
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Mixed discrete-continuous Bayesian
Optimization for AutoTuning

Jan Nguyen



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Mixed discrete-continuous Bayesian
Optimization for AutoTuning

Gemischte diskret-kontinuierliche
Bayes’sche Optimierung für AutoTuning

Author: Jan Nguyen
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Fabio Gratl, M.Sc.
Submission Date: 15.10.2020



I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.10.2020 Jan Nguyen



Abstract

Molecular dynamics simulations are used to analyze physical motion at the molecular
level. A numerical approach is often used, where we assume that for small time
intervals, the acting force remains constant. So we calculate the trajectory of each
particle step by step by repeatedly using this assumption. In each of these steps, we
have to calculate the pairwise forces between all particles. Due to this, simulations
with a high number of particles could take a considerable amount of time, since
every particle exert forces on every other particle. However, there are many different
algorithms and corresponding parameters to calculate these forces efficiently. Which
combination of parameters is most effective depends on the structure of the simulation
and is generally hard to predict. To avoid having to test every combination, we use
Bayesian optimization, which should give us a good result with only a few tests. Since
we have discrete and continuous parameters typical Bayesian optimization can only be
used to a limited extent. This is why we are testing an approach where we consider
discrete values using a cluster model. As a result, we were able to observe significant
improvements compared to other methods. We were often able to make an optimal
selection automatically. A person would need sufficient expert knowledge to make a
similarly efficient choice.

iii



Contents

Abstract iii

1 Introduction 1

2 Problem Statement 2
2.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 General Algorithm Selection Problem . . . . . . . . . . . . . . . . . . . . 4

3 Bayesian Optimization 6
3.1 Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Acquisition Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Hyperparameter Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Discrete Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Cluster Model 11
4.1 Correlation between Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Wasserstein Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Evidence Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Acquisition using Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 Weighted Sum of Random Variables . . . . . . . . . . . . . . . . . 14
4.2.2 Weighted Sum of Acquisitions . . . . . . . . . . . . . . . . . . . . 15

4.3 Extended Hyperparameter Update . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Initial Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Evidence Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Tests 19
5.1 AutoPas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.1 Full Search (FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Bayesian Search (BS) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 Bayesian Cluster Search (BCS) . . . . . . . . . . . . . . . . . . . . 20
5.2.4 Random Search (RS) . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



Contents

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.1 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.2 Tuning and non-Tuning Times . . . . . . . . . . . . . . . . . . . . 21
5.4.3 Force Directed Graph . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion 28

Bibliography 29

v



1 Introduction

Bayesian optimization (BO) is used to optimize arbitrary black-box functions. The
only way to get information about these functions is to evaluate them at certain
points. In Bayesian optimization, special emphasis is placed on keeping the number
of evaluations low but still finding a value close to the optimum. For this purpose,
after each evaluation, the information collected so far is used to decide which point
is most suitable to be sampled next. The idea here is to estimate the output of the
function using a probabilistic model. A prior probability is chosen in a very relaxed and
general way. The posterior thus has enough flexibility to adapt to the collected data.
The algorithm incrementally tries to derive the inner structure of the black-box function.
With expert knowledge, this could be speeded up, but the algorithm often achieves
a good result even without aid. Therefore this method can be used when almost no
information about the black-box function is known. BO therefore has many different
fields of application [Ngu19] [Liz+07] [Ulm+15]. We use BO for auto-tuning algorithm
parameters. The algorithms we consider have a fixed outcome, independent from the
chosen parameters. But the selection has other side effects, like affecting the algorithm’s
overall time needed. This is a property that we can consider as a black-box function.
Each configuration leads to a different total runtime. But we can find out this value by
running the algorithm and measuring the time required. Using BO we can optimize
this mapping from configuration to time. However, we need several test runs to reliably
find an optimal configuration. So this method is not suitable if all needed calculations
are already completed after one measurement. It must therefore be possible to perform
and measure only a part of the calculations. Naturally, the measured times still have to
be somewhat representative of the remaining computations.

1



2 Problem Statement

2.1 Molecular Dynamics

In this thesis, we mainly focus on molecular dynamics simulations. But the underlying
idea of tuning can also be applied to other areas. In molecular dynamics, we analyze
the interaction of small particles like atoms. In a simulation of p particles, each of these
particles exerts different types of forces on all the other particles. Many simplifications
of the model are based on the Lennard-Jones 12-6 potential [All04]. Such models
summarize the different forces using the following formula.

ULJ(r) = 4ε

((σ

r

)12
−
(σ

r

)6
)

(2.1)

0 1 2 3
−1

0

1

2

r

F L
J(

r)

Figure 2.1: Example of Lennard Jones Potential

ε and σ are constants which are chosen depending on the type of particles observed.
r is the Euclidean distance between the two particles. The direction and magnitude
of the force exerted by one particle on another are therefore only dependent on their
relative position. So if we are given the position of all particles at a given time t we can
calculate their current acceleration by using Newton’s second laws of motion. Thus we

2



2 Problem Statement

can also calculate their future speed and position.

a(t) =
F(t)
m

(2.2)

v(t) = v0 +
∫ t

0
a(u) du (2.3)

x(t) = x0 +
∫ t

0
v(u) du (2.4)

So the acceleration a(t) also depends on the mass of the particle m, which is constant
and therefore no problem. We obtain the current speed v(t) by integrating over the
acceleration over the entire time period up to t and adding this to the initial speed v0.
Something similar applies to the current position x(t), where we integrate v(t) over
the time period and add it to the starting position x0. Thus to calculate the position
of a particle at a time t we have to integrate the total acting force twice. However, the
change of the positions again has an influence on the acting forces. This leads to an
analytically nearly impossible to solve differential equations with an increasing number
of particles. In fact, there is no general analytical solution for the problem with more
than two particles [MQ14]. Hence we resort to a numerical method. For this purpose,
Störmer-Verlet is often used, which uses the following approximations for a sufficiently
small time step ∆t [HLW03].

v(t + ∆t) ≈ v(t) +
∆t
2
(a(t) + a(t + ∆t)) (2.5)

x(t + ∆t) ≈ x(t) + ∆tv(t) +
∆t2

2
a(t) (2.6)

The smaller we choose ∆t, the smaller is the final error of the approximation. But
to calculate the position of the particles at a time t we have to use these equations
repeatedly until the time steps add up to t. Thus we need to do more calculations for
the same simulation time. In each time step, the highest computational load results
from the forces between the particles. Since each particle interacts with every other,
these calculations grow quadratically with p. To work around this we take advantage of
the fact that short-range forces converge towards 0 with increasing distance. We define
a cutoff radius rc and assume that particles beyond this distance have no influence on
each other. With this trick, force calculations still take the most time, but they don’t
get out of hand as the number of particles increases. Figure 2.2 shows the portion of
the total runtime which is used for force calculation for a different amount of particles.

3



2 Problem Statement

0

20

40

60

80

100

40 50 60 70 80

Fo
rc

e%

Particles per Dimension

Figure 2.2: Percentage of total execution time for force calculations for different number
of particles. Particles are arranged in a 3D grid.

There are now many different sub-algorithms we can choose from to exploit the cutoff
radius. Many of them also share some adjustable parameters.

Parameter Type Examples
Subalgorithm Discrete Linked Cells, Verlet Lists
Cell size factor Continuous 0.5, 1.0, 1.5
Data Layout Discrete AoS, SoA
Newton3 Discrete On, Off

Table 2.1: Parameter space

Some sub-algorithms divide the considered area into cells. Cell size factor can be
adjusted to generate a lot of smaller cells or fewer but larger cells. Data layout specifies
how the particles are stored in memory to enable SIMD operations when appropriate.
Finally, some algorithms can use Newton’s third law of motion to halve the number
of force calculations. So we have a wide range of options. But which configuration is
optimal for a given simulation case is difficult to predict and requires sufficient expert
knowledge.

2.2 General Algorithm Selection Problem

We now want to find the settings that optimize a given goal. In our case, we want to
minimize the runtime of the simulation. To generalize our problem we assume that
we have an unknown objective function f that maps every configuration to a time
value. The time value is not directly the measured time but its negation. This leads to a
maximization problem instead, which will be of use to us later. We call the set of all

4



2 Problem Statement

allowed configurations the search space. For simplicity, we map discrete parameters to
integers. So for the data layout dimension, we do not use the set {AoS, SoA} but {0, 1}.
Our problem is therefore illustrated as follows.

f : X 7→ R (2.7)

X := Xd ×Xc (2.8)

Xd := [N1]× [N2]× ...× [Nd] (2.9)

[N] := {1, 2, ..., N} (2.10)

Xc := [l1, u1]× [l2, u2]× ...× [lc, uc] (2.11)

Meaning we have a discrete search space Xd and a continuous search space Xc. Ni
for any i represents the number of possible values for a particular discrete parameter.
For the continuous parameters, we assume that the allowed values can be described by
a lower limit of li and an upper limit of ui. Thus Xd is a regular d-dimensional grid and
Xc is a c-dimensional hyperrectangle. If the choice of some parameters limits the choice
of others, this can be achieved by modifying f or the acquisition function which we
will discuss in Section 3.2. We can now find the optimal configuration by maximizing
the objective function.

x∗ = arg max
x∈X

f (x) (2.12)

However we assume that we have no expert knowledge, so we don’t know anything
about f . To us, it is an arbitrary black-box function. The only thing we can do is to
evaluate the function at a location x to get its value f (x). In our particular instance, we
accomplish this by running some iterations of the simulation with this configuration
and measuring the time taken. Since our main goal is to keep the overall runtime low
we should avoid evaluating the function too often.

5



3 Bayesian Optimization

3.1 Generative Model

To estimate the form of f with the help of some evaluations, we have to assume a model
of how the values of f (x) are generated. First, we say that f is continuous because
points in the search space which are close to each other should have similar results.
Besides, evaluations do not always have to deliver the same result but can deviate. This
can be due to the distribution of the particles or hardware induced. Therefore, the
following model is suitable [Sha+16].

f (x) = Φ(x)Twww + m (3.1)

y(x) = f (x) + ε (3.2)

The function Φ maps from the search space into an unknown space, in which we can
map linearly to f using the weights www and y-intercept m. The deviations are modelled
by a noise ε. We assume a prior normal distribution on that noise and the weights.

ε ∼ N (0, σ2) (3.3)

www ∼ N (0, V0) (3.4)

Consider any number of configurations x1, ...xn and their corresponding evaluations
yyy := (y(x1), ..., y(xn))T we see that yyy is also normally distributed.

ΦΦΦ :=

Φ(x1)1 . . . Φ(x1)a
...

. . .
...

Φ(xn)1 . . . Φ(xn)a

 (3.5)

yyy ∼ N (m111, ΦΦΦV0ΦΦΦT + σ2III) (3.6)

y is therefore a so-called Gaussian process [Ebd15]. The function Φ which we have
ignored so far is unfortunately not trivial to define. Instead we approximate the
matrix A := ΦΦΦV0ΦΦΦT. Each element Aij corresponds to the inner product of Φ(xi) and

6



3 Bayesian Optimization

Φ(xj) scaled by V0. Intuitively each element describes the similarity between these
configurations. Therefore we approximate each element Aij by k(xi, xj). This is called
the kernel trick and k is accordingly called kernel function. A commonly used function
is the squared exponential kernel [Sha+16].

r(xi, xj)
2 := (xi − xj)

Tdiag(θ1, ..., θc)(xi − xj) (3.7)

kSE(xi, xj) := θ2
0 exp(−1

2
r(xi, xj)

2) (3.8)

θ0, ..., θc are hyperparameters, which can be used to set the degree of influence of
all or certain dimensions on the kernel value. These and m must be adjusted for each
specific case. This can be done manually or automatically. For the former, some prior
knowledge is necessary though.

3.2 Acquisition Functions

Gaussian processes have the convenient property that conditional probabilities can
be expressed in closed form. If we have already measured some runtimes yi for
configurations xi, we can use them to estimate runtimes of not yet tested configurations.
Let us call Dn the evidence set, which contains all measurements made so far. Given
Dn our model infers that the value y∗ for configuration x∗ is normally distributed.

Dn := {(x1, y1), ..., (xn, yn)} (3.9)

y∗|Dn ∼ N (µ(x∗|Dn), σ2(x∗|Dn)) (3.10)

kkk(x) := (k(x, x1), ..., k(x, xn))
T (3.11)

K(xxx) :=

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

 (3.12)

µ(x∗|Dn) = m + kkk(x∗)T(K(xxx))−1(yyy−m) (3.13)

σ2(x∗|Dn) = k(x∗, x∗)− kkk(x∗)T(K(xxx))−1kkk(x∗) (3.14)

7



3 Bayesian Optimization

0

0,5

1

1,5

2

0 0,5 1 1,5 2 2,5 3 3,5 4

y

x

μ(x)

μ(x) + σ(x)

μ(x) - σ(x)

EI

Figure 3.1: 1D examle function evaluated at 1, 2 and 3. Plot shows mean, confidence
interval and expected improvement.

We use these distributions to estimate which configuration will give us the most
information when we test it. The expected information gain is described using so-called
acquisition functions [WHD18]. For this purpose upper confidence bound (UCB),
probability of improvement (PI), or expected improvement (EI) are often used.

αUCB(x|Dn) := µ(x|Dn) + β · σ(x|Dn) (3.15)

αPI(x|Dn) := P[y(x) > ymax|Dn] (3.16)

αEI(x|Dn) := E[max{y(x)− ymax, 0}|Dn] (3.17)

So to decide which configuration xn+1 we test next, we maximize the selected
acquisition function.

xn+1 = arg max
x∈X

α(x|Dn) (3.18)

Figure 3.1 shows the expected improvement of a 1D example function. We can also
infer some information from the plot ourselves. We can easily see that we already have
3 evidence because exactly at these points the variance is low. In a normal distribution,
the probability of deviating from the mean by less than one standard deviation is
approximately 68%. So we expect that in most cases the actual function will be within
the range limited by the dashed lines. We see that the EI avoids values near the
evaluated points, as these probably do not deviate much from the respective values.

8



3 Bayesian Optimization

Nevertheless, we expect equally good values near the current optimum. Accordingly,
EI assigns the highest acquisition value to points near this optimum but with a slight
spacing.

3.3 Hyperparameter Update

The evidence can also be used to adjust the hyperparameter θθθ := (θ0, ..., θc, m) from
Section 3.1. The conditional probability of the vector of evaluations yyy given the vector
of all corresponding configurations xxx is normally distributed.

yyy|xxx ∼ N (m111, Kθθθ(x) + σ2III) (3.19)

If we assume a constant prior over every hyperparameter we can calculate the
probability that given hyperparameters fit the evidence set using Bayes’ theorem.

p(θθθ|Dn) =
p(yyy|xxx, θθθ)p(θθθ)

p(Dn)

=κ
1√

|Kθθθ(xxx) + σ2III|
exp

(
−1

2
(yyy−m111)T(Kθθθ(xxx) + σ2III)−1(yyy−m111)

) (3.20)

κ is a constant factor that can often be ignored because we only compare these
probabilities with each other. We could just use the hyperparameters that maximize
this probability, but this would result in the loss of all other hyperparameters which
may only have a slightly lower probability. To make sure they are taken into account
we use a set of hyperparameters Θ. The acquisition function is now computed by
evaluating it for all hyperparameters of the set and summing up the results weighted
by their respective probabilities.

ν := ∑
θθθ∈Θ

p(θθθ|Dn) (3.21)

α(x|Dn, Θ) =
1
ν ∑

θθθ∈Θ
p(θθθ|Dn) · α(x|Dn, θθθ) (3.22)

3.4 Discrete Dimensions

All previous calculations would also work with our discrete values. But if we simply
use the transformation from Section 2.2 we notice, that the difference of two options
is affected by their position in the set. This is an issue when calculating the distance

9



3 Bayesian Optimization

from Equation 3.7. If we have for example the options {1, 2, 3}, options 1 and 2 will
have a smaller distance than options 1 and 3 even if we have not specified anything to
that effect. One way to solve this problem is to convert the discrete dimension using
one-hot-encoding. Thus each parameter gets its own dimension which can take the
values 0 or 1. When converting, we set the corresponding dimension of the parameter
to 1 and the rest to 0. As a result, the difference between any two options is only
zero if both options are the same. But the method has some shortcomings. Since each
option correlates to a dimension, each option also generates a hyperparameter θi in the
distance function, which weights this dimension more or less. Not only do additional
hyperparameters make the search for the optimal values more difficult, but they can
only be used to a limited extent. θi scales only the distance between two options if
one uses option i and the other does not use option i. For example, we cannot state
that option 1 and option 2 are strongly correlated without affecting their correlation to
option 3. So we generally cannot use the hyperparameters to divide the options into
groups in which they are similar to each other. This would only work if at most one
group contains more than one option, which generally is of no use.

10



4 Cluster Model

As discrete values can not be treated simply like continuous values, we separate both
types. The following idea is based on a paper from Anh Tran, Minh Tran, and Yan
Wang [TTW19]. We create for each discrete value its own Gaussian process. As a
result, we have a grid of Gaussian processes. We call each grid point a cluster. So the
clusters are each associated with a possible discrete tuple xd ∈ Xd. Each cluster models
the continuous search space if the discrete search space is fixed to the corresponding
discrete tuple. A cluster l thus has its own evidence set El and can accordingly estimate
the runtime of a continuous tuple xc independently of the other cluster. Figure 4.1
shows the steps of the model and how it is used in connection with the simulation.

4.1 Correlation between Clusters

If we optimize each cluster individually we would ignore any correlation between
discrete values. But we also cannot let every cluster interact with all others. This would
lead to calculations that grow quadratic with the number of clusters. So we restrict
the interaction of cluster xd to a subset B(xd), which we call its neighborhood. This
method is ideal for excluding cluster pairs that are known to be unrelated. In our case,
we decided to include all clusters in the neighborhood of xd, which have a manhattan
distance of 1 to xd in the configuration encoding. Thus if only one parameter is set
differently, we assume that they still show some correlation. Therefore the number
of neighbors grow in O(N1 + ... + Nd). Without this restriction, the neighbors would
grow in O(N1 · ... · Nd), which rapidly becomes unmanageable. After the clusters have
been roughly sorted out, we can fine-tune the influence between them using weights.
The idea is that when calculating the acquisition of a point we not only include the
information in the corresponding cluster but also its neighbors in a weighted way. We
use two types of weights, which we multiply to obtain the final weight. The first is
completely based on prior knowledge and assigns a fixed value to each pair before any
evidence is added. The second tries to determine the correlation using the evidence
collected so far. Theoretically, there are no restrictions on these weight functions. But
we orientate ourselves on the following intuitive properties. Let us assume we want to
calculate the acquisition of the point (xd, xc). We call the cluster of xd for this calculation
main cluster and each neighbor in B(xd) subcluster. If the main cluster and a subcluster

11



4 Cluster Model

Initial Set of Configurations
Initial Sampling

Add Evidence
to Cluster

Update
Cluster Weights

Update
Hyperparameters

Measured Times

Configuration to useGet Configuration
with maximum

Acquisition

Run with
Configuration and

measure Time

Cluster Model Simulation

Figure 4.1: General workflow of the cluster model. We start with an initial sampling,
without which our cluster model cannot yet work properly. We then enter a
cycle where we use the measured times to update our model and the model
then suggests the next configuration for testing.

12



4 Cluster Model

have evidence at the same continuous position, a significant difference in runtimes
should indicate low similarity between the configurations and thus should lead to a low
weight. If the variance of xc in the main cluster is low, the point should be relatively
accurate. Therefore, subclusters should not have much influence anymore, i.e. they
should have a low weight. Accordingly, if the variance is high, all weights should be
high, because the main cluster is rather uncertain about this point.

4.1.1 Wasserstein Distance

The original paper uses the Wasserstein metric to compare the similarity of the clusters
[TTW19]. Intuitively, both probability density functions are seen as piles of earth. The
height of the pile in a point corresponds to the corresponding probability density at
that point. We now want to get from one heap of earth to the other. For this purpose,
we can move the earth from each point x1 to another point x2. The work we do depends
on the amount we move and the distance |x1 − x2|. The Wasserstein distance is the
minimum amount of work that must be done to get to the other pile. Therefore this
distance is also known as the earth mover’s distance [RTG98]. If m is the main cluster
and l a subcluster, the following weighting is used.

w(m, l) =
(
σ2

m + W2(N (µm, σ2
m),N (µl , σ2

l ))
)−1

(4.1)

Where µk and σ2
k are the expected value and variance of the normal distribution

N (µk, σ2
k ) when the runtime of xc is estimated using the cluster k. The Wasserstein

distance of two normal distributions can be calculated quite easily.

W2(N (µm, σ2
m),N (µl , σ2

l )) = ||µm − µl ||2 + ||σm − σl ||2 (4.2)

Since the Wasserstein distance from the main cluster to itself is zero, its weight is the
inverse of the variance. For low variances, this can lead to very high values. To avoid
numeric instabilities we rescale the weights such that the weight of the main cluster is
1.

w′(m, l) =
σ2

m

σ2
m + W2(N (µm, σ2

m),N (µl , σ2
l ))

(4.3)

4.1.2 Evidence Fitting

We propose another way of weight calculation, which uses the posterior probability of
the Gaussian processes. Each cluster can assign every point xc a normal distribution for
the expected runtime. We can also use this normal distribution to estimate how likely
it is that an evidence pair (x, y) fits into a cluster. The idea is to take the evidence of a

13



4 Cluster Model

subcluster and evaluate if this evidence also suits the main cluster. For this we use the
corresponding probability density function, scaling its maxima to 1.

pm(y|x) = exp

(
−1

2

(
µm − y

σm

)2
)

(4.4)

Similar to the Wasserstein distance, we use the rescaling so that the weight of the
main cluster is fixed at 1 to avoid too large values. This also avoids the problem that
high variances lead to generally low values of the probability density function. To get
the final weight, we combine the values for all evidence of the subcluster using a mean
value function of our choice. The geometric mean can be rewritten in a particularly
elegant way.

w(m, l) =

 ∏
(x,y)∈El

exp

(
−1

2

(
µm(x)− y

σm(x)

)2
) 1

|El |

= exp

− 1
2|El | ∑

(x,y)∈El

(
µm(x)− y

σm(x)

)2


(4.5)

Where El is the evidence set of cluster l and |El | the corresponding number of
evidence. We see that for the geometric mean we only have to calculate the exponential
function once.

4.2 Acquisition using Neighbors

Next, we have to decide how to use the neighbors and weights to calculate the acquisi-
tion of a point (xd, xc).

4.2.1 Weighted Sum of Random Variables

One possibility is to estimate the weighted sum of the runtimes of all neighbors given
the continuous part xc. Since all these times are normally distributed, their sum is also
normally distributed with the following mean and variance.

µ(xd, xc) =
1
ν ∑

l∈B(xd)

w(xd, l) · µl(xc) (4.6)

σ2(xd, xc) =
1
ν2 ∑

l∈B(xd)

w(xd, l)2 · σ2
l (xc) (4.7)

14



4 Cluster Model

ν := ∑
l∈B(xd)

w(xd, l) (4.8)

We can simply replace the normal distribution of the single main cluster with this
combined normal distribution when calculating the acquisition function. The mean of
the distribution is the weighted sum of the individual means. But for the variance, we
have to square the individual weights and the normalization factor ν. Unfortunately ν2

can be significantly larger than the squared weights. In the worst-case, all weights have
the same value w. Then the factor between ν2 and the sum of all squared weights can
be calculated as follows.

ν2

∑
l∈B(xd)

w(xd, l)2 =
(|B(xd)|w)2

|B(xd)|w2 = |B(xd)| (4.9)

The more neighbors we have the lower the final variance. Hence, the value can
become negligible with many neighbors. Additionally, we encounter a problem, if
different clusters contain different numbers of neighbors. In general, a high variance
leads to a high acquisition, so this method would prefer clusters with a low number of
neighbors for no reason.

4.2.2 Weighted Sum of Acquisitions

Alternatively, the acquisition of each cluster can be calculated individually and the
weighted sum of these values can be calculated.

α(xd, xc) =
1
ν ∑

l∈B(xd)

w(xd, l) · αl(xc) (4.10)

Unlike the previous method, the final acquisition is not directly influenced by the
number of neighbors. So this method should be preferred, if not all clusters have
the same or a too high number of neighbors. Interestingly, this approach sometimes
coincides with the calculation of the corresponding mixture distribution. A mixed
distribution results from a random selection from a set of random variables. So in our
case, we randomly select a cluster with probabilities according to their weights. Then
the runtime is generated by the normal distribution of this cluster. The probability
density function of this generated value of y equals the weighted sum of the probability
densities of the normal distributions.

p(y|xd, xc) =
1
ν ∑

l∈B(xd)

w(xd, l) · pl(y|xc) (4.11)

15



4 Cluster Model

For the acquisition functions probability of improvement (Equation 3.16) and expected
improvement (Equation 3.17), we can thus prove that the corresponding formulas for
the mixture distribution equal Equation 4.10.

4.3 Extended Hyperparameter Update

We have now determined how we can use the neighbors to improve our acquisition
calculation. Since each cluster has its own Gaussian process, we have to adjust the
hyperparameter θθθ for each of them. For example, these provide the default mean and
variance for the case that a Gaussian process has no evidence yet. But in the end, mainly
the evidence set dictates the estimations if these cover the search space well. So the
hyperparameters help to estimate points in whose vicinity there is hardly any evidence
so far. Therefore it makes sense that every cluster uses the same hyperparameters
because without evidence each cluster should make the same estimates. So if we want
to use a set of hyperparameters as described in Section 3.3, we have to assign a global
weight to each hyperparameter across all clusters. We want to give a high weight
to the hyperparameters, which fit well to many clusters. To do so we calculate the
same weights for each cluster as in Section 3.3. Each weight indicates how well this
hyperparameter fits in the corresponding cluster. Accordingly, a sensible global weight
is the sum of all individual weights.

p(θθθ|Dn) = ∑
l∈Xd

pl(θθθ|Dl) (4.12)

4.4 Initial Sampling

If we now start with an empty evidence set and use our algorithm to build it incre-
mentally we will encounter some problems. First of all, some clusters do not have any
evidence yet, so we cannot use our evidence fitting to determine the neighbors’ weights.
But we also have a problem using other weight functions when most clusters are empty.
With so little evidence, it is difficult to make a statement about the actual variance of the
runtimes. The default mean, on the other hand, will probably lie between the minimum
and maximum of the current evidence. A cluster, which contains evidence whose
runtime is significantly higher than the rest, thus could lower the default mean heavily.
Most acquisition functions work with a tradeoff between exploration and exploitation.
Generally, this means that points with high mean or high variance are preferred. So
it can occur that empty clusters are never tested because the default mean they use
is too low. Therefore each cluster must contain some evidence before we can use our

16



4 Cluster Model

optimization algorithm. We collect one evidence for every discrete configuration before
we use our model. In our case one evidence in each cluster was sufficient, but of course,
this can vary from case to case.

4.5 Evidence Decay

Our black-box function f is special for molecular dynamics simulations. Every time we
evaluate the function, we jump one iteration step forward. This changes the simulation
with each evaluation. So it can happen that over time the runtime of each configuration
changes. As a result, old evidence can become untrustworthy. So we have to modify
our algorithm in a way, such that the relevance of each evidence becomes less with each
iteration step. We see that in the calculation of the distribution of y given an input x
and evidence set Dn the evidence set mainly affects the kernel. Intuitively the similarity
of x is calculated with each evidence in Dn and similar xi indicate that y is similar to
yi. So to weaken this implication, we can artificially increase the similarity to xi, if the
evidence is old. If expert knowledge is available to assign a relevance weight v(a) to
each difference in age a, the kernel can easily be modified accordingly.

k(xi, ti, xj, tj) = v(|ti − tj|)k(xi, xj) (4.13)

So we additionally remember for each evidence xi its creation time ti. To find the
next configuration to be tested, we, as before, look for the x∗, which maximizes the
acquisition function. Since we know, that the next evidence will have the time of
creation tn+1, we fix t∗ = tn+1 in the calculations. If we do not know how to precisely
define v(a) we can only conclude that the kernel must decrease with an increasing
age difference. If we take a closer look at our Equation 4.13, we notice, that the times
of creation are behaving analogously to the other continuous dimensions. The more
similar the continuous dimensions are, the higher the kernel value. The more similar
the times of creation are, the higher v(a). We have therefore decided to add the times
of creation to the continuous search space.

Xc+ := [l1, u1]× [l2, u2]× ...× [lc, uc]×R (4.14)

This also gives us an additional hyperparameter, which controls the influence of the
time differences. Since these are updated automatically as described in Section 4.3, we
do not need any expert knowledge. In contrast to the other dimensions, no restriction of
the new dimension is necessary. The restriction of the continuous area is only necessary
because otherwise, it is impossible to search it properly. But since the time value

17



4 Cluster Model

for the next evidence is always fixed, we do not encounter any problems during the
optimization.

xn+1 = arg max
x∈Xn

α(x|Dn) (4.15)

Xn := Xd ×
(
Xc × {tn+1}

)
(4.16)

18



5 Tests

The following tests were run on the Linux Cluster of the LRZ Rechenzentrum1. For
each test, we use one node of the CoolMUC-2 segment. These Haswell-based nodes
each have 64 GB DDR4 memory and 28 cores, each supporting 2 hyperthreads. We
implemented our auto-tuning algorithms in the library AutoPas [Gra+19].

5.1 AutoPas

AutoPas2 is an open-source C++ library for molecular dynamic simulations. AutoPas
offers interfaces for custom particles and force functors and thus can also be used for
arbitrary n-body problems. Special containers that define a fixed region are used for
the particles, which make it easier to implement boundary conditions. For example,
temporary particles can be added to the edge of the region to simulate a particle setup
that repeats infinitely in each dimension. But the centerpieces of the library are the
numerous possibilities for the calculation of pairwise short-range interactions like
Linked Cells and Verlet Lists. Accordingly, there are many parameters to set. Whereby
the choice can significantly affect the total runtime. But also users without a scientific
background can easily use the library, as it also supports automatic tuning.

5.2 Algorithms

We compare the following auto-tuning algorithms implemented in the particle simula-
tion library. All algorithms were generalized so that we have two phases. The first one
is called the tuning phase. This corresponds to the optimization problem we discussed
throughout the thesis. Each algorithm can specify different configurations, with which
the simulation is then executed and the measured time is returned. The algorithms
decide for themself how many configurations should be tested. When an algorithm
is satisfied, it selects a configuration and we switch to the non-tuning phase. In this
phase, we simply use the selected configuration for a fixed number of iterations. Many
subalgorithms consume more time in the first iteration because they have to build

1https://doku.lrz.de/display/PUBLIC/Linux+Cluster
2https://github.com/AutoPas/AutoPas

19

https://doku.lrz.de/display/PUBLIC/Linux+Cluster
https://github.com/AutoPas/AutoPas


5 Tests

certain data structures. So with the non-tuning phase, we avoid unnecessary rebuilds
when we change the configuration. Since the optimal configuration still can change
over time, we start a new tuning phase after each non-tuning phase. Consequently, we
always alternate between the two phases.

5.2.1 Full Search (FS)

Full Search simply searches the entire search space exhaustively. Therefore, it cannot
work with continuous values and must limit them to a finite number. We expect long
tuning phases, but in return, we get a close to an optimal configuration. This approach
can encounter some problems with large search spaces. The tuning phases could
take up most of the time. They could last so long that the first evidence is no longer
representative at the end of the phase. This brute force method is more suitable for
small search spaces.

5.2.2 Bayesian Search (BS)

For Bayesian Search, we use the default Bayesian optimization described in Chapter 3.
We apply the one-hot encoding mentioned in Section 3.4 to handle discrete values. With
some acquisition functions, we could stop the tuning phase if the expected information
gain falls below a set limit. But a proper limit depends on the simulation and the used
acquisition function. For ease of use, we instead define a fixed number of configurations
to be tested each tuning phase.

5.2.3 Bayesian Cluster Search (BCS)

Bayesian Cluster Search uses the cluster model described in Chapter 4. Like BS we
limit our number of tested configurations for the same reasons. The other algorithms
assume that after each non-tuning phase, the previously collected evidence are no
longer trustworthy and therefore discard them for the next tuning phase. Since we
already consider this problem using the evidence decay from Section 4.5, we keep
all our evidence between phases. The initial sampling from Section 4.4 is therefore
only necessary for the first tuning phase. So the relative difference of tuning iterations
compared to BS becomes negligible with an increasing number of phases.

5.2.4 Random Search (RS)

Random Search samples a fixed number of configurations, which we select randomly.
This would correspond to BS if we let the used acquisition function simply return a

20



5 Tests

random value. RS will therefore collect as much evidence as our Bayesian approaches
and thus is a good reference for the quality of our acquisition function.

5.3 Performance

For the tests, we have chosen a homogeneous and an inhomogeneous simulation.
Figure 5.1 shows the performance of each algorithm when the particles are arranged in
a homogeneous 3D grid. Figure 5.2 shows the performances in a simulation where the
positions of the particles are generated using a 3-variate normal distribution. This leads
to a strong concentration of particles at one point and the particle density decreases with
increasing distance from it. Figure 5.3 visualizes both setups in 2 dimensions. We ran
the different algorithms for 400 iterations multiple times and measured the time each
run took. For each algorithm, we sampled 20 full runs. In all cases, FS took the longest.
On average, RS, BS, and then BCS followed. So in general our algorithm performs
best. Figure 5.4 shows the average relative advantage of BCS for each individual case.
We see that FS constantly leads to the same runtime because it always tests the same
configuration. The Bayesian approaches may vary because sometimes different results
are obtained when maximizing the acquisition function. BCS is a bit more consistent
than BS. But this also means that BS can be faster if it finds a good configuration by
luck.

5.4 Analysis

We have done some analysis to find out the reason for the lower runtimes. This could
provide a better understanding and may help to find possible improvements.

5.4.1 Overhead

In Figure 5.5 we see the total time each tuning algorithm used to find the next con-
figuration to test. The Bayesian approaches consume significantly more time here in
relation to the other algorithms. But the force calculations exceed these times by far, so
this overhead of each algorithm is negligible.

5.4.2 Tuning and non-Tuning Times

Figure 5.7 shows us the total time each algorithm spends in the tuning phase. FS
thus consumes the main time in this phase as expected, whereas the other algorithms
have relatively similar times. Their difference mainly results from their selection for

21



5 Tests

(a) Grid of 40x40x40 particles. (b) Grid of 80x80x80 particles.

Figure 5.1: Box-and-whiskers plot of the average time per iteration of different tuning
algorithms. The particles are generated into a 3D grid and each simulation
runs for 400 iterations. Each algorithm was sampled 20 times.

(a) 60000 particles are normally distrbuted
using a standard deviation of 3.0.

(b) 60000 particles are normally distrbuted
using a standard deviation of 5.0.

Figure 5.2: Box-and-whiskers plot of the average time per iteration of different tuning
algorithms. The particles’ positions are generated using a 3-variate normal
distribution and each simulation runs for 400 iterations. Each algorithm was
sampled 20 times.

22



5 Tests

(a) Particles aligned in a grid. This is a homoge-
neous setup where the density of particles
is roughly the same everywhere.

(b) Particles’ positions generated using a multi-
variate normal distribution. This is a inho-
mogeneous setup where most particles are
located in the center

Figure 5.3: Example particle setups in 2D.

9% 10% 13% 13%

59%

74%
82%

71%

35%

53%
47%

52%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Grid40 Grid80 Gauss3 Gauss5

FS

BS

RS

Figure 5.4: Average portion of total time that BCS needs in comparison to other algo-
rithms.

23



5 Tests

(a) Grid of 40x40x40 particles. (b) 60000 particles are normally distrbuted
using a standard deviation of 3.0.

Figure 5.5: Box-and-whiskers plot of the total time used by different tuning algorithms
to choose the next configuration. Each simulation runs for 400 iterations
and each algorithm was sampled 20 times.

the non-tuning phases we see in Figure 5.8. The plot shows the average time of non-
tuning iterations, which indicates the quality of the selected configuration from the
corresponding tuning phase. Unsurprisingly FS mostly achieves a good time value,
whereas the quality of the selection of RS fluctuates strongly. BS is a bit better than
Random Search and our cluster-based algorithm even performs as well as Full Search.
So our algorithm usually achieves an almost optimal selection without having to seek
the entire search space. Figure 5.6 lists the number of tuning and non-tuning iterations
for the different algorithms. BCS reduces the number of tuning iterations considerably
while maintaining an equally good choice.

5.4.3 Force Directed Graph

To get a feel for how the evidence in our cluster algorithm is selected we use force-
directed graphs (FDG) [Ban+13]. The creation of such a graph is similar to a molecular
dynamics simulation. First, we have a weighted graph, which consists of nodes and
weighted edges. In our case, the nodes are all our clusters and the edge weights are the
corresponding cluster weights from Section 4.1. We distribute the nodes randomly over
a space. We now pretend that all nodes are particles that exert forces on each other. The
repulsive forces are adjusted so that the particles do not overlap too much or all form a
lump. The attractive forces are determined using the edge weights. A larger weight

24



5 Tests

69

321

30

30 30

30

30 30

79

271
340 340

0

50

100

150

200

250

300

350

400

FS BCS BS RS

non-Tuning Phases

2nd Tuning Phase

1st Tuning Phase

Initial Sampling

Figure 5.6: Number of tuning and non-tuning Iterations of tested algorithms. The
search space contains 107 configurations. For one evidence we measure 3
iterations. We collect 10 evidence per tuning phase for the BCS, BS and RS.

should generate a larger force. The idea of our cluster weights is to give more weight
to clusters, from whom we expect similar runtimes. Accordingly, this method should
ensure that these clusters are grouped together in space. Figure 5.9 shows the FDG
at the end of an example run. We have colored the nodes according to their runtime
and see that indeed the resulting groups have similar runtimes. Each number i shown
in the graph corresponds to the i-th sampled evidence of the last tuning phase. We
see here that only a maximum of one element of each group is sampled here. Since
we expect similar times for the rest of the group, we can consider them as sampled
as well. This allows us to cover the search space just as well as Full Search, but with
significantly less evidence.

25



5 Tests

(a) Grid of 40x40x40 particles. (b) 60000 particles are normally distrbuted
using a standard deviation of 3.0.

Figure 5.7: Box-and-whiskers plot of the total time of different tuning algorithms during
tuning phases. Each simulation runs for 400 iterations and each algorithm
was sampled 20 times.

(a) Grid of 40x40x40 particles. (b) 60000 particles are normally distrbuted
using a standard deviation of 3.0.

Figure 5.8: Box-and-whiskers plot of the average time per iteration of different tuning al-
gorithms during non-tuning phases. Each simulation runs for 400 iterations
and each algorithm was sampled 20 times.

26



5 Tests

3

8
9

10

12

13

17

18

19

1
7

6 5

15

2

11

20

16
4

14

Figure 5.9: Force directed graph using allowed configuration as nodes. The weights
between nodes equal the weights between the corresponding cluster. The
numbers show the order in which the evidence was selected in the last
tuning phase. The nodes are colored according to their runtime, where red
corresponds to a low runtime and white to a high runtime. We have limited
the selection of the cell size factor to 3 values. Each CSF corresponds to one
of the connected graphs.

27



6 Conclusion

In summary, we showed how Bayesian optimization enables us to optimize a black-box
function without having to evaluate the function too often. This is especially helpful
if each evaluation is associated with some cost, which in our case was time. With the
help of acquisition functions, we estimate the information gain of each point and could
correspondingly extract adequate knowledge with a limited number of evaluations.
But this method is not well suited for discrete spaces. To get around this, we consider
each discrete value separately. Each value thus forms a cluster in which we only had
to optimize the continuous values. But the clusters can also show similarities to each
other, which we want to exploit. Using the evidence collected so far, we estimate the
similarity between the clusters and incorporate this knowledge into the calculations.
With this, we can often achieve a similarly good result as an exhaustive search, while
reducing the number of needed evidence dramatically. This is especially advantageous
for auto-tuning since the goal is to keep the overall runtime low. Our solution is
appropriate for this and we have kept it as general as possible so that it can be applied
to many other problems as well.

28



Bibliography

[All04] M. P. Allen. Introduction to molecular dynamics simulation. 2004.

[Ban+13] M. J. Bannister, D. Eppstein, M. T. Goodrich, and L. Trott. “Force-Directed
Graph Drawing Using Social Gravity and Scaling.” In: Graph Drawing.
Ed. by W. Didimo and M. Patrignani. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 414–425. isbn: 978-3-642-36763-2.

[Ebd15] M. Ebden. Gaussian Processes: A Quick Introduction. 2015. arXiv: 1505.02965
[math.ST].

[Gra+19] F. A. Gratl, S. Seckler, N. Tchipev, H. Bungartz, and P. Neumann. “AutoPas:
Auto-Tuning for Particle Simulations.” In: 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). May 2019, pp. 748–
757. doi: 10.1109/IPDPSW.2019.00125.

[HLW03] E. Hairer, C. Lubich, and G. Wanner. “Geometric numerical integration
illustrated by the Störmer–Verlet method.” In: Acta Numerica 12 (2003),
pp. 399–450. doi: 10.1017/S0962492902000144.

[Liz+07] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. “Automatic Gait
Optimization with Gaussian Process Regression.” In: Jan. 2007, pp. 944–949.

[MQ14] Z. E. Musielak and B. Quarles. “The three-body problem.” In: Reports
on Progress in Physics 77.6 (June 2014), p. 065901. issn: 1361-6633. doi:
10.1088/0034-4885/77/6/065901.

[Ngu19] V. Nguyen. “Bayesian Optimization for Accelerating Hyper-Parameter Tu-
ning.” In: 2019 IEEE Second International Conference on Artificial Intelligence
and Knowledge Engineering (AIKE). 2019, pp. 302–305.

[RTG98] Y. Rubner, C. Tomasi, and L. J. Guibas. “A metric for distributions with ap-
plications to image databases.” In: Sixth International Conference on Computer
Vision (IEEE Cat. No.98CH36271). 1998, pp. 59–66.

[Sha+16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. “Taking
the Human Out of the Loop: A Review of Bayesian Optimization.” In:
Proceedings of the IEEE 104.1 (Jan. 2016), pp. 148–175. issn: 1558-2256. doi:
10.1109/JPROC.2015.2494218.

29

https://arxiv.org/abs/1505.02965
https://arxiv.org/abs/1505.02965
https://doi.org/10.1109/IPDPSW.2019.00125
https://doi.org/10.1017/S0962492902000144
https://doi.org/10.1088/0034-4885/77/6/065901
https://doi.org/10.1109/JPROC.2015.2494218


Bibliography

[TTW19] A. Tran, M. Tran, and Y. Wang. “Constrained mixed-integer Gaussian
mixture Bayesian optimization and its applications in designing fractal and
auxetic metamaterials.” In: Structural and Multidisciplinary Optimization (Jan.
2019). doi: 10.1007/s00158-018-2182-1.

[Ulm+15] D. Ulmasov, C. Baroukh, B. Chachuat, M. P. Deisenroth, and R. Misener.
Bayesian Optimization with Dimension Scheduling: Application to Biological
Systems. 2015. arXiv: 1511.05385 [stat.ML].

[WHD18] J. T. Wilson, F. Hutter, and M. P. Deisenroth. Maximizing acquisition functions
for Bayesian optimization. 2018. arXiv: 1805.10196 [stat.ML].

30

https://doi.org/10.1007/s00158-018-2182-1
https://arxiv.org/abs/1511.05385
https://arxiv.org/abs/1805.10196

	Abstract
	Contents
	Introduction
	Problem Statement
	Molecular Dynamics
	General Algorithm Selection Problem

	Bayesian Optimization
	Generative Model
	Acquisition Functions
	Hyperparameter Update
	Discrete Dimensions

	Cluster Model
	Correlation between Clusters
	Wasserstein Distance
	Evidence Fitting

	Acquisition using Neighbors
	Weighted Sum of Random Variables
	Weighted Sum of Acquisitions

	Extended Hyperparameter Update
	Initial Sampling
	Evidence Decay

	Tests
	AutoPas
	Algorithms
	Full Search (FS)
	Bayesian Search (BS)
	Bayesian Cluster Search (BCS)
	Random Search (RS)

	Performance
	Analysis
	Overhead
	Tuning and non-Tuning Times
	Force Directed Graph


	Conclusion
	Bibliography

