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a b s t r a c t

This paper deals with the H2 suboptimal output synchronization problem for heterogeneous linear
multi-agent systems. Given a multi-agent system with possibly distinct agents and an associated H2
cost functional, the aim is to design output feedback based protocols that guarantee the associated cost
to be smaller than a given upper bound while the controlled network achieves output synchronization.
A design method is provided to compute such protocols. For each agent, the computation of its
two local control gains involves two Riccati inequalities, each of dimension equal to the state space
dimension of the agent. A simulation example is provided to illustrate the performance of the proposed
protocols.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the last two decades, the problems of designing protocols
hat achieve consensus or synchronization in multi-agent systems
ave attracted much attention in the field of systems and control,
ee e.g. [1–3] and [4]. The essential feature of these problems is
hat, while each agent makes use of only local state or output
nformation to implement its own local controller, the resulting
lobal protocol will achieve consensus or synchronization for the
lobal controlled multi-agent network [5,6]. One of the challeng-
ng problems in this context is the problem of designing protocols
hat minimize given quadratic cost criteria while achieving con-
ensus or synchronization, see e.g. [7–10] and [11]. Due to the
tructural constraints imposed on the protocols, such optimal
ontrol problems are non-convex and very difficult to solve. It is
lso unclear whether in general closed form solutions exist.
In the past, many efforts have been devoted to designing

istributed protocols for homogeneous multi-agent systems that
guarantee suboptimal or optimal performance and achieve state
synchronization or consensus. In [9], this was done for distributed
linear quadratic control of multi-agent systems with single in-
tegrator agent dynamics, see also [12]. In [11] and [7], multi-
agent systems with general agent dynamics and a global linear
quadratic cost functional were considered. In [10] and [13], an
inverse optimal approach was adopted to address the distributed
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linear quadratic control problem, see also [14]. For H2 cost func-
tionals of a particular form, [15] and [16] proposed distributed
suboptimal protocols that stabilize the controlled multi-agent
network. In [17], a distributed H2 suboptimal control problem
was addressed using static state feedback. The results in [17] were
then generalized in [8] to the case of dynamic output feedback.

More recently, output synchronization problems for hetero-
geneous multi-agent systems have also attracted much atten-
tion. In [18], it was shown that solvability of certain regulator
equations is a necessary condition for output synchronization
of heterogeneous multi-agent systems, and suitable protocols
were proposed, see also [19]. By embedding an internal model
in the local controller of each agent, in [20] dynamic output
feedback based protocols were proposed for a class of heteroge-
neous uncertain multi-agent systems. In [21], it was shown that
the outputs of the agents can be synchronized by a networked
protocol if and only if these agents have certain dynamics in
common. Later on, in [22] a linear quadratic control method was
adopted for computing output synchronizing protocols. In [23], an
L2-gain output synchronization problem was addressed by cast-
ing this problem into a number of L2-gain stabilization problems
for certain linear systems, where the state space dimensions of
these systems are equal to that of the agents. In [24], a model-
free approach based on reinforcement learning algorithms was
proposed to obtain output synchronizing protocols, see also [25].
For related work, we also mention [26–29] and [30], to name a
few.

Up to now, little attention has been paid in the literature to
problems of designing output synchronizing protocols for het-
erogeneous multi-agent systems that guarantee a certain perfor-

mance. In particular, to the authors’ best knowledge, none of the
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xisting publications considers the problem of output synchro-
ization while obtaining a guaranteedH2 performance. Therefore,

in the present paper we will deal with the problem of H2 opti-
al output synchronization for heterogeneous linear multi-agent
ystems, i.e. the problem of minimizing a given H2 cost functional
over all protocols that achieve output synchronization.

Instead of addressing this optimal control problem, we will
address a version of this problem that requires suboptimality.
More specifically, we will extend previous results in [8] for ho-
mogeneous multi-agent systems to the case of heterogeneous
multi-agent systems. The main contributions of the present paper
are the following.

(1) We consider a generalization of the type of heterogeneous
multi-agent systems that was considered before in [18]. For
this type of multi-agent systems we establish a design pro-
cedure for protocols that achieve output synchronization.

(2) We show that the H2 suboptimal output synchronization
problem for heterogeneous multi-agent systems can be
cast as a simultaneous H2 suboptimal control problem for
a number of low-dimensional systems.

(3) We provide a method for computing H2 suboptimal dy-
namic output feedback protocols for heterogeneous multi-
agent systems.

The outline of this paper is as follows. In Section 2, we provide
some notation and graph theory used throughout this paper. In
Section 3, we formulate the H2 suboptimal output synchroniza-
tion problem. In order to solve this problem, in Section 4 we
review some basic material on H2 suboptimal control by dynamic
output feedback for linear systems, and some relevant results on
output synchronization of heterogeneous multi-agent systems. In
Section 5, we solve the problem introduced in Section 3 and pro-
vide a design method for obtaining H2 suboptimal protocols. To
illustrate the performance of our proposed protocols, a simulation
example is provided in Section 6. Finally, Section 7 concludes this
paper.

2. Notation and graph theory

2.1. Notation

We denote by R the field of real numbers and by C the field
of complex numbers. The space of n dimensional real vectors is
denoted by Rn. We denote by 1n ∈ Rn the vector with all its
ntries equal to 1. For a symmetric matrix P , we denote P > 0
f P is positive definite and P < 0 if P is negative definite. The
dentity matrix of dimension n×n is denoted by In. The trace of a
quare matrix A is denoted by tr(A). A matrix is called Hurwitz
f all its eigenvalues have negative real parts. We denote by
iag(d1, d2, . . . , dn) the n × n diagonal matrix with d1, d2, . . . , dn
n the diagonal. For given matrices M1,M2, . . . ,Mn, we denote
y blockdiag(M1,M2, . . . ,Mn) the block diagonal matrix with di-
gonal blocks Mi. The Kronecker product of two matrices A and B
s denoted by A ⊗ B.

.2. Graph theory

A directed weighted graph is a triple G = (V, E,A), where V =

1, 2, . . . ,N} is the finite nonempty node set, E = {e1, e2, . . . , eM}

ith E ⊂ V × V is the edge set, and A = [aij] is the adjacency
atrix with nonnegative elements aij, called the edge weights.
he entry aji is nonzero if and only if (i, j) ∈ E . A graph is called
imple if aii = 0 for all i. It is called a weighted undirected graph
f (j, i) ∈ E whenever (i, j) ∈ E , and aji = aij for all (i, j). Given
graph G, a path from node 1 to node p is a sequence of edges

k, k + 1), k = 1, 2, . . . , p−1. A graph is said to contain a spanning
2

ree if it contains a node such that there exists a path from this
ode to every other node. Throughout this paper it will be a
tanding assumption that the communication between the agents
f the network is represented by a weighted directed graph that
ontains a spanning tree. Unless stated otherwise, in this paper
he term ‘graph’ will refer to a weighted directed graph.

Given a graph G, the degree matrix of G is defined by D =

iag(d1, d2, . . . , dN ) with di =
∑N

j=1 aij. The Laplacian matrix is
efined as L := D − A. The eigenvalues of the Laplacian matrix L
ave nonnegative real part. In particular, L has a zero eigenvalue
ith eigenvector 1N . A graph contains a spanning tree if and
nly if its Laplacian matrix has rank N − 1. In this case, the zero
igenvalue has multiplicity one and all other eigenvalues have
ositive real part.
For any graph with M edges and N nodes, we define the

ncidence matrix R ∈ RN×M as the matrix R = (r1, r2, . . . , rM )
ith columns rk ∈ RN . Each column rk corresponds to exactly
ne edge ek = (i, j), and the ith and jth entry of rk are equal to 1
nd −1, respectively. The remaining entries of rk are equal to 0.
e also define the matrix

= diag(w1,w2, . . . ,wM ) (1)

s the M×M diagonal matrix, where wk is the weight on the edge
k (k = 1, 2, . . . ,M). The positive semi-definite matrix RWR⊤ can
be considered as the Laplacian of an associated undirected graph,
and will be denoted in this paper by Lnew.

3. Problem formulation

In this paper, we consider a heterogeneous linear multi-agent
system consisting of N possibly distinct agents. The dynamics of
the ith agent is represented by the linear time-invariant system

ẋi = Aixi + Biui + Eidi,
yi = C1ixi + D1idi,
zi = C2ixi + D2iui,

i = 1, 2, . . . ,N, (2)

where xi ∈ Rni is the state, ui ∈ Rmi is the coupling input,
di ∈ Rqi is an unknown external disturbance input, yi ∈ Rri is the
measured output and zi ∈ Rp is the output to be synchronized.
The matrices Ai, Bi, C1i, D1i, C2i, D2i and Ei are of suitable dimen-
sions. Throughout this paper we assume that the pairs (Ai, Bi) are
stabilizable and the pairs (C1i, Ai) are detectable. Since in (2) the
agents may have non-identical dynamics, in particular the state
space dimensions of the agents may differ. Therefore, one cannot
expect to achieve state synchronization for the network. Instead,
in the context of heterogeneous networks it is natural to consider
output synchronization, see e.g. [18,19] and [21].

Remark 1. Note that the system (2) representing the ith agent
is more general than the one in [18]. Indeed, our agents contain
two types of outputs, namely measured outputs yi and outputs zi
to be synchronized, while the agents in [18] only contain outputs
to be synchronized.

It was shown in [18] that solvability of certain regulator equa-
tions is necessary for output synchronization of heterogeneous
linear multi-agent systems, see also [19,23,30] and [31]. Follow-
ing up on this, throughout this paper we make the standard
assumption that there exists a positive integer r such that the
regulator equations

AiΠi + BiΓi = ΠiS,
C2iΠi + D2iΓi = R, i = 1, 2, . . . ,N

(3)

have solutions Πi ∈ Rni×r , Γi ∈ Rmi×r , R ∈ Rp×r and S ∈ Rr×r ,
where the eigenvalues of S lie on the imaginary axis and the pair
(R, S) is observable.
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Following [18], we assume that the agents (2) should be inter-
connected by a protocol of the form
ẇi = Aiwi + Biui + Gi(yi − C1iwi),

v̇i = Svi +

N∑
i=1

aij(vj − vi),

ui = Fi(wi − Πivi) + Γivi, i = 1, 2, . . . ,N,

(4)

where vi ∈ Rr and wi ∈ Rni are the states of the ith local
controller, the matrices S, Πi and Γi are solutions of (3), and the
matrices Fi ∈ Rmi×ni and Gi ∈ Rni×ri are control gains to be de-
igned. The coefficients aij are the entries of the adjacency matrix
of the communication graph. We briefly explain the structure

f this protocol. The first equation in (4) has the structure of an
symptotic observer for the state of the ith agent. The second
quation represents an auxiliary system associated with the ith

agent. Each auxiliary system receives the relative state values
with respect to its neighboring auxiliary systems. In this way,
the network of auxiliary systems will reach state synchronization.
The third equation in (4) is a static gain, it feeds back the value
wi − Πivi and the state vi of the associated auxiliary system
to the ith agent. The idea of the protocol (4) is that, as time
goes to infinity, the state xi of the ith agent and its estimate wi
converge to Πivi due the first equation in (3). Subsequently, as a
onsequence of the second equation in (3), the outputs zi of the
gents will reach synchronization.
Denote by x = (x⊤

1 , x⊤

2 , . . . , x⊤

N )
⊤ the aggregate state vector

and likewise define u, v, w, y, z and d. Denote by A the block
diagonal matrix

A = blockdiag(A1, A2, . . . , AN ) (5)

and likewise define B, C1, C2, D1, D2 and E. The multi-agent system
(2) can then be written in compact form as
ẋ = Ax + Bu + Ed,

y = C1x + D1d,

z = C2x + D2u.

(6)

Similarly, denote

F = blockdiag(F1, F2, . . . , FN )

and likewise define G, Γ and Π . The protocol (4) can be written
in compact form as
ẇ = Aw + Bu + G(y − C1w),
v̇ = (IN ⊗ S − L ⊗ Ir )v,
u = Fw + (Γ − FΠ )v.

(7)

Next, denote

xo = (x⊤,w⊤, v⊤)⊤.

By interconnecting the system (6) and the protocol (7), the con-
trolled network is then represented in compact form by
ẋo = Aoxo + Eod,

z = Coxo,
(8)

where

Ao =

( A BF BΓ − BFΠ

GC1 A + BF − GC1 BΓ − BFΠ

0 0 IN ⊗ S − L ⊗ Ir

)
,

Co =
(
C2 D2F D2Γ − D2FΠ

)
, Eo =

( E
GD1
0

)
.

Foremost, we want the protocol (4) to achieve output synchro-
nization for the overall network:

Definition 1. The protocol (4) is said to achieve z-output syn-
chronization for the network (8) if, for all i, j = 1, 2, . . . ,N , we
3

have zi(t)− zj(t) → 0, vi(t)− vj(t) → 0 and wi(t)− wj(t) → 0 as
t → ∞.

In the context of output synchronization, we are interested
in the differences of the output values of the agents in the
controlled network. Since the differences of the output values of
communicating agents are captured by the incidence matrix R of
the communication graph [32], we define a performance output
variable as

ζ = (W
1
2 R⊤

⊗ Ip)z,

where W is the weight matrix defined in (1). The output ζ reflects
the weighted disagreement between the outputs of the agents
in accordance with the weights of the edges connecting these
agents. Subsequently, we have the following equations for the
controlled network
ẋo = Aoxo + Eod,

z = Coxo,
ζ = Cpxo,

(9)

where

Cp = (W
1
2 R⊤

⊗ Ip)Co.

The impulse response matrix of the disturbance d to the perfor-
mance output ζ is given by

Td(t) = CpeAotEo. (10)

The performance of the network is now quantified by the
H2-norm of this impulse response. Thus we define the associated
H2 cost functional as

J :=

∫
∞

0
tr
[
T⊤

d (t)Td(t)
]
dt. (11)

Note that the cost functional (11) is a function of the gain
matrices F1, F2, . . . , FN and G1,G2, . . . ,GN .

The H2 optimal output synchronization problem is now de-
fined as the problem of minimizing the cost functional (11) over
all protocols (4) that achieve output synchronization. Since the
protocol (4) has a particular structure imposed by the communi-
cation topology, the H2 optimal output synchronization problem
is a non-convex optimization problem, and it is unclear whether
a closed form solution exists in general. Therefore, in this paper
we will address a version of this problem that only requires
suboptimality. The aim of this paper is then to design a protocol of
the form (4) that guarantees the associated cost (11) to be smaller
than an a priori given upper bound while achieving z-output
synchronization for the network. More concretely, the problem
we will address is the following:

Problem 1. Let γ > 0 be a given tolerance. Design gain matrices
F1, F2, . . . , FN and G1,G2, . . . ,GN such that the resulting protocol
(4) achieves z-output synchronization and its associated cost (11)
satisfies J < γ .

To solve Problem 1, in the next section we will first review
some preliminary results on H2 suboptimal control for linear
systems and on output synchronization of heterogeneous linear
multi-agent systems. It will become clear later on that these pre-
liminary results are necessary ingredients to address Problem 1.

4. Preliminary results

4.1. H2 Suboptimal control for linear systems by dynamic output
feedback

In this subsection, we will review the H2 suboptimal control
problem by dynamic output feedback for linear systems, see
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rom [8] on separation principle based H2 suboptimal control for
ontinuous-time linear systems.
Consider the system

ẋ = Āx + B̄u + Ēd,

y = C̄1x + D̄1d,

z = C̄2x + D̄2u,

(12)

where x ∈ Rn is the state, u ∈ Rm is the control input, d ∈ Rq is
an unknown external disturbance input, y ∈ Rr is the measured
output, and z ∈ Rp is the output to be controlled. The matrices Ā,
B̄, C̄1, C̄2, D̄1, D̄2 and Ē are of suitable dimensions. We assume that
the pair (Ā, B̄) is stabilizable and the pair (C̄1, Ā) is detectable. We
consider dynamic output feedback controllers of the form

ẇ = Āw + B̄u + G
(
y − C̄1w

)
,

u = Fw,
(13)

where w ∈ Rn is the state of the controller, F ∈ Rm×n and
G ∈ Rn×r are gain matrices to be designed. By interconnecting
the controller (13) and the system (12), we obtain the controlled
system(

ẋ
ẇ

)
=

(
Ā B̄F

GC̄1 Ā + B̄F − GC̄1

)(
x
w

)
+

(
Ē

GD̄1

)
d,

z =
(
C̄2 D̄2F

) ( x
w

)
.

(14)

Denote Ae =

(
Ā B̄F

GC̄1 Ā + B̄F − GC̄1

)
, Ee =

(
Ē

GD̄1

)
, Ce =(

C̄2 D̄2F
)
. The impulse response matrix of the disturbance d to

the output z is given by TF ,G(t) = CeeAetEe. We define the H2 cost
functional as

J(F ,G) :=

∫
∞

0
tr
[
T⊤

F ,G(t)TF ,G(t)
]
dt. (15)

The H2 suboptimal control problem by dynamic output feedback
is the problem of finding a controller of the form (13) such that
the associated cost (15) is smaller than an a priori given upper
bound and the controlled system (14) is internally stable. The
following lemma provides a design method for computing such
a controller, see also [8, Theorem 4].

Lemma 1. Let γ > 0 be a given tolerance. Assume that D̄1Ē⊤
= 0,

D̄⊤

2 C̄2 = 0 and D̄1D̄⊤

1 = Ir , D̄⊤

2 D̄2 = Im. Let P > 0 and Q > 0 satisfy
the Riccati inequalities

Ā⊤P + PĀ − PB̄B̄⊤P + C̄⊤

2 C̄2 < 0,

ĀQ + Q Ā⊤
− Q C̄⊤

1 C̄1Q + ĒĒ⊤ < 0.

If, in addition, such P and Q satisfy

tr
(
C̄1QPQ C̄⊤

1

)
+ tr

(
C̄2Q C̄⊤

2

)
< γ ,

then the controller (13) with F = −B̄⊤P and G = Q C̄⊤

1 internally
stabilizes the system (12) and is suboptimal, i.e. J(F ,G) < γ .

For a proof of Lemma 1, we refer to [8, Theorem 4].

4.2. Output synchronization of heterogeneous linear multi-agent
systems

In this subsection, we will study output synchronization of
heterogeneous linear multi-agent systems, see also [18–20] and
[21].
4

Consider a heterogeneous linear multi-agent system consist-
ing of N possibly distinct agents. The dynamics of the ith agent is
represented by the linear time-invariant system

ẋi = Aixi + Biui,

yi = C1ixi,
zi = C2ixi + D2iui,

i = 1, 2, . . . ,N. (16)

As we have mentioned before, the heterogeneous system (2) is
in fact a generalization of the heterogeneous system that was
considered in [18]. The agents (16) will be interconnected by a
protocol of the form (4), where the matrices S, Γi and Πi are
assumed to satisfy the regulator equations (3). The multi-agent
system (16) can be written in compact form as

ẋ = Ax + Bu,

y = C1x,
z = C2x + D2u,

(17)

and the protocol (4) can be written as (7). By interconnecting the
system (17) and the protocol (7), the controlled network is then
given by

ẋo = Aoxo,
z = Coxo.

(18)

The following lemma yields conditions under which the con-
trolled network (18) achieves z-output synchronization.

Lemma 2. Consider the multi-agent system (16) and the protocol
(4). Let gain matrices Fi and Gi be such that the matrices Ai + BiFi
and Ai−GiC1i are Hurwitz. Then the associated protocol (4) achieves
z-output synchronization for the network.

A proof of Lemma 2 can be given along the lines of the proof
of [18, Theorem 5].

We are now ready to deal with the H2 suboptimal output
synchronization problem formulated in Problem 1.

5. Design of H2 suboptimal output synchronization protocols
using dynamic output feedback

In this section, we will resolve Problem 1. More specifically,
we will establish a design method for computing gain matrices
F1, F2, . . . , FN and G1,G2, . . . ,GN such that the associated proto-
col (4) achieves z-output synchronization and guarantees J < γ .

In the sequel, we will first show that this problem can be
simplified by transforming it into H2 suboptimal control prob-
lems for N auxiliary systems. The suboptimal gains Fi and Gi for
these N separate problems will turn out to also yield a suboptimal
protocol for the heterogeneous network.

To this end, we introduce the following N auxiliary systems

ξ̇i = Aiξi + Biνi + Eiδi,
ϑi = C1iξi + D1iδi,

ηi = C2iξi + D2iνi, i = 1, 2, . . . ,N,

(19)

where ξi ∈ Rni is the state, νi ∈ Rmi is the coupling input,
δi ∈ Rqi is an unknown external disturbance input, ϑi ∈ Rri is
the measured output and ηi ∈ Rp is the output to be controlled.
For given gain matrices Fi and Gi, consider the dynamic output
feedback controllers
ω̇i = Aiωi + Biνi + Gi(ϑi − C1iωi),
νi = Fiωi, i = 1, 2, . . . ,N,

(20)

where ω ∈ Rn is the state of the ith controller.
i
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By interconnecting the systems (19) and the controllers (20),
we obtain the N controlled auxiliary systems(

ξ̇i
ω̇i

)
=

(
Ai BiFi

GiC1i Ai + BiFi − GiC1i

)(
ξi
ωi

)
+

(
Ei

GiD1i

)
δi,

ηi =
(
C2i D2iFi

) (ξi
ωi

)
, i = 1, 2, . . . ,N.

(21)

For i = 1, 2, . . . ,N , denote

Āi =

(
Ai BiFi

GiC1i Ai + BiFi − GiC1i

)
,

C̄i =
(
C2i D2iFi

)
, Ēi =

(
Ei

GiD1i

)
.

The impulse response matrix of the disturbance δi to the output
ηi is equal to

Tδi(t) = C̄ieĀit Ēi,

and an associated H2 cost functional is defined as

Ji =

∫
∞

0
tr[T⊤

δi (t)Tδi(t)]dt. (22)

he following lemma holds.

emma 3. Let γ > 0 be a given tolerance. Assume, for i =

, 2, . . . ,N, the systems (21) are internally stable and the costs (22)
atisfy
N∑
i=1

Ji <
γ

λN
, (23)

here λN is the largest eigenvalue of the matrix Lnew given by Lnew =

WR⊤. Then the protocol (4) achieves z-output synchronization for
he network (9) and the associated cost (11) satisfies J < γ .

roof. First, note that the systems (21) are internally stable if
nd only if the matrices Ai + BiFi and Ai − GiC1i are Hurwitz, see
.g. [37, Section 3.12]. Hence, by Lemma 2, if the systems (21) are
nternally stable, then the network controlled using the protocol
4) reaches z-output synchronization.

Next, we will show that if (23) holds, then J < γ . Note that
23) is equivalent to

N

N∑
i=1

∫
∞

0
tr[T⊤

δi (t)Tδi(t)]dt < γ . (24)

n turn, the inequality (24) holds if and only if

N

∫
∞

0
tr[T̄⊤

d (t)T̄d(t)]dt < γ (25)

olds, where

¯d = C̄oeĀot Ēo

with

Āo =

(
A BF

GC1 A + BF − GC1

)
, Ēo =

(
E

GD1

)
,

C̄o =
(
C2 D2F

)
.

Recall that the matrix A is the block diagonal matrix defined in
(5), similarly for the matrices B, C1, C2, D1, D2, E, F and G. Using
the fact that λN IpN − Lnew ⊗ Ip ≥ 0, it can be shown that (25)
implies∫

∞

tr[T̄⊤

d (t)(Lnew ⊗ Ip)T̄d(t)]dt < γ . (26)

0

5

On the other hand,∫
∞

0
tr[T̄⊤

d (t)(Lnew ⊗ Ip)T̄d(t)]dt =

∫
∞

0
tr
[
T⊤

d (t)Td(t)
]
dt (27)

ith Td(t) given by (10). Note that the right hand side of (27) is
xactly the cost J given by (11) associated with the network (9).

It follows that J < γ . This completes the proof. □

By the previous, if the gain matrices Fi and Gi are such that
Ai + BiFi and Ai − GiC1i are Hurwitz and (23) holds, then the
protocol (4) using these Fi and Gi yields z-output synchronization
and J < γ . In the next theorem, we will provide a method for
computing gain matrices Fi and Gi such that the above holds.

Theorem 4. Let γ > 0 be a given tolerance. For i = 1, 2, . . . ,N,
assume that D1iE⊤

i = 0, D⊤

2iC2i = 0, D1iD⊤

1i = Iri and D⊤

2iD2i = Imi .
Let Pi > 0 satisfy

A⊤

i Pi + PiA⊤

i − PiBiB⊤

i Pi + C⊤

2i C2i < 0. (28)

Let Qi > 0 satisfy

AiQi + QiA⊤

i − QiC⊤

1i C1iQi + EiE⊤

i < 0. (29)

If, in addition, such Pi and Qi satisfy

tr(C1iQiPiQiC⊤

1i ) + tr(C2iQiC⊤

2i ) <
γ

NλN
, (30)

then the protocol (4) with Fi := −B⊤

i Pi and Gi := QiC⊤

1i achieves
z-output synchronization for the network (9) and guarantees J < γ .

Proof. Note that (28) is equivalent to

(Ai − BiB⊤

i Pi)
⊤Pi + Pi(Ai − BiB⊤

i Pi) + PiBiB⊤

i Pi + C⊤

2i C2i < 0 (31)

and (29) is equivalent to

(Ai −QiC⊤

1i C1i)Qi +Qi(Ai −QiC⊤

1i C1i)⊤ +QiC⊤

1i C1iQi +EiE⊤

i < 0. (32)

aking Fi := −B⊤

i Pi and Gi := QiC⊤

1i , it then follows that Ai + BiFi
and Ai − GiC1i are Hurwitz.

Next, by (30), it follows from Lemma 1 that

Ji <
γ

NλN
, i = 1, 2, . . . ,N.

Thus we have (23), and the conclusion then follows from
Lemma 3. □

We note that the conditions D1iE⊤

i = 0, D⊤

2iC2i = 0, D1iD⊤

1i = Iri
and D⊤

2iD2i = Imi are made here to simplify notation, and can be
relaxed to the regularity conditions D1iD⊤

1i > 0 and D⊤

2iD2i > 0
alone.

Remark 2. Although Theorem 4 is an extension to the case of
heterogeneous systems of our previous results in [8] on homoge-
neous multi-agent systems, the structure of the proposed proto-
col (4) is different from the one proposed in [8]. In particular, in
Theorem 4, one needs to compute 2N control gains F1, F2, . . . , FN
and G1,G2, . . . ,GN , while in [8] one needs to compute only two
control gains.

Remark 3. In Theorem 4, in order to select γ , the following steps
could be taken. For i = 1, 2 . . . ,N:

(i) Compute positive definite solutions Pi and Qi of the Riccati
inequalities (28) and (29). Such solutions exist.

(ii) Denote Si = tr(C1iQiPiQiC⊤

1i ) + tr(C2iQiC⊤

2i ).
(iii) Choose γ such that NλNSi < γ .

Note that the smaller Si or λN is, the smaller such feasible γ is

allowed to be. Unfortunately, the problem of minimizing Si over
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ll Pi > 0 and Qi > 0 that satisfy (28) and (29) is a non-convex
ptimization problem. However, since smaller Qi leads to smaller
r(C2iQiC⊤

2i ) and smaller Pi and Qi lead to smaller tr(C1iQiPiQiC⊤

1i ),
nd consequently smaller feasible γ , we could try to find Pi and
i as small as possible. In fact, one can find Pi = Pi(ϵi) > 0 to (28)
y solving the Riccati equation
⊤

i Pi + PiA⊤

i − PiBiB⊤

i Pi + C⊤

2i C2i + ϵiIni = 0

ith ϵi > 0 arbitrary. Similarly, one can find Qi = Qi(σi) > 0 to
29) by solving the dual Riccati equation

iQi + QiA⊤

i − QiC⊤

1i C1iQi + EiE⊤

i + σiIni = 0

ith σi > 0 arbitrary. By using a standard argument, it can
e shown that Pi(ϵi) and Qi(σi) decrease as ϵi and σi decrease,

respectively. So ϵi and σi should be taken close to 0 to get smaller
Pi and Qi.

Remark 4. As a final remark, we note that the assumption that
all eigenvalues of S lie on the imaginary can be relaxed. The
assumption that none of the eigenvalues of S has a have negative
real part is made to exclude the trivial case that the outputs of
the agents converge to zero as time goes to infinity, see e.g. [18].
The assumption that none of the eigenvalues of S has positive
real part is due to the second equation in protocol (4). If S has
an eigenvalue with positive real part, then synchronization is not
guaranteed.

The assumption that none of the eigenvalues of S has positive
real part can be removed by instead considering the protocol:

ẇi = Aiwi + Biui + Gi(yi − C1iwi),

v̇i = Svi + K
N∑
i=1

aij(vj − vi),

ui = Fi(wi − Πivi) + Γivi, i = 1, 2, . . . ,N,

(33)

where K is a control gain to be designed, see e.g. [23]. Methods
exist to compute a suitable gain matrix K , see e.g. [38].

6. Simulation example

In this section, we will give a simulation example based on the
example in [18] to illustrate the design method of Theorem 4.

Consider a network of N = 6 heterogeneous agents. The
dynamics of the agents are given by

ẋi = Aixi + Biui + Eidi,
yi = C1ixi + D1idi,
zi = C2ixi + D2iui,

i = 1, 2, . . . , 6,

where Ai =

(0 1 0
0 0 ci
0 −fi −ai

)
, Bi =

(0
0
bi

)
, Ei =

(0 0.2
0 0
0 0.2

)
,

C1i =
(
1 0 0

)
, D1i =

(
1 0

)
, C2i =

(
1 1 0
0 0 0

)
, D2i =

(
0
1

)
.

The parameters ai, bi, ci and fi are chosen to be

ai = 2, ci = 1, i = 1, 2, . . . , 6,
b1 = b4 = 1, b2 = b5 = 2, b3 = b6 = 3,
f1 = f4 = 1, f2 = f5 = 2, f3 = f6 = 3.

The pairs (Ai, Bi) are stabilizable and the pairs (C1i, Ai) are de-
tectable. We also have that D1iE⊤

i = 0, D⊤

2iC2i = 0, D1iD⊤

1i = 1 and
D⊤

2iD2i = 1. The communication graph between the six agents is
assumed to be a weighted undirected cycle graph with all edge
weights equal to 1. Its Laplacian matrix is denoted by L. It turns

out that Lnew = 2L, and the largest eigenvalue of Lnew is λ6 = 8. s
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We choose the matrices S and R in the regulator equations (3)
to be

S =

(
0 1
0 0

)
, R =

(
1 1
0 1

)
.

The eigenvalues of S are on the imaginary axis and the pair (R, S)
is observable. We solve the equations (3) and compute

Πi =

(1 0
0 1
0 0

)
, Γi =

(
0 1

)
, i = 1, 2, . . . , 6.

The objective is to design a protocol of the form (4) such that
the associated cost (11) satisfies J < γ while achieving z-output
synchronization. Let the desired upper bound be γ = 36.

Following the design method in Theorem 4, for i = 1, 2, . . . , 6,
we compute a positive definite solution Pi to (28) by solving the
Riccati equation

A⊤

i Pi + PiA⊤

i − PiBiB⊤

i Pi + C⊤

2i C2i + ϵIni = 0

with ϵ = 0.001. We also compute a positive definite solution Qi
to (28) by solving the dual Riccati equation

AiQi + QiA⊤

i − QiC⊤

1i C1iQi + EiE⊤

i + σ Ini = 0

with σ = 0.001. Accordingly, we compute the associated gain
matrices Fi and Gi to be

F1 = F4 =
(
−1.0005 −1.7329 −0.7326

)
,

F2 = F5 =
(
−1.0005 −1.2345 −0.4951

)
,

F3 = F6 =
(
−1.0005 −1.0327 −0.3982

)
,

and

G1 = G4 =
(
0.3290 0.0341 0.0028

)⊤
,

G2 = G5 =
(
0.2804 0.0193 0.0007

)⊤
,

G3 = G6 =
(
0.2578 0.0132 0.0002

)⊤
.

As an example, we take the initial states of the agents to

be x10 =
(
1.0 1.4 1.6

)⊤, x20 =
(
1.2 −1.7 0.5

)⊤, x30 =(
1.3 −1.2 1.3

)⊤, x40 =
(
0.6 1.6 −1.3

)⊤, x50 =(
1.8 1.5 1.6

)⊤, x60 =
(
−1.1 1.7 0.9

)⊤. We take the ini-
tial states wi to be zero, and the initial states vi to be v10 =(
0.9 1.1

)⊤, v20 =
(
0.8 1.4

)⊤, v30 =
(
−1.0 0.9

)⊤, v40 =(
1.8 1.1

)⊤, v50 =
(
−1.6 1.4

)⊤, v60 =
(
1.1 −1.2

)⊤. In Figs. 1
and 2, we have plotted the trajectories of the output vectors zi,
i = 1, 2 . . . , 6 of the controlled network. The proposed proto-
col indeed achieves z-output synchronization for the network.
Moreover, for i = 1, 2, . . . , 6, we compute

Si = tr(C1iQiPiQiC⊤

1i ) + tr(C2iQiC⊤

2i ),

and obtain that

S1 = S4 = 0.6621, S2 = S5 = 0.4379, S3 = S6 = 0.3637.

Note that, for all i = 1, 2, . . . , 6, we have

Si <
γ

NλN
= 0.75,

t then follows from Theorem 4 that the designed protocol is
uboptimal, i.e. the associated cost is indeed smaller than the
esired tolerance γ = 36.

. Conclusions and future work

In this paper, we have studied the H2 suboptimal output
ynchronization problem for heterogeneous linear multi-agent
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z

Fig. 1. Plots of trajectories of the first component of the output vectors
1, z2, . . . , z6 .

Fig. 2. Plots of trajectories of the second component of the output vectors
z1, z2, . . . , z6 .

systems. Given a heterogeneous multi-agent system and an asso-
ciated H2 cost functional, we have provided a design method for
computing dynamic output feedback based protocols that guar-
antee the associated cost to be smaller than a given upper bound
while the controlled network achieves output synchronization.
For each agent, its two local control gains are given in terms of
solutions of two Riccati inequalities, each of dimension equal to
that of the agent dynamics.

As a possibility for future research, we mention the generaliza-
tion of the results in this paper on fixed directed graphs to that of
switching graphs, using, for example, methods from [39] or [40].
It would also be interesting to extend the results in this paper to
H∞ suboptimal output synchronization.
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