## Bounds on the List Size of Successive

## Cancellation List Decoding

Mustafa Cemil Coșkun ${ }^{1,2}$
Joint work with H. D. Pfister ${ }^{3}$
${ }^{1}$ German Aerospace Center
${ }^{2}$ Technical University of Munich
${ }^{3}$ Duke University


## Average List Size of Successive

Cancellation Inactivation Decoding
Mustafa Cemil Coșkun ${ }^{1,2}$
Joint work with H. D. Pfister ${ }^{3}$
${ }^{1}$ German Aerospace Center
${ }^{2}$ Technical University of Munich
${ }^{3}$ Duke University


## Outline

- Introduction
- Preliminaries
- The Binary Erasure Channel

■ Numerical Results

- Conclusions



## Polar Codes

# Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels 

Erdal Arıkan, Senior Member, IEEE


#### Abstract

A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity $I(W)$ of any given binary-input discrete memoryless channel (B-DMC) $W$. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is pos-


A. Preliminaries

We write $W: \mathcal{X} \rightarrow \mathcal{Y}$ to denote a generic B-DMC with input alphabet $\mathcal{X}$, output alphabet $\mathcal{Y}$, and transition probabilities $W(y \mid x), x \in \mathcal{X}, y \in \mathcal{Y}$. The input alphabet $\mathcal{X}$ will always be $\{0,1\}$, the output alphabet and the transition probabilities may

- Capacity-achieving on binary memoryless symmetric (BMS) channels with low encoding/decoding complexity ${ }^{1}$

[^0]
## Polar Codes

# Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels 

Erdal Arıkan, Senior Member, IEEE


#### Abstract

A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity $I(W)$ of any given binary-input discrete memoryless channel (B-DMC) $W$. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is pos-


A. Preliminaries

We write $W: \mathcal{X} \rightarrow \mathcal{Y}$ to denote a generic B-DMC with input alphabet $\mathcal{X}$, output alphabet $\mathcal{Y}$, and transition probabilities $W(y \mid x), x \in \mathcal{X}, y \in \mathcal{Y}$. The input alphabet $\mathcal{X}$ will always be $\{0,1\}$, the output alphabet and the transition probabilities may

- Capacity-achieving on binary memoryless symmetric (BMS) channels with low encoding/decoding complexity ${ }^{1}$
- But successive cancellation (SC) decoding performs poorly for small blocks

[^1]
# Successive List Cancellation Decoding 

## List Decoding of Polar Codes

Ido Tal, Member, IEEE and Alexander Vardy, Fellow, IEEE


#### Abstract

We describe a successive-cancellation list decoder for polar codes, which is a generalization of the classic successivecancellation decoder of Arkan. In the proposed list decoder, $L$ decoding paths are considered concurrently at each decoding stage, where $L$ is an integer parameter. At the end of the decoding process, the most likely among the $L$ paths is selected as the single codeword at the decoder output. Simulations show that the resulting performance is very close to that of maximumlikelihood decoding, even for moderate values of $L$. Alternatively, if a genie is allowed to pick the transmitted codeword from the list, the results are comparable with the performance of current state-of-the-art LDPC codes. We show that such a genie can be easily implemented using simple CRC precoding. The specific list-decoding algorithm that achieves this performance doubles the number of decoding paths for each information bit, and then uses a pruning procedure to discard all but the $L$ most likely paths. However, straightforward implementation of this




Fig. 1. List-decoding performance for a polar code of length $n=2048$ and rate $R=0.5$ on the BPSK-modulated Gaussian channel. The code was constructed using the methods of [15], with optimization for $E_{b} / N_{0}=2 \mathrm{~dB}$.

- SC list (SCL) decoding with CRC and large list-size performs very well and matches maximum-likelihood (ML) ${ }^{2}$

[^2]DLR

# Successive List Cancellation Decoding 

## List Decoding of Polar Codes

Ido Tal, Member, IEEE and Alexander Vardy, Fellow, IEEE


#### Abstract

We describe a successive-cancellation list decoder for polar codes, which is a generalization of the classic successivecancellation decoder of Arkan. In the proposed list decoder, $L$ decoding paths are considered concurrently at each decoding stage, where $L$ is an integer parameter. At the end of the decoding process, the most likely among the $L$ paths is selected as the single codeword at the decoder output. Simulations show that the resulting performance is very close to that of maximumlikelihood decoding, even for moderate values of $L$. Alternatively, if a genie is allowed to pick the transmitted codeword from the list, the results are comparable with the performance of current state-of-the-art LDPC codes. We show that such a genie can be easily implemented using simple CRC precoding. The specific list-decoding algorithm that achieves this performance doubles the number of decoding paths for each information bit, and then uses a pruning procedure to discard all but the $L$ most likely paths. However, straightforward implementation of this




Fig. 1. List-decoding performance for a polar code of length $n=2048$ and rate $R=0.5$ on the BPSK-modulated Gaussian channel. The code was constructed using the methods of [15], with optimization for $E_{b} / N_{0}=2 \mathrm{~dB}$.

- SC list (SCL) decoding with CRC and large list-size performs very well and matches maximum-likelihood (ML) ${ }^{2}$
- Can also be used to decode other codes (e.g., Reed-Muller codes)

[^3]
## Motivating Question

- What list size is sufficient to approach ML decoding performance for a given polar code and channel?



## Motivating Question

- What list size is sufficient to approach ML decoding performance for a given polar code and channel?
- Can be attacked via simulation but quite complex for long codes and lists
- But, simulation unlikely to provide insight into the question
- A theoretical answer might enable better code designs for SCL decoding


## Summary of Results

- In this talk, we focus on the binary erasure channel (BEC)

[^4]

## Summary of Results

- In this talk, we focus on the binary erasure channel (BEC)
- We consider the SC inactivation (SCI) decoder ${ }^{3}$, which stores a basis for the subspace of all valid partial sequences

[^5]

## Summary of Results

- In this talk, we focus on the binary erasure channel (BEC)
- We consider the SC inactivation (SCI) decoder ${ }^{3}$, which stores a basis for the subspace of all valid partial sequences
- The random dimension sequence of this subspace can be approximated by a Markov chain

[^6]

## Summary of Results

- In this talk, we focus on the binary erasure channel (BEC)
- We consider the SC inactivation (SCI) decoder ${ }^{3}$, which stores a basis for the subspace of all valid partial sequences
- The random dimension sequence of this subspace can be approximated by a Markov chain
- For a fixed number of erasures, the approximation is reasonably accurate

[^7]

## Polar Codes and Density Evolution

$$
x_{1}^{n}=u_{1}^{n} \mathbf{G}_{2}^{\otimes m} \quad \text { where } \quad \mathbf{G}_{2} \triangleq\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad \text { and } \quad n=2^{m}
$$

## Polar Codes and Density Evolution



## Polar Codes and Density Evolution



## Dynamic Frozen Bits

- The value of a frozen bit can also be set to a linear combination of previous information bits (rather than a fixed 0 or 1 value) ${ }^{4}$

[^8]

## Dynamic Frozen Bits

- The value of a frozen bit can also be set to a linear combination of previous information bits (rather than a fixed 0 or 1 value) ${ }^{4}$
- A frozen bit whose value depends on past inputs is called dynamic

[^9]

## Dynamic Frozen Bits

- The value of a frozen bit can also be set to a linear combination of previous information bits (rather than a fixed 0 or 1 value) ${ }^{4}$
- A frozen bit whose value depends on past inputs is called dynamic
- SC/SCL decoding easily modified for polar codes with dynamic frozen bits

[^10]

## Dynamic Frozen Bits

- The value of a frozen bit can also be set to a linear combination of previous information bits (rather than a fixed 0 or 1 value) ${ }^{4}$
- A frozen bit whose value depends on past inputs is called dynamic
- SC/SCL decoding easily modified for polar codes with dynamic frozen bits
- Any binary linear block code can be represented as a polar code with dynamic frozen bits!

[^11]

## The Binary Erasure Channel

- For linear codes on the BEC, uncertainty in the information bits can always be represented by an affine subspace



## The Binary Erasure Channel

- For linear codes on the BEC, uncertainty in the information bits can always be represented by an affine subspace
- Full SCL decoder for the BEC lists all valid sequences in this subspace


## The Binary Erasure Channel

- For linear codes on the BEC, uncertainty in the information bits can always be represented by an affine subspace
- Full SCL decoder for the BEC lists all valid sequences in this subspace
- The SCI decoder instead stores a basis:


## The Binary Erasure Channel

- For linear codes on the BEC, uncertainty in the information bits can always be represented by an affine subspace
- Full SCL decoder for the BEC lists all valid sequences in this subspace
- The SCI decoder instead stores a basis:
- If SC decoding step outputs erasure, inactivate the bit and add basis vector


## The Binary Erasure Channel

- For linear codes on the BEC, uncertainty in the information bits can always be represented by an affine subspace
- Full SCL decoder for the BEC lists all valid sequences in this subspace
- The SCI decoder instead stores a basis:
- If SC decoding step outputs erasure, inactivate the bit and add basis vector
- Later messages in decoder are functions of inactivated bits (i.e., basis vectors)


## The Binary Erasure Channel

- For linear codes on the BEC, uncertainty in the information bits can always be represented by an affine subspace
- Full SCL decoder for the BEC lists all valid sequences in this subspace
- The SCI decoder instead stores a basis:
- If SC decoding step outputs erasure, inactivate the bit and add basis vector
- Later messages in decoder are functions of inactivated bits (i.e., basis vectors)
- If SC decoding of frozen bit is an unerased message, then resulting equation may allow one to consolidate the basis (i.e., remove a basis vector)


## The Uncertainty Dimension

- For a fixed $y_{1}^{N}$, the subspace dimension is $d_{m}\left(y_{1}^{N}\right)$

$$
d_{m}\left(y_{1}^{N}\right)=H\left(U_{\mathcal{A}}(m) \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}(m)}\right) \text { where } \mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$



## The Uncertainty Dimension

- For a fixed $y_{1}^{N}$, the subspace dimension is $d_{m}\left(y_{1}^{N}\right)$
- Let $D_{m}=d_{m}\left(Y_{1}^{N}\right)$ denote corresponding random value at step $m$

$$
d_{m}\left(y_{1}^{N}\right)=H\left(U_{\mathcal{A}}(m) \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}(m)}\right) \text { where } \mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$



## The Uncertainty Dimension

- For a fixed $y_{1}^{N}$, the subspace dimension is $d_{m}\left(y_{1}^{N}\right)$
- Let $D_{m}=d_{m}\left(Y_{1}^{N}\right)$ denote corresponding random value at step $m$

Next goal is to understand the evolution of the random sequence $D_{m}$

$$
\overline{d_{m}\left(y_{1}^{N}\right)=H\left(U_{\mathcal{A}}(m) \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}(m)}\right)} \text { where } \mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$

## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Succesive Cancellation Inactivation Decoding

Example: $u_{1}=u_{2}=u_{3}=0, u_{5}=u_{4}$ (frozen bits)


## Evolution of the Uncertainty Dimension

- If $U_{m}$ is an information bit, then
$\checkmark$ If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)+1$
$\checkmark$ Else, it outputs affine function and $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$


## Evolution of the Uncertainty Dimension

- If $U_{m}$ is an information bit, then
$\checkmark$ If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)+1$
$\checkmark$ Else, it outputs affine function and $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
- If $U_{m}$ is a frozen bit, then
$\checkmark$ If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
$\checkmark$ Else, it outputs affine function:


## Evolution of the Uncertainty Dimension

- If $U_{m}$ is an information bit, then
$\checkmark$ If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)+1$
$\checkmark$ Else, it outputs affine function and $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
- If $U_{m}$ is a frozen bit, then
$\checkmark$ If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
$\checkmark$ Else, it outputs affine function:
$\times$ If consolidation:

$$
d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)-1
$$

$\times$ Else, no consolidation: $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$

## The Markov Chain Approximation

- The random sequence $D_{1}, \ldots, D_{N}$ can be approximated by an inhomogeneous Markov chain with transition probabilities $P_{i, j}^{(m)} \approx \operatorname{Pr}\left(D_{m}=j \mid D_{m-1}=i\right)$ where

$$
P_{i, j}^{(m)}= \begin{cases}\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i+1 \\ 1-\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i \\ \epsilon_{N}^{(m)}+\left(1-\epsilon_{N}^{(m)}\right) 2^{-D_{m-1}} & \text { if } m \in \mathcal{F}, j=i \\ \left(1-\epsilon_{N}^{(m)}\right)\left(1-2^{-D_{m-1}}\right) & \text { if } m \in \mathcal{F}, j=i-1\end{cases}
$$

## The Markov Chain Approximation

- The random sequence $D_{1}, \ldots, D_{N}$ can be approximated by an inhomogeneous Markov chain with transition probabilities $P_{i, j}^{(m)} \approx \operatorname{Pr}\left(D_{m}=j \mid D_{m-1}=i\right)$ where

$$
P_{i, j}^{(m)}= \begin{cases}\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i+1 \\ 1-\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i \\ \epsilon_{N}^{(m)}+\left(1-\epsilon_{N}^{(m)}\right) 2^{-D_{m-1}} & \text { if } m \in \mathcal{F}, j=i \\ \left(1-\epsilon_{N}^{(m)}\right)\left(1-2^{-D_{m-1}}\right) & \text { if } m \in \mathcal{F}, j=i-1\end{cases}
$$

- $\epsilon_{N}^{(m)}$ is the DE erasure probability of $m$-th effective channel


## The Markov Chain Approximation

- The random sequence $D_{1}, \ldots, D_{N}$ can be approximated by an inhomogeneous Markov chain with transition probabilities $P_{i, j}^{(m)} \approx \operatorname{Pr}\left(D_{m}=j \mid D_{m-1}=i\right)$ where

$$
P_{i, j}^{(m)}= \begin{cases}\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i+1 \\ 1-\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i \\ \epsilon_{N}^{(m)}+\left(1-\epsilon_{N}^{(m)}\right) 2^{-D_{m-1}} & \text { if } m \in \mathcal{F}, j=i \\ \left(1-\epsilon_{N}^{(m)}\right)\left(1-2^{-D_{m-1}}\right) & \text { if } m \in \mathcal{F}, j=i-1\end{cases}
$$

- $\epsilon_{N}^{(m)}$ is the DE erasure probability of $m$-th effective channel
- $2^{-D}$ is probability a random $D$-variable equation has all zero coefficients


## d-RM and PAC Codes

- d-RM code ensemble ${ }^{3}$ :
- Let $\mathcal{A}$ be the information indices of an RM code
- $u_{i}$ is an information bit if $i \in \mathcal{A}$
- $u_{i}=\sum_{j \in \mathcal{A}^{(i)}} A_{i j} u_{j}$ if $i \in \mathcal{F}$,
where $A_{i j}$ iid $\sim \operatorname{Bernoulli}(0.5)$

[^12]

## d-RM and PAC Codes

- d-RM code ensemble ${ }^{3}$ :
- Let $\mathcal{A}$ be the information indices of an RM code
- $u_{i}$ is an information bit if $i \in \mathcal{A}$
- $u_{i}=\sum_{j \in \mathcal{A}^{(i)}} A_{i j} u_{j}$ if $i \in \mathcal{F}$, where $A_{i j}$ iid $\sim \operatorname{Bernoulli}(0.5)$
- PAC code ${ }^{5}$ :
- Given set $\mathcal{A}$ and convolutional code with rate 1 and memory $\nu$
- $u_{i}$ is an information bit if $i \in \mathcal{A}$
- $u_{i}=g_{i}\left(u_{i-\nu}^{i-1}\right)$ if $i \in \mathcal{F}$ where $g_{i}(\cdot)$ defined by CC

[^13]

## d-RM and PAC Codes

- d-RM code ensemble ${ }^{3}$ :
- Let $\mathcal{A}$ be the information indices of an RM code
- $u_{i}$ is an information bit if $i \in \mathcal{A}$
- $u_{i}=\sum_{j \in \mathcal{A}^{(i)}} A_{i j} u_{j}$ if $i \in \mathcal{F}$, where $A_{i j}$ iid $\sim \operatorname{Bernoulli}(0.5)$
- PAC code ${ }^{5}$ :
- Given set $\mathcal{A}$ and convolutional code with rate 1 and memory $\nu$
- $u_{i}$ is an information bit if $i \in \mathcal{A}$
- $u_{i}=g_{i}\left(u_{i-\nu}^{i-1}\right)$ if $i \in \mathcal{F}$ where $g_{i}(\cdot)$ defined by CC

Choosing $\mathcal{A}$ like an RM code for the PAC code (as Arıkan did) makes two codes differ only in the dynamic frozen bit constraints!

[^14]
## $(512,256)$ d-RM Code

A fixed-weight BEC with exactly round $(512 \times 0.48)=246$ erasures

$(512,256)$ d-RM Code

A fixed-weight BEC with exactly round $(512 \times 0.48)=246$ erasures


428 (4)
$(512,256)$ d-RM Code

A fixed-weight BEC with exactly round $(512 \times 0.48)=246$ erasures


## $(512,256)$ d-RM Code

A fixed-weight BEC with exactly round $(512 \times 0.48)=246$ erasures


## Summary

- "What list size is sufficient to approach ML decoding performance under an SCL decoder?"
$\checkmark$ Good approximation proposed for the BEC that can be computed efficiently

[^15]

## Summary

- "What list size is sufficient to approach ML decoding performance under an SCL decoder?"
$\checkmark$ Good approximation proposed for the BEC that can be computed efficiently
■ What is not covered in this talk? ${ }^{6}$
$\checkmark$ The quantity $d_{m}$ (a conditional entropy) can be used as proxy for uncertainty in SCL decoding for general BMS channels

[^16]

## Summary

■ "What list size is sufficient to approach ML decoding performance under an SCL decoder?"
$\checkmark$ Good approximation proposed for the BEC that can be computed efficiently

- What is not covered in this talk? ${ }^{6}$
$\checkmark$ The quantity $d_{m}$ (a conditional entropy) can be used as proxy for uncertainty in SCL decoding for general BMS channels
$\checkmark$ The analysis leads to an improved code design (in comparison with the PAC code) under SCL decoding with list size 32

[^17]

## Summary

- "What list size is sufficient to approach ML decoding performance under an SCL decoder?"
$\checkmark$ Good approximation proposed for the BEC that can be computed efficiently
■ What is not covered in this talk? ${ }^{6}$
$\checkmark$ The quantity $d_{m}$ (a conditional entropy) can be used as proxy for uncertainty in SCL decoding for general BMS channels
$\checkmark$ The analysis leads to an improved code design (in comparison with the PAC code) under SCL decoding with list size 32
- Outlook and Future Work
$\checkmark$ Show concentration of $D_{m}\left(Y_{1}^{N}\right)$ so that its average is meaningful

[^18]

## Summary

- "What list size is sufficient to approach ML decoding performance under an SCL decoder?"
$\checkmark$ Good approximation proposed for the BEC that can be computed efficiently
■ What is not covered in this talk? ${ }^{6}$
$\checkmark$ The quantity $d_{m}$ (a conditional entropy) can be used as proxy for uncertainty in SCL decoding for general BMS channels
$\checkmark$ The analysis leads to an improved code design (in comparison with the PAC code) under SCL decoding with list size 32
- Outlook and Future Work
$\checkmark$ Show concentration of $D_{m}\left(Y_{1}^{N}\right)$ so that its average is meaningful
4 Apply this technique to design longer codes with good SCL performance

[^19]

## Thank you! Questions?

$(512,256)$ Codes - Performance


40 (2)


[^0]:    ${ }^{1}$ E. Arıkan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," T-IT, Jul. 2009.

[^1]:    ${ }^{1}$ E. Arıkan, "Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels," T-IT, Jul. 2009.

[^2]:    ${ }^{2}$ I. Tal, A. Vardy, "List decoding of polar codes," T-IT, May 2015.

[^3]:    ${ }^{2}$ I. Tal, A. Vardy, "List decoding of polar codes," T-IT, May 2015.

[^4]:    ${ }^{3}$ M. C. Coșkun, J. Neu, H. D. Pfister, "Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH Codes," ISIT, Jun. 2020.

[^5]:    ${ }^{3}$ M. C. Coșkun, J. Neu, H. D. Pfister, "Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH Codes," ISIT, Jun. 2020.

[^6]:    ${ }^{3}$ M. C. Coşkun, J. Neu, H. D. Pfister, "Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH Codes," ISIT, Jun. 2020.

[^7]:    ${ }^{3}$ M. C. Coşkun, J. Neu, H. D. Pfister, "Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH Codes," ISIT, Jun. 2020.

[^8]:    ${ }^{4}$ P. Trifonov, V. Miloslavskaya, "Polar subcodes," J-SAC, Feb. 2016.

[^9]:    ${ }^{4}$ P. Trifonov, V. Miloslavskaya, "Polar subcodes," J-SAC, Feb. 2016.

[^10]:    ${ }^{4}$ P. Trifonov, V. Miloslavskaya, "Polar subcodes," J-SAC, Feb. 2016.

[^11]:    ${ }^{4}$ P. Trifonov, V. Miloslavskaya, "Polar subcodes," J-SAC, Feb. 2016.

[^12]:    ${ }^{3}$ M. C. Coșkun, J. Neu, H. D. Pfister, "Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH Codes," ISIT, Jun. 2020.
    ${ }^{5}$ E. Arıkan, "From sequential decoding to Channel Polarization and Back Again," Shannon Lecture, Jun. 2019.

[^13]:    ${ }^{3}$ M. C. Coșkun, J. Neu, H. D. Pfister, "Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH Codes," ISIT, Jun. 2020.
    ${ }^{5}$ E. Arıkan, "From sequential decoding to Channel Polarization and Back Again," Shannon Lecture, Jun. 2019.

[^14]:    ${ }^{3}$ M. C. Coșkun, J. Neu, H. D. Pfister, "Successive Cancellation Inactivation Decoding for Modified Reed-Muller and eBCH Codes," ISIT, Jun. 2020.
    ${ }^{5}$ E. Arıkan, "From sequential decoding to Channel Polarization and Back Again," Shannon Lecture, Jun. 2019.

[^15]:    ${ }^{6}$ M. C. Coșkun, H. D. Pfister, "Bounds on the list size of successive cancellation list decoding," SPCOM, Jul. 2020.

[^16]:    ${ }^{6}$ M. C. Coșkun, H. D. Pfister, "Bounds on the list size of successive cancellation list decoding," SPCOM, Jul. 2020.

[^17]:    ${ }^{6}$ M. C. Coșkun, H. D. Pfister, "Bounds on the list size of successive cancellation list decoding," SPCOM, Jul. 2020.

[^18]:    ${ }^{6}$ M. C. Coșkun, H. D. Pfister, "Bounds on the list size of successive cancellation list decoding," SPCOM, Jul. 2020.

[^19]:    ${ }^{6}$ M. C. Coșkun, H. D. Pfister, "Bounds on the list size of successive cancellation list decoding," SPCOM, Jul. 2020.

