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Summary

Aims. The stable oxygen isotope composition of cellulose (δ18Ocellulose) integrates important
physiological and environmental information that can aid to understand better the response of
plant water use efficiency to climate change. As yet, limited knowledge of the drivers of the
isotopic composition of leaf water and cellulose in crop and grassland vegetation has restricted
our ability to predict and interpret δ18Ocellulose. The aim of this work was to evaluate current
theories in their ability to explain how physiological traits and climate variability drive variation
of the δ18O of all relevant water pools in a grassland ecosystem and of cellulose in leaf samples.
Specifically, the objective was to establish a comprehensive modelling framework for predicting
isotopic signals in a grassland ecosystem.

Materials and Methods. The physically-based 18O-enabled soil-vegetation-atmosphere
transfer model MuSICA was parameterised for a drought-prone grazed grassland ecosystem.
Model predictions of ecosystem δ18O signals in soil, source and leaf water pools (δ18Osoil,
δ18Osource and δ18Oleaf), and the 18O enrichment of leaf water above source water (∆18Oleaf),
were compared with fortnightly observations made throughout seven consecutive growing sea-
sons (2006–2012). For predicting δ18Ocellulose, a new allocation-and-growth-model was devel-
oped and added to MuSICA to predict, in an assimilation- and allocation-weighted fashion,
the incorporation of photo-assimilates into leaf cellulose, and the associated δ18Ocellulose signal
and its enrichment above source water (∆18Ocellulose). Model predictions of carbon dynamics
(metabolic pool turnover, shoot/root allocation) were validated with results from 13C-tracer-
based studies at the same pasture site.

Results and Discussion. The model produced realistic δ18O variations of the water pools,
suggesting that it captured well the various ecohydrological features (including soil water con-
tent and root water uptake dynamics) of the grassland ecosystem. Observed isotope data of
soil and source water and model predictions indicated that root water uptake relied mainly
on shallow soil water (top 20 cm), irrespective of the water status of the topsoil. ∆18Oleaf was
affected by both soil water content and air relative humidity, and model simulations indicated
that the effect of dry soil was mediated by drought-induced stomatal closure. Cellulose 18O
signals were simulated based on the predictions of δ18Osource and δ18Oleaf , and using the new
allocation-and-growth model. Model predictions of δ18Ocellulose and ∆18Ocellulose agreed well
with the observed data. The observed relationship between ∆18Ocellulose and relative humidity,
air temperature and canopy conductance was only reproduced by the model if the attenuation
factor (pex px) was related to relative humidity and if biochemical fractionation (εbio) was as-
sumed temperature-sensitive. Canopy conductance was negatively related to ∆18Ocellulose and
δ18Ocellulose. To verify coherence in the model’s predictions, the same model was subsequently
applied to predict the hydrogen isotope composition (δ2H) of the water pools of the studied
grassland and the carbon isotope photosynthetic discrimination inferred from leaf cellulose
(∆13Ccellulose). The extra constraint brought about by ∆13Ccellulose data strongly suggested
seasonal changes in stomatal conductance and photosynthetic parameters, that had little ef-
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fect on the predicted ∆18Ocellulose. Finally, the model was successfully tested for its ability to
predict decadal-scale variation in δ18Ocellulose in aboveground biomass samples from the Park
Grass Experiment.

Conclusions. This work highlights the usefulness of mechanistic 18O-enabled modelling for
explorations and quantitative analyses of the ecohydrology of ecosystems. The relation between
canopy conductance and cellulose-18O underlines the value of δ18Ocellulose to understand climate
change-induced alterations in water-use efficiency of grassland, which eventually may allow us to
make predictions on future behaviour of grassland vegetation. The revealed gaps in present-day
mechanistic understanding of the link between leaf water and cellulose 18O signals, specifically
the mechanisms underlying the temperature-sensitivity of εbio and the humidity-sensitivity of
pex px, should guide future theoretical and experimental studies.
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Zusammenfassung

Zielsetzung. Die stabile Sauerstoffisotopensignatur der Cellulose (δ18Ocellulose) enthält be-
deutende Informationen über die pflanzliche Physiologie und die Umwelt und kann damit zu
einem besseren Verständnis der Reaktion der Wassernutzungseffizienz auf den Klimawandel bei-
tragen. Die Vorhersage und Interpretation von δ18Ocellulose wurde bislang durch das begrenzte
Verständnis der Faktoren, welche einen Einfluss auf die Isotopensignaturen von Blattwasser
und Cellulose in Feldfrüchten und in Graslandvegetation ausüben, erschwert. Ziel dieser Arbeit
war es, zu bewerten, inwiefern anhand der gegenwärtigen Theorie der Einfluss physiologischer
Merkmale und klimatischer Variation auf die Variation der Sauerstoffisotopensignaturen in
allen relevanten Wasserkompartimenten eines Graslandökosystems sowie in Blatt-Cellulose er-
klärt werden kann. Ein Ziel war insbesondere, einen umfassenden Modellierungsansatz für die
Prognose von Isotopensignaturen im Grasland zu erstellen.

Material und Methoden. Das physikalisch basierte 18O-befähigte Boden-Pflanze-Atmo-
sphäre Modell MuSICA wurde für ein trockenheitsanfälliges beweidetes Graslandökosystem
parametrisiert. Die Modellprognosen der δ18O-Signaturen in den Wasserkompartimenten des
Ökosystems, nämlich im Bodenwasser, im aufgenommenen Wasser und im Blattwasser (δ18Osoil,
δ18Osource and δ18Oleaf), und in der 18O-Anreicherung des Blattwassers über dem aufgenomme-
nen Wasser (∆18Oleaf), wurden mit beobachteten 18O-Daten verglichen. Die zugrunde liegen-
den Proben wurden etwa alle zwei Wochen in sieben aufeinanderfolgenden Vegetationsperioden
(Jahre 2006 bis 2012) genommen. Um die δ18O-Signatur der Cellulose zu prognostizieren, wurde
ein neues Allokations- und Wachstumsmodell entwickelt und zum MuSICA-Modell hinzugefügt.
Mit dem kombinierten Modell wurden der assimilations- und allokationsgewichtete Einbau der
Photo-Assimilate in die Cellulose der Blätter, das assoziierte Isotopensignal (δ18Ocellulose) sowie
die Anreicherung der Cellulose gegenüber dem aufgenommenen Wasser (∆18Ocellulose) progno-
stiziert. Modellprognosen der Kohlenstoffdynamik (Turnover des metabolischen Pools, Spross-
Wurzel-Allokation) wurden mit Ergebnissen von 13C-Tracer-basierten Studien auf derselben
Weide validiert.

Ergebnisse und Diskussion. Die Variation der δ18O-Signaturen in den Wasserkomparti-
menten wurde durch das Modell realitätsnah wiedergegeben, was darauf schließen ließ, dass
es die verschiedenen ökohydrologischen Eigenschaften des Graslandökosystems (einschließlich
der Bodenwassergehalte und der Dynamik der Wasseraufnahme durch die Wurzeln) gut erfas-
ste. Die beobachteten Isotopendaten des Bodenwassers und des aufgenommenen Wassers sowie
die Modellprognosen zeigten, dass die Wasseraufnahme durch die Wurzeln vor allem aus der
obersten Bodenschicht (d.h. aus den obersten 20 cm) erfolgte, unabhängig von deren Wasser-
gehalt. Sowohl der Bodenwassergehalt als auch die relative Luftfeuchte beeinflussten ∆18Oleaf .
Die Modellsimulationen indizierten, dass der Effekt der Bodentrockenheit mit trockenheitsin-
duziertem Stomataschluss in Verbindung stand. Die 18O-Signale der Cellulose wurden mit dem
neuen Allokations- und Wachstumsmodell und basierend auf den Prognosen von δ18Osource

und δ18Oleaf simuliert. Die Modellprognosen von δ18Ocellulose und ∆18Ocellulose stimmten gut
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mit den beobachteten Daten überein. Der beobachtete Zusammenhang zwischen ∆18Ocellulose

und relativer Luftfeuchte, Lufttemperatur und Bestandesleitfähigkeit wurde durch das Modell
nur wiedergegeben, wenn der Modellierung ein feuchteabhängiger ’attenuation factor’ (pex px)
und eine temperaturabhängige biochemische Fraktionierung (εbio) zugrunde gelegt wurden. Die
Bestandesleitfähigkeit korrelierte negativ mit ∆18Ocellulose und δ18Ocellulose. Um die Kohärenz in
den Modellprognosen zu verifizieren, wurde das Modell – in seiner Parametrisierung für δ18O –
verwendet, um die Wasserstoffisotopensignaturen (δ2H) der Wasserkompartimente des gleichen
Standorts sowie die photosynthetische Kohlenstoffisotopendiskriminierung, abgeleitet aus der
13C-Diskriminierung der Blattcellulose (∆13Ccellulose), zu prognostizieren. Die zusätzliche Infor-
mation aus der 13C-Diskriminierung wies deutlich auf eine saisonale Änderung der Parameter
der stomatären Leitfähigkeit und der Photosynthese hin, welche sich kaum auf die progno-
stizierte Cellulose-18O-Anreicherung auswirkte. Schließlich wurde das Modell erfolgreich auf
seine Befähigung getestet, die δ18Ocellulose-Variation in oberirdischer Biomasse des Park Grass
Experiments wiederzugeben.

Schlussfolgerungen. In der vorliegenden Arbeit wurde aufgezeigt, wie ein mechanistisches
18O-befähigtes Modell beitragen kann, die Ökohydrologie eines Ökosystems zu untersuchen
und quantitativ zu analysieren. Die Beziehung zwischen Bestandesleitfähigkeit und Cellulose-
18O betont den Wert von δ18Ocellulose für das Verständnis der durch den Klimawandel her-
vorgerufenen Änderungen in der Wassernutzungseffizienz von Grasland. Dieses Verständnis
kann schließlich Vorhersagen über künftige Reaktionen von Graslandvegetation ermöglichen.
Die aufgezeigten Lücken im aktuellen mechanistischen Verständnis des Zusammenhangs zwi-
schen Blattwasser-18O und Cellulose-18O, insbesondere die Mechanismen, welche der Tempe-
raturabhängigkeit von εbio und der Feuchteabhängigkeit von pex px zugrunde liegen, dürften
zukünftige theoretische und experimentelle Studien leiten können.
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1. General Introduction

Rising atmospheric CO2 concentrations throughout the past 250 years have provoked tremen-
dous changes in the global climate system, with multiple feedbacks and amplifying effects
among meteorological parameters that bring about climate and weather conditions (IPCC,
2013). Terrestrial vegetation and climate are strongly linked and interact dynamically in shap-
ing the water and carbon cycle of ecosystems. Transpiration is thought to represent a large
part of the total land-atmosphere evapotranspiration (e.g. Jasechko et al., 2013; Good et al.,
2015b; Lian et al., 2018), and hence terrestrial vegetation plays a key role in determining water
fluxes. Water and carbon dynamics may not only be altered by changing climate, but also
by morpho-physiological adaptations of plants to those changes (e.g. Poorter & Navas, 2003;
Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Kimball, 2016). Plants that are exposed
to elevated CO2 often show higher net assimilation rates (An), lower stomatal conductance
(gs) (e.g. Ainsworth & Rogers, 2007; Leakey et al., 2009), and hence higher intrinsic water-use
efficiency (iWUE), which denotes the ratio of An to gs (Ehleringer et al., 1993). As monitoring
of CO2 and H2O exchange in the soil-vegetation-atmosphere system has only started in recent
decades, retrospective analyses that aimed to understand plants’ responses to climate change
have relied on plant-based proxies, such as the stable isotope composition in archived biomass.
The oxygen, hydrogen and carbon isotope composition (δ18O, δ2H and δ13C) in biological
archives store a record of environmental conditions and changes, as well as of plant responses
to environmental changes. Analysis of δ13C in archived hay samples of the Rothamsted Park
Grass Experiment (England) and in Capra ibex horns from Switzerland suggested that iWUE in
temperate and alpine grasslands increased throughout the past decade, indicating that assimi-
lation rates may have increased and/or that stomatal conductance may have decreased (Köhler
et al., 2010, 2012, 2016; Barbosa et al., 2010). Increases in iWUE have also been reported for
other taxa such as gymnosperm and angiosperm trees (e.g. Duquesnay et al., 1998; Saurer
et al., 2004, 2014; Adams et al., 2020). The δ18O composition of plant cellulose or biomass
has received considerable attention as it may complement the information derived from the
δ13C composition of plant biomass or cellulose. In particular, researchers have attempted to
use δ18O to constrain the interpretation of the δ13C signal with regard to changes in stomatal
conductance and/or assimilation rate (e.g. Scheidegger et al., 2000; Grams et al., 2007; Roden
& Farquhar, 2012). Thus, δ18O may help discern the cause(s) of observed changes in intrinsic
water-use. Our incomplete understanding of the physiological mechanisms that have provoked
the increase in iWUE in temperate grassland was one main starting point for the present work,
which focused on enlarging our process-based knowledge of the formation of the stable oxygen
isotope composition of cellulose (δ18Ocellulose) in grassland vegetation. In essence, cellulose
extracted from plant biomass integrates the isotopic information recorded in source and leaf
water; yet, our mechanistic understanding of the formation of δ18Ocellulose is strongly limited.
In particular, I investigated the δ18O signal transfer from meteoric water through soil water,
stem water and leaf water to δ18Ocellulose in a temperate grassland ecosystem by making use of
a process-based soil-vegetation-atmosphere transfer model. The current state of knowledge of
the mechanisms operating along this process chain is presented in the following.
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1. GENERAL INTRODUCTION 2

1.1 Isotopic imprint of meteoric water onto the soil water pool

Variation in isotopic abundances arises from fractionation against the heavy isotope in equi-
librium reactions (α+, equilibrium fractionation factor) and during diffusion (αk, kinetic frac-
tionation factor) (Mook, 2000). Molecules containing the light isotope 16O (i.e. the light iso-
topologue H2

16O) evaporate more easily and diffuse faster than the heavy isotopologue H2
18O.

Depending on the relative importance of the two fractionation factors, terrestrial and atmo-
spheric water pools are either enriched or depleted in 18O relative to oceanic water (Fig. 1.1a).
The 18O/16O ratio of a sample (Rsample) is usually expressed as the ‰ deviation relative to the
18O/16O ratio of the V-SMOW (Vienna Standard Mean Ocean Water) standard (Rstandard):

δ18O = Rsample/Rstandard − 1 (1.1)

The isotopic composition of precipitation (hereafter termed δ18Orain) differs considerably be-
tween geographical locations (as characterised by latitude, continentality, altitude), seasons
(Fig. 1.1a, b), and between heavy and light rains, with the differences largely governed by
rainout and temperature effects (Dansgaard, 1964; Rozanski et al., 1993; Gat, 1996; Araguás-
Araguás et al., 2000; Bowen et al., 2019). During condensation and rain droplet formation,
the heavy isotopologue preferentially passes into the liquid phase, leaving isotopically depleted
water vapour behind. The temporal evolution of the isotopic composition of precipitation and
vapour during continuous rainout is commonly described as a Rayleigh distillation process
(Gat, 1996). Due to the lower vapour pressure of the heavier isotopologue H2

18O, atmospheric
vapour (with isotopic composition δ18Ovapour) is usually depleted compared to rain water. Un-
der field conditions, water vapour is not always in equilibrium with precipitation (e.g. Fiorella
et al., 2019; Penchenat et al., 2020), especially over vegetated surfaces (Lai et al., 2008; Ueta
et al., 2013).

In principle, the isotopic fractionation theory outlined above also applies to deuterium (2H),
and the same standard is used for calculation of δ2H values. Yet, equilibrium fractionation is
higher and kinetic fractionation smaller for 2H as compared to 18O (Majoube, 1971; Luz et al.,
2009), leading to characteristic relations in the dual-isotope space (Fig. 1.1c). As this work
mainly focused on the δ18O signals in grassland, the following paragraphs are targeted to δ18O
and mention δ2H only if relevant differences between the two isotopes are found.

During rainfall, meteoric water imparts its δ18O to the soil water pool (δ18Osoil). The dynamics
of infiltration, percolation and mixing of current precipitation with water stored in the soil
depend on precipitation amount and intensity, on the physical properties of the soil as well as
on the degree of water saturation prior to the precipitation event. In addition, vegetation exerts
control on soil water dynamics and the spatio-temporal distribution of δ18Osoil due to various
effects: first, rain or snow interception on plant surfaces lead to a delayed water infiltration
into the soil, and/or to a direct return of precipitation to the atmosphere via evaporation of
intercepted water, which can make up almost 30 % of the total continental evapotranspiration
(Good et al., 2015b). Second, plants may direct infiltrating water towards their active root
zones (Dubbert & Werner, 2019); and third, root water uptake and transpiration rates, as
determined by canopy conductance, act upon the emptying and refilling dynamics of the soil
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Figure 1.1: (a) δ18O in the hydrological cycle, as determined by fractionation processes occurring along the path
of water from the ocean to continental precipitation and terrestrial water pools. δ18Ovapour, δ18Oleaf, δ18Osource,
δ18Osoil and δ18Ogroundwater represent the average δ18O values of atmospheric vapour, leaf water, pseudo-stem
water, soil water (mean of soil water at 7 and 20 cm) and groundwater observed at pasture 8 of Grünschwaige
Grassland Research Station during the growing seasons 2006–2012 (mid-April to end-October; see Hirl et al.,
2019). δ18Orain is the average amount-weighted δ18O of precipitation as predicted by IsoGSM for the growing
seasons 2006–2012, and δ18Osnow is the average amount-weighted IsoGSM-predicted δ18O for days with freezing
temperature (Tair < 0 °C) during November to mid-April 2006–2012. Both δ18Orain and δ18Osnow were offset-
corrected according to Hirl et al. (2019) (see panel (b)). (Drawing: Marianne Hirl) (b) Average seasonal cycle
of δ18Orain at the study site, pasture no. 8 at Grünschwaige Grassland Research station, as predicted by the
isotope-enabled nudged atmospheric general circulation model IsoGSM (Yoshimura et al., 2011). Points and the
grey band represent the mean and standard error for 2006 to 2012. The plotted data were corrected by the
mean offset (1.3‰) between IsoGSM predictions and δ18Orain data observed at the study site (as in Hirl et al.,
2019, see their Figs. S2 and S3). (c) Dual isotope plot of rainwater (blue filled points), groundwater (yellow
points), atmospheric water vapour (light blue open circles), soil water at 20 cm (black points) and 7 cm (brown
points), stem water (pink crosses) and leaf water (green points), as observed at Grünschwaige during the study
years 2006 to 2012. The blue line represents the global (and at the same time the local) meteoric water line:
δ2H = 8 δ18O + 10‰.
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water pool and hence on the spatio-temporal distribution of δ18Osoil (Brinkmann et al., 2018;
Hirl et al., 2019).

The δ18O of soil water is further altered due to soil evaporation, which often creates distinct
isotopic profiles with high enrichment in the upper part and a decrease of δ18O towards the
lower part of the soil profile (e.g. Dubbert et al., 2013). At dry sites, a characteristic local
maximum δ18O value is often found at the evaporation front, which marks the transition
between the predominance of liquid water flux versus water vapour flux (Braud et al., 2005a,b).
Evaporative enrichment of soil water is usually less pronounced under vegetated surfaces than
for bare soils (Dubbert et al., 2013; Dubbert & Werner, 2019).

Apart from the vertical gradients in δ18Osoil along the profile, there is indication now that pore-
scale isotopic heterogeneity exists, which is related to isotopic depletion of water on organic
surfaces (Chen et al., 2016; Lin & Horita, 2016; Lin et al., 2018). According to Chen et al.
(2016), the ‘surface effect’ is much more pronounced for 2H than for 18O and for low soil water
contents. That two different types of water may exist in, or pass through the soil-groundwater-
streamwater-continuum has also been discussed in a slightly different context (called the “two
water worlds” hypothesis): it was suggested that precipitation entering the soil may either be
bound by the soil matrix and later supply plant water demand, or it may directly recharge
groundwater and streams with little or no interaction with the soil-bound water (Brooks et al.,
2010; McDonnell, 2014). This limited ‘hydrologic connectivity’ between mobile and soil-bound
water could explain isotopic differences between runoff and evapotranspiration at the global
scale (Good et al., 2015a).

In this work, ‘soil water’ is defined as the bulk water present in the soil at the time of sampling,
as obtained by cryogenic vacuum distillation (see Hirl et al., 2019). This is in line with the
long-standing notion that water potential gradients between the soil and the atmosphere drive
water uptake and transpiration, leaving little opportunity for roots to select between more
mobile or less mobile water (Penna et al., 2018).

1.2 Use of stable isotopes for determining plant water source

As pronounced isotopic gradients in δ18Osoil from the top to the bottom of a soil profile are often
found, comparison of δ18Osoil with the δ18O of water taken up by a plant (xylem water, termed
δ18Osource here) can give evidence on the depth of water uptake by plant roots (e.g. Kulmatiski
et al., 2006; Asbjornsen et al., 2008; Moreno-Gutiérrez et al., 2012; Rothfuss & Javaux, 2017).
In grasses, unenriched water makes up the largest fraction of the water contained in the leaf
growth and differentiation zone (LGDZ), the basal meristematic part of a vegetative grass tiller
that is completely enclosed by the leaf sheaths of older leaves (Fig. 1.2; Kemp, 1980; Volenec
& Nelson, 1981; Liu et al., 2017a). The LGDZ and the older leaf sheaths together represent the
pseudostem. LGDZ water was very close to source water in two C3 and three C4 grasses (Liu
et al., 2017a) and can thus be used for comparison with the δ18O of soil water at different depths,
to approximate the mean depth of root water uptake (see Hirl et al., 2019). Furthermore,
δ18Osource can help differentiate between potential water sources such as soil water, stream
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Figure 1.2: Scheme of a vegetative grass tiller (adapted from Liu et al., 2017a). A vegetative tiller usually
comprises three fully-expanded mature leaves, with leaf 1 the youngest and leaf 3 the oldest (senescing) leaf,
plus one growing leaf. The joint marks the transition between leaf blade and leaf sheath. The pseudostem
represents the basal part of the tiller and consists of the sheaths of the expanded leaves and the leaf growth
and differentiation zone (LGDZ). The LGDZ comprises zones of cell division, expansion and differentiation,
including cellulose synthesis and is completely enclosed inside the leaf sheaths of the next older leaf. The LGDZ
is therefore not directly exposed to evaporative conditions in the surrounding air. Within a leaf, the tip of the leaf
(blade) represents the oldest and the basal portion (of the sheath) the youngest part. The spatial distribution
of the cellulose synthesis rate along the LGDZ is schematically displayed on the right (see Schnyder et al., 1988;
Maurice et al., 1997; Schnyder et al., 2000).

water and groundwater (e.g. Bowling et al., 2017; Barbeta & Peñuelas, 2017). Both applications
rely on the basic assumption that no fractionation against the heavy isotope occurs during root
water uptake, which should at least be valid for oxygen (Walker & Richardson, 1991; Barnard
et al., 2006). Regarding hydrogen, isotopic offsets between xylem water and source (soil)
water have been observed at xeric or halomorphic sites (Lin & Sternberg, 1993; Ellsworth &
Williams, 2007), which has been interpreted as fractionation against the heavy isotope 2H
during root water uptake. Recent studies indicated that such isotopic offsets can also occur
under well-watered and non-saline conditions (Liu et al., 2017a; Vargas et al., 2017; Barbeta
et al., 2020; von Freyberg et al., 2020). Based on their results from a controlled experiment
with Fagus sylvatica saplings, Barbeta et al. (2020) proposed that deuterium depletion of stem
water relative to soil water might be the result of isotopically depleted water stored in non-
conductive tissue of the stem rather than fractionation during water uptake. In that study, the
differences between the δ18O of soil and stem water were statistically not significant, indicating
that in the presence of pronounced δ18O gradients along the soil profile (see also Rothfuss &
Javaux, 2017), comparison of δ18Osoil and δ18Osource should still allow for an identification of
the zone of most active root water uptake and the temporal variation thereof. Furthermore,
water storage in the pseudostem of grasses is very small compared to the amount of water
possibly stored in non-conductive tissues of tree trunks.

Variation in root water uptake depth might be expected as a response to various factors, such
as spatiotemporal variability of water and nutrient contents in the soil profile. Hitherto it was
not clear whether edaphic drought arising from natural fluctuations of precipitation input and
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transpiration systematically changes the depth of water uptake of C3 grassland (Hirl et al.,
2019).

1.3 Leaf water enrichment

Leaves undergo an isotopic enrichment during transpiration, since the lighter isotopologues
of water preferentially evaporate while the heavy isotopologues accumulate in the leaf (for a
review see Cernusak et al., 2016). The foundation for predicting leaf water 18O enrichment
was laid by (Craig & Gordon, 1965), who derived an equation for modelling the evaporative
enrichment of a freely evaporating water body. The Craig-Gordon model was later adapted to
leaves in order to predict the steady-state isotope ratio of water at the evaporative sites (Re,ss)
that line the stomatal cavities (Dongmann et al., 1974; Flanagan et al., 1991):

Re,ss = α+
(
αksRsource

ei − es
ei

+ αkbRsource
es − ea
ei

+Rvapour
ea
ei

)
(1.2)

α+ is the equilibrium fractionation factor, and αks and αkb denote the kinetic fractionation
factors during water vapour diffusion through stomata and leaf boundary layer, respectively.
Rsource and Rvapour denote the isotope ratios of source (stem) water and atmospheric vapour,
and ei, es and ea are the partial pressures of water vapour in the intercellular air space, at
the leaf surface, and in the atmosphere. ei is commonly assumed to correspond to saturation
vapour pressure at leaf temperature; yet, recent findings indicate that this assumption may
not always be valid (Cernusak et al., 2018). As evident from Eqn 1.2, the isotopic enrichment
at the evaporative site is determined by bidirectional water vapour exchange between the leaf
and atmosphere, where the relative importance of the water vapour isotope ratio increases with
increasing atmospheric relative humidity. While relative humidity is known to exert a strong
control on leaf water enrichment, as yet only few studies have explored the role of edaphic
drought (Yakir et al., 1990a,b; Ferrio et al., 2012; Hirl et al., 2019).

In order to investigate and interpret the isotopic enrichment (or depletion) independently from
variation in the source water signal, Re,ss and Rvapour are commonly expressed relative to
Rsource:

∆18Osample = Rsample
Rsource

− 1 = δ18Osample − δ18Osource
1 + δ18Osource

(1.3)

where Rsample stands for Re,ss, Rleaf (see below) or Rvapour. Thus, Eqn 1.2 becomes (Farquhar
& Lloyd, 1993; Farquhar & Cernusak, 2005):

∆18Oe,ss = α+
(
αk

(
1 − ea

ei

)
+ ea
ei

(
∆18Ovapour + 1

))
–1 (1.4)

αk represents the weighted kinetic fractionation factor for the diffusion through stomata and
boundary layer, with fractionations of 28‰ for molecular diffusion through stomates and 19‰
for laminar diffusion through the leaf boundary layer (Merlivat, 1978; Farquhar et al., 2007):

αk = 1 + 0.028 g−1
s + 0.019 g−1

b
g−1

s + g−1
b

= 1 + εk (1.5)
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where gs and gb are stomatal and boundary layer conductance to water vapour. The isotope
fractionation factor during liquid-vapour equilibrium may be calculated from leaf temperature
(T ) according to Majoube (1971):

α+ = exp
(

1137
(273 + T )2 − 0.4156

273 + T
− 0.0020667

)
= 1 + ε+ (1.6)

Bulk leaf water (∆18Oleaf) is often less enriched than Craig-Gordon predicted ∆18Oe,ss (e.g.
Yakir et al., 1990a; Flanagan et al., 1991; Lai et al., 2008; Holloway-Phillips et al., 2016; Hirl
et al., 2019). Two different concepts for explaining those observations are coexisting, namely
the ’two-pool model’ and the ’Péclet model’. The two-pool model assumes that water in veins
and ground tissue is unenriched, while evaporatively enriched water resides mainly in mesophyll
cells (Leaney et al., 1985; Yakir et al., 1994), yielding:

∆18Oleaf,ss = (1 − ϕ) ∆18Oe,ss (1.7)

where ∆18Oleaf,ss is the steady-state enrichment of bulk leaf water and ϕ denotes the proportion
of unenriched water in bulk leaf water. In comparison, the Péclet model suggests that diffu-
sion of enriched water from the evaporative sites to the xylem creates an exponential isotopic
enrichment gradient in the leaf lamina, which is determined by the magnitude of the advective
flux of source water relative to back diffusion (Farquhar & Lloyd, 1993). The leaf lamina Péclet
model is given as (Farquhar & Lloyd, 1993; Farquhar et al., 2007; Cuntz et al., 2007):

∆18Oleaf,ss = ∆18Oe,ss
1 − e−℘

℘
(1.8)

with ℘ = EL/(CD) the Péclet number, E (mol m−2 s−1) leaf transpiration rate, L (m) the
effective path length, C = 55500 mol m−3 the molar density of liquid water, and D (m2 s−1)
the diffusivity of H2

18O in liquid water (Farquhar & Lloyd, 1993; Cuntz et al., 2007). The
effective path length L is a fitted parameter that may be related to the pathway for water
movement that predominates in the leaf under the specific environmental conditions (Barbour
& Farquhar, 2004; Kahmen et al., 2008; Song et al., 2013; Barbour et al., 2017). Farquhar
& Gan (2003) extended the lamina Péclet model to account for separate Péclet effects in the
xylem, veinlets and lamina mesophyll. While the Péclet model is conceptually realistic and
supported by a range of observational datasets (e.g. Barbour et al., 2000a, 2004; Ripullone
et al., 2008), various studies did not find evidence for a Péclet effect, suggesting that the use
of the simpler two-pool model may be sufficient for predicting bulk leaf water enrichment (e.g.
Roden et al., 2015; Song et al., 2015a; Hirl et al., 2019). The principal difficulty with the regard
to the evaluation of these models is that direct validation of the Craig-Gordon model would
require micro-scale sampling and measurement of the thin water film that lines the stomatal
cavity. Nevertheless, several researchers inferred the isotopic composition at the evaporative
site by performing online measurements of transpiration and of the δ18O of transpired vapour
(e.g. Simonin et al., 2013; Dubbert et al., 2014; Song et al., 2015b).

Under field conditions, a pronounced diurnal variation with maximum isotopic enrichment in
the afternoon and minimum enrichment in the early morning is usually observed (Cernusak
et al., 2002, 2016; Lai et al., 2008; Bögelein et al., 2017; Hirl et al., 2019). Steady-state
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conditions are often not met due to dynamic variation of environmental conditions, meaning
that the δ18O of transpired vapour is not equal to δ18Osource (e.g. Simonin et al., 2013; Dubbert
et al., 2014). Non-steady state bulk leaf water enrichment (∆18Oleaf) may be modelled as
(Farquhar & Cernusak, 2005; Farquhar et al., 2007):

d(W ∆18Oleaf)
dt = − E

αk α+ (1 − h)
℘

1 − e−℘

(
∆18Oleaf − ∆18Oleaf,ss

)
(1.9)

where W (mol m−2) denotes leaf water content and the other parameters are defined as given
above. Apart from those temporal dynamics, spatial variation in 18O enrichment has been
observed within single leaves. Enrichment was shown to increase from the base to the tip of
grass leaf blades, the gradient being dependent on relative humidity (Helliker & Ehleringer,
2000, 2002a; Gan et al., 2003; Ogée et al., 2007). Also, small-scale spatial variation of leaf
water, with a tendency to higher enrichment towards the edges was observed in dicot leaves
(Wang & Yakir, 1995; Gan et al., 2002; Šantr̊uček et al., 2007; Gerlein-Safdi et al., 2017). If
combined with gradients in assimilation and sucrose synthesis rates, such spatial gradients of
enrichment, and its dynamic response to external factors may lead to dynamic variation in the
isotopic composition of sucrose exported from source leaves.

Of particular interest for plant physiological and paleoecological studies is the (theoretical)
relationship between ∆18Oleaf and stomatal conductance. Evaporative conditions (relative
humidity or VPD) and other environmental factors (e.g. CO2, irradiance, soil water status,
O3), as well as genetic and physiological properties act upon stomatal aperture and thereby
affect leaf water evaporative enrichment: an increase in stomatal conductance 1) leads to a
decrease in kinetic fractionation (εk; see Eqn 1.5), 2) increases transpiration, which decreases
leaf temperature and increases the ratio of ambient to intercellular water vapour pressure (ea/ei)
due to evaporative cooling, and 3) increases the Péclet number. Effects 1) to 3) all lead to a
decrease of leaf water 18O enrichment with increasing gs (Eqns 1.2–1.8; Farquhar et al., 2007).
Although theoretically established, few studies have actually investigated a relation between
leaf water 18O enrichment (or the δ18O of leaf water) and stomatal conductance (Pendall et al.,
2005, Ripullone et al., 2008, Loucos et al., 2015, Ellsworth et al., 2017; see also Farquhar et al.,
2007). Thus, the relation between leaf water 18O and gs is actually not well characterized,
and should depend strongly on the cause of variation in gs. Once imprinted on leaf water
enrichment, the stomatal conductance signal is expected to be transferred to photosynthates,
phloem organic matter (Keitel et al., 2003), and finally to cellulose.

1.4 δ18Ocellulose – an integrator of assimilation and growth processes, and of en-
vironmental and ecohydrological dynamics

When cellulose is synthesized in the leaf growth and differentiation zone of grasses (see Fig.
1.2), in the meristematic tissue of growing dicot leaves, or in the cambium of trees, sucrose – the
main transport sugar in plants (Lalonde et al., 2003) and substrate for cellulose synthesis – is
cleaved into hexose phosphates, allowing for isotopic exchange with water in the developing cell
(see below; Barbour, 2007). Thus, the isotopic composition of cellulose (δ18Ocellulose) integrates
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Figure 1.3: Overview of the main processes that affect the isotopic composition of cellulose. Precipitation (with
isotopic composition δ18Orain) infiltrates and mixes with water present in the soil (δ18Osoil). The water taken
up by plant roots (δ18Osource) moves through the leaf growth and differentiation zone (LGDZ) to the leaf blades,
where it becomes enriched in 18O, the extent of enrichment being mainly dependent on the ratio of ambient
(ea) to intercellular partial pressure of water vapour (ei), stomatal (gs) and boundary layer conductance (gb),
leaf temperature (Tleaf) and water vapour isotopic composition (δ18Ovapour) (see Eqns 1.2–1.9). The isotopic
composition of bulk leaf water (δ18Oleaf) may not always be identical to the isotopic composition of sucrose
synthesis water (δ18Osuc-water, i.e. the water that is imprinted in leaf sucrose; see text). Sucrose (with δ18Osucrose)
is enriched compared to sucrose synthesis water due to biochemical fractionation (εbio). Sucrose is translocated
via the phloem from leaf blades to the LGDZ (which represents a carbon sink), where it is cleaved and hexose
phosphates (HP) are formed, which can be broken down into triose phosphates (TP). Carbonyl oxygen exchange
with source water can occur for HP and TP molecules, leading to an attenuation of the leaf water enrichment
signal. The resulting δ18Ocellulose thus integrates leaf water enrichment and source water signals.

leaf and source water isotope signals (see Fig. 1.3 for an overview of the processes leading up
to the cellulose isotope signal). δ18Ocellulose and the enrichment of cellulose above source water
(∆18Ocellulose = Rcellulose/Rsource − 1) can be modelled according to the Barbour-Farquhar
equation (Barbour & Farquhar, 2000):

δ18Ocellulose = pex px (δ18Osource + εbio) + (1 − pex px) (δ18Oleaf + εbio) (1.10a)

∆18Ocellulose = ∆18Oleaf (1 − pex px) + εbio (1.10b)

pex represents the proportion of oxygen in cellulose that exchanged with water at the site of
cellulose synthesis, px is the proportion of unenriched water in the developing cell, and εbio

denotes the average biochemical fractionation between water and oxygen in organic molecules
used for cellulose synthesis. The product pex px is termed ’attenuation factor’ here, as in Liu
et al. (2016). The state of knowledge and uncertainties regarding the parameters pex, px and
εbio are discussed in detail below.
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During CO2 hydration and fixation, dark reaction and sucrose synthesis, the hydration of
carbonyl groups and the formation of gem-diol intermediates allow for oxygen exchange between
organic molecules and tissue water (Farquhar et al., 1998; Sternberg et al., 2006). Thus,
leaf water 18O enrichment is passed on to primary assimilates. It is supposed in Eqn 1.10
that sucrose synthesized in source leaves is in isotopic equilibrium with leaf lamina water,
as suggested by two studies with castor bean (Barbour et al., 2000a; Cernusak et al., 2003).
However, results from a recent study by Lehmann et al. (2017) on two C3 grasses (Lolium
perenne and Dactylis glomerata) indicated that this assumption may not always be valid.
Thus, the question whether or not, or under which environmental conditions, sucrose is in
equilibrium with lamina leaf water currently represents one major uncertainty regarding the
18O signal transfer from leaf water to cellulose. In addition, the extent to which instantaneous
values of ∆18Oleaf are laid down in primary assimilates and finally in cellulose depends on
assimilation and growth rates (Hemming et al., 2001; Cernusak et al., 2005; Ogée et al., 2009;
Hirl et al., 2020). Under field conditions, the parameters of Eqn 1.10 as well as photosynthesis
and growth rates may vary dynamically on a sub-hourly to daily timescale as a response
to the dynamic variation in environmental and ecohydrological conditions. Especially the
inert nature of leaf water isotopic enrichment (see above) limits the applicability of snapshot
measurements of ∆18Oleaf for the modelling and exploration of ∆18Ocellulose or δ18Ocellulose.
The temporal integration of cellulose represents an additional difficulty when it comes to the
interpretation of the cellulose isotope signal (Hemming et al., 2001; Damesin & Lelarge, 2003;
Ogée et al., 2009; Gessler et al., 2009, 2014; Royles et al., 2013; Liu et al., 2017b; Hirl et al.,
2020). Process-based ecosystem models that generate continuous predictions of isotope signals
and plant carbon fluxes can aid in the interpretation of δ18Ocellulose from samples collected in
natural (eco)systems (Roden et al., 2000; Barbour et al., 2002; Ogée et al., 2009; Keel et al.,
2016; Ulrich et al., 2019). Such models were hitherto unavailable for grassland (Hirl et al.,
2019, 2020). Also, in general, studies on the δ18O of cellulose or biomass from grassland have
been scarce (Flanagan & Farquhar, 2014; Webb & Longstaffe, 2006; Ramı́rez et al., 2009; Hirl
et al., 2019, 2020).

As cellulose integrates source and leaf water isotopic signals, it also contains the environmental
and physiological information imprinted in δ18Osource and δ18Oleaf . In particular, δ18Ocellulose

is thought to represent an integrated proxy of stomatal conductance (Farquhar et al., 1998;
Scheidegger et al., 2000; Barbour et al., 2000b; Grams et al., 2007) due to the association of
leaf water 18O enrichment and gs (see sections 1.3 and 1.7). Also, the δ18Ocellulose from tree-
rings has been related to a range of meteorological/climatic parameters, such as temperature
(e.g. Libby et al., 1976; Labuhn et al., 2014), sunshine duration (Hafner et al., 2011), rainfall
patterns and amounts as well as the δ18O of rain (Treydte et al., 2006; Schollaen et al., 2013;
Robertson et al., 2001), and vapour pressure deficit (Kahmen et al., 2011) or relative humidity
(Shu et al., 2005; Anderson et al., 1998). Yet, the association of δ18Ocellulose with climate is
complex, owing to correlations among meteorological parameters and the dynamic nature of
assimilation and growth under field conditions. Hence, teasing apart direct and indirect effects
of climatic drivers on δ18Ocellulose based on statistical correlations has proven to be difficult or
even misleading, and necessitates the use of process-based models.
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1.5 Biochemical fractionation between water and organic substrate

Carbohydrates are generally enriched in 18O relative to the water in which they were formed,
as isotopic exchange between carbonyl oxygen and water involves fractionation (Schmidt et al.,
2001). The average biochemical fractionation (εbio) between water and oxygen in organic
molecules used for cellulose synthesis has long been taken as a constant of ≈27‰ (Epstein
et al., 1977; DeNiro & Epstein, 1981; Sternberg & DeNiro, 1983; Yakir & DeNiro, 1990). This
notion was recently challenged by Sternberg & Ellsworth (2011), who heterotrophically gener-
ated cellulose from wheat seeds in the dark and found that εbio was inversely related to growth
temperature, the effect being most pronounced for temperatures <20 °C (Fig. 1.4a). Impor-
tantly and interestingly, when the authors compiled ∆18Ocellulose data from submerged aquatic
plants and plotted those data against growing temperature, virtually the same polynomial re-
lation between εbio (being represented by ∆18Ocellulose) and temperature was obtained. The
finding of Sternberg & Ellsworth (2011) were controversially discussed in the recent past, with
some authors suggesting that pex rather than εbio might be dependent on temperature (Zech
et al., 2014a,b; Sternberg, 2014).

One earlier examination of the potential temperature-dependency of εbio in a terrestrial ecosys-
tem comes from Roden & Ehleringer (2000). Analysing the oxygen and hydrogen isotope
ratios of xylem water, leaf water and cellulose of riparian cottonwood trees growing along
an elevational gradient in Utah, these authors investigated whether there is indication for
a temperature-dependent biochemical fractionation during wood cellulose formation in field-
grown trees. Due to there being no significant variation in the isotopic composition of cellulose,
leaf, xylem or stream water along the transect, the authors concluded that temperature did not
exert control on biochemical fractionation. Yet, average growing season temperatures along
the elevational transect lay between ca 23.5 °C and 28.5 °C, a range where the temperature
sensitivity of εbio should be small according to Sternberg & Ellsworth (2011). Clearly, there is
a great urgency for better empirical evidence for or against a temperature-dependent εbio in
terrestrial vegetation.

1.6 The attenuation factor (pex px)

Although it is generally acknowledged that cellulose – at least leaf cellulose (see Cheesman &
Cernusak, 2017; Voelker & Meinzer, 2017) – contains both a leaf water and a source water 18O
signal (Barbour & Farquhar, 2000, see above), uncertainties still remain regarding the degree
of attenuation of the leaf water enrichment signal in sucrose along its way from source leaves
to sink tissue. The proportion of unenriched water in the developing cell (px) is commonly
calculated from a two-end-member mixing model (Liu et al., 2017a; Cheesman & Cernusak,
2017):

px = δ18Ocel-water − δ18Osuc-water
δ18Osource − δ18Osuc-water

= 1 − ∆18Ocel-water
∆18Osuc-water

(1.11)

where ’cel-water’ and ’suc-water’ represent the water at the location of cellulose and sucrose
synthesis, respectively. Depending on the experimental setting (controlled vs. field experiment)
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Figure 1.4: (a) Biochemical fractionation (εbio) as a function of temperature. εbio was estimated as the isotopic
enrichment of cellulose in submerged aquatic plants relative to source water (∆18Ocellulose; redrawn from Stern-
berg & Ellsworth, 2011). Error bars represent the standard deviation and the continuous line gives the best-fit
polynomial regression, used for predicting ∆18Ocellulose in Hirl et al. (2020). Original data come from DeNiro
& Epstein (1981), Sauer et al. (2001) and Sternberg (1988). The dashed line represents εbio as a function of
temperature as obtained in the wheat germination experiment of Sternberg & Ellsworth (2011). (b) Relation
between relative air humidity and pex px for various C3 and C4 grasses. pex px was calculated from Eqn 1.10b,
using ∆18Oleaf and ∆18Ocellulose data and a temperature-dependent εbio, computed from air temperature in the
growth environment based on the polynomial regression for aquatic plants displayed in (b). Green points show
data from a controlled environment experiment with Lolium perenne (εbio = 26.8‰; Juan C. Baca Cabrera,
Regina T. Hirl, Jianjun Zhu, Hans Schnyder, unpublished data; see 2.2 and 3.4 and Baca Cabrera et al., 2020).
Closed and open squares show data from another controlled environment experiment conducted by Lehmann
et al. (2017), where pex px was either calculated using a temperature-dependent εbio = 25.5‰ (closed squares)
or εbio = 27‰ (open squares; see Lehmann et al., 2017, their Table 4). Orange triangles illustrate data for the
C4 grass C. squarrosa, with temperature-dependent εbio = 26.2‰ (Liu et al., 2016; see 2.2 and 3.3). Diamonds
show the relation between pex px and relative humidity for C3 (grey filled diamonds) and C4 grasses (grey open
diamonds) studied by Helliker & Ehleringer (2002a,b). Note that while relative humidity was constant through-
out day and night in the experiments of Lehmann et al. (2017) and Liu et al. (2016), relative humidity differed
between the dark and light period in the L. perenne experiment of JCBC, RTH, JZ and HS (unpublished).
Relative humidity in panel (c) refers to daytime humidity. For the Helliker & Ehleringer (2002a) data, pex px

was plotted against relative humidity at midday, as given in their study.

and the plant functional type, δ18Osource may be defined as the δ18O of nutrient solution or
tank water (e.g. Liu et al., 2017a), soil water, or xylem water (Cernusak et al., 2005). The
defintion of ’source water’ as being represented by one of those water compartments may be less
critical for δ18O than for δ2H (Barbeta et al., 2020), and if care is taken to prevent or minimize
evaporation from soil or tank water in controlled experiments (Liu et al., 2017a). The isotopic
enrichment of sucrose synthesis water has been estimated as ∆18Osuc−water = ∆18Osucrose−εbio,
with ∆18Osucrose approximated by the 18O enrichment of bulk phloem organic matter (Cernusak
et al., 2005). In the absence of direct measurements of ∆18Osucrose, ∆18Osuc−water was equated
with the ∆18O of bulk leaf water (Song et al., 2014; Liu et al., 2017a).

In the developing cells of tree trunks and in the leaf growth and differentiation zone (LGDZ) of
grasses, px stayed close to 1 (Cernusak et al., 2005; Liu et al., 2017a, Fig. 1.2). As phloem water
was only slightly enriched in 18O as compared to xylem water (Cernusak et al., 2005), and water
in the LGDZ was close to source (irrigation) water (Liu et al., 2017a), precise knowledge of
∆18Osuc−water and the definition of δ18Osource should only have a small effect on the estimation
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of px for grasses and tree-rings. In contrast, considerable uncertainty exists with regard to
putative spatio-temporal variation of px in the growing leaves of dicots.

The proportion of oxygen in cellulose that exchanged with water at the site of cellulose syn-
thesis (pex) (Farquhar et al., 1998; Barbour & Farquhar, 2000) is perhaps the most uncertain
parameter of the Barbour-Farquhar model, at least for grasses and tree-rings where px is well
constrained. The interpretation of observed variability in pex is complicated by the fact that
pex is usually estimated from the Barbour-Farquhar model by inserting measured values of
∆18Oleaf and ∆18Ocellulose and literature-based estimates of εbio and px into that equation. As
a consequence, the estimates obtained for pex integrate and reflect all kinds of errors and uncer-
tainties: sampling and measurement errors (for δ18Osource, ∆18Oleaf , ∆18Ocellulose), as well as
our incomplete understanding with regard to variation of the δ18O of sucrose synthesis water
and the relation between ∆18Osucrose and ∆18Oleaf . Also, unlike δ18Ocellulose, δ18Osource and
∆18Oleaf do not represent temporally-integrated signals.

Results from various studies indicated that pex is approximately 0.4 if cellulose is formed
from carbohydrates (Sternberg et al., 1986; Yakir & DeNiro, 1990; Roden & Ehleringer, 1999;
Roden et al., 2000; Sternberg et al., 2003; Cernusak et al., 2005). However, when sucrose is
broken down into hexose monophosphates during cellulose formation in the growth zone, hexose
monophosphates might undergo rapid ’futile’ cycling with triose phosphates (Hill et al., 1995).
Variation in pex is commonly thought to arise from variation in the extent of futile cycling, as
oxygen in carbonyl groups of dihydroxyacetonephosphate and 3-phosphoglyceraldehyde can be
exchanged with local water, and triose phosphate isomerase additionally catalyses the rapid
interconversion of the triose phosphates (Hill et al., 1995). Theoretical estimates indicated
that pex may range between 0.2 (if no futile cycling occurs and the only exchangeable oxygen
appears in hexose phosphates) and 1 (if all hexose phosphates undergo futile cycling) (Farquhar
et al., 1998; Barbour & Farquhar, 2000):

pex = 0.2 + (0.6 + 0.2 / (2 − y)) y (1.12)

with y the probability that a hexose phosphate molecule undergoes futile cycling. Assuming
that a slower turnover of water-soluble carbohydrates or lower growth rates enhance the prob-
ability of substrate to undergo cycling through hexose and triose phosphates, several authors
related the observed variation of pex to variation in the turnover time of carbohydrates, or to
variation in the relation of sink to source strength (Barbour & Farquhar, 2000; Ellsworth &
Sternberg, 2014; Song et al., 2014; Cheesman & Cernusak, 2017; Szejner et al., 2020). Thus,
environmental parameters (e.g. light intensity, VPD or edaphic drought) may affect futile cy-
cling rates and pex via their effect on plant growth rates or carbohydrate dynamics. Direct
biochemical evidence for variation of pex in vivo and for the contribution of futile cycling to in
vivo variation of pex is currently lacking.

Additional (apparent) variation in pex may arise from isotopic disequilibria between ∆18Osucrose

and ∆18Oleaf (Lehmann et al., 2017), and from isotopic exchange potentially occurring when
sucrose is transported from source leaves to sink tissue (Gessler et al., 2013). A positive relation
between relative humidity and pex px was observed for a range of C3 and C4 grasses grown
under controlled environment conditions when pex px was calculated from observed ∆18Oleaf
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and ∆18Ocellulose based on Eqn 1.10b (Fig. 1.4b). Evidence for relative humidity-related
variation of pex px in plants grown under natural conditions in the field was hitherto lacking
(Hirl et al., 2020). As temperature and relative humidity vary simultaneously and dynamically
in the field, disentangling the effects of temperature and humidity on εbio and pex px requires
the use of a mechanistic model.

1.7 Carbon isotopes, water-use efficiency and the dual isotope approach

As climate change alters both carbon and water dynamics of plants, water-use efficiency (WUE)
is a parameter of great interest because it reflects the relationship between CO2 assimilation
and water loss. While instantaneous WUE represents the ratio of assimilation to transpiration,
which is driven by atmospheric water deficit, plant physiological adaptations are reflected in
intrinsic water-use efficiency (iWUE, also termed physiological WUE):

iWUE = An
gs

(1.13a)

iWUE =
ca
(
1 − ci

ca

)
1.6 (1.13b)

where An is leaf net assimilation rate, gs is stomatal conductance to water vapour, ci and
ca are intercellular and atmospheric CO2 concentrations, and 1.6 represents the ratio of the
conductances to water vapour and CO2 (Farquhar et al., 1989; Franks et al., 2013). Information
on ci/ca to retrospectively estimate iWUE can be obtained from analysis of the stable carbon
isotope signature of cellulose or plant organic matter (δ13Cp) (Farquhar et al., 1982, 1989):

δ13Cp = δ13Ca − a− (b− a) ci
ca

(1.14)

with a the fractionation during diffusion of CO2 in air (4.4‰), b the fractionation during car-
boxylations (∼27‰) (Farquhar et al., 1989), and δ13Ca the isotopic composition of atmospheric
CO2. δ13C is defined on the lines of Eqn 1.1, with Rstandard the isotope ratio of the Vienna
Pee Dee Belemnite standard. When physiological mechanisms are to be studied independently
from δ13Ca, the 13C discrimination (∆13C) is commonly applied (Farquhar & Richards, 1984):

∆13C = Ra
Rp

− 1 = δ13Ca − δ13Cp
1 + δ13Cp

(1.15)

Together, Eqn 1.14 and 1.15 yield:

∆13C = a+ (b− a) ci
ca

(1.16)

Eqns 1.14 and 1.16 represent the simplified Farquhar model; a detailed version of the model,
which accounts for the effects of diffusion through the boundary layer, stomata and mesophyll,
as well as photorespiration and mitochondrial respiration, can be found in Farquhar et al. (1982,
1989) and Farquhar & Cernusak (2012). Recently, Ma et al. (2020) showed that if information
on mesophyll conductance is lacking, 13C based predictions of iWUE may be obtained by
assuming a constant ratio of stomatal to mesophyll conductance.
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The intercellular CO2 concentration is the net result of CO2 supply and demand and is thus
determined both by stomatal conductance and photosynthetic capacity. Analysis of δ13C (or
∆13C) alone does not allow to tease apart stomatal and photosynthetic effects on ci and iWUE.
It is thought that the δ18O of cellulose or plant biomass may help interpret variation in ∆13C
and iWUE, as δ18Ocellulose (or rather ∆18Ocellulose) may represent an integrated proxy of stom-
atal conductance (the ’dual isotope approach’; Farquhar et al., 1998; Scheidegger et al., 2000;
Barbour et al., 2000b; Grams et al., 2007). Due to the expected negative relation between
leaf water 18O enrichment and gs (see section 1.3), ∆18Ocellulose is expected to decrease with
increasing gs. At the same time, increasing gs causes an increase in ci/ca and ∆13C (Eqn
1.16). Hence, a negative relationship between ∆18O and ∆13C may be expected if variation
in ∆13C is primarily caused by stomatal conductance changes (Grams et al., 2007). Increases
(or decreases) in δ18Ocellulose in tree-rings have thus been interpreted to reflect decreases (or
increases) in stomatal conductance (e.g. Sidorova et al., 2009; Barnard et al., 2012; Weigt et al.,
2018; Guerrieri et al., 2019).

Several studies used δ18O and δ13C to discuss physiological responses to management practices
such as thinning or fertilization, which act on limiting factors such as light, water or nutrients
(Brooks & Coulombe, 2009; Brooks & Mitchell, 2011; Moreno-Gutiérrez et al., 2011; Giuggiola
et al., 2016). Still, however, there remains significant uncertainty about the relation between
cellulose-18O and gs which is complicated by the dynamic variation of stomatal or canopy
conductance, growth and cellulose synthesis, and integration time and tissue life span in field
conditions. In particular, it is challenging to obtain a time-integrated measure of stomatal
conductance. As single or multiple snapshot measurements of gs may be of limited value,
mechanistic models that generate continuous predictions of gs can aid in the evaluation of the
δ18O-gs relation.

1.8 Aims and outline of the thesis

The main aim of this thesis was to establish a comprehensive modelling framework for exploring
the 18O signal transfer from meteoric water to leaf cellulose of a grassland ecosystem. No
such modelling framework has been in existence for grassland. In a first step, the process-
based isotope-enabled soil-plant-atmosphere model MuSICA was parameterised for a temperate
humid pasture ecosystem and then applied to track the transfer of the rainwater isotope signal
through soil water, plant source water, as well as canopy leaf water and its enrichment above
source water in samples collected at fortnightly intervals during the vegetation periods 2006–
2012 (Hirl et al., 2019). In doing so, the current system-scale ecohydrological understanding
of the 18O signal transfer was evaluated in detail. The aims were 1) to evaluate the effect of
edaphic drought on the grassland community’s root water uptake depth, 2) to disentangle the
effects of soil and atmospheric moisture on canopy leaf water 18O enrichment (∆18Oleaf), 3)
to assess the performance of the two-pool and the Péclet model in predicting ∆18Oleaf , and
4) to explore the role of plant morpho-physiological parameters and of isotopic input data in
shaping the water and δ18O dynamics of the ecosystem.
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In a second step, a new allocation-and-growth module was devised and added to the process-
based isotope-enabled model MuSICA (Hirl et al., 2020). The combined model (termed Mu-
SICAgrass in the following) generated continuous half-hourly predictions of the δ18O of source
water and of the plant metabolic pool, which allowed to make predictions of the cellulose iso-
topic signals. MuSICAgrass was tested for its ability to predict the δ18O and ∆18O of leaf
cellulose from mixed-species collections of the co-dominant species of the studied grassland
(growing seasons 2007–2012). Specifically, we examined two main uncertainties concerning
the link of the leaf water and cellulose 18O signals, namely 1) the sensitivity of the atten-
uation factor (pex px) to relative humidity, and 2) the temperature-sensitivity of εbio. These
hypotheses have not been systematically tested in terrestrial ecosystems before. In addition, we
explored whether ∆18Ocellulose and δ18Ocellulose of the grassland canopy were linked to canopy
conductance.

Furthermore, this thesis contains the results of two controlled environment studies. In a first
set of experiments, the effects of air vapour pressure deficit (VPD) and nitrogen supply on
the ∆18O of leaf water, the ∆18O of cellulose, and on the attenuation factor (pex px) were
examined (Liu et al., 2016). That study used Cleistogenes squarrosa, a perennial C4 grass from
the Central Asia steppe. Additionally, we tested whether the δ18O of air CO2 had a measurable
effect on the δ18O of cellulose.

The second set of experiments set out to investigate the effect of air VPD and CO2 concentration
on diurnal growth patterns of the perennial C3 grass Lolium perenne (Baca Cabrera et al.,
2020). Understanding how VPD and CO2 affect growth patterns of grasses is of relevance
for the modelling and potential use of δ18Ocellulose for elucidating physiological adaptations of
plants to changing atmospheric CO2.

This thesis is organized as follows: Chapter 2 summarises the main components and features
of the model, and provides an overview of the experimental site. In addition, the controlled
environment experiments are presented in short. Chapter 3 contains the abstracts of the
publications that emerged from this dissertation. In Chapter 4, major results are discussed
and potential applications are presented. In particular, I evaluated the ability of MuSICAgrass
to predict the δ2H of ecosystem water pools at the temperate humid grassland ecosystem
(section 4.2.1) and the ∆13C of cellulose from the same samples that were analysed for their
oxygen isotope ratios (section 4.2.2). In addition, I compared model predictions of δ18Ocellulose,
made with the original parameterisation for Grünschwaige and meteorological forcing files
for Rothamsted (1993–2010), with observations of δ18Ocellulose in the Rothamsted Park Grass
Experiment (section 4.2.3).



2. Synthesis of Materials and Methods

2.1 Process-based isotope-enabled modelling of grassland water and cellulose iso-
topes

The MuSICA model (Multi-layer Simulator of the Interactions between a vegetation Canopy
and the Atmosphere) is an isotope-enabled soil-plant atmosphere transfer model that simu-
lates ecosystem CO2, energy and water fluxes, along with the δ18O and δ2H composition of
ecosystem water pools (Ogée, 2000; Ogée et al., 2003, 2009; Wingate et al., 2010; Gangi et al.,
2015). MuSICA was originally devised for a maritime pine forest canopy and was for the
first time applied to grassland in this work. Our study site was a temperate humid grazed
Lolio-Cynosuretum grassland, pasture no. 8 at the former Grünschwaige Grassland Research
Station of TUM near Munich (for details on site and management see Schnyder et al., 2006).
Vegetation was characterised by continuous and rapid leaf turnover and a short leaf lifespan
(Schleip et al., 2013). Due to the low water-holding capacity of the shallow topsoil, the site
was prone to edaphic drought.

The model was forced by half-hourly meteorological and isotopic input data and predicted
half-hourly values of latent and sensible heat flux, transpiration and evaporation, gross pri-
mary production and net ecosystem exchange, as well as the spatio-temporal dynamics of soil
temperature, soil water content, and root water uptake. In addition, it simulated the spatio-
temporal dynamics of δ18Osoil, as well as the temporal variation of δ18Osource and the δ18O of
canopy leaf water (according to Eqns 1.2–1.9). Isotopic input data (δ18Orain and δ18Ovapour)
collected at the study site were used whenever available, which were complemented with data
from the general circulation model IsoGSM (Yoshimura et al., 2011; see Hirl et al., 2019 and
section 4.1).

In the first part of this work, the model was parameterised for the study site and validated
based on Eddy covariance data from the same site. Then, the model was tested for its ability to
predict the spatio-temporal dynamics of the δ18O of soil, pseudo-stem, and canopy leaf water,
as well as root water uptake, thus describing, the ’18Oecohydrology’ of the studied grassland
ecosystem (Hirl et al., 2019). δ18O data for comparison with model predictions were obtained
from fortnightly sampling of ecosystem water pools (groundwater, soil water at 7 and 20 cm
depth, pseudo-stem and leaf samples, and atmospheric vapour) during the growing seasons
2006 to 2012. Pseudo-stem and leaf samples were mixed-species collections of the co-dominant
species Lolium perenne, Poa pratensis, Dactylis glomerata, Phleum pratense, Taraxacum of-
ficinale and Trifolium repens present in the pasture plant community. Fortnightly sampling
was complemented by collection of rainwater following rain events. Water was extracted from
soil and leaf samples in a cryogenic vacuum distillation unit (see Liu et al., 2016), and the
isotopic composition of the water samples was determined using cavity ring-down spectroscopy
or isotope ratio mass spectrometry (see Hirl et al., 2019). In addition, cellulose was extracted
from subsamples of dried leaf material according to Brendel et al. (2000) and Gaudinski et al.
(2005) and analysed for its δ18O and δ13C composition (see Hirl et al., 2020).

17
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The soil was parameterised in terms of its structural and hydraulic characteristics (soil water
retention and hydraulic conductivity, boundary conditions at the bottom of the soil profile), soil
water vapour effective diffusivity, respiration, optical properties, as well as surface resistances,
as described in detail in Hirl et al. (2019). The parameterisation of the vegetation included
canopy structure and phenology, photosynthetic properties and leaf conductances, root distri-
bution and hydraulics, as well as leaf optical properties. The same set of parameters was used
for the entire 7-year study period.

In the second part, I constructed a new allocation-and-growth module and added this to the
MuSICA model (Fig. 2.1). Based on a set of differential equations and proceeding from
gross primary production and the isotope ratios of assimilates predicted by MuSICA, the
allocation-and-growth module simulated maintenance and growth respiration, and shoot and
root structural growth rates (Hirl et al., 2020; 2.1). The salient features of that module are
that it assumes a constant (target) size of the metabolic pool, which supplies substrate to
growth only if the pool is filled and if gross primary production is larger than maintenance
respiration. Thus, upkeep of maintenance respiration is prioritised over growth. Besides, in
the model, resource partitioning between shoot and roots depends on xylem water potential,
and hence on the soil water status. As such, the model predicts that leaf growth and cellulose
synthesis predominantly occur under well-watered conditions, known to be a general feature
of herbaceous vegetation (Boyer, 1970; Durand et al., 1995). Cellulose synthesis was assumed
proportional to aboveground growth rate.
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Figure 2.1: Schematic overview of the allocation-and-growth module devised for prediction of cellulose isotope
signals (from Hirl et al., 2020). Wpool denotes the size of the metabolic pool, and Rassim, Rpool and Rcellulose are
the isotope ratios of the assimilates, the metabolic pool and cellulose. Ψxylem denotes xylem water potential,
which determines the partitioning of assimilates between shoot and root growth. For details on model equations
and parameterisation see Hirl et al. (2020).
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Figure 2.2: Predicted behaviour of
carbon fluxes and of the isotope
signatures of the metabolic pool
during a dry period in summer
2010, as marked by a decline
of xylem water potential (Ψxylem)
around DOY 180: gross primary pro-
duction (Fassim), maintenance res-
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was assumed to be driven by air tem-
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In the model, current assimilates mix with all non-structural carbohydrates that represent the
plant metabolic carbon pool. Unlike previous versions of MuSICA (Ogée et al., 2009), the
isotope ratio of the assimilates is computed from the leaf water isotope ratio by assuming
temperature-dependent biochemical fractionation (Fig. 1.4a; Sternberg & Ellsworth, 2011).
The change of the sugar pool isotope ratio is then calculated based on the ratio of assimilation
rate to the metabolic pool size and on the difference between the isotope ratios of the new
assimilates and the metabolic pool. All fluxes out of the metabolic pool carry the isotopic
signal of the metabolic pool, supposing that no fractionation during respiration or growth oc-
curs (Cernusak et al., 2004; Farquhar & Cernusak, 2012; but see Ogée et al., 2009). Model
parameterisation of soil, vegetation and of the allocation-and-growth module relied on mea-
surements conducted at the experimental site (Schnyder et al., 2006; Gamnitzer et al., 2009,
2011; Schleip, 2013; Schleip et al., 2013; Ostler et al., 2016), supplemented by literature data
on C3 grassland.

Carbon fluxes and isotope signals of the metabolic pool simulated with MuSICAgrass, and in
particular model behaviour during edaphic drought, are exemplified in Fig. 2.2 for the summer
of 2010. Xylem water potential was predicted to decrease considerably around DOY 180 of
2010, causing GPP to decrease, while maintenance respiration still increased, in accordance
with the increase of air temperature. Shoot growth rate decreased as predicted by the decrease
of xylem water potential, while root growth was initially enhanced, but then decreased due
to decreasing assimilate supply. Root growth recovered as soon as the metabolic pool was
replenished. Throughout that period the size of the metabolic pool fluctuated around its
target value, as prescribed by the model priorities. Shoot growth only re-started as soon as
the xylem water potential relaxed. The δ13C of the pool peaked concurrently with the decline
in xylem water potential, while δ18Opool was predicted to increase in a more dampened way.

The isotopic composition of cellulose was calculated from shoot growth rate-weighted isotope
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ratios of xylem water and of the metabolic pool, with the relative contributions of xylem water
and metabolic pool being determined by the attenuation factor pex px. In the standard simula-
tion, pex px was calculated from midday air relative humidity, and the biochemical fractionation
occurring during sucrose breakdown and cellulose synthesis in the LGDZ was computed from
daily mean air temperature (see Fig. 1.4a and Hirl et al., 2020). Xylem water and metabolic
pool isotope ratios were integrated over the assumed age of structural biomass in the samples
(the integration time).

Finally, the deuterium isotope composition (δ2H) of the water pools was calculated along the
lines of δ18O, but using isotope fractionation factors specific to deuterium (see e.g. Cernusak
et al., 2016). The carbon isotope discrimination (∆13C) of assimilates was computed based on
the detailed Farquhar model (Farquhar et al., 1982, 1989; with modifications following Wingate
et al., 2007).

2.2 Controlled environment experiments

Two different sets of controlled environment experiments were performed in order to explore
the effects of air CO2 concentration, vapour pressure deficit (VPD) and nitrogen (N) supply
on the oxygen isotope composition of leaf water and cellulose, and on morpho-physiological
parameters and growth processes that may influence the incorporation of the leaf water isotopic
signal into cellulose (see Liu et al., 2016; Baca Cabrera et al., 2020). All experiments were
performed in Conviron growth chambers with tightly controlled environmental conditions of
relative humidity, temperature, irradiance, CO2 concentration and C and O isotope composition
of CO2, nutrient supply and isotopic composition of the nutrient solution. These variables were
surveyed throughout the duration of the experiment and adjusted if needed.

The first set of experiments aimed to investigate nitrogen supply and VPD effects on ∆18Oleaf

and ∆18Ocellulose and on the relation between ∆18Oleaf and ∆18Ocellulose in the C4 grass Cleis-
togenes squarrosa. The 2 x 2 factorial design included a low and a high N treatment (modified
Hoagland nutrient solution with 7.5 or 22.5 mM nitrate-N, respectively) and low or high VPD
(0.63 and 1.58 kPa throughout light and dark period). Moreover, we tested if the δ18O of air
CO2 had a measureable effect on δ18Ocellulose.

The second set of experiments aimed at elucidating the effect of air CO2 concentration and
VPD on daily mean leaf elongation rate (LER) and day to night differences of LER (and thus,
to a rough approximation, cellulose formation), final leaf dimensions, and epidermal cell length
and number in the C3 grass Lolium perenne. Perennial ryegrass was a major component of
the mixed-species samples studied in Hirl et al. (2019, 2020) and constitutes one of the most
important forage grasses in temperate climates. The mesocosm experiment consisted of a 3 x 2
factorial design with 200, 400 and 800µmol mol−1 CO2, and low (0.59 kPa) and high (1.17 kPa)
VPD. Treatment effects on day-to-night differences in LER were related to leaf gas exchange
characteristics and hydraulic controls (leaf water potential, osmotic potential, turgor pressure).



3. Summaries of manuscripts and contributions of the authors

This thesis comprises two first-author and two co-author papers. The abstracts and the au-
thors’ contributions are given below. Publications 1, 2 and 4 resulted from the DFG project
SCHN 557/9-1 ”The significance of cellulose-δ18O for understanding water-use efficiency of
grassland: Evidence from experimental, observational and process-based modeling studies”.
Hans Schnyder and I conceived and wrote the research proposal for that project together, and
it provided funding for two doctoral students (Juan C. Baca Cabrera and me).
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3.1 Publication 1:
The 18O ecohydrology of a grassland ecosystem – predictions and observations

Regina T. Hirl*, Hans Schnyder, Ulrike Ostler, Rudi Schäufele, Inga Schleip, Sylvia H. Vetter,
Karl Auerswald, Juan C. Baca Cabrera, Lisa Wingate, Margaret M. Barbour, Jérôme Ogée

* Corresponding author

Published in Hydrology and Earth System Sciences: 23, 2581–2600, 2019. doi: 10.5194/hess-
23-2581-2019

Abstract

The oxygen isotope composition (δ18O) of leaf water (δ18Oleaf) is an important determinant of
environmental and physiological information found in biological archives, but the system-scale
understanding of the propagation of the δ18O of rain through soil and xylem water to δ18Oleaf

has not been verified for grassland. Here we report a unique and comprehensive dataset of
fortnightly δ18O observations in soil, stem and leaf waters made over seven growing seasons in
a temperate, drought-prone, mixed-species grassland. Using the ecohydrology part of a phys-
ically based, 18O-enabled soil–plant–atmosphere transfer model (MuSICA), we evaluated our
ability to predict the dynamics of δ18O in soil water, the depth of water uptake, and the effects
of soil and atmospheric moisture on 18O enrichment of leaf water (∆18Oleaf) in this ecosystem.
The model accurately predicted the δ18O dynamics of the different ecosystem water pools, sug-
gesting that the model generated realistic predictions of the vertical distribution of soil water
and root water uptake dynamics. Observations and model predictions indicated that water
uptake occurred predominantly from shallow (<20 cm) soil depths throughout dry and wet
periods in all years, presumably due (at least in part) to the effects of high grazing pressure on
root system turnover and placement. ∆18Oleaf responded to both soil and atmospheric moisture
contents and was best described in terms of constant proportions of unenriched and evapora-
tively enriched water (two-pool model). The good agreement between model predictions and
observations is remarkable as model parameters describing the relevant physical features or
functional relationships of soil and vegetation were held constant with one single value for the
entire mixed-species ecosystem.

Contributions

RTH, HS and JO designed the study. RTH analysed the data, parameterised the model and
performed the modelling with guidance by JO. IS and UO designed the sampling scheme and set
up, tested the water extraction unit and performed the diurnal water sampling. RS performed
the isotope analyses. SHV analysed the eddy flux data. MMB performed the supplementary
controlled environment experiments. RTH and HS wrote the paper, responded to the reviewers’
comments and revised the manuscript accordingly after the initial submission. RTH, HS, UO,
RS, IS, SHV, KA, JCBC, LW, MMB and JO contributed to the discussion and revision.
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3.2 Publication 2:
Temperature-sensitive biochemical 18O-fractionation and humidity-dependent
attenuation factor are needed to predict δ18O of cellulose from leaf water in
a grassland ecosystem

Regina T. Hirl*, Jérôme Ogée*, Ulrike Ostler, Rudi Schäufele, Juan C. Baca Cabrera, Jianjun
Zhu, Inga Schleip, Lisa Wingate, Hans Schnyder*

* Corresponding authors

Published in New Phytologist. doi: 10.1111/nph.17111

Abstract

We explore here our mechanistic understanding of the environmental and physiological pro-
cesses that determine the oxygen isotope composition of leaf cellulose (δ18Ocellulose) in a drought-
prone, temperate grassland ecosystem. A new allocation-and-growth model was designed
and added to an 18O-enabled soil–vegetation–atmosphere transfer model (MuSICA) to pre-
dict seasonal (April–October) and multi-annual (2007–2012) variation of δ18Ocellulose and 18O-
enrichment of leaf cellulose (∆18Ocellulose) based on the Barbour–Farquhar model. Modelled
δ18Ocellulose agreed best with observations when integrated over c. 400 growing-degree-days,
similar to the average leaf lifespan observed at the site. Over the integration time, air temper-
ature ranged from 7 to 22 °C and midday relative humidity from 47 to 73%. Model agreement
with observations of δ18Ocellulose (R2 = 0.57) and ∆18Ocellulose (R2 = 0.74), and their negative
relationship with canopy conductance, was improved significantly when both the biochemical
18O-fractionation between water and substrate for cellulose synthesis (εbio, range 26–30‰) was
temperature-sensitive, as previously reported for aquatic plants and heterotrophically-grown
wheat seedlings, and the proportion of oxygen in cellulose reflecting leaf water 18O-enrichment
(1−pex px, range 0.23–0.63) was dependent on air relative humidity, as observed in independent
controlled experiments with grasses. Understanding physiological information in δ18Ocellulose

requires quantitative knowledge of climatic effects on pex px and εbio.

Contributions

RTH, JO and HS conceptualized the research. RTH, UO and HS designed the allocation-and-
growth module. RTH analyzed the data and performed the modelling with support by JO and
UO. RS performed the isotope analysis. HS, UO and IS designed and UO and IS performed the
tracer experiment. HS and RTH planned and RTH, JCBC and JZ performed the mesocosm
experiment. RTH and HS wrote the paper, responded to the reviewers’ comments and revised
the manuscript accordingly after the initial submission. RTH, JO, UO, RS, JCBC, JZ, IS, LW
and HS contributed to relevant parts of the discussion and the revision of the manuscript.
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3.3 Publication 3:
Nitrogen fertilization and δ18O of CO2 have no effect on 18O-enrichment of
leaf water and cellulose in Cleistogenes squarrosa (C4) – is VPD the sole
control?

Hai Tao Liu, Xiao Ying Gong, Rudi Schäufele, Fang Yang, Regina Theresia Hirl, Anja Schmidt,
Hans Schnyder

Published in Plant, Cell & Environment: 39, 2701–2712, 2016. doi: 10.1111/pce.12824

Abstract

The oxygen isotope composition of cellulose (δ18OCel) archives hydrological and physiological
information. Here, we assess previously unexplored direct and interactive effects of the δ18O of
CO2 (δ18OCO2), nitrogen (N) fertilizer supply and vapour pressure deficit (VPD) on δ18OCel,
18O-enrichment of leaf water (∆18OLW) and cellulose (∆18OCel) relative to source water, and
pex px, the proportion of oxygen in cellulose that exchanged with unenriched water at the site
of cellulose synthesis, in a C4 grass (Cleistogenes squarrosa). δ18OCO2 and N supply, and their
interactions with VPD, had no effect on δ18OCel, ∆18OLW, ∆18OCel and pex px. ∆18OCel and
∆18OLW increased with VPD, while pex px decreased. That VPD-effect on pex pxwas supported
by sensitivity tests to variation of ∆18OLW and the equilibrium fractionation factor between
carbonyl oxygen and water. N supply altered growth and morphological features, but not 18O
relations; conversely, VPD had no effect on growth or morphology, but controlled 18O relations.
The work implies that reconstructions of VPD from ∆18OCel would overestimate amplitudes
of VPD variation, at least in this species, if the VPD-effect on pex px is ignored. Progress in
understanding the relationship between ∆18OLW and ∆18OCel will require separate investiga-
tions of pex and px and of their responses to environmental conditions.

Contributions

HS and HTL designed and planned the research. HTL, XYG and FY performed the experiment.
HTL analysed the data. HTL, HS, RTH, XYG, FY, and RS discussed the results. HTL and
HS wrote the manuscript. All authors contributed to the revision.
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3.4 Publication 4:
Atmospheric CO2 and VPD alter the diel oscillation of leaf elongation in
perennial ryegrass: compensation of hydraulic limitation by stored-growth

Juan C. Baca Cabrera, Regina T. Hirl, Jianjun Zhu, Rudi Schäufele, Hans Schnyder

Published in New Phytologist: 227, 1776-1789, 2020. doi: 10.1111/nph.16639

Abstract

We explored the effects of atmospheric CO2 concentration (Ca) and vapor pressure deficit
(VPD) on putative mechanisms controlling leaf elongation in perennial ryegrass. Plants were
grown in stands at a Ca of 200, 400 or 800µmol mol−1 combined with high (1.17 kPa) or low
(0.59 kPa) VPD during the 16 h-day in well-watered conditions with reduced nitrogen sup-
ply. We measured day : night-variation of leaf elongation rate (LERday : LERnight), final leaf
length and width, epidermal cell number and length, stomatal conductance, transpiration,
leaf water potential and water-soluble carbohydrates and osmotic potential in the leaf growth-
and-differentiation zone (LGDZ). Daily mean LER or morphometric parameters did not differ
between treatments, but LERnight strongly exceeded LERday, particularly at low Ca and high
VPD. Across treatments LERday was negatively related to transpiration (R2 = 0.75) and leaf
water potential (R2 = 0.81), while LERnight was independent of leaf water potential or turgor.
Enhancement of LERnight over LERday was proportional to the turgor-change between day and
night (R2 = 0.93). LGDZ sugar concentration was high throughout diel cycles, providing no
evidence of source limitation in any treatment. Our data indicate a mechanism of diel cycling
between daytime hydraulic and night-time stored-growth controls of LER, buffering Ca and
daytime VPD effects on leaf elongation.

Contributions

HS, JCBC, RTH and RS designed the experiment. RTH, JCBC and HS set up the protocols for
leaf elongation, leaf area and leaf gas exchange measurements and for harvests for carbohydrate
analyses. The study consisted of five experimental runs. The experiments and measurements
were carried out by RTH, JCBC, JZ and RS. RTH performed a first analysis of leaf gas exchange
data. JCBC analysed the data and wrote the first draft. All authors contributed to discussions
and to the revision of the manuscript.



4. General and summarising discussion

4.1 General and summarising discussion of publications

This thesis focused on the mechanistic understanding of the processes leading up to the for-
mation of the 18O signal in leaf cellulose from grassland vegetation. In the first part of the
modelling work (Hirl et al., 2019), I evaluated our system-scale understanding of the 18O signal
transfer from rainwater to soil water, source (pseudo-stem) water and leaf water in a temperate
humid grassland ecosystem. The process-based soil-vegetation-atmosphere model MuSICA was
used to predict the δ18O composition of the relevant water pools of the ecosystem, which were
compared with fortnightly observations of the isotopic signals. The model produced realistic
predictions of the δ18O composition of soil, xylem and leaf water and of leaf water enrichment
relative to source water, indicating that the relevant ecohydrological and ecophysiological pro-
cesses were described in adequate detail in the model. In particular, I explored the effects of
edaphic drought on the grassland community’s depth of root water uptake, investigated and
disentangled the role of atmospheric and soil moisture on leaf water 18O enrichment, and as-
sessed carry-over effects of plant morpho-physiological parameters on water fluxes and on the
dynamics of δ18O of soil, source and leaf water.

This detailed mechanistic evaluation of the ’18O ecohydrology’ of the studied grassland then
allowed to test hypotheses concerning the propagation of the water isotope signals from leaf
and source water to cellulose in grasses. To this end, a new allocation-and-growth module for
predicting grass leaf growth and isotope signals was devised and appended to the MuSICA
model (Hirl et al., 2020). The allocation-and-growth model predicted the temporal dynamics
of maintenance and growth respiration, allocation to shoot and root growth, and the isotopic
composition of the plant metabolic pool and of cellulose. Predicted carbon dynamics were
validated based on measurements of the metabolic pool turnover, allocation, and leaf life span,
obtained from previous investigations at the study site (Gamnitzer et al., 2009; Schleip, 2013;
Schleip et al., 2013). Predictions of δ18Ocellulose and ∆18Ocellulose generated by MuSICAgrass
were again compared with fortnightly data. The model reproduced well the observed inter-
annual dynamics and conspicuous short-term and seasonal patterns, as well as the relationship
between meteorological parameters and cellulose 18O signals. Thereby it lended itself as a
well-grounded tool to test hypotheses concerning the attenuation factor (pex px), biochemical
fractionation (εbio), and stomatal conductance signals in cellulose-18O.

26
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Significance of shallow soil water for root water uptake of grassland vegetation

It was shown in this work that root water uptake at the Grünschwaige grassland site was
mainly confined to the uppermost part (<20 cm) of the shallow mineral topsoil for both dry
and moist soil conditions (Hirl et al., 2019). No indication for a systematic shift of root
water uptake to deeper soil layers was previously reported for other grasslands or savannas
(Nippert & Knapp, 2007a,b; Kulmatiski & Beard, 2013; Prechsl et al., 2015). In the present
study, the depth of root water uptake was inferred by comparing the δ18O of pseudo-stem
water with the δ18O of soil water from two depths (7 and 20 cm). Due to the limited spatial
resolution of the observed δ18Osoil data, we additionally harnessed the MuSICA model to
corroborate the conclusions drawn from the observed data. In particular, we used MuSICA
1) to generate continuous predictions of δ18Osoil along the profile, and thus to interpolate
between observed depth positions, 2) to predict the mean (uptake-weighted) root water uptake
depth, independently from observed δ18Osoil, and 3) to assess the agreement between predicted
and observed data for different scenarios of root distributions (see sensitivity analysis in Hirl
et al., 2019). The latter analysis showed that model-data agreement deteriorated if roots
were supposed to be located in the lower part of the mineral topsoil, as compared to the
standard simulation in which most roots were assumed to be located in the upper part (Fig.
S8 in Hirl et al., 2019). MuSICA predicted a mean uptake-weighted root water uptake depth
above 15 cm in most cases, and a near-monotonous decrease of δ18Osoil from the upper to the
lower depth position for many of the sampling dates (see Fig. S13 in Hirl et al., 2019). If
δ18Osoil displayed no or little gradients along the soil profile, the information obtained from the
comparison between xylem and soil water would be very limited, irrespective of the approach
that is adopted to infer the depth of water uptake (e.g. graphical inference, two-end member
mixing model or the Bayesian multi-source linear mixing model; see Rothfuss & Javaux, 2017
for a review).

Our conclusions on the main root water uptake zone relied on the oxygen isotope composition.
It is worth noting that the same results were obtained if the δ2H of stem water was compared
with the δ2H of soil water at the two soil depth positions (not shown). This is interesting given
the fact that discrepancies between the δ2H of soil and stem water have been observed in trees,
pointing to the existence of isotopically-depleted water storage pools in stems (Barbeta et al.,
2019, 2020). Also, Liu et al. (2017a) noticed a deuterium depletion of leaf growth zone water
as compared to source (nutrient solution or pot) in various grasses grown under controlled and
well-watered conditions in climate chambers.Yet, the comparison of pseudo-stem water and soil
water at 7 cm observed at Grünschwaige did not provide evidence for deuterium depletion in
the pseudo-stems.

The dominant role of air relative humidity for 18O enrichment of leaf water and cellulose

Moreover, I investigated the role of soil and atmospheric moisture status on the 18O signals
in leaf water and cellulose, and the implications for the potential use of cellulose-18O as an
indicator of stomatal conductance. While relative humidity exerted strong control on ∆18Oleaf

and ∆18Ocellulose in samples from the Grünschwaige pasture, a significant effect of edaphic
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Figure 4.1: Relationship between relative humidity and ∆18Ocellulose from different studies that investigated
grass (or grassland) leaf cellulose isotope signals. Black points show the data observed at Grünschwaige (Hirl
et al., 2020), open squares represent the data from the two C3 grasses Lolium perenne and Dactylis glomerata
investigated by Lehmann et al. (2017), orange triangles represent ∆18Ocellulose in Cleistogenes squarrosa (Liu
et al., 2016), grey filled diamonds show ∆18Ocellulose in five C3 grasses and grey open diamonds ∆18Ocellulose in
five C4 grasses studied by Helliker & Ehleringer (2002a,b). The data from Hirl et al. (2020) show the observed
∆18Ocellulose data regressed against midday (± 3 hours around noon) relative humidity. In the experiments of
Lehmann et al. (2017) and Liu et al. (2016), relative humidity was constant throughout day and night. The
∆18Ocellulose data from Helliker & Ehleringer (2002a) and Helliker & Ehleringer (2002b) is plotted against midday
and daytime relative humidity, respectively, as reported in the two studies. The grey line indicates the regression
line through the pooled data of Helliker & Ehleringer (2002a,b) and Liu et al. (2016); the black continuous and
the black dashed line display the regression lines for the ∆18Ocellulose data from Hirl et al. (2020) and from
Lehmann et al. (2017), respectively. Regarding the Helliker & Ehleringer (2002b) study, the data from the high
(>90%) relative humidity treatment was excluded in the above Figure (as in Helliker & Ehleringer 2002b, their
Fig. 7).

drought was detected for ∆18Oleaf but not for ∆18Ocellulose (Hirl et al., 2019, 2020). In line
with that, ∆18Oleaf and ∆18Ocellulose in the C4 grass Cleistogenes squarrosa responded strongly
to relative humidity (Liu et al., 2016). The C. squarrosa dataset did not allow to investigate
the role of soil water status on ∆18Ocellulose, as all plants were well watered in that experimental
setting.

The humidity sensitivity of ∆18Ocellulose in C. squarrosa was very similar to the humidity sensi-
tivity of various C3 and C4 grasses investigated by Helliker & Ehleringer (2002a,b) (-0.3‰ %−1,
calculated as the slope of the linear regression of the pooled data from Helliker & Ehleringer,
2002a,b and Liu et al., 2016), and higher than the humidity sensitivity of the Grünschwaige
pasture data (-0.19‰ %−1), and of ∆18Ocellulose data for Lolium perenne and Dactylis glom-
erata from Lehmann et al. (2017) (-0.15‰ %−1) (Fig. 4.1). Differences in absolute values
of ∆18Ocellulose and in its humidity sensitivity may have arisen from differences in δ18Ovapour

between studies, from differences in morpho-physiological properties that affect leaf water en-
richment, or from deviations between the ∆18O of bulk leaf water and the ∆18O of sucrose
synthesis water.
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Overall, the relations between relative humidity and ∆18Oleaf (Fig. 4 in Hirl et al., 2019)
and ∆18Ocellulose (Fig. S3 in Hirl et al., 2020) were well reproduced by the MuSICA model.
The model was also used to differentiate between direct and indirect effects of meteorologi-
cal variables on ∆18Ocellulose of grassland vegetation. In particular, model sensitivity analysis
indicated that short-wave radiation did not have a direct effect on ∆18Ocellulose, but was corre-
lated with ∆18Ocellulose due to the correlation between short-wave radiation, relative humidity
and temperature. Similarly, sensitivity analysis demonstrated that the effect of wind speed on
∆18Ocellulose was not causal. Altogether, the results from this work underline the importance
of relative humidity in shaping the 18O enrichment of leaf water and cellulose.

Humidity sensitivity of the attenuation factor

Furthermore, model-data comparison demonstrated the need to include a humidity-dependent
attenuation factor (pex px) when predicting cellulose 18O signals in the Grünschwaige grassland
vegetation. Specifically, the pronounced relationship between observed ∆18Ocellulose and rela-
tive humidity (see above) was only reproduced by MuSICAgrass if the attenuation factor pex px

was assumed sensitive to relative humidity. We ascribed this sensitivity to humidity-dependent
isotopic imbalances between bulk leaf water and sucrose in grass blades (Hirl et al., 2020).
Longitudinal leaf water 18O enrichment gradients from the base to the tip have been reported
for grass blades, which are particularly strong at low relative humidity (Helliker & Ehleringer,
2000, 2002a; Gan et al., 2003). If these gradients combine with sucrose synthesis gradients
(Williams et al., 1993), it may not be valid to simply predict the δ18O of sucrose from the δ18O
of bulk leaf water. Data from Lehmann et al. (2017) for two C3 grasses (L. perenne and D.
glomerata) indicated that the δ18O of sucrose was more sensitive to relative humidity than the
δ18O of leaf water. Then, if pex px is calculated from ∆18Ocellulose and ∆18Oleaf , the resulting
pex px will be positively related to relative humidity. Such relative humidity-dependent varia-
tion of pex px was observed in the controlled environment study with C. squarrosa (Liu et al.,
2016), and for a range of other C3 and C4 grasses (Fig. 1.4b).

Evaporative enrichment gradients may also be found in basipetally growing needles of conifer
trees, in which an increasing leaf water enrichment from base to tips has also been observed
(Kannenberg et al., 2020). Thus, the results of the present study may have implications for
the interpretation of cellulose 18O signals in vegetation and ecosystems other than grassland.

Apart from the uncertainties regarding the δ18O of sucrose synthesis water, several authors
suggested that variation in pex px may arise from variation in the rate of futile cycling, which
has been related to growth rates or turnover rates of substrate (Barbour & Farquhar, 2000;
Ellsworth & Sternberg, 2014; Song et al., 2014; Cheesman & Cernusak, 2017; Szejner et al.,
2020). Yet, in the present study, pex was neither related to the residence time of substrate in
the metabolic pool, nor to integration time, which is a function of growth and senescence rates
(Hirl et al., 2020). Furthermore, oxygen isotope exchange during phloem loading and trans-
port was discussed as a potential mechanism explaining the lower 18O enrichment of phloem
organic matter as compared to leaf organic matter in two coniferous and one broadleaf tree
species (Gessler et al., 2013). Whether or not the isotopic composition of sucrose is altered
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along its way from the leaf blades of grasses to the leaf growth and differentiation zone is
currently unknown.

Temperature sensitivity of biochemical fractionation

In addition, the results from this modelling study demonstrated the importance of including
a temperature-sensitive biochemical fractionation (εbio) for predicting 18O signals in cellulose
from grassland vegetation (Hirl et al., 2020). We thus provided first general field-based evi-
dence for a temperature effect on εbio in terrestrial vegetation. The temperature-sensitivity of
εbio accounted for almost two thirds of the temperature sensitivity of ∆18Ocellulose and coun-
terbalanced the temperature-sensitivity of δ18Orain, which lead to a lack of correlation between
δ18Ocellulose and temperature (Hirl et al., 2020). Until then, indication for a temperature-
dependent εbio only came from a compilation of ∆18O data from aquatic plants and from
heterotrophic tissue culture with wheat (Sternberg & Ellsworth, 2011), from a compilation of
Sphagnum moss δ18O data (Xia & Yu, 2020), and from a laboratory experiment with acetone
(Sternberg & DeNiro, 1983). Sternberg & DeNiro (1983) experimentally determined the frac-
tionation factors between acetone and water at three different temperatures (15, 25 and 35 °C)
and observed that εbio was higher at 15 and 25 °C than at 35 °C (15 and 25 °C: 28‰; 35 °C:
26‰). For the comparison between 15 and 35 °C, the magnitude and direction of that change of
εbio with temperature parallels with the temperature-sensitivity of εbio derived by Sternberg &
Ellsworth (2011) for aquatic plants: the εbio estimated from the Sternberg & Ellsworth (2011)
function are 27.6‰ for 15 °C and 26.2‰ for 35 °C.

Together, the above results point to the need to consider the effect of temperature on εbio when
interpreting cellulose 18O signals especially from cold, e.g. boreal or temperate biomes, and are
of paramount importance for palaeoclimatological or palaeoecological studies. Also, εbio may
affect cellulose-18O in aquatic plants laid down in lacustrine or river sediments, which have
been harnessed to infer past δ18O of lake water (e.g. Mayr et al., 2015) or rain (e.g. Hepp et al.,
2015), therewith trying to derive changes in hydrological, climatic or atmospheric circulation
patterns (e.g. Mayr et al., 2013; Zhu et al., 2014; Heyng et al., 2015). Besides, cellulose from
antarctic moss banks or other peatlands have been frequently used for palaeoclimatic recon-
structions (e.g. Royles & Griffiths, 2015; Royles et al., 2016; Roland et al., 2015).

Canopy conductance signal in cellulose-18O

Of note, a significant negative relationship between the ∆18O (or δ18O) of leaf water and in-
stantaneous canopy conductance, and between the ∆18O (or δ18O) of leaf cellulose and midday
canopy conductance (averaged over the integration time) was found for the data observed at
Grünschwaige and for the predicted data (Fig. 4.2). The relation between leaf water 18O
enrichment and conductance obviously arose from the effect of stomatal aperture on kinetic
fractionation and leaf temperature, since evidence for a Péclet effect was not found for the veg-
etation at Grünschwaige (Hirl et al., 2019). Considerable scatter was observed in the leaf water
18O vs. canopy conductance plots when conductance was <300 mmol m−2 s−1, coinciding with
low soil water contents at 7 cm (Fig. 4.2). Leaf water 18O enrichment was generally enhanced
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Figure 4.2: Relation between instantaneous canopy conductance and (a) observed and (b) predicted isotopic
enrichment of leaf water relative to source water (∆18Oleaf) and (c) observed and (d) predicted isotopic composi-
tion of leaf water (δ18Oleaf) at Grünschwaige pasture no. 8. Light and dark blue values show soil water contents
close to the permanent wilting point and close to field capacity (as in Hirl et al., 2019). Relation between midday
canopy conductance averaged over the integration time and (e) observed and (f) predicted isotopic enrichment
of cellulose relative to source water (∆18Ocellulose) and (g) observed and (h) predicted isotopic composition of
cellulose (δ18Ocellulose). Panels (e) to (h) are adapted from Hirl et al. (2020). Solid lines indicate the linear
regression lines, with regression equations as given in Fig. 8 of Hirl et al. (2020).

under dry soil conditions, which was connected to a decrease canopy conductance (Fig. 5 in
Hirl et al., 2019). This edaphic drought signal in ∆18Oleaf was not retrieved in ∆18Ocellulose

(Fig. S6 in Hirl et al., 2020). Still, we did detect a clear relationship between ∆18Ocellulose

and gs, which lends support to 18O-based interpretations of gs, ∆13C and iWUE in grassland
ecosystems such as the long-term Park Grass Experiment at Rothamsted (see section 4.2.3).
In fact, as sucrose used for cellulose synthesis may be more strongly linked to evaporative con-
ditions than bulk leaf water, the stomatal conductance signal in ∆18Ocellulose may actually be
more pronounced than expected from the gs signal in bulk leaf water enrichment.

Although numerous studies have applied δ18O to interpret variation in δ13C (e.g. Sidorova
et al., 2009; Barnard et al., 2012; Weigt et al., 2018; Guerrieri et al., 2019), comparably few
studies investigated a relation between the δ18O (or ∆18O) of cellulose or bulk organic mat-
ter and stomatal conductance, or reported data that allow to derive such a relation. Those
studies are compiled in Table 4.1. gs values come from single or repeated leaf gas exchange
or porometer measurements. Overall, the sensitivities of 18O to gs ranged between -3.2 and
-82.8 ‰ (mol m−2 s−1)−1. In comparison, the sensitivities of observed (predicted) ∆18Ocellulose

and δ18Ocellulose to canopy conductance for the samples from Grünschwaige pasture were -14
(-15) and -5 (-10) ‰ (mol m−2 s−1)−1. Regarding the studies that analysed both cellulose and
bulk organic matter, the sensitivity to alterations of stomatal conductance was higher for bulk
organic matter than for cellulose in one study on bread wheat (Barbour et al., 2000b) and in
another study on arctic willow (Sullivan & Welker, 2007). In contrast, Barbour & Farquhar
(2000) observed an offset between the ∆18O of cellulose and the ∆18O of whole leaf tissue, in-
dicating that the sensitivity to stomatal conductance was the same for these two components.
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Table 4.1: Overview of studies that reported a relation between δ18Ocellulose or ∆18Ocellulose in leaf cellulose or
bulk leaf tissue and stomatal conductance. The sensitivity of 18O to gs is given in ‰ (mol m−2 s−1)−1.

Plant species Growth
conditions

Tissue Sensitivity Main cause of gs vari-
ation

Barbour & Farquhar (2000)
Gossypium hirsutum L. controlled ∆18O bulk leaf -3.3; R2 = 0.92 abscisic acid

Barbour et al. (2000b)
Triticum aestivum L. field δ18O leaf cellulose -5.7; R2 = 0.79 genetic (8 cultivars)
Triticum aestivum L. field δ18O bulk leaf -13.4; R2 = 0.86 genetic (8 cultivars)
Triticum aestivum L. field δ18O bulk grain -6.2; R2 = 0.71 genetic (8 cultivars)

Chairi et al. (2016)
Zea mays L. controlled δ18O bulk shoot -20.2; R2 = 0.93 genetic; water avail-

ability

Grams et al. (2007)
Fagus sylvatica L. seedlings controlled δ18O leaf cellulose -28.2; R2 = 0.73 CO2 O3; plant com-

petition
Picea abies L. seedlings controlled δ18O leaf cellulose -20.5; R2 = 0.67 CO2 O3; plant com-

petition

Moreno-Gutiérrez et al. (2012)
10 coexisting species field ∆18O leaf cellulose -82.8; R2 = 0.92 species

Scheidegger et al. (2000)
Festuca rubra L., Poten-
tilla aurea L., Achillea mille-
folium L.

field δ18O bulk leaf -5.6; R2 = 0.56 species; land-use in-
tensity

Siegwolf et al. (2001)
Populus × euramericana controlled δ18O bulk leaf -18.6; R2 = 0.88 soil nitrogen supply;

air NO2

Sullivan & Welker (2007)
Salix arctica Pall. field ∆18O leaf cellulose -11.5; R2 = 0.83 soil temperature; soil

water content
Salix arctica Pall. field ∆18O bulk leaf -17.9; R2 = 0.62 soil temperature; soil

water content

Tankari et al. (2019)
Vigna unguiculata L. Walp. controlled ∆18O bulk leaf -3.2; R2 = 0.83 water availability; in-

oculation with rhizo-
bia

Thompson et al. (2007)
Solanum lycopersicum L. controlled ∆18O bulk leaf -1.6; R2 = 0.92 abscisic acid
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While bulk leaf organic matter may contain structural and non-structural carbohydrates, sec-
ondary plant metabolites, proteins, lipids and waxes, in likely varying proportions, cellulose is
chemically uniform and inert (Haigler et al., 2001). Whether cellulose or bulk organic matter
should be used as a proxy for stomatal conductance depends on the scope of the study. The data
aggregated in Table 4.1 did not allow to explore systematic differences in the 18O-sensitivity
to gs between plant funtional groups (such as monocots and dicots, or woody and herbaceous
plants), or due to different causes of variation in gs, as the studies reported different measures
(δ18O or ∆18O) in different compartments (cellulose or bulk tissue). In order to detect possible
systematic differences between functional groups, one would need to conduct experiments in
which only one factor that drives variation in gs is varied.

Effect of isotopic input data

It was further shown in this work that the prediction accuracy of the seasonal variation of the
δ18O of soil water at the shallower depth and of stem water was higher for 2007 to 2012, when
local rainwater δ18O data were available, as compared to 2006 (see Table 2 in Hirl et al., 2019).
Also, model-data agreement for soil, stem and leaf water was worse if IsoGSM δ18Orain and
δ18Ovapour data – once corrected by the mean offset between local and IsoGSM data – were used
for 2007 to 2012 (not shown). Regarding cellulose, the agreement between observed δ18Ocellulose

and model predictions that were based on offset-corrected IsoGSM data was lower than for the
standard simulation, but still relatively high (R2 = 0.45, MBE = 0.7, MAE = 0.9; as compared
to R2 = 0.57, MBE = 0.5, MAE = 0.8 in the standard simulation). Besides, IsoGSM based pre-
dictions of δ18Ocellulose agreed well with predictions from the standard simulation (R2 = 0.86;
Fig. 4.3). This result is encouraging, given the fact that studies exploring δ18Ocellulose from
natural ecosystem often have to rely on model predictions of δ18Orain as local rainwater data
are very often missing.
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Figure 4.3: Relation between standard predictions
of δ18Ocellulose for the Grünschwaige site (shown in
Hirl et al., 2020) and model predictions based on
IsoGSM δ18Orain and δ18Ovapour data (each cor-
rected by the mean offset between local rainwater
and vapour data and IsoGSM data; see Fig. S3 and
S4 in Hirl et al., 2019). The linear regression equa-
tion relating standard predictions of δ18Ocellulose

to IsoGSM predictions was: δ18Ocellulose,standard =
1.09 δ18Ocellulose,IsoGSM−2.36;R2 = 0.86; P < 0.001
(note that the slope was not significantly different
from 1).
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Modelling 18O signals in grass cellulose grown in sub-ambient or elevated CO2 environments:
knowledge from controlled environment experiments and future prospects

In the present work, the simulation of cellulose isotope signals was based on predicted daily
sums of shoot growth, daily mean values of the isotope ratios of xylem water and the metabolic
pool, midday means of the attenuation factor (pex px), and daily means of εbio (see Eqn S7
in Hirl et al., 2020). εbio was calculated from air temperature using the function for aquatic
plants reported by Sternberg & Ellsworth (2011). Potential diurnal variation in leaf growth
rates was not accounted for in the simulations (e.g. Schnyder & Nelson, 1988; Baca Cabrera
et al., 2020). In our controlled environment experiments with Lolium perenne, we observed that
day-night differences in leaf growth rates were most pronounced under high vapour pressure
deficit and half-ambient CO2 concentration, with leaf elongation rates (given in mm h−1) being
approximately twice as high during the night as compared to the day (Baca Cabrera et al.,
2020). While diurnal variations in the δ18O of xylem water and in the δ18O of the metabolic
pool predicted for the Grünschwaige pasture were generally small (<0.5‰ for most days),
considerable day to night differences in air temperature were found for that site (10 °C on
average for the growing seasons 2007 to 2012). If leaf growth and cellulose synthesis rates
are actually higher during the night than during the day, the temperature which is relevant
for εbio might be lower than daily mean temperature, and thus εbio may in fact be higher.
Thus, a diurnally resolved instead of a daily mean εbio may need to be applied for predictions
of ∆18Ocellulose and δ18Ocellulose under high evaporative demand and low atmospheric CO2

concentration. Also, the data from our controlled environment experiments indicated that the
leaf life span was lower at elevated CO2 (800 ppm) as compared to sub-ambient and ambient
CO2 (200 and 400 ppm) (Juan C. Baca Cabrera, Regina T. Hirl, Jianjun Zhu, Hans Schnyder,
unpublished data). Thus, the integration time, which represents the maximum age of structural
biomass in a sample, may need to be adjusted if we want to model δ18Ocellulose in plants grown
under elevated CO2.
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4.2 Applications of MuSICAgrass

In the following, MuSICAgrass as parameterised in Hirl et al. (2019, 2020) is used to predict
the deuterium isotopic signatures (δ2H) of the water pools that had been analyzed for δ18O in
Hirl et al. (2019). δ2H was measured concurrently with δ18O using Picarro CRDS. Enlarging
knowledge on the δ2H of ecosystem water pools is of interest with regard to the interpretation of
the δ2H signals in leaf cuticular waxes, which have been used for paleoclimate reconstructions
(e.g. Sachse et al., 2012; Kahmen et al., 2013a,b; Gamarra et al., 2016).

The model was further tested for its ability to predict the 13C discrimination of cellulose
(∆13Ccellulose), obtained from the same samples that had been analysed for δ18O in Hirl et al.
(2020) (for details on mass spectrometric analysis of δ13C see Ostler et al., 2016 and Liu et al.,
2017b). Finally, the model was used to simulate the δ18O signatures of cellulose in samples
from the Park Grass Experiment, located at the Rothamsted Agricultural Research Station in
Harpenden (UK). Understanding the formation of δ18Ocellulose from the Park Grass Experiment
may help interpret the cause of the increase in intrinsic water-use efficiency observed at that
site during the past century (Köhler et al., 2010, 2012, 2016).

4.2.1 Prediction of δ2H of water pools at Grünschwaige

Observed and predicted soil water at 20 and 7 cm, pseudo-stem water and leaf water are plotted
in dual-isotope space in 4.4. All water compartments scattered below the meteoric water line.
While predicted and observed soil water at 20 cm depth and leaf water agreed well in the dual-
isotope space, predicted soil water at 7 cm and pseudo-stem water lay closer to the meteoric
water line than the observed data. This shift of the predicted data towards the meteoric water
line may be related to 2H depletion on organic surfaces (Chen et al., 2016), which is currently
unaccounted for in MuSICA, and is also reflected in a relatively stronger overestimation of δ2H
relative to δ18O for soil water at 7 cm and stem water (Table 4.2). Also, Chen et al. (2020)
recently proposed that deuterium depletion of stem water may result from isotopic exchange
of organic hydrogen with water during cryogenic vacuum distillation. Thus, the mechanism
underlying the 2H depletion is currently under debate and still needs to be resolved.

Table 4.2: Mean bias error (MBE, calculated as described in Hirl et al., 2019) for the comparison between
predicted and observed δ18O and δ2H of ecosystem water pools, along with the ratio of the two MBE values.
All entries are given in ‰.

Soil water 20 cm Soil water 7 cm Stem water Leaf water

MBE δ18O 0.48 0.77 0.37 0.30
MBE δ2H 4.54 10.30 7.98 0.27

MBE δ2H : MBE δ18O 9.46 13.38 21.57 0.90
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Figure 4.4: Relationship between the δ2H and δ18O of (a) soil water at 20 cm depth, (b) soil water at 7 cm, (c)
pseudo-stem water, and (d) leaf water. Black points depict the data observed at the Grünschwaige pasture and
grey points represent the predicted data. The dashed line in each panel represents the Global Meteoric Water
Line (δ2H = 8 δ18O + 10‰), which corresponds to the local meteoric water line at the study site.

4.2.2 Prediction of ∆13Ccellulose and of the relation between ∆13Ccellulose and
∆18Ocellulose

Predictions of ∆13Ccellulose made with the standard parameterisation from Hirl et al. (2019,
2020) qualitatively reproduced the observed ∆13Ccellulose patterns (Fig. 4.5a). However, con-
siderable discrepancies between predicted and observed data were found particularly early in
the growing season (2007, 2008, 2011), and in late summer (mainly 2009 and 2011), which led
to a relatively poor quantitative agreement for the pooled data (R2 = 0.12; Fig. 4.6a). Model-
data agreement for ∆13Ccellulose was improved dramatically when seasonally-adjusted values of
stomatal and photosynthetic parameters were applied (R2 = 0.64; Fig. 4.5a and 4.6b). This
adjustment included a lower slope of the Ball-Woodrow-Berry (BWB) stomatal conductance
model (mgs; Ball et al., 1987) in spring and a higher value in summer/autumn, as well as de-
creased photosynthetic capacity in late summer and autumn (Table 4.3). Alteration of the slope
of the BWB model changes the responsiveness of stomatal conductance to assimilation rate, and
thus the ratio of assimilation to stomatal conductance, i.e. intrinsic water-use efficiency (Ball
et al., 1987; Miner et al., 2017). Lower photosynthetic capacity in late summer/autumn is in
accordance with a lower sink capacity and poor light penetration into a vegetative canopy in au-
tumn as compared to reproductive swards in spring (Deinum, 1976). Importantly, the change of
these parameters had a very minor effect on the prediction of ∆18Ocellulose (Fig. 4.5b), and did
not change the conclusions from Hirl et al. (2020) concerning the relative humidity-dependence
of pex px and the temperature-sensitivity of εbio. Furthermore, the modified model (Table 4.3)
replicated well the observed positive relation between∆18Ocellulose and -∆13Ccellulose (Fig. 4.7),
which is indicative of strong stomatal control of the 13C signal (Scheidegger et al., 2000; Grams
et al., 2007).
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Figure 4.5: Time courses of ∆13Ccellulose and ∆18Ocellulose from samples collected at pasture no. 8 of
Grünschwaige Grassland Research station. Black points illustrate the observed data and light grey points
the data predicted with the standard parameterisation of Hirl et al. (2019, 2020). Green points show model
predictions made with adjusted stomatal and photosynthetic parameters as explained in the main text (see also
Table 4.3).
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Figure 4.6: Scatter plots showing the relationships between ∆13Ccellulose observed at pasture no. 8 of
Grünschwaige Grassland Research station and ∆13Ccellulose predicted (a) with the standard parameterisation of
(Hirl et al., 2019, 2020), and (b) based on adjusted stomatal and photosynthetic parameters (see Table 4.3).

Table 4.3: Parameter values for stomatal responsiveness (mgs), maximum rate of carboxylation at 25 °C (Vcmax)
and potential rate of electron transport at 25 °C (Jmax) applied in the standard simulation and in the adjusted
simulation. For equations on stomatal and photosynthetic submodels, the reader is referred to Hirl et al. (2019)
and Ogée (2000).

mgs Vcmax(µmol m−2 s−1) Jmax(µmol m−2 s−1)

Standard simulation
whole year 10 60 100
Adjusted
1 January – 15 May 7 60 100
16 May –15 August 12 60 100
16 August – 31 December 12 30 50
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Figure 4.7: Relationship between ∆13Ccellulose and ∆18Ocellulose (a) for the data observed at Grünschwaige
pasture no. 8, and (b) for data predicted based on the adjusted parameterisation (Table 4.3). Note that the
y-axis is inverted (as in Grams et al., 2007). The slopes of the above regressions were not significantly different
from each other.

4.2.3 Prediction of δ18Ocellulose in samples from the Rothamsted Park Grass Ex-
periment

As one aim of the project was to understand the significance of δ18Ocellulose for the interpretation
of last century water-use efficiency changes at the Park Grass experiment, I used MuSICAgrass
in its standard parameterisation (for pasture no. 8 of Grünschwaige Grassland Research station)
to compare model predictions and observations of δ18Ocellulose in samples from the Park Grass
Experiment (PGE), using forcing files that were available for an 18 years-long period (1993–
2010). Established in 1856 as a fertilization trial, the Park Grass Experiment is now the world’s
oldest experiment on permanent grassland (for an overview see Silvertown et al., 2006; Storkey
et al., 2015). The individual plots of the PGE receive different amounts and combinations of
inorganic fertilizer (including N, P, K, Mg, Na, S) or manure, and various amounts of chalk.
Additionally, the experiment also runs unfertilized control plots. Treatments differ profoundly
in soil pH, botanical composition, species diversity, and yield (e.g. Jenkinson et al., 1994;
Crawley et al., 2005). All plots are cut each year in June, and dried bulk aboveground biomass
samples from each plot and harvest have been stored in the Rothamsted sample archive since
the inception of the experiment. Hay samples from that archive were analysed for δ18Ocellulose

following the procedures described in Hirl et al. (2020).

The observed data presented in Fig. 4.8 represent average δ18O values of samples from the
limed and unlimed control plots, and from the limed subplots of the PK, N1, N*1 and N*1PK
plots (see description in the legend of Fig. 4.8). In the simulation, the integration time was
set to two months, assuming that cellulose samples integrate cellulose synthesized in May and
June until the yearly cut. Model predictions reproduced relatively well the observed patterns,
in particular the year-to-year variation in δ18Ocellulose. This is encouraging given the fact
that the model parameterisation was not adjusted to the Park Grass site, and suggests that
meteorological drivers have similar effects at the Grünschwaige and Rothamsted grassland sites.
In going forward it will be necessary to reparameterise MuSICAgrass using soil and vegetation
properties at the Rothamsted site.



4. GENERAL AND SUMMARISING DISCUSSION 39

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

1995 2000 2005 2010

24
26

28

δ18
O

ce
llu

lo
se

 (
‰

)

Year

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Figure 4.8: Time course of the oxygen isotope composition of cellulose (δ18Ocellulose) observed in mixed-species
grassland samples of the Park Grass Experiment at Rothamsted Research Station, UK (black points, with 95%
confidence band displayed in yellow). Model predictions obtained with the standard parameterisation for pasture
8 at Grünschwaige Grassland Research Station are illustrated in grey. Predicted isotope ratios of xylem water
and of the metabolic pool (see Eqn S7 in Hirl et al., 2020) were averaged over a two-month period (May and
June). The observed data are average values of δ18Ocellulose from plots 2/2a and 3a (limed control plots), 2/2d
and 3d (unlimed control plots), 7a and 15a (limed PK plots), 1a (limed N1 plot, receiving 48 kg N as ammonium
sulphate), 17a (limed N*1 plot, receiving 48 kg N as sodium nitrate), and 16a (limed N*1PK plot, receiving 48
kg N as sodium nitrate, plus P and K).

4.3 Conclusions and perspective

This work provided a mechanistic framework for simulating isotope signals in water pools and
cellulose of a grassland ecosystem. Overall, the model performed well in predicting δ18O signals.
Model predictions of the ecohydrology of the system were utilized to explore the effect of edaphic
drought on leaf water 18O enrichment and root water uptake depth. Application of the model
to deuterium revealed offsets between predicted and observed source water and predicted and
observed soil water at 7 cm, when δ18O and δ2H were plotted in dual-isotope space. The
mechanisms underlying these offsets still need to be clarified. Then, a mechanistic description
of deuterium depletion will need to be implemented in ecosystem models like MuSICA.

The use of the combined model (MuSICAgrass) allowed separation of the effects of temper-
ature and relative humidity on biochemical fractionation and the attenuation factor. Thus,
this work provided first field-based evidence for the temperature-sensitivity of εbio and the
humidity-sensitivity of pex px in a terrestrial ecosystem, with the latter effect potentially linked
to humidity-dependent evaporative enrichment gradients and sucrose synthesis gradients along
grass leaf blades. Future studies should be directed at testing two major steps of the 18O signal
transfer from leaf water to leaf cellulose of grassland vegetation: 1) the relationship between
the ∆18O of leaf water and the ∆18O of sucrose extracted from leaves, and variation of this
relation as a response to environmental conditions, and 2) isotopic differences between the
∆18O of sucrose extracted from leaves and the ∆18O of sucrose extracted from the phloem or
growth zone. Clarification of these steps will allow significantly better understanding of the
δ18O signal in cellulose. Also, it will help to quantify the effect of futile cycling in developing
cells on in vivo variation of pex. Furthermore, the biochemical mechanisms and their associated
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isotope effects that underlie the temperature effect on biochemical fractionation remain to be
elucidated.

Reasonable prediction of 13C discrimination in cellulose samples based on MuSICAgrass re-
quired seasonally variable stomatal and photosynthetic parameters, an adjustment that had a
negligible effect on the prediction of 18O signals. How seasonal variation in stomatal and pho-
tosynthetic properties is related to water use efficiency and water use strategies of grassland
might be explored in future work.
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Duquesnay A, Bréda N, Stievenard M, Dupouey JL (1998) Changes of tree-ring δ13C
and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past
century. Plant, Cell & Environment 21: 565–572.

Durand JL, Onillon B, Schnyder H, Rademacher I (1995) Drought effects on cellular
and spatial parameters of leaf growth in tall fescue. Journal of Experimental Botany 46:
1147–1155.

Ehleringer JR, Hall AE, Farquhar GD (eds) (1993) Stable isotopes and plant carbon-
water relations. Academic Press, San Diego, California, USA.

Ellsworth PV, Sternberg LSL (2014) Biochemical effects of salinity on oxygen isotope
fractionation during cellulose synthesis. New Phytologist 202: 784–789.

Ellsworth PZ, Williams DG (2007) Hydrogen isotope fractionation during water uptake
by woody xerophytes. Plant and Soil 291: 93–107.

Ellsworth PZ, Ellsworth PV, Cousins AB (2017) Relationship of leaf oxygen and carbon
isotopic composition with transpiration efficiency in the C4 grasses Setaria viridis and Setaria
italica. Journal of Experimental Botany 68: 3513–3528.

Epstein S, Thompson P, Yapp CJ (1977) Oxygen and hydrogen isotopic ratios in plant
cellulose. Science 198: 1209–1215.

Farquhar GD, Cernusak LA (2005) On the isotopic composition of leaf water in the non-
steady state. Functional Plant Biology 32: 293–303.

Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues
of carbon dioxide. Plant, Cell & Environment 35: 1221–1231.

Farquhar GD, Gan KS (2003) On the progressive enrichment of the oxygen isotopic com-
position of water along a leaf. Plant, Cell & Environment 26: 1579–1597.



BIBLIOGRAPHY 46

Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon
dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar
GD (eds) Stable isotopes and plant carbon-water relations, Academic Press, San Diego,
California, USA, pp 47–70.

Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with
water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology 11: 539–552.

Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope
discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant
Biol 9: 121–137.

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and
photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503–
537.

Farquhar GD, Barbour MM, Henry BK (1998) Interpretation of oxygen isotope compo-
sition of leaf material. In: Griffiths H (ed) Stable isotopes: integration of biological, ecological
and geochemical processes, BIOS Scientific Publishers, Oxford, UK, pp 27–61.

Farquhar GD, Cernusak LA, Barnes B (2007) Heavy water fractionation during tran-
spiration. Plant Physiology 143: 11–18.

Ferrio JP, Pou A, Florez-Sarasa I, Gessler A, Kodama N, Flexas J, Ribas-Carbó M
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Heyng AM, Mayr C, Lücke A, Moschen R, Wissel H, Striewski B, Bauersachs T
(2015) Middle and Late Holocene paleotemperatures reconstructed from oxygen isotopes
and GDGTs of sediments from Lake Pupuke, New Zealand. Quaternary International 374:
3–14.



BIBLIOGRAPHY 49

Hill SA, Waterhouse JS, Field EM, Switsur VR, Ap Rees T (1995) Rapid recycling
of triose phosphates in oak stem tissue. Plant, Cell & Environment 18: 931–936.
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Liu HT, Schäufele R, Gong XY, Schnyder H (2017a) The δ18O and δ2H of water in the
leaf growth-and-differentiation zone of grasses is close to source water in both humid and
dry atmospheres. New Phytologist 214: 1423–1431.
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Hirl RT, Ogée J, Ostler U, Schäufele R, Baca Cabrera JC, Zhu J, Schleip I, Wingate
L, Schnyder H (2020) Temperature-sensitive biochemical 18O-fractionation and humidity-
dependent attenuation factor are needed to predict δ18O of cellulose from leaf water in a
grassland ecosystem. New Phytologist. https://doi.org/10.1111/nph.17111.

Publication 3:
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