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Abstract

Understanding single cell behavior in a tissue context is pivotal for insights
into tissue maintenance and repair. Spatial statistics and mechanistic mod-
eling can help to identify cellular patterns and test hypotheses on underlying
rules. The aim of this cumulative doctoral thesis was to develop, modify and
apply computational methods to (i) analyze division patterns of neural stem
cells (NSCs) in the zebrafish brain, (ii) deliver mechanistic insight into the
regrowth of the lateral organ on the zebrafish skin, and (iii) better compre-
hend fibroblast movement during scar formation in mice. Each aspect was
addressed in a separate study and published in a peer-reviewed article.
Firstly, we modified the Ripley’s K statistic, a measure to identify spatial
patterns of point processes, to a discrete setting and applied it to the division
patterns of NSCs. A spatiotemporal likelihood-based model allowed us to
describe the detected aggregated patterns in terms of strength and extend,
and a non-spatial cell division model was used to infer cell cycle parame-
ters. We finally fed these parameters into an agent-based model to simulate
growth and maintenance of an NSC population and could show that observed
cell redivisions suffice for the emergence of spatiotemporal patterns similar
to the ones in experimental data.
In the second project, we used tracking data of single multipotent and pro-
genitor cells to investigate spatial factors that are crucial for regrowing the
lateral organ in zebrafish. We extracted spatial and spatiotemporal features
and used random forest classifiers to predict the lineage tree of starting cells
and cell types that daughter cells adopt after a division during the regen-
eration process. For additional insight, we determined which features con-
tributed most to the prediction and found that distance to the organ center
as well as distance to mantle cells, one particular cell type in this tissue, is
crucial.
Finally, we developed a measure based on a neighborhood model to quantify
single cell movement during scar formation in mice. This measure enabled
the comparison of conditions by calculating movement velocity in three di-
mensional space. Additionally, we determine the direction of movement of
individual cells in relation to neighboring cells to identify swarm-like behav-
ior.
In summary, we have developed spatiotemporal models and modified exist-
ing ones for two- and three-dimensional single cell data with different time
resolutions. Application of our methods provided novel insights into the role
of single cells in NSC maintenance, during lateral organ regeneration, and
in scar formation.
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Zusammenfassung

Das Verständnis des Verhaltens einzelner Zellen in einem Gewebe ist ent-
scheidend für Einblicke in dessen Erhaltung und Reparatur. Räumliche Sta-
tistik und mechanistische Modelle können dazu beitragen, Muster zu iden-
tifizieren und Hypothesen zugrunde liegendender Regeln zu testen. Das Ziel
dieser kumulativen Doktorarbeit war es, Methoden zu entwickeln, zu modifi-
zieren und anzuwenden, um (i) Organisation und Muster neuronaler Stamm-
zellen (NSCs) im Zebrafischgehirn zu analysieren, (ii) mechanistische Einbli-
cke in die Regeneration des Seitenlinienorgans auf der Zebrafischhaut zu
bekommen und (iii) Fibroblastenbewegung während der Narbenbildung bei
Mäusen besser zu verstehen. Jeder Aspekt wurde in einer separaten Studie
behandelt und in einem Peer-Review-Artikel veröffentlicht.
Zunächst haben wir die Ripley-K-Statistik, ein Maß zur Identifizierung räum-
licher Muster von Punktprozessen, an eine diskrete Verteilung angepasst, um
räumliche Teilungsmuster von NSCs im Zebrafischgehirn zu identifizieren.
Ein raumzeitliches Interaktionsmodell ermöglichte es uns, die erkannten ag-
gregierten Muster quantitativ zu beschreiben, und ein nicht-räumliches Zell-
teilungsmodell erlaubte es uns Zellzyklusparameter zu approximieren. Wir
haben schließlich die geschätzten Parameter für ein agentenbasiertes Modell
benutzt, um das Wachstum und die Aufrechterhaltung einer NSC-Population
zu simulieren. Wir konnten zeigen, dass wiederholte Zellteilungen ausreichen,
um raumzeitliche Muster zu erzeugen, die denen in experimentellen Daten
ähneln.
Im zweiten Projekt haben wir Tracking-Daten einzelner multipotenter Zel-
len und Vorläuferzellen verwendet, um räumliche Faktoren zu finden, die
für die Regeneration des Seitenlinienorgans im Zebrafisch entscheidend sind.
Wir haben räumliche und raumzeitliche Merkmale extrahiert und verwende-
ten einen Random Forest Algorithmus, um den phylogenetischen Baum der
Zellen die schon zu Beginn der Regeneration vorhanden waren vorauszusa-
gen. Außerdem sagten wir jene Zelltypen vorher, die Tochterzellen nach der
Teilung während des Regenerationsprozesses annehmen. Für zusätzliche Er-
kenntnisse haben wir bestimmt, welche Merkmale am meisten zur Vorhersage
beitragen, und herausgefunden, dass die Entfernung zum Organmittelpunkt
sowie die Entfernung zu Mantelzellen, einem bestimmten Zelltyp in diesem
Gewebe, entscheidend ist.
Schließlich entwickelten wir ein Maß, das auf einem Nachbarschaftsmodell
basiert, um die Bewegung einzelner Zellen während der Narbenbildung bei
Mäusen zu quantifizieren. Dieses Maß ermöglichte den Vergleich von unter-
schiedlichen Bedingungen durch Berechnung der Bewegungsgeschwindigkeit
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im dreidimensionalen Raum. Wir verglichen die Bewegungsrichtung einzelner
Zellen mit benachbarten Zellen um schwarmartiges Verhalten aufzudecken.
Zusammenfassend haben wir raumzeitliche Modelle entwickelt und vorhan-
dene Modelle für zwei- und dreidimensionale Einzelzelldaten mit unterschied-
lichen Zeitauflösungen modifiziert. Die Anwendung unserer Methoden liefer-
te neue Einblicke in die Rolle einzelner Zellen bei der Aufrechterhaltung
der NSC Population, während der lateralen Organregeneration, und bei der
Narbenbildung.
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Chapter 1

Introduction

1.1 Patterns

Interactions shape our everyday life. Reocurring interactions lead to patterns
and embedding these interactions into time and space give rise to spatiotem-
poral patterns. These patterns contain an enormous amount of information,
which is often not obvious, but it is worth searching and interpreting them.
Back in 1854 during a cholera outbreak in London, the physician John Snow
analyzed the locations of cholera cases in the city. His analysis showed a
cluster of cases in Broad Street (see Figure 1.1) through which he identified
a contaminated water pump in the center of this cluster [1]. The deactivation
of the pump was widely recognized as the end of the outbreak.

Figure 1.1: Map of cholera deaths (black dots) in London 1854.
The contaminated pump in the middle of a cluster of cholera
death cases is marked with a red circle. Image taken from
https://de.wikipedia.org/wiki/John_Snow_(Mediziner) (15.09.2020)

1
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During the coronavirus pandemic that started at the end of 2019, it was
crucial to analyze the spreading of the virus not only from a biological point
of view but also from a spatial perspective. Infection patterns were for ex-
ample analyzed at a restaurant outbreak [2]. The study concluded that the
tables were distant enough (>1 meter) to allow only for a minor transmis-
sion. However, the dispersion supported by the air conditioner resulted in
an infection of nine other guests along the airflow. Another infection pattern
resulted from a choir practice in the State of Washington [3]. There, one so-
called super spreader distributed the disease through aerosol transmission
to neighboring singers, whose chairs were arranged with 15-25 cm distance.
The transmission was particularly supported by singing through which the
range of aerosol distribution increases.
Besides analyzing virus spreading on a local (person to person) level, in a
pandemic it is pivotal to look at global patterns [4]. To stop or contain the
global dispersion it is crucial find out which measures are most suitable for
this task. While border control policies slowed the spreading of the virus,
they did not suffice to contain the global expansion [5].
Even more interesting is the consideration and analysis of spatiotemporal
patterns that appear during dynamical processes. Common examples are
the weather forecast [6], traffic predictions [7, 8], or the location information
on our phones that creates a large amount of spatiotemporal data that can
be collected and interpreted [9, 10]. For fighting the Corona pandemic, spa-
tiotemporal analyses and according intervention could help to control and
contain the virus. One approach involves the tracking of people’s locations
through an app. This allows to quickly identify contact persons of a newly
detected virus carrier and inform or quarantine contacts that were at the
same locations as the carrier for more than ten minutes [11, 12]. One of
the first countries to implement this strategy is Germany where the app has
already over 22 million downloads (As of 13.11.2020). For this app, it could
be enough to identify persons that were close to a virus carrier. However,
for more complex settings including e.g. spatiotemporal movement patterns
relevant information is often hidden and not obvious. Statistical methods
are able to reveal this information.
Spatiotemporal patterns emerge on all scales, from the emergence of pathogens
and diseased people, over human activity on a map [9, 10] to the clustering
of species in ecological systems [13]. Their analysis often allows to draw con-
clusions about underlying system mechanisms. In particular for biological
systems, where many cellular and molecular mechanisms are still unknown,
quantitative statistical analyses of patterns have been successful in the past
[14, 15].
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1.2 Spatiotemporal pattern analysis in cell biology

Spatial and spatiotemporal pattern analysis of cells in a tissue setting is an
important factor as pattern appearance can be observed in adult tissue as
well as early development [16, 17].
All animals start as a single cell. From this cell, a complex developmental
process leads to the final organism with about 1013 cells [18] and multiple cell
types. Tissue development and maintenance relies on stem cells able to de-
velop into any other cell type, a process called differentiation [19]. Stem cells
can also renew themselves producing new stem cells through divisions [20].
From stem cells more specialized cells arise like mature blood, neural, or mus-
cle stem cells [21]. One factor that determines if, when and how stem cells
differentiate is the so-called niche. A niche is the spatial microenvironment
that can influence differentiation as well as support stem cell maintenance
[22]. Within such a niche spatial features play an important role: Stem
cells interact with their direct neighbors, like other stem cells, differentiated
cells or dedicated niche cells [23]. In rats for instance, it could be shown that
cell-cell contact is crucial for cell differentiation in connective tissue [24]. An-
other important differentiation factor is the interaction of stem cells with the
so-called extracellular matrix, i.e. molecules and structures filling the space
between cells. This interaction seems to play a major role in regulating stem
cell differentiation in skin [25] and embryonic stem cells [26]. In conclusion,
spatiotemporal analyses are inevitable to shed light on cell-cell interactions
and cell decision making.
To study such fundamental aspects of stem cell properties model organisms
are used. Complex processes in human tissue are thought to be simpler there
and experimentally accessible [27]. One model organism stands out for in
vivo analysis of embryonic and organ development: The zebrafish (Danio
rerio) has morphological and physiological similarity to mammals [28] and
convenient features such as high fertility and transparent embryos and lar-
vae. This makes it a perfect model organism in drug discovery and toxicity
testing [29] and tissue regeneration [30]. Regeneration in the zebrafish can
be examined in many different tissues including heart and brain [31, 32, 33].
Brain tissue in particular can easily be analyzed in vivo due to its trans-
parency [34]. It is even possible to track neural stem cells (NSCs) over time
and quantify their regeneration and differentiation potential [35].
However, little is known about spatial arrangement of NSC divisions. To
address this point we analyzed images of zebrafish brains in single cell reso-
lution. We also took this analysis one step further and modeled the mainte-
nance of the NSC population by recreating the observed patterns artificially.
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To see how a system reacts to disturbances, we investigated images of the
regeneration of the lateral organ (neuromast) in the zebrafish after ablation
to only 4-6 cells. The question is if one can identify spatial features, which
are crucial to determine the regeneration outcome. A less drastic interven-
tion into a cell population is a lesion which triggers a spatial response of cells
surrounding the wound. The open question here is how coordinated is the
movement of cells in response to the injury.

1.3 Research questions

Issues raised at the end of the previous paragraph are important for the
respective scientific field and can be tackled with spatiotemporal methods.
Within the scope of this cumulative thesis the following research questions
are addressed to generate quantitative insights into cell population mainte-
nance, population regeneration, and cell movement coordination.

I. How can we identify and model spatial and spatiotemporal patterns of
single cell division locations?

II. What spatial features provide insight into the mechanism behind the
regeneration of zebrafish neuromasts?

III. How can we appropriately quantify whether cells move in a spatially
coordinated fashion within a restricting tissue?

1.4 Analysis workflow

To answer the research questions raised in the previous chapter with spatial
and spatiotemporal methods we followed a general analysis workflow (Figure
1.2).

Raw image data

The road starts from raw image data (Figure 1.2A). Investigating spatial and
spatiotemporal neural stem cell (NSC) division patterns as well as modeling
NSC maintenance (Research question I. in section 1.3) commences with
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3D image stacks (see Figure 1.3A) of zebrafish brain hemispheres acquired at
the Helmholtz Zentrum München by Prisca Chapouton in the lab of Hernan
Lopez-Schier. Image slices comprise 2048x2048 pixels and were imaged with
three different channels. In the first channel NSCs are captured that emit
green light (gfap:GFP) as we use a transgenic zebrafish line [36], while in
the other two channels cells are marked being in S-phase with either BrdU
(cyan cells in Figure 1.3) or EdU (magenta cells in Figure 1.3) two thymidine
analogs, which are incorporated into the DNA during replication in S-phase.
These S-phase markers are applied with time intervals from 9h up to 3 days.
Gaining knowledge about organ regeneration (Research question II. in
section 1.3) is based on 3D movie data (see Figure 1.3B). Neuromasts were
ablated with a laser to a few remaining cells (4-8). Then the neuromast
regeneration was recorded over three days and images were taken every 15
minutes in the lab of Hernan Lopez-Schier. Green cells in the zebrafish
neuromast videos are sustentacular cells, while mantle cells are red and hair
cells show no color.
The final data set to answer the question about coordinated cell movement
(Research question III. in section 1.3) originates from back-skin that
was collected from new-born mice and cultured in a dish [37] in the lab of
Yuval Rinkevich (see Figure 1.3C). Fibroblasts were labeled by crossing the
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Figure 1.2: Work steps performed in this thesis, from raw (image) data to
the final analysis. (A) Raw image data for a specific biological research ques-
tion is collected. (B) Spatiotemporal cell locations are extracted from the
raw data either manually or via cell identification algorithms. (C) Locations
combined with cell phenotypes are used to extract spatial or spatiotempo-
ral features like distances and angles between cells or cell types. (D) With
these features machine learning algorithms are trained and spatial interac-
tion parameters are inferred with mechanistic models. The gained knowledge
about spatial relationships can be used for further analyses, such as predict-
ing cell and image specific properties or the explicit modeling of spatial and
spatiotemporal processes.
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A C

Figure 1.3: Overview of the data used in this thesis. (A) Maximum intensity
projection of a zebrafish hemisphere showing the original image on the left
side and identified NSCs on the right side. NSCs are green (left side) and
black (right side), the first S-phase marker is cyan and the second S-phase
marker is magenta. (B) Middle slice of a zebrafish neuromast stack with
tracked cells on top (small colored circles). Cells that appear in the green
channel (top) are sustentacular cells, while cells in the red channel (bottom)
are mantle cells and cells without marker (in the middle of the neuromast)
are hair cells. (C) The image shows the first frame of a movie about mouse
skin tissue after injury. Red cells are fibroblasts.

fibroblast lineage-specific promoter mice to a nuclear mCherry reporter line
[38] and are thus red. Fibroblast tissue is then imaged every 15 min over
roughly 15 hours.

Spatial and spatiotemporal features

To extract numbers from raw image data single cells need to be identified
either manually or automatically (Figure 1.2B). Additionally, orientation in
space or relationships between cells like distances and angles between them
can often be meaningful (exemplary shown in Figure 1.2C). Although more
complex features could add further spatial information, they are generally
problem or question specific and it is important crucial to detect the cor-
rect and meaningful features as needed to answer Research question II.
(in section 1.3). Furthermore, a temporal component can increase the fea-
ture space tremendously. Using cell movement over time is able to create
so-called spatiotemporal features, such as movement direction or movement
speed, which can be employed to address Research question III. (in sec-
tion 1.3).
All spatial and spatiotemporal features mentioned above can be extracted
manually for each object, but there are also methods with which features
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are extracted automatically. For example, cell coordinates along with cell-
specific information can be used to identify spatial features automatically, as
done in a study in which neighborhood characteristics of bone marrow cells
were automatically extracted from images [39]. First they segmented single
cells and then used a variety of follow-up methods such as cell-specific clus-
tering of similar neighborhoods or spatial correlation of different cell type
locations with one another.
Convolutional neural networks (CNNs) can be used to extract spatial features
automatically [40]. CNNs are artificial neural networks that are commonly
used in computer vision to solve tasks such as image classification or object
detection [41]. One recent study uses a three dimensional CNN to extract
features in magnetic resonance imaging (MRI) data and automatize the di-
agnosis of attention deficit hyperactivity disorder (ADHD) [42]. Another
medical application based on CNNs is a sleep stage analysis using spatial
features from electroencephalogram (EEG) data [43], which is not image
data but EEG signals that are concatenated make the input data structure
image-like.

Basic methods for spatial pattern analysis

Having determined all spatial and spatiotemporal features one needs the
right follow-up methods to answer the raised research questions (Figure
1.2D). To answer the first aspect of Research question I. (in section 1.3)
spatial and spatiotemporal patterns need to be identified. A basic way to
assess spatial patterns is the usage of exploratory methods. They describe
or visualize the distribution of spatial events to provide a first impression
of the data and to create the basis for more complex spatial analyses. An
example of such a method are Fry plots, which were originally used by Han-
nah and Fry to determine the spatial pattern of mineral deposits in Dyfed,
Wales [44, 45]. The method takes a centered snapshot of every event (e.g.
a certain mineral location) with its surrounding. Then these snapshots are
merged by overlaying the respective centers and the emerging visual pattern
is interpreted. Fry plots are still used e.g. to identify mineralization patterns
in Iran to reveal possible mineral reservoirs [46, 47, 48].
However, more complex statistical approaches can provide even more power
to analyze spatial data. One more involved methods is the Ripley’s K statis-
tic [49], where the amount of events in the neighborhood of an event is eval-
uated. Ripley’s K has been applied in many different fields e.g. for spatial
crime analysis in the city of Chicago [50], for analysis of spatial patterns in
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neurons where they identified aggregation of pyramidal neurons [51] or in
breast cancer research to detect abnormal areas in mammograms [52]. The
open problem with aforementioned methods is that applied to cell data they
would aim to analyze patterns of all cells not patterns of a subpopulation
(dividing cells) in the context of the whole cell population as needed to an-
swer Research question I. (in section 1.3).

Spatial and spatiotemporal models

One approach that often provides more detailed insight into spatial problems
compared to spatial statistics is the application of spatial models. Spatial
models use spatial information and include additional prior information to
either model spatial effects such as emerging clusters or to derive non-spatial
parameters as done for instance with the spatial influence on voting outcomes
in the United States [53]. Even the likelihood of nations participating in war
has been described using a spatial model based on proximity to other na-
tions that are already at war [54]. Such an approach perfectly fits the need to
model observed spatial cell patterns based on problem and cell specific prior
knowledge as needed to address the second aspect of Research question
I. (in section 1.3).
Methods to analyze spatiotemporal patterns are often extensions of exist-
ing spatial methods. For example, the Ripley’s K statistic can easily be
extended by considering events within spatial and temporal distance [55].
This approach has been applied e.g. to investigate the spatiotemporal re-
lationship between damage to trees by pests and later forest fires [56] and
earthquake trends in Tehran [57]. Similar to spatial models, spatiotempo-
ral models are a good way to get valuable information from spatiotemporal
data sets [58]. In general, spatiotemporal models are based on spatiotempo-
ral features such as movement vectors (e.g. for traffic analysis) or changes in
certain locations over time (e.g. for weather analysis). Spatiotemporal fea-
tures can be combined and used as an input for complex statistical methods
like neural networks, as done for instance to predict bus arrival times [59].
Likewise, to predict the parking occupancy rate for street blocks within the
next hour, machine learning models (decision trees) have been used based
on spatiotemporal features [60] such as week day or occupancy rate for near-
est parking street blocks. The combination of spatiotemporal features and
machine learning is one possible way to address Research question II.
(section 1.3).
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Also in the case of the corona pandemic employing spatiotemporal features
such as the transmission rate based on the interaction time for spatiotem-
poral models can improve insights into viral transmission. Researchers from
Germany have published a tool that simulates the spread of the Corona virus
within a small city, predicts outbreak events and evaluates containment mea-
sures based on e.g. school or inter-regional travel guidelines or hygiene pa-
rameters [61]. Such knowledge gained from spatiotemporal research enables
politicians and other decision-makers to take appropriate measures [62].
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Chapter 2

Methods

2.1 Single cell identification pipeline (SCIP)

Before spatial analyses can be applied to image data with single cell resolu-
tion, cellular coordinates have to be determined. This can be done manually
or in an automated fashion using computational tools. However, manual
identification is tedious and also very challenging in three dimensional (3D)
image stacks [63]. Thus, single cell segmentation in 3D has been performed
successfully using automated image processing methods e.g. in vitro cell
images [64] and also in the context of challenging data sets including touch-
ing cells using machine learning [65, 66] and deep learning [33, 67]. These
methods generally need a large amount of labelled training data to let the
algorithm learn the right features. Whenever labelled data is missing an
informed approach, using prior knowledge of the system at hand, should be
used [68]. In case of neural stem cells (NSCs) in the zebrafish brain we ob-
served that all NSCs are located on top of the brain hemisphere and form a
continuous surface. Our algorithm, called single cell identification pipeline
(SCIP), exploits this observation. It applies a two step approach that first
identifies x and y coordinates of possible cell centroids on a two dimensional
(2D) z−projection and then checks whether these candidates can be found
on the NSC surface by fitting the optimal z coordinate and evaluating its
distance to the surface.

SCIP is visualized in Figure 2.1. We start from a 3D image stack of a
zebrafish brain hemisphere (Figure 2.1A) of which a 2D maximum intention
projection is calculated (Figure 2.1B). As cells are are placed on a slightly
bent surface and within the imaged field of view no or only negligible overlap
is observed in z direction. Thus, a blob detection via Laplace of Gaussian

11
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Figure 2.1: (Caption on the following page.)
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Figure 2.1: Single cell identification pipeline (SCIP) for neural stem cells
(NSCs) in the adult zebrafish brain. Raw three dimensional data (A) is
converted into two dimensional (2D) images (B) via 2D maximum intensity
projection. Cell centers display a high intensity and are used for identifi-
cation. (C) A blob detection algorithm using LoG identifies cell candidates
shown in magenta. (D) A Gaussian curve is fitted to the intensity profile of a
cylinder with diameter d/2 along z of every cell candidate. The mean of the
fitted Gaussian is employed as the z−coordinate of each cell candidate cen-
troid. (E) A 3rd order polynomial regression model is fitted to all centroids
building a surface along the hemisphere top. (F) Cell candidates that are
further away than approximately two cell diameters (2d) are excluded step
by step by removing iteratively the most distant outlier and recalculate the
polynomial. (G) To remove remaining image artifacts an envelope is placed
in 2d distance around the polynomial. All pixels outside this envelope are
set to background intensity. Afterwards the pipeline redoes steps (B) to (F)
utilizing the filtered image stack without image artifacts. (H) The resulting
three dimensional cell centroids can now be used for further analyses. Scale
bars: 50 µm.

(LoG) (Equation 2.1) followed by a local maximum/minimum search (Equa-
tion 2.2) is able to propose possible cell candidates (magenta circles in Figure
2.1C,D) with a diameter of roughly d = 8 µm in x, y on the z−projection.

LoG(x, y; d) = − 1

πd4

[
1− x2 + y2

2d2

]
e

x2+y2

2d2 (2.1)

(x̂, ŷ; d̂) = argmaxminlocal(x,y;d)LoG(x, y; d) (2.2)

To find the respective z coordinate of a x, y centroid, a Gaussian curve is
fitted to the respective intensity profile in z direction. The fitted mean values
define z coordinates for every cell candidate. To make this step more robust,
the Gaussian is fitted to the mean pixel intensities of a cell sized (d/2) circu-
lar area around the center of cell candidates (Figure 2.1D). Additionally, the
fitted Gaussian standard deviation can be used to filter cell candidates by
their extent in z. To that end, cell candidates having a standard deviation
smaller than d/4 in z direction are excluded, as these cell candidates are typ-
ically image artifacts e.g. single glowing pixels. Analogously a 2D Gaussian
curve can be fitted in x and y direction, where cell candidates with small
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standard deviations in any dimension (below d/4) are filtered out. The 3D
coordinates of remaining cell candidates are used to fit a polynomial regres-
sion model p. As p should be flexible enough to fit the overall shape a low
order (3rd order) polynomial is chosen.

p(x, y) = a0 + a1x+ a2y + a3xy + ...+ a16x
3y3 (2.3)

As all cells should be located on a surface, outlying cell candidates (exam-
ples marked by black arrows in Figure 2.1E) need to be removed. This is
approached with an iterative process in which the cell candidate being most
distant to p is removed and subsequent p is recalculated until no cell candi-
date is further away from p than a certain threshold (compare Figure 2.1F).
In the case of zebrafish NSCs a threshold of one cell diameter (d) is applied.
In some cases, cell candidates are masked (i.e. overlaid) in the z−projection.
This happens when bright image artifacts share the same x and y coordi-
nates with a cell candidate but are located in a different z layer (see the right
part of Figure 2.1A). To address this possibility, steps shown in sub-figures
2.1B-F are redone with a sub part of the image stack, which includes only
the area around the hemisphere approximated by p. To this end, the original
image stack is cropped by an envelope, around p with 2d distance (Figure
2.1G). Image pixels outside the envelope are set to background intensity,
which is calculated as the mean intensity of all eight image stack corner pix-
els. Finally the remaining cell candidates are returned as true NSC centroid
3D coordinates (Figure 2.1H).
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2.2 Ripley’s K for spatiotemporal single cell anal-
ysis

Given a set of events N (e.g. cells of a particular tissue) with the informa-
tion about their coordinates (2D or 3D) on a certain area A, one can ask the
question how the events are spatially related i.e.: Do the events in N form
a certain spatial pattern or are they distributed randomly? This question is
relevant in many different settings as in geographic information science [55],
in the context of spatial economic analysis [69] and archaeological studies,
where one can e.g. assess social strategies from settlement patterning [70].
In our context of analysing zebrafish neural stem cell (NSC) divisions we
apply Ripley’s K to investigate spatial and spatiotemporal distributions of
S-phase NSCs.
To answer the question above the Ripley’s K statistic [49] can be applied.
The original Ripley’s K method assumes that events can happen everywhere
within a fixed area A. However, in our problem setting events are not hap-
pening within an area but on a subset S ⊂ N of fixed possible events N that
is, the coordinates of NSCs in the brain. Therefore, the original Ripley’s K
method needs to be adapted to fit the given task. This adaptation does not
affect the calculation of the K values itself (see Section 2.2.1) but becomes
important when comparing the observed K values to randomly sampled pat-
terns (see Section 2.2.3).

2.2.1 Original Ripley’s K

The original Ripley’s K method evaluates the spatial distribution of events
by counting nearby events. Events that are further away are taken into
account step by step. To that end, one iterates over all events S. One starts
by counting for one event i the number of other events j within a radius r.
The Ripley’s K value for a spatial pattern is then calculated by increasing r
and is normalizing the counts by the number of events |S| and area A:

K(r) =
( |S|
A

)−1 S∑
i=1

w(i, r)

S∑
j=1,j 6=i

I(dist(i, j) ≤ r)
|S|

. (2.4)

Here i, j ∈ S, the edge correction term w(i, r) is applied to the event i and
radius r, and I is the indicator function (being 1 if the distance dist between
event i and j is smaller or equal to r). Area A is determined by calculating
a Delaunay triangulation [71] on N (Figure 2.2.1) and summing up the area
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2.2.1: Visualisation of the triangulation
result. Triangulation applied to event
coordinates (gray circles) to calculate
the overall area A by summing up all
triangle areas.

h

r

i

2.2.2: Visualisation of the edge correc-
tion calculation. The term is calculated
by determining the fraction of the circle
with radius r around event i being out-
side A (yellow area) with h being the
difference between r and the closest dis-
tance to the edge of A.

of all triangles. The edge correction w(i, r) for event i and radius r can
be approximated by the fraction of the circle around i with radius r being
inside A. This is done by determining and then subtracting the yellow area
in Figure 2.2.2 from the area of the circle with radius r and dividing it by
the whole circular area:

w(i, r) =
(r2π − r2 arccos (1− h

r )− (r − h) ∗
√

(2rh− h2)
r2π

. (2.5)

Here, h is the difference between r and the shortest path to the edge of A.

2.2.2 Spatiotemporal discrete Ripley’s K

With Ripley’s K also spatial relationships between two sets of events, e.g.
observed at different time points, can be analysed. Now, two disjoint sets
of events S1 and S2 in N and the spatial influence from events S1 on the
events S2 can be investigated. Since in our case the event sets occur one
after the other, we call the analysis spatiotemporal Ripley’s K. To this end,
the spatiotemporal Ripley’s KST is calculated:

KST (r) =
( |S1|
A

)−1 S1∑
i=1

w(i, r)

S2∑
j=1

I(dist(i, j) ≤ r)
|S2|

. (2.6)
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95% CI

Random mean Aggregated

Figure 2.3: Illustration of the Ripley’s K pattern interpretation. The ob-
served discrete Ripley’s K values are compared to the 5% and 95% con-
fidence intervals. In case they are in between them, the pattern is called
random, below 5% dispersed and above 95% aggregated.

The major difference to Equation 2.4 is that for every event in S1 all events
in S2 within radius r are summed up. Otherwise KST is calculated analo-
gously to the spatial K value.

2.2.3 Pattern sampling

Ripley’s K values alone are not enough to evaluate the randomness of ob-
served spatial or spatiotemporal patterns. To this end, the observed values
have to be compared to randomly sampled K values.
Originally, |S| events are sampled randomly on A [49]. For the discrete case
however events are drawn randomly from N repeatedly and the respective K
values are calculated. For the spatiotemporal case (KST ) the S1 coordinates
are kept fix and |S2| random events are drawn from N \ S1.
To determine the observed pattern type the 5% and 95% confidence intervals
(CI) are calculated from sampled K values and compared to the observed
K values. In the case that the observed K values are within the CIs the
observed pattern is called a random pattern, while being above the 95% CI
indicates an aggregated and below the 5% CI a dispersed pattern (Figure
2.3).
To evaluate the discrete Ripley’s K method, different spatial patterns are

simulated and compared to randomly sampled K values. We use cell coordi-
nates (in microns) from a real experiment [72]. For a random pattern (Figure
2.4.1) 33 events (a number comparable to observed event frequency in [72])
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are selected randomly from all ∼ 2600 possible event coordinates in N . As
can be seen in Figure 2.4.2 the observed Ripley’s K curve runs completely
between the 5% and 95% CIs. To simulate aggregated patterns 33 events
are added one by one. After every new event the event probability (starting
at 1 for every coordinate) is increased by a factor of 1.6 for the surrounding
coordinates within a radius of 100 µm, resulting in an aggregated pattern
(Figure 2.4.3). The respective Ripley’s K curve runs above the 95% CI indi-
cating an aggregated pattern (Figure 2.4.4). Similarly, dispersed events are
sampled by altering the event probability (here, by a factor of 0.2 within a
radius of 100 µm) after every added event (Figure 2.4.5). Again the Ripley’s
K curve, running below the 5% CI (Figure 2.4.6), confirms the simulation.
Interestingly, the K curve deviates from the CI already at r ≈ 50 µm and
thus underestimates the simulated interaction radius.
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100 m

2.4.1: Randomly sampled
events (magenta points) on
2600 possible coordinates.
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2.4.2: Discrete Ripley’s K correctly identify-
ing a random pattern for the simulation in
Figure 2.4.1.
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2.4.3: Events sampled in an
aggregated manner within a
radius of 100 µm.
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2.4.4: Discrete Ripley’s K correctly identify-
ing a aggregated pattern for the simulation in
Figure 2.4.3.
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2.4.5: Events sampled in a
dispersed manner within a
radius of 100 µm.
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2.4.6: Discrete Ripley’s K correctly identify-
ing a dispersed pattern for the simulation in
Figure 2.4.5.
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2.3 Model-based quantification of spatiotemporal
patterns

A qualitative assessment of spatial and spatiotemporal patterns is described
in the previous section using a modified version of the Ripley’s K statistics.
However, if the observed patterns deviate from random patterns the next
step is of course the quantification of the observed patterns. To approach
this problem one could define a problem-specific interaction model and find
the best model parameters using maximum likelihood estimation [73].

2.3.1 Spatial interaction model

We start from the same problem setting as in Section 2.2, having a set of
event coordinates N and a set of events S ∈ N . To identify whether these
events are spatially related, one has to quantify the spatial relationship. This
aim can be achieved by determining how pronounced the spatial relationship
is (called interaction strength g ∈ R further on) and how far the interaction
spreads (described as interaction radius r ∈ R+). To infer which parame-
ter combination describes the observed spatial pattern best, a log-likelihood
function L is defined taking into account events and non-events:

logL(g, r) =
S∑

i=1

log g
∑S

j=1,j 6=i I
(
dist(i,j)≤r

)
/

S∑
i=1

log g
∑N\S

k=1,k 6=i I
(
dist(i,k)≤r

)
(2.7)

Equation 2.7 iterates over all events S twice while comparing non-identical
event coordinates. In case the distance between event i and event j is smaller
or equal to r the indicator function I

(
dist(i, j) ≤ r

)
is 1. Thus it sums up

all events in S within radius r. The denominator normalizes the equation by
summing up all remaining possible events within r. The optimal g value is
in this setting also a indicator on how the events are distributed, i.e. g < 1
represents a dispersed pattern as one would expect less than one event within
r around other events. On the contrary, g > 1 means events are aggregated
within r while g = 1 indicates random events. Best parameters are inferred
by minimizing Equation 2.7 with a multi-start optimization approach [74].
This means that the equation is minimized for multiple times from different
initial parameters. Every run will either end up in a local minimum or
will find the global one. Comparing the resulting log-likelihood values local
minima can be separated from the global minimum.
The mechanism behind Equation 2.7 can be explained in a simplified 2D

graphical example shown in Figure 2.5. Magenta circles are events while
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black circles are coordinates without event. Evaluating Equation 2.7 for two
events, a and b, within a radius r three other events are counted resulting
in g1 for event a and g2 for event b.
This approach extends existing interaction models such as Gibbs or Cox
point processes [75] with the condition that events (points) are restricted to
predefined or discrete coordinates.

2.3.2 Spatiotemporal interaction model

Apart from the spatial parameters inferred within a set of events the spatial
relationship between two sets of events S1 and S2 within N is worth to be
explored. When events in S1 appear earlier than events in S2 they can be
described as spatially and temporally correlated. Again the spatial relation
can be described with two parameters, radius r and strength g. In contrast to
Equation 2.7 the outer sum now loops over events from S1 while the second
sum loops over S2. Analogously to the spatial case the term is normalized
by dividing through the sum over all remaining possible events N \ {S1, S2}:

logL(g, r) =

S1∑
i=1

log g
∑S2

j=1 I
(
dist(i,j)≤r

)
/

S1∑
i=1

log g
∑N\{S1,S2}

k=1,k 6=i,j I
(
dist(i,k)≤r

)
(2.8)

The main idea of Equation 2.8 can again be explained with a simple two
dimensional sketch. In Figure 2.6 cyan circles are S1 events while S2 events
are shown in magenta and coordinates in N without events in black. Exem-

r

g1 g2

a b

Figure 2.5: Illustration of the spatial interaction model. All filled circles
represent coordinates at which events can occur. Events are observed for
magenta circles, while no events are observed for black circles. Starting from
two example events a and b, other events within radius r are counted to
determine the exponent of g, leading to g1 for event a and g2 for event b.
For all other events (magenta circles that are neither a nor b) the respective
radii are shown with dashed lines.
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r

g1 g2

c

g0

Figure 2.6: Illustration of the spatiotemporal interaction model. Cyan circles
represent S1 events, magenta circles S2 events and black circles represent
remaining coordinates of N . To exemplary determine the exponent of g, S2
events within distance r of a and b are counted, leading to g1 and g2 for a
and b respectively.

plary S2 events around events a,b and c within r are counted determining
the exponential of g. For the the example events a, b and c this leads to g1,
g0 and g2 respectively.

2.3.3 Confidence measurement

To assess the robustness of inferred parameters it is common to determine
confidence intervals (CIs) per parameter [76] suggesting a range for plausible
parameter values. CI borders that are close to the most likely parameter
indicate a well defined optimal parameter value while big CI ranges hint
towards either a flat log-likelihood value landscape around the maximum
or the existence of similar log-likelihood values for other parameter combi-
nations [77]. CIs can be calculated with posterior sampling e.g. employing
Markov-chain Monte Carlo methods [78]. Besides calculating the CI, poste-
rior sampling allows to determine whether the posterior values show a single
mode or are multi modal, i.e. show one or more equally likely parameter
combinations [79].

2.4 Likelihood-free parameter estimation

Estimating parameters from snapshot measurements is challenging, as they
describe a system state at one single time point and thus provide only incom-
plete information. To infer the missing parameters, a maximum likelihood
approach is often employed [80]. However, sometimes there is not enough
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information available about the underlying system or it is too complex to
formulate a likelihood function. To approach this issue one can simulate
complete time-solved data and take virtual snapshot measurements which
can be compared to the observed snapshots. For such problems Approx-
imate Bayesian Computation (ABC) methods can be applied as they can
be employed to infer posterior distributions where likelihood functions are
computationally unsolvable or too expensive to evaluate [81]. Instead of cal-
culating the likelihood they compare observed and simulated data. To that
end, ABC iteratively compares both data and thins out the distributions of
parameter combinations resulting in very narrow distributions from which
the most likely parameter sets can be obtained.
For instance, ABC was successfully applied to infer model parameters to
match experimentally observed differentiation probabilities in hematopoiesis
[82]. Another study used genotype data to analyze the transmission param-
eters of tuberculosis [83]. There, the authors successfully estimated the net
transmission rate, the reproductive value and the doubling time of the bac-
terial population. Furthermore ABC was used in the context of HIV tracing,
where efficiency of the HIV detection system was evaluated [84]. ABC in a
spatial context was recently explored with spatial point patterns [85] and
also used to model annual maximum temperature in South Australia [86].
Being such an important tool in so many different fields ABC algorithms got
more sophisticated, easier to apply to all kinds of data types [87] and faster,
over time [88, 89].

2.4.1 Problem definition

The problem setting we are confronted with is as follows: at two time points
snapshot measurements of dividing cells, labelled with an S-phase marker
are performed. Let’s assume N cells are labelled at both time points. These
cells are either still in division at the second measurement (double labelled
S-phases, DLS) or are again in division (that is, re-dividing). The respective
fractions of cells can be measured for a range of time intervals. However, the
real re-division rate cannot be inferred by these snapshot measurements and
need to be approximated along with cell cycle length and S-phase length. As
it is often difficult to compare the full observed data set D and simulated
data set D̂, it is common to use summary statistics of the data sets instead
[90]. Here, we employ the mean and standard deviation of observed re-
divisions and DLS cells. The best parameter combinations can be inferred
via minimizing the problem specific distance function based on those two
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measures. This happens through iteration over every single time interval i
and minimizing the distance ρ between simulated and observed data:

ρ(D̂,D) =
∑
i

(
|mean(obsi)−mean(simi)|+ |std(obsi)− std(simi)|

)
(2.9)

2.4.2 Non-spatial division model

To evaluate a certain parameter combination via Equation 2.9, ten thousand
trees are simulated for six generations, as shown in the division tree sim-
ulation algorithm, and virtual snapshot measurements are generated. The
tree simulation algorithm is based on a cell cycle model (Figure 2.7) defined
by the re-division probability prediv, cell cycle length and S-phase length.
Cell cycle length and S-phase length are modelled with a lag exponential
function [91] defined by a minimum length (min) and scaling parameter for
the exponential function (β), respectively. The algorithm builds a tree of
maximal depth tdepth by iterating via depth-first search over the whole tree
and checking after every division whether a cell continues to divide using
prediv. On the created tree one can measure the simulated re-division frac-
tion by taking virtual measurements. An exemplary measurement is shown
in Figure 2.8 where at two time points T1 and T2 the observed re-division

prediv

hase (sp)

C

ell cycle (

Figure 2.7: Illustration of the cell division model. The model describes by
which parameters one cell division is influenced. First, the cell cycle length,
which is using a lag exponential distribution defined with mincc and βcc,
second the S-phase length, which again is using a lag exponential distribution
defined with minsp and βsp and finally the re-division probability prediv.
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frequency can be measured. From ten divisions, with proceeding S-phases
(indicated with red lines in Figure 2.8) only two cells are found in S-Phase
both at T1 and T2 which leads to an observed re-division fraction of 0.2.
Analogously, the virtual measurement at T2’ detects two cells (cell 1 and 2)
as DLS with respect to the measurement at T1. To plugin the simulated
measurements in Equation 2.9 one has to average over thousands of trees
taking measurements for every single time interval i.

Algorithm 1: Division tree simulation
Input:
tdepth . Tree depth
t . Empty tree
prediv . re-division probability
mincc . minimum cell cycle length
βcc . average cell cycle length
minsp . minimum S-phase length
βsp . average S-phase length

procedure recurseBranching(tdepth,t) . depth-first search
if rand(0,1) ≤ prediv & tdepth > 0 then

cc← mincc + Exp(βcc) . Draw cell cycle length
sp← minsp + Exp(βsp) . Draw S-phase length
t.append(branch(cc, sp)) . extend tree by new branch
recurseBranching(tdepth− 1,t) . Call branching for first

daughter
recurseBranching(tdepth− 1,t) . Call branching for second

daughter
end if

end procedure

2.5 Agent-based cell population model

The growth and maintenance of cell populations can be simulated by agent-
based models [92]. This means that every single cells acts as an agent and
is able to interact with the environment and other nearby cells. The model
is incorporated into the Morpheus [93] modeling environment and employs
cellular Potts models [94] to model cell shape kinetics, as it allows for ar-
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T1
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Figure 2.8: Illustration of ten division trees simulated with the Algorithm
1 to take virtual measurements that can be compared to observed ones via
ABC. Exemplary measurements taken at time points T1 and T2 capture a
re-division fraction of 20% as from ten observed S-phases (red lines) at T1,
two S-phases in daughter cells are found at T2 (cells 3 and 5). A second
measurement at T2’ detects two DLS cells (cells 1 and 2).

bitrary cell shapes and stochasticity in cell movement. Model parameters,
which are observable e.g. cell size, differentiation rate, and division proba-
bility are approximated and transferred. Cell size is modeled with a sigmoid
curve from smallest observed cell size to biggest and differentiation rate and
division probability are calculated from the observed cell numbers. Cell cy-
cle specific parameters are adopted from the results of the ABC model in
the previous section. This setup allows to compare the influence of different
conditions on the cell population over time. We apply this model to com-
pare spatiotemporal division patterns in cell populations with reoccurring
cell divisions against the null model having only the base division rate [72].

2.6 Neighborhood coordination model

Given a set of moving objects it may be of interest to investigate whether
these objects are moving in a coordinated vs. an independent fashion. Such
analyses were e.g. performed on flocks of birds to investigate swarm be-
haviour [95, 96]. Coordinated swarm-like behaviour was also analyzed in the
context of immune response models where the authors compared different
spatial behaviours such as aggregation, dispersion or random movement for
immune cells to find out the best immune response strategy [97]. In cell
biology cell movement has been analysed by comparing long axes (and thus
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movement direction) of cells [98].
While object elongation is a good proxy to estimate movement direction,
having measured at least two time points for every object allows to calculate
a movement vector per object and time point precisely. An exemplary two
dimensional representation of five objects and their movement vector is vi-
sualized in Figure 2.9.1. However, to analyse coordination it does not make
sense to compare the movement direction of every object against each other:
if objects are e.g. arranged in a circle and perform a circular movement the
objects move coordinated but not all in the same direction. The pairwise
comparison would yield a small coordination. Instead only the movement
of neighboring objects should be compared. To identify the neighborhood
of an object in two or three dimensions a triangulation [71] can be applied.
Cells with a distance from each other below a threshold can be treated as
neighbors.
We defined a neighborhood movement similarity model, which returns a

score describing to what extent one cell moves in the same directions as its
direct neighbors. The neighborhood movement similarity is determined by
calculating the angle α of movements vectors of two neighboring cells (as
shown in Figure 2.9.2). For object a αi is calculated for all neighbors n (e.g.
in Figure 2.9.1 neighbors of a are objects b-e) and then averaged to get one

e

d
a

b

c

2.9.1: Two dimensional representation
of objects a-e moving in a direction in-
dicated by the respective arrow.

 ac

a

c ab

a

b

...

2.9.2: Neighborhood movement similar-
ity is represented by calculating the in-
termediate angle α between the move-
ments arrows of two objects. The
smaller the angle the higher the coor-
dination.
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value reflecting the coordination of this object with its neighbors:

αa =
1

n

n∑
j=1

αa,j (2.10)

Analogously the neighborhood coordination can be calculated for objects
moving in three dimensions. For two 3d vectors u and v this is:

αu,v = cos−1
(

uxvx + uyvy + uzvz√
u2x + u2y + u2z

√
v2x + v2y + v2z

)
(2.11)

With the movement similarity calculated for every object it is easy to identify
spatial regions in 3D in which objects move coordinated (small α), indepen-
dent (α ∼ 90◦) or even apart from each other (α close to 180◦) .
We apply this method to analyze the coordinated behaviour of fascia fibrob-
lasts during wound healing and identify synchronized regions over time (see
Section 3.4) [99].



Chapter 3

Summary of contributed
articles

3.1 Image analysis of neural stem cell division pat-
terns in the zebrafish brain

To investigate stem cell regeneration and proliferation in the adult body stem
cells we analyzed neural stem cells (NSCs) in the zebrafish brain and pub-
lished the first results 2018 in Cytometry A [100] (IF 3.1). For this project we
collaborate with Prisca Chapouton from the labs of Jovica Ninkovic ("Neu-
rogenesis & Regeneration") and Hernan Lopez-Schier ("Sensory Biology &
Organogenesis"), who performed all experimental tasks.
It is known that NSCs divide to sustain the stem cell population and dif-
ferentiate into neural progenitor cells, which finally refill the pool of mature
neurons and glial cells. However, to what amount NSC division and differ-
entiation is spatially coordinated i.e. what spatial patterns can be identified
remains an open question (Research question I in section 1.3). To quan-
tify the patterns of NSC divisions, NSCs need to be identified, then one
has to determine NSCs that divide within a certain time window and finally
the spatial coordination of those divisions need to be analyzed. I developed
a bioimage informatics pipeline that is able to automatically identify GFP
expressing NSCs of zebrafish brain hemispheres in three-dimensional image
stacks from whole-mount preparations.
The pipeline exploits the fact that NSCs are located on a slightly curved
surface, which is almost two-dimensional. On this surface I identify around
2000 NSCs in six zebrafish brain hemispheres. To determine the position of
dividing NSCs in the hemisphere Prisca Chapouton injected EdU, which is
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incorporated into cells undergoing S-phase. I use the positional information
to calculate all pairwise NSC distances with three alternative metrics. One
metric that takes into account the bent surface, the second one is the Eu-
clidean distance in three dimensions and at last a network based distance
deduced from Delaunay triangulation on all NSCs. Finally, I fit a probabilis-
tic model, evaluating influence radius and strength, to the observed spatial
NSC patterns that is able to account for the non-homogeneous distribution
of NSCs.
We are able to answer the spatial component of Research question I by
applying a probabilistic model, which is not only able to identify the ob-
served pattern but also quantify it with an interaction radius and strength.
We detect a weak positive coordination between NSCs in S-phase for all
three tested metrics and conclude that neither strong inhibitory nor strong
enhancement signals drive NSC proliferation in the adult zebrafish brain.

My contribution: First of all I did all computational work. I implemented
the single cell identification pipeline (SCIP) to extract x, y and z coordinates
of single cells (https://github.com/marrlab/SCIP). To that end, I combined
a blob detection method from Fiji that generates cell candidates with an
iterative Matlab script. Iteratively, outliers are sorted out by either a size
filter or a distance filter, which excludes candidates that are too distant from
the majority of other cell candidates.
To process the obtained NSC coordinates I implemented an algorithms to
analyze the spatial patterns of dividing cells via parameter inference on three
different distance metrics. The algorithm infers the most likely inference ra-
dius and strength to explain a certain spatial pattern. A slightly modified
version is even able to combine multiple experiments (brain hemispheres) to
obtain the most likely parameters that explain all observed spatial patterns.
For quality control, I created artificial data with certain combinations of ra-
dius and strength to ensure that the probabilistic model can recreate them.
Finally, I compared my cell identification method against two other state of
the art methods (one Fiji plugin and the Imaris software) to show that SCIP
performs similar or better.
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3.2 Reoccuring neural stem cell divisions in the adult
zebrafish telencephalon are sufficient for the emer-
gence of aggregated spatiotemporal patterns

We continued the collaboration with the both labs and extended the analysis
of NSCs in the zebrafish brain. The resulting paper "Agent-based model-
ing reveals that reoccuring neural stem cell divisions in the adult zebrafish
telencephalon are sufficient for the emergence of aggregated spatiotemporal
patterns" [72] was published in 2020 in PLoS Biology (IF 7.6). In the paper
we investigate the regulatory mechanisms of cell cycle entry and quiescence
as they are poorly understood. However, they are crucial for the mainte-
nance of stem cell populations. Especially, it is unclear whether cells divide
with a certain spatiotemporal pattern and whether a model is able to quan-
tify and reproduce the spatiotemporal activity of single stem cells within
a population (Research question I in section 1.3). To gain more insight
into these processes we analyzed division events in a population of adult
neural stem cells (NSCs) within the zebrafish telencephalon. To that end,
I developed and applied spatiotemporal statistics and mathematical models
to over 80,000 NSCs in 36 brain, which could show that NSCs have weakly
aggregated, non-random division patterns in space and time. Analyzing di-
visions at two time points ranging from 9h to 72h allowed me to infer S-phase
and cell cycle length computationally. Strikingly, we observed fast cell cy-
cle re-entries in about 15% of newly born NSCs. I employed agent-based
simulations to model NSC populations and could show that the observed
re-entries suffice to induce aggregated spatial and spatiotemporal division
patterns that are consistent with the ones observed in experimental data. I
compared the results to simulations that omit re-divisions, which leads to
random spatial and spatiotemporal distributions of dividing cells. We con-
clude that spatiotemporal aggregated patterns of dividing NSCs can emerge
simply from the cell’s history.

My contribution: For this paper I identified NSCs with SCIP and merged
the x, y and z coordinates with information whether each cell is positive
or negative for both applied S-phase markers and how long the respective
markers have been applied before imaging the brain. These feature combina-
tion allowed me to perform spatial statistics such as Ripley’s K on a spatial
and spatiotemporal level. Spatial analysis means investigating the patterns
of S-phase positive cells for one of the two markers, while spatiotemporal
analysis examines the patterns occurring between S-phase positive cells of
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one marker and the S-phase positive cells of the second marker, which was
applied later in time. I implemented both versions in Matlab with an exper-
iment specific edge-correction method since the edges of a hemisphere are
not easily determined (see Methods 2.2).
To quantify the observed spatiotemporal patterns I extended the interaction
model from spatial interactions (see previous section) to spatiotemporal in-
teractions. Furthermore, I designed a cell division model that takes cell cycle
length, S-phase length and re-division probability as input parameters and
simulates cell proliferation. After several cell cycles virtual measurements
are performed such that they are comparable with observed measurements.
Using an ABC implementation in python I optimized the input parameters
to fit the observed measurements. Next I used these optimal parameters to
feed an agent-based model, which I calibrated to simulate the growth and
maintenance of a two-dimensional NSC population. Finally I evaluated the
output of the agent-based model with the same spatial statistics and models
as before to compare it to the observed patterns in experimental data.
Code to reproduce analysis, parameter inference and result figures of the pa-
per can be found at https://github.com/marrlab/spatiotemporalAnalyses.

3.3 Live cell-lineage tracing and machine learning
reveal patterns of organ regeneration

In the paper "Live cell-lineage tracing and machine learning reveal patterns
of organ regeneration" [101] published 2018 in eLife (IF 7.1) we analyzed the
regrowth of sensory organs in the model organism zebrafish. This project
was done in collaboration with biologists from the Lopez-Schier lab ("Sen-
sory Biology & Organogenesis") from the Helmholtz Center Munich.
Sensory organs in zebrafish are called neuromasts and have the crucial ability
to regain normal architecture during repair to maintain their functionality
after they got damaged severely. We use an approach that joins live cell-
lineage tracking and classification with random forests to reveal how cell type
and localization are adapted during neuromast regeneration. To that end,
Oriol Viader from the lab of Hernan Lopez-Schier utilized superficial neuro-
masts in larval zebrafish, which consists of three cell classes arranged in a
single planar-polarity axis and radial symmetry. He analyzed cell-fate tran-
sitions at high temporal resolution and revealed that neuromasts regenerate
isotropically to reclaim cell type proportions, geometric order and polarity
with extraordinary precision. I extracted spatial and spatiotemporal features
from every single neuromast regeneration movie aiming to predict cell fate
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and cell lineage compositions (Research question II in section 1.3). The
most promising feature I identified to predict cell fate is the distance to the
neuromast center during regeneration. We suggest a self-regulatory process
that leads the regeneration to almost identical result with minimal extrinsic
input. The integrated method that we have developed is widely applicable
and also quite simple, which should help to determine predictive features
that influence the growth of complex tissues.

My contribution: I implemented the algorithm to extract cell type and
lineage information from neuromast regeneration movie data. As quality
control I identified too short cell trajectories and checked the data for cell
tracks that appeared to be wrong as they e.g. change their cell type more
than once within one cell cycle. I plotted all cell lineages to allow visual
analysis of the data and to assign a cell lineage label. The cell lineage label
was determined by the cell type composition within the lineage. Addition-
ally I tailored spatial and spatiotemporal single cell features that can be
extracted from the data at every measurement time point. I fed a random
forest algorithm with the features and predicted cell fate for every dividing
cell and lineage composition at the time of the first division. To find out
which features contribute the most to the prediction I calculated the feature
importance for every single spatial feature by permutation i.e. features are
permuted and the more the model error changes per feature the higher is the
respective feature importance. I further extracted cell division frequency of
every cell type over time and visualized and compared the division onset for
the different cell types. I also matched the size of cell type clones over four
cell generations and determined the relative starting positions of different
cell lineage trees. Additionally I benchmarked all movies with respect to
their ablation sites to reveal to what extent the position of the remaining
cells influence the process of neuromast regeneration.

3.4 Scar formation is driven by N-Cadherin depen-
dent collective fibroblast migration

In the paper "Fascia fibroblasts swarm to drive scar formation through N-
cadherin", which is currently under review at Nature Communications (as
of 11.09.20) we investigate scar formation after injury in mammals. The ex-
perimental work was done in the lab of Yuval Rinkevich from the Helmholtz
Center Munich.
Mammalian connective tissue responds to injury by either regeneration or



34 CHAPTER 3. SUMMARY OF CONTRIBUTED ARTICLES

scarring. As the direct observation in animals is too challenging and cur-
rent assays fail to represent the real physiological setting, fibroblastic mech-
anisms and actions that drive connective tissue responses remain unclear.
The Rinkevich lab developed a skin explant technique termed scar-in-a-dish
(SCAD) that is able to accurately reproduce scar formation and reveals how
scarring emerges in incredible detail. Using a traceable scar-progenitor fi-
broblast lineage in mouse SCAD experiments, they observed new and un-
seen connections that form between scar-progenitors, which then collectively
swarm towards the injury site in a highly coordinated fashion that step-by-
step contract the skin around the wound and form scars. To investigate
the collective movement (Research question III in section 1.3), I com-
pared cell swarming computationally under different conditions and verified
that swarming can only be detected in scar progenitors but not in oral cavity
fibroblasts, which regenerate scarless. To find out which factors might stimu-
late cell-cell connections the Rinkevich lab tested several adhesion molecules
and found that an up-regulation of N-cadherin in scar progenitors induced
the swarming behaviour. Inhibiting N-cadherin binding impeded swarming
and skin contraction, and also resulted in less scarring in SCAD and in mice.
Ultimately blocking N-cadherin and the swarming ability of scar-progenitors
opens up new therapeutic options to reduce pathological fibrotic responses
for a broad field of medical applications.

My contribution: My part of the paper involved post-experimental sin-
gle cell data analyses. First I cleaned the data and excluded short cell tracks
or misaligned tracks having an impossible movement distance within the
measured 15 minute time intervals. For the remaining cell tracks I calcu-
lated the fibroblast velocity over time, which was then used to compare cell
movement and velocity between wild-type fibroblasts and oral cavity fibrob-
lasts. Furthermore, I implemented an algorithm that calculates collective
cell movement by comparing the movement directions of single cells to their
neighboring cells (see Methods 2.6). The collective movement can thus be
compared between wild-type and oral cavity fibroblasts by a movement sim-
ilarity score. I found out that the mean movement distance as well as the
collective behaviour differs significantly comparing the two cell types. Fi-
nally, I visualized cell velocity and movement similarity score in a way that
different conditions can be compared easily and aberrations visually stand
out.



Chapter 4

Discussion & future
perspectives

4.1 Spatiotemporal analysis in single cell biology

Spatial models are an important tool to gain mechanistic insight into cell
population processes. We devised new models and modified and transferred
existing ones from other fields to make them applicable to single cell data.
Mechanistic models take mechanistic prior knowledge into account. This
prior knowledge could either be a biological mechanism such as a particular
division behaviour of cells, or well engineered features that are fed to the
model. We used these mechanistic models to gain new biological insights
and answer open research questions in stem cell biology.

We have expanded the knowledge of spatiotemporal aspects of tissue main-
tenance. First, we identified spatiotemporal patterns of dividing neural stem
cells (NSCs) while considering the surrounding remaining cell population as
the substrate of division events. Then we introduced a spatiotemporal model
to quantify the spatial reach and strength of the identified patterns [100].
Furthermore, we were able to confirm via modeling that a cell intrinsic mech-
anism, namely reoccurring divisions, is able to create the identified patterns.
To the best of our knowledge, this is the first agent-based model of NSC
tissue maintenance with single cell resolution and a potential starting point
for more research in this direction [72].

To provide new mechanistic insight into the regeneration of the zebrafish
lateral organ, we employed machine learning models based on spatial single
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cell features [101]. To that end we analyzed single cells in organ regeneration
movie data and extracted spatiotemporal features for every single cell. A ma-
chine learning model allowed us to identify those features that are crucial for
cell identity, such as distance to certain cell types or the organ center. This
is the first time that a data-driven model-informed mechanistic statement
can be made for lateral organ regeneration.

We contributed to scarring research by introducing a neighborhood model
that can be used to assess how similar individual cells move in a moving
population [99]. A similarity score can evaluate cell movement behaviour
and can also be compared between cell types. We found that wild type fi-
broblasts move in a highly coordinated manner towards the injury site while
oral cavity fibroblasts don’t show any collective movement after injury. We
are the first, to our knowledge, to quantify the collective movement of cells
during scarring.

Our analyses can be improved and extended in several directions: The spa-
tiotemporal analysis of dividing NSCs in zebrafish hemispheres in sections
3.1 and 3.2 is based on the 3D locations of NSCs. However, we up to now
only analyzed 2D cell shapes. Including 3D cell volumes can potentially im-
prove the analysis. To that end, a 3D cell segmentation algorithm is required.
Performance of cell segmentation algorithms in 3D images has improved sig-
nificantly over the last years [63], especially with the emergence of powerful
deep learning (DL) methods [67, 102]. The additional 3D volume and mor-
phology information of every single cell could be included in further analyses.
Cell volumes could be correlated with hemisphere location to identify specific
brain regions. Cell morphology could be compared between young and old
animals to model cell and brain growth in a more detailed manner. However,
the bottleneck is to obtain good and enough 3D ground truth data to train
the DL models.

An exciting addition to our spatiotemporal interaction model (Section 2.3.2)
would be a time dependent parameter inference. As implemented now, pa-
rameters are inferred for every labeling interval separately (see Figure 4.1,
taken from [100]), without information transferred between neighboring la-
beling intervals. One could include temporal dependencies by inferring all
labeling interval parameters at once and infer the slope running through the
maximum likelihood values and y-axis shift as additional parameters (e.g.
red lines in Figure 4.1). Even more complex models could be investigated to
identify e.g. periodicity in strength or radius (e.g. red dashed lines in Fig-
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Labeling interval

Figure 4.1: Interaction radius and strength inferred from spatiotemporal S-
phase data in the zebrafish brain for labeling intervals between 9 h and 72
h (see Section 2.3.2). Red lines show a possible linear time dependency of
strength and radius, while the dashed lines depict possible more complex
dependencies.

ure 4.1). While this would increase the size of the model by at least four
additional parameters (slope and y-axis shift for radius and strength, respec-
tively) and thus computational complexity, it could also generate valuable
time dependency information about the temporal extent of the observed cor-
relations.
A biological follow-up experiment, in which single cells are tracked and la-
beled with a S-phase marker over several days could validate the inferred
S-phase and cell cycle length as well as confirm re-divisions. Furthermore,
one could follow differentiated cells to determine the time they need to leave
the hemisphere surface and compare their movement to NSCs. But time-
lapse analyses are challenging and only a few cells can be tracked at once so
far, as shown in Barbosa et al. [35]. However, time-lapse data would also
open up the possibility to investigate causality in spatiotemporal patterns.

Spatial causality is similar to causality in time series data: Given a spatial
pattern P it causes another spatial pattern Q if P provides useful informa-
tion about Q. However, identifying causality for patterns that occur based
on previous events is difficult to verify and is often confused with correla-
tion [103]. This is the reason why we investigated interaction strength and
radius in the zebrafish brain project instead of causality [72]. However, fit-
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ting an interaction model does not necessarily mean that interactions are
present [104]. With time-lapse data at hand, Granger causality [105] could
be a meaningful measure to detect to what extent an earlier S-phase pattern
causes a later S-phases pattern. This method has been applied successfully
to infer causality from spatiotemporal data for climate change models with
respect to the influence of CO2 and other greenhouse gases on changes in
temperature [106] and might be applicable in our context.

To extend the organ regeneration study [101] one could add more cell specific
features such as cell area and sphericity. These features could be harvested
by a 3D single cell segmentation algorithm as discussed in (1) and could
give hints to differentiation decision in tissue context. For instance, a sus-
tentacular cell that will differentiate in either a hair cell or into a mantle
cell could already shift its shape into the respective direction. This of course
only works when different cell types show different shape characteristics dur-
ing cell decision process, a hypothesis that could be interesting to address.
The fact that the mantle cells observed in our data are rather elongated in
contrast to other cell types is a hint in that direction. Again, the bottleneck
is 3D cell segmentation or manually annotated ground truth data.

Another way to get more insight into the process of neuromast regenera-
tion is to describe the whole process computationally with an agent-based
model. Employing a software that can simulate 3D cell colony growth such
as Morpheus [93] could reveal differentiation and division features crucial for
healthy neuromast regeneration. One could start the model with a few initial
cells and utilize division times (depending on cell type) and location depen-
dent differentiation probabilities. For instance, cells at the colony border
might by more likely to become mantle cells and cells in the middle might
be prone to become hair cells. To evaluate the final cell colony with 60-70
cells one needs to define characteristics (such as mantle cells being on the
outside) and cell type composition, which is defined by roughly 20-25% hair
cells, 60% sustentacular cells and 15-20% mantle cells. Parameters could
be optimized via ABC (Section 2.4) or via reinforcement learning similar
to a recent agent-based model that has been used to simulate vascular tu-
mor growth [107]. This approach would allow to test and compare different
division and differentiation strategies e.g. random vs. spatial informed (de-
pendent on the spatial location) division or differentiation. Ultimately, such
an approach could allow to simulate the whole neuromast generation process
and could inform further research in organ or even tissue regeneration.
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4.2 Spatial analysis in medical research

Spatial analyses find their way in all kinds of application fields including
medical domains such as immunology [108] or digital pathology [109]. Digi-
tal pathology is a sub-field of pathology that works with information gained
from digitized specimen slides. More and more tissue slides are digitized
and thus enable computer algorithms to perform expert tasks by learning
from huge amounts of data [110]. With the use of neural networks that ex-
tract, amongst others, spatial features from pathology images, computational
labs all over the globe aim to support (or partially replace) pathologists by
e.g. grading tumor images [111, 112] or predicting cancer from tissue slides
[113, 114]. Cancer and immune cell markers can enable further spatial anal-
yses of immune cells with respect to their spatial tumor context and predict
e.g. survival for colorectal cancer [115] or lung cancer [116]. In the latter
study, survival of lung cancer patients was predicted successfully using spa-
tial interactions between tumor cells and immune cells.
Going one step further in the complexity of spatial analyses leads to spa-
tial transcriptomics. This recent technology enables scientists to measure
all gene expression in a tissue sample with µm resolution [117]. A location
specific spatial barcode binds and captures adjacent mRNAs from the tis-
sue. This captured mRNA is sequenced and the spatial barcode makes it
possible to localize the origin within the tissue section for each individual
mRNA transcript. Spatial transcriptomics allow e.g. detecting which genes
are expressed in a certain area of interest or searching for locations where
specific genes are expressed [118]. These analyses can refine the identifica-
tion of cancer and stroma regions or reveal immune cell infiltration [14, 15].
Commercialized spatial transciptomics technology from 10X genomics is al-
ready applied to explore gene function variation across diverse cell types with
paired CRISPR knockdowns and rich single cell phenotype readouts [119] or
to characterize cell populations and their locations within a tissue [120]. It
is also used to visualize the entire transcriptome and to identify new targets
and the positions of cells that express them [121] or map the molecular, cel-
lular and spatial composition of distinct bone marrow niches [122].
With all this information about single cells or locations within a tissue one
could try to enhance cancer related predictions with a high-dimensional Rip-
ley’s K approach where not only the physical location is used to calculate
the distance between locations but also the expression profile [118, 123].
Recently the power of spatial tissue analysis increased with the addition of
spatial proteomics [124, 125]. This combination allows to identify cell sub-
populations based on both their gene expression and protein level together
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with their spatial distributions [126]. In tumor research in particular, spatial
analyses in combination with various omics promise a better understanding
of the interactions between cells and the spatial restrictions that enable the
specialization and development of cancer cells [127].

4.3 Methodological perspectives

Medical research can be progressed by adding more omics but also by novel
analysis methods. Spatial features extracted via neural networks in com-
bination with a temporal component could advance the understanding of
tumor progression over time. The temporal component could be introduced
by determining the cancer stage of a tissue sample for each patient or embed-
ding each patient in a low dimensional representation [128]. For every cancer
stage descriptive spatial features (compare Section 1.4) are extracted, which
are able to characterize each stage. One could then infer cancer growth
factors employing spatiotemporal models or machine learning. These fac-
tors, together with a healthy initial cell distribution, could be fed into an
agent-based spatiotemporal model framework such as Morpheus [93]. The
artificial cell culture would then grow until it reaches a certain cancer stage.
Based on the previously defined spatial characteristics one could evaluate
whether it was possible to reach the aspired tumor stage with the employed
model. That modeling of huge cell populations is possible has been shown
e.g. by Jagiella et al. [129], where up to 106 single cells have been modeled.
However, they also showed that it represents an enormous computational
challenge and thus high energy demands.
With the advent of deep learning (DL) models space takes on an additional
meaning, as in latent feature space. Latent feature space is a representation
of the input data after it is passed through the deep neural network [130].
Extracting features at the last layer of a convolutional neural net was e.g.
used to visualize cell cycle progression and cell cycle phases [131]. Similarly,
extracting features from the middle layer of a variational autoencoder can
capture biologically relevant features to model cancer gene expression [132].
Within this latent feature space one could apply spatial methods or identify
spatial patterns and compare them to patterns within the input data.
One could not only explore space in DL applications but even include the
whole model into a DL framework. Some very promising applications are
physics informed DL models, which are able to solve supervised learning
tasks while respecting certain laws of physics [133]. Recently a DL algo-
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rithm was able to figure out that our solar system has to be heliocentric
based on observations of sun and mars from earth [134]. A possible biomedi-
cal application could be to model the growth of different embryonic stem cells
by information about spatial environmental conditions such as surrounding
tissue, pH value and temperature. The aim of the model would be to find
out which organ grows with the given information.
With the advancements in spatial omics and models being insertable into
deep learning architectures this could open up new possibilities to gain in-
sight into disease etiology and tumor growth.
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Image Analysis of Neural Stem Cell Division

Patterns in the Zebrafish Brain

Valerio Lupperger,1 Felix Buggenthin,1 Prisca Chapouton,2* Carsten Marr1*

� Abstract
Proliferating stem cells in the adult body are the source of constant regeneration. In the
brain, neural stem cells (NSCs) divide to maintain the stem cell population and gener-
ate neural progenitor cells that eventually replenish mature neurons and glial cells.
How much spatial coordination of NSC division and differentiation is present in a
functional brain is an open question. To quantify the patterns of stem cell divisions,
one has to (i) identify the pool of NSCs that have the ability to divide, (ii) determine
NSCs that divide within a given time window, and (iii) analyze the degree of spatial
coordination. Here, we present a bioimage informatics pipeline that automatically
identifies GFP expressing NSCs in three-dimensional image stacks of zebrafish brain
from whole-mount preparations. We exploit the fact that NSCs in the zebrafish hemi-
spheres are located on a two-dimensional surface and identify between 1,500 and 2,500
NSCs in six brain hemispheres. We then determine the position of dividing NSCs in
the hemisphere by EdU incorporation into cells undergoing S-phase and calculate all
pairwise NSC distances with three alternative metrics. Finally, we fit a probabilistic
model to the observed spatial patterns that accounts for the non-homogeneous distri-
bution of NSCs. We find a weak positive coordination between dividing NSCs irrespec-
tive of the metric and conclude that neither strong inhibitory nor strong attractive
signals drive NSC divisions in the adult zebrafish brain. VC 2017 The Authors. Cytometry

Part A published by Wiley Periodicals, Inc. on behalf of ISAC.

� Key terms
bioimage informatics; neural stem cells; zebrafish brain; cell identification; neurosci-
ence image computing

THE analysis of spatial patterns is prevalent in distinct disciplines such as ecology

(1,2), geostatistics (3), and developmental biology (4). Adult neural stem cells

(NSCs) have been found at specific locations within the brain of adult vertebrates

[reviewed in (5,6)], but the spatiotemporal regulation of NSC quiescence and prolif-

eration is only roughly understood. To investigate dividing NSCs and the mainte-

nance of stem cell pools, the zebrafish is an ideal model organism due to its high

neurogenic activity, its accessibility for imaging, and the availability of transgenic

lines.

In the adult zebrafish pallium (the dorsal telencephalon, see Fig. 1), the ventric-

ular zone containing the NSCs is located on the surface, as a result of an eversion

during development (7). The dorsal domain is a spatially clearly defined two-

dimensional (2D) surface at the border of the telencephalon. NSCs within this sur-

face repopulate mature neurons and glial cells via constant proliferation and differ-

entiation (8,9). This situation has been utilized in in vivo imaging studies to follow

the fate of labeled NSCs (10,11) over several weeks. To describe the spatial organiza-

tion of all cycling NSCs within the pool of NSCs, we used whole mount preparations

and labeled S-phase NSCs within three-dimensional (3D) images of the ventricular

zone.
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Identification and segmentation of single cells in 3D

image stacks is a challenging problem for quantitative bio-

imaging. To identify single nuclei in 3D, several methods were

recently proposed (12–17) that rely on nuclear staining. Such

automated methods normally start with separation of back-

ground and foreground, followed by the identification of sin-

gle objects, using, for example, k-means (12), water shedding

(13), or graph-cut segmentation (14). Notably, the application

of available methods to a specific data set requires adaptation

and manual fine-tuning of the parameters. For neural neuro-

nal cells, Schmitz et al. (18) recently stated that available

methods fail to properly identify single cells in 3D.

Here, we present a single-cell identification pipeline

(SCIP) that explicitly uses prior knowledge on the organiza-

tion of NSCs in the zebrafish brain. It exploits the fact that

NSCs in the zebrafish brain are located on a 2D surface to

accurately identify them in 3D. A polynomial regression

model as approximation to the hemisphere surface improves

the identification and is used to remove imaging artifacts. We

apply SCIP to six 3D image stacks of adult zebrafish hemi-

spheres, automatically identify thousands of NSCs, and apply

three different metrics to determine distances between all pairs

of cells. Within the six hemispheres, we then locate stem cells

in S-Phase labeled by the incorporated thymidine analogue

EdU. To assess a possible interaction between the dividing cells

quantitatively, we evaluate and later fit a simple interaction

model and find a weak positive coordination of S-Phase

NSCs.

MATERIALS AND METHODS

Animal Maintenance

Zebrafish (Danio rerio) were kept in the fish facility of

the Helmholtz Zentrum M€unchen at 288C with a light/dark

cycle of 14/10 h. We used four-month old zebrafish (Fig. 1A)

of the transgenic line gfap:GFP (19) in an AB background.

Experiments were performed in accordance with the

regulations of the Regierung von Oberbayern on animal wel-

fare (Animal protocol 55.2-1-54-2531-83-14).

Sample Preparation and Image Acquisition

In the transgenic gfap:GFP zebrafish strain (19) NSCs are

fluorescently labeled with GFP under the control of gfap

enhancer. Dividing cells were labeled by intraperitoneal injec-

tion of the thymidine analogue 5-ethynyl-2-deoxyuridine

(EdU, 1 mg/ml, 5 ll/0.1 g body weight), which incorporates

into replicating DNA, one hour before killing the animals and

brain fixation. Zebrafish were over-anesthetized and killed in

0.1% buffered MS222, the brains dissected and fixed overnight

in 4% PFA. After blocking in 10% normal goat serum

(Sigma), EdU was revealed by binding to azide-Alexa Fluor

555 through a click reaction (Invitrogen). Brains were

mounted in Vectashield medium (Vector Laboratories)

between two coverslips separated by parafilm spacers.

An inverted confocal laser scanning microscope (Leica

SP5) with a 203 glycerol immersion objective (HC PL APO

203/0.70 IMM CS), which corrects for field curvature astig-

matism, was used for image acquisition. The field of view cov-

ers one hemisphere of the pallium (dorsal telencephalon)

nearly completely (see Figs. 1B and 1C). All images were taken

with 2048 3 2048 pixel in x-y direction with a pixel size of

0.38 3 0.38 lm. Resolution in z direction differed between

the 6 hemispheres (Experiment 1: 49 and 62 slices with dis-

tance of 2.0 lm, Experiment 2: 72 and 84 slices with distance

of 2.2 lm, Experiment 3: 105 and 85 slices with distance of

1.3 lm) and was adapted to brain size. Visual inspection con-

firms that aberration effects are minimal and do not impinge

on cell identification.

Single-Cell Identification Pipeline

Starting from a 3D image stack (Fig. 2A) SCIP projects

the maximum intensity of every x-y coordinate in z-direction

to a 2D image (Fig. 2B). A Laplace of Gaussian (LoG) filter

followed by a local maximum/minimum search is used to

identify cell sized blobs of approximately b 5 8 lm in

Figure 1. NSCs in the zebrafish telencephalon. (A) In all experiments, four-month-old zebrafish of a gfap:GFP transgenic strain were used,

where green fluorescent protein (GFP) is expressed under the control of gfap enhancer elements. Average length of adult fish is �3 cm (B)

Top view on a zebrafish brain showing the telencephalon, optic tectum, and cerebellum. We image one hemisphere of the telencephalon

(marked with a green rectangle). Scale bar: 2 mm. (C) Reconstructed 3D image stack from confocal microscopy. [Color figure can be

viewed at wileyonlinelibrary.com]
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Figure 2.
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diameter as possible cell candidates (Fig. 2C). From every

detected blob, the x-y centroid is used for the determination

of the z-coordinate. To discard possible signals from neighbor-

ing cells, we use pixel information inside a cylinder with a

diameter of 4 lm around the centroids (Fig. 2D) and fit a

Gaussian curve to the mean intensity profile along z. This

allows to filter out false positives due to contaminations dur-

ing sample preparation. The argument of the maximum (arg

max) of the fitted Gaussian is used as the z-coordinate of the

cell centroid. Additionally, its standard deviation is used to fil-

ter real cells from image artifacts: Single pixel errors show a

strong intensity and a small standard deviation. We thus filter

out objects with a standard deviation in z below 1.5 lm. Anal-

ogously, a 2D Gaussian distribution is fitted in x-y direction

and objects with a standard deviation below 2 lm are

excluded.

As NSCs are only found on the edge of a hemisphere we

fit a third order polynomial to all 3D centroids to roughly

approximate the hemisphere surface and avoid overfitting of

single cells. The fitted model is used to exclude outliers by

repetitively removing the most distant cell candidate (see

arrows in Fig. 2E) and recalculating the polynomial model.

The procedure is repeated until all cells are closer than 16 lm

(�two cell diameters) to the polynomial surface (Fig. 2F).

As cells from the adjacent hemisphere, and image contami-

nations from the 3D image stack may overlap with real cells in

the 2D projection, we introduce an envelope in z-direction 20

lm above and below the polynomial (Fig. 2G). All pixels out-

side this envelope are set to background intensity, determined

via the median of the eight corner pixels of the 3D stack. Steps

(B) - (F) of the pipeline are then repeated on the filtered image

stack. The resulting 3D centroids (Fig. 2H) represent NSCs on

the zebrafish hemisphere and are used for further analyses.

Distance Measures

We define distances between pairs of cells using three

metrics (Fig. 3): (i) The Euclidean distance dE between two

points in the 3D space in lm. (ii) The surface distance dS is

the projection of the shortest path between two cells on the

polynomial in lm. (iii) The graph distance dG between two

cells is the number of edges connecting the cells in the shortest

path of a graph consisting of nodes (the NSCs identified) and

edges between them (see Fig. 3B) as calculated with a Delau-

nay triangulation (20). The shortest path is determined using

the Floyd-Warshall algorithm (21,22).

Identification of S-Phase NSCs

We gave a pulse of EdU 1 h prior to brain dissection, fix-

ation, fluorescent staining and imaging. Cells with a fluores-

cent EdU signal (see Fig. 4) were automatically identified with

SCIP. For optimal data quality, we manually verified S-phase

NSCs as EdU positive cells that are also positive for gfap:GFP.

Influence Model

From the observed patterns of S-phase NSCs (Fig. 4), we

ask whether specific rules underlie the spatial arrangement of

division events. To quantify the distribution of S-phase NSCs

within the set of all NSCs, we introduce Pi, the probability

that an NSC i is in S-phase at a particular time point, as a

function of S-phase NSCs in the neighborhood of cell i. In the

case of no influence between division events, this probability

is the same for all NSCs. To simulate a pattern with S S-phase

Figure 2. SCIP for NSCs in the adult zebrafish brain. Raw 3D data (A) is transformed into 2D images (B) via 2D maximum intensity projec-

tion. Cell somata are touching each other on the surface, without intermediate space. Cell centers display a high GFP intensity and are

used for identification. A blob detection using LoG identifies cell candidates (C). A Gaussian curve is fitted to the intensity profile of a cylin-

der with 4 mm diameter along z of every cell candidate (D). The mean of the Gaussian is taken as the z-coordinate of cell candidate cen-

troid. A surface based on a 3rd order polynomial regression model is fitted to all centroids (E). Cells that are further away than two cell

diameters (�16 mm) are excluded step by step by removing iteratively the most distant outlier and recalculate the surface (F). To remove

remaining image artifacts an envelope is placed in 20 mm distance around the surface (G). All pixels outside this envelope are set to back-

ground intensity. Afterwards the pipeline starts over again at (B) using the filtered image stack without image artifacts. (H) The resulting

cell centroids can now be used for further analyses. Scale bars: 50 mm. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Three metrics are defined on the hemispheres. NSCs are identified (A) and then used to calculate the Euclidean distance dE

(blue line), the surface distance dS (orange line) and the graph distance dG (red lines) between all pairs of identified cells on the 2D surface

(B). For the surface distance, the shortest path between two cells in 3D is projected on the surface fitted with SCIP. For the graph distance,

the shortest path in a network derived from a Delaunay triangulation is calculated. Identified NSCs are shown in green on top of the

gfap:GFP signal. [Color figure can be viewed at wileyonlinelibrary.com]
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NSCs, we randomly select S cells from all N NSCs, where the

probability for NSC i to be selected, Pi, can be normalized to

pi5 1=N : (1)

To account for an attractive or repulsive influence between S-

phase NSCs, we scale this probability with a positive parame-

ter g. The exponent of g is the number of S-phase NSCs within

a distance r (Fig. 5). The probability Pi for cell i to be selected

as an S-phase NSC then becomes

Pi5g

PS

j51;j 6¼i
I distði;jÞ�rð Þ

=Z (2)

where we evaluate the number of S-Phase NSCs within radius

r using the indicator function I, and

Z5
XN

k51

g

PS

j51;j 6¼k
I distðk;jÞ�rð Þ

is the normalization constant. To simulate a pattern with S

S-phase NSCs, we now select S cells one after the other and

update the probabilities Pi after each selection.

Without any influence between S-phase NSCs, g 5 1 and

Eq. (2) simplifies to Eq. (1). For g< 1 or g> 1 we induce a

repulsive or attractive influence within a distance r, leading to

visually distinct patterns of S-phase NSCs (Fig. 5).

Parameter Inference

From the division probability [Eq. (2)], we can calculate

the likelihood L for an observed S-phase pattern given the

interaction strength g and interaction radius r. The log-

likelihood for S cells in S-Phase within the set of N NSCs is

log Lðg ; rÞ5
XS

i51

log Pi: (3)

We can calculate the sum of log-likelihoods for all observed

brain hemispheres and find the maximum likelihood estimate

for our parameters g and r by optimizing Eq. (3): First, we

evaluated all combinations of g and r with g � {0.1, 0.2, . . .,

4} and r � {5, 6, . . ., 150} lm for Euclidean distance dE and

surface distance dS, and r � {1, 2, . . ., 20} cells for graph dis-

tance dG, respectively. From the parameter combination with

the largest L, we then start a gradient descent optimization

algorithm (using MATLAB’S Fmincon function).

To evaluate our inference algorithm, we repeatedly gener-

ated 30 data sets per tested influence parameter combination

with different influence strengths and radii and applied our

inference algorithm to them (see Fig. 6). In the box plots, the

boundary of the box closest to zero indicates the 25th percen-

tile (q1), a black line within the box marks the median, and

the boundary of the box farthest from zero indicates the 75th

percentile (q3). Whiskers above and below the box include

points that are not outliers. Points are considered as outliers if

they are bigger than q3 1 1.5(q3 – q1) or smaller than q1 –

1.5(q3 – q1).

Implementation

SCIP and the statistical analysis are implemented in

MATLAB and performed on a Windows 7 machine with 4

cores (i7–5500 U, 2.4 GHz) and 16 Gigabyte DDR3 memory.

The time to identify NSCs in one hemisphere took between 5

Figure 4. Spatial pattern of NSC divisions. NSCs are identified in the gfap:GFP channel (A) using SCIP. Cells in S-phase were automati-

cally identified by EdU signal and manually verified (B). S-phase NSCs are identified as cells that appear both in the gfap:GFP and in the

EdU channel (C). Scale bar: 100 mm. [Color figure can be viewed at wileyonlinelibrary.com]

Table 1. Evaluation of three NSC identification methods

SCIP 3D OBJECT COUNTER IMARIS

Precision 93 6 3% 91 6 5% 92 6 4%

Recall 91 6 6% 66 6 14% 91 6 3%

F1 score 92 6 2% 76 6 9% 91 6 1%

NSCs have been counted manually (by P.C.) in 5 different

regions in the 2D maximum intensity projection of three zebrafish

hemispheres (see Fig. 7). We show precision, recall, and F1 score

(mean 6 s.d., n 5 5 regions) for SCIP, the 3D object counter plugin

in ImageJ, and Imaris. Best mean values are indicated in bold.
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and 10 min. Parameter estimation for one hemisphere took

between 3 and 8 min. Code available at https://github.com/

QSCD/SCIP.

RESULTS

Identification of Neural Stem Cells Using SCIP

SCIP can be used to identify single NSCs on the 2D

hemisphere surface. We evaluate the quality of cell identifica-

tion via SCIP by comparing automatically derived cell counts

of NSCs in the 2D maximum intensity projection in five dif-

ferent regions of three hemispheres to those generated manu-

ally by a human expert on a 2D maximum intensity

projection (exemplarily shown as green circles in Fig. 7). We

manually count 94, 84, 118, 136, and 160 cells in the five

regions. SCIP identifies 85, 92, 123, 125, and 151 NSCs in the

same five regions. Pairs of manual (“true”) and automatically

identified NSCs were matched according to their x-y coordi-

nate, which allowed us to calculate precision (the fraction of

true NSCs within the set of NSCs identified by SCIP, Fig. 7A),

recall (the fraction of NSCs identified by SCIP within all true

NSCs) and the F1 score [an accuracy measure that considers

both precision and recall (23)]. We compare SCIP to two

other standard approaches for cell identification and segmen-

tation: The “3D object counter” plugin (24) in ImageJ (25)

where we carefully chose the intensity threshold as 75 to opti-

mally match our manual counts, and the commercial Imaris

software (version 8.4.1, Bitplane, Zurich, Switzerland; Fig.

7C), with target cell diameter of 5 lm and an intensity thresh-

old of 7.14.

The 3D object counter identifies only a fraction of the

manually annotated cells (recall 66 6 14%, mean 6 s.d., n 5 5

regions). Cells that are close to each other are often identified

as large single objects. SCIP and Imaris were able to identify

NSCs with the same recall but SCIP identifies less false posi-

tive cells resulting in a slightly higher precision and F1 score

compared to Imaris (see Table 1). Overall, we expect that the

manual counts underestimate the number of NSCs slightly

due to the inherent unidentifiability of nearby cells with a

small shift in z direction in the 2D maximum intensity

projection.

NSC Divisions in the Zebrafish Brain

We apply SCIP to six zebrafish hemispheres from three

different adult animals. In each hemisphere, we automatically

identify NSCs using SCIP. Moreover, we identify S-phase

NSCs via a fluorescently labeled EdU incorporation 1 h prior

to imaging (see Methods), stained in a second fluorescence

channel (Fig. 4).

In six hemispheres, we identify between 1458 and 3195

NSCs (Table 2). Furthermore, we identify between 42 and

67 S-phase NSCs. The ventricular zone contains dividing NSCs

[called type II progenitors (8,26)] as well as type III dividing

progenitors that do not express gfap:GFP. We consider in this

study specifically the dividing type II NSCs. The fraction of S-

phase NSCs is 2.6% 6 0.9% (mean 6 s.d., n 5 6 hemispheres).

This fraction is low compared to values obtained with PCNA

and MCM5 cell cycle markers (11,26) due to EdU labeling of S-

phase only within the small time window of one hour. Visually,

the S-phase NSCs (marked by red circles in Fig. 4C) form no

obvious cluster, but regions in the brain that show a depletion

of S-phase NSCs seem to appear.

Analysis of S-Phase Patterns

To quantify a potential spatial attraction or repulsion of

S-phase NSCs, we define a probabilistic spatial model, where

Figure 5. Simulated attractive spatial influence (A), no spatial influence (B), and repulsive spatial influence (C) of S-phase NSCs result in

visually distinct patterns. [Color figure can be viewed at wileyonlinelibrary.com]
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the division probability of NSCs is regulated by two parame-

ters: an interaction radius r, and the strength g of the interac-

tion within this radius r. For g 5 1, the probability to enter

S-phase is not changed, but it is increased or decreased for g

above or below 1, respectively (see Fig. 5 and Methods). We

simulate patterns of S-phase NSCs (same number as

observed) for an attractive (with r 5 50 mm and g 5 1.6), no

influence (g 5 1), and repulsive (r 5 50 mm and g 5 0.1, see

Fig. 5) model. Visually, the three different models can be dis-

criminated clearly via clustering of events (Fig. 5A), spatially

random events (Fig. 5B), and events that are evenly spaced

across the surface (Fig. 5C).

Formulating the likelihood of the observed spatial pat-

tern of S-phase NSCs [Eq. (3)] allows to infer the most likely

parameters r and g for the assumed probabilistic model. For

simulated data, both parameters are inferred reliably for real-

istic range of parameters (Fig. 6). Here, we simulated patterns

by drawing the same number of S-phase NSCs as observed in

the data one after the other, consecutively updating the proba-

bilities Pi for the next draw based on the chosen parameters g

and r. We determine the maximum likelihood estimate for the

two parameters by maximizing the log-likelihood, which sums

over all six hemispheres.

We finally apply our inference algorithm to the S-Phase

NSC patterns in the six hemispheres (see Table 2 and Fig. 4).

Using the surface distance dS, we identify the most likely

model with a weak positive influence (g 5 1.15) between

S-phase NSCs and an interaction radius of 100 lm. The most

likely model for the Euclidean distance dE has an interaction

radius of 89 lm with a weak positive influence (g 5 1.16).

Since the surface and Euclidean distances are ignorant of the

inhomogeneous density of NSCs on the brain, we also infer

the parameters of our probabilistic model for the graph dis-

tance dG. Here we identify again a weak positive influence

(g 5 1.17) to be most consistent with the observed data with

an influence radius of 6 cells (Table 3). Correlating graph dis-

tance dG with surface distance dS on the six hemispheres, we

find that a dG 5 6 corresponds to dS 5 100 6 44 lm (mean 6

s.d., n 5 100000 pairwise distances). The log-likelihoods of

these two models are comparable (–2467 vs. 22466), which

does not allow for model selection or rejection on the basis of

the observed data. However, the Euclidean distance model has

a considerably smaller log-likelihood (–2502) than the other

two models suggesting that a metric based on surface and

graph distance describes the weak interactions better.

DISCUSSION

Analyzing the patterns of dividing NSCs in adult zebra-

fish brains with a probabilistic model, we observe a preference

for the positive influence model with a rather large interaction

radius of 100 mm or 6 neighboring cells, respectively. The

weak influence strength of 1.15 and 1.17, respectively, (a

strength of g 5 1 corresponds to random patterns) fits to the

visual impression that S-phase NSCs are neither strongly clus-

tered, nor particularly regular spaced on the zebrafish hemi-

spheres. Our approach quantifies this impression, by taking

the heterogeneous distribution of NSCs into account. Ran-

dom spatial distributions of cells entering cell cycle have been

observed in other systems, such as the ear epidermis (27,28).

Individual stochastic cellular behavior resulting in a controlled

Table 2. We identify around 2.5% of S-phase NSCs in each of the

six hemispheres

HEMISPHERE ID NSCS S-PHASE NSCS

FRACTION OF

S-PHASE NSCS

Exp1L 2399 67 2.79%

Exp1R 2046 56 2.74%

Exp2L 3195 46 1.44%

Exp2R 3017 56 1.86%

Exp3L 1458 56 3.84%

Exp3R 1482 42 2.83%

NSCs have been automatically identified using SCIP,

S-phase NSCs have been additionally manually verified.

Figure 6. Model inference on simulated data works for a variety of radii r based on the surface distance dS (A) and strengths g (B). For

each parameter set, we simulated 30 spatial pattern on each of the six hemisphere and find the maximum likelihood estimate [Eq. (3)].

Box boundaries indicate the 25th and 75th percentile, respectively, the black line within the box marks the median. Whiskers above and

below the box include points that are not outliers.
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growth of organs has been also observed in the retina (29), in

the intestinal crypts (30), or in Arabidopsis sepals (31). The

emergence of tissue with regular size and organization from

unpredictable individual cell behavior, therefore, seems to be

a robust strategy for tissue maintenance. However, the mecha-

nisms regulating the amount of cycling NSCs have to be fur-

ther investigated. Based on our present analysis, we detect

randomness, but we cannot reject more complicated models

with, for example, a large heterogeneity in cell cycle times, or

a spatiotemporal dependence of NSCs entering cell cycle.

Our single-cell identification pipeline concatenates existing

bioimage informatics processing steps and implicitly fits a 2D sur-

face. While for the present study we compared our approach only

to two other basic cell identification methods, recently proposed

approaches could help identify single cells in challenging in vivo

setting [see e.g., Arteta et al. (32) or Cireşan et al. (33)]. In the

future, we would like to extend our approach to the segmentation

of single cells, supplemented by a morphological analysis that

might also allow for functional predictions (34). It would be

interesting to see if cells in S-Phase can be inferred from the mor-

phology of the GFP signal alone, and how strong cell positions

correlate with morphological features.

A more detailed analysis would require a spatiotemporal

analysis of division patterns also with other spatial statistics

methods like Ripley’s K (35) or the pair correlation function

(36) to test the existence of between-timepoint influence.

Overall it will be important in the future to decipher the

mechanisms of synchronization of stem cells activity, to

understand how groups of cells coordinate their recruitment.

In this regard, comparing patterns between young and old

animals might help to understand the mechanisms of stem

cell depletion during aging.
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Figure 7. Evaluation of SCIP. We use manually (by P.C.) identified NSCs in different image regions on the 2D maximum intensity projec-

tion as ground truth (green circles). We evaluate SCIP (A), the 3D object counter plugin in ImageJ (B), and Imaris (C) by comparison of the

identified cells to the manually detected ones. Scale bar: 30 mm. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. Parameter inference on 6 hemispheres finds a weak pos-

itive influence between S-phase NSCs for all three models with

surface, graph, and Euclidean distance

MODEL METRIC

RADIUS

(r)

STRENGTH

(g) LOG-LIKELIHOOD

Graph distance (dG) 6 (cells) 1.17 22466

Surface distance (ds) 100 (lm) 1.15 22467

Euclidean distance (dE) 89 (lm) 1.16 22502
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Abstract Despite the intrinsically stochastic nature of damage, sensory organs recapitulate

normal architecture during repair to maintain function. Here we present a quantitative approach

that combines live cell-lineage tracing and multifactorial classification by machine learning to reveal

how cell identity and localization are coordinated during organ regeneration. We use the superficial

neuromasts in larval zebrafish, which contain three cell classes organized in radial symmetry and a

single planar-polarity axis. Visualization of cell-fate transitions at high temporal resolution shows

that neuromasts regenerate isotropically to recover geometric order, proportions and polarity with

exceptional accuracy. We identify mediolateral position within the growing tissue as the best

predictor of cell-fate acquisition. We propose a self-regulatory mechanism that guides the

regenerative process to identical outcome with minimal extrinsic information. The integrated

approach that we have developed is simple and broadly applicable, and should help define

predictive signatures of cellular behavior during the construction of complex tissues.

DOI: https://doi.org/10.7554/eLife.30823.001

Introduction
Understanding organogenesis, organ morphostasis and regeneration is crucial to many areas of biol-

ogy and medicine, including controlled organ engineering for clinical applications (Lancaster et al.,

2013; Boj et al., 2015; Sato and Clevers, 2015; Willyard, 2015). External tissues sustain continuous

injury and must recurrently repair to maintain physiological function during the life of the organism

(Levin, 2009). Structural reproducibility depends on the re-establishment of cell identity, number,

localization and polarization. Two aspects of organ regeneration are the current focus of intense

attention. First, how multiple cells interact to recapitulate organ architecture. Second, what is the

mechanism that controls the correct reproduction of cell number and localization. Here we use the

neuromasts of the superficial lateral line in larval zebrafish to gain a global perspective on sensory-

organ regeneration. The neuromasts are ideally suited for this purpose because they are small and

external, facilitating physical access and three-dimensional high-resolution videomicroscopy of every

cell during extended periods. We have combined live single-cell tracking, cell-lineage tracing, phar-

macological and microsurgical manipulations, and multidimensional data analysis by machine learn-

ing to identify features that predict cell-fate decisions during neuromast repair. Our comprehensive

approach is simple and model independent, which should facilitate its application to other organs or

experimental systems that are accessible to videomicroscopy. It should help reveal the basic rules

that underlie how complex structures emerge from the collective behavior of cells.
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Results

Complete neuromast ablation is irreversible in larval zebrafish
The neuromasts of the superficial lateral line in zebrafish are formed by a circular cuboidal epithelium

of 60–70 cells (López-Schier and Hudspeth, 2006; Ghysen and Dambly-Chaudière, 2007; Nor-

den, 2017). Mechanoreceptive hair cells occupy the center of the organ, whereas non-sensory sus-

tentacular supporting cells are found around and between the hair cells (Figure 1A). A second class

of supporting cell called mantle cells forms the outer rim of the organ. The invariant spatial distribu-

tion of these three cell classes generates a radial symmetry (Figure 1B) (Pinto-Teixeira et al., 2015).

Neuromasts also have an axis of planar polarity defined by the orientation of the hair-cells’ apical

hair bundle (Figure 1C) (Ghysen and Dambly-Chaudière, 2007; Wibowo et al., 2011). In addition

to this geometric organization, cell-class number and proportions are largely constant, with around

40 sustentacular, 8–10 mantle, and 14–16 hair cells. Non-sensory cells can proliferate, whereas the

sensory hair cells are postmitotic (López-Schier and Hudspeth, 2006; Ma et al., 2008; Cruz et al.,

2015; Pinto-Teixeira et al., 2015). Finally, a string of interneuromast cells connects each neuromast

along the entire lateral-line system (Figure 1A) (Ghysen and Dambly-Chaudière, 2007). Previous

studies have extensively characterized the regeneration of the mechanosensory hair cells

(Williams and Holder, 2000; Harris et al., 2003; López-Schier and Hudspeth, 2006;

Hernández et al., 2006; Ma et al., 2008; Behra et al., 2009; Faucherre et al., 2009;

Wibowo et al., 2011; Namdaran et al., 2012; Steiner et al., 2014; Jiang et al., 2014). However,

the regeneration of non-sensory cells remains largely unexplored. To obtain quantitative data of

whole sensory-organ regeneration we developed an experimental assay that combines controllable

neuromast damage, long-term videomicroscopy at cellular resolution, and live cell-lineage tracing.

We used combinations of transgenic lines expressing genetically encoded fluorescent proteins that

allow the precise quantification and localization of each cell class in neuromasts, and which also serve

as a direct and dynamic readout of tissue organization. This is important because it enables

the visualization of cell-fate transitions in living specimens within the growing tissue at high temporal

resolution. Specifically, the Tg[alpl:mCherry] line expresses cytosolic mCherry in the mantle and

interneuromast cells (Figure 1D). The Et(krt4:EGFP)sqgw57A (hereafter SqGw57A) expresses cyto-

solic GFP in sustentacular cells (Figure 1E). The Tg[�8.0cldnb:LY-EGFP] (Cldnb:lynGFP) express a

plasma-membrane targeted EGFP in the entire neuromast epithelium and in the interneuromast cells

(Figure 1F), and the Tg[Sox2-2a-sfGFP] (Sox2:GFP) expresses cytosolic GFP in all the supporting

cells and the interneuromast cells (Figure 1G). For hair cells, we use Et(krt4:EGFP)sqet4(SqEt4) that

expresses cytosolic GFP (Figure 1H), or the Tg(myo6b:actb1-EGFP)(Myo6b:actin-GFP) that labels fil-

amentous actin (Figure 1I). These transgenic lines have been previously published, but are repro-

duced here for clarity and self-containment of this work (López-Schier and Hudspeth, 2006;

Kondrychyn et al., 2011; Kindt et al., 2012; Shin et al., 2014; Steiner et al., 2014; Pinto-

Teixeira et al., 2015).

To induce tissue damage in a controllable and reproducible manner, we used a nanosecond ultra-

violet laser beam that was delivered to individual cells through a high numerical-aperture objective,

which was also used for imaging. The stereotypic localization of the neuromasts along the zebrafish

larva varies only marginally between individuals and during larval growth (Figure 1J) (Ledent, 2002;

López-Schier et al., 2004). This permits the unambiguous identification of the manipulated neuro-

mast throughout the experiment, and the comparison between corresponding organs in different

animals. Using Sox2:GFP 5 day-old zebrafish larvæ that ubiquitously express a nucleus-targeted red-

fluorescent protein (H2B-RFP) (Figure 1K–L), we certified that laser-targeted cells are rapidly elimi-

nated from the neuromast epithelium with no detectable collateral damage (Figure 1M–P and

Video 1). Having established a well-controlled injury protocol, we decided to probe the limits of

neuromast regeneration. We first used specimens co-expressing Alpl:mCherry and Cldnb:lynGFP,

which reveal all neuromast cells in green and the mantle cells in red (Figure 2A). We began by ablat-

ing entire neuromasts and assessed regeneration for 7 days (Figure 2B–E). Specifically, we looked at

the response of flanking interneuromast cells because it has been demonstrated that they can prolif-

erate and generate additional neuromasts, particularly upon loss of ErbB2 signaling (López-

Schier and Hudspeth, 2005; Grant et al., 2005; Sánchez et al., 2016). Four hours post-injury (4

hpi) a wound remains evident at the target area (Figure 2B). One day post-injury (1 dpi), the dam-

aged area was occupied by a thread of Alpl:mCherry(+) cells, which based on marker expression are
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Figure 1. Geometric organization of the neuromast. (A–C) Schematic representation of a neuromast depicting (A) cell classes identifiable by expression

of transgenic markers. Grey arrows indicate, respectively, (B) radial symmetry and (C) epithelial planar polarity. (D–I) Confocal images of cell-specific

transgenic markers. (D) Alpl:mCherry marks mantle and interneuromast cells, (E) SqGw57A shows all supporting cells, (F) Cldnb:lynGFP marks all

neuromast cells, (G) Sox2-GFP marks supporting and interneuromast cells, (H) SqET4 labels hair cells, and (I) Myo6b:actin-GFP highlights the planar

Figure 1 continued on next page
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likely interneuromast cells (Figure 2C). None of the removed neuromasts regenerated after 7 days

(n = 22) (Figure 2D–E). We obtained an identical outcome using the independent pan-supporting

cell marker Sox2:GFP (n = 9) (Figure 2F–J). Finally, incubation of Alpl:mCherry specimens with Bro-

modeoxy-Uridine (BrdU) to reveal the DNA synthesis that occurs prior to mitosis showed that inter-

neuromast cells do not proliferate after neuromast ablation (Figure 2K–N) (Gratzner, 1982). These

data indicate that in contrast to what occurs in embryos (Sánchez et al., 2016), the complete elimi-

nation of a neuromast is irreversible in larval zebrafish.

Neuromasts have isotropic regenerative capacity
To further explore neuromast repair we decided to use milder injury regimes. We systematically pro-

duced controlled damage of well-defined scale and location in double transgenic specimens that

combine the supporting cell marker Cldnb:lynGFP and the mantle-cell marker Alpl:mCherry

(Figure 3A–O). We found that ablation of the posterior half of the neuromast was followed by clo-

sure of the wound within 24 hr (Figure 3A–C). At 3 dpi, target neuromasts regained normal cell-class

spatial distribution (n = 6) (Figure 3D). At 7 dpi, neuromasts recovered approximately 70% of the

normal cell number (Figure 3E,Z). We found no difference in speed and extent of regeneration after

concurrently ablating the posterior half of neuromasts and flanking interneuromast cells (n = 5)

(Figure 3F–J,Z). The ablation of the posterior or the dorsal half of the epithelium resulted in identi-

cal outcome, suggesting that neuromasts are symmetric in their regenerative capacity (n = 6)

(Figure 3K–O,Z). Next, we assessed mantle-cell regeneration using a double transgenic line express-

ing Sox2:GFP and Alpl:mCherry, which reveal mantle cells in red and sustentacular cells in green

(Figure 3P–Y). The complete elimination of mantle cells was followed by their re-emergence 3 dpi

(Figure 3Q–S), and the reconstitution of the outer rim of the neuromast 7 dpi (n = 15) (Figure 3T,Z).

The simultaneous ablation of the mantle cells and the adjacent interneuromast cells led to identical

outcome (n = 6) (Figure 3U–Z). The ablation of

the interneuromast cells in fish co-expressing

Sox2:GFP and Alpl:mCherry on one side of a neu-

romast (n = 12), or between two adjacent organs

(n = 8) did not trigger the proliferation of the

remaining interneuromast cells over a period of 7

days (Figure 3—figure supplement 1A–J).

Because the complete ablation of mantle cells

leaves intact the sustentacular-cell population,

and the hair cells are postmitotic, these results

yield three important and novel findings: (1) inter-

neuromast cells are not essential for neuromast

regeneration in larval zebrafish, although they

may contribute to mantle cell regeneration; (2)

neuromasts have isotropic regenerative capacity;

(3) sustentacular cells are tri-potent progenitors

able to self-renew and to generate mantle and

hair cells.

Figure 1 continued

polarization of the hair cells by decorating their apical stereocilia. Scale bars: 10 mm. (J) Images of dorsal (top) and lateral (bottom) views of a SqGw57A

transgenic zebrafish larva, revealing the full complement of superficial neuromasts and their stereotypic position. (K) A single confocal section of the

lateral view of a neuromast expressing GFP in supporting cells (Sox2-GFP) and a RFP in all nuclei (H2B-RFP). (L) Same neuromast in K showing RFP-

marked nuclei. The white arrow indicates 4 cells (circled), which are target of the laser beam for ablation. (M–P) Four still images of the neuromast in L

over a period of five minutes, in which the laser-targeted cells are eliminated from the epithelium (white arrow).

DOI: https://doi.org/10.7554/eLife.30823.002

Video 1. A 20 min videomicroscopic recording of a

neuromast after laser-mediated ablation of supporting

cells. Four laser-targeted cells (showing a dark spot in

the nuclei from focal fluorescent-protein bleaching) are

eliminated from the epithelium, which closes the

wound. There is no noticeable collateral damage. Time

resolution is one image per 30 s.

DOI: https://doi.org/10.7554/eLife.30823.004
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Neuromast architecture recovers after severe loss of tissue integrity
To test the limits of neuromast regeneration we systematically ablated increasing numbers of cells.

Extreme injuries that eliminated all except 1 to 3 cells almost always led to neuromast loss (not

shown), whereas ablations that left between 4 and 10 cells, reducing the organ to a combination of

2–3 mantle and 2–7 sustentacular cells, allowed regeneration (Figure 4A–E,K). We found that after

losing over 95% of their cellular content, neuromasts recover an average of 45 cells at 7 dpi (or

approximately 70% of the normal cell count), with exceptional cases reaching 60 cells (equivalent to

over 90% of a normal organ) (n = 15) (Figure 4K). Regenerating neuromasts became radial-symmet-

ric as early as 3 dpi (Figure 4D), and had normal cell-class composition and proportions 7 dpi

(Figure 4L–M). Next, we concurrently ablated 95% of the neuromast and the flanking interneuro-

mast cells (Figure 4F–G). This intervention was followed by a similar regeneration process, but lead

to smaller organs (n = 6) (Figure 4H–J,N–P). These observations reinforce our previous suggestion

that interneuromast cells have a non-essential, yet appreciable contribution to regeneration. Timed

quantification of cell-class number and localization showed a reproducible pattern of tissue growth

and morphogenesis. During the first 24 hpi, the intact cells rebuilt a circular epithelium (Figure 4B).

From 1 dpi to 3 dpi, cell number increases rapidly and proportion is restored (Figure 4C,K–M). After

Figure 2. Zebrafish larvæ do not regenerate completely-ablated neuromasts. (A–E) Confocal images of a 7 day follow-up of the complete ablation of a

neuromast in the double transgenic line Tg[Cldnb:lynGFP; Alpl:mCherry]. (A) The site of damage was identified over subsequent days by the position of

an intact reference neuromast (white asterisk). (B) Laser-mediated cell ablation produced a wound 4 hours-post-injury (hpi). (C–E) This wound was

replaced by a thread of mCherry(+) cells (white arrow) 1 day-post-injury (dpi), which did not change over the subsequent 6 days. (F–J) Confocal images

over a 7 day time course after the ablation of a neuromast in the double transgenic line Tg[Sox2:GFP; Alpl:mCherry]. Identically to A-E, the complete

ablation of the target neuromast results in a thin trail of interneuromast cells (white arrowheads) covering the damaged area (K–N). Scale bars: 10 mm.

DOI: https://doi.org/10.7554/eLife.30823.003
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Figure 3. Neuromasts have isotropic regenerative capacity. (A) Ablation of the posterior half of a neuromast. (B–C) The damage is resolved by cellular

movement from the undamaged site 1dpi. (D) Neuromasts recover geometric order after 3 days and (J) return to homeostasis by 7dpi. Dashed lines in

A,F,K,P,U delineate the ablated area. (F–J) Simultaneous ablation of the posterior half of a neuromast and the interneuromast cells flanking its anterior

and posterior sides (n = 5) led to a regeneration outcome identical to that of the experiment in (A–E). Arrowheads in (F) point the location normally

Figure 3 continued on next page

Viader-Llargués et al. eLife 2018;7:e30823. DOI: https://doi.org/10.7554/eLife.30823 6 of 23

Tools and resources Developmental Biology and Stem Cells



3 dpi, cell number increases at a slower pace (Figure 4K–M). Importantly, each cell class assumes an

appropriate position despite a much reduced cell number (Figure 4E,J,L–P).

Next, we examined if the orthogonal polarity axes of the epithelium are re-established after the

severest of injuries. To assess tissue apicobasal polarity we used a combination of transgenic lines

that allows the observation of the invariant basal position of the nucleus and the apical adherens

junctions (Figure 4Q–R) (Ernst et al., 2012; Harding and Nechiporuk, 2012; Hava et al., 2009).

We found correct positioning of these markers in the regenerated epithelium (n = 4), including the

typical apicobasal constriction of the hair cells (Figure 4S–T). To assess epithelial planar polarity, we

looked at hair-bundle orientation using fluorescent phalloidin, which revealed that 7 dpi the regener-

ated neuromasts were plane-polarized in a manner indistinguishable from unperturbed organs, with

half of the hair cells coherently oriented in opposition to the other half (n = 10) (Figure 4U–W). To

test if plane-polarizing cues derive from an isotropic forces exerted by the interneuromast cells that

are always aligned to the axis of planar polarity of the neuromast epithelium, we ablated these cells

flanking an identified neuromast, and concurrently killed the hair cells with the antibiotic neomycin

(Figure 4X–Y). In the absence of interneuromast cells regenerating hair cells recovered normal

coherent planar polarity (n = 16), suggesting the existence of alternative sources of polarizing cues

(Figure 4Z). Collectively, these findings reveal that as few as four supporting cells can initiate and

sustain integral organ regeneration.

Sustentacular and mantle cells have different regenerative potential
Injury in the wild is intrinsically stochastic. Thus, we hypothesized that the regenerative response

must vary according to damage severity and location, but progress in a predictable manner. To test

this assumption and unveil the underlying cellular mechanism, we systematically quantified the

behavior of individual cells by high-resolution videomicroscopy. We conducted 15 independent

three-dimensional time-lapse recordings of the regenerative process using a triple-transgenic line

co-expressing Cldnb:lynGFP, SqGw57A and Alpl:mCherry (Figure 5A–B), ranging from 65 to 100 hr

of continuous imaging (each time point 15 min apart). Starting immediately after the ablation of all

except 4–10 cells, we tracked every intact original cell (called founder cell) and their progeny (cellular

clones) (Figure 5A and Video 2). We followed a total 106 founder cells (76 sustentacular cells and

30 mantle cells). We tracked individual cells manually in space and time, recording divisions and

identity until the end of the recording, resulting in 763 tracks and 104,863 spatiotemporal cell coor-

dinates (Figure 5A–B). Each clone was represented as a tree to visualize the contribution of each

founder cell to the resulting clones (Figure 5C). We found that the majority of the founder sustentac-

ular cells underwent three divisions and that some divided up to five times (Figure 5D). 14 out of 30

founder mantle cells did not divide at all, and the rest divided once or, rarely, twice. Founder susten-

tacular cells required on average 19 ± 6 hr (mean ±s.d., n = 76) to divide, whereas the founder man-

tle cells that divided required on average 27 ± 5 hr, (mean ±s.d., n = 30) (Figure 5E). Clones from

founder sustentacular and founder mantle cells were markedly different: founder sustentacular cells

produced all three cell classes (sustentacular, mantle and hair cells), whereas founder mantle cells

produced clones containing only mantle cells (Figure 5F). We categorized all cell divisions according

to the fate of the two daughter cells at the time of the following division, or at the end of the time-

lapse recording (Figure 5G). This analysis revealed that 97% of the sustentacular-cell divisions were

symmetric: 78% produced two sustentacular cells (SS), 16% produced a pair of hair cells (HH), and

Figure 3 continued

occupied by the interneuromast cells. (K–O) Neuromasts depleted from their dorsal half (n = 6) also recover epithelial size, proportions and geometry in

a manner indistinguishable from equatorial-side ablation after 7 days. (P–T) 7 days after their complete laser-mediated ablation, mantle cells

regenerated for neuromasts to recover the mantle. (U–Y) The ablation of interneuromast cells flanking both sides of neuromasts that were depleted of

mantle cells resulted in the same outcome (n = 6). (Z) Quantification of the number of cells in regenerated neuromasts at 7 dpi. Number of neuromast

cells was no statistically significant between groups of different damage regimes as determined by one-way ANOVA (F(4,27)=1.013, p=0.4183). Scatter

plot shows mean ±s.e.m.ns: non-significant. Scale bars: 10 mm.

DOI: https://doi.org/10.7554/eLife.30823.005

The following figure supplement is available for figure 3:

Figure supplement 1. Interneuromast cells do not regenerate.

DOI: https://doi.org/10.7554/eLife.30823.006
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Figure 4. Recovery of organ architecture after loss of tissue integrity. (A–E) Confocal images of a neuromast regenerating from 4 to 10 cells during a

period of 7 days. Neuromasts recover radial symmetry 3 dpi (D), and original organ proportions at 7 dpi (E). (F–J) Neuromasts reduced to 4–10 cells

that were previously deprived from adjacent interneuromast cells (INCs) (arrowheads in F), regenerated and reformed radial symmetry (H–I) and

proportions 7 dpi, despite maintaining a reduced size (J). Dashed circles in (A,F) illustrate damaged areas. Scale bars: 10 mm. (K,N) Total cell numbers

in regenerating neuromasts over 7 days in the two conditions depicted in (A–J). (L,O) In the first 2 dpi neuromast consist almost exclusively of

Figure 4 continued on next page
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3% generated two mantle cells (MM). Only 3% of the divisions were asymmetric, generating one sus-

tentacular and one mantle cell (SM) (n = 307). All mantle-cell divisions were symmetric (MM)

(n = 20). These observations further support the conclusion that sustentacular cells are tri-potent

progenitors.

Previous studies have firmly established that hair-cell regeneration is strongly anisotropic because

hair-cell progenitors develop almost exclusively in the polar areas of horizontal neuromasts, elongat-

ing the macula in the dorsoventral direction (Wibowo et al., 2011; Romero-Carvajal et al., 2015).

Although our static images suggest that neuromasts have isotropic regenerative capacity, we never-

theless wondered whether regeneration of non-sensory cells is directional. To this end, we fractioned

the epithelium of horizontal neuromasts in four quarters of equal dimension (dorsal, ventral, anterior

and posterior) (Figure 6A–B), which reflects the known functional territorialization of the neuromast

epithelium based on the expression of transgenic markers and Notch signaling (Ma et al., 2008;

Wibowo et al., 2011). We first assessed the spatial distribution of cell divisions during the first 60 hr

of regeneration and found no pattern that would suggest regeneration anisotropy (Figure 6A). How-

ever, 60 hpi, most divisions (74%) took place in the dorsal and ventral (polar) quarters (Figure 6B).

This is expected because later divisions mainly produce hair cells from polar progenitors (Figure 4L,

M). Thus, the regenerating epithelium is initially homogeneous and becomes territorialized 60 hpi.

We reasoned that epithelial territorialization could occur either by the migration of similar cells that

are scattered throughout the tissue, or by position-adaptive differentiation of an initially equivalent

population of cells. To test these possibilities, we generated a virtual Cartesian coordinate system at

the center of the neuromast to fit all founder cells at the beginning of regeneration (4hpi). Next, we

analyzed the localization of their progeny 60 hpi (Figure 6C–H). We found that 60% of the progeny

of anterior-localized founder cells were located in the anterior side of the resulting epithelium,

whereas 64% of the progeny of posterior-located founder cells were found in the posterior side

(Figure 6C–E). We also found that 72% of cells derived from dorsal founder cells and 74% of cells

from ventral founder cells were located on the same side of the virtual dorsal/ventral midline

(Figure 6F–H). Therefore, most of the clones remain ipsilateral to the founder cell. These results indi-

cate that neuromasts have isotropic regenerative capacity and their territorialization occurs by loca-

tion-adaptive cellular differentiation.

The sustentacular-cell population is tri-potent and plastic
To answer the long-standing question of whether the sustentacular-cell population is homogeneous

and approach the problem of what determines symmetric versus asymmetric modes of division, we

characterized the composition of all 72 clones from founder sustentacular cells. We found four types

of clones: containing only sustentacular cells (S), sustentacular and mantle cells (SM), sustentacular

and hair cells (SH), and all three cell classes (SHM) (Figure 6I). Of note, founder mantle cells pro-

duced clones containing only mantle cells (M) (Figures 5G and 6I). We observed that 37/72 of the

clones from founder sustentacular cells were SH, 21/72 were S, 12/72 were SM, and 2/72 were SHM

(Figure 6I–K). The proportion of each clone type suggests that either the sustentacular-cell

Figure 4 continued

supporting cells (green and red). Hair cells (blue) begin to appear between at 2dpi. (M,P) Percentages of cell classes during a 7 day regeneration

period. Right after damage, neuromast experience an imbalance of cell proportions that is re-established over the course of 3 days. Afterwards the

neuromasts continues to slowly increase total cell number at similar rates. The final proportion of cell classes recapitulates that of the starting condition.

Time points show mean ± s.e.m. [All except 4–10 cells] n = 15, [All except 4–10 cells + INC] n = 6. (Q) Top and (R) lateral views of a triple-transgenic Tg

[Ncad: Ncad-EGFP; Alp:mCherry; H2A:H2A-EGFP] neuromast before injury. (S) Top and (T) lateral views of a regenerated neuromast 7 days post injury

(n = 4). Basal location of nuclei and apical N-cadherin enrichment evidence the apicobasal polarization of the organ. The accumulation of N-cadherin

(white arrowheads) in the regenerated neuromast shows that apical constrictions are properly re-established during the process. (U–V) Maximal intensity

projection of a neuromast in the triple transgenic line Tg[Cldnb:lynGFP; SqGw57A; Alpl:mCherry] prior to injury that eliminates all except 4 to 10 cells

(U), and the same neuromast 7 days after damage (V). (W) Hair-bundle staining with rhodamine-phalloidin (colored in pink) reveals the coherent planar

polarization of the hair cells in the regenerated neuromast shown in (V). (X) Confocal projection of a neuromast before the removal of flanking

interneuromast cells. (Y) Maximal projection of a neuromast 48 hr after interneuromast-cell ablation and 24 hr after neomycin treatment. (Z) Phalloidin

staining of hair bundles of hair cells regenerated in the absence of interneuromast cells, showing recovery of coherent epithelial planar polarity. Scale

bars: 10 mm.
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population is heterogeneous, or that it is homogeneous but plastic. In searching for potential sour-

ces of clone heterogeneity, we noted that in some developmental contexts cell-cycle length or pro-

liferative potential can determine the fate of the daughter cells (Calegari et al., 2005; Rossi et al.,

2017). Therefore, we quantified the kinetics of proliferation of founder sustentacular cells and of

Figure 5. Long-term whole-organ single-cell tracking reveals cell-clone formation during neuromast regeneration. (A) Still images showing a

representative 100 hr time-lapse recording of a regenerating neuromast in Tg[Clndb:lynGFP; SqGw57A; Alpl:mCherry] larva (left and middle panels).

Cellular clones that share a common founder cell are clustered and color-coded. Cell trajectories reveal a concentric growth pattern (right panel). (B)

Cell trackings at the last recorded timepoints for 10 out of the total of 15 regenerated neuromasts. (C) Cell-lineage tracing from time-lapse movie

shown in (A). Branching points symbolize cell divisions. The division of a founder cell generates two cells of the 1 st generation. Subsequent divisions

produce cells of the 2nd, 3rd and 4th generation. Cell classes are indicated with green (sustentacular), blue (hair) and red (mantle) colors. (D)

Sustentacular founder cells undergo significantly more (p=3.59e-06, Mann-Whitney test) division rounds than mantle founder cells during 100 hr of

neuromast regeneration. (E) The first division of sustentacular founder cells (n = 76) occurs significantly earlier (p=1.13e-5, Mann-Whitney test) than that

of mantle founder cells (n = 16). (F) Sustentacular founder cells (n = 76) generate all three neuromast cell classes whereas mantle founder cells (n = 30)

produce only mantle cells. (G) Out of 307 sustentacular cell divisions, 78% were self-renewing, 16% produced a pair of hair cells, 3% produced

sustentacular cells that both became mantle cells within the next generation and 3% generated two sustentacular cells of which only one transited to

mantle cell fate within the next generation. All 20 observed mantle cell divisions were self-renewing.

DOI: https://doi.org/10.7554/eLife.30823.008
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their daughters and compared them to clone composition. We found three clear waves of cell divi-

sions, each spaced by 8–10 hr (Figure 7A), respectively peaking at 20 hr, 28 hr and 38 hr

(Figure 7B–C), suggesting that cell-cycle length is strictly regulated. Cell-cycle length in the 1 st gen-

eration peaks around 10 hr (9.8 ± 3.3 hr, median ±interquartile range (iqr)) (Figure 7C), but it begins

to increase and to vary in the 2nd generation (11.5 ± 7.3 hr, median ±iqr), and more so in the 3rd

generation (18.8 ± 20.3 hr, median ±iqr). To identify transition points in cycle lengths, we tested the

goodness of fit of a two-segment regression model with variable change points. We found that the

length of cell cycles is initially around 11 ± 3 hr (mean ±s.d.) and slowly increases up to 47 hpi. After-

wards, cell-cycle length increases more rapidly and is more variable (Figure 7D). To test if cell num-

ber influences cell-cycle length we used a similar two-segment regression model to define when cell-

cycle length loosens, and discovered that the vast majority of the cell cycles (76%) span 7–13 hr

below a threshold of 24 cells (Figure 7E). Above this threshold, cell-cycles lengths show large varia-

tion. With these data, we plotted proliferation kinetics against clone type, and found no significant

difference between clones (Figure 7F–G). Thus, the length of the cell cycle or the proliferative

potential of founder sustentacular cells cannot explain clone composition.

Machine learning identifies predictive features for cell-fate acquisition
Multiple extrinsic factors that vary in space and time could determine cell-fate choices. Because man-

ual analysis of such multidimensional data might be biased or neglect certain factors we imple-

mented a quantitative and unbiased computational approach based on machine learning to identify

variables (features) that correlate with clone composition. The first step of the workflow is the extrac-

tion of spatiotemporal coordinates and cell-lineage information from the manual tracks of the video-

microscopic data sets (n = 15) (Figure 8A). For each cell-track coordinate, we extracted 32

quantifiable features (Table 1), which were used to train the machine-learning algorithm. In a pre-

analysis, we compared the performance of 20 algorithms (support vector machines, decision trees

and nearest neighbor classifiers) in terms of accuracy and area under the curve (AUC) and chose the

ensemble bagged tree random forest algorithm (Breiman, 2001) as the best performing method

(Figure 8—figure supplement 1). To avoid overfitting, we trained the random forest using 14 sam-

ples to predict clone composition in the remaining sample in a round robin fashion. We evaluated

the quality of predictions using Matthews correlation coefficient (MCC) to compensate for imbalan-

ces of clone frequencies (Figure 6K)

Using machine learning, we were able to predict the occurrence of SH vs. SM clones from a

founder sustentacular cell with high accuracy (42 out of 49 correctly predicted clones,

MCC = 0.63 ± 0.09, mean ± s.d., n = 15 bootstrapped samples), while neither SH nor SM clones

could be discriminated when compared to S clones (Figure 8B). Of the 32 features that we used,

those that best discriminated SH vs SM clones were the sustentacular cells’ distance to the center of

the epithelium, and the distance to the mantle cells (Figure 8C and Figure 8—figure supplement

2). Next, we focused on the decision-making process of individual sustentacular cells at the time of

their division. We trained a random forest to discriminate between SS, HH and SM/MM divisions in a

pairwise fashion. The HH and SM/MM divisions

were highly predictable (63 out of 66 divisions

correctly predicted, MCC = 0.91 ± 0.07,

mean ± s.d., n = 15 bootstrapped samples), while

the discrimination between SS and HH or SM/

MM divisions was much less accurate

(Figure 8D). Again, the most informative features

were the distance to the neuromast center and

the distance to the mantle cells (Figure 8E, Fig-

ure 8—figure supplement 3). SM/MM divisions

occur consistently at the outer perimeter of the

neuromast (Figure 8F), whereas HH divisions

take place near the center. Self-renewing SS divi-

sions occupy the area between HH and SM/MM

divisions. Interestingly, SM/MM divisions were

never seen in the anterior-most region of the

organ, suggesting that progenitor sustentacular

Video 2. 100 hr time-lapse recording of a regenerating

neuromast after severe ablation. A neuromast

regenerates its original architecture from as few as six

founder cells. Founder cells are identified by 1–6 (n)

and their daughter cells receive 2 n and 2n + 1

identities. Recording starts 4 hr post injury (hpi) and

shows single focal planes. Time is in hours post injury.

DOI: https://doi.org/10.7554/eLife.30823.009
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cells are routed into generating mantle cells specifically in the perimetral areas that lack mantle cells

but not elsewhere. Therefore, regenerating neuromasts appear to sense cell-class composition and

route cellular differentiation in a spatially regulated manner to regain cell-class proportion and

distribution.

Discussion
One long-standing goal of biological research is to understand the regeneration of tissues that are

exposed to persistent environmental abrasion. Here we address this problem by developing a quan-

titative approach based on videomicroscopic cell tracking, cell-lineage tracing, and machine learning

to identify features that predict cell-fate choices during organ regeneration. Using the superficial

neuromasts in zebrafish, we demonstrate that a remarkably small group of resident cells suffices to

rebuild a functional organ following severe disruption of tissue integrity. Our findings reveal that the

sustentacular-cell population is tri-potent, and suggest that integral organ recovery emerges from

multicellular organization employing minimal extrinsic information. Below, we discuss the evidence

that supports these conclusions.

By systematically analyzing cellular behavior, we reveal a hierarchical regenerative process that

begins immediately after injury. First, surviving founder cells reconstitute an epithelium. Second,

Figure 6. Neuromast regeneration is not stereotypic and reveals different clone type compositions. (A) Proliferation is markedly isotropic during the

first 60 hr of neuromast regeneration (n = 348). (B) Homeostatic, dorso-ventral (DV) proliferative territories are restored after 60hpi (n = 27). (C) 40% and

36% of the progeny from anterior (n = 202) and posterior (n = 173) founder cells crossed to the contralateral side (light grey) after 60 hr of regeneration.

(D) Only 28% and 26% of the progeny from dorsal (n = 199) and ventral (n = 176) founder cells crossed to the contralateral side (light grey) during the

same period of time. (E) Representative examples of different clone types extracted from time-lapse data. Sustentacular cells give rise to S, SM, SH,

and SHM clones (color coded respectively with green, pink, cyan and orange) whereas mantle cells produce only pure mantle cell clones. (F) The clone

composition of the 15 regenerated neuromasts is not stereotypic. The length of each bar represents the proportion of neuromast cells that belong to

each clone. Neuromast eight has been shown in Figure 5A,B. (G) The most frequent clones contain sustentacular and hair cells (SH, n = 37 clones),

followed by those with only sustentacular cells (S, n = 21 clones). The third most frequent are composed by sustentacular and mantle cells (SM, n = 12

clones). Clones containing all three cell classes were rare (SHM, n = 2 clones).

DOI: https://doi.org/10.7554/eLife.30823.010
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Figure 7. Quantification of cell divisions during neuromast regeneration. (A–B) Equally spaced waves of

coordinated sustentacular cell divisions (green) underlie the recovery of neuromast cell size. Mantle cell divisions

(red) occur occasionally and do not follow the pattern of sustentacular cells. Proliferative waves correspond to the

coordinated divisions of cells from independent generations. (C) Cells from the 1 st and 2nd generation divide on

average after cell cycles of 11 ± 5 and 14 ± 9 hr respectively (mean ±s.d.). Coordination is lost at the 3rd

generation when cell cycles start to lengthen (26 ± 18 hr, mean ±s.d.). (D) Cell cycle length (11 ± 3 hr, mean ±s.d.)

is marginally influenced by regeneration time until 47 hr after injury, when cycle length starts increasing

proportionally with regeneration time. (E) Cell cycle lengths (12 ± 6 hr, mean ±s.d.) do not correlate directly with

neuromast size until 24 neuromast cells. (F) S, SM and SH clones produce similar number of cells (p=0.68, Kruskal

Wallis test). In the box plots, the boundary of the box indicates the 25th and 75th percentile, respectively the black

Figure 7 continued on next page
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sustentacular cells become proliferative and restore organ size. Cellular intercalation is rare. Third,

daughter cells differentiate in a position-appropriate manner to recreate cell-class proportions and

organ geometric order. Fourth, the epithelium returns to a homeostatic state that is characterized

by low mitotic rate. The milder damage regimes that eliminated one half of the epithelium show that

neuromasts are symmetric in their regenerative capacity, and that they preferentially regenerate the

cells that have been eliminated. Importantly, these findings, which rely on the quantitative spatio-

temporal analysis of regeneration data, could not have been predicted from previous studies using

static and largely qualitative information (Williams and Holder, 2000; López-Schier and Hudspeth,

2005; Dufourcq et al., 2006; López-Schier and Hudspeth, 2006; Ma et al., 2008; Wibowo et al.,

2011; Wada et al., 2013; Steiner et al., 2014; Romero-Carvajal et al., 2015; Cruz et al., 2015;

Pinto-Teixeira et al., 2015). An important corollary of these results is that neuromasts do not con-

tain specialized cells that contribute dominantly to repair. We propose that progenitor behavior is a

facultative status that every sustentacular cell can acquire or abandon during regeneration. We did

not observe regenerative overshoot of any cell class (Agarwala et al., 2015), suggesting the exis-

tence of a mechanism that senses the total number of cells and the cell-class balance during tissue

repair (Simon et al., 2009). Together with previous work, our results support the possibility that

such mechanism is based on the interplay between Fgf, Notch and Wnt signaling (Ma et al., 2008;

Wibowo et al., 2011; Wada et al., 2013; Romero-Carvajal et al., 2015; Dalle Nogare and Chitnis,

2017). Our combination of machine learning and quantitative videomicroscopy shows clear differen-

ces between sustentacular and mantle cells, but does not indicate heterogeneity within the susten-

tacular-cell population. However, further application of this integrated approach and new transgenic

markers may reveal uncharacterized cells in the neuromast. This may be expected given recent work

that showed the existence of a new cell class in neuromasts of medaka fish (Seleit et al., 2017). It is

technically challenging to consistently maintain fewer than 4 cells in toto without eliminating the

entire neuromast. Thus, we cannot rule out the possibility that a single founder cell may be able to

regenerate a neuromast. We show that the complete elimination of a neuromast is irreversible in lar-

val zebrafish. However, Sánchez and colleagues have previously reported that interneuromast cells

can generate new neuromasts (Sánchez et al., 2016). By assaying DNA synthesis prior to mitosis, we

show that interneuromast cells do not proliferate after neuromast ablation. These differences may

be explained by differences in ablation protocols (electroablation versus laser-mediated cell killing),

the age of the specimens (embryos versus early larva) or the markers used to assess cellular

elimination.

We find that interneuromast cells are not essential for neuromast regeneration because severely

damaged organs recover all cell classes in the appropriate localization in the absence of interneuro-

mast cells. However, we systematically observed smaller organs when interneuromast cells where

ablated. These observations suggest that these peripheral cells may yet help regeneration, either

directly by contributing progeny, or by producing mitogenic signals to neuromast-resident cells.

The behavior of the mantle cells is especially intriguing. Complete elimination of parts of the lat-

eral line by tail-fin amputation have revealed that mantle cells are able to proliferate and generate a

new primordium that migrates into the regenerated fin to produce new neuromasts

(Dufourcq et al., 2006). This observation can be interpreted as suggesting that under some injury

conditions, mantle cells are capable of producing all the cell classes of a neuromast. Transcriptomic

profiling of mantle cells following neuromast injury revealed that these cells up-regulate the expres-

sion of multiple genes (Steiner et al., 2014). Furthermore, a recent study has revealed that mantle

cells constitute a quiescent pool of cells that re-enters cell cycle only in response to severe depletion

of sustentacular cells (Romero-Carvajal et al., 2015), suggesting that these cells may conform a

stem-cell niche for proliferation of sustentacular cells. Thus, the collective evidence indicates that the

Figure 7 continued

line within the box marks the median. Whiskers above and below the box include points that are not outliers. (G)

Sustentacular founder cells of S, SM, and SH clones divide similarly early (p=0.42, Kruskal Wallis test) after

approximately 18 hr after neuromast injury. (H) Sustentacular founder cells that produce SH (cyan) and S clones

(green) are distributed similarly around the center of the organ (at x = y = 0). Those that generate SM clones (pink)

are localized further away from the center and are biased towards the posterior side.
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mantle cells respond to damage and contribute to the regenerative processes, and may drive the

regeneration of an entire organ if every other cell class is lost.

One outstanding question is how regeneration is controlled spatially. The epithelium may

respond to damage via dynamic formation of an injured-intact axis at the onset of repair. Our results

support this scenario by unveiling the adaptability of the neuromast epithelium to the localization

Figure 8. Implementation of predictive machine-learning analysis. (A) Overview from experiments to prediction. Movies of neuromast regeneration

allow us to track every single cell over 100hpi and to generate a cell lineage from these track points. Information covered in all tracks and lineages can

be extracted as features with which we train our random forest machine-learning classifier to predict division or cell lineage fate. (B) Sustentacular

founder cell choices between SH vs. SM clones can be predicted with high accuracy (MCC = 0.63 ± 0.09, mean ± s.d., n = 15 bootstrapped samples)

whilst choices between S and SH or SM clones are highly inaccurate (MCC = 0.19 ± 0.11 and 0.15 ± 0.10, mean ± s.d., respectively, n = 15 bootstrapped

samples), based on 32 calculated features. (C) Features relative to the position of the founder cells and their nearest cellular environment can

discriminate between SM and SH clone types. (D) Choices between SM/MM and HH divisions can be predicted with high accuracy (MCC = 0.91 ± 0.07,

mean ± s.d., n = 15 bootstrapped samples) while those between SS and HH or SM/MM have low accuracy (MCC = 0.50 ± 0.05 and 0.38 ± 0.15,

respectively, mean ± s.d., n = 15 bootstrapped samples) (E) Features describing the cell’s position in relation to the neuromast center and their

proximity to other mantle cells have the highest influence on the cell fate choices of a sustentacular cell. (F) SM/MM divisions (red) appear

predominantly at the periphery of the organ whereas HH divisions (blue) appear proximal to the center. Sustentacular cell self-renewing divisions (SS,

green) occur mostly around the neuromast center, generating a ring-like pattern.

DOI: https://doi.org/10.7554/eLife.30823.013

The following figure supplements are available for figure 8:

Figure supplement 1. Comparison of different classification methods.

DOI: https://doi.org/10.7554/eLife.30823.014

Figure supplement 2. Features used to predict SM vs SH clones sorted by predictive importance.

DOI: https://doi.org/10.7554/eLife.30823.015

Figure supplement 3. All features used to predict SM/MM vs HH divisions sorted by predictive importance.

DOI: https://doi.org/10.7554/eLife.30823.016
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and scale of damage. We suggest a model in which the invariant radial symmetry of the neuromast

serves as a rheostat to identify the site of damage to guide regeneration spatially (Figure 9). A

polarized axis along structurally intact and injured areas underlies this process. However, the com-

plete reconstruction of a neuromast by as few as 4 cells suggests that a partial maintenance of radial

symmetry is not essential for organ regeneration. Therefore, radial-symmetry maintenance cannot

have a deterministic impact on the recovery of geometric order. Yet, partial structural maintenance

and polarized tissue responses may optimize repair, respectively, by preventing superfluous cellular

Figure 9. Schematic model of neuromast regeneration. The top diagram exemplifies the architecture of an intact neuromast. A, B and C indicate three

types of injury: A when mantle cells are lost, B when hair cells are ablated, and C when a localized combination of all three cell classes is lost. Under the

model that we present, radial symmetry serves to localize damage and canalize regeneration spatially. If central hair cells are lost (A), radial symmetry is

maintained for sustentacular progenitors to regenerate hair cells centripetally (grey arrows in A). If outer cells are lost (B), radial symmetry is also

maintained for the generation of progeny that will acquire mantle fate and propagate centrifugally to reform the outer rim of the neuromast (grey

arrows in B). Upon asymmetric damage, however, the radial symmetry is partially broken (C). The neuroepithelium repolarizes along an injured-intact

axis, which canalizes regeneration towards the damaged areas (grey arrows in C). Individual cells are color-coded (mantle cells in red, sustentacular cells

in light blue, and hair cells in green), and in each case we indicate the type of division that the intact cells undergo: symmetric (S) when they produce

two equivalent cells or self-renew, and asymmetric (A) when their division generates sibling cells that differentiate into different classes.

DOI: https://doi.org/10.7554/eLife.30823.017
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production in undamaged areas and by biasing the production of lost cells in the damaged areas.

For organs that have evolved under the pressure of persistent damage, compliance to the extent of

the injury may be an advantage because the regenerative responses can be scalable and localized,

allowing faster and more economical regeneration.

After the severest of injuries, regenerated neuromasts were plane polarized in a manner indistin-

guishable from unperturbed organs. This startling result indicates that as few as four founder sup-

porting cells can re-organize the local coherent planar polarity of the epithelium during neuromast

repair. An alternative explanation is that founder cells have access to external polarizing cues. One

source of this information is an isotropic mechanical forces exerted by the interneuromast cells that

flank a neuromast. This is possible because interneuromast cells are always aligned to the neuro-

mast’s axis of planar polarity. Yet, the concurrent ablation of resident hair cells and the interneuro-

mast cells around an identified neuromast led to regenerated hair cells whose local orientation was

coherent. Interestingly, recent studies have identified a transcription factor called Emx2 that regu-

lates the orientation of hair cells in neuromasts of the zebrafish (Jiang et al., 2017). Emx2 is

expressed in one half of the hair cells of the neuromast (those oriented towards the tail) and absent

in the other half (which are coherently oriented towards the head). Loss- and gain-of-function of

Emx2 alter planar cell polarity in a predictable manner: loss of Emx2 leads to neuromasts with every

hair cells pointing towards the head of the animal, and Emx2 broad expression orients hair cells

towards its tail. Because the coherent local axis of polarity is not affected by these genetic perturba-

tions, Emx2 may act in hair cells as a decoder of global polarity cues. This evidence, together with

our results, suggests that during neuromast regeneration founder cells autonomously organize the

variegated expression of Emx2 in the regrowing epithelium with consequent recovery of a coherent

axis of planar polarity and with one half of the hair cells pointing opposite to the other half. The

future development of live markers of Emx2 expression will be able to test this prediction. We would

like to highlight that we do not currently understand the global polarization of the neuromast epithe-

lium relative to the main body axes of the animal. External sources of polarity may impinge in the

recovery of these global axes during neuromast regeneration. Previous work has demonstrated that

local and global polarization occur independently of innervation (López-Schier and Hudspeth,

2006), but other potential polarizing cues remain untested. Therefore, at present we can only sup-

port the notion that local coherent polarity is self-organizing, whereas global orientation may be

controlled externally.

Our results beg the question of whether neuromast cells self-organize. Our operational definition

of self-organization is an ‘autonomous increase in order by the sole interaction of the elements of

the system’ (Haken, 1983), implying that a cellular collective organizes a complex structure without

the influence of external morphogenetic landmarks, patterning cues, or pre-existent differential

gene-expression profiles. If these conditions are not met, cellular groups may nevertheless form a

complex structure through a process of ‘self-assembly’ (Sasai, 2013; Turner et al., 2016). The reduc-

tion of neuromasts to around 5% of their original size shows that intact resident cells can rapidly rec-

reate their original microenvironment to rebuild a neuromast with normal organization, proportions

and polarity. Although these observations suggest autonomy, extrinsic sources of information includ-

ing the extracellular matrix that remains intact after cell loss may serve as a blueprint for epithelial

organization. Yet, unless such patterns are rebuilt together with the organ, neuromasts architecture

and proportions would depend on the area occupied by the regrowing epithelium. In other words,

cell-fate acquisition and cell-class distribution must be tissue-size dependent. However, we show

that neuromast regain geometric order as early as 2 days after injury, when their cellular content is

less than 60% of the original. Although our results do not irrefutably demonstrate self-organization

during neuromast regeneration, they strongly support this idea. We argue that self-organization is

an optimal morphogenetic process to govern organ repair because (i) it requires the least amount of

previous information and (ii) it is robust to run-off signals that could lead to catastrophic failure.

Conclusions
Understanding how tissues respond to the inherently random nature of injury to recapitulate their

architecture requires the identification of cues and signals that determine cell-fate acquisition, locali-

zation and three-dimensional organization. Here we reveal an archetypal sensory organ endowed

with isotropic regenerative ability and responses that comply to damage severity, nature and localiza-

tion. An important corollary of our findings is that progenitor behavior is a facultative status that every
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Table 1. List of prediction features with description.

We used 32 mainly spatial and neighborhood specific features for the classification. Features are explained in the description column.

Feature name Description

Absolut time Hours post induction (hpi)

Absolute distance to center Euclidean distance to the neuromast center

Average distance to H cell -

Average distance to M cell -

Average distance to S cell -

Cell generation Number of divisions that the cell has undergone

Founder Cell Type -

Minimum distance to H cell -

Minimum distance to M cell –

Minimum distance to S cell -

Movement angle to last division Angle between current cell location, neuromast center and location of last cell division (or start of the movie in case of
founder cell division)

Movement direction compared
to center

Radial distance between current cell location and location of last cell division (or start of the movie in case of founder cell
division). If the current location is nearer to the center the value is (+) in case it is further away the value is (-)

Movement distance since last
division

Euclidean distance between current cell location and last cell division (or start of the movie in case of founder cell
division)

Normalized distance to center Radial distance of current cell location divided by the radial distance of the current furthest cell (to approximate the
neuromast size)

Number of founder cells -

Number of H cells -

Number of H cells in 10 mm
radius

-

Number of H cells in 20 mm
radius

-

Number of H cells in 30 mm
radius

-

Number of M cells -

Number of M cells in 10 mm
radius

-

Number of M cells in 20 mm
radius

-

Number of M cells in 30 mm
radius

-

Number of S cells -

Number of S cells in 10 mm
radius

-

Number of S cells in 20 mm
radius

-

Number of S cells in 30 mm
radius

-

Number of total cells -

Polar angle Polar angle is the counterclockwise angle between the x-axis, the neuromast center and the current cell location

Time to last division Time to last division (or start of the movie in case of founder cell division)

X coordinate -

Y coordinate -

DOI: https://doi.org/10.7554/eLife.30823.012
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sustentacular cell can acquire or abandon during regeneration (Blanpain and Fuchs, 2014;

Wymeersch et al., 2016). Importantly, we illustrate a machine learning implementation to identify

features that predict cell-fate choices during tissue growth and morphogenesis. This quantitative

approach is simple and model-independent, which facilitates its application to other organs or experi-

mental systems to understand how multiple cells interact dynamically during organogenesis and

organ regeneration in the natural context of the whole animal, and to identify how divergences from

the normal regenerative processes lead to failed tissue repair.

Materials and methods

Zebrafish strains and husbandry
Zebrafish were maintained under standard conditions, and experiments were performed in accor-

dance with protocols approved by the PRBB Ethical Committee of Animal Experimentation of the

PRBB Barcelona, Spain. Eggs were collected from natural spawning and maintained at 28.5˚C in Petri

dishes at a density of up to 50 per dish. Transgenic lines used were ET(krt4:EGFP)SqGw57A (referred

to in the text as SqGw57A) (Kondrychyn et al., 2011), ET(krt4:EGFP)SqET4 (SqET4) (Parinov et al.,

2004), Tg[Myo6b:actb1-EGFP] (Kindt et al., 2012), Tg[�8.0cldnb:Lyn-EGFP] (Cldnb:lynGFP)

(Haas and Gilmour, 2006), Tg[Alpl:mCherry] (Steiner et al., 2014), Tg[Sox2-2a-sfGFPstl84] (referred

to as Sox2:GFP) (Shin et al., 2014). To label cell nuclei, in vitro transcribed capped RNA coding for

histone 2B-mCherry was injected in 1–4 cell embryos at a concentration of 100 ng/ml (Rosen et al.,

2009). Throughout the study, zebrafish larvæ were anesthetized with a 610 mM solution of the anes-

thetic 3-aminobenzoic acid ethyl ester (MS-222).

Laser-mediated cell ablations
For in toto cell ablation, we used the iLasPulse laser system (Roper Scientific SAS, Evry, France)

mounted on a Zeiss Axio Observer inverted microscope equipped with a 63X water-immersion objec-

tive (N.A. = 1.2) (Xiao et al., 2015). The same ablation protocol was used for all experiments using

five dpf larvæ. Briefly, zebrafish larvæ were anesthetized, mounted on a glass-bottom dish and

embedded in 1% low-melting point agarose. Three laser pulses (355 nm, 400 ps/2.5 mJ per pulse)

were applied to each target cell. After beam delivery, larvæ were removed from the agarose and

placed in anesthesia-free embryo medium. All ablations were systematically performed on the L2 or

L3 posterior lateral-line neuromasts, except for those in Figure 6F, for which we targeted the LII.2

neuromast.

Phalloidin staining
Samples were fixed in 4% PFA overnight at 4˚C, washed several times in 0.1% PBSTw and incubated

in phalloidin-Alexa 568 or Alexa 488 (Invitrogen) diluted 1:20 in 0.1% PBSTw overnight at 4˚C. Sam-

ples were washed several times in 0.1% PBSTw and mounted in 0.1% PBSTw with Vectashield (1/

100, Vector Labs, Burlingame, CA, USA).

Regeneration analysis and quantification
For quantification of cell numbers during neuromast regeneration, Tg[Cldnb:lynGFP; SqGw57A; Alpl:

mCherry] zebrafish larvæ were anesthetized, mounted on a glass-bottom dish and embedded in 1%

low-melting point agarose. All samples were imaged before injury, 4 hpi and every 24 hr up to 7 dpi

with an inverted spinning-disc confocal microscope (Zeiss by Visitron), under a 63X water-immersion

objective. After imaging, larvæ were quickly transferred to anesthetic-free medium. Cells were manu-

ally counted using the FIJI multi-point tool by scrolling throughout the entire volume of the neuro-

mast. Cell classes were identified by the following criteria: Interneuromast cells: Cldnb:lynGFP(+),

SqGw57A(-), Alpl:mCherry(+). Mantle cells: Cldnb:lynGFP(+), SqGw57A(+), Alpl:mCherry(+). Susten-

tacular cells: Cldnb:lynGFP(+), SqGw57A(+), Alpl:mCherry(-). Hair cells: Cldnb:lynGFP(+), SqGw57A(-

), Alpl:mCherry(-). Hair cell identity was verified by the concomitant observation of the correct trans-

gene expression pattern, central-apical location and the presence of a hair-cell bundle. Data was

processed and analyzed using GraphPad Prism version 6.04 for Windows (GraphPad Software, La

Jolla, CA, USA, www.graphpad.com). In the box plots, the boundary of the box closest to zero indi-

cates the 25th percentile (q1), a black line within the box marks the median, and the boundary of the
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box farthest from zero indicates the 75th percentile (q3). Whiskers above and below the box include

points that are not outliers. Points are considered as outliers if they are bigger than q3 + 1.5(q3 – q1)

or smaller than q1 – 1.5(q3 – q1).

Videomicroscopy, cell tracking and lineage tracing
Larvæ were anesthetized, mounted onto a glass-bottom 3 cm Petri dish (MatTek) and covered with

1% low-melting point agarose with diluted anesthetic. Z-stack series were acquired every 15 min at

28.5˚C using a 63X water-immersion objective. Cells were tracked overtime using volumetric Z-stack

images with FIJI plugin MTrackJ (Meijering et al., 2012). Movies were registered two times for

image stabilization and centered upon the centroid of the surviving group of cells and the subse-

quent regenerating organs. Founder cells are identified from 1 to 6 (n) and their daughter cells

receive 2 n and 2n + 1 identities. All images were processed with the FIJI software package.

Pharmacology
All pharmacological treatments were performed as described previously (López-Schier and Hud-

speth, 2006; Wibowo et al., 2011; Pinto-Teixeira et al., 2015). Briefly, the following concentrations

and timings used were: Neomycin sulfate (Sigma, St. Louis, MO) 250 mM for 45 min; N-[N-(3,5-

difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester (DAPT) (Sigma) 100 mM for 24–48 hr.

Equal amounts of DMSO were diluted in embryo medium for control specimens.

Random forest prediction
Random forest algorithms use the majority vote of numerous decision trees based on selected fea-

tures to predict choices between given outcomes (Murphy, 2012). We used a list of spatial, move-

ment and neighborhood features (see Suppl. Table 1) to perform the random forest prediction of

fate choice. We trained the random forest on 14 experiments and tested our prediction on one left-

out experiment in a round robin fashion, leading to 15 test sets overall. To evaluate our prediction,

we calculated Matthews correlation coefficient (MCC) (Matthews, 1975), which accounts for imbal-

ance in our data (e.g. 78% of all divisions are SS divisions). The MCC is calculated by:

MCC¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ
p

where TP denotes true positive, TN true negative, FP true positive and FN false negative predic-

tions. The MCC can have values between �1 and +1, where �1 is a completely incorrect, 0 a ran-

dom and +1 a perfect prediction. To evaluate the variance of the MCC on the 15 test sets we used a

bootstrapping approach, where we draw 15 samples from all test sets with replacement 15 times.

From this resampled data we calculated the mean MCC and the standard deviation as shown in

Figure 8B and D. All machine-learning analyses were performed using MATLAB (Version 2015b on a

Windows 7 machine)
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Abstract
Regulation of quiescence and cell cycle entry is pivotal for the maintenance of stem cell pop-

ulations. Regulatory mechanisms, however, are poorly understood. In particular, it is unclear

how the activity of single stem cells is coordinated within the population or if cells divide in a

purely random fashion. We addressed this issue by analyzing division events in an adult

neural stem cell (NSC) population of the zebrafish telencephalon. Spatial statistics and

mathematical modeling of over 80,000 NSCs in 36 brain hemispheres revealed weakly

aggregated, nonrandom division patterns in space and time. Analyzing divisions at 2 time

points allowed us to infer cell cycle and S-phase lengths computationally. Interestingly, we

observed rapid cell cycle reentries in roughly 15% of newly born NSCs. In agent-based sim-

ulations of NSC populations, this redividing activity sufficed to induce aggregated spatiotem-

poral division patterns that matched the ones observed experimentally. In contrast, omitting

redivisions leads to a random spatiotemporal distribution of dividing cells. Spatiotemporal

aggregation of dividing stem cells can thus emerge solely from the cells’ history.

Introduction

Somatic stem and progenitor cells, basic units of tissue maintenance and growth, can be found

in distinct states, either dividing or quiescent. The duration of the quiescence state is not pre-

dictable [1], and its regulation has a profound impact on healthy tissue maintenance. There-

fore, understanding the mechanisms of adult stem cell cycle regulation is crucial. Stem cells,

when compartmentalized in areas where neighboring cells fulfill structural and niche func-

tions, can be regulated locally, such as the hair follicle in the skin [2]. However, in a homoge-

neous population of equipotent stem cells that reside under the same conditions, it is unclear

what drives distinct behaviors of quiescence or cell cycle entry. This raises the question of how
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stem cells make the decision to remain quiescent or enter the cell cycle individually and

collectively.

Several determinants have been proposed as regulators of quiescence or division of stem

and progenitor cells. Feedback mechanisms between stem cells and the environment have

been found in several systems: In the adult mouse forebrain, neuronal activity in mossy cells or

in granule cells regulates the activation of radial neural stem cells (NSCs) of the dentate gyrus

[3,4]. In the subventricular zone, NSC cycling is inhibited by direct contacts with endothelial

cells [5] or by the release of miR-204 from the choroid plexus [6]. In mouse and zebrafish

adult neurogenic zones, Notch activity maintains NSCs in quiescence [7–9], in particular in

the immediate neighborhood of dividing cells [7]. In other adult stem cell populations such as

the epidermis, cell divisions are instructed by neighboring differentiating progeny [10,11].

Besides signals from the environment, cell-intrinsic modulations have been shown to impact

on the proliferative activity, for instance, the metabolic control of lipogenesis that can induce

proliferation [12,13]. Conversely, the expression of miR-9 [14] and the degradation of Ascl1

via the ubiquitin ligase Huwe1 [15] are factors inducing quiescence. While a combination of

signals received from the environment and intrinsic to the cells seems to influence proliferat-

ing activity, it remains to be precisely understood whether and how cells coordinate their activ-

ity with their neighbors.

Toward this end, we examined the distribution of cells in S-phase in the pallial (dorsal) neu-

rogenic niche of the adult zebrafish telencephalon, which is located on the outer surface of the

brain [16,17]. The adult brain of the zebrafish and the telencephalon in particular is growing

steadily [18] but at a slower pace with increasing age [19]. Radial glia constitute the entire ven-

tricular surface of the brain with a single layer of cell somata, extending filopodial extensions

tangentially [20] and long ramified processes through the parenchyme. They express—among

others—Notch ligands, the transcription factors Her4 and Fezf2, the fatty acid binding protein

BLBP, the enzyme Aromatase B, the intermediate filaments GFAP and vimentin [21–25] and a

small percentage of them is dividing at any time point of observation [7]. The behavior of

radial glia in steady state or injury conditions in this area of the brain hints to their function as

NSCs giving rise to intermediate dividing progenitors and directly to neurons [23,26–28]. We

previously found that cell cycle entries in NSCs occur with aggregated spatial patterns [29].

Here, we show that NSCs may undergo successive S-phases with short time windows, and

modeling their activity creates similar spatiotemporal patterns as the ones observed

experimentally.

Results

Neural stem cells in S-phase reveal aggregated spatial patterns on the

dorsal ventricular zone

To understand cell cycle regulation in a population of mainly quiescent stem cells, we studied

the spatial distribution of cells in S-phase (see Box 1) in the intact dorsal telencephalon (pal-

lium) in whole mount preparations. We used adult gfap:GFP transgenic zebrafish, where NSCs

express enhanced green fluorescent protein (EGFP) [30]. In order to assess which subset of

cells is concomitantly in S-phase at a specific time point, we marked S-phases by the incorpo-

ration of the thymidine analog EdU 1 h before fixation (Fig 1A) and detected them by staining

in whole mount preparations, followed by confocal microscopy (3D reconstruction shown in

Fig 1B). We identified the 3D coordinates of gfap:GFP+ NSCs (Fig 1C, 1D and 1D’) and of

EdU+ nuclei (Fig 1C’ and 1D) automatically. To analyze the spatial pattern of S-phases, we

used the coordinates of all gfap:GFP+ NSCs (Fig 1D’) as a reference grid (see S1A Fig). Via

manual inspection, we then discriminated between EdU+gfap:GFP+ cells, representing NSCs
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in S-phase, and EdU+gfap:GFP− cells, representing intermediate progenitors in S-phase [23]

(Fig 1D” and 1E). We quantified the distribution of NSCs in S-phase (Fig 1F) with an adapted

discrete variant of Ripley’s K [31] that measures the number of neighboring NSCs in S-phase

observed in a particular radius, accounting for a possibly nonhomogeneous distribution of

nondividing NSCs and edge effects (see Methods). In other biological contexts, Ripley’s K

analysis has been applied to analyze single-molecule localization, reviewed in [32], or to ana-

lyze single cells behavior [33]. According to this spatial statistics measure, NSCs in S-phase

reveal an aggregated pattern (Fig 1F), which is significantly deviating from a random (S1B and

S1C Fig) and dispersed pattern (S1D and S1E Fig) for radii >50 μm. Aggregated patterns of

NSCs in S-phase were reproducibly found in approximately 70% of all hemispheres analyzed

(S1F Fig), suggesting that S-phase entry happens in a spatially nonrandom manner. In the

remaining hemispheres (30%), the observed patterns are random (S1G Fig). Following distinc-

tions in the division activity described previously in Dray and colleagues [34], we compared

division proportions and spatial patterns in 3 different hemisphere domains (lateral, medial,

and anterior) and found that these domains also show aggregated and random, but no dis-

persed patterns. Since separate domains contain in approximately 40% of all cases less than 10

NSCs in S-phase and patterns often span across domains, we refrain from analyzing them

separately.

Neural stem cells in S-phase reveal aggregated spatiotemporal patterns

To investigate whether the spatial patterns of S-phases are influenced by previous cell cycle

activity, we made use of a second thymidine analog, 5-bromo-20-deoxyuridine (BrdU), and

observed consecutive S-phases taking place in vivo. The 2 labels BrdU and EdU were adminis-

tered by intraperitoneal injections separated by a labeling interval Δt of 32 h (Fig 1G). Fish

were humanely killed, their brain dissected and fixed 1 h after the second administration

Box 1. Statistical analysis of spatiotemporal point patterns

When events can happen at any point in a 2D Euclidean space, a spatial Poisson process

leads to a point pattern that is completely defined by a single parameter, the density of

points. This null model of complete spatial randomness has been used for diverse anal-

yses, from forest structures [35] over accessibility of pediatric care [36] to road accident

prevention [37]. In our case, the space analyzed is not Euclidean, but discrete, since

NSCs in S-phase (the “events”) only appear where NSC are already present in the zebra-

fish hemisphere. The corresponding null model is thus not a spatial Poisson process, but

represented by the distribution of randomly sampled NSCs. Accordingly, we call a pat-

tern of NSC in S-phase random if the distances between the events are not significantly

different from randomly sampled NSCs in S-phase. We evaluate this with an adapted

version of a spatial statistics measure called Ripley’s K [31]. Nonrandom patterns can

be classified into 2 types: When events are closer to each other than expected from the

random null model, we call the pattern aggregated. If events are further apart from each

other, we call the pattern dispersed. A simulated random division pattern is displayed in

S1B Fig, and a simulated dispersed division pattern on the same hemisphere is shown in

S1D Fig. The corresponding observed aggregated division pattern (with the same num-

ber of events) is shown in Fig 1E. We follow in our notation and nomenclature the book

from Baddeley et al. [38], which provides an overview and examples of diverse spatial

statistics methods.

PLOS BIOLOGY Aggregated spatio-temporal division patterns emerge from reoccurring divisions of neural stem cells
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Fig 1. S-phases occurring in the NSC population are spatiotemporally aggregated. (A) Experimental setup: EdU is injected intraperitoneally 1 h prior to humanely

killing the fish and fixation of the brain. (B) Part of the telencephalic hemisphere as a 3D reconstruction. The gfap:GFP transgene highlights cell bodies of NSCs,

which are arranged on a 2D layer on the telencephalon surface, while their radial processes project deep in the parenchyme. (C, C’) gfap:GFP in the whole hemisphere

shown as a maximum intensity z-stack projection, anterior to the top, lateral to the right, and medial to the left. Boxed areas are shown as higher magnifications in

(D–D”). (C’) EdU coupled to Azyde-Alexa 647 highlights cells in S-phase and reveals their spatial distribution. (D) Merged GFP and EdU channel to identify

specifically the NSCs in S-phase. (D’) Automatically identified NSCs surrounded by green circles. (D”) EdU+ cells were subdivided into EdU+gfap:GFP− and EdU

+gfap:GFP+, the latter representing NSCs in S-phase. (E) The 33 NSCs in S-phase (pink circles) exhibit a nonrandom spatial pattern on top of all 2678 NSCs (gray

dots). (F) Discrete Ripley’s K quantification of the pattern shown in (E) reveals that NSCs in S-phase (solid line) are aggregated, i.e., closer to each other than expected

from random (dotted line with 90% CI in gray) and dispersed patterns. (G) Cells in S-phase are labeled with BrdU and EdU with an interval of 32 h. Fish are

humanely killed 1 h after the EdU injection, and the brains are imaged after fixation and staining. (H–H”) Example of 1 telencephalic hemisphere, oriented as in (C),

as a maximum intensity z-stack projection, in 3 different channels: BrdU (H), EdU (H’), and gfap:GFP transgene highlighting NSC bodies merged with the EdU and

BrdU staining (H”). Scale bar: 100 μm. (I–I”) Identified NSCs in S-phase at 2 different time points exhibit aggregated spatiotemporal patterns. (J) Discrete Ripley’s K

reveals more EdU+ NSCs around BrdU+ NSCs as expected from a random process. (K) We find spatiotemporally aggregated patterns with radii above 50 μm in all 4

hemispheres where S-phases have been labeled with a labeling interval of 32 h. BrdU, 5-bromo-20-deoxyuridine; CI, confidence interval; EdU, 5-Ethynyl-20-

deoxyuridine; GFP, green fluorescent protein; NSC, neural stem cell.

https://doi.org/10.1371/journal.pbio.3000708.g001
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(Fig 1G). EdU+ and BrdU+ cells were observed as clearly distinct sets (Fig 1H–1H”). When

administered simultaneously as a control, EdU and BrdU reliably labeled the same set of cells

(S1H Fig). We identified the 3D coordinates of the BrdU+ and EdU+ NSCs (Fig 1I–1I”) and

observed that some areas of the ventricular zone remain devoid of S-phase NSCs at those 2

time points. This observation was confirmed by a spatiotemporal Ripley’s K analysis: From a

radius >50 μm, the density of EdU+ NSCs around BrdU+ NSCs was higher than expected

from random (Fig 1J). Thus, NSCs in S-phase aggregate also spatiotemporally, a trend that was

observed in all 4 hemispheres with a labeling interval of 32 h (Fig 1K). These results suggest

that subsequent S-phases are not randomly distributed and that the spatial organization

observed is linked to the past activity in the population.

We then broadened the range of labeling intervals from 9 h to 72 h (S2A Fig). Using the

BrdU–EdU double-labeling approach, we processed in total 36 hemispheres and identified

NSCs and NSCs in S-phase at both time points (S1 Table). Visually, the observed patterns vary

from homogeneous point clouds to strongly confined regions (Fig 2A). Quantitatively, we

identify in 22 out of 36 hemispheres spatiotemporally aggregated patterns of divisions between

2 labeling time points, while the remaining 14 patterns are classified as random (see S2B Fig).

An interaction model fits the observed spatiotemporal patterns

Ripley’s K statistics is limited: It does not allow integrating different datasets, and it cannot

quantitatively infer the strength and range of an observed pattern. To remedy these aspects, we

use the temporal extension of a spatial model [29] that allows inferring the most likely parame-

ters for interaction strength and interaction radius for an arbitrary number of datasets. Aggre-

gated patterns emerge for an interaction strength >1, random patterns for strength = 1, and

dispersed patterns for strength <1 (see Methods).

Applied to the 4 Δt = 32 h patterns shown in Fig 2A, we find that a model with an interac-

tion radius of approximately 100 μm and an interaction strength >1 describes the data best

(Fig 2B). On average, we find 202 ± 63 NSCs in total (mean ± standard devation (SD) from

n = 36 brains) and 6 ± 4 NSCs in S-phase in a 100-μm radius around an NSC in S-phase. Poste-

rior sampling reveals a 90% confidence interval (CI) from 71 to 150 μm, a maximum likeli-

hood interaction radius at 98 μm, and a 90% CI from 1.07 to 1.22 with a maximum likelihood

interaction strength of 1.15. Applied to all 36 hemispheres with coordinates of 87,807 NSCs at

distinct labeling intervals Δt (see S2C Fig), we find the most likely interaction radii to be

around 100 μm (Fig 2C). The interaction strength (Fig 2D) is robustly above 1, indicating a sig-

nificant (p-value = 0.0002 for a linear regression model) spatiotemporal aggregation of S-phase

NSCs for all labeling intervals Δt.

Division of NSC daughter cells reoccur within 24 to 72 h

Our analysis revealed a weak aggregation of successive NSCs in S-phase. Aggregated spatio-

temporal patterns can emerge out of different mechanisms: Signaling waves that stimulate

cells to divide in a particular region, activation via cell–cell contacts, or a behavior specified by

the particular state of a cell. We thus inquired whether an NSC’s history would be of relevance

for new S-phase entries and made use of the double-labeling approach introduced above.

Short labeling intervals up to Δt = 24 h revealed cells in S-phase incorporating both labels (Fig

3A–3F), hence denoted as double-labeled S-phases (DLSs). Remarkably, we also noticed cells

with both S-phase markers that, unlike DLS, were arranged as doublets, i.e., 2 daughter cells

close to each other. Such doublets allow us to extrapolate from the incorporation of S-phase

labels to actual cell division events. One cell of these doublets entered a second S-phase, and

these observations, denoted as redivisions, occurred with labeling intervals of Δt = 24 h, 32 h,

PLOS BIOLOGY Aggregated spatio-temporal division patterns emerge from reoccurring divisions of neural stem cells
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Fig 2. Computational approach identifies an approximately 100-μm aggregation radius of NSCs in S-phase. (A)

Our dataset comprises 36 hemispheres with labeling intervals from Δt = 9 h to 72 h. (B) Posterior sampling identifies

the most likely interaction strength of 1.15 and most likely interaction radius of 98 μm for 4 Δt = 32 h hemispheres.

Whiskers (gray) cover the 95% CIs for strength and radius. Sampling point density is visualized from copper (high) to

black (low). (C) Applied to all 36 hemispheres posterior sampling reveals an interaction radius around 100 μm. (D)

The interaction strength is significantly above 1 for all labeling intervals Δt (p-value = 0.0002 for constant fit to most

likely values) thus inducing aggregated patterns. CI, confidence interval; NSC, neural stem cell.

https://doi.org/10.1371/journal.pbio.3000708.g002
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48 h, and 72 h (Fig 3G–3T). The observed redivision frequency of NSCs is significantly higher

than expected from random: While 14 ± 8% of NSCs in S-phase reenter S-phase, only

1.9 ± 1.7% of randomly drawn divisions (same amount as observed per hemisphere) would be

redrawn at random again (p = 9.4�× 10−10, 2-sample Kolmogorov–Smirnov test, Fig 3U). We

are confident that we are observing this phenomenon in stem cells, as we could clearly distin-

guish between the events taking place in gfap:GFP+ and gfap:GFP− progenitors (S3A Fig).

Reoccurring divisions in NSCs happened in similar proportions as in the gfap:GFP

Fig 3. A large proportion of NSCs redivide within 24 to 72 h. (A) The 2 injections label the same cells in S-phase for

small-labeling intervals, leading to NSCs that are both EdU and BrdU positive, denoted as double-labeled S-phase

(DLS). (B–E) Example DLS (yellow arrow) for a labeling interval Δt = 9 h. (F) The DLS proportion is high for Δt = 9 h

and decreases rapidly with increasing Δt. Each dot represents the value for 1 brain hemisphere. (G) After a division, 1

of the daughter cells already labeled by the Time 1 label can enter in a new S-phase and incorporate a second label. This

cell thereby redivides. (H–S) Three examples of redividing NSCs with labeling intervals of 24 h (H–K), 48 h (L–O), and

72 h (P–S). Scale bar: 10 μm. (T) The proportions of redividing NSCs within the dividing NSCs at Time 1 remain high

from Δt = 24 h to Δt = 72 h labeling intervals. Each dot represents 1 brain hemisphere. (U) Only 1.9±1.7% of randomly

drawn divisions (same amount as observed per hemisphere) from all NSCs would be redrawn at random, while 14±8%

of observed NSCs in S-phase reenter S-phase (p = 9.4 ×�10−10, 2-sample Kolmogorov–Smirnov test). Box plots range

from the 25th to the 75th percentile, and the central mark indicates the median and whiskers include points that are

not more than 1.5 times the interquartile range away from the top or bottom of the box. BrdU, 5-bromo-20-

deoxyuridine; DLS, double-labeled S-phase; EdU, 5-Ethynyl-20-deoxyuridine; GFP, green fluorescent protein; NSC,

neural stem cell.

https://doi.org/10.1371/journal.pbio.3000708.g003
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− progenitors, the latter being considered so far as transit amplifying progenitors (S3B and

S3C Fig and S1 Data, sheet S3C Fig). Notably, the gfap:GFP marker was the original label of

the NSCs, without additional immunostaining for GFP, thus truly representing NSCs. Hence,

S-phase NSCs display a high likelihood of undergoing another division within the following

days.

To support these results, we performed independent experiments with a third time point of

observation. We injected first BrdU, then EdU 24 h later, and dissected the fish another 24 h

later, adding a PCNA immunostaining as a third cell cycle marker (S3B–S3Q Fig). In those

brains, we found all combinations of NSC redivisions: BrdU+ daughter cells that incorporated

EdU, BrdU+ daughter cells that expressed PCNA, and EdU+ daughter cells that expressed

PCNA (S3K Fig and S1 Data, sheet S3K Fig for statistics). EdU+ doublets, which were also

PCNA+ might represent cells that reached the end of a cell cycle without necessarily reentering

a second division round. However, we also observed EdU+ doublets in which only 1 daughter

cell was PCNA+, signifying a specific cell cycle reentry of this daughter cell.

We could not assess how many rounds of reoccurring divisions NSCs may undergo maxi-

mally, as an increasing number of BrdU-labeled cells with an increasing chase time renders a

discrimination between neighboring clones impossible. However, experiments carried out

with 72-h labeling interval revealed the presence of triplets of BrdU-labeled gfap:GFP+ cells

(Fig 3Q), indicating that at least 2 rounds of divisions have been taking place within this time

window. This implies that the distribution of cell cycle entries in the NSC population is also a

result of the recent history of individual cells.

To assess whether cellular niches might be involved in the observed reoccurring divisions,

e.g., via the formation of groups of NSCs with distinctive volumes, we segmented single NSCs

in 3D whole mount brain images of 4 hemispheres and measure their volumes (see Methods

and S3L–S3P Fig). We considered 3 groups of NSCs: (i) PCNA+ dividing NSCs; (ii) PCNA

+BrdU+ and PCNA+EdU+ redividing NSCs; and (iii) nondividing NSCs without any marker.

Measuring the volumes of all these NSCs and all immediately touching neighbors did not

reveal any significant difference between the 3 groups (Kruskal–Wallis test, p-values = 0.1 and

0.37, respectively; S3Q Fig). Hence, the NSC volume does not reveal any distinctive organiza-

tion around actively dividing NSCs, arguing against a model where cell density dependent

niches would be associated with NSC activity.

An agent-based model with redividing NSCs recreates aggregated

spatiotemporal patterns observed experimentally

To quantitatively evaluate if redivisions suffice to induce the observed aggregated patterns, we

simulated dividing NSCs with an agent-based spatiotemporal model. Such a model simulates

the actions and interactions of autonomous agents, in our case NSCs. Here, every single cell can

be modeled at every time point, while in other non-agent-based approaches, one only obtains

summary statistics or averages per time point. However, fitting a spatiotemporal model to data

is extremely challenging, since parameter estimation relies on repeated, computationally expen-

sive simulations [39]. We thus split our simulation approach into 2 steps: First we fit a simple,

nonspatial cell division model to the observed DLS and redividing NSCs for different labeling

intervals Δt (Fig 3F and 3T) to derive the length and variability of cell cycle and S-phase. Second,

we simulate an agent-based spatiotemporal model with the inferred parameters, analyze the

simulated patterns statistically, and compare the results with experimental data.

To infer cell cycle kinetics from our data, we implemented a cell division model of dividing

NSCs with 5 parameters (see Methods): the minimal cell cycle length dcc and minimal S-phase

length dsp, their variability βcc and βsp parametrizing a lag-exponential [40] distribution, and

PLOS BIOLOGY Aggregated spatio-temporal division patterns emerge from reoccurring divisions of neural stem cells
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the redivision probability prediv (see S4A Fig). From this cell division model, we simulate divid-

ing NSCs and a BrdU-EdU-labeling experiment (S4B Fig) and evaluate the percentage of redi-

viding cells and DLS. We optimized the 5 parameters to the observed frequencies (see

Methods) using approximate Bayesian computation (ABC) [41]. Our cell division model fitted

the data, in particular the plateau of redividing cells (S4C Fig), and the sharp decrease of DLS

cells after 9 h (S4D Fig). It estimated a minimal cell cycle time of 22.2 h with a mean cell cycle

time of 107.5 h, a minimal S-phase length of 16.6 h with a mean S-phase length of 18.2, and a

redivision probability of 0.38 (S4E and S4F Fig). Note that while the redivision probability is a

parameter of our cell division model, the redivision fraction is an experimentally observable

variable, which depends on the measurement method. Using snapshot measurements, we

found a redivision fraction of 15%, which is considerably lower than the redivision probability

of 38% (see S4B Fig for a detailed explanation).

We now fed an agent-based model with the inferred parameters to generate spatiotemporal

patterns (see Methods and S4G and S4H Fig). To model cell shape kinetics, cellular potts mod-

els [42], vertex models [43], and cellular automata [44] have been used. We chose a cellular

potts model, since it allows for arbitrary shapes and stochasticity in cell movement and is easily

applicable as the default implementation in the Morpheus environment [45]. After a transient

phase, we simulated a first measurement by marking all cells in S-phase at that time point. We

simulated NSC kinetics further for different S-phase labeling intervals and simulated a second

measurement, analogously to the first. We then created a distance matrix for S-phase cells at

the 2 time points (exemplary patterns shown in Fig 4A for Δt = 48 h), calculated the discrete

Ripley’s K (see Fig 4B), and inferred interaction radius and strength, analogously to experi-

mental data processing. Analogously to our experimental data, we found an interaction

strength significantly >1 (p-value = 6.6 × 10−10) and an interaction radius around 45 μm (Fig

4C and 4D), which was a bit smaller than experimentally observed. We could also reproduce

the observed heterogeneity in the emergence of the spatiotemporal patterns: In 36 simulated

hemispheres, we found 58 ± 8% aggregated patterns (n = 10 independent simulations,

mean ± SD) in accordance with our experimental observations (61%, see S2B Fig). Also in the

simulations, the remaining patterns are classified as random throughout.

In control simulations, we omitted redivisions. In that case, all NSCs entered division with

a rate of 1 × 10−3 per hour (see Methods). In the corresponding simulated measurements (Fig

4E), neither the discrete Ripley’s K (see Fig 4F) nor interaction parameters hint to an aggrega-

tion of divisions. While the interaction radius strongly varied around a mean value of

89 ± 42 μm (Fig 4G), the interaction strength is 0.97 ± 0.2, indicating random division patterns

(Fig 4H). Thus, with redivisions and no additional assumptions, our agent-based simulations

created aggregated spatiotemporal patterns of NSCs in S-phase as observed experimentally.

Finally, we analyze whether the agent-based simulations are able to reproduce the input

parameters, i.e., observed DLS and redivision fractions, cell cycle length, and redivision proba-

bility. Redivision fractions and DLS fractions from simulations are similar to the ones observed

in experimental data (S4I and S4J Fig), and cell cycle lengths observed in the simulations fit

nicely to the probability density function of the lag-exponential distribution (S4K Fig). S-phase

lengths are correct by default as we draw them after simulation for post-simulation analysis,

from the respective lag-exponential distribution. The proportion of redividing cells in the sim-

ulation is confirmed with 38 ± 0.5% (S4L Fig).

Discussion

In this study, we detected nonrandom, aggregated spatiotemporal patterns of successively

dividing NSCs in the zebrafish brain using an experimental double-labeling approach and
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Fig 4. An agent based redivision model can explain spatial aggregation of NSCs in S-phase. (A) We use an agent-

based model to simulate NSC divisions with a redivision probability of prediv = 0.38 and perform virtual measurements

with labeling intervals Δt between 9 h and 72 h (here shown for Δt = 48 h). (B) The simulated NSCs in S-phase in (A)

exhibit an aggregated spatiotemporal pattern according to the discrete Ripley’s K curve (solid line) which is above the

90% CI of randomly sampled patterns (gray area), similar to experimentally observed patterns. (C) The fitted radii for

simulations with redividing NSCs for different labeling intervals Δt are variable with a maximum likelihood value of

50 μm. Labeling intervals that are also available from experimental data (see Fig 2C) are shown in black, all others in

gray. (D) The respective fitted strengths values are above 1 indicating aggregated patterns. Fitting a constant model to

the most likely values with the same Δt as experimentally observed (black bars) reveals a significant shift (p-

value = 6.6 × 10−10) from a strength of 1. Labeling intervals that are also available from experimental data (see Fig 2D)

are shown in black, all others in gray. (E) Simulated NSC divisions and virtual measurements with a redivision

probability prediv = 0 at 2 labelings Δt = 48 h apart. (F) Without redivisions, the simulated S-phase NSCs are within the

boundaries of random patterns. (G) The fitted radii are highly variable with maximum likely values from 50 to 150 μm.

Labeling intervals that are also available from experimental data (see Fig 2C) are shown in black, all others in gray. (H)

In contrast to the simulations with redivisions, we now find no indication for aggregated patterns for all labeling

intervals (p-value = 0.88 for a constant model with nonzero shift from a strength of 1). Labeling intervals that are also

available from experimental data (see Fig 2D) are shown in black, all others in gray. CI, confidence interval; NSC,

neural stem cell.

https://doi.org/10.1371/journal.pbio.3000708.g004
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extended methods from spatial statistics for quantification and parameter inference. More-

over, we found a prominent cell cycle reentry in daughter NSCs.

The quantification of patterns of NSCs in S-phase is challenged by their heterogeneity and

the relatively weak signal: Only 70% of the 36 hemispheres show aggregated spatial patterns,

the remaining 30% qualify as random, so we wondered how this heterogeneity comes about.

Since we estimate NSCs to redivide with only 38% probability, we believe that de novo divi-

sions of previously quiescent cells dilute the aggregation patterns arising from reoccurring

divisions. Our agent-based simulations are able to reproduce aggregated patterns and their fre-

quency, however, with a smaller interaction radius then observed. Contributions to this devia-

tion might come from the abstracted morphology of the hemisphere and individual cell shapes

(see S4G and S4H Fig), the discrepancy between a 2D model and 3D effects in the brain, or the

previously reported underestimation of radii when using a Euclidean distance measure [29].

A cell division model allowed us to estimate cell cycle and S-phase length distributions

from double-labeling data. It is interesting to consider that, similarly to variations in the G1

and G2 phases [46,47], S-phase length can be variable too. Lengthening of S-phase occurs dur-

ing, e.g., development [48,49]. The work by Arai and colleagues [50] and Turrero Garcı́a and

colleagues [51] report distinct lengths of S-phases according to distinct types of neural progen-

itors in the developing neocortex in mouse and ferret, respectively. In the adult mouse sube-

pendymal zone [52], the gfap+ B-type cells displayed very rapid S-phases of about 4 to 5 h,

which is below the values we measured here of about 18 h by identifying double-labeled nuclei

(see Fig 3F). Since we still detected occasional double-labeled nuclei with 24-h intervals, but

not later, we can state with confidence that these nuclei were already in S-phase as the first

label was present (until up to 4 h after the injection) and finished their S-phase as the second

labeled was administered. Hence, the group of NSCs defined by gfap:GFP+ in the zebrafish tel-

encephalon undergoes collectively and comparatively long S-phases.

The emergence of complex patterns from simple rules has been analyzed extensively, e.g.,

for artificial systems [53], biology-inspired models [54], and biological phenomena [44]. Here,

we first use an interaction model to determine the strength and the radius of the observed pat-

tern of S-phase NSCs. This extends traditional Gibbs or Cox models [38] to the analysis of a

particular multi-type spatial point pattern where NSCs in S-phase appear at discrete locations

defined by the presence of all NSCs. However, fitting an interaction model to spatiotemporal

data does not necessarily imply that cell–cell interactions are present. We thus model quiescent

and NSCs in S-phase as agents in a continuous space with stochastic cell cycle kinetics to quan-

titatively compare 2 hypotheses: Are extrinsic effects like cell–cell interactions or signaling

waves required to generate the observed aggregated spatiotemporal division patterns, or do

redivisions of NSCs suffice? We find that agent-based simulations with redividing NSCs suffice

to explain the spatiotemporal patterns observed in the zebrafish brain.

According to this model, coordination of cell cycle entries in the population can be

explained by the internal synchronization due to the cells’ history. Such a model is supported

by interesting studies following cell families in cultured cell lines, detecting correlations of cell

cycle parameters between siblings and cousin cells as a result of inherited factors but indepen-

dent on their location [55,56]. This cell intrinsic–driven behavior is in contrast to cellular sys-

tems endowed with a clear environmental regulation, in particular in stem cell compartments

constituted by a distinctive 3D architecture like in the hair follicle in the skin. There, the pre-

cise location of stem cells is associated with their cycling behavior and fate [57], indicating that

the position within an environment impacts on the stem cells activity. In the neurogenic zone

studied here, no distinctive organization of the tissue would so far hint toward morphological

features specifically associated with an NSC’s activity. Our analysis of cellular volumes in this

study does not indicate that a distinctive density dependent niche would be in place. In this
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context, it is also interesting to note that 2 intermingled types of progenitors with radial mor-

phology in the killifish telencephalon reveal distinct proliferative behaviors [58] even if sharing

the same environment, arguing for a small contribution of environmental effects on stem cell

activities.

Nevertheless, we cannot reject the existence of cell extrinsic mechanisms that might con-

tribute to the spatiotemporal patterns, such as local diffusive signaling activity in delimited

groups of cells, a functional activity of extended cell–cell contacts (as has been observed in

NSCs by Obermann and colleagues [20]) or the activity of the Notch signaling pathway [7]. As

a result of either mechanisms, levels of molecular heterogeneity have been observed: For

instance, variable levels of the Zinc finger protein Fezf2 regulate Notch activity levels and qui-

escence of NSCs [25]. Likewise, the expression of miR-9 involved in keeping quiescence

upstream of Notch signaling is found only in a subset of quiescent cells [14] several days after a

division. And in a recent study, a subpopulation of NSCs that expresses low levels of Elavl3 has

been characterized as mostly nondividing cells in transit toward neuronal differentiation [59].

Repeated divisions of NSCs were not expected, given the low percentage of divisions in the

whole NSC population. NSCs were able to enter successive rounds of cell division within a few

days, the earliest starting 24 h after the previous S-phase. This contrasts with the early model of

adult NSCs established in the mouse dentate gyrus and subependymal zone, where radial

astrocytes are quiescent and can replenish the transient amplifying progenitor population after

all fast dividing cells have been eradicated by an ARA-C treatment [60]. The latest characteri-

zations by single cell sequencing differentiate between quiescent versus active radial astrocytes;

however, these most probably represent alternating states, as also suggested by a continuum of

transcriptional states [61,62]. The definition of an active radial astrocytes here cannot distin-

guish between a repetitive or sporadic division behavior. Recently, however, evidence for sev-

eral rounds of divisions within a few days in NSCs has been reported in the mouse

subependymal zone from clonal analysis data using the Troy-driven recombination [63]. Fur-

ther, live imaging of Ascl-driven recombination in the dentate gyrus in vivo demonstrated the

existence of several divisions of radial astrocytes in a short time window [64]. In zebrafish, 2

studies based on in vivo imaging of the whole brain have followed NSCs, 1 observing single-

labeled NSCs and their behavior of division and differentiation [28], the other considering the

whole dividing NSC population with the help of 2 transgenic lines, her4:RFP and mcm5:GFP,

highlighting the NSCs and the cell cycle, respectively [34], over the course of 2 weeks. Rapidly

redividing daughter NSCs, as observed by our double-labeling approach in living fish com-

bined with confocal imaging that allows for a clear distinction between nuclei close to each

other, have not been reported yet. It is likely that they have been missed due to the difficulty to

resolve distinct sister cells with intravital imaging in previous studies.

How these reoccurring divisions of adult stem cells come about will be important to assess

in the future. Single cell sequencing data, such as performed by Cosacak and colleagues [65],

might help associating these events with specific molecular pathways. Studies on human epi-

thelial cell lines have shown that mother cells can relay distinct levels of CCND1 mRNA and

p53 protein to their daughters, which after completing mitosis will then rapidly decide for the

next round of division, depending on a resulting bimodal level of activity of cyclin-dependent

kinase (CDK2) [66,67]. It could well be that in NSCs too, specific cell cycle regulators are trans-

mitted to daughter cells, thereby permitting for immediate new rounds of division. Other

mechanisms of daughter cells’ decisions for quiescence or new cycle have been reported, for

instance, in the adult mouse dentate gyrus, where degradation of Ascl1a in daughter cells

mediated by the ubiquitin ligase Huwe1 takes place and promotes a reentry in quiescence [15].

Hence, in stem cell populations, individual phases of quiescence and exit thereof might well

be predictable according to inherited factors, allowing us to understand how the kinetics of
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tissue maintenance are regulated. Beyond this study, which aimed at understanding a regula-

tion within days-scale time window, long-term tracing studies will help understanding the

consequences of those patterns on the organization of the resulting neuronal circuits.

Methods

Zebrafish maintenance and transgenic lines

Zebrafish of the transgenic line gfap:GFP (mi2001) [30] were bred and maintained in the fish

facility of the Helmholtz Zentrum München. Experiments were conducted under the animal

protocol 55.2-1-2532-83-14, in accordance with animal welfare rules of the government of

Oberbayern.

Labeling of consecutive S-phases in vivo and immunostainings

BrdU or EdU were dissolved at a concentration of 1 mg/ml in saline solution (0.07% NaCl)

containing methylene blue and injected intraperitoneally (5 ul/ 0.1 g body mass) into the fish

at precise time points. Fish were over-anesthetized in MS-222 or placed in ice water for eutha-

nasia, decapitated, and the brains dissected and fixed in 4% PFA overnight. Whole mount

brains were processed for Click chemistry with Azyde-Alexa-Fluor-647 to detect EdU, follow-

ing the manufacturer’s protocol (C-10269, Thermo Fisher Scientific, Darmstadt, Germany);

see also [68]. For the subsequent BrdU immunoreaction, brains were treated with HCl 2M at

37˚C for 30 min, washed in sodium tetraborate buffer 0.1 M, pH8 and in PBS, and incubated

with Mouse-anti BrdU (Phoenix-Flow Systems, San Diego, USA, PRB1-U) 1:800 overnight.

Mouse or Rabbit anti-PCNA (clone PC-10, Santa Cruz, Santa Cruz, USA, sc-56; Abcam

ab15497) was diluted 1:800 or 1:100, respectively. Following secondary antibodies were incu-

bated for 1 h at room temperature at 1:1,000 concentration: Goat-anti-mouse Alexa-Fluor-

555, Goat-anti-mouse Alexa-Fluor-405, Goat-anti-Rabbit-Pacific Blue, and Goat-anti-Rabbit

Alexa-Fluor-555 (Thermo Fisher Scientific).

Imaging of whole mount brains

Brains were mounted in vectashield (Vector Laboratories, Burlingame, USA) or in PBS with

40% glycerol between 2 coverslips separated by 8-layered parafilm spacers. Imaging was per-

formed using a Leica SP5 confocal microscope (Wetzlar, Germany) with a 20× glycerol

immersion objective at a resolution of 2048 × 2048 pixels, and for close up views with a 63×
glycerol immersion objective with a resolution of 1024 × 1024 pixels.

Identification of gfap:GFP+ cells and PCNA/EdU/BrdU-labeled cells

NSCs that are labeled by GFP in the transgenic gfap:GFP line were identified using the Single

Cell Identification Pipeline (SCIP; [29]). In this pipeline, single cells are automatically identi-

fied from an image 3D stack, exploiting the fact that all NSCs are located on top of the hemi-

sphere on a 2D surface. SCIP returns x, y, and z coordinates for all NSCs. Nuclei labeled by

PCNA immunochemistry, BrdU immunochemistry, or by EdU-click chemistry were identi-

fied semiautomatically: Nuclei were first identified with SCIP and then visually verified 1 by 1

using Fiji to avoid false positives and ensure correct assignment to GFP-positive or negative

cells, using the 2 channels in consecutive z-planes of the confocal stacks. Images are displayed

as maximum intensity projections of z stacks, single planes, or 3D visualization using the Plu-

gins Clear Volume [69] or 3D viewer [70].

In experiments with Δt>18 h, the majority of Time 1-labeled cells were found as doublets,

i.e., a pair of small cells close to each other (see Fig 3I and 3M and S3D–S3J Fig), since the time
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span allowed the mother cell to reach its mitotic (M) phase. For Δt = 72 h, even triplets

occurred (see Fig 3Q). Doublets and triplets were handled as single-division events in the sub-

sequent analysis. Some of the doublets incorporated the second dU label and were categorized

only to Time 1 in the spatiotemporal analysis, in order to assess distances specifically between

the distinct sets of cells undergoing S-phases at consecutive time points. The proportion of

redividing NSCs was calculated by dividing the number of doublets (or triplets) containing at

least 1 GFP+BrdU+EdU+ cell by the total number of GFP+BrdU+ doublets (or triplets).

Three-dimensional segmentation of gfap:GFP+ cells and PCNA/EdU/

BrdU-labeled cells

Four-channel confocal images of 4 whole mount hemispheres taken at the 63× objective

(1024 × 1024 pixels) were used. Pixel classification of each single channel was performed in

Ilastik [71] to discriminate cells from cell borders and background. The Ilastik autocontext

pixel classification was used for BrdU and PCNA channels containing background staining of

blood vessels. The Fiji MorphoLibJ package [72] was then used on the pixel-classified GFP

channel to perform either a 3D distance-transformed watershed segmentation or a marker

transformed watershed segmentation using a white top hat filtered image as marker input,

depending on the image quality and the precision of the resulting labeled image. Single objects

in the segmented images were evaluated and quantified using the Fiji 3D Manager [73], and

3D reconstructions were obtained with the 3D Viewer [70]. Small objects with a volume below

30 μm3, corresponding to segmented radial processes detached from segmented cell bodies,

were filtered out from the analysis, giving a total number of 834, 961, 293, and 283 NSCs,

respectively. Co-localization of segmented NSCs with the division markers was performed by

quantification in the 3D Manager on binarized images and verified manually. The analysis of

volumes of dividing, redividing, and quiescent NSCs, as well as their direct neighbors in the 4

hemispheres was performed in R using the spatstat package [38].

Spatial statistics

Spatial statistics were applied on NSCs labeled in S-phase, i.e., gfap:GFP+ cells with EdU or

BrdU staining. The set of NSCs without EdU or BrdU staining served as the substrate to, e.g.,

evaluate patterns for randomly dividing NSCs. Spatial analysis is performed with MATLAB

(MATLAB version 9.7.0.1296695 (R2019b) Update 4).

Three-dimensional distance matrix

We determine the distance between any 2 cells by calculating the shortest path on the hemi-

sphere manifold to account for the bending of the hemisphere surface. To this end, we used

the fitted hemisphere surface and calculated the stepwise shortest paths between 2 cell loca-

tions on it (see [29] for a detailed description).

Ripley’s K statistics

Ripley’s K [31] is a measure for the deviation of a point pattern from spatial homogeneity. It

has been previously applied in geographic information science [74], in the context of spatial

economic analysis [75], archeological studies [76], single-molecule localization [32], or single

cells behavior [33]. In all those applications, it is assumed that the point pattern occurs from a

Poisson point process on a homogenous space. Here, however, division events can only occur

where NSCs are located on the 2D hemisphere manifold. As the underlying NSC distribution

could be inhomogeneous, we adapted the measure to account for this possible inhomogeneity
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by sampling a point pattern only from discrete NSC locations and thus call it discrete Ripley’s

K.

For S S-phase NSCs we calculate the spatial KS value for increasing radii r along

KS rð Þ ¼
S
A

� �� 1
PS

i¼1
wði; rÞ

PS
j¼1;j6¼i

Iðdistði; jÞ � rÞ
S

ð1Þ

This function counts NSCs in S-phase within a radius r around the S-phase NSC i. The indi-

cator function I is 1 if cell i and j are closer than r and 0 otherwise. The term is normalized by

the total amount of NSCs in S-phase S and by the S-phase NSC density S/A. The hemisphere

area A is calculated as the sum of all triangle areas between all NSCs obtained via Delaunay tri-

angulation (see S1A Fig) [77]. The edge correction term w(i,r) is 1 if the disc with radius r
around NSC i does not cut the hemisphere edge and else calculated as the fraction of disc

inside the hemisphere.

To obtain the spatiotemporal KST between 2 sets of NSCs in S-phase, labeled at Time 1 and

Time 2 we modified Eq 1:

KST rð Þ ¼
S1

A

� �� 1
PS1

i¼1
wði; rÞ

PS2

j¼1

Iðdistði; jÞ � rÞ
S2

ð2Þ

Here, we count S2 (NSCs in S-phase at Time 2) cells around S1 (NSCs in S-phase at Time 1)

cells within r. In contrast to Eq 1 the whole term is normalized by the density of S1 cells while

the indicator function is divided by the number of S2 cells.

To compare observed K values to random spatial distributions, we sample the amount of

observed S and S2 cells, respectively, (S1 cell locations are fixed) from all NSCs 20 times and

calculate the random sampling discrete K value. To evaluate whether the observed K value dif-

fers from random sampling, we check if the observed K value is below the 5% quantile (which

would indicate spatial dispersion) or above the 95% quantile (which would indicate spatial

aggregation) of the 20 sampled discrete K values.

To make Ripley’s K plots comparable between hemispheres, we standardized the results per

hemisphere similar to a z-score, such that K values are 1 when they are on the 95% quantile

and −1 when they are on the 5% quantile.

To classify S-phase patterns as aggregated, random, or dispersed, we calculated the mean z-

score between 30 and 150 μm. If the mean z-score is above 1 we classify the pattern as aggre-

gated, between −1 and 1 as random and below −1 as dispersed.

Model-based analysis

Interaction model

To determine the spatial extent and the nature of the temporal interaction of divisions at dif-

ferent time points, we extend a spatial interaction model [29] with 2 parameters: the interac-

tion strength (g), where g = 1 means no dependencies, below 1 dispersion between the 2

populations, and above 1 aggregation. The second parameter the model fits is the interaction

radius (r) in μm.

logðLðg; rÞÞ ¼
PS1

i¼1
logðg

PS2

j¼1
Iðdistði;jÞ�rÞ

Þ=
PS1

i¼1
logðg

PN

k¼1
Iðdistði;kÞ�rÞ

Þ ð3Þ

For each hemisphere, we fit the parameters (g,r) of the model to locations of cells in S-phase

of 2 time points to detect spatial dependencies of NSCs in S-phase at the later time point (S2)

regarding NSCs in S-phase at the earlier time point (S1). The parameters are fitted with a log-
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likelihood approach (Eq 3), where Sx is the number of cells in S-phase at time point x, while N
is the whole NSC population. The indicator function I is 1 if the distance between 2 cells (i, j
or i, k) is smaller or equal r. In the numerator term, we iterate over all S1 cells and count the

number of S2 cells having a smaller or equal distance than r, while in the denominator, we nor-

malize the equation by counting the not affected (non-S-phase) cells of N within r around S1

cells.

Eq 3 calculates the log likelihood for 1 hemisphere. To calculate the log likelihood across

several hemispheres, every single likelihood per hemisphere is summed up and optimized in

parallel to form a combined likelihood. We use the PESTO toolbox [78] to maximize the likeli-

hood including uncertainty estimation via posterior sampling [79] as can be seen exemplarily

in Fig 2B for hemispheres with Δt = 32 h and for all hemispheres in S2C Fig.

Cell division model

The observed fractions of redividing NSCs and DLS (Fig 3F and 3T) suggest an upper limit for

the S-phase length of 32 h (since we observe no DLSs for Δt� 32 h, Fig 3F) and a lower limit

for all other cell cycle phases of 9 h (since we observe no redividing cells at Δt = 9 h, Fig 3T). A

simple model with a fixed cell cycle length of, e.g., 32 h + 9 h, is however not able to explain a

plateauing of redividing NSCs for Δt� 24 h. Instead of constant cell cycle and S-phase length,

we thus assume them to be distributed as delayed exponential distributions:

f x; b; dð Þ ¼

0 x < d;

1

b
e
�

1

b
ðx � dÞ

x � d

8
>>><

>>>:

where β is the scale parameter of the exponential distribution and d is the delay. Note that [40]

use a different notation for the 2 parameters. Additionally, we assume a redivision probability

prediv (S4A Fig), which is lower bounded by the observed redivision frequency of 15%, since we

are not able to observe all redivisions (S4B Fig) in our snapshot experiments with an EdU

labeling of 1 h.

To infer these 5 parameters (scale parameter and delay of cell cycle, dcc and βcc, and S-

phase, dsp and βsp, and redivision probability prediv) from (i) the observed redivision frequency;

and (ii) the fraction of DLS NSCs (see sketches in S4C and S4D Fig) at every labeling interval

Δt = 9 h, 18 h, 24 h, 32 h, 48 h, and 72 h, we apply ABC [41]. Given the 5 parameters (dcc, βcc,

dsp, βsp, and prediv), we simulate the dynamics of 10,000 dividing cells over 400 to 500 h. Using

a fixed endpoint (Time 2), we can determine Time 1 by subtracting the according labeling

interval. With 2 virtual measurements we calculate the observed redivision and DLS frequency

via counting all cells being in S-phase at Time 1 and determine the status of these Time 1 S-

phase cells at Time 2 (see S4B Fig): If an S-phase of a cell is labeled by both virtual measure-

ments, it is classified as DLS, and if an offspring cell is labeled in S-phase, the cell is classified

as redividing cell. The simulated redivision frequency is then the number of redividing cells

divided by the number of S-phase cells at Time 1, and the DLS fraction is the number of DLSs

divided by the number of S-phase cells at Time 1, accordingly.

In order to fit the observed data, we define a distance function between the observed and

simulated redivision and DLS fractions per labeling interval. To this end, we calculate the sum

of differences between means and SDs, respectively:

distanceABC ¼
X

i

ðjmeanðobsiÞ � meanðsimiÞj þ jstdðobsiÞ � stdðsimiÞjÞ
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where i 2 {9 h, 18 h, 24 h, 32 h, 48 h, and 72 h}. We optimize this distance function employing

ABC with 50 epochs, evaluating 500 particles per epoch (ABC parameters).

Agent-based spatiotemporal simulation

To assess the contribution of redivision events to the emerging spatial patterns of NSCs in S-

phase, we simulated an NSC population using a cellular Potts model as implemented in Mor-

pheus [45]. Morpheus is a modeling and simulation environment where cells act and interact

as agents in space and time. We approximate a base division rate pdiv from the average

observed S-phase cell fraction (1.9 ± 0.7%, n = 36 hemispheres, mean ± SD) and S-phase length

estimation (approximately 18 h): pdiv = 0.019 /18 h = 1 × 10−3 divisions per hour. This base

division rate suffices for control simulations, but for simulations with redivisions, we

decreased pdiv slightly. To obtain a similar amount of observed divisions as in the control simu-

lations, we fixed pdiv = 9 × 10−4 divisions per hour to account for redivisions, which divide

after 1 cell cycle independently of the base division rate with probability prediv = 0.38 (inferred

from the cell division model above).

At the beginning of the simulation, every cell has to wait at least 1 cell cycle duration until it

is available for a spontaneous division via pdiv. This leads to a small bias in the beginning

(roughly 1/30th of the whole simulation time), but after all cells are older than their cell cycle

time, there should be no impact anymore. We estimate the rate of NSC differentiation from

the proportion of doublets with 1 gfap:GFP+ and 1 gfap:GFP− cell. This proportion is roughly

10% in our data. Gfap:GFP− cells are simulated for 1 more cell cycle duration and are then

excluded, mimicking differentiated cells transitioning away from the stem cell pool inside the

brain [27]. Cell cycle length is inferred from the cell division model (see above) with delay dcc

and βcc from the delayed exponential distribution. Other predefined parameters are minimum

and maximum cell size, determined by measuring real NSC size and simulated via sigmoidal

cell growth. Morpheus implements basic cell–cell interactions and kinetic assumptions [45].

Our simulation starts with 500 cells and runs until the colony size reaches the observed

2,356 ± 460 (mean ± SD) cells (see Fig 4A–4E). We analyze cells in S-phase at the simulated

measurement time points and apply the same spatial statistics as for the real data.

Figures

Plots were prepared in Matlab, R, and Excel. Figures were adjusted in Adobe Indesign and

Inkscape.

Supporting information

S1 Fig. (A) Delaunay triangulation on the identified NSCs to calculate discrete Ripley’s K. (B)

A synthetically generated random pattern of NSCs in S-phase. (C) Discrete Ripley’s K correctly

identifies the pattern in (B) to be within the 90% CI of randomly sampled patterns. (D) A syn-

thetically generated dispersed pattern with an interaction radius of 100 μm. (E) Discrete Rip-

ley’s K correctly identifies the pattern in (D) below the random interval. (F) Standardized K

shows S-phase NSC aggregation in 24 (thick lines) out of 36 hemispheres. Hemispheres that

show a mean standardized K value higher than 1 between 30 and 150 μm are classified as

aggregated (thick lines). Each trace represents the spatial distribution of S-phase NSCs in 1

hemisphere. (G) All hemispheres of the dataset. Gray dots represent NSCs magenta dots repre-

sent NSCs in S-phase. Aggregation patterns are classified according to the standardized K anal-

ysis in (F). (H) Cells in S-phase are equally labeled by EdU or BrdU when those are

administered concomitantly. BrdU, 5-bromo-20-deoxyuridine; CI, confidence interval; EdU,
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5-Ethynyl-20-deoxyuridine; NSC, neural stem cell.

(TIF)

S2 Fig. (A) Experimental setup for measuring spatiotemporal patterns. With different labeling

intervals Δt between the 2 S-phase labelings, we systematically profile spatiotemporal effects.

(B) Standardized K shows spatiotemporal aggregation of S-phase NSCs in 22 out of 36 hemi-

spheres for different Δt, while the remaining 14 patterns are classified as random. (C) Parame-

ter inference on all labeling intervals Δt. Most likely interaction strength and radius for all

hemispheres per labeling interval determined via posterior sampling density. Whiskers cover

the 95% CIs for strength and radius. CI, confidence interval; NSC, neural stem cell.

(TIF)

S3 Fig. (A) Example of reoccurring divisions taking place in gfap:GFP− progenitors (yellow

arrow). (B) Experimental setup for observing NSCs in S-phase at 3 time points within 2 days.

(C) Reoccurring divisions have been quantified in 6 hemispheres out of 4 brains (% of BrdU+-

clones labeled with a second cell cycle label) and are observed both in NSCs (gfap:GFP+, green

dots) and in gfap:GFP− progenitors (gray dots) after 1 day (BrdU+EdU+) or after 2 days

(BrdU+PCNA+). Higher percentages of redivisions are observed compared to the experiments

with a short pulse of EdU labeling at time 2 (injection 1 h before killing, see Fig 3), probably

due to more S-phases entries labeled with a longer duration of EdU availability in this experi-

mental setup. (D-J) Maximum intensity projection and close-up view of a 4-channel image

depicting recurrent divisions marked with 3 cell cycle labelings at 3 time points: 2 days earlier

by BrdU (E), 1 day earlier by EdU (F), and at the time of fixation by PCNA (G). (H) gfap:GFP

+ daughter cell pairs (green arrows) and gfap:GFP− daughter cell pairs (white arrows) with

respectively 1 daughter entering a second round of division. (I,J) Overlays. Scale bar: 10 μm.

(K) Quantification of reoccurring divisions in NSCs performed on 63× magnification images

from 4 hemispheres. The average proportions of dividing NSCs labeled at distinct time points

reveal that about 40% of all PCNA+ NSCs have been generated by a recent division (compare

gray quadrants PCNA+EdU+ and BrdU+EdU+ to the yellow PCNA-only quadrant) (L) 3D

segmentation and 3D visualization of all NSCs performed on the same image as shown in (D–

I), representing a total of 834 NSCs. (M–P) Close-up view of the boxed area delineated in D

and L depicting BrdU-labeled sister cells, 1 of which is labeled with PCNA (yellow arrows).

(M) Maximum intensity projection. (N) Single z-plane. All NSCs are delimited by white lines

obtained by a 3D watershed segmentation applied after Ilastik pixel classification of the origi-

nal GFP channel. 3D segmentation of the BrdU and PCNA channels are represented in cyan

and yellow, respectively. (O) Labeled NSCs visualized in 3D (top view). (P) 3D reconstruction

of the BrdU-labeled sister cells, 1 of which is PCNA-labeled. (Q) Volumes of all segmented

NSCs from the hemisphere shown in L. No significant difference was observed between the

volumes of NSCs found in reoccurring division (PCNA+EdU+ and PCNA+BrdU+), division

(PCNA only) or quiescent state (negative for all cell cycle labels) according to Kruskal–Wallis

test (p-value = 0.10). No significant difference can be detected either between the mean volume

of the direct neighbors of those groups, arguing against the formation of distinctive niche

areas within the NSC population (p-value = 0.37). BrdU, 5-bromo-20-deoxyuridine; EdU,

5-Ethynyl-20-deoxyuridine; GFP, green fluorescent protein; NSC, neural stem cell.

(TIF)

S4 Fig. (A) We devise a cell division model to describe dividing NSCs with 5 parameters: the

minimal cell cycle length dcc and minimal S-phase length dsp and their variability βcc and βsp,

respectively, parametrizing a lag-exponential distribution and the redivision probability prediv.

Note that we do not have any information about the length of G2 and thus do neither model
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nor visualize this phase in the graphs. (B) We use observed redivision proportions (see Fig 3T)

and the percentage of DLS cells (see Fig 3F) to feed a division model (S-phases labeled in red)

and take simulated measurements at T1 and T2 to infer the redivision probability pre-div. We

observe a difference between the model (prediv = 0.38) and observed redivisions frequency

(0.15): From 10 simulated cells dividing at T1, 4 cells (cell 1, 3, 5, and 10, shown in bold) redi-

vide. Thus, 40% cell redivide, which is close to pre-div. However, our measurement at T2 only

picks up 2 cells (cells 3 and 5) corresponding to only 20%, in line with the observed redivision

frequency. (C, D) The cell division model fits the proportion of redividing cells (C) and DLS

cells (D) for different labeling intervals. (E) We find an extremely variable delayed exponential

distributed cell cycle with a minimal length (dcc) of 22.2 h and a mean (dcc + βcc) of 107.5 h. (F)

The S-phase length is narrow with 16.6-h minimal length (dsp) and βsp = 1.5h. (G) Snapshot of

an agent-based simulation using the Morpheus software corresponding to Fig 4A (Time point

2) with NSCs (green), NSCs in S-phase (red), and dividing intermediate progenitor cells

(black). (H) Boxed area in (G) shown in higher magnification to visualize simulated cell

shapes. (I, J) Proportion of observed redividing and DLS cells for different labeling intervals in

agent-based simulations vs. experimental data. (K) Cell cycle length measured in the agent-

based simulations compared to the probability density function of the estimated delayed expo-

nential function in (E). (L) Fraction of redividing cells measured in 20 agent-based simula-

tions. DLS, double-labeled S-phase; NSC, neural stem cell.

(TIF)

S1 Table. For each brain hemisphere (Experiment) with a particular labeling interval, we

detail the number of NSCs, number of S-phases at labeling time 1 (T1) and labeling time 2

(T2), number of NSCs in S-phase at T1 and T2, number of redivisions, number of NSC

redivisions, number of DLS, and number of DLS in NSCs. DLS, double-labeled S-phase;

NSC, neural stem cell.

(XLSX)

S1 Data. Data tables to support S3C and S3K Fig.

(XLSX)
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