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Abstract/Kurzfassung

Abstract

This thesis presents an adaptive fault tolerant controller for a VTOL multicopter system
that considers actuator redundancy and limits and implements a strategy for degraded
control authority. In a first step, model reference adaptive control (MRAC) is studied
for redundant systems and improved control authority conditions based on the devel-
oped parameter reduction due to overactuation (PRO) are proposed. Predictor-based
adaptive control allocation (P-ACA) is then developed such that adaptive control can
incorporate control allocation approaches to exploit actuator redundancy, enforce actu-
ator limits and implement a degraded control strategy. For the multicopter case, this is
combined with a prioritizing control allocation (PRIO CA) which permits the prioriti-
zation of virtual controls if the desired ones are unattainable. Flight tests including two
hexacopter configurations with representative failure cases and high-speed scenarios
are presented. A single unified controller handles the nominal and faulty cases.

Kurzfassung

Diese Arbeit präsentiert einen adaptiven fehlertoleranten Regler für VTOL Multicop-
tern, der Sättigung und Redundanz der Aktuatoren berücksichtigt und eine Strategie
für degradierte Steuerbarkeit implementiert. In einem ersten Schritt wird adaptive
Modellfolgeregelung redundanter Systeme untersucht und verbesserte Steuerbarkeits-
bedingungen werden anhand von der entwickelten Parameterreduktion aufgrund der
Aktuatorredundanz (PRO) präsentiert. Die Beobachter-basierte adaptive Steuerein-
gangsallokation (P-ACA) ist danach entwickelt, so dass die Steuereingangsallokation
in der adaptiven Regelungsstruktur integriert werden kann. Damit können die Aktu-
atorredundanz ausgenutzt, die Aktuatorsättigung eingehalten und eine Strategie für
degradierte Steuerbarkeit implementiert werden. Für Multicopter-Systeme wird die
Methode P-ACA mit einer priorisierenden Steuereingangsallokation (PRIO CA) kom-
biniert, welche die Priorisierung der virtuellen Regelgrößen im Falle unerreichbaren
Kommandos erlaubt. Flugtests mit zwei Hexacopter-Konfigurationen inklusive reprä-
sentativen Fehlerfällen- und Hochgeschwindigkeitsszenarien werden präsentiert. Ein
einzelner vereinter Regler wird sowohl für den Nominalfall als für die Fehlerfälle be-
nutzt.
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Nürnberger among many others for their support and the extraordinary atmosphere
at the institute.

Many thanks to all my friends standing by my side during this whole project. I’m
deeply grateful to my parents Katty and Guillermo and to my siblings Rafael, Martina,
and Juan Mateo for their unconditional support and belief in me. I want to thank my
beloved wife Tatiana for her infinite patience and motivation. Her support, humor,
and strikingly logical advice always helped keep me on track. Finally, thank you to my
cherished son Mateo who held on just long enough to let me defend the thesis before
his birth.

VII





Contents

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Challenges and State of the Art . . . . . . . . . . . . . . . . . . 3

1.2.1 Fault Tolerant Control and Adaptive Control . . . . . . . . . . . . 4

1.2.2 Control Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Multirotor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Problem Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Multirotor Dynamics Model 19

2.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Rigid Body Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Forces and Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Full and Reduced Attitude Control . . . . . . . . . . . . . . . . . . 27

2.2.6 Attitude Parameterization . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Attainable Control Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Adaptive Fault Tolerant Control 33

3.1 System Description and Control Task . . . . . . . . . . . . . . . . . . . . . 33

3.2 Direct MRAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Direct MRAC PRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Predictor-Based MRAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Predictor-Based MRAC PRO . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Parameter Reduction due to Overactuation . . . . . . . . . . . . . . . . . 58

3.7 Bibliographical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IX



CONTENTS

4 Adaptive Control Allocation 65
4.1 Predictor-Based Adaptive Control Allocation . . . . . . . . . . . . . . . . 66

4.2 Reduced Order P-ACA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Prioritizing Control Allocation Strategy (PRIO CA) . . . . . . . . . . . . 79

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Input Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Relation to Adaptive Control . . . . . . . . . . . . . . . . . . . . . 81

4.3.4 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.5 Update Direction - Singular Cases . . . . . . . . . . . . . . . . . . 96

4.3.6 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 SVD Update Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.2 Non-Unique Singular Vectors . . . . . . . . . . . . . . . . . . . . . 112

4.4.3 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Bibliographical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Multirotor Controllers 119
5.1 Parameter Reduction due to Overactuation . . . . . . . . . . . . . . . . . 121

5.2 Control Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Attitude and Rate Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.1 Nonlinear Attitude Control . . . . . . . . . . . . . . . . . . . . . . 125

5.3.2 Yaw Control Decoupling . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3.3 Attitude Reference Model . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.4 Attitude Baseline Control Law . . . . . . . . . . . . . . . . . . . . 138

5.4 Attitude Adaptive Augmentation . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.1 Adaptive Control Law . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4.2 Update Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Vertical Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5.1 Vertical Velocity Reference Model . . . . . . . . . . . . . . . . . . 149

5.5.2 Vertical Velocity Baseline Control Law . . . . . . . . . . . . . . . . 149

5.5.3 Vertical Velocity Adaptive Augmentation . . . . . . . . . . . . . . 150

5.6 Bibliographical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Experimental Results 157
6.1 Failure during Hover Flight - Single Case . . . . . . . . . . . . . . . . . . 157

6.2 Failure during Hover - Overview . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 Failures during High Speed Cruise . . . . . . . . . . . . . . . . . . . . . . 171

6.4 Post-Failure Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Bibliographical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7 Conclusion 185
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

X



CONTENTS

A Coordinate Systems 191

B Mathematical Background 197

C Control Allocation 203

D Multirotor Control 207
D.1 Nonlinear Attitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . 207

D.2 Yaw Control Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

D.3 Adaptive Attitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Acronyms 225

Symbols and Indices 227

Bibliography 231

XI





List of Figures

1.1 Ascending Technologies Hexacopter: Firefly . . . . . . . . . . . . . . . . 2

1.2 Controller Structure - Direct MRAC . . . . . . . . . . . . . . . . . . . . . 5

1.3 Controller Structure - Indirect MRAC . . . . . . . . . . . . . . . . . . . . 5

1.4 Control Allocation Formulation . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Ascending Technologies (AscTec) Hexacopter Firefly [1] - Gumstix Con-
figuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Multirotor System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Hexacopter Actuator Configuration 1 - Comparison of the Attainable
Control Set (ACS) for T = mg between nominal Conditions and Failure
of the front-right, right and rear-right Actuators . . . . . . . . . . . . . . 30

2.4 Hexacopter Actuator Configuration 1 - Comparison of the Attainable
Control Set (ACS) for L = M = 0 between nominal Conditions and
Failure of the front-right, right and rear-right Actuators . . . . . . . . . . 31

2.5 Hexacopter Actuator Configuration 2 - Comparison of the Attainable
Control Set (ACS) for L = M = 0 between nominal Conditions and
Failure of the front-right, right and rear-right Actuators . . . . . . . . . . 31

2.6 Hexacopter Actuator Configuration 2 - Comparison of the Attainable
Control Set (ACS) for T = mg between nominal Conditions and Failure
of the front-right, right and rear-right Actuators . . . . . . . . . . . . . . 32

3.1 Controller Structure - Direct MRAC . . . . . . . . . . . . . . . . . . . . . 38

3.2 Singular Value Decomposition - Example 3.1 . . . . . . . . . . . . . . . . 43

3.3 Controller Structure - Direct MRAC PRO . . . . . . . . . . . . . . . . . . 46

3.4 Controller Structure - Predictor MRAC . . . . . . . . . . . . . . . . . . . . 49

3.5 Controller Structure - Predictor MRAC PRO . . . . . . . . . . . . . . . . . 55

4.1 Controller Structure - Predictor-Based Adaptive Control Allocation . . . 69

4.2 Controller Structure - Reduced Order P-ACA . . . . . . . . . . . . . . . . 75

4.3 Prioritizing Control Allocation (PRIO CA) - Presentation of the Main
Idea using Bνu = [1, 0.3] from Example 4.5 . . . . . . . . . . . . . . . . . . 84

4.4 Flow Chart of Nominal Prioritized Control Allocation (NOM PRIO CA) 88

4.5 Control Allocation Process - Iteration Overview . . . . . . . . . . . . . . 89

XIII



LIST OF FIGURES

4.6 Control Allocation Process - Attainable Solution: virtual controls ν and
null space variables w corresponding to the Nominal Prioritizing Con-
trol Allocation (NOM PRIO CA) and the Pseudo-Inverse Control Allo-
cation (PINV CA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Control Allocation Process - Attainable Solution: control inputs u cor-
responding to the Nominal Prioritizing Control Allocation (NOM PRIO
CA) and the Pseudo-Inverse Control Allocation (PINV CA) . . . . . . . . 90

4.8 Control Allocation Process - Attainable Solution: virtual control space
corresponding to the Nominal Prioritizing Control Allocation (NOM
PRIO CA) and the Pseudo-Inverse Control Allocation (PINV CA) . . . . 91

4.9 Control Allocation Process - Fault Case λ3 = 0.5: virtual control space
corresponding to the Prioritizing Control Allocation (PRIO CA) and the
Pseudo-Inverse Control Allocation (PINV CA) . . . . . . . . . . . . . . . 92

4.10 Control Allocation Process - Fault Case λ3 = 0.5: virtual controls ν and
null space variables w corresponding to the Nominal Prioritizing Con-
trol Allocation (NOM PRIO CA) and the Pseudo-Inverse Control Allo-
cation (PINV CA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.11 Control Allocation Process - Fault Case λ3 = 0.5: control inputs u cor-
responding to the Nominal Prioritizing Control Allocation (NOM PRIO
CA) and the Pseudo-Inverse Control Allocation (PINV CA) . . . . . . . . 93

4.12 Control Allocation Process - Failure Case λ3 = 0: virtual controls ν and
null space variables w corresponding to the Nominal Prioritizing Con-
trol Allocation (NOM PRIO CA) and the Pseudo-Inverse Control Allo-
cation (PINV CA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.13 Control Allocation Process - Failure Case λ3 = 0: control inputs u cor-
responding to the Nominal Prioritizing Control Allocation (NOM PRIO
CA) and the Pseudo-Inverse Control Allocation (PINV CA) . . . . . . . . 95

4.14 Control Allocation Process - Failure Case λ3 = 0: virtual control space
corresponding to the Prioritizing Control Allocation (PRIO CA) and the
Pseudo-Inverse Control Allocation (PINV CA) . . . . . . . . . . . . . . . 96

4.15 Flow Chart of Update Direction Computation - Ideal Prioritizing Con-
trol Allocation (ID PRIO CA) . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.16 Flow Chart of Prioritized Control Allocation (PRIO CA) . . . . . . . . . . 100

4.17 Control Allocation Process - Unattainable Solution: virtual control space
corresponding to the Prioritizing Control Allocation (PRIO CA) and the
Nominal Prioritizing Control Allocation (NOM PRIO CA) . . . . . . . . 103

4.18 Control Allocation Process - Unattainable Solution: virtual controls ν
and null space variables w corresponding to the Nominal Prioritizing
Control Allocation (NOM PRIO CA) and the Prioritizing Control Allo-
cation (PRIO CA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.19 Control Allocation Process - Unattainable Solution: control inputs u cor-
responding to the Nominal Prioritizing Control Allocation (NOM PRIO
CA) and the Prioritizing Control Allocation (PRIO CA) . . . . . . . . . . 104

4.20 Control Allocation General Comparison Results: Hexacopter System
with Actuator Configuration 1 as in Figure 2.1a . . . . . . . . . . . . . . . 107

XIV



LIST OF FIGURES

4.21 Control Allocation General Comparison Results: Hexacopter System
with Actuator Configuration 2 as in Figure 2.1b . . . . . . . . . . . . . . . 108

4.22 Diagram of the SVD Computation . . . . . . . . . . . . . . . . . . . . . . 109

4.23 Diagram of the SVD Update Algorithm - Unique and Positive Singular
Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.24 Diagram of the SVD Update Algorithm . . . . . . . . . . . . . . . . . . . 117

5.1 Control Overview Multirotor . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Baseline Controller Structure . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Continuous Time-Invariant Moment Vector Field . . . . . . . . . . . . . . 126

5.4 Attitude Error Vector Magnitude . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Reduced-Attitude Penalty Function . . . . . . . . . . . . . . . . . . . . . 130

5.6 Baseline Attitude Controller Structure . . . . . . . . . . . . . . . . . . . . 137

5.7 P-ACA Attitude and Rate Controller . . . . . . . . . . . . . . . . . . . . . 141

5.8 P-ACA Vertical Velocity Controller . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Tracking Performance - Fault Case λ5 = 0 during Hover Flight - Config. 1 158

6.2 State Estimation - Fault Case λ5 = 0 during Hover Flight - Configuration 1160

6.3 Reduced Control Effectiveness - Fault Case λ5 = 0 during Hover Flight
- Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.4 Virtual Controls - Fault Case λ5 = 0 during Hover Flight - Configuration 1162

6.5 Lyapunov Analysis - Fault Case λ5 = 0 during Hover Flight - Configu-
ration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.6 Virtual Control Space at t = 0[s] - Fault Case λ5 = 0 during Hover
Flight - Configuration 1: Comparison of the Prioritizing Control Allo-
cation (PRIO CA) and the Pseudo-Inverse Control Allocation (PINV CA) 165

6.7 Virtual Control Space at t = 0.3[s] - Fault Case λ5 = 0 during Hover
Flight - Configuration 1: Comparison of the Prioritizing Control Alloca-
tion (PRIO CA) and the Pseudo-Inverse Control Allocation (PINV CA) . 166

6.8 Virtual Control Space at t = 1[s] - Fault Case λ5 = 0 during Hover
Flight - Configuration 1: Comparison of the Prioritizing Control Allo-
cation (PRIO CA) and the Pseudo-Inverse Control Allocation (PINV CA) 166

6.9 Control Allocation Performance - Estimated Virtual Controls - Fault Case
λ5 = 0 during Hover Flight - Configuration 1 . . . . . . . . . . . . . . . . 167

6.10 Control Inputs - Fault Case λ5 = 0 during Hover Flight - Configuration 1 167

6.11 Failure during Hover Flight - Performance Comparison for different Con-
figurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.12 Failure during Cruise Flight - Performance Comparison for different Ve-
locities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.13 Control Inputs - Fault Case λ3 = 0 during Cruise Flight vh = 0.5[m/s] -
Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.14 Control Inputs - Fault Case λ1 = 0 during Cruise Flight vh = 4.9[m/s] -
Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

XV



LIST OF FIGURES

6.15 Control Inputs - Fault Case λ1 = 0 during Cruise Flight vh = 10.9[m/s] -
Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.16 Tracking Performance Comparison for different Failure Cases - Maneu-
ver Flight - Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.17 Control Allocation Performance Comparison for different Failure Cases
- Maneuver Flight - Configuration 1 . . . . . . . . . . . . . . . . . . . . . 177

6.18 T/N Estimated Virtual Control Space for t = [0.5, 1.5, 2.5, 3.5, 4.5][s] -
Maneuver Flight - Configuration 1 . . . . . . . . . . . . . . . . . . . . . . 178

6.19 Tracking Performance - Fault Case λ1 = 0 during High-Speed Flight -
Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.20 Position Trajectory - Fault Case λ1 = 0 during High-Speed Flight - Con-
figuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.21 Control Allocation Performance - Fault Case λ1 = 0 during High-Speed
Flight - Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.22 Control Inputs - Fault Case λ1 = 0 during High Speed Flight - Config. 1 182

A.1 Earth Centered Inertial Frame (ECI) (taken from [72]) . . . . . . . . . . . 191

A.2 Earth-Centered Earth-Fixed Frame (ECEF) (adapted from [72]) . . . . . . 192

A.3 North-East-Down Frame (NED) (adapted from [72]) . . . . . . . . . . . . 193

A.4 Body-Fixed Frame (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.5 Local Navigation System (N ) (adapted from [72]) . . . . . . . . . . . . . 195

C.1 Control Allocation - Update Direction: 2D Singular Case - Case A . . . . 204

C.2 Control Allocation - Update Direction: 2D Singular Case - Case B . . . . 205

D.1 Upper Bound Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

D.2 Attitude Penalty Function and its Upper and Lower Bounds . . . . . . . 214

D.3 Theorem D.14 - Lyapunov Analysis for cζ = 1.5 . . . . . . . . . . . . . . . 220

D.4 Theorem D.14 - Lyapunov Analysis for cζ = 1 . . . . . . . . . . . . . . . . 222

D.5 Theorem D.14 - Lyapunov Analysis for cζ = 0.5 . . . . . . . . . . . . . . . 222

XVI



List of Tables

1.1 Control Allocation Design Drivers . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Classification of Multirotor Control . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Classification of Multirotor Control - Author’s publications . . . . . . . . 14

2.1 Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Plant Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Attitude Parameters’ Comparison . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Control effectiveness matrix and the corresponding faults . . . . . . . . . 36

3.2 Comparison between direct MRAC and direct MRAC PRO . . . . . . . . 47

3.3 Comparison between PMRAC and PMRAC PRO . . . . . . . . . . . . . . 58

4.1 Comparison between P-ACA and Reduced Order P-ACA . . . . . . . . . 78

5.1 Attitude Controller Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Vertical Velocity Controller Gains . . . . . . . . . . . . . . . . . . . . . . . 155

6.1 Failure during Hover Flight - Performance Comparison for different Fail-
ure Cases for the 2 Hexacopter Configurations . . . . . . . . . . . . . . . 169

6.2 Failure during Cruise Flight - Performance Comparison for different Ve-
locities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Maneuver Flight - Performance Comparison for different Failure Cases . 179

6.4 High-Speed Flight - Performance Comparison before and after the Total
Failure of Actuator 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.5 Failure during Hover Flight - Performance Comparison with existing
Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

XVII





Chapter 1

Introduction

1.1 Background and Motivation

In the last decades the variety and complexity of missions for which aircraft systems
are envisioned are constantly increasing and are pushing the development of flight
automation. Especially new designs with vertical take-off and landing (VTOL) capa-
bilities have been developed for applications ranging from small delivery unmanned
aerial vehicles (UAV) up to auto-piloted urban air taxis. In the category of consumer
products, quadcopters for filming are available, e.g. the Mavic Air 2 from DJI [31] and
EVO from Autel Robotics [9]. Fixed-wing VTOL platforms with variable payload have
also made their way to products with applications like agricultural remote sensing,
mapping and package delivery. Some examples are the Trinity from Quantum Systems
with a maximum payload of 0.7[kg] and 1 hour flight time [127], or the Wingcopter UAV
with a payload of 2− 6[kg] and a range of 45− 120[km] [152]. Another trending appli-
cation is urban air mobility where flight automation is stepping up to the next level by
developing automatic passenger air transportation. There is no available product yet
and in most cases not even the necessary regulations, but there exist several enterprises
with this goal in mind. Some examples are the Passenger Air Vehicle from Aurora Flight
Sciences [8], CityAirbus [2], Volocopter [148], AutoFlightX [148], or Cora from Wisk [153].

One of the main challenges and success factors of new aircraft designs is their fault
tolerance capability, that is the ability of compensating faults in order to avoid a sys-
tem failure [79]. In the aerospace industry, safety and reliability have been the main
drivers of fault tolerance since both have a strong influence on profit, public image
and aircraft certification.Classically, fault tolerance has been addressed through phys-
ical redundancy of critical components [12, 40, 99]. Latter, the introduction of digital
fly-by-wire systems allowed the implementation of advanced algorithms like for ex-
ample model-based fault tolerant control [99]. Nowadays, within the UAV develop-
ment, fault tolerance has been identified as a key step in order to increase system’s
reliability and therefore to automatically accomplish complete missions [32].Interest-
ingly, an increased level of automation, does not only affect the nominal functionalities
but greatly influences fault and failure handling.

The main goal of this thesis is the enhancement of fault tolerance by the means
of digital flight control. Specifically, tolerance to faults within the actuation system is
addressed. If not taken into account, this kind of faults can lead to performance or
control loss. The importance of correctly addressing this kind of faults is based on the
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criticality of the resulting consequences. An actuator fault can for example cause a loss
of control in-flight (LOC-I) accident. Taking a look at the 5-year report from the In-
ternational Air Transport Association (IATA) [76], it can bee seen that from 2013-2017
the accidents categorized as LOC-I have not been the most common but have a high
fatality risk. They build up about 60% of the fatal aircraft accidents counting for only
about 9% of the total accidents [76]. Although these statistics do not directly translate
to new VTOL designs, they stress the relevance of avoiding control loss during flight
operation. Therefore, in this thesis especial attention is given to overactuated systems,
that is systems with redundant actuators. In the aerospace industry, either from re-
liability or safety reasons, configurations with actuator redundancy commonly result
from the requirement that the system should maintain controlled flight in the presence
of a single failure. In this context, fault tolerant control enables and maximizes the
advantages of the physical actuator redundancy for maintaining controlled flight.

Given that this research on fault tolerant control (FTC) for actuation faults has a
clear practical motivation, it is imperative to experimentally validate the developed
algorithms. Therefore, the hexacopter as shown in Figure 1.1 is selected as a testing
platform. The hexacopter is a VTOL system and a representative of multirotor config-
urations which have over typical helicopters the following advantages. Multicopters
can use fixed-pitch rotors simplifying the mechanical structure [95] and it is possi-
ble to directly control the motor speeds simplifying the design of the controller [71].
The hexarotor is a system with actuator redundancy since it has 6 propulsion units,
two more than the minimum needed which corresponds to a quadrotor configuration.
Given the popularity of multicopters within the research community, a further advan-
tage of selecting the hexacopter is the possibility of comparing the presented solutions
with others in the literature.

Figure 1.1: Ascending Technologies Hexacopter: Firefly
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1.2 Research Challenges and State of the Art

In order to successfully design a fault tolerant controller with respect to actuation faults
and failures, three main challenges have been identified and drive the selection of the
methods in this thesis:

1. Uncertainties regarding faults and failures,

2. Actuator redundancy and

3. Actuator limits.

Fault and failures are inherently uncertain, i.e. they are unknown in magnitude,
appearance time and duration [138]. Hence, the task at hand is the control of a plant
with uncertain dynamics. One possible way to solve it is the reconfiguration approach,
which is composed of two main steps: the fault detection and isolation step and the
controller reconfiguration step. Another possibility is to design a controller which is
robust to a set of possible faults as in robust control. In this thesis, the task is formulated
as an adaptive control problem. Adaptive control studies the question of controlling
uncertain dynamical systems and it is addressed by online variation/adaptation of
the controller parameters. Hence, differently to the reconfiguration approach which
mainly selects and switches between controllers, an adaptive controller continuously
reacts to the plant dynamics similarly to the behavior of an integrator. The application
of adaptive fault tolerant control against actuator faults and failures is one main focus
of this thesis. Especially, adaptive fault tolerant control for overactuated systems is
thoroughly discussed because of its major importance in practice.

The next challenge is actuator redundancy. Although actuator redundancy phys-
ically allows the system to tolerate an actuator fault, redundant actuators and their
faults, even if known, pose a significant challenge for the flight control algorithms.
The challenge arises from the fact that actuator redundancy inevitably results in an
ambiguity regarding the distribution of forces and moments to the available actuators.
Complexity increases for most VTOL configurations, since the effect of a faulty actuator
simultaneously affects different control axes. This differs from traditional fixed-wing
concepts where redundancy mainly arises from dividing control surfaces, leading to
groups of similar actuators.

The last challenge is the consideration of the actuator physical limitations, for ex-
ample in the form of amplitude or rate limits. This becomes more relevant during
failure scenarios than during normal operation since given the fault of an actuator, the
remaining actuators need to compensate for the missing control forces and/or even
counteract the disturbance forces corresponding to the faulty actuator. This can pre-
vent the recovery of nominal performance during an actuator fault. In the context of
redundant actuators, control allocation is one of the most effective and popular meth-
ods of dealing with the additional degrees of freedom and at the same time with ac-
tuator limits. Control allocation is the selection of actuator commands such that they
satisfy the demanded forces and moments from the control law [81]. In this thesis
control allocation algorithms are studied within the adaptive control formulation in
order to exploit the hardware redundancy while simultaneously cope with the uncer-
tain characteristics of faults and with the physical limits of actuators. In the following
the state-of-the-art of the used methods is reviewed and an overview of the existing
solutions for multicopter applications is given.
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1.2.1 Fault Tolerant Control and Adaptive Control

Fault Tolerant Control (FTC) studies methods to automatically mitigate the effect of
faults on the overall system performance and ultimately prevent a system failure.
There exist two levels of fault tolerance that are of interest in safety-critical applications
like the considered aircraft systems. The first one corresponds to a fail-operational sys-
tem, i.e. a system that after a given fault is able to maintain the required performance
level [12, p.8]. If this is not possible, the next goal is a fail-graceful system, which
means that after a given fault the system remains operational but with a degraded per-
formance [12, p.8]. The requirements strongly depend on the application scenario and
in this thesis both cases are addressed for the hexacopter platform.

FTC approaches are commonly classified into active and passive approaches [41,
156]. Passive FTC corresponds to controllers that are robust against a certain class of
presumed faults [41]. Here, the controller gains and structure are not modified online
regardless of the presence of faults [156]. In contrast, active FTC reconfigures con-
trol action as a reaction to faults in order to guarantee stability and acceptable perfor-
mance [156]. Active fault tolerant controllers consist of a fault diagnosis module and
a control redesign module [12, p.2]. Classically, after the necessary fault information
has been gathered, the controller actively reacts by a discrete change of the parameters
and/or the change of the controller structure. For a good overview of FTC, the reader
is referred to [121, 156] and to [57, 58, 122] for a newer revision. A review regarding
aerospace applications can be found in [54, 126, 137].

In the literature, the classification of adaptive control within FTC is not consistent.
This is mainly because the reaction to faults occurs in a continuous way in contrast to
switching between controllers. Eterno et. al classify adaptive control under passive
FTC since the controller reacts to the faults without any structural changes or discrete
switches [41]. Zhang and Jiang classify it under active FTC since the parameter adap-
tation corresponds to an active reconfiguration [156].

Adaptive control was originally motivated by the idea of designing flight con-
trollers that were able to perform over a large operational envelope as an extension to
gain scheduling [132, p.2]. Historically, the theoretical foundations of adaptive con-
trol followed the crash of the X-15-3 aircraft in 1967 [38] as a result of a large de-
velopment effort on closed-loop stability proofs and on improving the understand-
ing on adaptive control. Most of the main text books deal with the control of linear
plants [7, 78, 117, 132], sometimes including a nonlinear uncertainty term, and in [89] a
nonlinear formulation is presented. The adaptive control approach studied within this
thesis is model reference adaptive control (MRAC) [78, 92, 117, 132], which is one of
the most predominant approaches in the literature and has been extensively studied.
This facilitates the analysis of faults, overactuation and input saturation within a well-
known framework. The main idea in MRAC is to design a controller that in closed loop
with the plant and in the presence of uncertainties emulates a previously defined dy-
namics model which describes the desired system performance: the reference model.

MRAC approaches are usually divided into direct and indirect architectures or
combinations of the two [11, 117, 132]. In direct MRAC, the controller parameters are
updated directly without estimating the plant parameters beforehand. The description
of how parameters change over time is called update law. In the direct MRAC case,
it is driven by the error between the plant response and the desired response which is
defined by the reference model. The direct MRAC controller structure is depicted in
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Figure 1.3: Controller Structure - Indirect MRAC

Figure 1.2. In indirect MRAC, the updated parameters correspond to the parameters
of an identification model. These parameters are then used within the control law for
computing the control input. In this case, the control law is designed such that the
identification model with known parameters behaves like the reference model and the
reference model is not directly implemented. Furthermore, the update law is driven
by the error between the plant response and the response of the identification model.
In Figure 1.3 the architecture of indirect MRAC is shown. In this thesis both structures
will be discussed in the context of overactuated systems.

The idea of using adaptive control for improving fault tolerance is not something
new. Because of its continuous parameter adaptation it has been identified that under
ideal conditions, it provides graceful degradation and system recovery [41]. However,
the fact that faults reflect on fast varying parameters has been a hurdle for developing
successful application cases [12]. This can namely lead to unacceptably high control
bandwidths and a decrease of robustness against unmodeled dynamics and noise [41].
The challenge of improving performance and robustness of MRAC in specific has been
an active research field that has lead to the development of a large amount of modifi-
cations of the update laws, the reference model and the uncertainty parameterization.
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The theoretical efforts were followed by various successful applications address-
ing actuator faults. Direct adaptive control augmented with a neural network was
tested on the X-36 tailless aircraft under the effect of simulated failures as part of the
RESTORE program [18]. In [21] flight test results on a modified F-15 aircraft with
an immobilized control surface were presented. The approach corresponds to a di-
rect adaptive control augmentation of a nonlinear dynamic inversion (NDI) controller.
In [32] successful flight tests on a GTMAX helicopter UAV including actuator mal-
functions have been presented. A multiple layer approach was proposed. A neural
network adaptive controller is the first contingency line against faults. A fault detec-
tion and isolation (FDI) module and a reconfiguration mechanism switch between a
bank of adaptive controllers for large faults. At a higher level, optimization is used to
adjust the flight path to the degradation and finally a mission adaptation component
adjusts the mission goals. In [27] successful flight tests of a GT Twinstar with 25% of
its wing missing have been presented. Here, direct MRAC in combination with neural
networks are compared to derivative free MRAC. Indirect adaptive control, specifi-
cally L1 control, has been flight tested using the NASA’s subscale transport aircraft
(AirSTAR) [63]. Various failure scenarios were tested including command latency, de-
graded aircraft stability and control effectiveness degradation.

In the fault tolerant adaptive control literature, it is difficult to find a systematic
study and restrictive assumptions are often posed. One example is the assumption
that the system has several actuators having a similar characteristics so that the prob-
lem can be address independently for each degree of control [151]. This is the case for
divided control surfaces in fixed-wing vehicles but it is not applicable for most VTOL
configurations. To model actuator uncertainties, the input matrix is usually multiplied
by a control effectiveness matrix which is square and its dimensions correspond to the
number of inputs. Another common assumption is that this control effectiveness ma-
trix has a full rank, which considers degradation of control but excludes a total actuator
failure. This assumption makes sense for and arises from non-redundant systems. For
overactuated systems it is too restrictive. One important contribution towards a sys-
tematic study is the work of Tao [138] which presents methods and stability proofs of
direct adaptive control for systems with actuator failures. Interestingly, to the best of
the author’s knowledge a comprehensive analysis of the implications of redundant ac-
tuators for the uncertainty parameterization is missing. In this work, the uncertainty
parameterization of overactuated systems without similarity assumptions or full rank
restrictions is studied in detail. Initial work has been presented by the author in [46,47].

Apart from actuator redundancy, control input saturation is a main topic in this
thesis. In adaptive control, it has a twofold importance. On the one hand it sets limits
on disturbance rejection and on the type of trajectories that can be followed. On the
other hand if control input saturation is not taken into account, it can produce param-
eter estimation errors and windup [96, 134]. In the direct MRAC framework, one of
the first ideas to counteract control magnitude saturation was the consideration of the
control deficit within the reference model like in [85], where a single input system was
considered. The positive µ-modification extends these results by guaranteeing that the
control input will never saturate [90]. In [134] and [91], extensions for a multi-input
plant were presented. Another alternative is pseudo control hedging [73, 82]. It con-
siders a known actuator model, including magnitude and rate saturation or actuator
dynamics, within the reference model in order to hide these effects from the parame-
ter update laws. A similar approach is followed in [96]. Here a reference dynamical
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system is constructed using the information of the control law in order to generate a
reference signal that satisfies the control input limitations. Regarding indirect MRAC
approaches, known actuator limits are mostly taken into account by integrating the
actuator model within the identification model. One example of this is given in [97]
which extends the results on L1 adaptive control for systems with input saturation.
This approach is significantly simpler than for direct architectures. Further, different
anti windup approaches have been combined with adaptive controllers in order to im-
prove stability and performance results [83, 84, 139]. The presented approaches do not
specifically consider the advantages of actuator redundancy. Therefore, in this thesis
control allocation is chosen for addressing control input saturation as detailed in the
next section.

1.2.2 Control Allocation

Fault tolerance, overactuation and control allocation are strongly related. Usually, fault
tolerance requirements lead to an overactuated mechanical design and control alloca-
tion methods are a possible way of fully exploiting the gained degrees of freedom. For
overactuated mechanical systems, the control algorithms are often separated into dif-
ferent modules as depicted in Figure 1.4 [81]. The rigid body motion control computes
virtual controls νd (t) according to the given task. In aerospace applications the virtual
controls are usually forces or moments that the flight controller computes in order to
fulfill the control task. In multirotor applications, the virtual controls are commonly
the total thrust T and the desired control moments L, M and N about each body fixed
axis. The next module corresponds to the control allocation. Its primary task is to com-
pute a control input u (t) such that the desired virtual control νd (t) is achieved under
consideration of actuator limits. The last module may consist of a low-level controller
for every actuator system, typically as a separated computation unit. For overactuated
systems the control allocation solution might not be unique. In this case, it is possible
to take into account secondary goals like minimum energy consumption or minimum
structural load. Further, it is possible to implement a strategy for degraded control
situations.

One of the main design drivers for the control allocation is the trade-off between the
computational resources and the control allocation capabilities. The solutions range
from fast and simple pseudo-inverse based methods to complex iterative numerical
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Computational Resources

maximum execution time
memory space

Objectives

achieving attainable virtual controls
handling unattainable virtual controls

Actuator Model

linear or nonlinear
static or dynamic
time constant or time varying

Constraints

input magnitude limits
input rate limits

Table 1.1: Control Allocation Design Drivers

optimization methods where a large variety of constraint types and optimization goals
can be specified. In the case of real-time applications, the maximum execution time
is the limiting factor. Hence, it is important to select the most simple problem for-
mulation that covers the necessary system characteristics in order to fulfill the control
task. The problem formulation is characterized by the actuator model, the control al-
location objectives and the constraints as detailed in Table 1.1. This list reflects only
the main characteristics and is by no means exhaustive. For fault tolerant systems,
an important differentiation is between attainable and unattainable solutions. For the
control allocation problem a desired virtual control νd (t) is called attainable if there
exists a control input u (t) that satisfies the constraints and generates νd (t), otherwise
it is called unattainable. The set of all attainable virtual controls νd (t) is called the
attainable control set (ACS).

The main design aspects corresponding to the VTOL application scenario as pre-
sented in Chapter 2 are highlighted in Table 1.1. The actuator model can be linear and
static but a time-varying model needs to be accommodated. Moreover, the constraints
that need to be taken into account are magnitude limits but not rate limits. The linear
formulation is achieved by compensating the effector nonlinearities through a nonlin-
ear inversion mapping. The actuator dynamics and input rate limits can be neglected
since the rigid body dynamics are considerably slower. Further, the use of adaptive
control for compensating for faults results in a time-varying actuator model. The con-
sidered objectives in Table 1.1 basically reflect the main tasks of the control allocation
and no secondary goals are included. In the hexacopter case, unattainable solutions
will have a central role since their occurrence cannot be avoided during failure scenar-
ios as will be shown latter. There are mainly three approaches in the literature to deal
with unattainable virtual controls: The minimization of a norm of the virtual control
error [81], the prioritization of specific virtual controls [35] and the preservation of the
virtual control vector direction which corresponds to the direct allocation approach in
the sense of Durham [36]. Taking the highlighted factors in Table 1.1, a summary of
candidate control allocation approaches is given in the following. A general review of
control allocation methods can be found in [81, 120].

The simplest actuator model is the well understood problem of a linear, static and
time-invariant actuator model. The most common solution is the pseudo-inverse in
combination with saturation of the inputs that exceed their limits [120]. The reasons
for its popularity are twofold. This approach yields the minimum 2-norm of the control
input u(t) if no inputs saturate and therefore relates to the minimization of the used
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control input power. Furthermore, only minimum computational resources are needed
since it only involves a matrix multiplication and a saturation function. The main dis-
advantage is that the simple saturation or clipping of the inputs will alter the resulting
virtual controls, even in cases were an attainable solution exists. The use of a weighted
pseudo-inverse or tailored generalized inverses can improve the results. Nevertheless,
no single generalized inverse is able to map the whole set of attainable virtual controls
to the set of available control inputs using the simple saturation [36]. Improvements
can be achieved by using iterative methods like the redistributed pseudo-inverse or
daisy chaining. Nevertheless, they do not guarantee that attainable solutions are found
nor that the allocation error is minimized in some sense [81]. Two drawbacks prevent
the direct use of these methods for our application: the need of a continuous compu-
tation of a matrix inverse for a time-varying matrix and the inability to implement a
suitable strategy for unattainable virtual controls.

Apart from generalized inverse approaches, the constrained linear control allo-
cation problem has been addressed using optimization routines like linear program-
ming [13, 123] and quadratic programming [65]. The most common solution routines
are active set and interior point methods [119]. For linear program solving, the simplex
method is another established alternative [119]. Although optimization approaches are
more flexible regarding optimization goals and constraints, it is hard to give guaran-
tees on a maximum execution time and therefore practically a trade-off with respect
to optimality needs to be made [81]. To which extend suboptimal results can be tol-
erated, is not easy to answer. Therefore, in this thesis an alternative to the mentioned
optimization algorithms is proposed. Nonetheless, it is worth to mention that the for-
mal verification of optimization algorithms for safety-critical applications remains an
active research field [28, 29, 80, 129, 150].

Control allocation methods in combination with adaptive control can be divided
into direct and indirect approaches. Direct approaches are presented in [50,98,143,144].
Within an MRAC formulation, the control allocation matrix is considered as an un-
known parameter and it is consequently updated by an update law. The input lim-
its are indirectly enforced by saturating the desired virtual controls and by limiting
the control allocation matrix using the projection operator. The bounds on the vir-
tual controls and adaptive parameters are fixed and need to hold simultaneously and
are therefore conservative. This holds especially for systems with high coupling of
actuator and control axes. Furthermore, a possibility of implementing a strategy for
unattainable virtual controls in this framework is not known to the author.

Indirect approaches are more flexible since it is possible to combine the estimation
of the control effectiveness matrix with a control allocation approach that is able to
handle a time-varying actuator model. In [22], a time-windowed and a recursive pa-
rameter estimation algorithms are used to estimate the control effectiveness matrix.
This is then combined with a quadratic programming solver to allocate the control
inputs. In [42, 43], the control effectiveness matrix is estimated using a concurrent
learning method and it is combined with a gradient-based optimization as a control
allocation. Here, a prioritization strategy is implemented for unattainable virtual con-
trols. In [140, 141], adaptive control in combination with dynamic control allocation is
used. In this case the control allocation problem is not solved every time step, but a
control allocation update law, similar to a gradient optimization, solves the optimiza-
tion problem dynamically.

9



1.2 Research Challenges and State of the Art

1.2.3 Multirotor Control

In this section, a review of the state of the art regarding multirotor control is presented.
The focus of this review lies on fault tolerant and adaptive control and on experimental
results demonstrating the maturity of the developed algorithms. In order to measure
the suitability to a real world application, the following factors are taken into account:

� Type of the experimental setting,

� Utilizable flight envelope,

� Presented maneuvers,

� And considered actuator fault types.

The actuator faults are differentiated between effectiveness reduction and total fail-
ure. Further, it is differentiated between a full and a degraded control authority case.
Degraded control authority occurs if after the fault the number of system outputs that
can be controlled is reduced, otherwise it is a full authority case. Avoiding degraded
control authority is one of the main reasons for actuator redundancy. Nevertheless,
this can occur in overactuated systems and in fact the hexacopter is an example of this.
This differentiation is made since degraded control authority represents a more com-
plex case for the flight controller. The last important characterization is if the faults are
assumed to be known or if the uncertainties are considered in the presented experi-
mental results showing a more realistic scenario.

First experimental autopilots controlled the attitude or position only at low speeds
close to hover within a laboratory environment [15,16,23,64,145]. First successful out-
door flights were shown by Hoffmann et al. with velocities up to 3.5 [m/s] using PID
control for attitude and position control loops [70]. Higher speeds up to 6 [m/s] were
demonstrated by Kendoul et al. using a cascaded nonlinear dynamic inversion ap-
proach [86]. Subsequently, the author presented a flight with velocities up to 7.5 [m/s]
using a position tracking backstepping controller [49]. Finally, Raffler et al. showed
a high speed flight up to 12 [m/s] using a path controller augmented by pseudo con-
trol hedging [128]. The controller prioritizes the cross range error over the velocity
error along the path. All of these outdoor results used GPS position measurements.
Mellinger et al. [107, 108] and Lupashin et al. [102] presented other types of high dy-
namic maneuvers like flying through narrow, vertical gaps and perching on inverted
surfaces. They were tested within a laboratory environment and using specialized
controllers for each maneuver.

An important design choice that directly affects the utilizable flight envelope is the
attitude parameterization. In order to maximize the flight envelope, representations
with singularities such as Euler angles are to be avoided. Various authors have pro-
posed quaternion representations [3,20,30,56] while others used the special orthogonal
group SO(3) [95]. The SO(3) attitude parameterization has been presented in combi-
nation with robust adaptive control [93] and L1 adaptive control [88]. A parameter
variant that exploits the structure of the multirotor dynamics model is the reduced at-
titude representation in S2 as presented in [48,55,149]. Details on the different attitude
parameterizations are presented in Chapter 2 (Multirotor Dynamics Model).

A general analysis of the influence of faults for multicopter systems can be found in
[105,133,146]. It has been found that the standard hexacopter configuration (see Figure
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2.1a) is not able to maintain the same number of independently controlled outputs
after a failure although it is an overactuated system. With a different selection of the
rotational direction of the propellers it is possible to achieve full authority in some
specific failure cases but not in all. Therefore, a degraded control strategy that does not
control the yaw motion has been proposed [34,42]. Furthermore, full control authority
can be regained by letting one propeller rotate in inverse direction [1] or by tilting the
rotation axes of all the rotors [60, 111].

The first flight tests considering actuator effectiveness reduction were all done in
a laboratory environment. The first one is presented by Michini et al. considering a
50% degradation which is not known to the controller [112]. The controller consists
of a quaternion-based attitude inner loop and a velocity outer loop that includes an
L1 adaptive control augmentation. Dydek et al. presented the first direct MRAC po-
sition controller derived using a linear hover model of the quadrotor and applied to
the unknown control effectiveness reduction case [37]. These results were improved
in [39] using a combined MRAC approach. Specifically, smoother parameter estimates
allowed for higher adaptation gains. Furthermore, the degradation was not simulated
but the blades of one propeller were cut to reduce its original length by 25%. Again
for the unknown control effectiveness reduction case, Chamseddine et al. compared
different MRAC variations and an LQR controller [24]. For the unknown control ef-
fectiveness reduction case, Amoozgar et al. proposed a fuzzy gain scheduled PID con-
troller and compared its performance with a conventional PID controller [6]. The first
outdoor experiments using adaptive control were presented by Mallikarjunan et al. for
a quadrotor and a hexarotor [103]. Different attitude controllers are compared using
backstepping and L1 PWC adaptive control as a basis. In the paper, it is mentioned
that the hexacopter with actuator failure was successfully flight tested, but there is no
further information or results presented.

Achtelik et al. presented the first experimental results for the case of a known total
actuator failure [1]. The platform used is a hexarotor which is able to rotate its rotors in
both directions in order to avoid degraded control authority. The strategy is to use four
rotors to control thrust, roll and pitch moments and to use the remaining rotor only for
yaw control. This last rotor is the one that changes its rotational direction. Müller
et al. presented the first degraded control strategy for a known total actuator failure
validated experimentally [114]. The flight tests were done using an optical positioning
system and included the cases of one and two propeller failures for a quadrotor system.
The strategy is to control a selected body-fixed yaw-like axis as a reduced attitude
instead of controlling the full three-dimensional attitude. Therefore, the rotation about
the axis remains uncontrolled but by controlling its direction position control could still
be achieved. The rotation axis depends on the failure case and therefore a dedicated
controller was developed for each failure case. The absolute value of the rotational
rate during position hold gives an impression of the dynamics of the system. It was
about 822 [deg/s] for the case of one actuator failure and 1553 [deg/s] for the case of
two actuator failures. Again for the known actuator failure case a degraded control
strategy was presented by Du et al. for a hexacopter attitude control [34]. The strategy
consists on disregarding yaw moment commands through an update of the control
allocation matrix. This leads to the possibility of controlling position of the hexarotor
while the yaw motion is uncontrolled. During the experiment, the yaw rate reached
approximately 300 [deg/s].

The first results regarding an unknown total actuator failure are found in [147] and
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Platform Validation Fault Type

[23] X X X 0.51

[145] X X X 0.25 0.5
[70] X X X 3.5 1.62

[16] X X X 0.521

[64] X X X 0.57
[86] X X X 6 0.62

[112] X X X X 1 0.5
[37] X X X X < 1 0.51

[107] X X X 3.6 0.51

[24] X X X X < 1 1.41

[131] X X X 1.41

[1] X X X X 2 1.21

[6] X X X X 0 1.41

[104] X X X 1.2
[103] X X X X X* X
[128] X X X 12 0.51

[5] X X X X X 1.3
[33] X X X X 1 1.54
[39] X X X X 0.51

[114] X X X 0.5
[130] X X X 1
[34] X X X 1 1.54
[147] X X X X 1 1.031

[154] X X X 3
[53] X X X 5.7 0.5
[109] X X X 1 0.42
[157] X X X 2
[60] X X X X 1.4
[118] X X X X X 1.54
[135] X X X X X 2
[106] X X X

1: Values taken from a related source.

2: Mass varies with payload and this is one configuration.

X*: Information is missing.

Table 1.2: Classification of Multirotor Control
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Chapter 1: Introduction

in [42]. Vey and Lunze [147] presented an active FTC approach for position control of
a hexacopter which combines an FDI module consisting of a bank of observers with a
reconfiguration module based on the virtual actuator concept. In this case the recon-
figuration is equivalent to an update of the control allocation. The solution works for
a full control authority case corresponding to 4 out of 6 possible actuator failures in
the selected configuration. On the other hand, Falconi et al. [42] presented a controller
that is able to handle the degraded control authority case. The FTC approach is com-
posed of an adaptive estimation of the control effectiveness of the propellers and an
optimization-based control allocation. The control allocation prioritizes thrust, pitch
and roll moments over the yaw moments similarly to the results of [114] and [34]. In
the experiment, the hover yaw rate is between 80-120 [deg/s]. The first position con-
troller based on GPS measurements used for compensating a total failure in the full
control authority case was presented by Yang et al. [154]. Mazeh et al. presented af-
terwards results handling the known failure of two actuators [106]. In both cases, an
active FTC structure was used and the failure was assumed to be known. The recon-
figuration consisted in an exchange of the control allocation matrix depending on the
failure case. The first outdoor experiments using position control compensating an un-
known total failure in the degraded control authority case were presented by Falconi
et al. [43] extending the results in [42].

Table 1.2 gives a general overview of multirotor control regarding platform, type
of validation, considered fault types, maximal velocity and aircraft mass. The classi-
fication is not focused on the type of controllers that have been proposed, but rather
on categories that allow to compare the results towards their applicability on a real
world scenario. The considered validation forms are simulation, laboratory experi-
ment or experiment. An experiment is classified as laboratory experiment if either the
position and/or attitude measurements come from an infrastructure that is external to
the vehicle, e.g. from a camera motion system, or if external computational resources
are needed and hence the algorithms do not run onboard of the vehicle. The consid-
ered fault types correspond to the description given at the beginning of this section.
Another important factor for the usefulness of a multirotor controller is the maximal
horizontal velocity that can be reached. This allows for a larger flight envelope and
shows robustness of the controller against the increased aerodynamic disturbances at
higher velocities. Finally, the last category is the weight of the used platform. The
author’s publications are summarized in Table 1.3 in the same manner as in Table 1.2.
The overview shows that although there are several results addressing the identified
challenges in Section 1.2, very few are able to tackle them simultaneously and even
less show representative experimental results. One clear milestone in multirotor fault
tolerant control is dealing with an unknown total actuator failure. For the hexarotor
system, the degraded authority failure case has increased complexity due to the drasti-
cally reduced control authority and therefore the need for careful handling of actuator
redundancy and limits.
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Platform Validation Fault Type

First Author Publications

[44] X X X 1 0.51

[48] X X X 2 1.21

[49] X X X 7.5 1.21

[45] X X X 2 1.21

[42] X X X X 0 1.21

[47] X X X 1.21

[50] X X X 5 1.21

[51] X X X X 1.21

[52] X X X X 1.21

[46] X X X 1.21

[43] X X X X X 2 1.21

Other Publications

[3] X X X X 1.21

[66] X X X X X 1.21

[115] X X X X X 1.2
[4] X X X X X 1.21

[62] X X X 1.21

[61] X X X 1.21

1: values taken from a related source.

Table 1.3: Classification of Multirotor Control - Author’s publications
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Chapter 1: Introduction

1.3 Problem Statement and Objectives

This thesis addresses the challenge of developing an adaptive fault tolerant controller
for a VTOL multicopter system that considers actuator redundancy and actuator limits
and implements a strategy for degraded control authority. Considering the presented
state of the art, the main objectives are separated in two categories: control theoretical
and application related objectives.

The control theoretical objectives are the following:

1. Systematic analysis of adaptive control methods for systems with redundant
actuators: Analysis of the impact of the structure of overactuated systems re-
garding uncertainty parameterization.

2. Study of adaptive control methods regarding actuator fault tolerance in the
case of overactuated systems: Given that actuator redundancy provides addi-
tional degrees of freedom for controlling a plant, it is expected that fault tolerance
is possible. Therefore, the questions arise whether adaptive control approaches
can verify this hypothesis given the fact that faults are unknown and which con-
ditions are necessary in this case.

3. Derivation of an approach that exploits actuator redundancy for fault tolerance
within the adaptive control framework.

The following goals are application related and intend to increase the usability of
the proposed theoretical solutions to real world problems. The goals are:

4. Testing the theory on real hardware.

5. Running the algorithms online onboard of the aircraft.

6. Lean, compact and unified structure of the controller.

7. Developing of a controller that deals with unknown actuator faults and fail-
ures: Although it is a natural requirement for fault tolerant systems, there are
several partial results in the literature only dealing with control reconfiguration
under a given known fault.

8. Inclusion of a strategy for the degraded control authority case: This is a neces-
sary step in order to improve fault tolerance of the hexacopter system.

9. The controller should not be a limitation of the physical system: This goal is
rather ambitious and the best possible result. It means that the designed con-
troller should be able to stabilize the plant and maintain certain performance
level as long as this is physically possible.

1.4 Contribution

The contributions of this thesis compared to the state of the art are stated in the follow-
ing.
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1.4 Contribution

Parameter Reduction due to Overactuation (PRO)

This approach is a new uncertainty parameterization within an adaptive control frame-
work developed for systems with redundant actuators. It reduces the uncertain pa-
rameters to the minimum set without reducing the amount of information gathered.
This improves the usage of computational resources without affecting the controller
performance. Initial work has been presented in [46, 47].

Control Authority Conditions for Overactuated Systems

Based on the new uncertainty parameterization (PRO), control authority conditions are
formulated for systems with redundant actuators such that actuator failure cases can
be considered within the stability proofs of model reference adaptive control (MRAC).
The conditions are derived for direct and indirect structures. Initial work has been
presented in [46, 47].

Predictor-Based Adaptive Control Allocation (P-ACA)

Based on Predictor-Based MRAC and the Parameter Reduction due to Overactuation
(PRO), a framework for integrating control allocation algorithms is presented. De-
pending on the control allocation approach this permits the consideration of actuator
limits and a better use of the redundancy degrees of freedom.

Prioritizing Control Allocation (PRIO CA)

In order to take actuator limits into account and to implement a strategy for degraded
control authority for VTOL aircraft, the Prioritizing Control Allocation (PRIO CA) is
developed. In the case of unattainable or suboptimal solutions, the algorithm prior-
itizes virtual controls in a given order such that control degradation is reduced to a
minimum. This approach has the advantage of having a fixed maximum number of
iterations to return a solution.

Extension of the SVD Udpate Algorithm to Non-Square Matrices

The Prioritizing Control Allocation (PRIO CA) needs the knowledge of the Singular
Value Decomposition (SVD) of the input matrix. This is done using the SVD update
algorithm presented in [69]. In this work it is extended to non-square matrices and a
numerical drift correction term is added.

Attitude Parameterization and Yaw Motion Decoupling

In order to maximize the utilizable flight envelope, the reduced attitude vector in S2

is used. The advantage is that non-uniqueness and singularities are avoided. Fur-
thermore, the stability properties are shown decoupled from the yaw motion. This
enhances the advantages of the Prioritizing Control Allocation (PRIO CA) during de-
graded control situations. This is the first time that this type of parameterization is
analyzed using an adaptive controller. Non-adaptive controllers have been presented
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Chapter 1: Introduction

in [48, 51, 55, 149] and previous adaptive geometric results use a full attitude parame-
terization in SO(3) [88, 93].

Experimental Validation

The presented controller is validated using the hexacopter testbed. During the exper-
iments, the faults are unknown to the controller, all computations are done onboard,
and no external sensors were used. Furthermore, a single unified controller handles
the nominal and all the faulty cases. The test cases include two hexacopter config-
urations with representative failure cases for demonstrating repeatable results. The
experiments include post-failure performance analysis and include software induced
and hardware failure scenarios.

Experimental Validation - High Speed

The test cases include hover flight as well as high speed cruise flight. These are the
first results showing the failure scenario occurring during high speed cruise flight at
10.9[m/s]. This shows the robustness of the controller against unmodeled aerodynamic
effects which increase overproportionally with respect to the airspeed.

1.5 Scope of the Thesis

This thesis deals with continuous and deterministic adaptive control approaches. Dis-
crete and stochastic adaptive control approaches are out of the scope. Furthermore,
the case of state feedback is analyzed and the output feedback case is not considered.
The control allocation is restricted to linear actuator models which may result from a
transformation of a nonlinear model. High level control and mission management are
not part of the focus of the thesis. The studied hexacopter controllers have velocity,
attitude or angular rates as a tracking output.

1.6 Structure of the Thesis

The thesis is organized as follows. In Chapter 2 (Multirotor Dynamics Model), the
hexarotor testbed is introduced regarding the important aspects for developing the
flight controller: inertia characteristics, sensors, actuators and flight control computer.
In addition, the dynamics model of a multirotor suitable for control law design is de-
rived and the main assumptions are stated. In Chapter 3 (Adaptive Fault Tolerant
Control), the Parameter Reduction due to Overactuation (PRO) method is presented
as a tool for analyzing and designing adaptive fault tolerant controllers for overac-
tuated systems. The implications of actuator redundancy are examined in direct and
indirect model reference adaptive control (MRAC). In Chapter 4 (Adaptive Control
Allocation), control allocation is integrated within the Predictor-Based MRAC frame-
work and a reduced order predictor is derived. Subsequently, the Prioritizing Control
Allocation (PRIO CA) strategy is described along with the Singular Value Decomposi-
tion (SVD) update algorithm.
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1.6 Structure of the Thesis

In Chapter 5 (Multirotor Controllers), the adaptive fault tolerant controller is de-
rived for multicopters based on the presented approaches. The attitude controller uses
a geometric approach in order to maximize the flight envelope and takes the degraded
control authority case into account. In Chapter 6 (Experimental Results), flight test
results containing total actuator failure are presented. The degraded and full author-
ity cases are included as well as high velocity flights. In Chapter 7 (Conclusion), the
results are summarized. Based upon them, further research topics are postulated.
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Chapter 2

Multirotor Dynamics Model

In this chapter, the dynamics model of a multirotor system is derived. The main testbed
in this work is the AscTec hexacopter Firefly [1] which is depicted in Figure 2.1. It is a
VTOL aircraft with redundant actuators. It has 6 propulsion units consisting of a fixed-
pitch propeller, an electric motor and a motor speed controller. Fixed-pitch propellers
simplify the mechanical structure as no swashplate is required [71, 95]. Furthermore
because of the propeller size, no flap or lag hinges are needed. The control inputs
of the system are the 6 rotational rates of the propellers. The propellers are able to
produce collective thrust and moments about the three body-fixed axes. In this thesis,
two actuator configurations are used which only differ in the rotation direction of the
third and fourth propellers as shown in Figures 2.1a and 2.1b. This has implications
regarding the fault tolerance of the system as explained in Section 2.3.

(a) Actuator Configuration 1 (b) Actuator Configuration 2

Figure 2.1: AscTec Hexacopter Firefly [1] - Gumstix Configuration

Depending on the planed mission, different types of controllers are needed for mul-
tirotor platforms. The dynamics of these platforms are characterized by relatively fast
poles because of the small aircraft inertia and the high actuator bandwidth. Therefore,
multicopters are always equipped with at least an attitude controller. Rate-command-
attitude-hold (RCAH) controllers are also available but require higher pilot skills. An-
other usual controller is a velocity-command-position-hold (VCPH) for piloted flights
and position-command-position-hold (PCPH) for pre-programmed flights. The latter
controllers have the highest automation degree and require low pilot skills for a stable
flight.
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2.1 System Architecture
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Figure 2.2: Multirotor System Architecture

2.1 System Architecture

The system architecture can be seen in Figure 2.2. The available sensors are a 3-axis
magnetometer, a barometer, a global positioning system (GPS) module and an inertial
measurement unit (IMU). The IMU comprises a 3-axis accelerometer and a 3-axis gyro.
The main sensor characteristics can be seen in Table 2.1. The hexarotor is equipped
with two computing units: the AscTec autopilot computer and the flight control com-
puter (FCC). The implemented algorithms run on the FCC which is a Gumstix Overo
FireSTORM Computer-On-Module (CoM). On the AscTec autopilot board there are
two processors. The Low-Level (LL) processor provides the AscTec autopilot functions
and can be used in flight tests as a back-up controller. The LL processor also receives
the pilot inputs and sends the commands to the motor controllers of the propulsion
units. The High-Level (HL) processor is connected to the GPS module and is used as a
communication link between FCC and the LL processor. The FCC directly communi-
cates with the ground station via a wireless serial communication link.

2.2 Rigid Body Motion

In order to describe the rigid body motion of a multirotor, the coordinate frames listed
in Table 2.2 are used. The Earth centered inertial frame (ECI) system has its origin at the
Earth’s center and does not rotate. For aircraft applications, the translation of its origin
can be neglected and this system is considered the inertial reference frame which is
used for formulating Newton’s second law. Closely related, the Earth-centered Earth-
Fixed frame (ECEF) system has its origin at the Earth’s center but it does rotate about
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Chapter 2: Multirotor Dynamics Model

Gyroscopes

Description Value Unit
Bias [0.5,-0.3,0.2] deg/s
Noise variance [2.25,2.25,2.25] deg2/s2

Scale Factor [0.01,0.03,0.04] -
Alignment I3 -
Resolution 0.015 deg/s
Sample time 0.001 s
Latency 0.001 s
Lower Limit -350 deg/s
Upper Limit 350 deg/s

Accelerometers

Description Value Unit
Bias [0.03;-0.04;0.08] m/s2

Noise variance [0.04,0.04,0.04] m2/s4

Scale Factor [0.1,0.05,0.08] -
Alignment I3 -
Resolution 0.001 m/s2

Sample time 0.003 s
Latency 0.003 s
Lower Limit -25 m/ss

Upper Limit 25 m/s2

Table 2.1: Sensor Characteristics

its z-axis following the Earth’s rotation rate ~ωIE. In order to describe the attitude of
an aircraft, the north-east-down frame (NED) system is used as a reference. Its origin
is an aircraft fixed reference point (R). The z-axis points downwards perpendicular
to the tangent plane on the Earth’s surface. The x and y axes point to the north and
east respectively. The body fixed system has its origin at the reference point of the
aircraft and its orientation is coupled to the aircraft orientation. The body-fixed frame
corresponding to the hexarotor can be seen in Figure 2.1 respectively. Finally, the local
navigation system has its origin at a fixed point on the Earth’s surface. Its axes are
fixed and coincide with the NED axes given that the reference point R is the origin of
the N frame. It is an Euclidean space that can be used for aircraft of limited range and
per definition its rotation respect to the ECEF frame is ~ωEN = 0. A detailed description
of the different coordinate frames can be found in Appendix A.

In order to specify the coordinate system information, the following nomenclature
is used in this thesis. Let us consider the angular rate (~ωIB)

B
(t) ∈ R3. The superscript

IB denotes that it corresponds to the rotation of the body-fixed frame B with respect
to the ECI frame I . The subscript outside the brackets B denotes that the vector is
expressed in the body-fixed frame. Bold variables refer to a non-scalar variable and
the arrow

−→
(·) corresponds to a vector in the Euclidean space R3. An example of a

linear acceleration is given by
( .
~v
R
)IB
B

(t) ∈ R3. Here, the superscript R defines the
point whose motion is described. The subscript outside the brackets B refers to the
coordinate system the variable is expressed in and the superscript IB defines in which
frame the derivatives have been taken. In this case we have two derivatives that can
be expanded as follows

( .
~v
R
)IB
B

(t) =
d

dt
(~vR)I

B
(t) ,

(~vR)I
B

(t) = MBI ·
d

dt
(~rR)I

I
(t) .

Hence, the first derivative was taken in the I-frame and the second one in the B-
frame. In between a coordinate transformation was needed using the rotation matrix
MBI (t) ∈ R3, which rotates a vector from the I-frame into the B-frame. Finally, the
velocities correspond to kinematic velocities if it is not otherwise stated (in contrast to
aerodynamic velocities).
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2.2 Rigid Body Motion

Coordinate System Abbreviation Index
Earth-Centered Inertial System ECI I

Earth-Centered Earth-Fixed System ECEF E
North-East-Down System NED O

Body Fixed System B B
i-th Propeller Fixed System - Pi

Local Navigation System N N

Table 2.2: Coordinate Systems

The control dynamics model should contain the main effects that dictate the rigid
body motion but be as simple as possible in order to allow a stability assessment and a
real time implementation of the control algorithms. Note that this requirements differ
from the ones of a simulation model. Therefore, the following assumptions are made.

Assumption 2.1 (Flat and non-rotating Earth) Because of the usual range and achievable
velocities of a multirotor system, the Earth can be modeled as flat and non-rotating. This means
that the transport rate ~ωEO and the Earth’s rotation ~ωIE are negligible.

Assumption 2.2 (Rigid Body) Any two points of the aircraft have a constant distance be-
tween each other. Furthermore, the aircraft has a constant mass and a constant moment of
inertia (mass distribution).

Assumption 2.3 (Center of Gravity) The systems considered here have an axis-symmetric
mass distribution and therefore it is assumed that the center of gravity coincides with the origin
of the body-fixed axes.

Assumption 2.4 (Forces in the Rotor Plane) The considered multicopter systems have an
even number of equal propulsion units and all rotors are aligned in the same plane. Because
there is an equal number of rotors spinning clockwise and counter-clockwise, it is assumed that
the forces in the rotor plane are small and cancel each other so that they can be neglected.

Assumption 2.5 (Motor Dynamics) The motor dynamics are much faster than the rigid
body dynamics and can therefore be neglected.

Assumption 2.6 (Aerodynamic Forces and Moments) Aerodynamic forces and moments
regarding the body of the aircraft are neglected since they are much smaller than the propulsion
forces and can be neglected, i.e. ~FR

A = 0,
−→
MR

A = 0.

The motion of a rigid body can be completely described by its states: position, atti-
tude, linear and angular velocities. Therefore in the following sections, the differential
equations governing these states are derived under the given assumptions.

2.2.1 Dynamics

In this thesis, the focus lies on controlling the rigid body motion of the multirotor
systems. The dynamics model is based on the conservation of linear and angular mo-
mentum as dictated by Newton’s second law. It follows that the changes of linear and
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Chapter 2: Multirotor Dynamics Model

angular momentum with respect to an inertial frame correspond to the total forces and
moments acting on the system respectively. Under the Assumptions 2.1 (Flat and non-
rotating Earth), 2.2 (Rigid Body) and 2.3 (Center of Gravity), the dynamic equations
describing the motion with respect to the center of gravity G can be expressed in the
body fixed frame as follows [19]

m ·
( .
~v
R
)IB
B

(t) = −m
(
(~ωIB)

B
(t)× (~vR)I

B
(t)
)

+
(
~FR

T

)
B

(t) ,

(IR)
BB

( .
~ω
IB
)B
B

(t) = − (~ωIB)
B

(t)× ((IR)
BB

(~ωIB)
B

(t)) +
(−→
MR

T

)
B

(t) .
(2.1)

Here, the selection of the reference pointR as the center of gravity allows for decoupled
translational and rotational dynamics. The states are the angular rates of the rigid body
with respect to the ECI frame ~ωIB (t) ∈ R3 and the velocity of the reference point with
respect to the ECI frame (~vR)I (t) ∈ R3. The mass of the system is m > 0 ∈ R and the
moment of inertia with respect to the reference point in the B frame is (IR)

BB
∈ R3×3.

~FR
T (t) ∈ R3 is the total force vector and

−→
MR

T (t) ∈ R3 is the total moment vector with
respect to the reference point.

The translational dynamics can be further simplified by describing the acceleration
with respect to the local navigation frame. The acceleration relative to the ECI system
is ( .

~v
R
)II

=
( .
~v
R
)IB

+ ~ωIB × (~vR)I =
( .
~v
R
)IB

+ ~ωIB × (~vR)I .

From Assumption 2.1 (Flat and non-rotating Earth) and the definition of the N -frame,

it holds that ~ωIN = ~ωIE + ~ωEN = 0. Hence,
( .
~v
R
)NN

=
( .
~v
R
)II

. Finally, inserting the
results in (2.1) leads to the simplified dynamic equations are

m ·
( .
~v
R
)NN
N

(t) =
(
~FR

T

)
N

(t) , (2.2a)

(IR)
BB

( .
~ω
NB
)B
B

(t) = − (~ωNB)
B

(t)× ((IR)
BB

(~ωNB)
B

(t)) +
(−→
MR

T

)
B

(t) . (2.2b)

The total force is the sum of propulsion (P), aerodynamic (A) and gravitational (G)
forces. The total moment is computed analogously and hence

(
~FR

T

)
B

(t) =
(
~FR

P

)
B

(t) +
(
~FR

A

)
B

(t) +
(
~FR

G

)
B

(t) ,
(−→
MR

T

)
B

(t) =
(−→
MR

P

)
B

(t) +
(−→
MR

A

)
B

(t) +
(−→
MR

G

)
B

(t) .

In the next section the different forces and moments are described in detail.

2.2.2 Forces and Moments

The gravitational forces are modeled as a constant force field

(
~FR

G

)
N

=
(
~FR

G

)
O

= m (~gG)
O

= m




0
0
g


 . (2.3)

Here, g ∈ R is the constant gravitational acceleration and ~g ∈ R3 is the gravitational
vector. As a result of Assumption 2.3 (Center of Gravity), the gravitational moments
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2.2 Rigid Body Motion

are
−→
MR

G =
−→
MG

G = 0. From Assumption 2.6 (Aerodynamic Forces and Moments), the
aerodynamic forces and moments are neglected, i.e. ~FR

A =
−→
MR

A = 0. With increas-
ing velocity, these forces and moments increase in magnitude and robustness of the
controller against these unmodeled dynamics needs to be checked. The results are
presented in Chapter 6 (Experimental Results).

For multirotor systems, the propulsion forces and moments have the largest influ-
ence on the system’s dynamics. A common feature of the considered configurations
is that the rotation axis of all propellers is aligned with the body-fixed z-axis ~zB. The
most common propeller model for multirotors assumes a hover state. In this case, the
force and the moment along the rotation axis of the propeller are proportional to the
squared rotational speed. Hence, for the i-th propeller it holds that

ZPi (t) = −kT · ω2
Pi

(t) ,

NPi
(t) = −sgn

(
ωPi (t)

)
· kM · ω2

Pi
(t) ,

(2.4)

where ZPi (t) ∈ R and NPi
(t) ∈ R are the third components of the i-th propeller force

and moment vectors given in the B-frame respectively. ωPi (t) ∈ R is the propellers’
rotational rate about~zB with respect to theB-frame given in theB-frame. The propeller
specific parameters are reduced to the thrust moment coefficients kT > 0 ∈ R and
kM > 0 ∈ R. Further, sgn (·) represents the sign function. In this model it has been
assumed that the propeller rotates in its design direction and therefore in the B-frame
the force ZPi (t) does not depend on the specific rotation direction but the yaw moment
NPi

(t) does. Since the forces and moments in the propeller plane are negligible as
stated in Assumption 2.4 (Forces in the Rotor Plane), the total propulsion forces are
given by

(
~FR

P

)
B

(t) =
6∑

i=1




0
0

ZPi (t)


 = −T (t) ·




0
0
1


 , (2.5)

where T (t) =
6∑
i=1

kT · ω2
Pi

(t) ≥ 0 is the total thrust.

The propulsion moments have two components. The roll and pitch moments arise
due to the lever arm of the thrust forces and the yaw moment corresponds to the sup-
port moment. The total moments can be computed as

(−→
MR

P

)
B

(t) =
6∑

i=1

(
(~rRPi)

B
×
(
~FR

Pi

)
B

(t) +
(−→
MR

Pi

)
B

(t)
)
,

=
6∑

i=1





l cos (αi)
l sin (αi)

0


×




0
0

ZPi (t)


+




0
0

NPi
(t)




 ,

(2.6)

where ~rRPi ∈ R3 is the position vector of the i-th propeller with respect to the reference
point, l > 0 ∈ R is the length of the propeller arms and αi ∈ R is the angle between the
body-fixed x-axis ~xB and the rotor arm. For the hexarotor configurations in Figure 2.1
it holds that αi = {30◦, 90◦, 150◦, 210◦, 270◦, 330◦}.

Given Assumption 2.5 (Motor Dynamics), the angular velocities are assumed to be
directly controlled. By defining the control input of the system as the squared angular
velocities

u (t) =
(
ω2

1 (t) , ω2
2 (t) , . . . , ω2

6 (t)
)T ∈ R6, (2.7)
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it is possible to write a linear relation between control input u (t) and the total thrust
T (t) and the propulsion moments

−→
MR

P (t) as follows

ν (t) :=

(
T (t)(−→

MR
P

)
B

(t)

)
=

[
BTu

BMu

]
u (t) = Bau (t) . (2.8)

Here, ν (t) ∈ R4 is defined as the virtual control vector and the matrix matrix Ba ∈ R4×6

is partitioned into BTu ∈ R1×6 and BMu ∈ R3×6. For the hexarotor configurations in
Figures 2.1a and 2.1b the matrix Ba ∈ R4×6 is given by [45]

Hexarotor 1
Figure 2.1a : Ba =
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 , (2.9)

Hexarotor 2
Figure 2.1b : Ba =
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 . (2.10)

For kT , kM , l > 0 the matrix Ba has a full row rank for the presented configurations.
Hence, for a given desired νd (t) ∈ R4 it is possible to find a function which maps
it into the input space u (t) = u (νd (t)) so that ν (t) = Bau (νd (t)) = νd (t). The
hexacopter is an overactuated system since the row rank of Ba is smaller than the
number of actuators, i.e. 4 < 6. In the quadrotor case, the matrix Ba ∈ R4×4 is square
and a unique solution exists [110]. In the hexarotor case, the solution is not unique
[110] and therefore, it makes sense to separate the rigid body control and the control
allocation as shown in Figure 1.4. The rigid body control calculates the desired virtual
control νd (t) and the control allocation maps it into the input space to compute the
command u (t).

2.2.3 Kinematics

The kinematics of a rigid body can be described by the position and attitude differential
equations. For control purposes, the position is described in the local navigation frame
and its differential equation is given by

( .
~r
R
)N
N

(t) = (~vR)N
N

(t) . (2.11)

The attitude of a rigid body is fully and uniquely described by the rotation matrix
[136], i.e. an orthogonal matrix in R3×3 whose determinant equals one. This type of
matrices define the special orthogonal group SO(3). In order to describe the attitude
of the aircraft the rotation matrix from the body fixed frame to the local navigation
frame MNB ∈ SO(3) is used. A useful representation of this matrix is given by the unit
vectors pointing along the direction of the body-fixed axes expressed in the N -frame
as follows:

MNB (t) =
[
(~xB)

N
(t) , (~yB)

N
(t) , (~zB)

N
(t)
]
. (2.12)
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Its derivative is related to the angular rates by the strapdown equation as

.
MNB (t) = MNB (t) ·Ω ((~ωNB)

B
(t)) . (2.13)

Here, the function Ω (·) : R3 → R3×3 describes the mapping from a 3-dimensional
vector to its corresponding skew symmetric matrix

Ω





u1

u2

u3




 :=




0 −u3 u2

u3 0 −u1

−u2 u1 0


 . (2.14)

By definition it holds that u×v = Ω (u) v for two vectors u,v ∈ R3. Lemma D.1 (Cross
Product) summarizes the needed properties of (2.14).

2.2.4 State Space Model

The state-space model is separated into rigid body motion and actuator model. The
motion of the rigid boy is described by the dynamic equations (2.2) and kinematic
equations (2.11) and (2.13). By inserting the forces and moments (2.3), (2.4), (2.5) and
(2.6), the rigid body equations of motion are

( .
~r
R
)N
N

(t) = (~vR)N
N

(t) ,

m
( .
~v
R
)NN
N

(t) = m (~gG)
N
− T (t) (~zB)

N
(t) ,

.
MNB (t) = MNB (t) Ω ((~ωNB)

B
(t)) ,

(IR)
BB

( .
~ω
IB
)B
B

(t) = − (~ωIB)
B

(t)× ((IR)
BB

(~ωIB)
B

(t)) +
(−→
MR

P

)
B

(t) .

(2.15)

Here, the total thrust T (t) and propulsion moments
(−→
MR

P

)
B

(t) are the inputs of the

system. The vector (~zB)
N

(t) ∈ R3 is the body-fixed z-axis given in the N -frame and
is computed from (~zB)

N
(t) = MNB · [0, 0, 1]T . The actuator model relates the virtual

controls ν (t) with the inputs u (t) of the system as in (2.8). In order to model faults,
multiplicative Λ ∈ R6×6 and additive dν ∈ R4 parameters can be used [79]:

ν (t) = BaΛu (t) + dν . (2.16)

This model covers degradation of control effectiveness, actuator failures, stuck actua-
tors and control direction changes as it is detailed in Chapter 3 (Adaptive Fault Tol-
erant Control). Furthermore, through the mapping (2.7) the actuator model (2.16)
has become linear which drastically simplifies the control allocation task. The ad-
vantage of the separation between rigid body and actuator models is that the tasks
of stabilizing the aircraft motion and allocating the necessary forces and moments to
the actuators can be separated as well. In this case, if a different multirotor config-
uration is used, it will primarily affect the control allocation and not the controller
itself. In Table 2.3 the main inertia, geometry and actuator parameters of the sys-
tem are summarized. The moment of inertia is a diagonal matrix with the entries
(IR)

BB
= diag([(IRxx)BB ,

(
IRyy
)
BB
, (IRzz)BB]). Furthermore, the actuator parameters hold

for all 6 propulsion units.
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Description Value Unit
Mass m 1.164 kg
Moment of Inertia (IRxx)BB 10.0 ·10−3 kg ·m2

Moment of Inertia
(
IRyy
)
BB

10.2 ·10−3 kg ·m2

Moment of Inertia (IRzz)BB 18.1 ·10−3 kg ·m2

Arm length l 0.215 m

Thrust Coefficient kT 3.53 ·10−6 N · s2

rad2

Moment Coefficient kM 1.29 ·10−7 Nm · s2

rad2

Min. Angular Velocity ωP,min 1260 rpm
Max. Angular Velocity ωP,max 10300 rpm

Table 2.3: Plant Parameters

2.2.5 Full and Reduced Attitude Control

There are mainly two types of control goals regarding rigid body attitude control: full
and reduced attitude control [26]. In full attitude control, the three rotational degrees
of freedom are to be controlled. In reduced attitude control or pointing applications,
only the alignment of a single body-fixed vector is required and the rotation about this
vector is not relevant [26]. In this case, two attitude degrees of freedom are controlled
and a reduced attitude vector can be used instead of the full rotation matrix. This
vector has a length of one and defines the unit sphere S2 in R3.

For the presented type of multirotors the translational and yaw motions are inher-
ently decoupled and therefore reduce attitude control can be used for maintaining this
decoupling. This can be seen by analyzing the influence that the attitude has on the
translational differential equations. The position of the system is controlled by the total
propulsion force (2.5), which can be written as ~FR

P (t) = −T (t) ·~zB (t). The vector ~zB (t)
is a unit vector pointing along the body-fixed z-axis. Hence, the position of the hex-
acopter is controlled by changing the total thrust T (t) and by tilting the vector ~zB (t),
which can be seen as a reduced attitude parameter.

Given that (~zB)
B

= [0, 0, 1]T is constant in the body-fixed frame and using the
strapdown equation (2.13), the kinematics the reduced attitude parameter (~zB)

N
=

MNB (~zB)
B

are given by

( .
~zB

)N
N

(t) = MNB (t) ·Ω ((~ωNB)
B

(t)) · (~zB)
B

(t) = MNB (t)




q (t)
−p (t)

0


 . (2.17)

Here, the vector elements of the angular rate correspond to (~ωNB)
B

(t) = (p, q, r)T (t).
From (2.17) it can be seen that the yaw rate r (t), i.e. the rotation about the vector ~zB (t),
neither influences the tilting of the total force vector ~FR

P (t) nor the translational motion.
In this work, the ability to independently control position and yaw motions moti-

vates the use of reduced attitude control with the vector ~zB as the reduced attitude vec-
tor. This decoupling facilitates the controller tuning and enables better performance by
avoiding coupling of motions with different time constants and noise characteristics.
On the one hand yaw rate measurements have usually a higher noise level compared
to roll and pitch rate measurements due to the motors mounting direction. On the
other hand, roll and pitch motions are much faster compared to the yaw motion of

27



2.2 Rigid Body Motion

Attitude
Representation

Singularity
Free

Unique
Number of
Parameters

Number of
Constraints

Degrees of
Freedom

Rotation Matrix X X 9 6 3
Euler Angles x x 3 0 3
Quaternions X x 4 1 3

Reduced-Attitude Vector X X 3 1 2

Table 2.4: Attitude Parameters’ Comparison

the system. The reason is that roll and pitch moments are directly generated from the
propellers’ force and the yaw moment arises from the supporting torque of the motors.
Furthermore, roll and pitch moments of inertia are also considerably smaller than the
yaw moment of inertia. The last reason for the choice of reduced attitude control is
that if facilitates the strategy for degraded control authority as discussed in Chapter
4 (Adaptive Control Allocation). In this case, the performance of yaw motion control
might degrade and the decoupling avoids propagation to position control.

2.2.6 Attitude Parameterization

Attitude parameterization is a well studied field and is relevant for defining the flight
envelope of the system. In this section, relevant facts are shortly summarized in order
to underline the selection of the reduced attitude vector in this work. For a more in
deep treatment, the reader is referred to [26, 136].

For control purposes the direct use of the rotation matrix is commonly not preferred
because of the interpretation effort and the large number of parameters. 9 parameters
and 6 constraints are necessary for describing the 3 degrees of freedom of the attitude
motion. Nevertheless, there is no other parameterization that is able to represent the
attitude globally and uniquely [26, 136] and therefore any other representation needs
a careful interpretation of the results in SO(3). Differently from the rotation matri-
ces, two of the most common parameterizations are the Euler angles and the attitude
quaternions. The Euler angles are composed of only 3 parameters but are not unique
for some attitudes and show singularities on these attitudes. This representation is
mainly suited for systems with a limited motion. The quaternions correspond to a
4 parameter representation with 1 constraint. It is a global but not unique parame-
terization since every attitude can be represented by two quaternions. If not taken
into account, this can lead to the unwinding phenomenon, which in simplified terms
means that the path towards the desired attitude does not correspond to the shortest
path [10, 26]. This is a strongly undesired behavior. The reduced attitude vector is
a global, unique and singularity free parameterization with two degrees of freedom.
Therefore, it is equivalent to the rotation matrix but for the reduced attitude case. The
advantage in this lower dimensional case is the ease of interpretation and the reduc-
tion of the number of parameters to 3. An overview of the listed parameterizations is
depicted in Table 2.4.

This work mainly deals with reduced attitude control and uses the reduced atti-
tude vector representation. This guarantees that no singularities artificially limit the
achievable flight envelope and that the results can be directly interpreted in the corre-
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sponding physical space. Nevertheless, the Euler angles (Φ,Θ,Ψ)T ∈ R3 are used for
displaying results because of their wide use and for facilitating the interpretation. Φ is
the bank angle, Θ the pitch angle and Ψ is the azimuth angle. The rotation sequence
is about the z, y and finally x axes. The relation between the rotation matrix and the
Euler angles is given by [136]

MBN =




cos Θ cos Ψ cos Θ sin Ψ − sin Θ
sin Φ sin Θ cos Ψ− cos Φ sin Ψ sin Φ sin Θ sin Ψ + cos Φ cos Ψ sin Φ cos Θ
cos Φ sin Θ cos Ψ + sin Φ sin Ψ cos Φ sin Θ sin Ψ− sin Φ cos Ψ cos Φ cos Θ




and consequently from (2.12) the relation between the reduced attitude vector (~zB)
O

and the Euler angles is given by

(~zB)
N

=




cos Φ sin Θ cos Ψ + sin Φ sin Ψ
cos Φ sin Θ sin Ψ− sin Φ cos Ψ

cos Φ cos Θ


 . (2.18)

2.3 Attainable Control Set

Given the state-space model for a multirotor system, the question arises how to quan-
tify the physical fault tolerance capabilities of the different configurations. One possi-
ble measure is the attainable control set (ACS) which describes the set of virtual con-
trols that are achievable given the actuator limits. Formally, the input set U ⊂ R6 is
defined as

U := {u ∈ R6 | ω2
P,min ≤ ui ≤ ω2

P,max,∀i = 1...6}, (2.19)

where ωP,min and ωP,max are the minimum and maximum rotational rates of the propul-
sion units from Table 2.3. Therefore, the set U is a 6-dimensional hypercube. The ACS
is defined as the output image V of the linear mapping (2.16) on U

V := {ν ∈ R4 | ν = BaΛu + dν ,u ∈ U}. (2.20)

Because the input set U is a convex polyhedra and it is linearly mapped to the set V ,
the ACS V is also a convex polyhedra.

In the following, the ACS for different total failure conditions is described. All the
attainable control sets in this work have been computed using the Multi-Parametric
Toolbox MPT 3.0 [68]). In the nominal case, dν = 0 and Λ is a diagonal unit matrix. In
a failure case, the corresponding diagonal elements of the control effectiveness matrix
Λ are set to zero. First, the hexacopter with actuator configuration 1 as in Figure 2.1a
is analyzed. As the ACS for multirotor systems is 4-dimensional, only cuts of this
polyhedron can be visualized. In Figure 2.3 the thrust has been fixed to hover thrust
T = 11.87[N ] and the available moment space is shown. Each of the three plots shows
the ACS in nominal conditions and the effect of a failure of each of the right actuators.
Because of the symmetry of the configuration, the degraded ACS of the left actuators
has been omitted. As can be seen, any failure significantly reduces the ACS and the
volume of the 3-dimensional polyhedrons reduces for any single failure case to 47% of
the nominal one.

The possibility of a steady-state hover flight is given if the point ν = (m · g, 0, 0, 0)T

lies within the ACS. However, this is not the only possibility of hovering. Because
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2.3 Attainable Control Set

of the decoupling between yaw and position motion, the value of the yaw moment
can be N 6= 0. Therefore, an interesting ACS cut is setting roll and pitch moments to
zero L = M = 0 as shown in Figure 2.4. Each of the three plots shows the ACS in
nominal conditions and the effect of a failure of each of the right actuators. In this case,
the cut of the degraded ACS only depends on the rotation direction of the propeller.
Interestingly, regardless of the weight of the system, this configuration is only able to
produce yaw moment in one direction in the case of a failure during hover flight.
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Figure 2.3: Hexacopter Actuator Configuration 1 - Comparison of the Attainable Control
Set (ACS) for T = mg between nominal Conditions and Failure of the front-right, right
and rear-right Actuators

Because of the last fact, several alternative configurations have been proposed in
the literature. Full control authority can be regained by letting one propeller rotate in
inverse direction [1], by tilting the rotation axis of all the rotors [60, 111] or by using
more than 6 propulsion units. Nevertheless, the simplest adaption is the change of
the rotational directions of the rotors as in the hexarotor configuration 2 (Figure 2.1b),
which is analyzed in the following. In Figure 2.6 the ACS moment space with a cut
at hover thrust T = 11.87[N ] is depicted. Each of the three plots shows the ACS in
nominal conditions and the effect of a failure of each of the right actuators. Differently
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Figure 2.4: Hexacopter Actuator Configuration 1 - Comparison of the Attainable Control
Set (ACS) for L = M = 0 between nominal Conditions and Failure of the front-right,
right and rear-right Actuators
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Figure 2.5: Hexacopter Actuator Configuration 2 - Comparison of the Attainable Control
Set (ACS) for L = M = 0 between nominal Conditions and Failure of the front-right,
right and rear-right Actuators

from the actuator configuration 1, each actuator failure has a qualitatively different
influence on the ACS. In this configuration, a failure of the actuators 2,3,4 or 5 leads
to a 3-dimensional polyhedron that has the same volume as in configuration 1. In the
failure case of any of the front actuators, the volume further reduces by 50% and have
therefore a higher criticality. This fact is clearer from Figure 2.5. Here, the ACS cut
from setting roll and pitch moments to zero L = M = 0 is depicted for comparing
the failures of each of the three right actuators. The ACS cut of the left actuators is
the reflection of the corresponding right actuator’s ACS cut about the N = 0 line. It
can be seen that in case of a failure of one of the front actuators, the yaw moment
can only be produce in one direction. Compared to configuration 1, the situation has
not improved. If one of the other 4 actuators fail, hovering with a stable yaw motion
is possible. Therefore, in configuration 2 the failure of 4 out of 6 actuators can be
fully compensated [133], i.e. the point ν = (m · g, 0, 0, 0)T lies within the ACS. The
disadvantage is that a failure of one of the 2 front actuators leads to a further reduction
of the ACS volume.
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Figure 2.6: Hexacopter Actuator Configuration 2 - Comparison of the Attainable Control
Set (ACS) for T = mg between nominal Conditions and Failure of the front-right, right
and rear-right Actuators
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Chapter 3

Adaptive Fault Tolerant Control

In this chapter, the theoretical framework for solving fault tolerant control problems
for systems with redundant actuators using adaptive control is presented. First, suit-
able models for the dynamical system, actuators and possible faults are derived. Sub-
sequently, state-of-the-art adaptive control approaches are analyzed regarding fault
tolerance and actuator redundancy. Based on the gained insights, the parameter re-
duction due to overactuation (PRO) approach is introduced as one of the main con-
tributions of this thesis. This approach explicitly takes the special characteristics of
systems with redundant actuators into account in order to achieve the control task in
the presence of actuation faults. The applicability of the PRO approach mainly de-
pends on the parameterization of the uncertainty rather than on a special controller
structure. Therefore, the conditions under which the PRO approach can be used are
studied. For facilitating the analysis, the well known MRAC framework is used in
this chapter including the extension of direct and indirect adaptive control approaches
using PRO.

The remainder of the chapter is organized as follows. In Section 3.1, the control
task is defined and suitable models for the dynamical system, actuators and possible
faults are derived. In Section 3.2, direct MRAC is introduced and in Section 3.3 it is
extended via the PRO approach. In Section 3.4, predictor-based MRAC is introduced
and in Section 3.5 it is extended via the PRO approach. The PRO approach is summa-
rized in Section 3.6. Finally, a bibliographical remarks are given in Section 3.7. The
mathematical tools used within the stability assessment are collected in Appendix B.

3.1 System Description and Control Task

In order to describe the MRAC control laws, the following system representation in
which the unknown parameters are clearly defined and appear linearly in the plant
dynamics is considered:

.
xp (t) = Apxp (t) + BpΛu (t) + Kφφ (xp (t)) + d. (3.1)

Here, the state of the plant is xp (t) ∈ Rn, the control input is u (t) ∈ Rm, the unknown
dynamic matrix is Ap ∈ Rn×n, the known input matrix is Bp ∈ Rn×m, the unknown
control effectiveness matrix is Λ ∈ Rm×m and the constant unknown disturbance is
d ∈ Rn. The term h (xp (t)) = Kφφ (xp (t)) represents a linearly parameterizable non-
linear function h (xp), where Kφ ∈ Rn×k is an unknown matrix and φ (xp) : Rn → Rk
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is a known regressor vector composed of k basis functions φi (xp), which are locally
Lipschitz-continuous in xp [92, pp. 281]. The system (3.1) is called overactuated if
rank (Bp) = r < m.

In MRAC, the control task is that the state trajectories of the plant asymptotically
approach the state trajectories of a reference model, which represents the desired dy-
namics of the system. In the following, let the corresponding reference model be

.
xm (t) = Amxm (t) + Bmr (t) , (3.2)

with the state xm (t) ∈ Rn, the bounded and piecewise-continuous reference signal
r(t) : R+ → Rr, the Hurwitz dynamic matrix Am ∈ Rn×n and the input matrix
Bm ∈ Rn×r. The reference model has several important characteristics. Since Am is
Hurwitz, it is a stable low pass filter and a bounded-input bounded-state linear sys-
tem with respect to r (t). Hence, xm (t) is a bounded signal. Furthermore, there exists
a symmetric positive definite matrix P ∈ Rn×n for every symmetric positive definite
matrix Q ∈ Rn×n such that the Lyapunov equation holds [87, Th. 4.6]:

PAm + AT
mP = −Q. (3.3)

The reference model (3.2) must be achievable by the plant (3.1) and therefore the matri-
ces Am and Bm cannot be arbitrarily chosen. This restriction is reflected in the so-called
matching conditions, which depend on the control approach and are therefore intro-
duced later on. The control task is formalized as in [117] with the restriction to state
trajectory tracking.

Control Task 3.1 (Model Reference Adaptive Control) Given the plant (3.1) and the ref-
erence model (3.2), find a control law u(t,x) such that the tracking error asymptotically van-
ishes

lim
t→∞
||ec (t)|| = lim

t→∞
||xp (t)− xm (t)|| = 0.

Before getting into the specific control approaches that solve the Control Task 3.1,
the actuator and fault models of the system (3.1) are analyzed. Hence, consider the
alternative representation in which the static actuator model is separated:

.
xp (t) = Apxp (t) + Bνν (t) + Kφφ (xp (t)) + dx, (3.4)

ν (t) = BaΛu (t) + dν . (3.5)

For aircraft and most mechanical systems, (3.4) describes the rigid-body dynamics and
(3.5) is the actuator model. Here ν (t) ∈ Rr is the virtual control, Bν ∈ Rn×r is the
known rigid body input matrix and Ba ∈ Rr×m is the known actuator mapping matrix
such that Bp = Bν ·Ba. The constant rigid body disturbance is dx ∈ Rn and the constant
actuator disturbance is dν ∈ Rr and both satisfy the following condition d = Bνdν+dx.
Hence, note that by inserting (3.5) into (3.4), the system dynamics (3.1) are recovered.

The key to achieve the representation (3.4)-(3.5) is the right choice of the virtual
controls ν (t). They can be understood as a minimal representation of the control in-
put’s influence on the system. Therefore, they are restricted to the degrees of freedom
that can be controlled independently, i.e. to r. Given that rank (Bp) = r, the full rank
factorization Bp = Bν · Ba with rank (Bν) = rank Ba = r always exists, see Lemma
B.4 (Rank) in Appendix B. For mechanical systems, forces and moments are usually a
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natural choice of virtual controls ν (t). The system is called overactuated if it has more
actuators than virtual controls, i.e. r < m [81].

The considered actuator model (3.5) is linear and static. This is not necessary for
applying the proposed PRO approach, but it helps to illustrate its main characteristics
in a simple framework. In (3.5), faults are modeled as multiplicative faults Λ and
additive faults dν [79]. The fault model is common within the framework of adaptive
control and both Λ and dν are unknown constant parameters. The type of faults that
can be taken into account depend on the restrictions made on the control effectiveness
matrix Λ. The most common restrictions and the corresponding faults can be seen in
Table 3.1.

The restrictions on the control effectiveness matrix Λ arise due to the fact that it is
an unknown matrix. Hence, the restrictions allow finding a solution of the adaptive
control problem and are related to the controllability of the plant. This will be clear
from the subsequent sections. Nevertheless, in order to understand Table 3.1, let us
first restrict the control effectiveness matrix Λ to a diagonal matrix and set dν = 0. In
this case the virtual control can be computed from

ν (t) =
m∑

i=1

(bA,ci · λii · ui (t)) ,

where bA,ci ∈ Rr is the i-th column of Ba, λii ∈ R is the i-th diagonal element of Λ
and ui ∈ R is the i-th element of u. Note that the knowledge about the plant is given
by the vectors bA,ci which physically represent the influence directions of each control
input ui. It can be seen that in order to map an actuator failure, λii = 0 needs to be
allowed. Hence, if we restrict all λii’s to λii > 0, i.e. a positive definite Λ, it is only
possible to model a degradation of the control effectiveness. If the restriction is λii 6= 0,
i.e. a non-singular Λ, it is also possible to map a control direction inversion for λii < 0.
For a positive semi-definite Λ, i.e. λii ≥ 0, an actuator failure can be modeled but not
a control direction inversion. Finally, in order take a stuck actuator into account, the
corresponding λii needs to be zero and the disturbance offset dν would correspond to
the resulting virtual controls of the stuck actuator.

If the diagonal restriction is dropped, the virtual control can be computed from

ν (t) =
m∑

j=1

((
m∑

i=1

bA,ci · λij
)
· uj (t)

)
+ dν ,

where λij ∈ R is the element of Λ corresponding to the i-th row and j-th column.
Hence, the direction in which the j-th actuator influences the virtual controls is given
by
∑m

i=1 (bA,ci · λij), which corresponds to a linear combination of the columns of Ba.
Physically, it means that the off-diagonal elements of Λ allow to model a direction
change of the control inputs. In this case, a total actuator failure of the j-th actuator
corresponds to a zero column of Λ, i.e. λij = 0,∀i. Geometrically, positive definiteness
of Λ means that the faulty input vector uf (t) = Λu (t) is not rotated more than ±90[◦]
with respect to u. This can be seen from

uT (t) uf (t) = uT (t) Λu (t) > 0.

The reason of the presented analysis is that in adaptive control the most common
assumption on the control effectiveness matrix Λ is positive definiteness. From Table
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Assumption on Λ Corresponding Faults

positive definite degradation of control effectiveness

invertible (non-singular) degradation of control effectiveness,
control direction inversion

positive semi-definite degradation of control effectiveness, actuator failure,
stuck actuator

no restriction degradation of control effectiveness, actuator failure,
stuck actuator, control direction inversion

Table 3.1: Control effectiveness matrix and the corresponding faults

3.1, it can be seen that this prevents the application of the adaptive methods to total
failure cases. In the stability assessment, this is information is used e.g. to conclude
that the uncertain plant (3.1) is controllable. For systems that are not overactuated,
a non-singular matrix Λ is a necessary condition if all the virtual controls ν (t) are
needed to achieve the control task. Since in this case the input matrix Ba is a square
matrix, it follows that the product BaΛ is singular for a singular control effectiveness
matrix Λ. In this case, equation (3.5) cannot be solved for u (t). This is different for
an overactuated system because Ba is a full row rank matrix with more columns than
rows. Then, equation (3.5) might still have a solution for u (t) for a singular control ef-
fectiveness matrix Λ. This difference is the key to the application of adaptive methods
to the problem of fault tolerant control for systems with redundant actuators and the
basis for the PRO approach.

In order to illustrate the theory, the following example of a simple overactuated
linear system is introduced.

Example 3.1 (Simple Overactuated Linear System) Consider the following second order
linear system corresponding to the approximated roll dynamics of an airplane [19, pp. 328]
with the addition of a redundant input:

( .
p(t)
.
Φ(t)

)

︸ ︷︷ ︸
.
xp

=

[
Lp 0
1 0

]

︸ ︷︷ ︸
Ap

(
p(t)
Φ(t)

)

︸ ︷︷ ︸
xp

+

[
Lξ Lξ
0 0

]

︸ ︷︷ ︸
Bp

[
λ1 0
0 λ2

]

︸ ︷︷ ︸
Λ

(
ξ1(t)
ξ2(t)

)

︸ ︷︷ ︸
u

. (3.6)

The states of the system are the bank angle Φ (t) ∈ R and the roll angular rate p (t) ∈ R.
The inputs are the deflections of two aileron pairs ξ1 (t) , ξ2 (t) ∈ R. The plant parameters are
Lp ∈ R and Lξ < 0 ∈ R. Faults are modeled in terms of effectiveness of the two control inputs
λ1, λ2 ∈ R.

The goal of model reference adaptive control is that the plant (3.6) behaves like the following
reference model: ( .

pm(t)
.
Φm(t)

)

︸ ︷︷ ︸
xm

=

[
−kd −kp

1 0

]

︸ ︷︷ ︸
Am

(
pm(t)
Φm(t)

)

︸ ︷︷ ︸
xm

+

[
kp
0

]

︸︷︷︸
Bm

Φr(t)︸ ︷︷ ︸
r

. (3.7)

Here, Φm (t) , pm (t) ∈ R are the states of the reference model, Φr (t) ∈ R is the reference bank
angle and kp, kd > 0 ∈ R are positive constants. Hence, the reference model is a stable PT2
element [101, Sec. 5.6].

36



Chapter 3: Adaptive Fault Tolerant Control

Note the plant (3.6) has two control inputs which have exactly the same effect on the
plant and therefore the system is overactuated. Formally, this is reflected in the fact that
r = rank (Bp) = 1 < n = 2, which means that there is only one virtual control ν (t) available.

In the next sections, the Control Task 3.1 is solved using different state-of-the-art
MRAC approaches [78, 87, 92, 117]: direct and predictor based MRAC. They are ana-
lyzed regarding fault tolerance and actuator redundancy and subsequently the PRO
approach is presented as a solution to the current limitations.

3.2 Direct MRAC

In direct MRAC, the Control Task 3.1 is solved by formulating a control law with time
varying gains in order to compensate for the uncertainties within the plant modeling.
The controller gains are adapted directly without estimating the unknown plant pa-
rameters beforehand. The differential equation describing the parameter change over
time is called update law. The controller structure is depicted in Figure 3.1. The stan-
dard control law is composed of online adjusted controller gains Θ̂ (t) and a known
regressor vector ω (t,xp (t)). For the plant (3.1), the control law is given by [92]

u (t) = Θ̂x (t) xp (t) + Θ̂r (t) r (t) + Θ̂φ (t)φ (xp (t)) + Θ̂d (t) = Θ̂ (t)ω (t,xp) , (3.8)

with Θ̂x ∈ Rm×n, Θ̂r ∈ Rm×r, Θ̂φ ∈ Rm×k, Θ̂d ∈ Rm, q = n+ r + k + 1 and

ω (t) = [xTp (t) , rT (t) ,φT (xp (t)) , 1]T ∈ Rq,

Θ̂ (t) = [Θ̂x (t) , Θ̂r (t) , Θ̂φ (t) , Θ̂d (t)] ∈ Rm×q.

Then, by inserting the control law (3.8) in the plant dynamics (3.1), the closed-loop
dynamics are

.
xp (t) =

(
Ap + BpΛΘ̂x (t)

)
xp (t) + BpΛΘ̂r (t) r (t)

+
(
Kφ + BpΛΘ̂φ (t)

)
φ (xp (t)) +

(
d + BpΛΘ̂d (t)

)
.

(3.9)

By comparing the reference model (3.2) and the close-loop dynamics (3.9), a necessary
condition for model following can be formulated in terms of the ideal parameters

Θ = [Θx,Θr,Θφ,Θd] ∈ Rm×q (3.10)

as follows [92, pp. 282]:

Assumption 3.1 (Matching Condition - direct MRAC) The ideal parameters Θ comply
with the following condition

Y :=
[
Am −Ap, Bm, −Kφ, −d

]
= BpΛΘ. (3.11)

Note that this condition restricts the uncertainties to the range of Bp, the so-called
matched uncertainties, and can therefore be directly compensated by the control input.
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Control Law
u = Θ̂ω

Plant
.
xp = Apxp + BpΛu + Kφφ (xp) + d

Reference Model
.
xm = Amxm + Bmr

Update Law
.

Θ̂ = −BT
p Pecω

TΓ

r xp

xm

ec

+

−

u

Figure 3.1: Controller Structure - Direct MRAC

The parameter error is then defined as Θ̃ (t) := Θ̂ (t)−Θ. Using (3.11), the closed-
loop plant dynamics (3.9) can be rewritten as the known reference model dynamics
plus a parameter error term

.
xp (t) = Amxp (t) + Bmr (t) + BpΛΘ̃ (t)ω (t) .

Given the reference model (3.2), the dynamics of the tracking error ec (t) = xp (t) −
xm (t) are

.
ec (t) = Amec (t) + BpΛΘ̃ (t)ω (t) . (3.12)

Given the error dynamics (3.12) corresponding to the control law (3.8), the update
law for Θ̂ (t) is derived from the Lyapunov stability analysis such that the Control Task
3.1 is achieved. The Lyapunov candidate function is given by [92, pp. 283]

V
(
ec, Θ̃

)
=

1

2
eTc (t) Pec (t) +

1

2
tr
(
Θ̃ (t) Γ−1Θ̃

T
(t) Λ

)
,

using the symmetric positive definite matrix P from (3.3). From Lemma B.8 (Positive
Definite Trace), it follows that the Lyapunov function is positive definite with respect
to the errors ec and Θ̃ in the case of a positive definite matrix Λ and a symmetric
positive definite matrix Γ ∈ Rq×q. Hence, in the standard MRAC proof, the following
assumption regarding the control authority has been made [92]:

Assumption 3.2 (Control Authority - direct MRAC) The matrix Λ is positive definite.

Assumption 3.2 can be interpreted as requiring a minimum control authority plus the
knowledge of the effectiveness direction of the actuators given by the known matrix
Bp. Using Lemma B.2 (Trace and Scalar Product) and the Lyapunov equation (3.3), the
derivative of the Lyapunov function along the trajectories of (3.12) is given by

.
V (t) = −1

2
eTc (t) Qec (t) + eTc (t) PBpΛΘ̃ (t)ω (t) + tr

(
Θ̃ (t) Γ−1

.
Θ̃
T

(t) Λ

)
,

= −1

2
eTc (t) Qec (t) + tr

(
Θ̃ (t)ω (t) · eTc (t) PBpΛ

)
+ tr

(
Θ̃ (t) Γ−1

.
Θ̃
T

(t) Λ

)
,

= −1

2
eTc (t) Qec (t) + tr

(
Θ̃ (t)

(
ω (t) eTc (t) PBp + Γ−1

.
Θ̃
T

(t)

)
Λ

)
.
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By choosing the standard direct MRAC update law [92, pp. 285]
.

Θ̂ (t) = −
(
Γω (t) eTc (t) PBp

)T
= −BT

p Pec (t)ωT (t) Γ, (3.13)

the derivative of the Lyapunov function
.
V (ec, Θ̃) = −1

2
eTc (t) Qec (t) is negative semi-

definite. From Theorem 4.8 (Uniform Stability) [87], it follows that the equilibrium
(ec, Θ̃) = (0,0) is globally uniformly stable and ec, Θ̃ ∈ L∞.

In the following, the goal is to show asymptotic convergence of the tracking error
ec (t) to zero based on Barbalat’s Lemma (Lemma B.9). In order to show that the func-
tion

.
V (ec (t)) = −1

2
eTc (t) Qec (t)→ 0 for t→∞, it needs to be shown that

.
V (ec (t)) is a

uniform continuous function of t and that the limit

lim
t→∞

∫ t

τ=0

.
V (ec (τ)) dτ (3.14)

exists and is finite.
Since V (ec (t) , Θ̃ (t)) is monotonically non-increasing and bounded from below by

zero, i.e. 0 ≤ V (ec (t) , Θ̃ (t)) ≤ V (ec (0) , Θ̃ (0)), it converges as t→∞. Then,
∣∣∣∣
∫ t

τ=0

.
V (ec (τ)) dτ

∣∣∣∣ =
∣∣∣V (ec (t) , Θ̃ (t))− V (ec (0) , Θ̃ (0))

∣∣∣ <∞,

which implies that (3.14) exists and is finite.

The next step is to show that
.
V (ec (t)) is uniformly continuous. Because xm (t)

and ec (t) are bounded, xp (t) is bounded too. This implies boundedness of φ (xp (t))
and ω (xp (t) , r (t) ,φ (xp (t))). From the error dynamics (3.12) it follows that .ec (t) is
uniformly bounded in t for all t ≥ 0. Therefore,

..
V (t) = −eTc (t) Q

.
ec (t) is also bounded

uniformly in t for all t ≥ 0. Then,
.
V (ec (t)) is uniformly continuous for t ≥ 0. Finally,

using Lemma B.9 (Barbalat) it follows that
.
V (ec (t)) → 0 and hence ec (t) → 0 for

t→∞. The presented result regarding MRAC corresponds to Theorem 9.2 in [92] and
is summarized in the next theorem.

Theorem 3.3 (Direct MRAC) Consider the plant dynamics (3.1), the reference model (3.2),
the control law (3.8) and the update law (3.13). Furthermore let Assumption 3.1 (Match-
ing Condition - direct MRAC) and Assumption 3.2 (Control Authority - direct MRAC) hold.
Then, the equilibrium (ec, Θ̃) = (0,0) is globally uniformly stable and ec (t)→ 0 for t→∞.
�

In the context of redundant actuators and fault tolerance, this result is not sufficient
because Assumption 3.2 (Control Authority - direct MRAC) excludes the total failure
of an actuator as seen in Table 3.1. Within the proof, a positive definite Λ is needed in
order to build a positive definite Lyapunov candidate.

Example 3.2 (Application of direct MRAC) In order to understand the physical meaning
of Assumption 3.2 (Control Authority - direct MRAC) and see that in the case of overactuated
systems it is not a necessary condition, direct MRAC is applied to the system described in
Example 3.1. In this example, there is neither a nonlinear term nor a constant disturbance in
the plant dynamics (3.6) (stuck actuators are not considered). Hence, the regressor vector is
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ω (t) = [xTp (t) , rT (t)]T ∈ R3, the controller gains are Θ̂ (t) ∈ R2×3 and the control law is
u (t) = Θ̂ (t)ω (t) from (3.8). The gains corresponding to each actuator represent one row of
Θ̂ (t) and are defined by

Θ̂ (t) =

[
Θ̂
T

ξ1
(t)

Θ̂
T

ξ2
(t)

]
,

with Θ̂ξ1 , Θ̂ξ2 ∈ R3. Assumption 3.1 (Matching Condition - direct MRAC) reads for this
example as

Y :=

[
−kd− Lp −kp kp

0 0 0

]
=

[
Lξ Lξ
0 0

]
ΛΘ.

It has a solution as long as the matrix [Lξ, Lξ] ·Λ has a pseudo-inverse. Interestingly, by using
the update law (3.13) it can be seen that the derivatives of every row

.
Θ̂ (t) =



.

Θ̂
T

ξ1
(t)

.
Θ̂
T

ξ2
(t)


 = −

[
Lξ 0
Lξ 0

]
Pec (t)ωT (t) Γ (3.15)

are exactly the same. This makes sense since through the definition of Bp it is assumed that both
actuators have the same effect on the plant. From Theorem 3.3 (Direct MRAC), it is known that
as long as Λ is positive definite the control objective is achieved.

The question now is what happens if one of the two actuators fails. Without loss of gener-
ality, let the second actuator have a failure λ2 = 0. In this case, Theorem 3.3 (Direct MRAC)
fails to prove stability since Λ is positive semi-definite and Assumption 3.2 (Control Authority
- direct MRAC) does not hold. To show stability, the plant (3.6) can be rewritten as

( .
p(t)
.
Φ(t)

)
=

[
Lp 0
1 0

](
p(t)
Φ(t)

)
+

[
Lξ
0

]
λ1ξ1(t). (3.16)

The matching condition reduces to

Y = Lξ · λ1 ·ΘT
ξ1

and has a solution for λ1 6= 0. The update law for the first actuator is then

.
Θ̂
T

ξ1
(t) = −

[
Lξ 0

]
Pec (t)ωT (t) Γ,

which is exactly the same as before in (3.15). Using Theorem 3.3 (Direct MRAC), now it
is possible to prove that the equilibrium (ec, Θ̃ξ1) = (0,0) is globally uniformly stable and

ec (t)→ 0 for t→∞ as long as λ1 > 0. Because of the update laws’ equality
.

Θ̂ξ1 (t) =
.

Θ̂ξ2 (t),
it also follows that Θ̂ (t) is bounded.

For the case that λ2 > 0 and λ1 = 0, a similar result holds. Hence, the control objective is
achieved using the update law (3.15) as long as λ1, λ2 ≥ 0 and either λ1 > 0 or λ2 > 0 holds.
In the case that both actuators fail, i.e. λ1 = λ2 = 0, it is clear that the control objective cannot
be achieved since the plant dynamics are

( .
Φ(t)
.
p(t)

)
=

[
Lp 0
1 0

](
Φ(t)
p(t)

)
.

40



Chapter 3: Adaptive Fault Tolerant Control

3.3 Direct MRAC PRO

For the controller, fault tolerance means that the Control Task 3.1 should be achieved
even in the presence of faults. In the direct MRAC case, corresponding to Theorem 3.3
(Direct MRAC), the goal is to prove stability of the tracking error ec (t) and parame-
ter errors Θ̃ (t) and asymptotic convergence of the tracking error ec (t) to zero for the
largest possible set of unknown faults, i.e. of Λ. From the last section, it is clear that the
standard direct MRAC stability proof is not able to take actuator failures into account.
Assumption 3.2 (Control Authority - direct MRAC) was identified as the limiting fac-
tor and by Example 3.1, it was shown that this assumption is too restrictive for systems
with actuator redundancy. In this section, the Parameter Reduction due to Overactu-
ation (PRO) approach is introduced as a solution to this problem. Its application to
direct MRAC was first introduced in [47].

In Example 3.1, the actuator failure case has been shown to be stable by reducing the
plant and taking the parameters corresponding to the failed actuator out of the analysis
first as they do not influence the system dynamics. The standard direct MRAC control
and update laws were still used. This changed Assumption 3.2 to a reduced set which
corresponded to the original Λ ∈ R2×2 being singular, e.g. λ1 > 0 and λ2 = 0. In this
section, this idea is used to formulate a general approach for selecting the reduced set
of parameters that are going to be taken into account within the stability analysis. In
this way Assumption 3.2 can be relaxed in order to accommodate actuator failures.

In Example 3.1, the columns of Bp are the same and therefore the update law (3.15)

for the two actuators is identical. This means that if the row Θ̂
T

ξ1
(t) is known, there is no

extra information in Θ̂
T

ξ2
(t) and the problem is overparameterized due to the actuator

redundancy. In this section, it will be shown that this overparameterization always
exists for overactuated systems and that a reduction of the parameters to a minimum
set is the key to handling failures within the adaptive control framework.

In order to clarify if there is a set of parameters that contains no extra information,
notice that using the direct MRAC update law (3.13), the parameters are updated only
in the range of BT

p . In an overactuated system, the range of BT
p does not have full

dimension because Bp has a null space due to rank (Bp) = r < m. Therefore, a subset
of the parameters Θ̂ (t) contains no extra information, i.e. the subset is not updated
by the update law. In order to identify this subset, the singular value decomposition
(SVD) of Bp can be used. With rank (Bp) = r and r ≤ min (n,m) the SVD is given by

Bp = UΣVT , (3.17)

where U ∈ Rn×n,Σ ∈ Rn×m,V ∈ Rm×m [74, Th. 2.6.3]. U,V are orthogonal matrices,
i.e. UUT = I and VVT = I. Σ is a rectangular diagonal matrix with non-negative
entries on the diagonal which can be written as

Σ =

[
D 0r×m−r

0n−r×r 0n−r×m−r

]
,

where D ∈ Rr×r is a diagonal positive definite matrix. The diagonal elements are the
singular values of Bp and have a decreasing order. Taking this structure into account,
it is clear that if we partition U = [Ur,Un] and V = [Vr,Vn], such that Ur ∈ Rn×r,
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Un ∈ Rn×(n−r), Vr ∈ Rm×r and Vn ∈ Rm×(m−r), the matrix Bp can be alternatively
written as

Bp = UrDVT
r . (3.18)

Remark 3.4 The SVD from Bp has a physical interpretation. The columns of Ur are a basis of
the range of Bp meaning that they are the directions in the state space that can be influenced by
the control input. On the other hand, the columns of Vr represent the directions in the input
space that have an effect on the state space. Similarly, the columns of Vn are a basis of the
null space of Bp, i.e. the actuator combinations that have no influence in the plant dynamics.
In an overactuated system, the dimension of the null space is always greater than zero because
rank (Bp) = r < m.

Example 3.3 (Illustration of the SVD of Bp) Remark 3.4 can be illustrated using Example
3.1. Taking a look at the SVD of Bp

[
Lξ Lξ
0 0

]

︸ ︷︷ ︸
Bp

=

[
1 0
0 1

]

︸ ︷︷ ︸
U

[
Lξ
√

2 0
0 0

]

︸ ︷︷ ︸
Σ

[ √
2

2

√
2

2

−
√

2
2

√
2

2

]

︸ ︷︷ ︸
VT

=

[
1
0

]

︸︷︷︸
Ur

[
Lξ
√

2
]

︸ ︷︷ ︸
D

[√
2

2

√
2

2

]

︸ ︷︷ ︸
VT
r

, (3.19)

it can be seen that the system is overactuated from rank (Bp) = 1 < 2. Furthermore, the inputs
influence only in the Ur direction, i.e. only the roll angular acceleration .

p (t). The null space
of Bp corresponds to VT

n = [−
√

2
2
,
√

2
2

]. In this case the actuators cancel each other because
ξ1 = −ξ2. A graphical interpretation of the SVD can be seen in Figure 3.2.

In the following consider the ideal parameters as defined in (3.10). In order to
separate the directions in the parameter space that contain information from the ones
that don’t, the new parameters Θb ∈ Rm×q are defined by the invertible transformation

Θb = VTΘ. (3.20)

It allows the partition of the parameters in two main groups

Θb =

[
Θr

Θn

]
=

[
VT
r Θ

VT
nΘ

]
, (3.21)

where Θr ∈ Rr×q are the parameters in the range of BT
p and Θn ∈ R(m−r)×q lies in the

null space of Bp. The original parameters can be computed by the inverse transforma-
tion of (3.20) as

Θ = VΘb = VrΘr + VnΘn. (3.22)

Let the parameter estimates Θ̂ (t) be analogously transformed as in (3.20) and par-
titioned as in (3.21) such that Θ̂b (t) ∈ Rm×q, Θ̂r (t) ∈ Rr×q and Θ̂n (t) ∈ R(m−r)×q. Their
update laws are computed using the update law from the last section (3.13), the SVD
of Bp (3.18) and the orthogonality of V (Lemma B.10) as follows

.
Θ̂r (t) = VT

r

.
Θ̂ (t) = −VT

r VrDUT
r︸ ︷︷ ︸

=BT
p

Pec (t)ωT (t) Γ = −DUT
r Pec (t)ωT (t) Γ, (3.23a)

.
Θ̂n (t) = VT

n

.
Θ̂ (t) = −VT

n VrDUT
r︸ ︷︷ ︸

=BT
p

Pec (t)ωT (t) Γ = 0. (3.23b)
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It is clear that the parameters Θ̂ (t) are only updated in the subspace corresponding to
Θ̂r (t). Hence, we can write the parameter Θ̂ (t) as follows

Θ̂ (t) = Θ̂ (0) +

∫ t

τ=0

.
Θ̂ (τ) dτ,

= VrΘ̂r (0) + VnΘ̂n (0) +

∫ t

τ=0

Vr

.
Θ̂r (τ) + Vn

.
Θ̂n (τ) dτ,

= VrΘ̂r (t) + VnΘ̂n (0) .

This means that Θ̂ (t) is fully defined by Θ̂r (t) and the initial condition Θ̂n (0). There-
fore, only the parameters Θ̂r (t) need to be updated. This leads to a parameter re-
duction for overactuated systems from m · q to r · q, which reduces the computational
effort considerably for a large number of regressor functions (large q). This special way
of decreasing the number adaptive parameters is called Parameter Reduction due to
Overactuation (PRO). It is the key that enables us to include actuator failures within
adaptive control stability proofs of overactuated systems in the subsequent sections.
The control law (3.8) can be equivalently implemented using (3.22) as

u (t) =
(
VrΘ̂r (t) + VnΘ̂n(0)

)
· ω (t,xp) . (3.24)

Knowing that the parameters Θ̂ (t) are only updated in the range of BT
p , the ques-

tion arises if Assumption 3.2 (Control Authority - direct MRAC) can be relaxed. There-

u1

u2
Bp x1

x2

σ1

VT U

u1

u2

vr

vn
Σ vr

vn

σ1

Figure 3.2: Singular Value Decomposition - Example 3.1
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3.3 Direct MRAC PRO

fore, it first needs to be checked if the matching condition (3.11) can be satisfied. If
Y = BpΛΘ has a solution, the solution for Θ is a connected convex set given by

Θ = (BpΛ)+ Y +
(
I− (BpΛ)+ BpΛ

)
W, (3.25)

where W ∈ Rm×q is an arbitrary matrix representing the offset of the solution within
the null space of BpΛ [59, Sec. 3.5.1.4]. In order to achieve a solution out of the set (3.25)
with the update law (3.13) and accordingly with (3.23), at least one solution must be
such that VT

nΘ = Θ̂n (0). Inserting the parameter transformation (3.20) and the SVD
of Bp (3.18) in the matching condition (3.11) leads to

Y = BpΛΘ = UrDVT
r ΛVΘb,

= UrDVT
r Λ (VrΘr + VnΘn) ,

= UrD
(
VT
r ΛVrΘr + VT

r ΛVnΘn

)
.

In order to solve this equation for every initial value Θ̂n (0), the following relaxed
main assumption is formulated instead of Assumption 3.2 (Control Authority - direct
MRAC).

Assumption 3.5 (Control Authority - direct MRAC PRO) Given the SVD of Bp (3.18),
the matrix Λrr := VT

r ΛVr is positive definite.

Proposition 3.6 (Ideal Parameters - MRAC PRO) Let Assumptions 3.1 (Matching Con-
dition - direct MRAC) and 3.5 (Control Authority - direct MRAC PRO) hold. Then, the so-
lution set of ideal parameters (3.25) always contains the unique ideal parameter Θ compatible
with the update laws (3.23) such that VT

nΘ = Θn = Θ̂n (0).

Proof: First note that regardless of the value of Λ, for a solution of the matching con-
dition (3.11) to exist, Y must lie in the range of Bp, i.e. UT

nY = 0. Therefore using
Lemma B.10 (Orthogonal Matrix) it holds that

Y =
(
I−UnU

T
n

)
Y = UrU

T
r Y.

Then, as Λrr is assumed to be positive definite, it is invertible and the following ideal
parameters exist

Θr = Λ−1
rr

(
D−1UT

r Y −VT
r ΛVnΘ̂n (0)

)
, Θn = Θ̂n (0) ,

such that Y = BpΛ (VrΘr + VnΘn). �

It is important to note that Assumption 3.5 (Control Authority - direct MRAC PRO)
includes all the cases where Λ is positive definite and hence it is more general than
Assumption 3.2 (Control Authority - direct MRAC). This is formulated in the following
proposition.

Proposition 3.7 Let the matrix Λ be positive definite, then Λrr = VT
r ΛVr is also positive

definite.
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Proof: Because V is an orthogonal matrix, it holds that VTΛV is positive definite if and
only if Λ is positive definite, see Lemma B.6 (Orthogonal Transformation Invariance). If
VTΛV is positive definite, then all of its principal submatrices are also positive definite
[74, Obs. 7.1.2]. Noting that theRr×r leading submatrix is VT

r ΛVr = Λrr completes the
proof. �

In the following, the main result of this section is presented as the extension of The-
orem 3.3 (Direct MRAC) for systems with redundant inputs using the PRO approach.

Theorem 3.8 (direct MRAC PRO) Compared to Theorem 3.3 (Direct MRAC), Assumption
3.2 (Control Authority - direct MRAC) is relaxed to Assumption 3.5 (Control Authority -
direct MRAC PRO) to take actuator failures into account in the case of systems with redundant
control inputs. Furthermore, the reduced set of parameters is used.

Consider the plant dynamics (3.1), the reference model (3.2), the control law (3.24) (or
equivalently (3.8)) and the update laws (3.23) (or equivalently (3.13)). Let Assumptions 3.1
(Matching Condition - direct MRAC) and 3.5 (Control Authority - direct MRAC PRO) hold.
In this case, the unique ideal parameters Θ exist as derived in Proposition 3.6 (Ideal Parameters
- MRAC PRO) and the equilibrium (ec, Θ̃) = (0,0) is globally uniformly stable and ec (t)→
0 for t→∞.

Proof: Consider the following Lyapunov candidate function

V (ec, Θ̃r, Θ̃n) =
1

2
eTc (t) Pec (t) +

1

2
tr
(
Θ̃r (t) Γ−1Θ̃

T

r (t) Λrr

)
+

1

2
tr
(
Θ̃n (t) Θ̃

T

n (t)
)
,

where Θ̃r (t) = Θ̂r (t) −Θr and Θ̃n (t) = Θ̂n (t) −Θn are the parameter errors. From
Lemma B.8 (Positive Definite Trace) it is known that it is positive definite for a sym-
metric positive definite Γ and a positive definite Λrr. Using Proposition 3.6, the error
Θ̃ (t) can be written as Θ̃ (t) = VrΘ̃r (t) + VnΘ̃n (t) = VrΘ̃r (t) and the error dynamics
(3.12) only include the parameter error Θ̃r (t) as

.
ec (t) = Amec (t) + BpΛVrΘ̃r (t)ω (t) . (3.26)

In the following, the time dependency is not written out for readability. Using the
update law (3.23b), the error dynamics (3.26) and the SVD of Bp (3.18), the derivative
of the Lyapunov function is

.
V =− 1

2
eTc Qec + eTc PBpΛΘ̃ω + tr

(
Θ̃rΓ

−1
.

Θ̃
T

r Λrr

)
+ tr

(
Θ̃n

.
Θ̃
T

n

)
,

=− 1

2
eTc Qec + eTc P

(
UrDVT

r

)
ΛVrΘ̃rω + tr

(
Θ̃rΓ

−1
.

Θ̃
T

r Λrr

)
.

Using Lemma B.2 (Trace and Scalar Product), the definition Λrr = VT
r ΛVr and the

update law (3.23a), the derivative of the Lyapunov function is as follows

.
V =− 1

2
eTc Qec + tr

(
Θ̃rω · eTc PUrDΛrr

)
+ tr

(
Θ̃rΓ

−1
.

Θ̃
T

r Λrr

)
,

=− 1

2
eTc Qec + tr

(
Θ̃r

(
ωeTc PUrD + Γ−1

.
Θ̃
T

r

)
Λrr

)
,

=− 1

2
eTc Qec.
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Control Law

u =
(
VrΘ̂r + VnΘ̂n

)
ω

Plant
.
xp = Apxp + BpΛu + Kφφ (xp) + d

Reference Model
.
xm = Amxm + Bmr

Update Law
.

Θ̂r = −DUT
r Pecω

TΓ

r xp

xm

ec

+

−

u

Figure 3.3: Controller Structure - Direct MRAC PRO

Subsequently, using the same argumentation as in standard direct MRAC it can be
concluded that the equilibrium (ec, Θ̃r, Θ̃n) = (0,0,0) is uniformly stable and ec (t)→
0 for t→∞. Because the parameter transformation (3.20) is invertible, this also means
that the equilibrium (ec, Θ̃) = (0,0) is uniformly stable. �

Remark 3.9 If the system (3.1) is not overactuated, i.e. r = m, the matrix Vr = V and
the standard direct MRAC argumentation is recovered. In this case Assumption 3.5 (Control
Authority - direct MRAC PRO) is equivalent to Assumption 3.2 (Control Authority - direct
MRAC).

Remark 3.10 The most effective version of the algorithm in terms of needed memory and oper-
ations can be implemented by selecting the initial condition Θ̂n(0) = 0. The control law (3.24)
can then be implemented as

u (t) = VrΘ̂r (t) · ω (t,xp) .

Note that in Theorem 3.8 (direct MRAC PRO) the control and update laws of direct
MRAC were not changed, only a parameter transformation was used for the stability
proof. In this way it was possible to show that actuator failures can be taken into ac-
count in an overactuated system as long as Assumption 3.5 (Control Authority - direct
MRAC PRO) holds. Furthermore, the controller in Section 3.2 can be implemented
using the reduced set of parameters presented in this section. This implementation
corresponds to the reference model (3.2), the control law (3.8), the parameter trans-
formation (3.22) and the update law (3.23a) and is given in Figure 3.3. In addition,
a comparison between direct MRAC and direct MRAC PRO can be seen in Table 3.2.
Subsequently, the presented results are illustrated using Example 3.1.

Example 3.4 (Application of direct MRAC PRO) In order to illustrate the presented re-
sults, let us first analyze Assumption 3.5 (Control Authority - direct MRAC PRO) which
considers faults and replaces the more restrictive Assumption 3.2 (Control Authority - direct
MRAC). Using the SVD of the example’s Bp (3.19), it states that the reduced control effective-
ness matrix

Λrr = VT
r ΛVr =

[√
2

2

√
2

2

] [λ1 0
0 λ2

][√
2

2√
2

2

]
=

1

2
(λ1 + λ2)
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Chapter 3: Adaptive Fault Tolerant Control

must be positive definite. This includes a single actuator failure as already proved in the last
section. Interestingly, it also includes the direction inversion of an actuator as long as the other
one has a larger effectiveness. As expected, a simultaneous failure of both actuators is excluded.

Using the SVD of the example’s Bp (3.19), the implementation with the reduced parameters
Θ̂r (t) uses the following update law and parameter transformation

.
Θ̂r (t) = −Lξ

√
2
[
1 0

]
Pec (t)ωT (t) Γ,

Θ̂ (t) =

[√
2

2√
2

2

]
Θ̂r (t) +

[
−
√

2
2√
2

2

]
Θ̂n (0) .

Only the parameters Θ̂r ∈ R1×3 are updated instead of Θ̂ ∈ R2×3 reducing the number of
parameters by a half.

The methodology presented in this section allows the inclusion of failures within
the actuation system and is not limited to redundancy of actuators with the same effect
on the plant. This is demonstrated using a hexacopter system in Chapter 5. So far the
parameter reduction approach has been presented within the direct MRAC framework.
In the next sections, it is shown that this approach is also applicable to indirect adaptive
control architectures.

Direct MRAC
Plant

.
xp (t) = Apxp (t) + BpΛu (t) + Kφφ (xp (t)) + d (3.1)

Reference Model
.
xm (t) = Amxm (t) + Bmr (t) (3.2)

Control Law u (t) = Θ̂ (t)ω (t,xp) (3.8)

Matching Cond. [Am −Ap, Bm, −Kφ, −d] = BpΛΘ (3.11)

Error Dynamics
.
ec (t) = Amec (t) + BpΛΘ̃ (t)ω (t) (3.12)

Update Law
.

Θ̂ (t) = −BT
p Pec (t)ωT (t) Γ (3.13)

Control Authority Λ positive definite Asm. 3.2

Direct MRAC PRO
Plant

.
xp (t) = Apxp (t) + BpΛu (t) + Kφφ (xp (t)) + d (3.1)

Reference Model
.
xm (t) = Amxm (t) + Bmr (t) (3.2)

Control Law u (t) =
(
VrΘ̂r (t) + VnΘ̂n (0)

)
ω (t,xp) (3.24)

Matching Cond. [Am −Ap, Bm, −Kφ, −d] = BpΛΘ (3.11)

Error Dynamics
.
ec (t) = Amec (t) + BpΛVrΘ̃r (t)ω (t) (3.26)

Update Laws

.
Θ̂r (t) = −DUT

r Pec (t)ωT (t) Γ
.

Θ̂n (t) = 0

(3.23a)

(3.23b)

Control Authority Λrr = VT
r ΛVr positive definite Asm. 3.5

: Reduced parameters version.

: Inclusion of full actuator failure.

Table 3.2: Comparison between direct MRAC and direct MRAC PRO

47



3.4 Predictor-Based MRAC

3.4 Predictor-Based MRAC

In this section, indirect adaptive control is addressed. The selected approach is pre-
dictor based MRAC (PMRAC) because of its relevance in model reference adaptive
control. It is for example the starting point for L1 adaptive control [75]. In the follow-
ing, the standard predictor-based MRAC is shortly reviewed and in the next section,
it is extended to systems with redundant inputs. In the literature, the term predictor-
based MRAC is used for a variety of approaches. Here, it refers to the indirect MRAC
approach that uses a state predictor to estimate the plant state xp (t) as well as the un-
known parameters. The control law is then defined such that the predictor replicates
the dynamics of the reference model (3.2) and indirectly it achieves that the plant be-
haves like reference model (3.2). Its structure is depicted in Figure 3.4.

For identification purposes, the plant (3.1) is rewritten using the following param-
eterization

.
xp (t) = Amxp (t) + BpΛu (t) + BpΘω (t) , (3.27)

where ω (t) ∈ Rq is the known regressor vector and Θ ∈ Rm×q is the unknown pa-
rameter matrix. The specific parameterization intends to facilitate the derivation of a
control law in the case of known parameters and considers only matched uncertainties
since the focus lies on failure analysis. Matched uncertainties lie in the range of Bp

and can therefore be directly compensated by the control input. The known regressor
vector ω (t) and the unknown ideal parameter matrix Θ are defined as

ω (t) := [xTp (t) ,φT (xp (t)) , 1]T ∈ Rq,

Θ := [Θp,x,Θp,φ,Θp,d] ∈ Rm×q,

with q = n + k + 1, Θp,x ∈ Rm×n, Θp,φ ∈ Rm×k and Θp,d ∈ Rm. In order to emphasize
the analogy of the parameter transformation and reduction within the different control
approaches, the same notation as in direct MRAC is used although the parameters Θ
and the regressor vector ω (t) are differently defined. The comparison between the
parameterized plant (3.27) and its original representation (3.1) leads to the subsequent
matching condition.

Assumption 3.11 (Matching Condition - PMRAC) The ideal parameters Θ satisfy

Y :=
[
Ap −Am, Kφ, d

]
= BpΘ. (3.28)

The state predictor of the parameterized plant (3.27) is defined as
.
x̂p (t) = Amx̂p (t) + BpΛ̂ (t) u (t) + BpΘ̂ (t)ω (t) , (3.29)

where x̂p (t) ∈ Rn, Θ̂ (t) ∈ Rm×q and Λ̂ (t) ∈ Rm×m are the estimates of xp (t), Θ and
Λ respectively. Given the plant (3.27) and its state predictor (3.29), model reference
tracking is achieved in two steps, which are typical for indirect approaches. The first
one consists in deriving a control law u (t) for the completely known predictor model
(3.29) such that it behaves like the reference model (3.2). The second step is the identi-
fication of the unknown plant parameters Λ and Θ so that the control law u (t) is also
valid for the plant dynamics (3.1).

The standard control law is given by

u (t) = Λ̂
−1

(t)
(
Krr (t)− Θ̂ (t)ω (t)

)
, (3.30)
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Control Law

u = Λ̂
−1
(
Krr − Θ̂ω

) Predictor
.
x̂p = Amx̂p + Bp

(
Λ̂u + Θ̂ω

)

Plant
.
xp = Apxp + BpΛu + Kφφ (xp) + d

Update Law
.

Θ̂ = −BT
p Pepω

TΓθ.
Λ̂ = −BT

p Pepu
TΓΛ

r

xp

x̂p

ep
+

−

u

Figure 3.4: Controller Structure - Predictor MRAC

where Kr ∈ Rm×r is chosen such that Bm = BpKr. Inserting the control law (3.30) into
the predictor dynamics (3.29) leads to closed-loop predictor dynamics which are equal
to the reference model dynamics

.
x̂p (t) = Amx̂p (t) + BpKrr (t) = Amx̂p (t) + Bmr (t) . (3.31)

Note that the control law (3.30) can only be implemented if the following assumption
holds.

Assumption 3.12 (Control Authority - PMRAC) The matrix Λ̂ (t) is invertible and as a
consequence, the matrix Λ must be invertible too.

Hence, the effectiveness of the different actuators is allowed to change as long as Λ
is nonsingular, i.e. as long as there is no total failure as depicted in Table 3.1. The
next step is to choose the update laws of Λ̂ (t) and Θ̂ (t) such that the dynamics of the
predictor estimation error ep (t) = x̂p (t)− xp (t) tend to zero and the parameter errors
Λ̃ (t) = Λ̂ (t) − Λ and Θ̃ (t) = Θ̂ (t) −Θ have a stable zero equilibrium. The predictor
error dynamics are computed from (3.27) and (3.29) as follows

.
ep (t) = Amep (t) + BpΛ̃ (t) u (t) + BpΘ̃ (t)ω (t) . (3.32)

The Lyapunov candidate function is given by

V
(
ep, Θ̃, Λ̃

)
=

1

2
eTp (t) Pep (t)+

1

2
tr
(
Θ̃ (t) Γ−1

θ Θ̃
T

(t)
)

+
1

2
tr
(
Λ̃ (t) Γ−1

Λ Λ̃
T

(t)
)
, (3.33)

with the symmetric positive definite matrix P solving the Lyapunov equation (3.3).
From Lemma B.8 (Positive Definite Trace), it follows that the Lyapunov function is
positive definite in the case of symmetric positive definite matrices Γθ ∈ Rq×q and
ΓΛ ∈ Rm×m, which correspond to the adaptation rates. In the following, the time
dependency is not written out for readability. The derivative of the Lyapunov function
is calculated using the predictor error dynamics (3.32), the Lyapunov equation (3.3)
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and Lemma B.2 (Trace and Scalar Product)

.
V = −1

2
eTp Qep + eTp PBp

(
Λ̃u + Θ̃ω

)
+ tr

(
Θ̃Γ−1

θ

.
Θ̃
T
)

+ tr

(
Λ̃Γ−1

Λ

.
Λ̃
T
)
,

= −1

2
eTp Qep + tr

(
Θ̃

(
ωeTp PBp + Γ−1

θ

.
Θ̃
T
))

+ tr

(
Λ̃

(
ueTp PBp + Γ−1

Λ

.
Λ̃
T
))

.

By choosing the standard predictor-based MRAC update laws

.
Θ̂ (t) = −

(
Γθω (t) eTp (t) PBp

)T
= −BT

p Pep (t)ωT (t) Γθ,
.
Λ̂ (t) = −

(
ΓΛu (t) eTp (t) PBp

)T
= −BT

p Pep (t) uT (t) ΓΛ,
(3.34)

the derivative of the Lyapunov function
.
V (t) = −1

2
eTp (t) Qep (t) is negative semi-

definite. From Theorem 4.8 (Uniform Stability) in [87], the equilibrium (ep, Θ̃, Λ̃) =

(0,0,0) is uniformly stable and ep (t), Θ̃ (t), Λ̃ (t) ∈ L∞. Therefore, Θ̂ (t) and Λ̂ (t) are
bounded too.

Subsequently, the goal is to show asymptotic convergence of the estimation error
ep (t) to zero based on Barbalat’s Lemma (Lemma B.9). Following the same arguments
as in Section 3.2, it is known that limt→∞

∫ t
τ=0

.
V (ep (τ)) dτ exists and is finite. Therefore,

it remains to show that
.
V (ep (t)) is a uniform continuous function of t. Given that the

input r (t) is bounded and from the predictor dynamics (3.31) it holds that x̂p (t) ∈ L∞
and hence xp (t) ∈ L∞. This implies boundedness of φ (xp (t)) and ω (xp (t) ,φ (xp (t))).
From Assumption 3.12 (Control Authority - PMRAC), it follows that the control law
u (t) (3.30) is bounded and hence .

ep (t) (3.32) is bounded uniformly in t for all t ≥ 0.
Therefore,

..
V (t) = −eTp (t) Q

.
ep (t) is also bounded uniformly in t for all t ≥ 0. Then,

.
V (ep (t)) is uniformly continuous for t ≥ 0. Using Lemma B.9 (Barbalat) it follows that
.
V (ep (t)) → 0 and hence ep (t) → 0 for t → ∞. Finally, because of the closed-loop
predictor dynamics (3.31), the tracking error ec (t) = xp (t) − xm (t) = xp (t) − x̂p (t) =
−ep (t)→ 0 for t→∞. The presented result is summarized in the next theorem.

Theorem 3.13 (PMRAC) Consider the plant dynamics (3.1), the reference model (3.2), the
state predictor (3.29), the control law (3.30) and the update laws (3.34). Furthermore let As-
sumptions 3.11 (Matching Condition - PMRAC) and 3.12 (Control Authority - PMRAC) hold.
Then, the equilibrium (ep, Θ̃, Λ̃) = (0,0,0) is globally uniformly stable and ep (t) , ec (t)→ 0
for t→∞. �

Example 3.5 (Application of PMRAC) In order to better understand the physical meaning
of Assumption 3.12 (Control Authority - PMRAC) and see that in the case of overactuated sys-
tems it is not a necessary condition, predictor-based MRAC is applied to Example 3.1 (Simple
Overactuated Linear System). First, the plant dynamics (3.6) are reparameterized to the form
(3.27). In this example, there is no constant disturbance and no nonlinearity in the plant dy-
namics (3.6). Hence, the regressor vector is ω (t) = xp (t) ∈ R2 and the unknown parameters
are Θ ∈ R2×2 such that

( .
p(t)
.
Φ(t)

)
= Am

(
p(t)
Φ(t)

)
+ BpΛ

(
ξ1(t)
ξ2(t)

)
+ BpΘ

(
p(t)
Φ(t)

)
. (3.35)
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The matching condition (3.28) translates to
[
Lp + kd kp

0 0

]

︸ ︷︷ ︸
Ap−Am

=

[
Lξ Lξ
0 0

]

︸ ︷︷ ︸
Bp

Θ

and has the following set of solutions [59, Sec. 3.5.1.4]

Θ =

[
1

2Lξ
0

1
2Lξ

0

]

︸ ︷︷ ︸
B+
p

[
Lp + kd kp

0 0

]

︸ ︷︷ ︸
Ap−Am

+

[
1
2
−1

2

−1
2

1
2

]

︸ ︷︷ ︸
I−B+

p Bp

W. (3.36)

The matrix W ∈ R2×2 is an arbitrary matrix representing the offset of the solution within the
null space of Bp. Note that due to overactuation, i.e. r < m, the matrix Bp has a non-empty
null space leading to the non-uniqueness of the ideal parameter Θ. The null space is spanned
by the columns of I−B+

p Bp.
The state predictor is then given as

( .
p̂(t)
.
Φ̂(t)

)
= Am

(
p̂(t)

Φ̂(t)

)
+ BpΛ̂

(
ξ1(t)
ξ2(t)

)
+ BpΘ̂

(
p(t)
Φ(t)

)
,

with Λ̂, Θ̂ ∈ R2×2 and leads to the control law

u (t) = Λ̂
−1

(t)
(
Krr (t)− Θ̂ (t)ω (t)

)
. (3.37)

Here, the feed-forward gain Kr ∈ R2×1 satisfies
[
kp
0

]

︸ ︷︷ ︸
Bm

=

[
Lξ Lξ
0 0

]

︸ ︷︷ ︸
Bp

[
1
1

]
kp

2Lξ︸ ︷︷ ︸
Kr

.

Analogously to the ideal parameter Θ (3.36), the choice of Kr is not unique. The corresponding
update laws (3.34) are given by

.
Θ̂ (t) = −

[
Lξ 0
Lξ 0

]
Pep (t) xTp (t) Γθ,

.
Λ̂ (t) = −

[
Lξ 0
Lξ 0

]
Pep (t) uT (t) ΓΛ.

Similarly to the direct MRAC case, the rows of
.

Θ̂ (t) and
.
Λ̂ (t) are exactly the same and this

points to an overparameterization due to overactuation.
For an invertible Λ̂ (t), Theorem 3.13 (PMRAC) can be applied and the model following

goal is achieved for Example 3.1. The question now is what happens if one of the two actuators
fails because in that case Λ becomes singular. In order to answer this question, let the second
actuator have a failure such that the plant (3.35) can be rewritten as

( .
p(t)
.
Φ(t)

)
= Am

(
p(t)
Φ(t)

)
+

[
Lξ
0

]
λ1ξ1(t) +

[
Lξ
0

]
Θ1

(
p(t)
Φ(t)

)
.
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with the unknown parameters Θ1 ∈ R1×2. The matching condition (3.28) translates to

[
Lp + kd kp

0 0

]

︸ ︷︷ ︸
Ap−Am

=

[
Lξ
0

]

︸ ︷︷ ︸
Bp1

Θ1,

which has the following unique solution

Θ1 =
[

1
Lξ

0
]

︸ ︷︷ ︸
B+
p1

[
Lp + kd kp

0 0

]

︸ ︷︷ ︸
Ap−Am

+ 0︸︷︷︸
I−B+

p1Bp1

·W.

The state predictor is then given as

( .
p̂(t)
.
Φ̂(t)

)
= Am

(
p̂(t)

Φ̂(t)

)
+

[
Lξ
0

]
λ̂1ξ1(t) +

[
Lξ
0

]
Θ̂1

(
p(t)
Φ(t)

)
,

with λ̂1 (t) ∈ R, Θ̂1 (t) ∈ R1×2 and leads to the control law

u1 (t) = ξ1 (t) = λ̂−1
1 (t)

(
kr1 · r (t)− Θ̂1 (t)ω (t)

)
. (3.38)

The feed-forward gain is kr1 = kp
Lξ

and is unique for this case. The corresponding update laws
(3.34) are given by

.
Θ̂1 (t) = −

[
Lξ 0

]
Pep (t) xTp (t) Γθ,

.
λ̂1 (t) = −

[
Lξ 0

]
Pep (t) ξ1 (t) ΓΛ.

For an invertible λ̂1 (t), Theorem 3.13 can be applied and the model following goal is achieved.
A similar result holds for the case that λ2 is invertible and λ1 = 0 and leads to the control law

u2 (t) = ξ2 (t) = λ̂−1
2 (t)

(
kr2 · r (t)− Θ̂2 (t)ω (t)

)
(3.39)

with the feed-forward gain kr2 = kp
Lξ

. Hence, in this example the control objective can be
achieved using predictor-based MRAC in cases where only one actuator fails.

Differently from the direct MRAC result, in order to fulfill the control objective, different
control laws resulted for each fault case: nominal conditions (3.37), failure of actuator 2 (3.38)

and failure of actuator 1 (3.39). Due to the computation of Λ̂
−1

(t), (3.37) cannot be imple-
mented in any total failure case. Due to λ̂−1

1 (t), (3.38) cannot be implemented for the failure of
actuator 1. And due to λ̂−1

2 (t), (3.39) cannot be implemented for the failure of actuator 2.

In the next section, the parameter reduction due to overactuation (PRO) approach is
applied in order to formulate a control law that is able to handle the nominal as well as
the failure cases. The result is based on changing Assumption 3.12 (Control Authority
- PMRAC).
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3.5 Predictor-Based MRAC PRO

In this section, the PRO approach is used to reformulate PMRAC such that actuator
failures can be included. The main result of this section was previously presented
in [46] and here a refinement of the control law is shown. First, note that differently
from direct MRAC, the Assumption 3.12 (Control Authority - PMRAC) is not needed to
achieve stability of the predictor error dynamics with respect to (ep, Θ̃, Λ̃) = (0,0,0).
Assumption 3.12 (Control Authority - PMRAC) is however necessary for the imple-
mentation of the control law (3.30). Hence, in this case the control law needs to be
changed to take actuator failures into account. One solution is to compute the pseudo-
inverse of BpΛ̂ (t) instead of Λ̂

−1
(t). Using the parameter transformation presented in

Section 3.6, a novel control law allows to handle failure cases without the computation
of a pseudo-inverse.

First, the control input u is separated analogously to the parameter transformation
(3.21) using the right-singular vectors V = [Vr,Vn] of Bp (3.17)

u (t) = Vrur (t) + Vnun (t) ,

with ur ∈ Rr,un ∈ Rm−r. Because V is orthogonal, this is only a transformation
and no degree of freedom has been lost. Subsequently, using the compact SVD of
Bp = UrDVT

r (3.18) and the parameter definitions

Θ̂r = VT
r Θ̂ ∈ Rr×q, Λ̂rr = VT

r Λ̂Vr ∈ Rr×r, Λ̂rn = VT
r Λ̂Vn ∈ Rr×(m−r), (3.40)

the predictor (3.29) is reformulated
.
x̂p (t) = Amx̂p (t) + UrDVT

r

(
Λ̂ (t) u (t) + Θ̂ (t)ω (t)

)
,

= Amx̂p (t) + UrDVT
r

(
Λ̂ (t) Vrur (t) + Λ̂ (t) Vnun (t) + Θ̂ (t)ω (t)

)
,

= Amx̂p (t) + UrD
(
Λ̂rr (t) ur (t) + Λ̂rn (t) un (t) + Θ̂r (t)ω (t)

)
.

(3.41)

Note that here Θ̂r (t) and Λ̂rr (t) are reduced parameters analogously transformed as in
direct MRAC PRO. The motivation for this transformation will be clear from the sub-
sequent derivation of the control law. The following main assumption is formulated
instead of Assumption 3.12 (Control Authority - PMRAC).

Assumption 3.14 (Control Authority - PMRAC PRO) The matrix Λ̂rr = VT
r Λ̂Vr is in-

vertible and as a consequence the matrix Λrr = VT
r ΛVr must be invertible too.

Using Assumption 3.14, a novel control law instead of (3.30) is proposed. By com-
paring (3.41) with the reference model (3.2), it can be seen that the following equation

Bmr (t) = UrD
(
Λ̂rr (t) ur (t) + Λ̂rn (t) un (t) + Θ̂r (t)ω (t)

)

must hold for the predictor dynamics to be equal to the reference model dynamics.
Using the fact that Bm = BpKr = UrDVT

r Kr, the following control law

ur (t) = Λ̂
−1

rr (t)
(
VT
r Krr (t)− Λ̂rn (t) un (t)− Θ̂r (t)ω (t)

)
,

u (t) = Vrur (t) + Vnun (t) ,
(3.42)
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is proposed. Note that given (3.42) the choice of un (t) does not affect the dynamics
(3.41) and hence can be used to meet other requirements like e.g. the minimization
of the needed input energy. This degree of freedom arises from the overactuation of
the system. Nevertheless, the control law un (t) needs to be bounded and piecewise
continuous in t. The parameters Λ̂ (t) and Θ̂ (t) can still be updated using (3.34) and
then transformed to Θ̂r (t) , Λ̂rr (t) , Λ̂rn (t) using (3.40) in order to implement the con-
trol law (3.42). In this case, the goal of taking failures into account is already achieved.
However, because of the structure of the update law (3.34), it is known from Section 3.3
that the parameters Θ̂ (t) and Λ̂ (t) can be reduced in the case of overactuation. Using
the same parameter transformation Θ̂r (t) = VT

r Θ̂ (t) and Λ̂r (t) = VT
r Λ̂ (t) leads to the

following reduced update laws

.
Θ̂r (t) = −

(
Γθω (t) eTp (t) PUrD

)T
= −DUT

r Pep (t)ωT (t) Γθ,
.
Λ̂r (t) = −

(
ΓΛu (t) eTp (t) PUrD

)T
= −DUT

r Pep (t) uT (t) ΓΛ.
(3.43)

As in the direct MRAC PRO case, the parameters in the null space of Bp are constant,
i.e. Θ̂n = VT

n Θ̂(0) and Λ̂n = VT
n Λ̂(0). The final controller structure can be seen in

Figure 3.5 and the next theorem summarizes the results.

Theorem 3.15 (PMRAC PRO) Compared to Theorem 3.13 (PMRAC), the Assumption 3.12
(Control Authority - PMRAC) is relaxed to Assumption 3.14 (Control Authority - PMRAC
PRO) and the control law (3.30) is changed to (3.42). In this way actuator failures are taken
into account for systems with redundant control inputs. Furthermore, the reduced set of pa-
rameters is used.

Consider the plant dynamics (3.1), the reference model (3.2), the control law (3.42) and the
update laws (3.43). Furthermore let Assumptions 3.11 (Matching Condition - PMRAC) and
3.14 (Control Authority - PMRAC PRO) hold. Then, the equilibrium (ep, Θ̃r, Λ̃r) = (0,0,0)
is globally uniformly stable and ep (t) , ec (t)→ 0 for t→∞.

Proof: Inserting the control law (3.42) in the predictor dynamics (3.41) leads to

.
x̂p (t) = Amx̂p (t) + UrDVT

r Krr (t) = Amx̂p (t) + Bmr (t) . (3.44)

Hence, the predictor dynamics equal the reference model dynamics as long as Assump-
tion 3.14 (Control Authority - PMRAC PRO) holds.

Using the matching condition (3.28), the plant (3.1) can be represented as in (3.27).
Then, using the reduced parameters Θr = VT

r Θ and Λr = VT
r Λ and their estimates

Θ̂r (t) = VT
r Θ̂ (t) and Λ̂r (t) = VT

r Λ̂ (t), the plant and predictor dynamics can be rewrit-
ten as

.
xp (t) = Amxp (t) + UrD (Λru (t) + Θrω (t)) ,
.
x̂p (t) = Amx̂p (t) + UrD

(
Λ̂r (t) u (t) + Θ̂r (t)ω (t)

)
.

Therefore, the state estimation error dynamics are

.
ep (t) = Amep (t) + UrD

(
Λ̃r (t) u (t) + Θ̃r (t)ω (t)

)
, (3.45)
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Control Law

ur = Λ̂
−1
rr (V

T
r Krr − Θ̂rω

−Λ̂rnun)
u = Vrur + Vnun

Predictor
.
x̂p = Amx̂p + UrD

(
Λ̂ru + Θ̂rω

)

Plant
.
xp = Apxp + BpΛu + Kφφ (xp) + d

Update Law
.

Θ̂r = −DUT
r Pepω

TΓθ.
Λ̂r = −DUT

r Pepu
TΓΛ

r

xp

x̂p

ep
+

−

u

Figure 3.5: Controller Structure - Predictor MRAC PRO

with the reduced parameter errors Θ̃r (t) = Θ̂r (t) −Θr and Λ̃r (t) = Λ̂r (t) − Λr. The
Lyapunov candidate function is formulated as

V
(
ep, Θ̃r, Λ̃r

)
=

1

2
eTp (t) Pep (t) +

1

2
tr
(
Θ̃r (t) Γ−1

θ Θ̃
T

r (t)
)

+
1

2
tr
(
Λ̃r (t) Γ−1

Λ Λ̃
T

r (t)
)
,

with the symmetric positive definite matrix P solving the Lyapunov equation (3.3).
The parameters in the null space of Bp, Θ̂n (t) = VT

n Θ̂ (t) and Λ̂n (t) = VT
n Λ̂ (t), are

not considered within the Lyapunov candidate function since they are constant. From
Lemma B.8 (Positive Definite Trace) it follows that the Lyapunov function is positive
definite in the case of symmetric positive definite matrices Γθ ∈ Rq×q and ΓΛ ∈ Rm×m,
which correspond to the adaptation rates. In the following the time dependency is
not written out for readability. The derivative of the Lyapunov function is calculated
using the predictor error dynamics (3.45), the Lyapunov equation (3.3) and Lemma B.2
(Trace and Scalar Product)

.
V =− 1

2
eTp Qep + eTp PUrD

(
Λ̃ru + Θ̃rω

)
+ tr

(
Θ̃rΓ

−1
θ

.
Θ̃
T

r

)
+ tr

(
Λ̃rΓ

−1
Λ

.
Λ̃
T

r

)
,

=− 1

2
eTp Qep + tr

(
Θ̃r

(
ωeTp PUrD + Γ−1

θ

.
Θ̃
T

r

))
+ tr

(
Λ̃r

(
ueTp PUrD + Γ−1

Λ

.
Λ̃
T

r

))
.

Finally, using the reduced update laws (3.43), the derivative of the Lyapunov function
.
V (t) = −1

2
eTp (t) Qep (t) becomes negative semi-definite. For implementing the control

law (3.42), the parameter definitions Λ̂rr (t) = Λ̂r (t) Vr and Λ̂rn (t) = Λ̂r (t) Vn are
used. Now the same argumentation as in the standard predictor-based MRAC case
can be used in order to show error stability and reference model tracking. �

Remark 3.16 Interestingly, if the adaptation gain ΓΛ is chosen as I · γ with γ > 0 ∈ R, the
control effectiveness update laws can be separated as

.
Λ̂rr =

.
Λ̂rVr = −DUT

r Pep (Vrur + Vnun)T Vrγ = −DUT
r Pepu

T
r γ,

.
Λ̂rn =

.
Λ̂rVn = −DUT

r Pep (Vrur + Vnun)T Vnγ = −DUT
r Pepu

T
nγ.
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Furthermore, if the control law is chosen such that un = 0, only Λ̂rr needs to be updated. This
corresponds to the result presented in [46], which has been generalized in this section.

Remark 3.17 If the system is not overactuated, i.e. r = m, the matrix Vr = V and the stan-
dard predictor-based MRAC formulation is recovered. In this case the parameters Θ̂r (t) and
Λ̂r (t) are orthonormal transformations of the original ones (combinations of rotations and re-
flections). Since in this case Vr is an orthogonal matrix, Assumptions 3.12 (Control Authority
- PMRAC) and 3.14 (Control Authority - PMRAC PRO) are equivalent. Furthermore, since
there is no null space of Bp and hence no Vn, the control law (3.42) is composed only of ur and
there is no freedom left in order to choose un (t).

Remark 3.18 In order to guarantee that Assumption 3.14 (Control Authority - PMRAC

PRO) holds, the SVD-Update proposed in [69] can be used. Given the derivative
.
Λ̂rr (t), this

algorithm limits the minimum singular value from below to be positive.

Example 3.6 (Application of PMRAC PRO) In order to illustrate the presented results, let
us apply PMRAC PRO to the plant in Example 3.1 (Simple Overactuated Linear System). The
parameterized plant (3.35) with the regressor vector ω (t) = xp (t) ∈ R2 and the unknown
parameters Θ ∈ R2×2 is already known from Example 3.5 (Application of PMRAC). Given
the SVD of the example’s input matrix Bp (3.19), the predictor dynamics using the reduced
parameters Θr = VT

r Θ and Λr = VT
r Λ are then given as

( .
p(t)
.
Φ(t)

)
= Am

(
p(t)
Φ(t)

)
+

[
1
0

]
Lξ
√

2

︸ ︷︷ ︸
=Ur·D

(
Λr

(
ξ1(t)
ξ2(t)

)
+ Θr

(
p(t)
Φ(t)

))
. (3.46)

The corresponding state predictor is then given as
( .
p̂(t)
.
Φ̂(t)

)
= Am

(
p̂(t)

Φ̂(t)

)
+

[
1
0

]
Lξ
√

2

(
Λ̂r

(
ξ1(t)
ξ2(t)

)
+ Θ̂r

(
p(t)
Φ(t)

))
.

In order to achieve the parameterization as in (3.41), the following transformations are required

ur (t) = VT
r u =

√
2

2
(ξ1 (t) + ξ2 (t)) , un (t) = VT

nu =
√

2
2

(−ξ1 (t) + ξ2 (t)),
Λrn = VT

r ΛVn = 1
2

(−λ1 + λ2) , Λrr = VT
r ΛVr = 1

2
(λ1 + λ2),

where the matrices VT
r =

[√
2

2
,
√

2
2

]
and VT

n =
[
−
√

2
2
,
√

2
2

]
are given by the SVD of Bp

(3.19). This leads to the dynamics
( .
p̂(t)
.
Φ̂(t)

)
= Am

(
p̂(t)

Φ̂(t)

)
+

[
1
0

]
Lξ
√

2

(
Λ̂rr (t)ur (t) + Λ̂rn (t) (t)un (t) + Θ̂r

(
p(t)
Φ(t)

))
,

with the corresponding control law (3.42)

ur (t) = Λ̂−1
rr (t)

(
VT
r Krr (t)− Λ̂rn (t)un (t)− Θ̂r (t) xp (t)

)
,

u (t) = Vrur (t) + Vnun (t) .
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In this example both ur (t) , un (t) ∈ R are scalar signals and are defined such that un can be
chosen independently from the stability assessment because it represents the control allocation
degrees of freedom due to overactuation. Furthermore, note that the reduced feed-forward gain
VT
r Kr is uniquely defined such that Bm = BpKr = UrDVT

r Kr as follows
[
kp
0

]

︸ ︷︷ ︸
Bm

=

[
1
0

]

︸︷︷︸
Ur

[
Lξ
√

2
]

︸ ︷︷ ︸
D

√
2

2

kp
Lξ︸ ︷︷ ︸

VT
r Kr

.

In order to implement the proposed control law (3.42), Assumption 3.14 (Control Authority
- PMRAC PRO) replaced Assumption 3.12 (Control Authority - PMRAC). It states that the
reduced control effectiveness matrix Λrr = 1

2
(λ1 + λ2) must be invertible. This includes a

failure of any single aileron pair, but as expected the simultaneous failure of the two actuators
is excluded. Interestingly, the case in which one of the actuators has an unknown direction
inversion and both actuators have exactly the same effectiveness is also excluded.

The corresponding reduced update laws (3.34) are given by
.

Θ̂r (t) = −Lξ
√

2
[
1 0

]
Pep (t) xTp (t) Γθ,

.
Λ̂r (t) = −Lξ

√
2
[
1 0

]
Pep (t) ξ (t) ΓΛ.

Since only the parameters Θ̂r (t), Λ̂r (t) ∈ R1×2 need to be updated instead of Θ̂ (t), Λ̂ (t) ∈
R2×2, this reduces the number of parameters by a half.

In this example, PMRAC PRO has been applied to the system described in Example
3.1. The resulting adaptive control law is able to fulfill the control objective for different
failure cases including a total failure of any of the actuators. Table 3.3 summarizes the
comparison between PMRAC with PMRAC PRO.
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Predictor-Based MRAC
Plant

.
xp (t) = Apxp (t) + BpΛu (t) + Kφφ (xp (t)) + d (3.1)

Reference Model
.
xm (t) = Amxm (t) + Bmr (t) (3.2)

Predictor Model
.
x̂p (t) = Amx̂p (t) + Bp

(
Λ̂ (t) u (t) + Θ̂ (t)ω (t)

)
(3.29)

Control Law u (t) = Λ̂
−1

(t)
(
Krr (t)− Θ̂ (t)ω (t)

)
(3.30)

Matching Cond. [Ap −Am, Kφ, d] = BpΘ (3.28)

Error Dynamics
.
ep (t) = Amep (t) + BpΛ̃ (t) u (t) + BpΘ̃ (t)ω (t) (3.32)

Update Laws

.
Θ̂ (t) = −BT

p Pep (t)ωT (t) Γθ,.
Λ̂ (t) = −BT

p Pep (t) uT (t) ΓΛ

(3.34)

Control Authority Λ and its estimate Λ̂ (t) are invertible Asm. 3.12

Predictor-Based MRAC PRO
Plant

.
xp (t) = Apxp (t) + BpΛu (t) + Kφφ (xp (t)) + d (3.1)

Reference Model
.
xm (t) = Amxm (t) + Bmr (t) (3.2)

Predictor Model
.
x̂p (t) = Amx̂p (t) + UrD(Λ̂r (t) u (t) + Θ̂r (t)ω (t)) (3.41)

Control Law

ur (t) = Λ̂
−1

rr (t) (VT
r Krr (t)− Λ̂rn (t) un (t)

−Θ̂r (t)ω (t))

u (t) = Vrur (t) + Vnun (t)

(3.42)

Matching Cond. [Ap −Am, Kφ, d] = BpΘ (3.28)

Error Dynamics
.
ep (t) = Amep (t) + UrD

(
Λ̃r (t) u (t) + Θ̃r (t)ω (t)

)
(3.45)

Update Laws

.
Θ̂r (t) = −DUT

r Pep (t)ωT (t) Γθ.
Λ̂r (t) = −DUT

r Pep (t) uT (t) ΓΛ

(3.43)

Control Authority Λrr = VT
r ΛVr and Λ̂rr (t) are invertible Asm. 3.14

: Reduced parameters version.

: Inclusion of full actuator failure.

Table 3.3: Comparison between PMRAC and PMRAC PRO

3.6 Parameter Reduction due to Overactuation

In this section, the PRO approach presented in the preceding sections is summarized
and generalized. The main goal of the approach is to formulate control authority condi-
tions that can be applied to overactuated systems such that actuator failure cases can be
considered within the stability proofs of model reference adaptive control. These con-
trol authority conditions directly affect the control effectiveness matrix Λ and usually
impose non-singularity of this matrix as seen in Sections 3.2 and 3.4. As proposed in
Sections 3.3 and 3.5, the PRO approach solves this issue via a parameter transformation
and reduction. This led to the introduction of the reduced control effectiveness matrix
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Λrr ∈ Rr×r whose dimensions reflect the degrees of freedom available for control of
the plant. The control authority conditions are then applied to the reduced control ef-
fectiveness matrix Λrr instead of the control effectiveness matrix Λ in order to proof
stability of the closed-loop and thereby taking actuator failure cases into account. In
the following, these ideas are elaborated and summarized.

The starting point of the PRO approach is avoiding overparameterization due to
actuator redundancy without losing any information. Therefore, consider an overac-
tuated system of the form (3.1). The input matrix Bp ∈ Rn×m has the rank (Bp) = r ≤
min (n,m) and the following singular value decomposition

Bp = UΣVT , (3.47)

where U ∈ Rn×n,Σ ∈ Rn×m,V ∈ Rm×m [74, Th. 2.6.3]. U,V are orthogonal matrices,
i.e. UUT = I and VVT = I. Σ is a rectangular diagonal matrix with non-negative
entries on the diagonal which can be written as

Σ =

[
D 0r×m−r

0n−r×r 0n−r×m−r

]
,

where D ∈ Rr×r is a diagonal positive definite matrix. The diagonal elements are the
singular values of Bp and have a decreasing order. Taking this structure into account,
it is clear that if we partition U = [Ur,Un] and V = [Vr,Vn], such that Ur ∈ Rn×r,
Un ∈ Rn×(n−r), Vr ∈ Rm×r and Vn ∈ Rm×(m−r), the matrix Bp can be alternatively
written as

Bp = UrDVT
r . (3.48)

In the following theorem, this SVD is used to achieve parameter reduction.

Theorem 3.19 (Parameter Reduction due to Overactuation) Let Θ̂ (t) ∈ Rm×q be the
parameter estimate of the ideal parameter Θ ∈ Rm×q. It is possible to reduce the set of pa-
rameters without any information loss, if the system is overactuated and the parameter update
law has the form

.
Θ̂ (t) = −BT

p C (t) . (3.49)

Here, C (t) ∈ Rn×q is a continuous function which depends on the specific control approach.
Using the SVD of Bp (3.48), the reduced parameter set is defined as Θ̂r (t) = VT

r Θ̂ (t) ∈ Rr×q

and its update law is given by
.

Θ̂r (t) = −DUT
r C (t) .

The original parameters are computed from

Θ̂ (t) = VrΘ̂r (t) + VnΘ̂n (0) ,

where Θ̂n (t) = VT
n Θ̂ (t) ∈ R(m−r)×q. Because only the parameters Θ̂r (t) need to be updated,

the parameters are reduced from (m · q) to (r · q). Note that the choice Θ̂n (t = 0) = 0 further
simplifies the computation of the original parameters.

Proof: First note that the following parameter transformation

Θb (t) =

[
Θr (t)
Θn (t)

]
=

[
VT
r Θ (t)

VT
nΘ (t)

]
= VTΘ (t) (3.50)
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is invertible and that the original parameters can be computed from its inverse as

Θ (t) = VΘb (t) = VrΘr (t) + VnΘn (t) . (3.51)

The parameter Θr ∈ Rr×q lies in the range of BT
p and Θn ∈ R(m−r)×q corresponds to the

null space of Bp. Let the parameter estimates Θ̂ (t) be analogously transformed as in
(3.50) such that Θ̂b (t) ∈ Rm×q, Θ̂r (t) ∈ Rr×q and Θ̂n (t) ∈ R(m−r)×q. The update laws
of the transformed parameters are computed using the SVD of Bp (3.48), the original
update law (3.49) and the fact that V is an orthogonal matrix (Lemma B.10) as follows

.
Θ̂r (t) = VT

r

.
Θ̂ (t) = −VT

r VrDUT
r C (t) = −DUT

r C (t) , (3.52)
.

Θ̂n (t) = VT
n

.
Θ̂ (t) = −VT

nVrDUT
r C (t) = 0. (3.53)

It is possible to see that the parameters Θ̂ (t) are only updated in the subspace corre-
sponding to Θ̂r (t). Then, the parameter Θ̂ (t) can be written as follows

Θ̂ (t) = Θ̂ (0) +

∫ t

τ=0

.
Θ̂ (τ) dτ,

= VrΘ̂r (0) + VnΘ̂n (0) +

∫ t

τ=0

Vr

.
Θ̂r (τ) + Vn

.
Θ̂n (τ) dτ,

= VrΘ̂r (t) + VnΘ̂n (0) .

Hence, Θ̂ (t) is fully defined by Θ̂r (t) and the initial condition Θ̂n (0). The parameter
reduction follows from the fact that only Θ̂r ∈ Rr×q is updated and it has a smaller
dimension than Θ̂ ∈ Rm×q if the system is overactuated, i.e. r < m. �

Theorem 3.19 is restricted to parameters that have an update law of the form (3.49).
This arises from the fact that a reduction of overparameterization due to overactuation
is only possible for parameters that are directly related to the number of inputs. These
parameters usually correspond to terms of one of the following two forms: BpΘω (t)
or BpΛΘω (t). The first one usually corresponds to a reparameterization of plant pa-
rameters that lie in the range of Bp as in the case of predictor-based MRAC. The second
one usually corresponds to controller gains that are adapted directly like in the direct
MRAC case. The presented reduced parameter Θr does not only have implementation
advantages but is the key to developing fault tolerant adaptive control for overactu-
ated systems. This was demonstrated in Section 3.3 for direct MRAC and in Section 3.5
for PMRAC.

The division of the parameters into Θr and Θn has an intuitive interpretation if
these parameters correspond to a term of the form BpΘω (t). From the SVD of Bp

(3.48) and the parameter transformation (3.50), it follows that

BpΘω (t) = UrDVT
r (VrΘr + VnΘn)ω (t) = UrDΘrω (t) .

Hence, reduced parameters Θr are the only ones that influence the system dynamics
and correspond to a minimal parameterization. The parameters Θn do not affect the

dynamics and this is the reason why there is no update in this direction, i.e.
.

Θ̂n (t) = 0.
In the case that the parameters appear in a term of the form BpΛΘω (t) the interpre-

tation is only correct for Λ = I. If Λ changes, there exists a coupling in the sense that
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Chapter 3: Adaptive Fault Tolerant Control

Θr is partially in the null space of BpΛ and Θn is not totally in the null space of BpΛ.
Nevertheless, if rank (Bp) = rank (BpΛ) = r, the virtual controls are still r-dimensional.
The reduced parameters Θr ∈ Rr×q still represent the number of parameters that are
fixed by the matching conditions and Θn ∈ R(m−r)×q has the number of parameters
that can be chosen freely.

The first step of the PRO approach is the parameter reduction as described by Theo-
rem 3.19 (Parameter Reduction due to Overactuation). The second step is the reformu-
lation of the control authority assumptions using a reduced control efficiency matrix.
Before analyzing the conditions needed within adaptive control, control authority is
studied as a characteristic of the plant under the failure conditions modeled by the
control efficiency matrix Λ. Control authority is directly related to the term BpΛu (t)
and how the control input is chosen. In order to maintain the full control authority in
the faulty case, the following condition is needed.

Assumption 3.20 (Control Authority - Fault Case) For a given vector χ (t) ∈ Rn, there
exists a control input u (t) ∈ Rm such that

χ (t) = BpΛu (t) (3.54)

given that the solution of
χ (t) = Bpu (t) (3.55)

exists (possibly with a different input u (t)). This condition translates to the rank condition

rank (Bp) = rank (BpΛ) = r. (3.56)

This assumption mainly states that the influence of the input u (t) on the state deriva-
tives maintains its same r directions during nominal operation Λ = I as well as during
a faulty case Λ 6= I. This is a condition on Λ that is required to operate with full author-
ity during failure conditions. Because rank (BpΛ) ≤ min (rank (Bp) , rank (Λ)) holds for
the rank of any matrix product and rank (Bp) = r, it is necessary that r ≤ rank (Λ).
Physically it means that at most m− r actuators can fail and it corresponds to the level
of overactuation in the system. Assumption 3.20 can be translated to a condition on
the control effectiveness matrix Λ as stated by the following proposition.

Proposition 3.21 Assumption 3.20 (Control Authority - Fault Case) holds if the matrix

VT
r ΛΛTVr (3.57)

is invertible. This matrix is not to be confused with Λrr = VT
r ΛVr.

Proof: From (3.55), it is known that χ (t) lies within the range of Bp, i.e. UT
nχ (t) = 0.

Therefore using Lemma B.10 (Orthogonal Matrix) it holds that

χ (t) = UrU
T
r · χ (t) =

(
I−UnU

T
n

)
· χ (t) .

Using the SVD of Bp = UrDVT
r (3.48), and by multiplying condition (3.54) with

D−1UT
r from the left it follows that

D−1UT
r · χ (t) = VT

r Λ · u (t) .
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Since D−1UT
r · χ (t) ∈ Rr and VT

r Λ ∈ Rr×m, this equation has a solution for any vector
χ (t) if VT

r Λ has full row rank. From Lemma B.4 (Rank) in Appendix B, it follows that
the symmetric matrix VT

r ΛΛTVr has a full rank too. Therefore, it is invertible and the
proposition is proven. �

Assumption 3.20 and Proposition 3.21 are conditions on the control effectiveness
matrix Λ that guarantee the same control authority in the nominal and faulty cases.
They represent the limit of the physical capabilities of the plant. In adaptive control
approaches, this condition is usually more restrictive because of the fact that Λ is un-
known. In direct MRAC Assumption 3.2 (Control Authority - direct MRAC) states
that positive definiteness of Λ is necessary. In predictor-based MRAC Assumtion 3.12
(Control Authority - PMRAC) states that Λ needs to be invertible. In both cases a total
actuator failure is ruled out as seen in Table 3.1. In Sections 3.3 and 3.5, fault-tolerant
versions of direct and predictor-based MRAC have been presented. The next theorem
summarizes the strategy applied.

Theorem 3.22 (Fault Tolerant Control Authority Conditions) In order to take faults and
failures within adaptive control approaches in the case of overactuated systems into account, the
following strategy is proposed. First, identify the control authority conditions which assume
that the control effectiveness matrix Λ is positive definite or invertible. Subsequently, these
assumptions are exchanged by the same type of condition applied to the reduced control effec-
tiveness matrix defined by

Λrr = VT
r ΛVr.

Here, Vr ∈ Rm×r is a partition of V = [Vr,Vn] defined by the SVD of Bp (3.47). An overview
is given by the following table.

Original Assumption New Assumption
Λ is positive definite. Λrr is positive definite.
Λ is invertible. Λrr is invertible.

For non-overactuated systems with r = m, original and new assumptions are equivalent and
actuator failures are not allowed. In the case of overactuated systems r < m, a maximum of
m− r actuator failures can be taken into account.

Proof: First consider the following invertible transformation

Λbb = VTΛV =

[
VT
r

VT
n

]
Λ
[
Vr Vn

]
=

[
VT
r ΛVr VT

r ΛVn

VT
nΛVr VT

nΛVn

]
.

This transformation preserves the eigenvalues of the control effectiveness matrix Λ,
see Lemma B.6 (Orthogonal Transformation Invariance). In the non-overactuated case
with r = m, Vr = V is an orthogonal matrix and therefore the original and new
assumptions are equivalent and actuator failures cannot be taken into account.

In the overactuated case r < m, it can be seen that Λrr is the r × r submatrix of the
transformed matrix Λbb. Because of the new control authority conditions, the restric-
tions to a positive definite or to an invertible matrix only apply to this reduced control
effectiveness matrix Λrr instead of Λ. Therefore, failures up to m − r actuators can be
taken into account. �
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Corollary 3.23 If Λ is symmetric positive semi-definite, Assumption 3.20 is equivalent to Λrr

being positive definite and to Λrr being invertible. Therefore, in this case, a controller using the
conditions in Theorem 3.22 exploits the maximum physical capability of the plant. As shown
in Table 3.1, a symmetric positive semi-definite Λ includes the cases of degradation of control
effectiveness, actuator failure and stuck actuator.

Proof: If Λ is symmetric positive semi-definite with rank k ≤ m, its full rank factoriza-
tion is given by [59, Eq. 3.157]

Λ = L · LT , (3.58)

where L ∈ Rm×k is full column rank. In the following, the rank condition (3.56) in
Assumption 3.20 (Control Authority - Fault Case) is checked. From the SVD of Bp

(3.48) and Lemma B.4 (Rank) and noting that Ur and D are full column rank matrices
it follows that

rank (BpΛ) = rank
(
UrDVT

r Λ
)

= rank
(
VT
r Λ
)
.

Since L is full column rank, inserting (3.58) and using Lemma B.4 (Rank) leads to

rank (BpΛ) = rank
(
VT
r L · LT

)
,

= rank
(
VT
r L
)
,

= rank
((

VT
r L
)
·
(
LTVr

))
,

= rank
((

VT
r ΛVr

))
,

= rank (Λrr) .

Hence, Assumption 3.20 is equivalent to rank (Bp) = rank (Λrr) = r. Since Λrr ∈ Rr×r,
this is equivalent to Λrr being invertible [74, Sec. 0.5].

From Lemma B.6 (Orthogonal Transformation Invariance) it follows that Λbb =
VTΛV is positive semi-definite. Therefore, all of its principal submatrices including
VT
r ΛVr = Λrr are also positive semi-definite [74, Obs. 7.1.2]. Hence, Λrr has non-

negative eigenvalues. From the condition rank (Λrr) = r it follows that 0 is not an
eigenvalue of Λrr and the equivalence with positive definiteness of Λrr is proved. �

The application of Theorem 3.22 can be seen in the comparison Tables 3.2 (direct
MRAC) and 3.3 (PMRAC). The selection of the reduced control effectiveness matrix
Λrr is underlined by the equivalence of the conditions in Theorem 3.22 to Assumption
3.20 in the case of a symmetric positive semi-definite control effectiveness matrix Λ. In
this case the adaptive control assumptions do not restrict the physical capabilities of
the system and the best possible result is achieved as required from the thesis objective
9 (The controller should not be a limitation of the physical system). The restriction to
positive semi-definiteness can be seen as the correct knowledge of the control input
directions. Specifically, the condition uT (t) · (Λu (t)) ≥ 0 means that the vector u (t)
cannot be rotated more than ±90[◦] by the matrix Λ.

A limitation of using the reduced control effectiveness matrix Λrr is that if Λ is
invertible, it is not true that Λrr is invertible too. For most applications, this is not
much of a limitation since the uncertainty about the control input directions is not
higher than ±90[◦] and therefore Corollary 3.23 can be applied.

Example 3.7 (Controllability Conditions) In order to illustrate the controllability condi-
tions, consider the system in Example 3.1 which has the following control efectiveness matrix

Λ =

[
λ1 0
0 λ2

]
.
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As derived in Example 3.4, the reduced control effectiveness matrix is given by

Λrr =
1

2
(λ1 + λ2) .

The matrix Λ is positive definite if both λ1, λ2 > 0. This implies that Λrr > 0, i.e. Λrr is
positive definite too.

The situation with an invertible Λ is different. Λ is invertible as long as λ1, λ2 6= 0. This
excludes actuator failures. In the case of the reduced Λrr, actuator failures can be taken into
account as long as λ1 + λ2 6= 0. Here, the failure of a single actuator can be taken into account.
But if λ1 = −λ2 and λ1, λ2 6= 0, only the original control effectiveness matrix Λ is invertible.
This case corresponds to a unknown direction inversion of one of the actuators in such a way
that the two actuators cancel each other and Λrr = 0.

In this section, the thesis objectives 1 (Systematic analysis of adaptive control meth-
ods for systems with redundant actuators) and 2 (Study of adaptive control methods
regarding actuator fault tolerance in the case of overactuated systems) have been ad-
dressed and the PRO approach has been presented. Its first step is a parameter reduc-
tion due to overactuation as in Theorem 3.19 (Parameter Reduction due to Overactu-
ation). The second step uses the reduced control effectiveness matrix Λrr in order to
formulate the control authority conditions within a given control approach as stated in
Theorem 3.22 (Fault Tolerant Control Authority Conditions). Using the PRO approach,
fault tolerant versions of adaptive control approaches for overactuated systems can be
obtained. In this chapter, this approach has been applied to direct MRAC in Section 3.3
and to PMRAC in Section 3.5.

3.7 Bibliographical Remarks

Although the adaptive control literature addresses degradation and failure of actua-
tors, the specific stability assessment of overactuated systems has not received much
attention. The main restrictions for the applicability to actuator failures correspond
to assumptions regarding the control effectiveness matrix. The basis for this chapter
was presented in [47] for direct MRAC PRO and in [46] for PMRAC PRO. To the best
knowledge of the author, this was the first time that actuator failures were integrated
into the assumptions regarding the control effectiveness matrix. Previously, Tao pre-
sented an equivalent condition for the direct MRAC case in his book [138]. The used
failure model corresponds to (3.5) with a diagonal positive semi-definite control effec-
tiveness matrix Λ, which can only have the values {0, 1}. This model in combination
with Proposition 2.5.2 in [138] is equivalent to Assumptions 3.1 (Matching Condition
- direct MRAC) and 3.5 (Control Authority - direct MRAC PRO) in Section 3.3. Since
Λ does not need to be positive semi-definite for Assumption 3.5 (Control Authority
- direct MRAC PRO) to hold, it corresponds to a slightly generalized condition. Fur-
thermore, Tao focuses on groups of actuators that present equal characteristics. In this
work, the used formulation along the lines of [92] facilitates the application towards
multivariable systems with high coupling of actuator and control axes like VTOL air-
craft. Another differentiation is the application to indirect adaptive control.
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Chapter 4

Adaptive Control Allocation

In the last chapter, fault tolerance adaptive control for overactuated systems was an-
alyzed and the PRO approach was introduced. The next major step towards real life
applications is the handling of control input saturations by taking advantage of the
actuator redundancy. In this chapter, the integration of the control allocation approach
within the predictor based MRAC framework is proposed. An indirect method is se-
lected since the integration is simpler than in the direct MRAC case.

In the following, the Control Task 3.1 (Model Reference Adaptive Control) and the
reference model (3.2) remain the same as in the previous chapter. Equivalent to (3.1)
and (3.4)-(3.5), the following plant representation with separated rigid body and actu-
ator models is used

.
xp (t) = Apxp (t) + Bνν (t) + Kφφ (xp (t)) + d, (4.1a)

ν (t) = BaΛu (t) . (4.1b)

Here, the full rank factorization Bp = Bν · Ba with rank (Bν) = rank Ba = r is used.
Furthermore, the constant actuator disturbance dν from (3.5) is considered in d =
Bνdν +dx without loss of generality. The control allocation task can then be formalized
as:

Control Task 4.1 (Control Allocation) Given the desired virtual control input νd (t,xp) ∈
Rr, compute the control input u (t,νd) ∈ Rm such that

νd (t) = BaΛu (t) (4.2)

and such that the input lies within the input set U ⊂ Rm defined as

U := {u ∈ Rm | ui,min ≤ ui ≤ ui,max,∀i = 1...m},

where ui is the i-th element of u (t) and ui,min, ui,max ∈ R are the corresponding minimum and
maximum values. The control input set U is an m-dimensional hyperrectangle.

Because of the saturations, the Control Task 4.1 cannot be solved for every desired
virtual control νd (t). As in Chapter 2 (Multirotor Dynamics Model), the attainable
control space ACS is defined as the output image V of the linear mapping (4.1b) on U

V := {ν ∈ Rr | ν = BaΛu,u ∈ U}.
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Because the input set U is a convex polyhedra and it is linearly mapped to the set V , it
follows that the ACS V is also a convex polyhedra.

There is a great variety of control allocation methods in the literature as shown
in Chapter 1 (Introduction). The main burden to directly apply most of the available
methods to the problem at hand is the assumption of a known and constant matrix
BaΛ. In this chapter, this issue is tackled using adaptive control. The remainder of
the chapter is organized as follows. In Section 4.1, the PMRAC approach is formu-
lated such that the rigid body control and the control allocation are separated tasks. In
Section 4.2, the structure of the dynamical system is exploited to formulate a reduced-
order version of the presented approach. In Section 4.3, the Prioritizing Control Alloca-
tion approach is introduced followed by the required SVD update algorithm in Section
4.4. Finally, bibliographical remarks are given in Section 4.5.

4.1 Predictor-Based Adaptive Control Allocation

In this section, a special form of predictor-based MRAC is derived such that the inte-
gration of control allocation algorithms is facilitated. In a first step, the plant (4.1) is
rewritten using the following parameterization

.
xp (t) = Amxp (t) + Bνν (t) + BνΘνω (t) , (4.3a)

ν (t) = Ua,rDaΛa,ru (t) . (4.3b)

where ω (t) ∈ Rq is the known regressor vector and Θν ∈ Rr×q is the unknown pa-
rameter matrix. Here, the PRO parameter transformation presented in Chapter 3 has
been applied to the actuator model (4.1b). The SVD decomposition of the matrix Ba is
analogously defined as (3.48) leading to

Ba = Ua,rDaV
T
a,r (4.4)

with Ua,r ∈ Rr×r, Da ∈ Rr×r and Va,r ∈ Rm×r. The matrix Λa,r ∈ Rr×m is defined as

Λa,r = VT
a,rΛ. (4.5)

The specific parameterization of (4.3) intends to facilitate the derivation of a control
law in the case of known parameters and the separation of the control allocation task.
The known regressor vector ω (t) and the unknown ideal parameter matrix Θν are
defined as

ω (t) := [xTp (t) ,φT (xp (t)) , 1]T ∈ Rq,

Θν := [Θp,x,Θp,φ,Θp,d] ∈ Rr×q,

with q = n+k+1, Θp,x ∈ Rr×n, Θp,φ ∈ Rr×k and Θp,d ∈ Rr. The comparison between the
parameterized plant (4.3) and its original representation (4.1) leads to the subsequent
matching condition.

Assumption 4.1 (Matching Condition - P-ACA) The ideal parameters Θν satisfy

Y :=
[
Ap −Am, Kφ, d

]
= BνΘν . (4.6)
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Remark 4.2 (Uniqueness of the ideal parameter Θν) Note that if a solution to the match-
ing condition (4.6) exists, the solution Θν is unique. This follows from the fact that Bν has a
full column rank by definition [110, p. 260]. Hence, the parameter matrix Θν is not overpa-
rameterized due to overactuation.

The state predictor of the parameterized plant (4.3) is defined as
.
x̂p (t) = Amx̂p (t) + Bνν̂ (t) + BνΘ̂ν (t)ω (t) , (4.7a)

ν̂ (t) = Ua,rDaΛ̂a,r (t) u (t) , (4.7b)

where x̂p (t) ∈ Rn, ν̂ (t) ∈ Rr, Θ̂ν (t) ∈ Rr×q and Λ̂a,r (t) ∈ Rr×m are the estimates of
xp, ν (t), Θν and Λa,r respectively. Given the reparameterized plant (4.3) and its state
predictor (4.7), model reference tracking is achieved in two steps which are typical
for indirect approaches. The first one consists in deriving a control law u (t) for the
completely known predictor model (4.7) such that it behaves like the reference model
(3.2). The second step is the identification of the unknown plant parameters Λa,r and
Θν so that the control law u (t) is also valid for the plant dynamics (4.3).

Because of the separation between rigid body (4.3a) and actuator dynamics (4.3b),
the control law consists of two steps. The first step, is the selection of the desired virtual
control νd (t) such that for ν (t) = νd (t) the dynamics (4.7a) replicate the reference
model (3.2). The virtual control law is then given by

νd (t) = Krr (t)− Θ̂ν (t)ω (t) , (4.8)

where Kr ∈ Rr×r is chosen such that Bm = BνKr. Note that analogously to the un-
known parameters Θν , the feed-forward gain Kr is uniquely defined using this param-
eterization. The second step is the control allocation task, which is formulated in the
following assumption.

Assumption 4.3 (Control Allocation) Given the desired virtual control input νd (t) and
the known and time varying control effectiveness matrix Λ̂a,r(t) compute the control inputs
u
(
Λ̂a,r,νd

)
such that

νd (t) = Ua,rDaΛ̂a,r (t) u (t) (4.9)

and such that the input lies within the input set U ⊂ Rm defined as

U := {u ∈ Rm | ui,min ≤ ui ≤ ui,max,∀i = 1...m},

where ui is the i-th element of u (t) and ui,min, ui,max ∈ R are the corresponding minimum and
maximum values. The control input set U is an m-dimensional hyperrectangle.

Provided that Assumption 4.3 holds, inserting the control law (4.8) into the predic-
tor dynamics (4.7a) leads to the closed-loop predictor dynamics which are equal to the
reference model dynamics (3.2)

.
x̂p (t) = Amx̂p (t) + BνKrr (t) = Amx̂p (t) + Bmr (t) . (4.10)

The next step is to choose the update laws of Λ̂a,r (t) and Θ̂ν (t) such that the dy-
namics of the predictor estimation error ep (t) = x̂p (t) − xp (t) tend to zero and the
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parameter errors Λ̃a,r (t) = Λ̂a,r (t) − Λa,r and Θ̃ν (t) = Θ̂ν (t) −Θν have a stable zero
equilibrium. The predictor error dynamics are computed from the plant dynamics (4.3)
and the predictor dynamics (4.7) as follows

.
ep (t) = Amep (t) + Bνν̃ (t) + BνΘ̃ν (t)ω (t) , (4.11a)

ν̃ (t) = Ua,rDaΛ̃a,r (t) u (t) , (4.11b)

In the following the time dependency is not written out for readability. The Lyapunov
candidate function is given by

V
(
ep, Θ̃ν , Λ̃a,r

)
=

1

2
eTp Pep +

1

2
tr
(
Θ̃νΓ

−1
θ Θ̃

T

ν

)
+

1

2
tr
(
Λ̃a,rΓ

−1
Λ Λ̃

T

a,r

)
, (4.12)

with the symmetric positive definite matrix P corresponding to the Lyapunov equation
(3.3). From Lemma B.8 (Positive Definite Trace) it follows that the Lyapunov function
is positive definite in the case of symmetric positive definite matrices Γθ ∈ Rq×q and
ΓΛ ∈ Rm×m, which correspond to the adaptation rates. The derivative of the Lyapunov
function is calculated using the predictor error dynamics (4.11), the Lyapunov equa-
tion (3.3) and Lemma B.2 (Trace and Scalar Product)

.
V = −1

2
eTp Qep + eTp PBν

(
Ua,rDaΛ̃a,ru + Θ̃νω

)

+ tr

(
Θ̃νΓ

−1
θ

.
Θ̃
T

ν

)
+ tr

(
Λ̃a,rΓ

−1
Λ

.
Λ̃
T

a,r

)
,

= −1

2
eTp Qep + tr

(
Θ̃ν

(
ωeTp PBν + Γ−1

θ

.
Θ̃
T

ν

))

+ tr

(
Λ̃a,r

(
ueTp PBνUa,rDa + Γ−1

Λ

.
Λ̃
T

a,r

))
.

The PMRAC update laws are then selected as

.
Θ̂ν (t) = −

(
Γθω (t) eTp (t) PBν

)T
= −BT

ν Pep (t)ωT (t) Γθ,
.
Λ̂a,r (t) = −

(
ΓΛu (t) eTp (t) PBνUa,rDa

)T
= −DaU

T
a,rB

T
ν Pep (t) uT (t) ΓΛ,

(4.13)

such that the derivative of the Lyapunov function
.
V (t) = −1

2
eTp (t) Qep (t) is negative

semi-definite. From Theorem 4.8 (Uniform Stability) in [87], it follows that the equi-
librium (ep, Θ̃ν , Λ̃a,r) = (0,0,0) is uniformly stable and ep (t), Θ̃ν (t), Λ̃a,r (t) ∈ L∞.
Therefore Θ̂ν (t) and Λ̂a,r (t) are bounded.

Subsequently, the goal is to show asymptotic convergence of the estimation error
ep (t) to zero based on Barbalat’s Lemma (Lemma B.9). Following the same arguments
as in Section 3.2, it is known that limt→∞

∫ t
τ=0

.
V (ep (τ)) dτ exists and is finite. Therefore,

it remains to show that
.
V (ep (t)) is a uniform continuous function of t. Given that the

input r (t) is bounded and from the predictor dynamics (4.10) it holds that x̂p (t) ∈ L∞
and hence xp (t) ∈ L∞. This implies boundedness of φ (xp (t)) and ω (xp (t) ,φ (xp (t))).
It follows that the desired virtual control νd (t) (4.8) and hence the control law u (t) (4.9)
are bounded. The estimation error derivative .

ep (t) (4.11) is then bounded uniformly
in t for all t ≥ 0. Therefore,

..
V (t) = −eTp (t) Q

.
ep (t) is also bounded uniformly in t for all
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Virtual Control Law
νd = Krr − Θ̂νω

Predictor
.
x̂p = Amx̂p + Bν

(
ν̂ + Θ̂νω

)

ν̂ = Ua,rDaΛ̂a,ru

Plant
.
xp = Apxp + Bνν + Kφφ (xp) + d
ν = BaΛu

Control Allocation
νd = Ua,rDaΛ̂a,ru

Update Law
.

Θ̂ν = −BT
ν Pepω

TΓθ.
Λ̂a,r = −DaU

T
a,rB

T
ν Pepu

TΓΛ

r

xp

x̂p

ep
+

−

u

νd

Figure 4.1: Controller Structure - Predictor-Based Adaptive Control Allocation

t ≥ 0. Then,
.
V (ep (t)) is uniformly continuous for t ≥ 0. Using Lemma B.9 (Barbalat)

it follows that
.
V (ep (t)) → 0 and hence ep (t) → 0 for t → ∞. Finally, because of

the closed-loop predictor dynamics (4.10), the tracking error ec (t) = xp (t) − xm (t) =
xp (t)− x̂p (t) = −ep (t)→ 0 for t→∞. The presented result is summarized in the next
theorem.

Theorem 4.4 (P-ACA) Consider the plant dynamics (4.1), the reference model (3.2), the state
predictor (4.7), the control law (4.8) and the update laws (4.13). Furthermore let Assumptions
4.1 (Matching Condition - P-ACA) and 4.3 (Control Allocation) hold. Then, the equilibrium
(ep, Θ̃ν , Λ̃a,r) = (0,0,0) is uniformly stable and ep (t) , ec (t)→ 0 for t→∞. �

Theorem 4.4 formulates a possible solution of the Control Task 3.1 (Model Reference
Adaptive Control) and separates the design of the virtual control law and the control
allocation. The virtual control law is given by (4.8). The control allocation task has been
reformulated as Assumption 4.3 (Control Allocation) and replaces the fault tolerant
control authority conditions discussed in Theorem 3.22. This assumption is slightly
different from Control Task 4.1 (Control Allocation) as formulated in the beginning
of this chapter. since the matrix Ua,rDaΛ̂a,r (t) ∈ Rr×m is known and time varying.
This is the main step into combining PMRAC with control allocation approaches such
that input saturations can be taken into account. The controller structure is depicted
in Figure 4.1. In the following, an example illustrates the application of the presented
approach.

Example 4.1 (Application of Predictor-Based Adaptive Control Allocation) For illus-
trating the results in this section, consider the plant (3.6) given in Example 3.1. Subsequently,
the input matrix Bp is separated into Bp = BνBa such that Bν ∈ R2×r and Ba ∈ Rr×2 with
r = rank (Bp) = 1. In this way the virtual control ν (t) ∈ R has the minimal dimension and
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4.1 Predictor-Based Adaptive Control Allocation

the plant (3.6) can be written in the form (4.1) as
( .
p(t)
.
Φ(t)

)

︸ ︷︷ ︸
.
xp

=

[
Lp 0
1 0

]

︸ ︷︷ ︸
Ap

(
p(t)
Φ(t)

)

︸ ︷︷ ︸
xp

+

[
Lξ
0

]

︸ ︷︷ ︸
Bν

ν (t) ,

ν (t) =
[
1 1

]
︸ ︷︷ ︸

Ba

[
λ1 0
0 λ2

]

︸ ︷︷ ︸
Λ

(
ξ1(t)
ξ2(t)

)

︸ ︷︷ ︸
u

.

Subsequently, with the regressor vector ω (t) = xp (t) ∈ R2 and the unknown parameter
Θν ∈ R1×2, the plant is parameterized as in (4.3) as follows

( .
p(t)
.
Φ(t)

)
= Am

(
p(t)
Φ(t)

)
+

[
Lξ
0

]
(ν (t) + Θνxp (t)) ,

ν (t) =
√

2Λa,ru (t) .

Here, the control efficiency matrix has been reduced to Λa,r = VT
a,rΛ. The matrix Va,r is

defined by the SVD of the matrix Ba given as
[
1 1

]
︸ ︷︷ ︸

Ba

= 1︸︷︷︸
Ua,r

√
2︸︷︷︸

Da

[√
2

2

√
2

2

]

︸ ︷︷ ︸
VT
a,r

.

The corresponding state predictor is then given as
( .
p̂(t)
.
Φ̂(t)

)
= Am

(
p̂(t)

Φ̂(t)

)
+

[
Lξ
0

](
ν̂ (t) + Θ̂ν (t) xp (t)

)
,

ν̂ (t) =
√

2Λ̂a,r (t) u (t) .

with the corresponding virtual control law (4.8)

νd (t) =
kp

Lξ︸︷︷︸
Kr

r (t)− Θ̂ν (t) xp (t) .

The corresponding reduced update laws (4.13) are given by
.

Θ̂ν (t) = −
[
Lξ 0

]
Pep (t) xTp (t) Γθ,

.
Λ̂a,r (t) = −

√
2
[
Lξ 0

]
Pep (t) uT (t) ΓΛ.

Finally assuming that Assumption 4.3 (Control Allocation) holds, Theorem 4.4 (P-ACA) can
be used to proof stability of the parameter and tracking errors and asymptotic convergence of
the tracking error to zero. Interesting to see is that the parameter Θν ∈ R1×2 has the same
dimensions as the reduced parameter Θr ∈ R1×2 in Example 3.6 (Application of PMRAC
PRO). The step that is missing here is the control allocation design which selects the inputs
u (t) such that νd (t) =

√
2Λ̂a,ru (t), i.e. such that Assumption 4.3 (Control Allocation) holds.

In order to highlight the main difference with respect to the previous presented
controllers and as a road map for the following sections, the design steps of P-ACA are
summarized in the following remark.
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Chapter 4: Adaptive Control Allocation

Remark 4.5 (P-ACA Design Steps)

1. Definition of the state predictor,

2. Design of a control law u (t) for the known predictor dynamics such that the closed-loop
meets the design goal. In P-ACA this step has been separated into two.

(a) Design a virtual control law νd (t) for the known rigid-body predictor dynamics
such that the closed-loop meets the design goal.

(b) Find a control allocation that maps the desired virtual control νd (t) to control input
u (t).

3. Compute the update laws for the adaptive parameters such that the control input u (t) in
closed loop with the unknown plant dynamics meets the design goal.

In P-ACA the separation into rigid body and actuator models leads to the uniqueness
of the feed-forward gain Kr in (4.8) and to the uniqueness of the ideal parameter Θν

as shown in Remark 4.2. Therefore, the redundancy of the system is fully addressed
within the control allocation. Before describing the control allocation, in the next sec-
tion the implemented predictor model is further simplified as motivated from the the-
sis objective 6.

4.2 Reduced Order P-ACA

In most mechanical systems, the uncertainties are related to forces and moments. In
these cases only the equations describing the dynamics of the system contain unknown
variables while the kinematic equations are completely known. This special structure
can be exploited to reduce the order of the state predictor within the PMRAC frame-
work leading to an implementation advantage.

Specifically, in this section the considered plant structure is a special case of (4.1)
and is given by
( .

xp1 (t)
.
xp2 (t)

)
=

[
Ap11 Ap12

Ap21 Ap22

](
xp1 (t)
xp2 (t)

)
+

[
0

Bν2

]
ν (t) +

[
0

Kφ2

]
φ (xp (t)) +

[
0
d2

]
, (4.14a)

ν (t) = BaΛu (t) . (4.14b)

The plant state is partitioned into the kinematic state variables xp1 (t) ∈ Rn1 and the dy-
namic state variables xp2 (t) ∈ Rn2 with n = n1 +n2. The dynamic matrix is partitioned
into its known submatrices Ap11 ∈ Rn1×n1 and Ap12 ∈ Rn1×n2 and its unknown subma-
trices Ap21 ∈ Rn2×n1 and Ap22 ∈ Rn2×n2 . The virtual controls ν (t) only affect the deriva-
tive .

xp2 (t) directly via the known input submatrix Bν2 ∈ Rn2×m. The constant un-
known disturbance d2 ∈ Rn2 is also restricted to the dynamic state variables. The term
h2 (xp) = Kφ2φ (xp) represents a linearly parameterizable nonlinear function h2 (xp),
where Kφ2 ∈ Rn2×k is an unknown matrix and φ (xp) : Rn → Rk is a known regressor
vector composed of k basis functions φi (xp) which are locally Lipschitz-continuous in
xp (t) [92]. The important characteristic of system (4.14) is that the kinematic differen-
tial equation .

xp1 (t) is completely known and that the uncertainties and control inputs
affect only the differential equation of the dynamic state variables .

xp2 (t).
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4.2 Reduced Order P-ACA

Example 4.2 (State Partition) Example 4.1 has the structure of the system (4.14), where
xp1 (t) = Φ (t) is the kinematic state and xp2 (t) = p (t) is the dynamic state. The dynamic
matrix partitions are then Ap11 = 0, Ap12 = 1, Ap21 = 0 and Ap22 = Lp. The input submatrix
is Bν2 = Lξ.

In the same way as in (4.3) in Section 4.1, the plant (4.14) is rewritten using the
following parameterization

( .
xp1 (t)
.
xp2 (t)

)
=

[
Am11 Am12

Am21 Am22

](
xp1 (t)
xp2 (t)

)
+

[
0

Bν2

]
ν (t) +

[
0

Bν2

]
Θνω (t) , (4.15a)

ν (t) = Ua,rDaΛa,ru (t) . (4.15b)

where ω (t) ∈ Rq is the known regressor vector and Θν ∈ Rr×q is the unknown pa-
rameter matrix. The specific parameterization intends to facilitate the derivation of a
control law in the case of known parameters. The known regressor vector ω (t) and the
unknown ideal parameter matrix Θν are defined as

ω (t) := [xTp (t) ,φT (xp (t)) , 1]T ∈ Rq,

Θν := [Θp,x,Θp,φ,Θp,d] ∈ Rr×q,

with q = n + k + 1, Θp,x ∈ Rr×n, Θp,φ ∈ Rr×k and Θp,d ∈ Rr. This definition is the
same as in Section 4.1. The comparison between the parameterized plant (4.15) and its
original representation (4.14) leads to the subsequent matching condition.

Assumption 4.6 (Matching Condition - Reduced Order P-ACA) The ideal parameters
Θν satisfy the following condition

Y :=

[
Ap −Am,

[
0

Kφ2

]
,

[
0
d2

]]
=

[
0

Bν2

]
Θν = BνΘν . (4.16)

This matching condition is only a special case of Assumption 4.1 (Matching Condition -
P-ACA) where the range of Bν does not span the whole state space. Therefore, Remark
4.2 (Uniqueness of the ideal parameter Θν) holds is true in this case as well. Directly
from (4.16) it follows that the submatrices of the reference model must be chosen such
that Am11 = Ap11 and Am12 = Ap12, i.e. it is necessary that the reference model mimics
the known plant kinematics. The reason is that these correspond to a kinematic relation
that cannot be changed by the control input.

Given the special structure of the parameterized plant (4.15), it is clear that the
kinematic state variables do not need to be considered in the state predictor since no
unknown parameters influence their derivatives. Hence, a reduced order state predic-
tor can be formulated as

.
x̂p2 (t) =

[
Am21 Am22

](xp1 (t)
x̂p2 (t)

)
+ Bν2ν̂ (t) + Bν2Θ̂ν (t)ω (t)− Lep2 (t) , (4.17a)

ν̂ (t) = Ua,rDaΛ̂a,r (t) u (t) , (4.17b)

where x̂p2 (t) ∈ Rn2 , ν̂ (t) ∈ Rr, Θ̂ν (t) ∈ Rr×q and Λ̂a,r (t) ∈ Rr×m are the estimates of
xp2 (t), ν (t), Θν and Λa,r respectively. The identification error is defined as ep2 (t) =
x̂p2 (t) − xp2 (t). Differently from the full state predictors (3.29), (3.41) and (4.7), an
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extra identification feedback term −Lep2 with the positive definite Luenberger gain
L ∈ Rn2×n2 has been added. This term is used for stabilizing the identification error
dynamics.

In Predictor-Based Adaptive Control Allocation (P-ACA) as presented Remark 4.5,
model reference tracking is achieved in 4 steps . The first step is the definition of the
state predictor (4.17). The second step is the selection of the desired virtual control
νd (t) such that for ν (t) = νd (t) the known predictor model (4.17) replicates the refer-
ence model (3.2). The third step is the control allocation task, which is formulated in
Assumption 4.3. The fourth step is the identification of the unknown plant parameters
Λa,r and Θν so that the control law u (t) is also valid for the plant dynamics (4.14).
For the reduced order P-ACA, the second step needs to be slightly adapted since the
predictor model (4.17) can not fully represent the reference model. Therefore, the esti-
mated state x̂p2 (t) is extended by the plant state xp1 (t) to build the full predictor state

χ̂ (t) :=

(
xp1 (t)
x̂p2 (t)

)
(4.18)

with the following derivative

( .
xp1 (t)
.
x̂p2 (t)

)
=

[
Am11 Am12

Am21 Am22

](
xp1 (t)
x̂p2 (t)

)
+

[
0

Bν2

](
ν̂ (t) + Θ̂ν (t)ω (t)

)

−
[
Am12

L

]
ep2 (t) ,

(4.19a)

ν̂ (t) = Ua,rDaΛ̂a,r (t) u (t) , (4.19b)

The term −Am12 · ep (t) arises from the fact that the full state predictor is a mixture
between plant and predictor states. In the given formulation the last term can be seen
as a disturbance term coming from the estimation error ep2 (t). Interestingly, the control
input cannot compensate for this term since it does not fully lie in the range of Bν .
Therefore, the best that can be expected from the control law u (t) are the following
closed-loop predictor dynamics

.
χ̂ (t) = Amχ̂ (t) + Bmr (t) + Hep2 (t) , (4.20)

with H ∈ Rn×n2 . This corresponds to the reference model dynamics (3.2) plus an
identification disturbance term. Using the P-ACA virtual control law (4.8), the closed-
loop predictor dynamics are given by (4.20) with

H = −
[
Am12

L

]
.

Since Am is a Hurwitz matrix, it is clear that the closed-loop predictor dynamics (4.20)
are Input-to-State Stable (ISS) with respect to the inputs r (t) and ep2 (t) [87, Definition
4.7]. One implication is that the state χ̂ (t) is bounded if the inputs r (t) and ep2 (t)
are bounded. Differently from the previous results, this cannot be directly stated since
boundedness of ep2 (t) needs to be shown first.

The next step is to choose the update laws of Λ̂a,r (t) and Θ̂ν (t) such that the dy-
namics of the predictor estimation error ep2 (t) = x̂p2 (t) − xp2 (t) tend to zero and the
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4.2 Reduced Order P-ACA

parameter errors Λ̃a,r (t) = Λ̂a,r (t)−Λa,r and Θ̃ν (t) = Θ̂ν (t)−Θν have a stable equi-
librium. The predictor error dynamics are computed from the plant dynamics (4.15)
and the predictor dynamics (4.17) as follows

.
ep2 (t) = (Am22 − L) ep2 (t) + Bν2ν̃ (t) + Bν2Θ̃ν (t)ω (t) , (4.21a)

ν̃ (t) = Ua,rDaΛ̃a,r (t) u (t) , (4.21b)

The Luenberger gain L is chosen such that the dynamic matrix Am22 − L is Hurwitz.
Therefore, there exists a symmetric positive definite matrix PL ∈ Rn2×n2 for a every
symmetric positive definite matrix QL ∈ Rn2×n2 such that the Lyapunov equation holds
[87, Th. 4.6]

PL (Am22 − L) + (Am22 − L)T PL = −QL. (4.22)

In the following the time dependency is not written out for readability. Using this
symmetric positive definite matrix PL, the Lyapunov candidate function is given by

V
(
ep2, Θ̃ν , Λ̃a,r

)
=

1

2
eTp2PLep2 +

1

2
tr
(
Θ̃νΓ

−1
θ Θ̃

T

ν

)
+

1

2
tr
(
Λ̃a,rΓ

−1
Λ Λ̃

T

a,r

)
,

From Lemma B.8 (Positive Definite Trace) it follows that the Lyapunov function is
positive definite in the case of symmetric positive definite matrices Γθ ∈ Rq×q and
ΓΛ ∈ Rm×m, which correspond to the adaptation rates. The derivative of the Lyapunov
function is calculated using the predictor error dynamics (4.21), the Lyapunov equa-
tion (4.22) and Lemma B.2 (Trace and Scalar Product) as

.
V = −1

2
eTp2QLep2 + eTp2PLBν2

(
Ua,rDaΛ̃a,ru + Θ̃νω

)

+ tr

(
Θ̃νΓ

−1
θ

.
Θ̃
T

ν

)
+ tr

(
Λ̃a,rΓ

−1
Λ

.
Λ̃
T

a,r

)
,

= −1

2
eTp2Qep2 + tr

(
Θ̃ν

(
ωeTp2PLBν2 + Γ−1

θ

.
Θ̃
T

ν

))

+ tr

(
Λ̃a,r

(
ueTp2PLBν2Ua,rDa + Γ−1

Λ

.
Λ̃
T

a,r

))
.

The reduced-order P-ACA update laws are then chosen as
.

Θ̂ν (t) = −
(
Γθω (t) eTp2 (t) PLBν2

)T
= −BT

ν2PLep2 (t)ωT (t) Γθ,
.
Λ̂a,r (t) = −

(
ΓΛu (t) eTp2 (t) PLBν2Ua,rDa

)T
= −DaU

T
a,rB

T
ν2PLep2 (t) uT (t) ΓΛ,

(4.23)

such that the derivative of the Lyapunov function
.
V (t) = −1

2
eTp2 (t) QLep2 (t) is negative

semi-definite. From Theorem 4.8 (Uniform Stability) in [87], it follows that the equilib-
rium (ep2, Θ̃ν , Λ̃a,r) = (0,0,0) is uniformly stable and ep2 (t), Θ̃ν (t), Λ̃a,r (t) ∈ L∞.
Therefore Θ̂ν (t) and Λ̂a,r (t) are bounded.

Subsequently, the goal is to show asymptotic convergence of the estimation error
ep2 (t) to zero based on Barbalat’s Lemma (Lemma B.9). Following the same arguments
as in Section 3.2, it is known that limt→∞

∫ t
τ=0

.
V (ep2 (τ)) dτ exists and is finite. There-

fore, it remains to show that
.
V (ep2 (t)) is a uniform continuous function of t. From

the closed-loop predictor dynamics (4.20), it follows that χ̂ (t) is bounded given that

74



Chapter 4: Adaptive Control Allocation

Virtual Control Law
νd = Krr − Θ̂νω

Predictor
.
x̂p2 =

[
Am21 Am22

]
χ̂− Lep2

+Bν2

(
ν̂ + Θ̂νω

)

ν̂ = Ua,rDaΛ̂a,ru

Plant
.
xp = Apxp + Bνν + Kφφ (xp) + d
ν = BaΛu

Control Allocation
νd = Ua,rDaΛ̂a,ru

Update Law
.

Θ̂ν = −BT
ν2PLep2ω

TΓθ.
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T
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T
ν2PLep2u

TΓΛ
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ep2
+

−

u
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Figure 4.2: Controller Structure - Reduced Order P-ACA

the two inputs r (t) and ep2 (t) are bounded. Hence, xp (t) is bounded, which further
implies that φ (xp (t)) and the regressor vector ω (xp (t) ,φ (xp (t))) are bounded. It fol-
lows that the desired virtual control νd (t) (4.8) and hence the control law u (t) (4.9)
are bounded. The estimation error derivative .

ep2 (t) (4.21) is bounded uniformly in t

for all t ≥ 0. Therefore,
..
V (t) = −eTp2 (t) Q

.
ep2 (t) is also bounded uniformly in t for all

t ≥ 0. Then,
.
V (ep2 (t)) is uniformly continuous for t ≥ 0. Using Lemma B.9 (Barbalat)

it follows that
.
V (ep2 (t))→ 0 and hence ep2 (t)→ 0 for t→∞.

By subtracting the reference model dynamics (3.2) from the closed-loop predictor
dynamics (4.20) it follows that

.
xm (t)−

.
χ̂ (t) = Am (xm (t)− χ̂ (t))−Hep2 (t) .

Because Am is Hurwitz it can be further concluded that the error χ̂ (t) − xm (t) is uni-
formly bounded and (χ̂ (t)− xm (t)) → 0 for t → ∞. Finally, it holds that the tracking
error ec (t) = xp (t) − xm (t) = (xp (t)− χ̂ (t)) + (χ̂ (t)− xm (t)) → 0 for t → ∞. The
presented result is summarized in the next theorem and the structure of the controller
can be seen in Figure 4.2.

Theorem 4.7 (Reduced Order P-ACA) Consider the plant dynamics (4.14), the reference
model (3.2), the reduced order state predictor (4.17), the virtual control law (4.8) and the
update laws (4.23). Furthermore let Assumptions 4.6 (Matching Condition - Reduced Order
P-ACA) and 4.3 (Control Allocation) hold. Then, the equilibrium (ep2, Θ̃ν , Λ̃a,r) = (0,0,0) is
uniformly stable and ep2 (t) , ec (t)→ 0 for t→∞. �

Example 4.3 (Application of Reduced Order P-ACA) In order to illustrate the results in
this section, consider the plant (3.6) given in Example 3.1, insert the virtual control definition
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of Example 4.1 and rearrange the state’s order such that
( .

Φ(t)
.
p(t)

)

︸ ︷︷ ︸
.
xp

=

[
0 1
0 Lp

]

︸ ︷︷ ︸
Ap

(
Φ(t)
p(t)

)

︸ ︷︷ ︸
xp

+

[
0
Lξ

]

︸ ︷︷ ︸
Bν

ν (t) , (4.24a)

ν (t) =
[
1 1

]
︸ ︷︷ ︸

Ba

[
λ1 0
0 λ2

]

︸ ︷︷ ︸
Λ

(
ξ1(t)
ξ2(t)

)

︸ ︷︷ ︸
u

. (4.24b)

This system has the structure of the system (4.14), where xp1 (t) = Φ (t) is the kinematic state
and xp2 (t) = p (t) is the dynamic state. The dynamic matrix partitions are then Ap11 = 0,
Ap12 = 1, Ap21 = 0 and Ap22 = Lp. The input submatrix is Bν2 = Lξ. The reference model
(3.7) is rearranged in a similar manner to get

( .
Φm(t)
.
pm(t)

)

︸ ︷︷ ︸
xm

=

[
0 1
−kp −kd

]

︸ ︷︷ ︸
Am

(
Φm(t)
pm(t)

)

︸ ︷︷ ︸
xm

+

[
0
kp

]

︸ ︷︷ ︸
Bm

Φr(t)︸ ︷︷ ︸
r

.

In order to apply PMRAC, the plant dynamics (4.24) are reparameterized to the form (4.15).
In this example, there is no constant disturbance and no nonlinearity in the plant dynamics.
Hence, the regressor vector isω (t) = xp (t) ∈ R2 and the unknown parameters are Θν ∈ R2×2.
The plant is then

( .
Φ(t)
.
p(t)

)
= Am

(
Φ(t)
p(t)

)
+ Bν (ν (t) + Θνxp) ,

ν (t) =
√

2Λa,ru (t) .

Here, the control efficiency matrix has been reduced to Λa,r = VT
a,rΛ as in Example 4.1. The

matching condition (4.16) translates to
[

0 0
kp Lp + kd

]

︸ ︷︷ ︸
Ap−Am

=

[
0
Lξ

]

︸ ︷︷ ︸
Bν

Θν .

The reduced order state predictor (4.17) is then given as
.
p̂(t) =

[
−kp −kd

](Φ(t)
p̂(t)

)
+ Lξ

(
ν̂ (t) + Θ̂ν (t) xp (t)

)
− L · ep2 (t) ,

ν̂ (t) =
√

2Λ̂a,r (t) u (t) ,

(4.25)

with the state estimate p̂ (t) ∈ R, the parameter estimates Λ̂a,r (t) , Θ̂ν (t) ∈ R1×2, the identifi-
cation error ep2 (t) = p̂ (t)−p (t) and the Luenberger gain L. Compared to P-ACA as presented
in Example 4.1, this predictor has order 1 instead of 2 because it only considers the differential
equations which have uncertain parameters. The reduced order predictor is the one that is im-
plemented but for analysis and derivation of the control law, the following full state predictor
(4.19) is used

( .
Φ(t)
.
p̂(t)

)

︸ ︷︷ ︸
.
χ̂

=

[
0 1
−kp −kd

]

︸ ︷︷ ︸
Am

(
Φ(t)
p̂(t)

)

︸ ︷︷ ︸
χ̂

+Bν

(
ν̂ (t) + Θ̂ν (t) xp (t)

)
−
[

1
L

]
ep2 (t) ,

ν̂ (t) =
√

2Λ̂a,r (t) u (t) .
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The virtual control law (4.8) is the same as in Example 4.1

νd (t) =
kp

Lξ︸︷︷︸
Kr

r (t)− Θ̂ν (t) xp (t) . (4.26)

and leads to the following closed-loop predictor dynamics
( .

Φ(t)
.
p̂(t)

)
=

[
0 1
−kp −kd

](
Φ(t)
p̂(t)

)
+

[
0
kp

]
r −

[
1
L

]
ep2 (t) ,

which correspond to the reference model dynamics (3.7) plus an identification error disturbance
term. The update laws (4.23) are given by

.
Θ̂ν (t) = −LξPLep,2 (t) xTp (t) Γθ,
.
Λ̂a,r (t) = −

√
2LξPLep,2 (t) uT (t) ΓΛ,

(4.27)

where PL > 0 ∈ R satisfies Lyapunov equation

PL (−kd− L) + (−kd− L)PL = −QL

for a positive QL > 0 ∈ R. For implementation, the predictor (4.25), the control law (4.26)
and the update laws (4.27) are used. Using Theorem 4.7 (Reduced Order P-ACA), it is proven
that the equilibrium (ep2, Θ̂ν , Λ̂a,r) = (0,0,0) is uniformly stable and ep2 (t) , ec (t) → 0 for
t→∞. The tracking error is defined as ec (t) = xm (t)−xp (t). The step that is missing here is
the control allocation design which selects the inputs u (t) such that νd (t) =

√
2Λ̂a,r (t) u (t),

i.e. such that Assumption 4.3 (Control Allocation) holds.

In this section Reduced Order P-ACA has been introduced an. The main prop-
erty of this approach is that the state predictor has a reduced order restricted to the
dynamic states, i.e. considering only the differential equations containing uncertain
parameters. Compared to P-ACA, the update laws have changed but the virtual con-
trol law and the control allocation are the same. Table 4.1 shows a comparison between
P-ACA and Reduced Order P-ACA. The main advantage refers to the implemented al-
gorithms at the expense of a more elaborated stability assessment. In the next chapter,
control allocation approaches that comply with Assumption 4.3 (Control Allocation)
are introduced.
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4.2 Reduced Order P-ACA

P-ACA

Plant

.
xp (t) = Apxp (t) + Bνν (t) + Kφφ (xp (t)) + d

ν (t) = BaΛu (t)
(4.1)

Reference Model
.
xm (t) = Amxm (t) + Bmr (t) (3.2)

Predictor Model

.
x̂p (t) = Amx̂p (t) + Bν

(
ν̂ (t) + Θ̂ν (t)ω (t)

)

ν̂ (t) = Ua,rDaΛ̂a,r (t) u (t)
(4.7)

Virtual Control Law νd (t) = Krr (t)− Θ̂ν (t)ω (t) (4.8)

Matching Cond. Y :=
[
Ap −Am, Kφ, d

]
= BνΘν (4.6)

Error Dynamics

.
ep (t) = Amep (t) + Bν

(
ν̃ (t) + Θ̃ν (t)ω (t)

)

ν̃ (t) = Ua,rDaΛ̃a,r (t) u (t)
(4.11)

Update Laws

.
Θ̂ν (t) = −BT

ν Pep (t)ωT (t) Γθ.
Λ̂a,r (t) = −DaU

T
a,rB

T
ν Pep (t) uT (t) ΓΛ

(4.13)

Control Authority Control Allocation Asm. 4.3

Reduced-Order P-ACA

Plant

.
xp (t) = Apxp (t) +

[
0

Bν2

]
ν (t)

+

[
0

Kφ2

]
φ (xp (t)) +

[
0

d2

]

ν (t) = BaΛu (t)

(4.14)

Reference Model
.
xm (t) = Amxm (t) + Bmr (t) (3.2)

Reduced Predictor
Model

.
x̂p2 (t) =

[
Am21 Am22

]
χ̂ (t)− Lep2 (t)

+Bν2

(
ν̂ (t) + Θ̂ν (t)ω (t)

)

ν̂ (t) = Ua,rDaΛ̂a,r (t) u (t)

(4.17)

Virtual Control Law νd (t) = Krr (t)− Θ̂ν (t)ω (t) (4.8)

Matching Cond. Y =

[
Ap −Am,

[
0

Kφ2

]
,

[
0

d2

]]
=

[
0

Bν2

]
Θν (4.16)

Error Dynamics

.
ep2 (t) = (Am22 − L) ep2 (t)

+Bν2

(
ν̃ (t) + Θ̃ν (t)ω (t)

)

ν̃ (t) = Ua,rDaΛ̃a,r (t) u (t)

(4.21)

Update Laws

.
Θ̂ν (t) = −BT

ν2PLep2 (t)ωT (t) Γθ.
Λ̂a,r (t) = −DaU

T
a,rB

T
ν2PLep2 (t) uT (t) ΓΛ

(4.23)

Control Authority Control Allocation Asm. 4.3

Table 4.1: Comparison between P-ACA and Reduced Order P-ACA
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4.3 Prioritizing Control Allocation Strategy (PRIO

CA)

Given the framework presented in the last two sections, the remaining task to solve is
the control allocation of the desired virtual controls νd (t) to the actuator inputs u (t)
which corresponds to Assumption 4.3 (Control Allocation). The main design drivers
correspond to Table 1.1. The actuator model (4.9) is linear, static and time-varying and
input magnitude limits (4.3) need to be taken into account. The main objectives are
achieving attainable virtual controls and handling unattainable ones. Finally, the max-
imum execution time needs to be taken into account to allow for running the algorithm
in real time.

4.3.1 Motivation

The presented algorithm corresponds to a prioritizing control allocation strategy which
is motivated from the application scenario of a VTOL aircraft and specifically the hex-
acopter system described in Chapter 2 (Multirotor Dynamics Model). The main rea-
son is that the prioritizing control allocation provides means of handling unattainable
desired virtual controls νd (t). This is important since for the two hexacopter config-
urations presented in Chapter 2 there is always a single failure case that leads to a
degraded control situation. The second reason is that the hexacopter system has an in-
herent decoupling of position and yaw motions as derived in Section 2.2.5. Therefore,
a clear prioritization of virtual controls can be done from high to low as:

� Roll and pitch moments L/M ,

� thrust T ,

� and yaw moment N .

Here, the roll and pitch moments L/M have been prioritized over the thrust T since
the direction of the exerted propulsion force is more important than its magnitude. If
the direction of the thrust vector −zB (t) cannot be tracked, the magnitude T does not
provide meaningful means of control.

Since the presented algorithm can be used in a context different from adaptive con-
trol, the following task formulation is introduced. The connection between the Control
Task 4.2 (Prioritizing Control Allocation) and Assumption 4.3 (Control Allocation) is
described in Section 4.3.3.

Control Task 4.2 (Prioritizing Control Allocation) Given a desired virtual control input
νd (t) ∈ Rr, compute the control inputs u (Bνu(t),νd(t)) ∈ Rm such that

νd (t) = Bνu (t) u (t) (4.28)

with Bνu (t) ∈ Rr×m and such that the input lies within the input set U ⊂ Rm defined as

U := {u ∈ Rm | −1 ≤ ui ≤ 1, ∀i = 1...m}, (4.29)

where ui is the i-th element of u (t). The control input set U is an m-dimensional hypercube.
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4.3 Prioritizing Control Allocation Strategy (PRIO CA)

If the desired virtual control input νd (t) is unattainable, prioritize the constraints

νd,j (t) = Bνu,rj (t) u (t) (4.30)

according to a selected virtual control order. Here, Bνu,rj (t) ∈ R1×m is the j-th row of Bνu (t)
and νd,j (t) ∈ R is the j-th element of νd (t).

The control allocation presented in this section is based on the knowledge of the
SVD decomposition of the matrix Buν(t) and follows a prioritization of virtual control
inputs. The main idea is to allocate the virtual controls sequentially from the highest
to the lowest priority while always maintaining an attainable input command, that is
while complying with input constraints. The SVD is computed using an SVD update
algorithm originally developed in [69] to deal with the time-varying input matrix and
maintain the real-time properties.

4.3.2 Input Normalization

In the Control Task 4.2 it has been assumed that the control inputs u(t) ∈ Rm are
normalized such that (4.29) holds. In general, the control inputs u(t) ∈ Rm are not
normalized but are limited by

ui,min ≤ ui(t) ≤ ui,max, for i = 1 . . .m,

where ui,min, ui,max ∈ R are the minimum and maximum limit of each element of u(t).
These inputs u(t) can always be transformed such that (4.29) holds through the follow-
ing linear transformation

ui(t) = 2 · ui(t)− ui,min
ui,max − ui,min

− 1 = ui,off +Mi · ui(t), (4.31)

with the offset ui,off ∈ R and the slope Mi ∈ R defined as

ui,off :=
−ui,max − ui,min
ui,max − ui,min

, Mi :=
2

ui,max − ui,min
.

Similarly, the virtual controls ν(t) and the input matrix Bνu(t) also need to be trans-
formed. The input equation

ν(t) = Bνu(t) · u(t) (4.32)

can be transformed by using the vector of stacked offsets uoff ∈ Rm and the diagonal
matrix M ∈ Rm×m defined as

uoff =



u1,off

...
um,off


 , M =



M1 0

. . .
0 Mm


 .

By inverting (4.31) u = M−1 · (u(t)− uoff ) and inserting it into (4.32), it leads to

ν(t) = Bνu(t) ·M−1 · (u(t)− uoff )

and hence the representation (4.28) follows from

Bνu(t) := Bνu(t) ·M−1, (4.33a)

ν(t) := ν(t) + Bνu(t) · uoff . (4.33b)
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Example 4.4 (Hexacopter Input Normalization) For the hexacopter system with actuator
configuration 1 as in Figure 2.1a, the nominal control input matrix Bνu = Ba is given by (2.9)
and by the parameters in Table 2.3. By setting

ui,min = (ωP,min)
2 , ui,max = (ωP,max)

2 , for i = 1 . . . 6,

the inputs can be normalized using the offset ui,off = −1.0304 and the slopeMi = 1.7452·10−6

for i = 1 . . . 6 computed as in (4.31).
Considering the estimated actuator control effectiveness matrix Λ̂ (t) ∈ R6×6, the input

matrix Bνu (t) is computed as

Bνu (t) = diag(sv) ·Ba ·M−1 · Λ̂ (t) .

For numerical reasons a scaling/normalization of the virtual controls is done using the inverse
of the maximum achievable values of the virtual controls

sv =
(
24.637−1, 1.7393−1, 1.5063−1, 0.4423−1

)T
.

This leads to the following normalized input matrix

Bνu (t) =




0.0821 0.0821 0.0821 0.0821 0.0821 0.0821
−0.1250 −0.2500 −0.1250 0.1250 0.2500 0.1250
0.2500 0.0000 −0.2500 −0.2500 −0.0000 0.2500
−0.1667 0.1667 −0.1667 0.1667 −0.1667 0.1667


 · Λ̂ (t)

and the virtual control

ν(t) = diag(sv) · ν(t) + Bνu (t) · uoff . (4.34)

4.3.3 Relation to Adaptive Control

In this thesis, the adaptive control approaches from Sections 4.1 (Predictor-Based Adap-
tive Control Allocation) and 4.2 (Reduced Order P-ACA) are combined with the control
allocation approach from this section. They relate directly through the Assumption 4.3
(Control Allocation) and the Control Task 4.2 (Prioritizing Control Allocation). The
nomenclature is not exactly the same mainly for two reasons. On the one hand, the
Control Task 4.2 is not the only one way of solving the originally stated Assumption
4.3 . On the other hand, the Control Task 4.2 does not necessarily need to be integrated
within an adaptive control concept. It can be generally used for linear control alloca-
tion problem solving. Lastly, the selected nomenclature serves the clear explanation of
each of the approaches.

The relation between the two approaches is given by

Bνu (t) = BaΛ̂ (t) = Ua,rDaΛ̂a,r (t) ,

ui,min = −1, for i = 1 . . .m,

ui,max = 1, for i = 1 . . .m,

where the normalization presented in Section 4.3.2 is used for matching the input lim-
its. Here, the SVD of Ba = Ua,rDaV

T
a,r (4.4) and the definition of the reduced effec-

tiveness matrix Λa,r = VT
a,rΛ (4.5) have been used. Note that the normalization input

mapping is constant for constant input limits and therefore it remains constant for
varying estimate Λ̂(t). Furthermore, note that rank (Ba) = r by definition of the plant
(4.1) and that therefore rank Bνu (t) ≤ r.
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4.3.4 Main Algorithm

In this section the time dependency is dropped for the sake of clarity. Furthermore, the
following two assumptions are made.

Assumption 4.8 (Input Matrix Rank) The matrix Bνu has a full row rank, i.e. it has a rank
of r.

Assumption 4.9 (Input Matrix SVD) The singular value decomposition (SVD) of the ma-
trix Bνu ∈ Rr×m is known and it is given by

Bνu = Ub ·Σb ·VT
b , (4.35)

where Ub ∈ Rr×r,Σb ∈ Rr×m,Vb ∈ Rm×m. Ub,Vb are orthogonal matrices, i.e. UbU
T
b = I

and VbV
T
b = I. Σb is a rectangular diagonal matrix with non-negative entries on the diagonal

which can be written as
Σb =

[
Db 0r×m−r

]
.

Db ∈ Rr×r is a diagonal positive definite matrix given Assumption 4.8. The diagonal elements
are the singular values of Bνu and have a decreasing order. Taking this structure into account,
it is possible to partition Vb = [Vb,r,Vb,n], such that Vb,r ∈ Rm×r and Vb,n ∈ Rm×(m−r). The
matrix Bνu can be alternatively written as

Bνu = Ub ·Db ·VT
b,r. (4.36)

Assumption 4.8 (Input Matrix Rank) is not a hard restriction but it facilitates the
derivation of the control allocation algorithm and fully covers the single failure case
for a system with redundant actuators. In Section 4.4, a SVD update algorithm is pre-
sented such that Assumption 4.9 (Input Matrix SVD) holds within the adaptive control
concept.

If a solution of Control Task 4.2 (Prioritizing Control Allocation) exists, it is always
a subset of the solution of its unconstrained version. The solution set of the uncon-
strained linear control allocation problem can be characterized by the SVD and the
Moore-Penrose inverse of the matrix Buν (4.35). Assumption 4.8 (Input Matrix Rank),
the Moore-Penrose inverse of the matrix Buν is given by

B+
νu = Vb,r ·D−1

b ·UT
b

Given Assumptions 4.9 (Input Matrix SVD) and 4.8 (Input Matrix Rank), every solution
to the unconstrained linear control allocation problem (4.28) has m degrees of freedom
and can be written as [14, 59]

u = B+
νu · ν + Vb,n ·w =

r∑

i=1

pi · νi +
m−r∑

i=1

vb,n,i · wi, (4.37)

where w ∈ Rm−r are the null space variables, pi ∈ Rm is the i-th column of the pseudo
inverse B+

νu and vb,n,i ∈ Rm is the i-th column of the null space matrix Vb,n. An im-
portant characteristic is that (4.37) is a one-to-one mapping of the input space. Hence,
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given the virtual control vector ν and the null space variable w, the input vector u is
uniquely defined and vice versa. This follows from the fact that the linear mapping

(
ν
w

)
= T · u, T =

[
Ub ·Db ·VT

b,r

VT
b,n

]
∈ Rm×m,

has an inverse given by

T−1 =
[
Vb,r ·D−1

b ·UT
b , Vb,n

]
∈ Rm×m.

The detailed derivation is given in Lemma B.11 (Transformation Matrix Inverse) in
Appendix B. If Assumption 4.8 (Input Matrix Rank) does not hold, an analog repre-
sentation of (4.37) is needed and can be found by adjusting the dimensions of ν and w
to the rank of the input matrix.

The prioritizing control allocation (PRIO CA) utilizes the known directions pi for
i = 1 . . . r of the virtual controls and the directions vn,i for i = 1 . . . (m − r) of the
null space to simultaneously achieve the desired virtual controls and to handle con-
trol input saturation. The algorithm consists of a sequence of updates to a previously
computed solution uk, starting at u0 = 0 ∈ U , given by

uk+1 = uk + ck ·∆k, (4.38)

where k ∈ N0 is the update count, ck ∈ Rm is the update direction and ∆k ≥ 0 ∈ R
is the step length. The main idea is to sequentially reduce the difference of the current
virtual controls νk := Bνu · uk and the desired virtual controls νd, defined as ν̃k =
νd − νk, while maintaining the control input u within its constraints. This is achieved
via a special selection of ck and ∆k.

In the unconstrained case, the selection of the update direction ck and the step
length ∆k is fairly simple. They can for example be chosen as

ck = sgn (νd,k) · pk, (4.39a)

∆k = |νd,k| , (4.39b)

for k = 1 . . . r and u0 = 0. In this case the virtual control error ν̃ is driven to zero by
changing one virtual control per iteration. This leads to the pseudo-inverse solution
u = B+

νu · νd after r updates.
The constrained case mainly implies two changes to the strategy in order to avoid

input commands outside their constraints. The step length ∆k is limited from above
and the update direction ck needs to be changed every time a control input hits a sat-
uration limit. The update direction ck is chosen such that the virtual control can be
improved and the saturated inputs do not go outside the boundaries. This concept is
depicted in Figure 4.3 using the matrix Bνu = [1, 0.3] as in the following example.

Example 4.5 (Simple Input Matrix) Consider the simple input matrix Bνu = [1, 0.3]. From
its dimensions, it is known that 2 inputs are available and that the null space has the dimension
1. Its pseudo inverse is given by

B+
νu =

[
0.92
0.28

]
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Figure 4.3: Prioritizing Control Allocation (PRIO CA) - Presentation of the Main Idea
using Bνu = [1, 0.3] from Example 4.5

and its null space is spanned by the vector

vb,n =

[
−0.29
0.96

]
.

Every input is fully defined by the equation (4.37)

u = p1 · ν1 + vb,n · w1,

where p1 = B+
νu and w1 ∈ R is the null space variable. The allocation process for νd = 1.2 is

depicted in Figure 4.3. The specific steps are described in the subsequent sections.

In order to facilitate the description of the algorithm the following definitions are
introduced. Without loss of generality, assume that the virtual controls are ordered
from highest to lowest priority, i.e. ν1 has the highest and νr has the lowest priority.
The set of inputs that are saturated is defined as

S := {i ∈ N | |ui| ≥ 1,∀i = 1, . . . ,m}, (4.40)

and the complementary set is defined as

F := {i ∈ N | |ui| < 1,∀i = 1, . . . ,m}. (4.41)

By stacking control inputs corresponding to S and F into a vector form, the saturated
inputs us and the free control inputs uf are defined:

us = col(ui) ∈ Rs, i ∈ S,
uf = col(ui) ∈ Rf , i ∈ F ,

where it holds that m = s + f . The function col(·) stacks the scalars into a column
vector.
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Update Direction ck Computation

The algorithm starts from the attainable solution u0 = 0 corresponding to the virtual
control error ν̃0 = νd and tries to allocate the desired value of the virtual control with
highest priority νd,j . The counter j > 0 ∈ R is used for selecting the current virtual
control with the highest priority, i.e. j = 1 in the first step. In the unconstrained
case, the update desired update direction at any given step of the algorithm is given
by (4.39a). If saturation occurs, the virtual control prioritization comes into play. The
chosen update direction ck must meet two characteristics. One is that it reduces the
error |ν̃k,j| and the other one is that the elements corresponding to saturated inputs do
not go outside the limits, that is

ck,i · sgn (ui) ≤ 0, ∀i ∈ S. (4.42)

Considering the form of the control allocation solution (4.37), the directions pi with
i = j + 1 . . . r and vn,i with i = 1 . . .m − r can be used in order to keep the control
inputs within their bounds. Hence, the corresponding directions are combined into
the matrix

Gj =
[
pj+1, . . . , pr, vb,n,1, . . . , vb,n,m−r

]
∈ Rm×(m−j) (4.43)

and the update direction (4.39a) is extended to the form

ck = sgn (ν̃k,j) · pj + Gj · hk. (4.44)

Here, hk ∈ Rm−j is a help variable at the k-th iteration of the algorithm whose di-
mension depends on the currently improving virtual control j. This help variable hk
corresponds to scaled changes to be made to the vector

(
νj+1, . . . , νr, w1, . . . , wm−r

)T ∈ Rm−j.

The strategy is to use the virtual controls with less priority and null space variables
as degrees of freedom in order to generate an update direction ck that maintains the
control inputs within their boundaries. In the multirotor example, this means that in
order to allocate roll and pitch moments L/M while maintaining the inputs within
their boundaries, the thrust T , the yaw moment N and the null space variables are
utilized as degrees of freedom. Furthermore, once allocated, roll and pitch moments
L/M will not be changed during the allocation of the thrust T or the yaw moment N .
In Figure 4.3 corresponding to Example 4.5 this means that in order to allocate ν1 the
null space variable w1 is used.

First, consider only the saturated input subsystem

ck,s = sgn (ν̃k,j) · pj,s + Gj,s · hk, (4.45)

where ck,s, pj,s ∈ Rs and Gj,s ∈ Rs×(m−j) correspond to the rows of the saturated inputs
i ∈ S of ck, pj and Gj . In order to avoid input saturation, the following conditions must
hold

sgn (ui) · ck,i ≤ 0, ∀i ∈ S. (4.46)

Following the ideas presented in [142], hk is selected such that ck,s = 0 as

hk = sgn (ν̃k,j) ·G+
j,s · (−pj,s) . (4.47)
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In the case that Gj,s has a full row rank, this computation is possible as long as s ≤
(m− j), i.e. as long as the number of saturated inputs s is not greater than the degrees
of freedom (m−j). Given the prioritization strategy, this leads to a reducing number of
permitted saturated inputs for low priority virtual controls. For the last virtual control
to be allocated j = r, the matrix Gr = Vn and it means that only the null space degrees
of freedom m − r can be used to avoid unachievable control inputs. The case of Gj,s

without a full row rank is discussed in the next section. Finally, this selection of hk
(4.47) inserted in (4.44) leads to an update

ck = sgn (ν̃k,j) · pj + sgn (ν̃k,j) ·Gj ·G+
j,s · (−pj,s) . (4.48)

Using this update direction, it is possible to further reduce the error ν̃k,j while remain-
ing within the input boundaries through a variation of less important virtual controls
and null space variables. An example of this is depicted in Figure 4.3 where in the
second update the null space variable w1 is used to compute a valid update direction
c2.

Step Length ∆k Computation

Once the update direction ck has been selected, a maximum step length ∆k,max is com-
puted such that it corresponds the smallest ∆k that leads to a change of the sets S
(4.40) and F (4.41). For each element i of the input vector, such a step candidate can
be computed by inserting the limit uk+1 = 1 · sgn (ck,i) into (4.38)

1 · sgn (ck,i) = uk,i + ck,i ·∆k,i, (4.49a)

∆k,i =
sgn (ck,i)− uk,i

ck,i
. (4.49b)

Here, ck,i, uk,i ∈ R are the i-th elements of ck and uk respectively and ∆k,i is the smallest
step length that leads to a saturation of the i-th input, i.e. either ui = 1 or ui = −1.

To robustly compute the step length (4.49), only the inputs corresponding to the set
D are checked. The set D is defined as

D :=

{
i ∈ N

∣∣∣∣
i ∈ F or
(i ∈ S and ck,i · ui < 0)

, |ck,i| ≥ cmin,∀i = 1, . . . ,m

}
, (4.50)

The limit |ck,i| ≥ cmin has numerical reasons and in our application it is selected as
cmin = 10−5. If ck,i ≈ 0, (4.49) cannot be computed. Nevertheless, in this case also ∆k,i

does not have a limit for this specific i. The condition i ∈ F means that the inputs that
are not saturated are tested. From the saturated inputs i ∈ S, only the ones that are
updated towards the other limit ck,i · ui < 0 are taken into account. The case i ∈ S
and ck,i · ui > 0, i.e. an increase of magnitude of a saturated input, is excluded by the
correct selection of the update vector ck as will be derived in the following. This case
is excluded fromD since ck,i ·ui > 0 can happen due to limited numerical accuracy and
would only lead to an artificial upper limit of ∆k.

The maximum step length corresponds to

∆k,max = min
i∈D

∆k,i (4.51)
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and the step length is finally selected as

∆k = min (∆k,max, |ν̃k,j|) . (4.52)

In other words, the inputs are updated in a direction ck (4.39a) that reduces the differ-
ence ν̃k,j with two possible results. Either ν̃k+1,j = 0 for ∆k = |ν̃k,j|, or for ∆k = ∆k,max

at least one input saturates before reaching that point and an error remains |ν̃k+1,j| > 0.

ν̃k+1,j = ν̃k,j − sgn (ν̃k,j) ·∆k.

If no input saturation occurs, this process can be repeated for all virtual controls and
the result would lead to u = B+

νu · νd.
The presented process can be repeated until all virtual controls have been allocated

or the number of saturated inputs s exceeds the number degrees of freedom m − j.
The control allocation algorithm is depicted in Figure 4.4. The algorithm starts by
setting u0 = 0, ν̃0 = νd, k = 1 and j = 1. The direction of the current virtual control
pj (j-th column of B+

νu) and the directions of the help variables Gj (4.43) are then
updated. The sets S (4.40) and F (4.41) are identified and based on them the update
direction ck (4.48) is computed. If no update direction ck can be found, the next virtual
control j + 1 is allocated, otherwise the step length is calculated from (4.49), (4.51)
and (4.52). Finally, the input uk is updated (4.38) and the current virtual control error
ν̃k+1 = νd − Bνu · uk+1 is computed. Note that if an update direction ck is not found,
there is no update, otherwise the error |ν̃k,j| is always reduced.

The algorithm has two stop conditions: either j > r or s > m − j. In order to get
an impression of the steps needed for the algorithm to finish, Figure 4.5 depicts the
update process using the hexacopter example. One axis indicates the virtual control j
that is being allocated, which are 4 in total, and the other axis shows how many inputs
are saturated s, with a maximum of 6. Both stop conditions are marked as thick lines
within the figure. In every step of the algorithm, an update vector ck is searched. If it
is not found, then the next virtual control is allocated, i.e. j = j+ 1. If an update vector
ck is found, the input update (4.38) either leads to |ν̃k+1,j| = 0 and hence to j = j + 1
or input saturation occurs and s increases. Hence, with every iteration either j or s
increase and the stop condition s > m − j gets a step closer. If j increases, the stop
condition j > r also gets closer. The algorithm always starts in the left upper corner of
the figure and from there it can only move downwards (larger j) and/or to the right
(larger s). Downwards only a single step per iteration is possible while to the right s
can increase with larger values. In the worst case, m update steps are needed for the
algorithm to stop and return a solution. In the best case r steps are needed.

In Figure 4.5 two possible runs of the algorithm are shown and the following pri-
oritization is chosen: ν1 = L, ν2 = M , ν3 = T and ν4 = N . The red sequence
shows an option where five updates are done and the algorithm stops due to con-
dition j > r. The gray sequence shows an option where ν3 can not be allocated because
s = 4 > m − j = 6 − 3 = 3 in the last step. Furthermore, in this sequence the allo-
cation of ν4 does not take place. These two examples of the control allocation process
are subsequently analyzed. One of them corresponds to an attainable desired virtual
control νd for a nominal hexacopter configuration and the other one to an unattainable
desired virtual control νd for a faulty hexacopter configuration.

The control allocation presented in this section is referred to Nominal Prioritizing
Control Allocation (NOM PRIO CA) to differentiate it from its embedded software ver-
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update pj (j-th column of B+
νu) and

Gj = (pj+1, . . . ,pr,vn,1, . . . ,vn,m−r)T (4.43)

compute sets S (4.40) and F (4.41)

compute update direction
ck = sgn (ν̃k,j) ·

(
pj −Gj ·G+

j,s · pj,s
)

(4.48)

compute step length
∆k = min (∆k,max, |ν̃k,j|) (4.52)

uk+1 = uk + ck ·∆k (4.38)

ν̃k+1 = νd −Bνu · uk+1

k = k + 1

|ν̃k,j| = 0?

j = j + 1

u = uk

u0 = 0, ν̃0 = νd, k = 1, j = 1

s > m− j

yes

no

j > r
j ≤ r

no ck found

Figure 4.4: Flow Chart of Nominal Prioritized Control Allocation (NOM PRIO CA)

sion which includes some modifications. In order assess the performance, the Pseudo-
Inverse Control Allocation (PINV CA) is introduced as an alternative approach.

Example 4.6 (Pseudo-Inverse Control Allocation (PINV CA)) Given its popularity and
its simplicity, the Pseudo-Inverse Control Allocation (PINV CA) is used for performance com-
parison. Given the Control Task 4.2 (Prioritizing Control Allocation), the PINV CA consists
of two steps:

u0 = B+
νu · νd (4.53a)

ui = max(min(u0,i, 1),−1), ∀i. (4.53b)

The first step (4.53a) computes the solution using the pseudo inverse B+
νu such that νd =

Bνu · u0. The second step (4.53b) limits the output to [−1, 1]. An important characteristic
of this control allocation solution is that it corresponds to the minimum 2-norm solution if no
input saturates. If in the first step an input saturates |u0,i| > 1, it leads to an error in the
allocated virtual controls. Furthermore, this control allocation does not consider the virtual
control prioritization.

Example 4.7 (Control Allocation of an Attainable Virtual Control) Consider the hexa-
copter system with actuator configuration 1 as in Figure 2.1a corresponding to the Example 4.4
(Hexacopter Input Normalization). Consider its normalized input matrix Bνu as in (4.4) with
the control effectiveness matrix Λ = Λ̂ = I. The control allocation process can be analyzed
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Virtual Control

Step

Saturated inputs

s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = m = 6

ν1 = L

ν2 = M

ν3 = T

νr = ν4 = N

Figure 4.5: Control Allocation Process - Iteration Overview

by taking a look at the virtual controls ν and the null space variables w in Figure 4.6 and the
control inputs u in Figure 4.7. In this example, the desired virtual control νd is attainable
and depicted in Figure 4.6. For comparison purposes, the process of the Nominal Prioritizing
Control Allocation (NOM PRIO CA) is displayed along with the results the Pseudo-Inverse
Control Allocation (PINV CA) implemented as in Example 4.6. The NOM PRIO CA algo-
rithm allocates ν1 and ν2 in the first and second iteration respectively. In the third iteration, ν̃3

is improved but before it reaches zero, the input u3 saturates. Hence, in iteration 4, the variables
ν4, w1 and w2 are used to find the next update direction that drives ν̃3 to zero. In the last iter-
ation ν4 is allocated using w1 and w2 in order to maintain the inputs within their boundaries.
This example corresponds to the red sequence in Figure 4.5.

The final results can be compared in the virtual control space plot in Figure 4.8. Here, the
desired virtual control νd and the respective final results from the NOM PRIO CA and the
PINV CA are depicted after inverting the transformation (4.34) from Example 4.4 (Hexacopter
Input Normalization). Furthermore, in each of the two 2-dimensional views, cuts of the attain-
able control set (ACS) as presented in Chapter 2 are plotted. The 4-dimensional ACS depends
only on the input matrix Bνu and the limits of the control inputs. On the other hand, the 2-
dimensional cuts depend on the virtual controls computed by the control allocation approaches.
Each 2-dimensional ACS cut corresponds to the values of the virtual controls that are not dis-
played in the plot. For example the ACS NOM PRIO in the T /N - plot corresponds to the cut
of the 4-dimensional ACS at the values of L and M achieved by the NOM PRIO CA. Hence,
it can be interpreted as the set of possible virtual controls T and N corresponding to the fixed
values of L and M . This holds analogously for the ACS cuts in the L/M plane and the ACS
cuts corresponding to the PINV CA.

In the presented case, it can be seen that NOM PRIO CA achieves the desired virtual con-
trol νd and that a small error is present if the PINV CA is used. This is due to input saturation.
Because the virtual controls of the two control allocations are slightly different, the correspond-
ing ACS cuts exhibit also some differences. From this example, it can be seen that the NOM
PRIO CA is able to improve the performance compared to the PINV CA in cases where input
saturation occurs, even if no faults are present in the system.
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Figure 4.6: Control Allocation Process - Attainable Solution: virtual controls ν and null
space variables w corresponding to the Nominal Prioritizing Control Allocation (NOM
PRIO CA) and the Pseudo-Inverse Control Allocation (PINV CA)
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Figure 4.7: Control Allocation Process - Attainable Solution: control inputs u correspond-
ing to the Nominal Prioritizing Control Allocation (NOM PRIO CA) and the Pseudo-
Inverse Control Allocation (PINV CA)
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Figure 4.8: Control Allocation Process - Attainable Solution: virtual control space cor-
responding to the Nominal Prioritizing Control Allocation (NOM PRIO CA) and the
Pseudo-Inverse Control Allocation (PINV CA)

Example 4.8 (Control Allocation during an Actuator Fault Case) The studied system is
hexacopter with actuator configuration 1 as in Figure 2.1a corresponding to the Example 4.4
(Hexacopter Input Normalization). Consider its normalized input matrix Bνu as in (4.4) with
the control effectiveness matrix

Λ = Λ̂ = diag([1, 1, 0.5, 1, 1, 1]).

The third actuator has a fault and its effectiveness is given by λ3 = λ̂3 = 0.5. The virtual
controls ν and the null space variables w are depicted in Figure 4.10 and the control inputs u
in Figure 4.11. The desired virtual control νd is unattainable in this case and depicted in Figure
4.10. For comparison purposes, the process of the Nominal Prioritizing Control Allocation
(NOM PRIO CA) is displayed along with the results the Pseudo-Inverse Control Allocation
(PINV CA) implemented as in Example 4.6. The NOM PRIO CA algorithm allocates ν1 in
the first iteration. In the second iteration ν̃2 is improved but before it reaches zero, the input
u6 saturates. Hence, in the third iteration, the variables ν3, ν4, w1 and w2 are used to find the
next update direction and ν̃2 is driven to zero. In the iterations 4 to 6, the error ν̃3 is improved
but it never reaches zero. The reason is that the inputs u3, u4 and u2 saturate one per iteration.
Hence, after iteration 6 the number of saturated inputs is s = 4 and no more updates are made.
This example corresponds to the gray sequence in Figure 4.5.

The final results can be compared in the virtual control space plot in Figure 4.8. Here, the
desired virtual control νd and the respective final results from the NOM PRIO CA and the
PINV CA are depicted after inverting the transformation (4.34) from Example 4.4 (Hexacopter
Input Normalization). Furthermore, in each of the two 2-dimensional views, cuts of the at-
tainable control set (ACS) are plotted as explained in Example 4.7 (Control Allocation of an
Attainable Virtual Control). Because the desired virtual control νd is unattainable, it can be
seen that both NOM PRIO CA and PINV CA show virtual control errors. In the case of the
PINV CA small errors in ν3 and ν4 and larger errors in ν1 and ν2 arise. In the PINV CA, there
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Figure 4.9: Control Allocation Process - Fault Case λ3 = 0.5: virtual control space
corresponding to the Prioritizing Control Allocation (PRIO CA) and the Pseudo-Inverse
Control Allocation (PINV CA)

is no virtual control priority and hence a trade-off is not considered. In contrast, in the case of
the NOM PRIO CA, the virtual control errors with higher priority are driven to zero, i.e. ν1

and ν2. This is achieved at the cost of a considerably larger error in the low priority virtual con-
trols ν3 and ν4 as compared with the PINV CA. The ACS cuts further show that this trade-off
is not an artificial characteristic of the presented algorithms but rather a physical limitation of
the system. Specifically, it can be seen in the T /N plane that for the given desired L and M
values (corresponding to NOM PRIO CA), the NOM PRIO CA computes the best possible T
and N within the ACS. The same holds for the PINV CA solution but with the use of different
values for L and M . This example shows the characteristic features of the NOM PRIO CA.
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Figure 4.10: Control Allocation Process - Fault Case λ3 = 0.5: virtual controls ν and null
space variables w corresponding to the Nominal Prioritizing Control Allocation (NOM
PRIO CA) and the Pseudo-Inverse Control Allocation (PINV CA)
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Figure 4.11: Control Allocation Process - Fault Case λ3 = 0.5: control inputs u cor-
responding to the Nominal Prioritizing Control Allocation (NOM PRIO CA) and the
Pseudo-Inverse Control Allocation (PINV CA)
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Example 4.9 (Control Allocation during an Actuator Failure Case) Consider the hexa-
copter system with actuator configuration 1 as in Figure 2.1a corresponding to the Example 4.4
(Hexacopter Input Normalization). Consider its normalized input matrix Bνu as in (4.4) with
the control effectiveness matrix

Λ = Λ̂ = diag([1, 1, 0, 1, 1, 1]).

The third actuator has completely failed and its effectiveness is given by λ3 = λ̂3 = 0. The vir-
tual controls ν and the null space variables w are depicted in Figure 4.12 and the control inputs
u in Figure 4.13. The desired virtual control νd is unattainable in this case and depicted in Fig-
ure 4.12. For comparison purposes, the process of the Nominal Prioritizing Control Allocation
(NOM PRIO CA) is displayed along with the results the Pseudo-Inverse Control Allocation
(PINV CA) implemented as in Example 4.6. The NOM PRIO CA algorithm allocates ν1, ν2

and ν3 in the first three iterations. In the fourth iteration ν̃4 is improved but before it reaches
zero, the input u6 saturates. In the next step the algorithm fails to find a new update direction
ck, the index is increased j = j + 1 and the algorithm stops due to the stop condition j > r.

The final results can be compared in the virtual control space plot in Figure 4.14. Here,
the desired virtual control νd and the respective final results from the NOM PRIO CA and
the PINV CA are depicted after inverting the transformation (4.34) from Example 4.4 (Hexa-
copter Input Normalization). Furthermore, in each of the two 2-dimensional views, cuts of the
attainable control set (ACS) are plotted as explained in Example 4.7 (Control Allocation of an
Attainable Virtual Control). Because the desired virtual control νd is unattainable, it can be
seen that both NOM PRIO CA and PINV CA show virtual control errors. In this example, the
errors of ν1, ν2 and ν3 are driven to zero by the NOM PRIO CA and only the error of ν4 is larger
than the one corresponding to the PINV CA. From the ACS NOM PRIO in the T /N plane it
can be seen that under the constraints of allocating L and M correctly the best possible N is
achieved. Hence, it can be concluded that the algorithm failed to find a new update direction ck
because of the system’s physical limitation and that it computed the best possible result.

This example shows a very interesting characteristic of the hexacopter system which
is one of the main drivers for the development of the NOM PRIO CA. It can be seen
that in a failure case, the desired virtual control Ld = Md = 0 is not achieved by the
PINV CA. This is problematic since it would lead to a deviation from e.g. a hover
state even in the presented case of a known input matrix. This is an undesirable ef-
fect and one may try to compensate it by an integrator or an adaptive controller, but
this would only work for static flight states and not for dynamic maneuvers since the
control allocation error of the PINV CA changes with varying desired virtual controls.
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Figure 4.12: Control Allocation Process - Failure Case λ3 = 0: virtual controls ν and null
space variables w corresponding to the Nominal Prioritizing Control Allocation (NOM
PRIO CA) and the Pseudo-Inverse Control Allocation (PINV CA)
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Figure 4.13: Control Allocation Process - Failure Case λ3 = 0: control inputs u cor-
responding to the Nominal Prioritizing Control Allocation (NOM PRIO CA) and the
Pseudo-Inverse Control Allocation (PINV CA)

95



4.3 Prioritizing Control Allocation Strategy (PRIO CA)

ACS NOM PRIO ACS PINV ν desired ν NOM PRIO ν PINV

−1 −0.5 0 0.5 1

−1

0

1

Roll Moment L [Nm]

P
it
ch

M
om

en
t
M

[N
m
]

5 10 15 20

−0.2

0

0.2

Thrust T [N]

Y
aw

M
om

en
t
N

[N
m
]

Figure 4.14: Control Allocation Process - Failure Case λ3 = 0: virtual control space
corresponding to the Prioritizing Control Allocation (PRIO CA) and the Pseudo-Inverse
Control Allocation (PINV CA)

4.3.5 Update Direction - Singular Cases

As noted in the last section, the update direction ck (4.48) can be found if Gj,s ∈
Rs×(m−j) has full row rank using (4.47). This leads to the solution of the equality con-
dition

sgn (ui) · ck,i = 0, ∀i ∈ S.
This is not a necessary condition and therefore other solutions to the update direction
ck can be found. The necessary condition is (4.46) such that the update direction of
the saturated inputs ck,s does not point in the same direction as the input itself. By
inserting (4.45) into (4.46) it follows that

sgn (ui) · ck,i = sgn (ui) · sgn (ν̃k,j) · pj,i + sgn (ui) ·Gj,i · hk ≤ 0, ∀i ∈ S,

which can be written in matrix form as

A · x ≤ b, (4.54)

with the following definitions

x = hk ∈ Rm−j,

A = diag(sgn (us)) ·Gj,s ∈ Rs×(m−j),

b = − sgn (ν̃k,j) · diag(sgn (us)) · pj,s ∈ Rs.

From this representation, it is clear that the system of linear inequalities A · x ≤ b has
in general more solutions than the system of linear equalities A · x = b. The singu-
lar case occurs whenever rank (Gj,s) = rank (A) < s, that is whenever we have more
constraints than degrees of freedom. In the presented control allocation, no attempt
will be made to solve the linear inequality system in general but some specific low
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dimensional cases will be addressed. It is important to note that the main algorithm
presented in the last section, has the characteristic of improving the result every up-
date step (4.38). By adding the following singularity cases, the control allocation is
improved in cases where otherwise no update vector ck would have been found (see
Figure 4.4).

The considered singular cases are the following:

� Case s = 1: A ∈ R1×(m−j) is a row vector and rank (A) < 1 can only happen if A is
a zero vector. In this case, the system (4.54) can only be solved if 0 ≤ b and x can
be chosen as x = hk = 0. By inserting it into (4.44), the update vector becomes
ck = sgn (ν̃k,j) · pj .

� Case s = 2: A ∈ R2×(m−j) and rank (A) < 2 can be divided into several sub-cases:

• A = 0: the system (4.54) can only be solved if 0 ≤ b and x can be chosen
as x = hk = 0. By inserting it into (4.44), the update vector becomes ck =
sgn (ν̃k,j) · pj .

• The first row Ar1 ∈ R1×(m−j) of A is a zero matrix: there is only a solution
if 0 ≤ b1. In this case, the update vector ck can be computed by selecting x
such that Ar2 · x = b2. This is equivalent to solving the s = 1 case for a full
row rank Gj,s with (4.47) and (4.48).

• The second row Ar2 ∈ R1×(m−j) of A is a zero matrix: this is analogous to
the last case.

• The rows Ar1 and Ar2 are non-zero and linear dependent (parallel): If there
is a solution, either Ar1 · x = b1 or Ar2 · x = b2 solve the problem. Hence,
x can be computed to solve for one equation and the second inequality is
tested afterwards. In Appendix C (Control Allocation) it is shown that this
approach leads to a solution if it exists.

The presented cases can be divided into two groups. One is the zero matrix case
A = 0 and the other one is the dimension reduction case. In the case that A = 0,
the selection of the help variables does not affect the update vector ck along the sat-
urated inputs. Therefore a solution only exists if the desired update direction pj does
not increase the magnitude of the saturated inputs. The second case corresponds to
the last three sub cases for s = 2. A solution can be searched by solving the s = 1
problem for the two possible cases and subsequently checking the satisfaction of the
other inequality.

This can be analogously applied for higher order cases, but the amount of cases to
be tested increases. For example in the case s = 3 there are three possible two dimen-
sional solution candidates and each of them could be singular itself. In the following,
an algorithm that searches for all possible reduced-order solutions is presented. Al-
though it is not intended for running on the embedded target, it serves to demonstrate
the theoretical achievable performance of the PRIO CA algorithm. Therefore it is called
Ideal Prioritizing Control Allocation (ID PRIO CA) algorithm.

Let e ∈ N0 be the number of the considered equation constraints that are used for
computing the update vector ck using the equality solution as in (4.48). In a first step,
all constraints are considered and hence e = s = |S|, where |S| is the cardinality of
the set S. In the following steps, always less constraints are considered in order to
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cover singularity cases and e is reduced. For every e, there exist
(
s
e

)
possible unordered

subsets Eq of S with the set counter q = 1 . . .
(
s
e

)
. Each set Eq contains e elements. For

every set Eq, the sub vector of the saturated inputs us can be defined by stacking the
control inputs as

uq = col(ui) ∈ Re, i ∈ Eq.
The function col(·) stacks the scalars into a column vector. The idea is to compute an
update direction candidate ck considering only the equation constraints corresponding
to the set Eq in the first step and then checking the conditions

sgn (ui) · ck,i ≤ 0, ∀i ∈ S, /∈ Eq. (4.55)

This idea translates to the following algorithm. First, consider only the subsystem
corresponding to the reduced set of saturated inputs

ck,q = sgn (ν̃k,j) · pj,q + Gj,q · hk,
where ck,q, pj,q ∈ Re and Gj,q ∈ Re×(m−j) correspond to the rows of the saturated inputs
i ∈ Eq. Following the ideas presented in Section 4.3.4, hk is selected such that ck,q = 0
as

hk = sgn (ν̃k,j) ·G+
j,q · (−pj,q) .

This leads to the update direction candidate

ck = sgn (ν̃k,j) · pj + sgn (ν̃k,j) ·Gj ·G+
j,q · (−pj,q) . (4.56)

If the conditions (4.55) are satisfied, an update direction has been found, otherwise it
is discarded.

The complete algorithm for computing the update direction ck is depicted in Figure
4.15. The algorithm is initialized with e = swhich corresponds to the non-singular case
presented in the last section. In the first step, the unordered sets Eq of the considered
equations systems are computed. For each of these sets, a candidate update direction
ck is computed as in (4.56) and the conditions (4.55) tested. If the conditions are met,
an update direction is found, otherwise the counter q = q + 1 is increased and the next
set Eq is checked. If all the sets Eq for a given number of considered equations e have
been tested, this number is reduced e = e − 1. In this way the algorithm covers the
non-singular case first and step by step tries to solve the dimension reduction cases.
The Ideal Prioritizing Control Allocation (ID PRIO CA) corresponds to the NOM PRIO
CA algorithm as in Figure 4.4 where the computation of the update direction ck is
exchanged by the presented algorithm corresponding to Figure 4.15.

4.3.6 Implementation Aspects

This section addresses aspects of the implementation of the PRIO CA algorithm within
the embedded computing unit of the aircraft, i.e. it addresses objective 5 of this the-
sis. Even the best control allocation is not very useful if it exceeds the limitations of
the given computing unit. In this case the focus is real-time operation, which means
that the whole computation of the control law including the control allocation should
not exceed the selected sampling time. Therefore, several changes to the presented al-
gorithm are introduced in order to limit the maximum execution time of the control
allocation solution. The changes are
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update unordered subsets
Eq ⊂ S for q = 1 . . .

(
s
e

)

select set Eq

compute update direction
ck = sgn (ν̃k,j) ·

(
pj + Gj ·G+

j,q · (−pj,q)
)

(4.56)

constraints check
sgn (ui) · ck,i ≤ 0, ∀i ∈ S, /∈ Eq (4.55)

ck = ck

q = q + 1

q >
(
s
e

)
?

e = e− 1

no ck found

e = s

yes

no

e = 0
e > 0

no ck
found

no

yes

q = 1

Figure 4.15: Flow Chart of Update Direction Computation - Ideal Prioritizing Control
Allocation (ID PRIO CA)

� A pseudo-inverse dimension limitation,

� A higher dimensional alternative for the computation of the update direction ck,

� And a modification for virtual controls with the same priority.

The Prioritizing Control Allocation (PRIO CA) implemented on the multirotor sys-
tem includes all the modifications and is depicted in Figure 4.16. Its performance is
subsequently compared with the Nominal Prioritizing Control Allocation (PRIO CA)
presented in Section 4.3.4 and the Ideal Prioritizing Control Allocation (PRIO CA) pre-
sented in Section 4.3.5.

Pseudo-Inverse Dimension Limitation

The computation of the pseudo inverse G+
j,s in (4.48) needs in general numerical iter-

ative algorithms and a maximum execution time cannot be directly given. Therefore,
in this thesis this operation is limited to a maximum of two saturated inputs s ≤ 2, i.e.
limited to 2 rows of Gj,s. If Gj,s has a full row rank, its pseudo inverse can be computed
as

G+
j,s = GT

j,s ·
(
Gj,s ·GT

j,s

)−1
.

In this case the inverse of a R2×2 matrix or a scalar is used without an iterative compu-
tation. If Gj,s does not have a full rank, the algorithm continues with lower dimension
solutions as presented in the last section. In this case G+

j,q ∈ R(m−j)×e in (4.56) is a row
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update pj (j-th column of B+
νu) and

Gj = (pj+1, . . . ,pr,vn,1, . . . ,vn,m−r)T (4.43)

compute sets S (4.40), Sd (4.57) and F (4.41)

update direction ck
Figure 4.15

update direction ck
Figure 4.15 (using set Sd instead of S)

test ineq. conditions
sgn (ui) · ck,i ≤ 0,∀i ∈ S, /∈ Sd. (4.58)

compute step length
∆k = min (∆k,max, |ν̃k,j|) (4.52)

uk+1 = uk + ck ·∆k (4.38)

ν̃k+1 = νd −Bνu · uk+1

k = k + 1

|ν̃k,j| = 0?

j = j + 1

u = uk

u0 = 0, ν̃0 = νd, k = 1, j = 2

sd > m− j

yes

no

j > r
j ≤ r

no ck found

ck found

s ≤ 2 s > 2 sd > 2 (no ck)

sd ≤ 2

Figure 4.16: Flow Chart of Prioritized Control Allocation (PRIO CA)

vector with e = 1. The presented case corresponds to the left branch of the program
flow in Figure 4.16.

The limitation to a maximum of two saturated inputs s ≤ 2 presented in this section
supposes a reduction of the control allocation performance but it permits the real-time
implementation of the algorithm. The performance loss will be subsequently evalu-
ated.

Update Direction - Higher Dimensional Alternative

For cases in which the number of saturated inputs is s ≥ 3, the insights of the singular
cases analysis in Section 4.3.5 are used. In order to improve the basic algorithm but
avoid resorting to iterative numerical methods, the desired update direction pj is taken
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into account. Let the set of inputs that are directionally saturated be defined as

Sd := {i ∈ N | |ui| ≥ 1 and sgn (ui) · sgn (ν̃k,j) · pj,i > 0,∀i = 1, . . . ,m}. (4.57)

The set Sd is a subset of S which excludes input indices whose desired update direc-
tion sgn (ν̃k,j) · pj,i do not increase the input’s magnitude. By stacking control inputs
corresponding to Sd into vector form, the directionally saturated inputs usd are defined
as

usd = col(ui) ∈ Rsd , i ∈ Sd.

The idea is to solve the update direction computation ck considering only the set Sd in
the first step and then checking the conditions

sgn (ui) · ck,i ≤ 0, ∀i ∈ S, /∈ Sd. (4.58)

In this way, it is possible to search an update direction in a lower dimensional space.
The existence of a solution is not always guaranteed but it increases the possibilities of
finding one. This idea translates to the following algorithm. First, consider only the
subsystem corresponding to the directionally saturated inputs

ck,sd = sgn (ν̃k,j) · pj,sd + Gj,sd · hk,

where ck,sd , pj,sd ∈ Rsd and Gj,sd ∈ Rsd×(m−j) correspond to the rows of the saturated
inputs i ∈ Sd. The help variable is computed then as in Section 4.3.5 (Update Direction
- Singular Cases) using the set Sd instead of the S. For the non-singular case this cor-
responds to the selection derived in Section 4.3.4 (Main Algorithm). Hence, the help
variable is selected as

hk = sgn (ν̃k,j) ·G+
j,sd
· (−pj,sd) ,

which leads to the candidate update direction

ck = sgn (ν̃k,j) · pj + sgn (ν̃k,j) ·Gj ·G+
j,sd
· (−pj,sd) . (4.59)

If the conditions (4.58) are satisfied, an update direction is found, otherwise it is dis-
carded.

This approach allows for searching an update direction for cases where s ≥ 3 and
sd ≤ 2 while using a pseudo-inverse of a lower dimension sd compared to the dimen-
sion of the original algorithm s. For cases where sd ≥ 3, no attempt of searching an
update direction is made. The presented case corresponds to the right branch of the
program flow in Figure 4.16.

Virtual Controls with same Priority

For the hexarotor and for most symmetric multirotor systems, roll and pitch moments
have the same priority. Therefore, a small modification is made to the NOM PRIO CA
algorithm. Let pL ∈ Rm and pM ∈ Rm be the columns of the pseudo inverse B+

νu that
correspond to the roll moment L and the pitch moment M . Instead of allocating them
sequentially, the following desired update direction is used

pLM =
[
pL, pM

]
·
[
Ld
Md

]
(4.60)
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with the desired magnitude of νLM,d = 1. This approach can be generally used for
any virtual controls that have the same priority. The advantage is that the amount of
update steps is reduced. In (4.60) two virtual controls are put together and therefore
the iterations are reduced by one. This can be implemented by setting the initial value
j = 2, the desired update direction as p2 = PLM and the desired magnitude as ν2 = 1.
The step j = 1 is not performed.

Comparison with Nominal Prioritizing Control Allocation

The Prioritizing Control Allocation (PRIO CA) includes all the presented modifica-
tions in Section 4.3.6 and is the version of the algorithm that runs in the embedded
computer platform which used for the presented flight experiments. In the following,
its performance is compared with the Nominal Prioritizing Control Allocation (PRIO
CA) presented in Section 4.3.4 and the Ideal Prioritizing Control Allocation (PRIO CA)
presented in Section 4.3.5.

Example 4.10 (Control Allocation of an Unattainable Virtual Control) The studied sys-
tem is the hexacopter with actuator configuration 1 as in Figure 2.1a corresponding to the Ex-
ample 4.4 (Hexacopter Input Normalization). Consider its normalized input matrix Bνu as in
(4.4) with the control effectiveness matrix Λ̂ = Λ = I. The considered desired virtual control
νd is unattainable. The virtual controls ν, the null space variables w and the control inputs
u corresponding to the Nominal Prioritizing Control Allocation (NOM PRIO CA) and the
Prioritizing Control Allocation (PRIO CA) are depicted in Figures 4.18 and 4.19.

The NOM PRIO CA algorithm allocates ν1 and ν2 in the first and second iteration respec-
tively. In the following 4 iterations, ν̃3 is improved and only reaches zero at the last iteration.
In the previous iterations the control inputs u5, u4 and u6 saturate one per iteration. Since at
this last step the number of saturated inputs is s = 3 > m− j = 6− 4 = 2, no update is made
to improve the virtual control ν4. The PRIO CA algorithm allocates ν1 and ν2 simultaneously
in the first iteration as described in Section ’Virtual Controls with same Priority’. In the itera-
tions 2,3 and 4, ν̃3 is improved and the control inputs u5, u4 and u6 saturate one per iteration
in the similar way as for the NOM PRIO CA. At this point, |ν̃3| > 0 and 3 inputs are satu-
rated. Hence, the nominal computation of the update direction ck (4.48) is not used due to the
pseudo-inverse dimension limitation and the approach described in Section ’Update Direction
- Higher Dimensional Alternative’ is used instead. No further improvements are made for ν̃3

because the inverse of aR3×3 matrix is needed for computing a valid update direction ck. In the
last step, ν4 is allocated and an update direction ck using (4.59) is found without the inverse
of a R3×3 matrix such that ν̃4 is driven to zero. This is possible because the linear inequality
solution is considered instead of the linear equality as explained in Section 4.3.5.

The final results can be compared in the virtual control space plot in Figure 4.17. Here,
the desired virtual control νd and the respective final results from the NOM PRIO CA and
the PRIO CA are depicted after inverting the transformation (4.34) from Example 4.4 (Hexa-
copter Input Normalization). Furthermore, in each of the two 2-dimensional views, cuts of the
attainable control set (ACS) are plotted as explained in Example 4.7 (Control Allocation of an
Attainable Virtual Control). It can be seen that both, the PRIO CA and the NOM PRIO CA,
satisfy the L and M commands. Therefore, the attainable control set (ACS) in the T /N plane
is equal for both approaches. The NOM PRIO CA achieves the commanded thrust at the cost
of a larger N error. The PRIO CA cannot reduce the thrust allocation error to zero, since the
matrix inverse is limited to a R2×2 matrix and 3 inputs are saturated. This control allocation
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Figure 4.17: Control Allocation Process - Unattainable Solution: virtual control space
corresponding to the Prioritizing Control Allocation (PRIO CA) and the Nominal Prior-
itizing Control Allocation (NOM PRIO CA)

performance reduction is accepted in exchange of avoiding the computation of high order matrix
inverses. Because of this missing thrust allocation step, PRIO CA is able to reduce the N error
in the following step.

Example 4.10 shows that the trade-off between the control allocation performance
and the needed computational resources can be steered by the modifications presented
in Section 4.3.6. For different system characteristics, the presented modifications could
be adapted to achieve the desired results. Furthermore, for the cases presented in the
Examples 4.7 (Control Allocation of an Attainable Virtual Control), 4.8 (Control Allo-
cation during an Actuator Fault Case) and 4.9 (Control Allocation during an Actuator
Failure Case), the maximum difference of the computed control inputs between the
PRIO CA and the NOM PRIO CA is 1.2 · 10−3 and therefore no comparison is pre-
sented.
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Figure 4.18: Control Allocation Process - Unattainable Solution: virtual controls ν and
null space variables w corresponding to the Nominal Prioritizing Control Allocation (NOM
PRIO CA) and the Prioritizing Control Allocation (PRIO CA)
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Figure 4.19: Control Allocation Process - Unattainable Solution: control inputs u cor-
responding to the Nominal Prioritizing Control Allocation (NOM PRIO CA) and the
Prioritizing Control Allocation (PRIO CA)
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Numerical Comparison for a Large Set of Test Points

In the following, the control allocation performance is compared for the two hexa-
copter configurations depicted in Figure 2.1 for different failure cases. The results are
shown in Figures 4.20 and 4.21. For each of the configurations, a 4-dimensional grid of
desired virtual controls is created. The grid along each virtual control has 100 points
equally spaced between the minimum and maximum achievable value in a fault-free
configuration. Out of this initial grid, only the attainable virtual controls of the nomi-
nal configuration are taken into account and gives a total of approximately 12 · 106 test
points (or 12% of the original points). The grid has been selected this way because it
significantly reduces the test points and because it is expected that the controller is de-
signed such that the desired virtual controls lie within the nominal attainable control
set (ACS). The attainability check is done as a point inclusion test within the ACS using
the Toolbox MPT 3.0 [68]. For every point in the grid, the compared control allocation
methods are evaluated in both hexacopter configurations in different failure scenarios.
In configuration 1, a failure of actuator 3 (rear-right) and of actuator 5 (center-left) are
considered. In configuration 2, a failure of actuator 1 (front-right), of actuator 3 (rear-
right) and of actuator 5 (center-left) are considered. Due to symmetry considerations,
the selected scenarios are representative for all possible single actuator failures.

The selected performance metrics correspond to the percentage of correctly allo-
cated virtual controls for the following three groups:

� LMTN: The four virtual controls are simultaneously correctly allocated, i.e. thrust
(T), roll (L), pitch (M) and yaw moments (N).

� LMT: Thrust (T), roll (L) and pitch (M) moments are simultaneously correctly
allocated.

� LM: Roll (L) and pitch (M) moments are simultaneously correctly allocated.

A virtual control is considered correctly allocated if the magnitude of the error is less
or equal the tolerance of 10−6.

In Figure 4.20, the results for hexacopter configuration 1 are depicted. In Figure
4.20a, it can be clearly seen that in the nominal case, the prioritizing control allocation
approaches are superior than the pseudo-inverse control allocation (PINV CA). It can
be seen that the Ideal Prioritizing Control Allocation (ID PRIO CA) is able to allocate
all the test points correctly. The Nominal Prioritizing Control Allocation (NOM PRIO
CA) is able to allocate thrust (T), roll (L) and pitch (M) moments for all the test points.
The yaw moment (N) is not always correctly allocated. The difference between these
two approaches is the consideration of the linear inequality solution instead of only
the linear equality for computing the update direction ck as explained in Section 4.3.5.
The Prioritizing Control Allocation (PRIO CA) as implemented for the flight tests is
able to allocate roll (L) and pitch (M) moments for all the test points. Thrust (T) and
yaw moments (N) are not always correctly allocated. This limitation corresponds to
the previously explained trade-off between computational effort and control alloca-
tion performance. Finally, in the case of PINV CA all three metrics have the same
value. This is mainly because if saturation occurs, a deviation from the desired virtual
control is unavoidable using the PINV CA. In the example of the hexacopter, this gets
aggravated by the fact that it is a highly coupled system in the sense that every control
input directly affects at least three virtual controls.
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In Figure 4.20b, the failure of actuator 3 is addressed. In this case 32.10% of the
test points are attainable. Under these conditions, the main characteristics of the PRIO
CA can be seen. For all three implementation variants it holds that high priority vir-
tual controls get correctly allocated in a higher percentage than low priority virtual
controls. The performance difference between the PINV CA and the priority-based
control allocations is smaller in the LMTN case than in the other cases. This is expected
since the PINV CA does not take the virtual control priority into account. In the LMT
and the LM cases, horizontal lines mark the limit between the cases that are inside the
ACS (underneath) or outside the ACS (above). The nomenclature unattainable control
set (UCS) is used in the figure to denote being outside of the ACS. For the LMTN case,
there is no line since the virtual controls can only be correctly allocated if they are at-
tainable and hence all lie within the ACS. For the actuator 5 failure case very similar
results can be seen in Figure 4.20c. In this case 32.23% of the test points are attainable.

In Figure 4.21, the results for hexacopter configuration 2 are depicted. Figure 4.21a
shows the nominal case, Figure 4.21b shows the actuator 1 failure case with 18.71%
attainable test points, Figure 4.21c shows the actuator 3 failure case with 38.95% at-
tainable test points and Figure 4.21d shows the actuator 5 failure case with 38.80%
attainable test points. In general terms, the results are similar to the hexacopter con-
figuration 1 case. Nevertheless, there are several differences. As expected from the
discussion in Section 2.3 and the comparison of the T/N plane of the ACS in Figures
2.4 and 2.5, the percentage of test points within the ACS compared to hexacopter con-
figuration 1 is smaller for actuators the front actuators (1 and 6) and larger otherwise.
Furthermore, in the nominal case, a larger difference between NOM PRIO CA and ID
PRIO CA can be seen. This is due to a higher occurrence of singular cases in the update
direction ck computation (4.48) as explained in Section 4.3.5.

The main advantage of the PRIO CA algorithm can be seen in Figures 4.20 and
4.21. It enables the utilization of the unattainable control set (UCS) for improving the
allocation of high priority virtual controls. In our specific context, for the LMT case it
allows for the utilization of at least 50% of the nominal ACS and thus enabling con-
trolled flight during failure scenarios. For the LMT case even 75% of the nominal ACS
is correctly allocated. Furthermore, the PRIO CA is clearly superior than the PINV CA
in nominal as well as in failure scenarios. For all the failure scenarios, in the LMT case
the PRIO CA correctly allocates at least twice as much test points as the PINV CA and
in the LM case at least 3 times as much.

The PRIO CA algorithm has a fixed maximum number of iterations before return-
ing a result. It depends on the number of virtual controls r and the number of inputsm.
The PRIO CA sub-optimality depends mainly on the possibility of finding an update
direction ck which is directly coupled to the number of saturated inputs. If a maximum
of two inputs saturate s ≤ 2, the PRIO CA returns the optimal solution with respect to
the prioritizing strategy.
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(c) Failure Actuator 5

Figure 4.20: Control Allocation General Comparison Results: Hexacopter System with
Actuator Configuration 1 as in Figure 2.1a
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(b) Failure Actuator 1
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(c) Failure Actuator 3
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(d) Failure Actuator 5

Figure 4.21: Control Allocation General Comparison Results: Hexacopter System with
Actuator Configuration 2 as in Figure 2.1b
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SVD Update Algorithm Integration Step

.
Bνu U,Σ,V

.
Ub,

.
Σb,

.
Vb

Ub,Σb,Vb

SVD Computation

Figure 4.22: Diagram of the SVD Computation

4.4 SVD Update Algorithm

In order to implement the prioritizing control allocation (PRIO CA), the singular value
decomposition (SVD) of the time-varying matrix Bνu (t) ∈ Rr×m needs to be known
as stated in Assumption 4.9 (Input Matrix SVD). The main challenge is that standard
iterative numerical methods that do not guarantee a maximum execution time. In this
section, an alternative algorithm is proposed in order to update the singular value
decomposition of a matrix Bνu (t) given its time derivative

.
Bνu (t) and an offline com-

puted SVD of the initial input matrix Bνu(t = 0).

4.4.1 Main Algorithm

This algorithm is an extension of the SVD update algorithm developed by Höcht [69,
Sec. 4.7]. In [69], this algorithm is applied to square matrices to limit the minimum
eigenvalue from below such that zero eigenvalues are avoided. This section presents
an extension of the SVD update algorithm to non-square matrices. Without loss of
generality, the derivation is made for a matrix with more columns than rows corre-
sponding to a system with redundant actuators. In the following, the time dependency
is omitted for readability since all the matrices vary in time. Given are the matrix
Bνu ∈ Rr×m with r ≤ m and its singular value decomposition

Bνu = Ub ·Σb ·VT
b (4.61)

where Ub ∈ Rr×r,Σb ∈ Rr×m,Vb ∈ Rm×m. Ub,Vb are orthogonal matrices, i.e. UbU
T
b =

I and VbV
T
b = I. Σb is a rectangular diagonal matrix which can be written as

Σb =
[
Db 0r×m−r

]
,

where Db ∈ Rr×r is a diagonal matrix with non-negative entries. The diagonal ele-
ments are the singular values of Bνu and have a decreasing order. They are written as
σi ≥ 0 ∈ R for i = 1 . . . r.

The goal of the presented algorithm is to compute the derivatives
.

Ub,
.

Σb and
.

Vb

of the SVD given the derivative of the matrix
.

Bνu and the current SVD composed by
Ub,Σb,Vb. The SVD of the matrix Bνu can then be continuously updated as depicted
in Figure 4.22. In the figure, the matrices U,Σ,V are an alternative singular value de-
composition of Bνu = U · Σ · VT

such that it is compatible with the given derivative
.

Bνu. The computation of an alternative SVD is only necessary in cases where the sin-
gular vectors are not uniquely defined. The ambiguity occurs in two cases: 1) Two or
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4.4 SVD Update Algorithm

more singular values are equal, 2) One or more singular values are zero and the system
is overactuated, i.e. m > r. In the following, the case of different and positive singu-
lar values σi is analyzed and the ambiguity of singular vectors is studied in the next
section. Taking the derivative of (4.61) leads to

.
Bνu = Ub ·

.
Σb ·VT

b +
.

Ub ·Σb ·VT
b + Ub ·Σb ·

.
V
T

b . (4.62)

By multiplying by UT
b from the left and by Vb from the right, and using their orthogo-

nality property, it follows that

UT
b ·

.
Bνu ·Vb =

.
Σb + UT

b ·
.

Ub ·Σb + Σb ·
.

V
T

b ·Vb. (4.63)

In the next step, the derivative of the orthogonality constraint is taken to get the fol-
lowing equivalence

UT
b ·Ub = I ⇔

.
U
T

b ·Ub + UT
b ·

.
Ub = 0, (4.64a)

VT
b ·Vb = I ⇔

.
V
T

b ·Vb + VT
b ·

.
Vb = 0. (4.64b)

Then, the following invertible parameter transformation of the derivatives
.

Ub and
.

Vb

is defined

Cu = UT
b ·

.
Ub, (4.65a)

Cv = VT
b ·

.
Vb. (4.65b)

In this way, the orthogonality conditions (4.64) are equivalent to stating that the ma-
trices Cu ∈ Rr×r and Cv ∈ Rm×m are skew symmetric

CT
v = −Cv,

CT
u = −Cu.

By inserting the definitions (4.65) in the derivative (4.63) it follows

Y := UT
b ·

.
Bνu ·Vb =

.
Σb + Cu ·Σb + Σb ·CT

v , (4.66)

where Y ∈ Rr×m and Σb are known matrices and
.

Σb, Cu and Cv are to be calculated.
In order to illustrate which elements of Y are needed for computing the unknown

variables
.

Σb, Cu and Cv, the matrix Y (4.66) can be separated in three submatrices as

Y =



Y11 · · · Y1r · · · Y1m

... . . . ... · · · ...
Yr1 · · · Yrr · · · Yrm


 . (4.67)

This separation is motivated by the structure of the last two terms in (4.66):

Cu ·Σb = Cu ·
[
Db, 0r×m−r

]
=
[
σ1 ·Cu,c,1, . . . , σr ·Cu,c,r, 0r×m−r

]
, (4.68)

Σb ·CT
v =

[
Db, 0r×m−r

]
·CT

v =



σ1 ·CT

v,c,1
...

σr ·CT
v,c,r


 . (4.69)
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Here, Cu,c,i ∈ Rr and Cv,c,i ∈ Rm are the i-th columns of Cu and Cv accordingly.
Because Cv and Cu are skew symmetric, the i-th elements of Cu,c,i and Cv,c,i equal zero
and therefore the diagonal elements of Cu · Σb and Σb · CT

v equal zero. The equation
(4.66) can then be rewritten as

Yii =
.
σi, for i = 1 . . . r, (4.70a)

Yij = σj · Cu,ij + σi · Cv,ji, for i = 1 . . . r, j = 1 . . . r, i 6= j, (4.70b)

Yij = σi · Cv,ji, for i = 1 . . . r, j = r + 1 . . .m. (4.70c)

Here, Yij , Cu,ij and Cv,ij ∈ R are the elements corresponding to the i-th row and j-th
column of the matrices Y, Cu and Cv respectively. The diagonal terms of the matrix
Yii for i = 1 . . . r define the derivative

.
Σb, i.e. the yellow submatrix in (4.67). The

red submatrix in (4.67) corresponds to the off-diagonal elements of the matrix Yij for
i, j = 1 . . . r and i 6= j which define the matrix Cu and the elements Cv,ij for i, j = 1 . . . r
of the matrix Cv. The blue submatrix in (4.67) corresponds to the elements of the
right submatrix Yij for i = 1 . . . r, j = r + 1 . . .m which define the elements Cv,ij for
i = 1 . . . r, j = r + 1 . . .m and for j = 1 . . . r, i = r + 1 . . .m of the matrix Cv. Using the
same color mapping, this can be illustrated as

.
Σ, Cu, Cv =




0 · · · Cv,1r · · · Cv,1m
... . . . ...

...
Cv,r1 · · · 0 · · · Cv,rm

...
... . . . ...

Cv,m1 · · · Cv,mr · · · 0




. (4.71)

Notice that the elements Cv,ij for i = r + 1 . . .m, j = r + 1 . . .m are not defined by
the constraint (4.66). These terms describe the rotation of the right singular vectors
corresponding to the null space of the matrix with respect to each other. Hence, this
rotation has no effect on the derivative of the matrix

.
Bνu. Therefore, the elements Cv,ij

for i = r + 1 . . .m, j = r + 1 . . .m can be set to zero.
In a first step, the derivative of

.
Σb can be directly computed from (4.70a) since all

the non-diagonal elements of
.

Σb are zero. In the next step, the derivatives Cu and Cv

are computed from the constraints (4.70b) corresponding to the red submatrix in (4.67)
and (4.71). Each equation has two unknown variables Cu,ij and Cv,ji. By taking two
elements of Y with exchanged indexes, a solvable system of equations is build as

Yij = σj · Cu,ij + σi · Cv,ji,
Yji = σi · Cu,ji + σj · Cv,ij.

Because the matrices Cu and Cv are skew-symmetric it holds that

Yij = σj · Cu,ij + σi · Cv,ji,
Yji = −σi · Cu,ij − σj · Cv,ji,

which can be brought to the matrix form
[
Yij
Yji

]
=

[
σj σi
−σi −σj

] [
Cu,ij
Cv,ji

]
. (4.72)
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Compute the derivatives
.

Σb(t), Cu(t), Cv(t)
using (4.70a), (4.73), (4.74)

Transform Cu(t), Cv(t) to
.

Ub(t),
.

Vb(t)
using (4.75)

Integrate SVD

.
Bνu(t) Σb(t),Ub(t),Vb(t)

Σb(t+ Ts),Ub(t+ Ts),Vb(t+ Ts)

Figure 4.23: Diagram of the SVD Update Algorithm - Unique and Positive Singular Values

In order to compute the elements Cu,ij and Cv,ji, the matrix containing the singular
values needs to be inverted. This is possible as long as 0 6= −σ2

j + σ2
i , i.e. for different

singular values. In this case, the inverse can be analytically computed as
[
σj σi
−σi −σj

]−1

=
1

−σ2
j + σ2

i

[
−σj −σi
σi σj

]
,

and the elements Cu,ij and Cv,ji are computed as
[
Cu,ij
Cv,ji

]
=

1

−σ2
j + σ2

i

[
−σj −σi
σi σj

] [
Yij
Yji

]
, for i = 1 . . . r, j = 1 . . . r, i 6= j. (4.73)

The constraints (4.70b), corresponding to the blue submatrix in (4.67) and (4.71), have
only one unknown variable per constraint. The solution can be directly computed as

Cv,ji =
Yij
σi
, for i = 1 . . . r, j = r + 1 . . .m. (4.74)

This computation is possible as long as the singular value σi is greater than zero. Fi-
nally, the derivatives

.
Ub and

.
Vb follow from the inverse transformation of (4.65)

.
Ub = Ub ·

.
Cu, (4.75a)

.
Vb = Vb ·

.
Cv. (4.75b)

Hence, in this section it has been shown that the matrices
.

Σb,
.

Ub and
.

Vb can be
computed for the case of different non-zero singular values using (4.70a), (4.73), (4.74),
and (4.75). The algorithm overview is depicted in Figure 4.23. In the next section the
case of equal singular values is addressed.

4.4.2 Non-Unique Singular Vectors

The non-uniqueness of singular vectors allows us for solving the cases where: 1) Two
or more singular values are equal, 2) One or more singular values are zero and the

112



Chapter 4: Adaptive Control Allocation

system is overactuated, i.e. m > r. In this cases, the solutions (4.73) and (4.74) cannot
be applied. Case 1 is treated in this section. Case 2 can be handled but it increases
the algorithm complexity. In our application this is avoided by limiting the singular
values from below as in [69]. For the hexacopter systems presented in Chapter 2, this
limitation does not activate during any of the presented test scenarios. A minimum of
2 actuator failures need to simultaneously occur to force one of the singular values to
zero.

For equal singular values, the solution presented in [69] is used. For the sake of
completeness, the approach is described in the following. A solution of equation (4.72)
exists only if [Yij, Yji]

T and [Cu,ij, Cv,ji]
T are linearly dependent. A solution can always

be found by changing Cu and Cv through an orthogonal transformation of the singular
vectors corresponding to the group of equal singular values. The transformed singular
vectors still correspond to a valid SVD and therefore the SVD derivative can be found.
First, in the next lemma it is shown that an alternative SVD exists for equal singular
values.

Lemma 4.10 (Non-Uniqueness of Singular Vectors for equal Singular Values) The set
of indexes corresponding to a group of equal singular values is defined as the set

G = {i|σi = σ} (4.76)

and it is assumed that the number of equal singular values is g ≥ 2 ∈ R without loss of
generality. Then, the concatenation of left and right singular vectors corresponding to the group
are Ug ∈ Rr×g and Vg ∈ Rm×g. Let Ug ∈ Rr×g and Vg ∈ Rm×g be defined as alternative
singular vectors of Ug and Vg computed by the orthogonal transformation

Ug = UgQ, Vg = VgQ, (4.77)

where Q ∈ Rg×g is an orthogonal matrix.
In the case of equal singular values, every orthogonal transformation (4.77) of the corre-

sponding singular vectors Ug and Vg leads to a valid singular value decomposition

Bνu = UΣbV
T

= UbΣbV
T
b , (4.78)

where the new matrices U and V correspond to the original matrices Ub and Vb with exchanged
singular vectors Ug and Vg by the alternative singular vectors Ug and Vg.

Proof: From Lemma B.1 (Matrix Product) in the Appendix B the SVD of Bνu (4.61) can
be alternatively expressed as

Bνu =
r∑

i=1

σi · ub,c,ivTb,c,i,

with the i-th left singular vector ub,c,i ∈ Rr and the i-th right singular vector vb,c,i ∈ Rm

being the i-th columns of Ub and Vb respectively. For equal singular values, the sum
can be divided in two groups as

Bνu =
∑

i/∈G
σi · ub,c,ivTb,c,i + σ ·

∑

i∈G
ub,c,iv

T
b,c,i.
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The second term can expressed using the transformed versions of the corresponding
singular vectors. Let uc,i, vc,i and qc,i be the i-th column vectors of the matrices U, V,
and Q respectively. Using the transformation (4.77) and Lemma B.1 (Matrix Product),
it follows that

σ ·
∑

i∈G
uc,iv

T
c,i = σ ·

∑

i∈G
(Ugqc,i) (Vgqc,i)

T ,

= σ ·Ug ·
(∑

i∈G
qc,iq

T
c,i

)
·VT

g ,

= σ ·Ug ·Q ·QT ·VT
g ,

= σ ·Ug ·VT
g ,

= σ ·
∑

i∈G
ub,c,iv

T
b,c,i.

Hence, the matrix Bνu can be equivalently expressed by the transformed singular vec-
tors

Bνu =
∑

i/∈G
σi · ub,c,ivTb,c,i + σ ·

∑

i∈G
uc,iv

T
c,i.

In order for U and V to be valid singular vectors, orthogonality is still to be proved.
First, using the definition of Ug (4.77) it is shown that all the transformed singular
vectors are perpendicular to the singular vectors that were not transformed

uTc,iub,c,j = qTc,iU
T
g ub,c,j = 0, for i ∈ G, j /∈ G.

Here, the orthogonality of the original matrix Ub and Lemma B.10 (Orthogonal Matrix)
have been used. Second, note that all the transformed vectors are perpendicular to each
other and have unit length

U
T

g Ug = QTUT
g UgQ,

= QTQ,

= I.

Here, the orthogonality of the original matrix Ub and of the transformation matrix Q
and Lemma B.10 (Orthogonal Matrix) have been used. Since the same argumentation
can be done for the right singular vectors, it follows that U

T
U = I and V

T
V = I. Fur-

thermore, the same argumentation can iteratively be applied if more than one group
of equal singular values exist. �

From Lemma 4.10, it is known that the singular vectors can be transformed in case
of equal singular values. This fact is used in the following to solve the constraint (4.72)
corresponding to the red submatrix in (4.67) and (4.71). If two singular values are
equal, (4.72) becomes [

Yij
Yji

]
= σi

[
1 1
−1 −1

] [
Cu,ij
Cv,ji

]
. (4.79)

This system of equations is only solvable if Yij = −Yji or σi = 0. If Yij = −Yji and
σi > 0, Cu,ij and Cv,ji have an infinite number of solutions. One of them is Cu,ij = Cv,ji
which leads to

Yij = 2 · σi · Cu,ij,
−Yij = −2 · σi · Cu,ij.
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Hence, Cu,ij and Cv,ji are computed as

Cu,ij = Cv,ji =
1

2 · σi
Yij. (4.80)

If Yij 6= −Yji, the singular vectors corresponding to the equal singular values need to
be transformed using (4.77). Therefore, the singular vectors are selected such that the
condition Yij = −Yji is satisfied. From (4.66), this translates to

0 = Yij + Yji = uTb,c,i
.

Bνuvb,c,j + uTb,c,j
.

Bνuvb,c,i. (4.81)

The condition (4.81) needs to hold for every pair of singular values that are equal.
The next step is to find the transformation matrix Q such that for every pair of

equal singular values the condition (4.81) holds for the transformed singular vectors.
For i, j ∈ G, i 6= j and using the definition of Ug and Vg (4.77) this leads to

0 = (Ugqc,i)
T .

Bνu (Vgqc,j) + (Ugqc,j)
T .

Bνu (Vgqc,i)

0 = qTc,iU
T
g

.
BνuVgqc,j + qTc,jU

T
g

.
BνuVgqc,i

0 = qTc,iU
T
g

.
BνuVgqc,j + qTc,iV

T
g

.
B
T

νuUgqc,j

0 = qTc,i

(
UT
g

.
BνuVg + VT

g

.
B
T

νuUg

)
qc,j

Since this needs to hold for all pairs i, j ∈ G, the condition is written in matrix form as

QT
(
UT
g

.
BνuVg + VT

g

.
B
T

νuUg

)
Q = Yg + YT

g = 2 ·
.

Dg (4.82)

where Yg ∈ Rg×g is composed of the elements Yij of Y such that i, j ∈ G and hence
.

Dg ∈ Rg×g is a diagonal matrix composed of the derivative of the singular values .
σi

with i ∈ G corresponding to the studied group.
As can be seen in (4.82), the solution of the constraint (4.72) has been transformed to

the diagonalization of the matrix UT
g

.
BνuVg +VT

g

.
B
T

νuUg. Since it is a symmetric matrix,
the diagonalization problem corresponds to solving the eigenvalue problem and the
columns of the matrix Q are then the corresponding eigenvectors. After transforming
the left and right singular vectors with (4.77) to get the new matrices U and V, the
matrix Y can be recomputed as

Y := U
T .
BνuV,

which guarantees that Yij = −Yji holds for i, j ∈ G. Hence, the corresponding values
of Cu and Cv can be computed from (4.80).

Because in the procedure of solving for Cu and Cv, the matrix Y has been trans-
formed, it is necessary to handle the case of equal singular values at the beginning of
the SVD update algorithm. Furthermore, it needs to be taken into account that the
SVD derivatives correspond to the transformed singular vectors U and V and not to
the original ones. The details of such an integration step can be found in [69].

4.4.3 Implementation Aspects

Regarding the implementation of the presented algorithm, three important considera-
tions are discussed in the following.
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Maximum Execution Time

The main reason for choosing the SVD update algorithm over numerical iterative algo-
rithms is the possibility of having a maximum execution time. In the case of different
positive singular values, this is the case. For equal singular values, this is only the case
if the groups of singular values have a maximum of g = 3 elements. For groups of
g = 2 and g = 3 elements, the eigenvalue problem can be solved using the quadratic or
Cardano’s formulas [69]. For g > 3 the use of iterative numerical methods is necessary.

Orthogonality of Singular Vectors

The orthogonality of the matrices Ub and Vb is theoretically maintained given the con-
dition that Cu and Cv defined in (4.65) are skew symmetric. However, the implemen-
tation of the algorithm requires a discretization of the integration and with it small
numerical errors lead to a deviation from the orthogonality. In order to correct this
effect dynamically, an additional feedback within the derivatives (4.75) is proposed
by [69]

.
Ub (t) = Ub (t)

(
Cu (t)− ku

(
UT
b (t) Ub (t)− I

))
, (4.83a)

.
Vb (t) = Vb (t)

(
Cv (t)− kv

(
VT
b (t) Vb (t)− I

))
, (4.83b)

with positive gains ku, kv > 0 ∈ R. In order to understand the effect of the added
feedback, consider the orthogonality error Eu (t) := UT

b (t) Ub (t) − I ∈ Rr×r. Given
that Cu (t) is skew-symmetric and that Ub (t) is orthogonal, the derivative of Eu (t) is
given by

Eu (t) = UT
b (t)

.
Ub (t) +

.
U
T

b (t) Ub (t)

=
(
Cu (t)− ku

(
UT
b (t) Ub (t)− I

))
+
(
Cu (t)− ku

(
UT
b (t) Ub (t)− I

))T

= −2ku
(
UT
b (t) Ub (t)− I

)

= −2ku · Eu (t) .

Since−2ku < 0, the error dynamics Eu (t) are asymptotically stable and have their equi-
librium at Eu = 0 [100, Sec. 2.6], which corresponds to the orthogonality condition of
Ub (t). Notice that the term −ku

(
UT
b (t) Ub (t)− I

)
is symmetric and therefore does not

influence the skew-symmetric part of the derivative Cu (t). The same argumentation
can be done for Cv (t). Maintaining the orthogonality of the matrices Ub (t) and Vb (t)
is critical for the correct update of the singular value decomposition as presented in
this section.

SVD Numerical Drift

Because the matrix Bνu (t) and the SVD Σb (t), Ub (t) and Vb (t) are integrated indepen-
dently, small numerical computational errors can lead to a drift. In order to avoid it, an
error correction term is added to the derivative of the input matrix Bνu (t) as follows

F (t) =
.

Bνu (t)− k
(
Ub (t) Σb (t) VT

b (t)−Bνu (t)
)
, (4.84)
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such that (4.62) is exchanged by

F (t) =
.

Ub (t) ·Σb (t) ·VT
b (t) + Ub (t) ·

.
Σb (t) ·VT

b (t) + Ub (t) ·Σb (t) ·
.

V
T

b (t) . (4.85)

The error between current SVD and input matrix is defined as

Eb (t) := Ub (t) Σb (t) VT
b (t)−

.
Bνu (t) ∈ Rn×m.

The error dynamics are given by
.
Eb (t) = F (t)−

.
Bνu (t) = −k · Eb (t)

and by selecting k > 0 ∈ R the equilibrium Eb = 0 is asymptotically stable [100, Sec.
2.6].

Update derivative of the input matrix
using (4.84)

Group equal singular values (4.76)

For each group, find the alternative SVD
by solving the eigenvalue problem of (4.82)

Compute the derivatives
.

Σb(t), Cu(t), Cv(t)
using (4.70a), (4.73)/(4.80), (4.74)

Transform Cu(t), Cv(t) to
.

Ub(t),
.

Vb(t)
using modification (4.83)

Integrate SVD using U (t) and V (t)

.
Bνu(t) Σb(t),Ub(t),Vb(t)

Σb(t+ Ts),Ub(t+ Ts),Vb(t+ Ts)

Figure 4.24: Diagram of the SVD Update Algorithm

The final SVD update algorithm including the robustness modifications is depicted
in Figure 4.24. In a first step, the input matrix derivative

.
Bνu(t) is updated using the

robustness modification (4.84). Subsequently, the transformation of the singular vec-
tors corresponding to equal singular values is done as presented in Section 4.4.2. After
grouping equal singular values (4.76), the eigenvalue problem of (4.82) is solved in
order to find the transformation matrix Q. This process is repeated for every group of
singular values leading to the alternative singular vectors U (t) and V (t). The deriva-
tives

.
Σb(t), Cu(t), Cv(t) are then computed using (4.70a), (4.73)/(4.80) and (4.74). The
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derivatives
.

Ub(t) and
.

Vb(t) are calculated from Cu(t), Cv(t) using the robustness mod-
ification (4.83). Finally, the SVD matrices are integrated using the alternative singular
vectors U (t) and V (t) as current states.

4.5 Bibliographical Remarks

In this section, a predictor-based adaptive control allocation (P-ACA) and a reduced-
order version of it have been presented. Because of its indirect formulation, the con-
trol allocation is separated from the rigid body control and offers more flexibility than
direct adaptive formulations [50, 98, 143, 144]. The formulation of P-ACA ensures that
the rigid body control laws are not overparameterized and that actuator redundancy is
fully handled within the control allocation. The Prioritizing Control Allocation (PRIO
CA) is specially suitable for a degraded control situations, where the desired virtual
control νd is not attainable. It naturally disregards low priority virtual controls while
satisfying the high priority virtual control commands. Furthermore, the algorithm has
been developed such that a result is achieved within a fixed limited number of itera-
tions.

The PRIO CA was motivated by the PAN approach presented in [17], where the
pseudo inverse control allocation solution is modified along the null space of the con-
trol input matrix in order to effectively address input magnitude saturation. The main
difference is the implemented strategy. In [17] and [142] the null space is used to mini-
mize an error norm and ultimately implement direct allocation in the sense of Durham.
The PRIO CA implements a prioritizing strategy and always maintains an attainable
virtual control. The null space is used to find update directions such that the input lim-
its are respected. In this work the inclusion of different update directions for singular
cases has increased the efficacy of the algorithm.

A common alternative of implementing a prioritization strategy is the use of an op-
timization routine to minimize a function of weighted virtual control errors. The ad-
vantage of the PRIO CA is better prioritization of the virtual controls. The performance
of the optimization routines largely depends on the correct selection of the weights
which should be as different as possible for enforcing prioritization but as equal as
possible to avoid ill-conditioned optimization problems. Further, for unattainable con-
trols the optimal result of the weighted function necessarily leads to an allocation error
of all the virtual controls, even if in different orders of magnitude.

In this work, the SVD update algorithm presented in [69] has been extended to
non-square matrices. In this way, it is possible to apply the PRIO CA to overactuated
systems and a time-varying input matrix. Furthermore, the numerical drift correction
(4.84) has been introduced to increase robustness of the SVD update.

Compared to the previous work in [42, 43], the uncertainty parameterization and
the control allocation strategy have been changed. The fault model (3.5) integrates not
only multiplicative but also additive uncertainties such that the stuck actuator case can
be taken into account. Furthermore, the control effectiveness matrix Λ is not limited to
a diagonal matrix. The control allocation in [42,43] implements a prioritization strategy
in form of a gradient optimization using a weighted error function.
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Chapter 5

Multirotor Controllers

In Chapter 3 (Adaptive Fault Tolerant Control) the Parameter Reduction due to Over-
actuation (PRO) approach has been presented to solve fault tolerant control problems
for systems with redundant actuators using adaptive control. Because of the impor-
tance of handling control input saturation, in Chapter 4 (Adaptive Control Allocation)
the Predictor-Based Adaptive Control Allocation (P-ACA) has been introduced as a
way of integrating control allocation approaches within the adaptive control frame-
work. In this chapter, these methods are applied to the hexacopter system as presented
in Chapter 2 (Multirotor Dynamics Model). The main goal is the design of an adap-
tive fault tolerant controller for a VTOL multicopter system that considers actuator
redundancy, actuator limits and implements a strategy for degraded control authority
as stated in Section 1.3. The capabilities of the resulting flight controller are demon-
strated in flight tests and presented in Chapter 6 (Experimental Results).

The hexacopter system is an overactuated system and can be described by the rigid
body dynamics (2.15) and the actuator model (2.16). The separation has been achieved
by using the thrust T (t) and the moments

−→
MR

P (t) generated by the propulsion system
as virtual controls ν (t) ∈ R4. For the sake of clarity, the system description is summa-
rized here

( .
~r
R
)N
N

(t) = (~vR)N
N

(t) , (5.1a)
( .
~v
R
)NN
N

(t) = (~gG)
N
− 1

m
(~zB)

N
(t) · (T (t) + dT ) , (5.1b)

.
MNB (t) = MNB (t) ·Ω ((~ωNB)

B
(t)) , (5.1c)

( .
~ω
NB
)B
B

(t) = (IR)−1

BB
fc ((~ωNB)

B
(t)) + (IR)−1

BB
·
((−→

MR

P

)
B

(t) +
(
~dM

)
B

)
, (5.1d)

ν (t) =

[
T (t)(−→

MR
P

)
B

(t)

]
= BaΛu (t) . (5.1e)

The rigid body motion is described by the kinematic relations (5.1a) and (5.1c) and the
dynamics (5.1b) and (5.1d). The actuator model is given by (5.1e). In order to model
actuator faults, the control effectiveness matrix Λ ∈ Rm×m and the constant thrust and
moment disturbances dT ∈ R and ~dM ∈ R3 are considered unknown parameters of the
plant. The constant disturbances dT and ~dM correspond to dν in (2.16) and have been
rearrange to match the system description (4.1). In (5.1d), the term (IR)−1

BB
·
(
~dM

)
B

cor-

responds to a constant unknown and the term− 1
m

(~zB)
N

(t) ·dT in (5.1b) corresponds to
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Figure 5.1: Control Overview Multirotor

a linearly parameterizable function of the state. The function Ω (·) mapping a vector to
a skew-symmetric matrix is defined in (2.14). Furthermore, the following abbreviation
for the Coriolis term has been used

fc ((~ωNB)
B

(t)) := − (~ωNB)
B

(t)× ((IR)
BB

(~ωNB)
B

(t)) . (5.2)

An overview of the general controller structure can be seen in Figure 5.1. There
are mainly three elements that are combined to the final controller: the baseline con-
troller, the adaptive augmentation and the control allocation. The baseline controller
can be seen as a nominal non-adaptive controller of the plant, where uncertainties cor-
responding to normal operation are taken into account. In order to compensate for
larger uncertainties like actuator faults, it is augmented by an adaptive controller. Fol-
lowing the P-ACA approach, the baseline controller and the adaptive augmentation
are designed based on the rigid body dynamics (5.1a)-(5.1d) using the virtual control
ν (t) as the control input of the system. The mapping of the desired virtual controls
to the actuators is done within the control allocation, which addresses the redundancy
of the system and the input constraints. In the last chapters, no baseline controller has
been considered due to the fact that it does neither affect the structure of the adaptive
controller nor the stability proof [67]. In this chapter, it is included as a conceptual
separation in order to highlight the changes due to the adaptive augmentation and to
facilitate the selection of a lean, compact and unified controller structure (thesis objec-
tive 6).

Given that the virtual control ν (t) of the system is 4-dimensional, 4 outputs can
be independently commanded depending on the application scenario. The selected
outputs in this work are:

� The reduced attitude vector command ~zc (t) ∈ S2.

� The yaw rate command (wc,z)B (t) ∈ R.
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Figure 5.2: Baseline Controller Structure

� And the vertical velocity command (vc,z)
N

N
(t) ∈ R.

The rigid body controller structure is depicted in Figure 5.2. It is separated into an inner
loop and an outer loop motivated by the inherently cascaded structure of the multiro-
tor dynamics (5.1). On the one hand, the position ~rR (t) and velocity states ~vR (t) do
not influence the attitude subsystem (5.1c)-(5.1d). On the other hand, the reduced atti-
tude vector ~zB (t), a part of the rotation matrix MNB (t) (2.12), and the thrust T (t) can
be seen as inputs of the position subsystem (5.1a)-(5.1b). Hence, the inner loop con-
troller corresponds to an attitude and rate controller with the reduced attitude vector
~zc (t) and the yaw rate (wc,z)B (t) as input commands. Its output is the desired moment
~νM,d (t) ∈ R3. The outer loop corresponds to the vertical velocity controller that han-
dles the vertical velocity command (vc,z)

N

N
(t) by setting the desired total thrust νT,d (t).

The overall outputs are the desired thrust νT,d (t) and the desired moment ~νM,d (t) ∈ R3

which compose the desired virtual control νd (t) ∈ R4. The outer loop can further in-
tegrate position control in the horizontal plane as in [43] but in this thesis the scope is
limited to the parts of the controller that are directly affected by actuator faults. Finally
note that Figures 5.1 and 5.2 refer to the same rigid body controller but using different
conceptual divisions.

The chapter is organized as follows. In Section 5.1, the Parameter Reduction due to
Overactuation (PRO) is applied to the system. Based on the given parameterization,
the control allocation is described in Section 5.2. Subsequently, the rigid body con-
trollers corresponding to the baseline controller and the adaptive augmentation as in
Figure 5.1 are derived. The baseline attitude and rate controller is treated in Section
5.3 and the corresponding adaptive augmentation in Section 5.4. The baseline vertical
velocity controller and the corresponding augmentation are derived in Section 5.5.

5.1 Parameter Reduction due to Overactuation

The dynamics of the multirotor system have been separated into rigid body dynamics
(5.1a)-(5.1d) and the actuator model (5.1e). To apply the Parameter Reduction due to
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5.1 Parameter Reduction due to Overactuation

Overactuation (PRO) approach, a singular value decomposition of Ba (2.8)

Ba = UaΣaV
T
a = Ua,rDaV

T
a,r (5.3)

is used analogously to (4.4) and (3.48). Here, Ua ∈ R4×4 and Va ∈ R6×6 are orthogonal
matrices and Va,r ∈ R6×4, Va,n ∈ R6×2 are partitions of Va = [Va,r,Va,n] such that
Va,n spans the null space of Ba. Furthermore, Σa = [Da,0] ∈ R4×6 and Da ∈ R4×4 is a
diagonal positive definite matrix. Since the matrix is full row rank, no division of Ua

is needed and in this case it holds that Ua = Ua,r.

Example 5.1 (Hexacopter Input Matrix SVD) For the hexacopter system with actuator con-
figuration 1 as in Figure 2.1a, the nominal control input matrix Ba is given by (2.9) and by
the parameters in Table 2.3. The normalized input matrix has been derived in Example 4.4 and
has the following singular value decomposition (SVD)

Ua =




0 0 0 −1
0 1 0 0
1 0 0 0
0 0 −1 0


 ,

Da =




0.500 0 0 0
0 0.433 0 0
0 0 0.408 0
0 0 0 0.201


 ,

Va,r =




0.5000 −0.2887 0.4082 −0.4082
−0.0000 −0.5774 −0.4082 −0.4082
−0.5000 −0.2887 0.4082 −0.4082
−0.5000 0.2887 −0.4082 −0.4082
0.0000 0.5774 0.4082 −0.4082
0.5000 0.2887 −0.4082 −0.4082



, Va,n =




−0.3491 −0.4599
0.5728 −0.0724
−0.2237 0.5322
−0.3491 −0.4599
0.5728 −0.0724
−0.2237 0.5322



.

For the multirotor systems presented in Chapter 2, it is possible to partition the
singular value decomposition into two independent parts corresponding to thrust and
moments respectively. This separation can be exploited to divide the reduced control
effectiveness matrix into two submatrices. This simplifies the controller design since
the update laws can be independently derived. Without loss of generality, this process
is exemplified based on Example 5.1. The matrix Ua in Example 5.1 can be partitioned
into moment and thrust parts as follows

Ua =

[
0 UT

UM 0

]
, UM :=




0 1 0
1 0 0
0 0 −1


 , UT := −1.

The singular values and right singular vectors can be analogously grouped by defining

Da =

[
Dm 0
0 DT

]
, Va,r =

[
VM , VT

]
,

where DM ∈ R3×3, DT ∈ R, VM ∈ R6×3, VT ∈ R6. Hence, the submatrices of Ba

defined in (2.8) can be written as

Ba =

[
Ba,T

Ba,M

]
=

[
UT ·DT ·VT

T

UM ·DM ·VT
M

]
. (5.4)
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Following the Parameter Reduction due to Overactuation (PRO) approach, the con-
trol effectiveness matrix Λ can be separated into Λa,r = VT

a,r · Λ ∈ R4×6 and Λa,n =
VT
a,n ·Λ ∈ R2×6. Due to the structure of the Ba matrix (5.4), Λa,r can be separated into

thrust and moment parts as

Λa,r =

[
ΛM

ΛT

]
, (5.5a)

ΛT = VT
TΛ ∈ R1×6, (5.5b)

ΛM = VT
MΛ ∈ R3×6. (5.5c)

Similarly to (3.51), the control effectiveness matrix can be transformed back by using
the orthogonality of V as




ΛM

ΛL

Λa,n


 =




VT
M

VT
T

VT
a,n


 ·Λ = VT ·Λ ⇒ Λ = V ·




ΛM

ΛL

Λa,n


 .

Using the SVD of Ba (5.3), the partitions Ba,T and Ba,M (5.4) and the partitions of
the control effectiveness matrix ΛT and ΛM (5.5), the virtual control inputs can be
separated into thrust and moments as

T (t) = UT ·DT ·ΛT · u(t), (5.6a)(−→
MR

P

)
B

(t) = UM ·DM ·ΛM · u(t). (5.6b)

This corresponds to the actuator model (5.1e) with the reduced parameter version us-
ing PRO. The order of the singular values in Da and therefore the order of the singular
vectors in Ua and Vr depend on the parameters of the specific multicopter. Neverthe-
less, the separation between thrust and moments as in (5.6) is possible as long as all
the rotor axes are aligned with the body-fixed axis zB.

5.2 Control Allocation

After normalizing the control inputs as in Section 4.3.2 and parameterizing the control
effectiveness matrix as in (5.6), the control allocation problem to be solved is defined
as follows.

Control Task 5.1 (Multirotor Control Allocation) Given a desired virtual control input
νd (t) ∈ R4, compute the control inputs u (Bνu(t),νd(t)) ∈ R6 such that

νd (t) = Bνu (t) u (t) , (5.7)

with Bνu (t) ∈ R4×6 and such that the input lies within the input set U ⊂ R6 defined as

U := {u ∈ R6 | −1 ≤ ui ≤ 1,∀i = 1...6},

where ui is the i-th element of u (t). Note that the control input set U is a 6-dimensional
hypercube. The matrix Bνu (t) is given by the estimate

Bνu (t) = BaΛ̂ (t) = Ua,rDaΛ̂a,r (t) =

[
UT ·DT · Λ̂T (t)

UM ·DM · Λ̂M (t)

]
(5.8)
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5.3 Attitude and Rate Controller

using the definition (5.4). Here, Λ̂T (t) ∈ R1×6 and Λ̂M (t) ∈ R3×6 are the estimates of ΛT

and ΛM respectively. The desired virtual control can be separated as

νd (t) =

(
νT,d (t)
~νM,d (t)

)
(5.9)

into the desired thrust νT,d (t) ∈ R and the desired moment ~νM,d (t) ∈ R3.
If the desired virtual control input νd (t) is unattainable, prioritize the constraints

νd,j (t) = Bνu,rj (t) u (t)

according to the selected order:

1. Roll and pitch moments Ld (t) and Md (t).

2. Total thrust Td (t).

3. Yaw moment Nd (t).

Here, Bνu,rj (t) ∈ R1×6 is the j-th row of Bνu (t).

The formulation of Control Task 5.1 allows for a separated design of the desired
thrust νT,d (t) and the estimate Λ̂T (t) from the design of the desired moment ~νM,d (t)

and the estimate Λ̂M (t). A coupling between the different subsystems will only exist
if input saturation does not permit an independent selection of the 4 virtual controls
νd (t). This separation is only important for the subsequent derivation of the rigid body
controllers and has no influence on the control allocation itself.

The Control Task 5.1 is fulfilled using the Prioritizing Control Allocation Strategy
(PRIO CA) as presented in Section 4.3 given that the SVD of the input matrix Bνu (t) is
known. The SVD of the input matrix Bνu (t) can be continuously computed given its
derivative

.
Bνu (t) =

[
UT ·DT ·

.
Λ̂T (t)

UM ·DM ·
.
Λ̂M (t)

]

using the SVD update algorithm presented in Section 4.4. The derivatives
.
Λ̂T (t) ∈

R1×6 and
.
Λ̂M (t) ∈ R3×6 are known since they correspond to the P-ACA adaptive up-

date laws. Having addressed the control allocation, the following sections deal with
the rigid body controllers composed of a baseline controller and an adaptive augmen-
tation as shown in Figure 5.1. For this derivation, the virtual controls νT,d (t) and
~νM,d (t) are considered to be the control inputs of the rigid body dynamics.

5.3 Attitude and Rate Controller

In this section, the inner loop baseline controller as in Figure 5.2 is designed. The con-
trol problem is formulated as a reduced attitude tracking problem. Reduced attitude
instead of full attitude control has been selected because of the multirotor system char-
acteristics. As discussed in Chapter 2, this choice facilitates the controller tuning and

124



Chapter 5: Multirotor Controllers

enables better performance by avoiding coupling of motions with different time con-
stants and noise characteristics. Furthermore, the problem is formulated directly in the
attitude configuration space SO(3). The main motivation is the maximization of the
utilizable flying envelop which corresponds to the thesis objective 9.

In Section 5.3.1, the nonlinear reduced attitude control problem is addressed and
error dynamics with an almost globally asymptotically stable and a locally exponen-
tially stable equilibrium are derived. In Section 5.3.2, the decoupled control of the
reduced attitude vector (~zB)

N
(t) and yaw rate (wc,z)B (t) is analyzed. This is important

for the degraded control authority case, where the desired yaw moment might not be
achieved due to the prioritization defined in Control Task 5.1 (Multirotor Control Al-
location). Based on these results the baseline controller is derived. It is composed of an
attitude reference model and the attitude tracking control law which are presented in
Sections 5.3.3 and 5.3.4. The adaptive augmentation is presented in Section 5.4.

5.3.1 Nonlinear Attitude Control

The attitude dynamics are given by a second order differential equation corresponding
to a subsystem of the rigid body dynamics (5.1c)-(5.1d). For the derivation of the base-
line controller, the propulsion moments

−→
MR

P (t) are considered as the control input and
a zero moment disturbance ~dM is assumed. Hence, the attitude dynamics are given by

.
MNB (t) = MNB (t) ·Ω ((~ωNB)

B
(t)) , (5.10a)

( .
~ω
NB
)B
B

(t) = (IR)−1

BB
fc ((~ωNB)

B
(t)) + (IR)−1

BB
·
(−→
MR

P

)
B

(t) . (5.10b)

Since this configuration space does not correspond to an Euclidean space, the attitude
control problem is inherently nonlinear and has several characteristics worth noting.
One of the most relevant differences to a linear system is that it is impossible to achieve
global stabilization for an attitude equilibrium using continuous time-invariant feed-
back [10, 26]. This can be illustrated in the one dimensional case as in [26]. Consider
the stabilization of the multicopter thrust vector for a planar motion as depicted in Fig-
ure 5.3. Here, ~xB and ~zB correspond to the body-fixed axes. Let the indicated point
A be the desired equilibrium towards which the propulsion force vector ~FR

P should
point. From any other attitude there are two paths to it: clockwise (positive) or anti-
clockwise (negative). A continuous attitude feedback translates to a continuous time-
invariant moment field according to the desired spring moment. In this case another
equilibrium is necessarily created. The reason is that the moment field always needs to
change direction from clockwise to counterclockwise and therefore it crosses a second
zero moment point (apart from desired the equilibrium). Because of the symmetry of
the problem, this point usually corresponds to a 180 [◦] attitude error, that is point B
in Figure 5.3. This same concept applies for attitude stabilization problems in higher
dimensions like the reduced or full attitude control problems. Furthermore, this prin-
ciple is independent from the used attitude parameters and hence applies for control
laws using rotation matrices, Euler angles and quaternions the same way.

In order to address this topological limitation of attitude control and to differentiate
it from other weaker local stability results, the concept of almost-global stabilization
has been introduced.
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Figure 5.3: Continuous Time-Invariant Moment Vector Field

Definition 5.1 (Almost global asymptotic stability) [113] An equilibrium xd of the dy-
namic system .

x (t) = f(x (t)) is almost globally asymptotically stable if it is asymptotically
stable with a region of attraction that is almost global. This means that the set outside the
region of attraction has Lebesgue measure equal to zero.

This definition is a natural extension of local asymptotic stability for systems that
cannot achieve global asymptotic stability due to topological restrictions of the dynam-
ical system. As previously discussed, this is the case for the attitude control problem
using a time-invariant continuous control law since more than one equilibrium points
exist. In order to design a controllers that achieve almost global asymptotic stability in
the closed-loop, the following approach is used as in [25, 55, 94, 113].

Theorem 5.2 (Almost Global Asymptotic Stability) An equilibrium xe of the dynamic
system .

x (t) = f(x (t)) is almost globally asymptotically stable if

1. all the solutions x (t) of the system are bounded and converge to an equilibrium point for
t→∞,

2. the equilibrium xe is locally asymptotically stable,

3. and all the other equilibrium points are unstable.

The main fact used for this theorem is that the region of attraction of the desired
equilibrium xe excludes the stable manifolds of the unstable equilibria which have
zero Lebesgue measure [94].

In the following, closed-loop error dynamics of the reduced attitude are derived
such that the desired equilibrium is almost globally asymptotically stable and locally
exponentially stable. Instead of tracking the full attitude in SO(3), the idea is to track
the reduced-attitude vector ~zB (t) defined in the 3-dimensional unit sphere S2, that is
{~zB (t) ∈ R3, ||~zB (t)|| = 1}. The vector ~zB (t) points along the body-fixed z-axis and
corresponds to the inverted direction of the total propulsion force. Hence, this reduce-
attitude representation is directly used to control the position and is therefore a natural
choice for a tracking variable of the inner loop controller.

126



Chapter 5: Multirotor Controllers

For the derivation of the tracking controller, a twice continuously differentiable de-
sired reduced-attitude vector ~zd (t) ∈ S2,C2 is considered. Its first derivative has the
form

( .
~zd

)N
N

(t) = (~ωND)
N

(t)× (~zd)N (t) . (5.11)

Here, (~ωND)
N

(t) ∈ R3 is the rotational rate of the desired vector (~zd)N with respect
to the N -frame given in the N -frame. The kinematic constraint (5.11) matches the

structure of the derivative
( .
~zB

)N
N

(t) (2.17). It arises from the fact that the vector is only
allowed to rotate but not to change its length. This can be checked by computing its
derivative along the direction of the vector (~zd)N (t) as

(~zd)
T
N

(t)
( .
~zd

)N
N

(t) = (~zd)
T
N

(t) ((~ωND)
N

(t)× (~zd)N (t))

= (~ωND)
T
N

(t) ((~zd)N (t)× (~zd)N (t))

= 0.

Here, the Lemmas D.1 (Cross Product) and D.2 (Scalar Triple Product) in Appendix D
have been used. The tracking problem is defined in the following task.

Control Task 5.2 (Reduced Attitude Tracking Control) Given the plant (5.10), the body-
fixed unit vector ~zB (t) ∈ S2 and the desired unit vector ~zd (t) ∈ S2, find a continuous control
law
−→
MR

P (t) such that the equilibrium ~zB(t) = ~zd(t) is almost globally asymptotically stable.

In a first step, the attitude error kinematics are derived. This is done by deriving
the desired vector in the body-fixed system (~zd)B (t) = MBN (t) · (~zd)N (t) . In this frame,
the desired equilibrium is given by (~zd)B (t) = (~zB)

B
(t) = [0, 0, 1]T . In the following

the derivative of MBN is computed. Using Lemma D.1 (Cross Product), the attitude
kinematics (5.10a) can be rewritten as

.
MNB (t) = MNB (t) ·Ω ((~ωNB)

B
(t)) ,

= Ω (MNB (t) · (~ωNB)
B

(t)) ·MNB,

= Ω ((~ωNB)
N

(t)) ·MNB.

Therefore, by noting that Ω ((~ωNB)
N

(t)) is skew-symmetric it holds that
.

MBN (t) =
.

M
T

NB (t) ,

= MT
NB ·Ω ((~ωNB)

N
(t))

T
,

= −MBN ·Ω ((~ωNB)
N

(t)) .

(5.12)

Finally, using the attitude kinematics (5.12), the desired attitude kinematics (5.11), the
definition of Ω (·) (2.14), and Lemma D.1 (Cross Product), the rotation of the desired
vector in the body-fixed system (~zd)B (t) = MBN (t) · (~zd)N (t) is described by

( .
~zd

)B
B

(t) =
.

MBN (t) (~zd)N (t) + MBN (t)
( .
~zd

)N
N

(t) ,

= −MBN (t) [(~ωNB)
N

(t)× (~zd)N (t)] + MBN (t) [(~ωND)
N

(t)× (~zd)N (t)] ,

= −MBN (t) [(~ωNB (t)− ~ωND (t))× (~zd)N (t)] ,

= − (~ωDB)
B

(t)× (~zd)B (t) .
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Here, the error rate is defined as the difference between the body and the desired rota-
tional rates ~ωDB (t) := ~ωNB (t) − ~ωND (t) ∈ R3. Since the motion kinematics cannot be
changed by the control law, the desired closed-loop dynamics need to be accordingly
designed. In this work they are selected as

( .
~zd

)B
B

(t) = − (~ωDB)
B

(t)× (~zd)B (t) , (5.13a)
( .
~ω
DB
)B
B

(t) = −ka ((~zd)B (t)× (~zB)
B
)−Kω (~ωDB)

B
(t) , (5.13b)

where ka ∈ R is a positive spring constant and Kω ∈ R3×3 is a diagonal positive def-
inite damping matrix. Further, note that (~zB)

B
(t) = [0, 0, 1]T . The first term in (5.13b)

corresponds to an attitude dependent spring moment and the second term is a velocity
dependent damping moment.

In order to understand the effect of the first term, let

~eDBa (t) := ~zd (t)× ~zB (t) ∈ R3 (5.14)

be defined as the attitude error vector. This vector points in the direction of a rotation
axis that rotates ~zd (t) towards ~zB (t) and its magnitude is given by

||~eDBa (t)|| = ||~zd (t)× ~zB (t)|| = |sin (ϕd (~zB (t) ,~zd (t)))| , (5.15)

where ϕd (t) ∈ [0, π] is the angle between~zd (t) and~zB (t). The magnitude of the attitude
error vector over the angle ϕd (t) is depicted in Figure 5.4. Since the moment field
corresponding to −ka · (~eDBa )

B
(t) is continuous and only depends on the error state

(~zd)B it is known that the closed-loop dynamics (5.13) have more than one equilibrium
point. Therefore, almost global asymptotic stability of the desired equilibrium is the
best stability result. In the following, it is shown that the dynamics (5.13) satisfy the
Control Task 5.2 and in Section 5.3.4 the corresponding control law

−→
MR

P (t) is derived
such that the closed-loop dynamics (5.13) are achieved. The equilibria of (5.13) are
analyzed as in [26] in a first step.
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Figure 5.4: Attitude Error Vector Magnitude

Theorem 5.3 (Attitude Equilibrium Points) Given the system dynamics (5.13), the set of
equilibrium points is given by χe = ((~zd,e)B , ~ω

DB

e ) = (± (~zB)
B
,0) = (±[0, 0, 1]T ,0). The

subscript e refers to the values at the equilibrium of the system.
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Proof: For the equilibria of the system (5.13) the following conditions hold

0 = − (~ωDB

e )
B
× (~zd,e)B , (5.16a)

0 = −ka ((~zd,e)B × (~zB)
B
)−Kω (~ωDB

e )
B
. (5.16b)

By multiplying (5.16b) with (~ωDB

e )
T

B
from the left, using Lemma D.2 (Scalar Triple Prod-

uct) and inserting (5.16a) it follows that

0 = −ka (~ωDB

e )
T

B
((~zd,e)B × (~zB)

B
)− (~ωDB

e )
T

B
Kω (~ωDB

e )
B
,

= −ka (~zB)T
B

(
(~ωDB

e )
T

B
× (~zd,e)B

)
− (~ωDB

e )
T

B
Kω (~ωDB

e )
B
,

= − (~ωDB

e )
T

B
Kω (~ωDB

e )
B
.

Because Kω is positive definite it follows that ~ωDB

e = 0. Inserting this result back into
(5.16b) leads to

0 = −ka ((~zd,e)B × (~zB)
B
) .

Because ka > 0 it follows that ~zB (t) and ~zd (t) are parallel at the equilibrium points
(~zd,e)B = ± (~zB)

B
with (~zB)

B
= [0, 0, 1]T . �

Note that although both equilibria (~zd,e)B = ± (~zB)
B

correspond to a single point
in the 3-dimensional unit sphere S2, in the full attitude configuration space SO(3) they
correspond to a set of attitudes. This is because the reduced attitude~zB does not change
through a rotation about the axis ~zB. This is an intended effect, since it allows for
decoupling the yaw motion from the reduced attitude and consequently the position
dynamics. The following theorem is the main result of the section.

Theorem 5.4 (Reduced Attitude AGAS) Given the system dynamics (5.13), a positive gain
ka > 0 and a diagonal positive definite matrix Kω, the desired equilibrium χd,e = ((~zB)

B
,0) =

([0, 0, 1]T ,0) is almost globally asymptotically stable (AGAS). Furthermore, the undesired
equilibrium χu,e = (− (~zB)

B
,0) = ([0, 0,−1]T ,0) is unstable.

Proof: The proof is based on checking the three conditions of Theorem 5.2 (Almost
Global Asymptotic Stability) using a Lyapunov approach. Since the attitude error be-
tween ~zd (t) and ~zB (t) can be measured by the angle between them ϕd (t) ∈ [0, π], the
following reduced attitude penalty function is proposed

Vϕ (ϕd ((~zd)B (t))) = 1− (~zB)T
B
· (~zd)B (t) = 1− cosϕd (t) . (5.17)

This function is a strictly monotonically increasing function of the attitude error with
Vϕ (ϕd (t)) = 0 if and only if ~zB (t) = ~zd (t). This function is depicted in Figure 5.5.

Using the reduced attitude penalty function Vϕ (ϕd ((~zd)B (t))) (5.17), the following
positive definite Lyapunov candidate function is defined.

Lemma 5.5 (Attitude Lyapunov function) Let the attitude Lyapunov function be

V ((~zd)B (t) , ~ωDB (t)) = ka · Vϕ (ϕd ((~zd)B (t))) +
1

2
(~ωDB)

T
B

(t) (~ωDB)
B

(t)

+ c · (~ωDB)
T
B

(t) (~eDBa )
B

(t) ,
(5.18)

where c ∈ R, ka > 0 ∈ R and ~eDBa (t) := ~zd (t) × ~zB (t) ∈ R3 is defined as the at-
titude error vector. The Lyapunov function is defined in the configuration space S2 × R3

and is positive definite for |c| ≤
√
ka. Positive definite means that V = 0 if and only if

(ϕd ((~zd)B (t)) , ~ωDB (t)) = (0,0), otherwise it holds that V (t) > 0.
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Figure 5.5: Reduced-Attitude Penalty Function

The proof is found in Lemma D.3 (Attitude Lyapunov function) in Appendix D. In
order to analyze the stability properties of the system, the derivative of V (t) (5.18) is
needed. Using the kinematics (5.13a), the definition of ~eDBa (t) (5.14), and Lemma D.2
(Scalar Triple Product), the derivative of the attitude penalty function (5.17) is com-
puted as

.
V ϕ (ϕd ((~zd)B (t))) = − (~zB)T

B
·
( .
~zd

)B
B

(t) ,

= (~zB)T
B
· ((~ωDB)

B
(t)× (~zd)B (t)) ,

= (~ωDB)
T
B

(t) · ((~zd)B (t)× (~zB)
B
) ,

= (~eDBa )T
B

(t) · (~ωDB)
B

(t) .

(5.19)

The derivative of the Lyapunov function
.
V (t) is then given by

.
V = ka ·

.
V ϕ + (~ωDB)

T
B

( .
~ω
DB
)B
B

+ c · (~eDBa )T
B

( .
~ω
DB
)B
B

+ c · (~ωDB)
T
B

( .
~e
DB

a

)B
B

,

= ka · (~eDBa )T
B

(~ωDB)
B

+ c · (~ωDB)
T
B

( .
~e
DB

a

)B
B

+ ((~ωDB)
B

+ c · (~eDBa )
B
)
T
( .
~ω
DB
)B
B

,
(5.20)

where the time dependency has not been explicitly stated for the sake of readability.
The attitude error derivative can be bounded as follows.

Lemma 5.6 (Attitude Error Derivative Bound) The norm of the derivative of the attitude
error vector ~eDBa (t) = ~zd (t)× ~zB (t) can be bounded by the norm of the error rotational rates

∣∣∣
∣∣∣
( .
~e
DB

a

)B
B

(t)
∣∣∣
∣∣∣ ≤ ||(~ωBD)

B
(t)|| .

The proof is found in Lemma D.4 (Attitude Error Derivative Bound) in Appendix D.
By inserting the system dynamics (5.13) and Lemma 5.6 (Attitude Error Derivative
Bound) into (5.20), the derivative of the Lyapunov function

.
V (t) can be bounded from

above by
.
V ≤ ka · (~eDBa )T

B
(~ωDB)

B
+ c · ||(~ωDB)

B
||2

+ ((~ωDB)
B

+ c · (~eDBa )
B
)
T

(−ka (~eDBa )
B
−Kω (~ωDB)

B
) ,

≤ −c · ka · ||(~eDBa )
B
||2 + (~ωDB)

T
B

(I · c−Kω) (~ωDB)
B
− c · (~eDBa )T

B
Kω (~ωDB)

B
.
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By defining the error vector ζ (t) ∈ R6 and the symmetric matrix Q ∈ R6×6 as

ζ (t) =

(
(~eDBa )

B
(t)

(~ωDB)
B

(t)

)
, Q =

[
c · ka · I c

2
Kω

c
2
Kω Kω − c · I

]
,

the derivative of the Lyapunov candidate (5.18) can be rewritten as
.
V (t) ≤ −ζT (t) ·Q · ζ(t) =: −W (ζ(t)). (5.21)

By the correct selection of c, a positive definite matrix Q can always be found. This
is stated in the following lemma and the corresponding proof is found in Lemma D.5
(Positive Definite Q) in Appendix D.

Lemma 5.7 (Positive Definite Q) If Kω ∈ R3×3 is symmetric positive definite and ka > 0,
there exists a constant c ∈ ]0,

√
ka[ such that the matrix Q

Q =

[
c · ka · I c

2
Kω

c
2
Kω Kω − c · I

]

is positive definite.

Hence, from Lemmas 5.5 (Attitude Lyapunov function) and 5.7 (Positive Definite
Q), it follows that there exists a constant c ∈]0,

√
ka[ such that the matrix Q is symmetric

positive definite and simultaneously the Lyapunov candidate (5.18) is positive definite.
Consequently, the function W (ζ(t)) in (5.21) is positive definite with respect to ζ (t).
Furthermore, note that ζ(t) = 0 holds only if

||~eDBa (t)|| = |sin (ϕd ((~zd)B (t)))| = 0,

||~ωDB|| = 0.

Here, the magnitude of ~eDBa (t) (5.15) has been used. ζ(t) = 0 corresponds to the set of
equilibria χe = ((~zd,e)B , ~ω

DB

e ) = (±[0, 0, 1]T ,0). Therefore, the derivative
.
V (t) ≤ 0 is

negative semi-definite and not negative definite.
From Theorem 4.8 (Uniform Stability) in [87], it follows that the desired equilibrium

χd,e = ([0, 0, 1]T ,0) is uniformly stable and that the errors ϕd ((~zd)B (t)) and ~ωDB (t) are
bounded. Using Theorem 8.4 (Invariance-like Theorem) in [87], it further follows that
−W (ζ(t)) → 0 for t → ∞ . Because Q is symmetric positive definite, this implies
that ||ζ(t)|| → 0 for t → ∞ . This corresponds to Condition 1 in Theorem 5.2. Condi-
tions 2 and 3 in Theorem 5.2 are shown through linearization and summarized in the
following lemma.

Lemma 5.8 (Linearization: Reduced Attitude) The reduced attitude closed-loop system
(5.13) has a stable equilibrium at χd,e = ((~zd,e)B , ~ω

DB

e ) = ([0, 0, 1]T ,0) and an unstable
equilibrium at χu,e = ((~zd,e)B , ~ω

DB

e ) = ([0, 0,−1]T ,0) if ka is positive and Kω is a diagonal
positive definite matrix. The subscript e refers to equilibrium points.

The proof is found in Lemma D.6 (Linearization: Reduced Attitude) in Appendix
D. Using Theorem 5.2 (Almost Global Asymptotic Stability) it is concluded that the
desired equilibrium χd,e = ([0, 0, 1]T ,0) is almost globally asymptotically stable and
this finally proves Theorem 5.4 (Reduced Attitude AGAS). �
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From Lemma 5.8 (Linearization: Reduced Attitude) it is known that linearized sys-
tem at the equilibrium χd,e = ([0, 0, 1]T ,0) has only eigenvalues with negative real
parts. Then from Theorem 4.13 (Lyapunov’s Indirect Method) in [87] it follows that
the equilibrium is locally exponentially stable. The set of initial states for which the
exponential decay holds is refined in the following theorem and the proof is given in
Lemma D.9 (Local Exponential Stability) in Appendix D.

Theorem 5.9 (Local Exponential Stability) Given the system dynamics (5.13), the desired
equilibrium χd,e = ((~zd,e)B , ~ω

DB

e ) = ((~zB)
B
,0) = ([0, 0, 1]T ,0) is locally exponentially stable

and the Lyapunov function (5.18) decays exponentially given the initial conditions

Vϕ (ϕd(t = 0)) ≤ V ϕ ,

||~ωDB(t = 0)|| ≤
√

2ka ·
(
V ϕ − Vϕ (ϕd(t = 0))

)
,

for a constant V ϕ ∈ R such that 0 < V ϕ < 2.

Note that given a zero velocity initial condition ||~ωDB|| = 0, an exponentially decay-
ing attitude Lyapunov function can be found as long as the initial attitude error angle
is |ϕd(t = 0)| < π ⇒ Vϕ (ϕd(t = 0)) < 2. Furthermore, the smaller the initial attitude
error angle ϕd(t = 0) the larger the permitted initial error velocity ~ωDB(t = 0) can be.

5.3.2 Yaw Control Decoupling

From the attainable control set (ACS) analysis of the two hexacopter configurations in
Section 2.3, it is known that a degraded control authority case is unavoidable if the fail-
ure of any actuator is considered. Control Task 5.1 (Multirotor Control Allocation) de-
scribes a prioritizing control allocation strategy and therefore it is expected that during
a failure the desired yaw moment Nd (t) is not always achieved. A decoupled control
of the yaw motion and the reduced attitude is desirable such that the degradation is
limited to the yaw control. In this section the interaction between the subsystems is
analyzed.

In a first step, the desired closed-loop system for tracking the reduced attitude
(5.13) is modified assuming that the yaw control is independently designed as follows

( .
~zd

)B
B

(t) = − (~ωDB)
B

(t)× (~zd)B (t) , (5.22a)
( .
ω
DB

xy

)B
B

(t) = −ka
(
eDBa,xy

)
B

(t)− kw
(
ωDB

xy

)
B

(t) , (5.22b)

where ka ∈ R is a positive spring constant and kw ∈ R is a positive damping constant.
Furthermore,

(
eDBa,xy

)
B

(t) ∈ R2 and
(
ωDB
xy

)
B

(t) ∈ R2 correspond to the first and second
elements of (~eDBa )

B
(t) and (~ωDB)

B
(t) respectively. Compared to (5.13), the spring term

has not changed since the third element of (~eDBa )
B

(t) := (~zd)B (t) × (~zB)
B

= (~zd)B (t) ×
[0, 0, 1]T (5.14) is always zero (

eDBa,z
)
B

(t) = 0. (5.23)

The damping term has been modified such that only roll and pitch rates are damped.
Therefore, the yaw rate is not directly used by controller and the yaw rate error (ωDBz )B

B
(t) ∈

R corresponding to the third element of (~ωDB)
B

(t) is considered an external signal. In
the following the equilibria of (5.22) are analyzed.
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Theorem 5.10 (Roll/Pitch Attitude Equilibrium Points) Given the desired closed-loop
system dynamics (5.22) and a time-varying signal (ωDBz )

B
(t), the set of equilibrium points

is given by χe := ((~zd,e)B ,
(
ωDB
e,xy

)
B
) = (±[0, 0, 1]T ,0). The subscript e refers to the values

at the equilibrium of the system and
(
ωDB
xy

)
B

(t) ∈ R2 corresponds to the first two elements of
(~ωDB)

B
(t) and (ωDBz )

B
(t) ∈ R to the third element.

Proof: For the equilibria of the pitch and roll system (5.22) the following conditions
hold

0 = −



(
ωDBe,x

)
B(

ωDBe,y
)
B

(ωDBz )
B

(t)


× (~zd,e)B , (5.24a)

0 = −ka
(

(zd,e,y)B
− (zd,e,x)B

)
− kw

((
ωDBe,x

)
B(

ωDBe,y
)
B

)
. (5.24b)

Here, (ωDBx )
B

(t),
(
ωDBy

)
B

(t), (zd,x)B (t) and (zd,y)B (t) ∈ R are the first and second ele-
ments of (~ωDB)

B
(t) and (~zd)B (t) respectively. From (5.24b), the following relations are

derived

(zd,e,y)B = −kw
ka

(
ωDBe,x

)
B
, (zd,e,x)B =

kw
ka

(
ωDBe,y

)
B
.

By inserting them in the third row of (5.24a), it follows that

0 = −
(
ωDBe,x

)
B
· (zd,e,y)B +

(
ωDBe,y

)
B
· (zd,e,x)B ,

=
kw
ka

(
ωDBe,x

)2

B
+
kw
ka

(
ωDBe,y

)2

B
.

Since ka and kw are greater than zero, it holds that
(
ωDBe,x

)
B

=
(
ωDBe,y

)
B

= 0. By inserting
the result back into (5.24b), it follows that (zd,e,x)B = (zd,e,y)B = 0 and because of the unit
length constraint of (~zd)B it holds that (~zd,e)B = ± (~zB)

B
= ±[0, 0, 1]T . The equilibrium

points are valid for a nonzero yaw error rate (ωDBz )
B

(t). �

The following theorem is the main result of the section regarding the stability as-
sessment of the closed-loop dynamics (5.22).

Theorem 5.11 (Roll/Pitch Reduced Attitude AGAS) Given the uniformly bounded sig-
nal |(ωDBz )

B
(t)| < rmax with rmax > 0 ∈ R and the system dynamics (5.22), the desired

equilibrium χd,e = ([0, 0, 1]T ,0) is almost globally asymptotically stable (AGAS). Further-
more, the undesired equilibrium χu,e = ([0, 0,−1]T ,0) is unstable.

Proof: The proof is based on checking the three conditions of Theorem 5.2 (Almost
Global Asymptotic Stability) using a Lyapunov approach. Using the reduced attitude
penalty function Vϕ (ϕd ((~zd)B (t))) (5.17), the following positive definite Lyapunov can-
didate function is defined.

Lemma 5.12 (Roll/Pitch Attitude Lyapunov function) Let the attitude Lyapunov func-
tion be

V ((~zd)B (t) ,
(
ωDB

xy

)
B

(t)) = ka · Vϕ (ϕd ((~zd)B (t))) +
1

2

(
ωDB

xy

)T
B

(t)
(
ωDB

xy

)
B

(t)

+ c ·
(
ωDB

xy

)T
B

(t)
(
eDBa,xy

)
B

(t) ,
(5.25)
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where c ∈ R, ka > 0 ∈ R and ~eDBa (t) := ~zd (t) × ~zB (t) ∈ R3 is defined as the attitude error
vector. Its first two elements correspond to the vector

(
eDBa,xy

)
B

(t) ∈ R2. The Lyapunov function
is defined in the configuration space S2 × R2 and is positive definite for |c| ≤

√
ka. Positive

definite means that V = 0 if and only if (ϕd ((~zd)B (t)) ,
(
ωDB
xy

)
B

(t)) = (0,0), otherwise it
holds that V (t) > 0.

This lemma is proven exactly as Lemma D.3 (Attitude Lyapunov function) in Ap-
pendix D by noting that

∣∣∣∣(eDBa,xy
)
B

(t)
∣∣∣∣ = ||(eDBa )

B
(t)|| = |sinϕd (t)|. This follows from

the fact that
(
eDBa,z
)
B

(t) = 0 (5.23).

In order to analyze the stability properties of the system, the derivative of V (t)
(5.25) is needed. Using the derivative of the attitude penalty function Vϕ (t) (5.19) and(
eDBa,z
)
B

(t) = 0 (5.23), the derivative of the Lyapunov function
.
V (t) is then given by

.
V = ka ·

.
V ϕ +

(
ωDB

xy

)T
B

( .
ω
DB

xy

)B
B

+ c ·
(
eDBa,xy

)T
B

( .
ω
DB

xy

)B
B

+ c ·
(
ωDB

xy

)T
B

( .
e
DB

a,xy

)B
B
,

= ka ·
(
eDBa,xy

)T
B

(
ωDB

xy

)
B

+ c ·
(
ωDB

xy

)T
B

( .
e
DB

a,xy

)B
B

+
((
ωDB

xy

)
B

+ c ·
(
eDBa,xy

)
B

)T ( .
ω
DB

xy

)B
B
,

where the time dependency has not been explicitly stated for the sake of readability.
Since the third element of (~eDBa )

B
(t) is always zero, the fact that (~eDBa )T

B
(t) (~ωDB)

B
(t) =(

eDBa,xy
)T
B

(t)
(
ωDB
xy

)
B

(t) has been used. The attitude error derivative is computed as fol-
lows.

Lemma 5.13 (Roll/Pitch Attitude Error Derivative) The derivative of the first two elements
of the attitude error vector ~eDBa (t) = ~zd (t)× ~zB (t) can be written as

( .
~e
DB

a,xy

)B
B

(t) = H (t)
(
~eDBa,xy

)
B

(t) +
(
ωDB

xy

)
B

(t) (zd,z)B (t)

using the time varying matrix

H (t) =

[
0 1
−1 0

]
· (ωDBz )

B
(t) .

The proof of the lemma is found in Lemma D.10 (Roll/Pitch Attitude Error Derivative)
in Appendix D. Using the system dynamics (5.22), Lemma 5.13 (Roll/Pitch Attitude

Error Derivative) and |(zd,z)B (t)| ≤ 1, the derivative of the Lyapunov function
.
V (t) can

be bounded from above by
.
V (t) = ka ·

(
eDBa,xy

)T
B

(t)
(
ωDB

xy

)
B

(t) + c ·
(
ωDB

xy

)T
B

(t) H (t)
(
~eDBa,xy

)
B

(t)

+ c ·
∣∣∣∣(ωDB

xy

)
B

(t)
∣∣∣∣2 (zd,z)B (t)

+
((
ωDB

xy

)
B

(t) + c ·
(
eDBa,xy

)
B

(t)
)T (−ka

(
eDBa,xy

)
B

(t)− kω
(
ωDB

xy

)
B

(t)
)
,

≤ −c · ka ·
∣∣∣∣(~eDBa,xy

)
B

(t)
∣∣∣∣2 + (c− kw)

(
ωDB

xy

)T
B

(t)
(
ωDB

xy

)
B

(t)

+ c ·
(
~eDBa,xy

)T
B

(t)
(
HT (t)− kw · I

) (
ωDB

xy

)
B

(t) .

By defining the error vector ζ (t) ∈ R4 and the symmetric matrix Q (t) ∈ R4×4 as

ζ (t) =

((
eDBa,xy

)
B

(t)(
ωDB
xy

)
B

(t)

)
, Q (t) =

[
c · ka · I c

2

(
kw · I−HT (t)

)
c
2

(kw · I−H (t)) (kw − c) · I

]
,
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the derivative of the Lyapunov candidate (5.25) can be rewritten as
.
V (t) ≤ −ζT (t) ·Q (t) · ζ(t) ≤ −q ·

∣∣∣∣ζ(t)
∣∣∣∣2 . (5.26)

The constant q ∈ R is positive if the matrix Q (t) is positive definite for all t ≥ 0. This
is checked by the following lemma.

Lemma 5.14 (Roll/Pitch Positive Definite Q) If ka, kw ∈ R are positive constants and
(ωDBz )

B
(t) is uniformly bounded by |(ωDBz )

B
(t)| < rmax, there exists a constant c ∈ ]0,

√
ka[

such that the matrix Q

Q (t) =

[
c · ka · I c

2

(
kw · I−HT (t)

)
c
2

(kw · I−H (t)) (kw − c) · I

]

is positive definite.

The corresponding proof is found in Lemma D.11 (Roll/Pitch Positive Definite Q)
in Appendix D. From Lemmas 5.12 (Roll/Pitch Attitude Lyapunov function) and 5.14
(Roll/Pitch Positive Definite Q), it follows that there exists a constant c ∈ ]0,

√
ka[ such

that the matrix Q (t) is positive definite for all t ≥ 0 and simultaneously the Lyapunov
candidate (5.25) is positive definite. Consequently, the constant q in (5.26) is positive

and
.
V ≤ 0. From Theorem 4.8 (Uniform Stability) in [87], it follows that the desired

equilibrium ([0, 0, 1]T ,0) is uniformly stable and that the errors ϕd ((~zd)B (t)) andωDB
xy (t)

are bounded. Using Theorem 8.4 (Invariance-like Theorem) in [87], it further follows
that

∣∣∣∣ζ(t)
∣∣∣∣→ 0 for t→∞ .

In order to satisfy Condition 1 in Theorem 5.2, it remains to be shown that ζ(t) = 0
only holds for the equilibrium points χe = ((~zd,e)B ,

(
ωDB
e,xy

)
B
) = (±[0, 0, 1]T ,0). Given

that
(
eDBa,z
)
B

(t) = 0 (5.23) and from the magnitude of ~eDBa (t) (5.15) it follows that ζ(t) =
0 if and only if

∣∣∣∣(eDBa,xy
)
B

(t)
∣∣∣∣ = ||(~eDBa )

B
(t)|| = |sin (ϕd ((~zd)B (t)))| = 0,(

ωDB

xy

)
B

= 0.

This corresponds to the set of equilibria χe = ((~zd,e)B ,ω
DB
e,xy) = (±[0, 0, 1]T ,0). Condi-

tions 2 and 3 in Theorem 5.2 are shown through linearization and are summarized in
the following lemma.

Lemma 5.15 (Linearization: Roll/Pitch Reduced Attitude) The reduced attitude closed-
loop system (5.22) has a stable equilibrium at χd,e = ((~zd,e)B ,

(
ωDB
e,xy

)
B
) = ([0, 0, 1]T ,0) and

an unstable equilibrium atχu,e = ((~zd,e)B ,
(
ωDB
e,xy

)
B
) = ([0, 0,−1]T ,0) if ka and kw are positive

constants. The subscript e refers to equilibrium points.

The proof is found in Lemma D.12 (Linearization: Roll/Pitch Reduced Attitude) in
Appendix D. Using Theorem 5.2 (Almost Global Asymptotic Stability) it is concluded
that the desired equilibriumχd,e = ([0, 0, 1]T ,0) is almost globally asymptotically stable
and this finally proves Theorem 5.11 (Roll/Pitch Reduced Attitude AGAS). �

From Lemma 5.15 (Linearization: Roll/Pitch Reduced Attitude) it is known that
linearized system at the equilibrium χd,e = ([0, 0, 1]T ,0) has only eigenvalues with
negative real parts. Then from Theorem 4.13 (Lyapunov’s Indirect Method) in [87] it
follows that the equilibrium is locally exponentially stable. The set of initial states for
which the exponential decay holds is refined in the following theorem.
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Theorem 5.16 (Roll/Pitch Local Exponential Stability) Given the desired closed loop dy-
namics (5.22), the desired equilibrium χd,e = ((~zd,e)B ,

(
ωDB
e,xy

)
B
) = ([0, 0, 1]T ,0) is locally

exponentially stable and the Lyapunov function (5.25) decays exponentially given the initial
conditions

Vϕ (ϕd(t = 0)) ≤ V ϕ ,
∣∣∣∣(ωDB

xy

)
B

(t = 0)
∣∣∣∣ ≤

√
2ka ·

(
V ϕ − Vϕ (ϕd(t = 0))

)
,

for a constant V ϕ ∈ R such that 0 < V ϕ < 2.

The proof of the theorem is analogous to the one of Theorem 5.9 (Local Exponential
Stability) and is therefore omitted here. Note that given a zero velocity initial condition∣∣∣∣(ωDB

xy

)
B

∣∣∣∣ = 0, an exponentially decaying attitude Lyapunov function can be found as
long as the initial attitude error angle is |ϕd(t = 0)| < π ⇒ Vϕ (ϕd(t = 0)) < 2.. Fur-
thermore, the smaller the initial attitude error angle ϕd(t = 0) the larger the permitted
initial error velocity

(
ωDB
xy

)
B

(t = 0) can be.
In this and the previous sections, the stability properties of the desired closed-loop

systems (5.13) and (5.22) have been analyzed showing that the desired equilibria are
almost globally asymptotically stable (AGAS) in Theorems 5.4 and 5.11. The difference
between them is that the system (5.22) considers the yaw rate (ωDBz )

B
(t) as an external

disturbance. In this way, the degraded control authority case has been studied. In
summary, it can be concluded that the reduced attitude vector ~zB can be controlled
even in the case that the yaw rate cannot. The main condition is that the yaw rate
error remains bounded |(ωDBz )

B
(t)| ≤ rmax. The following sections derive the attitude

reference model, the attitude baseline controller and the fault tolerant adaptive control
augmentations.

5.3.3 Attitude Reference Model

The attitude reference model is a dynamic system that represents the desired system’s
response to the given commands. The inputs are the commanded direction of the body-
fixed z-axis given in the N -frame (~zC)

N
(t) : R+ → S2 and the commanded body-fixed

yaw rotational rate (wc,z)B (t) : R+ → R. Both signals are assumed to be bounded and
piecewise-continuous in t. For each of the control signals, two independent reference
models are designed and then combined together to generate the feed-forward terms
for the tracking controller. The yaw rate reference model corresponds to a first order
linear low-pass filter and the tilt reference model corresponds to a nonlinear second
order stable filter. A sketch of the reference model and baseline controller is depicted
in Figure 5.6.

Yaw Rate Reference Model

Given the commanded body-fixed yaw rotational rate (wc,z)B (t), the yaw rate reference
model is given by the following stable first order low-pass filter

(
.
wd,z)

B

B
(t) = kwz,rm ((wc,z)B (t)− (wd,z)B (t)) , (5.27)

with a positive gain kwz,rm > 0 ∈ R which corresponds to the inverse of the time
constant. The desired body-fixed yaw rotational rate (wd,z)B (t) ∈ R is the state of the
reference model.
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Yaw Rate Reference
Model (5.27)

Tilt Reference
Model (5.28)

Output
Mapping
(5.29)

Baseline Control
Law (5.31)

(wc,z)B

~zc

−→
Md,b

(~zd)B , ~ωref ,
.
~ωref

Baseline Controller

Reference Model

Figure 5.6: Baseline Attitude Controller Structure

Tilt Reference Model

Motivated by the previous stability analysis of the reduced attitude error dynamics
(5.13), the following reference model is chosen

( .
~zd

)N
N

(t) = − (~ωDN)
N

(t)× (~zd)N (t), (5.28a)
( .
~ω
DN
)N
N

(t) = −ka,rm ((~zd)N (t)× (~zc)N (t))−Kω,rm (~ωDN)
N

(t). (5.28b)

The states of the reference model are given by ((~zd)N (t), (~ωDN)
N

(t)) ∈ (S2 × R3). The
vector (~zd)N (t) is the desired body-fixed z-axis and the rate (~ωDN)

N
(t) = − (~ωND)

N
(t)

is the negative of the rotational rate corresponding to the vector (~zd)N with respect to
the N -frame. Both vectors are expressed in the N -frame. The gains are chosen such
that ka,rm > 0 ∈ R is positive and Kω,rm ∈ R3×3 is diagonal positive definite. The first
term in (5.28b) provides the rotation in order to align the reference model z-axis ~zd (t)
with the commanded one ~zc (t). The second term is a damping term. The following
corollary describes the stability properties of the reference model.

Corollary 5.17 (Reference Model Stability) Given the system dynamics (5.28), a positive
proportional gain ka,rm > 0, a diagonal positive definite derivative gain Kω,rm > 0 and a
constant command ~zc(t) = ~zc,e, it holds that:

� The set of equilibrium points is given by (~zd,e, ~ω
DN

e ) = (±~zc,e,0). The subscript e refers
to the values at the equilibrium of the system.

� The desired equilibrium (~zd,e, ~ω
DN

e ) = (~zc,e,0) is almost globally asymptotically stable
and locally exponentially stable.

� The undesired equilibrium (~zd,e, ~ω
DN

e ) = (−~zc,e,0) is unstable.

By comparing the reference model (5.28) to the closed-loop system (5.13) analyzed
last section, the statements in Corollary 5.17 follow from Theorems 5.3 (Attitude Equi-
librium Points), 5.4 (Reduced Attitude AGAS) and 5.9 (Local Exponential Stability).
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Reference Model Output Mapping

In order to use only roll and pitch accelerations for tracking the desired reduced at-
titude ~zd, the corresponding yaw rate and accelerations in (5.28b) are not used in the
feed-forward path of the controller. Instead the yaw reference model (5.27) is used.
This leads to the following reference signals in the body-fixed frame B which are com-
puted from the states of the reference models.

(~zd)B (t) = MBN (t) (~zd)N (t) (5.29a)

(~ωref)B (t) =




1 0 0
0 1 0
0 0 0


MBN (t) (~ωND)

N
(t) +




0
0

(wd,z)B (t)


 (5.29b)

( .
~ωref

)B
B

(t) =




1 0 0
0 1 0
0 0 0



( .
~ω
ND
)B
B

(t) +




0
0

(
.
wd,z)

B

B
(t)


 (5.29c)

The rate acceleration
( .
~ω
ND
)B
B

(t) can be related to the reference model dynamics (5.28b)

via the subsequent kinematic relation. Using the derivative
.

MBN (t) (5.12) and Lemma
D.1 (Cross Product) it follows that

(~ωND)
B

(t) = −MBN (t) (~ωDN)
N

(t) ,
( .
~ω
ND
)B
B

(t) = −
.

MBN (t) (~ωDN)
N

(t)−MBN (t)
( .
~ω
DN
)N
N

(t) ,

= MBN (t) Ω ((~ωNB)
N

(t)) (~ωDN)
N

(t)−MBN (t)
( .
~ω
DN
)N
N

(t) ,

= (~ωNB)
B

(t)× (MBN (t) (~ωDN)
N

(t))−MBN (t)
( .
~ω
DN
)N
N

(t) .

The presented decoupling of the tilt reference model (5.28) from the yaw feed forward
signals allows for an easier selection of the desired dynamics. This is mainly because
the yaw authority on a multicopter is much smaller than the roll and pitch authority.
The effect of the omitted terms is considered in the stability assessment of the closed-
loop system in the next section.

5.3.4 Attitude Baseline Control Law

In this section, the design of the attitude baseline controller is presented. Based on
the dynamics (5.10), the propulsion moments

−→
MR

P (t) are considered as the system in-
puts and it is assumed that no actuator faults or external disturbances are present. The
goal of the baseline controller is to achieve tracking of the reference model (5.27)-(5.29)
which corresponds to a combination of Control Task 5.2 (Reduced Attitude Tracking
Control) and yaw rate tracking. The stability assessment is therefore based on Sec-
tion 5.3.2. Tracking of the desired reduced attitude ~zd (t) is achieved if the closed-loop
dynamics correspond to (5.22).

The first step is the definition of the rate tracking error as

(~ew)
B

(t) := (~ωNB)
B

(t)− (~ωref)B (t) =




(wNB
x )

B
(t)− (wND

x )
B

(t)(
wNB
y

)
B

(t)−
(
wND
y

)
B

(t)
(wNB

z )
B

(t)− (wd,z)B (t)


 , (5.30)
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where the subscripts x, y and z represent the first, second and third element of a given
vector. Using the plant dynamics (5.10b) its derivative is given by

( .
~ew

)B
B

(t) =
( .
~ω
NB
)B
B

(t)−
( .
~ωref

)B
B

(t) ,

= (IR)−1
BB

(
fc ((~ωNB)

B
(t)) +

(−→
MR

P

)
B

(t)
)
−
( .
~ωref

)B
B

(t) .

The feed-forward term
( .
~ωref

)B
B

(t) corresponds to the reference model (5.29). By com-
parison with the dynamics of the error system (5.22b), the following baseline control
law

(−→
Md,b

)
B

(t) is selected

(−→
Md,b

)
B

(t) = −fc ((~ωNB)
B

(t))

+ (IR)
BB

(
−ka (~eDBa )

B
(t)−Kω (~ew)

B
(t) +

( .
~ωref

)B
B

(t)
) (5.31)

Here, ka > 0 ∈ R is the spring constant and Kω = diag([kw, kw, kw,z]) ∈ R3×3 is the
damping constant with kw, kw,z > 0 ∈ R. The derivative of the rate tracking error is
then given by ( .

~ew

)B
B

(t) = −ka (~eDBa )
B

(t)−Kω (~ew)
B

(t) . (5.32)

The closed-loop error dynamics follow from the error kinematics (5.22a) and the error
dynamics (5.32) as

( .
~zd

)B
B

(t) = − (~ωDB)
B

(t)× (~zd)B (t) , (5.33a)
( .
ω
DB

xy

)B
B

(t) = −ka
(
eDBa,xy

)
B

(t)− kw
(
ωDB

xy

)
B

(t) , (5.33b)

(
.
ew,z)

B

B
(t) = −kw,z (ew,z)B (t) , (5.33c)

where (5.33a)-(5.33b) are the reduced-attitude subsystem and (5.33c) is the indepen-
dently controlled yaw rate subsystem. Here, the facts that

(
eDBa,z
)
B

(t) = 0 (5.23) and(
ωDB
xy

)
B

(t) = (ew,xy)B (t) (5.30) have been used. The vectors
(
ωDB
xy

)
B

(t) ∈ R2 and
(ew,xy)B (t) ∈ R2 correspond to the first and second elements of (~ωDB)

B
(t) and (~ew)

B
(t)

respectively. The error (ew,z)B (t) ∈ R corresponds to the third element of (~ew)
B

(t).
Note that for the reduced attitude subsystem (5.33a)-(5.33b) (ωDBz )

B
(t) is regarded as

an external signal and that (ωDBz )
B

(t) 6= (ew,z)B (t). This is a result from the indepen-
dent tilt and yaw rate reference models. The following corollary describes the stability
properties of the closed-loop attitude subsystem (5.33).

Corollary 5.18 (Baseline Controller) Given the system dynamics (5.10), the reference model
(5.27)-(5.29), the control law (5.31), positive gains kwz,rm, ka,rm, ka, kw, kw,z > 0, a diagonal
positive definite matrix Kω,rm and bounded commands ~zc(t), (wc,z)B (t), it holds that:

� The set of equilibrium points is given by ((~zd,e)B ,~ew,e) = (±[0, 0, 1]T ,0). The subscript
e refers to the values at the equilibrium of the system.

� The desired equilibrium ((~zd,e)B ,~ew,e) = ([0, 0, 1]T ,0) is almost globally asymptotically
stable and locally exponentially stable.
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� The undesired equilibrium ((~zd,e)B ,~ew,e) = ([0, 0,−1]T ,0) is unstable.

Proof: From the boundedness of the commands ~zc(t), (wc,z)B (t) it follows that the ref-
erence model states (wd,z)B (t), ~zd (t), ~ωDN (t) and the reference model outputs ~ωref (t)
are bounded. Furthermore, from the independent linear yaw error dynamics (5.33c), it
directly follows that (ew,z)B (t) = (wNB

z )
B

(t) − (wd,z)B (t) = 0 is an exponentially stable
equilibrium. Therefore, (ωNBz )

B
(t) is uniformly bounded and (ωNBz )

B
(t) → (wd,z)B (t)

for t→∞.
Given the last result, the signal (ωDBz )

B
(t) = (ωNBz )

B
(t) − (ωNDz )

B
(t) is also uni-

formly bounded. Then, by comparing the closed-loop reduced attitude tracking sub-
system (5.33a)-(5.33b) to the system (5.22) analyzed in Section 5.3.2, the statements
in Corollary 5.18 follow from Theorems 5.10 (Roll/Pitch Attitude Equilibrium Points),
5.11 (Roll/Pitch Reduced Attitude AGAS) and 5.16 (Roll/Pitch Local Exponential Sta-
bility). �

5.4 Attitude Adaptive Augmentation

In this section, the design of the attitude adaptive augmentation is presented. The final
structure of the P-ACA attitude and rate tracking controller is depicted in Figure 5.7.
Compared to the controller in the last section, actuator faults and external disturbances
are considered as presented in the actuator model (2.16) or equivalently (5.1). For
this controller the control input is the vector of propellers’ squared angular velocities
u (t) as defined in (2.7). Hence, the attitude subsystem is derived from the attitude
dynamics model (5.10) and the partitioned actuator model (5.6) as

.
MNB(t) = MNB(t) (ΩNB)

BB
(t) (5.34a)

( .
~ω
NB
)B
B

(t) = (IR)−1
BB

(
fc ((~ωNB)

B
(t)) +

(−→
MR

P

)
B

(t) +
(
~dM

)
B

)
, (5.34b)

(−→
MR

P

)
B

(t) = UMDMΛMu(t) (5.34c)

where ~dM ∈ R3 is a constant moment disturbance and fc ((~ωNB)
B

(t)) is the abbreviation
for the Coriolis term as defined in (5.2). The parameters ΛM ∈ R3×6 and ~dM ∈ R3 of
the plant are considered unknown in order to take actuator faults and failures into
account.

A reduced order P-ACA approach is used to achieve the control task as in Sec-
tion 4.2 with the difference that the attitude kinematics (5.34a) are inherently nonlin-
ear. Therefore, the Lyapunov functions used in the stability assessment are adapted
to achieve analogous results. The 4 design steps of P-ACA are listed in Remark 4.5
(P-ACA Design Steps). The first step is the design of a state predictor. The next step is
the selection of the desired moment ~νM,d (t) ∈ R3 such that the known predictor model
replicates the reference model (5.27)-(5.29) up to an identification disturbance term.
The third step, the control allocation, has been formulated in the Control Task 5.1 and
solved in Section 5.2. The last step is the identification of the unknown plant parame-
ters ΛM and ~dM so that the control law u (t) is also valid for the plant dynamics (5.34).
The P-ACA approach is directly applied to the plant and afterwards it is conceptually
separated into the baseline controller from Section 5.4 and the adaptive augmentation.
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State Predictor
(5.35)

Update Laws
(5.46)

Adaptive Control Law
(5.43b)

Baseline Controller
(5.27)-(5.29),(5.31)

Control Allocation
(Section 5.2) u

−→
Md,b

~νM,aug ~νM,d

+

−
~̂ωNB ~̃ωNB

~ωNB
Λ̂M ,

.
Λ̂Md̂M

MNB, ~ω
NB

~zc, (wc,z)B
νT,d, Λ̂T ,

.
Λ̂T

Figure 5.7: P-ACA Attitude and Rate Controller

From the equations of motion, it can be seen that the kinematics (5.34a) are known
and that the uncertainties are in the rotational dynamics (5.34b) and the actuator model
(5.34c). Therefore, a reduced order predictor as in (4.17) is used in order to estimate the
unknown parameters. By defining ~̂ωNB(t) ∈ R3 as the estimate of the system angular

rate ~ωNB(t) and
−̂→
M

R

P (t) as the estimate of the propulsion moments
−→
MR

P (t), the reduced-
order state predictor is defined as

( .
~̂ω
NB
)B

B

(t) = −L ·
((
~̂ωNB

)
B

(t)− (~ωNB)
B

(t)
)

+ (IR)−1
BB

(
fc ((~ωNB)

B
(t)) +

(−̂→
M

R

P

)

B

(t) +
(
~̂dM

)
B

(t)

)
,

(5.35a)

(−̂→
M

R

P

)

B

(t) = UMDMΛ̂M (t) · u(t) (5.35b)

The first term in (5.35a) is the estimation stabilizing feedback using the diagonal pos-
itive definite gain L = diag([Lxy, Lxy, Lz]) ∈ R3×3 and the estimation error defined as
~̃ωNB (t) := ~̂ωNB (t) − ~ωNB (t). The remaining terms correspond emulate the dynamics
(5.34b)-(5.34c) given the estimate Λ̂M(t) ∈ R3×6 of the control effectiveness matrix ΛM

and the estimate ~̂dM(t) ∈ R3 of the disturbance ~dM . The estimation errors are defined
as

Λ̃M(t) := Λ̂M(t)−ΛM , ~̃dM(t) := ~̂dM(t)− ~dM .

In the following the control law for the known reduced order predictor (5.35) is pre-
sented

5.4.1 Adaptive Control Law

The control of the predictor model is separated into control allocation and rigid body
control as presented in Sections 4.1 and 4.2. Given the control allocation as presented
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in Section 5.2 with (5.7), the control input u (t) is computed such that

~νM,d (t) = UMDMΛ̂M(t) · u(t) (5.36)

for a given desired moment ~νM,d(t) ∈ R3 and a known and time varying control ef-
fectiveness matrix Λ̂M (t). Therefore, in this section the design of the desired moment
~νM,d (t) as the rigid body control law is addressed. Using (5.36) and using the virtual
control ~νM,d(t) as an input, the predictor (5.35) can be rewritten as

( .
~̂ω
NB
)B

B

(t) = −L
(
~̃ωNB

)
B

(t) + (IR)−1
BB

(
fc ((~ωNB)

B
(t)) + ~νM,d(t) +

(
~̂dM

)
B

(t)
)
.

For stability analysis, the reduced-order predictor is extended by the attitude kine-
matics to generate a full state predictor as in (4.19). By using the kinematics (5.34a)
and the estimation error definition

~̃ωNB (t) := ~̂ωNB (t)− ~ωNB (t) , (5.37)

it follows that
.

MNB (t) = MNB (t)
(
Ω
((
~̂ωNB

)
B

(t)−
(
~̃ωNB

)
B

(t)
))

(5.38a)
( .
~̂ω
NB
)B

B

(t) = (IR)−1
BB

(
fc ((~ωNB)

B
(t)) + ~νM,d(t) +

(
~̂dM

)
B

(t)
)
− L

(
~̃ωNB

)
B

(t), (5.38b)

The goal of the adaptive augmentation controller is to achieve asymptotic tracking
of the reference model (5.27)-(5.29) . Therefore, the error dynamics are derived in a
similar way as in Section 5.3.4 (Attitude Baseline Control Law). The error states are
given by

(~zd)B (t) = MBN (t) · (~zd)N (t) , (5.39a)(
~̂ew

)
B

(t) =
(
~̂ωNB

)
B

(t)− (~ωref)B (t) . (5.39b)

The attitude error state is given by the desired vector ~zd given in the B-frame. The rate
error state is the difference between the estimated rotational rate of theB-frame ~̂ωNB (t)
and the rotational rate of the reference vector (~ωref)B (t) given in the B-frame. This
simultaneously corresponds to the estimate of (~ew)

B
(t). In a similar way the tracking

error with respect to the tilt reference model (5.28) is defined as
(
~̂ωDB

)
B

(t) =
(
~̂ωNB

)
B

(t)− (~ωND)
B

(t) .

Since
(
ωND
xy

)
B

(t) = (ωref,xy)B (t) (5.30), it follows that
(
ω̂DB

xy

)
B

(t) = (êw,xy)B (t) , (5.40)

where
(
ω̂DB

xy

)
B

(t) , (êw,xy)B (t) ∈ R2 correspond to the first two elements of
(
~̂ωDB

)
B

(t)

and
(
~̂ew

)
B

(t) respectively. The kinematics of the desired vector (5.33a) can be rewritten
as ( .

~zd

)B
B

(t) = −
(
~̂ωDB

)
B

(t)× (~zd)B (t) +
(
~̃ωNB

)
B

(t)× (~zd)B (t) ,
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using the relation

~ωDB (t) = ~ωNB (t)− ~ωND (t) = ~̂ωNB (t)− ~̃ωNB (t)− ~ωND (t) = ~̂ωDB (t)− ~̃ωNB (t) .

Using the predictor dynamics (5.38b), the error dynamics are given by

( .
~zd

)B
B

(t) = −
(
~̂ωDB

)
B

(t)× (~zd)B (t)−Ω ((~zd)B (t))
(
~̃ωNB

)
B

(t) , (5.41a)
( .
~̂ew

)B

B

(t) = (IR)−1
BB

(
fc ((~ωNB)

B
(t)) + ~νM,d(t) +

(
~̂dM

)
B

(t)
)

− L
(
~̃ωNB

)
B

(t)−
( .
~ωref

)B
B

(t) .

(5.41b)

In order to design the adaptive control law ~νM,d (t), the desired closed-loop error
dynamics are selected analogously to (4.20) derived from (5.33) as

( .
~zd

)B
B

(t) = −
(
~̂ωDB

)
B

(t)× (~zd)B (t)−Ω ((~zd)B (t))
(
~̃ωNB

)
B

(t) , (5.42a)
( .
ω̂
DB

xy

)B
B

(t) = −ka
(
eDBa,xy

)
B

(t)− kw
(
ω̂DB

xy

)
B

(t) +Rxy

(
ω̃NB

xy

)
B

(t) , (5.42b)
( .
êw,z

)B
B

(t) = −kw,z (êw,z)B (t) +Rz (ω̃NBz )
B

(t) . (5.42c)

Here, (êw,z)B (t) ∈ R corresponds to the third element of
(
~̂ew

)
B

(t). As in Section
4.2, they correspond to desired tracking error dynamics (5.33) plus estimation error
terms. The first one is −Ω ((~zd)B (t))

(
~̃ωNB

)
B

(t) in (5.42a) and arises from the use of
the reduced order predictor. The other two terms in (5.42b) and (5.42c) correspond to
R
(
~̃ωDB

)
B

(t) with the matrix R = diag([Rxy, Rxy, Rz]). This is a design degree of free-
dom and its presence does not change the stability proof. By comparing the desired
closed-loop error dynamics (5.42) with the predictor tracking error dynamics (5.41),
the desired virtual control law is selected as

~νM,d(t) = −
(
~̂dM

)
B

(t)− fc ((~ωNB)
B

(t)) + (IR)
BB

(
L
(
~̃ωNB

)
B

(t) +
( .
~ωref

)B
B

(t)
)

+ (IR)
BB

(
−ka (~eDBa )

B
(t)−Kω

(
~̂ew

)
B

(t) + R
(
~̃ωNB

)
B

(t)
)
,

with the matrix Kω = diag([kw, kw, kw,z]) ∈ R3×3. The complete control law has a term
canceling the estimated disturbance moment, a term canceling the Coriolis term, a term
canceling the estimator dynamics, a feedforward term, proportional and derivative
feedback terms and finally an additional term corresponding to the rate estimation
error

(
~̃ωNB

)
B

(t). There are several possible choices of the gain R. The choice R = 0

leads to closed-loop rate error dynamics (5.41b) without disturbance term. The choice
R = −L is interesting since it cancels out the estimator term L

(
~̃ωNB

)
B

(t). This feature
is desired since the usually fast estimator dynamics may lead to high-frequency control
inputs. Here, the matrix R is chosen as R = Kω − L such that the control law is given
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by

~νM,d(t) = ~νM,aug (t) +
(−→
Md,b

)
B

(t) , (5.43a)

~νM,aug(t) = −
(
~̂dM

)
B

(t) , (5.43b)
(−→
Md,b

)
B

(t) = −fc ((~ωNB)
B

(t))

+ (IR)
BB

(
−ka (~eDBa )

B
(t)−Kω (~ew)

B
(t) +

( .
~ωref

)B
B

(t)
)
.

(5.43c)

From the definitions of ~̃ωNB (t) (5.37) and of ~̂ew (t) (5.39b), the relation

~̂ew − ~̃ωNB = ~̂ωNB (t)− ~ωref (t)− ~̃ωNB = ~ωNB (t)− ~ωref (t) = ~ew

has been derived and used. The control law (5.43) is decoupled from the high fre-
quency content in the estimation error ~̃ωNB (t) and in the estimate ~̂ωNB (t) and consti-
tutes a simple augmentation of the baseline control law

−→
Md,b (t) (5.31). The adaptive

augmentation term ~νM,aug(t) ∈ R3 is in this case a cancellation of the estimated distur-
bance. Note that the adaptation does not only affect the control inputs u(t) through
the virtual control law ~νM,aug(t) (5.43b), but also through the solution of the control
allocation (5.36) and hence through the estimate Λ̂M(t). This is one of the special char-
acteristics of the P-ACA applied to overactuated systems.

Theorem 5.19 (Full State Predictor - Boundedness) Given the full state predictor dynam-
ics (5.38), the reference model (5.27)-(5.29), the control law (5.43), positive gains kwz,rm,
ka,rm, ka, kw, kw,z > 0, diagonal positive definite matrices Kω,rm,L and bounded commands
~zc(t), (wc,z)B (t), it holds that:

� Given a bounded input ~̃ωNB (t) (estimation error), the error state ((~zd)B (t) , ~̂ew (t)) is
bounded.

� The trajectories approach the equilibrium set ((~zd)B (t) , ~̂ew (t)) → (±[0, 0, 1]T ,0) for∣∣∣
∣∣∣~̃ωNB

∣∣∣
∣∣∣→ 0 .

Proof: The proof goes along the lines of the reduced-order P-ACA presented in Sec-
tion 4.2 and the baseline control law from Section 5.3.4. From the boundedness of the
commands ~zc(t), (wc,z)B (t) it follows that the reference model states (wd,z)B (t), ~zd (t),
~ωDN (t) and the reference model outputs ~ωref (t) are bounded.

As for the baseline controller, first the independent yaw subsystem (5.42c) is ana-
lyzed. Since it is a linear system as in, it directly follows that for a positive kw,z > 0, the
system (5.42c) is Input-to-State Stable (ISS) with respect to the input (ω̃NBz )

B
(t) [87, Def-

inition 4.7]. This implies that for a bounded (ω̃NBz )
B

(t) the error (êw,z)B (t) is bounded
and that the error (êw,z)B (t) → 0 for (ω̃NBz )

B
(t) → 0. From the boundedness of the

error (êw,z)B (t) = (ω̂NBz )
B

(t)− (ωref,z)B (t) (5.39b) it follows that the estimate (ω̂NBz )
B

(t)

bounded. From the error definition ~̃ωNB (t) = ~̂ωNB (t) − ~ωNB (t) (5.37), it follows that
the rate (ωNBz )

B
(t) is bounded too.
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In the next step, the reduced attitude subsystem (5.42a)-(5.42b) is analyzed. The
attitude error function (5.17) is used to formulate the attitude Lyapunov candidate
function analogously to (5.25)

V ((~zd)B (t) , ~̂ωDB

xy (t)) = ka · Vϕ (ϕd ((~zd)B (t))) +
1

2

(
ω̂DB

xy

)T
B

(t)
(
ω̂DB

xy

)
B

(t)

+ c ·
(
ω̂DB

xy

)T
B

(t)
(
eDBa,xy

)
B

(t) ,
(5.44)

which is positive definite for c ≤
√
ka as described in Lemma 5.12 (Roll/Pitch Attitude

Lyapunov function). For the sake of readability, the time dependency is not written in
the following. Using the derivative of the attitude penalty function Vϕ (t) (5.19) and(
eDBa,z
)
B

(t) = 0 (5.23), the derivative of the Lyapunov function
.
V (t) can be written as

.
V = ka ·

.
V ϕ +

(
ω̂DB

xy

)T
B

( .
ω̂
DB

xy

)B
B

+ c ·
(
eDBa,xy

)T
B

( .
ω̂
DB

xy

)B
B

+ c ·
(
ω̂DB

xy

)T
B

( .
e
DB

a,xy

)B
B
,

= ka ·
(
eDBa,xy

)T
B

(
ωDB

xy

)
B

+ c ·
(
ω̂DB

xy

)T
B

( .
e
DB

a,xy

)B
B

+
((
ω̂DB

xy

)
B

+ c ·
(
eDBa,xy

)
B

)T ( .
ω̂
DB

xy

)B
B

,

Since the third element of (~eDBa )
B

(t) is always zero, the fact that (~eDBa )T
B

(t) (~ωDB)
B

(t) =(
eDBa,xy

)T
B

(t)
(
ωDB
xy

)
B

(t) has been used. Using the closed-loop predictor dynamics (5.42a)-
(5.42b), the Lemma 5.13 (Roll/Pitch Attitude Error Derivative), the relation ~ωDB =

~̂ωDB − ~̃ωDB (5.37), and the bound |(zd,z)B| ≤ 1, the derivative of the Lyapunov function
.
V (t) can be bounded from above by

.
V = ka ·

(
eDBa,xy

)T
B

(
ω̂DB

xy

)
B
− ka ·

(
eDBa,xy

)T
B

(
ω̃DB

xy

)
B

+ c ·
(
ω̂DB

xy

)T
B

(
H
(
~eDBa,xy

)
B

+
((
ω̂DB

xy

)
B
−
(
ω̃DB

xy

)
B

)
(zd,z)B

)

+
((
ω̂DB

xy

)
B

+ c ·
(
eDBa,xy

)
B

)T (−ka
(
eDBa,xy

)
B
− kw

(
ω̂DB

xy

)
B

+Rxy

(
ω̃NB

xy

)
B

)
,

≤ −c · ka ·
∣∣∣∣(~eDBa,xy

)
B

∣∣∣∣2 − ka ·
(
eDBa,xy

)T
B

(
ω̃DB

xy

)
B

+ (c− kw)
(
ω̂DB

xy

)T
B

(
ω̂DB

xy

)
B

+ c ·
(
~eDBa,xy

)T
B

(
HT − kw · I

) (
ω̂DB

xy

)
B

− c ·
(
ω̂DB

xy

)T
B

(
ω̃DB

xy

)
B

(zd,z)B +
((
ω̂DB

xy

)
B

+ c ·
(
eDBa,xy

)
B

)T
Rxy

(
ω̃NB

xy

)
B
.

By defining the error vector ζ̂ (t) ∈ R4, the symmetric matrix Q (t) ∈ R4×4 and the
estimation error input matrix Be (t) ∈ R4×2 as

ζ̂ =

((
eDBa,xy

)
B

(t)(
ω̂DB

xy

)
B

(t)

)
, Q (t) =

[
c · ka · I c

2

(
kw · I−HT (t)

)
c
2

(kw · I−H (t)) (kw − c) · I

]
,

Be (t) =

[
(−ka + c ·Rxy) · I

(−c · (zd,z)B (t) +Rxy) · I

]
,

the derivative of the Lyapunov candidate (5.44) can be rewritten as
.
V (t) ≤ −ζ̂T (t) ·Q (t) · ζ̂(t) + ζ̂

T
(t) ·Be (t) ·

(
~̃ωNB

)
B

(t), (5.45a)

≤ −q
∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣
2

+ b
∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣
∣∣∣∣ω̃NB

xy (t)
∣∣∣∣ , (5.45b)

The constant q ∈ R is positive if the matrix Q (t) is positive definite for all t ≥ 0. Since
from the yaw motion analysis it is known that (ωNBz )

B
(t) is bounded, the constant c can

145



5.4 Attitude Adaptive Augmentation

be chosen as in Lemma 5.14 (Roll/Pitch Positive Definite Q) such that the matrix Q (t)
is positive definite for all t ≥ 0 and simultaneously the Lyapunov candidate (5.44) is
positive definite. Furthermore, a finite constant b ≥ 0 ∈ R can be chosen to satisfy
b > ||Be (t)|| uniformly in t. This follows from the fact that |(zd,z)B (t)| ≤ 1 for all t.
Therefore, it holds that

.
V (t) < 0, for

∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣ > b

q

∣∣∣∣(ω̃NB

xy

)
B

(t)
∣∣∣∣ .

Based on (5.45), the derivative of the Lyapunov function can be linearly bounded
by the estimation error

(
ω̃NB

xy

)
B

(t). For linear dynamics, this leads to Input-to-State
Stability (ISS) as in Section 4.2 and Theorem 5.19 (Full State Predictor - Boundedness)
would have been proven. This is not directly applicable since in the case of reduced
attitude control the state predictor system has two equilibria. The rest of the proof
is based on the argumentation lines of Theorem 4.18 (Ultimate Bound) in [87] and is
found in Theorem D.14 (Full State Predictor - Boundedness) in Appendix D. �

5.4.2 Update Law

The next step of the reduced order P-ACA approach (Remark 4.5) is the design of the
update laws for the unknown parameters. The update laws of the estimates Λ̂M (t) and
~̂dM (t) follow the design methodology presented in Section 4.2 and are therefore given
by

( .
~̂dM

)B

B

(t) = −Γd · (IR)−1
BB
·
(
~̃ωNB

)
B

(t), (5.46a)

.
Λ̂M(t) = −DMUT

M (IR)−1
BB

(
~̃ωNB

)
B

(t) · uT (t) · ΓΛ. (5.46b)

Noting that the estimated parameters are constant, the parameter estimation error dy-

namics are given by
( .
~̃dM

)B

B

(t) =

( .
~̂dM

)B

B

(t) and
.
Λ̃M(t) =

.
Λ̂M(t) . The state estimation

error dynamics are computed by subtracting the plant dynamics (5.34b) from the pre-
dictor dynamics (5.35). Hence, the predictor error dynamics are given by

( .
~̃ω
NB
)B

B

(t) =− L
(
~̃ωNB

)
B

(t) + (IR)−1
BB

UMDMΛ̃M(t)u(t) + (IR)−1
BB

(
~̃dM

)
B

(t), (5.47a)

( .
~̃dM

)B

B

(t) = −Γd · (IR)−1
BB
·
(
~̃ωNB

)
B

(t), (5.47b)

.
Λ̃M(t) = −DMUT

M (IR)−1
BB

(
~̃ωNB

)
B

(t) · uT (t) · ΓΛ, (5.47c)

with symmetric positive definite gains Γd ∈ R3×3 and ΓΛ ∈ R6×6. The underlined terms
show that the estimated error dynamics are coupled between each other. These error
dynamics lead to a stable equilibrium of the estimation errors and to an asymptotically
vanishing tracking error between the plant (5.34) and the reference model (5.27)-(5.29).
The following theorem summarizes the main result of this section.
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Theorem 5.20 (Estimator Update Law) Given the system dynamics (5.34), the reduced or-
der state predictor (5.35), the reference model (5.27)-(5.29), the control law (5.43), the up-
date laws (5.46), positive gains kwz,rm, ka,rm, ka, kw, kw,z > 0, diagonal positive definite ma-
trices Kω,rm,L, symmetric positive definite adaptation gains Γd,ΓΛ and bounded commands
~zc(t), (wc,z)B (t), it holds that:

� The equilibrium (~̃ωNB, ~̃dM , Λ̃M) = (0,0,0) is uniformly stable.

� The estimation error
∣∣∣
∣∣∣~̃ωNB (t)

∣∣∣
∣∣∣→ 0 for t→∞.

� And the plant tracking errors approach the set of equilibrium points ((~zd)B ,~ew) →
(±[0, 0, 1]T ,0) for t→∞.

Proof: In the following the time dependency is not written out for readability. Anal-
ogously to Section 4.2, in order to show the first two statements in Theorem 5.20, the
Lyapunov candidate function is chosen as

V =
1

2

(
~̃ωNB

)T
~̃ωNB +

1

2

(
~̃dM

)T
B

Γ−1
d

(
~̃dM

)
B

+
1

2
tr
(
Λ̃MΓ−1

Λ Λ̃
T

M

)
. (5.48)

From Lemma B.7 (Positive Definite Trace 1) it follows that the Lyapunov function is
positive definite in the case of symmetric positive definite matrices Γd ∈ R3×3 and
ΓΛ ∈ R6×6, which correspond to the adaptation rates. The derivative of the Lyapunov
function is calculated using the predictor estimation error dynamics (5.47) and Lemma
B.2 (Trace and Scalar Product) as

.
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(
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)T
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·
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Hence, the derivative of the Lyapunov function
.
V (t) = −

(
~̃ωNB

)T
B

(t)·L·
(
~̃ωNB

)
B

(t)

is negative semi-definite. From Theorem 4.8 (Uniform Stability) in [87], the equilibrium

(~̃ωNB, ~̃dM , Λ̃M) = (0,0,0) is globally uniformly stable and ~̃ωNB(t), ~̃dM(t), Λ̃M(t) ∈ L∞.

Therefore, ~̂dM(t) and Λ̂M (t) are also bounded.
Subsequently, the goal is to show asymptotic convergence of the estimation error

~̃ωNB(t) to zero based on Barbalat’s Lemma (Lemma B.9). Following the same argu-
ments as in Section 3.2, it is known that limt→∞

∫ t
τ=0

.
V
(
~̃ωNB(τ)

)
dτ exists and is finite.
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It remains to be shown that
.
V
(
~̃ωNB(t)

)
is a uniform continuous function of t. This

holds if its derivative

..
V (t) = −2 ·

(
~̃ωNB

)T
B

(t) · L ·
( .
~̃ω
NB
)B

B

(t)

is uniformly bounded. From the state estimation error dynamics (5.47a), it follows that
..
V (t) is uniformly bounded if ~̃ωNB(t), ~̃dM(t), Λ̃M(t) and u(t) are uniformly bounded.
Therefore, it remains to be shown that u(t) is uniformly bounded. Given that ~̃ωNB(t) ∈
L∞, it follows from Theorem 5.19 (Full State Predictor - Boundedness) that the error
state ((~zd)B (t), ~̂ew) is bounded. From the virtual control law (5.43) and the solution
of the control allocation (5.36) it follows that the virtual control ~νM,d(t) (5.43) and
the control input u(t) are uniformly bounded. Finally, it is concluded that

..
V (t) is

bounded uniformly in t for all t ≥ 0 and
.
V
(
~̃ωNB(t)

)
is uniformly continuous. Us-

ing Lemma B.9 (Barbalat) it follows that
.
V
(
~̃ωNB(t)

)
→ 0 and hence ~̃ωNB(t) → 0 for

t → ∞. From the second statement in Theorem 5.19 (Full State Predictor - Bound-
edness) it follows that the predictor tracking error converges to the set of equilibria
((~zd)B (t), ~̂ew(t)) → (±[0, 0, 1]T ,0) and therefore the tracking error converges to the set
of equilibria ((~zd)B (t),~ew(t))→ (±[0, 0, 1]T ,0) for t→∞. �

An overview of the P-ACA attitude controller is depicted in Figure 5.7 and includes
all the implemented equations: The reference model (5.27)-(5.29), the baseline control
law (5.31), the state predictor (5.35), the adaptive control law (5.43), the update laws
(5.46) and the control allocation as in Section 5.2.

5.5 Vertical Velocity Control

After having derived the control allocation in Section 5.2 and the attitude and rate con-
troller in Sections 5.3 and 5.4, this section presents the vertical velocity controller. The
main purpose of the controller is to track a given vertical velocity command (vc,z)

N

N
(t) ∈

R using the total thrust T (t) ∈ R as a control input. The vertical velocity (vz)
N

N
(t) ∈ R

corresponds to the third element of the vector (~vR)N
N

and therefore the dynamics are
described by the rigid body dynamics (5.1b) and the actuator model (5.6) as

(
.
vz)

NN

N
(t) = g − 1

m
(zB,z)N (t) · (T (t) + dT ) , (5.49a)

T (t) = UT ·DT ·ΛT · u(t). (5.49b)

Here, g ∈ R is the gravitational constant and m ∈ R is the aircraft mass as in (2.3).
Furthermore, (zB,z)N (t) ∈ R is the third element of the vector (zB)

N
(t). In order to

address faults within the actuation system, the P-ACA approach presented in Section
4.1 is used.

Following the same ideas from Sections 5.3 and 5.4, a baseline controller is initially
derived in order to highlight the changes due to the adaptive augmentation and to
facilitate the selection of a lean, compact and unified controller structure (thesis objec-
tive 6). The baseline controller is composed of a reference model and a baseline control
law presented in Sections 5.5.1 and 5.5.2 respectively. The adaptive augmentation is
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State Predictor
(5.53)

Update Laws
(5.61)

Adaptive Control Law
(5.58b)

Baseline Controller
(5.50),(5.51)
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Λ̂M

Figure 5.8: P-ACA Vertical Velocity Controller

derived in Section 5.5.3. The final structure of the P-ACA vertical velocity tracking
controller is depicted in Figure 5.8. The structure is the same as for the attitude track-
ing controller.

5.5.1 Vertical Velocity Reference Model

The vertical velocity reference model is a dynamic system that represents the desired
system’s response to the given commands. The vertical velocity command (vc,z)

N

N
(t) ∈

R comes from the pilot. It is assumed to be bounded and piecewise-continuous in t.
The reference model is given by the following stable first order low-pass filter

(
.
vd,z)

NN

N
(t) = kvz,rm ·

(
(vc,z)

N

N
(t)− (vd,z)

N

N
(t)
)
, (5.50)

with a positive gain kvz,rm > 0 ∈ R corresponding to the inverse of the time constant.
The desired vertical velocity (vd,z)

N

N
(t) ∈ R is the state of the reference model. The

following lemma describes the stability properties of the reference model.

Lemma 5.21 (Reference Model Stability) Given the system dynamics (5.50) and a posi-
tive gain kvz,rm > 0, the reference model corresponds to a stable first order low-pass filter,
which is a bounded-input-bounded-output system [101]. �

5.5.2 Vertical Velocity Baseline Control Law

Given the system dynamics (5.49a) and assuming no disturbance dT = 0 , the goal
of the baseline control law is to track the desired vertical velocity (vd,z)

N

N
(t) from the

reference model (5.50) using T (t) as the control input. The control law is given by

Td,b(t) =
m

max (zmin, (zB,z)N (t))

(
g − (

.
vd,z)

NN

N
(t) + kv,z ·

(
(vz)

N

N
(t)− (vd,z)

N

N
(t)
))
, (5.51)
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where kv,z > 0 ∈ R is a positive proportional gain. The limit zmin > 0 ∈ R is the
minimum operational value of (zB,z)N (t) and a protection of excessive thrust. This
limit is selected using the following assumption.

Assumption 5.22 (Maximum Tilt Limit) The operational envelope is limited by the maxi-
mum tilt angle ϕ (t) ∈ R between the body-fixed z-axis ~zB (t) and the N -frame z-axis ~zN . The
maximum angle is given by ϕmax < π

2
such that

(zB,z)N (t) = (~zB)T
N

(t) (~zN)
N

= cos (ϕ (t)) ≥ cos (ϕmax) = zmin > 0.

Note that (zB,z)N (t) = 0 means that the total thrust T (t) is perpendicular to the z-axis
of the N coordinate system. In this case the vertical velocity cannot be influenced by
the total thrust T (t) regardless of the selected control law.

The tracking error is defined as (ev,z)
N

N
(t) := (vz)

N

N
(t)−(vd,z)

N

N
(t). If Assumption 5.22

holds, closed-loop error dynamics are computed from the system dynamics (5.49a)
with no disturbance (dT = 0) and the baseline control law (5.51) as

(
.
ev,z)

NN

N
= (

.
vz)

NN

N
− (

.
vd,z)

NN

N
,

= −kv,z · (ev,z)NN (t).
(5.52)

The following Lemma describes the stability properties of the closed-loop system.

Lemma 5.23 (Baseline Controller Stability) Given the system dynamics (5.49a) with no
disturbance (dT = 0) and the control input T (t), the reference model (5.50), the baseline
control law (5.51), positive gains kv,z, kvz,rm > 0 and a bounded command (vc,z)

N

N
(t), the

closed-loop error dynamics are linear and the zero equilibrium is globally exponentially stable
if Assumption 5.22 (Maximum Tilt Limit) holds.

The Lemma is proven from the linearity of the closed-loop error dynamics (5.52) and
its negative eigenvalue −kv,z [101]. �

5.5.3 Vertical Velocity Adaptive Augmentation

The vertical velocity adaptive augmentation is designed following the P-ACA ap-
proach from Section 4.1. Compared to the controller in the last section, actuator faults
and external disturbances are considered as presented in (5.49). The 4 design steps
of P-ACA are listed in Remark 4.5 (P-ACA Design Steps). The first step is the design
of a state predictor. The next step is the selection of the desired virtual control νT,d (t)

such that for T̂ (t) = νT,d (t) the known predictor model replicates the reference model
(5.50) up to an identification disturbance term. The third step, the control allocation,
has been formulated in the Control Task 5.1 and solved in Section 5.2. The last step is
the identification of the unknown plant parameters ΛL and dT so that the control law
u (t) is also valid for the plant dynamics (5.49).

Because the vertical velocity but not the altitude is controlled, the use of a reduced
order predictor is not necessary and a predictor as in (4.7) can be used to estimate the
unknown parameters. By defining (v̂z)

N

N
(t) ∈ R as the estimate of the vertical velocity
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(vz)
N

N
(t) and T̂ (t) ∈ R as the estimate of the total thrust T (t), the state predictor is

defined as
( .
v̂z

)NN
N

(t) = −Lv,z
(
(v̂z)

N

N
(t)− (vz)

N

N
(t)
)

+ g − 1

m
(zB,z)N (t)

(
T̂ (t) + d̂T (t)

)
, (5.53a)

T̂ (t) = UTDT Λ̂T · u(t). (5.53b)

The first term in (5.53a) is the estimation stabilizing feedback using the positive gain
Lv,z ∈ R and the estimation error defined as

(ṽz)
N

N
(t) = (v̂z)

N

N
(t)− (vz)

N

N
(t). (5.54)

The remaining terms correspond to the plant dynamics (5.49) given the estimate Λ̂T (t) ∈
R1×6 of the control effectiveness matrix ΛT and the estimate d̂T (t) ∈ R of the distur-
bance dT . The estimation errors are defined as

Λ̃T (t) = Λ̂T (t)−ΛT , d̃T (t) = d̂T (t)− dT .

Adaptive Control Law

The control of the predictor model is separated into control allocation and rigid body
control as presented in Section 4.1. Given the control allocation as presented in Section
5.2 with (5.7), a control input u (t) is known such that

νT,d(t) = UTDT Λ̂T (t) · u(t) (5.55)

for a given desired thrust νT,d(t) and a known and time varying control effectiveness
matrix Λ̂T (t). Therefore, the design of the desired thrust νT,d(t) as the rigid body control
law is addressed in this section. Using (5.55) and using the virtual control νT,d(t) as an
input, the predictor (5.53) can be rewritten as

( .
v̂z

)NN
N

(t) = −Lv,z (ṽz)
N

N
(t) + g − 1

m
(zB,z)N (t)

(
νT,d(t) + d̂T (t)

)
. (5.56)

The goal of the adaptive augmentation controller is to achieve asymptotic track-
ing of the reference model (5.50). The tracking error of the predictor is defined as
(êv,z)

N

N
(t) := (v̂z)

N

N
(t)− (vd,z)

N

N
(t) and the error dynamics are given by

( .
êv,z

)NN
N

(t) = −Lv,z (ṽz)
N

N
(t) + g − 1

m
(zB,z)N (t)

(
νT,d(t) + d̂T (t)

)
− (

.
vd,z)

NN

N
(t). (5.57)

In a similar manner as in Section 5.4 (Attitude Adaptive Augmentation), the virtual
control law is selected such that it constitutes a simple augmentation of the baseline
control law Td,b(t) (5.51) and is given by

νT,d(t) = νT,aug(t) + Td,b(t), (5.58a)

νT,aug = −d̂T (t) , (5.58b)

Td,b(t) =
m

max (zmin, (zB,z)N (t))

(
g − (

.
vd,z)

NN

N
(t) + kv,z · (ev,z)NN (t)

)
. (5.58c)
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The adaptive augmentation term νT,aug(t) ∈ R is a cancellation of the estimated dis-
turbance force d̂T (t). The baseline control law has a term canceling the gravitational
potential, a feedforward term and a proportional feedback term.

Let Assumption 5.22 (Maximum Tilt Limit) hold. Then by inserting the adaptive
control law (5.58) in (5.57) the closed-loop error dynamics are given by

( .
êv,z

)NN
N

= −Lv,z (ṽz)
N

N
(t)− kv,z · (ev,z)NN (t) (5.59a)

= −kv,z · (êv,z)NN (t) +Rv,z · (ṽz)NN (t), (5.59b)

where Rv,z = kv,z − Lv,z. From (vz)
N

N
(t) = (v̂z)

N

N
(t)− (ṽz)

N

N
(t) (5.54), the relation

(ev,z)
N

N
(t) = (vz)

N

N
(t)− (vd,z)

N

N
(t)

= (v̂z)
N

N
(t)− (ṽz)

N

N
(t)− (vd,z)

N

N
(t)

= (êv,z)
N

N
(t)− (ṽz)

N

N
(t)

has been derived and used in (5.59b). As in the attitude case, the estimation distur-
bance term in (5.59b) arises from the choice of a control law that is decoupled from
the high frequency content of the estimation error (ṽz)

N

N
(t) and the estimate (v̂z)

N

N
(t).

Since in this case no reduce-order predictor is used, the constant Rv,z could have been
alternatively selected as Rv,z = 0.

The adaptation does not only affect the control inputs u(t) through the virtual con-
trol law νT,aug(t) (5.58b), but also through the solution of the control allocation (5.55)

and hence through the estimate Λ̂T (t). This is one of the special characteristics of
P-ACA applied to overactuated systems. The following theorem summarizes the char-
acteristics of the closed-loop system needed for the subsequent stability assessment.

Theorem 5.24 (State Predictor Boundedness) Given are the predictor dynamics (5.56), the
reference model (5.50), the control law (5.58), positive gains kv,z, kvz,rm > 0 and a bounded
command (vc,z)

N

N
(t). Given Assumption 5.22 (Maximum Tilt Limit), it holds that:

� Given a bounded input (ṽz)
N

N
(t) (estimation error), the error state (êz)

N

N
(t) is bounded.

� For
∣∣∣∣(ṽz)NN (t)

∣∣∣∣→ 0 it holds that
∣∣∣∣(êz)NN (t)

∣∣∣∣→ 0.

Proof: The error dynamics (5.59b) correspond to a linear stable first order low-pass
filter with the external input (ṽz)

N

N
(t). The theorem follows directly by noting that

the eigenvalue of the system −kv,z is negative [101]. Alternatively, the error dynamics
(5.59) in combination with the following Lyapunov function

V ((êv,z)N (t)) =
1

2
· (êv,z)2

N
(t) (5.60)

can be used to show input-to-state stability (ISS) using Theorem 4.19 in [87]. The ISS
property implies Theorem 5.24. �
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Update Law

The next step of the P-ACA approach (Remark 4.5) is the design of the update laws for
the unknown parameters. The update laws of the estimates Λ̂T (t) and d̂T (t) follow the
design methodology presented in Section 4.1 and are given by

.
d̂T (t) = −γd,vz · (ṽz)NN (t) · − (zB,z)N (t)

m
(5.61a)

.
Λ̂T (t) = −DTUT ·

− (zB,z)N (t)

m
· (ṽz)NN (t) · uT (t) · ΓΛ,vz, (5.61b)

Noting that the estimated parameters are constant, the parameter estimation error dy-

namics are given by
.
d̃T (t) =

.
d̂T (t) and

.
Λ̃T (t) =

.
Λ̂T (t) . The state estimation error

dynamics are computed by subtracting the plant dynamics (5.49) from the predictor
dynamics (5.53). Hence, the predictor error dynamics are given by

( .
ṽz

)NN
N

(t) =− Lv,z (ṽz)
N

N
(t)− 1

m
(zB,z)N (t)

(
UTDT Λ̃T · u(t) + d̃T (t)

)
, (5.62a)

.
d̃T (t) = −γd,vz · (ṽz)NN (t) · − (zB,z)N (t)

m
(5.62b)

.
Λ̃T (t) = −DTUT ·

− (zB,z)N (t)

m
· (ṽz)NN (t) · uT (t) · ΓΛ,vz, (5.62c)

with a positive constant γd,vz ∈ R and a positive definite matrix ΓΛ,vz ∈ R6×6. The
underlined terms show that the estimated error dynamics are coupled between each
other. These error dynamics lead to a stable equilibrium of the estimation errors and to
an asymptotically vanishing tracking error between the plant (5.49) and the reference
model (5.50). The following theorem summarizes the main result of this section.

Theorem 5.25 (Estimator Update Law) Given are the system dynamics (5.49), the state
predictor (5.53), the reference model (5.50), the control law (5.58), the update laws (5.61),
positive gains kv,z, kvz,rm, Lv,z > 0, symmetric positive definite adaptation gains γd,vz,ΓΛ,vz

and a bounded command (vc,z)
N

N
(t). Given Assumption 5.22 (Maximum Tilt Limit), it holds

that:

� The equilibrium ((ṽz)
N

N
, d̃T , Λ̃T ) = (0, 0,0) is uniformly stable.

� The estimation error
∣∣∣∣(ṽz)NN (t)

∣∣∣∣→ 0 for t→∞.

� And the plant tracking error vanishes |ev,z(t)| → 0 for t→∞.

Proof: Analogously to Section 4.1, in order to show the first two statements in Theorem
5.25, the Lyapunov candidate function is chosen as

V (t) =
1

2

(
(ṽz)

N

N
(t)
)2

+
1

2
γ−1
d,vz · d̃2

T (t) +
1

2
Λ̃T (t)Γ−1

Λ,vzΛ̃
T

T (t). (5.63)

The Lyapunov function is positive definite since γd,vz > 0 ∈ R and ΓΛ,vz ∈ R6×6 is a
symmetric positive definite matrix. Both constants correspond to the adaptation rates.
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5.5 Vertical Velocity Control

The derivative of the Lyapunov function is calculated using the predictor estimation
error dynamics (5.62) as

.
V (t) = (ṽz)

N

N
(t) ·

( .
ṽz

)NN
N

(t) + γ−1
d,vz · d̃T (t)

.
d̃T (t) + Λ̃T (t)Γ−1

Λ,vz

.
Λ̃
T

T (t)

= −Lv,z
(
(ṽz)

N

N
(t)
)2 − (ṽz)

N

N
(t) · 1

m
(zB,z)N (t)

(
UTDT Λ̃T · u(t) + d̃T (t)

)

+ d̃T (t) (ṽz)
N

N
(t) · (zB,z)N (t)

m
+ Λ̃T (t)u(t) · (ṽz)NN (t)

(zB,z)N (t)

m
· UTDT ,

= −Lv,z
(
(ṽz)

N

N
(t)
)2
.

Hence, the derivative of the Lyapunov function
.
V (t) = −Lv,z

(
(ṽz)

N

N
(t)
)2 is neg-

ative semi-definite. From Theorem 4.8 (Uniform Stability) in [87], the equilibrium
((ṽz)

N

N
, d̃T , Λ̃T ) = (0, 0,0) is uniformly stable and (ṽz)

N

N
(t), d̃T (t), Λ̃T (t) ∈ L∞. There-

fore, d̂T (t) and Λ̂T (t) are also bounded.

Subsequently, the goal is to show asymptotic convergence of the estimation error
(ṽz)

N

N
(t) to zero based on Barbalat’s Lemma (Lemma B.9). Following the same argu-

ments as in Section 3.2, it is known that limt→∞
∫ t
τ=0

.
V
(
(ṽz)

N

N
(τ)
)
dτ exists and is finite.

It remains to be shown that
.
V
(
(ṽz)

N

N
(t)
)

is a uniform continuous function of t. This
holds if its derivative

..
V (t) = −2Lv,z (ṽz)

N

N
(t) ·

( .
ṽz

)NN
N

(t)

is uniformly bounded. From the estimation error dynamics (5.62a), it follows that
..
V (t)

is uniformly bounded if (ṽz)
N

N
(t),

(
d̃T

)N
N

(t), Λ̃T (t), (zB,z)N (t) and u(t) are uniformly
bounded. Since |(zB,z)N (t)| ≤ 1 for all t ≥ 0, it remains to show that u(t) is uniformly
bounded. Given that (ṽz)

N

N
(t) ∈ L∞, it follows from Theorem 5.24 (State Predictor

Boundedness) that the estimated tracking state (êz)
N

N
(t) and therefore the tracking error

(ez)
N

N
(t) are bounded. From the virtual control law (5.58) and the solution of the control

allocation (5.55) it follows that the virtual control νT,d(t) (5.58) and the control input
u(t) are uniformly bounded. Finally, it is concluded that

..
V (t) is bounded uniformly in

t for all t ≥ 0 and
.
V
(
(ṽz)

N

N
(t)
)

is uniformly continuous. Using Lemma B.9 (Barbalat)
it follows that

.
V
(
(ṽz)

N

N
(t)
)
→ 0 and hence (ṽz)

N

N
(t) → 0 for t → ∞. From the second

statement in Theorem 5.24 (State Predictor Boundedness) it follows that the predictor
tracking error converges to the equilibrium (êz)N (t) → 0 and therefore the tracking
error converges to the equilibrium (ez)N (t) =

(
(vz)

N

N
(t)− (vd,z)

N

N
(t)
)
→ 0 for t→∞. �

An overview of the P-ACA vertical velocity controller is depicted in Figure 5.8 and
includes all the implemented equations: The reference model (5.50), the baseline con-
trol law (5.51), the state predictor (5.53), the adaptive control law (5.58b), the update
laws (5.61) and the control allocation as in Section 5.2. The vertical velocity controller
as in Figure 5.8 in combination with the attitude and rate controller as in Figure 5.7
complete the controller depicted in Figure 5.1. The parameters of the attitude and rate
controller are given in Table 5.1 and the ones of the vertical velocity controller in Table
5.2.
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Subsystem Description Symbol Value
Ref. Model Yaw rate proportional gain kwz,rm 8.00
Ref. Model Attitude proportional gain ka,rm 71.12
Ref. Model Rate proportional gain Kω,rm 16.86 · I
Baseline Ctrl. Attitude proportional gain ka 18.51
Baseline Ctrl. Roll/pitch rate proportional gain kω 6.02
Baseline Ctrl. Yaw proportional gain kω,z 3.5
State Predictor Luenberger gain L 30 · I
Update Law Disturbance adaptation rate Γd [2.25, 2.36, 7.37] · 10−2

Update Law Control effect. adaptation rate ΓΛ 2.25 · 10−2 · I

Table 5.1: Attitude Controller Gains

Subsystem Description Symbol Value
Ref. Model Vert. vel. proportional gain kvz,rm 2.5
Baseline Controller Vert. vel. proportional gain kv,z 3.5
State Predictor Luenberger gain Lv,z 20
Update Law Disturbance adaptive rate γd,vz 100
Update Law Control effectiveness adaptive rate ΓΛ,vz 2.25 · 10−2 · I

Table 5.2: Vertical Velocity Controller Gains

5.6 Bibliographical Remarks

First results using geometric attitude control laws in SO(3) for multicopter control have
been presented in [95]. Subsequently, the use of a reduced attitude parameterization in
S2 has been presented in [48,55,149] using non-adaptive techniques. The SO(3) attitude
parameterization has been presented in combination with robust adaptive control [93]
and L1 adaptive control [88] but faults were not addressed. In previous work [51], in-
cremental control using the reduced attitude parameterization for addressing actuator
degradation has been presented. To the best knowledge of the author, this is the first
time that the reduced attitude parameterization in S2 has been used within an adap-
tive control framework. Furthermore, the stability properties are shown decoupled
from the yaw motion for the first time. These properties enhance the advantages of the
Prioritizing Control Allocation (PRIO CA) during degraded control situations.

The formulation of the attitude Lyapunov function (5.18) and Theorem 5.9 (Local
Exponential Stability) are motivated by the analysis in SO(3) in [93]. In this thesis it
has been adapted to reduced attitude control in S2 and used for adaptive control. The
structure of the almost global asymptotic stability (AGAS) proof has been inspired by
[55, 113]. Finally, the selection of the attitude proportional feedback term corresponds
to the reduced attitude case in [26].

Compared to the previous work in [42, 43], where PMRAC has been applied to the
hexacopter’s total failure scenario, the reduced attitude parameterization in S2 is used
and the uncertainty parameterization and the control allocation strategy have been
updated. The control allocation corresponds to the PRIO CA instead of a gradient-
based optimization. The control effectiveness matrix Λ is not limited to a diagonal
matrix and by using the PRO approach a clear separation of the update laws between
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attitude (5.46b) and vertical velocity (5.61b) has been achieved. Finally, the fault model
(3.5) integrates not only multiplicative but also additive uncertainties.

156



Chapter 6

Experimental Results

For demonstrating the performance and fault tolerance of the controller presented in
Chapter 5 (Multirotor Controllers) several flight tests have been done using the hexa-
copter platform described in Chapter 2 (Multirotor Dynamics Model). The test cases
include two hexacopter configurations with representative failure cases for demon-
strating repeatable results. In order to emulate faults and total failures, two different
approaches have been used. The hardware approach corresponds to the dismounting
the propeller previous to a given flight. In this way is is possible to realistically analyze
the performance after a total failure, but it is not possible to address the direct reaction
of the system to a fault during flight and it is neither possible to consider partial faults.
This is done using a software approach where the input command is multiplied by an
externally set control effectiveness. In this way a total failure corresponds to an idle
command to the corresponding ESC regardless of the commands of the controller. The
failure scenarios are evaluated during hover flight as well as high speed cruise flight.
Furthermore, the performance is analyzed post-failure during hover flight, high speed
cruise flight and a 2-2-1-1 maneuver. During the experiments, the faults are unknown
to the controller, all computations are done onboard, and no external sensors were
used. Furthermore, a single unified controller handles the nominal and all the faulty
cases.

6.1 Failure during Hover Flight - Single Case

In this section, a total failure of actuator 5 during hover flight using configuration 1
of the hexacopter system as presented in Chapter 2 is analyzed. The pilot commands
the reduced attitude vector (~zc)N (t) ∈ S2, the yaw rate (ωc,z)B (t) ∈ R and the vertical
velocity (vc,z)

N

N
(t) ∈ R. In configuration 1, a total actuator failure means that yaw

moment cannot be generated in one direction while hovering as depicted in Figure 2.4.
In the best case the system is able to track the desired reduced attitude vector ~zd (t) and
the desired vertical velocity (vd,z)

N

N
(t), which corresponds to a fail-graceful system. In

this case it is possible to remain operational but with a degraded performance [12, p.8].
Figure 6.1 shows the general performance of the controller. The time has been

shifted such that the failure time corresponds to t = 0[s]. The plot shows attitude,
rate and vertical velocity tracking as well as horizontal velocity. For analyzing the at-
titude tracking performance, the Euler angles are used as attitude parameters due to
ease of interpretation. The desired values of the roll Φd (t) and pitch angles Θd (t) are
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Figure 6.1: Tracking Performance - Fault Case λ5 = 0 during Hover Flight - Config. 1

158



Chapter 6: Experimental Results

computed from the desired reduced attitude vector (~zd)N (t) by inverting the relation
(2.18) derived in Chapter 2 as follows

Φd (t) = arcsin ((zd,x)N (t) · sin Ψ (t)− (zd,y)N (t) · cos Ψ (t)) , (6.1a)

Θd (t) = arctan

(
(zd,x)N (t) · cos Ψ (t) + (zd,y)N · sin Ψ (t)

(zd,z)N (t)

)
. (6.1b)

Since there is no desired heading Ψd (t), the measured heading Ψ (t) is used for the
transformation. In Figure 6.1 it can be seen that the failure of actuator 5 does not af-
fect the performance of the pitch angle tracking performance but it influences the roll
angle, yaw rate and vertical velocity tracking performance. After 447 [ms] the abso-
lute roll angle tracking error |Φd (t)− Φ (t)| reaches a maximum of 17.84 [deg] and after
225 [ms] the absolute roll rate tracking error |(ew,x)B (t)| reaches a maximum of 69.97
[deg/s]. After 792 [ms] the roll angle tracking error remains under 5 [deg]. In Figure
6.1 this limit is marked as a yellow area. Since the actuator 5 has failed, negative yaw
moments cannot be generated during hover. A moderate positive yaw rate tracking
error |(ew,z)B (t)| under 50 [deg/s] is observed and consequently the yaw angle slowly
increases. The vertical velocity tracking error |(ev,z)N (t)| reaches a maximum of 0.39
[m/s] at 486 [ms]. In the last plot in Figure 6.1, the horizontal velocity vh (t) ∈ R is
depicted. Since the fault has been induced during hover, the velocity remains small
under 3 m/s. The horizontal velocity vh (t) is computed as

vh (t) =
√

(vx)
N

N
(t) · (vx)NN (t) + (vy)

N

N
(t) · (vy)NN (t) (6.2)

where (vx)
N

N
(t) ∈ R and (vy)

N

N
(t) ∈ R are the first and second elements of (~v)N

N
(t).

In order to understand how the failure is compensated, the adaptation and the con-
trol allocation processes are analyzed in the following. The adaptation results depend
on the selected predictor error dynamics (5.47) and (5.62) which combine state and

parameter estimation. The adaptive parameters are the disturbances ~̂dM (t) and d̂T (t)

as well as the reduced control effectiveness matrix Λ̂a,r (t) composed by Λ̂T (t) and
Λ̂M (t). From the Lyapunov analysis it is known that adaptation is active as long as
there exist non-zero state estimation errors

(
~̃ωNB

)
B

(t) and (ṽz)
N

N
(t). In Figure 6.2 the

rotational rates (~ωNB)
B

(t) and the vertical velocity (vz)
N

N
(t) and their respective esti-

mates
(
~̂ωNB

)
B

(t) and (v̂z)
N

N
(t) are plotted. It can be seen that the estimation error

increases only during a short time span of less than a second after the failure occurred.
Especially the roll rate and vertical velocity estimation errors can be seen in the figure.

Figure 6.3 depicts the reduced control effectiveness matrix Λa,r (t) and its estimation
Λ̂a,r (t). The elements are arranged by columns corresponding to each of the actuators
and organized such that they geometrically match the position of the actuators. For
example, actuator 1 is located to the front-right of the origin of the B-system. Each row
of Λ̂a,r (t) represents a virtual control and has a constant color through all the plots.
For facilitating the interpretation, each of the matrix elements is multiplied by the sign
of its nominal value (initial value)

Λ̂a,r (t = 0) = VT
a,r · Λ̂ (t = 0) = VT

a,r · I. (6.3)

The computation is the following

λ̂∗a,r,ij (t) :=

{
λ̂a,r,ij (t) , if λ̂a,r,ij(t = 0) ≥ 0

−λ̂a,r,ij (t) , if λ̂a,r,ij(t = 0) < 0
, for i = 1...4, j = 1...6. (6.4)
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Figure 6.2: State Estimation - Fault Case λ5 = 0 during Hover Flight - Configuration 1

In this way, an increase of λ̂∗ (t) means an increase of effectiveness regardless of the
nominal direction. Here, λ̂∗a,r,ij (t) , λ̂a,r,ij (t) ∈ R correspond to the element in the i-th
row and j-th column of Λ̂

∗
a,r (t) ∈ R4×6 and Λ̂a,r (t) ∈ R4×6 respectively. The theoretical

ideal values Λa,r are transformed to Λ∗a,r ∈ R4×6 analogously to (6.4). In Figure 6.3 it
can be seen that these ideal values Λ∗a,r only change for actuator 5 at the time of the
failure t = 0. The matrices Λ̂

∗
M,x (t) , Λ̂

∗
M,y (t), Λ̂

∗
M,z (t), Λ̂

∗
T (t) ∈ R1×6 each represent a

row of Λ̂
∗
a,r (t). In Figure 6.3 it can be seen that the elements corresponding to the roll

moment Λ̂
∗
M,x (t) change the most. The ones corresponding to rotors on the left side

decrease and the ones corresponding to rotors on the right side increase. The elements
corresponding to the yaw moment Λ̂

∗
M,z (t) and to the rotors 2, 4 and 6 slightly increase.

The ones corresponding to the rotors 1, 3 and 5 slightly decrease. All the elements of
Λ̂
∗
T (t) slightly decrease. These changes match with the direction of the faulty actuator

5 as seen from the 5-th column of the nominal control input matrix Ba (2.9) or its
normalized version Bνu (t) derived in Example 4.4 (Hexacopter Input Normalization).
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Figure 6.3: Reduced Control Effectiveness - Fault Case λ5 = 0 during Hover Flight -
Configuration 1
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Figure 6.4: Virtual Controls - Fault Case λ5 = 0 during Hover Flight - Configuration 1

The estimated disturbances ~̂dM (t) and d̂T (t) also compensate for the failure of ac-
tuator 5. This can be seen in a virtual control context since the adaptive augmentation
term νaug (t) corresponds to the cancellation of the estimated disturbances. In Figure
6.4, the desired virtual control νd (t) (5.43) and (5.58) and the adaptive augmentation
term νaug (t) (5.43b) and (5.58b) are shown. The difference between νd (t) and νaug (t)
corresponds to the virtual control commanded by the baseline controller νb (t) (5.43c)
and (5.58c). In the presented case, after the failure, the thrust νT,aug (t) and the roll mo-
ment demand νM,x,aug(t) increase while the yaw moment demand νM,z,aug(t) becomes
negative. The adaptive augmentation term νaug (t) matches with the direction of the
faulty actuator 5 as seen from the 5-th column of the nominal control input matrix
Ba (2.9) or its normalized version Bνu (t) derived in Example 4.4 (Hexacopter Input
Normalization).

From Figures 6.3 and 6.4 it can be seen that shortly after the failure the unknown

parameters Λ̂r,M (t), ~̂dM (t), Λ̂r,T (t) and d̂T (t) adapt but do not converge to the theoret-
ical ideal values. From the Lyapunov analysis in Chapter 5, this is an expected result
since the parameter error states have been proven to be stable but not to convergence
to zero. During the analysis it additionally needs to be taken into account that the
theoretical ideal values Λr,M , dM , Λr,T and dT may differ from the experimental ones
since a dynamics model inherently contains modeling errors. In this case the most
predominant uncertainties correspond to a center of gravity shift, wind disturbances
like turbulence or gusts and the propeller model. Nevertheless, from the tracking per-
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Figure 6.5: Lyapunov Analysis - Fault Case λ5 = 0 during Hover Flight - Configuration 1

formance in Figure 6.1, it can be concluded that the considered effects in the model
appropriately describe the plant dynamics for the use of the selected control strategy.

The interaction of the predictor dynamics and adaptation with the tracking perfor-
mance can be analyzed using the respective Lyapunov functions presented in the last
chapter. The attitude and velocity tracking Lyapunov functions (5.44) and (5.60) and
the attitude and velocity estimation Lyapunov functions (5.48) and (5.63) are depicted
in Figure 6.5. At the time of the failure t = 0, the control effectiveness Λ changes and
therefore the estimation Lyapunov functions (5.48) and (5.63) increase with a discrete
step. Before the failure, the estimation Lyapunov functions (5.48) and (5.63) had val-
ues lower than 0.1 and 5 · 10−3 respectively. After the failure and as long as the state
estimation errors

(
~̃ωNB

)
B

(t) and (ṽz)
N

N
(t) are large, the Lyapunov functions decrease

significantly. As can be seen in Figure 6.5 both Lyapunov functions rapidly decrease
to a constant positive value. This error corresponds to the adaptive parameters which
have not converge to their desired values. Furthermore, from the Theorems 5.19 (Full
State Predictor - Boundedness) and 5.24 (State Predictor Boundedness) it is known that
the predictor tracking performance depends on the state estimation errors. This effect
can be seen from the depicted tracking Lyapunov functions (5.44) and (5.60). After the
failure there is an increase and once the estimation errors

(
~̃ωNB

)
B

(t) and (ṽz)
N

N
(t) are

small enough, the Lyapunov functions start decreasing again.
The interaction between the control allocation and the adaptation can be assessed
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using the virtual control space representation. An alternative presentation of the esti-
mated control effectiveness Λ̂a,r (t) is the estimated attainable control set (ACS) which
is defined analogously to the ACS (2.20) as introduced in Chapter 2. The estimated
ACS is defined as a 4-dimensional polyhedron

V̂ (t) := {ν ∈ R4 | ν = BaΛ̂ (t) u = Ua,rDaΛ̂a,r (t) u,u ∈ U}, (6.5)

where the input set is defined in (2.19). In Figures 6.6, 6.7 and 6.8, three ACS are
compared at the times t = 0[s], t = 0.3[s] and t = 1[s] respectively. The sets correspond
to the nominal ACS (2.20) with Λ = I and dν = 0, the ACS (2.20) corresponding to the
fault case with

Λ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1




and dν = 0 and the estimated ACS (6.5). Each of the figures shows the roll and pitch
moment L/M plane and the thrust and yaw moment T/N plane. Apart from the ACS
polygons, the virtual controls ν (t) PRIO and ν̂ (t) PRIO are depicted. They are com-
puted as

ν (t) = Ba ·Λ · u (t) ,

ν̂ (t) = BaΛ̂ (t) u (t) = Ua,rDaΛ̂a,r (t) u (t) ,

using the control inputs u (t) computed by the Prioritizing Control Allocation (PRIO)
during the flight test. For plotting the L/M plane, the nominal and the fault ACS are
cut at N (t) and T (t) and the estimated ACS (6.5) is cut at N̂ (t) and T̂ (t). For plotting
the T/N plane, the nominal and the fault ACS (2.20) are cut at L (t) and M (t) and the
estimated ACS (6.5) is cut at L̂ (t) and M̂ (t). The values L (t) ,M (t) , N (t) , T (t) corre-
spond to ν (t) PRIO and L̂ (t) , M̂ (t) , N̂ (t) , T̂ (t) correspond to ν̂ (t) PRIO as shown in
the figure. For comparison, the virtual controls ν (t) PINV and ν̂ (t) PINV correspond-
ing to the Pseudo-Inverse Control Allocation (PINV CA) are plotted. These virtual
controls have been computed in post-processing since the PINV CA was not used in
flight.

By comparing the nominal ACS with the fault ACS, the physical loss of control au-
thority can be seen. The estimation error of the control effectiveness matrix Λ̃a,r (t) can
be visualized in two ways. One possibility is the comparison of the fault ACS (2.20)
with the estimated ACS (6.5). The second option is the comparison of ν (t) and ν̂ (t),
i.e. the difference between the red and blue markers for both PRIO and PINV control
allocations. In Figure 6.6, t = 0[s] is depicted and therefore the difference between
the ACS and the estimated ACS is the largest since the parameter adaptation has just
started. This difference is rapidly reduced as can be seen in Figures 6.7 and 6.8. In Fig-
ure 6.8, it can be seen that there is a remaining control effectiveness matrix estimation
error Λ̃a,r (t) although at t = 1[s] the system has recovered tracking performance as
seen in Figure 6.1.

An interesting effect is the interaction between the estimated constant disturbances
~̂dM (t) and d̂T (t) and the estimated control effectiveness matrices Λ̂M (t) and Λ̂T (t).
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Figure 6.6: Virtual Control Space at t = 0[s] - Fault Case λ5 = 0 during Hover Flight -
Configuration 1: Comparison of the Prioritizing Control Allocation (PRIO CA) and the
Pseudo-Inverse Control Allocation (PINV CA)

All the adaptive parameters change while non-zero estimation errors
(
~̃ωNB

)
B

(t) and

(ṽz)
N

N
(t) exists such that the disturbance forces and moments are counteracted. Adap-

tation is negligible once the estimation errors are small enough. This occurs once the
combination of all parameter changes compensate for the disturbance arising from the
failure. Therefore, since the estimation of the constant disturbance also compensates
for the actuator failure, it inhibits a better estimation of the control effectiveness matri-
ces. In order to improve the estimation, the system needs to be excited such that it is
possible to differentiate between these two types of parameters.

In order to analyze the control allocation performance based on the available infor-
mation, the estimated virtual control ν̂ (t) is compared with the desired virtual control
νd (t). In Figures 6.6 and 6.7, the control allocation is able to match the desired virtual
control νd (t). Furthermore, there is no difference between the PRIO CA and the PINV
CA. In Figure 6.8 it can be seen that the PRIO CA allocates the desired roll moment
Ld (t), pitch moment Md (t) and thrust Td (t) correctly but there is a small error in the
yaw momentNd (t). This occurs due to control input saturation and is the intended be-
haviour due to the prioritizing strategy. In comparison it can be seen that the estimated
virtual controls ν̂ (t) using the PINV CA show errors in roll, yaw and thrust.

For a better visualization, the time sequence of the desired virtual control νd (t) and
the estimated virtual controls ν̂ (t) corresponding to the PRIO and PINV control alloca-
tions are plotted in Figure 6.9. In this fault scenario, the advantage of the prioritization
strategy can be clearly seen from the roll moment plot. The PRIO CA is able to satisfy
the roll moment demand Ld (t) while the error using PINV CA increases after t = 0.3[s].
This would lead to the inability of maintaining the desired position and attitude lead-
ing to a loss of control situation. In contrast, the prioritization allows for maintaining
reduced attitude control. Furthermore, the PRIO CA is able to correctly allocate the
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Figure 6.7: Virtual Control Space at t = 0.3[s] - Fault Case λ5 = 0 during Hover Flight -
Configuration 1: Comparison of the Prioritizing Control Allocation (PRIO CA) and the
Pseudo-Inverse Control Allocation (PINV CA)
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Figure 6.8: Virtual Control Space at t = 1[s] - Fault Case λ5 = 0 during Hover Flight -
Configuration 1: Comparison of the Prioritizing Control Allocation (PRIO CA) and the
Pseudo-Inverse Control Allocation (PINV CA)
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Figure 6.9: Control Allocation Performance - Estimated Virtual Controls - Fault Case
λ5 = 0 during Hover Flight - Configuration 1
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Figure 6.10: Control Inputs - Fault Case λ5 = 0 during Hover Flight - Configuration 1
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desired pitch moment Md (t) and thrust Td (t) but not the desired yaw moment Nd (t).
The PINV CA shows small errors in both thrust and yaw moment allocation but is able
to correctly allocate the desired pitch moment. The general importance of a correct
control allocation can be seen from the yaw rate tracking performance. Although the
control allocation error in the yaw axis is not large using the PRIO CA, it translates to
moderate errors in the yaw rate tracking as seen in Figure 6.1. By setting this result in
relation with the PINV CA, it is clear that the roll moment error is unacceptable.

The adaptation together with the control allocation lead to the control input com-
mands shown in Figure 6.10. The virtual degradation of the command 5 u∗5 (t) is also
depicted. From the time the failure is active, the input commands u2 (t) and u5 (t)
rapidly change. The command u2 (t) decreases and the command u5 (t) increases caus-
ing the saturation of both commands. The PRIO CA starts differing from the PINV
CA at the time the command u5 (t) saturates. The control input commands 1, 3, 4 and 6
increase in order to compensate for the thrust deficit due to the reduction of the control
input 2 and the failure of actuator 5.

In summary, the presented P-ACA control approach is able to tackle the challenges
of handling fault and failure uncertainties while simultaneusly dealing with actuator
redundancy and control input saturation. Due to the physical limitations of the ana-
lyzed hexacopter configuration, a fail-operational system is not possible since the four
virtual controls cannot be controlled independently after a failure. The next goal is
a fail-graceful system which has been achieved using a prioritization strategy imple-
mented as the Prioritizing Control Allocation (PRIO CA).

6.2 Failure during Hover - Overview

After the in-depth controller analysis, this section aims to show the performance of the
controller considering different failure cases. Figure 6.11 presents an overview of the
compensation of a total failure during a hover maneuver for representative actuators
of each of the two hexacopter configurations in Figure 2.1. A failure of actuators 3 and
5 are considered for both configurations and a failure of actuator 1 is considered for
configuration 2. Due to the symmetry of the system, they are considered to be repre-
sentative for all possible single actuator failures. Each of the propellers is represented
with a different color, the normal line type represents configuration 1 and the dashed
line corresponds to configuration 2. In order to emulate a total failure during flights,
the failure has been induced by an idle command to the corresponding ESC regardless
of the commands of the controller. For all the flights, the time has been shifted such
that the time of the induced failure is zero. The pilot commands the reduced attitude
vector (~zc)N (t) ∈ S2, the yaw rate (ωc,z)B (t) ∈ R and the vertical velocity (vc,z)

N

N
(t) ∈ R.

For analyzing the attitude error, the Euler angles and the tilt angle error ϕd (t) ∈
[0, π] between ~zd (t) and ~zB (t) are used. For the sake of readability, the desired atti-
tude and rate values of each controller have not been plotted. They are close to a zero
command but not all the same. Especially after the failure the commands differ since
position corrections are made by the pilot. Nevertheless, the tilt angle error ϕd (t) is a
direct measure of the attitude error. In Figure 6.11 it can be seen that a failure of actu-
ator 1 leads to a positive roll angle error and a negative pitch angle error, that a failure
of actuator 3 leads to a positive roll angle error and a positive pitch angle error and
that a failure of actuator 5 leads mainly to a negative roll angle error. This behavior is
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Configuration 1 Configuration 2

Act. 3 Act. 5 Act. 3 Act. 5 Act. 1

Max. tilt angle error ϕd [deg] 16.17 17.84 15.06 13.40 21.38
Time [s] for max. ϕd 0.522 0.447 0.513 0.471 0.387
Time [s] for ϕd ≤ 5[◦] 0.918 0.795 0.933 0.858 0.768
Max. vertical vel. error |ev,z| [m/s] 0.319 0.386 0.326 0.355 0.359
Time [s] for max. |ev,z| 0.516 0.486 0.444 0.621 0.408
Time [s] for |ev,z| ≤ 0.25[m/s] 0.750 0.780 0.750 0.855 0.765

Table 6.1: Failure during Hover Flight - Performance Comparison for different Failure
Cases for the 2 Hexacopter Configurations

expected because of the location of the actuators and is the same for the two configura-
tions. The same can be concluded for the roll and pitch rate responses. The maximum
absolute error of roll and pitch rates are respectively 70[◦/s] and 79[◦/s]. The maximum
tilt angle error ϕd (t) varies between 13.4− 21.35[◦] and the time after which the error is
less than 5[◦] lies between 0.768− 0.933[s].

The main difference between the configurations can be seen in the yaw rate since
the direction of propellers 3 and 4 is exchanged. Therefore, the failure case of actu-
ator 3 leads to a positive yaw rate in configuration 1 and to a negative yaw rate in
configuration 2. The failure case of actuator 5 leads to a positive yaw rate for both con-
figurations. Furthermore, for both failure cases in configuration 1 the yaw rate error
has a slight increase in the while in configuration 2 it is driven to zero. The failure
case of actuator 1 in configuration 2 leads to a significantly larger yaw rate error than
in the other cases. This is expected from the ACS analysis in Chapter 2. This follows
from Figures 2.4 and 2.5. From Figure 2.4 it is known that given any actuator failure
in configuration 1, yaw moment at a hover state can be excerted only in one direction.
From Figure 2.5 it is known in the failure cases of actuator 3 and 5 in configuration 2,
yaw moment at a hover state can be excerted both directions and therefore yaw control
is not lost. A failure of actuator 1 in configuration 2 leads to a strictly positive yaw mo-
ment at a hover state with a relatively high minimum. The response to the disturbance
in the vertical velocity is similar for all the test cases and the maximum vertical veloc-
ity error |ev,z (t)| lies within 0.32− 0.39[m/s]. Since total thrust T (t) reduces due to the
failure, the vertical velocity error ev,z (t) is positive in all cases. In order to quantify the
recovery performance of the controller, various characteristic values of the tilt angle
error ϕ (t) and the vertical velocity error ev,z (t) are given in Table 6.1. In summary, it
has been shown that the presented controller maintains a similar performance for all
possible failure scenarios exploiting the physically achievable moments and forces for
best results. The time needed for recovery after the failure occurs is less than 1[s].
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Figure 6.11: Failure during Hover Flight - Performance Comparison for different Config-
urations
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6.3 Failures during High Speed Cruise

One of the main contributions of the thesis is the test of actuator failures during high
speed maneuvers. This has never been presented before and poses several new chal-
lenges. The most noticeable changes on the dynamics compared to hover flight arise
from the aerodynamic forces and the position of the center of gravity. The aerodynamic
forces are proportional to the squared aerodynamic velocity and therefore significantly
increase at higher speeds. Some effects that are not take into account in the control
model are the aerodynamic drag forces and the effect of aerodynamic velocity on the
propulsion units. Shifts of center of gravity along the body-fixed zB-axis induce dis-
turbance moments which are zero at hover and increase with the tilt angle. These mo-
ments therefore increase with increasing horizontal velocities since the aircraft needs
to tilt for accelerating and maintaining the speed.

Figure 6.12 shows a comparison of the compensation of a total failure at different
horizontal velocities for configuration 1. In order to emulate a total failure during
flights, the failure is induced by an idle command to the corresponding ESC regardless
of the commands of the controller. For all the flights, the time has been shifted such that
the time of the induced failure is zero. Each of the different velocities is represented
with a different color and correspond to vh = 0.5[m/s] (hover), vh = 4.9[m/s] and
vh = 10.9[m/s]. For analyzing the attitude error, the Euler angles and the tilt angle
error ϕd (t) ∈ [0, π] between ~zd (t) and ~zB (t) are used. Therefore the desired values of
the roll Φd (t) and pitch angles Θd (t) are computed from (6.1). Furthermore, during the
tests the attitude command ~zB (t) after the failure was such that the system was slowed
down as can be seen in the horizontal velocity vh (t) plot.

In Figure 6.12 it can be seen that the attitude command during cruise flight is not
equal zero as in the hover case. Nevertheless, a failure of actuator 1 leads to a positive
roll angle error and a negative pitch angle error and a failure of actuator 3 leads to
a positive roll angle error and a positive pitch angle error. This behavior is expected
because of the location of the actuators. The maximum tilt angle error ϕd (t) varies
between 16.17 − 22.12[◦] and the time after which the error is less than 5[◦] lies be-
tween 0.771− 1.044[s]. The roll and pitch rates p (t) and q (t) show two large amplitude
peaks. One corresponds to the failure and the other one to the correction maneuver
afterwards. It can be seen that the time of the correction is similar for the three cases
but the amplitude of the peaks is larger for higher speeds. This is mainly due to the
change in the commanded attitude after the failure. The yaw rate r (t) for all three
cases increases after the failure and for vh = 0.5[m/s] and for vh = 4.9[m/s] it goes back
to zero. For the case vh = 10.9[m/s] it remains positive for longer time and it reduces
to zero approximately 5[s] after the failure. Because the total thrust T (t) reduces due
to the failure, in all the cases there is a positive vertical velocity error ev,z (t) and the
maximum value lies between 0.32 − 0.45[m/s]. In order to quantify the recovery per-
formance of the controller, various characteristic values of the tilt angle error ϕd (t) and
the vertical velocity error ev,z (t) are given in Table 6.2.

The control commands corresponding to the three test cases are plotted in Figures
6.13, 6.14 and 6.15. In all three cases the control command corresponding to the failed
rotor saturates at the upper limit. The command corresponding to the propulsion unit
located diagonally on the other side of the hexacopter is rapidly reduced and in two
cases the lower limit is reached. Furthermore, the mean value of the other four actuator
commands increases in order to compensate for the total thrust T (t) loss. In summary,
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Figure 6.12: Failure during Cruise Flight - Performance Comparison for different Velocities

172



Chapter 6: Experimental Results

Configuration 1

vh = 0.5[m/s] vh = 4.9[m/s] vh = 10.9[m/s]
Act. 3 Act. 1 Act. 1

Max. Tilt Angle Error ϕd [deg] 16.17 22.12 21.34
Time [s] for Max. ϕd 0.522 0.423 0.507
Time [s] for ϕd ≤ 5[◦] 0.918 0.771 1.044
Max. Vertical Vel. Error |ev,z| [m/s] 0.319 0.451 0.328
Time [s] for Max. |ev,z| 0.516 0.462 0.495
Time [s] for |ev,z| ≤ 0.25[m/s] 0.750 0.852 0.654

Table 6.2: Failure during Cruise Flight - Performance Comparison for different Velocities
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Figure 6.13: Control Inputs - Fault Case λ3 = 0 during Cruise Flight vh = 0.5[m/s] -
Configuration 1

it has been demonstrated that the P-ACA strategy is able to compensate for unknown
actuator failures during high speed maneuvers. This highlights the robustness of the
selected approach against unmodeled dynamics.
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Figure 6.14: Control Inputs - Fault Case λ1 = 0 during Cruise Flight vh = 4.9[m/s] -
Configuration 1
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Figure 6.15: Control Inputs - Fault Case λ1 = 0 during Cruise Flight vh = 10.9[m/s] -
Configuration 1
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6.4 Post-Failure Performance Analysis

As important as the immediate compensation of the actuator faults is the tracking per-
formance during flight maneuvers after the failure occurs. Figure 6.16 shows a perfor-
mance comparison of three fault scenarios during the execution the same maneuver.
The three scenarios are the nominal case i.e. with no degradation, a software induced
failure of actuator 5 (SW) and a hardware induced failure of actuator 1 (HW). In the
figure, each of the scenarios corresponds to a color. The software induced failure corre-
sponds to an idle command to the corresponding ESC regardless of the commands of
the controller as has been done in the previous sections. The hardware induced failure
corresponds to a missing propeller during the whole flight. In the figure the time has
been shifted such that the start time of the maneuver is zero for all the flights. All the
results shown in the figure correspond the hexacopter configuration 1.

In Figure 6.16 the maneuver corresponds to a 2-2-1-1 maneuver. In a 2-2-1-1 ma-
neuver, the command remains constant at the amplitude α0 for the first 2 seconds, then
at −α0 for the next 2 seconds, then at α0 for another second, and finally at −α0 for
the last second. At the end the command returns to zero. The presented maneuver is
commanded in the (zc,y)N (t) channel with the amplitude α0 = 0.5 which is equivalent
to a tilt angle ϕ (t) of 30[◦]. Since the heading angle Ψ (t) is not the same for the dif-
ferent flights, the desired Euler angles (6.1) differ and therefore the comparison plot
uses the reduced attitude vector parameterization. The attitude command is (~zc)N (t),
the desired attitude is (~zd)N (t) and the measured attitude corresponds to (~zB)

N
(t). In

Figure 6.16 it can be seen that in all three cases the tracking in the commanded direc-
tion (zy)N (t) is very good and does not couple with (zB,x)N (t). In the actuator 5 fault
case, the maneuver could not be completed do to space constraints and therefore the
desired attitude (zd,y)N (t) differs from the other cases during the last second. Never-
theless, the tracking performance is maintained. In order to get a measure of the tilting,
the tilt angle ϕ (t) and the tilt angle error ϕd (t) are depicted. The tilt angle ϕ (t) is the
angle between ~zB (t) and ~zN (t) and the tilt angle error ϕd (t) is the angle between ~zd (t)
and ~zB (t). It can be seen that the changes in the tilt angle ϕ (t) occur fast every time the
command changes the sign. From the rate plot, it can be seen that roll p (t) or pitch rates
q (t) larger than 100[deg/s] are necessary. The maximum tilt angle error ϕd (t) varies be-
tween 8.92 − 9.74[deg] and the mean varies between 2.95 − 3.51[deg]. The desired yaw
rate rd (t) during the maneuver is zero but it can be seen that in the two failure cases
the yaw error cannot always be reduced to zero due to the physical limitations of con-
figuration 1. The yaw rate tracking performance differs significantly because the yaw
authority largely depends on the desired roll and pitch moments. These are different
for every flight since they depend on the current heading. The maximum absolute ver-
tical velocity error |ev,z (t)| is 0.66[m/s] in the nominal case and approximately 1[m/s]
for both failure cases. The resulting horizontal velocity vh (t) depends on the initial ve-
locity (~v)N

N
(t) and the combination of the reduced attitude vector ~zB (t) and the thrust

T (t).
In the presented failure cases the performance largely depends on the control allo-

cation. This can be assessed by comparing the desired virtual controls νd (t) and the
estimated virtual controls ν̂ (t) which are shown in Figure 6.17. In the figure, the left
column corresponds to the failure of actuator 5 and the right column to the failure of
actuator 1. It can be seen that in both cases the roll L (t) and pitch moments M (t)
are correctly allocated as expected from the Prioritizing Control Allocation (PRIO CA).
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Figure 6.16: Tracking Performance Comparison for different Failure Cases - Maneuver
Flight - Configuration 1
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Figure 6.17: Control Allocation Performance Comparison for different Failure Cases -
Maneuver Flight - Configuration 1
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Figure 6.18: T/N Estimated Virtual Control Space for t = [0.5, 1.5, 2.5, 3.5, 4.5][s] - Ma-
neuver Flight - Configuration 1

Further, there are time intervals where the yaw moment N (t) and the thrust T (t) can-
not be correctly allocated. These time intervals match with the tracking errors ew,z (t)
and ev,z (t) in Figure 6.16. For example, in the actuator 5 failure case between 2.5 and
4.5[s], the thrust allocated is too low and the yaw moment is greater than the desired
one. This translates to a increasing tracking errors in both yaw and vertical velocity.

To understand the control allocation errors, the T/N -plane of estimated attainable
virtual control space (ACS EST) (6.5) is plotted for t = [0.5, 1.5, 2.5, 3.5, 4.5][s] in Fig-
ure 6.18. The cut of the estimated ACS in the T/N -plane depends on the allocated
roll L̂ (t) and pitch moments M̂ (t). Therefore, depending on the maneuver, different
limits hold for the low priority virtual controls. As detailed in Section 4.3 (Prioritiz-
ing Control Allocation Strategy (PRIO CA)), the control allocation errors mainly arise
from unattainable desired virtual controls νd (t) as it is shown in Figure 6.18. It can be
concluded that the prioritization strategy has been effective, since high priority virtual
controls have been prioritized over low priority ones. Because the ACS is different for
each actuator failure, the response in yaw and vertical velocity tracking will differ be-
tween them. In order to quantify the recovery performance of the controller, various
characteristic values of the tilt angle error ϕd (t), the vertical velocity error ev,z (t) and
the yaw rate error ew,z are given in Table 6.3.

Figure 6.19 shows the performance of the controller for a larger time span and for
a flight at higher speeds. It corresponds to the hexacopter configuration 1 and a soft-
ware induced failure of actuator 1. It is the same high speed case already analyzed in
Figure 6.12. In the plot the time has been shifted such that t = 0 corresponds to the
failure time. The corresponding position trajectory (~rR)

N
(t) of the flight can be seen

in Figure 6.20. It can be seen that in the horizontal plane, two similar patterns were
flown: one before and one after the failure. In the vertical plane the altitude increased
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Configuration 1

Nominal Act. 5 (SW) Act. 1 (HW)

Max. Tilt Angle Error ϕd [deg] 9.74 9.07 8.92
Mean Tilt Angle Error ϕd [deg] 3.52 3.04 3.16
Std. Tilt Angle Error ϕd [deg] 1.95 2.15 2.04
Max. Vert. Vel. Error |ev| [m/s] 0.66 1.04 0.96
Mean Vert. Vel. Error ev [m/s] 0.00 0.24 0.09
Std. Vert. Vel. Error ev [m/s] 0.21 0.39 0.28
Max. Yaw Rate Error |ew,z| [deg/s] 13.92 141.11 73.37
Mean Yaw Rate Error ew,z [deg/s] 2.87 46.05 15.13
Std. Yaw Rate Error ew,z [deg/s] 2.25 36.78 16.15

Table 6.3: Maneuver Flight - Performance Comparison for different Failure Cases

during the flight. In Figure 6.19, the reduced attitude vector ~zB (t) is used as attitude
parameterization and the tilt angle ϕ (t) and the tilt angle error ϕd (t) are depicted. The
maximum tilt angle ϕ (t) is 27.15 [deg] before the failure and 17.42 [deg] after the failure.
The tilt angle error ϕd (t) is most of the time very small. The mean error is 1.22 [deg]
before the failure and 1.72 [deg] after the failure. There are three prominent peaks after
the failure at t = 0.52[s], t = 16.86[s] and t = 40.57[s]. The first peak directly arises from
the unknown failure condition. The other two peaks correspond to the times where
the yaw tracking error ew,z (t) increases. The large errors are all positive since the failed
actuator is number 1. The maximum yaw tracking error ew,z (t) is 74.14 [deg/s]. Further,
it can be seen that roll p (t) and pitch rates q (t) smaller than 100 [deg/s] are necessary
to follow the commands. The vertical velocity tracking can also be seen in Figure 6.19.
The vertical velocity tracking error ev,z (t) has a maximum absolute value of 0.31 [m/s]
before the failure and 0.46 [m/s] after the failure. The resulting horizontal velocity vh (t)
shows an acceleration phase up to 11.87 [m/s] before the failure and a fast deceleration
after it. This is followed by a subsequent acceleration up to 13.54 [m/s], a cruise flight
phase at approximately 8.5 [m/s] and finally another deceleration phase. In order to
quantify the performance of the controller before and after the failure, various charac-
teristic values of the tilt angle error ϕd (t), the vertical velocity error ev,z (t) and the yaw
rate error ew,z are given in Table 6.4.

Figure 6.21 shows the desired virtual controls νd (t) and the estimated virtual con-
trols ν̂ (t). Before the failure, all the virtual controls are correctly allocated. After
the failure, the priorization strategy is used whenever input saturation is encoun-
tered. The maximum absolute value of the control allocation error after the failure
is [0.02, 0.00, 0.00, 0.12]T and the mean is [2, 0, 0,−6]T · 10−3 (with the order (T ,L,M ,N )).
The largest performance degradation corresponds to the yaw rate tracking. It can be
seen that whenever the yaw moment is allocated incorrectly, the yaw tracking error
ew,z (t) increases. Finally, the control input commands u (t) and the degraded value of
actuator 1 u∗1 (t) are depicted in Figure 6.22. It can be seen that the main limitation for
correctly allocating the yaw moment N (t) is the lower saturation of the control input
u4 (t).
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Figure 6.19: Tracking Performance - Fault Case λ1 = 0 during High-Speed Flight -
Configuration 1
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Figure 6.21: Control Allocation Performance - Fault Case λ1 = 0 during High-Speed
Flight - Configuration 1
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Figure 6.22: Control Inputs - Fault Case λ1 = 0 during High Speed Flight - Config. 1

Configuration 1

Nominal Act. 1 (SW)

Max. Tilt Angle Error ϕd [deg] 4.28 21.34
Mean Tilt Angle Error ϕd [deg] 1.22 1.72
Std. Tilt Angle Error ϕd [deg] 0.71 2.08
Max. Vert. Vel. Error |ev| [m/s] 0.31 0.46
Mean Vert. Vel. Error ev [m/s] 0.02 0.00
Std. Vert. Vel. Error ev [m/s] 0.08 0.09
Max. Yaw Rate Error |ew,z| [deg/s] 15.57 74.14
Mean Yaw Rate Error ew,z [deg/s] 2.70 8.11
Std. Yaw Rate Error ew,z [deg/s] 2.23 12.05

Table 6.4: High-Speed Flight - Performance Comparison before and after the Total Failure
of Actuator 1
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6.5 Bibliographical Remarks

For analyzing the flight test results with respect to the state of the art, the scenario
of a full failure during hover flight is chosen. The maximum tilt angle error ϕd (t)
and the corresponding time of occurrence are chosen as a comparison measure and
depicted in Table 6.5. The results are inferred from the data in the cited works and are
therefore approximated values. Furthermore, since the systems have different inertia
and actuator characteristics, the comparison has rather an informative character. Table
6.5 considers the experimental results including the full actuator failure cases from
Tables 1.2 and 1.3 with the exception of [1, 60, 103, 114]. In [1] a discrete change of
control allocation with knowledge of the failure is presented and therefore no transient
error occurs. In [103] there is no data showing the performance of the controller. In
[60, 114] the failure does not occur in flight but before taking off. In Table 6.5 the test
cases are classified into full and degraded authority. Furthermore, it is specified if a
fault detection and isolation algorithm (FDI) is needed and existing (X) or if it is only
assumed (x). Otherwise, the FDI is not explicitly needed as is the case for the controller
presented in this thesis.

In Table 6.5 it can be seen that the time of the maximum tilt error is in the range
0.35− 0.63 [s]. Furthermore, only [106] and [154] achieve clearly smaller maximum er-
rors |ϕd (t)|. This can be explained as follows. In [106] the failure of 2 rotors which are
symmetrically and simultaneously shut off is shown. Due to the symmetry, the atti-
tude transient error is expected to be smaller. Furthermore, no FDI was implemented.
In [154] the FDI module is based on the actuator and not the rigid body model and
therefore the failure can be detected faster. Hence, it is concluded that the controller
analyzed in this chapter achieves a very good performance which could be improved
by using fault information coming directly from the actuator subsystem. Furthermore,
for the degraded authority case the author has slightly improved the performance com-
pared to previous work [42, 43], where the hexacopter configuration 1 has been pre-
sented. Compared to the other degraded authority case result in [34] the performance
is clearly better.

The results presented in this chapter include a failure case during high speed flight
at 10.9 [m/s] that shows the robustness of the algorithms. To the best of the author’s
knowledge, this is the first time that this achievement has been presented. Finally, the
post-failure performance analysis also includes fast maneuvers that have not been yet
reported during failure scenarios. On the one hand, fast step attitude commands were
tracked with rates surpassing well over 100 [deg/s]. On the other hand, an acceleration
in cruise flight from 0 up to 13.54 [m/s] was shown.
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[34] [42] [147] [154] [43] [106]

Max. tilt angle error ϕd [deg] 41.5 18 20.8 9 18.12 9.9
Time [s] for max. ϕd 0.55 0.5 0.35 0.43 0.36 0.63
Failure (full authority) X X X
Failure (degraded authority) X X X
FDI x X X x

(a) Literature Review

Configuration 1 Configuration 2

Act. 3 Act. 5 Act. 3 Act. 5 Act. 1

Max. tilt angle error ϕd [deg] 16.17 17.84 15.06 13.40 21.38
Time [s] for max. ϕd 0.522 0.447 0.513 0.471 0.387
Failure (full authority) X X
Failure (degraded authority) X X X
FDI

(b) Thesis Results from Table 6.1

Table 6.5: Failure during Hover Flight - Performance Comparison with existing Literature

184



Chapter 7

Conclusion

This thesis addresses the challenge of developing an adaptive fault tolerant controller
for a VTOL multicopter system that considers actuator redundancy and actuator lim-
its and implements a strategy for degraded control authority. In Chapter 2 (Multirotor
Dynamics Model) the hexacopter system architecture was presented and the control
dynamics model was derived. From the analysis of the attainable control set (ACS) it
became clear that a strategy for degraded control authority is necessary. Subsequently
in Chapter 3 (Adaptive Fault Tolerant Control), adaptive control methods were sys-
tematically analyzed for systems with redundant actuators. Direct and indirect MRAC
approaches were examined with respect to the conditions that need to be met in order
to solve the actuator failure problem. The Parameter Reduction due to Overactuation
(PRO) approach was proposed in order to reduce the number of adaptive parameters
and simplify the matching conditions. This allowed for the definition of a reduced con-
trol effectiveness matrix which formed the basis for developing the control authority
conditions for redundant systems.

In Chapter 4 (Adaptive Control Allocation), predictor-based MRAC was used as a
basis to formulate a framework that can integrate control allocation algorithms: Pre-
dictor Based Adaptive Control Allocation (P-ACA). In this way, actuator redundancy
and limits are directly addressed by the control allocation problem which is solved
separately from the rigid body control and the parameter adaptation. The strategy for
degraded control authority is implemented by the proposed Prioritizing Control Allo-
cation (PRIO CA). It is able to exploit the overactuation in order to allocate the virtual
controls in the selected priority order. In order to maintain the real-time capabilities it
is combined with the presented SVD update algorithm.

Based on these methods, the problems of attitude and vertical velocity control of the
hexacopter system have been addressed in Chapter 5 (Multirotor Controllers). In order
to maximize the utilizable flight envelope and to facilitate the prioritization strategy in
the case of degraded control, the reduced attitude vector is selected as an attitude pa-
rameter. The controllers have been developed such that they can be separated into a
baseline controller and an adaptive augmentation. The corresponding stability assess-
ment has been presented for the adaptive fault tolerant controller. During degraded
control authority the control allocation prioritizes the virtual controls in the following
order: roll and pitch moments, thrust and yaw moment.

Finally, the results of flight tests were presented in Chapter 6 (Experimental Re-
sults). During the experiments, the faults are unknown to the controller, all compu-
tations are done onboard, and no external sensors were used. Furthermore, a single
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unified controller handled the nominal and all the faulty cases. The first tests corre-
spond to 5 different total failure cases during hover flight covering the two hexacopter
configurations. Hence, they included full and degraded authority control cases. It was
demonstrated that the results in roll, pitch and vertical velocity were repeatable regard-
less of the configuration and failure case. The yaw rate tracking authority depended
on the physical limitations of the specific failure case. Further experiments showed
good post-failure performance during maneuver flight with rotational rates surpass-
ing well over 100 [deg/s]. The robustness of the approach was validated during high
speed cruise flight with a failure induced at a velocity of 10.9[m/s]. After the failure
the system was able to recover performance and to show controlled high speed cruise
flight.

7.1 Contributions

In the following the contributions of this thesis are revised.

Parameter Reduction due to Overactuation (PRO)

It has been shown that for overactuated systems it is possible to reduce the set of adap-
tive parameters without any information loss. This is possible if the parameter update
law has the form in (3.49), where the transposed input matrix BT

p is its left most ele-
ment. In the MRAC approaches, this is true for estimates of the control effectiveness
matrix Λ̂ (t). The PRO approach improves the usage of computational resources with-
out affecting the controller performance. The initial work of this approach has been
presented in [46, 47].

Control Authority Conditions for Overactuated Systems

Based on the new uncertainty parameterization (PRO), control authority conditions
have been formulated for systems with redundant actuators such that actuator failure
cases can be considered within the stability proofs of model reference adaptive control
(MRAC). The conditions are derived for direct and indirect structures as presented in
Theorem 3.22 (Fault Tolerant Control Authority Conditions). The result shows that the
original assumptions regarding the control effectiveness matrix Λ can be replaced by
using a reduced control effectiveness matrix Λrr. Interesting is the result for a positive
semi-definite control effectiveness matrix Λ which covers degradation of control effec-
tiveness, actuator failures and stuck actuators as listed in Table 3.1. In this case, the
conditions in Theorem 3.22 (Fault Tolerant Control Authority Conditions) are equiva-
lent to Assumption 3.20 (Control Authority - Fault Case) and therefore the controller
exploits the maximum physical capability of the plant. Initial work has been presented
in [46, 47].

Predictor-Based Adaptive Control Allocation (P-ACA)

Based on Predictor-Based MRAC and the Parameter Reduction due to Overactuation
(PRO), a framework for integrating control allocation algorithms has been presented.
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In this Predictor-Based Adaptive Control Allocation (P-ACA) formulation, the rigid
body control law is not overparameterized and the actuator redundancy is fully han-
dled within the control allocation. The control allocation permits the consideration of
actuator limits and a better use of the redundancy degrees of freedom. Furthermore, a
reduced-order version of the approach is presented.

Prioritizing Control Allocation (PRIO CA)

In order to take actuator limits into account and to implement a strategy for degraded
control authority for VTOL aircraft, the Prioritizing Control Allocation (PRIO CA) is
developed. In the case of unattainable or suboptimal solutions, the algorithm prior-
itizes virtual controls in a given order such that control degradation is reduced to a
minimum. This approach has the advantage of having a fixed maximum number of
iterations to return a solution.

Extension of the SVD Udpate Algorithm to Non-Square Matrices

The Prioritizing Control Allocation (PRIO CA) needs the knowledge of the Singular
Value Decomposition (SVD) of the input matrix. This has been achieved by using the
SVD update algorithm presented in [69]. In this work, it has been extended to non-
square matrices and a numerical drift correction term has been added.

Attitude Parameterization and Yaw Motion Decoupling

In order to maximize the utilizable flight envelope, the reduced attitude vector in S2

is used. The advantage is that non-uniqueness and singularities are avoided. Fur-
thermore, the stability properties are shown decoupled from the yaw motion. This
enhances the advantages of the Prioritizing Control Allocation (PRIO CA) during de-
graded control situations. This is the first time that this type of parameterization is
analyzed using an adaptive controller. Non-adaptive controllers have been presented
in [48, 51, 55, 149] and previous adaptive geometric results use a full attitude parame-
terization in SO(3) [88, 93].

Experimental Validation

The presented controller is validated using the hexacopter testbed. During the exper-
iments, the faults are unknown to the controller, all computations are done onboard,
and no external sensors were used. Furthermore, a single unified controller handles
the nominal and all the faulty cases. The test cases include two hexacopter config-
urations with representative failure cases for demonstrating repeatable results. The
experiments include post-failure performance analysis and include software-induced
and hardware failure scenarios.

Experimental Validation - High Speed

The test cases include hover flight as well as high speed cruise flight. These are the
first results showing the failure scenario occurring during high speed cruise flight at
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10.9[m/s]. This shows the robustness of the controller against unmodeled aerodynamic
effects which increase overproportionally with respect to the airspeed.

7.2 Future work

Based on the results in this thesis, several new questions have been raised and further
research topics are sketch in the following.

Direct MRAC - Consideration of Actuator Limits for Overactuated Systems

In the direct MRAC framework, one of the first ideas to counteract control magni-
tude saturation was the consideration of the control deficit within the reference model
like in [85], where a single input system was considered. The positive µ-modification
extends these results by guaranteeing that the control input will never saturate [90].
In [134] and [91], extensions for a multi-input plant were presented. A natural con-
tinuation for overactuated systems is the use of the new parameterization of the PRO
approach to specifically address actuator redundancy and try to reduce conservatism
of the enforced limits.

Output Feedback and Unmatched Uncertainties

The Control Task 3.1 (Model Reference Adaptive Control) has been restricted to state
feedback. An extension to output feedback is a logical next step. Furthermore, since
the focus of the thesis was actuator faults, only matched uncertainties were considered
in the predictor-based approaches (PMRAC PRO, P-ACA). The case of unmatched un-
certainties can be further studied.

Robust and Approximation-Based Adaptive Control

Robust adaptive control aims at increasing robustness against small disturbances and
unmodeled dynamics. Some examples are the dead zone modification [124], the σ-
modification [77, 78], the e-modification [116] or the projection operator [125]. Ap-
proximation based adaptive control approximates unknown regressor functions with
special basis functions. One of the main approaches is the use of neural networks [92].
The combination of the PRO approach with robust and approximation-based adaptive
control is an important next step since it links well-known approaches to systems with
redundant actuators in a straightforward manner.

Control Allocation and Parameter Estimation

In order to address the different fault cases presented in Table 3.1, additive and mul-
tiplicative faults have been integrated in the actuator model (3.5). From the stability
assessment it is known that the parameter errors are stable but do not necessarily con-
verge to zero. Further, the inability to distinguish actuator faults and failures from
other disturbances or model uncertainty prevents unbiased estimates [22]. Therefore,
it is interesting to analyze the effects of these biased estimates regarding the control

188



Chapter 7: Conclusion

allocation performance in view of input saturation. Specifically, the study of Assump-
tion 4.3 (Control Allocation) under biased estimates can be addressed. The final goal
is the understanding of how to match uncertainty parameterization, estimation strat-
egy and control allocation approaches for a general mechanical system. In this work,
the combination of the Predictor Based Adaptive Control Allocation (P-ACA) and the
Prioritizing Control Allocation (PRIO CA) has proven robustness during the presented
VTOL flight tests.

Propeller Rotation Direction Inversion

An interesting next step is the integration of the change of the propeller’s rotation
direction during flight within the adaptive control approach. In this way, the attainable
control set (ACS) can be increased and the degraded authority scenario can be avoided.
The main challenge is the consideration of the actuator behavior during the rotation
direction changes.

Integration of External Fault Information

Because the actuator dynamics are faster than the rigid body dynamics, the detection
of the fault directly within the actuator subsystem may lead to a faster detection and
isolation of the fault as shown in [154]. Therefore, the integration of this external fault
information within the current approach has the potential of improving the fault reac-
tion performance.
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Appendix A

Coordinate Systems

In this section, the coordinate frames needed for the flight dynamics description in
Chapter 2 (Multirotor Dynamics Model). The descriptions corresponds to the one used
at the Institute of Flight System Dynamics (TUM) as presented in [72].

Earth Centered Inertial Frame (ECI)
Index I
Role Notation frame for Newtonian inertial physics
Origin Center of the Earth
Translation Around the sun with the solar system
Rotation None
x-axis In equatorial plane, points towards the vernal equinox
y-axis In equatorial plane, builds a right-hand system
z-axis Rotation axis of the Earth

Figure A.1: Earth Centered Inertial Frame (ECI) (taken from [72])
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Earth-Centered Earth-Fixed Frame (ECEF)
Index E
Role Notation frame for positioning and navigation
Origin Center of the Earth
Translation Moves with the ECI-Frame
Rotation Rotates with the Earth about the z-axis
x-axis In the equatorial plane, points towards the Greenwich meridian
y-axis In the equatorial plane, forms a right-hand system
z-axis Rotation axis of the Earth

Figure A.2: Earth-Centered Earth-Fixed Frame (ECEF) (adapted from [72])
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North-East-Down Frame (NED)
Index O
Role Orientation reference frame
Origin Aircraft reference point
Translation Moves with the aircraft reference point
Rotation Rotates with transport rate to comply with the NED alignment

x-axis
Parallel to the local geoid surface, points to the geographic north
pole

y-axis
Parallel to the local geoid surface, points east to form a
right-hand system

z-axis Points downwards, perpendicular to the local geoid surface

Figure A.3: North-East-Down Frame (NED) (adapted from [72])
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Body-Fixed Frame (B)
Index B
Role Notation frame, orientation frame
Origin Aircraft reference point
Translation Moves with the aircraft reference point
Rotation Rotates with the aircraft
x-axis Points to the front of the aircraft in symmetry plane
y-axis Points to starboard side to form a right-hand system
z-axis Points downwards in symmetry plane

Figure A.4: Body-Fixed Frame (B)
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Local Navigation System (N)
Index N
Role Local navigation frame derived from the NED frame
Origin Point on the Earth’s surface
Translation Moves with the Earth’s rotation
Rotation Rotates with ECEF frame

x-axis
Parallel to the local geoid surface, corresponds to the NED x-axis
rotated about the angle χN and about the NED z-axis

y-axis Parallel to the local geoid surface, forms a right-hand system
z-axis Points downwards, perpendicular to the local geoid surface

Figure A.5: Local Navigation System (N) (adapted from [72])
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Appendix B

Mathematical Background

In this appendix the main mathematical tools used for the stability proofs are recom-
piled.

Lemma B.1 (Matrix Product) For any two matrices A ∈ Rn×m, B ∈ Rp×m, the following
product can be written as the sum of dyadic product

A ·BT =
m∑

k=1

ac,kb
T
c,k,

where ac,k and bc,k are the k-th columns of A and B respectively.

Proof: Let the matrix C be defined as C = A ·BT . Each of its elements can be computed
as

Cij =
m∑

k=1

AikBjk.

This corresponds exactly to sum of dyadic products. �

Lemma B.2 (Trace and Scalar Product) For any two vectors a,b ∈ Rn, it holds that

aTb = tr
(
baT

)
.

This property is found in Section 3.2.8.3 in [59].

Lemma B.3 (Trace Cyclic Property) For any three matrices A ∈ Rn×m, B ∈ Rm×p and
C ∈ Rp×n, it holds that

tr (ABC) = tr (CAB) = tr (BCA) .

This property is found in Section 3.2.4 in [59].

Lemma B.4 (Rank) Given a real matrix A ∈ Rn×m, the following statements hold.

1. rank (A) = rank
(
AT
)
.

2. rank
(
ATA

)
= rank (A).
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3. rank (A) ≤ min(n,m).

4. For a matrix B ∈ Rm×k, it holds that rank (A ·B) ≤ min (rank (A) , rank (B)).

5. For non-singular matrices QL ∈ Rn×n and QR ∈ Rm×m it holds that rank (QL ·A) =
rank (A) and rank (A ·QR) = rank (A).

6. Full rank factorization: The matrix A has rank (A) = k if and only if there exist two
full column rank matrices X ∈ Rn×k and Y ∈ Rm×k such that A = X ·YT . Further,
rank (A) = rank (X) = rank (Y) = k.

7. If C ∈ Rk×n is a full column rank matrix, rank (C) = n, then rank (C ·A) = rank (A).

8. If R ∈ Rm×k is a full row rank matrix, rank (R) = m, then rank (A ·R) = rank (A).

The last two item of the lemma are found in Section 3.3.9.1 in [59]. All the previous
items are in Section 0.4 in [74].

Lemma B.5 (Frobenius Norm Invariance) The Frobenius norm of a matrix Θ ∈ Rn×m

does not change if multiplied from the left and right by two orthogonal matrices U ∈ Rm×m,V ∈
Rn×n, that is

||Θ||F = ||VΘU||F .

Proof: Using UUT = I and VVT = I, the definition of the Frobenius norm and Lemma
B.3 (Trace Cyclic Property) it follows that

||VΘU||F = tr
(
VΘU ·UTΘTVT

)
= tr

(
VΘ ·ΘTVT

)
= tr

(
VTVΘΘT

)
= tr

(
ΘΘT

)
,

which corresponds the definition of ||Θ||F . �

Lemma B.6 (Orthogonal Transformation Invariance) Given an orthogonal matrix V ∈
Rm×m, the product VTΛV has the same eigenvalues as the matrix Λ ∈ Rm×m. Therefore
VTΛV is positive definite / positive semi-definite / non-singular if and only if the matrix Λ is
positive definite / positive semi-definite / non-singular.

The lemma follows from Theorem 1.3.3 in [74].

Lemma B.7 (Positive Definite Trace 1) Given two symmetric positive definite matrices Γ ∈
Rn×n,Λ ∈ Rm×m, the term tr

(
ΘΓΘTΛ

)
is positive definite in Θ ∈ Rm×n and is bounded by

λ (Γ)λ (Λ) ||Θ||2F ≤ tr
(
ΘΓΘTΛ

)
≤ λ (Γ)λ (Λ) ||Θ||2F ,

where λ (·) , λ (·) ∈ R are the smallest and largest eigenvalues of the respective argument.

Proof: Because Γ and Λ are symmetric positive definite matrices, there exist an eigen-
value decomposition such that

Γ = QΓDΓQT
Γ , Λ = QΛDΛQT

Λ,

with two diagonal matrices DΓ ∈ Rn×n and DΛ ∈ Rm×m with positive entries and
two orthogonal matrices QΓ ∈ Rn×n and QΛ ∈ Rm×m [74, Th. 4.1.5]. Then, using
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the parameter transformation Θ = QT
ΛΘQΓ and Lemma B.3 (Trace Cyclic Property) it

follows that

tr
(
ΘΓΘTΛ

)
= tr

(
ΘQΓDΓQT

ΓΘTQΛDΛQT
Λ

)
,

= tr
(
QT

ΛΘQΓDΓQT
ΓΘTQΛDΛ

)
,

= tr
(
ΘDΓΘ

T
DΛ

)
,

= tr
([
θc1dΓ1, . . . ,θcndΓ1

] [
θ
T

r1dΛ1, . . . ,θ
T

rmdΛm

])
,

=
m∑

j=1

n∑

i=1

θ
2

jidΓidΛj.

Here, θci ∈ Rm and θri ∈ R1×n correspond to the i-th column and row of Θ respectively.
dΓi, dΛi ∈ R are the i-th diagonal entry of DΓ and DΛ respectively, i.e. they are the
eigenvalues of Γ and Λ. Subsequently, from the definition of the Frobenius norm and
Lemma B.5 (Frobenius Norm Invariance) it follows that

λ (Γ)λ (Λ)

(
m∑

j=1

n∑

i=1

θ
2

ji

)
≤ tr

(
ΘΓΘTΛ

)
≤ λ (Γ)λ (Λ)

(
m∑

j=1

n∑

i=1

θ
2

ji

)
,

λ (Γ)λ (Λ)
∣∣∣∣Θ
∣∣∣∣2
F
≤ tr

(
ΘΓΘTΛ

)
≤ λ (Γ)λ (Λ)

∣∣∣∣Θ
∣∣∣∣2
F
,

λ (Γ)λ (Λ) ||Θ||2F ≤ tr
(
ΘΓΘTΛ

)
≤ λ (Γ)λ (Λ) ||Θ||2F .

�

Lemma B.8 (Positive Definite Trace) Given a symmetric positive definite matrix Γ ∈ Rn×n

and a positive definite matrix Λ ∈ Rm×m, the term tr
(
ΘΓΘTΛ

)
is positive definite in

Θ ∈ Rm×n and is bounded by

λ (Γ)λ (Λs) ||Θ||2F ≤ tr
(
ΘΓΘTΛ

)
≤ λ (Γ)λ (Λs) ||Θ||2F ,

where λ (·) , λ (·) ∈ R are the smallest and largest eigenvalues of the respective argument and
Λs = 1

2

(
Λ + ΛT

)
is the symmetric part of Λ.

Proof: First separate the matrix Λ into its symmetric Λs = 1
2

(
Λ + ΛT

)
and skew-

symmetric Λa = 1
2

(
Λ−ΛT

)
parts. For the skew-symmetric part Λa, it holds that

ΛT
a = −Λa and hence using Lemma B.3 (Trace Cyclic Property) it follows that

tr
(
ΘΓΘTΛa

)
= tr

((
ΘΓΘTΛa

)T)

= tr
(
ΛT
aΘΓTΘT

)
,

= −tr
(
ΛaΘΓΘT

)
,

= −tr
(
ΘΓΘTΛa

)
,

= 0.

Furthermore, due to the linearity of the trace it can be concluded that

tr
(
ΘΓΘTΛ

)
= tr

(
ΘΓΘT (Λs + Λa)

)

= tr
(
ΘΓΘTΛs

)
+ tr

(
ΘΓΘTΛa

)

= tr
(
ΘΓΘTΛs

)
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Using the fact that Λs is symmetric positive definite if and only if Λ is positive definite,
Lemma B.7 (Positive Definite Trace 1) can be applied for tr

(
ΘΓΘTΛs

)
given that Γ

and Λs are symmetric positive definite. �

Lemma B.9 (Barbalat) Let φ(t) : R → R be a uniformly continuous function on [0,∞).
Suppose that limt→∞

∫ t
τ=0

φ(τ)dτ exists and is finite. Then,

φ(t)→ 0 as t→∞.

This corresponds to Lemma 8.2 in [87], where the proof can be found.

Lemma B.10 (Orthogonal Matrix) Let V ∈ Rm×m be an orthogonal matrix, i.e. VTV =
VVT = I. Let Vr ∈ Rm×r,Vn ∈ Rm×(m−r) be partitions of V such that V = [Vr,Vn]. Then,
it holds that

1) VT
r Vr = I, 2) VT

nVn = I, 3) VT
r Vn = 0, 4) I = VrV

T
r + VnV

T
n .

Proof: The lemma follows directly from the orthogonality conditions

VTV =

[
VT
r

VT
n

] [
Vr Vn

]
=

[
VT
r Vr VT

r Vn

VT
nVr VT

nVn

]
=

[
I 0
0 I

]
,

VVT =
[
Vr Vn

] [VT
r

VT
n

]
= VrV

T
r + VnV

T
n = I.

�

Lemma B.11 (Transformation Matrix Inverse) Given is the transformation matrix as de-
fined in Section 4.3.4

T :=

[
Ub ·Db ·VT

b,r

VT
b,n

]
∈ Rm×m,

with an orthogonal matrix Ub ∈ Rn×n, a positive definite diagonal matrix Db ∈ Rn×n and
the partitions Vb,r ∈ Rm×r,Vb,n ∈ Rm×(m−r) of the orthogonal matrix Vb such that Vb =
[Vb,r,Vb,n]. Its inverse is then given by

T−1 =
[
Vb,r ·D−1

b ·UT
b , Vb,n

]
∈ Rm×m.

Proof: The lemma is proved by computing the product of the matrices and using
Lemma B.10 (Orthogonal Matrix). For the first product it holds that

T ·T−1 =

[
Ub ·Db ·VT

b,r

VT
b,n

]
·
[
Vb,r ·D−1

b ·UT
b , Vb,n

]
,

=

[
Ub ·Db ·VT

b,r ·Vb,r ·D−1
b ·UT

b 0
0 VT

b,n ·Vb,n

]
,

=

[
I 0
0 I

]
.
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For the second product it holds that

T−1 ·T =
[
Vb,r ·D−1

b ·UT
b , Vb,n

]
·
[
Ub ·Db ·VT

b,r

VT
b,n

]
,

= Vb,r ·D−1
b ·UT

b ·Ub ·Db ·VT
b,r + Vb,n ·VT

b,n,

= Vb,r ·VT
b,r + Vb,n ·VT

b,n,

= I

which proves the lemma. �

Lemma B.12 (Schur condition for positive definiteness) Given is a symmetric block ma-
trix P partitioned as

P =

(
A B
BT C

)
,

with A ∈ Rn×n, C ∈ Rm×m and B ∈ Rn×m. The matrix P is positive definite

� if and only if A and the Schur complement C−BTA−1B are both positive definite,

� if and only if C and the Schur complement A−BC−1BT are both positive definite.

Furthermore, the matrix P is positive semi-definite

� if and only if A is positive definite and the Schur complement C −BTA−1B is positive
semi-definite.

This is a part of Theorem 1.12 in [155].
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Appendix C

Control Allocation

In this appendix, a special case of the prioritizing control allocation (PRIO CA) is
treated. Specifically, the solution of the linear inequality (4.54)

Ax ≤ b (C.1)

for A ∈ R2×2, x ∈ R2, b ∈ R2 and linear dependent rows of A is analyzed based on the
solution proposed in Section 4.3.5 (Update Direction - Singular Cases).

Qualitatively, each condition Ari · x = bi for i = [1, 2] defines a line in the two
dimensional plane and Ari · x ≤ bi defines a half-plane. Here, Ari ∈ R1×2 and bi ∈ R
are the i-th row of A and b respectively. The problem is separated in two possible cases
depending on the lines defining the limit of the inequalities:

� Case A: the two lines defined by the equality Ax = b are linear dependent but
not the same.

� Case B: the two lines defined by the equality Ax = b are linear dependent and
the same.

Each of these cases can be separated into qualitatively different sub-cases depending
on the direction of the half-plane that each inequality defines. For each line, there are
two possible half-planes that correspond to a solution. The sub-cases of case A are
depicted in Figure C.1 and the ones of case B in Figure C.2. For cases 1 to 4 (case A),
the matrices correspond to

Case 1: A =

[
−2 1
2 −1

]
, b =

[
0.2
1

]
,

Case 2: A =

[
2 −1
−2 1

]
, b =

[
−0.2
−1

]
,

Case 3: A =

[
2 −1
2 −1

]
, b =

[
−0.2

1

]
,

Case 4: A =

[
−2 1
2 −1

]
, b =

[
0.2
1

]
.

Hence, the rows of A are linear dependent but the limit of each linear inequality in
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Ar1 · x = b1 Ar2 · x = b2 A · x ≤ b Solution candidates
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(b) Case 2
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(c) Case 3
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x1

x
2

(d) Case 4

Figure C.1: Control Allocation - Update Direction: 2D Singular Case - Case A

(C.1) defines a different line. For the cases 5 and 6 (case B), the matrices correspond to

Case 5: A =

[
2 −1
2 −1

]
, b =

[
0.5
0.5

]
,

Case 6: A =

[
−2 1
2 −1

]
, b =

[
−0.5
0.5

]
.

Hence, the rows of A are linear dependent and the limit of the two linear inequalities
in (C.1) define the same line.

In Figures C.1 and C.2 the equality constraints, the solution set and the solution
candidates proposed in Section 4.3.5 (Update Direction - Singular Cases) are plotted.
In Section 4.3.5 (Update Direction - Singular Cases), the proposed solution candidates
are the pseudo-inverse solution of Ar1 ·x = b1 and Ar2 ·x = b2. For all possible variants
presented in Figures C.1 and C.2, it can be seen that if a solution set exists, at least one
of the solution candidates is always part of it.
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Ar1 · x = b1 Ar2 · x = b2 A · x ≤ b Solution candidates
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(a) Case 5
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(b) Case 6

Figure C.2: Control Allocation - Update Direction: 2D Singular Case - Case B
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Appendix D

Multirotor Control

D.1 Nonlinear Attitude Control

In this appendix the main mathematical tools used for the stability proofs of Chapter 5
(Multirotor Controllers) are recompiled.

Lemma D.1 (Cross Product) Given are the vectors ~a, ~b ∈ R3 and the rotation matrix M ∈
SO(3). The skew symmetric matrix Ω (·) (2.14) has the following properties

Ω (~a)T = −Ω (~a) ,

Ω (~a) ~b = −Ω
(
~b
)
~a,

Ω (~a)~a = 0,

MΩ (~a) = Ω (M~a) M,

Ω
(
~a + ~b

)
= Ω (~a) + Ω

(
~b
)
,

The properties can be found in Section 2.1.1 in [55] or in [136].

Lemma D.2 (Scalar Triple Product) Given the vectors ~a, ~b,~c ∈ R3, it holds that

~aT
(
~b× ~c

)
= ~bT (~c× ~a) = ~cT

(
~a× ~b

)

In the following the proof of Lemma 5.5 (Attitude Lyapunov function) in Chapter 5
is given. For readability the lemma is rewritten.

Lemma D.3 (Attitude Lyapunov function) Let the attitude Lyapunov function be

V ((~zd)B (t) , ~ωDB (t)) = ka · Vϕ (ϕd ((~zd)B (t))) +
1

2
(~ωDB)

T
B

(t) (~ωDB)
B

(t)

+ c · (~ωDB)
T
B

(t) (~eDBa )
B

(t) ,

where c ∈ R, ka > 0 ∈ R and ~eDBa (t) := ~zd (t) × ~zB (t) ∈ R3 is defined as the at-
titude error vector. The Lyapunov function is defined in the configuration space S2 × R3

and is positive definite for |c| ≤
√
ka. Positive definite means that V = 0 if and only if

(ϕd ((~zd)B (t)) , ~ωDB (t)) = (0,0), otherwise it holds that V (t) > 0.
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D.1 Nonlinear Attitude Control

Proof: For the sake of readability the time dependency is dropped in the following.
Using the fact that ||(~eDBa )

B
|| = |sinϕd| and completing the square polynomial leads to

the following lower bound

V (ϕd, ~ω
DB) ≥ ka (1− cosϕd) +

1

2
||(~ωDB)

B
||2 − |c| · ||(~ωDB)

B
|| |sinϕd| ,

= ka (1− cosϕd)−
c2

2
sin2 ϕd

︸ ︷︷ ︸
:=G1(ϕd)

+

(
1√
2
||(~ωDB)

B
|| − |c|√

2
|sinϕd|

)2

︸ ︷︷ ︸
:=G2(ϕd,~ωDB)

.

The first two terms can be studied using the attitude dependent function

G1 (ϕd) := ka (1− cosϕd)−
c2

2
sin2 ϕd,

which has the following derivative

∂G1 (ϕd)

∂ϕd
= ka sinϕd − c2 sinϕd cosϕd = sinϕd

(
ka − c2 cosϕd

)
.

For ϕd ∈ ]0, π[ the derivative ∂G1(ϕd)
∂ϕd

is positive if (ka − c2 cosϕd) > 0. This is true for

|c| ≤
√
ka since cosϕd < 1. For ϕd ∈ ] − π, 0[ the derivative ∂G1(ϕd)

∂ϕd
is negative for

|c| ≤
√
ka. Hence, becauseG1 (ϕd) is a continuous function,G1 (0) = 0, ∂G1(0)

∂ϕd
= ∂G1(π)

∂ϕd
=

∂G1(−π)
∂ϕd

= 0, ∂G1(ϕd)
∂ϕd

> 0 for ϕd ∈ ]0, π[, and ∂G1(ϕd)
∂ϕd

< 0 for ϕd ∈ ] − π, 0[, the function
G1 (ϕd) is positive definite for c ≤

√
ka. Therefore, G1 (ϕd) = 0 only for ϕd = 0. Since

the Lyapunov function V (ϕd, ~ω
DB) = 0 if and only if simultaneously G1 (ϕd) = 0 and

G2 (ϕd, ~ω
DB) = 0 hold, it is concluded that V (ϕd, ~ω

DB) = 0 for (ϕd, ~ω
DB) = (0,0) and

V (ϕd, ~ω
DB) > 0 otherwise. �

In the following the proof of Lemma 5.6 (Attitude Error Derivative Bound) in Chap-
ter 5 is given. For readability the lemma is rewritten.

Lemma D.4 (Attitude Error Derivative Bound) The norm of the derivative of the attitude
error vector ~eDBa (t) = ~zd (t)× ~zB (t) can be bounded by the norm of the error rotational rates

∣∣∣
∣∣∣
( .
~e
DB

a

)B
B

(t)
∣∣∣
∣∣∣ ≤ ||(~ωBD)

B
(t)|| .

Proof: The upper bound can be computed from ||~u× ~v|| ≤ ||~u|| ||~v|| [59], the fact that
||~zd (t)|| = ||~zB (t)|| = 1 and the kinematics of the desired vector ~zd (t) (5.13a) as follows

∣∣∣
∣∣∣
( .
~e
DB

a

)B
B

(t)
∣∣∣
∣∣∣ =

∣∣∣
∣∣∣
( .
~zd

)B
B

(t)× (~zB)
B

∣∣∣
∣∣∣ ,

= ||(− (~ωDB)
B

(t)× (~zd)B (t))× (~zB)
B
|| ,

≤ ||(~ωDB)
B

(t)× (~zd)B (t)|| · ||(~zB)
B
|| ,

≤ ||(~ωDB)
B

(t)|| · ||(~zd)B (t)|| · ||(~zB)
B
|| ,

≤ ||(~ωDB)
B

(t)|| .

�

In the following the proof of Lemma 5.7 (Positive Definite Q) in Chapter 5 is given.
For readability the lemma is rewritten.
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Chapter D: Multirotor Control

Lemma D.5 (Positive Definite Q) If Kω ∈ R3×3 is symmetric positive definite and ka > 0,
there exists a constant c ∈ ]0,

√
ka[ such that the matrix Q

Q =

[
c · ka · I c

2
Kω

c
2
Kω Kω − c · I

]

is positive definite.

Proof: Because the matrix Q is a symmetric block matrix, Lemma B.12 (Schur condition
for positive definiteness) is used to prove positive definiteness. Therefore it needs to
be verified that the matrix c · ka · I and the Schur complement of Q given by

Sq = Kω − c · I−
c

2
·Kω · (c · ka · I)−1 · c

2
·Kω,

= Kω − c · I−
c

4 · ka
K2
ω.

are positive definite. The matrix c · ka · I is positive definite for c > 0 and ka > 0.
Furthermore, since Kω is symmetric positive definite, it admits the eigenvalue decom-
position Kω = QωΛωQ

T
ω [59], where Qω ∈ R3×3 is an orthogonal matrix and Λω ∈ R3×3

is a diagonal matrix with positive entries. The Schur complement of Q can then be
rewritten as

Sq = Qω

(
Λω − c · I−

c

4 · ka
Λ2
ω

)
QT
ω ,

= Qω

(
Λω − c

(
I +

1

4 · ka
Λ2
ω

))
QT
ω .

Since the matrix Λω− c
(
I + 1

4·kaΛ
2
ω

)
is diagonal, its entries correspond to the eigenval-

ues of Sq. Hence, Sq is positive definite if for every eigenvalue λi (Kω) of Kω it holds
that

0 < λi (Kω)− c ·
(

1 +
λi (Kω)2

4 · ka

)
,

c <
λi (Kω)

1 + λi(Kω)2

4·ka

=: cub (λi (Kω) , ka) .

Therefore, the condition that the matrix Sq is positive definite translates to an upper
bound function cub (λi (Kω) , ka) of c which can be seen in Figure D.1 for a fixed ka. It
has its maximum

√
ka at λi (Kω) = 2

√
ka and for λi (Kω) → ∞ it tends to zero. Given

that the upper bound is positive cub (λi (Kω) , ka) > 0 for λi (Kω) > 0, there exists a
constant c ∈ ]0,

√
ka[ such that Q is positive definite. �

In the following the proof of Lemma 5.8 (Linearization: Reduced Attitude) in Chap-
ter 5 is given. For readability the lemma is rewritten.

Lemma D.6 (Linearization: Reduced Attitude) The reduced attitude closed-loop system
( .
~zd

)B
B

(t) = − (~ωDB)
B

(t)× (~zd)B (t) , (D.1)
( .
~ω
DB
)B
B

(t) = −ka ((~zd)B (t)× (~zB)
B

(t))−Kω (~ωDB)
B

(t) , (D.2)
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Figure D.1: Upper Bound Function

has a stable equilibrium at χd,e = ((~zd,e)B , ~ω
DB

e ) = ([0, 0, 1]T ,0) and an unstable equilibrium
at χu,e = ((~zd,e)B , ~ω

DB

e ) = ([0, 0,−1]T ,0) if ka is positive and Kω is a diagonal positive
definite matrix. The subscript e refers to equilibrium points.

Proof: From Theorem 5.3 (Attitude Equilibrium Points) it is known that the pre-
sented dynamic system has two equilibria χd,e and χu,e. In order to asses their stability
properties, the linear approximation of the dynamics at the two equilibria is analyzed.
Using the definition of the skew symmetric matrix Ω (·) (2.14), the first derivative of
the kinematics equation (D.1) with respect to the states is given by

∂
( .
~zd

)B
B

∂ (~zd)B

∣∣∣∣∣∣∣
χe

= −Ω ((~ωDB)
B
)|χe = 03×3,

∂
( .
~zd

)B
B

∂ (~ωDB)
B

∣∣∣∣∣∣∣
χe

= Ω ((~zd)B)|χe = Ω ((~zd,e)B) .

The first derivative of the dynamics equation (D.2) with respect to the states is given
by

∂
( .
~ω
DB
)B
B

∂ (~zd)B

∣∣∣∣∣∣∣
χe

= ka ·Ω ((~zB)
B
) ,

∂
( .
~ω
DB
)B
B

∂ (~ωDB)
B

∣∣∣∣∣∣∣
χe

= −Kω.

By defining the linearized states as δ~z (t) := (~zd)B (t)−(~zd,e)B (t) and δ~ω (t) := (~ωDB)
B

(t)−
(~ωDB

e )
B

(t), the linear approximation is given by
(
δ
.
~z (t)

δ
.
~ω (t)

)
=

[
03×3 Ω ((~zd,e)B)

ka ·Ω ((~zB)
B
) −Kω

](
δ~z (t)
δ~ω (t)

)
.
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Given that (~zB)
B

= [0, 0, 1]T is constant in the body-fixed frame, the desired equilib-
rium χd,e corresponds to (~zd,e)B = (~zB)

B
= [0, 0, 1]T and the undesired equilibrium χu,e

to (~zd,e)B = − (~zB)
B

= [0, 0,−1]T Note that the state [δ~zT (t) , δ~ωT (t)]T ∈ R6 is not a
minimal representation since dim(S2 ×R3) = 5. From the structure of (2.14)

Ω ((~zB)
B
) =




0 −1 0
1 0 0
0 0 0


 and Ω (− (~zB)

B
) =




0 1 0
−1 0 0
0 0 0


 ,

it is clear that δ~zz (t) does not influences either δ
.
~z (t) nor δ

.
~ω (t) and therefore it is only

an integrator state. Furthermore, at the equilibrium points (~zd,e)B = ±[0, 0, 1]T it holds
that its derivative δ

.
~zz (t) = 0. In fact, since

.
~zd (t) always lies in a plane perpendicular to

~zd (t), two degrees of freedom can always be chosen for describing its motion linearly.
At the equilibrium points (~zd,e)B = ±[0, 0, 1]T , this plane is the body-fixed xy-plane.

Using the diagonal structure of Kω = diag ([kwx, kwy, kwz]) > 0, the reduced attitude
linear dynamics for the desired equilibrium χd,e = ((~zd,e)B , ~ω

DB

e ) = ([0, 0, 1]T ,0) are
given by




δ
.
~zx

δ
.
~zy

δ
.
~ωx

δ
.
~ωy

δ
.
~ωz




=




0 0 0 −1 0
0 0 1 0 0
0 −ka −kwx 0 0
ka 0 0 −kwy 0
0 0 0 0 −kwz







δ~zx
δ~zy
δ~ωx
δ~ωy
δ~ωz




By a simple rearrangement of the states as



δ
.
~zx

δ
.
~ωy

δ
.
~zy

δ
.
~ωx

δ
.
~ωz




=




0 −1 0 0 0
ka −kwy 0 0 0
0 0 0 1 0
0 0 −ka −kwx 0
0 0 0 0 −kwz







δ~zx
δ~ωy
δ~zy
δ~ωx
δ~ωz



,

it can be seen that roll, pitch and yaw axes are independent from each other. Fur-
thermore, the roll subsystem composed by (δ~zy (t) , δ~ωx (t)) and the pitch subsystem
composed by (δ~zx (t) , δ~ωy (t)) are second order systems while the yaw subsystem com-
posed by δ~ωz (t) is of first order.

Because there is no coupling between the 3 subsystems, the eigenvalues can be
computed for each of the submatrices. The eigenvalues of the roll subsystem are the
solution of

det(s · I−Aroll) = s · (s+ kωx) + ka = s2 + kωxs+ ka
!

= 0

and this corresponds to a stable second order filter with

the eigenfrequency ωr =
√
ka,

the damping ζr =
kωx

2
√
ka
,

and the stable poles λr,1/2 = −1

2
kωx ±

1

2

√
k2
ωx − 4ka < 0.
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The eigenvalues of the pitch subsystem are the solution of

det(s · I−Apitch) = s · (s+ kωy) + ka = s2 + kωys+ ka
!

= 0

and this corresponds to a stable second order filter with

the eigenfrequency ωp =
√
ka,

the damping ζp =
kωy

2
√
ka
,

and the stable poles λp,1/2 = −1

2
kωy ±

1

2

√
k2
ωy − 4ka < 0.

The eigenvalue of the yaw subsystem is the solution of

det(s− Ayaw) = s+ kωz
!

= 0

and is given by λy = −kωz < 0. It is concluded that all the eigenvalues of the linearized
subsystem at the equilibrium χd,e = ((~zd,e)B , ~ω

DB

e ) = ([0, 0, 1]T ,0) have negative real
parts and therefore the equilibrium is stable.

For the undesired equilibrium χu,e = ((~zd,e)B , ~ω
DB

e ) = ([0, 0,−1]T ,0), the reduced
attitude linear dynamics are given by




δ
.
~zx

δ
.
~zy

δ
.
~ωx

δ
.
~ωy

δ
.
~ωz




=




0 0 0 1 0
0 0 −1 0 0
0 −ka −kwx 0 0
ka 0 0 −kwy 0
0 0 0 0 −kwz







δ~zx
δ~zy
δ~ωx
δ~ωy
δ~ωz



.

Repeating the same state rearrangement as before



δ
.
~zx

δ
.
~ωy

δ
.
~zy

δ
.
~ωx

δ
.
~ωz




=




0 1 0 0 0
ka −kwy 0 0 0
0 0 0 −1 0
0 0 −ka −kwx 0
0 0 0 0 −kwz







δ~zx
δ~ωy
δ~zy
δ~ωx
δ~ωz




it can be seen that roll, pitch and yaw axes are independent from each other.
Because there is no coupling between the thee subsystems, the eigenvalues can be

computed from the submatrices as in the previous analysis. The eigenvalues of the roll
subsystem are the solution of

det(s · I−Aroll) = s · (s+ kωx)− ka = s2 + kωxs− ka !
= 0

and this corresponds to an unstable second order filter with

one stable pole λr,1 = −1

2
kωx −

1

2

√
k2
ωx + 4ka < 0

and one unstable pole λr,2 = −1

2
kωx +

1

2

√
k2
ωx + 4ka > 0.
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The eigenvalues of the pitch subsystem are the solution of

det(s · I−Apitch) = s · (s+ kωy)− ka = s2 + kωys− ka !
= 0

and this corresponds to an unstable second order filter with

one stable pole λp,1 = −1

2
kωy −

1

2

√
k2
ωy + 4ka < 0

and one unstable pole λp,2 = −1

2
kωy +

1

2

√
k2
ωy + 4ka > 0.

The eigenvalue of the yaw subsystem is the solution of

det(s− Ayaw) = s+ kωz
!

= 0

and is given by λy = −kωz < 0 It is concluded that the linearized subsystem at the
equilibrium χu,e = ((~zd,e)B , ~ω

DB

e ) = ([0, 0,−1]T ,0) has three eigenvalues with negative
real parts and two eigenvalues with positive real parts. Hence, the equilibrium is an
unstable saddle point. Following the argumentation of Theorem 3.1 in [55], this result
can be extended to a symmetric positive definite matrix Kω. �

In order to proof of Theorem 5.9 (Local Exponential Stability) in Chapter 5, the
following two lemmas are needed.

Lemma D.7 (Attitude Penalty Function Limits) The attitude penalty function (5.17)

Vϕ (ϕd ((~zd)B (t))) = 1− cosϕd (t)

is bounded from below and above by

1

2
· ||~eDBa (t)||2 ≤ Vϕ (ϕd ((~zd)B (t))) ≤ r · ||~eDBa (t)||2

within the set Vϕ (ϕd) ≤ V ϕ < 2 with a constant V ϕ > 0 ∈ R. Here, r ∈ R is a finite
constant that satisfies 1

2
< 1/(2−V ϕ) ≤ r. Note that this set corresponds to an upper limit on

the error angle ϕd (t) and that Vϕ (π) = 2. Furthermore, the attitude error vector is defined as
~eDBa (t) = ~zd (t)× ~zB (t).

Proof: The norm of the attitude error vector ~eDBa (t) can be computed using the fact that
~zd (t) and ~zB (t) are unit vectors as

||~eDBa (t)|| = ||~zd (t)|| · ||~zB (t)|| · |sinϕd (t)| ,
= |sinϕd (t)| .

For the sake of readability, the time dependency is not explicitly written in the follow-
ing. The lower bound of the theorem translates to

1

2
sin2 ϕd ≤ 1− cosϕd

and follows from
1

2
sin2 ϕd =

1

2

(
1− cos2 ϕd

)
,

=
1

2
(1 + cosϕd) (1− cosϕd) ,

≤ 1− cosϕd.
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The upper bound of the theorem can be rewritten in a similar manner as

(1− cosϕd) ≤ r sin2 ϕd,

≤ r (1 + cosϕd) (1− cosϕd) .

For ϕd = 0, the equality holds regardless of the value of r. For ϕd 6= 0, it holds that
Vϕ (ϕd) = (1− cosϕd) > 0. Hence, by dividing the last inequality by (1− cosϕd) it
suffices to show that

r (1 + cosϕd) ≥ 1,

r ≥ 1

1 + cosϕd
=

1

2− Vϕ (ϕd)
.

Taking the limit Vϕ (ϕd) ≤ V ϕ < 2 into account, a finite r exists for every constant V ϕ

such that
1

2− Vϕ (ϕd)
≤ 1

2− V ϕ

≤ r <∞

holds. In the limit V ϕ → 2 the value of r tends to infinity. The attitude penalty function
Vϕ (ϕd), its lower bound and two upper bounds for different values of r can be seen in
Figure D.2. �

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

ϕd [◦]

Vϕ = 1− cosϕd

1
2 sin

2 ϕd (lower bound)

sin2 ϕd (upper bound 1)

2 sin2 ϕd (upper bound 2)

Figure D.2: Attitude Penalty Function and its Upper and Lower Bounds

Lemma D.8 (Attitude Lyapunov Function Limits) For Vϕ (ϕd) ≤ V ϕ < 2, the attitude
Lyapunov function (5.18)

V ((~zd)B (t) , ~ωDB (t)) = ka · Vϕ (ϕd ((~zd)B (t))) +
1

2
(~ωDB)

T
B

(t) (~ωDB)
B

(t)

+ c · (~ωDB)
T
B

(t) (~eDBa )
B

(t) ,

is bounded by

ζT (t) ·P1 · ζ (t) ≤ V ((~zd)B (t) , ~ωDB (t)) ≤ ζT (t) ·P2 · ζ (t) ,

with the following definitions

ζ (t) =

(
(~eDBa )

B
(t)

(~ωDB)
B

(t)

)
, P1 =

[
1
2
ka · I 1

2
c · I

1
2
c · I 1

2
· I

]
, P2 =

[
r · ka · I 1

2
c · I

1
2
c · I 1

2
· I

]
.

P1,P2 ∈ R6×6 are symmetric positive definite if ka > 0, if |c| ≤
√
ka and if r = 1/(2 − V ϕ)

such that Lemma D.7 (Attitude Penalty Function Limits) holds.
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Proof: Lemma D.7 (Attitude Penalty Function Limits) leads to the lower bound in
Lemma D.8 as follows

V ((~zd)B (t) , ~ωDB (t)) ≥ ka
2
· (~eDBa )T

B
(t) (~eDBa )

B
(t) +

1

2
(~ωDB)

T
B

(t) (~ωDB)
B

(t)

+ c · (~ωDB)
T
B

(t) (~eDBa )
B

(t) ,

≥ ζT (t) ·P1 · ζ (t) .

The upper bound can be computed analogously.
Given that P1 and P2 are symmetric block matrices, the Schur complement condi-

tion for positive definiteness can be used (Lemma B.12). For the matrix P1, it is known
that the submatrix 1

2
·I is positive definite and that the Schur complement of P1 is given

by

Sp1 =

(
1

2
ka · I

)
−
(

1

2
c · I
)
·
(

1

2
· I
)−1

·
(

1

2
c · I
)
,

=
1

2
ka · I−

1

2
c2 · I,

=

(
1

2
ka −

1

2
c2

)
· I.

Hence, the matrix Sp1 and therefore the matrix P1 are positive definite if |c| <
√
ka.

Computing the Schur complement condition for positive definiteness for the matrix P2

leads to the condition |c| <
√

2r · ka. If r is chosen as in Lemma D.7 (Attitude Penalty
Function Limits), this is a redundant condition since 1 ≤ 2r and

√
ka ≤

√
2r · ka. There-

fore, the matrix P2 is positive definite if the matrix P1 is positive definite. �

In the following the proof of Theorem 5.9 (Local Exponential Stability) in Chapter
5 is given. For readability the lemma is rewritten.

Theorem D.9 (Local Exponential Stability) Given the system dynamics (5.13), the desired
equilibrium χd,e = ((~zd,e)B , ~ω

DB

e ) = ([0, 0, 1]T ,0) is locally exponentially stable and the Lya-
punov function (5.18) decays exponentially given the initial conditions

Vϕ (ϕd(t = 0)) ≤ V ϕ ,

||~ωDB(t = 0)|| ≤
√

2ka ·
(
V ϕ − Vϕ (ϕd(t = 0))

)
,

for a constant V ϕ ∈ R such that 0 < V ϕ < 2.

The proof of this theorem goes along the argumentation lines of [95] and Theorem
4.10 (Uniform Exponential Stability) in [87]. Given the system dynamics (5.13), the
derivative of the Lyapunov function (5.18) is limited from above as in (5.21) by

.
V (t) ≤ −ζT (t) ·Q · ζ(t) ≤ −λ (Q) · ||ζ(t)||2 , (D.3)

where λ (Q) is the smallest eigenvalue of Q. By choosing a positive definite matrix Q
as in Lemma D.5 (Positive Definite Q), it holds that λ (Q) > 0.

By choosing r ∈ R such that 1
2
< 1/(2 − V ϕ) = r, Lemma D.8 (Attitude Lyapunov

Function Limits) holds for the set Vϕ (ϕd(t)) ≤ V ϕ < 2. The upper limit can be rewritten
as

V (t) ≤ ζT (t) ·P2 · ζ (t) ≤ λ (P2) · ||ζ(t)||2 , (D.4)
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where λ (P2) > 0 ∈ R is the maximum eigenvalue of P2. By multiplying (D.4) with
− 1
λ(P2)

it holds that

− V (t)

λ (P2)
≥ − ||ζ(t)||2 . (D.5)

Finally, inserting (D.5) in (D.3) leads to

.
V (t) ≤ − λ (Q)

λ (P2)
· V (t).

Hence, it holds that the attitude Lyapunov function (5.18) decays exponentially

V (t) ≤ V (t = 0) · e−
λ(Q)

λ(P2)
·t

if Vϕ (ϕd(t)) ≤ V ϕ < 2 for all t ≥ 0. The initial conditions in this theorem guarantee this
constraint. First note that by choosing c = 0, the attitude Lyapunov function (5.18) is

V (t) = ka · Vϕ (t) +
1

2
(~ωDB)

T
B

(t) (~ωDB)
B

(t) .

From Lemma (5.5) it is known that it is positive definite. Furthermore, by inserting
c = 0 into the derivative

.
V (t) (5.21) it follows that it is never positive

.
V (t) ≤ − (~ωDB)

T
B

(t) ·Kω · (~ωDB)
B

(t) ≤ 0.

Therefore every level set of the Lyapunov function with c = 0 is a positively in-
variant set. This means that the condition Vϕ (ϕd(t)) ≤ V ϕ is satisfied for all t ≥
0 if V (0) ≤ ka · V ϕ . This is the case if Vϕ (ϕd(t = 0)) ≤ V ϕ and ||~ωDB(t = 0)|| ≤√

2ka ·
(
V ϕ − Vϕ (ϕd(t = 0))

)
. �

D.2 Yaw Control Decoupling

In the following the proof of Lemma 5.13 (Roll/Pitch Attitude Error Derivative) in
Chapter 5 is given. For readability the lemma is rewritten.

Lemma D.10 (Roll/Pitch Attitude Error Derivative) The derivative of the first two ele-
ments of the attitude error vector ~eDBa (t) = ~zd (t)× ~zB (t) can be written as

( .
~e
DB

a,xy

)B
B

(t) = H (t)
(
~eDBa,xy

)
B

(t) +
(
ωDB

xy

)
B

(t) (zd,z)B (t) (D.6)

using the time varying matrix

H (t) =

[
0 1
−1 0

]
· (ωDBz )

B
(t) . (D.7)
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Proof: Using the kinematics of the desired vector ~zd (t) (5.13a), the derivative of the
attitude error vector can be expanded to

( .
~e
DB

a

)B
B

(t) =
( .
~zd

)B
B

(t)× (~zB)
B
,

= (− (~ωDB)
B

(t)× (~zd)B (t))× (~zB)
B
,

= −



(
ωDBy

)
B

(t) (zd,z)B (t)− (ωDBz )
B

(t) (zd,y)B (t)
(ωDBz )

B
(t) (zd,x)B (t)− (ωDBx )

B
(t) (zd,z)B (t)

(ωDBx )
B

(t) (zd,y)B (t)−
(
ωDBy

)
B

(t) (zd,x)B (t)


×




0
0
1


 ,

= −




(ωDBz )
B

(t) (zd,x)B (t)− (ωDBx )
B

(t) (zd,z)B (t)
−
(
ωDBy

)
B

(t) (zd,z)B (t) + (ωDBz )
B

(t) (zd,y)B (t)
0


 .

By taking the first two elements of the equation and noting that per definition

(
~eDBa,xy

)
B

(t) =

(
(zd,y)B
− (zd,x)B

)
,

the lemma is proven. �

In the following the proof of Lemma 5.14 (Roll/Pitch Positive Definite Q) in Chap-
ter 5 is given. For readability the lemma is rewritten.

Lemma D.11 (Roll/Pitch Positive Definite Q) If ka, kw ∈ R are positive constants and
(ωDBz )

B
(t) is uniformly bounded by |(ωDBz )

B
(t)| < rmax, there exists a constant c ∈ ]0,

√
ka[

such that the matrix Q

Q (t) =

[
c · ka · I c

2

(
kw · I−HT (t)

)
c
2

(kw · I−H (t)) (kw − c) · I

]

is positive definite.

Proof: Because the matrix Q is a symmetric block matrix, Lemma B.12 (Schur condition
for positive definiteness) is used to prove positive definiteness. Therefore it needs to
be verified that the matrix c · ka · I and the Schur complement of Q given by

Sq = (kw − c) · I−
c

2
(kw · I−H (t)) · (c · ka · I)−1 · c

2

(
kw · I−HT (t)

)
,

= (kw − c) · I−
c

4 · ka
(
k2
w · I− kwHT (t)−H (t) kw + H (t) HT (t)

)
,

= (kw − c) · I−
c

4 · ka

(
k2
w + (ωDBz )2

B
(t)
)
· I,

are positive definite. The following relations derived from the definition of H (t) (D.7)
in Lemma D.10 (Roll/Pitch Attitude Error Derivative) have been used

HT (t) + H (t) = 0, H (t) HT (t) = (ωDBz )2
B

(t) · I.
The matrix c · ka · I is positive definite for c > 0 and ka > 0. Since the matrix Sq is
diagonal, its entries correspond to its eigenvalues. Hence, for (ωDBz )

B
(t) ≤ rmax the

matrix Sq is positive definite if

0 < kω − c ·
(

1 +
1

4 · ka

(
k2
ω + (ωDBz )2

B
(t)
))

,

c <
kω

1 + 1
4·ka (k2

ω + r2
max)

=: cub,2 (kω, ka, rmax) .
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Therefore, the condition that Sq is positive definite translates to an upper bound. Note
that the bound cub,2 (kω, ka, rmax) is always less or equal than cub (kω, ka) in Lemma D.5
(Positive Definite Q)

cub,2 (kω, ka, rmax) ≤
kω

1 + 1
4·ka
(
k2
ω + (ωDBz )2

B
(t)
) ≤ kω

1 + 1
4·kak

2
ω

= cub (kω, ka)

and therefore cub,2 (kω, ka, rmax) ≤
√
ka. For kω > 0 and a finite rmax ≥ 0, the upper

bound is positive cub,2 (kω, ka, rmax) > 0 and therefore there exists a constant c ∈ ]0,
√
ka[

such that Q is positive definite. �

In the following the proof of Lemma 5.15 (Linearization: Roll/Pitch Reduced Atti-
tude) in Chapter 5 is given. For readability the lemma is rewritten.

Lemma D.12 (Linearization: Roll/Pitch Reduced Attitude) The reduced attitude closed-
loop system (5.22) has a stable equilibrium atχd,e = ((~zd,e)B ,

(
ωDB
e,xy

)
B
) = ([0, 0, 1]T ,0) and an

unstable equilibrium at χu,e = ((~zd,e)B ,
(
ωDB
e,xy

)
B
) = ([0, 0,−1]T ,0) if ka and kw are positive

constants. The subscript e refers to equilibrium points.

Proof: From Theorem 5.10 (Roll/Pitch Attitude Equilibrium Points) it is known that
the presented dynamic system has two equilibria χd,e and χu,e. In order to asses their
stability properties, the linear approximation of the dynamics at the two equilibria is
analyzed. By noting that the reduced attitude closed-loop system (5.22) corresponds to
a subsystem of (5.13) (or equivalently (D.1)-(D.2)) the results of Lemma D.6 (Lineariza-
tion: Reduced Attitude) can be used. The linearized system in Lemma D.6 can be sep-
arated into two independent systems corresponding to the states (δ~zx, δ~zy, δ~ωx, δ~ωy)
and δ~ωz. The system (5.22) corresponds to (δ~zx, δ~zy, δ~ωx, δ~ωy) and therefore the result
follows directly from Lemma D.6 (Linearization: Reduced Attitude) . �

D.3 Adaptive Attitude Control

In order to proof of Theorem 5.19 (Full State Predictor - Boundedness) in Chapter 5,
the following lemma is needed.

Lemma D.13 (Attitude Lyapunov Function Limits 2) The attitude Lyapunov function is
defined by

V ((~zd)B (t) ,ωDB

xy (t)) = ka · Vϕ (ϕd ((~zd)B (t))) +
1

2

(
ωDB

xy

)T
B

(t)
(
ωDB

xy

)
B

(t)

+ c ·
(
ωDB

xy

)T
B

(t)
(
eDBa,xy

)
B

(t)

and is bounded by

V ((~zd)B (t) ,ωDB

xy (t)) ≤ 2 · ka + ζT (t) P3ζ (t) ,

with the following definitions

ζ =

((
eDBa,xy

)
B

(t)(
ωDB
xy

)
B

(t)

)
, P3 =

[
ka · I 1

2
c · I

1
2
c · I 1

2
· I

]
.

Furthermore, P3 ∈ R4×4 is symmetric positive definite if ka > 0 and if |c| ≤
√

2 · ka .
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Proof: First note that from Vϕ (ϕd ((~zd)B (t))) = 1− cosϕd ≤ 2 it follows that

Vϕ (ϕd ((~zd)B (t))) ≤ 2 +
∣∣∣∣(eDBa,xy

)
B

(t)
∣∣∣∣2 .

Then, it follows that

V ((~zd)B (t) ,ωDB

xy (t)) ≤ ka ·
(

2 +
(
eDBa,xy

)T
B

(t)
(
eDBa,xy

)
B

(t)
)

+
1

2

(
ωDB

xy

)T
B

(t)
(
ωDB

xy

)
B

(t)

+ c ·
(
ωDB

xy

)T
B

(t)
(
eDBa,xy

)
B

(t) ,

≤ 2 · ka + ζT (t) ·P3 · ζ (t) .

Analogously to Lemma D.8 (Attitude Lyapunov Function Limits), it can be shown
that the matrix P3 is positive definite if |c| <

√
2 · ka using Lemma B.12 (Schur condi-

tion for positive definiteness). �

In the following the proof of Theorem 5.19 (Full State Predictor - Boundedness) in
Chapter 5 is given. For readability the lemma is rewritten.

Theorem D.14 (Full State Predictor - Boundedness) Given the full state predictor dynam-
ics (5.38), the reference model (5.27)-(5.29), the control law (5.43), positive gains kwz,rm,
ka,rm, ka, kw, kw,z > 0, diagonal positive definite matrices Kω,rm,L and bounded commands
~zc(t), (wc,z)B (t), it holds that:

� Given a bounded input ~̃ωNB (t) (estimation error), the error state ((~zd)B (t) , ~̂ew (t)) is
bounded.

� The trajectories approach the equilibrium set ((~zd)B (t) , ~̂ew (t)) → (±[0, 0, 1]T ,0) for∣∣∣
∣∣∣~̃ωNB

∣∣∣
∣∣∣→ 0 .

In Section 5.4, the candidate Lyapunov function (5.44) with the derivative (5.45)
has been proposed in order to prove the theorem based on the argumentation lines
of Theorem 4.18 in [87] (Ultimate Bound). In the following the first statement of the
theorem is checked. Given an upper bound on the estimation error input

(
ω̃NB

xy

)
B

(t) as

b

q

∣∣∣∣(ω̃NB

xy

)
B

(t)
∣∣∣∣ ≤ cζ (D.8)

with a positive constant cζ > 0 ∈ R, the following two sets can be defined. One is the
set of error states Bζ

Bζ :=
{
ζ̂ (t) |

∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣ ≤ cζ

}

for which a negative derivative
.
V (t) (5.45) could not be shown. Outside this set it

holds that ∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣ > cζ ≥

b

q

∣∣∣∣(ω̃NB

xy

)
B

(t)
∣∣∣∣⇒

.
V (t) < 0. (D.9)

The second set Ωb is limited by a level set of the Lyapunov function V (t) (5.44) and is
defined as

Ωb :=
{

(ϕd((~zd)B (t)),
(
ω̂NB

xy

)
B

(t)) | V ((~zd)B (t) ,
(
ω̂NB

xy

)
B

(t)) ≤ cv
}

cv = 2 · ka + λ(P3) · c2
ζ > 0.
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Figure D.3: Theorem D.14 - Lyapunov Analysis for cζ = 1.5

Here, the constant cv > 0 ∈ R defines the maximum value of the Lyapunov function
V (t) and λ(P3) > 0 ∈ R is the maximum eigenvalue of the symmetric positive definite
matrix P3 defined in Lemma D.13 (Attitude Lyapunov Function Limits 2). In Figure
D.3, the set Bζ for cζ = 1.5 , different level sets of V (t) and the desired and unde-
sired equilibria are depicted for a one dimensional version of the attitude Lyapunov
function. Note that although two undesired equilibria are plotted in the figure, both
represent the same equilibrium since ϕd (t) = π and ϕd (t) = −π are physically the
same point.

The set Ωb is defined such that Bζ ⊆ Ωb. This can be seen using Lemma D.13 (Atti-
tude Lyapunov Function Limits 2) and checking that outside the set Ωb for V (t) > cv it
holds that

cv = 2 · ka + λ(P3) · c2
ζ < V (t) ≤ 2 · ka + λ(P3)

∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣
2

,

⇒ cζ <
∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣ .

Hence, the derivative of the Lyapunov function is negative
.
V (t) < 0 outside the

set Ωb. Using the same argumentation, on the boundary of Ωb, V (t) > cv, it holds that
.
V (t) ≤ 0. The set Ωb is positively invariant since it is compact and

.
V (t) ≤ 0 holds on its

boundaries [87]. Therefore, every trajectory starting within Ωb stays in the set and re-
mains bounded for t ≥ 0. Furthermore, for every initial condition (ϕd((~zd)B (0), ~̂ωDB(0))

starting outside of the set Ωb,
.
V (t) < 0 guarantees boundedness of the error states and

that the solutions converge to the set Ωb for t → ∞. This proves the first statement in
Theorem D.14 (Full State Predictor - Boundedness).
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Note that the boundary of the set Ωb is given by the level set at cv and that cv →
2 · ka > 0 for cζ → 0. Hence, this result cannot be directly used to prove the second
statement in Theorem D.14 (Full State Predictor - Boundedness). In the following, the
assessment is done for qualitatively different scenarios depending on the value of cζ .
For cζ ≤ 1, the setBζ can be separated in two sets centered at the desired and undesired
attitude errors ϕd = {0, π}. They are defined as

Bζ,d :=
{
ζ̂ (t) |

∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣ ≤ cζ ≤ 1, |ϕd| ≤

π

2

}
,

Bζ,u :=
{
ζ̂ (t) |

∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣ ≤ cζ ≤ 1, |ϕd| ≥

π

2

}
.

The set Bζ,d centered at origin is contained within a positively invariant set Ωd,in and
the set Bζ,u lies outside another positively invariant set Ωd,out (the border may contain
points of Bζ,u). These positively invariant sets are defined as

Ωd,in :=
{

(ϕd((~zd)B (t)), ω̂DB

xy (t)) | V ((~zd)B (t) , ω̂DB

xy (t)) ≤ cv,in
}
,

cv,in = λ(P2(r)) · c2
ζ ≥ 0, r =

1

1 +
√

1− c2
ζ

,

Ωd,out :=
{

(ϕd((~zd)B (t)), ω̂DB

xy (t)) | V ((~zd)B (t) , ω̂DB

xy (t)) ≤ cv,out
}
,

cv,out = λ(P2(r)) · c2
ζ ≥ 0, r =

1

1−
√

1− c2
ζ

.

Here the positive symmetric matrix P2 (r) is defined in Lemma D.8 (Attitude Lyapunov

Function Limits). In the boundaries of the sets Ωd,in and Ωd,out it holds that
.
V (t) ≤ 0.

This can be seen using Lemma D.8 (Attitude Lyapunov Function Limits)

cv,in = λ(P2(r)) · c2
ζ = V (t) ≤ λ(P2(r)) · ||ζ (t)||2 ,

⇒ cζ ≤
∣∣∣
∣∣∣ζ̂ (t)

∣∣∣
∣∣∣⇒

.
V (t) ≤ 0.

The same argumentation can be done for Ωd,out.

Both of these sets are positively invariant since they are compact and
.
V (t) ≤ 0

holds on their boundaries [87]. Furthermore, the sets only exist for cζ ≤ 1 and it holds
that cv,out > cv,in for cζ < 1 and cv,out = cv,in for cζ = 1. In Figure D.4, the sets Bζ,d

and Bζ,u, the level sets V = cv, V = cv,in and V = cv,out, and the desired and undesired
equilibria are depicted for a one dimensional version of the attitude Lyapunov function
for cζ = 1. Figure D.5 shows the case cζ = 0.5.

Given that
.
V (t) < 0 holds for the set Ωd,out \Ωd,in, i.e. for cv,in < V ((~zd)B (t) , ω̂DB

xy ) <
cv,out, the solutions of the dynamic system can be classified depending on the value of
cζ as follows:

� Case cζ > 1 (Figure D.3): for t→∞ the solutions converge to the set Ωb.

� Case cζ = 1 (Figure D.4): for t→∞ the solutions

• converge to the set Ωb and never enter Ωd,in,

• or converge to the set Ωd,in .
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Figure D.4: Theorem D.14 - Lyapunov Analysis for cζ = 1
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Figure D.5: Theorem D.14 - Lyapunov Analysis for cζ = 0.5
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� Case 0 < cζ < 1 (Figure D.5): for t→∞ the solutions

• converge to the set
Ωu =

{
(ϕd((~zd)B (t)), ω̂DB

xy (t)) | cv,out ≤ V ((~zd)B (t) , ω̂DB

xy (t)) ≤ cv
}

,

• or converge to the set Ωd,in.

� Case cζ = 0: for t→∞ the solutions

• converge to the undesired equilibrium ((~zd)B (t), ω̂DB

xy (t))→ ([0, 0,−1]T ,0),

• or converge to the desired equilibrium ((~zd)B (t), ω̂DB

xy (t))→ ([0, 0, 1]T ,0).

The case cζ = 0 corresponds to the case without disturbance
(
ω̃NB

xy

)
B

(t) = 0 (D.8)
and therefore the result is equivalent to Theorem 5.11 presented in Section 5.3.2 (Yaw
Control Decoupling). Furthermore, For cζ → 0, i.e.

(
ω̃NB

xy

)
B

(t) → 0, the sets Ωb, Ωd,in

and Ωd,out converge to

Ωb →
{

(ϕd((~zd)B (t)), ω̂DB

xy (t)) | V ((~zd)B (t) , ω̂DB

xy (t)) ≤ 2 · ka
}

Ωd,in →
{

(ϕd((~zd)B (t)), ω̂DB

xy (t)) | V ((~zd)B (t) , ω̂DB

xy (t)) ≤ 0
}

Ωd,out →
{

(ϕd((~zd)B (t)), ω̂DB

xy (t)) | V ((~zd)B (t) , ω̂DB

xy (t)) ≤ 2 · ka
}

.

Therefore statement 2 of Theorem D.14 (Full State Predictor - Boundedness) has been
proved. �
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Acronyms

ACS attainable control set
AGAS almost globally asymptotically stable
AscTec Ascending Technologies
CA control allocation
ECEF Earth-centered Earth-Fixed frame
ECI Earth centered inertial frame
FCC flight control computer
FDI fault detection and isolation
FTC fault tolerant control
GPS global positioning system
IFCS intelligent flight control system
IMU inertial measurement unit
ISS input-to-state stabiliy
LOC-I loss of control in-flight
MRAC model reference adaptive control
NDI nonlinear dynamic inversion
NED north-east-down frame
PCPH position-command-position-hold
PRIO CA prioritizing control allocation
PRO parameter reduction due to overactuation
RCAH Rate-command-attitude-hold
RESTORE reconfigurable control for a tailless fighter aircraft
SVD singular value decomposition
UAV unmanned aerial vehicles
UCS unattainable control set
VCPH velocity-command-position-hold
VTOL vertical take-off and landing
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Symbols and Indices

Sets

F set of free/unsaturated inputs (control allocation)
N natural numbers
R real numbers
S set of saturated inputs (control allocation)
Sd set of directionally saturated inputs (control allocation)
SO(3) special orthogonal group {MMT = I, det (M) = 1}
S2 unit sphere in R3 {~v ∈ R3, ||~v|| = 1}
U control input set
V attainable control set

Indices

B body-fixed frame as defined in Appendix A
E Earth-centered Earth-fixed frame as defined in Appendix A
I Earth centered inertial Frame as defined in Appendix A
N local navigation frame as defined in Appendix A
O North-East-Down frame as defined in Appendix A

Symbols

Am dynamic matrix of the reference model
Ap dynamic matrix of the plant
Bm input matrix of the reference model
Bp input matrix of the plant
Ba matrix mapping control inputs to virtual controls
Bνu normalized matrix mapping control inputs to virtual con-

trols (control allocation)
ck update direction in the input space at the k-th iteration (con-

trol allocation)
D,Da diagonal matrix containing singular values (SVD)
d constant disturbance vector
~eDBa attitude error vector
~ew rotational rate tracking error w.r.t. reference model
ev,z vertical velocity tracking error w.r.t. reference model
~F force vector
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Symbols

g constant gravitational acceleration
Gj directions of the low priority virtual controls and nullspace

variables at the k-th iteration (control allocation)
hk vector of help variables: scaled low priority virtual controls

and nullspace variables at the k-th iteration (control alloca-
tion)

(IR)
BB

moment of inertia
L roll moment
L Luenberger gain
M pitch moment
~M moment vector
m mass
MNB rotation matrix, rotates a vector from the B into the N -frame
M yaw moment
p roll rate
pj j-th column of the pseudo inverse B+

νu (control allocation)
P,P solution matrix of the Lyapunov equation
p pitch rate
Q,Q positive definite matrix
~r position vector
r yaw rate
T total thrust
U left singular vectors (SVD)
Un left singular vectors that are the orthogonal complement of

Ur(SVD)
Ur left singular vectors that span the range of a matrix (SVD)
u control input vector
V, V Lyapunov function
V right singular vectors (SVD)
Vn right singular vectors that span the nullspace of a matrix

(SVD)
Vr right singular vectors that are the orthogonal complement of

Vn (SVD)
~v velocity vector
xm state vector of the reference model
xp state vector of the plant
~zB body-fixed unit z vector
~zd desired body-fixed unit z vector, tilt reference model
∆k update length at the k-th iteration (control allocation)
γ,Γ aptation rates
Λ control effectiveness matrix
Λrr reduced control effectiveness matrix
ν virtual controls vector
~ωNB rotational rate of the B-frame w.r.t. the N -frame
~ωND rotational rate of the tilt reference model w.r.t. the N -frame
~ωDB rotational rate tracking error w.r.t. the tilt reference model

228



Symbols

Ω (·) skew-symmetric matrix operator
Θ pitch angle (Euler angles)
Θ unknown constant parameter
Θr reduced unknown constant parameter
Σ rectangular diagonal matrix containing singular values

(SVD)
Φ bank angle (Euler angles)
ϕ tilt angle between ~zB and ~zN
ϕd tilt angle error ~zB and ~zd
Ψ azimuth angle (Euler angles)
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