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Channel Polarization: A Method for Constructing
Capacity-Achieving Codes for Symmetric

Binary-Input Memoryless Channels
Erdal Arıkan, Senior Member, IEEE

Abstract—A method is proposed, called channel polarization,
to construct code sequences that achieve the symmetric capacity

of any given binary-input discrete memoryless channel
(B-DMC) . The symmetric capacity is the highest rate achiev-
able subject to using the input letters of the channel with equal
probability. Channel polarization refers to the fact that it is pos-
sible to synthesize, out of independent copies of a given B-DMC

, a second set of binary-input channels
such that, as becomes large, the fraction of indices for which

is near approaches and the fraction for which
is near approaches . The polarized channels
are well-conditioned for channel coding: one need only

send data at rate through those with capacity near and at rate
through the remaining. Codes constructed on the basis of this idea
are called polar codes. The paper proves that, given any B-DMC

with and any target rate , there exists a
sequence of polar codes such that has block-length

, rate , and probability of block error under suc-
cessive cancellation decoding bounded as
independently of the code rate. This performance is achievable by
encoders and decoders with complexity for each.

Index Terms—Capacity-achieving codes, channel capacity,
channel polarization, Plotkin construction, polar codes, Reed–
Muller (RM) codes, successive cancellation decoding.

I. INTRODUCTION AND OVERVIEW

A FASCINATING aspect of Shannon’s proof of the noisy
channel coding theorem is the random-coding method

that he used to show the existence of capacity-achieving code
sequences without exhibiting any specific such sequence [1].
Explicit construction of provably capacity-achieving code
sequences with low encoding and decoding complexities has
since then been an elusive goal. This paper is an attempt to
meet this goal for the class of binary-input discrete memoryless
channels (B-DMCs).

We will give a description of the main ideas and results of the
paper in this section. First, we give some definitions and state
some basic facts that are used throughout the paper.
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A. Preliminaries

We write to denote a generic B-DMC with
input alphabet , output alphabet , and transition probabilities

. The input alphabet will always be
, the output alphabet and the transition probabilities may

be arbitrary. We write to denote the channel corresponding
to uses of ; thus, with

.
Given a B-DMC , there are two channel parameters of pri-

mary interest in this paper: the symmetric capacity

and the Bhattacharyya parameter

These parameters are used as measures of rate and reliability,
respectively. is the highest rate at which reliable commu-
nication is possible across using the inputs of with equal
frequency. is an upper bound on the probability of max-
imum-likelihood (ML) decision error when is used only once
to transmit a or .

It is easy to see that takes values in . Throughout,
we will use base- logarithms; hence, will also take
values in . The unit for code rates and channel capacities
will be bits.

Intuitively, one would expect that iff ,
and iff . The following bounds, proved in
the Appendix, make this precise.

Proposition 1: For any B-DMC , we have

(1)

(2)

The symmetric capacity equals the Shannon capacity
when is a symmetric channel, i.e., a channel for which there
exists a permutation of the output alphabet such that i)

and ii) for all . The bi-
nary symmetric channel (BSC) and the binary erasure channel
(BEC) are examples of symmetric channels. A BSC is a B-DMC

with and
. A B-DMC is called a BEC if for each , either

or . In the latter case,

0018-9448/$25.00 © 2009 IEEE

� Capacity-achieving on binary memoryless symmetric (BMS) channels with
low encoding/decoding complexity1

� But successive cancellation (SC) decoding performs poorly for small blocks

1E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless
channels,” T-IT, Jul. 2009.
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Abstract— We describe a successive-cancellation list decoder
for polar codes, which is a generalization of the classic successive-
cancellation decoder of Arıkan. In the proposed list decoder,
L decoding paths are considered concurrently at each decoding
stage, where L is an integer parameter. At the end of the decoding
process, the most likely among the L paths is selected as the
single codeword at the decoder output. Simulations show that
the resulting performance is very close to that of maximum-
likelihood decoding, even for moderate values of L. Alternatively,
if a genie is allowed to pick the transmitted codeword from the
list, the results are comparable with the performance of current
state-of-the-art LDPC codes. We show that such a genie can be
easily implemented using simple CRC precoding. The specific
list-decoding algorithm that achieves this performance doubles
the number of decoding paths for each information bit, and
then uses a pruning procedure to discard all but the L most
likely paths. However, straightforward implementation of this
algorithm requires !(Ln2) time, which is in stark contrast with
the O(n log n) complexity of the original successive-cancellation
decoder. In this paper, we utilize the structure of polar codes
along with certain algorithmic transformations in order to
overcome this problem: we devise an efficient, numerically stable,
implementation of the proposed list decoder that takes only
O(Ln log n) time and O(Ln) space.

Index Terms— List decoding, polar codes, successive cancella-
tion decoding.

I. INTRODUCTION

THE discovery of channel polarization and polar codes by
Arıkan [1] is universally recognized as a major break-

through in coding theory. Polar codes provably achieve
the capacity of memoryless symmetric channels, with low
encoding and decoding complexity. Moreover, polar codes
have an explicit construction (there is no random ensem-
ble to choose from) and a beautiful recursive structure that
makes them inherently suitable for efficient implementation in
hardware [7], [12].

These remarkable properties of polar codes have gen-
erated an enormous interest, see [2], [3], [6], [8], [14],
[15] and references therein. Nevertheless, the impact of polar
coding in practice has been, so far, negligible. Although
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Fig. 1. List-decoding performance for a polar code of length n = 2048
and rate R = 0.5 on the BPSK-modulated Gaussian channel. The code was
constructed using the methods of [15], with optimization for Eb/N0 = 2 dB.

polar codes achieve capacity asymptotically, empirical stud-
ies indicate that for short and moderate block lengths,
successive-cancellation decoding of polar codes does not
perform as well as turbo codes or low density parity-
check (LDPC) codes. As we ponder why, we identify
two possible causes: either the codes themselves are weak at
these lengths, or there is a significant performance gap between
successive-cancellation and maximum-likelihood decoding.
In fact, the two causes are complementary and, as we shall
see, both contribute to the problem.

In this paper, we propose an improvement to the successive-
cancellation decoder of [1], namely, a successive-cancellation
list decoder. Our decoder is governed by a single integer
parameter L, which denotes the list size. As in [1], we decode
the input bits successively one-by-one. However, in the pro-
posed decoder, L decoding paths are considered concurrently
at each decoding stage. Specifically, our decoder doubles the
number of decoding paths for each information bit ui to be
decoded, thus pursuing both ui = 0 and ui = 1 options, and
then uses a pruning procedure to discard all but the L most
likely paths. At the end of the decoding process, the most
likely among the L decoding paths is selected as the decoder
output (thus, in contrast to most list-decoding algorithms in the
literature, the output of our decoder is not a list but a single
codeword).

The performance of the list-decoding algorithm outlined
above is encouraging. For example, Figure 1 shows our
simulation results for a polar code of rate half and length
2048 on a binary-input AWGN channel, under successive-
cancellation decoding and under list decoding. We also include
in Figure 1 a lower bound on the probability of word error
under maximum-likelihood decoding (such a bound can be
readily evaluated in list-decoding simulations). As can be
seen from Figure 1, the performance of our list-decoding algo-
rithm is very close to that of maximum-likelihood decoding,

0018-9448 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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� SC list (SCL) decoding with CRC and large list-size performs very well and
matches maximum-likelihood (ML)2

� Can also be used to decode other codes (e.g., Reed–Muller codes)

2I. Tal, A. Vardy, “List decoding of polar codes,” T-IT, May 2015.
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� SC list (SCL) decoding with CRC and large list-size performs very well and
matches maximum-likelihood (ML)2

� Can also be used to decode other codes (e.g., Reed–Muller codes)
2I. Tal, A. Vardy, “List decoding of polar codes,” T-IT, May 2015.
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Motivating Question

� What list size is sufficient to approach ML decoding performance for a
given polar code and channel?

◦ Can be attacked via simulation but quite complex for long codes and lists
◦ But, simulation unlikely to provide insight into the question
◦ A theoretical answer might enable better code designs for SCL decoding



Page 3/14 M. C. Coşkun · Average List Size of SCI Decoding · Introduction

Motivating Question

� What list size is sufficient to approach ML decoding performance for a
given polar code and channel?

◦ Can be attacked via simulation but quite complex for long codes and lists
◦ But, simulation unlikely to provide insight into the question
◦ A theoretical answer might enable better code designs for SCL decoding



Page 4/14 M. C. Coşkun · Average List Size of SCI Decoding · Introduction

Summary of Results

� In this talk, we focus on the binary erasure channel (BEC)

◦ We consider the SC inactivation (SCI) decoder3, which stores a basis for the
subspace of all valid partial sequences

◦ The random dimension sequence of this subspace can be approximated by a
Markov chain

◦ For a fixed number of erasures, the approximation is reasonably accurate

3M. C. Coşkun, J. Neu, H. D. Pfister, “Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH
Codes,” ISIT, Jun. 2020.
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Polar Codes and Density Evolution
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Dynamic Frozen Bits

� The value of a frozen bit can also be set to a linear combination of
previous information bits (rather than a fixed 0 or 1 value)4

� A frozen bit whose value depends on past inputs is called dynamic

� SC/SCL decoding easily modified for polar codes with dynamic frozen bits

� Any binary linear block code can be represented as a polar code with
dynamic frozen bits!

4P. Trifonov, V. Miloslavskaya, “Polar subcodes,” J-SAC, Feb. 2016.
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The Binary Erasure Channel

� For linear codes on the BEC, uncertainty in the information bits can
always be represented by an affine subspace

� Full SCL decoder for the BEC lists all valid sequences in this subspace
� The SCI decoder instead stores a basis:

◦ If SC decoding step outputs erasure, inactivate the bit and add basis vector
◦ Later messages in decoder are functions of inactivated bits (i.e., basis vectors)
◦ If SC decoding of frozen bit is an unerased message, then resulting equation

may allow one to consolidate the basis (i.e., remove a basis vector)
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The Uncertainty Dimension

� For a fixed yN1 , the subspace dimension is dm(yN1 )

� Let Dm = dm(Y N1 ) denote corresponding random value at step m

Next goal is to understand the evolution of the random sequence Dm

dm(yN
1 ) = H

(
UA(m)

∣∣Y N
1 = yN

1 , UF(m)

)
whereA(m) , A∩[m] and F(m) , F∩[m]
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Succesive Cancellation Inactivation Decoding
Example: u1 = u2 = u3 = 0, u5 = u4 (frozen bits)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

BEC(0.5)

?

?

?

?

0

0

0

0

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

u1 = 0

u2 = 0

u3 = 0

u4 = info

u5 = u4

u6 = info

u7 = info

u8 = info
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û4 = 0
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û5 = 0
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û5 = 0d5 = 0
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û6 = 0d6 = 0
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û7 = 0
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û2 = 0d2 = 0
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û3 = 0
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û7 = 0

?
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û6 = 0

?

?
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û2 = 0
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û2 = 0d2 = 0
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û3 = 0d3 = 0
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û2 = 0 (frozen) û2 = ?
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û2 = 0d2 = 0
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û1 = 0
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û3 = 0
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û3 = 0 (frozen) û3 = ?
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û1 = 0
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û3 = 0
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û4 = x

?

?

?

?
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û4 = 0
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û4 = 0
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û5 = 0
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Evolution of the Uncertainty Dimension

� If Um is an information bit, then

X If decoder outputs an erasure,
then dm(yN1 ) = dm−1(yN1 ) + 1

X Else, it outputs affine function
and dm(yN1 ) = dm−1(yN1 )

� If Um is a frozen bit, then

X If decoder outputs an erasure,
then dm(yN1 ) = dm−1(yN1 )

X Else, it outputs affine function:

× If consolidation:
dm(yN

1 ) = dm−1(yN
1 )− 1

× Else, no consolidation:
dm(yN

1 ) = dm−1(yN
1 )

Averaged over all yN1 , the erasure probabilities are obtained via density evolution.
Must approximate consolidation probabilities.
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The Markov Chain Approximation

� The random sequence D1, . . . , DN can be approximated by an
inhomogeneous Markov chain with transition probabilities
P

(m)
i,j ≈ Pr (Dm = j |Dm−1 = i) where

P
(m)
i,j =


ε

(m)
N if m ∈ A, j = i+ 1

1− ε(m)
N if m ∈ A, j = i

ε
(m)
N +

(
1− ε(m)

N

)
2−Dm−1 if m ∈ F , j = i(

1− ε(m)
N

)(
1− 2−Dm−1

)
if m ∈ F , j = i− 1

� ε
(m)
N is the DE erasure probability of m-th effective channel

� 2−D is probability a random D-variable equation has all zero coefficients
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d-RM and PAC Codes

� d-RM code ensemble3:
◦ Let A be the information

indices of an RM code
◦ ui is an information bit if i ∈ A
◦ ui =

∑
j∈A(i) Aijuj if i ∈ F ,

where Aij iid ∼ Bernoulli(0.5)

� PAC code5:

◦ Given set A and convolutional
code with rate 1 and memory ν

◦ ui is an information bit if i ∈ A
◦ ui = gi(ui−1

i−ν) if i ∈ F where
gi(·) defined by CC

Choosing A like an RM code for the PAC code (as Arıkan did)
makes two codes differ only in the dynamic frozen bit constraints!

3M. C. Coşkun, J. Neu, H. D. Pfister, “Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH
Codes,” ISIT, Jun. 2020.

5E. Arıkan, “From sequential decoding to Channel Polarization and Back Again,” Shannon Lecture, Jun. 2019.
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(512, 256) d-RM Code

A fixed-weight BEC with exactly round(512× 0.48) = 246 erasures
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Summary

� “What list size is sufficient to approach ML decoding performance
under an SCL decoder?”

X Good approximation proposed for the BEC that can be computed efficiently

� What is not covered in this talk?6

X The quantity dm (a conditional entropy) can be used as proxy for
uncertainty in SCL decoding for general BMS channels

X The analysis leads to an improved code design (in comparison with the PAC
code) under SCL decoding with list size 32

� Outlook and Future Work

X Show concentration of Dm(Y N1 ) so that its average is meaningful

Apply this technique to design longer codes with good SCL performance

6M. C. Coşkun, H. D. Pfister, “Bounds on the list size of successive cancellation list decoding,” SPCOM, Jul. 2020.
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Thank you! Questions?
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