

Machine Learning-Based Radar Point
Cloud Segmentation

Segmentierung von Radar Punktwolken mit maschinellen

Lernverfahren

Scientific work for obtaining the academic degree

Master of Science (M.Sc.)

at the Department of Mechanical Engineering of Technical University of Munich

Supervised by Prof. Dr.-Ing. Markus Lienkamp

 Felix Nobis, M.Sc.

 Chair of Automotive Technology

Submitted by Felix Fent, B.Sc.

Submitted on 28.10.2020

Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Aufgabenstellung

Machine Learning-Based Radar Point Cloud Segmentation

Hochautomatisierte Fahrzeuge stellen sicherheitskritische Systeme dar, deren Funktion in

wechselnden Umweltbedingungen sichergestellt sein muss. Die funktionale Sicherheit dieser

Fahrzeuge beruht unter anderem auf zuverlässigen und redundanten Sensorsystemen zur

Wahrnehmung der Umgebung. Um diesen Anforderungen gerecht zu werden sind

radarbasierte Systeme, aufgrund deren Zuverlässigkeit in unterschiedlichen Umwelt-

bedingungen, Gegenstand aktueller Forschung.

In dieser Arbeit sollen Segmentierungsverfahren für radarbasierte Punktwolken für das

hochautomatisierte Fahren entwickelt werden. Aufgrund des Radarprinzips stehen bei der

Entwicklung geeigneter Methoden temporale Zusammenhänge im Fokus. Das Ziel der

vorliegenden Arbeit ist bestehende Radarsegmentierungsverfahren auf einem öffentlich

zugänglichen Datensatz zu vergleichen. Darüber hinaus soll ein rekurrentes Modell zur

Segmentierung von Radarpunktwolken unter Einbezug der Zeitdimension entwickelt werden.

In einem ersten Schritt soll anhand einer Literaturrecherche und bisherigen Arbeiten am

Lehrstuhl der Stand der Technik zur Segmentierung von Radardaten erarbeitet werden. Darauf

aufbauend soll ein Modell zur Segmentierung von Radarpunkten entwickelt werden. Der Fokus

dieses Modells liegt auf der Verwendung temporaler Zusammenhänge. Abschließend soll das

Modell auf einem öffentlichen Datensatz evaluiert und die Güte der Segmentierung bewerten

werden.

Folgende Punkte sind durch Herrn Felix Fent zu bearbeiten:

• Einarbeitung in den Stand der Technik der maschinellen Lernverfahren zur Seg-

mentierung von Radarpunktwolken.

• Identifizierung eines geeigneten Datensatzes zur Modellerstellung.

• Analyse und Vergleich bestehender Modellansätze zur Segmentierung von Radar-

daten.

• Entwicklung eines rekurrenten neuronalen Netzes zur Segmentierung von Radar-

punktwolken.

• Evaluation der Segmentierungsgüte des Modells auf einem öffentlich zugänglichen

Datensatz.

Die Ausarbeitung soll die einzelnen Arbeitsschritte in übersichtlicher Form dokumentieren. Der

Kandidat verpflichtet sich, die Masterarbeit selbständig durchzuführen und die von ihm ver-

wendeten wissenschaftlichen Hilfsmittel anzugeben.

Die eingereichte Arbeit verbleibt als Prüfungsunterlage im Eigentum des Lehrstuhls.

Ausgabe: 04.05.2020 Abgabe: 28.10.2020

_________________________ _________________________

Prof. Dr.-Ing. M. Lienkamp Betreuer: Felix Nobis, M. Sc.

Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Geheimhaltungsverpflichtung

Herr: Fent, Felix

Gegenstand der Geheimhaltungsverpflichtung sind alle mündlichen, schriftlichen und digitalen

Informationen und Materialien, die der Unterzeichner vom Lehrstuhl oder von Dritten im Rahmen

seiner Tätigkeit am Lehrstuhl erhält. Dazu zählen vor allem Daten, Simulationswerkzeuge und

Programmcode sowie Informationen zu Projekten, Prototypen und Produkten.

Der Unterzeichner verpflichtet sich, alle derartigen Informationen und Unterlagen, die ihm wäh-

rend seiner Tätigkeit am Lehrstuhl für Fahrzeugtechnik zugänglich werden, strikt vertraulich zu

behandeln.

Er verpflichtet sich insbesondere:

• derartige Informationen betriebsintern zum Zwecke der Diskussion nur dann zu
verwenden, wenn ein ihm erteilter Auftrag dies erfordert,

• keine derartigen Informationen ohne die vorherige schriftliche Zustimmung des
Betreuers an Dritte weiterzuleiten,

• ohne Zustimmung eines Mitarbeiters keine Fotografien, Zeichnungen oder sonstige
Darstellungen von Prototypen oder technischen Unterlagen hierzu anzufertigen,

• auf Anforderung des Lehrstuhls für Fahrzeugtechnik oder unaufgefordert spätestens bei
seinem Ausscheiden aus dem Lehrstuhl für Fahrzeugtechnik alle Dokumente und
Datenträger, die derartige Informationen enthalten, an den Lehrstuhl für
Fahrzeugtechnik zurückzugeben.

Besondere Sorgfalt gilt im Umgang mit digitalen Daten:

• Für den Dateiaustausch dürfen keine Dienste verwendet werden, bei denen die Daten
über einen Server im Ausland geleitet oder gespeichert werden (Es dürfen nur Dienste
des LRZ genutzt werden (Lehrstuhllaufwerke, Sync&Share, GigaMove).

• Vertrauliche Informationen dürfen nur in verschlüsselter Form per E-Mail versendet
werden.

• Nachrichten des geschäftlichen E-Mail Kontos, die vertrauliche Informationen enthalten,
dürfen nicht an einen externen E-Mail Anbieter weitergeleitet werden.

• Die Kommunikation sollte nach Möglichkeit über die (my)TUM-Mailadresse erfolgen.

Die Verpflichtung zur Geheimhaltung endet nicht mit dem Ausscheiden aus dem Lehrstuhl für

Fahrzeugtechnik, sondern bleibt 5 Jahre nach dem Zeitpunkt des Ausscheidens in vollem Um-

fang bestehen. Die eingereichte schriftliche Ausarbeitung darf der Unterzeichner nach

Bekanntgabe der Note frei veröffentlichen.

Der Unterzeichner willigt ein, dass die Inhalte seiner Studienarbeit in darauf aufbauenden Stu-

dienarbeiten und Dissertationen mit der nötigen Kennzeichnung verwendet werden dürfen.

Datum: 04.05.2020

Unterschrift: ____________________________________

Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Erklärung

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbstständig

verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Garching, den 28.10.2020

Felix Fent, B. Sc.

Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Declaration of Consent, Open Source

Hereby I, Fent, Felix, born on 04.05.1996, make the software I developed during my master

thesis available to the Institute of Automotive Technology under the terms of the license below.

Garching, 04.05.2020

Felix Fent, B. Sc.

Copyright 2020 Fent, Felix

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to

do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-

ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT

SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES

OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

I

Table of Contents

List of Abbreviations ... III

Formula Symbols .. V

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Research Purpose .. 2

1.3 Structure of the Thesis .. 3

2 State of the Art ... 5

2.1 Datasets for Automomous Driving ... 5

2.2 The nuScenes Dataset ... 6

2.3 Data Format... 8

2.4 Network Architectures for Point Cloud Data ... 9

2.4.1 Feedforward Neural Network Architectures .. 10

2.4.2 Recurrent Neural Network Architectures .. 14

3 Model Development .. 17

3.1 Data Pre-Processing .. 18

3.2 Input Pipeline .. 20

3.3 Network Architecture ... 20

3.3.1 Feedforward Neural Network Architecture .. 21

3.3.2 Recurrent Neural Network Architecture .. 23

3.4 Loss Function ... 25

3.5 Optimizer ... 27

3.6 Evaluation Metric .. 28

3.7 Experimental Design .. 28

4 Results .. 31

4.1 Feedforward Neural Network Results .. 31

4.2 Recurrent Neural Network Results ... 32

4.3 Hyperparameter Optimization ... 32

Table of Contents

II

5 Discussion ... 35

5.1 Experimental Design .. 35

5.2 The nuScenes Dataset ... 36

5.3 Feedforward Neural Networks .. 38

5.4 Recurrent Neural Networks ... 40

5.5 Hyperparameter Optimization ... 43

6 Conclusion ... 45

6.1 Summary ... 45

6.2 Outlook .. 46

List of Figures ... xlix

List of Tables ... li

Bibliography .. liii

Appendix ... lix

III

List of Abbreviations

ANN Artificial neural network

CAN Controller area network

CNN Convolutional neural network

E/E-System Electric/Electronic-System

FP Feature propagation

GNN Graph neural network

KPConv Kernel point convolution

KP-FCNN Kernel point fully convolutional neural network

KPLSTM Kernel point convolutional long short-term memory

Lidar Light detection and ranging

LSTM Long short-term memory

MLP Multilayer perceptron

nuScenes nuTonomy scenes

Radar Radio detection and ranging

RCS Radar cross section

ReLU Rectified linear unit

ResNet Residual network

RNN Recurrent neural network

SA Set abstraction

SVM Support vector machine

V

Formula Symbols

Formula symbols Unit Description

a Alpha compensation factor

b Batch size (number of batched scenes)

ℬr Neighborhood domain

𝐜 Class weights vector

𝐂 Cell state

�̃� Internal cell state

�̂� Intermediate cell state

𝒞 Finite set of point coordinates

d Number of dimensions (radar channels)

dr Decay rate of the learning rate

ds Decay steps of the learning rate decay

𝐟 Feature vector of a point

𝑓 Arbitrary function

fn Number of false negatives

fp Number of false positives

𝐅 Forget gate

F1 F1 score

ℱ Finite set of point features

𝑔 Arbitrary kernel function

ℎ Correlation function

𝐇 Hidden state

𝐈 Input gate

k Number of classes (labels)

𝑙𝑜𝑔 Logarithm

Formula Symbols

VI

lr Learning rate

lr0 Initial learning rate

ℒ Loss function

max Maximum value of a radar channel

𝑚𝑎𝑥 Maximum operation

min Minimum value of a radar channel

𝑚𝑖𝑛 Minimum operation

n Number of points (elements of the set)

nk Number of kernel points

𝒩𝐱 Set of points in the local neighborhood of x

𝐎 Output gate

𝐩 Point as element of a point cloud

𝑝θ Modified PointNet++ layer

𝒫 Point cloud as a finite set of points

𝒫𝑗
′ Set of points that belong to class 𝑗

r Radius of the local neighborhood

r0 Initial radius of the local neighborhood

r̃ Relation between all points (scene representation)

ℝ Set of all real numbers

s Maximum number of keyframes per scene

𝑡𝑎𝑛ℎ Hyperbolic tangent

tp Number of true positives

𝐰 Kernel weight

𝐱 Coordinate vector of a point

�̅� Relative position of a point to its center point

�̃� Kernel point

𝐗 Model input data tensor

�́� Structured input data of a fixed size

𝒚 Target value vector of a point (label)

𝐘 Model target value tensor (labels)

�̂� Output tensor of the model (prediction)

Formula Symbols

VII

𝒴 Set of target values (labels)

α Balancing factor

γ Focus factor

ε Small value different from zero

Θ, ψ Parameters of the model

σ Area of influence of the kernel points

𝜎 Sigmoid function

∘ Composite of two functions

∗ Convolution operator

⊙ Hadamard product

|∙| Cardinality of a set

‖∙‖ Euclidean norm

1

1 Introduction

1.1 Motivation

Autonomous driving, as one of the greatest challenges in the automotive industry today, relies

on the perception and understanding of the environment around the autonomous vehicle [1].

This understanding of the environment is essential to operate safely even within complex traffic

scenarios and challenging weather conditions. Thus, the functional safety of autonomous vehi-

cles is subject to reliable sensor information and redundant information processing [2].

The reliability of the sensor information must be ensured under any environmental conditions,

which is difficult to accomplish with a single sensor type. The informational content of a camera

sensor, for example, is highly affected by severe weather conditions like rain and fog as well as

rapid changes in brightness or direct illumination – as illustrated in Figure 1.1 [3]. To overcome

these limitations, radio detection and ranging (radar) sensors can be applied, which are mostly

unaffected by environmental conditions [4]. In addition to that, radar sensors provide highly ab-

stract information about the surrounding objects such as their distance or relative velocity at a

significantly smaller bandwidth than pixel-based camera sensors [5].

Besides reliable sensor information, a redundant process chain is required to minimize the risk

of hazards caused by malfunctioning behavior of electric/electronic systems (E/E-Systems) [6].

This demand on a fully redundant process chain makes it indispensable to develop non-camera-

based models to sense the environment around the autonomous vehicle. Driven by the demand

for radar-based model architectures and motivated by the most recent achievements in point

cloud processing, it is the aim of this thesis to develop a machine learning-based model for radar

point cloud segmentation.

Figure 1.1: Illustration of a typical traffic scenario with difficult lighting conditions by [7].

Scene#_CTVL001b3ad182847a949b3b172afbe4f728a1b
Survey#_CTVL00148eab709d13943699cf2163ea8d73415
Seeing#_CTVL001597fd1267efe47bdb8d885ab3aa31640
Artificial#_CTVL001e4a51b51688f4d209c7abadbee0f9313

1 Introduction

2

1.2 Research Purpose

The development of a radar point cloud segmentation model is built upon the method of

CHOLLET [8, pp. 111-116], which consists of four major modeling steps. These modeling steps

are illustrated in Figure 1.2 and associated with the stated research questions, as discussed in

the subsequent paragraphs.

Figure 1.2: Illustration of the four major modeling steps according to CHOLLET [8].

The selection (or acquisition) of the dataset to train the model defines the first modeling step and

builds the basis for all subsequent development stages. Therefore, the dataset must include both

the model input data as well as the aspired output data to evaluate the model’s performance.

Within the scope of this thesis, this modeling step is associated with the following research ques-

tion.

How do state of the art models perform on publicly available datasets?

In the second modeling step a suitable evaluation metric is defined to measure the model’s per-

formance and evaluate the success on the given problem. This step also includes the definition

of an evaluation procedure that ensure the objectivity of the evaluation process and is subject to

the following research question.

How to evaluate different segmentation models and settings?

According to a data driven development strategy the model is developed based on a given da-

taset in the third modeling step. The development of the model architecture – which represents

the core of this thesis – defines both the fundamental properties of the model as well as the

model behavior and will be discussed with focus on the following research question.

Does the utilization of the temporal domain enhance the segmentation quality?

The final modeling step – the model optimization – can be described as the process of adjusting

parameters to best approximate the aspired transmission behavior between the model input data

and the desired output. However, within the scope of this thesis the model optimization process

serves the purpose of exploring the parameter space to discuss the following research question.

How do different parameters affect the segmentation quality of the model?

Under consideration of the above defined method, the stated research questions are subject to

the following constraints. First, the acquisition of a dataset is not part of the thesis but limited to

the selection of a suitable publicly available dataset. Second, the segmentation model will be

implemented as an artificial neural network (ANN), not considering other machine learning ap-

proaches. Given these constraints, it is the purpose of the thesis to develop a radar point cloud

segmentation model and to discuss the stated research questions.

Dataset Model EvaluationEnvironment

Optimization

1 Introduction

3

1.3 Structure of the Thesis

The macroscopic structure of the thesis represents a data driven development process and is

illustrated in Figure 1.3. This process is chosen in accordance with the defined method of CHOL-

LET [8, PP. 111-116] and in consideration of the research questions stated in section 1.2. The

same sequence of steps is applied to every individual chapter to develop a model built upon the

given data and not vice versa.

Figure 1.3: Graphical representation of the structure of the thesis following a data driven develop-

ment strategy.

The research purpose of this thesis is motivated by the demand for machine learning-based

models used for the segmentation of automotive radar data and defined in section 1.2. Based

on these research questions, the current state of the art in radar point cloud segmentation is

described in Chapter 2. First, an overview of publicly available datasets for autonomous driving

is given in section 2.1 from which the nuScenes dataset is selected as basis of the thesis and

further described in section 2.2. Regarding this dataset, a definition of the data format is provided

in section 2.3, before different model architectures are discussed in section 2.4. These model

architectures are divided into feedforward neural networks in subsection 2.4.1 and recurrent

neural networks in subsection 2.4.2.

In consideration of the current state of the art, a novel model architecture for radar point cloud

segmentation is proposed in Chapter 3. The chapter is structured in accordance with the defined

method of CHOLLET [8] and represents a data driven development process. The data pre-pro-

cessing is described in section 3.1, which builds the basis for the data input pipeline of section 3.2.

Building upon this data pipeline, a recurrent neural network for point cloud segmentation is de-

veloped in section 3.3. To utilize the proposed network architecture a loss function is defined in

section 3.4, which is minimized throughout the model training. This optimization process is exe-

cuted by an optimizer defined in section 3.5 and the success of the optimization process is

evaluated according to the evaluation metric of section 3.6. The overall model training is de-

scribed in section 3.7 to define the experimental design of the thesis.

The results of the conducted experiments are presented in Chapter 4 and structured in accord-

ance with the stated research questions. Following the same structure, the model results as well

as the model architecture itself are discussed in Chapter 5. The experimental design is discussed

in section 5.1 with respect to the quality criteria of empirical research, and the chosen nuScenes

dataset is discussed in section 5.2. On this basis, the results of the feedforward and recurrent

neural networks are discussed in section 5.3 and section 5.4, respectively. Ultimately, the find-

ings of the thesis are summarized in section 6.1 and an outlook on future research is given in

section 6.2.

Data: 𝐗 𝐘 Model: 𝑓θ 𝐗 Prediction: �̂� Conclusion

2. State of the Art

3. Model

Development

4. Results 5. Discussion

1 Introduction

4

5

2 State of the Art

Following a data driven development strategy, a comparison of publicly available datasets for

autonomous driving is given first in section 2.1. As a result of this comparison, the nuScenes

dataset is chosen as data basis for this work and further described in section 2.2. Following that,

the data format of point cloud data is defined in section 2.3, introducing the notation used

throughout the thesis. Finally, state of the art network architectures for radar point cloud data are

presented in section 2.4, which lays the foundation for the model development.

2.1 Datasets for Automomous Driving

Machine learning-based radar point cloud segmentation describes the process of building a

mathematical model based on sample data in order to assign a class label to every point of the

radar point cloud. To achieve this goal by a supervised machine learning approach the dataset

must contain both the radar point cloud as well as the associated target values. In order to find

a dataset that satisfies these requirements, a comparison of different publicly available datasets

for autonomous driving is given in Table 2.1.

Table 2.1: A comparison of publicly available datasets for autonomous driving with focus on their

contained sensor information. An empty circle represents the absence of this data and a

filled circle represents the containment of the data.

Dataset Number of

samples

Number of

scenes

Camera Lidar Radar Radar

annotations

Cityscapes [9] 25000 - ● ◯ ◯ ◯

KITTI [10] 15000 22 ● ● ◯ ◯

H3D [11] 28000 160 ● ● ◯ ◯

KAIST [12] - - ● ● ◯ ◯

RobotCar [13, 14] - 32 ● ● ● ◯

SCORP [15] 4000 11 ● ◯ ● ●

ASTYX [16] 500 - ● ● ● ●

DENSE [4] 13500 - ● ● ● ●

nuScenes [17] 34000 1000 ● ● ● ●

The#_CTVL0018bba150f8c5240dfbece2d6a79c7cdf4
Are#_CTVL001998982fef609484c905dfc512f5e9edf
The#_CTVL0017eb74cadc9fa49cf9c8805cb5b1d1372
KAIST#_CTVL001a4cccb315ce740359b6eee3cd0e9e753
1#_CTVL00158c03bf2051f4854b792023d5aa7e6a6
The#_CTVL00186bb847b1aa64f669ebdb20a34f4ab60
Deep#_CTVL001b3857137f01b4b8d9b757aa6de5d0d2f
Automotive#_CTVL0017ab4343f342a4b3d8320e01cf9c0446e
Seeing#_CTVL001597fd1267efe47bdb8d885ab3aa31640
nuScenes:#_CTVL001f02cad1743da46e2849a08712ee7dec1

2 State of the Art

6

As described in Table 2.1, the SCORP, ASTYX, DENSE and nuScenes datasets are currently

the only publicly available datasets containing annotated radar data. However, the SCORP da-

taset does not provide the radar data in a point cloud data format, but as raw radar signals. The

ASTYX and DENSE datasets, on the other hand, do not provide information about the scene

affiliation, which is mandatory to utilize the temporal domain. Therefore, and due to the fact that

the nuScenes dataset contains more than two times as many samples as comparable datasets,

it is chosen as data basis for this thesis.

2.2 The nuScenes Dataset

The nuTonomy scenes (nuScenes) dataset [17] is a publicly available dataset for autonomous

driving that includes annotated radar data. The dataset itself consists of 1000 scenes of 20 s

each and includes not only radar data but also lidar, camera and global positioning data as well

as information about the ego vehicle motion. The complete sensor setup of the nuScenes data

collection platform is shown in Figure 2.1.

Figure 2.1: Sensor setup of the nuScenes data collection platform according to [17, Fig. 3].

In terms of terminology, a scene denotes a sequence of discrete yet chronologically consecutive

keyframes. A keyframe, on the other hand, is defined as an annotated and synchronized aggre-

gation of measurements at a given timestamp. These keyframes are provided at a frequency of

2 Hz as part of a single lidar sweep. All measurements in between of two keyframes are not

annotated and denoted as sweeps. These sweeps are provided at the associated sensor capture

frequency of approximately 13 Hz for the applied radar sensors.

The deployed radar sensor is the Continental ARS 408-21 Premium, which operates in the

77 GHz frequency band. The sensor itself is connected via the controller area network bus (CAN

bus), which limits the number of available radar points to 125 points per sensor and cycle (due

to the limited CAN bus bandwidth) [18]. In addition to that, a radar cross section (rcs) filter with

a threshold value of -5.0 dBm² is applied to the sensor data further limiting its content of infor-

mation [19]. Any additional specifications of the radar sensors can be found in Appendix A.

Radar

Front Right

Radar

Front Left

Radar

Back Left

Radar

Back Right

Radar

Front

Lidar

Top
IMU

Camera

Back Left

Camera

Back Right
Camera

Front Right

Camera

Front Left

Camera

Front

Camera

Back

z-axisx-axis y-axis

nuScenes:#_CTVL001f02cad1743da46e2849a08712ee7dec1
nuScenes:#_CTVL001f02cad1743da46e2849a08712ee7dec1
Standardized#_CTVL001ce72eb2e622746ee874bedfc7be04f01

2 State of the Art

7

Under consideration of the defined limitations and with regard to the sensor specifications, the

radar sensor provides eight general and seven quality measurement values per radar point. In

addition to these 15 sensor values, the nuScenes dataset also provides the value of the vertical

coordinate z, the relative velocity in longitudinal direction compensated by the ego vehicle motion

vx_comp and its equivalent in lateral direction vy_comp. A list of all 18 radar channels and their

corresponding specifications can be found in Table 2.2.

Table 2.2: List of available radar channels (features) of the nuScenes dataset with their associated

value range, resolution and unit. A detailed definition of the radar channels can be found

in Appendix A.

In addition to the sensor data, the nuScenes dataset also provides annotated (ground truth) data

for all 34149 keyframes. These annotations are available as three-dimensional bounding boxes

defined by their center coordinates, a rotation quaternion, and a spatial extension [17]. In addition

to the spatial information, every annotation includes the information about the visibility of the

annotated object as well as a category label for one out of 23 different categories. A distribution

of all radar points across these 23 categories of the nuScenes dataset is provided in Figure 2.2.

Channel ID Radar Channel Range Resolution Unit

0 x [-500.0, 1138.2] 0.2 m

1 y [-258.42, 258.42] 0.2 m

2 z n.d. n.d. m

3 dyn_prob [0, 7] 1 -

4 id [0, 255] 1 -

5 rcs [-5.0, 63.5] 0.5 dBm²

6 vx [-128.0, 127.75] 0.25 m/s

7 vy [-64.0, 63.75] 0.25 m/s

8 vx_comp n.d. n.d. m/s

9 vy_comp n.d. n.d. m/s

10 is_quality_valid [0, 1] 1 -

11 ambig_state [0, 7] 1 -

12 x_rms [0, 31] 1 m

13 y_rms [0, 31] 1 m

14 invalide_state [0, 31] 1 -

15 pdh0 [0, 7] 1 -

16 vx_rms [0, 31] 1 m/s

17 vy_rms [0, 31] 1 m/s

nuScenes:#_CTVL001f02cad1743da46e2849a08712ee7dec1

2 State of the Art

8

Figure 2.2: Number of radar points per nuScenes category on a logarithmic scale. The None cate-

gory covers all points without an annotation.

2.3 Data Format

The radar data is provided in form of a point could 𝒫, which can be formally defined as a finite

set of n ∈ ℕ vectors 𝐩𝑖 ∈ ℝ
d with 𝑖 = 1 … n, whereas n defines the number of radar points of a

single keyframe and d denotes the number of dimensions (radar channels) [20, 21]. Provided

that the radar point cloud 𝒫 originates from an Euclidean space, the points of the finite set 𝒫 can

be considered as two elements: the point coordinates 𝒞 ∈ ℝ3 and the point features ℱ ∈ ℝd−3

[22]. In this case, the point coordinates are considered as structural elements, whereas the point

features represent the actual data of the radar point [22].

Given that the radar data is provided as a point cloud of a discrete metric space, the radar data

is considered to be:

• unordered,

• invariant under transformations,

• shows interactions among points, with

• entangled feature scales and

• variable densities at different areas [20, 23].

This means that the points 𝐩𝑖 of the point cloud 𝒫 are related to each other (interact among each

other) and that the properties of a point are not independent but entangled. In addition to the

defined characteristics, the non-uniformity of point clouds has to be considered if a sequence of

point clouds is taken into account, which means that the number of points is not consistent over

time. Besides that, point cloud processing is subject to the general set theory and further de-

scribed in [24, 25].

PointNet:#_CTVL001c5315e9f7242409e9ae610da3e733a1f
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
PointNet:#_CTVL001c5315e9f7242409e9ae610da3e733a1f
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
Was#_CTVL001b381338f68534a09b583facf7d8d2c8a

2 State of the Art

9

To make use of the provided radar data, the point clouds of all keyframes of a scene as well as

multiple scenes are mapped to a single input tensor

𝒫11 × …× 𝒫1s × …× 𝒫bs → 𝐗 ϵ ℝ
b×s×n×d (2.1)

within the model input pipeline. As a result, 𝐗 represents the actual input tensor, s the maximum

number of keyframes within the batched scenes and b the batch size of the input tensor. At this,

d can be interpreted as feature dimension, n as point dimension and s as time dimension,

whereas b represents the number of scenes per input tensor.

In addition to the radar data, nuScenes also provides a set of corresponding annotations for

every keyframe. To utilize this information the pre-processor generates a set of target values 𝒴

for every point within the input point cloud. This set of target values consists of n vectors

𝒚1 … 𝒚n ∈ ℝ
k with k possible classes expressed as a one-hot encoded vector. Just like the in-

put data, the set of target values get mapped to a tensor of target values given by

𝒴11 × …× 𝒴1s × …× 𝒴bs → 𝐘 𝜖 ℝ
b×s×n×k. (2.2)

A subset of all input and target value pairs (𝐗 𝐘) of the nuScenes dataset represents the training

data of the supervised machine learning task and builds the basis for all artificial neural networks

described in the subsequent section.

2.4 Network Architectures for Point Cloud Data

Building upon this, several methods can be applied to perform a semantic segmentation on the

provided radar data. These methods include decision trees, like random forests as used by [26]

and [27] as well as logistic regression classifiers. Besides that, support vector machines (SVMs)

are often used to classify high dimensional data and are used by [28–31] to segment radar point

clouds. Recently, artificial neural networks (ANNs) are widely used since modern network archi-

tectures outperform other classification methods, as shown by [27]. For that reason, the following

chapter focuses on different ANN architectures to perform a semantic segmentation of the given

radar point cloud.

Artificial neural networks, which can be considered as a transfer function between an input 𝐗

and an output 𝐘, can be divided into feedforward neural networks and recurrent neural networks

(RNNs) [32, p. 166]. Feedforward neural networks, formally defined as

𝐘 = 𝑓θ(𝐗) (2.3)

are characterized by an unidirectional flow of information [32, p. 168]. This means that the

output 𝐘 is not fed back, but only dependent on the current input 𝐗 as a result of the transfer

function 𝑓 with parameters θ. If the network includes a feedback connection, the network

architecture is referred to as a recurrent neural network and defined as

𝐘𝑡 = 𝑓𝜃(𝐘𝑡−1 𝐗𝑡) (2.4)

where the current output 𝐘𝑡 is not only dependent on the current input 𝐗𝑡, but also on the output

of the previous timestep 𝐘𝑡−1 [32, p. 375]. Both network architectures can be applied to the given

segmentation problem and will be discussed in the following.

Object#_CTVL0018280627aedc4417d91df84bb430f688d
Comparison#_CTVL001fe049f0b51544a2e82f41f9dc8668488
Pedestrian#_CTVL0015d44d9c217944980ba7a2a995de2ab93
Radar#_CTVL001f13af0141b7a4467a96d703f9563fe97
Comparison#_CTVL001fe049f0b51544a2e82f41f9dc8668488

2 State of the Art

10

2.4.1 Feedforward Neural Network Architectures

Feedforward neural networks for point cloud input data can be categorized based on their re-

quirements on the input data and preceding processing steps as well as their satisfaction of

different model properties. Network architectures for point cloud data can require a preceding

feature engineering step to express the point cloud as a defined feature vector, a preceding data

transformation to change the data representation or a preceding data sampling to ensure a fixed

input size. On top of this, some network architectures are more suitable to capture spatial rela-

tionships among points or have the ability to share kernel weights between multiple points. Based

on these aspects, state of the art feedforward neural network architectures for point cloud input

data can be grouped into five categories. These networks categories are represented in Table

2.3 and described in the following.

Table 2.3: Requirements and properties of different feedforward neural network architectures for

point cloud data. A filled circle represents the satisfaction or demand of a property or re-

quirement, whereas an empty circle represents the opposite of it. A partly filled circle

represents the degree to which a property is satisfied in relation to the other network ar-

chitectures.

Feature Engineering-Based Networks

Feature engineering-based networks rely on an intermediate data representation of the given

point cloud by a handcrafted (engineered) feature vector. In comparison to other network archi-

tectures, this feature vector is not subject to the spatial domain but represents the point cloud by

a defined number of characteristic values. Even if additional features can be used by any of the

listed network architectures, feature engineering-based networks solely rely on this intermediate

data representation.

Formally, feature engineering-based networks depend on a data transformation given by a math-

ematical map function

𝑓: 𝐗 → �́� (2.5)

where the original input 𝐗 is mapped onto a tuple of defined features �́� [33, p. 3]. Making use of

this technique, feature engineering-based networks map the unordered set of points onto an

intermediate data representation of a fixed size. This feature vector represents spatial relation-

ships of the points as well as their unique properties.

Network

architecture

Requires feature

engineering

Requires a fixed

input size

Requires a data

transformation

Spatial

relationship

Shared

kernel

Feature-Based ● ● ● ◔ ●

Projection-Based ◯ ● ● ◕ ●

GNN ◯ ◯ ● ● ●

Pointwise MLP ◯ ◯ ◯ ● ◑

Point convolution ◯ ◯ ◯ ● ●

2 State of the Art

11

Applying this network architecture, SCHUMANN et al. [27] compares the performance of different

machine learning approaches based on several engineered features including extreme values,

values of the central tendency and the dispersion as well as the eigenvalues of the covariance

matrix of the point coordinates. Building upon this, SCHEINER et al. [34] implements a segmen-

tation network for a multiclass road user classification problem and evaluates the impact of 50

different features on the model’s performance by using a backward elimination as well as k-fold

cross-validation method.

Projection-Based Networks

Projection-based networks are considered to be network architectures able to process point

cloud data expressed by a projection of the points onto a discretized representation of the space.

This intermediate data representation of a fixed size enables the model to take advantage of

conventional network architectures as used by image processing applications.

The projection of the point cloud is defined by a mathematical map function, mapping the unor-

dered set of points onto a grid like structure with a fixed size. This grid like structure is a

discretized representation of the underlying space and can be expressed by either a two-dimen-

sional matrix, a three-dimensional voxel structure or any other fixed-size structure of arbitrary

dimensionality. Based on this projection several methods can be applied to process the given

radar data.

LOMBACHER et al. [35] used a convolutional neural network (CNN) to perform a semantic seg-

mentation on a two-dimensional projection of the radar data on an occupancy grid. Furthermore,

state of the art results are achieved by utilizing a three-dimensional projection-based network

architecture for the semantic segmentation of light detection an ranging (lidar) sensor data [36].

Besides that, sparse convolutional neural networks [37] as well as multi-view approaches [38]

are used to counteract the demand of high dimensional projection-based networks on system

resources – further described in [37].

Graph Neural Networks

Graph neural networks (GNNs) are able to process a graph representation of data originating

from a non-Euclidean space. This ability enables GNNs to operate on an unordered set of points

with varying input sizes, which is expressed as a graph. Therefore, a preceding data transfor-

mation is required to utilize a GNN for radar point cloud processing.

This intermediate data structure represents the radar point cloud as a pair of two sets. The first

set consist of the radar points themselves and represents the graph vertices, whereas the sec-

ond set defines the graph edges and represents the point relationships [39]. Both, the vertices

and the edges, can be associated with a dedicated weight variable to express either point fea-

tures or relationship values, such as the distance for example. This graph representation of the

radar point cloud can then be processed by an artificial neural network, further described in [39].

However, this type of network architectures has not yet been applied to automotive radar data

related problems and is open for research.

Comparison#_CTVL001fe049f0b51544a2e82f41f9dc8668488
Radar-based#_CTVL001a197d5bb786d4114ad18fa5ba92e2d94
Semantic#_CTVL00197fdbe1259b14cfb816f16100ae142fb
VoxelNet:#_CTVL001c0f97774890740de8975e53e0fc01485
Submanifold#_CTVL00192073e8e217b43aaada0b548519ff12a
Volumetric#_CTVL00191650aa37d4f4f14a970bb9935c49c90
Submanifold#_CTVL00192073e8e217b43aaada0b548519ff12a
Geometric#_CTVL001a5c05b0813d14bb1a46b8dc00cd38341
Geometric#_CTVL001a5c05b0813d14bb1a46b8dc00cd38341

2 State of the Art

12

Pointwise Multilayer Perceptron Networks

In comparison to previously discussed network architectures, pointwise multilayer perceptron

(MLP) networks operate directly on point cloud input data. For that reason, pointwise MLP net-

works are able to process unordered sets of points with varying input sizes without relying on an

intermediate data representation. This property enables the utilization of pointwise MLP net-

works for semantic segmentation tasks directly on point cloud input data.

This ability is a result of the network design, which models the relationship between the elements

𝐩𝑖 of a finite set 𝒫 as a composite of two functions 𝑓 ∘ 𝑔 [40]. The response r̃ of the composite

r̃ = 𝑓θ (𝑔ψ(𝐩1) … 𝑔ψ(𝐩n)) (2.6)

with parameters θ and ψ, represents the relationship between all elements of the set and can be

interpreted as a sample (or scene) representation of the given point cloud 𝒫 [20]. The kernel

function 𝑔 operates on the individual elements and can be implemented as an elementwise con-

volution operation. The aggregation function 𝑓 aggregates the individual activations to receive a

global representation of the given point cloud. This fundamental operation of pointwise MLP net-

works is able to approximate any arbitrary complex continuous function [20] and is illustrated in

Figure 2.3.

Figure 2.3: Visualization of the core functionality of a pointwise MLP network to obtain a global rep-

resentation r̃ of the given point cloud 𝒫 by applying a composite of two functions 𝑓 ∘ 𝑔.

The shared kernel function 𝑔 is applied to every point of the point cloud 𝒫 to receive a

pointwise activation which is aggregated by 𝑓 to compute a global feature vector r̃.

PointNet [20] applies this technique to compute a global feature vector from a given set of points

to perform either a classification or semantic segmentation on the given point cloud. The main

idea of the network is the utilization of a single symmetric function 𝑓 to encode the global feature

vector r̃ as the maximum response among all points [22]. Therefore, the kernel function 𝑔 is im-

plemented as a shared MLP, which acts as a set of learned spatial encodings, and the

aggregation function 𝑓 is implemented as max-pooling across all elements [20]. Due to this

model structure, PointNet is invariant to input permutations and can handle input data with var-

ying input sizes, but lacks the ability to consider local spatial relationships between the data

points [23].

To overcome these limitations PointNet++ [23] was designed in a hierarchical way to capture

local structures within the input point cloud. This hierarchical encoding is achieved by sequen-

tially applying three major processing steps. First, a defined number of center points is sampled

from the given point cloud according to an iterative farthest point sampling method [23]. Second,

a maximum number of points in the local neighborhood of each center point is determined by a

ball query method to form local groups [23]. Finally, a PointNet is applied to every group to en-

code the local features of the centroid’s neighborhood [23]. This sequence of operations is

denoted as set abstraction (SA) and can be applied in a hierarchical way to obtain a global

representation of the input point cloud, as shown in Figure 2.4.

 𝑔ψ 𝑓θ r̃

Discovering#_CTVL001a403ec8064614df1a1a75c8d94bb69fd
PointNet:#_CTVL001c5315e9f7242409e9ae610da3e733a1f
PointNet:#_CTVL001c5315e9f7242409e9ae610da3e733a1f
PointNet:#_CTVL001c5315e9f7242409e9ae610da3e733a1f
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
PointNet:#_CTVL001c5315e9f7242409e9ae610da3e733a1f
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02

2 State of the Art

13

Figure 2.4: Illustration of the set abstraction and feature propagation module of the PointNet++ ar-

chitecture in accordance with [23].

The restoration of the original point cloud – the decoding of the global feature vectors – is ac-

complished by an equal number of feature propagation (FP) modules. Within an FP module the

points of the local neighborhoods get associated with the encoded features of the corresponding

center points by a spatial interpolation method. This way, the original point cloud is restored in a

hierarchical way, as illustrated in Figure 2.4.

Applying this network architecture, DANZER et al. [41] used two consecutive PointNet models to

perform a semantic segmentation on a 2D radar point cloud and estimates bonding boxes to

solve a binary classification problem. On this basis, SCHUMANN et al. [21] implemented a Point-

Net++ architecture to train a semantic segmentation model for a multi-class segmentation

problem. Recently, CENNAMO et al. [42] proposed a network architecture with multiple Point-

Net++ networks in combination with an attention mechanism to perform a semantic segmen-

tation on automotive radar data.

Point Convolution Networks

Point convolution networks apply a kernel-based convolution operation directly to the input point

cloud. Unlike pointwise MLP networks, the convolution kernel is not limited to a single point but

can be applied to a set of points. Moreover, point convolution networks are able to represent

spatial relationships by a shared kernel and can operate on unordered sets of points with varying

input sizes.

Convolutional neural networks – including point convolution networks – are based on a discrete

convolution operation of an input function with a kernel function to compute the desired output[32,

pp. 331-334]. Applying this method to an unordered set of points, the discrete convolution of a

set of point features ℱ ∈ ℝd−3 with a kernel function 𝑔 at a point 𝐱 ∈ ℝ3 is defined as

(ℱ ∗ 𝑔)(𝐱) = ∑ 𝑔(𝐱𝑖 − 𝐱)𝐟𝑖
𝐱𝑖∈𝒩x

 (2.7)

where 𝐱𝑖 ∈ ℝ
3 represents the point coordinates to the corresponding point features 𝐟𝑖 ∈ ℝ

d−3 of

the finite set 𝒫, whereas 𝒩x ⊆ 𝒫 denotes a set of points in the neighborhood of 𝐱 [22]. Under

consideration of this convolution operation it is the objective of the model training to learn a suit-

able kernel function by adjusting the kernel weights.

set abstraction set abstraction feature propagation feature propagation

PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
2D#_CTVL0018dce1249d25f4fa6a314f759b2b61d0a
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Leveraging#_CTVL0014ba1e9719f3c4472bbaf27c067120832
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

2 State of the Art

14

Based on this operation, XU et al. [43] developed a kernel function with different weights for each

neighboring point depending on the neighbor’s distance-wise order, which leads to a spatially

inconsistent filter kernel [22]. To overcome this problem, Flex-Convolution [44] is built on a spa-

tially independent filter kernel, which applies a linear kernel function to the k-nearest-neighbors.

In contrast, LI et al. [45] proposed a kernel function with kernel-point-based filter weights in as-

sociation with a correlation function to realize a discrete convolution operation on point cloud

data.

On this basis, KPConv [22] introduces a kernel point convolution (KPConv) based on a set of

kernel points with a spatial location and an associated kernel weight. Therefore, the kernel func-

tion

𝑔(�̅�𝑖) = ∑ ℎ(�̅�𝑖 �̃�𝑗)𝐰𝑗
𝑗<nk

 (2.8)

describes the influence of the kernel weights 𝐰𝑗 onto the neighboring points 𝐱𝑖 by a correlation

function ℎ, where �̅�𝑖 = 𝐱𝑖 − 𝐱 is the neighbor’s position centered on 𝐱 and �̃�𝑗 ∈ {�̃� | j < nk} ⊂ ℬr

denotes the set of nk kernel points within the neighborhood domain ℬr = {�̅� ∈ ℝ | ‖�̅�‖ ≤ r} with

radius r [22]. The correlation function ℎ, which defines the degree to which a kernel point is as-

sociated with the neighboring points, is defined as

ℎ(�̅�𝑖 �̃�𝑗) = 𝑚𝑎𝑥 (0 1 −
‖�̅�𝑖 − �̃�𝑗‖

σ
) (2.9)

where σ is the area of influence of the kernel points and will be chosen according to the input

density [22]. A graphical representation of the described kernel point convolution is provided in

Figure 2.5.

Figure 2.5: Graphical representation of the kernel point convolution in association with [22].

2.4.2 Recurrent Neural Network Architectures

Recurrent neural networks enhance the capabilities of feedforward neural networks by the ability

to consider neuron outputs of preceding timesteps [32, pp. 373-374]. The introduction of this

feedback loop enables RNN architectures to utilize temporal information of input data sequences.

However, due to the given data format (as described in section 2.3), recurrent neural networks

for point cloud data must be able to process unordered sets of points with varying input sizes

over time.

x
r

h11

h12

 x = 5 nk = 9

[x, din] [x, din]

hij

[nk , din, dout]

Wj

Σ [x, dout]

Σ

[dout]

SpiderCNN:#_CTVL001d6f749fbfe8148b18c306a3a69055bf8
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
Flex-Convolution,#_CTVL00175d8b8cf896c4e1588eaa3355d74bdfb
PointCNN:#_CTVL0015ddc7d51b6a545079911abee400f9103
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

2 State of the Art

15

To process point cloud data recurrently, an association function is required to associate the

points of the previous timestep with the points of the current timestep [46]. Due to the unordered

data structure, this association relies on the point information itself rather than the point index

within the data structure and can be implemented as one of the methods discussed in subsec-

tion 2.4.1.

Based on a pointwise MLP approach, SCHUMANN et al. [1] used a modified PointNet++ architec-

ture to associate the radar point cloud of the previous timestep with the current input point cloud.

To achieve this, a new layer is introduced which calculates an additional feature vector for every

point in the current input point cloud based on the previous point cloud. This layer combines both

the current and the previous point cloud to apply a modified PointNet++ operation on the cumu-

lated points. This modified operation uses the new points as center points to form local

neighborhoods from the previous point cloud only. The neighborhood points are then encoded

by a PointNet layer to receive an additional feature vector for every center point. Doing so, the

information of the previous timestep gets encoded into the current input point cloud. However,

simple feedback loops – like this one – often encounter vanishing or exploding gradients, as

shown by [46, 47].

To overcome this problem, FAN and YANG [46] proposed an RNN architecture for point cloud

input data based on the long short-term memory (LSTM) cell of HOCHREITER and SCHMIDHU-

BER [47]. The LSTM cell itself consists of two states (the hidden state 𝐇 and the cell state 𝐂) and

three internal gates to regulate the flow of information. The input gate 𝐈 controls the flow of infor-

mation into the cell, the forget gate 𝐅 regulates the remaining information within the cell and the

output gate 𝐎 controls the transmission of information. To adapt this cell design for point cloud

data processing several modifications are made in order to achieve a model architecture invari-

ant to input data permutations and with the ability to handle input data of varying sizes.

First, the gate units of the LSTM cell, which are originally implemented as fully connected layers,

are replaced by a modified PointNet++ layer 𝑝θ, similar to [1]. Therefore, the points of current

input point cloud 𝐗𝑡 are used as center points to form local neighoorhoods from the points of the

previous timestep 𝐇𝑡−1 and encode their information into the current input points by applying a

PointNet operation. Second, another modified PointNet++ layer is applied to the previous cell

state 𝐂t−1 to associate the points of the previous timestep with the points of the current input

point cloud. This new step of calculating an intermediate cell state �̂�t−1 is required since the

number of points can vary over time and the order of the points is not preserved over timesteps.

All changes to the original LSTM architecture are represented in Figure 2.6 and highlighted in

blue. Nevertheless, PointRNN has not yet been applied to radar data related problems nor has

any other LSTM-based architecture been used to semantically segment automotive radar data

raising the demand on investigating the utilization of an LSTM-based model architecture.

PointRNN:#_CTVL0019cb82e7ecd774a21aa41302d77619ef2
Scene#_CTVL001b3ad182847a949b3b172afbe4f728a1b
PointRNN:#_CTVL0019cb82e7ecd774a21aa41302d77619ef2
Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d
PointRNN:#_CTVL0019cb82e7ecd774a21aa41302d77619ef2
Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d
Scene#_CTVL001b3ad182847a949b3b172afbe4f728a1b

2 State of the Art

16

Figure 2.6: Computational graph of the PointLSTM [46] cell with input 𝐗, hidden state 𝐇 and cell

state 𝐂 of the timestep 𝑡.

x +

x

x

𝐂t−1

𝐇t−1 𝐇t

𝐂t

𝐗t

𝑡𝑎𝑛ℎ

�̂�t−1

𝐅t 𝐈t
𝐎t

�̃�t

𝑝θ

𝑝θ 𝑝θ 𝑝θ𝑝θ

PointRNN:#_CTVL0019cb82e7ecd774a21aa41302d77619ef2

17

3 Model Development

Based on the current state of the art and in line with the method defined in section 1.2, the model

development follows a data driven development strategy. According to this strategy, the process

chain is split into dedicated modules, represented in Figure 3.1 and described in the following.

Figure 3.1: Overview of the model pipeline represented by three major parts. The center part repre-

sents the model’s forward pass to create a prediction from a given dataset, the inner

loop (on the bottom) represents the model training by a gradient-based optimization pro-

cess and the outer loop (at the top) visualizes the hyperparameter tuning by adjusting

the initial configuration.

The process pipeline originates from the chosen dataset and processes the given data in a pre-

ceding pre-processing step, as discussed in section 3.1. The pre-processed dataset is then fed

to the input pipeline – described in section 3.2 – and loaded onto the model. Based on this data,

the network architecture is defined in section 3.3 and trained to predict a class label for every

point in the given input point cloud.

The model training describes the process of iteratively adjusting the model weights to minimize

the value of the loss function, which is defined in section 3.4. This optimization process is realized

by the optimizer, which is defined in section 3.5. The goal of this model training is to obtain an

optimal prediction result measured by the defined evaluation metric of section 3.6. To reach this

goal several experiments are executed to explore the parameter space and tune the perfor-

mance of the model based on the experimental design, explained in section 3.7.

Extract Process Load Predict Evaluate

ℒ

InitializeInitialize

Tune

Optimize

3 Model Development

18

3.1 Data Pre-Processing

The data pre-processor builds the link between the dataset and the model input pipeline. There-

fore, the pre-processor module is not independent from the individual datasets but built upon

their individual data structure. Under consideration of this dependency, the preceding pre-pro-

cessor module has three main purposes:

1. the provision of the model input data,

2. the determination of the target values and

3. the homogenization of the data format.

The provision of the input data describes not only the extraction of the point cloud information

but realizes the user configuration. This configuration includes the aggregation, filtering, and

mapping of the point cloud data. Therefore, the pre-processor combines the information of mul-

tiple radar sensors and aggregates the point clouds of multiple radar sweeps. In addition to that,

the point cloud is filtered by properties of the scene, the keyframe and the points themselves.

Furthermore, the pre-processor allows the mapping of individual radar channels to defined val-

ues.

Applying this functionality to the utilized nuScenes [17] dataset, the point cloud information of all

five radar sensors is used and three consecutive sweeps are aggregated to obtain the input point

cloud. The point cloud is not filtered by any of the radar quality values listed in Table 2.2 and all

four recording locations are taken into account. The resulting point cloud data is limited to eight

radar channels, to decrease the demand on system resources and improve the model perfor-

mance, as discussed in [48, pp. 29-34]. The remaining radar channels of the input point cloud

are the three coordinate values, the dynamic property, the rcs value, the pdh0 value as well as

the compensated relative velocity in longitudinal and lateral direction.

The determination of the target values describes the process of assigning a class label to every

point of the obtained point cloud. The label is determined based on the spatial location of the

points and assigned if the point is located within a provided bounding box (annotation). Therefore,

the bounding box dimensions are increased by a configurable factor (denoted as whl_factor) to

take positional tolerances into account. All points that are not belonging to a given annotation

are considered as background and labeled as None class.

The actual label of all points within a bounding box depends on the annotation category and the

annotation attribute. The assignment process allows the remapping of nuScenes categories or

annotation attributes to user configured classes. This allows the combination of multiple catego-

ries to a single class and enables the ability to assign class labels based on annotation attributes

rather than on annotation categories. Furthermore, the assignment to the None class and even

the removal of the overall background is possible.

Based on this target value determination, three different dataset compositions are created from

the nuScenes dataset. The first composition, which serves as benchmark dataset, is created

according to the results of [48] and represented in Table 3.1. The second composition focuses

on the differentiation of pedestrians from the surrounding points and represents a binary seg-

mentation problem. The third composition is based on the nuScenes annotation attributes rather

than on annotation categories and is made up of two classes, one representing all points be-

longing to the moving vehicle attribute and another combining all other points. In the following,

these dataset compositions are denoted as benchmark, pedestrian, and dynamic vehicle dataset.

nuScenes:#_CTVL001f02cad1743da46e2849a08712ee7dec1
Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca

3 Model Development

19

Table 3.1: Proposed dataset compositions as combination of multiple nuScenes categories to user

configured classes.

In a third step, the data of all keyframes of a scene gets combined and transformed to a homog-

enous data format. Therefore, the point cloud data (.pcd) is serialized to a cross-platform, cross-

language compatible and efficient protocol buffer message (.tfrecord), which is recommended to

use in combination with a TensorFlow-based input pipeline [49].

nuScenes category Benchmark dataset Pedestrian dataset

None None None

animal Pedestrian None

human.pedestrian.adult Pedestrian Pedestrian

human.pedestrian.child Pedestrian Pedestrian

human.pedestrian.construction_worker Pedestrian Pedestrian

human.pedestrian.personal_mobility Cycle None

human.pedestrian.police_officer Pedestrian Pedestrian

human.pedestrian.stroller Pedestrian Pedestrian

human.pedestrian.wheelchair Pedestrian Pedestrian

movable_object.barrier None None

movable_object.debris None None

movable_object.pushable_pullable None None

movable_object.trafficcone None None

static_object.bicycle_rack None None

vehicle.bicycle Cycle None

vehicle.bus.bendy Vehicle None

vehicle.bus.rigid Vehicle None

vehicle.car Vehicle None

vehicle.construction Vehicle None

vehicle.emergency.ambulance Vehicle None

vehicle.emergency.police Vehicle None

vehicle.motorcycle Cycle None

vehicle.trailer Vehicle None

vehicle.truck Vehicle None

3 Model Development

20

3.2 Input Pipeline

The input pipeline is responsible for supplying the pre-processed data to the model and is split

into three stages:

1. the extraction of the data,

2. the transformation of the data format and

3. the loading of the data onto the accelerator device [48].

In the first stage, the serialized protocol buffer messages are extracted from the files and passed

to a deserializer. The deserializer parses the extracted messages according to a defined protocol

to receive the actual point cloud data 𝒫 and their corresponding target values 𝒴. In the second

stage, the received data is randomly shuffled and transformed into an input tensor 𝐗 as well as

a corresponding tensor of one-hot encoded target values 𝐘. To transform the point cloud data

and batch the received tensors a zero-padding method is applied. This method describes the

process of adding zero-elements to the data until the length of all elements in the batch is equal

within every dimension. Finally, the dataset is cached, prefetched and loaded onto the acceler-

ator device (GPU) to be retrieved by the model training.

3.3 Network Architecture

The network architecture defines the transfer function between the input 𝐗 and the output 𝐘 to

predict a class label for every point within the input point cloud. Under consideration of the pro-

vided data format (described in section 2.3) and with regards to the raised research questions in

section 1.2, the following requirements can be imposed on the network design.

• Order invariance: a model consuming n points must be invariant to n! permutations

of the input set [23].

• Information intactness: the number of elements within the input and output set must

be equal without any loss of information [50].

• Interaction among points: the model should be able to capture relationships among

neighboring points [23].

• Location variance: the model should be able to capture dynamically changing re-

lations among points over time [51].

• Robust to transformations: the model should be robust to correlation-preserving

transformations of the input point cloud, such as scaling or rotating [23].

Besides the requirements on the network architecture itself, the modularity and flexibility of the

model structure is a key objective of the model development to realize a simple evaluation of

different network architectures.

To achieve this, a modular development platform, as characterized by the macroscopic model

structure represented in Figure 3.2, is proposed. This structure consists of five model placehold-

ers each dedicated to a specific task. The input model is dedicated to data related

transformations and is a key element for the realization of a network architecture robust to trans-

formations. The encoder model encodes the provided input data to extract the essential

Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
CloudLSTM:#_CTVL001ecf407fab0904c039e597004973caa6f
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
Deep#_CTVL00116f3dfd5c1784157bf5c0ccb9b7ee019
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02

3 Model Development

21

information from the given data and the bridge model can be used to further process this data.

The decoder model restores the original data based on the encoded information and the given

input data. Finally, the output model maps the decoded information onto the class labels to real-

ize the semantic segmentation of the input point cloud. In terms of terminology, each submodel

is split into multiple modules containing the actual layers of the network which realizes the net-

work operations – explained in the following.

Figure 3.2: Macroscopic model structure as development platform with five configurable submodels.

In consideration of the above defined model structure and to fulfill the model requirements, a

feedforward neural network is derived from the current state of the art in subsection 3.3.1 before

a feedback loop is introduced in subsection 3.3.2 to utilize the temporal domain.

3.3.1 Feedforward Neural Network Architecture

The feedforward neural network architecture is divided into the submodels discussed above

without the utilization of the bridge model and realizes the forward pass of the model. The model

does not consider the temporal information of the input data, which means that the requirement

on the location variance cannot be met but is subject to the recurrent neural network architecture

described in subsection 3.3.2. The four remaining submodels of the feedforward neural network

architecture are described in the following.

First, the input model normalizes the given data to improve the stability of the training and to

build the basis for a model robust to transformations [52, pp. 29-35]. This input data normalization

is implemented as a per channel min-max-scaling, where the input value 𝐗𝑖𝑗𝑙 is scaled to an

interval of [0 1] according to

with a minimum value min and maximum value max of the channel 𝑙. The minimum and maxi-

mum values of the individual channels are chosen in accordance with the channel’s value range

defined in Table 2.2, except for the point coordinate channels. The scaling parameters of the

point coordinate values are determined based on the utilized dataset and defined as ±250 m for

the x- and y-coordinate values as well as zero and one meter for the z-coordinate values, further

explained in [48].

The encoder model – which builds the core of the feedforward neural network – is derived from

the KPConv [22] architecture and based on the kernel point convolution operation discussed in

subsection 2.4.1. The selection of this network architecture over others is motivated by its suita-

bility for point cloud input data and its ability to represent point relationships by a shared

𝐗𝑖𝑗𝑙
′ =

𝐗𝑖𝑗𝑙 −min

max −min
 (3.1)

Input

Model

Encoder

Model

Decoder

Model

Output

Model

Bridge

Model

Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

3 Model Development

22

convolution kernel, as shown in Table 2.3. Given that feature engineering-based networks as

well as projection-based networks rely on an input data format of a fixed size, the information

intactness can only be ensured if the discretization of the space is chosen in accordance with

the sensor resolution. However, such a fine discretization of the space would lead to a high

demand on system resources and a sparse data representation, making it impractical for real

world applications [21]. On the other hand, GNNs like [53–55] are based on an approach very

similar to the utilized kernel point convolution, but require a data transformation to express the

given point cloud as a graph, hance increasing the overall model complexity. In addition to that,

GNNs tend to focus more on edge relationships rather than on points relative positions and

therefore tend to neglect the arrangement of the points [22]. In comparison to that, pointwise

MLP networks can operate directly on point cloud input data but are limited to the utilization of

shared MLP layers, making the convolution operation more complex and increasing the difficulty

of training convergence [22]. For those reasons, the KPConv [22] architecture is chosen as core

model architecture and described in the following.

The encoder architecture is built of three set abstraction modules in association with the network

architecture of [21, 48]. The bottleneck structure of this submodel is created by a hierarchical

implementation of the SA modules to enforce an element reduction and to extract the essential

information of the given point cloud. To achieve this, the three-stage encoder implementation is

initialized according to the parameters listed in Table 3.2, where the number of center and neigh-

boring points is reduced while the radius of the local neighborhoods is increased. At the same

time, the number of filters is increased to encode the information of the overall point cloud into a

reduced number of center points.

Table 3.2: Key hyperparameter settings of the three encoder modules of the proposed network ar-

chitecture.

The SA modules are implemented as residual network (ResNet) blocks [56] according to [22]

and initialized as discussed above. Each of these ResNet blocks consists of a set of three con-

volution layers and a skiplink connection, as represented in Figure 3.3. The core of this network

block is implemented as a KPConv layer, as described in subsection 2.4.1, which is surrounded

by two shared MLP layers. The actual set abstraction is executed by the KPConv layer, which

first samples a defined number of center points to build local neighborhoods before a kernel point

convolution is applied to encode the information of the neighborhoods within the center points.

To associate the skiplink data with the encoded point cloud, the same iterative farthest point

sampling method is applied to the skiplink data before the data is processed by a shared MLP

layer to align the number of point features. Finally, the encoded data and the skiplink data are

added up and passed to an activation function before the data is handed over to the next module.

Encoder

module

Number of

center points

Max. number of

neighboring points

Neighborhood

radius r0

Number of

filters

0 512 16 0.016 16, 16, 32

1 128 8 0.032 32, 32, 64

2 16 4 0.064 64, 64, 128

Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Geodesic#_CTVL0014d19b119be3b4435b7a49a248adcf89b
Dynamic#_CTVL0014bd607692bf2487aa20574923aa0d92b
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
Deep#_CTVL001a3171fbf8d324290ad955af5bc72b593
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

3 Model Development

23

Figure 3.3: ResNet block of the KPConv architecture according to [22]. The sample layer is imple-

mented as an iterative farthest point sampling and the activation function is user

configurable but for our purposes defined as rectified linear unit.

The decoder model is chosen in accordance with the PointNet++ [23] architecture and imple-

mented in association with [21]. This decision on the network design is based on two

considerations. First, the comparability between different network architecture as well as the

current state of the art should be preserved by changing as few parameters as possible. Second,

the utilization of more complex decoder structures does not significantly enhance the segmen-

tation quality of the network, as shown by [22]. Therefore, the decoder is implemented by three

FP modules, as described in subsection 2.4.1.

The output model structure follows a similar approach and uses a number of three shared MLP

layers in combination with two dropout layers, as proposed by [21]. This model design allows a

continuous reduction of the feature dimensions to determine a k-dimensional class score for

every point, while keeping the number of model parameters low. This characteristic and the ad-

ditional dropout layers are important to prevent the model from overfitting, as shown by [57].

Based on this network architecture, an end-to-end point cloud segmentation model can be im-

plemented and is evaluated in the following. However, this network architecture lacks the ability

to consider temporal information of consecutive keyframes, which is why an extension of the

feedforward neural network architecture is required.

3.3.2 Recurrent Neural Network Architecture

The extension of the network architecture, by introducing a feedback loop to utilize the temporal

domain, can be realized on different model levels. On the one hand the RNN can be implemented

within the bridge model to use the advantage of a known and fixed input data size or on the other

hand within the encoder model to utilize the temporal information on different encoding levels.

While currently available RNN architectures can only be used within the first approach, the sec-

ond one could benefit from the available information on the different encoding levels.

Nevertheless, both approaches require a combination of RNN architectures and non-recurrent

neural network architectures within the same model. This is challenging, because RNN architec-

tures are based on input data with an additional time dimension which is not required for non-

recurrent neural networks. However, this problem can be solved with three different approaches.

First, the individual timesteps can be processed in sequence, while storing the internal state of

the RNN layers and use it to initialize the next processing step. However, this approach would

require equally long sequences across multiple scenes to be able to parallelize the model training

(by batching the input data) without losing input data by cutting of scenes at a specified length.

The second approach would require an extension of all non-recurrent layers by an artificial

dummy dimension across which the layer operations can be shared. However, this would require

a high implementation effort and increase the overall model complexity. Besides those two

Sample MLP

MLPMLP KPConv + Activate

KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Dropout:#_CTVL0013b10a276fe584008b61b43a71887218a

3 Model Development

24

approaches, the non-recurrent neural network layers can be unrolled along the time dimension

so that every timestep is processed by an individual layer instance before they get combined

again before the RNN layer. This approach (which is called time distribution) can be implemented

very efficiently by reshaping the input tensors and parallelizing the network operations during the

model training, which is why it is chosen as preferred strategy.

Following this technique, two network architectures with a recurrent bridge model are defined in

a first step. These network architectures include a model with a standard LSTM layer according

to [47] within the bridge model and one with a convolutional LSTM layer according to [58]. The

main difference between these two models is that the first one is based on fully connected layers

within the LSTM cell while the second one uses a convolution operation to realize the LSTM

gates and layers [58]. In addition to that, the LSTM layer supports just three-dimensional input

data so that the point and feature dimension have to be combined (flattened).

To overcome these limitations and to utilize the temporal information across multiple encoding

levels a hierarchical RNN architecture for point cloud input data is developed. To achieve this,

an LSTM cell invariant to input permutations and with the ability to process input data with chang-

ing input sizes across timesteps is developed. This novel network architecture is called kernel

point convolutional long short-term memory (KPLSTM) and is derived from the PointLSTM cell

described in subsection 2.4.2 and illustrated in Figure 2.6.

The KPLSTM cell is developed by replacing of the PointNet layers 𝑝θ within the original

PointLSTM cell. These PointNet layers are replaced by a modified KPConv layer to overcome

the limitations of the PointNet architecture on the kernel size. The modification of the KPConv

layer is inspired by [1] and concerns the encoding method of the layer. Thus, the modified

KPConv layer receives not just a single input point cloud but both the current input point cloud

𝐗𝑡 as well as the point cloud of the previous hidden state 𝐇𝑡−1. Within this new layer, the current

input points are used as center points while the previous point cloud is used as neighbor points

and associated to the current input points by applying a KPConv kernel to the local neighborhood.

Therefore, the information of the previous timestep gets encoded into the current input and the

three gate units of the proposed KPLSTM cell can be defined as

𝐈𝑡 = 𝜎(𝐾𝑃𝐶𝑜𝑛𝑣(𝐗𝑡 𝐇𝑡−1)) (3.2)

𝐅𝑡 = 𝜎(𝐾𝑃𝐶𝑜𝑛𝑣(𝐗𝑡 𝐇𝑡−1)) (3.3)

𝐎𝑡 = 𝜎(𝐾𝑃𝐶𝑜𝑛𝑣(𝐗𝑡 𝐇𝑡−1)) (3.4)

where 𝜎 denotes a sigmoid activation function. Following the same idea, the intermediate cell

state �̂�𝑡−1 is determined based on the current point coordinates 𝐗𝑡
′ (not considering the current

point features) and the internal cell state �̃�𝑡 is calculated according to the gate units but with a

hyperbolic tangent activation function, given as

�̂�𝑡−1 = 𝐾𝑃𝐶𝑜𝑛𝑣(𝐗𝑡
′ 𝐂𝑡−1) (3.5)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝐾𝑃𝐶𝑜𝑛𝑣(𝐗𝑡 𝐇𝑡−1)). (3.6)

Based on these operations, the new cell state 𝐂𝑡 and the new hidden state 𝐇𝑡 can be calculated

according to the standard LSTM implementation by HOCHREITER [47] with the elementwise

Hadamard product ⊙, as

𝐂𝑡 = 𝐅𝑡⊙ �̂�𝑡−1 + 𝐈𝑡⊙ �̃�𝑡 (3.7)

𝐇𝑡 = 𝐎𝑡⊙ 𝑡𝑎𝑛ℎ(𝐂𝑡). (3.8)

Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d
Convolutional#_CTVL001d10f08356b154d3dbfcc1996095516e3
Convolutional#_CTVL001d10f08356b154d3dbfcc1996095516e3
Scene#_CTVL001b3ad182847a949b3b172afbe4f728a1b
Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d

3 Model Development

25

Making use of this technique, the novel set abstraction module is defined by the combination of

a KPLSTM layer and two KPConv layers, which allows a comparable implementation to [22, 23].

The network architecture is initialized with the same hyperparameter settings, as represented in

Table 3.2, and a graphical representation of a SA model is given in Figure 3.4.

Figure 3.4: Graphical representation of the set abstraction module of the KPLSTM architecture.

3.4 Loss Function

The loss function is the subject of the gradient-based optimization process that aims to find the

“best available” set of model parameters to minimize the loss value [59, p. 41]. This optimization

process is referred to as the model training, whereas the loss function evaluates the model’s

prediction 𝐘 in relation to the corresponding target values 𝐘. The goal of this training is the opti-

mization of the model’s performance, with the loss function representing the objective function

of this optimization process [32, p. 275].

To achieve this goal the loss function design has be chosen with respect to the underlying data

distribution and with regards to the aspired project goal [32, p. 275]. Therefore, a loss function

according to [48] is chosen, which is designed for model trainings on imbalanced datasets and

multi-class classification problems. The loss value of a single keyframe is defined as

ℒ(𝐘 𝐘) = −a∑𝐜 𝐘𝑖:∑𝐘𝑖𝑗α𝑗(1 − 𝐘𝑖𝑗)
γ
𝑙𝑜𝑔 (𝑓(𝐘𝑖𝑗))

k

𝑗=0

n

𝑖=0

 + (1 − 𝐘𝑖𝑗)(1 − α𝑗) 𝐘𝑖𝑗
γ
 𝑙𝑜𝑔 (1 − 𝑓(𝐘𝑖𝑗))

(3.9)

and is based on the loss function of LIN et al. [60]. To calculate the overall loss value of a training

step the loss values of all keyframes and scenes within a batch are aggregated (summed up).

The loss function itself consists of six major components, each described in the subsequent

paragraphs, and can be split into a true part for 𝐘𝑖𝑗 = 1 and false part for 𝐘𝑖𝑗 = 0.

The first part – the logit function 𝑓 – maps the output of the model to a suitable value range

𝑓: 𝐘𝑖𝑗 → [ε 1 − ε], where ε ≪ 1 represents a small value different from zero to ensure numerical

stability. This step, however, is not required if the output activation function satisfies this require-

ment already. Second, a logarithm function is applied to the prediction to penalize deviations

from the target values 𝐘𝑖𝑗, whereas large deviations are penalized more than small deviations.

In a third step, a modulating factor – raised to the power of the focal value γ ≥ 0 – is multiplied

to reduce the relative loss for well-classified examples and to put more focus on misclassified

examples [60]. Next, a class depended balance factor α𝑗 is applied to the loss function to balance

between the true and the false part of the equation. This balance factor is introduced to pay more

attention to either false positives or false negatives and its influence on the loss value is illus-

trated in Figure 3.5.

KPConv KPConvKPLSTM

KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
Focal#_CTVL00135ab846430a14553a1497d781caaf921
Focal#_CTVL00135ab846430a14553a1497d781caaf921

3 Model Development

26

Figure 3.5: Influence of the balance factor α on the loss value, where an up facing arrow indicates

an increase of the loss value and an down facing arrow indicates a decreasing loss

value – in comparison to an alpha setting of α = 0.5.

In a fifth step, a static class weight is applied to the loss value by multiplying the defined vector

of class weights 𝐜 ∈ ℝk with the one-hot encoded target value vector 𝐘𝑖: of the ith point (as a slice

of the target value tensor). The class weights are determined based on the underlying class

distribution of the utilized dataset to compensate for the effects of imbalanced datasets on the

model training. Therefore, the class weight of the jth class is defined as

𝐜𝑗 =
1

|𝒫𝑗
′|

|𝒫|

k
 (3.10)

where |𝒫𝑗
′| denotes the number of elements that belong to class 𝑗, for 𝑗 = 0 … k and |𝒫| the

number of elements in the finite set 𝒫 (the cardinality of 𝒫) [61].

As final step, a compensation factor a is deployed to account for the differences in the loss value

caused by the applied balance factors. This compensation factor, given by

a =
1

|𝒫|
∑
|𝒫𝑗
′|

α𝑗

k

𝑗=0

 (3.11)

is important to ensure comparability between different model trainings and to preserve the mag-

nitude of the loss value. The overall behavior of the loss function for different parameter

variations is illustrated in Figure 3.6.

1

0

1 0

�̂�

𝐘
α 0.5
α < 0.5

3 Model Development

27

Figure 3.6: Behavior of the loss function according to [48].

3.5 Optimizer

The optimizer describes the method of adjusting the model weights in order to obtain a minimum

loss value as a consequence of the model training. The optimization algorithm (the optimizer)

builds the core of the gradient-based optimization process to solve

𝑚𝑖𝑛
θ
ℒ(𝐘 𝐘) (3.12)

as good as possible and can be implemented in different ways [32, pp. 82-86]. Most common

optimizers are based on stochastic gradient descent and use different techniques to avoid get-

ting stuck in local minima or to enhance the optimization process. A further explanation of

different optimizers and their suitability for different problems can be found in [62, 63].

Within this model the Adam [64] optimizer is chosen as optimization algorithm due to its suitability

for optimization problems with many parameters, its robust behavior to the choice of hyperpa-

rameters and little demand on system resources [32, p. 309]. While the Adam optimizer is built

upon the RMSProp [65] algorithm by additionally utilizing the second-order moments of the gra-

dients to calculate the parameter updates, the learning rate represents the most important

parameter of the optimizer [32, p. 308].

The learning rate describes the step size of a single optimization step and is part of the models

hyperparameter space. The right choice of the learning rate value is important to ensure a fast

degradation of the loss value and a stable training behavior. For this reason, the learning rate is

scheduled according to

lr(epoch) = lr0 dr
epoch
ds (3.13)

where lr0 denotes the initial learning rate, dr the decay rate and ds the decay steps. The final

setting of these parameters is determined in a number of experiments and described in Appen-

dix D.

Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
An#_CTVL001c5f0d10b863343ed90689403ac72d00f
A#_CTVL00136826fd8a49a4e879cf3ca6305df26ab
Adam:#_CTVL001688773dd82984d64a3bad88ee957ce4b
Lecture#_CTVL00145d4cf16e46342f883abbed72f221779

3 Model Development

28

3.6 Evaluation Metric

Not the minimization of the loss value but the optimization of the segmentation quality measured

by the evaluation metric is the objective of the model training [32, pp. 275-276]. For that reason,

the selection of a suitable evaluation metric is an essential part of the problem definition and

subject to the method defined in section 1.2.

The selected evaluation metric must be suited for the given problem as well as the underlying

dataset. Given that the utilized nuScenes dataset shows significant imbalances between differ-

ent classes, as represented in Figure 2.2, metrics like accuracy are inappropriate for the

considered problem since they are biased in favor of the majority class [66]. Therefore, the macro

averaged F1 score is chosen as main evaluation metric.

The macro averaged F1 score is suitable for the evaluation of models trained on imbalanced

datasets and is determined by the arithmetic mean of the class individual F1 scores [21]. The F1

score itself is defined as

F1 = 2
precision recall

precision + recall
 (3.14)

and represents the harmonic mean between precision

precision =
tp

tp + fp
 (3.15)

and recall

recall =
tp

tp + fn
 (3.16)

where tp denotes the number of true positives, fp the number of false positives and fn the num-

ber of false negatives.

3.7 Experimental Design

The experimental design is subject to the stated research questions of section 1.2 and defines

the execution of the model trainings. The goal of the conducted experiments is to provide insights

about the influence of the independent variables on the segmentation quality of the model. The

independent variables a given by the chosen dataset, the network architecture and the set of

hyperparameters. This goal is achieved by varying the independent variables while monitoring

the behavior of the model output within a controlled environment.

The controlled environment – which ensures the reliability of the experiments – is subject to a

number of different methods addressing the model initialization as well as the execution of the

model training. First, the whole process pipeline is created by a defined configuration file includ-

ing not only the set of hyperparameters but also the definition of the model architecture as well

as the dataset composition. Second, the model initialization is seeded to ensure a deterministic

behavior of all pseudo random operations and finally, the model training is set to a deterministic

execution mode within the defined limitations of [67, p. 12]. Within this environment, the

A#_CTVL0013ea6d170471744aaa378cd24a68bc043
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
cuDNN#_CTVL001f7be09d02c984bb2b9c86e828836b237

3 Model Development

29

conducted experiments are grouped into three test series based on the method defined in sec-

tion 1.2 and in association with the stated research questions.

First, a comparison of different state of the art networks – described in subsection 2.4.1 – is given

to determine their performance on publicly available datasets. Besides the comparison of the

network architectures themselves, the main purpose of this experiment is the provision of com-

parable results to enhance the interpretability of state of the art results on proprietary datasets.

Furthermore, a better understanding for the suitability of the utilized nuScenes [17] dataset is

aspired by the provision of these benchmark results.

Second, a series of experiments with different recurrent neural network architectures is per-

formed to discuss the following hypothesis, which is derived from the research question raised

in section 1.2.

The utilization of the temporal information enhances the segmentation quality.

To discuss this, three different RNN architectures are evaluated on three different dataset com-

positions and compared to state of the art feedforward neural networks. These models include

the proposed KPLSTM architecture of section 3.3 as well as a KPConv [22] architecture with a

complementary LSTM layer within the bridge model and a similar architecture but with a convo-

lutional LSTM [58] layer instead of a standard LSTM [47] layer.

In a third step, different hyperparameter settings are evaluated to determine their influence on

the segmentation quality of the model. For that purpose, the KPConv model is chosen since it is

not just used within the comparison of different state of the art networks, but it also builds the

basis of the utilized RNN architectures. Given this network architecture, the test procedure fol-

lows a grid search approach to explore the hyperparameter domain. Therefore, the considered

hyperparameters are varied according to a defined set of parameter values, while all other pa-

rameters are kept constant to ensure the validity of the experiment. Under consideration of this

test procedure, the investigated hyperparameters are chosen to be the kernel size (the number

of kernel points) as well as the radius for the neighborhood generation to examine the importance

of utilizing the point relationships on the segmentation quality.

nuScenes:#_CTVL001f02cad1743da46e2849a08712ee7dec1
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
Convolutional#_CTVL001d10f08356b154d3dbfcc1996095516e3
Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d

3 Model Development

30

31

4 Results

The results of the experiments, which are executed according to the defined procedure of sec-

tion 3.7, are represented in the following. The first section 4.1 contains the results of the

feedforward neural network architectures, which are trained with focus on their performance on

publicly available datasets. The second section 4.2 represents the results of the recurrent neural

network architectures in comparison to the results of the feedforward neural network architec-

tures on three different dataset compositions. In the third section 4.3 the results of two

hyperparameter studies are represented to a get a better understanding of the model behavior.

All experiments are executed on a remote server equipped with a NVIDIA Tesla V100, an Intel

Xeon Skylake processor and 362 GiB of system memory. The model implementation is based

on the python programming language (version 3.6.9) and the TensorFlow library version 2.2.0.

On this basis, all model trainings are executed according to the method defined in section 3.7

and evaluated by the metric defined in section 3.5.

4.1 Feedforward Neural Network Results

In order to evaluate the performance of state of the art network architectures on publicly available

datasets, two feedforward neural networks have been trained on the nuScenes dataset. The

PointNet++ architecture is chosen in association to [21] and initialized according to the parame-

ters defined in Table 3.2. Therefore, the PointNet++ architecture consists of three SA modules,

three FP modules and an output model with three shared MLP layers as well as two dropout

layers. A detailed configuration of the PointNet++ architecture can be found in Appendix C.

The KPConv model is based on the kernel point fully convolutional neural network (KP-FCNN)

architecture of [22] and defined in subsection 3.3.1. To maintain the comparability of both net-

work architectures, the KPConv model is also initialized according to the parameters defined in

Table 3.2 and further described in Appendix C. The results of both network architectures on the

benchmark dataset are represented in Table 4.1 by their macro averaged (total) and class indi-

vidual F1 scores.

Table 4.1: Results of the feedforward neural network architectures on the benchmark dataset, as

defined in Table 3.1. The total F1 score denotes the macro averaged F1 score of all four

classes.

Model

Total

F1 Score

None

F1 Score

Cycle

F1 Score

Pedestrian

F1 Score

Vehicle

F1Score

PointNet++ 0.251 0.800 0.006 0.024 0.172

KPConv 0.324 0.916 0.010 0.069 0.300

Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

4 Results

32

4.2 Recurrent Neural Network Results

The second research question is subject to the utilization of the temporal domain and its effects

on the segmentation quality of the model. To discuss this, several experiments have been con-

ducted to evaluate the segmentation quality of three RNN architectures trained on three different

compositions of the nuScenes dataset, as defined in section 3.1. The network architectures in-

clude two KPConv models with an additional recurrent bridge model, one of which is equipped

with a standard LSTM layer according to [47] and another with a ConvLSTM layer according

to [58]. Besides that, the proposed KPLSTM model architecture defined in subsection 3.3.2 is

evaluated and its results are represented in Table 4.2.

Table 4.2: Results of the recurrent neural network architectures on the dataset compositions, defined

in section 3.1, in comparison to state of the art feed forward neural networks. All models

are evaluated according to the macro averaged F1 score.

4.3 Hyperparameter Optimization

The results of the hyperparameter studies are obtained on the KPConv model architecture and

are subject to the third research question on the effects of different hyperparameters on the

segmentation quality of the model. The first study examines the effects of the kernel size on the

model results and is executed by varying the number of kernel points while monitoring the eval-

uation metric. The results of this experiment are visualized in Figure 4.1 as a plot of the macro

averaged F1 score over the kernel size.

Figure 4.1: Results of the kernel point hyperparameter study. The plot represents the achieved

macro averaged F1 score for different numbers of kernel points.

Encoder

Model

Bridge

Model

Benchmark

dataset

Dynamic vehicle

dataset

Pedestrian

dataset

PointNet++ - 0.251 0.470 0.382

KPConv - 0.324 0.480 0.505

KPConv LSTM 0.276 0.480 0.379

KPConv ConvLSTM 0.312 0.730 0.475

KPLSTM - 0.249 0.644 0.377

Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d
Convolutional#_CTVL001d10f08356b154d3dbfcc1996095516e3

4 Results

33

The second hyperparameter study is executed in the same way, by modifying just the radius

parameter of the encoder modules and maintaining all other settings. In consideration of the

experimental design defined in section 3.7, the radii of the encoder modules are adjusted ac-

cording to

r𝑖 = 2
𝑖r0 (4.1)

where r𝑖 denotes the radius parameter of the 𝑖th encoder module and r0 the radius of the initial

encoder stage. To examine the effects of the radius configuration on the segmentation quality of

the model, the initial radius r0 is varied while measuring the macro averaged F1 score of the

model, as represented in Figure 4.2.

Figure 4.2: Results of the radius hyperparameter study represented by the macro averaged F1

score over the initial encoder radius. The radii of the remaining encoder modules are

determined according to r𝑖 = 2
𝑖r0 for 𝑖 = 0 … 2.

4 Results

34

35

5 Discussion

The following chapter discusses the results of the thesis, the underlying model architecture, and

the applied experimental design. The chapter is structured according to the method defined in

section 1.2 and with regards to the stated research questions. Therefore, the experimental de-

sign is discussed first – in section 5.1 – in consideration of the quality criteria of empirical

research. Building upon this, the utilized dataset is discussed in section 5.2 and the performance

of the feedforward neural networks on the nuScenes dataset is discussed in section 5.3. In sec-

tion 5.4 different recurrent neural network architectures, including the proposed network

architecture of section 3.3, are discussed and compared to the current state of the art. Finally,

the results of the hyperparameter studies are discussed in section 5.5.

5.1 Experimental Design

The experimental design is chosen in order to provide a defined training and evaluation proce-

dure that ensures the comparability of different results. Under these conditions, the conducted

experiments are subject to the three quality criteria of empirical research given by the objectivity,

reliability and validity of the experiment [68, p. 138].

The objectivity of the experiment describes the independency of the results from the observer

and can be further split into the objectivity of the procedure, the test evaluation and the interpre-

tation of the results [69, p. 70]. The first aspect of the objectivity is ensured by a consistent

execution of the experiments according to a defined configuration file which specifies the entire

process pipeline. Considering the objectivity of the test evaluation, an appropriate evaluation

metric is defined in section 3.5 to be able to compare different model results by a standardized

method. However, the interpretation of the results is subject to the observer themself and can

limit the objectivity of this aspect.

Reliability is a criterion for the consistency of a measurement and can be interpreted as the

independency of the results from the number of experiment executions [68, p. 138]. To fulfill this

quality criterion of empirical research, several measures are taken to create a controlled envi-

ronment for the experiment execution, as described in section 3.7. However, the parallelization

of the model training limits the reliability of the experiment due to the non-deterministic behavior

of specific operations, as defined in [67, p. 12]. This limitation mostly affects network architec-

tures build upon convolution or sampling operations and will especially influence model trainings

with a high number of training epochs. However, the observation of this behavior is limited to the

RNN experiments discussed in section 5.4.

The validity of the experiment, which describes the correspondence of the observation with the

property to be observed, is subject to the monitoring process and the chosen evaluation metric.

According to this the evaluation metric should be able to represent the segmentation quality of

cuDNN#_CTVL001f7be09d02c984bb2b9c86e828836b237

5 Discussion

36

the model, which is the aspired optimization goal of the project. However, the macro averaged

F1 score does not allow to draw conclusions about the class individual or even pointwise seg-

mentation quality of the model but represents a global quality value. To overcome this limitation,

one could either use the class individual F1 scores or the confusion matrix of the training, but

even that one would not be able to represent the confidence of the model’s prediction on the

individual classes. On the contrary, an objective comparison of different experiments requires

the provision of a defined comparative figure limiting the suitability of non-scalar quality metrics.

For both that reason and its suitability to evaluate models trained on imbalanced datasets, the

macro averaged F1 score is used as main evaluation metric, as described in section 3.5. How-

ever, the suitability of different evaluation metrics is an ongoing topic of research and further

discussed in [32, 66, 70].

5.2 The nuScenes Dataset

The discussion about the performance of state of the art network architectures on the nuScenes

dataset has to take the dataset itself into account. Since the provided dataset is the only source

of information and highly related to the achievable segmentation quality, a discussion of the

same is indispensable [59, pp. 48-58].

Information theory implies that all information originates from the elements themselves or the

relationship between elements [71]. For that reason, the amount of information carried by the

element (point) as well as the number of available elements defines the entirety of available

information. However, the amount of information carried by an element is not just subject to its

quantity but also to its quality, hance both aspects must be considered.

The information content of a single point is defined by its radar channels, which are specified by

their value range and resolution – listed in Table 2.2. Within this context, the restriction of the rcs

channel to a value range between -5.0 and 63.5  dBm² represents a significant limitation, due to

the importance of the rcs value on the differentiability between classes, as shown by [48]. This

is especially true if one considers that all radar channels are derived from the four base meas-

urement values given by the distance, the relative velocity, the azimuth angle and the rcs value

of the radar detection [72].

Besides the information content of the elements themselves, the number of elements is essential

to the overall available information [71]. With this in mind, two aspects are essential to evaluate

the value of the available information. First, the number of elements per object is important, which

defines the informational content of the object. Figure 5.1 gives some insights about the available

number of radar points per object of the utilized classes of the benchmark dataset and shows

that they are significantly lower than within comparable datasets like the one used by [1]. The

characteristic statistical values of the other datasets can be found in the Appendix B.

A#_CTVL0013ea6d170471744aaa378cd24a68bc043
Evaluation:#_CTVL001315936052eff42a3bfc53ec946ee53e3
A#_CTVL0010f7b4945ee4044c6a831f4d3fa8f3e63
Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
A#_CTVL0010f7b4945ee4044c6a831f4d3fa8f3e63
Scene#_CTVL001b3ad182847a949b3b172afbe4f728a1b

5 Discussion

37

Figure 5.1: Share of class annotations (bounding boxes) with a certain number of associated radar

points of the benchmark dataset.

The second aspect concerns the distribution of the elements across different classes, which is

represented in Figure 5.2. The given distributions show huge imbalances between classes,

which has two effects on the model training. First, the model performance on the minority classes

is negatively affected due to the comparatively low amount of available information [73]. Even if

the required amount of data to successfully train a model is an ongoing research topic of statis-

tical power analysis, statistics show that more data generally leads to better results [73–76].

Figure 5.2: Class distributions of the three different dataset compositions on a logarithmic scale. The

left figure represents the benchmark dataset, the middle one the dynamic vehicle dataset

and the right one the pedestrian dataset.

Second, the imbalanced class distribution directly affects the behavior of the model training since

elements of the majority class occur more often in the calculation of the loss value. For that

reason, most traditional machine learning approaches are biased towards the majority class [66,

77, 78]. To counteract this problem, a class weighted loss function based on the focal loss func-

tion [60] is applied. However, the class imbalances still represent one of the greatest challenges

during the hyperparameter tuning and the tendency towards the majority class can still be ob-

served within the training results, as represented in Table 4.1.

Predicting#_CTVL0013522268a12f2421e94272e93783bfa40
Predicting#_CTVL0013522268a12f2421e94272e93783bfa40
Some#_CTVL001903422dd771e474da75a64aa88608681
A#_CTVL0013ea6d170471744aaa378cd24a68bc043
Survey#_CTVL001d6c02a9a77ce4327b98ac78bea54a0b3
Survey#_CTVL001d6c02a9a77ce4327b98ac78bea54a0b3
Barricaded#_CTVL001343e07071c6e430d8ca52edf355f669e
Focal#_CTVL00135ab846430a14553a1497d781caaf921

5 Discussion

38

5.3 Feedforward Neural Networks

The purpose of this section is to discuss the feedforward neural network architectures, as defined

in subsection 3.3.1. The results of the PointNet++ [23] architecture are discussed first and com-

pared to the current state of the art. Beyond that, the results of the KPConv [22] architecture are

discussed in a second step and compared to those of the PointNet++ architecture.

The PointNet++ model reaches a macro averaged F1 score of 0.25 on the benchmark dataset

and shows a noticeable tendency towards the majority class. This tendency is represented in

Table 4.1 and corresponds with the results of [21, 42]. The observation of this tendency follows

the general assumption that most traditional machine learning approaches are biased towards

the majority class and is further discussed in [48].

Besides that, the model achieves the best performance on the vehicle class followed by the

pedestrian and cycle class. Comparing these results to the number of available points in Figure

5.2 it is noticeable that the model performance on these classes corresponds to the number of

available points. This observations is in line with the current state of the art [21, 42] and indicates

that more data is required to successfully train a model on the underrepresented classes as well

as the demand on further research on the topic of handling imbalanced datasets.

To put these results into context, the segmentation quality of the PointNet++ model is compared

to the current state of the art. SCHUMANN et al. [21] reached a macro averaged F1 score of 0.74

on a proprietary dataset, while CENNAMO et al. [42] achieved a score of 0.67 with the same model

architecture but on a different proprietary dataset. Applying a similar PointNet++ architecture to

the nuScenes dataset, a macro averaged F1 score of 0.25 can be achieved. The results of this

experiment are compared to the those of SCHUMANN et al. in Figure 5.3 and discussed in the

following.

Figure 5.3: Comparison of the results of the PointNet++ architecture on the benchmark dataset on

the left and the results of SCHUMANN et al. [21] on the right. Note that the number of

classes and the composition of the classes is not equal.

Observation shows that both reference models reach a higher evaluation score and therefore a

better segmentation quality. The difference in the segmentation quality can be subject to two root

causes. First, differences in the model architectures cannot be excluded, even if all models are

PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Leveraging#_CTVL0014ba1e9719f3c4472bbaf27c067120832
Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Leveraging#_CTVL0014ba1e9719f3c4472bbaf27c067120832
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Leveraging#_CTVL0014ba1e9719f3c4472bbaf27c067120832
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79

5 Discussion

39

based on the PointNet++ architecture. This is due to the fact that both network configurations

are not publicly available, which makes an exact replication of the network architecture impossi-

ble. However, this issue is considered to be subordinated since all major model parameters are

replicated and a variation of the remaining hyperparameters does not improve the segmentation

quality.

Besides possible deviations in the model architecture, the key difference between the three mod-

els is the utilized dataset. The model of SCHUMANN et al. is built upon a dataset with up to 3072

radar points per keyframe, whereas the nuScenes dataset is limited to a maximum of 625 points

per keyframe [21]. In comparison to that, CENNAMO et al. uses an input point cloud with a maxi-

mum of 1200 points per keyframe [42]. In addition to that, not only the total number of available

points is higher than within the nuScenes dataset but also the point density. Therefore, the infor-

mational content of the different datasets is the key difference between the three models and

results suggest that the underlying dataset has a huge impact on the achievable segmentation

quality of the model.

Beyond the current state of the art, a model based on the KPConv [22] architecture is trained on

the same datasets as the PointNet++ architecture. This model achieves a macro averaged F1

score of 0.32 on the benchmark dataset and therefore surpasses the results of the PointNet++

architecture. In addition to that, the KPConv-based architecture achieves not only a higher mac-

roscopic evaluation score but also exceeds the class individual results of the PointNet++

architecture. A comparison between both model results is given in Table 4.1 and illustrated in

Figure 5.4.

Figure 5.4: Comparison of the results of the KPConv architecture (on the left) with the results of the

PointNet++ architecture (on the right).

Apart from these results, the KPConv model outperforms the PointNet++ architecture also in the

pedestrian and dynamic vehicle dataset and achieves the best results across all tested network

architectures except for the dynamic vehicle dataset. The higher evaluation score of the KPConv

architecture in comparison to the PointNet++ architecture can be explained by the fact that the

PointNet++ architecture represents a particular configuration of the KPConv model and is there-

fore included in the possible range of solutions.

In addition to the advantages on the segmentation quality, the KPConv-based architecture

shows a faster and more stable degradation of the loss value than the PointNet++ architecture.

This behavior is shown in Figure 5.5, where the training of the KPConv model reaches loss value

Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Leveraging#_CTVL0014ba1e9719f3c4472bbaf27c067120832
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

5 Discussion

40

convergence already after 400 epochs, while the PointNet++ model training took over 1200

epochs. Moreover, the training of the PointNet++ model shows jumps within the loss value pro-

gression, which indicates an unusable training process. These observations corresponds with

the argument of THOMAS et al. [22] that a pointwise MLP operation makes the convolution oper-

ator more complex and the convergence of the network harder.

Figure 5.5: Comparison of the training loss value progression of the KPConv architecture and the

PointNet++ architecture on the benchmark dataset.

In summary, the results of SCHUMANN et al. [21] cannot be reproduced and it is assumed that

this is a result of the limited informational content of the nuScenes dataset in comparison their

proprietary dataset. However, a new model architecture based on the KPConv [22] architecture

is proposed, which outperforms the PointNet++ model in all tested dataset compositions. Nev-

ertheless, a final valuation of the KPConv architecture is difficult since it has not yet been applied

to any other automotive radar data related problems.

5.4 Recurrent Neural Networks

To discuss the effects of utilizing the temporal information of the provided radar data, three dif-

ferent recurrent neural network architectures have been defined in subsection 3.3.2. These

networks extend the previously discussed feedforward neural networks and include two archi-

tectures with a recurrent bridge model as well as the proposed KPLSTM architecture. The results

of these model trainings are discussed in the following to evaluate the influence of the temporal

domain on the segmentation quality.

In a first step the KPConv architecture is extended by the introduction of a standard LSTM layer

within the model’s bridge module. However, this extension of the network architecture had a

negative effect on the segmentation quality as a result. This outcome can be observed for every

dataset composition except for the dynamic vehicle dataset, where the same macro averaged

F1 score as the KPConv-based architecture can be reached, as represented in Table 4.2.

The negative effects of introducing a standard LSTM layer can be caused by two aspects of the

model architecture. First, a higher number of model parameters increases the model complexity

and therefore the likelihood of overfitting [8, pp. 104-105]. Second, the required reduction of the

data dimensions limits the capability of the model to represent the actual feature space. This

KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

5 Discussion

41

issue is caused by the implementation of a standard LSTM cell, which supports only three-di-

mensional input data. However, the considered radar data has four dimensions as described in

section 2.3, which is why the point and feature dimension is combined to enable an utilization of

the LSTM layer.

Besides these two aspects, the LSTM model is not invariant to input permutations due to the

fully connected layers within the gate units of the LSTM cell. Furthermore, the network cell is not

robust to correlation-preserving transformations and lacks the ability to handle spatiotemporal

data, as shown by [58]. Conclusively, the model architecture does not satisfy the model require-

ments and leads to unsatisfying segmentation results, while increasing the demand on system

resources.

Building upon this, a model architecture with a ConvLSTM [58] bridge model has been trained

and evaluated according to the method defined in section 3.7. The model achieves state of the

art results on the dynamic vehicle dataset, as represented in Figure 5.6, while performing slightly

worse than the KPConv-based model architecture on the benchmark and pedestrian dataset, as

listed in Table 4.2. Besides that, the model training is characterized by a fast degradation of the

loss value but a strong tendency towards overfitting. This behavior is represented in Figure 5.6

and discussed in the subsequent paragraphs.

Figure 5.6: Results and training behavior of the model architecture with ConvLSTM bridge model,

represented by its loss value progression on the left and its confusion matrix of the 101th

epoch on the right.

As already stated, the model’s tendency towards overfitting can be subject to a high number of

model parameters but also a result of too little training data, missing regularization of the model

weights or an inappropriate configuration [8, pp. 105-110]. However, the introduction of weight

regularization terms or the addition of dropout layers has not improved the segmentation quality

of the network. Nevertheless, due to high number of hyperparameters and the limited computa-

tional resources it was not possible to explore the whole model design space, which is why

further research is required to generalize the results of the model architecture.

Besides that, the ConvLSTM cell can only process input data with a fixed number of input points.

This property limits the possible implementations of a ConvLSTM layer to the bridge model ar-

chitecture, where the number of input points is defined by the encoder configuration. Moreover,

the ConvLSTM architecture is not invariant to input permutations in case a kernel size greater

than one is chosen, which limits its suitability for point cloud input data. However, it is worth

Convolutional#_CTVL001d10f08356b154d3dbfcc1996095516e3
Convolutional#_CTVL001d10f08356b154d3dbfcc1996095516e3

5 Discussion

42

mentioning that the applied radar sensor sorts the radar points by their distance and therefore

applies an intrinsic order to them [18]. For this reason and due to the fact that the input data of

the ConvLSTM layer is highly encoded (reduced to a small number of points) and thus limits the

number of possible permutations, no negative effects on the segmentation quality can be ob-

served.

To overcome the limitations of the ConvLSTM architecture and to utilize the temporal information

on different encoding stages, a novel model architecture – called KPLSTM – has been proposed

in subsection 3.3.2. KPLSTM can process input data of varying input sizes and is able to capture

dynamically changing relations among points over time due to its origin in the PointRNN archi-

tecture [58]. Furthermore, the KPLSTM architecture is invariant to input permutations and has

the ability to capture relationships among neighboring points since it is built upon a KPConv [22]

backbone. Moreover, the network architecture is robust to correlation-preserving transformations

due to the utilized convolution operation, as shown by [22]. Therefore, all requirements on a

model architecture capable of processing point cloud data and considering temporal information

are met by the KPLSTM model.

Applying this network architecture to the nuScenes dataset, the KPLSTM model reaches a

macro averaged F1 score of 0.25 on the benchmark dataset and therefore a comparable result

to the PointNet++ architecture. The best result is achieved on the dynamic vehicle dataset and

an example prediction out on this dataset is given in Figure 5.7. However, both the KPConv-

based model architecture as well as the ConvLSTM model surpasses the performance of the

KPLSTM model on different dataset compositions, as shown in Table 4.2.

Figure 5.7: Example prediction of the KPLSTM model to differentiate moving vehicles from the sur-

roundings. The point colors represent the actual model prediction, whereas the bounding

boxes represent the ground truth data. This result is achieved on dynamic vehicle da-

taset.

This result is subject to several characteristics of the KPLSTM model as well as the model’s

training behavior. First, the model training is orders of magnitudes slower than the training of the

other network architectures, which is a result of the missing cuDNN support for the custom built

KPLSTM cell. As a result, the training time per epoch, with about 1200 s for the KPLSTM model,

is significantly higher than the 90 s of the KPConv model. For that reason, a training time limita-

tion has to be set to restrict the demand on computational resources even if the loss value still

degrades at a constant rate, as shown in Figure 5.8. This observation suggests that the full

potential of the KPLSTM model is not yet used and further improvements on the segmentation

quality of the model can be expected [8, p. 104].

In addition to that, vanishing gradients can be observed during the model training leading to a

degradation of layer updates and an unstable training behavior. Even though the root cause

analysis of this effect is difficult, HOCHREITER et al. [47] identified an unimpeded flow of

None

Vehicle moving

Standardized#_CTVL001ce72eb2e622746ee874bedfc7be04f01
Convolutional#_CTVL001d10f08356b154d3dbfcc1996095516e3
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d

5 Discussion

43

information through the cell as crucial property to avoid vanishing gradients. However, this un-

impeded flow of information is not ensured by the PointRNN [46] implementation on which the

KPLSTM cell is built upon. Moreover, the KPLSTM cell is not embedded into a ResNet architec-

ture, like the KPConv model, which addresses vanishing gradients by the introduction of a

skiplink connection [56]. In consequence, the problem of vanishing gradients is not considered

within the model architecture and further research is required to overcome this problem.

Figure 5.8: Loss value progression of the KPLSTM model training on the benchmark dataset.

In summary, the KPConv-based model architecture outperforms other state of the art network

architectures and achieves the best segmentation quality on the benchmark dataset as well as

the pedestrian dataset, measured by the macro averaged F1 score. In contrast, all recurrent

neural network architectures surpass the segmentation quality of the feedforward neural network

architectures on the dynamic vehicle dataset. This suggests that RNN architectures are more

suitable to distinguish between dynamic objects, while feedforward neural networks generalize

better across multiple classes. However, to provide evidence on this conjecture more research

and the utilization of different datasets is required.

5.5 Hyperparameter Optimization

To discuss the third research question raised in section 1.2 and to explore the effects of utilizing

the information of the point relationships on the segmentation quality, two hyperparameter stud-

ies are executed. The considered hyperparameters are subject to the KPConv kernel and

therefore directly linked to the ability of capturing relationships among neighboring points. The

KPConv model is chosen as object of investigation because of its utilization within the feedfor-

ward neural network architectures and the fact that it builds the backbone architecture of the

KPLSTM model.

The first hyperparameter study evaluates the effects of the kernel size on the segmentation qual-

ity of the model by varying the number of kernel points. The results show that more kernel points

generally lead to better results, while the improvement stagnates for higher point counts, as rep-

resented in Figure 4.1. This observation corresponds to the findings of [22] and suggests that

the optimum number of kernel points is at approximately nine points. More kernel points increase

the risk of overfitting and raise the demand on system resources, while at the same time the

benefit of utilizing more kernel points decreases with an increasing number of points.

PointRNN:#_CTVL0019cb82e7ecd774a21aa41302d77619ef2
Deep#_CTVL001a3171fbf8d324290ad955af5bc72b593
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

5 Discussion

44

The second hyperparameter study examines the influence of the radius of the local neighbor-

hoods on the segmentation quality of the model. The radius defines the area around the center

points which is considered to group local neighborhoods and corresponds to the spatial size of

the convolution kernel. The model reaches a maximum in segmentation quality for a radius of

0.016 (8 m), while showing a larger increase for smaller radii and reaches an equilibrium for

greater radii, as represented in Figure 4.2. This result corresponds to [23] and can be explained

by the fact that a small radius limits the number of reachable points (and therefore the number

of usable point relationships), whereas larger radii tend to cover the entire space and therefore

cannot reach more points with ever increasing radius.

PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02

45

6 Conclusion

A summary of the development process and the obtained results is given in section 6.1 to con-

clude the stated research questions of section 1.2. Building upon these results, an outlook is

given in section 6.2 to motivate further research on the topic of machine learning-based radar

point cloud segmentation.

6.1 Summary

The utilization of radar sensors to perceive the environment around the vehicle is driven by the

demand of autonomous vehicles to ensure their functionality within difficult traffic scenarios and

challenging environmental conditions [79]. This demand on the functional safety of road vehicles

is highly related to reliable sensor information and redundant system architectures [2]. Therefore,

it is indispensable to utilize different sensor technologies and develop independent system ar-

chitectures for individual sensor systems. Thus, the utilization of radar point cloud data to

perceive the surrounding environment is the objective of this thesis.

To reach this goal an artificial neural network is developed to semantically segment the radar

point cloud by assigning a class label to every radar point. The development process of this

model is characterized by the selection of a suitable dataset, the development of the network

architecture and the optimization of the model [8]. Associated with these modeling steps are

three research questions on the performance of state of the art network architectures on publicly

available datasets, the influence of utilizing the temporal domain on the segmentation quality of

the model as well as the effects of different hyperparameters.

Following this method, the selection of a dataset is drawn from a comparison of different publicly

available datasets for autonomous driving. As a result, the nuScenes [17] dataset is chosen as

data basis since it is the only publicly available dataset with annotated radar data and the infor-

mation about consecutive keyframes. However, within the included radar data less than 12 % of

the objects have even one radar point associated to them, which limits the overall available in-

formation. In addition to that, the nuScenes dataset is characterized by an imbalanced class

distribution making it difficult to successfully train a model on the provided radar data [48].

The discussion of the first research question is subject to two feedforward neural network archi-

tectures trained on the nuScenes dataset. Based on the results of the PointNet++ [23]

architecture in comparison to those of SCHUMANN [21] and CENNAMO [42], it is suggested that

the performance of state of the art network architectures is highly dependent on the underlying

dataset. Furthermore, it can be shown that the KPConv [22] model architecture outperforms

other network architectures trained on the nuScenes dataset. Nevertheless, the segmentation

quality of state of the art network architectures trained on proprietary datasets cannot be met.

nuScenes:#_CTVL001f02cad1743da46e2849a08712ee7dec1
Machine#_CTVL0017f39eec662dd44a9bf355812cefc74ca
PointNet++:#_CTVL0010bb31de79da94c929d7f819108358c02
Semantic#_CTVL00125e596fd43fa481a9452f76a1140ee79
Leveraging#_CTVL0014ba1e9719f3c4472bbaf27c067120832
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c

6 Conclusion

46

Associated with the second research question is the development of a novel recurrent neural

network architecture to evaluate the impact of the utilization of the temporal domain on the seg-

mentation quality. This novel network architecture is derived from the PointRNN [46] model by

replacing the gate units of the LSTM cell with modified KPConv layers. Alongside this model,

two other RNN architectures are proposed by deploying a LSTM [47] and ConvLSTM [58] layer

within the autoencoder structure of the KPConv network. The results of these models suggest

that RNN architectures are more suitable to distinguish between dynamic objects, while feedfor-

ward neural networks are better suited for multi-class segmentation problems.

Based on the KPConv model architecture two hyperparameter studies were conducted to eval-

uate their effects on the segmentation quality of the model. In this context, the size of the

convolution kernel as well as the radius of the neighborhoods have been varied to investigate

the importance of utilizing point relationships. The results of these studies imply that a larger

convolution kernel generally leads to better results, whereas an ideal neighborhood radius can

be found to achieve the best results.

In summary, this thesis shows that the performance of state of the art network architectures

depends on the underlying dataset and demonstrates the vulnerabilities of the nuScenes dataset.

Furthermore, it can be implied that the chosen network architecture has to be suited for the

aspired segmentation task, since RNN architectures perform better on the distinction of dynamic

classes, while feedforward neural networks generalize better across multiple classes. Finally, all

three research questions have been discussed on the experimental results, while new questions

occurred during the project that are open for research.

6.2 Outlook

Despite the fact that the stated research questions have been discussed in accordance with the

associated project goal, new questions arose from the experimental results. These open re-

search questions involve the utilized dataset, the applied network architecture as well as the

deployed optimization process.

The utilized dataset represented one of the greatest challenges during the development process

because of its imbalanced class distribution and the sparsity of the provided radar data. To over-

come this problem one could either acquire a new dataset or implement data augmentation

methods to enhance the suitability of the available data. Such methods include the modification

of existing data samples as well as the generation of synthetic data to increase the number of

radar points and compensate the class imbalances [36, 80]. Nevertheless, more suitable da-

tasets for automotive radar data are required and further research on the topic of data

augmentation is needed.

Even if multiple feedforward and recurrent neural network architectures have been successfully

applied to semantically segment automotive radar data, additional network architectures are to

be considered. The extension of the KPConv architecture to utilize deformable convolution ker-

nels has shown good results on non-automotive segmentation tasks and therefore represents a

promising enhancement to the existing model architecture [22]. Besides that, good results have

been achieved with the ConvLSTM architecture, which is why an implementation of the same

should be considered within the encoder structure. In addition to that, a compensation of the

diverging point locations by their relative velocities could enhance the performance of the pro-

posed KPLSTM architecture, as shown by [1]. Furthermore, a modification of the KPLSTM cell

PointRNN:#_CTVL0019cb82e7ecd774a21aa41302d77619ef2
Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d
Convolutional#_CTVL001d10f08356b154d3dbfcc1996095516e3
VoxelNet:#_CTVL001c0f97774890740de8975e53e0fc01485
SECOND:#_CTVL00104f854fe37cf4faf9241a352c3c49dee
KPConv:#_CTVL0010437b86c1fed4d4da2fb022d0baafb6c
Scene#_CTVL001b3ad182847a949b3b172afbe4f728a1b

6 Conclusion

47

has to be considered in order to tackle the vanishing gradient problem and comply with the idea

of [47] to enable an unimpeded flow of information through the cell. However, the most promising

approach seems to be the one of CENNAMO et al. [42] who uses several small networks for

specific segmentation tasks and aggregates their predictions by an attention mechanism to solve

a multiclass segmentation problem on automotive radar data. Similar to this approach, feedfor-

ward neural networks and RNNs could be combined to achieve an overall better segmentation

quality.

Finally, a suitable hyperparameter tuning has to be applied to efficiently explore the model pa-

rameter space. This is especially true because of the huge parameter space of the utilized

network architectures, the high computational costs of RNN architectures and their sensitivity to

small parameter changes. Under this consideration one could either use a Bayesian optimiza-

tion [81] process or genetic algorithms [82] to optimize the hyperparameters. However, the

determination of a suitable optimization process is subject to future research to utilize the full

potential of the provided network architectures for machine learning-based radar point cloud

segmentation.

Long#_CTVL00144480b81b3b14a4ba042a25a79a6672d
Leveraging#_CTVL0014ba1e9719f3c4472bbaf27c067120832
A#_CTVL0013f2a2ae6acfa476a9ae43849c06905e0
Hyperparameter#_CTVL001c3b109066cbc41b7b253d280b3d91496

6 Conclusion

48

6 Conclusion

xlix

List of Figures

Figure 1.1: Illustration of a typical traffic scenario with difficult lighting conditions by [7]. . 1

Figure 1.2: Illustration of the four major modeling steps according to CHOLLET [8]. 2

Figure 1.3: Graphical representation of the structure of the thesis following a data driven

development strategy. .. 3

Figure 2.1: Sensor setup of the nuScenes data collection platform according to [17, Fig.

3]. .. 6

Figure 2.2: Number of radar points per nuScenes category on a logarithmic scale. The

None category covers all points without an annotation. 8

Figure 2.3: Visualization of the core functionality of a pointwise MLP network to obtain a

global representation r of the given point cloud 𝒫 by applying a composite of

two functions 𝑓 ∘ 𝑔. The shared kernel function 𝑔 is applied to every point of

the point cloud 𝒫 to receive a pointwise activation which is aggregated by 𝑓 to

compute a global feature vector r. .. 12

Figure 2.4: Illustration of the set abstraction and feature propagation module of the

PointNet++ architecture in accordance with [23]. ... 13

Figure 2.5: Graphical representation of the kernel point convolution in association with [22].

.. 14

Figure 2.6: Computational graph of the PointLSTM [46] cell with input 𝐗, hidden state 𝐇

and cell state 𝐂 of the timestep 𝑡. ... 16

Figure 3.1: Overview of the model pipeline represented by three major parts. The center

part represents the model’s forward pass to create a prediction from a given

dataset, the inner loop (on the bottom) represents the model training by a

gradient-based optimization process and the outer loop (at the top) visualizes

the hyperparameter tuning by adjusting the initial configuration. 17

Figure 3.2: Macroscopic model structure as development platform with five configurable

submodels. ... 21

Figure 3.3: ResNet block of the KPConv architecture according to [22]. The sample layer

is implemented as an iterative farthest point sampling and the activation

function is user configurable but for our purposes defined as rectified linear

unit. ... 23

Figure 3.4: Graphical representation of the set abstraction module of the KPLSTM

architecture. .. 25

6 Conclusion

l

Figure 3.5: Influence of the balance factor α on the loss value, where an up facing arrow

indicates an increase of the loss value and an down facing arrow indicates a

decreasing loss value – in comparison to an alpha setting of α = 0.5. 26

Figure 3.6: Behavior of the loss function according to [48]. .. 27

Figure 4.1: Results of the kernel point hyperparameter study. The plot represents the

achieved macro averaged F1 score for different numbers of kernel points. . 32

Figure 4.2: Results of the radius hyperparameter study represented by the macro

averaged F1 score over the initial encoder radius. The radii of the remaining

encoder modules are determined according to r𝑖 = 2𝑖r0 for 𝑖 = 0 … 2. 33

Figure 5.1: Share of class annotations (bounding boxes) with a certain number of

associated radar points of the benchmark dataset. 37

Figure 5.2: Class distributions of the three different dataset compositions on a logarithmic

scale. The left figure represents the bechmark datset, the middle one the

dynamic vehicle dataset and the right one the pedestrian dataset. 37

Figure 5.3: Comparison of the results of the PointNet++ architecture on the benchmark

dataset on the left and the results of SCHUMANN et al. [21] on the right. Note

that the number of classes and the composition of the classes is not equal. 38

Figure 5.4: Comparison of the results of the KPConv architecture (on the left) with the

results of the PointNet++ architecture (on the right). 39

Figure 5.5: Comparison of the training loss value progression of the KPConv architecture

and the PointNet++ architecture on the benchmark dataset. 40

Figure 5.6: Results and training behavior of the model architecture with ConvLSTM bridge

model, represented by its loss value progression on the left and its confusion

matrix of the 101th epoch on the right. .. 41

Figure 5.7: Example prediction of the KPLSTM model to differentiate moving vehicles from

the surroundings. The point colors represent the actual model prediction,

whereas the bounding boxes represent the ground truth data. This result is

achieved on dynamic vehicle dataset. .. 42

Figure 5.8: Loss value progression of the KPLSTM model training on the benchmark

dataset. ... 43

li

List of Tables

Table 2.1: A comparison of publicly available datasets for autonomous driving with focus

on their contained sensor information. An empty circle represents the absence

of this data and a filled circle represents the containment of the data. 5

Table 2.2: List of available radar channels (features) of the nuScenes dataset with their

associated value range, resolution and unit. A detailed definition of the radar

channels can be found in Appendix A. ... 7

Table 2.3: Requirements and properties of different feedforward neural network

architectures for point cloud data. A filled circle represents the satisfaction or

demand of a property or requirement, whereas an empty circle represents the

opposite of it. A partly filled circle represents the degree to which a property is

satisfied in relation to the other network architectures. 10

Table 3.1: Proposed dataset compositions as combination of multiple nuScenes

categories to user configured classes. ... 19

Table 3.2: Key hyperparameter settings of the three encoder modules of the proposed

network architecture. .. 22

Table 4.1: Results of the feedforward neural network architectures on the benchmark

dataset, as defined in Table 3.1. The total F1 score denotes the macro

averaged F1 score of all four classes. .. 31

Table 4.2: Results of the recurrent neural network architectures on the dataset

compositions, defined in section 3.1, in comparison to state of the art feed

forward neural networks. All models are evaluated according to the macro

averaged F1 score.. 32

List of Tables

lii

6 Conclusion

liii

Bibliography

[1] O. Schumann, J. Lombacher, M. Hahn, C. Wohler, and J. Dickmann, “Scene Under-

standing With Automotive Radar,” IEEE Trans. Intell. Veh, vol. 5, no. 2, p. 188–203,

2020.

[2] ISO 26262-3: Road vehicles — Functional safety: — Part 3: Concept phase, Interna-

tional Organization for Standardization, Geneva, Switzerland, 2018.

[3] F. de Ponte Müller, “Survey on Ranging Sensors and Cooperative Techniques for Rela-

tive Positioning of Vehicles,” Sensors (Basel, Switzerland), vol. 17, no. 2, 2017.

[4] M. Bijelic et al, “Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fu-

sion in Unseen Adverse Weather,” in 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2020, p. 11679–11689.

[5] J. Betz, M. Lienkamp, and B. Lohmann, “Artificial Intelligence in Automotive Technology:

Introduction: Artificial Intelligence,”: Technical University of Munich, Garching, Munich,

2019.

[6] ISO 26262: Road Vehicles — Functional Safety, International Organization for Standardi-

zation, Geneva, Switzerland, 2011.

[7] A. Powell: Brown bridge and vehicles. Accessed: Mar. 20 2020.

[8] F. Chollet: Deep learning with Python, Shelter Island, NY, Manning Publications Co,

2018.

[9] M. Cordts et al, “The Cityscapes Dataset for Semantic Urban Scene Understanding,” in

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016): Las

Vegas, Nevada, USA, 27-30 June 2016, Piscataway, NJ: IEEE, 2016, p. 3213–3223.

[10] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI

vision benchmark suite,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), Piscataway, NJ: IEEE, 2012, p. 3354–3361.

[11] A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The H3D Dataset for Full-Surround 3D

Multi-Object Detection and Tracking in Crowded Urban Scenes,” in 2019 International

Conference on Robotics and Automation (ICRA), [Piscataway, NJ]: IEEE, 2019, p. 9552–

9557.

[12] Y. Choi et al, “KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted

Driving,” IEEE Trans. Intell. Transport. Syst, vol. 19, no. 3, p. 934–948, 2018.

[13] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km: The Oxford Ro-

botCar dataset,” The International Journal of Robotics Research, vol. 36, no. 1, p. 3–15,

2017.

6 Conclusion

liv

[14] D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The Oxford Radar Robot-

Car Dataset: A Radar Extension to the Oxford RobotCar Dataset,” Sep. 2019.

[15] F. E. Nowruzi et al, “Deep Open Space Segmentation using Automotive Radar,” Mar.

2020.

[16] M. Meyer and G. Kuschk, “Automotive Radar Dataset for Deep Learning Based 3D Ob-

ject Detection,” in 2019 16th European Radar Conference: 2-4 October 2019, Paris,

France, [Louvain-la-Neuve, Belgium]: EuMA, 2019, p. 129–132.

[17] H. Caesar et al, “nuScenes: A multimodal dataset for autonomous driving,” Mar. 2019.

[18] Continental Engineering Services GmbH, Ed, “Standardized ARS Interface: Technical

Documentation. ARS 404-21 (Entry), ARS 408-21 (Premium),” May. 2017.

[19] H. Caesar, "Additional Sensor Information on the nuScenes Dataset", private communi-

cation, Feb. 2020.

[20] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets for 3D

Classification and Segmentation,” Dec. 2016.

[21] O. Schumann, M. Hahn, J. Dickmann, and C. Wohler, “Semantic Segmentation on Radar

Point Clouds,” in 21st International Conference on Information Fusion (FUSION), Pisca-

taway, NJ: IEEE, 2018, p. 2179–2186.

[22] H. Thomas et al, “KPConv: Flexible and Deformable Convolution for Point Clouds,” in

2019 IEEE/CVF International Conference on Computer Vision (ICCV): IEEE, Oct. 2019 -

Nov. 2019, p. 6410–6419.

[23] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical Feature Learning

on Point Sets in a Metric Space,” Jun. 2017.

[24] A. A. Fraenkel, Y. Bar-Hillel, A. Lévy, and D. van Dalen: Foundations of set theory, 2nd

ed, Amsterdam, New York, Elsevier Science, 1973.

[25] R. Dedekind, “Was sind und was sollen die Zahlen?,” in vol. 3, Gesammelte mathemati-

sche Werke, R. Fricke, E. Noether, and Ö. Ore, Eds. 6th ed, Braunschweig: Vieweg,

1930, p. 335–391.

[26] J. Lombacher, M. Hahn, J. Dickmann, and C. Wohler, “Object classification in radar us-

ing ensemble methods,” in 2017 IEEE MTT-S International Conference on Microwaves

for Intelligent Mobility (ICMIM), Piscataway, NJ: IEEE, 2017, p. 87–90.

[27] O. Schumann, C. Wohler, M. Hahn, and J. Dickmann, “Comparison of random forest and

long short-term memory network performances in classification tasks using radar,” in

2017 Symposium on Sensor Data Fusion: Trends, Solutions, Applications (SDF), Pisca-

taway, NJ: IEEE, 2017, p. 1–6.

[28] S. Heuel and H. Rohling, “Pedestrian recognition based on 24 GHz radar sensors,” in

11th International Radar Symposium (IRS), Piscataway, NJ: IEEE, 2010, p. 1–6.

[29] S. Heuel and H. Rohling, “Two-stage pedestrian classification in automotive radar sys-

tems,” in 12th International Radar Symposium (IRS), Meckenheim: DCM Druck, 2011, p.

477–484.

[30] S. Heuel and H. Rohling, “Pedestrian classification in automotive radar systems,” in 13th

International Radar Symposium (IRS), 2012, Piscataway, NJ: IEEE, 2012, p. 39–44.

6 Conclusion

lv

[31] T. D. Bufler and R. M. Narayanan, “Radar classification of indoor targets using support

vector machines,” IET Radar, Sonar & Navigation, vol. 10, no. 8, p. 1468–1476, 2016.

[32] I. Goodfellow, Y. Bengio, and A. Courville: Deep learning, Cambridge, Massachusetts,

London, England, MIT Press, 2016.

[33] G. Dong and H. Liu: Feature engineering for machine learning and data analytics, Boca

Raton, FL, CRC Press/Taylor & Francis Group, 2018.

[34] N. Scheiner, N. Appenrodt, J. Dickmann, and B. Sick, “Radar-based Feature Design and

Multiclass Classification for Road User Recognition,” in 2018 IEEE Intelligent Vehicles

Symposium (IV): IEEE, Jun. 2018 - Jun. 2018, p. 779–786.

[35] J. Lombacher, K. Laudt, M. Hahn, J. Dickmann, and C. Wohler, “Semantic radar grids,”

in 28th IEEE Intelligent Vehicles Symposium, Piscataway, NJ: IEEE, 2017, p. 1170–

1175.

[36] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point Cloud Based 3D Object

Detection,” Nov. 2017.

[37] B. Graham and L. van der Maaten, “Submanifold Sparse Convolutional Networks,” Jun.

2017.

[38] C. R. Qi et al, “Volumetric and Multi-view CNNs for Object Classification on 3D Data,” in

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), [S.l.]:

IEEE, Jun. 2016 - Jun. 2016, p. 5648–5656.

[39] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric Deep

Learning: Going beyond Euclidean data,” IEEE Signal Process. Mag, vol. 34, no. 4, p.

18–42, 2017.

[40] D. Raposo et al, “Discovering objects and their relations from entangled scene represen-

tations,” Feb. 2017.

[41] A. Danzer, T. Griebel, M. Bach, and K. Dietmayer, “2D Car Detection in Radar Data with

PointNets,” in The 2019 IEEE Intelligent Transportation Systems Conference - ITSC, Pis-

cataway, NJ: IEEE, 2019, p. 61–66.

[42] A. Cennamo, F. Kaestner, and A. Kummert, “Leveraging Radar Features to Improve

Point Clouds Segmentation with Neural Networks,” in Proceedings of the International

Neural Networks Society, Proceedings of the 21st EANN (Engineering Applications of

Neural Networks) 2020 Conference, L. Iliadis, P. P. Angelov, C. Jayne, and E. Pimenidis,

Eds, Cham: Springer International Publishing, 2020, p. 119–131.

[43] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “SpiderCNN: Deep Learning on Point Sets

with Parameterized Convolutional Filters,” Mar. 2018.

[44] F. Groh, P. Wieschollek, and H. P. A. Lensch, “Flex-Convolution,” in Computer Vision –

ACCV 2018, Cham: Springer International Publishing, 2019, p. 105–122.

[45] Y. Li et al, “PointCNN: Convolution On \mathcal{X}-Transformed Points,” Jan. 2018.

[46] H. Fan and Y. Yang, “PointRNN: Point Recurrent Neural Network for Moving Point Cloud

Processing,” Oct. 2019.

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” (eng), Neural computa-

tion, vol. 9, no. 8, p. 1735–1780, 1997.

6 Conclusion

lvi

[48] F. Fent, “Machine Learning based Object Classification with Automotive Radar Sensors,”

Term Paper, Chair of Automotive Technology: Technical University of Munich, Munich,

2020.

[49] TensorFlow: TFRecord and tf.train.Example. Accessed: Sep. 24 2020.

[50] C. Zhang, M. Fiore, I. Murray, and P. Patras, “CloudLSTM: A Recurrent Neural Model for

Spatiotemporal Point-cloud Stream Forecasting,” Jul. 2019.

[51] X. Shi et al, “Deep Learning for Precipitation Nowcasting: A Benchmark and A New

Model,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.: Cur-

ran Associates, Inc, 2017, p. 5617–5627.

[52] A. Zheng and A. Casari: Feature engineering for machine learning: Principles and tech-

niques for data scientists / Alice Zheng and Amanda Casari, Sebastopol, CA, O'Reilly,

2018.

[53] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, “Geodesic Convolutional

Neural Networks on Riemannian Manifolds,” in 2015 IEEE International Conference on

Computer Vision Workshop (ICCVW): IEEE, Dec. 2015 - Dec. 2015, p. 832–840.

[54] N. Verma, E. Boyer, and J. Verbeek, “FeaStNet: Feature-Steered Graph Convolutions for

3D Shape Analysis,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition: IEEE, Jun. 2018 - Jun. 2018, p. 2598–2606.

[55] Y. Wang et al, “Dynamic Graph CNN for Learning on Point Clouds,” Jan. 2018.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016): Las

Vegas, Nevada, USA, 27-30 June 2016, Piscataway, NJ: IEEE, 2016, p. 770–778.

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Sala-

khutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal

of Machine Learning Research, vol. 15, p. 1929–1958, 2014.

[58] X. Shi et al, “Convolutional LSTM Network: A Machine Learning Approach for Precipita-

tion Nowcasting,” Jun. 2015.

[59] C. M. Bishop: Pattern recognition and machine learning, 11th ed, New York, Springer,

2013.

[60] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object De-

tection,” Aug. 2017.

[61] TensorFlow: Classification on imbalanced data. Accessed: Sep. 27 2020.

[62] S. Ruder, “An overview of gradient descent optimization algorithms,” Sep. 2016.

[63] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization Methods From a Ma-

chine Learning Perspective,” (eng), IEEE transactions on cybernetics, vol. 50, no. 8, p.

3668–3681, 2020.

[64] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 2014.

[65] G. Hinton, “Lecture 6e rmsprop: Divide the gradient by a running average of its recent

magnitude,”: Coursera, 2012.

6 Conclusion

lvii

[66] P. Soda, “A Hybrid Approach Handling Imbalanced Datasets,” in Image analysis and pro-

cessing - ICIAP 2009: 15th international conference, Vietri sul Mare, Italy, September 8 -

11, 2009 ; proceedings, Berlin: Springer, 2009, p. 209–218.

[67] Nvidia, “cuDNN Developer's Guide,”: Nvidia, 2019.

[68] M. Eisend and A. Kuß: Grundlagen empirischer Forschung, Wiesbaden, Springer Fach-

medien Wiesbaden, 2017.

[69] P. Sedlmeier and F. Renkewitz: Forschungsmethoden und Statistik für Psychologen und

Sozialwissenschaftler, 3rd ed, Hallbergmoos, Pearson, 2018.

[70] D.M.W. Powers, “Evaluation: From Precision, Recall and F-Measure to ROC, Informed-

ness, Markedness & Correlation,” Journal of Machine Learning Technologies, vol. 2, no.

1, p. 37–63, 2011.

[71] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Jour-

nal, vol. 27, no. 3, p. 379–423, 1948.

[72] A. Ludloff: Praxiswissen Radar und Radarsignalverarbeitung, Wiesbaden, Vieweg+Teub-

ner Verlag, 2002.

[73] R. L. Figueroa, Q. Zeng-Treitler, S. Kandula, and L. H. Ngo, “Predicting sample size re-

quired for classification performance,” (eng), BMC medical informatics and decision

making, vol. 12, pp. 8, 2012.

[74] J. Cohen: Statistical Power Analysis for the Behavioral Sciences, 2nd ed, Hoboken, Tay-

lor and Francis, 1988.

[75] C. J. Adcock, “Sample size determination: a review,” J Royal Statistical Soc D, vol. 46,

no. 2, p. 261–283, 1997.

[76] R. V. Lenth, “Some Practical Guidelines for Effective Sample Size Determination,” The

American Statistician, vol. 55, no. 3, p. 187–193, 2001.

[77] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,”

J Big Data, vol. 6, no. 1, pp. 3, 2019.

[78] H. Partamian, Y. Rizk, and M. Awad, “Barricaded Boundary Minority Oversampling LS-

SVM for a Biased Binary Classification,” in Lecture Notes in Artificial Intelligence, vol.

11198, Discovery Science: 21st International Conference, DS 2018, Limassol, Cyprus,

October 29-31, 2018, Proceedings, L. Soldatova, J. Vanschoren, G. Papadopoulos, and

M. Ceci, Eds, Cham: Springer International Publishing; Imprint: Springer, 2018, p. 18–32.

[79] ISO 21448: Road vehicles — Safety of the intended functionality, International Organiza-

tion for Standardization, Geneva, Switzerland, 2019.

[80] Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely Embedded Convolutional Detection,”

(eng), Sensors (Basel, Switzerland), vol. 18, no. 10, 2018.

[81] P. I. Frazier, “A Tutorial on Bayesian Optimization,” Jul. 2018.

[82] J.-H. Han, D.-J. Choi, S.-U. Park, and S.-K. Hong, “Hyperparameter Optimization Using a

Genetic Algorithm Considering Verification Time in a Convolutional Neural Network,” J.

Electr. Eng. Technol, vol. 15, no. 2, p. 721–726, 2020.

6 Conclusion

lviii

lix

Appendix

A Radar Sensor Specifications .. lx

B nuScenes Radar Data Analysis ... lxiv

C Model Specifications ... lxv

D Ablation Studies .. lxvii

6 Conclusion

lx

A Radar Sensor Specifications

The A.D.C. GmbH offers a new type of radar sensor, the ARS 408-21, as a possible adaption in
different application and as premium version of the series 40X.

-
- Headway control also for far range (vehicles of every description, particularly autonomous)
- Area monitoring system for far range, e.g. of hazardous or non-accessible areas
- Classification of objects
- Object detection, e.g. in confusing or unclear areas
- Unremarkable object detection by affix a protection cover before it (radome)

The rugged ARS 408-21 sensor from Continental measures independent the distance and ve-
locity (Doppler's principle) to objects without reflector in one measuring cycle due basis of
FMCW (Frequency Modulated Continuous Wave) with very fast ramps, with a real time scan-
ning of 17 sec.. A special feature of the device is the simultaneously measurement of great
distances , relative velocity and the angle relation between 2 objects.

 The ARS 408-21 dispels with the apparent contradiction between excellent
great measuring performance and a high degree of operational safety. The rugged ARS 408-
21 radar sensor is capable of determining the distance to an object in real time scanning and
dependent on the driving speed a possible risk of collision.

 The ARS 408-21 radar sensor is fail-safe and able to recognize troubles of the
sensor and sensor environment and display it automatically.

 By using a radar technology with less complex measuring prin-
ciple and the development and mass production in automotive supply industry, the design is
kept very robust and small.

ARS 408-21 datasheet - Drafted on: 31.10.2015 ROL - Version: 07 - Amended on: 07.07.2017 ROL

0m 10m 70m 150m 250m

+10m

-10m

-30m

+30m

+50m

-50m

±60
±40

±9 ±4

FR

+10 dBsm

SR

0m

+10 dBsm

Blue FoV Near Sensing Area (Short Range)
Red FoV Far Sensing Area (Far Range)

6 Conclusion

lxi

Figure A.1: Radar sensor specifications of the Continental ARS 408-21 Premium. This sensor is

used to record the radar data of the nuScenes dataset.

 Peter-Dornier-Str. 10 Tel.: +49 8382 9699-114 Email: Roland.Liebske continental-corporation.com

Industrial Sensors D-88131 Lindau Fax: +49 8382 969922-114 www.continental-industrial-sensors.com

Distance range
0.20 ...250 m far range,
0.20...70m 100m 0 ±45 near range and
0.20 20m ±60 near range

Resolution distance measuring point targets, no tracking Up to 1.79 m far range, 0.39 m near range

Accuracy distance measuring point targets, no tracking ±0.40 m far range, ±0.10 m near range

Azimuth angle augmentation (field of view FoV) -9.0 ...+9.0 far range, -60 ...+60 near range

Elevation angle augmentation (field of view FoV) 14 far range, 20 near range

Azimuth beam width (3 dB)
2.2 far range,
4.4 0 6.2 ±45 17 ±60 near range

Resolution azimuth angle point targets, no tracking
1.6 far range,
3.2 0 4.5 ±45 12.3 ±60 near range

Accuracy azimuth angle point targets, no tracking ±0.1 far range, ±0.3 0 ±1 ±45 ±5 ±60 near range

Velocity range -400 km h...+200 km h (- leaving objects...+approximation)

Velocity resolution target separation ability 0.37 km h far field, 0.43 km h near range

Velocity accuracy point targets ±0.1 km h

Cycle time app. 72 ms near and far measurement

Antenna channels -principle microstripe
4TX 2x6RX 24 channels 2TX 6RX far - 2TX 6RX near
Digital Beam Forming

Radar operating frequency band acc. ETSI & FCC 76...77 GHz

Mains power supply at 12 V DC 24 V DC +8,0 V...32 V DC

Power consumption at 12 V DC 10 A fuse 6.6 W 550 mA typ. and 12 W 1.0 A max. peak power

Load dump protection internal disconnection 60 V and re-start returning to 60 V

Operating- storage temperature -40 C...+85 C -40 C...+90 C

Life time acc. LV124 part 2 - v1.3 10000 h or 10 years (for passenger cars)

Shock mechanical 500 m s2 6 ms half-sine (10 x shock each in + -X Y Z dir.)

Vibration mechanical 20 (m s2)2 Hz 10 Hz 0,14 (m s2)2 Hz 1000Hz (peak)

Protection rating
ISO 16750 Classification
(Trucks) for vibration

IP 6k 9k (dust, high-pressure cleaning)
IP 6k7 (10 cm under water), ice-water shock test,
salt fog resistant, mixed gas EN 60068-2-60

Monitoring function self monitoring (fail-safe designed)

Interface up to 8 ID 1 x CAN - high-speed 500 kbit s

Dimensions weight W L H (mm) (mass) 138 91 31 app. 320 g

Material housing front backcover
PBT GF 30 black (BASF-Ultradur B4300G6 LS sw 15073)
AC-47100 (AlSi12Cu1(FE)) die cast aluminium or
EN AW 5754 (3.535) AlMg3 pressed-formed aluminium

Measuring principle (Doppler's principle) in one measuring cycle due basis of FMCW with very fast ramps
independent measurement of distance and velocity

Version ARS 408-21 sensor for the industry CAN protocol for free communication

The version -21 allows to set maximum 8 ID s and maximum 8
collision avoidance regions and to change the sensitivity between
low and high sensitivity by the user continuously

The device is fitted with one CAN bus interface. Further interfaces as converter, software
adaption are possible on demand and in case of assumption of costs.

6 Conclusion

lxii

The following Table A.1 provides detailed descriptions of the radar channels of the ARS 408-21

Premium radar sensor. As already mentioned in section 2.2 the radar sensor provides eight gen-

eral and seven quality information values per point. In addition to these 15 values, nuScenes

provides three additional values consisting of the vertical coordinate z, the relative velocity in

longitudinal direction compensated by the vehicle ego motion vx_comp and its equivalent in lat-

eral direction vy_comp. This means, that the three additional channels of the nuScenes dataset

are not part of the specified radar interface and the corresponding descriptions are provided by

nuTonomy.

Table A.1 Description of the signal channels of the ARS 408-21 radar sensor according to [18].

Channel Id Signal channel Channel description

0 x Longitudinal (x) coordinate

1 y Lateral (y) coordinate

2 z Vertical (z) coordinate

3 dyn_prob Dynamic property of cluster to indicate if it is moving or not

4 id Cluster number

5 rcs Radar cross section

6 vx Relative velocity in longitudinal direction (x)

7 vy Relative velocity in lateral direction (y)

8 vx_comp Relative velocity in longitudinal direction (x) compensated by the ve-

hicle ego motion in longitudinal direction

9 vy_comp Relative velocity in lateral direction (y) compensated by the vehicle

ego motion in lateral direction

10 is_quality_valid Flag whether a radar cluster is valid or not

11 ambig_state 0x0: invalid

0x1: ambiguous

0x2: staggered ramp

0x3: unambiguous

0x4: stationary candidates

12 x_rms Standard deviation of longitudinal distance

13 y_rms Standard deviation of lateral distance

Standardized#_CTVL001ce72eb2e622746ee874bedfc7be04f01

6 Conclusion

lxiii

Channel Id Signal channel Channel description

14 invalide_state 0x00: Valid

0x01: Invalid due to low RCS

0x02: Invalid due to near-field artefact

0x03: Invalid far range Cluster because not confirmed in near range

0x04: Valid Cluster with low RCS

0x05: reserved

0x06: Invalid Cluster due to high mirror probability

0x07: Invalid because outside sensor field of view

0x08: Valid Cluster with azimuth correction due to elevation

0x09: Valid Cluster with high child probability

0x0A: Valid Cluster with high probability of being a 50 deg artefact

0x0B: Valid Cluster but no local maximum

0x0C: Valid Cluster with high artefact probability

0x0D: reserved

0x0E: Invalid Cluster because it is a harmonic

0x0F: Valid Cluster above 95 m in near range

0x10: Valid Cluster with high multi-target probability

0x11: Valid Cluster with suspicious angle

15 pdh0 0x0: invalid

0x1: <25%

0x2: <50%

0x3: <75%

0x4: <90%

0x5: <99%

0x6: <99.9%

0x7: <=100%

16 vx_rms Standard deviation of longitudinal relative velocity

17 vy_rms Standard deviation of lateral relative velocity

6 Conclusion

lxiv

B nuScenes Radar Data Analysis

Table B.1 represents the number of radar points per class of the three dataset compositions, as

defined in section 3.1. The differance of the benchmark and pedestrian dataset within the pe-

destrian class can be expressed by the different assignment of the animal category, as

represented in Table 3.1.

Table B.1 Number of radar points per class for the three dataset compositions of the nuScenes da-

taset.

To evaluate the information content of the provided radar data of the nuScenes dataset and to

illustrate the sparsity of this data, an representation of the associated number of radar points per

annotation (bounding box) across the three classes of benchmark dataset is given in Table B.2.

Table B.2 Number of radar points per class for the three classes of the benchmark dataset.

Class Benchmark dataset Dyn.vehicle dataset Pedestrian dataset

None 14601085 15958322 16579199

Cycle 23368 - -

Pedestrian 70254 - 70185

Vehicle 1954677 - -

Vehicle moving - 691062 -

Class Median 75th percentile 95th percentile 99th percentile

Cycle 0 0 0 2

Pedestrian 0 0 2 4

Vehicle 0 0 5 10

6 Conclusion

lxv

C Model Specifications

In order to ensure the reproducibility of the results and to give more details on the network con-

figuration, the following appendix lists the key hyperparameter settings of the different network

architectures. First, the hyperparameter settings of the PointNet++ encoder modules are given

in Table C.1. In addition to that all MLP layers within the encoder modules use no bias values

but a rectified linear unit (ReLU) as activation function.

Table C.1: Key hyperparameter settings of the three encoder modules of the PointNet++ network

architecture.

Similar to the PointNet++ encoder modules, the KPConv encoder is initialized with the same

hyperparameter values except for the neighborhood radius r0. The neighborhood radius is cho-

sen in accordance with the results of the hyperparameter study of section 4.3.

Table C.2: Key hyperparameter settings of the three encoder modules of the KPConv network archi-

tecture.

The same applies to the hyperparameter setting of the KPLSTM model, which is already dis-

cussed in subsection 3.3.2. However, it is worth mentioning that the underlying model structure

is not built upon a ResNet configuration but in accordance with the architecture of Figure 3.4.

Table C.3: Key hyperparameter settings of the three encoder modules of the KPLSTM network ar-

chitecture.

Encoder

module

Number of

center points

Max. number of

neighboring points

Neighborhood

radius r0

Number of

filters

0 512 16 0.001 16, 16, 32

1 128 8 0.002 32, 32, 64

2 16 4 0.004 64, 64, 128

Encoder

module

Number of

center points

Max. number of

neighboring

points

Neighborhood

radius r0

Number of

kernel points

Number of

filters

0 512 16 0.016 9 16, 16, 32

1 128 8 0.032 9 32, 32, 64

2 16 4 0.064 9 64, 64, 128

Encoder

module

Number of

center points

Max. number of

neighboring

points

Neighborhood

radius r0

Number of

kernel points

Number of

filters

0 512 16 0.016 9 16, 16, 32

1 128 8 0.032 9 32, 32, 64

2 16 4 0.064 9 64, 64, 128

6 Conclusion

lxvi

The RNN architecture with a recurrent LSTM bridge model is initialized in accordance with the

settings defined in Table C.4. The remaining submodels of the network architecture are imple-

mented just like the KPConv architecture.

Table C.4: Key hyperparameter settings of the LSTM bridge module.

The ConvLSTM-based RNN applies the same principles as the LSTM-based version of the net-

work and is therefore built upon a KPConv network configuration with an additional bridge model,

as defined in Table D.5.

Table C.5: Key hyperparameter settings of the ConvLSTM bridge module.

The decoder model of all networks architectures is implemented as PointNet++ decoder with

three FP modules, as discussed in section 3.3. The key hyperparameter settings of the FP mod-

ules are listed in Table C.6.

Table C.6: Key hyperparameter settings of the three decoder modules.

The output model of all network architectures is realized by a set of three consecutive shared

MLP layers and two intermediate dropout layers. The settings of these layers are listed in Ta-

ble C.7, whereas the filters of the last layer are chosen in accordance with the number of classes

of the individual dataset compositions.

Table C.7: Layer configuration and key hyperparameter settings of the output module.

Units Use bias Activation Recurrent

activation

Kernel

initializer

Recurrent

initializer

131 False tanh sigmoid ones zeros

Units Kernel size Use bias Activation Recurrent

activation

Kernel

initializer

Recurrent

initializer

131 (3, 1) False tanh hard sigmoid ones zeros

Decoder module Use bias Activation Number of filters

0 False ReLU 128, 128

1 False ReLU 128, 64

2 False ReLU 64, 64, 64

Layer Dropout rate Use bias Activation Number of

filters

MLP - False ReLU 32

Dropout 0.5 - - -

MLP - False ReLU 16

Dropout 0.5 - - -

MLP - False softmax Number of classes

6 Conclusion

lxvii

D Ablation Studies

The ablation studies are not strictly bound the experimental design of section 3.7 and serve the

purpose of providing more insights about the behavior of the tested model architectures. In con-

sideration of this, the behavior of the PointNet++ architecture for different settings of the learning

rate decay dr is represented in Table D.1. The learning rate decay describes the degradation of

the learning rate over training epochs and is subject to the gradient-based optimization process

as described in section 3.5.

The provided results of the PointNet++ architecture are subject to the experimental determina-

tion of the learning rate settings and are also used for the initialization of other model trainings.

It can be shown that a decay rate of 0.9 leads to the best segmentation quality with a macro

averaged F1 score of 0.251, as represented in Table D.1. For that reason, a learning rate decay

of 0.9 is chosen as benchmark configuration for all tested model architectures.

Table D.1: Results of the PointNet++ model architecture for different settings of the learning rate de-

cay on the benchmark dataset.

Learning rate

decay dr

Total

F1 Score

None

F1 Score

Cycle

F1 Score

Pedestrian

F1 Score

Vehicle

F1Score

0.35 0.240 0.961 0 0 0

0.7 0.210 0.680 0.011 0.073 0.076

0.8 0.229 0.910 0.008 0 0

0.9 0.251 0.800 0.006 0.024 0.172

0.95 0.240 0.961 0 0 0

