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Abstract 

The latest advancements in 'omics' technologies have enabled the high-throughput 

generation of various types of molecular data. For instance, these advancements have 

made it possible to sequence whole genomes, analyze global transcript levels, and 

quantify proteomes and metabolomes, all of which are now regularly incorporated into 

biological study designs. Despite this progress, the understanding of the complex 

statistical findings produced by multi-omics data analysis poses significant challenges. 

 

A widely used resource in the interpretation of multi-omics data are pathway and 

molecular interaction network databases, which are developed from comprehensive 

literature curation and in silico approaches. These databases are used in pathway and 

network analysis to summarize large lists of molecules from experimental data into 

smaller lists of predefined biological pathways and interactions. Another common data 

summarization approach are data-driven methods where molecular interactions are 

statistically inferred. Among these approaches are linear dimensionality reduction 

methods, such as principal component analysis (PCA). These untangle high-

dimensional datasets into underlying core biological processes by finding smaller 

groups of related molecules. However, despite the popularity of the aforementioned 

techniques, none of them fully utilize the information contained in molecular 

interactions, which are essential in understanding complex systems-level characteristics 

such as diseases. For instance, knowledge database-driven methods usually do not use 

detailed information of single interactions in the analysis of high-throughput data. 

Similarly, linear dimensionality reduction methods, by definition, disregard nonlinear 

interactions that could be present in datasets.  

 

Addressing these issues in high-throughput biological data analysis in this doctoral 

thesis, I focused on developing and evaluating new network-based methods for the 



 

 

 
 

analysis and interpretation of multi-omics data, with a special focus on metabolomics 

data. I developed a tool that uses individual molecular interactions, which enables the 

generation of detailed molecular insights from multi-omics data. Furthermore, I 

implemented and evaluated variational autoencoders, a nonlinear dimensionality 

reduction method that utilizes nonlinear interactions in generating a better data-driven 

understanding of the metabolome. 

 

First, I developed “piTracer”, an R Shiny application that enables the rapid and 

automatic reconstruction of molecular cascades at the multi-omics level. For instance, 

with inputs glucose as a substrate and pyruvate as a product, piTracer can automatically 

and accurately reconstruct the glycolysis pathway. I started by constructing a novel 

directed multi-omics network consisting of gene-gene, gene-metabolite, and 

metabolite-metabolite interactions. I developed a novel algorithm based on atom-

tracing to construct a biochemically valid, directed metabolic network from a database 

of metabolic reactions. I developed this algorithm, since unprocessed metabolite 

interaction networks contain cofactors that act as shortcuts that connect all metabolites, 

are difficult to remove, and make it difficult to reconstruct metabolic cascades. After 

constructing my metabolic network, I then created a gene interaction network based on 

gene interactions found in public databases. I subsequently combined the gene 

interaction and metabolic networks to assemble the multi-omics network. 

 

Second, with my directed multi-omics network as the backend, I used a k-shortest path 

algorithm to enable the reconstruction of multiple paths between pairs of molecules, i.e. 

genes and/or metabolites, in the network. It is pivotal to find several paths between 

molecule pairs, since in biological systems, molecules are connected through multiple 

molecular cascades of varying lengths. To enable the grouping of these paths into 

biologically similar mechanisms for easier interpretation, I implemented a pathway 

clustering algorithm. I then compared piTracer to state-of-the-art tools and showed that 

it significantly outperforms these tools in all biological pathway reconstructions.



Third, I applied piTracer to prioritize druggable genes to enable the streamlining of 

drug screening. Using breast cancer cell line metabolomics data as an input, I 

reconstructed tumor escape mechanisms with piTracer. With an additional drug target 

algorithm that I developed, I then assigned a druggability score to over 7,000 genes, 

prioritized 30 genes based on these scores, and selected 4 genes to experimentally 

validate. Through a successful validation experiment of our predictions, I showed that 

piTracer correctly identified and prioritized genes essential for tumor survival. This has 

big implications for metabolomics-based drug screening and repurposing efforts. For 

instance, the first crucial step in drug screening and repurposing studies is finding a 

viable target for a specific indication of interest, which is time intensive, expensive, and 

requires extensive domain expertise. piTracer can significantly expedite this process by 

automatically and rapidly selecting candidate genes to target with drugs. 

 

Lastly, for the first time, I demonstrated the utility of Variational Autoencoders (VAEs) 

for metabolomics data. I trained a VAE on a large-scale metabolomics population 

cohort of human blood samples consisting of over 4,500 individuals. I analyzed the 

pathway composition of the latent space using a global feature importance score, which 

showed that latent dimensions represent distinct cellular mechanisms. In a validation 

step, I found that latent representations significantly correlated with patient groups in 

unseen metabolomics datasets on type 2 diabetes, schizophrenia, and acute myeloid 

leukemia patient groups, significantly outperforming our PCA baseline. This implies 

that, leveraging nonlinearities in metabolomics data, these representations capture 

disease-associated biological mechanisms. My findings suggest that VAEs are a 

powerful method that learns biologically meaningful, nonlinear and universal latent 

representations of metabolomics data. 

 

Taken together, I created piTracer, which outperforms current methods in automatically 

and accurately reconstructing biological mechanisms. Interestingly, using only 

metabolomics data, piTracer is able to predict essential genes in cancer cell lines, which 



 

 

 
 

could massively expedite drug screening and repurposing efforts. In addition, I 

demonstrated that VAEs can learn universal representations of biological processes 

from a large-scale population cohort. This application is especially important, given the 

arrival of big datasets consisting of more than 500,000 individuals in the near future. In 

this doctoral work, I developed and applied novel network-based methods, which could 

substantially impact the way high-throughput, and especially metabolomics data will 

be utilized in future studies.
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Chapter 1: Introduction 

1.1 High-throughput “omics” 

 

Recent developments in high-throughput “omics” technologies have paved the way 

to generate various levels of molecular data in a high-throughput manner [1]. For 

example, these technologies have made it possible to sequence whole genomes, to 

examine global transcript levels, and to measure the proteome and metabolome, all 

of which are now routinely incorporated into everyday biological study designs [1]. 

This has given rise to the field of “systems genetics”, where intermediate molecular 

phenotypes, such as transcript, protein, and metabolite abundances, that bridge the 

gap between DNA variation and phenotypic traits, are examined at a systematic 

level [2, 3]. Moreover, high-throughput omics measurements have allowed for the 

development of “systems medicine” approaches, in which multidisciplinary 

investigator teams integrate and validate multi-omics data for a better understanding 

of human disease for the benefit of patients [4]. For example, these approaches have 

found that escape mechanisms are an attractive drug target in cancer, because tumor 

cells are dependent on them for survival. Many escape pathways have metabolic 

adaptations as their foundation [5]. Thus, measuring the metabolome is crucial in 

elucidating these compensatory mechanisms and have a big potential in finding 

druggable genes involved in cancer survival. Given the proximity of the 

metabolome to such disease phenotypes, in this thesis, I will primarily focus on 

metabolomics data. 

 

Systems-level computational approaches applied to high-throughput multi-omics 

data help us in profiling the molecular phenotype of disease and identifying the 
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underlying pathological mechanisms of action [6–9]. Extracting such systemic 

effects from high-dimensional datasets requires data summarization and 

dimensionality reduction approaches to disentangle the high number of molecules 

into the processes in which they participate.  

 

 

1.2 Common methods for high-throughput multi-omics data 

analysis 

1.2.1 Pathway analysis and network-based methods 

Pathway databases, constructed from extensive literature curation and in silico 

approaches, are commonly used to identify biologically interpretable mechanisms 

from the plethora of information contained in multi-omics datasets. Prominent 

databases widely used in the field include, among others, KEGG [10], the Gene 

Ontology (GO) [11], SMPDB [12], Recon 3.0 [13], STRING [14], OmniPath [15], 

and Reactome [16]. These databases cover metabolic reactions, protein-protein 

interactions, gene-regulatory interactions and other molecular relations between 

molecules. 

 

With these databases, pathway analysis helps in summarizing large molecule lists 

from experimental data into smaller lists of predefined biological pathways [17]. 

Pathways are statistically tested for whether they accumulate significantly altered 

molecules relative to what is expected by chance. Common pathway analysis tools 

are Enrichr [18], SAFE [19], GAGE [20], and GSEA [21]. Furthermore, topology-

based methods aim to enrich multi-omics datasets with mechanistic network 

information, enabling a better understanding of the underlying biological processes 
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(Figure 1.1a). These methods use graph algorithms on interaction networks, where 

nodes represent biomolecules and edges signify the interactions between these 

molecules. Similar to pathway enrichment-based methods, these approaches 

summarize high-throughput data. For instance, they identify network modules that 

are concomitantly affected in a biological system under study. Examples of these 

methods are module identification tools such as Hetionet [22] and Hierarchical 

HotNet [23] and specialized methods such as flux balance analysis (FBA) [24]. The 

aforementioned methods focus mainly on the usage of pathway and network 

databases on system-wide analyses of omics data.  

 

 

 
Figure 1.1. (a) Selected applications of pathway databases. Applications can be classified into either 

pathway analysis or topology-based methods, which include module identification, specialized methods 

(such as flux balance analysis), and manual or automatic lookup of pathway steps. (b) Example of a 

“trace” between a transcription factor gene, Gene 1, and its downstream effect on a metabolite, Met 5, in 

a metabolic pathway. TF: transcription factor, Pro: protein, Enz: enzyme, Met: metabolite. 

 

Currently, detail-oriented analyses of experimental data by manually constructing 

molecular cascades between statistically significant molecules is an arduous task 

when molecules are far apart in an interaction network. For example, suppose that 
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a mutated gene causes an increase in expression of a transcription factor and 

statistically associates with a decrease in a certain metabolite (Figure 1.1b). Given 

this observation, we may ask which molecular cascade confers the effect of the 

mutated gene onto the affected metabolite. However, finding such a biological path 

is challenging due to the colossal number of unique paths that connect molecules in 

an interaction network that can be chosen from. The problem with this type of 

analysis is further exacerbated if there are misleading shortcuts, such as metabolic 

cofactors or hub genes, in the interaction network. These shortcuts make it difficult 

to decide whether the generated “traces”, i.e. reconstructed paths, are biologically 

meaningful. If it were possible to accurately reconstruct biological cascades, it 

would enable the detailed interpretation of results derived from statistical analysis. 

Moreover, it would be possible to rapidly generate hypotheses that can be integrated 

into experimental designs. For instance, an attractive application would be finding 

diseases-relevant molecular cascades in drug screening studies. Therefore, to create 

a tool that automatically finds biologically relevant molecular cascades, it is of 

paramount importance to exclude misleading shortcuts during the constructions of 

a molecular interaction network. Currently, existing pathway and network-based 

tools often overlook this important step due to the difficulty in removing shortcuts 

[25, 26], limiting their ability to fully utilize molecular interactions in multi-omics 

data analysis. 

 

1.2.2 Dimensionality reduction methods and Autoencoders 

Another common approach for generating insights from high-dimensional datasets 

are dimensionality reduction methods, which are widely used in the field of 

genomics, proteomics, metabolomics, and others. For example, these enable the 

disentanglement of the high number of metabolites into processes in which they 
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participate. Prominently, linear dimensionality reduction methods, such as principal 

component analysis (PCA) [27] and independent component analysis [28], have 

been extensively applied to high-dimensional biological data, for instance to 

discover inherent metabolic processes in metabolomics data [29–33] or to 

deconvolute gene expression data into cell-type specific processes, drug response 

modules, and oncogenic regulatory pathways. [34–37]. However, metabolic 

systems, like most complex biological processes, contain nonlinear effects which 

arise due to high-order enzyme kinetics and upstream gene regulatory processes [38, 

39]. The usage of metabolite ratios is a successful and intuitive example of the 

exploitation of such nonlinear effects in metabolomics data, approximating the 

steady state between products and educts of metabolic reactions [40, 41]. Extending 

this concept, systematic methods that take nonlinearities into account are required 

to correctly recover the functional interactions between metabolites in an unbiased 

fashion. 

 

Autoencoders (AEs), which belong to the field of deep learning, were developed as 

a method of dimensionality reduction that can capture nonlinear effects [42]. AEs 

reduce high-dimensional data into latent variables through an encoding/decoding 

process which recreates the input data after passing through a lower dimensional 

space. Once the model is fitted, the latent variables represent a compact, often 

easier-to-interpret version of the original data. While AEs have been successful for 

prediction tasks on biological datasets [43, 44], they tend to learn a latent space 

specifically fitted to the input dataset, and are therefore not generalizable to unseen 

data. The Variational Autoencoder (VAE) was introduced as an extension to the AE 

architecture that uses variational inference to generate a probabilistic posterior 

distribution of latent embeddings [45, 46]. With this extension, the VAE not only 

reconstructs the input data, but infers the generative process behind the data, leading 
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to high generalizability across datasets. The VAE architecture has, for example, 

proven effective for predicting single cell-level response to infection in 

transcriptomic data not available during training, and predicting drug response from 

gene expression data where drug response information is sparse [47, 48].  

 

The application of deep learning architectures, including VAEs, to metabolomics 

datasets has significantly lagged behind all other omics [49]. As such, current state-

of-the-art dimensionality reduction methods used for metabolomics data rely 

overwhelmingly on linear assumptions, and are therefore not able to pick up on 

possible nonlinearities [38] that are a result of functional interactions between 

metabolites.  

 

 

1.3 Research goals 

 

Despite fast-paced developments in multi-omics data analysis, none of the 

aforementioned approaches incorporate comprehensive information contained at 

the level of single interactions in the summarization of high-throughput data. 

Moreover, during analysis, these methods do not include nonlinear interactions that 

could be present in datasets. 

 

In this thesis I will create and implement network-based methods that use individual 

molecular interactions and utilize nonlinear interactions present in data, with the 

goal to: 
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(I) Construct a multi-omics interaction network devoid of misleading shortcuts from 

various and heterogeneous pathway and network databases to enable the automatic 

assembly of true biologically cascades. 

 

(II) Create an easy-to-use and open-source tool that enables the rapid reconstruction 

of biological pathways, using the interaction network from (I). By reconstructing 

molecular cascades between statistically relevant molecules, such a tool would 

allow for a detail-oriented analysis of multi-omics experimental results, which is 

currently a difficult undertaking. 

 

(III) Apply the tool developed in (II) in predicting tumor-relevant druggable genes 

from reconstructed cancer escape mechanisms and validate these predictions in a 

drug experiment targeting these genes. This would demonstrate the hypothesis 

generation capability of the tool. In addition, a positive validation result would 

indicate the ability of the tool to streamline drug screening and repurposing efforts. 

 

(IV) Learn a universal representation of metabolomics data through VAEs, which 

excel at utilizing nonlinearities present in data, that are a result of the interactions 

that exist between metabolites. By incorporating data nonlinearities, VAEs are 

expected to outperform linear-based methods, such as PCA, in learning lower-

dimensional representations of metabolomics data. 
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Figure 1.2. Overview of the thesis. I introduce piTracer in Chapters 2 to 4. In Chapter 2, I describe how 

I constructed a multi-omics network used as the backend of piTracer. Then, in Chapter 3, I demonstrate 

that piTracer can accurately and rapidly reconstruct true biological cascades. I then apply piTracer to 

predict druggable genes and validate these predictions experimentally in Chapter 4. Finally, in Chapter 

5, I demonstrate that variational autoencoders (VAEs) are able to learn universal latent representations 

of metabolomics data. 
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1.4 Overview of this thesis 

 

The following is a brief outline of this thesis. A graphical overview is given in 

Figure 1.2. 

 

In Chapter 2, I outline the steps in the construction of our directed multi-omics 

network, which forms the basis of our piTracer app (described in Chapter 3). To 

create my metabolic network, I develop an algorithm based on atom-tracing and 

apply it to metabolic reactions from the Recon 3.0 database. This step was necessary 

in order to remove cofactors, which connect all metabolites in unprocessed 

interaction networks that lead to false cascade reconstructions. Subsequently, I 

assemble a gene interaction network using publicly available databases, such as 

STRING, OmniPath, and Genotype-Tissue Expression (GTEx). I then combined the 

metabolic and gene interaction networks to create a directed multi-omics network. 

 

Chapter 3 presents “piTracer”, an R Shiny application that enables the automatic 

and accurate reconstruction of biological cascades. For instance, given glucose as a 

starting molecule (substrate) and pyruvate as an end molecule (product), piTracer 

can reconstruct the glycolysis pathway. I implement Yen’s k-shortest path algorithm 

to construct paths between molecule pairs, i.e. genes and/or metabolites, in my 

multi-omics network. Subsequently, to enable the clustering of k-shortest paths 

between two molecules into biologically similar or redundant mechanisms, a path 

clustering algorithm is added to piTracer. I then compare the performance of 

piTracer with state-of-the-art pathway reconstruction tools, such as the QIAGEN’s 

Ingenuity Pathway Analysis (IPA) and ConsensusPathDB. The comparison 

demonstrates that piTracer significantly outperforms both tools in the accurate 

reconstruction of biological pathways. 
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In Chapter 4, the application of piTracer in accurately predicting essential disease 

genes is presented. With piTracer, I first reconstruct escape mechanisms of a breast 

cancer cell line using metabolomics data acquired before and after treatment of a 

glutaminase inhibitor. Genes involved in survival mechanisms are then ranked with 

a novel scoring method based on piTracer reconstructions. I then selected and 

experimentally validated our predictions in a drug combination treatment 

experiment, which showed that targeting our selected genes substantially decreased 

breast cancer cell viability. The results demonstrate that piTracer can significantly 

expedite drug screening and repurposing efforts by accurately prioritizing disease-

essential genes. 

 

For the first time in the metabolomics field, Chapter 5 presents the application of 

Variational Autoencoders (VAEs) on metabolomics data. I train a VAE on a dataset 

of 217 measured metabolites in 4,644 twins of European-ancestery (4,256 females, 

388 males) plasma samples from the TwinsUK population cohort. Furthermore, I 

interpret the VAE learned representation by calculating Shapley Additive Global 

importancE (SAGE) values, which represent global feature importance scores, at 

the level of metabolites and metabolic pathways. SAGE values demonstrate that the 

learned representations capture distinct cellular mechanisms. Moreover, compared 

to our PCA baseline, I show that VAE representations associate significantly with 

patient groups from unseen and very different datasets. That is, data from cohorts 

of mixed-gender and multi-ethnic from the US and Qatar, previously unseen by our 

VAE model which was trained on a mono-ethnic and predominantly-female 

population cohort. Our results demonstrate the ability of VAEs to learn universal 

representations of biological processes and could potentially replace linear 

dimensionality reduction methods in the metabolomics field. 
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Finally, in Chapter 6, I enumerate the scientific contributions of this thesis to the 

high-throughput data analysis field and discuss possible extensions and potential 

future projects. 

 

 

 

 

  



      1.4 OVERVIEW OF THIS THESIS 12  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2: MULTI-OMICS NETWORK CONSTRUCTION 

 

13  

Chapter 2: Multi-omics network construction 
 

An essential prerequisite for reconstructing biological cascades is having a multi-

omics interaction network composed of directed interactions and devoid of shortcut 

paths that arise from metabolic cofactors and hub genes. To this end, we constructed 

our multi-omics network for tracing (Figure 2.1), by first importing the human 

version of several public databases, focusing on those that are highly curated and 

that we considered to be the most advanced in the field. We then processed these 

interaction networks to exclude as many false positive molecular interactions, by 

removing cofactors and selecting gene interactions with high confidence scores. 

Lastly, we combined these heterogeneous networks by connecting them through 

overlapping molecules, such as enzymes, to assemble our final multi-omics network 

(Figure 2.1). 

 

 
Figure 2.1. The databases and steps used in the construction of our multi-omics network.  
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2.1 Metabolic network construction 

 

Shortcut nodes, such as cofactors in metabolic networks and hub genes in gene 

networks, are a common problem in pathfinding in biological networks and are not 

readily excluded by simple filtering steps [25, 26]. During biological cascade 

reconstruction, these shortcuts can create misleading links between two molecules, 

leading to false molecular or uninterpretable paths. Therefore, we created a novel 

atom-tracing-based method to generate our metabolic network. 

 

Recon 3.0 [13] was imported as the basis for our metabolic network. We performed 

the following preprocessing steps to ensure that metabolites are correctly linked and 

that shortcut nodes, such as cofactors, are pruned from the network (Figure 2.1).  

 

We downloaded detailed metabolic reactions in the form of RXN files from the 

Virtual Metabolic Human database (VMH) [50]. RXN files contain structural data 

for the reactants and products of each reaction [51], including information on  atoms 

that are transferred from reactants to products. When a metabolic reaction did not 

have a RXN file, we generated them from MOL files downloaded from VMH using 

the Reaction Decoder Tool v1.5.1 [52].  

 

To connect metabolites in our metabolic network, we created a specialized scoring 

system to avoid shortcuts and ensure that for each step in the network, there is a 

certain amount of atomic overlap. For a given molecule pair M and N, defined by 

their respective sets of mapped atoms, we calculate the atomic overlap as 𝑆!" =

|𝑀 ∪ 𝑁|/|𝑁|. This overlap score 𝑆!"is computed in a directional manner for all 

reactant/product and product/reactant  pairs of each reaction.  
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Figure 2.2. Example of how the overlap score threshold is used to assign edges between reactants and 

products, how the overlap score thresholds are calculated, and how shortcut paths are excluded. 
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However, simply applying an overlap threshold T to Snm in order to determine which 

molecules should be connected in the metabolic network is not sufficient, because 

this would introduce shortcut paths and might miss important edges in the network, 

as shown in our example below. Therefore, we define a normalized overlap 

threshold as 𝑇# = 𝑇/𝑁#for each reactant/product m, where T is a base overlap 

score threshold and Nm is the number of molecules this reactant/product is split 

to/synthesized from in the respective reaction. Using Tm we create an edge m-n in 

our network if and only if Smn ≥ Tm and Snm ≥ Tn.  

 

To illustrate the motivation behind this scoring method and how it is applied, we 

perform the following example. Suppose that in a given Reaction 1 (Figure 2.2) we 

have reactant A and products B, C, D. Since A is split into three products in this 

reaction, NA = 3. Now assume that SAB = 0.02, SAC = 0.49 and SAD = 0.49, SBA = 1, 

SCA = 1, and SDA = 1, i.e. 2% of atoms in A are transferred to B, 49% of atoms in A 

are transferred to C, and so on. Assume we set a base overlap score threshold T of 

0.75. For this reaction, SAB < T but SBA ≥ T. A choice must be made on how to create 

an edge between A and B in the network. If we require both the overlap scores to 

be greater than T, then there will be no edges between A and any of its products B, 

C, and D; hence, an “OR” rule would have to be used. However, if we only choose 

either of the overlap scores to be greater than T, then we will have an edge A-B 

(Figure 2.2 Rule 1). Let us further assume that we have another Reaction 2 (Figure 

2.2) with reactants B, E and product F and SBF = 1, SEF = 1, SFB = 0.01, SFE = 0.99. 

Since F is synthesized from B and E, F has a split size NF = 2. Here, SFB < T and SBF 

≥ T and since one of them is greater than T, we create an edge B-F (Figure 2.2 Rule 

1). Given both reaction 1 and reaction 2, we now have a shortcut path A-B-F in our 

network (Figure 2.2 Shortcut Path). Note that B acts as a cofactor in both reactions, 

since B is much smaller than A and F. If this procedure is applied to all reactions in 
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order to construct a metabolic network, we would get many shortcut paths passing 

through cofactors such as B. 

 

To alleviate this problem, for each reactant-product pair, we calculate a reactant 

threshold value Tm and a product threshold value Tn (Figure 2.2, Overlap Threshold 

Values) as defined by 𝑇# = 𝑇/𝑁# and check whether SMN ≥ TM and SNM ≥ TN. If 

both are greater than their corresponding thresholds, then an edge m-n is created in 

the network (Figure 2.2 Rule 2). For our example, this means that we will exclude 

shortcut edge A-B. Note that A is split into products B, C, and D, which means that 

NA = 3 for A. For instance for reaction 1 and the pair A and B, TA = T/NA = 0.75/3 = 

0.25 and TB = T/NB = 0.75/1 = 0.75. Since SAB < TA and SBA ≥ TB. Thus, we will not 

create an edge A-B. However, if we calculate this for the other pairs in reaction 1, 

we find that we will create edges A-C and A-D. For reaction 2 and the pair B and 

F, we have TB = T/NB = 0.75/1 = 0.75 and TF = T/NF = 0.75/2 = 0.375.  Since SBF ≥ 

TB and SFB < TF, we do not create an edge B-F. In contrast, we do create an edge E-

F following a similar calculation. Now the shortcut path A-B-F is effectively pruned 

from the network, leaving reaction 1 and reaction 2 disconnected. We used a T = 

0.75 for the processing of our metabolic network. 

 

We observed that reactions involving the binding of coenzyme A (CoA) to a 

metabolite were filtered out using our scoring method. For instance, the succinyl-

CoA to succinate reaction, an important step in the TCA cycle, was omitted from 

our metabolic network. Thus, we manually curated a list of these reactions and 

added them back into our metabolic network.  

 

To further exclude cofactors from our metabolic network, we used a curated 

blacklist that includes NAD and derivatives, FAD and derivatives, nucleotides, ions, 
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CoA, acetyl CoA, and others. The blacklist can be found together with our scripts 

on our github repository. 

2.2 Gene Interaction network construction 

 

We constructed a gene interaction network (Figure 2) using the following databases: 

(1) STRING v11 [14] was used for the protein-protein interaction (PPI) network. 

Only PPIs containing directional information, i.e. activation, inhibition, and 

catalysis and with scores above 400 for the STRING “experiments” and 

“experiments transferred” scores were selected. (2) Signaling cascades were 

imported from the OmniPath database [15] and interactions with OmniPath 

“consensus directionality” criteria were chosen. (3) We further integrated gene 

regulatory information into our multi-omics network by including a network created 

by Sonawane et al. [53] using PANDA [54] on data from the Genotype-Tissue 

Expression (GTEx) project [55] and STRING v10 [56] without any further 

preprocessing.  

 

 

2.3 Final network 

 

Given that both of our metabolic and gene interaction networks have common 

genes, i.e. enzymes, we overlapped the two networks to assemble our directed multi-

omics network. Our final network consisted of 6,735 metabolites and 7,412 genes 

and 11,859 metabolite-metabolite, 4,579,972 gene-gene, and 24,002 gene-

metabolite interactions (Figure 2.3). This high quality multi-omics network enabled 

our tool, described in Chapter 3, to retain biologically meaningful molecular 
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relationships, to avoid false links during biological cascade reconstructions, and to 

reconstruct accurate molecular pathways. 

 

 

 
Figure 2.3. Our multi-omics network in numbers. a, node-level and b, interaction-level numbers. 

There are a comparable number of genes and metabolites. However, gene-gene interactions dominate the 

multi-omics network. 
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Chapter 3: Automatic reconstruction of 

molecular cascades 
 

In this chapter, we present piTracer, an easy-to-use tool that can automatically and 

rapidly generate candidates for biologically accurate molecular cascades between 

molecules across different omics. To the best of our knowledge, only two tools, 

ConsensusPathDB (CPDB) [57] and the commercial Ingenuity Pathway Analysis 

(IPA) software [58], have attempted to address this problem. However, these tools 

have two core problems: (1) Misleading shortcuts exist in their multi-omics 

network. For piTracer, we have addressed this problem in Chapter 2, which is the 

basis for the ability of piTracer to construct true molecular cascades. (2) multiple 

molecular paths of different lengths connect two molecules in biological networks. 

Since CPDB and IPA only use shortest paths with a constant length to connect two 

molecular entities, many biologically informative paths can be missed in a query. 

In contrast, piTracer allows for the simultaneous reconstruction of multiple 

molecular cascades of various lengths.  

 

Terminology Definition 

k-shortest paths Paths in a network including the shortest path and k-1 other shortest paths, 

which may be longer than the shortest path 

Path Refers to one of the k shortest paths 

Trace As a noun: Defined as a collection of paths between a start and end node pair. 

As a verb: The act of generating multiple paths between a start and end node(s) 

Table 1. Terminology used in reconstructing molecular cascades. 
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Figure 3.1. The piTracer app backend, showing the databases used in the construction of the multi-omics 

network, as shown in Figure 2.1, and a scheme of the tracing approach. The input to the method is a list 

of genes and/or metabolites, e.g. derived from statistical analysis of an experiment.  

 

piTracer is a Shiny-based web application that enables the querying of distant 

functional relationships between molecules and powerful interactive visualizations 

of the molecular traces (Figure 3.1). We combined multiple databases across 

different omics after extensively curating and applying new processing methods to 

these databases to remove shortcut nodes such as cofactors. We also implemented 

an algorithm that allows for the creation of traces containing differing molecular 

path lengths and a clustering algorithm to aid visualization of the traces. piTracer is 

written in R, open-source and freely available. We performed metabolite-to-

metabolite, gene-to-metabolite, and gene-to-gene tracing to validate the ability of 

piTracer to automatically construct traces between molecules. 
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3.1 Methods 

 

In the following, we describe the different algorithmic steps to extract paths and 

traces between a start and an end node from the multi-omics network. 

3.1.1 Yen’s k-shortest path algorithm 

Yen’s k-shortest path algorithm calculates the k-shortest paths between a pair of 

nodes in a network. The algorithm initially finds the shortest path between a pair of 

nodes, and subsequently enumerates the k-th shortest path based on node deletion 

and recalculation of a shortest path based on previously calculated k-1 shortest 

paths. The assumption this algorithm makes is that the k-th shortest path shares 

edges and sub-paths with the (k-1)-th shortest paths and these can thus be used for 

calculating the k-th shortest path [59]. 

 

3.1.2 Path clustering 

To improve the visualization of the k-shortest paths in a trace, especially for large 

values of k, we developed a clustering algorithm to group paths. We first compute 

the distances between the k-shortest paths between two nodes using the CoMapPa2 

algorithm [60]. Given these distances, a path dendrogram is then created using the 

hclust function in R [61]. Path clusters are obtained through dynamic tree cutting  

using cutreeHybrid function from the Dynamic Tree Cut R package [62]. Clusters 

of paths are expected to represent shared biological characteristics and can be useful 

in selecting groups of paths for further investigation. 
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3.1.3 Heuristic for speed-up 

To speed up trace calculations, we dynamically reduce the search space of the k-

shortest paths algorithm per trace. We achieve this by confining the search to a 

subnetwork of our dense multi-omics network for each pair of start and end nodes. 

This subnetwork will contain a subset of all the shortest paths that exist between a 

pair of nodes. That is, it might not contain all possible k-shortest paths for a trace 

and will cap the value of k, but this will significantly accelerate the calculation of 

traces. We implemented the heuristic as follows: (1) Initially, we extract the set Nstart 

of all reachable nodes from the start node and another set Nend of all nodes that can 

reach the end node. (2) We define a hyperparameter v, such that we can calculate 

an overlap set O ⊆ Nstart ∩ Nend for which |O| ≤ v. For instance, v = 5 means that 

at most there are 5 molecules in O . Given that |O| ≤ v, the hyperparameter v 

determines the number of maximum shortest path k that can be calculated for a trace. 

We currently set v = 5, which on average allows 300 shortest paths to be found on 

our network, depending on the start and end nodes chosen. Increasing v increases 

the number k-shortest paths that can be calculated per trace in exchange for an 

increase in computational time. (3) We calculate a set Ds of the shortest distances 

between all pairs of the start node and nodes in O. We then extract the v shortest 

distances from Ds and select the maximum value ds. The same procedure is 

performed using the end node to calculate de. (4) Afterwards, a subnetwork of the 

multi-omics network is created by including all nodes and edges within distance ds 

towards the O nodes and distance de from the O nodes. (5) Tracing is then performed 

on the final, restricted multi-omics subnetwork. 
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3.1.4 IPA and CPDB 

The traces produced by piTracer were compared to traces generated from two other 

state-of-the-art tools: (1) IPA, which is a commercial software by QIAGEN. To 

create traces in IPA version 01-16, the Path Explorer tool was used. Additionally, 

we used either “direct interaction” or both “direct and indirect interactions” options 

for tracing, depending on which option resulted in a more meaningful trace. 

Moreover, we selected the “relaxed filters” option for the “Species” and “Tissues 

and Cell Lines” options for all traces. (2) CPDB, which is a web-based tool that 

integrates human molecular interaction data and provides computational methods 

and visualization tools to explore these data [57]. For CPDB, we used the “shortest 

interaction path” function to create and the “Visualize path” function to visualize 

traces. We used the “exclude” function to blacklist nodes in CPDB, in order to 

produce traces with minimal shortcut nodes. 

 

3.1.5 piTracer code, docker image, and web page  

piTracer has been developed in R [61] version 3.6.1 and Shiny 1.4.0.2 [63]. Free 

access to a hosted version of piTracer is provided at 

http://cbsunemo.biohpc.cornell.edu/pitracer/. The codes used in piTracer are 

separately available at the GitHub repository 

https://github.com/krumsieklab/piTracer.  
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3.2 Results 

3.2.1 The piTracer Shiny app user interface 

 

 
Figure 3.2. Screenshot of the piTracer app in a web browser. (a) Input panel. Users have the option to 

search for molecules in the piTracer database, trace between start and end node pairs or trace between 

all start nodes and all end nodes, upload lists directly into the start and end nodes text boxes, blacklist 

nodes in the traces, set the number of shortest paths k, and cluster traces based on similarity. Users can 

also download the visualizations as HTML files. (b) Results tab including interactive network 

visualizations and a detailed trace list.  

 

 

The easy-to-use user interface of piTracer starts with an input area (Figure 3.2a) that 

enables users to enter a list of metabolites and/or genes. Alternatively, a comma 
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separated value (CSV) or Excel spreadsheet file containing a list of metabolites and 

genes can be uploaded. piTracer accepts identifiers from HMDB, KEGG, PubChem, 

and Recon for metabolites and HGNC gene symbols for genes. Specific 

genes/metabolites can be dynamically searched for in the app database using an 

autofill textbox. Users can specify whether to trace between pairs of start and end 

nodes as they are arranged in the text area or between all pairs of start and end nodes. 

Molecules can also be blacklisted by using a user-defined list prior to tracing. 

Moreover, the number of shortest paths between start and end nodes to be calculated 

for traces, and whether to cluster paths for easier visualization can be specified. 

Once traces have been generated, both visualizations and a list containing all the 

generated paths in the traces can be downloaded. 

 

After submitting the start and end nodes list for tracing, users are presented with the 

traces (Figure 3.2b) where they can dynamically select and sort which traces to 

view. Moreover, the visualizations are interactive, allowing for network zooming 

and moving of nodes. Users additionally have access to a trace list, where the list of 

paths for each start and end node trace is provided. 

 

3.2.2 Gene-to-metabolite traces 

Interactions between genes and metabolites are not always clear-cut as metabolic 

reaction cascades. For instance, a statistical association found between a single 

nucleotide polymorphism (SNP) at a specific locus and a certain metabolite in a 

genome-wide association study (GWAS) could be caused by a variety of different 

mechanisms, from simple enzyme-to-reactant relationships to complex cascades of 

genetic regulation. Given this nontrivial task, we here show that piTracer 

automatically and rapidly generates biologically meaningful hypotheses that 
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provide explanations for gene-to-metabolite associations. As a test case we used 

several associations found in the currently highest powered GWAS study involving 

metabolites [64] to illustrate the hypothesis-generation functionality of piTracer. 

 

Uncovering the correct regulatory path for the complex genetic association 

between rs2403254 and 2-hydroxyisovalerate 

In their initial GWAS paper, Shin et al. [64] explained the association between SNP 

rs2403254 and 2-hydroxyisovalerate with the HPS5 gene, since that SNP is located 

in in an intronic region of HPS5. Other candidate genes for the SNP found by a 

different study were GTF2H1, SAA1, and LDHA [65]. This later study 

demonstrated that in fact LDHA was the correct causal gene for the association by 

showing that LDHA converts 3-methyl-2-oxobutanoate into 2-hydroxyisovalerate 

in an experiment [65]. In contrast, they did not find any biochemical explanations 

for the HPS5 to 2-hydroxyisovalerate association [65]. We assessed all four gene 

candidates using the piTracer app. 

 

 

 
Figure 3.3. Visualization of traces between (a) LDHA, (b) GTF2H1, and (c) SAA1 and 2-

hydroxyisovalerate using piTracer. The highlighted paths in b and c are the LDHA shortest path in A.  
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First, there was no trace from HPS5 to 2-hydroxyisovalerate, since the gene does 

not have any functional annotations in our database. This is in line with the findings 

of Heemskerk et al. [65]. While we acknowledge that research bias might play a 

role here, the lack of functional information in extensive databases provides 

evidence against HPS5 being the correct gene. We then generated traces (k = 10) 

from LDHA, GTF2H1, and SAA1 to 2-hydroxyisovalerate (Figures 3.3a, 3.3b, and  

3.3c, respectively) and subsequently ranked gene-to-metabolite associations by 

plausibility. We found that the LDHA trace contains the shortest path to 2-

hydroxyisovalerate (Figure 3.3a, highlighted path) and that LDHA directly 

catalyzes a reaction involving 2-hydroxyisovalerate. Interestingly, the GTF2H1 and 

SAA1 traces, which consisted of longer paths, are extensions of the LDHA shortest 

path (Figure 3.3b and Figure 3.3c, highlighted paths). Using these traces, it would 

have been immediately clear that LDHA had the highest likelihood to be the correct 

gene associated with 2-hydroxyisovalerate.  

 

We similarly traced between LDHA, GTF2H1, and SAA1 and 2-hydroxyisovalerate 

using IPA (Figures 3.4a to 3.4c). However, all traces had a constant path length, 

none contained the correct enzyme-metabolite relationship, and were substantially 

longer and less specific than the shortest path found by piTracer. Additionally, we 

also found a trace between the wrong gene HPS5 and 2-hydroxyisovalerate with the 

same path lengths, suggesting that traces by IPA are uninformative and do not allow 

for the prioritization of the gene to metabolite association hypotheses in this case. 

We similarly attempted to generate traces between the 4 genes and 2-

hydroxyisovalerate using CPDB. However, the metabolite did not exist in the CPDB 

database. 
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Figure 3.4. Visualization of traces between (a) LDHA, (b) GTF2H1, and (c) SAA1 and 2-

hydroxyisovalerate using IPA.  

 

Beta-oxidation and carnitine shuttle pathway between ACADM and 

hexanoylcarnitine 

 
Figure 3.5. ACADM-hexanoylcarnitine trace. (a) Trace produced by piTracer. (b) The carnitine shuttle. 

Traces produced by (c) IPA and (d) CPDB. ACADM and carnitine were used for the CPDB trace, since 

hexanoylcarnitine does not exist in its database. 
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Another highly significant association found by Shin et al. [64] and various other 

previous studies [40, 66] was between a SNP in ACADM and the metabolite 

hexanoylcarnitine. The biochemical cascade behind this association is well 

understood. Briefly, ACADM is an enzyme involved in mitochondrial beta-

oxidation and hexanoylcarnitine is a transport variant of the substrate and product 

of this enzyme [67]. Tracing between ACADM and hexanoylcarnitine with k = 10 

indeed recovers all steps of this mechanism (Figures 3.5a and 3.5b).  

 

We also attempted to construct traces using IPA and CPDB (Figures 3.5c and 3.5d). 

We traced from ACADM to carnitine using CPDB, since hexanoylcarnitine did not 

exist in its database. Neither could recover a known mechanism connecting 

ACADM with hexanoylcarnitine. IPA recovers paths that all pass through 

gonadotropin-releasing hormone (GNRH), its receptor GNRHR, and a synthetic 

hormone leuprolide, while CPDB finds paths between ACADM and carnitine 

through cofactors. 

 

Further validation examples 

We analyzed further SNP/metabolite pairs from the Shin paper (cite again) to 

provide additional validation of piTracer. These include traces between 

ALDH18A1 and citrulline, MCCC1 and 3-hydroxyisovalerylcarnitine, and DBH 

and vanillylmandelate (Figures 3.6-3.8, respectively). In all cases, we found the 

correct biochemical paths using piTracer, in contrast to IPA and CPDB.  
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Figure 3.6. Visualization of trace between ALDH18A1 and citrulline. (a) Trace produced by piTracer. 

(b) Textbook version, (c) M IPA trace, and (d) CPDB trace of the pathway. 
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Figure 3.7. Visualization of trace between MCCC1 and 3-hydroxyisovaleryl carnitine. (a) Trace 

produced by piTracer. (b) Textbook version, (c) IPA trace, (d) CPDB trace of the pathway. Note that for 

IPA and CPDB, MCCC1 was traced to 3-hydroxyisovaleryl-coenzyme A. 
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Figure 3.8.  Visualization of trace between  DBH and vanillylmandelate (3-methoxy-4-

hydroxymandelate). (a) Trace produced by piTracer. (b) Textbook version, (c) IPA trace, (d) CPDB trace 

of the pathway. 

 

3.2.3 Metabolite-to-metabolite traces 

Finding multiple reaction steps connecting metabolites is often a nontrivial task. For 

instance, a statistical correlation between two metabolites can result from an 

experiment, but it may not be apparent how these are metabolically connected, 

unless they are the direct reactant and product of the same reaction. Moreover, there 

may be multiple paths that explain the connection between two metabolites and 

enumerating these can be challenging. Here we show that piTracer reconstructs 

well-established metabolic pathways as a positive control 
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Finding paths in central carbon metabolism 

 

 
Figure 3.9. The glycolysis, pentose phosphate, and sorbitol pathways. Traces were produced by using 

glucose as the starting node and pyruvate as the end node (a) Trace constructed using piTracer with 

manually added highlighting of three well-known carbohydrate metabolism pathways. (b-d) Textbook 

versions of the glycolysis, pentose phosphate, and sorbitol pathways. (e) IPA and (f) CPDB 

reconstructions, resulting in single-step paths between glucose and pyruvate. 

 

We started by tracing between glucose and pyruvate, two major metabolites of 

central carbon metabolism. To this end, the top 70 shortest paths connecting the two 

metabolites were queried. We chose the top 70 shortest paths since this was the 

minimum number of paths that could reconstruct the glycolysis pathway. The 

tracing (Figure 3.9a) resulted in three major axes: The glycolysis pathway (Figure 

3.9b), the pentose phosphate pathway (Figure 3.9c), and the sorbitol pathway 

(Figure 3.9d). These three pathways are major constituents of carbohydrate 

metabolism and are essential for the survival of all cells. Notably, the other paths 
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contained in the trace may also represent valid molecular steps, however only partial 

stretches of the alternative paths have published studies associated with them.  For 

instance, in the trace, there is a path that connects glucose to pyruvate via glucose-

6-phosphate (G6P), myo-inositol-1-phosphate, myo-inositol, phosphatidate, 

phosphatidyl-serine, and serine. It has been established that glucose affects myo-

inositol [68], phosphatidate is involved in the production of phosphatidyl-serine 

[69], and serine yields pyruvate [70]. However, there are no studies showing the 

synthesis of pyruvate from glucose via this path. 

 

We also queried the connection between glucose and pyruvate in IPA and CPDB. 

The IPA path connected glucose to pyruvate via glucose-6-phosphate (Figure 3.9e) 

and CPDB returned a single step reaction between glucose and pyruvate (Figure 

3.9f). Despite using the blacklist functionality in CPDB and choosing the best 

interaction filters for IPA (see Methods 3.1), neither could construct any of the 

known carbohydrate metabolism pathways. 
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Reconstructing the citric acid cycle 

 

 
Figure 3.10. The citric acid cycle. Traces were produced by using citrate as the starting node and 

oxaloacetate as the end node. (a) Trace produced by piTracer. (b) Textbook version, (c) IPA trace, (d) 

CPDB trace of the pathway. Only piTracer is able to recover the citric acid cycle, although CPDB and 

IPA produced biochemically valid paths other than the pathway. 

 

We further validated piTracer by tracing from citrate to oxaloacetate, the start and 

end point of the citric acid cycle. By querying the 10 shortest paths between the two 

metabolites, we were able to find a path that reconstructs the citric acid cycle (Figure 

3.10a and 3.10b). IPA and CPDB were also used to generate citric acid cycle traces. 

Both tools produced the same biochemically valid single reaction step (Figure 3.10c 
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and 3.10d), a connection from the end (oxaloacetate) to the start (citrate) of the citric 

acid cycle, rather than a path around the cycle.  

 

 

3.2.4 Gene-to-gene traces 
Functional interactions between genes are at the core of all cellular processes. Many 

of these interactions have been curated and stored in network databases. However, 

similar to metabolic interactions, querying these databases for gene-to-gene 

relationships can lead to dense networks that are difficult to interpret. Part of the 

reason for the density of these networks is that different interaction types exist 

between genes; for example, genes can bind, activate or inhibit other genes. 

Network databases collect these relations into large sets of gene-to-gene 

interactions. Thus, it becomes challenging to choose paths that best explain gene 

relationships. Here we show that our stringent network filtering steps and our path-

finding algorithm enables piTracer to generate biologically valid gene-to-gene 

traces that are sparse and easy to interpret by using several well-known molecular 

cascades as examples. 
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Figure 3.11.  Traces between (a) NOD1 and NFKB1, (b) NODAL and LEFTY1, and (c) STK3 and 

TEAD1 produced by piTracer. Adapted textbook versions of (d) NOD-like receptor, (e) NODAL, and 

(f) Hippo signalling pathways. 
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Figure 3.12.  IPA and CPDB traces between (a) NOD1 and NFKB1, (b) NODAL and LEFTY1, and (c) 

STK3 and TEAD1.  

 

The NOD-like receptor signalling pathway 

We attempted to reconstruct the NOD-like receptor signaling pathway by tracing 

the top 10 shortest paths between NOD1 and NFKB1 (Figure 3.11a). NOD1, 

together with NOD2, senses conserved motifs in bacterial peptidoglycan and 

induces anti-microbial responses and pro-inflammatory cytokines through NF-κB 

activation [71, 72]. piTracer successfully found the major steps in the signaling 

pathway, namely the NOD1, RIPK2, IKBKB and NFKB1 path (Figure 3.11d).  
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We also traced between NOD1 and NFKB1 using IPA and CPDB (Figure 3.12a and 

3.12b, respectively). Both IPA and CPDB indicated the existence of a connection 

between the two genes, however they did not capture any of the specific steps 

(Figure 3.11d) constituting the pathway. 

 

The NODAL signalling pathway 

As another example, we reconstructed the NODAL signalling pathway, by tracing 

between NODAL and its inhibitor LEFTY1 (k = 10) (Figure 3.11b). This pathway 

plays a central role in the maintenance of embryonic stem cell pluripotency, the 

patterning of the early embryo during mesoendoderm induction, and the dorsal-

ventral axis specification in embryos [73]. Not only did our trace recover this 

signaling pathway (Figure 3.11b highlighted path), but also included other equally 

valid paths that pass through different subcomponent combinations of Activin type 

1 (ACVR1) and 2 receptors (ACVR2) and different SMADs involved in the 

pathway (Figure 3.11e).  

 

Using IPA and CPDB, we also traced between NODAL and LEFTY1. While IPA 

connected the two genes in two steps using different gens (Figure 3.12c), CPDB 

found a path between NODAL and LEFTY1 via MTOR, which is part of a different 

pathway, namely the mTOR signalling pathway (Figure 3.12d).  

 

The Hippo signalling pathway 

As a third example, we reconstructed the Hippo signalling pathway using piTracer 

by tracing between STK3, a core kinase of the signalling pathway, and TEAD1 

(Figure 3.11c). STK3 is a core kinase of the Hippo signalling pathway [74] and 
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activates the transcription factor TEAD1 which leads to cell proliferation and 

survival [75], oncogenesis and chemotherapeutic resistance [76]. Our app 

successfully reconstituted the pathway (Figure 3.11f) and IPA included all the major 

steps of the pathway but one, namely the LATS1/2 step (Figure 3.12e). However, 

CPDB generated a trace that was not biologically meaningful (Figure 3.12f). 

 

 

3.3 Summary & Discussion 

 

piTracer is an app that integrates various human molecular interaction databases 

across omics to enable the rapid and automatic generation of biologically 

meaningful pathway cascades between molecules. To the best of our knowledge, it 

is the only tool that enables the automatic construction of valid molecular interaction 

paths across omics, even for distant interactions, an otherwise onerous task to 

perform manually. Being able to generate these cascades is essential, since 

statistical results from high-throughput datasets are often not readily interpretable. 

For instance, a biological relationship is obvious when a gene-to-metabolite 

association is found between a gene encoding an enzyme and a metabolite of the 

corresponding catalyzed reaction. However, when two molecules do not share a 

direct relationship, which is often the case, it can be challenging to find biological 

cascades connecting the two. We showed the capability of piTracer to address this 

problem by generating metabolite-to-metabolite, metabolite-to-gene, and gene-to-

gene traces, which were validated by previously published studies. Furthermore, the 

validation examples could not be reproduced using most widely used tools IPA and 

CPDB. Taken together, these results show that piTracer is the only existing tool that 

can accurately and automatically construct true biological cascades between 
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molecules, which can be used in applications such as interpretation of complex 

genetic associations.  

 

We traced between glucose and pyruvate and found several well-known glucose 

metabolism pathways embedded in our trace, including glycolysis, pentose 

phosphate, and sorbitol pathways. The other paths contained in the trace may also 

be valid molecular steps, however only parts of these paths have been previously 

reported in previous studies. We also generated a trace between citrate and 

oxaloacetate where we recovered the citric acid cycle. Only piTracer found these 

essential carbohydrate/nucleotide metabolism pathways, as opposed to IPA and 

CPDB. This clearly demonstrates that our metabolic network processing retains 

valid metabolic interactions which can be used with our pathfinding algorithm to 

construct true metabolic cascades. 

 

Statistical associations between SNPs and metabolites, like those found in Shin et 

al. [64], are often difficult to interpret, mainly due to the challenging task of finding 

the correct causal gene and biochemical pathway explaining a SNP-to-metabolite 

association. Originally, Shin et al. [64] incorrectly reported that HPS5 was the 

causal gene explaining the rs2403254 and 2-hydroxyisovalerate association. We 

used piTracer to correctly identify LDHA as the causal gene for this association, 

which was the same gene identified by an independent study [65]. This 

demonstrates the ability of piTracer to prioritize which gene explains a SNP-to-

metabolite association. 

 

Given that gene networks are dense, it is challenging to automatically extract sparse 

and biologically meaningful molecular cascades between pairs of genes. 

Furthermore, a sparse trace does not guarantee that the reconstructed paths are 
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accurate. For instance, when we traced between the endpoints of known signalling 

cascades, namely the NOD-like receptor, NODAL, and Hippo pathways using IPA 

and CPDB, we were not able to reconstruct the entirety of the pathways. IPA 

returned sparse traces, but frequently missed major steps of the pathways, while 

CPDB returned dense networks that were difficult to untangle. This can be partially 

explained by the gene networks used by these tools, which have not been processed 

and were used as is. In contrast, we specifically selected gene regulatory, activating, 

and inhibitory interactions that are experimentally validated from various databases 

in order to create our multi-omics network and make it less dense.  

 

The number of shortest paths k is a central parameter of piTracer that substantially 

affects the results produced by the algorithm. We used a value of k = 10 for the 

majority of our validation traces. However, we generated our final traces for the 

STK3 to TEAD1 pair (Hippo pathway) with k = 20, for the glucose to pyruvate pair, 

k = 70, and for the citrate to oxaloacetate pari, k = 25. Although we could generate 

valid paths with k = 10 for these pairs, we observed that for the glucose to pyruvate 

trace, a k = 70 was the minimum number required to include the glycolysis pathway 

in our final result. This is due to the fact that many biochemically valid paths 

connect glucose and pyruvate, as shown in our trace, and a higher value of k is 

needed in order to recover the majority of them. We made the same observations 

for the STK3 to TEAD1 and citrate to oxaloacetate traces. With these three traces 

being the only exceptions, and that almost all of our validation traces were generated 

with a k = 10, we suggest that a k = 10 is an adequate initial value to find paths 

between molecules. Furthermore, when it is hypothesized that many paths exist 

between a molecule pair, higher values up to k = 100 could be required to reconstruct 

all major paths between them. 
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piTracer is, to the best of our knowledge, the first freely available and open-source 

app that can rapidly generate correct biological paths of varying lengths between 

molecules for the interpretation of complex statistical results.  
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Chapter 4: Predicting druggable genes from 

reconstructed cascades 
 

This chapter demonstrates the hypothesis generation capability of piTracer, by 

focusing on the ability of piTracer in predicting druggable genes in tumor cells.  

 

Drug-resistance remains a monumental challenge in enabling effective cancer 

treatment, causing up to 90% of cancer-related deaths [77, 78]. A diverse range of 

mechanisms of drug resistance has been described that arise from anti-cancer 

treatments, such as the presence of compensatory metabolic pathways [79]. It is 

known that metabolomics provides a functional readout beyond the information 

covered by genetics technologies [80, 81]. For instance, while transcriptomics 

represents a noisy state of regulation, metabolomics data condenses complex and 

highly combinatorial genetic states into a discrete series of cascades the cell is able 

to operate in. Our hypothesis is that the metabolome enables us to discover cancer 

escape mechanisms, which when targeted, causes cancer cell death. Although 

significant efforts have been undertaken in this direction to better understand 

cancer-specific molecular mechanisms of resistance [77, 78, 82], reconstructing 

compensatory metabolic pathways have remained an onerous task. With its ability 

to automatically reconstruct biological pathways, we investigated whether we can 

apply piTracer on metabolomics data to find tumor survival pathways that could be 

targeted to induce lethality. 
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4.1 Methods 

4.1.1 Target gene prioritization 

We prioritized gene targets based on metabolic readouts of escape mechanisms after 

treatment with a primary drug using the following steps: (1) Given a metabolomics 

dataset before and after treatment with the original drug of interest, perform 

differential abundance analysis on the data. (2) Using piTracer, calculate the 10-

shortest paths between all metabolite pairs in the dataset to create a “context 

network” C, which is composed of only metabolites. (3) Assign weights w to 

metabolites in C, with 1 for significant metabolites and 0 for the rest, which includes 

both non-significant metabolites and additional metabolites introduced in C via the 

10-shortest paths calculations. (4) Remove directionality in C. This step is required 

since metabolite fluxes can be affected either by upstream or downstream factors. 

(5) Remove PPI edges from piTracer’s gene interaction network, i.e. STRING, to 

get a new network G. We removed STRING edges due to the presence of many hub 

genes, which could obfuscate relevant gene-to-metabolite connections by 

connecting virtually all genes to all metabolites in the piTracer network. (6) 

Combine G with C. (7) Calculate an inverse distance matrix Ꙇ between all genes in 

G and all metabolites in C in the G + C network. The inverse distance is calculated 

as 1/D, where D is the number of steps between a gene and a metabolite pair. Ꙇ 

should have as rows genes in G and as columns metabolites in C. (8) Create a list E 

that contains genes directly interacting with metabolites, i.e. enzymes in metabolic 

reactions, in the G + C network. (9) Assign gene weights, g = 1 - (# of Es 

reached)/|E| for each gene, to all genes in G. The assumption here is that perturbing 

genes that regulate or interact with many enzymes could have detrimental effects 

on metabolic paths not relevant to the biological system. g downweights these genes 

and will enable specific metabolic traces relevant to the system to be targeted. (10) 
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Calculate gene scores S = diag(g)Ꙇw. For each gene, S contains the sum of the 

inverse distances 1/D between the gene and all significant metabolites it reaches in 

the G + C network, weighted by the number of enzymes the gene reaches. A gene 

receives a high score if it is connected to many significant metabolites via metabolic 

fluxes rather than through the regulation of or interaction with many enzymes. 

 

For our proof of concept, we picked the top 30 genes based on our calculated scores 

and further added pathway level annotations to each gene. To this end, we calculated 

a score for each pathway based on diag(g)Ꙇ. Each row of diag(g)Ꙇ is a gene and each 

column is a weighted inverse distance score of the gene with a metabolite. For each 

pathway and each gene, we summed up this weighted inverse distance score 

between the gene and all metabolites in the pathway. Each sum represents the 

pathway score for each gene. 

4.1.2 Experimental validation 

Our collaboration partners, Dr. Anna Halama and Iman Achkar at Weill Cornell 

Medicine - Qatar, performed the validation experiments. All experiments described 

as follows were done in triplicates. They first measured the metabolic profile of a 

triple negative breast cancer cell line (MB-MDA-231) before and after treatments 

with glutaminase inhibitor C.968. Using Western blot, they verified the expression 

of our selected proteins, i.e. SLC25A20, PLD2, AKR1A1, and AKR1B1 in MB-

MDA-231 before and after C.968 treatment. They then  assessed cell viability after 

the treatment of MB-MDA-231 with C.968 and drugs targeting each of the selected 

proteins by MTT assay and microscopic pictures at 24h, 48h, and 72h post 

treatment. PLD2 was targeted by CAY10594, SLC25A20 was targeted by Ingenol 

Mebutate, AKR1A1 was targeted by Imirestat, and AKR1B1 was targeted by 

Ranirestat. The concentration used for C.968 was 10 μM, for CAY10594 was 0.001, 
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0.01, 0.1, 1, 10 μM while for Ingenol Mebutate, Imirestat, and Ranirestat was 0.01, 

0.1, 1, 10, 100 μM. In a similar setting, they assessed cell viability after combination 

treatment with C.968 and drugs targeting the selected proteins. They used a 

concentration of 10 μM for C.968, 1 and 10μM for CAY10594, and 10 and 100μM 

for Ingenol Mebutate, Imirestat, and Ranirestat. They subsequently quantified MB-

MDA-231 cell viability at 24h, 48h, and 72h post treatment. 

 

 

4.2 Results 

 

Based on a previous study [83] and as a proof of principle, we sought a drug to use 

in combination with glutaminase inhibitor C968 on the triple negative breast cancer 

cell line (MB-MDA-23) in order to induce cell death. We leveraged piTracer and 

metabolomics data from MB-MDA-23 before and after C968 treatment to calculate 

the 10-shortest paths between all pairs of metabolites in the dataset. The 

combination of all of these paths is a “context” network that contains potential 

escape mechanisms of MB-MDA-23. We then assigned a druggability score to each 

gene in the piTracer network. Briefly, we calculate gene scores based on how many 

significant metabolites a gene reaches in the context network, downweighted by the 

number of other enzymes it interacts with to reach significant metabolites (for 

details, see Methods 4.1.1). Our collaboration partners performed all subsequent 

validation experiments. 
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4.2.1 piTracer-based potential drug target candidates 

 
Table 2. Top 30 piTracer-predicted target gene candidates. Rows in bold indicate genes that were 

selected for experimental validation. Italicized rows, i.e. gene ranks 1 and 2, indicate genes that were 

successfully validated independently [84]. Each pathway represents the top scoring pathway for each 

target gene. 

 

We screened for potential drug targets out of the 7,253 genes in our modified 

piTracer network. Based on our gene scores, we shortlisted the top 30 genes (Table 

2). Together with our collaboration partners, we then selected 4 genes based on their 

involvement in different metabolic pathways inferred from the data, druggability, 

and drug availability. The genes were: (1) PLD2, a phospholipase which catalyzes 

the hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline and 

also involved in lipid pathways. (2) SLC25A20 which encodes a protein important 



       52  

for fatty acid oxidation. (3) AKR1A1 and (4) AKR1B1 which are both part of the 

aldo-keto reductase family 1. AKR1A1 is involved in the reduction of biogenic and 

xenobiotic aldehydes, while AKR1B1 catalyzes the reduction of glucose to sorbitol. 

We used these 4 genes to select potential drugs that could have a potential 

synergistic effect with C968. Note that the 3 top ranking genes, CPT1A, CPT1B, 

and CPT1C were validated in an independent study [84].  

 

4.2.2 Verifying the presence of target gene products 

 
Figure 4.1. Western blot of the 4 predicted target genes. Blots for (a) PLD2, (b) SLC25A20, (c) 

AKR1A1, and (d) AKR1B1 vs. β-tubulin at different timepoints. All genes are expressed in MDA-MB-

231. Cntrl stands for control and Veh for vehicle. 
 

Prior to drug validation experiments, our collaboration partners checked whether 

the proteins of the 4 selected genes are expressed in MDA-MB-231 cells under 

normal conditions and after treatment with C968 (Figure 4.1). All proteins were 

present and stable in the corresponding Western blots.  
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4.2.3 Single drug treatment of the MDA-MB-231 cell line 

 
Figure 4.2. Cell viability assay results for single drug treatment of the MDA-MB-231. (a) PLD2 was 

targeted by CAY10594, (b) SLC25A20 by Ingenol Mebutate, (c) AKR1A1 by Imirestat, and (d) 

AKR1B1 by Ranirestat. Treatment with single drugs had minimal impact on MDA-MB-231. The blue 

line indicates C968 treatment of the cell line and the different shades of black represent different 

concentrations of drugs for a target gene. 

 

Our collaboration partners then tested whether treatment of MDA-MB-231 with 

drugs targeting only PLD2, SLC25A20, AKR1A1, and AKR1B1, and without the 

effects of glutaminolysis inhibition, affected cell viability. The impact of each drug 

on the viability of MDA-MB-231 was tested with 5 different concentrations (Figure 

4.2). They inhibited PLD2 using CAY10594 (Figure 4.2a), a PLD2 inhibitor 

typically used in ameliorating acetaminophen-induced acute liver injury. They used 

Ingenol Mebutate, an inducer of cell death, to target SLC25A20 (Figure 4.2b). 

Lastly, they used aldose reductase inhibitors Imirestat and Ranirestat to target 

AKR1A1 and AKR1B1, respectively (Figures 4.2c and 4.2d). These drugs are 
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commonly used in the treatment of diabetes. The selected components as a single 

agent had minimal impact on MDA-MB-231.  
 

4.2.4 Combination drug treatment of MDA-MB-231 

 
Figure 4.3. Cell viability assay results for combination drug treatment of MDA-MB-231. Treatment of 

the cell line with C968 in combination with (a) CAY10594 to target PLD2, (b) Ingenol Mebutate to 

target SLC25A20, (c) Imirestat to target AKR1A1, and (d) Ranirestat to target AKR1B1. A combination 

of C968 and CAY10594 or C968 and Ingenol Mebutate exert the strongest decrease in cell viability. A 

concentration of 10 μM C968 was selected for all experiments based on a previous study [83]. 

 

Lastly, it was tested whether C968 treatment of MDA-MB-231 in combination with 

drugs targeting PLD2, SLC25A20, AKR1A1, and AKR1B1 impacted cell viability 

(Figure 4.3). The impact of each of the drug combinations on the viability of MDA-

MB-231 was tested with two different concentrations of the gene-specific drugs and 

one concentration of C968, i.e. 10 μM [83]. Combination treatment with all selected 

drugs and C968 impacted the viability of MDA-MB-231. The most significant cell 
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viability decrease was observed for C968 and 10 μM CAY10594 (PLD2) from 

100% to 20% in 72h (Figure 4.3a) and C968 and 100 μM Ingenol Mebutate 

(SLC25A20) from 100% to 20% in 24h (Figure 4.3b). Taken together, these results 

show that by predicting relevant gene targets, piTracer successfully aided in 

screening for a drug to use in combination with C968 in order to induce cell death 

in MB-MDA-23.  

 

 

4.3 Summary & Discussion 

 

The ability of piTracer to predict drug targets, and by extension streamline drug 

screening, is remarkable given that it solely relies on metabolomics data to generate 

predictions. The first crucial step for drug screening or drug repurposing which is 

time intensive, expensive, and requires extensive domain expertise, is finding a 

viable target for a specific indication of interest [85–87]. In cancer, escape 

mechanisms are a desirable drug target since cancer cells rely on these for survival. 

Many escape mechanisms have metabolic adaptations at their core [5]. Thus, 

measuring the metabolome is crucial in elucidating these compensatory pathways. 

We used piTracer and metabolomics data to reconstruct escape mechanisms in the 

triple negative breast cancer cell line  MDA-MB-231. Out of 7,253 genes, we 

prioritized 30 genes using piTracer compensatory pathway reconstructions, selected 

4 genes, and validated them experimentally. Targeting either of the 4 genes, i.e. 

PLD2, SLC25A20, AKR1A1, or AKR1B1 with a drug in combination with 

glutaminase inhibitor C968 resulted in a decrease in cell viability of MDA-MB-231. 

In particular, targeting either PLD2 or SLC25A20 significantly reduced the viability 

of the cell line. In an identical setting, our top 3 predicted target genes, CPT1A, 
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CPT1B, and CPT1C, which we excluded from our experiments, were previously 

validated by others [84]. Remarkably, out of the many potential drug targets, i.e. 

7,253 genes, piTracer enabled us to reduce this to a few genes that were true drug 

targets. Note that this approach is not limited to cancer and may be applied in other 

settings where the metabolome is measured between two conditions, e.g. healthy vs. 

unhealthy cells. These results indicate that piTracer can rapidly and reliably 

generate viable drug target candidates relevant for a disease, which is invaluable in 

the efficient screening and repurposing of drugs.  
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Chapter 5: Variational autoencoders learn 

universal latent representations of 

metabolomics data 
 

Current well-known dimensionality reduction techniques used for metabolomics 

data rely primarily on linear assumptions, and are therefore unable to detect possible 

nonlinearities [38] that arise from functional interactions between metabolites. 

Moreover, the application of deep learning models, such as Variational 

Autoencoders (VAEs), that are well suited in capturing these nonlinearities by 

implicitly modeling feature interactions, has significantly lagged behind in the 

metabolomics field [49].  

 

To this end, in this chapter, we trained a VAE model on 217 metabolite 

measurements in 4,644 blood samples from the TwinsUK study [88] and evaluated 

our model performance in comparison to a linear PCA model (Figure 5.1a). To 

investigate the biological relevance of the learned VAE and PCA latent dimensions, 

we employed the Shapley Additive Global Importance (SAGE) method [89], which 

determines the contribution of each input to each latent dimension. We calculated 

SAGE values at different granularities, i.e. metabolites, sub-pathways, and super-

pathways (Figure 5.1b). We then applied the model on three additional blood 

metabolomics datasets to test its ability to recover disease phenotypes in unseen 

datasets: Type 2 Diabetes diagnosis in The Qatar Metabolomics Study on Diabetes 

(QMDiab, n = 358), therapy response in an acute myeloid leukemia dataset (AML, 

n = 85), and schizophrenia diagnosis in a third validation dataset (n = 207) (Figure 
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5.1c). We provide pre-trained VAE and PCA models as well as scripts to reproduce 

our analysis at https://github.com/krumsieklab/mtVAE. 

 

  
 
Figure 5.1. Overview of our approach. (a) VAE and PCA models were trained using training and test 

partitions in the TwinsUK dataset (n=4,644 samples, p=217 metabolites). Model performance was then 

evaluated using Mean Squared Error (MSE) of correlation matrix reconstruction. (b) The SAGE method 

was applied to the models to calculate the contribution of individual metabolites, sub-pathways and 

super-pathways to each latent dimension. (c) QMDiab (n = 358), AML (n = 85), and Schizophrenia (n = 

207) datasets were encoded using VAE and PCA models trained on the TwinsUK data. Latent 

dimensions of each model were then associated with disease phenotypes. 
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5.1 Methods 

5.1.1 Datasets 

The TwinsUK registry is a population-based study of around 12,000 volunteer twins 

from all over the United Kingdom. The participants have been recruited since 1992 

and are predominantly female, ranging in age from 18 to 103 years old. Study 

design, sampling methods, and data collection have been described elsewhere [88]. 

For this thesis, we included data from 4,644 twins (4,256 females, 388 males), the 

subset of TwinsUK for which plasma metabolomics measurements were available. 

Ethical approval was granted by the St Thomas’ Hospital ethics committee and all 

participants provided informed written consent. 

The QMDiab study was conducted between February and June of 2012 at the 

Dermatology Department of Hamad Medical Corporation (HMC) in Doha, Qatar. 

The study population was between the age of 23 and 71, predominantly of Arab, 

South Asian, and Filipino descent. Data collection and sampling methods have been 

previously described elsewhere [90]. For this thesis, we included plasma data of 358 

subjects (176 females, 182 males; 188 diabetic, 177 non-diabetic). The study was 

approved by the Institutional Review Boards of HMC and Weill Cornell Medicine-

Qatar (WCM-Q). Written informed consent was obtained from all participants. 

For the schizophrenia analysis, metabolomics samples were taken from an 

antipsychotics study conducted in Qatar between December 2012 and June 2014 

[91]. A total of 226 participants between the ages of 18 and 65 years of age were 

recruited, predominantly of Qatari and Arab descent. For this thesis, we included 

plasma metabolomics measurements from 207 subjects (84 females, 142 males; 102 
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schizophrenic, 105 non-schizophrenic). Approval for the study was obtained from 

the HMC and WCM-Q Institutional Review Boards, and all participants provided 

written informed consent. 

The cohort of patients with de novo acute myeloid leukemia (AML) comes from the 

ECOG (Eastern Cooperative Oncology Group) E1900 trial [92]. This study was 

conducted between December 2002 and March 2009, recruiting 657 patients with 

AML between the ages of 17 and 60. A subset of these patients had follow-up 

profiling to determine their response to therapy. For this thesis, we include the 

serum metabolomics measurements of 85 subjects of which 43 responded to therapy 

and 42 did not (34 females, 51 males). The study was approved by the institutional 

review board at the National Cancer Institute and each of the study centers, and 

written informed consent was provided by all patients. 

 

5.1.2 Metabolomics measurements and metabolite annotations 

Non-targeted liquid chromatography/mass spectrometry (LC/MS)-based 

metabolomic profiling for all four cohorts was performed on the Metabolon 

platform as previously described [93]. Notably, the AML dataset was based on 

serum samples, while TwinsUK, QMDiab, and schizophrenia metabolomics was 

run on plasma samples. However, previous research has shown that these two 

sample types are comparable, as shown by high correlations and good 

reproducibility between plasma and serum measurements in the same blood sample 

[94]. 
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For each metabolite measured on the Metabolon platform, a super-pathway and sub-

pathway annotation was provided. For super-pathways, we have nine annotations 

referring to broad biochemical classes, namely “Amino acid”, “Carbohydrate”, 

“Cofactors and vitamins”, “Energy”, “Lipid”, “Nucleotide”, “Peptide”, 

“Xenobiotics”, and “Unknown”. Note that “Unknown” is assigned to unidentified 

metabolites. Furthermore, we have 54 sub-pathway which represent more functional 

metabolic processes, such as “Carnitine metabolism”, “TCA Cycle”, and 

“Phenylalanine and Tyrosine Metabolism”. 

 

5.1.3 Data processing and normalization across datasets 

For each dataset, metabolite levels were scaled by their cohort medians, quotient 

normalized [95] and then log-transformed. Samples with more than 30% missing 

metabolites and metabolites with more than 10% missing samples were removed. 

Missing values were imputed using a k-nearest neighbors imputation method [96]. 

Datasets with BMI measurements (Schizophrenia, QMDiab, and Twins) were 

corrected for that confounder and then mean-scaled. 217 metabolites were 

overlapping between the 4 datasets and were kept for further analysis.  

Semi-quantitative, non-targeted metabolomics measurements are inherently 

challenging to compare across datasets due to heterogeneity between studies. This 

prevents any machine learning model from being transferable from one study to the 

other. To ensure comparability, datasets were normalized using a uniform group of 

participants as a reference set. This group was selected as follows: Male, within a 

20 year age range (30-50 for TwinsUK, QMdiab, and schizophrenia, 40-60 for AML 

due to low sample size of younger participants), BMI between 25 and 30 (not 

available for AML data, thus not filtered for that dataset), and in the respective 
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control group. Each metabolite in each dataset was then scaled by the mean and 

standard deviation of their respective uniform sample groups. The assumption of 

this approach is that the uniform group of reference participants has the same 

distributions of metabolite concentrations. 

5.1.4 Variational Autoencoders 

We trained our VAE model as follows. We split TwinsUK data into 85% training 

and 15% test sets. We then fixed our VAE architecture to be composed of an 

input/output layer, an intermediate layer which contains the only nonlinear 

activation functions in the model, and latent layers. The latent layers consist of a 

mean vector 𝜇 and a standard deviation vector 𝜎 which parametrize the latent space 

z. z is constructed by the simultaneous learning of the 𝜇 and 𝜎 encoder through the 

use of a reparameterization trick that enables back propagation during training [45]. 

For a z with a latent dimensionality 𝜇 is a of length d. The d x d covariance matrix 

𝝨 of the underlying Gaussian is assumed to be diagonal (i.e. no correlation across 

latent dimensions), allowing the covariance matrix to be represented by a single 

vector 𝜎 of length d.  

 

For the parameter fitting procedures, all weights were initialized using Keras’ 

default model weight initialization, Glorot uniform [97], and leaky rectified linear 

units (ReLUs) [98] were used for nonlinear activation functions. The VAE models 

were trained for 1000 epochs using MSE loss for sample reconstruction and a batch 

size of 32. 

 

To select the latent dimensionality d of our VAE model, we initially fixed this value 

to d = 50. We then optimized the model hyperparameters using Keras Tuner [99] 

and TwinsUK training set and identified the following optimized values: 
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Intermediate layer dimensionality = 200, learning rate = 0.001, and Kullback-

Leibler (KL) divergence weight = 0.01. Using these hyperparameters, we then 

optimized d by calculating the reconstruction MSE of the correlation matrix (CM-

MSE) of metabolites for d = 5, 10, 18, 30, 40, 60, 80, 100, 120, 160, and 200 on the 

TwinsUK test set. Our final model consisted of a 217 dimensional input/output layer 

(the number of metabolites in our datasets), a 200 dimensional intermediate layer, 

and an 18 dimensional latent layer.  For all sample embeddings in this thesis, we 

used their respective 𝜇 values. 

 

All models were computed on a deep learning-specific virtual machine running on 

Google Compute Engine with two NVIDIA Tesla K80 GPU dies and 10 virtual 

CPUs.  
 

5.1.5 PCA embedding and reconstructions 

We used PCA with d = 18 latent dimensions as a baseline model. On the mean-

centered TwinsUK data matrix with n = 3,947 samples (rows) and k = 217 

metabolites (columns), we calculated the rotation matrix Q, a k x k matrix of 

eigenvectors ordered by decreasing magnitudes of eigenvalues. To embed a new m 

x k dataset X with m samples into the m x d PCA latent space A, we first calculated 

XQ = A and subsetted to the first d columns, denoted by A∗,d. To simulate the 

process of encoding and decoding in PCA for dataset X, we calculated the 

reconstructed dataset as X̂ = A∗,dQ-1
d,∗.  
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5.1.6 Model assessments 

We assessed our PCA and VAE models using sample reconstruction mean squared 

error (MSE) and metabolite-wise correlation matrix MSE (CM-MSE). We 

calculated CM-MSE by first computing the metabolite-wise correlation matrix of 

an input dataset and reconstructed input dataset. Afterwards, we calculated the MSE 

between the upper triangular matrix of the two symmetric correlation matrices.  

To calculate a confidence interval for both MSE and CM-MSE between our input 

and reconstructed data, we randomly sampled the same samples with replacement 

from the two datasets and then calculated MSE and CM-MSE. We performed this 

for 1000 iterations. 

5.1.7 Model interpretation 

In order to interpret each latent dimension for our VAE and PCA models, we 

calculated Shapley Additive Global Importance (SAGE) values [89] for 

metabolites, sub-pathways, and super-pathways. Briefly, SAGE is a model-agnostic 

method that quantifies the predictive power of each feature in a model while 

accounting for interactions between features. This is achieved by quantifying the 

decrease in model performance when combinations of the other model variables are 

removed. Since there are exponentially many combinations of variables, the current 

approach is to sample that space of combinations sufficiently. For each of the tested 

combinations, a loss function, such as MSE, is used to quantify the decrease in 

performance compared to the model output (here the latent layer) computed using 

the full model. Then, the mean of all MSEs is calculated, which represents the 

contribution of the variable to the latent dimension. To calculate pathway-level 

SAGE values, metabolites were grouped into pathways and each pathway was 

treated as a single variable. For each of our VAE and PCA models, we ran SAGE 
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using our TwinsUK test set with default parameters, e.g. marginal sampling size of 

512, as suggested by Covert, et al. (2020) [89]. We used the SAGE code from 

https://github.com/iancovert/sage.  

 

5.2 Results 

5.2.1 VAE model construction and fitting 

 
Figure 5.2. VAE and PCA model construction on the TwinsUK dataset. (a) Training and (b) test set 

metabolite correlation matrix reconstruction for a range of latent dimensionality values d. The slope of 

the VAE curve plateaus after d = 18. Error bars correspond to one standard deviation from bootstrapping. 

(c), Final VAE architecture, where 𝜇 is the mean vector and 𝜎 is the standard deviation vector that 

generates the latent space z. (d), Reconstruction MSE for latent dimensionality d = 18 on training (top) 

and test sets (bottom). The VAE preserved feature correlations substantially better than PCA.  
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Our VAE architecture consisted of an input/output layer, an intermediate layer and 

a latent layer. We split the TwinsUK cohort into an 85% training and a 15% test set, 

and the training set was used to optimize the hyperparameters in the VAE model. 

Keras Tuner [99] identified the following optimal hyperparameters: Intermediate 

layer dimensionality = 200, learning rate = 0.001, and Kullback-Leibler (KL) 

divergence weight = 0.01. With these parameters fixed, we optimized the 

dimensionality d of the latent layer z by calculating the reconstruction MSE of the 

correlation matrix (CM-MSE) of metabolites (Figures 5.2a+b). We observed that 

the CM-MSE curve plateaus after d = 18, indicating that increasing the latent 

dimensionality beyond this value only marginally improves the models. The final 

architecture of the model consisted of a 217 dimensional input/output layer (the 

number of metabolites in our datasets), a 200 dimensional intermediate layer, and 

an 18 dimensional latent layer (Figure 5.2c). 

 

 
Figure 5.3. Sample reconstruction MSE. (a) TwinsUK training and (b) test set sample reconstruction 

MSE for latent dimensionality d = 18. VAE has a lower reconstruction error in the training set. 

However, PCA has a lower reconstruction MSE in the train set, implying that PCA performs better at 

sample reconstruction. 
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We used principal component analysis (PCA) as a baseline model to compare the 

VAE to a linear latent variable embedding method. To this end, we fitted a PCA on 

the TwinsUK train data and extracted the first d = 18 dimensions, i.e. principal 

components. While PCA reconstructs the data matrix better (Figure 5.3), the VAE 

outperforms PCA in terms of correlation matrix reconstruction via CM-MSE in both 

the TwinsUK train and test set (Figure 5.2d). These results suggest that while the 

VAE does not reconstruct the original data matrix precisely, it is superior at 

preserving metabolite correlations compared to PCA. 

5.2.2 Interpretation of VAE latent space dimensions in the context of 

metabolites and pathways 

   

 
Figure 5.4. Sub-pathway-level SAGE values for the VAE latent dimensions. (a) SAGE values were 

scaled by dimension, i.e. set to standard deviation 1 for each column in the matrix. This highlights 
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pathways that contribute the most to each dimension. Lipid and amino acid super-pathways showed the 

highest values for to most dimensions, which can likely be attributed to the high number of metabolites 

in those pathways. (b) SAGE values were scaled by pathway, i.e. set to standard deviation 1 for each 

row in the matrix. This highlights dimensions that contribute to a pathway the most. Taking into 

consideration the largest scaled SAGE values per pathway (red square marks), almost all sub-pathways 

are represented by unique dimensions. The combination of these key subpathways of a dimension 

outlines the distinct cellular mechanisms a dimension encodes. 

 

 
Figure 5.5. Scaled SAGE value heatmaps for VAE. (a) super-pathway SAGE values are scaled by 

dimension to highlight super-pathways that contribute the most to a dimension. The VAE heatmap 

indicates that in most dimensions, lipids contribute the most to each dimension due to their size. (b) 

super-pathway SAGE values are scaled by super-pathway to highlight dimensions that represent a super-

pathway the most. Taking into consideration the highest scaled SAGE values, almost all super-pathways 

are represented by a unique dimension. (c) absolute metabolite SAGE values are scaled by dimension to 

highlight metabolites that contribute the most to a dimension. (d) absolute metabolite SAGE values are 

scaled by metabolite to highlight dimensions that represent a metabolite the most.  
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We evaluated the composition of all latent dimensions in the context of metabolic 

pathways. For each metabolite in our dataset, a “sub-pathway” and “super-pathway” 

annotation was available (see Methods 5.3.2). Sub-pathways refer to biochemical 

processes such as TCA cycle and sphingolipid metabolism, while super-pathways 

are broad groups such as lipid and amino acid.  To provide insights into the 

processes represented by different VAE dimensions, we computed SAGE scores, a 

measure of model feature relevance, at the level of metabolites, sub-pathways and 

super-pathways (Figure 5.4 and Figure 5.5).  

 

The VAE sub-pathway heatmap (Figure 5.4a) shows that nearly all dimensions have 

major contributions by lipid and amino acid super-pathways. The prevalence of the 

two super-pathways can be attributed to the fact that those groups contain the largest 

number of metabolites in the dataset. Note that we deliberately ignored the 

“Unknown” molecule group, which refers to unidentified metabolite that could 

originate from any pathway.  

 

Inspecting the SAGE values in the other direction, almost all sub-pathways are 

predominantly represented by a single VAE dimension that captures the respective 

pathway the most (Figure 5.4b, red square marks). For instance, “glycolysis, 

gluconeogenesis and pyruvate metabolism” and other functionally related sub-

pathways of central carbon metabolism are represented by VAE dimension 9. 

Another interesting example is VAE dimension 15, which captures functionally 

related sub-pathways that involve essential mitochondrial processes, such as 

oxidative phosphorylation, dicarboxylic fatty acids, and n3 and n6 polyunsaturated 

fatty acid metabolism. Taken together, these results show that VAE latent 

dimensions capture a complex mix of functionally related sub-pathways, thus 

capturing major metabolic processes in the dataset. 
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Figure 5.6. Sub-pathway-level SAGE value heatmaps for PCA. (a) SAGE values are scaled by 

dimension to highlight pathways that contribute the most to a dimension. The lipid and amino acid super-

pathways contribute the most to the dimensions. (b) SAGE values are scaled by pathway to highlight 

dimensions that represent a pathway the most. Taking into consideration the largest scaled SAGE values, 

dimension 1, the first principal component, simultaneously represents many sub-pathways. Red squares 

indicate top 1 dimensions that represent a sub-pathway. Sub-pathways concentrate on the first few 

dimensions, especially on dimensions 1-3.  

 

In contrast, PCA dimensions 1 to 3, which by construction represent the highest 

linear variations in the data, nonspecifically represents various sub-pathways 

(Figure 5.6). With the exception of PCA dimensions 4 and 5, the remaining 

dimensions contain primarily unrelated sub-pathways.  
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5.2.3 VAE latent space captures signals in unseen diabetes, cancer, and 

schizophrenia metabolomics datasets 

 

 

 
Figure 5.7. VAE latent space associations with clinical outcomes. (a), (b), (c), Sorted -log10(p-value) 

for all VAE and PCA dimensions for the type 2 diabetes, schizophrenia and AML datasets, respectively. 

The highest scoring VAE dimensions showed lower p-values than the highest scoring PCA dimensions 

for all datasets. (d), (e), (f), Latent space dimensions with the lowest p-values for the three datasets. (g), 
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(h), (i), Contributions of super-pathways, sub-pathways and metabolites to the highest scoring VAE 

latent dimensions, determined by SAGE values. All dimensions are driven by lipid metabolism and a 

mixture of other super-pathways, with differing sub-pathways contributing to the different dimensions. 

p = p-value. Schizo. = schizophrenic. 

 

 

We investigated whether VAE latent dimensions learned on the TwinsUK data 

contained information that is generalizable to other datasets. To this end, we 

computed latent dimensions in three clinical datasets, type 2 diabetes, 

schizophrenia, and acute myeloid leukemia (AML) using the encoders from the 

TwinsUK data. For each VAE and PCA latent dimension, we performed a two-sided 

t-test between diabetic vs. non-diabetic individuals, schizophrenic vs. non-

schizophrenic individuals, and full response vs. not in an AML clinical trial, 

respectively. Across all datasets, the respective best performing VAE dimensions 

associated substantially stronger with the patient groups than any of the PCA 

dimensions (Figures 5.7a-f). To better understand the driving factors of these 

associations in the VAE, we ranked pathways and metabolites by their calculated 

SAGE values (Figures 5.7g-i). The strength of associations between VAE 

dimensions and disease parameters were comparable to single metabolite 

associations. 1,5-anhydroglucitol (1,5-AG) associates with type 2 diabetes with a p 

=1.14x10-35 (VAE dimension 9 p=1.7x10-32), beta-hydroxyisovalerate associates 

with schizophrenia with a p=1.48x10-9 (VAE dimension 11 p=2.0x10-8), and trans-

4-hydroxyproline associates with AML with a p=5x10-3 (VAE dimension 15 

p=0.018). However, unlike the VAE dimensions, these univariate associations do 

not represent system-level mechanisms related to the diseases. 
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Figure 5.8. Association heatmap between (a) VAE and (b) PCA latent dimension values and clinical 

variables in QMDiab. Each latent dimension is associated with different combinations of clinical 

variables. Both VAE dimension 9 and PCA dimension 16, which associate with QMDiab diabetes 

groups, strongly associate with HbA1c (%). VAE dimension 9 HbA1c association p = 5.6x10-56, PCA 

dimension 16 HbA1c association p = 1.1x10-30. 
 

Type 2 diabetes. VAE latent dimension 9 showed the highest association with type 

2 diabetes, with a substantially stronger signal than the highest correlating PCA 

dimension 16 (p=1.7x10-32 vs. p=2.1x10-20, respectively; Figure 5.7d). The top 

ranking metabolite in dimension 9 was glucose, which is directly affected by the 

disease and thus serves as a positive control. The top sub-pathways were “acyl 

carnitine fatty acid metabolism”, “glycolysis, gluconeogenesis, and pyruvate 

metabolism”, “vitamin B6 metabolism”, and “histidine metabolism”. Other high-

ranking metabolites were pyridoxate, histidine, and medium chain acyl-carnitines 

(Figure 5.7g). Vitamin B6 metabolism, which includes pyridoxate, has been shown 

to associate with type 2 diabetes and associate with the predisposition of diabetic 
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patients to other diseases [100, 101]. Additionally, circulating medium chain acyl-

carnitines have been shown to be associated with early stages of type 2 diabetes 

[102, 103]. We furthermore correlated dimension 9 with clinical lab measurements 

from the QMDiab study, and found a strong association between this dimension and 

HbA1c (p=5.6x10-56 compared to PCA p=1.1x10-30, Figure 5.8), a widely used 

diabetes biomarker [104, 105]. This finding demonstrates how a quantitative disease 

biomarker can carry more information than a crude disease yes/no classification, 

and further highlights the higher information content in the VAE latent layer 

compared to PCA. 

 

Schizophrenia. VAE dimension 11 had a stronger association with schizophrenia 

than PCA dimension 15 (p=2.0x10-8 vs. p=6.6x10-6, respectively; Figure 5.7e). The 

top scoring metabolites for this dimension (Figure 5.7h) were mainly acyl-

carnitines, such as 4-decanoylcarninite, octanoylcarnitine, and hexanoylcarnitine, 

and a series of lysolipids. Acyl-carnitines, which are involved in energy metabolism 

and reflect an individual’s mitochondrial beta-oxidation capacity, have been shown 

to associate with schizophrenia previously [106, 107]. Vitamin B6 metabolism, 

through pyridoxate, is also one of the highest ranking pathways for this dimension. 

Previous studies have demonstrated that low levels of vitamin B6 associates with a 

subgroup of schizophrenic patients [108, 109].  
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Figure 5.9. AML mutation profile and latent dimension associations. (a) VAE latent dimensions 

association heatmap. (b) PCA latent dimension association heatmap. IDH and NPM1 show the strongest 

associations to the latent dimensions. c, boxplot of VAE and PCA latent values for IDH. PCA dimension 

8 associates stronger with IDH. d, boxplot of VAE and PCA latent values for NPM1. VAE dimension 8 

associates more with NPM1. Color bars for a and b are -log10(p-value). For c and d M = mutant, WT = 

wildtype. 
 

Acute myeloid leukemia. AML response groups associated an order of magnitude 

stronger with VAE dimension 15 than PCA dimension 10 (p=0.018 vs. p=0.16, 

respectively; Figure 5.7f). Note that the p-value would not withstand multiple 

testing correction; the detected signal is thus merely suggestive and requires 

replication in future studies. Phosphate, which regulates the oxidative 

phosphorylation pathway and is involved in energy metabolism, is the most 

important metabolite for dimension 15. It has been previously demonstrated that 

oxidative phosphorylation plays a paramount role in AML survival and drug 

resistance [110–112] and could be an effective target for combination therapy in 
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chemoresistant AML [111, 113]. Additionally, dimension 15 is driven by various 

metabolites from the n3 and n6 polyunsaturated fatty acid (PUFA) sub-pathway, 

such as docosahexaenoate (DHA) and eicosapentaenoate (EPA) (Figure 5.7i). It has 

been shown that treatment of AML cell lines with DHA and EPA has a deleterious 

effects on their mitochondrial metabolism which leads to cell death [114–117]. We 

furthermore investigated correlations of the latent dimensions with 17 major AML-

related mutations; the analysis revealed no noteworthy results (Figure 5.9). 

 

Taken together, these results suggest that our VAE has learned representations of 

metabolic processes that are essential for unseen clinical outcomes. 

 

 

5.3 Discussion & Conclusion 

 

In this chapter, we trained a VAE on metabolomics data from the TwinsUK 

population cohort and applied the learned latent representations on unseen data. 

VAE outperformed PCA in terms of correlation matrix reconstruction. 

Interpretation of VAE latent dimensions at the metabolite,      sub-pathway, and      

super-pathway level revealed that these dimensions represent functionally related 

and distinct cellular processes. Moreover, VAE latent dimensions show stronger 

disease associations than PCA in unseen data, as shown in Type 2 Diabetes, 

schizophrenia and AML datasets.  This implies that the VAE learned a latent 

representation of metabolomics data that is biologically informative and 

transferable across different cohorts.   

 



CHAPTER 5: VARIATIONAL AUTOENCODERS LEARN UNIVERSAL LATENT 
REPRESENTATIONS OF METABOLOMICS DATA 

 

77  

Calculating the mean squared error (MSE) [45] between true and model-

reconstructed samples is commonly used for the training of models on normally 

distributed data. However, this metric does not always correspond to model 

performance on biological data. For instance, we observed that PCA had a lower 

MSE compared to VAE (Figure 5.3) despite VAE significantly outperforming PCA 

in associating with disease groups. A similar discrepancy was demonstrated in 

another study [48, 118]. Interestingly, when we calculated the MSE between the 

original and reconstructed metabolite correlation matrices, we found that VAE 

outperformed PCA in this metric. Given our observation, we postulate that 

improved model performance arises by capturing intrinsic correlation structures in 

data, rather than better sample reconstruction. 

 

The generalizability of the VAE across different datasets is especially remarkable 

given the vastly different underlying populations of the datasets we analyzed. The 

VAE was trained on the TwinsUK population cohort, a European-ancestery 

population cohort consisting predominantly of British women (~92%), while the 

validation datasets are mixed-gender and multi-ethnic cohorts from the US and 

Qatar. Despite the existence of these variations in our datasets, our VAE learned a 

generalized representation of metabolomics data which was able to identify disease-

related differences. 

 

To the best of our knowledge, this is the first time a universal latent representation 

of metabolomics data is constructed using VAEs. Our results show that VAEs are 

well-suited for metabolomics data analysis and can potentially replace 

dimensionality reduction approaches, such as PCA, in creating universal, systems-

level understanding of metabolism. 
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Chapter 6: Conclusion & Outlook 
 

Incorporating molecular interactions into the analysis of high-throughput data is 

essential for our understanding of biological mechanisms at the systems level. 

However, current commonly-used pathway and network-based approaches and 

linear dimensionality-reduction techniques have two main limitations: in analyzing 

high-throughput data, (1) the above methods do not include information contained 

at the level of single molecular interactions and (2) nonlinearities present in datasets 

are omitted. 

 

In this thesis, we contributed in the development and implementation of novel 

network-based methods that extensively utilize molecular interactions in the 

analysis of high-throughput data, specifically metabolomics data. Furthermore, we 

showed that our methods significantly outperform state-of-the-art techniques that 

are widely used in the field. 

 

 

6.1 Scientific accomplishments 

 

The following is a list of new and significant scientific contributions and insights 

that my work has provided to the field of high-throughput biological data analysis 

and interpretation. 

 

● Current network-based methods do not adequately address misleading 

shortcuts, such as cofactors and hub genes, that exist in their interaction 
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networks, consequently limiting their use of molecular interactions. This 

includes state-of-the-art methods such as Ingenuity Pathway Analysis (IPA) 

and ConsensusPathDB. We constructed a multi-omics network, comprising 

metabolomics, PPI, signaling and transcription factor regulation. We did this 

by developing an atom-tracing based algorithm to construct our metabolic 

network and applied stringent filtering criteria for our gene interaction 

network to exclude misleading shortcuts (Chapter 2). This multi-omics 

network was the basis for our piTracer tool. 

 

● A new R Shiny-based application, piTracer, that enables the rapid and 

automatic reconstruction of biological cascades, was presented (Chapter 3). 

to recover molecular traces from our multi-omics network (Chapter 2), we 

implemented Yen’s k-shortest path algorithm. To group biologically similar 

paths, we additionally implemented a path clustering algorithm. We then 

demonstrated that piTracer, unlike existing tools, accurately constructed 

well-known gene-metabolite, metabolite-metabolite, and gene-gene 

cascades. 

 

● With the ability of piTracer to reconstruct biological pathways, we 

demonstrated its utility in finding compensatory survival metabolic 

pathways in a breast cancer cell line (Chapter 4). Additionally, based on 

these reconstructions, piTracer enabled us to predict and prioritize the 

correct gene targets out of thousands of potential druggable genes. 

Remarkably, we were able to experimentally validate the deleterious effects 

of drugging any of our selected genes on the breast cancer cell line. 
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● VAEs are well-suited in modeling nonlinearities in data by learning feature 

interactions. To find a low-dimensional representation of metabolomics data 

using the nonlinearities that arise from metabolic interactions, we trained a 

VAE on TwinsUK, a large-scale metabolomics population cohort of human 

blood samples. We then interpreted learned VAE latent representations by 

calculating a global feature importance score, i.e. SAGE scores, which 

showed that representations signify specific cellular mechanisms.  

 

● Furthermore, we demonstrated that VAE latent representations significantly 

correlate with unseen and very different patient groups, implying that, 

leveraging nonlinearities in metabolomics data, these VAE representations 

capture disease-associated biological mechanisms.  

 

6.2 Extensions and future directions 

 

From a methodological perspective, the results presented in this thesis could be 

extended in several directions, which are discussed below. 

piTracer app improvements 

(1) In the future, SNP to gene interactions could be integrated in our multi-omics 

network. This would allow users to construct biological paths based on genetic 

influences. Currently, SNPs have to be manually mapped to genes first, and these 

genes are used as a proxy in piTracer. Having SNPs directly linked to genes in the 

future will help bypass this step.  
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(2) Metabolite-to-gene interactions are not integrated in our multi-omics network. 

These interactions include end-product inhibition to regulate pathway output, 

nuclear receptor mechanisms, and epigenetic processes that depend on metabolite 

pools. These must be included due to the increasing body of evidence demonstrating 

the central role of the metabolome in biological processes such as signal 

transduction, proteostasis, and regulation of gene expression on a systemic level 

[119]. In future work, these interactions could be parsed from published studies that 

demonstrate regulatory effects of metabolites on other omes and included in our 

multi-omics network, since there are currently no metabolite-to-gene databases.  

 

(3) A further extension could be the curation of our gene interaction network. That 

is, by performing network analysis to find high degree gene-nodes, i.e. genes 

connected to many other genes, and verifying whether they represent true hub genes 

or network database artifacts. Despite selecting specific interactions from STRING, 

OmniPath, and GTEx, there are still some shortcut interactions that persist in the 

network. Future efforts to delete these shortcut nodes in the gene interaction region 

of our network could further improve the gene-gene paths generated by our app. 

 

(4) Currently, in our algorithm for predicting druggable genes from metabolomics 

data, some simplifications were made. For example, the gene scores were calculated 

primarily from binary metabolic scores, i.e. whether a metabolite was statistically 

significant or not between two experimental conditions. An extension of the 

prediction method could be done by incorporating metabolite fold changes or gene 

expression data to generate more quantitative predictions. If successful, this could 

allow for the prediction of a specific quantitative metabolic output in an experiment, 

e.g. how much the metabolome of a biological system would be impacted by 

perturbing a certain enzyme. 
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VAE model improvements 

(5) The main limitation of our metabolomics-based VAE model is the size of the 

dataset it was trained on, namely the TwinsUK training dataset with n=4,644. This 

is a general issue with human subject metabolomics studies, where even the largest 

cohorts reach only about n=15,000 [120]. Deep learning models are currently more 

popular in larger datasets of n=60,000 samples and more, e.g. from e.g. single cell 

transcriptomics [43, 121–123], images [124–126], and text sources [127]. Learning 

the variation in such large datasets allows these models to significantly outperform 

any linear and other nonlinear. Interestingly, large metabolomics datasets, such as 

from the UK BioBank with a sample size of up to n=500,000 [128], will be available 

in the near future, and will enable the creation of more expressive and deeper VAE 

models. 

 

(6) Another limitation in the construction of our VAE model was that it was solely 

trained on common metabolites between all of our datasets, despite the intersection 

of each dataset pair having more metabolites. These discarded metabolites could 

contain important nonlinearities that would increase the expressivity of the VAE 

model. Other studies have demonstrated that it is possible to train VAEs that are 

capable of handling missing data [129, 130]. Training such a model on TwinsUK 

data could (1) potentially increase the magnitude of statistical association of latent 

dimensions with disease, (2) allow for the discovery of new disease mechanisms, 

and (3) enable better and faster data imputation, as current imputation methods are 

computationally expensive, especially for large datasets. 

 

 



      6.3 CONCLUSION 84  

6.3 Conclusion 

 

In this thesis, I presented novel methods in the interpretation of high-throughput 

biological data, specifically untargeted metabolomics data. Compared to state-of-

the-art techniques, I demonstrated that all of my methods had significantly superior 

performance in automatically and rapidly reconstructing true biological cascades, 

finding correct disease-essential and druggable genes, and constructing a universal 

low-dimensional representation of metabolics data. By correctly constructing 

molecular mechanisms and enabling disease-relevant gene prioritization, piTracer 

enables the interpretation of complex statistical results and proves invaluable in the 

streamlining of drug screening and repurposing efforts. Moreover, VAEs could 

replace common dimensionality reduction approaches, such as PCA, and enable a 

better systems-level comprehension of metabolism. Taken together, these network-

based methods enable the efficient utilization and lead to significant advancements 

in our understanding of high-throughput multi-omics data. 
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Appendix: Other work 
 

During the course of my PhD, I undertook several projects which are not discussed 

in this thesis. 

 

The Effects of Background Set on Pathway Enrichment Analysis 

To reveal important biological processes from a high-throughput experiment, 

pathway enrichment (PE) analysis identifies pathways that contain a higher number 

of regulated proteins than expected by chance. A well-known PE technique is to 

compare the differentially expressed proteins with a chosen background, which 

usually comprises the proteome complement set. Enrichment can then be quantified 

by statistical methods such as Fisher’s exact test. However, the choice of 

background can drastically affect PE results. For instance, when the experiment 

only captures a small subset of the proteome, the complement set will contain many 

unmeasured proteins that are automatically considered differentially unaffected. 

This assumption then inflates the number of unperturbed proteins used in the 

calculation of the PE significance, leading to an artificial increase in the number of 

enriched pathways (Appendix Figure 1a). 

 

To quantify how the background choice affects PE analyses, we carried out a 

simulation study (Appendix Figure 1b) using whole genome expression data from 

diabetic and healthy mice. Subsets of the transcript data were taken and enrichment 

analysis on Gene Ontology (GO) Slim and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways using Fisher’s test were done. The results were 
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subsequently compared to the results of the same analysis using the entirety of the 

genome expression data (ground truth) (Appendix Figure 1c). 

 

We found that when the proteome background is chosen, the false positive rates for 

the enriched pathways are higher (Appendix Figure 1d). Moreover, precision tends 

to be lower, in contrast to simulations using the measured list background. 

Therefore, when performing PE analysis, it is best to select a background list 

consisting exclusively of the measured proteins. 
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Appendix Figure 1. (a) Comparison between common pathway enrichment assumptions and our 

proposed assumption. (b) The parameters in our simulation study using whole genome expression data 

from diabetic and healthy mice. (c) Using the entirety of the genome expression data as our ground truth, 
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we scored pathway enrichment methods with different background assumptions. (d) The results of our 

simulation study, where we found that our proposed method performs better than methods where it is 

assumed that what is not measured cannot be differentially regulated. 
 

 

Cross-omics imputation using Variational Autoencoders 

 

Multi-omics data is measured from the same underlying biological system. 

Consequently, if it were possible to construct an accurate model of such a biological 

system, it would be possible to generate all possible omics of the system. This is 

highly desirable, since having all possible omics measured would allow for a 

holistic systems-level analysis and interpretation of data. Such a model would take 

one omics layer as an input and would predict/infer other types of omics data. 

Among its many applications, this would lead to a reduction of costs and time 

associated with measuring multi-omics data. Naturally, such a model will increase 

our understanding of which omics layer is the most informative in predicting other 

omics types or whether there are specific combinations of subsets of omics that can 

predict all other omics. One way such a model could be created is by training VAEs 

on multi-omics data, and aligning the learned latent spaces of all omics types. 

 

To this end, we used The Cancer Genome Atlas (TCGA) data, consisting of 

transcripts, proteins, and single- nucleotide variants and simultaneously trained a 

VAE for each data type. While training, we introduced a loss function that aligned 

the latent spaces of the VAEs. We generated preliminary results that showed better 

cancer type separation in the VAE latent space than our baseline PCA. Furthermore, 

compared to PCA, the VAE had a marginally better performance at predicting one 

omics from another.  
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We also trained VAEs on TwinsUK transcriptomics and metabolomics data. 

However, we could not show any improvements compared to PCA in the omics 

prediction task, due the low sample overlap (384 samples) and the large number of 

variables for each dataset (~15,000 genes). We also attempted to first train separate 

VAEs for each omics layer, since each data type had more samples than their 

overlap, and then align the latent spaces of the VAEs. However, this resulted in a 

similar performance as the PCA baseline, which is why we did not follow up on this 

project any further. 

 

Currently, given existing datasets, it is difficult to assess whether our approach of 

training VAEs on multi-omics data allows for the modeling of a biological system 

capable of generating different omics types. This is due to the absence of large 

(sample sizes >20,000) and matched multi-omics data. Another study [131] 

attempted to show the feasibility of VAEs in a similar omics prediction task, but 

were limited to data of the same omics type (single-cell transcriptomics) measured 

on different platforms. Despite the absence of large and matched multi-omics data 

our preliminary TCGA results are encouraging. Therefore, this project should be 

pursued further in the future. 
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