is nowadays often used in model selection has been derived by Akaike [1973] in the

1970s. The Akaike information criterion (AIC) is defined as follows:

Definition 2.30. Let nθ be the number of parameters of model M(θ). The AIC of M(θ) is then

given by

AIC := −2`D( ˆθML) + 2nθ (2.27)

Minimization of the AIC value aims to optimize the bias-variance trade off, as the first term

−2`D( ˆθML) potentially decreases the more parameters are used, while the second term 2nθ increases

with additional parameters.

For a large number of parameters in relation to a small sample size, a corrected version of the AIC

[Akaike, 1973] has been introduced.



38 CHAPTER 2. METHODS

Definition 2.31. Let nθ be the number of parameters of model M(θ) and nobs be the number of

observations used for parameter inference. The corrected AIC of M(θ) is then given by

AICc := −2`D(θ̂
ML

) + 2nθ +
2nθ(nθ + 1)

nobs − nθ − 1
. (2.28)

Note that for increasing nobs AICc converges to AIC. As a rule of thumb AICc should be used

instead of AIC when the ratio nobs
nθ
≥ 40 [Burnham and Anderson, 2003]. The AIC score definitions

correspond to the frequentist probability interpretation which defines probability as the limit of

the relative frequency of a particular event.

An alternative interpretation is the Bayesian or subjective probability, which also considers degrees

of belief by including prior knowledge. From a Bayesian perspective, an exact selection method

would be to perform model selection based on Bayes factors [Burnham and Anderson, 2004, Lewis

and Raftery, 1997]. This however requires sampling from the posterior distribution of the respective

model, which is depending on the parameter inference approach not always available (see sections

2.2.2 and 2.2.1). An approximation of Bayes factors which does not require knowledge of the

posterior distribution is given by the Bayesian information criterion (BIC).

Definition 2.32. Let nθ describe the number of model parameters and nobs the number of obser-

vations used for model fitting. The BIC [Bhat and Kumar, 2010, Schwarz, 1978] is then defined

as

BIC := −2`D(θ̂
ML

) + nθ · log(nobs). (2.29)

Calculation of these scores provides a ranking of all considered models Sj , j ∈ J , in which the best

performing model is the one with the lowest score

Mrank 1 =Mi, if Si = min(Sj)
j∈J

. (2.30)

To derive the set of plausible and implausible models usually the differences

∆S
i := Si − Smin, (2.31)

with S being the AIC, AICc or BIC score and i the index of the respective model, are calculated

and model i can be rejected if ∆S
i > 10 [Burnham and Anderson, 2003].

As an alternative to the above introduced scores, one could perform Bayesian model selection

using Bayes factors. These require the evaluation of marginal likelihoods of the competing models,

which can for instance be realized using population annealing [Murakami, 2014], thermodynamic

integration [Calderhead and Girolami, 2009, Friel and Pettitt, 2008, Hug et al., 2016, Lartillot and

Philippe, 2006], or an adaptive scheduling scheme using Simpson’s rule [Hug et al., 2015].
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2.3.3 Model averaging

Structurally diverse models can lead to very similar values in model observables (see section 2.2.3).

With model selection scores (introduced in 2.3.2) it is possible to rank these models, but sometimes

one does not find a single best model but rather a set of plausible almost equally well performing

models. Model averaging is a technique that allows to incorporate the inference result of the whole

set of candidate models instead of identifying a single best performing model based on a score [Link

and Barker, 2006, Posada and Buckley, 2004]. The idea is to calculate a weight based on the score

for each model and to use this to calculate a weighted average of parameter values resulting from

all considered nm models.

As the likelihood of modelMk(θ) given the data `D(θ̂) is proportional to exp(−1
2∆AIC

k ) [Burnham

and Anderson, 2003], the Akaike weights are defined as

wAIC
k =

exp(−1
2∆AIC

k )∑nm
j exp(−1

2∆AIC
j )

(2.32)

=
exp(−1

2AICk)∑nm
j exp(−1

2AICj)
. (2.33)

An approximation of the posterior model probability assuming identical prior probabilities for all

models leads to the analogous formulation for BIC weigths [Link and Barker, 2006]:

P (Mk|D) ≈
exp(−1

2BICk)∑
j exp(−1

2BICj)
=: wBIC

k . (2.34)

The AIC or BIC weights wk can be used to calculate the weighted mean of parameters:

θ̂
ML

w =

nm∑
k=1

θ̂
ML

k · wk, (2.35)

and the standard error of the weighted mean of parameters [Cochran, 1977, Gatz and Smith, 1995]:

SE
θ̂
ML
w

=
nm

(nm − 1)(
∑nm

k=1wk)

(
nm∑
k=1

(θML
k · wk − w · θML

w )2

− 2θ̂
ML

w

nm∑
k=1

(wk − w)(θ̂
ML

k · wk − w · θML
w )

+θ̂
ML

w

2 nm∑
k=1

(wk − w)2

)
.

(2.36)
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2.3.4 Model selection with statistical tests

For the comparison of two nested models M1 and M2 the likelihood ratio test (LRT) is widely

used [Klipp, 2010]. The test statistic of the LRT is given by

T (M1,M2) = 2 log

LM2
D (θ̂)

ML

LM1
D (θ)

 = 2(`M2
D (θ)− `M1

D (θ)). (2.37)

The null hypothesis H0 : ”Model M1 (which is nested within model M2) is true.” can be rejected

if the test statistic exceeds the 95% quantile of the χ2 distribution with (nM2
θ − nM1

θ ) degrees of

freedom [Lewis et al., 2010], i.e. if

T (M1,M2) > qχ
2

0.95, (n
M2
θ −nM1

θ )
.

Note that the difference in AIC, corrected AIC and BIC values of two modelsM1 andM2 is equal

to

∆AIC
M1,M2

= AICM1 −AICM2 = T (M1,M2)− 2(nM2
θ − nM1

θ )

∆AICc
M1,M2

= T (M1,M2)− 2

(
nM2
θ +

nM2
θ (nM2

θ + 1)

nobs − nM2
θ − 1

− nM1
θ −

nM1
θ (nM1

θ + 1)

nobs − nM1
θ − 1

)
∆BIC
M1,M2

= T (M1,M2)− log(nobs)(n
M2
θ − nM1

θ ).

(2.38)

By applying a threshold of 10 to the score difference in order to rejectM1, T (M1,M2) would have

to exceed critical values of

vAIC
crit = 10 + 2(nM2

θ − nM1
θ ),

vAICc
crit = 10 + 2

(
nM2
θ +

nM2
θ (nM2

θ + 1)

nobs − nM2
θ − 1

− nM1
θ −

nM1
θ (nM1

θ + 1)

nobs − nM1
θ − 1

)
vBIC
crit = 10 + log(nobs)(n

M2
θ − nM1

θ ).

(2.39)

Figure 2.4 shows critical values of the three model selection criteria to reject the null hypothesis

H0 for increasing difference in the number of parameters nM2
θ −nM1

θ and varying significance levels

α in case of LRT and varying number of observations nobs in case of BIC. According to the critical

values, BIC is more conservative compared to AIC and LRT for the recommended threshold of a

score difference equal to 10. Only the corrected AIC score can be a more conservative criterion

than the BIC, but only if the ratio
n
M1
θ
nobs

is large enough (such that vBIC
crit < vAICc

crit is fulfilled). The

larger the data set, the closer vAICc
crit will be to vAIC

crit . LRT is the least conservative method, even

for a significance level equal to 0.01.

AIC and BIC can be easily used to compare a set of models which are not nested. The LRT however

would require some adaptation to be applicable to compare non-nested models, as the distribution

of the test statistic under the null hypothesis is not χ2 distributed in this case. A possible solution
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to this would be to simulate the distribution of the test statistic under H0 and calculate the quantile

of the simulated distribution to decide if the null hypothesis can be rejected, as described in detail

by [Lewis et al., 2010]. As it is also not clear which model one should specify as the null model,

it is recommended to conduct two tests to investigate if none, both or one of the models can be

rejected [Williams, 1970]. For the comparison of a large set of models, this simulation based LRT

approach can however get computationally very demanding.

Figure 2.4: Critical values of different model selection criteria (LRT, AIC, corrected AIC, and BIC)
for increasing difference in the number of parameters in models M1 and M2 .



3 Application I: Modeling adult neurogene-

sis to infer age-related changes and division

modes

A first example for a computational cell division and differentiation model is explained in detail

in this chapter. The content of this chapter has been published in Cell Reports [Bast et al., 2018]

and was restructured and slightly modified for my dissertation. It stems from a collaborative

project with the biologists Dr. Filippo Calzolari and Prof. Jovica Ninkovic, and the computational

biologists Dr. Carsten Marr, Dr. Michael Strasser, Prof. Jan Hasenauer and Prof. Fabian Theis.

The data result from experiments that have been performed by Filippo Calzolari. My contribution

was

(i) literature search about adult neurogeneisis to define biologically meaningful model struc-

ture, assumptions, parameter boundaries and constraints, and

(ii) the computational analysis, including implementation of model specification, parameter

inference, model selection and prediction.

In this chapter I will derive stochastic models describing the mechanisms of adult neurogenesis on

the macroscopic cellular level (see section 3.2) and use them to infer age-reated changes in model

parameters in a systematic way and by using experimental data. As the respective experiment (see

section 3.1) was performed with young and aged adult mice, I will model both groups separately

and subsequently perform parameter inference (see section 3.3) to determine the difference in model

parameters. In order to identify the most likely division mode of proliferating cell states, I will

compare a set of 64 competing models for each group with the Bayesian Information Criterion (see

section 3.5.2). The results will then be validated with dependent and independent experimental

data (see section 3.5), which allows us to then use model simulations as predictions (see section

3.6) to draw further conclusions.

The code accompanying the analysis described in this chapter is publicly available at

https://github.com/marrlab/NeurogenesisAnalysis.

3.1 Biological background and experimental data

Neurogenesis describes the process of generating neurons from neural stem cells via some progenitor

cell types. In the mammalian brain this process not only occurs during development, but continues

throughout life in certain regions [Kriegstein and Alvarez-Buylla, 2009]. In mice, one of these brain

regions that harbors adult neural stem cells is the subependymal zone (SEZ) [Ninkovic and Götz,

2013]. Upon differentiation, the cells migrate along the rostal migatory stream till they finally

arrive at the olfactory bulb where they differentiate to neurons [Ninkovic and Götz, 2013] or die
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[Platel et al., 2010]. The neural stem cells located at the SEZ have only a limited capacity to

self-renew and generate declining numbers of olfactory bulb neurons with age [Bouab et al., 2011].

It was experimentally proven that there exists a pool of stem cells which does not actively divide

[Daynac et al., 2016, Shook et al., 2012]. Which alterations with age result in this declining but

retaining neurogenesis has not been identified so far.

To understand the process of adult neurogenesis in this particular region, an in vivo lineage tracing

experiment was performed in which adult neural stem cells of the SEZ were clonally labelled using

confetti reporters in young (3 months old) and middle-aged (1 year old) mice. Thus cells observed

with the same color label are assumed to belong to the same clone, i.e. result from the same

stem cell. To ensure that the probability to label more than one stem cell is negligibly small,

the dosage of the label-inducing drug tamoxifen was estimated prior to the experiment [Calzolari

et al., 2015]. Per mouse and brain hemisphere up to three clones could be observed. The animals

were sacrificed at 7, 21, 35 and 56 days post-labelling, their brain hemispheres were cut at a

thickness of 80µm at the microtome. The resulting sections were stained and analysed with a

confocal laser scanning microscope. Based on the cell morphology, the location of the cells and

the immunohisto fluorescent staining, the respective cell type (neural stem cell, transitamplifying

progenitor, neuroblast or neuron) was assigned to each cell, see Figure 3.1.
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Figure 3.1: Progeny of a clone distributed across three consecutive SEZ sections in a 1-year old
brain (left). Progeny classification into four cell types: NSC, transitamplifying progenitor (TAP),
neuroblast (NB) and neuron (N) via marker expression (right). Dashed curves indicate borders
between SEZ and lateral ventricle, dashed box highlights the inset. Scale bars correspond to 20µm.
Yellow arrowheads point to GFAP signal in the soma and radial process. Graphic is taken from
Bast et al. [2018].

In detail, GFAP positive cells are classified as NSCs and Dcx positive cells as NBs. TAPs and

Ns were defined by a combination of lack of marker expression, localization and morphology. The

proliferation marker Ki67 is shown to confirm the TAP identity of SEZ-localized Dcx-negative cells,

but was not regularly used to identify cells.
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The experimental data contain the number of cells per cell type observed for each clone, the number

of days post-labelling and the age of the mice, see Figure 3.2 and table 3.1. Using this data set, the

goal is to infer parameters of a model describing the molecular mechanisms of adult neurogenesis

in order to identify the changes between the two groups (young and aged mice).
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217 71 49 48 36
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111 77 63 61 52
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Figure 3.2: Experimental design showing the clonal progeny of a single labelled NSC is observed at
one of four different time points 7, 21, 35 and 56 days post labelling (dpl) in young and two different
time points 21 and 56 dpl in aged mice. The resulting data is shown as pie charts indicating the
number and cell type (TAP, NB and N) composition of clones observed at each time point. Graphic
is taken from Bast et al. [2018].
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Time in days post labelling (dpl)
young aged

TAP NB N TAP NB N

7

0 11 0
0 19 0
6 46 0
2 0 0
0 0 18
0 31 0
2 0 0
5 0 0
3 0 4
0 0 9

21

15 0 0 5 17 9
0 49 0 0 0 13
6 0 0 5 42 0
3 124 14 13 0 0
2 0 0 21 9 0
0 26 0 0 74 5
0 23 21 19 10 0
0 3 3 18 90 2
0 0 3 20 0 0
13 24 18 0 0 68
0 0 16
0 0 5
4 0 9

35

0 42 15
2 0 0
0 19 0
0 8 0
0 101 3
4 58 0
0 37 56
0 1 0
4 0 0
2 0 0

56

0 0 26 1 52 10
0 25 46 0 0 11
9 27 0 5 0 0
2 46 169 0 0 111
0 0 24 0 0 61
32 2 15 0 49 3
0 0 9 0 19 0
0 0 10 0 0 4
5 0 0 10 0 0
0 0 48 10 67 0
0 0 6 6 6 0
0 0 3

Table 3.1: Number of counted TAPs, NBs and Ns, in young and aged adult mice at different days
post labelling in clonal lineage tracing experiments.
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3.2 Specification of a set of candidate models

The experimental observations describe cell type and number of the progeny, which is assumed to

result from a single labelled neural stem cell. They exhibit a strong heterogeneity in clone size and

clonal composition (see Figure 3.2). This suggests that the underlying process is stochastic and

cannot be described fully with a deterministic model. As it has been shown that tissue homoeostasis

on the cellular level can be accurately described by stochastic models [Gardiner, 2009, Klein and

Simons, 2011], the underlying dynamics of adult neurogenesis are modeled as a Markov jump

process [Fröhlich et al., 2016, Resat et al., 2009] using the CME (see section 2.1.2.2). As solving

the CME is due to its infinite dimension in general not possible [Resat et al., 2009], the link between

CME and moment equations [Sotiropoulos and Kaznessis, 2011] is used and the first and second

order moment equations [Fröhlich et al., 2016, Resat et al., 2009] are solved instead.

Model scheme

According to experimental observations, the process of adult neurogenesis can be described as

follows: starting from the pool of dormant stem cells (dS), which is depleted over time, stem

cells can then be activated and inactivated by switching between the quiescent (qS) and active

(aS) state [Basak et al., 2012, Costa et al., 2011, Daynac et al., 2016, Shook et al., 2012, Urbán

et al., 2016]. Active stem cells (aS), transitamplifying progenitors (TAPs) and neuroblasts of type

I (NB I) proliferate [Ponti et al., 2013]. In contrast, Neuroblasts of type II (NB II) do not divide,

but migrate along the SEZ to the olfactory bulb [Petreanu and Alvarez-Buylla, 2002] where they

eventually become neuroblasts of type III, that are either depleted via cell death, or become neurons

(N) [Platel et al., 2010]. All possible transitions between the cell states are schematically depicted

in Figure 3.3.
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Figure 3.3: Model scheme for adult neurogenesis describing stem cell activation and inactivation,
proliferation and differentiation of stem and progenitor cells, migration of type II neuroblasts, and
neuroblast cell death. Graphic is taken from Bast et al. [2018].

For the three proliferating cell states (aS, TAP, NB I) I introduced four different division modes (see

Figure 3.4): asymmetric (A), symmetric (S), constrained (C), where the proportion of symmetric

and asymmetric divisions is regulated by a single parameter pd, and unconstrained (U), where

any combination of asymmetric division, self-renewal and symmetric differentiation probabilities is
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allowed. An asymmetric division is defined as a cell division followed by the transition of only one

daughter cell to the next possible cell type in the model before it possibly divides again (see section

1.1). The other daughter cell initially persists in the “parental” cell state, to later divide again or

undergo transitions as allowed by the model (e.g. in the case of an aS, to return to a quiescent qS

state).
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Figure 3.4: Division modes for dividing cell types: Asymmetric divisions (A) give rise to a daughter
cell of the same type and a daughter cell of the subsequent type, symmetric divisions (S) produce
two daughters of the same cell type, constrained divisions (C) assume independent differentiation
between sister cells, while the unconstrained division (U) is the most flexible mode. The number
of model parameters increases from left to right with equal model complexity for modes S and C.
Graphic is taken from Bast et al. [2018].

Yo
un

g
Ag

ed

-6
-4
-2
0

lo
g(

r a
ct

2
)[h

-1
]

-6
-4
-2
0

lo
g(

r in
ac

t)
[h

-1
]

H

Yo
un

g
Ag

ed

ract2
rinact

1
0.8
0.6
0.4
0.2

0
1

0
1

0

G

W
ei

gh
te

d 
av

er
ag

e 
di

vi
si

on
 p

ro
ba

bi
lit

ie
s

Sy
m

m
et

ric
 s

el
f r

en
ew

al
Sy

m
m

et
ric

 d
iff

er
en

tia
tio

n
As

ym
m

et
ric

 d
iv

is
io

n

    aS     TAP   NB I

Young
Aged

F

BIC rank

BI
C

 w
ei

gh
t 0.2

0.1

0 0      20      40     60

D
iff

er
en

ce
 in

 B
IC

 
to

 b
es

t m
od

el

E
 

30

20

10

0

Young
Aged

BIC rank
0      20      40     60

BIC 
rank

1
2
3
4
5
6
7
8
9
10

U

U

C

U

U

S

U C

C

S

S

A

A

A

A

A

U

U

C

C

A

S

C

C

CC

SS

C

C

C

S

C

S

S

C

C

C

U

S C

C C

CC

U

CU

C

S

CS

C

S

C

S

S

S

C

S

D

Young   Aged

ΔBIC

0
0.4
1.2
1.2
1.5
1.6
2.2
2.4
3.1
3.2

ΔBIC

0
0.4
0.8
1.2
1.9
2.6
2.7
2.9
3.3
3.4

A A A
S
C
U

S S
C C
U U

CB

1 parameter

rdiv  (1-pd)rdiv  pdrdiv  psrdiv  pdrdiv  (1-ps-pd)rdiv
(1-pd)2rdiv pd

2rdiv 2pd(1-pd)rdiv

2 parameters 2 parameters 3 parameters

Asymmetric Symmetric Constrained Unconstrained

 Proliferation
 Differentiation
 Death
 (In)activation
 

A

dS qS aS TAP NB I NB II NNB III

Figure 3.5: Combinations of the four division modes for dividing aS, TAP, and NB I lead to 64
different models. Graphic is taken from Bast et al. [2018].

It should be noted that while the model directly couples certain cell state transitions to cell division,

some of these cell fate choices may in reality also happen some time after the cell has divided. My

approach allows exploration of a very diverse set of proliferative behaviours. Combining the four

different division modes across three proliferative compartments results in a set of 43 = 64 candidate

models (see Figure 3.5) with a varying number of parameters and complexity. According to the

model scheme (see Figure 3.3), every cell state is modelled as a compartment and according to the

transitions between the compartments, all occurring reactions and the respective Chemical Master

Equation (see section 2.1.2.2) can be derived.

Cell states and model parameters

Let S = (dS, qS, aS, T,B1, B2, B3, N) ∈ S denote the vector of cell state variables (dormant,

quiescent, active neural stem cells, transitamplifying progenitors, neuroblasts type I, neuroblasts



48 CHAPTER 3. APPLICATION I: MODELING ADULT NEUROGENESIS

type II, neuroblasts type III and neurons) and

θ =



ract1

ract2

rinact

rdiv

pS→SS

pS→TT

pT→TT

pT→BB

pB1

pB1→B1B1

pB1→B2B2

rmig

pN

pdS0

pqS0


the vector of model parameters, consisting of (in)activation (ract1, ract2, rinact), division (rdiv) and

neuroblast migration (rmig) rates, and probabilities of self-renewal

(pS→SS , pT→TT , pB1→B1B1), of differentiation (pS→TT , pT→BB, pB1→B2B2), of a TAP differentiating

to neuroblast type I (pB1), of a neuroblast type III to become a neuron (pN ) and of a dormant and

quiescent stem cell getting initially labelled (pdS0, pqS0). Note that the remaining probabilities are

not part of the parameter vector as they can be defined as complementary probabilities

pS→ST = 1− pS→SS − pS→TT ,

pT→TB = 1− pT→TT − pT→BB,

pB1→B1B2 = 1− pB1→B1B1 − pB1→B2B2 ,

paS0 = 1− pdS0 − pqS0, and

pB2 = 1− pB1 ,

pB3 = 1− pN ,

(3.1)

where pB2 is the probability of a TAP to differentiate to a neuroblast type II and pB3 the probability

of a neuroblast type III to die.

Reactions

The reactions of a particular model depend on the division mode of the proliferating cell states (see

Figure 3.4). For the most general model, in which all proliferating cell states divide according to
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the unconstrained (U) division mode, the nr = 17 reactions are:

R1 : dS
ract1−−−→ qS

R2 : qS
ract2−−−→ aS

R3 : aS
rinact−−−→ qS

R4 : aS
rdiv ·pS→SS−−−−−−−→ 2 aS

R5 : aS
rdiv ·pS→TT−−−−−−−→ 2 T

R6 : aS
rdiv ·(1−pS→SS−pS→TT )−−−−−−−−−−−−−−−−→ T + aS

R7 : T
rdiv ·pT→TT−−−−−−−→ 2 T

R8 : T
rdiv ·pT→BB ·p2

B1−−−−−−−−−−→ 2 B1

R9 : T
rdiv ·pT→BB ·(1−pB1

)2

−−−−−−−−−−−−−−→ 2 B2

R10 : T
rdiv ·pT→BB ·2·pB1

(1−pB1
)

−−−−−−−−−−−−−−−−−→ B1 + B2 (3.2)

R11 : T
rdiv ·(1−pT→TT−pT→BB)·pB1−−−−−−−−−−−−−−−−−−−→ B1 + T

R12 : T
rdiv ·(1−pT→TT−pT→BB)·(1−pB1

)
−−−−−−−−−−−−−−−−−−−−−−→ B2 + T

R13 : B1

rdiv ·pB1→B1B1−−−−−−−−−→ 2 B1

R14 : B1

rdiv ·pB1→B2B2−−−−−−−−−→ 2 B2

R15 : B1

rdiv ·(1−pB1→B1B1
−pB1→B2B2

)
−−−−−−−−−−−−−−−−−−−−→ B1 + B2

R16 : B2

rmig−−−→ B3

R17 : B3
1000pN−−−−→ N

R18 : B3
1000pB3−−−−−→ ∅ ·

Chemical master equation (CME)

Let P (x|t) be the probability to be in a certain state x, that is to observe a certain number of cells

in states dS, qS, aS, T,B1, B2, B3 and N , at time t. The CME describes the change of P over time

(see section 2.1.2.2). For the reactions of the most general model (see equation 4.1), the CME is
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defined by

dP (x|t)
dt

=

18∑
r=1

a(r)(x− ν(·,r))P (x− ν(·,r)|t)− a(r)(x)P (x|t), (3.3)

where x is the state vector x = (xdS , xqS , xaS , xT , xB1 , xB2 , xB3 , xN ), ν(·,r) indicates the rth column

of the stoichiometric matrix

ν =



R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18

dS −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qS 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

aS 0 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

T 0 0 0 0 2 1 1 −1 −1 −1 0 0 0 0 0 0 0 0

B1 0 0 0 0 0 0 0 2 0 1 1 0 1 −1 0 0 0 0

B2 0 0 0 0 0 0 0 0 2 1 0 1 0 2 1 −1 0 0

B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 0


and a(r) the rth entry of the propensity vector

a(x) =



ract1 · [dS]

ract2 · [qS]

rinact · [aS]

rdiv · pS→SS · [aS]

rdiv · pS→TT · [aS]

rdiv · (1− pS→SS − pS→TT ) · [aS]

rdiv · pT→TT · [T ]

rdiv · pT→BB · p2
B1
· [T ]

rdiv · pT→BB · (1− pB1)2 · [T ]

rdiv · pT→BB · 2 · pB1(1− pB1) · [T ]

rdiv · (1− pT→TT − pT→BB) · pB1 · [T ]

rdiv · (1− pT→TT − pT→BB) · (1− pB1) · [T ]

rdiv · pB1→B1B1 · [B1]

rdiv · pB1→B2B2 · [B1]

rdiv · (1− pB1→B1B1 − pB1→B2B2) · [B1]

rmig · [B2]

1000pN · [B3]

1000pB3 · [B3]



.

Whenever a reaction Rr (for instance R2: activation of qS) occurs, the system jumps from a

particular state x, (x = ([dS] = 0, [qS] = 1, [aS] = 0, [T ] = 0, [NB]1 = 0, [NB2] = 0, [NB3] =

0, [N ] = 0)) to state x + ν(·,r) (in this case to state ([dS] = 0, [qS] = 0, [aS] = 1, [T ] = 0, [NB]1 =

0, [NB]2 = 0, [NB]3 = 0, [N ] = 0)). The CME therefore describes the stochastic evolution of the

state vector x.
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Moment equations

As the solution of the CME is analytically and numerically intractable [Resat et al., 2009], the

first and second order moment equations are calculated instead (see equation 3.5). This is done by

using a definition of mean (µi), variance and covariance (Ci,j) (that is the first and second order

moments) of cell state abundances based on the solution of the CME [Engblom, 2006].

µi(t) := E[Xi(t)] =
∑
xi

xiP (x|t)

Ci,j(t) := Cov[Xi(t), Xj(t)] =
∑
xi,xj

(xi − µi(t))(xj − µj(t))TP (x|t),
(3.4)

with i, j = 1, 2, ..., 7 denoting the cell state index. I calculated the derivatives to get the evolution

equations for the first and second order moment equations:

dµi(t)

dt
=

nr∑
r=1

ν(i,r)

a(r)(µ(t), θ) +
1

2

∑
l1,l2

∂2a(r)(µ(t), θ)

∂xl1∂xl2
Cl1,l2(t)


dCi,j(t)

dt
=

nr∑
r=1

ν(i,r)

∑
l1

∂a(r)(µ(t), θ)

∂xl1
Cl1,j(t) + ν(j,r)

∑
l2

∂a(r)(µ(t), θ)

∂xl2
Ci,l2(t)


+

nr∑
r=1

ν(i,r)ν(j,r)

a(r)(µ(t), θ) +
1

2

∑
l1,l2

∂2a(r)(µ(t), θ)

∂xl1∂xl2
Cl1,l2(t)

 .

(3.5)

For any parameter vector θ, the first and second order moments can be generated by solving the

first and second order moment equations (see equation 3.5). Note that as the reaction propensities

are linear in cell states, the moments are closed and application of moment closure is not required.

Model assumptions

To solve the ODE system, initial conditions have to be specified according to the experimental

setting. In previous work [Calzolari et al., 2015], the probability to label more than one stem

cell was calculated to be 0.0024, 0.0115, 0.0696 and 0.2227 at times t = 3, 7, 21 and 56 days post

labelling for a tamoxifen dose of 10µgg . Accordingly, I assumed for the models that exactly one

neural stem cell is labelled at t0 = 0, which can be dormant, quiescent or active according to

probabilities pdS0, pqS0 and paS0 = 1 − pdS0 − pqS0. Considering the labelling of a certain neural

stem cell state as binomial B1,p·(k), k ∈ 0, 1 distributed, I derived the initial conditions for the ODE

system describing the change in first and second order moments over time (see equation 3.5):

µ1(0) = pdS0 C1,1(0) = pdS0(1− pdS0)

µ2(0) = pqS0 C2,2(0) = pqS0(1− pqS0)

µ3(0) = 1− pdS0 − pqS0 C3,3(0) = (1− pdS0 − pqS0)(pdS0 + pqS0)

µk(0) = 0, k = 4, ..., 8 Ck,k(0) = 0, k = 4, ..., 8

C1,2(0) = C2,1(0) = −pdS0 · pqS0

C1,3(0) = C3,1(0) = −pdS0 · (1− pdS0 − pqS0)

C2,3(0) = C3,2(0) = −pqS0 · (1− pdS0 − pqS0)

Ck,l(0) = 0, k, l = 4, ..., 8.
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In order to infer model parameters, the optimization problem is specified, which requires the

definition of biologically meaningful parameter boundaries (see table 3.2).

parameter fixed value estimated

(reference) lower upper inequality

boundary boundary constraint

ract1 0.0002 - - -

[Daynac et al., 2016]

[Shook et al., 2012]

ract2, rinact - 1
1000h

−1 1h−1 −0.3 ≤ rinact − ract2 ≤ 0.4

[Daynac et al., 2016]

[Shook et al., 2012]

rdiv - 1
25h
−1 1

15h
−1 -

[Ponti et al., 2013]

ps(i) = pxi→xixi ,
- 0 1 ps + pd ≤ 1pd(i) = pxi→xi+1xi+1 ,

i = 3, 4, 5

pB1 0.55 - - -

[Ponti et al., 2013]

rmig - 1
1000h

−1 1
10h
−1d−1 -

[Petreanu and Alvarez-Buylla, 2002]

pN - 0.65 0.85 -

[Platel et al., 2010]

pdS0, pqS0 - 0 1 pdS0 + pqS0 ≤ 1

Table 3.2: Boundaries, constraints or values assumed for model parameters

The parameter boundaries are based on findings of [Ponti et al., 2013] for the cell division rate (rdiv)

and [Petreanu and Alvarez-Buylla, 2002] for the migration rate (rmig). According to the analysis

of Ponti et al. [2013] which showed that only 55% of neuroblasts divide, I introduced another

neuroblast state and assumed the probability for a TAP to differentiate into the proliferating

neuroblast state (NB I) to be pB1 = 0.55. Platel et al. [2010] experimentally determined the

percentage of neuroblasts differentiating to neurons to be 78% in the SEZ of P20-P30 mice, I

therefore estimate this percentage for the three-months- (young) and one-year-old (aged) mice by

assuming a range of [65, 85]% in the model.

In Addition, I fitted a stem cell compartment ODE model (see Figure 3.6 and Equation 3.6) to cell

counts of Shook et al. [2012] and Daynac et al. [2016].

dS qS aS
 Proliferation
 Differentiation
 (In)activation
 

Figure 3.6: Model scheme as depicted in Figure 3.3 reduced to transitions of stem cell compart-
ments. Graphic is taken from Bast et al. [2018].
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d[dS](t)

dt
= −ract1[dS](t) ,

d[dS](0)

dt
= dS0

d[qS](t)

dt
= ract1[dS](t) + rinact[aS](t)− ract2[qS] ,

d[qS](0)

dt
= qS0

= ract1[dS](t) + (ract2 + (rinact − ract2))[aS](t)− ract2[qS]

d[aS](t)

dt
= (−rdiffS − rinact)[aS](t) + ract2[qS] ,

d[aS](0)

dt
= aS0

= (−rdiffS − (ract2 + (rinact − ract2)))[aS](t) + ract2[qS].

(3.6)

The model fit and the inferred (identifiable) parameters can be seen in Figure 3.7.

d
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a
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0.0203

95% confidence intervals

[1.4 x 10-4, 1.8 x 10-4]

[-0.2419, 0.3352]

2000

6000
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600

0 2 4 6 8 10 12

200
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ODE model

population-level data

interpolated values

Figure 3.7: Resulting model fit to population level data and inferred identifiable parameters with
95% Pl-based confidence intervals (see equation 2.27). Graphic is taken from Bast et al. [2018].

I performed this analysis using MATLAB toolboxes AMICI [Fröhlich et al., 2016] for model defi-

nition and PESTO [Stapor et al., 2017] for parameter estimation with interior point optimization

algorithm. Figure 3.8 shows that the multi start optimization procedure converged and likely found

the global optimum within the specified boundaries.

This pre-analysis led to two constraints for the set of considered models

(i) the dS activation rate was fixed to ract1 = 0.000171,

(ii) the difference between qS activation and aS inactivation rates was constrained to

−0.3 ≤ rinact − ract2 ≤ 0.4.

Another inequality constraint was introduced for division mode U, in which the sum of probabilities

for symmetric self-renewal and symmetric differentiation must be lower or equal to 1. The same

holds for the sum of probabilities to initially label a dormant stem cell and to initially label a
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quiescent stem cell.
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Figure 3.8: While optimizing parameters of ODE stem cell compartment model (see equation 3.6)
with multi start approach the highest log likelihood value was found several times.

3.3 Parameter inference

The derived models contain between 7 and 13 unknown parameters. These parameters were esti-

mated with maximum likelihood estimation by minimizing the discrepancy between observed and

modelled first and second order moments. Moreover, I analysed the identifiability of parameters.

3.3.1 Maximum likelihood estimation

Let x = (xdS , xqS , xaS , xT , xB1 , xB2 , xB3 , xN ) be the state vector and M(θ) be a particular model

I consider consisting of dynamics ẋ = f(x, θ) and model observables yM = h(x, θ), which is given

by

M(θ) :



ẋ = f(x, θ) =
{
dµi(t)
dt ,

dCi,j(t)
dt

}
i,j=1,...,8

, x0(θ) = x0

yM = h(x, θ) = {µ4(t), µ5(t) + µ6(t) + µ7(t), µ8(t),

C4,4(t), C4,5(t) + C4,6(t) + C4,7(t), C4,8(t),

C5,5(t) + 2C5,6(t) + 2C5,7(t) + C6,6(t) + 2C6,7(t) + C7,7(t),

C5,8(t) + C6,8(t) + C7,8(t), C8,8(t).


(3.7)

Furthermore, let yD(tk) denote the observed moments at time tk which were directly calculated

from clonal observations (see Figure 3.2, Table 3.1) and D =
{
tk, y

D(tk)
}nt
k=1

be the data I want
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to fit with the model. Due to false cell type assignment or counting errors in the clonal data, I

assume the observed moments yD(tk) underlie additive normally distributed measurement noise

[Raue et al., 2013] (see section 2.2.1.1)

yDl (tk) = yMl (tk, θ) + ε, with ε ∼ N (0, σ2
l,k), k = 1, ..., nt, l = 1, ..., ny. (3.8)

The variation in experimentally observed moments (σ2
l,k) was estimated by drawing 1000 bootstraps

from the clonal data.

In order to assess how well a particular model fits the experimental data for a certain set of

parameters θ, the log-likelihood function `D(θ) (see equation 2.16) was calculated. Under the

assumption of additive normally distributed measurement noise `D(θ) is given by

`D(θ) = −1

2

nt∑
k=1

ny∑
l=1

log(2πσ2
l,k) +

((
yDl (tk)− yMl (tk, θ)

)2
σ2
l,k

)
, (3.9)

where nt is the number of time points and ny = 9 is the number of considered moment equations.

Figure 3.9: Result of multi-start optimization procedure shows observed optimized log-likelihood
values (A), the 10 highest log-likelihood values (B) and the corresponding optimal parameter vectors
(C) for 200 multi-starts. The plateau in (A) indicates convergence of the optimization algorithm.

In order to estimate the unknown parameter vector θ, the optimization problem

θML = argmax
θ

subject to M,

Aθ≤b

`D(θ), (3.10)
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was solved using multi-start local optimization with interior point algorithm [Boyd and Vanden-

berghe, 2004] (see section 2.2.1.2). The starting values (θstarti )i=1,...,200 (initial parameter vectors)

were determined according to latin hypercube sampling [Eliáš and Vořechovskỳ, 2016]. A ∈ Rpxn

and b ∈ Rp define the inequality constraints for θ, which are introduced in 3.2.

The resulting optimal parameter set is observed at the highest `D value. To ensure that the op-

timization procedure converged, I investigated if this best log-likelihood value is observed several

times for different starting values. Figure 3.9 illustrates the multi-start local optimization result for

a randomly picked model. One can observe a plateau of the highest log-likelihood value (marked

in red), indicating the implemented optimization procedure converged. The parameter estimation

was performed individually for all 43 = 64 models.

3.3.2 Identifiability analysis

Using the MATLAB toolbox STRIKE-GOLDD, a structural identifiability analysis was performed

by calculating the generalized observability-identifiability matrix (see equation 2.23 and section

2.2.3). The analysis of the most general model M(θ) (see equation 3.7) with

θ = (ract2, rinact, rdiv, pS→SS , pS→TT , pT→TT , pT→BB, pB1→B1B1 , pB1→B2B2 , rmig, pn, pdS0, pqS0)t re-

vealed all parameters except initial condition parameters pdS0 and pqS0 are structurally identifiable

and all model states are observable.

3.4 Model comparison and averaging

The 64 models result from all possible combinations of the four division strategies (see Figure 3.4)

for each of the three proliferating cell states (aS, T,B1, see Figure 3.3). I compared and ranked

the 64 different models based on their BIC value (see equation 2.29). Since I could not identify a

single best performing model, I applied model averaging, see section 2.3.3.
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Figure 3.10: Resulting inferred weighted average division probabilities with the respective standard
error of the weighted mean for all three proliferating cell types in young (light grey bars) and aged
(dark grey bars) mice (upper row). 64 resulting parameter estimates (grey dots) for rates and initial
condition probabilities with the corresponding weighted box plots for young and aged mice. Boxes
depict the 1st, 2nd and 3rd quartiles and horizontal lines at top and bottom represent parameter
boundaries (bottom row). Graphic is taken from Bast et al. [2018].
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Assuming identical prior probabilities for all models, the posterior model probability was approxi-

mated to calculate the BIC weights (wBICk ), which allows the calculation of the weighted mean of

parameters θML
w (see equation 2.35) and the standard error of the weighted mean of parameters

SE
θML
w

(see equation 2.36), which are together with the resulting parameter estimates visualized

in Figure 3.10 for all 64 models and both data sets (young and aged adult).

As can be seen in Figure 3.10, this analysis reveals an increase in the probability of asymmetric

neural stem cell divisions at the expense of the corresponding symmetric differentiation probability,

and longer quiescence in aged mice.

The 10 best performing models, the BIC score difference to the best model and the BIC weights

resulting from this analysis are shown in Figure 3.11. The BIC values for all (64 young and 64

aged) models and the respective resulting division probabilities can be found in Tables 3.3 and 3.4.
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model division probabilities (young) BICy

mode aS T B1

aS T B1 ps pd 1− ps − pd ps pd 1− ps − pd ps pd 1− ps − pd

U U U 0.001 0.1296 0.8694 0.3706 0.6294 0.00 0.00 0.999 0 100

U U S 0,001 0,1282 0,8708 0,3716 0,6284 0,00 0,001 0,999 0 96,19

U U C 0,001 0,1296 0,8694 0,3706 0,6294 0,00 0 0,998 0,002 96,55

U U A 0,001 0,999 0 0,001 0,999 0,00 0 0 1 120,29

U S U 0,001 0,1266 0,8724 0,369 0,631 0,00 0,001 0,999 0 97,09

U S S 0,001 0,127 0,872 0,3692 0,6308 0,00 0,001 0,999 0 93,08

U S C 0,001 0,1266 0,8724 0,369 0,631 0,00 0 0,998 0,002 93,51

U S A 0,001 0,999 0 0,001 0,999 0,00 0 0 1 117,64

U C U 0,001 0,158 0,841 0,1558 0,3664 0,48 0,001 0,999 0 98,27

U C S 0,001 0,1583 0,8407 0,1559 0,3662 0,48 0,001 0,999 0 94,3

U C C 0,001 0,158 0,841 0,1558 0,3664 0,48 0 0,998 0,002 94,69

U C A 0,001 0,999 0 0 0,998 0,00 0 0 1 116,71

U A U 0,001 0,999 0 0 0 1,00 0,001 0,999 0 120,29

U A S 0,001 0,999 0 0 0 1,00 0,001 0,999 0 116,431

U A C 0,001 0,999 0 0 0 1,00 0 0,998 0,002 116,71

U A A 0,001 0,999 0 0 0 1,00 0 0 1 768,71
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model division probabilities (young) BICy

mode aS T B1

aS T B1 ps pd 1− ps − pd ps pd 1− ps − pd ps pd 1− ps − pd

S U U 0,1605 0,8395 0 0,0434 0,1115 0,85 0,001 0,999 0 101,26

S U S 0,154 0,846 0 0,0393 0,1053 0,86 0,001 0,999 0 97,59

S U C 0,1605 0,8395 0 0,0434 0,1115 0,85 0 0,998 0,002 97,68

S U A 0,001 0,999 0 0,001 0,999 0,00 0 0 1 117,86

S S U 0,2822 0,7178 0 0,4216 0,5784 0,00 0,001 0,999 0 101,98

S S S 0,2831 0,7169 0 0,4218 0,5782 0,00 0,001 0,999 0 98,74

S S C 0,2822 0,7178 0 0,4216 0,5784 0,00 0 0,998 0,002 98,39

S S A 0,001 0,999 0 0,001 0,999 0,00 0 0 1 114,36

S C U 0,2149 0,7851 0 0,1989 0,307 0,49 0,001 0,999 0 99,93

S C S 0,218 0,782 0 0,1988 0,307 0,49 0,001 0,999 0 96,7

S C C 0,2149 0,7851 0 0,1989 0,307 0,49 0 0,998 0,002 96,36

S C A 0,001 0,999 0 0 0,998 0,00 0 0 1 114,27

S A U 0,001 0,999 0 0 0 1,00 0,001 0,999 0 117,66

S A S 0,001 0,999 0 0 0 1,00 0,001 0,999 0 114,27

S A C 0,001 0,999 0 0 0 1,00 0 0,998 0,002 114,08

S A A 0,001 0,999 0 0 0 1,00 0 0 1 759,55

C U U 0,0654 0,5538 0,3807 0,0581 0,145 0,80 0,001 0,999 0 100,27

C U S 0,0622 0,5635 0,3743 0,0508 0,1344 0,81 0,001 0,999 0 96,62

C U C 0,0654 0,5538 0,3807 0,0581 0,145 0,80 0 0,998 0,002 96,69

C U A 0 0,998 0,002 0,001 0,999 0,00 0 0 1 117,85

C S U 0,1335 0,4027 0,4638 0,4008 0,5992 0,00 0,001 0,999 0 98,81

C S S 0,1334 0,4029 0,4637 0,4015 0,5985 0,00 0,001 0,999 0 95,5

C S C 0,1335 0,4027 0,4638 0,4008 0,5992 0,00 0 0,998 0,002 95,23

C S A 0 0,998 0,002 0,001 0,999 0,00 0 0 1 114,36

C C U 0,0936 0,4817 0,4247 0,1898 0,3185 0,49 0,001 0,999 0 97,89

C C S 0,0948 0,479 0,4262 0,1898 0,3185 0,49 0,001 0,999 0 94,57

C C C 0,0936 0,4817 0,4247 0,1898 0,3185 0,49 0 0,998 0,002 94,31

C C A 0 0,998 0,002 0 0,998 0,00 0 0 1 114,27

C A U 0 0,998 0,002 0 0 1,00 0,001 0,999 0 117,65

C A S 0 0,998 0,002 0 0 1,00 0,001 0,999 0 114,26

C A C 0 0,998 0,002 0 0 1,00 0 0,998 0,002 114,06

C A A 0 0,998 0,002 0 0 1,00 0 0 1 765,59

A U U 0 0 1 0,214 0,786 0,00 0,001 0,999 0 103,74

A U S 0 0 1 0,2148 0,7852 0,00 0,001 0,999 0 100,04

A U C 0 0 1 0,214 0,786 0,00 0 0,998 0,002 100,16

A U A 0 0 1 0,001 0,999 0,00 0 0 1 330,78

A S U 0 0 1 0,216 0,784 0,00 0,001 0,999 0 100,76

A S S 0 0 1 0,2144 0,7856 0,00 0,001 0,999 0 97,45

A S C 0 0 1 0,216 0,784 0,00 0 0,998 0,002 97,17

A S A 0 0 1 0,001 0,999 0,00 0 0 1 332,01

A C U 0 0 1 0,0402 0,6393 0,32 0,001 0,999 0 101,79

A C S 0 0 1 0,0398 0,6407 0,32 0,001 0,999 0 98,46

A C C 0 0 1 0,0402 0,6393 0,32 0 0,998 0,002 98,2

A C A 0 0 1 0 0,998 0,00 0 0 1 327,19

A A U 0 0 1 0 0 1,00 0,001 0,999 0 1031,62

A A S 0 0 1 0 0 1,00 0,001 0,999 0 1010,85

A A C 0 0 1 0 0 1,00 0 0,998 0,002 1028,04

A A A 0 0 1 0 0 1,00 0 0 1 333.466

Table 3.3: Resulting division probabilities and BIC values for 64 models fitted to dataset of young
mice

The model which assumes symmetric division strategies for all three cell types is highlighted in red

in tables 3.3 and 3.4 as we compared the probabilities with work from Obernier et al. [2018], see

3.5.
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model division probabilities (aged) BICa

mode aS T B1

aS T B1 ps pd 1− ps − pd ps pd 1− ps − pd ps pd 1− ps − pd

U U U 0.001 0.116 0.883 0.3858 0.6142 0 0.001 0.999 0 116

U U S 0,001 0,1086 0,8904 0,3786 0,6214 0 0,001 0,999 0 109,97

U U C 0,001 0,116 0,883 0,3858 0,6142 0 0 0,998 0,002 113,32

U U A 0,001 0,999 0 0,001 0,999 0 0 0 1 124,71

U S U 0,001 0,1097 0,8893 0,3811 0,6189 0 0,001 0,999 0 109,24

U S S 0,001 0,109 0,89 0,3799 0,6201 0 0,001 0,999 0 107,34

U S C 0,001 0,1097 0,8893 0,3811 0,6189 0 0 0,998 0,002 106,35

U S A 0,001 0,999 0 0,001 0,999 0 0 0 1 117,69

U C U 0,001 0,1302 0,8688 0,1609 0,3587 0,4804 0,001 0,999 0 109,37

U C S 0,001 0,13 0,869 0,1602 0,3596 0,4801 0,001 0,999 0 107,43

U C C 0,001 0,1302 0,8688 0,1609 0,3587 0,4804 0 0,998 0,002 106,48

U C A 0,001 0,999 0 0 0,998 0,002 0 0 1 121,82

U A U 0,001 0,999 0 0 0 1 0,001 0,999 0 117,97

U A S 0,001 0,999 0 0 0 1 0,001 0,999 0 113,41

U A C 0,001 0,999 0 0 0 1 0 0,998 0,002 115,08

U A A 0,001 0,999 0 0 0 1 0 0 1 583,38

S U U 0,0031 0,9969 0 0,001 0,0921 0,9069 0,001 0,2366 0,7624 111,58

S U S 0,0886 0,9114 0 0,001 0,0369 0,9621 0,001 0,999 0 110,54

S U C 0,0295 0,9705 0 0,001 0,0889 0,9101 0,1352 0,3999 0,465 108,71

S U A 0,001 0,999 0 0,001 0,999 0 0 0 1 115,93

S S U 0,3289 0,6711 0 0,4164 0,5836 0 0,001 0,999 0 111,66

S S S 0,3294 0,6706 0 0,4171 0,5829 0 0,001 0,999 0 109,67

S S C 0,3289 0,6711 0 0,4164 0,5836 0 0 0,998 0,002 108,76

S S A 0,001 0,999 0 0,001 0,999 0 0 0 1 115,26

S C U 0,2321 0,7679 0 0,1649 0,3527 0,4824 0,001 0,2696 0,7294 110,96

S C S 0,2632 0,7368 0 0,1737 0,3401 0,4862 0,3022 0,6978 0 109,13

S C C 0,2519 0,7481 0 0,1692 0,3465 0,4843 0,1115 0,4436 0,4449 108,11

S C A 0,001 0,999 0 0 0,998 0,002 0 0 1 113,04

S A U 0,001 0,999 0 0 0 1 0,001 0,999 0 115,53

S A S 0,001 0,999 0 0 0 1 0,001 0,999 0 111,84

S A C 0,001 0,999 0 0 0 1 0 0,998 0,002 112,64

S A A 0,001 0,999 0 0 0 1 0 0 1 613,73

C U U 0,0963 0,4757 0,428 0,001 0,0869 0,9121 0,001 0,999 0 110,75

C U S 0,0917 0,486 0,4222 0,001 0,0834 0,9156 0,001 0,999 0 109,66

C U C 0,0963 0,4757 0,428 0,001 0,0869 0,9121 0 0,998 0,002 107,86

C U A 0 0,998 0,002 0,001 0,999 0 0 0 1 115,92

C S U 0,1351 0,3999 0,4649 0,4112 0,5888 0 0,001 0,999 0 109,91

C S S 0,1355 0,3993 0,4652 0,4118 0,5882 0 0,001 0,999 0 107,9

C S C 0,1351 0,3999 0,4649 0,4112 0,5888 0 0 0,998 0,002 107,02

C S A 0 0,998 0,002 0,001 0,999 0 0 0 1 115,26

C C U 0,1262 0,4158 0,4581 0,1821 0,3286 0,4893 0,001 0,999 0 109,5

C C S 0,1264 0,4153 0,4583 0,1826 0,3279 0,4894 0,001 0,999 0 107,5

C C C 0,1262 0,4158 0,4581 0,1821 0,3286 0,4893 0 0,998 0,002 106,61

C C A 0 0,998 0,002 0 0,998 0,002 0 0 1 113,03

C A U 0 0,998 0,002 0 0 1 0,001 0,999 0 115,52

C A S 0 0,998 0,002 0 0 1 0,001 0,999 0 111,83

C A C 0 0,998 0,002 0 0 1 0 0,998 0,002 112,63

C A A 0 0,998 0,002 0 0 1 0 0 1 580,12
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model division probabilities (aged) BICa

mode aS T B1

aS T B1 ps pd 1− ps − pd ps pd 1− ps − pd ps pd 1− ps − pd

A U U 0 0 1 0,2179 0,7821 0 0,001 0,999 0 110,07

A U S 0 0 1 0,2152 0,7848 0 0,001 0,999 0 105,66

A U C 0 0 1 0,2179 0,7821 0 0 0,998 0,002 107,18

A U A 0 0 1 0,001 0,999 0 0 0 1 293,08

A S U 0 0 1 0,2141 0,7859 0 0,001 0,999 0 107,39

A S S 0 0 1 0,2112 0,7888 0 0,001 0,999 0 103,74

A S C 0 0 1 0,2141 0,7859 0 0 0,998 0,002 104,5

A S A 0 0 1 0,001 0,999 0 0 0 1 291,36

A C U 0 0 1 0,0418 0,6329 0,3253 0,001 0,999 0 107,82

A C S 0 0 1 0,0406 0,6377 0,3218 0,001 0,999 0 104,13

A C C 0 0 1 0,0418 0,6329 0,3253 0 0,998 0,002 104,93

A C A 0 0 1 0,0001 0,9794 0,0205 0 0 1 147,29

A A U 0 0 1 0 0 1 0,001 0,999 0 913,95

A A S 0 0 1 0 0 1 0,001 0,999 0 887,48

A A C 0 0 1 0 0 1 0,0001 0,9813 0,0186 141,15

A A A 0 0 1 0 0 1 0 0 1 41974,59

Table 3.4: Resulting division probabilities and BIC values for 64 models fitted to dataset of aged
mice

3.5 Validation of modeling results

In order to test the reliability of the modelling results, I performed a robustness test and investigated

if simulations of the average models agree with features of the clonal and independent data.

3.5.1 Robustness test
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Figure 3.12: Form the robustness test resulting inferred weighted average division probabilities
with the respective standard error of the weighted mean for all three proliferating cell types in
young (light grey bars) and aged (dark grey bars) mice (A). 64 resulting parameter estimates for
(in)activation rates shown as weighted box plots for young and aged mice. Boxes depict the 1st,
2nd and 3rd quartiles and horizontal lines at top and bottom represent parameter boundaries (B).
Graphic is taken from Bast et al. [2018].
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In order to test the robustness of the estimated weighted mean parameter differences between the

two groups (young and aged), I repeated the analysis using only the measurements observed at

days 21 and 56 for parameter estimation. Resulting probabilities for division strategies can be

seen in Figure 3.12. Weighted parameters differ only slightly from parameters inferred from the

complete data set (see Figure 3.10). Thus, the conclusions of longer quiescence in aged mice, and

an increase in the probability of asymmetric neural stem cell divisions at the expense of symmetric

differentiation could be confirmed, even for fitting only parts of the data set.

3.5.2 Comparison of model to dependent and independent data

As stated in section 2.1, I used recently published data [Daynac et al., 2016, Shook et al., 2012] to

constrain the stem cell population in- and activation rates in the model (see table 3.2). From the

same analysis, cell counts of subsequent cell-states are available, which were not included in the

parameter estimation procedure. To evaluate if the model is able to describe the cell count dynamics

per cell-state on the population level, I calculated the first order moment (mean) for each cell-state.

We set the initial values of the model to the earliest observed measurements. This analysis was

performed based on the average young model (age-independent model) and on an age-dependent

model, in which the parameters change with ageing from the weighted mean parameter in group

young (θML
w,y ) to the weighted mean parameter in group aged (θML

w,a ). This change in parameters

was modelled with Hill functions (see Figure 3.13).
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Figure 3.13: Hill function fits to model age-dependent stem cell and TAP division probabilities and
(in)activation rates. Graphic is taken from Bast et al. [2018].

The Hill function is defined as follows:

H(a, s, n, ymin, ymax) :=
ymax − ymin

(as)n + 1
+ ymin, (3.11)

where a denotes the age of mice, n is the Hill coefficient, 1
s is the age at which the saddle point

of the Hill function is observed and ymin, ymax describe the minimum and maximum values of the
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Hill function [Gesztelyi et al., 2012]. ymin, and ymax, have been set to

ymin = min(θML
w,y , θ

ML
w,a )

ymax = max(θML
w,y , θ

ML
w,a )

and optimized for s and n, assuming boundaries

s ∈
[

1

taged
,

1

tyoung

]
and

n ∈

{
[1, 10] , if θML

w,y ≤ θML
w,a

[−10,−1] , otherwise.

The models include halfway migration of neuroblasts to be consistent with the population study

data, which are the number of cells obtained after dissociating the lateral wall of the lateral ven-

tricles, thus accessing only a portion of the whole NB population.

One can observe that the model behaviour over time agrees with the experimental observations

made by [Daynac et al., 2016] (see A in Figure 3.14).

In addition, I calculated the clone size and cell fractions from 500 SSA simulations [Gillespie, 2001]

to test if the model accurately predicts these statistics. The model variability which can be calcu-

lated from 500 simulations is shown as grey shaded area and includes most of the data points of

the data set (see B and C in Figure 3.14).

Another model validation step was the comparison of the percentage of clones consisting exclu-

sively of neurons (neuron-only clones) at day 56. I simulated 1000 times the number of lineage

trees observed at 56 days post labelling (12 in young and 11 in old adult) and calculated for every of

the 1000 runs the percentage of neuron-only clones to observe a distribution of neuron-only clones.

For the simulation of trees, exponentially distributed (in)activation times and Erlang distributed

division and migration times were assumed (see Figure 3.15). Panel D in Figure 3.14 shows that

the average model (grey distribution plot) correctly predicts the decline of neuron-only clones with

age, which was observed from the data set (black dots, see table 3.1).

A last validation step was to compare the division probabilities resulting from the model which

assumes exclusively symmetric division modes to the probabilities inferred by Obernier et al. [2018].

In their in vivo clonal lineage tracing study of active NSCs, assumed exclusively symmetric divisions

and reported probabilities of 0.2−0.34 and 0.7−0.8 for symmetric self-renewal and symmetric differ-

entiation of NSCs respectively. As can be seen in tables 3.3 and 3.4 the corresponding probabilities

I inferred are 0.2831 ans 0.77169 in young and 0.3294 and 0.6706 in aged mice.
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Bast et al. [2018].
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average rates). Graphic is taken from Bast et al. [2018].

3.6 Prediction from average models

Validation of the resulting average models allows to make predictions. I simulated individual trees,

which were used to calculate self-defined genealogical metrics (see Figure 3.18). The genealogical

metrics estimation was performed by assuming exponentially distributed (in)activation times and

Erlang distributed division and migration times. Resulting mean and median of genealogical metrics

are shown in table 3.5 for both groups.
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Figure 3.16: Definition of genealogical metrics to characterize simulated lineage trees. Graphic is
taken from Bast et al. [2018].
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Genealogical metrics young mice aged mice
mean median mean median

number of subclones 1.48 1 1.49 2
number of active subclones 1.23 1 1.34 1
number of inactive subclones 0.25 0 0.14 0
subclone size (number of cells) 28.16 18 29.28 20
aS expansion phase duration [d] 2.12 1.48 4.27 2.83
quiescent phase [weeks] 2.27 1.44 2.97 2.36
subclonal activity duration [d] 8.35 7.10 8.67 7.33
mean subclonal branch length (mean number of generations) 7.83 7.19 7.26 6.80
subclonal lifespan [weeks] 10.44 10.37 6.53 6.49
clonal lifespan [weeks] 6.24 5.91 6.57 6.18
number of subclonal TAP divisions 4.78 3 2.35 2
number of subclonal NB I divisions 1.00 1 1.04 1

Table 3.5: Genealogical metrics observed from 1000 simulated trees.

In addition, I performed the genealogical metrics estimation assuming exclusively exponentially

distributed rates. This led to very similar results and all metrics showed the same qualitative

behavior.



4 Application II: Modeling hematopoiesis to

infer lineage hierarchies and uncover changes

with age and upon disease

A second example for a computational cell division and differentiation model is explained in detail

in this chapter. The content of this chapter resulted in two drafted manuscripts, of which one

is published in iScience Cell Press [Bast et al., 2021] and the other one is drafted and will be

submitted soon. The content of these two manuscripts was restructured and slightly modified for my

dissertation. It stems from collaborative projects with the clinicians Michèle Buck, Prof. Katharina

Götze, Prof. Robert Oostendorp, Judith Hecker, Prof. Florian Bassermann, and the computational

biologists Dr. Carsten Marr and Prof. Fabian Theis. The data result from experiments that have

been performed by Michèle Buck. My contribution was

(i) literature search about hematopoiesis to define biologically meaningful model assumptions,

parameter boundaries, and lineage hierarchies, and

(ii) the computational analysis, including model specification, parameter inference, identifia-

bility analysis, and model selection.

Firstly, I will introduce the most important findings about human hematopoiesis and relevant

hematopoietic disorders, and the performed experiment together with the measured data and show

data analysis results (see section 4.1). Secondly, I will derive deterministic models describing the

mechanisms of adult hematopoiesis in young, aged and diseased individuals on the cell population

level (see section 4.2). By fitting this set of considered models to experimental time-resolved cell

count data (see section 4.1), I will introduce a maximum likelihood estimation approach to infer

unknown model parameters and asses structural and practical parameter identifiability (see section

4.3). To answer the question which lineage hierarchies are plausible to describe hematopoiesis and

which ones can be rejected based on our experimental data, I will perform model selection (see

section 4.4). Using the best performing model to fit experimental data of healthy and dieseased

donors, I will compare resulting parameter values to analyse which rates change during age in

healthy individuals and with disease in comparison to healthy donors and combine the inferred

rates with patient and donor information (see section 4.5). Lastly, I will validate the results based

on in silico data and unseen measurements (see section 4.6).

The code accompanying the analysis described in this chapter can be found at

https://github.com/marrlab/HematopoiesisModelComparison and

https://github.com/LisaBast/HematopoieticDisorderAnalysis
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4.1 Biological background and experimental data

Hematopoiesis describes the process by which blood cellular components are produced. As humans

produce roughly 500 billion mature blood cells per day, the hematopoietic cells form one of the

most generative tissues in the human body [Fliedner et al., 2002]. Hematopoiesis is assumed to

be a continuous process which occurs through differentiation of hematopoietc stem cells (HSCs)

into mature blood cells via several hierarchically defined progenitor compartments of decreasing

potency and increasing maturity [Jagannathan-Bogdan and Zon, 2013]. While hematopoietic stem

and progenitor cells (HSPCs) are located in the bone marrow, mature cells are mainly found in

the peripheral blood [Walenda et al., 2014]. This differentiation process is known to be regulated

cell intrinsically by regulator genes, but also cell-extrinsically by signals from a cells’ environment,

which is referred to as the bone marrow niche [Pinho and Frenette, 2019]. In the past, murine

and human lineage commitment was studied in vivo and in vitro via different methods including

label-retaining transplantation assays, colony forming capacity-assessment, fluorescence activated

cell sorting (FACS) and transcriptome analysis [Adolfsson et al., 2005, Akashi et al., 2000, Doulatov

et al., 2010, 2012, Forsberg et al., 2006, Giebel et al., 2006, Goardon et al., Haas et al., 2018, Hao

et al., 2001, Laurenti et al., 2018, Månsson et al., 2007, Notta et al., 2016, Perié et al., 2015, Pronk

et al., 2007, Reynaud et al., 2003, Rossi et al., 2008, Sanjuan-Pla et al., 2013, Takano et al., 2004,

Velten et al., 2017], proposing multiple differentiation paths which describe how cells transit through

defined cell type compartments. These differentiation paths include for instance the existence of

lineage restricted progenitors which bypass multipotent progenitors by directly transiting to mature

cell types and thereby challenge the classical model of hematopoiesis. So far the plausibility of these

proposed differentiation transitions has not been analysed comprehensively and quanitatively by

deriving and comparing different lineage hierarchies with a systems biology approach.

Furthermore, it has been observed that upon ageing less mature blood cells are produced [Chung

and Park, 2017, Lee et al., 2019]. Based on clonal assays of the murine hematopoietic system, it

has been suggested that the decline in hematopiesis is due to HSCs, which lose their self-renewal

capacity [Dykstra et al., 2011]. Additionally, an increased frequency of HSCs and myeloid skewing,

i.e. the more prominent production of myeloid cells compared to lymphoid cells, has been observed

with age in mice [Dykstra et al., 2011, Sudo et al., 2000]. Similarly, studies of human hematopoiesis

revealed preferred myeloid differentiation with age, decreased lymphoid progenitors, and increased

HSC frequencies [Pang et al., 2011]. If these increased HSC frequencies result from an increase of

the HSC population or a decrease in cell numbers of downstream compartments such as progenitors

or mature cells, has so far not been investigated.

Additionally, upon ageing the incidence of clonal hematopoietic disorders increases [Lee et al.,

2019], which are driven by the acquisition of mutations in HSPCs [Sperling et al., 2017]. Elderly

individuals whose HSPCs exhibit the most common somatic mutations observed in hemtopoietic

disorders, but which do not suffer from hematologic diseases, are termed clonal hematopoiesis of

indeterminate potential (CHIP) or age-related clonal hematopoiesis individuals [Genovese et al.,

2014, Jaiswal et al., 2014, Steensma et al., 2015]. It has been investigated that CHIP individuals

have an increased risk of developing blood cancer and that this risk is proportional to the size of
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the somatic clone [Watson et al., 2015]. In contrast to CHIP, myelodysplastic syndrome (MDS) is

a particular age-related hematopoietic disorder, which is characterized by ineffective hematopoiesis

and peripheral cytopenias, i.e. the lack of cellular components in the blood (see Figure 4.1).

MDS patients obtain an increased risk of transformation to acute myeloid leukaemia [Chung and

Park, 2017]. Distinct acquired mutations, have been detected in MDS HSCs and are considered

disease-initiating events, leading to a dominant MDS clone [Pang et al., 2013, Shastri et al., 2017],

but so far it is unclear why and how some age-related mutations achieve clonal dominance and

lead to MDS. Possible mechanisms are growth advantages of a specific clone and suppression of

healthy hematopoisis and can be either induced by cell-intrinsic deregulation or by cell-extrinsic

niche-mediated interference or by a combination of both. It has also not been investigated if

proliferation, differentiation, or cell death, or combinations of these processes and which cell types

are affected.

normal cell
cell mutated on
target genes

Healthy CHIP

Bone marrow 

dysplasia and/ or 
cytopenia in 

peripheral blood 
            -                  -                     +

MDS

Figure 4.1: Overview of cell abnormalities in bone marrow and peripheral blood in case of CHIP
or MDS in comparison to healthy hematopoiesis. Graphic is taken from unpublished manuscript
Buck et al.

To assess the plausibility of a set of previously suggested lineage hierarchies and to infer age-

and disease-related cell-intrinsic hematopoietic changes that induce clonal dominance, an in vitro

experiment has been performed. In this experiment cell intrinsic differentiation and proliferation

potential of human HSCs and progenitors has been investigated by purifying bone marrow samples

for HSCs, culturing the HSCs for up to 7 days in a medium supplemented with 8 growth factors

and assessing their progeny by Fluorescent activated cell sorting (FACS) after different time points

ti in the interval ti ∈ [1, 7] days (see Figure 4.2).

2. Analyze differentiation in vitro

1 2 3 4 5 6 7
days in culture

0

1. Sort and culture HSCs

FACS Analysis

Figure 4.2: Design of time resolved in vitro HSC culture experiment, which was individually
performed with each bone marrow sample. Graphic is taken from Bast et al. [2021].

The bone morrow samples used in this experiment were collected from donors courtesy of the

Stiftung Aktion Knochenmarkspende Bayern or obtained from femoral heads of patients undergoing
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hip replacement surgery courtesy of Dr. Martin Nolde (SANA Klinik, München-Solln, Germany) for

healthy individuals and were obtained from MDS patients undergoing routine clinical evaluation.

At day 0 of the experiment, CellTraceTM Violet stain was added to the medium to track the

number of divisions for each cell population later in the FACS analysis at day ti ∈ [1, 7]. For

the FACS analysis, fluorescence-coupled antibody staining with anti-CD34, anti-CD38, anti-CD90,

anti-CD45RA and anti-CD123 was performed at the observed time point ti to determine the number

of cells in each compartment (see Figure 4.3).

Figure 4.3: FACS gating scheme used to determine number of cells in each compartment.

To gain accurate absolute cell population counts, 50 µl of Flow-Count Fluorospheres (Btotal ≈ 50000

beads) were added to the cell culture at ti prior to FACS analysis. The corrected number of cells

in the ith compartment N c
i was calculated according to:

N c
i = Ni ∗

Btotal
Bcounted

,

where Btotal is the ground truth number of beads added to the sample before FACS analysis and

Bcounted is the observed number of beads while performing FACS analysis. The experiment includ-

ing FACS gating was performed by Michéle Buck using the FloJo V10 software. The experimental

data describe cell counts and division distributions of HSCs, multipotent progenitor cells (MPPs),

common myelocyte progenitors (CMPs), multipotent lymphocyte progenitors (MLPs), megakary-

ocyte erythrocyte progenitors (MEPs), granulocyte monocyte progenitors (GMPs) and CD34- cells

which correspond to mature cells and late progenitors (M, see Figure 4.4). Upon availability of

bone marrow samples, the experiment was repeated, which is termed repetition, or measured sev-

eral twice at the same time points using cell subpopulations from the same HSC-sort, which is

termed replicate in section 4.3.
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Figure 4.4: Measurements observed from in vitro HSC culture experiment describe cell counts of
HSC, MPP, CMP, MLP, MEP, GMP and M compartments (A) at various time points ti ∈ [1, 7]d
for bone marrow samples of young healthy (light blue), vs. aged healthy (dark blue) donors
(upper row), and of donors with CHIP (green), vs. MDS patients (red), vs. healthy age-matched
individuals (dark blue, bottom row). Division distributions (B) are exemplary shown for all cell
type compartments of healthy individual H353 (left) and MDS patient MDS354 (right). Graphic
is taken from unpublished manuscript Buck et al. and slightly modified.
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A B

Figure 4.5: Snapshot analysis (A) of bone marrow cells shows a higher proportion of HSPCs
(p=0.0086, Wilcoxon-Mann-Whitney test) in aged bone marrow (BM) due to a higher fraction of
MPPs (p=0.0472), MLPs (p=0.0393), and CMPs (p=0.0325). In vitro culture of sorted HSCs for
7 days (B) shows a significantly (p = 0.024, Wilcoxon-Mann-Whitney test) higher proportion of
CD34+ HSPC in aged individuals, resulting from higher HSC (p = 0.024) and CMP (p = 0.006)
fractions. Progenitor compartments were normalized to viable, lin- cells. Black horizontal lines
show median value. Graphic is taken from unpublished manuscript Buck et al.

Analysing the bone marrow cells of samples from healthy donors via FACS before and after culturing

revealed a significantly increased proportion of HSPCs in the aged group in both cases (see Figure

4.5). The relative fraction Fi of a cell population i is calculated by dividing the number of cells Ni

by the number of all lin- cells:

Fi =
Ni

[lin−]
.

Donors with age up to 60 years were defined as young and with age above 60 as aged. Interestingly,

the increased proportion of HSCs which was observed in previous studies [Dykstra et al., 2011,

Pang et al., 2011, Sudo et al., 2000], could only be confirmed after 7 days in culture (p = 0.024,

Wilcoxon-Mann-Whitney test) but not for the snapshot analysis of bone marrow samples. The

observed increased HSPC fraction found in BM of aged individuals can be caused by

(i) an absolute increase of HSPC number while the number of CD34- (mature) cells stays

constant,

(ii) a decrease of CD34- (mature) cells while the number of HSPCs stays constant, or

(iii) through a decrease of HSPCs in combination with a strong decrease of CD34- (mature)

cells

(see Figure 4.6).

To investigate which theory is most supported by the experimental data, one can calculate the

yield, which is defined as

yield(t) =
Ni(t)

[HSC](t = t0)
.

The yield at day ti = 7 is reduced from a median of 11.2 per input HSC in young to 4.1 per input

HSC in aged donors for HSPCs and from 33.7 per input HSC in young to 5.0 per input HSC in

aged donors for CD34- cells. According to Wilcoxon-Mann-Whitney test this reduction in aged

donors is significant with p-values of 0.022 for HSPCs and 0.019 for CD34- cells. At the same time,
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the HSC yield stays roughly constant, as can be seen in Figure 4.7, suggesting theory (iii) is the

most plausible one.

A B

Figure 4.6: Three possible theories for the observed increased HSPC fraction in bone marrow of
aged donors. Graphic is taken from unpublished manuscript Buck et al.

Figure 4.7: Yield at day 7 shows aged HSCs produce significantly less progenitor (p = 0.022,
Wilcoxon-Mann-Whitney test) and mature (p = 0.019) cells but the same amount of HSCs in
comparison to young HSCs. Graphic is taken from unpublished manuscript Buck et al. and was
slightly modified.

This reduced blood cell production in aged individuals can originate from increased cell death,

reduced differentiation, or reduced proliferation in several compartments of the hematopoietic hier-

archy. Which changes arise with ageing can be revealed with the compartmental model introduced

in section 4.2 by performing parameter inference (see section 4.3) on the experimental data from

young and aged healthy donors (see section 4.5, Figure 4.8).
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and to uncover changes with age and upon disease. Graphic is taken from unpublished manuscript
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4.2 Specification of a set of candidate models

Cell states and model parameters

As we observed hundreds of hematopoietic cells in cell type and division specific compartments

at time points t0, ..., tnt (see Figure 4.4 and Figure 4.8), a compartmental model using ordinary

differential equations (ODEs) is suitable to describe the underlying dynamics (see section 2.1.3).

Thus, healthy and dysfunctional hematopoiesis is modelled as a biochemical reaction network in

which each cell compartment (species) is a reactant

S = {HSC,MPP,MLP,CMP,GMP,MEP,M}

and each reaction corresponds to a differentiation, proliferation, or cell death transition between

the compartments with transition rates α(·), β(·), and γ(·).

Derivation of a set of 10 comparable lineage hierarchies

Based on the classical model of hematopoiesis (model A, see Figure 4.9 A) and recently reported

experimental evidence, we derived nine alternative models, likewise containing compartments HSC,

MPP, CMPs, MLP, MEP, GMP, and M, but with different unique sets of direct differentiation

transitions between them (models B-J, see Figure 4.9 B-J).

In detail, several studies in humans [Doulatov et al., 2010, 2012, Giebel et al., 2006, Goardon
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et al., Hao et al., 2001, Reynaud et al., 2003, Rossi et al., 2008] show that progenitor cells in the

CD34+CD38 compartment which are CD90+ and CD45RA+, correspond to multipotent lymphoid

progenitor cells (MLP), and have lymphoid, macrophage, and dendritic potential. As these results

suggest that MLPs can also differentiate to GMPs, we have incorporated this transition in models

B, C, E and I (see Figure 4.9 B,C,E).

Proliferation
Differentiation
Cell death
Differentiation and cell death

HSC (hematopoietic stem cell)
MPP (multipotent progenitor )
CMP (common myeloid progenitor)
MLP (multipotent lymphoid progenitor)
MEP (megakaryocyte erythrocyte progenitor)
GMP (granulocyte monocyte progenitor)
M (mature cells and late progenitors)

Compartments          Reactions

D

F

A B C E

G H I J

Figure 4.9: Suggested lineage hierarchies describing healthy hematopoiesis consisting of HSCs,
progenitors (MPPs, MLPs, CMPs, MEPs, GMPs), and a compartment of late progenitors and
mature cells (M). Graphic is taken from Bast et al. [2021].

Moreover, in a study investigating adult blood lineage commitment in mice, Adolfsson et al. [2005]

proposed a revised model of hematopoiesis. They identified a new cell type, the lymphoid-primed

multipotent progenitors (LMPPs), which are FLT3+ Lin Sca-1+c-Kit+ cells (LSK Flt3+ cells),

that possess B-cell, T-cell and granulocyte-monocyte (GM) potential but lack megakaryocyte-

erythrocyte (MegE) potential. Mouse LSK cells include long-term HSCs, short-term HSCs, and

MPPs. The existence of a distinct LSK subtype that does not have MegE potential may indi-

cate that MEPs can directly arise from HSCs. Furthermore, loss of MegE potential in the newly

defined LMPP compartment indicates a direct LMPP to GMP transition, without differentiation

into CMPs first. Adolfsson et al. [2005] also suggested a hematopoietic model which extends the

classical model of hematopoiesis by their findings. In this model, HSCs can generate LMPPs with

lymphocyte and GM potential, and CMPs with MegE and GM potential. For the cell type com-

partments we considered, these findings led on the one hand to the possible direct transition from
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the HSC to CMP compartment and from MPPs to GMPs in models F and H (see Figure 4.9 F,H),

and on the other hand to a transition between the HSC and MEP compartment in models E, G and

I (see Figure 4.9 E,G,I). The direct differentiation path from HSCs to MEPs (see Figure 4.9 E,G,I)

was also supported by in vitro studies of Takano et al. [2004], who investigated colony forming

units of LSK daughter and granddaughter cells. However, a separate study from Forsberg et al.

[2006] also investigated the lineage potential of FLT3+ LMPPs but found conflicting results, which

instead support the classical model of hematopoiesis (see Figure 4.9 A).

In another mouse study, a fraction of phenotypically defined HSCs was shown to express von

Willebrand factor (vWF), a protein mainly expressed by platelets and endothelium [Månsson

et al., 2007]. The existence of a megakaryocyte-primed HSC subset was also experimentally in-

vestigated by Sanjuan-Pla et al. [2013] generating vWF-eGFP transgenic mice, isolating LSK

CD150+CD48CD34 HSCs with a high eGFP expression and transplanting them into irradiated

mice. They found that vWF-eGFP+ HSCs were platelet biased, additionally contributing to other

myeloid lineages whereas their lymphoid contribution was very marginal.

Models E and H furthermore include the direct differentiation path from MPPs to MEPs, which was

suggested by Pronk et al. [2007] (see Figure 4.9 E, H). By studying the phenotypic, functional and

molecular characteristics of myeloerythroid precursors, they identified MPPs which give rise to ery-

throid and megakaryocytic progeny through various intermediate stages. This finding is supported

by human studies, in which BAH1 and CD71 were identified as erythroid and megakaryocytic

differentiation markers within the CD34+ CD38- MPP compartment [Notta et al., 2016].

Accordingly, the full set of reactions, which describe proliferation, differentiation and cell death

transitions is given by

R1 : HSC
βHSC−−−→ 2HSC

R2 : MPP
βMPP−−−−→ 2MPP

R3 : CMP
βCMP−−−−→ 2CMP

R4 : MLP
βMLP−−−−→ 2MLP

R5 : MEP
βMEP−−−−→ 2MEP

R6 : GMP
βGMP−−−−→ 2GMP

R7 : M
βM−−→ 2M
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R8 : HSC
αHSC→MPP−−−−−−−−→ MPP

R9 : HSC
αHSC→CMP−−−−−−−−→ CMP

R10 : HSC
αHSC→MEP−−−−−−−−→ MEP

R11 : HSC
αHSC→M−−−−−−→ M

R12 : MPP
αMPP→CMP−−−−−−−−→ CMP

R13 : MPP
αMPP→MLP−−−−−−−−→ MLP

R14 : MPP
αMPP→MEP−−−−−−−−→ MEP

R15 : MPP
αMPP→GMP−−−−−−−−→ GMP

R16 : CMP
αCMP→MEP−−−−−−−−→ MEP

R17 : CMP
αCMP→GMP−−−−−−−−→ GMP

R18 : MLP
αMLP→···−−−−−−→ ∅

R19 : MLP
αMLP→GMP−−−−−−−−→ GMP

R20 : MEP
αMEP→M−−−−−−→ M

R21 : GMP
αGMP→M−−−−−−→ M

R22 : HSC
γHSC−−−→ ∅

R23 : MPP
γMPP−−−−→ ∅

R24 : CMP
γCMP−−−−→ ∅

R25 : MEP
γMEP−−−−→ ∅

R26 : GMP
γGMP−−−−→ ∅

R27 : M
γM−−→ ∅

where all proliferation and cell death reactions (R1, ..., R7 and R22 − R27) are shared between the

models, unlike some of the differentiation reactions leading to various model complexities (Table T

4.1).

The classical, widely used lineage hierarchy (model A) is together with model G the simplest model

with the least parameters. In contrast, model J (see Figure 4.10) includes all in literature discussed

differentiation paths resulting in the most complex model out of the 10 considered models.

To analyse which lineage hierarchies are plausible and which ones can be rejected based on our

experimental data, we implemented and fitted a set of 10 biologically motivated lineage hierarchies.
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Model # Reaction rates Reactions

model A 21 R1 −R8, R12 −R13, R16 −R18, R20 −R27

model B 22 R1 −R8, R12 −R13, R16 −R27

model C 23 R1 −R8, R11 −R13, R16 −R27

model D 22 R1 −R8, R11 −R13, R16 −R18, R20 −R27

model E 24 R1 −R8, R10, R12 −R14, R16 −R27

model F 23 R1 −R9, R13, R16 −R18, R20 −R27

model G 21 R1 −R8, R10, R12 −R13, R17, R18, R20 −R27

model H 22 R1 −R9, R13 −R14, R16 −R18, R20 −R27

model I 22 R1 −R8, R10, R12 −R13, R17 −R27

model J 27 R1 −R27

Table 4.1: Complexity of models A-J

ODE system

As hundreds of cells are observed in bulk in the experiment, the cell division and differentiation

process is described deterministically with ODEs (see 2.1). Under the assumption that the cell

culture medium contains a sufficiently high concentration of the 8 growth factors, which is higher

than the amount required for cell growth, one can model cell growth as an unlimited process

with constant proliferation rates. Note, that for MLPs the out-flux reaction is defined as net

differentiation and describes differentiation combined with cell death. As the MLP downstream

compartment is not measured, the individual MLP rates can not be estimated accurately and

combining them is the only possibility to ensure structural identifiability of model parameters and

thus to obtain accurate parameter estimates.

Figure 4.10: Compartmental model with model extensions to include the number of cell divisions
and intermediate states for realistic rate distribution assumptions, exemplary shown for lineage
hierarchy J. Unknown rates describe cell type specific proliferation, differentiation and death rates
(parameter vector). Graphic is taken from Bast et al. [2021] and was slightly modified.

The ODE system describing the evolution of the cell concentrations over time for each compartment
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can be derived from the reactions above by applying the law of mass action. As all reaction rates

are positive, differentiation and cell death reduces and proliferation increases the number of cells

within the compartment proportionally to the cell concentration of the respective compartment at

time t. The model equations are in the following derived in several steps, including a first extension

to incorporate the number of cell divisions and a second extension to incorporate intermediate

states, which ensure realistic time distributions for division, differentiation and death reactions

(see Figure 4.10).

As an example, the ODE system for model A without intermediate states (nIS = 1) and neglecting

the number of undergone cell divisions is given by

ẋ1 :=
d[HSC]

dt
= −(αHSC→MPP − βHSC + γHSC)[HSC]

ẋ2 :=
d[MPP ]

dt
= αHSC→MPP [HSC]− (αMPP→CMP + αMPP→MLP − βMPP + γMPP )[MPP ]

ẋ3 :=
d[MLP ]

dt
= αMPP→MLP [MPP ]− (αMLP→... − βMLP )[MLP ]

ẋ4 :=
d[CMP ]

dt
= αMPP→CMP [MPP ]− (αCMP→GMP + αCMP→MEP − βCMP − γCMP )[CMP ]

ẋ5 :=
d[GMP ]

dt
= αCMP→GMP [CMP ]− (αGMP→M − βGMP + γGMP )[GMP ]

ẋ6 :=
d[MEP ]

dt
= αCMP→MEP [CMP ]− (αMEP→M − βMEP + γMEP )[MEP ]

ẋ7 :=
d[M ]

dt
= αGMP→M [GMP ] + αMEP→M [MEP ]− (βM + γMEP )[M ] (4.1)

with initial conditions x(0) = x0.

For any model hierarchy (see Figure 4.9 A-J), the ODE system for nIS = 1 can be formulated as

ẋj :=
dSj
dt

=
∑
i∈Ij

αi→j · Si(t) +

βj − γj −∑
o∈Oj

αj→o

 · Sj(t), (4.2)

∀j = 1, ..., |S|, where Ij is the set of influx compartments and Oj the set of outflux compartments

of the respective species Sj ∈ S and the initial conditions are given by x(0) = x0.
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Figure 4.11: Waiting time distributions for 1-5 intermediate states assuming a mean reaction
(proliferation, differentiation or death) rate of 1/20 [h-1]. Graphic is taken from Bast et al. [2021].

Incorporating the information of the number of cell divisions Ndiv, the ODE system is expanded by
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introducing additional states which indicate not only the cell type but also the number of divisions

occurring within the time interval of interest [t0, t
obs
i ] (see Figure 4.9). Hence, each ODE describes

the evolution of cell abundances of species Sj,ndiv ∈ S, j = 1, ...|S| which divided ndiv ∈ {0, ..., Ndiv}
times over time t, which is denoted as

d[Sj,ndiv ]

dt . This leads to an ODE system of Ndiv ·nc equations:

dSj,0(t)

dt
=

∑
i∈Ij

αi→j · Si,0(t) +

βj − γj − ∑
o∈Oj

αj→o

 · Sj(t)
:= ẋ(j−1)·Ndiv+1

dSj,ndiv
(t)

dt
= 2βj · Sj,ndiv−1(t) +

∑
i∈Ij

αi→j · Si,ndiv
(t)−

βj + γj +
∑
o∈Oj

αj→o

 · Sj,ndiv
(t)

:= ẋ(j−1)·Ndiv+ndiv+1

dSj,Ndiv
(t)

dt
= 2βj · Sj,Ndiv−1(t) +

∑
i∈Ij

αi→j · Si,Ndiv
(t) +

βj − γj − ∑
o∈Oj

αj→o

 · Sj,Ndiv
(t)

:= ẋj·Ndiv
(4.3)

where ndiv = 1, ..., Ndiv − 1, j = 1, ..., |S| and initial conditions x(0) = x0.

According to the law of mass action, the waiting time T for a reaction to occur is anti-proportional

to its reaction rate r and follows an exponential distribution

T ∼ exp(r), r ∈ {α(.), β(.), γ(.)}.

This is in contrast to the observation that the considered processes cell division, differentiation,

and cell death require a minimum time to be completed. To more accurately describe transition

times between cell states, we introduced intermediate states and further expanded the model (see

Figures 4.10 and 4.14).

By introducing intermediate states, the waiting time to stay in a particular state corresponds to

the sum of exponentially distributed waiting times of its nIS intermediate states and is thereby per

definition Erlang(nIS , r) distributed [Matis and Wehrly, 1990]. This model extension results in an

ODE system with

Neq =

{
Ndiv ·

((
nIS ·

∑|S|
j=1(noutj + 2)

)
+ 1
)
, nIS > 1

Ndiv · |S| , nIS = 1

}
(4.4)

equations, where noutj is the number of outfluxes of compartment Sj and nIS is the number of

intermediate states within each compartment Sj . Each ODE describes the time evolution of the

number of cells of species Sj ∈ S that divided ndiv ∈ {0, ..., Ndiv} times and are in the j-th

proliferation, the k-th differentiation and the m-th cell death intermediate state, which is denoted

by
d[S

(k,l,m)
j,ndiv,io

(t)]

dt , k, l,m = 1, ..., nIS , and io = 1, ..., noutj and ndiv = 1, ..., Ndiv. The ODE system is
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given by

d[S
(0,0,0)
j,ndiv,1

]

dt
:=



nIS ·

(∑
i∈Ij

αi→j · S(0,nIS ,0)
i,ndiv,1

(t)

−(βj +
∑
o∈Oj

αj→o + γj) · S(0,0,0)
j,ndiv,1

(t)

)
, if ndiv = 0

nIS ·

(∑
i∈Ij

αi→j · S(0,nIS ,0)
i,ndiv,1

(t)

−(βj +
∑
o∈Oj

αj→o + γj) · S(0,0,0)
j,ndiv,1

(t)

+βj · S(nIS ,0,0)
j,ndiv−1,1(t)

)
, if ndiv ∈ {1, ..., Ndiv − 1}

nIS ·

(∑
i∈Ij

αi→j · S(0,nIS ,0)
i,ndiv,1

(t)

−(βj +
∑
o∈Oj

αj→o + γj) · S(0,0,0)
j,ndiv,1

(t)

+βj · S(nIS ,0,0)
j,ndiv−1,1(t) + 2 · βj · S(nIS ,0,0)

j,ndiv,1
(t)
)

, if ndiv = Ndiv

= ẋ(j−1)·(Ndiv·(2·nIS+1)+
∑j−1

c=1 n
out
c ·nIS ·Ndiv+(ndiv+1)

d[S
(k,0,0)
j,ndiv,1

(t)]

dt
:= nIS · βj

(
S

(k−1,0,0)
j,ndiv,1

(t)− S(k,0,0)
j,ndiv,1

(t)
)

= ẋ(j−1)·(Ndiv·(2·nIS+1)+
∑j−1

c=1 n
out
c ·nIS ·Ndiv+(ndiv+k+1)

d[S
(0,0,m)
j,ndiv,1

]

dt
:= nIS · γj

(
S

(0,0,m−1)
j,ndiv,1

(t)− S(0,0,m)
j,ndiv,1

(t)
)

= ẋ(j−1)·(Ndiv·(2·nIS+1)+
∑j−1

c=1 n
out
c ·nIS ·Ndiv+(ndiv+m+nIS+1)

d[S
(0,l,0)
j,ndiv,io

]

dt
:= nIS · αj→io

(
S

(0,l−1,0)
j,ndiv,io

(t)− S(0,l,0)
j,ndiv,io

(t)
)

= ẋ(j−1)·(Ndiv·(2·nIS+1)+
∑j−1

c=1 n
out
c ·nIS ·Ndiv+(ndiv+l+io+2·nIS+1) (4.5)

where ndiv = 0, ..., Ndiv, io = 1, ..., noutj , k, l,m = 1, ..., nIS , j = 1, ..., |S| and initial condi-

tions x(0) = x0. The model allows to describe up to Ndiv division compartments per cell type

compartment and if cells divided more often (more than Ndiv times), they accumulate in the Ndiv-

compartment of the respective species Sj .

Note that for both model extensions, the number of states increases, but the number of parameters

stays constant.

Model assumptions

In order to perform MLE (see section 4.3), biologically meaningful boundaries for parameter values

θ need to be specified (see table T 4.2). I assumed a minimum mean transition time of 1 and a

maximum mean transition time of 500 hours for proliferation, differentiation and cell death times.

For initial conditions of the first HSC compartment (ndiv = 0), I assumed the lower parameter

boundary to be equal to the lowest observed number of HSCs which divided once at the first

observed time point t1. and an upper boundary equal to the HSC starting population Ninput. For

other compartments the lower boundary for the initial condition is 0 cells and the upper boundary

is the maximum plus 10% of the observed number of Cells in the respective compartment at the

first observed time point t1.
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parameter boundaries

βSj , γSj , αSj1→Sj2 ,
[

1
500 , 1

]
h−1

where Sj , Sj1, Sj2 ∈ S
x

(w)
0

[
min
r

{
y
D(w,r)
1,0 (t1)

}
, Ninput

]
, if j = 1 (for HSCs)[

0,max
r

{
y
D(w,r)
j,0 (t1)

}
+ 0.1 ∗max

r

{
y
D(w,r)
j,0 (t1)

}]
, otherwise

Table 4.2: Parameter boundaries used for fitting model to experimental data

4.3 Parameter inference

In order to assess how well M(θ) fits the experimental data for a certain set of parameters θ, the

log-likelihood `D(θ) is calculated and maximized as introduced in section 2.2.1. The 10 considered

models contain between 29 and 42 unknown parameters θ = (θ1, ..., θnθ), which are the reaction

rates βSj , γSj , αSj1→Sj2 , where Sj , Sj1, Sj2 ∈ S and the initial conditions of repetition w ∈ {1, 2} is

given by x(w)(0) = xw0 (θ), where

x
(w)
0 (θ) = S

(k,l,m)(w)
j,ndiv ,io

(0) =

{
θj , if ndiv = k = l = m = 0 and io = 1

0, otherwise

for j = 1, ..., |S|, repetition w ∈ {1, 2} and ndiv = 1, ..., 6. These parameters are estimated by min-

imizing the weighted difference between observed and modelled cell counts by applying maximum

likelihood estimation.

Let M(θ) be a particular model consisting of dynamics ẋ = f(x, θ) and model observables yM =

h(x, θ):

M(θ) :


ẋ = f(x, θ) =

{
d[S

(k,l,m)
j,ndiv,io

](t)

dt

}
, x(w)(0) = xw0 (θ),

yM = h(x, θ) =

{∑nIS
k,l,m=0

∑njout
io=1[S

(k,l,m)
j,ndiv ,io

](t)

}
 , (4.6)

where j = 1, ..., |S|, k, l,m = 1, ..., nIS , io = 1, ..., njout, ndiv = 1, ..., Ndiv and w ∈ {1, 2} and let

D =
{
ts, y

D
j,ndiv

(ts)
}
s=1,..,nt, j=1,...,|S|, ndiv=1,...,Ndiv

(4.7)

be the data (see Figure 4.4). Here yD(ts) denotes the vector of observed cell counts of species

j = 1, ..., |S| that divided ndiv = 1, ..., Ndiv times at time ts of a particular individual. For param-

eter estimation, I assumed the observations yDj,ndiv(ts) are subject to multiplicative log-normally

distributed measurement noise

yDj,ndiv(ts) = yMj,ndiv(ts) · ν, with ν ∼ logN (0, σ2
j,ndiv

) (4.8)

log(yDj,ndiv(ts)) = log(yMj,ndiv(ts)) + ε, with ε ∼ N (0, σ2
j,ndiv

)

due to counting errors (i.e. technical error of the FACS machine) or false cell type assignment while

processing raw FACS data by gating (see section 2.2.1.1).
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4.3.1 Maximum likelihood estimation

According to the assumed multiplicative log-normally distributed measurement noise the log-

likelihood function `D(θ) is defined as

`D(θ) = −1

2

nw∑
w=1

nr∑
r=1

nt∑
s=1

Ndiv∑
ndiv=1

|S|∑
j=1

log(2πσ2
j,ndiv

) +


(

log(y
D(w,r)
j,ndiv

(ts) + 1)− log(y
M(w,r)
j,ndiv

(ts, θ) + 1)
)2

σ2
j,ndiv

 .

(4.9)

In order to estimate the unknown parameter vector θ, the optimization problem

θML = argmax
θ

subject to M

`D(θ), (4.10)

is solved using local hierarchical optimization [Loos et al., 2018] with trust-region-reflective algo-

rithm [Moré and Sorensen, 1983] and nMS = 1000 multi starts (see section 2.2.1.2). With the

hierarchical optimization approach σ2
j,ndiv

, j = 1, ...., |S|, ndiv = 1, ..., ndiv is analytically calculated

each time the log-likelihood function is evaluated. The noise parameter is therefore not part of the

parameter vector θ. The starting values (θstarti )i=1,...,nMS (initial parameter vectors) are determined

according to latin hypercube sampling [Eliáš and Vořechovskỳ, 2016]. The resulting optimal pa-

rameter is observed at the highest `D value. To ensure that the optimization procedure converged,

I checked if the highest log-likelihood value is observed several times for different starting values.

Figure 4.12: While optimizing parameters of healthy donor (H311) with model A for nMS = 1000
different starting values the highest log likelihood value (right upper panel) and the corresponding
optimal parameter values (left) was found more than 10 times (right bottom panel).
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As can be seen in Figure 4.12, the highest log-likelihood value (`D(θML) = −244) is observed several

times (more than 10 times), suggesting the algorithm converged to the local optimum within the

defined parameter boundaries (see Table 4.2). I performed this analysis for all measurements

observed at ti ∈ [1, 7] of each sample individually and with every model hierarchy A-J using

MATLAB toolboxes AMICI [Fröhlich et al., 2016] for model definition and PESTO [Stapor et al.,

2017] for parameter estimation.
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Figure 4.13: Model A fitted (line) to experimental data obtained from bone marrow sample of a
healthy donor (H311, dots). The error band corresponds to the model fit for the optimal parameter
±2σ̂ and depicts the model uncertainty. Rows indicate cell type compartments and the first seven
columns refer to division compartments. The last column shows the sum over division compart-
ments for every cell type compartment and was not explicitly fitted. Graphic is taken from Bast
et al. [2021].
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An exemplary model fit can be seen in Figure 4.13. The ODE model for hierarchy A is able to

explain the experimentally observed cell counts of the various compartments for sample H311 with

the introduced parameter inference approach. This has likewise been observed for almost every

other donor sample regardless of disease status.

For very few donor samples either the number of cells, or the number of time points analysed, or

both were not sufficient, which led to inaccurate measurements and poor model fits. These samples

have been discarded from the analyses and are not included in the results depicted in following

sections.

4.3.2 Identifiability analysis

To analyse parameter identifiability, I performed a structural and a practical identifiability analysis

(see section 2.2.3). A structural identifiability analysis was performed using a method introduced

by [Villaverde and Banga, 2017] and the MATLAB toolbox STRIKE-GOLDD [Villaverde et al.,

2019a]. This analysis revealed which parameters are unidentifiable for the different hierarchies

if one assumes ideal noise-free data with a large sample size. The results for models A-J under

the assumption of no and three intermediate states can be found in Table T4.3. Interestingly,

increasing the state space by introducing 3 intermediate states improves the structural identifiability

of parameters, as for nIS = 3 only the initial conditions are non-identifiable.

Model Unidentifiable parameters

nIS = 1 nIS = 3

model A x0(θ) x0(θ)
model B x0(θ) x0(θ)
model C aGMP→M , gGMP ,x0(θ) x0(θ)
model D aGMP→M , gGMP ,x0(θ) x0(θ)
model E aCMP→MEP , gCMP ,x0(θ) x0(θ)
model F x0(θ) x0(θ)
model G x0(θ) x0(θ)
model H x0(θ) x0(θ)
model I x0(θ) x0(θ)
model J aMLP→GMP , aMLP ,x0(θ) x0(θ)

Table 4.3: Unidentifiable parameters for models A-J

Practical identifiability as introduced in section 2.2.3.2 was analysed by calculating the Profile-

Likelihood-based confidence intervals for all maximum likelihood estimates, which can be seen in

Figures 4.15 (see section 4.4), 4.18, and 4.22 (see section 4.5). Depending on the sample and the

respective rate, parameters obtained very narrow confidence intervals, or rather broad confidence

intervals, but were in most cases practically identifiable. The confidence intervals of some cell death

and differentiation rates of downstream compartments as for instance MEP and GMP reached the

upper or lower parameter boundary and were thus not practically identifiable.
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4.4 Comparison of lineage hierarchies

To computationally test the plausibility of the 10 lineage hierarchies (see Figure 4.9), I performed

parameter estimation with all modelsMq ∈ {A,B,C,D,E, F,G,H, I, J} for a subset of 10 healthy

individuals (H439, H547, H482, H522, H370, H353, H311, H380, H312, H559) of varying ages.

Determination of Hyperparameter

First, I optimized the number of intermediate states nIS that are required to accurately and ef-

ficiently estimate and practically identify model parameters. To optimize this hyperparameter at

affordable computational cost, I randomly picked a subset of 4 samples (H353, H559, H482, H522)

and fitted them with every model Mq for a range of nIS ∈ {1, 2, 3, 4, 5} intermediate states. One

can observe that for all models A-J the log-likelihood increases with nIS (see Figure 4.14 A). How-

ever, the mean percentage increase in log-likelihood per additional intermediate state is below 3%

if the model contains more than 3 intermediate states. As the percentage of practically identifiable

parameters plateaus at 3 intermediate states (see Figure4.14 B) and the computation time per

sample increases exponentially with nIS (see Figure4.14 C), I fixed the hyperparameter nIS and

performed the remaining analysis with 3 intermediate states.
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Figure 4.14: Mean log likelihood for fitting models A-J (10 lines) to 4 individual samples increases
with any additionally introduced intermediate state nIS (A). Mean percentage of practically iden-
tifiable parameters sorted by models A-J (10 lines) based on 4 individual samples (B). Log mean
computation time in hours for fitting models A-J (10 lines) to the 4 individual samples increases
with the number of intermediate states irrespective of the model hierarchy. For every sample and
lineage hierarchy, optimization of 1000 multi starts was run in parallel on 24 workers (C). Graphic
is taken from Bast et al. [2021].

Performance assessment of the 10 lineage hierarchies

After fixing the hyperparameter to nIS = 3 intermediate states, I fitted every model A-J to all 10

samples from healthy donors (see Figure 4.15 for parameter estimates and their 95% confidence

intervals resulting from fitting with model A) and ranked the different models based on their BIC

value (see equation 2.29 in section 2.3.2) to compare them.

The BIC values for modelsMq ∈ {A,B,C,D,E, F,G,H, I, J} with nIS = 3 intermediate states for

every individual separately and in total are visualized in Figure 4.16 A. Additionally, we assessed

how often a respective model was the best performing one (lowest score amongst the considered

models), amongst the plausible models (BIC difference in score to best model < 10), or how often

it was rejected (BIC difference to best model ≥ 10) and summarized this result in a stacked barplot
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(see Figure 4.16 B). Based on our analysis, there is no evidence in our data for models E, H, and

J, which were rejected for all donor samples according to BIC. Models C, F and I also performed

poorly, as they were rejected for 80-90% of samples.
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Figure 4.15: Optimal parameter values (dots) with 95% confidence intervals (boxes) resulting from
fitting model A to all 10 samples. Graphic is taken from Bast et al. [2021].

The only model which was not rejected by a single sample is the classical lineage hierarchy A.

It was selected as the best performing model in 90% of the samples based on BIC. Interestingly,

model B has been considered as plausible for 90% of the samples according to BIC. There is also

some evidence for models D and G, which are plausible for 30% of the samples.

To investigate if the outstanding performance of model A mainly stems from its low complexity, we

additionally calculated the Akaike Information criterion (see equation 2.27 in section 2.3.2, Figure

4.16 C,D). As this selection criteria penalizes the number of parameters in the model differently

than BIC, it can potentially select and reject different models. As can be seen in Figure 4.17,
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AIC is a less conservative scoring method compared to BIC for the number of datapoints nobs ∈
[49 · 3, 49 · 7] that were used for the fit and the absolute differences in the number of parameters

|nMi
θ −nMj

θ | ∈ [0, 6] , i, j = 1, ..., 10. For AIC we again found support for models A and B whereas

models E, F, H, I and J performed as poorly as in the BIC ranking (Figure 4.16 C,D). According

to AIC there is more evidence for model C (rejected in only 60% of samples as compared to 80%

with BIC) and model D (rejected in only 40% of the samples respectively compared to 70% with

BIC), but not for model G (rejected in 70% of the samples for both criteria). With a rejection

percentage of at least 70% of samples according to both criteria (AIC and BIC), models E-J can

be overall rejected.
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Figure 4.16: BIC (A) and AIC (C) values resulting from fitting all considered lineage hierarchies
A-J to samples of 10 healthy individuals. Three categories were defined based on BIC scoring:
models were categorized into best (for the lowest score, dark gray), plausible (a difference to the
lowest score of less than or equal to 10, light gray) and rejected (a difference to the lowest score of
more than 10, white) models for each donor sample. The stacked barplots of BIC (B) and AIC (D)
values details the relative frequency in % of a model to belong to one of the three categories based
on the 10 donor samples. Graphic is taken from Bast et al. [2021] and was slightly modified.
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Figure 4.17: Critical values for rejecting a model over another less complex model according to
BIC and AIC for a difference in number of parameters of 1 to 6 are shown for the upper and lower
boundary of observations. BIC shows larger critical values and is thus always a more conservative
criterion compared to AIC. Graphic is taken from Bast et al. [2021].

4.5 Comparison of healthy and perturbed hematopoiesis

Fitting the best performing model A (see section 4.4) to all available donor samples allowed me to

resolve parameter changes that arise with age in healthy individuals (see Figure 4.18), and with

disease in comparison to healthy age-matched controls (see Figure 4.22).

Age-related changes in human hematopoiesis

To statistically test if donor age has a significant influence on parameters, I performed a linear

regression analysis for each rate (target variable) with donor age as covariate. I found that most

rates do not significantly change, only HSC and CMP proliferation rates and the CMP death rate are

significantly decreasing (p = 0.015, p = 0.026 and p = 0.029 respectively) with age on a significance

level of α = 0.05 (see Figure 4.19). After correction for multiple testing with Bonferroni [Miller,

1966], none of these p-values (0.315, 0, 546 and 0.609, respectively) is significant. Moreover, this

linear regression analysis does not take practical parameter identifiability into account and CMP

death rates were not practically identifiable for most individuals (see Figure 4.18), such that one

can only conclude that decreased HSC and CMP proliferation rates mainly contribute to an age-

related decrease in hematopoiesis, as they were overall practically identifiable.

Interestingly, Busch et al. [2015] found with their computational approach based on in vivo mouse

lineage tracing experimental data, that the differentiation from MPPs to CMPs stays constant with

age, while differentiation towards the lymphoid lineage declines with age. Based on my analysis

on human in vitro data, both differentiation rates (αMPP→MLP and αMPP→CMP ) decline slightly,

but not significantly with age (see Figure 4.19).

Importantly, the here uncovered decrease in HSC and CMP proliferation rates with age can explain

why a larger fraction of HSCs is observed with age (see section 4.1 and Figure 4.5): decreasing HSC
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and CMP proliferation leads to a reduction in newly produced HSCs and HSPCs, and subsequently

to a drastic reduction in newly produced mature cells, which can be seen in the yield distributions

for young and aged individuals (see Figure 4.7). Thus, the decrease in the two proliferation rates

also supports theory (iii), as introduced in Figure 4.6.
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healthy hematopoiesis. Graphic is taken from unpublished manuscript Buck et al.
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To resolve kinetic differences at the cell type level that occur with acquired mutations (see Figure

4.20), I fitted data from CHIP and MDS donors (donor information including age, gender and

mutations detected in donor stem cells is listed in Figure 4.21) with model A and compared inferred

rates to estimates from age-matched healthy samples (see Figure 4.22).
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MDS donors additional information about WHO subtype, Karyotype and IPSS-R score indicating
severity of disease is listed. Graphic is taken from unpublished manuscript Buck et al.

To identify considerably increased or decreased rates in MDS patients or CHIP individuals (see

Figure 4.23), I calculated a common 95% confidence interval for rate estimates of healthy donors

without mutations and used its uper and lower boundary as cut-off values for dysregulated rates in

CHIP and MDS. As the optimization approach does not reveal the full posterior distribution of each

individual rate estimate, I approximated the 95% confidence interval by calculating the percentiles

of a sampled common rate distribution of all healthy donors (see dark blue error band in Figure

4.22). Therefore I assumed that the posterior distribution of each individual rate corresponds to a

log-normal distribution. This assumption is reasonable as

(i) rate estimates are per definition always positive and

(ii) the lower bound of the individual profile likelihood-based confidence intervals are for all

rates closer to the optimal rate value than the upper bound,

two features which can adequately be described by a log-normal distribution. In order to determine

a common distribution of all healthy donors, I sampled n = 1000 random numbers from 5 log-normal

distributions, each belonging to a healthy donor and each obtaining different shape parameters

based on the respective individual rate estimate and the corresponding profile likelihood-based

95% confidence interval
[
CI l(i,j), CI

u
(i,j)

]
.

Let rH(i,j), i = 1, ..., 21, j = 1, ..., 5 be the estimates of the reaction rates βSj , γSj , αSj1→Sj2 , where

Sj , Sj1, Sj2 ∈ S, each belonging to one out of 5 healthy donors without mutations. Let X be a

log-normally distributed random variable

X ∼ logN (µ, σ).
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Figure 4.22: Optimal parameter values (dots) and their 95% confidence intervals (bars) resulting
from fitting healthy age-matched (blue), CHIP (green), and MDS (red) donor samples with model A.
Blue band shows the common 90% confidence interval for rate estimates of healthy donors without
mutations, which was used as cutoff for dysregulated rates in MDS and CHIP (dots outside the
blue band). Graphic is taken from unpublished manuscript Buck et al.

Then its mean E(X) and α-quantiles Qα(X) are given by

E(X) = eµ+σ2

2

Qα(X) = eµ+qΦ(α)·σ, (4.11)
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where qΦ(α) is the α−quantile of the standard normal distribution N (0, 1).

Thus, by assuming the rH(i,j) follow a log-normal distribution with distribution parameters µ(i,j) and

σ(i,j) ∀i and j and then solving equations

rH(i,j)
!
= eµ(i,j)+

σ2
(i,j)
2

CI l(i,j)
!
= eµ(i,j)+qΦ(0.025)·σ(i,j)

CIu(i,j)
!
= eµ(i,j)+qΦ(0.975)·σ(i,j) (4.12)

for µ and σ, one can approximate the log-normal distribution parameters which are given by:

µ̂(i,j) = ln
(
rH(i,j)

)
−
σ̂2

(i,j)

2
(4.13)

σ̂(i,j) =

qΦ(0.975) +

√
qΦ(0.975)2 − 2 ln

(
CIu

(i,j)

rH
(i,j)

)
+ qΦ(0.025)−

√
qΦ(0.025)2 − 2 ln

(
CIl

(i,j)

rH
(i,j)

)
2

.

By sampling n = 1000 random numbers from each individual logN (µ̂(i,j), σ̂(i,j)) distribution,

j = 1, ..., 5, i = 1, ..., 21 and calculating the 0.05 and 0.95 percentiles of the 5000 pooled random

numbers for each i = 1, ..., 21, I approximated the 90% confidence interval for all i = 1, ..., 21 rates

based on their estimates and their individual profile likelihood-based confidence intervals of all age-

matched healthy donors. A rate of a CHIP or MDS sample is then defined as strongly increased, if

their rates estimate is above the upper common 90% confidence bound and as strongly decreased if

it is below the lower common 90% confidence bound of the common confidence interval of healthy

age-matched donors (see Figure 4.22).

In CHIP samples, accelerated rates were found in both early and later progenitor stages, but

decelerated rates were only observed at later progenitor stages (see Figure 4.23 bottom row). While

HSC and MPP proliferation was higher in C391, where a DNMT3A mutation was detected with a

variant allele frequency (VAF) of 12% (see Figure 4.21), I also found deregulation of later progenitor

stages in a sample with a DNMT3A mutation (C345, VAF = 4% and C561, VAF = 1%) 4.23).

Surprisingly, in two CHIP samples (C560, VAF=5% and C348, VAF=25%), no rates were identified

to be strongly dysregulated.

In MDS samples, HSC proliferation was clearly outside the healthy range for MDS326 and MDS354

(see Figure 4.22) with a proliferation rate of 0.053 h−1 (95% CI [0.047, 0.061]h−1) and 0.062h−1

(95% CI [0.058, 0.067]h−1), as shown in Figure 4.22). For all 9 MDS cases we found at least one rate

that was outside the 90% CI of the healthy age-matched group. While HSC rates were considerably

deregulated for MDS140, MDS326, MDS354, MDS377, deregulated rates also appeared at later

progenitor stages in other MDS samples (MDS279, MDS135, MDS227, MDS373, MDS360) where

MPP, MEP, GMP, MEP or CMP proliferation was considerably altered (see Figure 4.23). Thus,

changes in rates were not restricted to the HSC compartment, but were heterogeneously observed

throughout the hierarchy in the MDS samples we studied. In both CHIP and MDS, deregulation

affected proliferation, differentiation and cell death rates not only in the HSC compartment, but

also further downstream in the hematopoietic hierarchy.
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Figure 4.23: Increased (red) and decreased (green) rates for every donor sample with MDS (upper
row) or CHIP (bottom row). Graphic is taken from unpublished manuscript Buck et al.

To analyse whether the heterogeneity of deregulated rates in MDS segregated into discernable sub-

groups, I performed a weighted principal component analysis (PCA) on the estimated parameters

(see Figure 4.24). PCA is a linear transformation method which calculates the directions that

maximize the variance of the data and are called principal components. Thus, a PCA of all rate

estimates, which are stored in matrix X ∈ Rnrates×npatients , allows us to compress the information

of the rate estimates by projecting the nrates dimensional information of each patient to a lower

dimensional space. This lower dimensional space is spanned by the principal components that

explain most of the variance between the individuals.

In order to perform a weighted PCA, I defined a weight w(i,j) for each rate i and sample j. The

weights were calculated by taking into account the parameter uncertainty, represented by the pro-

file likelihood-based 95% confidence intervals
[
CI l(i,j), CI

u
(i,j)

]
of the rate estimates θ(i,j), and the

number of data points nDobs,j used for the parameter inference of sample j. I thereby weight pa-

rameter estimates higher are if more data points were observed and if their confidence intervals are

relatively small as this results in more accurate and reliable parameter estimates. The weights

wr(i,j) :=
rmaxi − rmini
CIu(i,j) − CI

l
(i,j)

∈ [0, 1], i = 1, ..., nrates, j = 1, ..., nsamples

are then higher for low parameter uncertainty, which corresponds to a small confidence interval

and the weights

wD(i,j) =
nDobs,j∑npatients

j=1 nDobs,j
∈ [0, 1], i = 1, ..., nrates, j = 1, ..., nsamples

are higher if many data points were observed for patient j and used to fit the respective rates.

Upon normalization, the overall weights in weight matrix W are then given by
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w(i,j) =

wr
(i,j)∑nrates

i=1

∑npatients
j=1 wr

(i,j)

+ wD(i,j)

2
∈ [0, 1]. (4.14)
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Taking into account the weight w(i,j) of each parameter i and sample j, the weighted principal

components can be calculated by singular value decomposition of the weighted covariance matrix

of the data matrix X, which is given by

σ2
w =

(X �W )(X �W )T

WW T
,
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where W ∈ Rnrates×npatients is the matrix of weights for each observation in X and � denotes the

element-wise product.
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Figure 4.25: Percentage of total (bars) and cumulative (line) explained variance for all 21 principal
components of PCA shows more than 60% of the variance is explained by the first two principal
components. Graphic is taken from unpublished manuscript Buck et al.

Each Eigenvector of the weighted covariance matrix can be interpreted as the rate contribution

to the respective principal component (see Figure 4.24) and the absolute value of each eigenvalue

normalized to the total sum of absolute eigenvalues defines how much of the variance in the data

is explained by the corresponding principal component (see Figure 4.25). By defining matrix

U ∈ Rnpatients×nPCs , which contains the nPCs Eigenvectors with the highest absolute eigenvalues as

rows, we can transform the data to the principal component space by calculating

Y = X · U,

as it has been done for rate estimates of healthy donors with and without CHIP (see Figure 4.24).

Interestingly, the heterogeneity between MDS samples can be mainly explained by differentiation

and proliferation rates of early HSPC compartments. This can be seen in Figures 4.24 and 4.25,

which show the explained variance per principal component and the rates of MDS patients that

mainly contributed to PC1 and PC2. In the PCA plot (Figure 4.24), CHIP samples fell between

healthy controls and MDS samples, in accordance with previous observations of co-existing mutated

and unmutated HSCs in CHIP and almost exclusively mutated HSCs in MDS ([Pang et al., 2013]).



98 CHAPTER 4. APPLICATION II: MODELING ADULT HEMATOPOIESIS

Figure 4.26: Projection of MDS patients and healthy donors to two-dimensional space spanned by
PC1 and PC2 with donor information platelet level (top left), IPSSR-Score (middle left), World
Health Organization (WHO) classification (bottom left), number of mutations (top right), and blast
percentage (middle right) categories as color code. Graphic is taken from unpublished manuscript
Buck et al.

Interestingly, some MDS cases were at the border or clearly outside the confidence areas defined

by healthy age-matched samples with and without CHIP, while others showed kinetics that were

consistent with the age-matched controls (see Figure 4.24). Mapping patient features on the PCA,

we found no obvious correlation of HSPC kinetics with IPSS-R Score, WHO classification, number of

MDS-related mutations, or blast percentage (see Figure 4.26). Interestingly, we found no obvious

correlation of rates with either ASXL1 or SF3B1 mutations: both mutational subtypes showed

deviations from the healthy age-matched controls (see Figure 4.26). However, MDS patients with

similar kinetics to healthy age-matched samples showed increased or normal platelet levels whereas
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MDS patients that observably differed from healthy donors had decreased platelet levels (see Figure

4.26). However, to draw general conclusions, a larger sample size will be required to investigate

patient feature correlation with estimated kinetic rates.

4.6 Validation of modelling results

To test the reliability of the modelling and model selection results, I performed an in silico analysis

to test if all parameters can be accurately and precisely be estimated for model A for a known

realistic test parameter vector. To also validate the approach for the comparsion of lineage hi-

erarchies, I expanded this initial in silico analysis and subsequently performed a comprehensive

robustness test on in silico data with varying noise levels and considering all model hierarchies.

As a second validation step for model A, I compared the model simulation to experimental data

observed from the same sample at later time points which have not been used for the model fit. In

addition, I compared parameter trends to independent data from another study in mice, in which

hematopoiesis has been modelled and rates have been estimated with a similar approach.

4.6.1 In silico analysis

In silico analysis for model A

To analyse how accurate and precise parameters can be estimated with model A an in silico analysis

was performed. Assuming a realistic test parameter vector, I generated data by simulating with the

test parameter from model A and perturbing data points with multiplicative log-normal noise of

four different noise levels (see dots in Figure 4.27 A-B): weak noise (σj,ndiv = 0.4 ∀j, ndiv), middle

(σj,ndiv = 0.8 ∀j, ndiv), strong (σj,ndiv = 1.2 ∀j, ndiv) and realistic (σj,ndiv ∈ [0.6, 1.1] ∀j, ndiv).
The realistic noise level is equal to the mean of the estimated noise parameters calculated from

fitting the samples of all individuals with model A. For weak noise, the measurement points deviate

only lightly from the simulated values, whereas for strong noise the perturbed measurements scatter

strongly (see Figure 4.27 B). The test parameter was calculated by averaging the optimal parameters

observed based on samples from healthy individuals (without CHIP).

I fitted model A to the simulated data and could observe that for the assumed realistic noise level,

true and fitted model agree well for almost any cell type and division compartment. Comparison of

test parameter values to optimal values and their 95% PL confidence intervals (see red and black

dots with grey bars in Figure 4.27 C) allowed me to assess if the test parameter value lays within

the 95% PL confidence interval (grey bar) and how much true and optimal parameter deviate from

each other. I could observe that all parameters are practically identifiable in the simulated setting

under the assumption of weak noise. For middle, strong and realistic noise levels most parameters

are still identifiable, only (some) progenitor death rates and differentiation from GMPs to mature

cells (αGMP→M ) are practically unidentifiable as they observe confidence intervals that include the

lower boundary of the parameter search interval. Most importantly, the true parameter (red dot

in Figure 4.27 C) is contained in the 95% PL confidence interval for all parameters and noise levels

except αMPP→MLP for strong and realistic noise. Confidence intervals of some parameters (i.e.
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γHSC or γCMP ) are larger for stronger noise levels, whereas for other parameters (i.e. proliferation

rates β(.)) they obtain roughly the same size for all considered noise levels. Moreover, the optimal

parameter differs only slightly from the true test parameter for most parameters and noise levels.

Dependent on the noise level, the absolute difference between test and optimal parameter values

covers at most only 2.9% (weak), 5.7% (middle), 5.8% (realistic), and 5.6% (strong) of the search

interval length, which underpins the high accuracy and precision of the approach, even for high

noise levels.
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Figure 4.27: Model A was used to generate perturbed in silico data samples for a realistic test
parameter (dots) and by assuming cell compartment specific log-normal noise (realistic noise level).
True underlying (unperturbed) model observables (dashed line) and the model observables for the
optimal parameter (solid line) deviate only slightly for the assumed noise level (A). Simulation and
fit of data exemplarily shown for HSCs that divided once and which were simulated and fitted with
model A. Simulated data were perturbed with a noise function assuming weak, middle, strong, and
realistic noise (B). Test parameter values (red dots) for which perturbed samples were simulated
by using model A are for most rates contained in 95% confidence interval (grey boxes) of optimal
parameter values (black dots) (C). Graphic is partly taken from Bast et al. [2021].

In silico analysis for model selection approach

To test the implementation, robustness and accuracy of my model selection approach the above

introduced in silico analysis was performed for each considered lineage hierarchy model Mq ∈
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{A,B,C,D,E, F,G,H, I, J} for nIS = 3 intermediate states. I set the test parameter to the mean

over all maximum likelihood estimates observed from fitting the samples of all healthy individuals

(without CHIP) with the respective model. I again applied different noise levels, which were defined

as weak (σj,ndiv = 0.4 ∀j, ndiv), middle (σj,ndiv = 0.8 ∀j, ndiv), strong (σj,ndiv = 1.2 ∀j, ndiv), and

realistic (σj,ndiv ∈ [0.6, 1.1] ∀j, ndiv). The realistic noise level is equal to the mean of the estimated

noise parameters calculated from fitting the samples of all individuals with the respective model.

I performed MLE (see section 2.2.1) with all 10 models Mq ∈ {A,B,C,D,E, F,G,H, I, J}, q =

1, ..., 10 on all 10 · 4 in silico generated samples to check the accuracy and precision of the analysis

pipeline for all hierarchies and for the different noise levels. Comparing the BIC scores of each

model for each in silico data sample (see Figure 4.28), additionally allows me to investigate if the

ground truth model can successfully be identified as the best performing model. Especially I was

interested in investigating if it is in principle possible to select the true model and not necessarily

the least complex model.

For weak noise (σj,ndiv = 0.4 ∀j, ndiv), the true model performed best and almost all (8 or 9 out

of 9 other models) were rejected according to BIC (see Figure 4.28 A left). For middle noise

level (σj,ndiv = 0.8 ∀j, ndiv), the true underlying model was always at least amongst the plausible

models and identified as the best model for models A, B, C, D, F, and H (see Figure 4.28 B left).

Assuming a strong noise level (σj,ndiv = 1.2 ∀j, ndiv), we found that the true model is only accurately

identified for lineage hierarchies A and D (see Figure 4.28 C left). Model D is however also at least

plausible if the data were simulated from any other model. For model I and the two most complex

models E and J, other models are favoured and the true model is rejected. For realistic noise level

(σj,ndiv ∈ [0.6, 1.1] ∀j, ndiv), 60% of the models are correctly identified as best performing model,

similar to middle noise and the true model was at least amongst the plausible models for 9 out of

10 models (see Figure 4.28 D left).

This analysis shows how crucial the underlying noise is for the robust identification of the true

model. However, model A was only once the best performing model when the in silico data was

generated from another lineage hierarchy (data generated from model E with middle noise) and only

twice considered as plausible (data generated from model B and G with middle noise), suggesting

its low complexity is not the predominant feature of its outstanding performance. For models E and

J on the contrary, the model complexity might have been a barrier in correctly identifying them:

both were never identified as true model when the data were generated from another model and

both were identified at most once as a plausible model. While simulating from model I, model C

was selected as best model for noise levels middle, strong and realistic, despite its higher complexity

(23 vs. 22 parameters), while model I itself was only plausible (middle and realistic noise) or even

rejected (strong noise). For completion, the AIC scores, which represent a less conservative scoring

method, are reported respectively (see Figure 4.28 right) and show a very similar pattern than the

BIC values (see Figure 4.28 left). Based on this analysis I concluded that the parameter inference

approach allows for the robust identification of lineage hierarchies in the presence of noise, if it is

not over prominent. Most importantly, it is unlikely that model A was only selected due to its low

complexity.
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Figure 4.28: BIC (left) and AIC (right) values from fitting models A-J (rows) to data simulated
from models A-J (columns) and perturbing them with weak (A), middle (B), strong (C), and
realistic (D) noise levels. Graphic is partly taken from Bast et al. [2021].
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4.6.2 Comparison of model to dependent and independent data

Model prediction for unseen measurements observed at later time points

To validate the resulting model based on dependent data, I used measurements of sample MDS279

which were not used to estimate θML.

Days

Model fit for optimal parameter +/- 2 std
Experimental observations used for model fit
Experimental observations not used for model fit

M
LP

M
E

P
H

S
C

G
M

P
C

M
P

M
P

P
M

Lo
g 2(n

um
be

r o
f c

el
ls)

 

Number of divisions
    0        1        2        3        4         5      >=6 Sum 

Figure 4.29: Model A (solid line) fitted to measurements of sample MDS279 for time points ti ≤ 7
days (dots) and model prediction compared to measurements of later time points ti > 7 days
(triangles). Sum over cell division compartments (last column) was not considered in log-likelihood
function. Graphic is taken from unpublished manuscript Buck et al.
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As can be seen in Figure 4.29, the model is able to predict later time points not used for the

model fit (triangles) accurately and precisely as measurements lie within error band for almost any

celltype- and division-compartment.

Comparison to independent data based on parameter-based metrics

To further verify the parameter estimation result, I compared parameter results to the results

of another hematopoiesis study. Busch et al. [2015] inferred net proliferation and differentiation

rates from an in vivo mouse labelling experiment. Similar to our approach, they compared young

and aged hematopoiesis and used a compartmental model to infer rates. In contrast to my mod-

elling approach, they considered early hematopoietic stem and progenitor cells, namely long- and

short-term HSCs, MPPs, Common lymphoid progenitors and CMPs as compartments and did not

distinguish between proliferation and cell death rates. To compare the two analyses, I calculated

parameter metrics, which were introduced by Busch et al. [2015]:

Definition 4.1. The cell type specific net proliferation is defined as difference between prolifer-

ation and cell death rate:

βnetj = βj − γj ∀j = 1, ..., |S|.

A value of βnetj > 0 means more cells in compartment j proliferate than die, a value of βnetj < 0

means more cells the compartment j undergo cell death than proliferate. The closer the value to

0, the more balanced are proliferation and cell death in compartment j.

Definition 4.2. The cell type specific cellular exit time describes the time cells spend in com-

partment j on average before they undergo cell death or differentiate and is given by

T exitj =
1∑

o∈Oj αj→o + γj
∀j = 1, ..., |S|.
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Figure 4.30: Net proliferation rates (left) and cellular exit times (right) of HSCs and MPPs for
samples of healthy individuals. Graphic is taken from unpublished manuscript Buck et al.

As mouse and human are not one-by-one comparable and different compartments have been consid-

ered in this study, I compared only parameter trends. Moreover I only took samples from healthy
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individuals (without CHIP) into consideration for this analysis as Busch et al. [2015] performed

their analysis in healthy mice. Interestingly, the metrics revealed stronger MPP net proliferation

compared to HSC net proliferation (median of 0.05 vs. 0.02 [cells/h]) and a shorter cellular exit

time in the MPP vs. HSC compartment (median of 7 vs. 26 [h]), which is the same trend that has

been observed by Busch et al. [2015] (see Figure 4.30).



5 Discussion and outlook

5.1 Discussion

The data-driven modelling and model selection approach developed in this thesis has proven to be

a powerful tool to gain mechanistic insights into cell division and differentiation processes based

on quasi time-resolved cell count data. My approach is able to infer cell division, differentiation,

and cell death rates, together with their uncertainties and to quantitatively compare different com-

partmental models based on snapshot data of the underlying dynamical process. The insights my

analysis revealed either could not have been observed experimentally or would have required many

resources in order to test each and every hypothesis experimentally.

Using the examples of adult neurogenesis (see chapter 3) and adult hematopoiesis (see chapter 4),

my modelling and inference approach shed light on two tissue homoeostasis processes, which were

not in detail understood before or frequently debated.

In the first example I modelled a comprehensive description of adult neurogenesis in the SEZ of the

murine brain on the cell type level. By integrating the most important experimental findings from

previous studies, I introduced a compartmental model consisting of three stem cell states: dormant,

quiescent, and active, and additionally states for downstream cell types. The approach allowed the

inference of cell type specific frequencies of division modes in young and aged. I could reveal that

according to the experimental data, the most prominent age-related changes occur on the stem cell

level. In detail I could show that active stem cells mostly divide asymmetrically but also undergo

symmetric differentiation divisions in young adult mice. This symmetric differentiation capacity

of neural stem cells diminishes with age until they almost exclusively divide asymmetrically. In

addition, stem cells stay longer quiescent in aged individuals. These findings contributed to the

understanding why and how neurogenesis gradually declines during ageing. By decreasing the sym-

metric differentiation divisions and switching less often to quiescence, active stem cells compensate

the weakened influx of the almost emptied dormant stem cell pool. These subtle changes in stem

cell dynamics are able to explain why less neurons are observed in aged mice. The findings of adult

neurogenesis on the clonal level do not only help to understand cell population dynamics, they can

also help to understand and reveal changes in gene regulation that are linked to a specific function

such as increased or decreased proliferation or differentiation [Poiana et al., 2020]. Moreover, the

findings and the introduced model are a solid starting point for further experiments and systems

biology approaches to analyse dysfunctions in adult neurogenesis in neurodegenerative diseases

[Cheyuo et al., 2019].

In the second example, my modelling and inference approach could reveal age- and disease-related

changes in cell division, differentiation, and cell death rates, and in addition plausible and implau-

sible lineage hierarchies for human hematopoiesis. In recent years, the hematopoietic lineage has

often been debated and experimentalists suggested a range of differentiation possibilities for the set

of defined hematopoietic progenitors. My computational data-driven modelling and model selec-

tion approach allowed to investigate the plausibility of these competing lineage hierarchies based



5.1. DISCUSSION 107

on data observed from an in vitro bulk experiment. Based on this quasi time-resolved cell count

data set, I could quantitatively reject several of the suggested lineage hierarchies and found most

evidence in the data for the classical hematopoiesis lineage hierarchy. In addition, my approach

could contribute to the understanding of how hematopoiesis is declining but maintained during

ageing. As stem cell counts are comparably high in young and aged individuals, the observation

that hematopoiesis declines with age is surprising but could also be confirmed by the experimental

data I used for my analysis. Based on the in vitro data set I used, my modelling and inference

approach could uncover that the number of newly produced mature blood cells is reduced in aged

individuals due to decreasing proliferation of hematopoietic stem cells and common myeloid pro-

genitors. By experimentally decoupling cell intrinsic from cell extrinsic effects, this work could thus

contribute to the better understanding of cell intrinsic behaviour of hematopoietic cells. Moreover,

my approach allows to identify which rates are disturbed in homeostasis-related diseases. Focusing

on myelodysplastic syndromes (MDS), I could reveal for every patient which cell types are affected

and if proliferation, differentiation or cell death, or a combination of them is disturbed. I found a

large heterogeneity in the cohort of MDS patients. For every patient sample different rates were

changed compared to age-matched healthy controls, potenitally affecting almost any cell type that

has been investigated. This finding is important in two ways. First, it explains why there are so

many subtypes of MDS, as reported by the WHO. Second, as it explains the heterogeneity of the

disease on the patient level in more detail, it emphasizes the need for personalized medicine in

MDS treatment. Of course it will be challenging to develop these targeted treatment strategies and

many more analysis, especially on the molecular level, and based on a larger cohort are required to

reach this goal.

In general, it is important to mention that the performance of my approach depends on the richness

and quality of the data set used for parameter inference. Thus, it is not guaranteed that exactly

the same conclusions would have been drawn based on another data set, resulting from the same

or another experiment. By performing model selection I however ensured that the model is only as

complex as required to explain the data and thereby avoided over-fitting. Additionally it also allows

conclusions abut how much better or worse different models perform in comparison to any other

considered model. Moreover, my modelling and inference approach can only reveal the biological

signal that is present in the data and that is not overlaid by other biological or technical noise. In

addition, the performance depends on the quality and correctness of incorporated prior knowledge.

If the prior knowledge is wrong it will introduce a bias that can lead to wrong conclusions and

predictions. It is always important to include only prior knowledge for which strong evidence could

be found. For the analysis of cell division and differentiation processes on the molecular level, the

compartmental modelling and model selection approach might not be suitable and other modelling

approaches need to be specified, which could in principle be integrated into my analysis pipeline.

For stochastic models, parameter inference with ABC has been introduced in this thesis (see section

2.2.2). Performing parameter inference with ABC however turned out to be impractical for several

reasons. The usage of the ABC SMC algorithm requires the specification of a prior distribution,

a kernel function, the sequence of thresholds and a distance function. In practice often several

combinations of these algorithm values and functions are tested till one finds a set-up which per-

forms well for the considered optimization problem. One the one hand, this gives the analyst more
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flexibility in designing the optimization strategy, but on the other hand also limits the practicabil-

ity. In addition, adaptation of the model specification, i.e. due to a change in model assumptions

or integration of additional biological knowledge from other sources than the experimental data

can get long-winded. Even if the likelihood-free parameter inference method works well for a spe-

cific set-up and model, it can get computationally demanding and even infeasible for a slightly

more complex model, which makes the approach unsuitable for model selection of a broader set

of models with varying complexity as it has been performed within the scope of this dissertation

(see chapter 3). For rather small sets of considered models, one can use the suggested ABC SMC

model selection algorithm, which approximates the full posterior distribution on the joint model

and parameter space (see section 2.2.2). The probability of a specific model to be the true one can

then be approximated by marginalization of this distribution [Toni and Stumpf, 2009] and Bayes

factors can be used to perform model selection. Alternatively, one could improve ABC efficiency

and practicability by combining ABC with machine learning methods. An example is the Bayesian

inference approach published by Lueckmann et al. [2019], which does not rely on defined rejection

thresholds or distance functions and allows incorporation of arbitrary waiting time distributions

with the generating function approach, thus efficiently computes the posterior distribution. It

would be interesting to implement a similar approach into my analysis pipeline and test it on the

adult neurogenesis data set (see figure 3.2).

5.2 Outlook

Regarding the adult neurogenesis project (see chapter 3), one could also study neurological disor-

ders such as schizophrenia in the future. So far, the role of adult neurogenesis in the SEZ and other

brain regions is unexplored for schizophrenia [Weissleder et al., 2019]. One could perform addi-

tional experiments on disease mouse models, e.g. mouse with a homologous copy number variation

mutation that increases the risk for the respective disease in humans, in order to compare healthy

and diseased homoeostasis and identify which rates are likely to be disturbed in the respective

neurological disorders. This could help to understand the underlying disease mechanisms and also

which cell types are affected.

In the adult hematopoiesis project (see chapter 4), it would be interesting to analyse more samples

to be able to more comprehensively investigate which de-regulated rate is correlated with specific

patient information (see figure 4.26.) In order to more accurately model the clonal competition in

CHIP individuals, one could introduce feedback terms into the model as has been suggested by Park

et al. [2019]. In addition, it would be useful to also analyse bone marrow samples of acute myeloid

leukaemia patients and subsequently analyse the differences between the four groups healthy, CHIP,

MDS and acute myeloid leukaemia. To Further optimize the analysis pipeline, one could perform

the FACS gating automatically with clustering algorithms that simultaneously perform the gating

for all .fcs files. This would first of all standardize the data preprocessing and thus hopefully mini-

mize technical error and additionally save the experimentalists plenty of work. Moreover, one could

adapt the modelling approach by directly modelling the CellTraceTM Violet stained distribution
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instead of performing the gating, similar to the approach introduced by [Hross and Hasenauer,

2016]. To not only explore cell intrinsic effects but also niche effects that are thought to play a role

in hematopoietic differentiation [Silberstein et al., 2016], one could establish an in vitro experiment

that allows to culture stroma cells together with the currently cultured hematopoietic stem cells and

thereby incorporate the niche cell influence on hematopoiesis. To model the dynamics accurately,

one may have to include feedback terms in the model, i.e. limited growth of HSCs dependent on

number of mature cells as has been suggested by Walenda et al. [2014], Stiehl et al. [2015] or [Klose

et al., 2019] and could again derive and compare a set of plausible models.

In the past decades, advances in technology such as electron microscopy, immunohistochemistry, flu-

orescence activated cell sorting, fluorescence in situ hybridization and Next-Generation Sequencing

allow for a more and more systematic cell type identification [Regev et al., 2017]. For instance, im-

provements in measuring transcript abundance on the single cell level (single cell RNA-sequencing)

and the development of algorithms to analyse RNA-sequencing data have enabled the transcrip-

tomic cell type identification [Hwang et al., 2018]. This cell type definition builds on the biological

finding that while all cells within an organism share a common genotype, not all cells express the

same genes as some are up- and some are down-regulated. Upon analysis of the transcriptome on

the single cell level, which contains the information which genes are highly expressed in a particular

cell, the changes between cells upon development are detectable with higher resolution compared

to conventional methods which use cell morphology, location and a very limited set of cell type

markers. My framework could in principle also be used to compare models that were trained on

data which describe homoeostatic processes on the molecular level of gene regulation. The work of

Fischer et al. [2019] for instance provides a framework to model developmental trajectories on the

transcriptomic level with partial differential equations taking transcriptomic state space and time

as dependent variables. With this model it is possible to estimate rates that describe diffusion, drift

and net population growth functions. In order to analyse these mechanisms on the cell type level,

one can discretize the state space by performing a clustering analysis and it would in principle also

be possible to comprehensively study the mechanisms of a whole tissue in healthy and diseased

individuals which could be done similarly to my analysis approach. How to discretize the state

space is however not trivial as the identification of transcriptomic cell types or cell identities partly

depends on the measurement technique, and preprocessing and clustering algorithms which were

used to identify distinct groups of cells [Luecken and Theis, 2019]. Thus, different RNA-seq analysis

pipelines can lead to different results in terms of cell type identity [Menon, 2017] which raises the

philosophical question ’What exactly is a cell type?’. In the Human Cell Atlas project, researchers

from all over the world address this question and collectively follow the mission to create reference

maps of all human cells based on their distinct molecular profiles [Regev et al., 2017]. A similar

program is The Human Protein Atlas, which is Swedish based and was already initiated in 2003

[Uhlen et al., 2010]. The establishment of a detailed human cellular network architecture will have

a high impact on the understanding of tissue homoeostasis in healthy individuals and help to study

dysfunctions in diseased individuals in the coming years.

In addition to the transcriptiomic gene regulation level, tissue homoeostasis can also be studied

on the epigenetic level. The research field of epigenetics, which also entered the stage of computa-

tional biology recently due to technological developments, describes the study of gene expression
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changes that do not involve changes in the DNA sequence. These changes can be DNA methy-

lation, histone modification and non-coding RNA-associated gene silencing [Beerman and Rossi,

2015, Waddington, 1942]. Several research groups analyse these epigenetic changes to assess their

impact on cell development and dysfunctions. Bonev and Cavalli [2016] for instance study how

chromatin structure is established, reset and maintained to shed light on cell regulation and cell

fate decisions. Their work focuses on the identification of cell type specific transcription factors

and enhancers to explain why some genes are more expressed in some cell types and less in others

and to understand how this is associated with 3D chromatin structure. Because changes in the 3D

chromatin structure conformation have to occur prior to gene activation, chromatin accessibility is

thought to also determine cell fate [Andrey and Mundlos, 2017, Bonev and Cavalli, 2016]. In this

context, epigenetic memory seems to be an important feature for cell fate choice determination.

For some cell systems, it has already been investigated that cell fate choices require the initiation of

heritable gene expression programs, that are at least partly achieved through changes in chromatin

structure and DNA methylation [Wilson et al., 2002]. Mechanistic mathematical models are more

and more used to distangle epigenetic mechanisms leading to developmental changes or diseases

and even models, that take genetic and epigenetic stem cell regulation into account have been

developed [Lei et al., 2014].

Moreover, models describing the spatial arrangement of cells within the tissue and their influence

on division patterns, as e.g. introduced by Lupperger et al. [2017] could be included as additional

information in the analysis framework for in vivo studies.

In the near future, the integration of various data sets into a common modelling and analysis frame-

work will be the key to even more effectively infer parameters and more comprehensively validate

models. This combination of different experimental data sets resulting from several analyses, ideally

performed with material from the same individuals or even the same cells, will allow to study the

system of interest at various scales and will allow to rule out even more hypotheses. The respective

data analysis integration task one has to solve might be challenging but experimental techniques

will also further improve and enable more comprehensive and high quality measurements and thus

the advancement of both will be the key to gain a bigger picture, solve several research questions

at once, and gain robust results and predictions. The ultimate goal is to go a step beyond and

not only gain mechanistic insights to understand biological processes better, but also to provide

concrete solutions to health and environmental issues.

A promising therapeutic approach is cell reprogramming and repair. Reprogramming describes

reverse differentiation, i.e. the transition from a specialized cell type to a stem cell. A major

breakthrough was made in 2006 by identifying the cell culture conditions by which differentiated

cells could be genetically reprogrammed to embryo-like stem cells [Takahashi and Yamanaka, 2006].

These induced pluripotent stem cells were generated from embryonic and adult fibroblast cultures

by defined factors. Several similar projects followed and researchers succeeded for instance in con-

verting astrocytes into neural stem or progenitor cells and into specific lineages of neurons in human

cell cultures [Corti et al., 2012]. Recently this could even be implemented in a living mouse brain

[Ma et al., 2018]. By modelling healthy and diseased homoeostasis of a specific tissue in detail, one

could upon model validation predict possible reprogramming strategies and subsequently test the

most promising ones in the lab experimentally [Folguera-Blasco et al., 2018].
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In conclusion, steadily improved experimental techniques will on the long run lead to more detailed,

accurate, and less noisy measurements. Inference from such experimental data will be increasingly

accurate and allow for fine-grained models which incorporate an increasing number of model pa-

rameters to uncover mechanisms in homeostatic processes in healthy and diseased. In addition, the

cost for performing large-scale experiments is steadily decreasing, which leads to much larger data

sets. This taken together with newly developed experimental techniques will ultimately require the

constant development of new, or the extension and tailoring of existing mathematical modeling and

inference approaches. The inference of such complex multivariate relationships will in most cases

require the combination of mechanistic mathematical models with machine learning techniques,

which can handle big data sets easily [Zhang et al., 2020].
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Abbreviation Explanation

A asymmetric divisions

ABC approximate Bayesian computation

AIC Akaike information criterion

aS active stem cells

BIC Bayesian information criterion

BM bone marrow

C constrained divisions

CHIP clonal hematopoiesis of indeterminate potential

CME chemical master equation

CMP common myelocyte progenitor

CRN chemical reaction network

DNA desoxyribose nucleic acid

dpl days post labelling

dS dormant stem cells

FACS fluorescence activated cell sorting

GMP granulocyte monocyte progenitors

GRN gene regulatory network

HSC hematopoietic stem cell

HSPC hematopoietic stem and progenitor cells

IVP initial value problem

LRT likelihood ratio test

M mature cells and late progenitors

MAP maximum a posteriori estimate

MCMC markov chain monte carlo

MDS myelodysplastic syndromes

MEP megakaryocyte erythrocyte progenitor

MLE maximum likelihood estimation

MLP multipotent lymphocyte progenitor

MPP multipotent progenitor cell

N neuron

NB neuroblast

ODE ordinary differential equation

PC principal component

PL profile likelihood

qS quiescent stem cells

S symmetric divisions

SEZ subempendymal zone

SMC sequential monte carlo

SSA stochastic simulation algorithm

TAP transitampifying progenitor

U unconstrained divisions

VAF variant allele frequency

WHO World Health Organization
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