
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Datenbanksysteme

DOCTORAL THESIS

Advancing Spatial Analytical
Database Systems

Varun Pandey

TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Datenbanksysteme

DOCTORAL THESIS

Advancing Spatial Analytical
Database Systems

Varun Pandey

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Pramod Bhatotia

Prüfer der Dissertation: 1. Prof. Alfons Kemper, Ph.D.

2. Prof. Dr. Florian Matthes

3. Prof. Mohamed Sarwat Abdelghany Aly Elsayed, Ph.D.
(Arizona State University)

Die Dissertation wurde am 11.01.2021 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 18.04.2021

angenommen.

iii

Abstract

Spatial data is pervasive. Over the last decade, we have observed a rise in
amount of spatial data that is generated everyday. It comes from a plethora of
sources, such as GPS-enabled devices in the form of cell phones, cars, sensors,
and from various consumer-based applications such as Uber, Foursquare,
location-tagged posts in Facebook, Twitter, and Instagram. This exponential
growth in spatial data has led the research community to focus on building
systems and applications that can process spatial data efficiently. At the same
time, advances in machine learning enable researchers and practitioners to
build techniques and systems that push the limit of the state-of-the-art.

This thesis makes three contributions to the design and implementation
of systems that handle spatial data. First, we study the big-data spatial an-
alytics systems that have emerged in recent years. We thoroughly compare
these systems empirically for all major features that they support using var-
ious queries and real-world datasets. Second, we carry out a study of the
state-of-the-art spatial libraries that are used in many big-data systems and
services, many of which are multi-million dollar industries. These systems
rely on spatial processing and indexing capabilities of these libraries to build
efficient solutions. We empirically compare these libraries based on four pop-
ular spatial queries using two real-world datasets. Third, we propose an ap-
proach to apply learned indexes to five classical spatial indexes in order to
improve spatial query processing on location-data. We show that learned
index outperform binary search for searching within a spatial partition and
that spatial index structures require tuning for various datasets and query
workloads. In addition, we also integrate spatial query processing capabil-
ities in a state-of-the-art main-memory database system, HyPer, invented at
TU Munich.

v

Zusammenfassung

Geodaten sind allgegenwärtig. In den letzten zehn Jahren haben wir einen
enormen Anstieg der täglich generierten Geodaten beobachtet können. Diese
stammen aus einer Vielzahl von Quellen wie zum Beispiel GPS-fähige Gerä-
ten in Form von Mobiltelefonen, Autos, Sensoren und auch aus verschiede-
nen verbraucherorientierten Anwendungen wie Uber, Foursquare und stand-
ortbezogenen Beiträge auf Facebook, Twitter und Instagram. Dieses expo-
nentielle Wachstum der Geodaten hat die Forschungsgemeinschaft veran-
lasst, sich auf die Entwicklung von Systemen und Anwendungen für die ef-
fiziente Verarbeitung von Geodaten zu konzentrieren. Gleichzeitig ermögli-
chen Fortschritte beim maschinellen Lernen den Forschern und Praktikern,
Techniken und Systeme zu entwickeln, die die Grenzen des Standes der Tech-
nik vorantreiben.

Diese Arbeit leistet drei Beiträge zum Entwurf und zur Implementierung
von Geodaten Systemen. Zunächst untersuchen wir, die in den letzten Jah-
ren entstandenen Big Data Analysesysteme für Geodaten. Mithilfe verschie-
dener Abfragen und realer Datensätze erstellen wir einen empirischen Ver-
gleich der wichtigsten Funktionen dieser Systeme. In einem zweiten Schritt
führen wir eine Studie über die neuesten Programmbibliotheken für Geo-
daten durch. Diese Bibliotheken werden in vielen Big-Data-Systemen und
-Diensten, von denen viele mehrere Millionen Dollar kosten, verwendet. Die-
se Systeme stützen sich auf räumliche Verarbeitungs- und Indizierungsfunk-
tionen, welche von den Programmbibliotheken bereitgestellt werden, um ef-
fiziente Lösungen zu erstellen. Wir vergleichen diese Bibliotheken empirisch
anhand von vier gängigen räumlichen Abfragen unter Verwendung von zwei
realen Datensätzen. Drittens, schlagen wir einen Ansatz vor, um gelernte In-
dizes auf fünf klassische räumliche Indizes anzuwenden, um die räumliche
Abfrageverarbeitung für Standortdaten zu verbessern. Wir zeigen, dass der
gelernte Index den binären Suchalgorithmus für die Suche innerhalb einer
räumlichen Partition übertrifft und dass räumliche Indexstrukturen eine An-
passung für verschiedene Datensätze und Abfragen erfordern. Darüber hin-
aus haben wir Funktionen zur Verarbeitung räumlicher Abfragen in das an
der TU München erfundene moderne Hauptspeicher-Datenbanksystem, Hy-
Per, integriert.

vii

Acknowledgments

It gives me immense joy to express my gratitude towards everyone who con-
tributed and advised me over the years of my Ph.D. journey.

First and foremost, I would like to thank my advisor, Prof. Alfons Kem-
per. He has always been very supportive of every work that I was part of,
and was always present whenever I needed his help or advice. I would also
like to thank Prof. Thomas Neumann on being there whenever we needed
his guidance, especially while implementing HyPerSpace.

I am also very grateful to the whole thesis committee. I am very thankful
to Prof. Florian Matthes and Prof. Mohamed Sarwat for serving on my thesis
committee and for their invaluable feedback on my work. I am also very
grateful to Prof. Pramod Bhatotia for chairing my thesis committee. I would
also like to thank Frau Elisabeth Sommer, and Frau Manuela Fischer, who
made the whole process of submission, defence, and publication of the thesis
very simple.

A special thanks goes to Angelika Reiser and Silke Prestel. They were
very helpful when I first moved to Germany, and advised me about so many
aspects of life in the country. Angelika is also the best reviewer I know, who
critically refined so many of our publications. Next, I would like to thank
all of my colleagues in the database group, especially Andreas Kipf, and
Alexander van Renen who I worked closely with. Both of you have been
great friends as well as colleagues. I would also like to thank all of my co-
authors in every publication. None of the work would be as refined without
your invaluable feedback, and guidance.

I would also like to thank all of my friends from India who are now all
over the world. Next I would like to thank all the friends I made in Ger-
many, who made my day to day life easy. I would like to thank Romain,
Oliver, Sanjay, and Chinmay for being great flatmates. I thoroughly enjoyed
spending my time with all of you. I would also like to thank Vicky, Swetha,
Anmol, Mathieu, Deepesh, Advait, Adya, Niko, Maria, Francesco, Kiwon,
Narasimha, Narendra and many more for all the great times together. I
would also like to thank all of my teammates from the football team, espe-
cially Ian, Youssef, Jose, Cladio, Ignacio, Nikita, and many more. Thank you
all for the great memories, on the field as well as outside it.

I would also like to thank my parents, Jayant and Kavita, and my sister,
Priyakshi, for their outstanding support. They all taught me to value educa-
tion, to always help and be there for others, and to never give up. I wouldn’t
have been able to complete this thesis without your guidance and support.
I would also like to thank all the other members of my family, my uncles,
aunts, and cousins. Finally, I would also like to thank all of my grandparents
who remain a great source of inspiration to me.

viii

Funding. This work has been partially supported by the TUM Living Lab
Connected Mobility (TUM LLCM) project and has been funded by the Bavar-
ian Ministry of Economic Affairs, Energy and Technology (StMWi) through
the Center Digitisation.Bavaria, an initiative of the Bavarian State Govern-
ment.

Preface

Excerpts of this thesis have been published in advance.
Chapter 2 is drawn from the following publications with minor modifica-

tions to the description of “HyPerSpace”:

Varun Pandey, Andreas Kipf, Dimitri Vorona, Tobias Mühlbauer, Tho-
mas Neumann, and Alfons Kemper. “High-Performance Geospatial
Analytics in HyPerSpace”. In: Proceedings of the 2016 International Con-
ference on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016. 2016, pp. 2145–2148

Chapter 4 is drawn from the following publications with minor modifica-
tions:

Varun Pandey, Alexander van Renen, Andreas Kipf, and Alfons Kem-
per. “An Evaluation Of Modern Spatial Libraries”. In: Database Systems
for Advanced Applications - 25th International Conference, DASFAA 2020,
Jeju, South Korea, September 21-24, 2020, Proceedings, Part II. vol. 12113.
Lecture Notes in Computer Science. Springer, 2020, pp. 157–174

An extended version appeared in Data Science and Engineering (DSE)
(Special Issue of DASFAA 2020):
Varun Pandey, Alexander van Renen, Andreas Kipf, and Alfons Kem-
per. “How Good Are Modern Spatial Libraries?” In: Data Sci. Eng. 6.2
(2021), pp. 192–208

Chapter 3 is drawn from the following publications with modifications to
the description and additional unpublished results:

Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
“How Good Are Modern Spatial Analytics Systems?” In: Proc. VLDB
Endow. 11.11 (2018), pp. 1661–1673

Chapter 5 is drawn from the following publications with modifications to
the description with additional algorithms, and unpublished results:

Varun Pandey, Alexander van Renen, Andreas Kipf, Jialin Ding, Ibrahim
Sabek, and Alfons Kemper. “The Case for Learned Spatial Indexes”. In:
AIDB@VLDB 2020, 2nd International Workshop on Applied AI for Database
Systems and Applications, Held with VLDB 2020, Monday, August 31, 2020,
Online Event / Tokyo, Japan. 2020

Chapters 1 and 6 also draw from these publications, but also contain
novel, unpublished material. In addition to these publications, the author
of this thesis also co-authored the following related work, which is not part
of this thesis:

x

Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas Neu-
mann, and Alfons Kemper. “Analytics on Fast Data: Main-Memory
Database Systems versus Modern Streaming Systems”. In: Proceed-
ings of the 20th International Conference on Extending Database Technology,
EDBT 2017, Venice, Italy, March 21-24, 2017. 2017, pp. 49–60

Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas Neu-
mann, and Alfons Kemper. “Scalable Analytics on Fast Data”. In: ACM
Trans. Database Syst. 44.1 (2019), 1:1–1:35

Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Pe-
ter A. Boncz, Thomas Neumann, and Alfons Kemper. “Approximate
Geospatial Joins with Precision Guarantees”. In: 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19,
2018. 2018, pp. 1360–1363

Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa,
Christoph Anneser, Eleni Tzirita Zacharatou, Harish Doraiswamy, Pe-
ter A. Boncz, Thomas Neumann, and Alfons Kemper. “Adaptive Main-
Memory Indexing for High-Performance Point-Polygon Joins”. In: Pro-
ceedings of the 23nd International Conference on Extending Database Tech-
nology, EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020.
OpenProceedings.org, 2020, pp. 347–358

Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa,
Peter A. Boncz, Thomas Neumann, and Alfons Kemper. “Adaptive
Geospatial Joins for Modern Hardware”. In: CoRR abs/1802.09488
(2018)

Eleni Tzirita Zacharatou, Andreas Kipf, Ibrahim Sabek, Varun Pandey,
Harish Doraiswamy, and Volker Markl. “The Case for Distance-Bounded
Spatial Approximations”. In: 11th Conference on Innovative Data Systems
Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceed-
ings. www.cidrdb.org, 2021

All of the publications listed above are marked with an asterisk (*) in the
bibliography in compliance with § 6 Abs. 6 Satz 3 Promotionsordnung der
Technischen Universität München.

xi

Contents

1 Introduction 1
1.1 Big Data And Challenges . 1
1.2 Big Data Ecosystem . 3

1.2.1 Workloads . 3
1.2.2 Data Source . 4
1.2.3 Data Storage . 4
1.2.4 Distributed SQL Query Engines 6
1.2.5 Big Data Computing Frameworks 6

1.3 Spatial Data . 8
1.4 The Learned Era . 10
1.5 Contributions . 10

2 HyPerSpace 13
2.0.1 Introduction . 13
2.0.2 HyPerSpace . 15
2.0.3 Evaluation . 15
2.0.4 Visualization using HyPerSpace 18
2.0.5 Take-away message . 18

3 Modern Spatial Systems 21
3.1 Introduction . 21
3.2 Motivation . 22
3.3 Queries . 23

3.3.1 Range Query . 23
3.3.2 k Nearest Neighbors Query 23
3.3.3 Spatial Join . 24
3.3.4 k Nearest Neighbors Join 24

3.4 Spatial Analytics Systems . 24
3.4.1 Hadoop-GIS . 24
3.4.2 SpatialHadoop . 26
3.4.3 SpatialSpark . 27
3.4.4 GeoSpark . 28
3.4.5 Magellan . 28
3.4.6 SIMBA . 28
3.4.7 LocationSpark . 29

3.5 Experimental Setup . 30
3.5.1 Cluster Setup And Tuning Spark 30

3.6 Tuning Amazon EMR and Apache Spark 31
3.6.1 Datasets . 33
3.6.2 Spark Memory Management Model and Caching RDDs 34

xii

3.6.3 Performance Metrics . 35
3.7 Evaluation . 36

3.7.1 Memory Costs . 36
3.7.2 Range Query Performance 37
3.7.3 kNN Query Performance 39
3.7.4 Distance Join Performance 41
3.7.5 Spatial Joins Performance 43
3.7.6 kNN Join Performance 48
3.7.7 US Census TIGER Dataset 50

Distance Join Performance 51
kNN Join Performance 51
Spatial Joins Performance 53

3.8 Conclusions And Future Work 53

4 Modern Spatial Libraries 59
4.1 Introduction . 59
4.2 Background . 60

4.2.1 Geometry Models . 60
4.2.2 When Can Things Go Wrong In Planar Geometries? . . 62

4.3 Queries . 63
4.3.1 Range Query . 63
4.3.2 Distance Query . 64
4.3.3 k-nearest neighbors Query 64
4.3.4 Spatial Join . 64

4.4 Libraries . 64
4.4.1 ESRI Geometry API . 64
4.4.2 Java Spatial Index . 65
4.4.3 JTS Topology Suite and Geometry Engine Open Source 66
4.4.4 Google S2 Geometry . 66
4.4.5 Vantage Point Tree . 67

4.5 Methodology . 67
4.6 Evaluation . 69

4.6.1 Indexing Costs . 70
4.6.2 Range Query . 72
4.6.3 Distance Query . 74
4.6.4 k-NN Query . 75
4.6.5 Point-In-Polygon Join Query 76

4.7 Discussion . 77
4.7.1 Why Refinement Should Be Looked At? 77
4.7.2 Distributed Spatial Analytics Systems 79

Spatial Partitioning . 80
4.8 Related Work . 81
4.9 Conclusions . 81

xiii

5 The Case For Learned Spatial Indexes 85
5.1 Introduction . 85
5.2 Approach . 87

5.2.1 Partitioning Techniques 87
Fixed and Adaptive Grid 87
Quadtree . 88
K-d tree . 88
Sort-Tile-Recursive (STR) packed R-tree 88

5.2.2 Building Index . 89
5.2.3 Range Query Processing 89

Search Within Partition 91
5.2.4 Distance Query Processing 92
5.2.5 Join Query Processing 93

5.3 Evaluation . 94
5.3.1 Datasets . 94
5.3.2 Range Query Performance 95

Tuning Partitioning Techniques 95
Query Performance . 98

5.3.3 Distance Query Performance 100
Tuning Partitioning Techniques 100
Query Performance . 102

5.3.4 Join Query Performance 104
5.3.5 Indexing Costs . 106

5.4 Related Work . 106
5.5 Conclusions and Future Work 108

6 Future Work 111

xv

List of Figures

1.1 Growth in sales of handheld and wearable devices, and the
expected growth of connected IoT devices 8

2.1 HyPerSpace vs. related systems: throughput of ST_Covers us-
ing lat/long co-ordinates . 16

2.2 Microbenchmark results: throughput of ST_Covers using lat/long
co-ordinates . 17

2.3 Interactive visualization of a real-time replay of NYC taxi rides
using HyPerMaps . 19

3.1 A generalized indexing scheme for distributed spatial analyt-
ics systems . 26

3.2 maximizeResourceAllocation deployment vs a better deployment 31
3.3 Memory footprint for various datasets 36
3.4 Indexing costs . 37
3.5 Range query performance on a single node for different selec-

tion ratio (σ) . 38
3.6 Range query performance for all geometric objects scaling up

the number of nodes [selection ratio (σ) = 1.0] 38
3.7 Range query performance scaling up the number of nodes for

different selection ratio (σ) on different datasets 40
3.8 kNN query performance varying k 41
3.9 kNN query scalability with k = 10 41
3.10 Distance join cost breakdown scaling up the number of nodes 42
3.11 Distance join scalability . 43
3.12 Distance join shuffle costs . 43
3.13 Scalability of all spatial joins for different systems while scal-

ing up the number of nodes . 44
3.14 Spatial joins peak execution memory consumption 45
3.15 Spatial joins shuffle read costs 45
3.16 Spatial joins shuffle write costs 46
3.17 Total runtime cost breakdown for spatial joins between vari-

ous geometric objects on a single node 46
3.18 Point-Rectangle spatial join cost breakdown scaling up the num-

ber of nodes . 47
3.19 kNN join cost breakdown scaling up the number of nodes . . 49
3.20 kNN join scalability . 49
3.21 kNN join shuffle costs . 49
3.22 Distance join cost breakdown scaling up the number of nodes 51
3.23 Distance join scalability . 51

xvi

3.24 Distance join shuffle costs . 52
3.25 kNN join cost breakdown scaling up the number of nodes . . 52
3.26 kNN join scalability . 52
3.27 kNN join shuffle costs . 53
3.28 Scalability of all spatial joins for different systems while scal-

ing up the number of nodes . 54
3.29 Spatial joins peak memory consumption 55
3.30 Spatial joins shuffle read costs 55
3.31 Spatial joins shuffle write costs 56
3.32 Total runtime cost breakdown for spatial joins between vari-

ous geometric objects on a single node 56
3.33 Point-Rectangle spatial join cost breakdown scaling up the num-

ber of nodes . 57

4.1 Datasets: NYC Taxi trips are clustered in central New York
while Tweets are spread across the city 70

4.2 Index sizes for the two datasets 71
4.3 Index building times for the two datasets 71
4.4 Range query performance varying the number of points and

selectivity of the query rectangle for NYC Taxi and Twitter
Datasets . 73

4.5 Distance query performance varying the number of points and
selectivity of the query rectangle for NYC Taxi Dataset and
Twitter Datasets . 74

4.6 kNN query performance varying the number of points and k
for NYC Taxi and Twitter Datasets 75

4.7 Join query performance for NYC Taxi and Twitter Datasets . . 76
4.8 Refinement costs for Midtown Manhattan Polygon for NYC

Taxi Dataset using various contains functions in JTS 78

5.1 Machine Learning vs. Binary Search. For low selectivity
(0.00001%), the index and refinement phases dominate, while
for high selectivity (0.1%), the scan phase dominates (parame-
ters are tuned to favor Binary Search) 86

5.2 An illustration of the different partitioning techniques 86
5.3 Datasets: (a) Tweets are spread across New York, (b) NYC

Taxi trips are clustered in central New York, and (c) All Nodes
dataset from OSM . 95

5.4 Range query configuration - ML vs. BS for low selectivity
(0.00001%) . 96

5.5 Effect of number of cells and number of points scanned for
Fixed-grid on Taxi Trip dataset for skewed queries (0.00001%
selectivity) . 97

5.6 Effect of number of cells and number of points scanned for
Quadtree on Taxi Trip dataset for skewed queries (0.00001%
selectivity) . 98

5.7 Total range query runtime with parameters tuned on selectiv-
ity 0.00001% . 99

xvii

5.8 Distance query configuration - ML vs. BS for low selectivity
(0.00001%) . 103

5.9 Total distance query runtime with parameters tuned on selec-
tivity 0.00001% . 105

5.10 Join query performance for the three datasets 107
5.11 Index build times and sizes for the three datasets 108

xix

List of Tables

3.1 Overview of features in spatial analytics systems 25
3.2 Evaluated systems, their compatible Spark version, and de-

faults for the experiments . 30
3.3 Spark configuration parameters 32
3.4 Details of the datasets used for evaluation 33
3.5 Strengths and Weaknesses . 57

4.1 Selected features of the libraries 65
4.2 Selected features of all indexes 68
4.3 CPU Counters - Range query datasize = 50M tweets, selec-

tivity = 0.1 %, 1 thread, normalized by the number of range
queries. All values are in millions except IPC. 73

4.4 Strengths/Weaknesses of the Libraries 82

5.1 Total range query runtime (in microseconds) for both RadixS-
pline (ML) and binary search (BS) for Taxi Rides dataset on
skewed and uniform query workloads (parameters are tuned
for selectivity 0.00001%) . 101

5.2 Average number of partitions intersected for each partitioning
scheme for selectivity 0.00001% on Taxi Rides and OSM datasets102

1

Chapter 1

Introduction

The most valuable goal of data exploration is to extract information and make
meaningful inferences [68]. Visualization is one of the most powerful and in-
tuitive interactive analysis tools that facilitates data exploration and knowl-
edge discovery [64]. The goal of interactive analysis tools is to empower data
analysts to formulate and assess hypotheses in a rapid and iterative man-
ner. Data exploration and visualization have thus become one of the major
research areas in the era of Big Data.

In 2007, Jim Gray, a pioneering computer scientist, coined the term The
Fourth Paradigm: Data-Intensive Scientific Discovery. He puts forward the
case for one of the biggest challenges for 21st-century science: the new era
of big and data-intensive science. He suggested that to tackle big data there is
a need for a set of tools and technologies that help in data visualization and
exploration.

1.1 Big Data And Challenges

A recent study [141] by International Data Corporation (IDC) predicts that
the global datasphere will grow from 33 zettabytes to 175 zettabytes by 2025.
Today, data is being generated at unprecedented rates, and it comes from a
variety of sources. Square kilometer Area (SKA) radio telescope, will be the
world’s largest radio observatory and is expected to produce 700 terabytes
per second [152, 111]. In a few days, the data generated would eclipse the
current size of the world wide web. The world wide web at the time of writ-
ing consists of at least 5.5 billion1 web pages [174].

Existing literature have investigated multiple definitions of big data. Big
data is generally characterized by the 3V’s [97]: Volume, Variety, and Veloc-
ity. These characteristics also layout the challenges that they bring in stor-
ing, managing, and processing the data. Over the years, more characteristics
(or V’s) have been added, namely, Veracity, Value, Variability, and Visualiza-
tion [162].

1The figure is an underestimation as it is estimated from three search engines, Google,
Bing and Yahoo Search. The approximate size of Google’s index from the same source stands
at 55 billion webpages.

2 Chapter 1. Introduction

• Volume: Volume refers to the sheer size of the large-scale dataset. So-
cial media data alone (Facebook, LinkedIn, Twitter, Strava, etc.) is enor-
mous. YouTube currently sees upload of 500+ hours of video every-
day [199], Google conducts 1.2 trillion searches [57], Facebook gener-
ates 500+ petabytes of data everyday, Strava dataset consists of trillions
of GPS data points [43]. The data sources are usually heterogeneous,
ubiquitous, and dynamic in nature, which, along with the large size of
the data makes storing, retrieving, and processing the data a challeng-
ing task. This also requires changes to existing data mining algorithms
and novel approaches to handle the large size of the data [215].

• Variety: Variety indicates different the types of data, which include un-
structured and semi-structured (audio, video, webpage, text, etc.) as
well as traditional structured data. The data is generated from various
sources which include, user generated contents (e.g. tweeets, blogs,
photos/videos shared by users), transactional data (web logs, business
transactions, feeds of moving objects, sensor networks etc.), scientific
data (celestial data, genome data, health care data), to web data from
search engines and graph data from social networks and RDF knowl-
edge bases [25].

• Velocity: Velocity refers to speed at which the data is generated which
can be real-time or nearly real-time. To utilize the commercial value of
the data, it has to be processed and analyzed in a timely manner i.e,
in real-time. This introduces another challenge because of the rate and
the amount of inserts or updates that needs to be handled in real-time.
Velocity brings challenges to every part of a data management system,
and both storage and the query processing layer needs to be extremely
fast and scalable [25].

• Veracity: [147] defines veracity to coping with the biases, doubts, am-
biguities, and inaccuracies in data. Veracity can be caused by a variety
of factors: collection errors, entry errors, system errors, spammers, ru-
mors and many more. Web is also a soft medium to publish and an-
nounce falsified information across multiple mediums (Twitter, Face-
book, Blogs, etc.). Moreover, customer opinion on different social me-
dia networks and web is different and unclear in nature as it involves
human interaction [161]. Big data can be noisy, and thus requires vali-
dation to isolate high quality data from low quality data.

• Value: Value refers to extraction of knowledge or value from large
amount of structured and unstructured data. The big data in it’s origi-
nal form has less value, but by applying data analytics it can be con-
verted to a high-value asset. For example, values extracted from a
stream of web clicks by internet users is driving the internet economy
today, but organizations are still faced with challenges of storing, man-
aging, and most importantly extracting value from the data [1].

1.2. Big Data Ecosystem 3

• Variability: Variability indicates the variation in the data flow rates [52].
Often, the velocity of the big data is not consistent, and has periodic
peaks and troughs. One example is load on social media websites
which causes peaks in data ingestion as a result of an event. Variabil-
ity also refers to data whose meaning is constantly changing [77]. For
example, data from a source could potentially offer different meaning
every time it is mined. Thus, organizations need to develop sophisti-
cated techniques in order to understand the context in data and decode
it’s exact meaning.

• Visualization: Visualization refers to representing the key informa-
tion and knowledge from large datasets in an instinctive and effective
way by using various visual formats such as pictorial, or graphical lay-
outs [171]. The data can have multiple dimensions and succinctly rep-
resenting the data in a visual format for ease of knowledge extraction
remains a big challenge.

1.2 Big Data Ecosystem

There are several layers or components of Big data. In this section we will
describe the various layers of big data ecosystem.

1.2.1 Workloads

One of the key issue with large-scale data processing, whether be it in enter-
prise, science, medicine etc., is that there can be a wide variety of workloads
which have the potential to be compute intensive. The various types of work-
loads can be:

• Batch-Oriented: these are recurring tasks such as large-scale data min-
ing or aggregation.

• OLTP: OLTP stands for online transaction processing and is focused on
transaction oriented tasks, which includes inserts, updates, and deletes
from a database. These workloads support the daily operational needs
of the business enterprises.

• OLAP: OLAP stands for online analytical processing, and queries large
amount of historical data, aggregated from various sources for data
mining, analytics, and business intelligence purposes. Utilizing busi-
ness intelligence tools, like Tableau, on top of an OLAP engine turns
raw data into insights allowing enterprises to make informed decisions.

• Stream Processing: Streaming data is continuously generated data
from hundreds of different sources, where the data should be processed
sequentially and incrementally on a record-by-record (also called events)
basis or over a window of records or time. Tweets in Twitter are an ex-
ample of streaming workload.

4 Chapter 1. Introduction

• Pattern Search: over structured, semi-structured, and unstructured
data.

1.2.2 Data Source

Big data comes from a variety of sources [25] and can be classified into several
categories:

• User-generated: It comes from a variety of users who voluntarily con-
tribute data, information, or media that then appears before others is
a meaningful or engaging way [93]. Examples include tweets, social
media posts, blogs, photos/videos posted by user on online platforms.

• Scientific Data: is collected from data-intensive experiments or ap-
plications. Example of scientific data includes, celestial data, high-
energy physics data, genome data, health-care data, biomedical/bio-
informatics data, pharmaceutical data, biometric data, radiology data
and many more. It can be structured (e.g., time series), semi-structured
(e.g., XML files) or unstructured (e.g., images).

• Transactional data: is generated by large-scale systems from thousands
of transactions processed by the system. Example can include data
from financial institutions, stock markets, enterprise data, web logs,
and business transactions. It usually is structured with pre-defined
schemas.

• Machine-generated: is generated from a variety of sources and in-
cludes examples such as web server logs, application server logs, net-
work logs, records of user activity etc.

• Internet of Things (IoT): refers network of physical objects that are
embedded with sensors for the aim of connecting and exchanging data
with other devices and systems. IoT includes a wide array of appli-
cations, from consumer based applications such as connected vehicles,
smart bikes, smart e-scooters, home automation, wearable technology,
connected health, elderly care, to enterprise, industrial, environmen-
tal, and military applications such as manufacturing, agriculture, smart
cities, energy management, environment monitoring, wildlife monitor-
ing, military drones, robots, human-wearable biometrics etc.

1.2.3 Data Storage

Big data requires scaling, more specifically horizontal scaling. Horizontal
scaling (also called scaling out) refers to adding more machines to the pool
of resources. Big data, thus, once generated from various data sources, re-
quires storage across multiple machines. For a system to obtain a holistic
view of the data spread across multiple servers or machines, it requires data
management [140]. Data Storage can be divided into two categories: data stor-
age formats and data storage systems. Just as a single machine requires a file

1.2. Big Data Ecosystem 5

system to control how data is stored and retrieved from a storage device,
distributed data stores requires specialized techniques to manage data across
multiple machines. Distributed storage formats is broadly of three types:

• File: File storage is the oldest and most commonly used storage tech-
nology where the data is organized in a hierarchical manner, and the
basic unit of data is a file. File storage in a distributed environment
requires a distributed file system in order to provide a unified view
of the data. Some of the popular distributed file systems are Hadoop
Distributed File System (HDFS) [158], Google File System (GFS) [56],
Amazon EFS [5], IBM General Parallel File System (GPFS) [13], Quant-
cast File System (QFS) [71], Gluster File System (GlusterFS) [34], and
many more.

• Block: Block storage provides fixed size raw-storage capacity in units
called blocks. Every block is assigned a unique address, which is the
only metadata that is attached to the block. Block storage is usually
used for relational databases, NoSQL databases, virtual machines, con-
tainerized applications etc. Block storage has also become very popular
among cloud providers today as a part of IaaS, such as Amazon Elas-
tic Block Storage (EBS) [4], Google Persistent Disk [135], Azure Disk
Storage [11] among many others.

• Object: Object storage is data object, file system metadata, and custom
metadata combined together. It allows user to add custom metadata
to the objects, and thus help in building many applications on top of
it such as distributed warehouses (e.g., Snowflake [31], and Amazon
Redshift [58]), data archive and backup, data lakes etc. Some popular
cloud native block storage offerings are Amazon S3 [7], Azure Blob [16],
IBM Cloud Object Storage [66], etc.

Distributed storage, on a high level, is an abstraction of how the data
is stored on multiple machines in the cluster or on the cloud. Distributed
data stores are responsible for placing the actual data in the distributed stor-
age. These stores or systems can be broadly subdivided into two categories:
NoSQL systems, and relational database systems (RDBMS)

• NoSQL Systems: NoSQL (or non-relational) systems were developed
partly as a response to the unstructured data that originated from the
web which required distributed and faster processing. These systems
promised massive scalability and low latency (even under high load),
but loosened the ACID guarantees, and mostly followed the CAP theo-
rem [20]. The NoSQL systems can be further subdivided into key-value,
document oriented, column-oriented, and graph databases. Some of
the most popular NoSQL systems are BigTable [24], DynamoDB [163],
Cassandra [96], HBase [187], Redis [23], MongoDB [28], Voldemort [137],
CouchDB [9], and several others.

• Databases: Relational databases have been studied and researched for
more than 40 years. But over the years many distributed database sys-
tems have emerged that are relational and especially built to scale out

6 Chapter 1. Introduction

such as Amazon RDS [6], Google Spanner [30] (evolved from a key-
value store to a relational database system), CockroachDB [29], Azure
SQL [12] among several others. At a high level of abstraction, these
systems shard the data across many sets.

1.2.4 Distributed SQL Query Engines

The data in distributed storage can be structured, semi-structured, or un-
structured. Moreover, many of the systems, especially NoSQL systems lead
to development of SQL-like languages that could query the underlying data,
for e.g. Apache Pig for Hadoop[10], HiveQL [176] for Hive. Many dis-
tributed SQL query engines thus also emerged in the past decade, which are
essentially an abstraction layer on top of the distributed storage in order to
run interactive SQL queries, in particular ad hoc queries, on the distributed
data. Majority of these engines were built to address the non-SQL nature of
the NoSQL systems, and in some cases also to completely remove SQL-like
languages that were invented for each of these systems. This made it eas-
ier for practitioners to query the underlying data based on a standard and
robust query language, instead of learning multiple languages for multiple
systems. Presto [155] is layer on top of Cassandra and fully supports the re-
lational model. It has now evolved to query over heterogeneous data stores,
including Hive, HDFS, relational databases and even proprietary stores. Sim-
ilarly, Impala [89], Apache Drill [62] are SQL engines for Hadoop in order to
fully leverage the flexibility and scalability of Hadoop. Google Spanner [30]
also evolved from a key-value store to a full featured SQL system, with query
execution tightly integrated with the other architectural features of Spanner.

1.2.5 Big Data Computing Frameworks

The main big data computing frameworks can be categorized as batch pro-
cessing frameworks, and stream processing frameworks. Here we discuss
two popular batch processing frameworks, and briefly touch upon various
streaming frameworks.

• Apache Hadoop: There are many ideas that Apache Hadoop com-
bined effectively in order to organize, manage, and process large-scale
data. The first observation was related to the storage capacity and the
disk seek speeds. Although, the disk capacities increased tremendously
over the years, the disk access speed lagged behind. For, example ter-
abytes of disk space became the norm a decade ago, yet the disk access
speed was around 100 MB/s. This meant that it took more than two
hours to read the whole data from the disk. One way to mitigate this
problem is to read from multiple disks at the same time, which is what
effectively formed the core of Hadoop. HDFS [158] was inspired from
the Google File System [56], which essentially distributed the data to
multiple machines and exposed a unified view of the data. Since the
data is distributed, the analysis of the data required combining data
from multiple disks (reads), and writing out the subsequent results to

1.2. Big Data Ecosystem 7

disks (writes). MapReduce [33], provides a programming model that
abstracts this problem of disk reads and writes for the end user by trans-
forming it into a computation over a set of keys and values. Hadoop
runs the job by dividing it into two tasks: Map and Reduce. Initially,
the data is processed by the map function and produces an interme-
diate result in the form of key-value. Next, the intermediate result is
sorted using a phase called shuffle, followed by the reduce function.
The reduce function performs a summary operation that processes the
sorted intermediate results, and generates the final output. MapRe-
duce is essentially a batch query processor, and provides the ability to
run ad hoc queries against the whole dataset. Apache Hadoop ecosys-
tem consists of many components: MapReduce, HDFS, Apache Pig (a
data flow language running on top of MapReduce and HDFS), Apache
Hive (a large-scale distributed data warehouse, which manages data on
top of HDFS), HBase (a distributed, column-oriented database on top
of HDFS that supports batch computation using MapReduce, and has
supports for random reads or point queries), ZooKepeer (a distributed
highly available coordination service, which provides services such as
distributed locks), Sqoop (a tool for moving data between RDBMS and
HDFS), etc.

• Apache Spark: Spark [209] is a unified engine for large-scale dis-
tributed data processing. Spark has a programming model similar
to MapReduce, but it extends it to include a data-sharing abstraction
which are known as Resilient Distributed Datasets (RDDs). RDDs are
fault tolerant collections of objects that are partitioned across a cluster.
RDDs are parallel data structures, which can be explicitly persisted in
memory, and allows user to control partitioning for optimal data place-
ment. RDDs can be created using operations known as transformations
(map, filter, groupBy) to the data. RDDs are ephemeral by default which
means that they are computed on the fly whenever an action (such as
count) is called on them, but the user has the ability to persist them in
memory. In case the memory is not sufficient, Spark spills to the disk.
These persisted RDDs can be subsequently called by another action or
transformation (data-sharing). While Hadoop writes the map’s output
to disk, before the shuffle and the reduce phase reads it back into mem-
ory buffers, Spark allows persisting RDDs in memory. This powerful
yet simple abstraction allowed Spark to capture a wide range of pro-
cessing workloads, include SQL, machine learning, graph processing,
and streaming.

• Streaming Frameworks: While in batch processing, the queries are
evaluated over a distinct set of data which is divided into batches, in
streaming, the queries are processed using a progressive time window,
a count-based window, or on just arrived data records. The stream-
ing systems usually follow either of the two computational models:
tuple-at-a-time, or micro-batch. The natural approach is to process the
streams continuously (tuple-at-a-time), however, the events can also be

8 Chapter 1. Introduction

2010 2015 2020
0

200

400

600

800

1000

1200

1400

1600

Handheld devices sold (million)

2014 2016 2018 2020
0

50

100

150

200

250

300

350
Wearable devices sold (million)

2012 2014 2016 2018 2020
0

10

20

30

40

50

Total Connected IoT devices (billion)

Year

N
um

b
er

of
un

it
s

Figure 1.1: Growth in sales of handheld and wearable
devices, and the expected growth of connected IoT de-

vices

batched and processed as small chunks of data (micro-batch). Based
on the computation model, the events are handled as they come into
the system. Computation results are immediately available and con-
tinually updated whenever new data arrives. The streaming engines
are able to ingest and aggregate large amount of events from different
data sources. Some of the popular streaming frameworks are, Apache
Flink [22], Apache Samza [120], Spark Streaming [210], and Apache
Heron [94].

1.3 Spatial Data

A research [27] carried out by Pitney Bowes claims that 80% of all data stored
and maintained by organizations has a location component. Spatial data has
become pervasive. There has been an explosion in the amount of spatial data
being generated at the moment. It comes from the web, billions of phones,
sensors, cars, satellites, delivery drones [190] and a huge array of various
other sources. For example, NASA [116] provides climate projections since
1950 until 2100 for conducting studies of climate change impact. The data
is captured using satellites and provides information about changes in the
terrain etc. over the years. The dataset is approximately 17 TB in size.

At the same time, there has been an emergence of data-driven applica-
tions and location-based services. These services generate a large amount
of location data on a daily basis and have a need to create real-time appli-
cations, including alerting systems, that consider the most current state of
their data, enabling real world awareness. NYC Taxi Rides open dataset [122]
consists of pickup and drop-off locations of more than 2.7 billion rides taken
in the city since 2009. This represents more than 650,000 taxi rides every
day in one of the most densely populated cities in the world, but is only
a sample of the location data that is captured by many applications today.
Foursquare, a popular cell phone application, has over 12 billion check-ins
and has more than 105 million venues mapped around the world [48]. Uber,

1.3. Spatial Data 9

a Transportation Network Company (TNC), recently reported completing 10
billion rides [183] till date, more than doubling the reported 5 billion rides
completed the year before. Lyft, another TNC, now serves 1 million rides a
day [123]. Twitter, a popular social media giant, generates approximately 10
million [105] geo-tagged tweets everyday. Another example is the popular
human exercise tracking application which also incorporates social network
features called Strava. The Strava dataset [43] comprises trillions of GPS data
points. Most of these applications or data capture sources are consumer-
based. These applications capture the location data using handheld-devices
such as cell phones and tablets, or wearable technologies such as smart-
watches and fitness-bands. Figure 1.1 shows the growth in sales of hand-
held devices [121], wearable technologies [157], and the expected growth in
number of connected IoT devices [65] over the years.

Business Intelligence has redefined multiple industries in various ways by
effectively utilizing insights from the data. We argue that coupling Business
Intelligence with Location Intelligence could potentially be a game-changer.
This is also reflected by the fact that many cloud based data warehousing
companies have started rolling out spatial functionalities including Red-
shift [17], Snowflake [125], Amazon , Google’s BigQuery GIS [70] etc.

Spatial data is also not only limited to only consumer data, or business re-
lated data. Spatial data is as prolific in scientific, medical, and environmental
studies. The point-cloud dataset of Netherland consists of 640 billion data
points [124], while the aforementioned NASA climate projections data con-
sists of billions of data points. Square kilometer Area (SKA) radio telescope
will generate 700 terrabytes of data per second [152, 111]. The data captured
would be in the form of an image cube: consisting of two spatial dimensions,
and a spectral frequency. Moreover, pathology data from sources such as
microscopy scanners, generate images in extremely high resolution, where a
3D tissue volume typically generates hundreds of slices, and contains tens of
millions of 3D biological objects. Such data also require complex 3D spatial
processing, such as discovering and verifying spatial patterns among 3D bio-
logical objects like blood vessels, and cells. Finding patterns in such data has
the potential to play a pivotal role in understanding hundreds of diseases.

Following this exponential growth in spatial data, and emergence of big
data frameworks, many big data spatial analytics systems also emerged.
These systems inlcude: HadoopGIS [2] and SpatialHadoop [40] based on
Hadoop; GeoSpark [202, 203, 204], SpatialSpark [197], LocationSpark [173],
and Simba [192] based on Apache Spark; GeoFlink [156] based on Apache
Flink and a distributed spatial index [212] based on Apache Storm.

10 Chapter 1. Introduction

1.4 The Learned Era

Machine Learning and Artificial Intelligence have been extensively studied
over the past few decades. Over the years, machine learning has made break-
throughs mostly due to three driving forces: large-scale datasets, new al-
gorithms, and readily available high computing power. Promising break-
throughs in machine learning lead the database researchers to explore apply-
ing machine learning to designing the data systems. There are many reasons
behind it: data keeps growing, hardware landscape keeps changing, new ap-
plications appear frequently, and it is hard to design one system that meets
the requirements of all such trends [67], as we have seen earlier with multi-
ple systems for big data. This leads to a new design space, tailor the system
to requirements of the applications and the workloads. Machine learning is
proven to be well-equipped to learn patterns and it seems like a natural step
to utilize machine learning in design of data systems.

At the time of writing, machine learning has been applied to many areas
of data systems design, and these areas can be summarized as follows [217]:

• Learning-based Database Configuration: Both databases and big data
analytics systems consist of countless tunable knobs such as cache size,
deadlock timeout, number of concurrent disk I/Os etc. Realizing this,
many researchers proposed to apply machine learning to tuning the
knobs. These research works are based on search-based tuning [218],
traditional ML-based tuning [3, 51], and reinforcement learning ([102,
213]). Moreover, machine learning has also been applied to index selec-
tion [134, 150], and view selection [75, 74].

• Learning-based Database Optimization: Learning-based database op-
timization tries to address some of the most critical and hard problems
in database optimization, such as cardinality estimation using super-
vised [38, 81, 133] and unsupervised [195] models, join order selec-
tion [92, 109, 205], and a full fledged query optimizers [110].

• Learning-based Database Design: Machine learning has also been ap-
plied to the area of designing various data structures for databases.
This includes, replacement for traditional index structures by learned
index structures such as the RMI-index [91], Fitting-tree [50], and an
updatable learned index called ALEX [35]. Machine learning has also
been applied to spatial data [103, 130, 138, 188], and multi-dimensional
indexes [32, 117]. There has been a work on learning key-value store
design [69] and a work that proposes a full fledged learned database
system [90].

1.5 Contributions

In this thesis, we contribute to multiple areas to improve spatial query pro-
cessing in the big spatial data and the learned era.

1.5. Contributions 11

• First, we implement spatial datatypes, and spatial query processing in
a state-of-the-art main-memory database system (MMDB), namely Hy-
Per. HyPer belongs to an emerging class of hybrid databases, which
enable real world awareness in real time by evaluating OLAP queries di-
rectly in the transactional database. In HyPer, OLAP is decoupled from
mission-critical OLTP either by using the copy on write feature of the
virtual memory management or multi version concurrency control [118].
We compare HyPerSpace with 3 state-of-the-art database systems, and
show that even by generating a spatial index on-the-fly, HyPerSpace
still outperforms these database engines.

• Second, we carry out an extensive study of the big data spatial analytics
systems that have emerged in recent years. We first study the various
features of these systems, and then we thoroughly compare them based
on all of the features that these systems support. We compare these sys-
tems experimentally using five different spatial queries (range query,
kNN query, spatial joins between various geometric datatypes, distance
join, and kNN join) and four different datatypes (points, linestrings,
rectangles, and polygons). We utilize two real-world datasets in or-
der to accomplish the aforementioned tasks. This work, will help re-
searchers in comparing their approaches with the existing systems, as
well as help practitioners in choosing a system that suits their analytical
needs.

• Third, we compare the modern spatial libraries that are used by hun-
dreds of systems and applications to introduce spatial data processing.
We argue that the systems or applications that are based on these li-
braries will be limited by the performance of these libraries, and the
spatial indexes that are available in these libraries. We experimentally
compare these libraries using two large real-world datasets, four popu-
lar spatial queries (range query, distance query, kNN query, and a spa-
tial join query), and a variety of workloads that cover a large range of
selectivity. This work will help researchers and practitioners alike in
choosing a spatial library that best suits their needs.

• Lastly, we propose an approach to apply learned indexes to five clas-
sical spatial indexes in order to improve spatial query processing on
location-data. We show that learned index outperform binary search
for searching within a spatial partition and that spatial index structures
require tuning for various datasets and query workloads for optimal
performance. We also compare the performance of the learned spatial
indexes utilized in this work with two state-of-the-art indexes, namely,
S2PointIndex, and JTS STRtree. We show that learned indexes are 1.81×
to up to 53.34× faster than these indexes across various queries. The
learned indexes are also smaller in size, and faster to build than the
aforementioned indexes. The spatial learned indexes can act as drop
in replacement for read-only workloads in a variety of systems for big
data, especially the analytical big data systems.

13

Chapter 2

HyPerSpace

2.0.1 Introduction

There has been a rapid advancement in research areas such as machine learn-
ing and data mining, which can be attributed to the growth in the database
industry and advances in data analysis research. This has resulted in a need
for systems that can extract useful information and knowledge from data.
Data scientists use various data mining tools on top of databases for this pur-
pose. To achieve lower latencies and minimize transmission costs between
the database and external tools, it is necessary to move computation closer
to the data. The current trend in database research is to integrate these vari-
ous analytical functionalities that are useful for knowledge discovery into the
database kernel. The goal is to have a full-fledged general-purpose database
that allows big data analysis along with conventional transaction processing.

At the same time, there has been an emergence of data-driven applica-
tions. Companies like Uber, Lyft, and Foursquare have a need to create real-
time applications, including alerting systems, that consider the most current
state of their data, enabling real world awareness. Some of these applications
have been enabled by the advent of the Internet of Things and the massive
amounts of geotagged sensor data it generates.

There are publicly available datasets that can help in geospatial explo-
ration. The New York City (NYC) Taxi Rides [122] dataset is a good exam-
ple, but is only a sample of what is captured by the aforementioned compa-
nies. The dataset contains approximately 2.7 billion taxi rides taken in the
city since 2009. This represents about 650,000 taxi rides everyday in one of
the most densely populated cities in the world. Uber, a popular on demand
car service available via a mobile application, has also made a subset of the
taxi rides available for the cities of San Francisco and NYC. For NYC, Uber
published data containing around 19 million rides for the periods from April
to September 2014 and from January to June 2015. Ever since the datasets
were published, there have been multiple static analyses on these datasets
[191, 47, 153]. The authors of [45] present a comprehensive system built from
scratch for storing, querying, and visualizing geospatial data using kd-trees.
Their system takes two seconds to execute a query that returns 100,000 taxi
trips, which is too slow to address real-time workloads. MemSQL has some
real-time capabilities [112] and is one of the first main-memory database sys-
tems (MMDBs) to deeply integrate geospatial support. The current database
systems do not offer the performance required by real-time applications, and

14 Chapter 2. HyPerSpace

companies are often forced to build their own solutions [113]. We estimate
that a 10x performance improvement is needed in general-purpose database
systems to enable such applications/analytics.

We want to offer high-performance geospatial processing in a general-
purpose database system that meets the requirements of real-time work-
loads, which can be used by emerging applications and data scientists alike
without having to build their own system or use external tools for data an-
alytics. Recent advancements in MMDBs research make it possible to effi-
ciently create snapshots of the current database state. With our proposed
system called HyPerSpace, we built a first prototype into that direction. Our
goal is to drastically improve the performance of geospatial data process-
ing in relational database systems by carefully using advanced encoding
schemes and index structures. In our demo, we will present a web-based
prototype called HyPerMaps that shows that it is possible to have an interac-
tive analysis on geographical data using a general-purpose database system
instead of a custom hand-written solution.

PostGIS [136] is a spatial database extension for the PostgreSQL object-
relational database system. It adds support for geographic objects allow-
ing users to formulate geospatial queries in SQL. PostGIS adds two popu-
lar spatial datatypes to PostgreSQL: geometry and geography. The geometry
datatype treats the earth as a two dimensional flat surface. The earth is pro-
jected onto a plane and geographical co-ordinates are mapped to a two di-
mensional cartesian co-ordinate system. When evaluating spatial predicates
such as ST_Covers, ST_Intersects and spatial measurements such as ST_Area,
ST_Distance, this datatype allows for high efficiency, however, it comes with
a drawback. Since it treats the earth as a two dimensional plane, the compu-
tations are not precise over a large area as the spherical nature of the earth is
not considered. To put this into context, consider an example of the shortest
distance between two points. In a 2D cartesian plane, the shortest distance
between two points is a straight line, while on a spheroid the shortest dis-
tance between two points is a geodesic (shortest distance on the great circle).
In contrast to geometry, the geography datatype treats the earth as a three di-
mensional spheroid and all the computations are based on the spheroid. The
computations are precise since they are done on a spheroid, but they are very
slow compared to those on geometry.

We implemented the geography datatype and the corresponding geospa-
tial predicates, such as ST_Covers, in the high-performance MMDB Hy-
Per [78]1. HyPer belongs to an emerging class of hybrid databases, which
enable real world awareness in real time by evaluating OLAP queries directly
in the transactional database. In HyPer, OLAP is decoupled from mission-
critical OLTP either by using the copy on write feature of the virtual memory
management or multi version concurrency control [118]. These snapshotting
mechanisms enable HyPerSpace to evaluate geospatial predicates on rapidly
changing datasets. We achieve much better performance compared to an
open-source database PostgreSQL, a commercially available MMDB (System

1When saying HyPer, we are referring to the research version of HyPer developed at the
Technical University of Munich.

Chapter 2. HyPerSpace 15

A), and a successful key-value store (System B). This demonstration presents
HyPerSpace and showcases that an interactive analysis of huge amounts of
rapidly changing geospatial data is indeed possible.

2.0.2 HyPerSpace

Similar to what PostGIS is to PostgreSQL, HyPerSpace is a geospatial exten-
sion to HyPer. For geospatial data processing in HyPerSpace, we make use of
the Google S2 geometry library2. This is not novel, since System B also uses
the S2 library for evaluating geospatial predicates. The novelty of our sys-
tem is the integration of geospatial functionalities into a high-performance
MMDB with snapshotting mechanisms which makes it possible to evaluate
geospatial predicates on rapidly changing datasets.

HyPerSpace supports the three geospatial datatypes Point, LineString,
and Polygon. Most of the geospatial processing is done using the S2 library.

S2 decomposes the earth into a hierarchy of cells. It considers earth of ra-
dius 1, and encloses it in a cube that completely covers it. S2 projects a point
on the earth’s surface onto one of the cube’s faces and finds the cell that con-
tains it. The faces of the cube are the top level cells, which can be recursively
divided into four children to obtain lower level cells. There are 30 levels in
total, and cells at the same level cover equivalent areas on earth (e.g., level
30 cells cover approximately 1cm2 each). The cells are enumerated using the
Hilbert space-filling curve. The Hilbert curve is hierarchical in nature and fits
well with the decomposition of earth into cells. Hilbert space-filling curves
are fast to encode/decode and they have a very desirable spatial property:
they preserve spatial locality. This means that the points on earth that are
close to each other are also close on the Hilbert curve. The enumeration of
the cells gives a compact representation of each cell in a 64 bit integer called
CellId. A CellId thus uniquely identifies a cell in the cell decomposition. Sim-
ilarly, other spatial datatypes like LineString and Polygon can be approxi-
mated using cells.

The enumeration of cells in S2 is hierarchical, which means that a parent
cell shares its prefix with its children. To check if a cell is contained in another,
we simply need to compare their prefixes, which is a bit operation. This
enables one to index points based on their CellIds and thus be able to retrieve
points contained in a certain cell by performing a prefix lookup on the index.
B tree data structures are a good choice to index CellIds, since they support
fast prefix lookups (essentially range scans). Additionally, B trees allow for
high update rates, which is an essential requirement for real-time workloads.

2.0.3 Evaluation

All experiments were run single threaded on an Ubuntu 15.04 machine with an
Intel Xeon E5-2660 v2 CPU (2.20 GHz, 3.00 GHz maximum turbo boost) and
256 GB DDR3 RAM and all reported performance results are averages over
ten runs.

2https://code.google.com/archive/p/s2-geometry-library/

https://code.google.com/archive/p/s2-geometry-library/

16 Chapter 2. HyPerSpace

20.88

6.29

9.69

0.580.63 0.290.5
0

5

10

15

20

HyPerSpace System A PostgreSQL System B

M
 c

o−
or

di
na

te
s/

s
with index

without index

Figure 2.1: HyPerSpace vs. related systems: throughput
of ST_Covers using lat/long co-ordinates

For evaluation, we used the NYC Taxi Rides dataset consisting of ap-
proximately 1.1 billion rides taken in the city from January 2009 until June
2015. The dataset includes the pickup and dropoff locations (latitudes and
longitudes), pickup and dropoff times, and various details about the trip,
such as distance, payment type, number of passengers, various taxes, tolls,
surcharge, tip amount, and total fare. For privacy reasons, it does not con-
tain details about drivers or passengers. The exact route taken for the trip
is also not available. We needed to clean the dataset as some of the pickup
or dropoff locations did not make sense as they were way outside NYC. We
cleaned such records from the dataset and only considered rides that origi-
nated between longitude values -70.00 and -80.00, and latitude values 35.00
and 45.00. For evaluation, we made use of the taxi data for the month of Jan-
uary 2015. The cleaned dataset for January 2015 contains a total of 12505344
records.

We compared HyPerSpace with the following related systems: System
A, System B, and PostgreSQL 9.4.5 (postgis-2.2.0). Since PostgreSQL does
not support intra-query parallelism, we configured all systems to run single
threaded. For evaluation purposes, we find how many rides originated from
Midtown Manhattan in January 2015. In SQL notation, the following query
is issued:

select count(*)
from nyc,pickups_jan_2015
where ST_Covers(nyc.geog,pickups_jan_2015.geog)

and borough=’Manhattan’
and neighborhood=’Midtown’;

With the exception of System B, with NoSQL syntax, the query looks similar
on all systems.

Figure 2.1 shows the throughput of the ST_Covers predicate for all of the
systems. System A, System B, and PostgreSQL achieve better performance
when using appropriate index structures. Particularly System B, which also
makes use of the Google S2 geometry library, benefits from its index on
points. System B’s index is basically a B tree on the 64bit CellIds. System
B computes an exterior covering of the polygon using the S2 library. That
covering consists of cells at various levels (i.e., of different sizes). For each

Chapter 2. HyPerSpace 17

5

34
29

65

0

20

40

60

GoogleBTree CellUnionContains STLMultiMap FastContains

M
 c

oo
rd

in
at

es
/s

Figure 2.2: Microbenchmark results: throughput of
ST_Covers using lat/long co-ordinates

cell of this covering, it then performs a prefix lookup in the B tree (essentially
a range scan) and evaluates qualifying points for actual containment in the
polygon. System B suffers heavily from its document-based storage layout,
since it needs to parse GeoJSON documents at runtime.

HyPerSpace completes the query in 550ms and thus achieves more than
twice the performance of its closest competitor, which is System A with an
index on points (1290ms). We have not evaluated HyPerSpace with an index
on points yet, but ran multiple microbenchmarks outside of HyPerSpace. All
microbenchmarks were implemented in C++11 and compiled with gcc 4.9.2
with -O3 and -march=native settings. We compared the implementation Cel-
lUnionContains that we used in HyPerSpace as well as FastContains, which
is a modified version of the S2Loop.Contains implementation that skips the
initial bounding box check, to the two index-based implementations GoogleB-
Tree and STLMultiMap.

Figure 2.2 shows the throughput of the ST_Covers predicate for the dif-
ferent implementations. GoogleBTree, which is an implementation similar to
System B’s index, completes the workload in 191ms. In the GoogleBTree im-
plementation, we first compute exterior and interior coverings for the given
polygon and then perform a range scan in a Google B tree3 for each cell of
the exterior covering. For each qualifying point, we check whether the point
is contained in the interior covering, which is essentially a binary search
on a sorted vector of CellIds. Only if a point qualifies the exterior, but not
the interior covering, an exact containment check using our modified im-
plementation of the S2Loop.Contains function needs to be performed. The
other index-based implementation STLMultiMap takes twice as long (425ms)
as GoogleBTree to complete the workload, even though it uses the same ap-
proach. In C++11, the stl::multi_map interface that we used in this case is
implemented by a RB tree, which is less efficient for range scans. It is well
known that a B+ tree would yield even higher rates for range scans than a
B tree. However, for the sake of expediency and reproducibility of our mea-
surements, we have used the B tree implementation provided by Google in-
stead of a custom B+ tree implementation. Once we integrate this approach
into HyPerSpace, we will make use of an optimized B+ tree implementation.
The difference in performance between the two implementations GoogleBTree

3https://code.google.com/archive/p/cpp-btree/

https://code.google.com/archive/p/cpp-btree/

18 Chapter 2. HyPerSpace

and STLMultiMap shows that the overall runtime of this approach is heavily
influenced by the actual index structure used.

The approach CellUnionContains completes the workload in 367ms, com-
pared to 550ms when implemented within HyPerSpace. The overhead is
mostly caused by function calls that are issued for each of the 12M points.
CellUnionContains is a straightforward approach. It first computes the bound-
ing box and exterior and interior coverings for the given polygon. For each
of the points, CellUnionContains then performs the following steps: First, it
checks whether the point is within the bounding box. If that is the case, it
checks for containment in one of the cells of the exterior covering. Analogous
to the containment check for the interior covering, this essentially comes
down to a binary search. Then the CellUnionContains approach continues
analogous to the GoogleBTree approach by checking the interior covering and
performing the exact containment check if necessary. By properly using the
S2 mechanisms, our CellUnionContains approach achieves a slightly better
performance than the index-based STLMultiMap approach, even though we
have to loop over all of the 12M points.

2.0.4 Visualization using HyPerSpace

We created an interactive web interface, called HyPerMaps, that demonstrates
the outstanding geospatial processing performance of HyPerSpace on the
NYC Taxi Rides dataset. The user interaction concept of HyPerMaps is de-
signed to minimize the requirement of users’ expertize with the explored
data. The ability of HyPerSpace to answer queries with typically sub-second
latency enables tight feedback loops. It supports users during query formula-
tion and encourages an iterative approach. During filtering of the data, users
can rely on datatype dependent elements, which provide context-based in-
formation like value distributions or geographic locations in real time. Users
can draw polygons on the map to filter points geographically. Subsequently,
users can combine different graphical and textual representations to create
an informative and intuitive visualization. During this data exploration pro-
cess, HyPerMaps will automatically compute updated results reflecting the
current state of the user interface as well as the underlying dataset.

Figure 2.3 shows HyPerMaps visualizing the taxi dataset. On the left, var-
ious tiles allow users to specify filters on the data, which will be immediately
translated into SQL code as illustrated on the top. This binding works in both
directions—manually written SQL code will be translated into correspond-
ing tiles. Users can choose between a heat map and pins to display selected
points on the map. On the right, HyPerMaps shows aggregated information
about selected points in tabular or in chart form.

2.0.5 Take-away message

In this chapter, we presented HyPerSpace, a geospatial extension to the MMDB
HyPer. Our implementation of the ST_Covers predicate achieves a much

Chapter 2. HyPerSpace 19

Figure 2.3: Interactive visualization of a real-time replay
of NYC taxi rides using HyPerMaps

lower latency than corresponding implementations in related systems, with-
out using any index structures. Additionally, we found that using index
structures optimized for range scans such as B trees or B+ trees on CellIds, can
yield even lower latencies. In this work, we have shown that it is indeed pos-
sible to build real-time visualizations on geographical data using a general-
purpose database system instead of a custom hand-written solution that
takes much longer to build and is harder to maintain. The novelty of our sys-
tem is the integration of geospatial functionalities into a high-performance
MMDB that allows for efficient snapshotting of the current database state.
Our contribution also includes the careful use of the features of the Google
S2 geometry library, thereby achieving much lower latencies than related
systems. This makes it possible to evaluate geospatial predicates on high
throughput data streams in real time. To demonstrate this, we created a web
interface that allows users to interactively explore the NYC Taxi Rides dataset
while the data is being replayed at various speeds. Our work also shows that
features (such as value distributions) of the entire dataset, including the most
current data, can be used to populate UI elements, thereby supporting users
in creating meaningful (aggregated) real-time visualizations.

21

Chapter 3

Modern Spatial Systems

Excerpts of this chapter have been published in [128].

3.1 Introduction

The era of big spatial data has lead the research community to focus on devel-
oping systems that can efficiently analyze and process spatial data. Systems
to manage and analyze big data have existed for a long time (Hadoop [10],
Impala [89], Spark [209]), however, spatial support in these systems had not
existed. This lead to various Hadoop based spatial systems being developed
(HadoopGIS [2], SpatialHadoop [40]). Similarly, there have been plenty of
spatial processing and analytics systems that have been developed for Spark
(SpatialSpark [197], GeoSpark [203], Simba [192], LocationSpark [173], and
Magellan [166]). Spatial extensions for databases, have seen a similar trend
with Oracle Spatial [126], MemSQL [112], Cassandra [19], and HyPer[129].
The general approach of building such systems is on-top, from-scratch and
built-in and has been well documented in [41].

In this chapter we present

• A brief survey of available modern spatial analytics systems, including
two new systems that have not been covered in literature previously

• A thorough performance evaluation of the available systems using a
real world dataset, focusing on major features that are supported by
the systems

The rest of this chapter is structured as follows: Section 3.2 gives the moti-
vation to carry out this study. Section 3.3 presents the spatial queries domain
explaining which queries we consider for this study. Section 3.4 summarizes
a broad variety of existing big spatial data analytics systems. Section 3.5
gives the details about the experimental setup and datasets used for evalu-
ation. Section 3.7 gives the details about the performance evaluation of the
systems which is followed by the conclusions in Section 3.8.

22 Chapter 3. Modern Spatial Systems

3.2 Motivation

The aim of our study is to compare five Spark based systems namely, Spa-
tialSpark, GeoSpark, Simba, LocationSpark, and Magellan, using four differ-
ent datatypes (points, linestrings, rectangles, and polygons) and five different
spatial queries (range query, kNN query, spatial joins between various geo-
metric datatypes, distance join, and kNN join). Although we include Spatial-
Hadoop and HadoopGIS in the brief survey of modern big data spatial ana-
lytics systems, we decided to omit them from evaluation. We only consider
spatial analytics systems based on Spark for evaluation since Hadoop based
systems like SpatialHadoop and HadoopGIS have consistently been shown
to perform poorly compared to Spark based systems in existing work.

There have been multiple studies which compare these systems based on
various queries and performance metrics but all of them are incomplete or
only compare a limited features of the systems. SpatialSpark [197] imple-
ments two join algorithms, point-in-polygon and point-to-polyline distance
join, and evaluates the two implementations. In the extended study [198],
point-in-polygon and polyline-with-polyline intersection join performance
is evaluated for Hadoop-GIS, SpatialHadoop, and SpatialSpark. In [203],
GeoSpark compares itself with SpatialHadoop for linestring-polygon inter-
section join and kNN query performance. In [173] LocationSpark compares
the kNN join performance against the state-of-the-art kNN join algorithms.
Simba [192] evaluates itself with a variety of systems including Hadoop-GIS,
SpatialHadoop, SpatialSpark, GeoSpark, and the state-of-the-art kNN join
algorithms only on the point data type. Both Simba and LocationSpark sup-
port kNN joins but they have not been evaluated against each other. Simba
does not support linestring and polygon datatypes yet. The join and range
query performance comparison for these geometric objects are missing. Also,
Simba only considers a small window of selection ratio for range queries,
and only compares itself with SparkSQL variant for these windows. More-
over, all the performance comparison in the aforementioned studies were
done using a large cluster, and a scalability study of these systems is miss-
ing.

Meanwhile, some of these systems have been actively developed and
many optimizations have been added. Since the previous studies, GeoSpark
has introduced many new datatypes and has also added a query optimizer.
Also, Magellan [166] has gathered attention in the Free And Open Source
Software for Geospatial1 (FOSS4G) committee and has not been evaluated in
any existing study.

To summarize, these are some open ended questions missing in the exist-
ing literature:

• How do the modern in-memory spatial analytics systems perform for all
the major features that they support?

• How do these systems perform for all possible spatial join combina-
tions of various geometric data types?

1http://foss4g.org/

3.3. Queries 23

• Where is the time actually spent during various join queries?

• How well do these systems perform for different selection ratios for
range queries for different geometric objects?

• What are the memory costs related to the systems?

• Do the memory costs have any impact on query performance?

• How well do these systems scale for the queries that they support?

We aim to fill this gap and compare the modern in-memory spatial an-
alytics systems to present a complete study, while the experiment files and
setup provided will make it easier for researchers to benchmark these sys-
tems against future spatial analytics systems or spatial algorithms.

3.3 Queries

For the queries we consider four geometric features or datatypes: points,
linestrings, rectangles and polygons subsets (or all) of which are supported in
most of the evaluated systems.

The queries considered for evaluation are: single relation operations
(range query, kNN query) and join operations (distance join, spatial joins
and kNN join). There can be other spatial queries such as computational
geometry operations, spatial data mining operations, and raster operations.
These queries are well-defined in [41]. We do not consider these queries since
the evaluated systems do not support these queries and evaluating systems
that do is out of the scope of this chapter. We will now briefly describe the
set of queries that we consider for evaluation.

3.3.1 Range Query

A range query takes a range R and a set of geometric objects S, and returns
all objects in S that lie in the range R. Formally,

Range(R, S) = { s|s ∈ S, s ∈ R }.

3.3.2 k Nearest Neighbors Query

A kNN query takes a set of points R, a query point q, and an integer k ≥ 1 as
input, and finds the k nearest points in R to q. Formally,

kNN(R, q) = {T ⊆ R, |T| = k ∧ ∀t ∈ T,
r ∈ R− T : d(q, t) ≤ d(q, r)}.

24 Chapter 3. Modern Spatial Systems

3.3.3 Spatial Join

A spatial join takes two input sets of spatial records R and S and a join pred-
icate θ (e.g., overlap, intersect, contains, within, withindistance) and returns
a set of all pairs (r,s) where r ∈ R, s ∈ S, and θ is true for (r,s). Formally,

R ./θ S = { (r, s) | r ∈ R, s ∈ S, θ(r, s) is true }.

A distance join is a special case of spatial join where the join predicate is
withindistance. For the sake of clarity, we will refer to distance join as is and
do not include it in spatial joins.

3.3.4 k Nearest Neighbors Join

A kNN join takes two input sets of spatial records R and S and an integer k≥
1 and returns for all objects r ∈ R theirs k closest neighbours in S. Formally,

R ./kNN S = { (r, s) | r ∈ R, s ∈ kNN(S, r) }.

3.4 Spatial Analytics Systems

In this section, we briefly review the cluster-based systems that support spa-
tial data management, queries and analytics over distributed data using a
cluster of commodity machines. We study the various features, data parti-
tioning and indexing schemes, and queries that are supported in these sys-
tems. Table 3.1 gives an overview of the features of the different spatial ana-
lytics systems.

An important point to make here is that distributed systems, generally,
use a two level indexing scheme consisting of a global index in the master
node and multiple local indices in the slave nodes. Figure 3.1 shows the gen-
eralized indexing scheme. The input file is first partitioned based on a par-
titioning scheme, each partition is then indexed using a specialized spatial
index (e.g., R-tree, R+-tree, Quadtree etc.), and finally these local indices are
indexed in a global index on the master node. This is also known as the pre-
processing phase wherein the data is loaded into the distributed file system,
and data is partitioned logically or physically which is useful for query pro-
cessing. The quality and performance of partitioning techniques have been
thoroughly covered in [39].

3.4.1 Hadoop-GIS

Hadoop-GIS [2] is a scalable and high-performance spatial data warehous-
ing system for running large-scale spatial queries on Hadoop. It was the
first system based on Hadoop to support spatial queries. Hadoop-GIS treats
Hadoop as a black box and relies on underlying architecture for processing.
For partitioning, Hadoop-GIS uses a uniform grid to partition the space first
and then map the objects to the tiles. If partitioning creates some high density

3.4. Spatial Analytics Systems 25

Ta
bl

e
3.

1:
O

ve
rv

ie
w

of
fe

at
ur

es
in

sp
at

ia
la

na
ly

ti
cs

sy
st

em
s

H
ad

oo
p-

G
IS

Sp
at

ia
l

H
ad

oo
p

Sp
at

ia
lS

pa
rk

G
eo

Sp
ar

k
M

ag
el

la
n

SI
M

B
A

Lo
ca

ti
on

Sp
ar

k

In
-M

em
or

y
Pr

oc
es

si
ng

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

La
ng

ua
ge

H
iv

eS
P

Pi
ge

on
N

.A
.

N
.A

.
Ex

te
nd

ed
Sp

ar
kS

Q
L

Ex
te

nd
ed

Sp
ar

kS
Q

L
N

.A
.

Pa
rt

it
io

ni
ng

Te
ch

ni
qu

es
SA

TO
Fr

am
ew

or
k

(M
ul

ti
pl

e
pa

rt
it

io
ni

ng
te

ch
ni

qu
es

)

Q
ua

d,
ST

R
,

ST
R

+,
K

-d
,

H
ilb

er
t,

Z
-c

ur
ve

U
ni

fo
rm

,
Bi

na
ry

-S
pl

it
,

ST
R

Q
ua

d,
K

D
B,

R
-t

re
e,

Vo
ro

no
i,

U
ni

fo
rm

,
H

ilb
er

t

Z
-c

ur
ve

ST
R

U
ni

fo
rm

,
R

-t
re

e,
Q

ua
d

In
de

x
R

*-
tr

ee
R

-t
re

e
R

-t
re

e
R

-t
re

e,
Q

ua
dt

re
e

N
on

e
R

-t
re

e
R

-t
re

e,
Q

ua
dt

re
e,

IR
tr

ee

D
at

at
yp

es
Po

in
t,

R
ec

ta
ng

le
,

Po
ly

go
n

Po
in

t,
R

ec
ta

ng
le

,
Po

ly
go

n

Po
in

t,
Li

ne
St

ri
ng

,
R

ec
ta

ng
le

,
Po

ly
go

n

Po
in

t,
R

ec
ta

ng
le

,
Po

ly
go

n,
Li

ne
St

ri
ng

Po
in

t,
Li

ne
St

ri
ng

,
Po

ly
go

n,
M

ul
ti

Po
in

t,
M

ul
ti

Po
ly

go
n

Po
in

t
Po

in
t,

R
ec

ta
ng

le

Q
ue

ri
es

R
an

ge
,S

pa
ti

al
Jo

in
s

R
an

ge
,k

N
N

,
Sp

at
ia

lJ
oi

ns
R

an
ge

,S
pa

ti
al

Jo
in

s
R

an
ge

,k
N

N
,

Sp
at

ia
lJ

oi
ns

,
D

is
ta

nc
e

Jo
in

R
an

ge
,S

pa
ti

al
Jo

in
s

R
an

ge
,k

N
N

,
D

is
ta

nc
e

Jo
in

,
kN

N
Jo

in

R
an

ge
,k

N
N

,
Sp

at
ia

lJ
oi

n,
D

is
ta

nc
e

Jo
in

,
kN

N
Jo

in

26 Chapter 3. Modern Spatial Systems

F

Input File

P0

P1

P2

P3

P4

Partitions

LI0

LI1

LI2

LI3

LI4

Local Indices

GI

Global Index

Figure 3.1: A generalized indexing scheme for dis-
tributed spatial analytics systems

tiles, these tiles are broken down into smaller tiles to handle this data skew.
In [186], Hadoop-GIS added more partitioning techniques to provide flexi-
bility to the system. Here, the input data is partitioned in four steps: Sample,
Analyze, Tear and Optimize (SATO). 1-3% of the data is sampled and the
density distribution of the dataset is computed. The Minimum Bounding
Rectangles (MBR) from the sampled dataset are fed to the Analyzer which
decides the optimum global partitioning scheme for the global partitions.
In the Tear phase each global partition is further partitioned to create local
partitions. The physical partitioning takes place in this step. In the Optimize
phase the data is re-scanned and statistics about the partitions are collected to
build the multi-level index. This is an example of dynamic partitioning and
indexing, which takes into consideration the distribution and skew of spatial
data. These indices are used to process the queries supported: range and
spatial join queries. Hadoop-GIS supports points, rectangles, and polygons.
Hadoop-GIS extends HiveQL with spatial query support and integrates the
spatial query engine into Hive.

3.4.2 SpatialHadoop

SpatialHadoop [40] is a full-fledged MapReduce framework with native sup-
port for spatial data. Unlike Hadoop-GIS, SpatialHadoop is built-in Hadoop.

3.4. Spatial Analytics Systems 27

It enriches Hadoop with spatial constructs and awareness of spatial data in-
side the core functionality of Hadoop and is thus able to obtain better per-
formance than Hadoop-GIS since it has to deal with no layer overhead. Spa-
tialHadoop partitions the dataset into n partitions that confirm to three con-
ditions (i) each partition should fit one HDFS block (64MB), (ii) the objects
close to each other in space should be assigned to same partition and, (iii)
all partitions should be of similar size for load balancing purposes. The in-
put dataset can be partitioned and indexed using either Grid Index, R-tree
or R+-tree. Since, R-tree performs the best in most cases as reported in the
publication, we will describe the partitioning phase using R-tree. Spatial-
Hadoop bulk loads a sample from the input dataset into an in-memory R-
tree using the Sort-Tile-Recursive (STR) algorithm. It computes the number
of partitions, n, based on the size of the input file. It then fills the R-tree with
degree d (

√
n) using the STR algorithm. The STR algorithm ensures that the

tree is balanced and the degree d of the tree ensures that there are at least n
nodes in the second level of the tree. The second level of the tree is used to
physically partition the input dataset. In the physical partitioning step, each
input record is assigned to a partition which requires the least enlargement
to cover the record. After physical partitioning, each partition is bulk loaded
into an R-tree using the STR algorithm and dumped to a file. The block in lo-
cal index file is annotated with the MBR of its content. In the global indexing
phase, all local indexed files are concatenated and the global index is created
by bulk loading all the blocks into an R-tree using the annotated MBR as the
index key. SpatialHadoop extends FileSplitter and RecordReader in Hadoop to
support spatial records. SpatialFileSplitter uses the global index to prune out
blocks that do not contribute to the query result. SpatialRecordReader exploits
the local index in the partitions received from SpatialFileSplitter to efficiently
process the query. It also extends Pig Latin, called Pigeon, with spatial sup-
port. SpatialHadoop supports range queries, kNN queries, and spatial joins.
It has support for point, rectangle, and polygon datatypes.

3.4.3 SpatialSpark

SpatialSpark [197] is a lightweight implementation of spatial support in
Apache Spark. It targets in-memory processing for higher performance. Spa-
tialSpark supports multiple geometric objects including points, linestrings,
polylines, rectangles, and polygons. It supports multiple spatial partitioning
schemes fixed grid, binary split and STR partitioning. For indexing, Spa-
tialSpark uses an R-tree. SpatialSpark offers a variety of operations on spa-
tial datasets including range queries on all types of geometric objects, spatial
joins between various geometric objects and distance joins. It supports 1NN
queries but does not support kNN queries and kNN joins.

28 Chapter 3. Modern Spatial Systems

3.4.4 GeoSpark

GeoSpark [203] is an in-memory cluster computing framework based on
Apache Spark for processing large spatial data. It consists of three lay-
ers: (i) Apache Spark Layer, (ii) Spatial RDD Layer, and (iii) Spatial Query
Processing Layer. GeoSpark extends the core of Apache Spark to support
spatial datatypes, indexes, and operations. GeoSpark extends the resilient
distributed datasets (RDDs) to support spatial datatypes. Apache Spark
Layer is responsible for native functions that are supported by Spark such
as load/save data to persistent storage. Spatial RDD layer extends Spark
with spatial RDDs (SRDDs) that can efficiently partition SRDD elements
across machines and also introduces parallelized spatial transformations.
GeoSpark introduces support for various types of spatial objects: points,
linestrings, rectangles, and polygons. It also provides a Geometrical Oper-
ations library which has geometrical operations such as Ovelap() (find over-
lapping objects), MinimumBoundingRectangle() which returns the MBR of ei-
ther every object in the SRDD or largest MBR encompassing every object
in the SRDD, Union() which returns the union of all polygons in the SRDD.
GeoSpark also comes with a query optimizer. GeoSpark supports multiple
partitioning schemes including, Quadtree, KDB tree, R-tree, Voronoi, fixed
grid, and Hilbert partitioning. GeoSpark has two indexes available, R-tree
and Quadtree. GeoSpark has support for range queries, spatial join queries,
and kNN queries. GeoSpark does not support kNN joins.

3.4.5 Magellan

Magellan [166] is a distributed execution engine for spatial analytics on big
data. It leverages modern database techniques in Apache Spark like effi-
cient data layout, code generation, and query optimization in order to op-
timize spatial queries. Magellan extends SparkSQL to accommodate spa-
tial datatypes, geometric predicates, and queries. Magellan has support for
points, linestrings, rectangles, polygons, multipoints, and multipolygons.
Magellan supports range queries and spatial joins but does not support kNN
queries, distance joins, and kNN joins. Magellan also adds geometric predi-
cates such as intersects, within, and contains. Magellan uses on the fly index-
ing of the geometrics objects but can also leverage the indices if they were
persisted earlier. Magellan uses Z-order curve for indexing and appends a
column to the dataset with the Z curve values. To perform join queries effi-
ciently, Magellan intercepts the query plan and overwrites it to use Z-curve
index. It uses an inner join on the Z-curve and a predicate filter on top of the
inner join, instead of a cross join between two input datasets. Magellan does
not support spatial partitioning and leverages Spark’s built-in partitioner to
partition the dataset.

3.4.6 SIMBA

Simba [192] (Spatial In-Memory Big Data Analytics) is a distributed in-
memory analytics engine that supports spatial queries and analytics over

3.4. Spatial Analytics Systems 29

big spatial data in Spark2. Simba extends Spark SQL to support spatial op-
erations. Simba also adds spatial indices in RDDs and SQL context, which
helps in reducing query latencies and increasing analytical throughput by
executing queries in parallel. It also introduces logical and physical optimiz-
ers to select better query plans. Tables are represented as RDDs of records of
the table, thus indexing records of the table means indexing elements of the
RDDs. To partition the data, Simba uses a similar strategy as SpatialHadoop
where an R-tree is constructed by sampling the input dataset and filled using
the STR algorithm to get the first level of the tree that represents the par-
tition boundaries. These boundaries are only the MBR of the sampled set,
which are extended as each record is added to the partition. Simba provides
flexibility to the user to specify its own partitioning scheme as well, since
the Partitioner abstract class in Spark allows users to specify their own parti-
tioning strategy. For indexing within an IndexRDD, Simba uses an R-tree by
default. Finally, a global index is constructed by using the partition bound-
aries from the partitioner and statistics from the local index. Simba supports
a variety of queries which include, range (rectangle and circle) queries, kNN
queries (on points), distance joins (between points), and kNN joins (between
points). Simba does not support spatial joins.

3.4.7 LocationSpark

LocationSpark [173] is a spatial data processing system based on Apache
Spark. It provides a wide range of spatial features. It supports a rich set
of spatial queries: range queries, kNN queries, spatial joins and kNN joins.
LocationSpark introduces a spatial RDD layer named LocationRDD which
can be cached in memory. LocationSpark has a query scheduler component
which can detect if there is a query skew, by actively collecting statistical in-
formation from each partition. If it detects a hotspot partition for a query,
a cost model evaluates the overhead of repartitioning and takes suitable ac-
tion. For data partitioning, similar to other systems, LocationSpark samples
the input dataset and partitions data accordingly. A user has the flexibility to
choose between either a uniform grid or Quadtree as the partitioning scheme.
It also provides flexibility for local indices. A user can choose between Fixed-
Grid, R-tree, Quadtree, or an IR-tree for indexing the data locally within a
partition. Furthermore, LocationSpark also has a spatial bloom filter termed
sFilter embedded with the global and local indices to prune out more par-
titions for a query, which helps in reducing network communication costs.
LocationSpark supports range queries (on points), kNN queries (on points),
spatial joins between points and rectangles, and kNN joins (between points).

2Note: The latest stable Simba release is the standalone package outside of Spark (i.e. a
library running on top of Spark) and we benchmark it and not the version in the original
publication which is built inside Spark core

30 Chapter 3. Modern Spatial Systems

Table 3.2: Evaluated systems, their compatible Spark
version, and defaults for the experiments

System Version Amazon EMR
and Spark

Version

Spatial
Partitioning

Index

SpatialSpark 1.0 emr-5.9.0 (2.2.0) STR R-tree

GeoSpark v1.1.3 emr-5.9.0 (2.2.0) Quadtree R-tree

Magellan v1.0.5 emr-5.9.0 (2.2.0) Z-curve Z-curve

LocationSpark the first version emr-4.9.3 (1.6.3) Quadtree Quadtree

Simba Standalone
package

compatible with
Spark 2.1.x

emr-5.7.0 (2.1.2) STR R-tree

3.5 Experimental Setup

3.5.1 Cluster Setup And Tuning Spark

To evaluate the systems we deploy variable sized clusters on Amazon AWS.
We make use of the Amazon Elastic Map Reduce (EMR) framework to deploy
the Spark cluster. The master node which runs the YARN resource man-
ager for the cluster is an EC2 instance of type m4.xlarge that has 8 vCPUs
and 16 GB main memory. For slave nodes we make use of r4.8xlarge EC2
instances which have 32 vCPUs and 244 GB main memory. We also attach
100 GB general purpose SSDs to each slave node. We deploy 1, 2, 4, 8, and
16 slaves nodes in the cluster to evaluate the systems and their scalability.
We will only count the slave nodes in the cluster since the master node only
runs the resource manager and is in no way responsible for any computation
for the applications. We deploy the Spark applications in cluster-mode where
the Spark driver is deployed on one of the slave nodes as Application Master.
Since not all systems were compatible with latest Spark release we deployed
clusters in different EMR versions. Table 3.2 shows the different systems
evaluated, their compatible Spark versions and the default values we used
for the experiments. The default number of partitions in every system has
been set to 1024 for every query unless stated otherwise.

Amazon EMR cluster model has a master node and slave nodes. The mas-
ter node runs the resource manager, by default YARN, which manages the
cluster resources. The Spark applications are deployed on the slave nodes.
The Spark execution model has two main components, the driver and the ex-
ecutors. The driver breaks up the work into tasks and assigns them to the
executors. By default, Amazon EMR launches the cluster with maximizeRe-
sourceAllocation, which means that if there are four slave nodes in the cluster,
then one node is selected as the driver and the other three as executors. This
means that 25% of the cluster resources are dedicated to the bookkeeping
tasks that the driver performs and only 75% of the resources are available
for processing data. Moreover, having only three executors with all cores per
node assigned to these executors in the cluster is not the optimal setting and

3.6. Tuning Amazon EMR and Apache Spark 31

Figure 3.2: maximizeResourceAllocation deployment vs
a better deployment

Master

Driver

Executor

Executor

Executor

Executor

Executor

Master

Driver Executor

often leads to poor HDFS throughput and failed Spark jobs3. We tuned ev-
ery cluster in our experiments to utilize resources optimally by following the
guidelines in the Cloudera Engineering Blog4.

3.6 Tuning Amazon EMR and Apache Spark

As the resources increase in the cluster many decisions need to be made to
utilize the resources optimally for Spark. These decisions include how many
executors the cluster should have, how many cores and memory to assign
to an executor. As we mentioned earlier in 3.5.1, we tuned every cluster to
fully and optimally utilize all the resources using the guidelines in the Cloud-
era Engineering Blog 5. Amazon EMR launches the cluster with maximizeRe-
sourceAllocation, which means that if there are two slave nodes in the cluster,
then one node is selected as the driver and the other one as an executor. This
means that 50% of the cluster resources are dedicated to bookkeeping tasks
that the driver performs and only 50% of the resources are available for pro-
cessing data. A better deployment would be to have multiple executors along
with driver on one node. This is illustrated in Figure 3.2.

The parameters we are interested in computing are number of execu-
tors (spark.executor.instances), the number of cores to assign to each executor
(spark.executor.cores), memory to assign to each executor (spark.executor.memory),
number of cores to assign to the driver (spark.driver.cores), and memory to
assign to the driver (spark.driver.memory). It has been shown canonically
that assigning 4-6 cores to an executor is good to achieve maximum HDFS
throughput. We will fix the cores assigned to each executor to 5. One core per
node needs to be left for Hadoop and YARN daemons that run on each node.

3https://databricks.com/session/top-5-mistakes-when-writing-spark-applications
4http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-

2/
5http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-

2/

32 Chapter 3. Modern Spatial Systems

Table 3.3: Spark configuration parameters

Parameter 1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

spark.executor.instances 6 12 24 49 99

spark.executor.cores 5 5 5 5 5

spark.executor.memory 37G 37G 37G 37G 37G

Another thing to keep in mind is the spark.yarn.executor.memoryOverhead pa-
rameter which adds seven percent, by default, more memory from the re-
source manager when requesting for memory for an executor. So when
specifying executor-memory parameter for Spark, it needs to be reduced by
seven percent. Keeping these things in mind, let the number of nodes be n,
number of cores in each node be c, and memory available per node be m.
The total number of cores available in the cluster are thus n*c. The number
of cores available for executors are n*(c-1) (keeping in mind one core per
node is needed for Hadoop and YARN daemons). Since, we fix the num-
ber of cores per executor to 5 (for maximum HDFS throughput), the total
number of executors in the cluster will then be n*(c-1)/5 which we denote as
E. The only parameter left to be computed is the memory to assign to each
executor. There are n nodes in the cluster and the total number of executors
are E. The number of executors that can run on one node are thus E/n (En).
Each node has m amount of memory and spark.yarn.executor.memoryOverhead
is 0.07 (seven percent). Thus memory that can be assigned to each executor
is

Memory per executor =
m
En
−

(
m
En
∗ 0.07

)
=

⌊
0.93 ∗m

En

⌋

Note that the total number of executors also includes the driver, which
runs as Application Master on YARN. The parameters spark.driver.cores and
spark.driver.memory will be the same as that for the executors. Table 3.3 shows
the parameter values for our clusters. To summarize, let

Number of nodes = n
Number of cores per node = c
Total memory per node = m

3.6. Tuning Amazon EMR and Apache Spark 33

Table 3.4: Details of the datasets used for evaluation

Dataset Geometry type Number of
records

Raw file
size (GBs)

Total
number of

co-ordinates

OSM Nodes Point 200 million 5.4 200 million

OSM Roads LineString 70 million 18 803 million

OSM Buildings Polygon 114 million 19 764 million

OSM Rectangles Rectangle 114 million 14 573 million

then,

Total number of cores = n ∗ c
Total number of cores for executors = n ∗ (c− 1)

Total number of executors (E) =
⌊

n ∗ (c− 1)
5

⌋
Number of executors per node (En) =

⌊
E
n

⌋
Memory per executor =

m
En
−

(
m
En
∗ 0.07

)
=

⌊
0.93 ∗m

En

⌋

Also, Amazon EMR, by default takes the Task Configuration6 values
based on the master node (m4.xlarge). We had to overwrite these values
so that the Task configuration values are based on slave nodes (r4.8xlarge).

3.6.1 Datasets

To evaluate the systems we make use of the Open Street Maps (OSM) dataset
made available by [40]. The OSM dataset comprises of All Nodes (Points),
Roads (LineStrings), and Buildings (Polygons) datasets. The full OSM dataset
contains 2.3 billions points on earth (All Nodes), 70 million roads and streets
around the world (Roads), and 114 million buildings (Buildings). We sam-
pled a subset of 200 million points from All Nodes dataset. We sampled the
points from the dataset because some join results can be arbitrarily large with
the full dataset and will not fit entirely in driver’s memory. To extract the
subset we make use of the shuf command in Linux. In addition to these
datasets, we also generated a Rectangle dataset which is generated from the
Buildings dataset by computing the minimum bounding rectangles of the
polygons. We also needed to clean the datasets since some of the geometric
objects did not comply with the OGC standard for spatial objects. To clean
the datasets we used Java Topology Suite (JTS7) library which is OGC com-
pliant. It is important to point out here is that certain systems only expect

6https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hadoop-task-
config.html

7https://github.com/locationtech/jts

34 Chapter 3. Modern Spatial Systems

geometries in a particular format (such as Well-Known Text) as input, so we
had to pre-process files in order to make them suitable as inputs for the differ-
ent systems. In some cases the files sizes reduced because we had to strip the
metadata from the files. Table 3.4 shows the details of the datasets used for
evaluation. The datasets used for evaluation are available on our server8 and
all experiment files are available on GitHub9. We will refer to the datasets as
Point, LineString, Rectangle, and Polygon datasets from now on.

We also ran the experiments with the US Census TIGER dataset provided
by [40]. We used the LineString dataset from the TIGER dataset which con-
tains approximately 70 million linestrings in US. There are other datasets in
TIGER but they are limited in size (less than 2 million spatial objects). To have
a larger dataset to join with, we generated a rectangle dataset by computing
bounding boxes of these linestrings. We also sampled 170 million points that
are in US from the OSM dataset to join with these datasets.

3.6.2 Spark Memory Management Model and Caching RDDs

Spark’s memory management model is split into two parts, storage memory
and execution memory. The amount of memory assigned to Spark after re-
serving memory for internal data structures is split into execution and stor-
age memory. Execution memory refers to the memory that is assigned for
computations such as joins, aggregations, shuffles, and sorts. Storage mem-
ory is the amount of memory that is used for caching the user datasets in
memory. The total assigned memory is split 50/50 between storage and exe-
cution memory and is managed by spark.memory.storageFraction parameter. If
no execution memory is needed, storage can acquire all the memory and vice
versa. Execution memory can evict (spill to disk) storage blocks in case more
execution memory is needed, and execution memory is immune to eviction.

Spark allows the user to cache (or persist) the RDDs in memory if they
are used multiple times for computation. If sufficient storage memory is
available in the cluster it is advisable to cache such RDDs. One purpose of
choosing the AWS instance r4.8xlarge is that it comes with large memory
so the RDDs can be cached. Even if RDDs do not fit in the memory in dese-
rialized form, they can be serialized and persisted in memory. Most of the
evaluated systems come with a custom serializer for the spatial RDDs which
is based on Spark’s KryoSerializer. Caching such RDDs is system specific
and differs quite a bit because of different design choices. GeoSpark has an
abstract SpatialRDD layer. It consists of three RDDs: RawSpatialRDD, Spa-
tialPartitionedRDD, and IndexedRDD. When a SpatialRDD is initialized (e.g.,
new PointRDD()), the RawSpatialRDD gets populated. SpatialPartitionedRDD
can be initialized by specifying the spatial partitioning technique, and then
calling some action on the RDD. Initially for every type of query we keep
the RawSpatialRDD in MEMORY_ONLY persistence level. Once the SpatialParti-
tionedRDD is generated, we unpersist the RawSpatialRDD as it is not needed
in any query operation and keeping it in memory even in serialized form

8http://osm.db.in.tum.de/
9https://github.com/varpande/spatialanalytics

http://osm.db.in.tum.de/
https://github.com/varpande/spatialanalytics

3.6. Tuning Amazon EMR and Apache Spark 35

just incurs extra memory cost. We then populate the IndexedRDD and keep
it along with the SpatialPartitionedRDD in memory at all times for all query
operations. In Magellan, we make use of the dataframe API. We only per-
sist a dataframe that contains the spatial object and the index for the object.
LocationSpark has a LocationRDD and QueryRDD abstraction layer. We only
cache these LocationRDD and QueryRDD for all query operations. In Simba,
we make use of the dataframe API. For single relation operations we cache a
dataframe with an index. For join operations we do not build an index on the
dataframe, since Simba spatially partitions and indexes the datasets on the fly
inside the join algorithms and does not utilize the persisted index. Spatially
partitioning the data and building index on the dataframe is an overhead in
case of join operations. For all operations, SpatialSpark first builds an RDD
which simply reads the input dataset and parses the spatial object from the
Well-Known Text (WKT) representation. It then builds a spatial RDD which
has a unique ID for every spatial element. We cache these RDDs for all the
queries in SpatialSpark.

3.6.3 Performance Metrics

To measure and compare performance for single relation queries, we sub-
mit a batch of 100 queries and compute the throughput of the systems in
queries/minute.

To measure and compare the performance of different systems for join
queries, we make use of six performance metrics:

• Preparation time: The preparation time is the total time spent by the
system in reading the two datasets from HDFS, partitioning the input
datasets, and indexing the partitions.

• Join time: The join time is the total amount of time spent by the system
to complete the join query. This metric is a useful indication for use
cases where the datasets are already indexed and the join queries need
to run multiple times.

• Total runtime: The total runtime is the total of the two aforementioned
performance metrics. The total runtime gives an end-to-end query per-
formance of the query.

• Shuffle write costs: the shuffle write is the sum of all written serialized
data on all executors before transmitting to other executors at the end
of a stage.

• Shuffle read costs: the shuffle read is the amount of read serialized data
on all executors at the beginning of a stage.

• Peak Execution Memory: the Peak execution memory is the maximum
amount of memory used at any point in time for execution of a query.

In addition to the performance metrics, we also report the index sizes for
the different datasets. Please note that we only report the cumulative sizes of

36 Chapter 3. Modern Spatial Systems

LineString Point Polygon Rectangle

0

20

40

60

R
D

D
 S

iz
e

(G
B

s)

system

GeoSpark

LocationSpark

Magellan

Simba

SpatialSpark

Figure 3.3: Memory footprint for various datasets

the local indices and chose to skip the size of the global index, which usually
is very small (few KBs).

3.7 Evaluation

3.7.1 Memory Costs

In this section, we report the in-memory consumption of the various data
structures by caching the respective data structures and observing the Stor-
age tab in the Spark Web UI10. Note that memory consumption for RDDs in
Spark cannot be obtained programmatically, as it can only report approxi-
mate memory consumption of RDDs, hence these values are not available in
the Scala codes for the systems in the GitHub page.

Figure 3.3 shows the raw spatial RDD sizes for various datasets for the
systems. It is normal for Java objects to consume more memory than raw file
size on disk11. We see most of the systems consume almost 3x more memory
for every dataset. Also spatial partitioned RDDs add additional overhead
because most of them use a replication-based technique to handle boundary
objects. As mentioned before, the common technique for these systems to
generate partitions is to sample the dataset first and decide spatial bound-
aries for the partitions based on this sampled data. When the spatial objects
are loaded from the file system, they are mapped to these partitions. When a
spatial object overlaps with multiple partitions, it is replicated to these multi-
ple partitions, which increases the memory cost. Another point to make here
is that both GeoSpark and SpatialSpark store JTS Geometry objects in the raw
spatial RDD. The difference in their memory consumption is because Spa-
tialSpark also adds a unique ID to each element in the RDD, which accounts
for a slightly higher memory usage.

10https://spark.apache.org/docs/latest/tuning.html
11https://spark.apache.org/docs/latest/tuning.html#memory-tuning

3.7. Evaluation 37

LineString Point Polygon Rectangle

0

20

40

60
In

de
x

S
iz

e
(G

B
s) GeoSpark

LocationSpark

Magellan

Simba

SpatialSpark

Figure 3.4: Indexing costs

Figure 3.4 shows the index sizes for various systems for the different
datasets. Simba and LocationSpark have the lowest memory consumption
for indices for the Point dataset. LocationSpark only keeps the point co-
ordinates and its two MBR coordinates in the Quadtree, and thus the in-
dexing cost is low. Simba serializes its index (default persistence level is
MEM_AND_DISK_SER) and thus the index cost is very low. An unusual case
is Magellan’s LineString index which consumes close to 92 GB of main mem-
ory compared to its indices for other datasets. The reason is that Magellan
generates Z-curve to approximate the shapes. For Points, it has to generate
one cell value for each coordinate. Polygons and Rectangles can be approxi-
mated using large cells and hence the cell counts for these geometric objects
is low. For LineStrings, Magellan ends up generating cells for each coordi-
nate in each linestring record in the dataset. There are a total of 803 million
coordinates in the LineString dataset and hence Magellan ends up generating
the same amount of cells for the LineString dataset.

3.7.2 Range Query Performance

To evaluate range queries, we varied the selection ratio (σ) to cover a wide
range for selection. We generated six ranges for each dataset that cover six
selection ratios for each dataset. In this experiment, we loaded and indexed
the datasets in every system and do not include the costs to prepare them.
We submit a batch of 100 queries for each range for each type of dataset and
evaluate the query throughput in queries/minute.

Figure 3.5 shows the range query performance for the different systems
on a single node varying the selection ratio (σ) from 0.0001 to 100. Magellan
does not have any optimization for range queries and ends up scanning all
partitions for all selection ratios for all datasets. It serves as a baseline for
other systems. For the point dataset, LocationSpark performs the best for se-
lection ratios 0.0001 and 0.01. This is due to the sFilter (spatial bloom filter)
that it puts on top of the global and local indices. The global index in the sys-
tems provide multiple overlapping partitions that intersect with the given

38 Chapter 3. Modern Spatial Systems

Point Polygon Polyline Rectangle

● ●
●

●
● ●

● ● ●

●
● ●

● ● ●
●

● ●

● ● ●

●
● ●0

500

1000

1500

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

Selection Ratio (σ)

T
hr

ou
gh

pu
t (

qu
er

ie
s/

m
in

)

● GeoSpark

LocationSpark

Magellan

Simba

SpatialSpark

Figure 3.5: Range query performance on a single node
for different selection ratio (σ)

Point Polygon Polyline Rectangle

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

200

400

600

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Number of nodes

T
hr

ou
gh

pu
t (

qu
er

ie
s/

m
in

)

● GeoSpark
LocationSpark
Magellan
Simba
SpatialSpark

Figure 3.6: Range query performance for all geometric
objects scaling up the number of nodes [selection ratio

(σ) = 1.0]

3.7. Evaluation 39

range. LocationSpark can further filter out partitions using the sFilter from
the global index and local indices that do not contribute to the answer and
avoids unnecessary scans of partitions and network costs. As the selection ra-
tio increases, LocationSpark’s performance degrades as well, similar to other
systems, which is expected as more partitions need to be scanned for higher
selection ratios. GeoSpark performs better than Simba, because it utilizes the
deserialized IndexedRDD compared to the serialized index that Simba uses to
minimize memory costs and for fault tolerance. Figure 3.6 shows the range
query performance for different datasets, fixing the selection ratio (σ) to 1.0
and scaling up the number of nodes in the cluster. This experiment shows
that all the systems scale well with the number of nodes. The scalability is
not perfectly linear, but it is acceptable.

Figure 3.7 shows the range query performance for different datasets for
all selection ratio (σ) while scaling up the number of nodes in the cluster.
GeoSpark dominates in performance for all the datasets, except in Points
dataset where LocationSpark performs 5x better for low selection ratios.

3.7.3 kNN Query Performance

To study kNN query performance, we generate 100 random location points
in the longitude range (-180.0,180.0) and the latitude (-90.0,90.0) range, issue
the random locations to the systems and measure the throughput of the sys-
tems in queries/minute. We also vary the value of k between 5 and 50. Only
three systems support kNN queries: GeoSpark, Simba, and LocationSpark.

Figure 3.8 shows the kNN query performance varying the value of k on a
single node. It can be seen that LocationSpark’s throughput fluctuates a lot
and is not as stable compared to Simba and GeoSpark. We repeated the ex-
periments multiple times and encountered performance spikes for all values
of k. This can be attributed to the sFilter that can significantly decrease the
number of partitions to scan. GeoSpark utilizes the JTS library for most of its
operations. GeoSpark uses nearestNeighbour function in JTS which uses the
Branch-and-Bound tree traversal algorithm to provide efficient search for k
nearest neighbor in the STRtree (IndexedRDD in GeoSpark). This means dis-
tance computation to other objects would only be limited to one (or at most
two in case the query point overlaps with multiple partitions or is close to the
boundaries of partitions). It then uses takeOrdered from the results to produce
k nearest neighbors. Simba, on the other hand first computes a safe pruning
bound to select partitions that contain at least k candidates. It then computes
the tight pruning bound by issuing the kNN queries on the selected parti-
tions. Again, similar to GeoSpark, the selected partitions are usually one or
two for low values of k since most partitions would contain way more than
k elements. Simba, also uses takeOrdered on distances to return the first k el-
ements. The difference in their performance comes from the serialized index
in Simba. Simba scans over the serialized index while GeoSpark has to scan
the deserialized index. LocationSpark, can efficiently utilize the sFilter on
global and local indices to reduce the distance computations to points in the

40 Chapter 3. Modern Spatial Systems

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

● ●
●

● ● ●

● ●
●

●
● ●

● ● ●
●

● ●

● ● ●

●

● ●

● ● ●
●

●
●

0

500

1000

1500

1e
−0

4
0.

01 1 10 5010
0

1e
−0

4
0.

01 1 10 5010
0

1e
−0

4
0.

01 1 10 5010
0

1e
−0

4
0.

01 1 10 5010
0

1e
−0

4
0.

01 1 10 5010
0

Selection Ratio (σ)

T
hr

ou
gh

pu
t (

qu
er

ie
s/

m
in

)
● GeoSpark

LocationSpark
Magellan
Simba
SpatialSpark

(a) Point
1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

● ● ●

●

●
●

● ● ●

●

●
●

● ● ●

●

●

●

● ● ●
●

●

●

● ● ● ●

●

●

0

200

400

600

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

Selection Ratio (σ)

T
hr

ou
gh

pu
t (

qu
er

ie
s/

m
in

)

● GeoSpark
Magellan
SpatialSpark

(b) LineString
1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

● ●
●

●

● ●

● ●
●

●

●
●

● ●
●

●

●

●

● ● ●

●

●

●

● ● ●
●

●

●

0

200

400

600

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

Selection Ratio (σ)

T
hr

ou
gh

pu
t (

qu
er

ie
s/

m
in

)

● GeoSpark
Magellan
SpatialSpark

(c) Polygon
1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

● ●
●

●

● ●

● ●
●

●

●
●

● ● ●

●

●

●

● ● ●

●

●

●

● ● ●
●

●

●

0

200

400

600

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

1e
−0

4
0.

01 1 10 50 10
0

Selection Ratio (σ)

T
hr

ou
gh

pu
t (

qu
er

ie
s/

m
in

)

● GeoSpark
Magellan
SpatialSpark

(d) Rectangle

Figure 3.7: Range query performance scaling up the
number of nodes for different selection ratio (σ) on dif-

ferent datasets

LocationRDD. The fluctuation in performance is due to periodic updates to
the sFilters.

3.7. Evaluation 41

● ● ● ● ●

0

500

1000

10 20 30 40 50
k

T
hr

ou
gh

pu
t (

qu
er

ie
s/

m
in

)

● GeoSpark

LocationSpark

Simba

Figure 3.8: kNN query performance varying k

● ●

● ●

●

300

600

900

1 2 4 8 16
Nodes

T
hr

ou
gh

pu
t (

qu
er

ie
s/

m
in

)

● GeoSpark

LocationSpark

Simba

Figure 3.9: kNN query scalability with k = 10

3.7.4 Distance Join Performance

Only three systems support distance join queries: Simba, GeoSpark and Spa-
tialSpark. Note that DJSpark (Distance Join) in Simba partitions the datasets
inside the algorithm and thus we had to embed the timers to compute Prepa-
ration Time inside the join algorithm. This is the case with SpatialSpark as
well. To measure the performance of distance joins we use the Points dataset.
The distance for the query is set to 5 meters.

Figure 3.9 shows the kNN query performance scalability with value the
of k fixed to 10.

Figure 3.10 shows the distance join cost breakdown for these systems
while scaling up the number of nodes. For distance join, Simba samples both
datasets and partitions the two datasets, R and S, using the STR algorithm.
Simba then produces partition pairs (i,j) such that r ∈ Ri, s ∈ Sj and dis-
tance(r,s) ≤ D (where D is the distance for the join). After generating these
candidate pairs, Simba generates a combined partition P = (Ri,Sj) for each
pair (i,j) and broadcasts them to the workers for local join processing. In lo-
cal join processing, Simba creates local indices for Sj on the fly, and uses Ri

42 Chapter 3. Modern Spatial Systems

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

500

1000

1500

2000

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

To
ta

l R
un

tim
e

(s
ec

on
ds

)
Runtime
Breakdown

Join Time
Preparation
Time

Figure 3.10: Distance join cost breakdown scaling up the
number of nodes

to probe into the index to produce the final result. SpatialSpark samples data
from only one input dataset and uses partition MBRs to build a spatial index
to assign partition IDs for each data item on both sides of the join. This index
is broadcasted to all nodes. The data items in both dataset are used to query
the index to compute the partition ID that each data item should be assigned
to. This assignment of the partition IDs is done using the STR algorithm. The
partitioned data items are grouped based on the partition ID on both sides
of the join using groupByKey function of the RDD. Then the partitions on the
two sides are joined into one using the hash-based join on the partition IDs
(one-to-one integer matching). Finally, these combined partitions are sent to
the nodes for local join processing where local indices are built for the par-
titions and geometric refinement is done. This is how SpatialSpark handles
all types of joins (including spatial joins). The spatial predicate (intersects or
withindistance) for refinement is handled in the local join processing phase.
GeoSpark handles the joins in a similar way. An advantage with GeoSpark is
that user has more control since it exposes the spatial partitioning and index
RDD APIs for applications. This means that distance join (or any join) can be
called multiple times without incurring extra costs of partitioning and index-
ing the RDDs again. In case of SpatialSpark and Simba, the partitions and the
indices are created on the fly which means that partitioning and indexing is
tightly coupled with the join algorithm. This implies that the input datasets
will be partitioned again in case distance join has to be invoked again. Spa-
tialSpark and Simba can be tuned to reuse the partitions from the previous
join query, but this would require changes to the systems source code rather
than the application code. Figure 3.11 shows the scalability of the systems
for distance join query based on Total Join Time and Figure 3.12 shows the
shuffle read and shuffle write costs related to the systems. It can be seen that
Simba has the highest shuffling costs. The peak memory consumption by
GeoSpark, SpatialSpark, and Simba for distance join are 149 GB, 287 GB, and
211 GB respectively.

3.7. Evaluation 43

●

●

●
● ●

0

500

1000

1500

2000

1 2 4 8 16
Number of nodes

To
ta

l R
un

tim
e

(s
ec

on
ds

)

● GeoSpark

Simba

SpatialSpark

Figure 3.11: Distance join scalability

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

10

20

30

40

0

10

20

30

40

S
huffleR

ead
S

huffleW
rite

C
os

ts
 (

G
B

s)

GeoSpark

Simba

SpatialSpark

Figure 3.12: Distance join shuffle costs

3.7.5 Spatial Joins Performance

In this experiment, we measure spatial join performance for all possible com-
binations of geometric objects. To evaluate the systems, we make use of the
intersects predicate in every case. We study the Preparation Time, Join Time,
Peak Execution Memory consumption, Shuffle Write costs and Shuffle Read costs
for evaluating join query performance. It is also important to mention here
is that at the time of writing, Magellan does not have a full implementation
of Point-LineString and LineString-LineString join. These joins only work for
the filter phase where join partners can be filtered out based on the Z-curve
value but no exact intersection test takes place. The results produced are only
an approximation of the actual join.

Figure 3.13 shows the scalability of all possible spatial joins based on To-
tal Runtime. Figure 3.14 shows the peak execution memory consumption,
Figure 3.15 shows the shuffle write costs and Figure 3.16 shows the shuffle
read costs related to the systems. Figure 3.17 shows the spatial joins cost
breakdown and join performance for different systems on a single node and
Figure 3.18 shows the Point-Rectangle join performance for different systems

44 Chapter 3. Modern Spatial Systems

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

LineS
tring−

LineS
tring

LineS
tring−

P
olygon

LineS
tring−

R
ectangle

P
oint−

LineS
tring

P
oint−

P
oint

P
oint−

P
olygon

P
oint−

R
ectangle

P
olygon−

P
olygon

R
ectangle−
P

olygon
R

ectangle−
R

ectangle

0

1000

2000

30000

1000

2000

3000

1
2

4
8

16
1

2
4

8
16

1
2

4
8

16
1

2
4

8
16

1
2

4
8

16

N
um

ber of nodes

Total Runtime (seconds)

●
G

eoS
park

LocationS
park

M
agellan

S
patialS

park

Figure
3.13:Scalability

of
allspatialjoins

for
differentsystem

s
w

hile
scaling

up
the

num
ber

of
nodes

3.7. Evaluation 45

LineString−
LineString

LineString−
Polygon

LineString−
Rectangle

Point−
LineString

Point−
Point

Point−
Polygon

Point−
Rectangle

Polygon−
Polygon

Rectangle−
Polygon

Rectangle−
Rectangle

0

100

200

300

0

100

200

300

P
ea

k
E

xe
cu

tio
n

M
em

or
y

(G
B

s)

GeoSpark
LocationSpark
Magellan
SpatialSpark

Figure 3.14: Spatial joins peak execution memory con-
sumption

LineString−
LineString

LineString−
Polygon

LineString−
Rectangle

Point−
LineString

Point−
Point

Point−
Polygon

Point−
Rectangle

Polygon−
Polygon

Rectangle−
Polygon

Rectangle−
Rectangle

0

25

50

75

0

25

50

75

S
hu

ffl
e

R
ea

d
C

os
ts

 (
G

B
s)

GeoSpark
LocationSpark
Magellan
SpatialSpark

Figure 3.15: Spatial joins shuffle read costs

46 Chapter 3. Modern Spatial Systems

LineString−
LineString

LineString−
Polygon

LineString−
Rectangle

Point−
LineString

Point−
Point

Point−
Polygon

Point−
Rectangle

Polygon−
Polygon

Rectangle−
Polygon

Rectangle−
Rectangle

0

25

50

75

0

25

50

75

S
hu

ffl
e

W
rit

e
C

os
ts

 (
G

B
s)

GeoSpark
LocationSpark
Magellan
SpatialSpark

Figure 3.16: Spatial joins shuffle write costs

LineString−
LineString

LineString−
Polygon

LineString−
Rectangle

Point−
LineString

Point−
Point

Point−
Polygon

Point−
Rectangle

Polygon−
Polygon

Rectangle−
Polygon

Rectangle−
Rectangle

0

1000

2000

3000

0

1000

2000

3000

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

To
ta

l R
un

tim
e

(s
ec

on
ds

)

Runtime
Breakdown

Join Time
Preparation
Time

Figure 3.17: Total runtime cost breakdown for spatial
joins between various geometric objects on a single

node

3.7. Evaluation 47

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

250

500

750

1000

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

To
ta

l R
un

tim
e

(s
ec

on
ds

)

Runtime
Breakdown

Join Time
Preparation
Time

Figure 3.18: Point-Rectangle spatial join cost break-
down scaling up the number of nodes

while scaling up the number of nodes.
It can be seen that SpatialSpark has the highest Peak Execution Memory

consumption, like in the case of distance join. It can also be seen that Magel-
lan has high Shuffling costs compared to the other systems, especially in the
case of joins in LineStrings. For the join, Magellan rewrites the plan, to use
Z-curve value as the key and adds a filter that checks if the curves intersect
or not. If the curves intersect, only then Magellan checks whether the spa-
tial objects actually intersect or not. In the refinement phase Magellan ends
up shuffling a lot of data. Note that no data is shuffled for Point-LineString
and LineString-LineString joins, since these join only have the filter phase. It
can also be seen that Magellan, has low Join Time for some type of joins. Al-
though, Geospark has high memory consumption for input RDDs, it does
not exhibit high Peak Execution Memory consumption or high Shuffling costs.

For spatial join in Magellan, we use a dataframe from different input
datasets that contains tuples of the form spatial data, Z-curve value, and re-
lation. In a tuple a relation represents the relationship (within, overlapping,
or disjoint from the spatial object) of Z-curve value to the spatial object. The
Preparation Time in Magellan is spent in generating these dataframes from the
input datasets which only contains the spatial objects. For the join, Magellan
rewrites the plan, to use Z-curve value as the key and adds a filter that checks
if the curves intersect or not. If the curves intersect, only then Magellan
checks whether the spatial objects actually intersect or not. It can be seen that
GeoSpark also has high preparation costs in most cases. This is due to high
memory costs in GeoSpark. Note that for spatial joins we have SpatialParti-
tionedRDD and IndexedRDD cached in memory for both datasets. GeoSpark
serializes/deserializes these RDDs as needed to stay within the storage mem-
ory limit on one node. On one node these serialization/deserialization costs
add up resulting in high preparation and join times. This is especially evident
in Figure 3.18. It can be seen that when there is sufficient storage memory
available (2 nodes upwards) for all four RDDs to be cached in memory the
total run time reduces by 2.5x. This is also the case for Magellan, where the
indexed LineString dataframe consumes the most memory (92 GB) and every

48 Chapter 3. Modern Spatial Systems

type of join involving the LineString dataset shows significant improvement
as we scale up the number of nodes thereby increasing the amount of storage
memory.

From the figures we can also see that LocationSpark outperforms the clos-
est competitor Magellan for Point-Rectangle join (the only supported spatial
join in LocationSpark) by 1.5x. This is due to couple of reasons. Firstly, its has
low memory related costs. Secondly, LocationSpark has two abstract spatial
layers, LocationRDD (for locations or points) and queryRDD (for rectangles),
and a query scheduler. LocationRDD is globally and locally indexed along
with their embedded sFilters. The query scheduler first estimates the cost
of query runtime using sampled queries and partitions from queryRDD and
LocationRDD. LocationSpark uses reservoir sampling [185] to sample queries
from the queryRDD and partitions from the LocationRDD and estimates the
runtime costs if queries are executed on the sampled partitions. The costs are
estimated using techniques proposed in [95]. It then takes the partitions with
high query runtime estimates and estimates the cost of repartitioning these
partitions and computes the runtime costs to run sampled queries on repar-
titioned partitions. If the estimated cost of repartitioning and runtime is less
than the previously estimated runtime costs, it adds the repartitioning step
in the execution plan. This ensures that not only the partition sizes are well
balanced but also the amount of work on the executors is also more or less
well balanced. Secondly, LocationSpark also filters out multiple partitions
for a tuple from the queryRDD to join against using its sFilter, in a similar
way as it does it in the case of range and kNN queries.

3.7.6 kNN Join Performance

Only two systems support kNN join: Simba and LocationSpark. For kNN
join query we fix the value of k to 5 and measure the join performance for
the two systems. Another point to make here is that the kNN Join query for
the Points datasets (200 million points) crashed in Simba. We will explain
the reason later. Since, Simba [192] used a maximum of 10 million points (for
both datasets) in their evaluation of kNN join, we decided to do the same. We
sampled 10 million points from the Points dataset and then ran the kNN join
query on them. Since we reduced the dataset to 10 million points for both
datasets we had to run multiple experiments to determine a good number of
partitions for Simba. LocationSpark does not require tuning the number of
partitions for the LocationRDDs as the query scheduler and optimizer already
does it and overwrites the number of partitions specified by the user. On the
other hand Simba, by default, sets the number of join and index partitions
to 200 each. We found that 50 partitions performed the best for Simba for 10
million points.

Figure 3.19 shows the kNN join cost breakdown and Figure 3.20 shows
the scalability of the systems based on Join Time. LocationSpark balances the
work among the Spark workers well, using the query cost estimation men-
tioned previously in Section 3.7.5. Simba is not able to do so, and ends up

3.7. Evaluation 49

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

100

200

300
Lo

ca
tio

nS
pa

rk

S
im

ba

Lo
ca

tio
nS

pa
rk

S
im

ba

Lo
ca

tio
nS

pa
rk

S
im

ba

Lo
ca

tio
nS

pa
rk

S
im

ba

Lo
ca

tio
nS

pa
rk

S
im

ba

To
ta

l R
un

tim
e

(s
ec

on
ds

)

Runtime
Breakdown

Join Time
Preparation
Time

Figure 3.19: kNN join cost breakdown scaling up the
number of nodes

100

200

1 2 4 8 16
Number of nodes

Jo
in

 T
im

e
(s

ec
on

ds
)

LocationSpark

Simba

Figure 3.20: kNN join scalability

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

1

2

3

0

1

2

3

S
huffleR

ead
S

huffleW
rite

C
os

ts
 (

G
B

s)

LocationSpark

Simba

Figure 3.21: kNN join shuffle costs

50 Chapter 3. Modern Spatial Systems

creating overloaded partitions because of duplicated points. This can be at-
tributed to how the kNN join algorithm (RKJSpark) works in Simba: Let the
two datasets be R and S. RKJSpark algorithm tries to find n partitions of S
to pair with n partitions of R, such that these paired partitions can be com-
bined into one RDD partition using zipPartitions and then kNN join can be
run on them locally. The pairing is done by computing distance bounds (γ).
Simba partitions R into n partitions (Rn) and computes a distance bound (γi)
for each partition Ri in two steps. First, for each partition Ri, the algorithm
computes the distance of centroid (Ci) of the MBR (minimum bounding rect-
angle) of the partition to the furthest point in the partition (we denote this
distance as Di1). Second, it samples a set of points from S and builds an R-
tree on the sampled dataset. It then computes the kNN of the centroid (Ci) of
each partition (Ri) from the sampled dataset using the R-tree and selects the
distance of the furthest kth neighbor (Di2). The distance bound (γi) is then
set to 2Di1 + Di2. Note that the distance bound is different for each partition.
The algorithm then partitions S into n partitions based on

Si = { s|s ∈ S, distance(Ci, s) ≤ γi }

This means that for every s ∈ S, RKJSpark includes a copy of s in Si if
distance(Ci,s) ≤ γi. This creates a lot of duplicated points in the partitions
for S and leads to more and redundant computations. This is also the reason,
why Simba crashes for the Points dataset (200 million) where it simply runs
out of heap space because of a lot of duplicated points.

Figure 3.20 shows the scalability of the systems for kNN join query based
on Join Time. It can be noticed that LocationSpark shows a slight increase in
runtime for 8 and 16 nodes. This is due to the communication cost where
more executors return the local result to the driver.

Figure 3.21 shows the shuffle costs for each system. It can be seen that
Simba has a higher Shuffling related costs as compared to LocationSpark.
The peak memory consumption for LocationSpark and Simba is 2.24 GB and
1.75 GB respectively.

3.7.7 US Census TIGER Dataset

In these experiments, we used the TIGER Edges dataset which contains ap-
proximately 70 million linestrings. As, the other datasets in the TIGER are
limited in size (less than 2 million spatial objects), we generated a rectan-
gle dataset from the Edges dataset by computing the bounding box of each
linestring record. We also generated a Points dataset from the OSM All
Nodes dataset, which comprises of 170 million points that are located in the
US region. We ran the distance join, the spatial joins, and the kNN join
queries on these datasets. These datasets are also available on our server12.

12http://osm.db.in.tum.de/

http://osm.db.in.tum.de/

3.7. Evaluation 51

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

500

1000

1500

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
S

im
ba

S
pa

tia
lS

pa
rk

To
ta

l R
un

tim
e

(s
ec

on
ds

)

Runtime
Breakdown

Join Time
Preparation
Time

Figure 3.22: Distance join cost breakdown scaling up the
number of nodes

●

●

●
●

●

400

800

1200

1 2 4 8 16
Number of nodes

To
ta

l R
un

tim
e

(s
ec

on
ds

)

● GeoSpark

Simba

SpatialSpark

Figure 3.23: Distance join scalability

Distance Join Performance

To measure the performance of distance joins we use the US Points dataset.
The distance for the query is set to 5 meters. It can be seen that the perfor-
mance, and the join related costs are similar to those in the OSM datasets.
Simba, again has high shuffling costs and is also the slowest among the three
systems. Figure 3.22 shows the distance join cost breakdown for these sys-
tems while scaling up the number of nodes. Figure 3.23 shows the scalability
of the systems for distance join query based on Total Join Time and Figure 3.24
shows the shuffle read and shuffle write costs related to the systems. The
peak memory consumption by GeoSpark, SpatialSpark, and Simba for dis-
tance join are 129 GB, 273 GB, and 176 GB respectively.

kNN Join Performance

As in the case of the OSM dataset, we again sampled 10 million points from
the US points dataset and ran the kNN join query on them. kNN join query

52 Chapter 3. Modern Spatial Systems

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

20

40

60

0

20

40

60
S

huffleR
ead

S
huffleW

rite

C
os

ts
 (

G
B

s)

GeoSpark

Simba

SpatialSpark

Figure 3.24: Distance join shuffle costs

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

100

200

Lo
ca

tio
nS

pa
rk

S
im

ba

Lo
ca

tio
nS

pa
rk

S
im

ba

Lo
ca

tio
nS

pa
rk

S
im

ba

Lo
ca

tio
nS

pa
rk

S
im

ba

Lo
ca

tio
nS

pa
rk

S
im

ba

To
ta

l R
un

tim
e

(s
ec

on
ds

)

Runtime
Breakdown

Join Time
Preparation
Time

Figure 3.25: kNN join cost breakdown scaling up the
number of nodes

50

100

150

200

1 2 4 8 16
Number of nodes

Jo
in

 T
im

e
(s

ec
on

ds
)

LocationSpark

Simba

Figure 3.26: kNN join scalability

performance shows the same trend as in the OSM dataset.
Figure 3.25 shows the kNN join cost breakdown and Figure 3.26 shows

3.8. Conclusions And Future Work 53

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

S
huffleR

ead
S

huffleW
rite

C
os

ts
 (

G
B

s)

LocationSpark

Simba

Figure 3.27: kNN join shuffle costs

the scalability of the systems based on Join Time. Figure 3.26 shows the scal-
ability of the systems for kNN join query based on Join Time. Figure 3.27
shows the shuffle costs for each system. The peak memory consumption for
LocationSpark and Simba is 2.24 GB and 1.75 GB respectively, exactly as in
the case of the OSM dataset.

Spatial Joins Performance

Figure 3.28 shows the scalability of all possible spatial joins based on Total
Runtime. Figure 3.32 shows the spatial joins cost breakdown and join per-
formance for different systems on a single node and Figure 3.33 shows the
Point-Rectangle join performance for different systems while scaling up the
number of nodes. Magellan, again exhibits high shuffling costs. SpatialSpark
has the highest Peak Execution Memory consumption. GeoSpark performs the
best in almost all spatial joins.

3.8 Conclusions And Future Work

In this chapter, we evaluated five Spark based spatial analytics systems. We
performed an experimental evaluation of these systems using real-world
datasets. Table 3.5 summarizes the strengths and weaknesses of the systems.
From our experience, GeoSpark comes close to a complete spatial analytics
systems because of data types and queries supported and the control user
has while writing applications. It also exhibits the best performance in most
cases. There are a few drawbacks though. First, it consumes a large amount
of memory for the input datasets. Second, GeoSpark does not support kNN
joins yet. Magellan also exhibits good performance for some spatial joins
especially if only Join Time is considered, but it does not have any optimiza-
tion for range queries. Also, it does not support kNN queries, distance joins
and kNN joins. Moreover, Magellan has very high shuffling related costs.
An advantage of GeoSpark and Magellan is that they are actively under
development. LocationSpark is interesting since it has a very good query

54 Chapter 3. Modern Spatial Systems

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

LineS
tring−

LineS
tring

LineS
tring−

R
ectangle

P
oint−

LineS
tring

P
oint−

P
oint

P
oint−

R
ectangle

R
ectangle−

R
ectangle

0

500

1000

15000

500

1000

1500

1
2

4
8

16
1

2
4

8
16

1
2

4
8

16

N
um

ber of nodes

Total Runtime (seconds)

●
G

eoS
park

LocationS
park

M
agellan

S
patialS

park

Figure
3.28:Scalability

of
allspatialjoins

for
differentsystem

s
w

hile
scaling

up
the

num
ber

of
nodes

3.8. Conclusions And Future Work 55

LineString−
LineString

LineString−
Rectangle

Point−
LineString

Point−
Point

Point−
Rectangle

Rectangle−
Rectangle

0

50

100

150

200

250

0

50

100

150

200

250

P
ea

k
E

xe
cu

tio
n

M
em

or
y

(G
B

s)

GeoSpark
LocationSpark
Magellan
SpatialSpark

Figure 3.29: Spatial joins peak memory consumption

LineString−
LineString

LineString−
Rectangle

Point−
LineString

Point−
Point

Point−
Rectangle

Rectangle−
Rectangle

0

20

40

60

0

20

40

60

S
hu

ffl
e

R
ea

d
(G

B
s)

GeoSpark
LocationSpark
Magellan
SpatialSpark

Figure 3.30: Spatial joins shuffle read costs

56 Chapter 3. Modern Spatial Systems

LineString−
LineString

LineString−
Rectangle

Point−
LineString

Point−
Point

Point−
Rectangle

Rectangle−
Rectangle

0

10

20

30

40

0

10

20

30

40

S
hu

ffl
e

W
rit

e
(G

B
s)

GeoSpark
LocationSpark
Magellan
SpatialSpark

Figure 3.31: Spatial joins shuffle write costs

LineString−
LineString

LineString−
Rectangle

Point−
LineString

Point−
Point

Point−
Rectangle

Rectangle−
Rectangle

0

500

1000

1500

0

500

1000

1500

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk

M
ag

el
la

n
S

pa
tia

lS
pa

rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk

M
ag

el
la

n
S

pa
tia

lS
pa

rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk

M
ag

el
la

n
S

pa
tia

lS
pa

rk

To
ta

l R
un

tim
e

(s
ec

on
ds

)

Runtime
Breakdown

Join Time
Preparation
Time

Figure 3.32: Total runtime cost breakdown for spatial
joins between various geometric objects on a single

node

3.8. Conclusions And Future Work 57

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

0

200

400

600

800

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

G
eo

S
pa

rk
Lo

ca
tio

nS
pa

rk
M

ag
el

la
n

S
pa

tia
lS

pa
rk

To
ta

l R
un

tim
e

(s
ec

on
ds

)

Runtime
Breakdown

Join Time
Preparation
Time

Figure 3.33: Point-Rectangle spatial join cost break-
down scaling up the number of nodes

Table 3.5: Strengths and Weaknesses

System Strengths Weaknesses

GeoSpark Query optimizer High memory costs

Scales well No kNN join

Rich in features

Active development

Simba Query optimizer Limited data types

Scales well No recent development

LocationSpark Query optimizer and scheduler Limited data types

Spatial bloom filter No recent development

Magellan Join query optimizer High shuffle costs

Low join time High preparation times

Scales well No range query optimization

Active development

SpatialSpark Scales well No recent development

High memory costs

scheduler and optimizer. Also it has a spatial bloom filter sFilter which bring
query costs down. The aforementioned systems may look to incorporate
such filters in their system as well. Again, the limitation is that it has limited
data types and there has not been any development recently. Simba, like Lo-
cationSpark, has very limited data types (only points) and does not support
spatial joins. SpatialSpark is competitive but has high Peak Execution Memory
consumption. Moreover, there has been no active development. We also see
that all the systems evaluated scale pretty well with more resources.

58 Chapter 3. Modern Spatial Systems

A recent development in the area of spatial joins have been in the area
of approximate and adaptive joins with precision guarantees [206] [83] [84].
The motivation behind such joins is that many applications today do not re-
quire the join results to be accurate and only need an approximation to make
certain decisions. The systems studied in this chapter may look to add such
joins for such applications. Another interesting field is the area of trajectory
similarity search, and an operator for such queries in these systems would be
a welcome addition for many users. Also, Postgres with its extension Post-
GIS is rich with a variety of spatial operators that the Spark based spatial
systems do not currently have and could be implemented in the future.

59

Chapter 4

Modern Spatial Libraries

Excerpts of this chapter have been published in [131, 132].

4.1 Introduction

In recent years, services such as recommending close-by social events, busi-
nesses, or restaurants as well as navigation, location-based mobile adver-
tising, and social media platforms have fueled an exponential growth in
location-enabled data. Industry giants like Google, Facebook, Uber, Yelp,
and Foursquare are some of the various companies that provide such ser-
vices. To handle location data from its users, these companies either build
their own spatial data management systems from scratch, or rely on existing
solutions.

The rise of location-based services has also led the research community
to develop systems that can efficiently handle, process and analyze spatial
data. HadoopGIS [2] and SpatialHadoop [40] were one of the first research ef-
forts to focus on handling and processing spatial data at scale. Apache Spark
and Impala saw a similar trend with a plethora of research introducing spa-
tial support in the form of SpatialSpark [197], GeoSpark [203], Simba [192],
Magellan [166], STARK [61], LocationSpark [173], Sphinx [42], SRX [175],
STAR [26], and Amazon Redshift [17]. Popular database systems have also
witnessed a similar trend with Oracle Spatial [126], HyPerSpace [129], Mem-
SQL [112] and MongoDB [114].

Many of these systems or services use an open-source library to imple-
ment the basic geometry types, indexes, and algorithms for spatial process-
ing. Some of the most popular libraries are: JTS Topology Suite (JTS), it C++
port Geometry Engine Open Source (GEOS), Google S2 (S2), ESRI Geometry
API, and Java Spatial Index (JSI). Today, these libraries are being used in a
variety of services and research projects alike. We will highlight the major
services and research projects that use these libraries in Section 4.4. Many of
the services that use these libraries are multi-million dollar business models,
such as on-demand ride-hailing and dating applications. Moreover, many
research efforts today in the systems community also use these libraries for
their spatial-processing capabilities. Given how prevalent and relevant these
libraries are in present-day services and systems, it becomes a necessity to
evaluate these libraries.

60 Chapter 4. Modern Spatial Libraries

In this work we take an application-oriented approach in evaluating these
libraries. Many open datasets such as Open Street Maps or NYC taxi rides
datasets provide location information using raw GPS coordinates. More-
over, millions of GPS devices in use today send location information in the
form of GPS coordinates. Thus, unless stated otherwise, we assume that ap-
plications receive raw GPS coordinates and have to process spatial queries
based on them.

In this chapter, we contribute:

• A study of problems arising in using planar geometry libraries directly
with GPS coordinates.

• A survey of modern spatial libraries, highlighting their features and
indexes.

• A thorough performance analysis of these libraries using four spatial
queries: range, distance, k-NN, and a spatial join query.

The rest of the chapter is structured as follows: Section 4.2 discusses the
background for planar and spherical geometry, and identifies potential pit-
falls in incorrect usage of these libraries. Section 4.3 formally defines the spa-
tial queries we considered for evaluation and presents practical examples of
these queries. Section 4.4 introduces the modern spatial libraries. Section 4.5
presents the experimental setup used for evaluation, which is followed by
the evaluation itself in Section 4.6. In Section 4.7 we highlight a potential
research area and discuss how distributed spatial query processing can be
implemented using the spatial libraries. Section 4.8 discusses related work
and is followed by takeaways and conclusions in Section 4.9.

4.2 Background

The libraries evaluated in this chapter either use planar or spherical geome-
try. In this section, we will describe what these two terms mean and why a
naive usage of planar geometry libraries can introduce unintended errors.

4.2.1 Geometry Models

Mathematician Carl Friedrich Gauss proved in Theorema Egregium [55] that
a sphere and a plane are not isometric, i.e. distances cannot be preserved if
one is transformed into the other. Thus as a corollary of Theorema Egregium,
one cannot wrap a paper around a ball without crumpling it. Conversely, the
surface of a sphere cannot be flattened into a plane without distorting the dis-
tances. This fact proved to be the basis of cartography, the study and practice
of making maps. A map projection [193] is a systematic transformation of
the latitudes and longitudes of locations from the surface of a sphere or an
ellipsoid into locations on a plane. As the theorem implies that no planar
(flat) map of Earth can be perfect, even for a portion of the Earth’s surface,
every cartographic projection necessarily distorts at least some distances. For

4.2. Background 61

example, the Mercator projection distorts the size of geographical objects far
from the equator. In the Mercator projection, Greenland appears roughly
the same size as Africa, while in reality it is 14 times smaller than Africa.
The Mercator projection is practically unusable at latitudes greater than 70°,
north or south, and can never fully show polar areas. On the other hand,
the Mercator projection preserve the shape of the countries and it preserves
direction, and thus is very useful for navigation, i.e. 90°turns on roads in
reality appear the same on the map. This is one of the reasons that a vari-
ant of Mercator projection, called Web Mercator, became a popular choice
for various web services such as Google Maps1, Bing Maps, and Open Street
Maps. There are around five thousand [164] available projections today and
they come with different trade offs in terms of four spatial properties: shape,
distance, direction, and land area.

Earth can be projected onto many surfaces, but today the most widely
adopted surfaces to project Earth on are planes and spheres.

Planar Geometry: is geometry on a plane. The basis of planar geometries
is a plane, i.e., all the calculations on the geometries such as distance between
geometries, area covered by a geometry, intersection between geometries is
done on a plane using cartesian mathematics. In planar geometry, the dis-
tance between two points on a plane is a straight line distance between the
points.

Spherical Geometry: is geometry on a sphere. The basis of spherical
geometries is thus a sphere. On the sphere there are no straight lines as in
case of a plane. In spaces involving curvature (such as spheres), straight
lines are replaced by geodesics. The shortest distance between two points
on the surface of a sphere is called the great-circle distance or orthodromic
distance [189].

To make planar geometries work with geographic data, Earth has to be
projected onto a plane. There are multiple projections available, some of
which are based on the area that they cover such as city based, region based,
country based, and even on continental and global scale but they all come
with different trade-offs [115]. Most notably, there is no planar projection
that preserves distance. Projections can only minimize distance distortion.
When working with planar geometries, it thus becomes essential to choose
the right projection that is best suited to the application concerned.

Spherical geometries on the other hand work on spherical projections,
which maps the points on Earth’s surface to a perfect mathematical sphere.
As Earth is not a perfect sphere, spherical projections of the Earth also create
distortions, but are limited to a maximum distortion of 0.56% [149]. Spherical
projections also preserve the correct topology of the Earth with no singular-
ities and low distortions everywhere. An even more accurate projection of
Earth is on an ellipsoid, but operations on ellipsoids are orders of magnitude
slower than on a sphere. Spherical geometry are also slower than their planar
geometry counterparts usually since the computations are on a sphere rather
than on a plane. But spherical geometry is generally considered better suited
to work with geographic data on a global scale.

1Google Maps on a web browser now displays a globe if zoomed out sufficiently.

62 Chapter 4. Modern Spatial Libraries

4.2.2 When Can Things Go Wrong In Planar Geometries?

In this section, we will show how applications can end up using planar ge-
ometry libraries in a wrong way. We motivate this by using an illustrative
example of a ride-hailing application in two scenarios: operating in a city
and on a global scale. We highlight potential pitfalls which can lead to appli-
cations getting wrong results.

Consider a ride-hailing application scenario in New York City that stores
the location data as raw GPS coordinates (lat/long)2, and matches riders with
the nearest drivers using the k-NN query (we formally define k-NN query in
Section 4.3.3). A part of k-NN query processing is the distance computation
between two points, the user and the drivers in this case. Planar geome-
try libraries come with distance functions3 that compute Euclidean distance.
The application could naively compute Euclidean distance between two raw
GPS coordinates, in which case, the distance would be in degrees and does
not have any meaning. The correct approach is to project the raw GPS coordi-
nates using a spatial reference system, such as EPSG:32118 [44] that minimizes
the distance distortion for the New York area, and the measurement unit is in
meters. The Euclidean distance can then be computed on the projected coor-
dinates using the distance function in the planar geometry library. Another
way is to compute the Haversine distance between the GPS coordinates, but
it is slower to compute because it involves computing multiple sine and co-
sine operations.

Now as another example, consider the same application as in the previous
example, but the application now operates at a global level and uses a planar
geometry library. The application may naively start using EPSG:3857 [165]
as the projected coordinate system, which projects the whole Earth onto a
plane, and not just a city as in the case with EPSG:32118. In EPSG:3857, dis-
tances are only accurate along the equator, and the error increases with gain
or loss in latitude. The application receives two ride requests, one in city A
which lies on the equator, and the other in city B which is closer to the North
(or the South) Pole where distance distortions are large (distances become
larger than they actually are). While the distance computation will be correct
for city A, for city B the distance distortions will be large. In EPSG:3857 the
distance distortion can be significant. So if the application is using planar ge-
ometry, or more accurately using Euclidean distance, to compute the distance
between the users and the drivers in city B, a user might not be assigned any
driver as the application may wrongly interpret that the drivers are far away
from the user, while in reality the driver might be parked next to the user. A
better approach would be to detect during query processing that the user is
in city B, and then transform coordinates into a reference system specific to
the city as mentioned in the previous example to compute the distances.

2Many open datasets today provide location information in lat/long format.
3JTS/GEOS do not support geodetic operations: https://locationtech.github.io/

jts/jts-faq.html#geodetic_operations.
ESRI geometry API has geodesic distance function: https://github.com/Esri/geometry-
api-java/wiki.

https://locationtech.github.io/jts/jts-faq.html#geodetic_operations
https://locationtech.github.io/jts/jts-faq.html#geodetic_operations
https://github.com/Esri/geometry-api-java/wiki
https://github.com/Esri/geometry-api-java/wiki

4.3. Queries 63

A more hidden potential pitfall is while using a spatial index in a planar
geometry library. Many popular spatial index structures in these libraries
are either designed or implemented with Euclidean distance as a basis for
distance computation during various types of index traversals, depending
on the query. For example, the R-tree in Java Spatial Index (JSI) assumes
Euclidean distance as the metric. So, if an application uses the R-tree to in-
dex GPS coordinates and issues a k-NN query to the R-tree, it is bound to
get wrong results because the nearest-neighbor search algorithm in the index
uses Euclidean distance. Similarly in JTS and GEOS, if a user does not pro-
vide a distance metric to the k-NN (or NN) query in the R-tree, the library
uses Euclidean distance by default. As an example, consider the descrip-
tion of STR-Packed R-tree in Shapely4, a popular python geospatial library,
which uses GEOS internally. The description gives a simple example of R-
tree for a nearest-neighbor query. The user might be using GPS coordinates
in the R-tree, and might not be aware that the underlying library GEOS uses
Euclidean distance as the metric and thus obtain an unintended error. The
correct approach for using a spatial index that indexes geodectic coordinates
is shown in [154].

4.3 Queries

In this work we have considered four queries, namely, range, distance, k-
nearest neighbor (k-NN) and a spatial point-in-polygon join query. We se-
lected these four queries based on recent research in systems [192] and ap-
plications [206]. Simba [192] is a big spatial data analytics system that is
optimized for storing location-data and considers (1) range, (2) distance, and
(3) k-nearest neighbors Query (k-NN) queries. [206] showcases multiple mo-
tivating examples of spatial point-in-polygon join queries which are particu-
larly useful for visual exploration and analysis of urban data.

4.3.1 Range Query

A range query takes a range r (i.e., min/max values for all dimensions D)
and a set of geometric objects S. It returns all objects in S that are contained
in the range r. Formally:

Range(r, S) = { s|s ∈ S ∧ ∀d ∈ D :
r [d] .min ≤ s [d] ≤ r [d] .max }.

Practical Example: Retrieve all objects at current zoom level in a maps
application (e.g., Google Maps) for a browser window.

4https://shapely.readthedocs.io/en/latest/manual.html#str-packed-r-tree

https://shapely.readthedocs.io/en/latest/manual.html#str-packed-r-tree

64 Chapter 4. Modern Spatial Libraries

4.3.2 Distance Query

A distance query takes a query point q, a distance d, and a set of geometric
objects S. It returns all objects in S that lie within the distance d of query
point q. Formally:

Distance(q, d, S) = { s|s ∈ S ∧ dist(q, s) ≤ d}.

Practical Example: Retrieve all dating profiles within 5 kilometers of a user’s
location.

4.3.3 k-nearest neighbors Query

A k-NN query takes a set of points S, a query point q, and an integer k ≥ 1 as
input, and finds the k-nearest points in S to q. Formally:

k-NN(q, k, S) = { s|s ∈ T ⊆ S ∧ |T| = k ∧ ∀t ∈ T,
∀r ∈ S− T : d(q, t) ≤ d(q, r)}.

Practical Example: Find five closest pizzerias from a user’s location.

4.3.4 Spatial Join

A spatial join takes two input sets of spatial records R and S and a join pred-
icate θ (e.g., overlap, intersect, contains, within, or withindistance) and re-
turns a set of all pairs (r, s) where r ∈ R, s ∈ S, and the join predicate θ is
fulfilled. Formally:

R ./θ S = { (r, s) | r ∈ R, s ∈ S, θ(r, s) holds }.

Practical Example: Given two datasets, taxi rides (R: points) and neighbor-
hood boundaries (S: polygons), join the two datasets to find how many rides
originate (θ: within) from each neighborhood.

4.4 Libraries

In the following section, we will describe the major features of the evaluated
libraries. We will also highlight the major services, applications, and systems
that use these libraries. Table 4.1 summarizes various features of the libraries,
and Table 4.2 summarizes the features of the indexes found in these libraries.

4.4.1 ESRI Geometry API

ESRI Geometry API5 is a planar geometry library written in Java. ESRI Ge-
ometry API comes with a rich support for multiple geometry datatypes, such
as point, multipoint, line, polyline, polygon, and envelope and OGC variants

5https://github.com/Esri/geometry-api-java

https://github.com/Esri/geometry-api-java

4.4. Libraries 65

Table 4.1: Selected features of the libraries

Features S2 GEOS ESRI JTS JSI jvptree

Language C++ C++ Java Java Java Java

Indexes ShapeIndex,
PointIn-
dex, Re-
gionTer-
mIndexer

STRtree,
Quadtree

Quadtree STRtree,
Quadtree,
k-d tree

R-Tree Vantage
Point
Tree

Geometry
Type

Spherical Planar Planar Planar Planar Metric
space

Geometry
Model

Point, Line,
Area, Ge-
ometry
Collections

Point,
Line,
Area,
Geometry
Collec-
tions

Point,
Line,
Area,
Geometry
Collec-
tions

Point,
Line,
Area,
Geometry
Collec-
tions

Point,
Area

Point

License Apache
v2.0

LGPL Apache
v2.0

Dual
licence
(EPL 1.0,
BSD)

LGPL MIT

of these datatypes. It has support for various topological operations, such as
cut, difference, intersection, symmetric, union and various relational opera-
tions using DE-9IM matrix such as contains, crosses, overlaps etc. ESRI Ge-
ometry API also supports a variety of I/O formats, WKT, WKB, GeoJSON,
ESRI shape and REST JSON. The geometry library also comes with Quadtree
index which cannot be classified into a particular type from the Quadtree
family. The key property of any Quadtree is its decomposition rule, in ESRI
Quadtree, a leaf node splits into four when the node element count reaches 5
elements, and they are pushed to the children quads if possible.

ESRI Geometry API is used in a variety of products by ESRI such as Ar-
cGIS, ESRI GIS tools for Hadoop, and various ArcGIS APIs. It is also used
by the Hive UDFs and by developers building geometry functions for third-
party applications such as Cassandra, HBase, Storm, and many other Java-
based “big data” applications.

4.4.2 Java Spatial Index

The Java Spatial Index (JSI)6 is a main-memory optimized implementation
of the R-tree [59]. JSI relies heavily on the trove4j7 library to optimize per-
formance and reduce the memory footprint. The code is open-source, and is
released under the GNU Lesser General Public License, version 2.1 or later.
The JSI spatial index is limited in features, and only supports a few opera-
tions. It is a lightweight R-tree implementation, specifically designed for the

6https://github.com/aled/jsi
7http://trove4j.sourceforge.net/html/overview.html

https://github.com/aled/jsi
http://trove4j.sourceforge.net/html/overview.html

66 Chapter 4. Modern Spatial Libraries

following features (in order of importance): fast intersection performance by
using only main memory to store entries, low memory footprint, and fast up-
dates. JSI’s R-tree implementation avoids creating unnecessary objects by us-
ing primitive collections from the trove4j library. JSI only supports rectangle
and point datatypes, and has support for only two predicates for refinement,
intersects and contains. The R-tree index can be queried natively for ranges
and k-NN.

We could not find any reference of JSI being used in a major system or
service, which we believe is mostly due to its limited capabilities. Although
limited in features, JSI is still regularly utilized in diverse research areas [99,
100, 108, 107, 172].

4.4.3 JTS Topology Suite and Geometry Engine Open Source

The JTS Topology Suite (JTS) is an open-source Java library that provides an
object model for planar geometry together with a set of fundamental geo-
metric functions. JTS conforms to the Simple Features Specification for SQL
published by the Open GIS Consortium8. GEOS (Geometry Engine Open
Source)9 is a C++ port of the JTS Topology Suite (JTS). Both JTS and GEOS
provide support for basic spatial datatypes such as points, linestrings and
polygons along with indexes such as the STR packed R-tree and MX-CIF
Quadtree [104]. They also support a variety of geometry operations such
as area, distance between geometries, length/perimeter, spatial predicates,
overlay functions, and buffer computations. They also support a number of
input/output formats including Well-Known Text (WKT), Well-Known Bi-
nary (WKB).

JTS is used in many modern distributed spatial analytics systems such as
Hadoop-GIS [2], SpatialHadoop [40], GeoSpark [203] and SpatialSpark [197]
and other research areas [170]. GEOS on the other hand is used in a number
of database systems and their spatial extensions such as MonetDB, PostGIS,
SpatiaLite, Ingres. GeoPandas and Shapely, two popular geospatial libraries
in python, internally use GEOS. It is also used by a number of frameworks,
applications and proprietary packages10.

4.4.4 Google S2 Geometry

S211 is a library that is primarily designed to work with spherical geometry,
i.e., shapes drawn on a sphere rather than on a planar 2D map, which makes
it especially suitable for working with geographic data. S2 supports a variety
of spatial datatypes including points, polylines, and polygons. It also has
two index structures, namely (i) S2PointIndex to index collections of points
in memory and is a variant of Linear Quadtree [104], and (ii) S2ShapeIndex
to index arbitrary collections of shapes, i.e., points, polylines and polygons in

8https://www.opengeospatial.org/standards/sfa
9https://trac.osgeo.org/geos/

10https://trac.osgeo.org/geos/wiki/Applications/
11https://github.com/google/s2geometry

https://www.opengeospatial.org/standards/sfa
https://trac.osgeo.org/geos/
https://trac.osgeo.org/geos/wiki/Applications/
https://github.com/google/s2geometry

4.5. Methodology 67

memory. S2 also defines a number of queries that can be issued against these
indexes. Indexes also define iterators to allow for more fine-grained access.
S2 also accepts input in lat/long (GPS) format.

In recent years, S2 has become a popular choice among various location-
based services. It is used by Foursquare [177], on-demand ride-hailing ser-
vices such as Uber [139] and GO-JEK [151], the location-sharing application
Zenly [160] (recently acquired by Snap [63]), the location-based dating ap-
plication Tinder [142], and by popular games such as Pokémon GO [148]
and Ingress [211]. S2 is also used by many database systems, including
MemSQL [112], MongoDB [114], HyPer’s [78] geospatial extension HyPer-
Space [129] and in other research areas [84, 83].

4.4.5 Vantage Point Tree

The vantage point tree [196] is based on metric space and has been well
studied in image retrieval and nearest-neighbor search algorithms for high-
dimensional data. It is a binary tree which is built recursively. At each node
in the tree, the points are split into two equal-sized partitions, and are as-
signed to its two children. This process is repeated until no points are left
or a certain threshold is reached. A node partitions its points by picking one
point p at random, the vantage point. The points assigned to the node are
then are sorted by their distance to the vantage point p. The resulting sorted
array is then split in the middle and assigned to the two children. The dis-
tance of the split point from the vantage point p serves as the radius r for the
node. All the points that are within the radius r (i.e., the left part of the sorted
array) are assigned to the left child of the node, and the rest of the points are
assigned to the right child. Based on this partitioning, the tree can then be
traversed efficiently to answer distance and k-NN queries. We refer readers
to [196] for more details on vantage point trees. We use the library jvptree12

for an implementation of vantage point tree in our experiments.

4.5 Methodology

To benchmark the various libraries and measure memory costs, we use lan-
guage specific open-source tools. For Java based libraries, we use the Java
Microbenchmark Harness (JMH)13, which is a framework for building, run-
ning, and analyzing benchmarks. To measure the memory consumption in
Java, we use the Memory Measurer tool14. To benchmark C++ based li-
braries, we use Google Benchmark15, and for memory consumption of the
indexes in C++, we use the Heap Profiler in TCMalloc16. TCMalloc overrides
the malloc and new implementations, and can thus track the memory usage
of an application from the amount of memory allocated/deallocated.

12https://github.com/jchambers/jvptree
13https://openjdk.java.net/projects/code-tools/jmh/
14https://github.com/msteindorfer/memory-measurer
15https://github.com/google/benchmark
16https://github.com/gperftools/gperftools

https://github.com/jchambers/jvptree
https://openjdk.java.net/projects/code-tools/jmh/
https://github.com/msteindorfer/memory-measurer
https://github.com/google/benchmark
https://github.com/gperftools/gperftools

68 Chapter 4. Modern Spatial Libraries

Table
4.2:Selected

features
of

allindexes

S2
ESR

I
JTS

JSI
jvptree

feature
PointIndex

Q
uadtree

k-d
tree

Q
uadtree

STR
tree

R
-tree

jvptree

Im
plem

en-
tation

Linear
Q

uadtree
Q

uadtree
k-d

tree
M

X
-C

IF
Q

uadtree
STR

packed
R

-tree
R

-tree
V

PTree

G
eom

etry
Point

R
ectangle

Point
R

ectangle
R

ectangle
R

ectangle
Point

N
ative

queries
R

ange,
D

is-
tance,k-N

N
R

ange
R

ange
R

ange
R

ange,k-N
N

R
ange,k-N

N
D

istance,
k-

N
N

U
pdates

Yes
Yes

Insert:Yes
D

elete:N
o

Yes
N

o
insertion

after
build

Yes
N

o

D
efault

Fanout
32

4
2

4
10

20-50
2

4.6. Evaluation 69

For evaluation, we used two location (points) datasets, the New York City
Taxi Rides dataset [122] (NYC Taxi Rides) and geo-tagged tweets in the New
York City area (NYC Tweets). NYC Taxi Rides contains 305 million rides from
the years 2014 and 2015. NYC Tweets data was collected using Twitter’s
Developer API [182] and contains 83 million tweets. Figure 4.1 shows the
distribution of the rides and tweets in the NYC region. It can be seen that the
Taxi rides are mostly centered around central New York whereas the tweets
are well distributed over the entire city.

We further generated query datasets that consist of ranges (bounding
boxes) in case of range query, query points and distances in case of distance
query, and query points in case of k-NN query. For range queries and dis-
tance queries, we created seven different query datasets for seven different
selectivities, ranging from 0.0001% to 1% (i.e., the query selects 0.0001% to
1% of the data). These query datasets consist of one million queries each.
We evaluate various indexes in the libraries by issuing these queries sequen-
tially. We chose to generate a large number of queries to minimize the effect
of caching tree nodes from a previously issued query. Testing with many
queries is especially important in cases with low selectivity where many in-
dexes achieve a throughput of more than 100,000 queries per second. The
benchmark frameworks that we use for evaluation run a benchmark multi-
ple number of times until the result is statistically stable. It is thus necessary
that we have sufficient queries that do not touch the same nodes in the index
structures, but rather exercises several paths in the indexes. To generate these
datasets, we uniformly generated points within the New York City bound-
ing box and continuously expanded the range or the distance, depending on
which query dataset is being generated, to meet the selectivity requirements.
For the k-NN query dataset, we uniformly generated points within the NYC
bounding box. For the point-in-polygon spatial join query, we use 289 poly-
gons of neighborhood boundaries in NYC.

For planar geometry libraries, we projected the datasets to EPSG:32118
using ogr2ogr tool in GDAL. We used the ogr2ogr tool in GDAL to transform
the lat/long coordinates in the datasets.

4.6 Evaluation

All experiments were run single threaded on a two-socket Ubuntu 18.04 ma-
chine with an Intel Xeon E5-2660 v2 CPU (2.20 GHz, 3.00 GHz turbo)17 and
256 GB DDR3 RAM. We use the numactl command to bind the thread and
memory to one node to avoid NUMA effects. CPU scaling was also disabled
during benchmarking using the cpupower command.

We have benchmarked libraries written both in Java and C++. Although
we have used language specific framework and tools to measure the per-
formance of libraries, there are inherently many differences between the
languages. For e.g., depending on JVM implementation and C++ compiler

17CPU: https://ark.intel.com/content/www/us/en/ark/products/75272/intel-
xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html

70 Chapter 4. Modern Spatial Libraries

(a) Tweets dataset (b) Taxi Trips dataset

Figure 4.1: Datasets: NYC Taxi trips are clustered in cen-
tral New York while Tweets are spread across the city

(among various factors), a type int Object in Java requires 16 bytes while a
type int in C++ requires 4 bytes. We ask the readers to carefully take such
differences between languages into account while comparing performance
of libraries written in different languages.

To evaluate the queries, we perform two experiments for each query. In
the first experiment, we fix the selectivity of the query to 0.1% (we fix k to
10 in case of k-NN query) and vary the cardinality of the points dataset from
100,000 records to the maximum size of the dataset (i.e., 83 M records for
Twitter dataset and 305 M for the Taxi dataset). In the second experiment,
we fix the number of points to the maximum size of the dataset and vary the
selectivity of the query from 0.0001% to 1% (we vary k from 1 to 10,000 in
case of k-NN query). For all these experiments, we measure the throughput
for each library in queries/s. In case of spatial join query, we report the join
time in seconds. All query implementations are covered under the respective
section. If a particular index does not support a query natively, the query is
implemented using the filter and refine [127] approach.

4.6.1 Indexing Costs

ESRI Quadtree and JSI R-tree accept the rectangular range to index, and an
identifier for the rectangular range, whereas other index structures are more
liberal and allow users to put any user data along with the rectangular range.
To be fair to all index structures, we only store the rectangular range to in-
dex and an identifier in every case and measure the size of these indexes in
memory.

It is important at this point to categorize indexes in the libraries to better
understand their behavior. Indexes in the libraries can be classified as: Point
Access Methods (PAMs) and Spatial Access Methods (SAMs) [104]. PAMs
are indexing methods that index point data, whereas SAMs index extended
spatial objects such as rectangles, polygons etc. S2PointIndex, k-d tree and

4.6. Evaluation 71

esri-quadtree jsi-rtree jts-kdtree jts-quadtree jts-strtree
geos-quadtree geos-strtree s2-point-index vptree

0
5

10
15

tweets (83M)in
de

x
si

ze
(G

Bs
)

0

10

20

taxi (305M)

Figure 4.2: Index sizes for the two datasets

esri-quadtree jsi-rtree jts-kdtree jts-quadtree jts-strtree
geos-quadtree geos-strtree s2-point-index vptree

0

100

200

tweets (83M)

ti
m

e
(s

ec
)

0
200
400
600

taxi (305M)

Figure 4.3: Index building times for the two datasets

vptree are PAMs and the rest are SAMs. The indexes can also be categorized
as space-driven (follow the embedding space hierarchy), or data-driven (fol-
low the data space hierarchy). k-d tree and Quadtrees are space-driven struc-
tures and the rest of the indexes are data-driven.

Figure 4.2 shows the sizes of indexes in various libraries and Figure 4.3
the time it takes to construct them. S2PointIndex, and vptree are PAMs which
stores only points (at least two doubles) and hence the memory consump-
tion is minimal. S2PointIndex is a B-tree that stores 64-bit integers (cell ids),
and the overhead in inner nodes is minimal. jvptree only stores a vantage
point, and a radius at every node, hence the intermediate nodes consume
minimal memory. The rest of the indexes are SAMs and store rectangles and
consume more memory than PAMs. This is expected, as the trees store rect-
angles18, each of which require storage of at least four doubles. Figure 4.2
also shows that the R-tree in JSI consumes very little memory even though
it stores rectangles. JSI heavily relies on trove4j19 collections, which are gen-
erally faster to access, and consumes much less memory than Java’s Util col-
lections. There are two reasons for low memory consumption. First is that
(any) primitive collections store data directly in an array of primitives (int,
long, double, char), and thus only a single reference to an array of primi-
tives is needed instead of an array of references to data objects. JSI also uses
floating-point precision while the other index structure use double precision
values. Second, each primitive data element consumes less memory than

18We store points from the datasets as degerate rectangles in SAMs
19http://trove4j.sourceforge.net/html/benchmarks.shtml

http://trove4j.sourceforge.net/html/benchmarks.shtml

72 Chapter 4. Modern Spatial Libraries

the Object (e.g., type int only requires 4 bytes instead of 16 bytes object Inte-
ger). The reason for better performance is that trove4j avoids boxing and un-
boxing elements every time a primitive value is queried to/from the collec-
tion. It can also be seen that the space-driven indexes, i.e., Quadtrees and k-d
tree, consumes more memory compared to the other index structures. Since
space-driven structures divide the space they index, more internal nodes are
formed as they keep dividing the space until a certain threshold is not met
for the leaf node size.

Index construction times have been measured using the benchmarking
frameworks, and are averaged over several runs until the runtime is statisti-
cally stable. For both Taxi and Twitter datasets, jvptree is the fastest to con-
struct, whereas k-d tree and STRtree in JTS, Quadtree in ESRI geometry API
and R-tree in JSI are among the slowest to construct for all datasets.

4.6.2 Range Query

Implementation: All indexes, except for jvptree, natively provide an inter-
face for range queries. To implement range queries in jvptree we first com-
pute the centroid q of the query rectangle. Next, we determine the distance
of the centroid q to one of the rectangle’s corner vertices. The resulting circle
(q, d) is always larger then the range query rectangle and can therefore be
used as a filter to retrieve a list with qualifying points. This list is then refined
to determine which points are actually contained in the range query rectan-
gle. As mentioned earlier, k-d tree in JTS keeps a count of points, in case
of duplicate points (up to a certain distance tolerance), rather than creating
a new node for the duplicate points. We make sure that we materialize all
such points for the range query, but we do use them as an optimization in
distance and join query to reduce the refinement costs (i.e., skip refinement
for duplicate points if one point qualifies the refinement check).

Another point to mention here is that Quadtree implementation in ESRI
geometry API requires tuning. The initialization of the Quadtree expects a
height parameter for the index. As mentioned in section 4.5, we generated
range queries with varying selectivities from 0.0001% to 1%. We ran all these
range queries from selectivity 0.0001% to 1% on both datasets, and varied
the height of the Quadtree from 1 to 64 for both datasets and for each selec-
tivity. We then ranked these heights based on the lowest query runtime for
each query selectivity, and compute the aggregated rank of all heights across
all selectivities. We then selected the height with the lowest rank for both
datasets. We found that the Quadtree performed best with heights 18 and 9
for the Taxi and Tweets datasets respectively.

Analysis: Figure 4.4 shows the range query performance of various li-
braries on the Taxi and Twitter datasets. For both datasets, JSI R-tree show
the best throughput numbers (259.87 and 72.779 queries per second, respec-
tively, for Twitter and Taxi dataset for 0.1% selectivity). JSI R-tree is opti-
mized for main memory usage for range queries and has the least height of
all indexes (5 and 7 in the two datasets). Many of the tree nodes are cached
and it suffers from the least number of cache misses as shown in Table 4.3.

4.6. Evaluation 73

esri-quadtree geos-strtree geos-quadtree jsi-rtree jts-kdtree
jts-strtree jts-quadtree s2-point-index vptree

105 106 107 108
100
101
102
103
104
105

tweets (83M)

qu
er

ie
s/

s
(l

og
)

105 106 107 108
100
101
102
103
104
105

taxi (305M)

(a) Varying number of points

0.0001%0.01% 1%
100
101
102
103
104

tweets (83M)
0.0001%0.01% 1%
100
101
102
103
104

taxi (305M)

(b) Varying selectivity

Figure 4.4: Range query performance varying the num-
ber of points and selectivity of the query rectangle for

NYC Taxi and Twitter Datasets

Table 4.3: CPU Counters - Range query data-
size = 50M tweets, selectivity = 0.1 %, 1
thread, normalized by the number of range
queries. All values are in millions except

IPC.

cycles ipc instr L1
miss

LLC
miss

branch
miss

esri-quadtree 116 0.84 98 1.34 0.54 0.08

geos-quadtree 105 0.75 79 0.97 0.75 0.09

geos-strtree 236 0.37 88 4.04 2.68 0.51

geos-cfstrtree 91 0.87 80 1.21 0.57 0.46

jsi-rtree 8 1.25 10 0.13 0.06 0.03

jts-kdtree 8 1.12 9 0.14 0.02 0.04

jts-quadtree 68 1.17 80 0.82 0.27 0.19

jts-strtree 31 0.81 25 0.42 0.22 0.01

s2-pointindex 44 1.34 59 0.42 0.05 0.36

vptree 30 0.70 21 0.68 0.21 0.05

An interesting case in
the results is the low
query throughput of GEOS
STRtree (17.8315 queries per
second in the Tweets dataset
for 50 M points and 0.1%
selectivity). GEOS STRtree
is much slower than the
JTS STRtree. Upon inves-
tigation, we found that the
reason for the low query
throughput of STRtree in
GEOS is an implementation
artifact. It can be seen in Ta-
ble 4.3 that GEOS STRtree
suffers from a large num-
ber of LLC misses, 2.68 mil-
lion in the Twitter dataset
and 1.28 million in the Taxi
dataset (not shown in ta-
ble). R-trees in general store
multiple rectangles at ev-
ery node. When the tree is
queried, the decision to explore the branches from each node in the tree is
based on whether the query range overlaps any of these rectangles. In both
cases, JTS and GEOS, every node in the STRtree contains a maximum of
10 such rectangles by default. GEOS STRtree stores a vector of pointers to
these rectangles at every node. At every node, the algorithm in the range
query iterates over these pointers, retrieves these rectangles from memory
and checks whether there is any overlap with the query range and then based
on the overlap explores the various branches from the node. Retrieving these
rectangles from memory causes many cache misses in GEOS STRtree dur-
ing the query execution. To validate this, we implemented a cache-friendly

74 Chapter 4. Modern Spatial Libraries

esri-quadtree geos-strtree geos-quadtree jsi-rtree jts-kdtree
jts-strtree jts-quadtree s2-point-index vptree

105 106 107 108
101
102
103
104
105

tweets (83M)

qu
er

ie
s/

s
(l

og
)

105 106 107 108

101
102
103
104
105

taxi (305M)

(a) Varying number of points

0.0001%0.01% 1%

101
102
103
104

tweets (83M)
0.0001%0.01% 1%
100
101
102
103
104

taxi (305M)

(b) Varying selectivity

Figure 4.5: Distance query performance varying the
number of points and selectivity of the query rectangle

for NYC Taxi Dataset and Twitter Datasets

STRtree (designated as cfstrtree in the Table 4.3) in GEOS on top of the ex-
isting tree. We basically introduced another vector at every node in the tree,
which stores the objects of these rectangles in contiguous memory. We re-
placed the logic to check for overlap to use these rectangle objects rather
than the pointers to the rectangles. This reduces the number of LLC misses
in the CFSTRtree relative to STRtree, by a large number as can be seen in
Table 4.3.

STRtree implementation in JTS does not suffer from this. In both libraries,
GEOS and JTS, the algorithm for constructing and traversing the trees are
the same, but the difference in performance stems from how memory man-
agement works in the JVM. Every node in JTS STRtree stores the rectangle
objects in a List. Lists in Java store the references to the objects, so logically
it is similar to storing a vector of pointers in C++. But where this differs is
that JVM makes a distinction between small and large objects during object
allocation [184]. The limit for when an object is considered large depends
on the JVM version, the heap size, the garbage collection strategy and the
platform used, but is usually somewhere between two and 128 kB. Small ob-
jects are allocated in thread local areas (TLAs). The thread local areas are free
chunks reserved from the heap and given to a Java thread for exclusive use.
The thread can then allocate objects in its TLA without synchronizing with
other threads. The size of the rectangle objects in JTS is 48 bytes each. This
means that the rectangle objects qualify as small objects and are in contigu-
ous memory. Only the access to the first rectangle causes a cache miss, and
the other objects are most likely brought into memory as a side effect of that
cache miss (speculative loading).

4.6.3 Distance Query

Implementation: S2PointIndex and jvptree provide native support for dis-
tance queries, so we directly issue the query point and the distance to these
two indexes. The other indexes do not support distance query natively. To
implement distance queries in these indexes, we again use the filter and re-
fine paradigm. We first filter using a rectangle, whose corner vertices are at

4.6. Evaluation 75

jsi-rtree jts-strtree s2-point-index vptree

105 106 107
101
102
103
104
105

tweets (83M)

qu
er

ie
s/

s
(l

og
)

105 106 107 108
101
102
103
104
105

taxi (305M)

(a) Varying number of points

100 102 104
100

102

104

106

tweets (83M)
100 102 104

102

104

106

taxi (305M)

(b) Varying k

Figure 4.6: kNN query performance varying the number
of points and k for NYC Taxi and Twitter Datasets

a distance of d from the query point q. We issue a range query to the var-
ious range based indexes using this rectangle. We then refine the resulting
candidate set of points by using a withinDistance predicate (available in ESRI
Geometry API, JTS, and GEOS). For JSI, we implemented our own predi-
cate, which computes the Euclidean distance for all candidate points from
the query point and checks if the candidate point is within distance d * d
rather than d from the query point. This helps in skipping the square root
operation to calculate Euclidean distance.

Analysis: Figure 4.5 shows the distance query performance on Taxi and
Twitter datasets. The performance for distance query is dominated by range
query lookup for most indexes, apart from S2PointIndex and jvptree. These
index support distance queries natively, i.e., have specialized tree traversal
algorithms for distance query. For other indexes, we deploy the filter and re-
fine paradigm. The performance of these indexes thus follows directly from
the range query performance. JSI R-tree is slightly better than JTS k-d tree
as we optimize the Euclidean distance computation by skipping the square
root operation. We would also advise the readers to use this approach for
refinement in GEOS as well. The isWithinDistance function in GEOS returns
whether two geometries are within a certain distance from each other. By
profiling the function we noticed that this function makes six malloc() calls,
for every candidate point, which degrades the performance. By using our
own predicate distance function, we were able to speed up distance query by
up to 2× in GEOS. In many geometric operations, GEOS frequently allocates
and deallocates memory, which is an overhead. This problem in memory
management was also observed by [197], where authors use GEOS to intro-
duce spatial processing in Impala.

4.6.4 k-NN Query

Implementation: Out of all the available indexes, only S2PointIndex, JTS
STRtree, JSI R-tree, and jvptree support k-NN queries natively. We directly
issue the query point to these indexes and measure their performance. We
did not implement any tree traversal algorithms for any other available tree
because we wanted to measure the performance of the libraries without mak-
ing any changes to the library source code.

76 Chapter 4. Modern Spatial Libraries

esri-quadtree jts-kdtree jts-quadtree jts-strtree geos-strtree
geos-quadtree s2-point-index

0

50

100

150

tweets(83M)jo
in

ti
m

e
(s

ec
)

0

200

400

600

taxi(305M)jo
in

ti
m

e
(s

ec
)

Figure 4.7: Join query performance for NYC Taxi and
Twitter Datasets

Analysis: Figure 4.6 shows k-NN query performance of various indexes
on the Taxi and Twitter datasets. jvptree again takes the crown as the best
performing index for k-NN queries, with S2PointIndex close behind. It can
be observed that for the Twitter dataset the performance of JSI R-tree fluctu-
ates quite a bit. This can be explained by how the nearest-neighbor algorithm
works in JSI R-tree (and also in JTS STRtree), which is known as branch-and-
bound traversal. The algorithm starts with adding the root node to a prior-
ity queue of size k. The algorithm, then iterates over the tree continuously
adding nodes until the priority queue is full. The algorithm then continues
traversing the tree observing nodes, replacing the current farthest node in
the queue with the current node being looked at, if it is closer. The JSI R-trees
for different sized datasets are vastly different since JSI R-tree is a dynamic R-
tree, the nodes are split at various times during insertion based on multiple
factors. Thus, during the tree traversal for k-NN query, sometimes a large
number of branches from a node can be dropped since they are not closer
than the current farthest node in the priority queue and sometimes they can-
not be dropped. This can lead to multiple search paths to be evaluated and
hence the fluctuation in performance. JTS STRtree packed R-tree does not
suffer from this because it is a type of static R-tree. It is built once after which
no more elements can be added to it. STRtree is built by first sorting the leaf
node in the x dimension, and then dividing the data in vertical slices, each
containing an equal number of points. Within each slice, the data is sorted in
the y dimension, and again divided into slices containing an equal number of
points. The tree is then built on top of these slices by packing a pre-defined
number of slices into nodes. The difference in tree node boundaries is still
there in JTS STRtree but is more profound in the lower levels of the tree,
rather than at various levels as in the case of JSI R-tree. Thus, JSI R-tree can
sometime quickly discard branches at the top of the tree and other times it
cannot, and this is reflected in the query throughput.

4.6.5 Point-In-Polygon Join Query

Implementation: In S2, we used the S2ShapeIndex, instead of S2PointIndex,
which provides a native interface for the contains predicate. S2ShapeIndex20

20http://s2geometry.io/devguide/s2shapeindex.html

http://s2geometry.io/devguide/s2shapeindex.html

4.7. Discussion 77

stores a map from S2CellId to the set of shapes that intersect that cell. The
shapes are identified by a ShapeId. As shapes are added to the index, their
cell ids are computed and added along with the shape id to the index. When
a query point is issued against the index it retrieves the cells that contain
the query point and identifies the shape(s) that this containing cell belongs
to using the shape id. For other indexes, we again use the filter and refine
approach. For GEOS and JTS we use PreparedGeometry21 to index line seg-
ments of all individual polygons, which helps in accelerating the refinement
check. In JTS, we also use k-d tree’s points snapping technique to skip re-
finement for duplicate points in case one point qualifies or disqualifies the
predicate check. In ESRI implementation, we use AcceleratedGeometry and
set its accelDegree to enumHot22 for the fastest containment performance.

Analysis: Figure 4.7 shows joins query performance on the Taxi and the
Twitter datasets. Spatial join queries are notoriously expensive and this is
reflected in the figure. For join queries S2ShapeIndex performs the best. As
mentioned earlier, we skip the refinement check for duplicate points if one
such point qualifies (or disqualifies) the refinement check and that is why it
does slightly better than the other indexes. S2ShapeIndex natively supports
the containment query and traverses the index appropriately and does not
have to deal with refining many candidate set of points. The performance of
other indexes follows from the range query performance. JTS/GEOS STRtree
and Quadtree perform better than ESRI Quadtree because the refinement us-
ing PreparedGeometry is faster than AcceleratedGeometry in ESRI.

4.7 Discussion

In this section, we first discuss a research direction that we believe might
not be getting the attention in the community that it should, before we out-
line how to use modern spatial libraries as building blocks for building dis-
tributed spatial systems.

4.7.1 Why Refinement Should Be Looked At?

As we learned in the past sections, the modern spatial libraries provide index
structures which arrange spatial objects in a way that the access time to these
geometric objects reduces. But we also learned that these index structures
only support a limited set of native queries (range lookup and k-NN query
in most cases). In other queries, such as distance query and spatial joins,
these index structures primarily act as filters. The resulting candidate set of
points (or geometries) after the filter phase needs to be further refined based
on a spatial predicate. For distance query, the predicate is withinDistance,
and for spatial joins, the predicate can be one of many predicates, such as

21https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/
prep/PreparedGeometry.html

22https://esri.github.io/geometry-api-java/javadoc/com/esri/core/geometry/
Geometry.GeometryAccelerationDegree.html

https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html
https://esri.github.io/geometry-api-java/javadoc/com/esri/core/geometry/Geometry.GeometryAccelerationDegree.html
https://esri.github.io/geometry-api-java/javadoc/com/esri/core/geometry/Geometry.GeometryAccelerationDegree.html

78 Chapter 4. Modern Spatial Libraries

0

200

400

600

800

12.3 25.93

407.15

747.62

ti
m

e
(s

ec
)

Prepared Contains
Only Candidate Hits
Prepared Contains
Full Candidate Set
Normal Contains

Only Candidate Hits
Normal Contains

Full Candidate Set

Figure 4.8: Refinement costs for Midtown Manhattan
Polygon for NYC Taxi Dataset using various contains

functions in JTS

contains, intersects, overlaps, etc. For these queries, we used the filter and
refine paradigm. The set of geometry objects from the candidate set that do
not qualify the predicate check are known as false drops and the ones that do
are known as candidate hits. Generally, we can determine how good these
indexes are for such queries by analyzing the ratio of number of false drops
to the number of candidate hits. If the ratio is more than 1, it can be deduced
that the amount of work being done for false drops is more than for candidate
hits. This work done can be classified as an overhead, and the goal is to
minimize this overhead.

In this study we also looked at an index structure, namely, Vantage Point
Tree, which is specially designed to answer distance and k-NN queries. We
saw in Section 4.6 that for distance queries an open-source implementation
of VPTree, performs 2.48× better for the Taxi dataset (and 2.74× for the Twit-
ter dataset) than its closest competitors S2PointIndex and JSI R-tree. Please
note that in JSI R-tree we even skipped the overhead of square root opera-
tion in Euclidean distance computation. This is because jvptree reduces the
overhead of false drops during the index lookup itself. In essence, the in-
dex structure completely skips the refinement phase for distance and k-NN
queries and does not have to deal with false drops. This shows that if an index
structure is built to answer certain queries, and no refinement is needed, the
performance implications can be large.

Recent research acknowledges [180] [18] that there is potential in accel-
erating the refinement step for join queries. We consider the spatial point-
in-polygon join query here, where filter and refinement is also required for
some indexes. In point-in-polygon join, after the filter phase, the candidates
set of points is typically refined using an algorithm known as ray tracing. In
this algorithm, a line (ray) is drawn from the query point to a point known to
be outside the polygon, and then the number of intersections of this line with
all edges in the polygon is counted. This algorithm is linear with the number
of edges in the polygon. So if the cardinality of the filtered candidate set of
points after filtering from the index is n, then the work to be done is O(nk),
where k is the number of edges in the polygon. If the n is large or if the poly-
gons are complex, with a large number of edges then this has the potential
to become a bottleneck. Midtown Manhattan is one of the neighborhoods in
NYC that is highly skewed for the Taxi and the Twitter dataset alike. Using

4.7. Discussion 79

the bounding box of Midtown Manhattan and querying any range-based in-
dex (i.e., which can be queried using a range, in this case MBR of Midtown
Manhattan) as a filter with 305 million taxi rides, yields a candidate set with
78.35 million points. The final result after refinement has 42.55 million points
(candidate hits), with 35.8 million points being false drops.

Using Midtown Manhattan as a query polygon, we carried out an ex-
periment to determine the costs of refinement using various contains func-
tions in JTS and the results are shown in Figure 4.8. In PreparedGeometry,
the individual geometry objects are indexed and the indexing scheme varies
based on the geometry datatype. For example, for polygons, PreparedGeom-
etry indexes the line segments of the polygons. If the refinement step can be
skipped for false drops, there is gain of 2.10× in query performance (12.3 sec-
onds without false drops vs. 25.93 seconds with false drops). The figure also
shows the effect of indexing individual polygons. If line segments in poly-
gons are not indexed, the polygon contains function takes 747.62 seconds
compared to 2.93 seconds (28.83× improvement).

There are two potential research directions for improving point-in-polygon
spatial join queries. As mentioned earlier, the potential work to be done in
the refinement phase after filtering is O(nk). We can either try to reduce n or
k (or both). Some of the recent research work [83, 84, 206, 82] tries to address
the former and skip the refinement phase altogether. The latter is addressed
to some extent in the libraries via PreparedGeometry (in JTS and GEOS) and
AcceleratedGeomerty (in ESRI Geometry API). There is also a research [216]
work that show that the refinement step can be improved by using interval
trees to index the polygon line segments.

4.7.2 Distributed Spatial Analytics Systems

In the past few years, a number of big spatial analytics systems have emerged.
While they differ in some architectural design aspects, many of the core fun-
damentals remain the same in terms of building a distributed spatial pro-
cessing system. In this section, we briefly highlight these fundamentals and
how a distributed spatial analytics system can be built from scratch using the
libraries studied in this work. A cluster of commodity machines coordinat-
ing to complete a task generally have the following structure: a master node
(the coordinator) and multiple worker nodes. Big spatial analytics systems
today also deploy the same cluster setup since they are primarily built on big
data infrastructures in the form of Hadoop, Apache Spark, Impala etc. There
are three main components to designing a big spatial analytics system: (i)
Partitioning Technique, (ii) Index Structures, and (iii) Supported Datatypes
and Queries.

Index structures, as we saw in this work, are important for answering
spatial queries. Spatial indexes allow access to the desired spatial objects in
sub-linear time and thus accelerate spatial query processing. Index struc-
tures hence form an integral part of any spatial processing system, whether
it be a relational database system, or a distributed spatial processing system.

80 Chapter 4. Modern Spatial Libraries

Spatial partitioning is also an important part of distributed spatial processing
system, which we will discuss in detail:

Spatial Partitioning

Spatially partitioning the input dataset(s) is an important aspect of dis-
tributed spatial processing system. Since there are multiple worker nodes
in a cluster, an input dataset should be partitioned to fully utilize the parallel
computing capability of the cluster. Also, since many of the spatial datasets
are inherently spatially skewed, it is important to partition them spatially. A
naive grid partitioning would introduce skew in some individual grid cells,
and thus leads to the straggling nodes in the cluster, which would affect the
overall query efficiency.

How is it done?: The usual practice today to build partitions is to sample
the input dataset and to determine partitions based on the sample. Previous
research [39] has shown that sampling 1% of the input dataset is sufficient
to produce high-quality partitions. To further delve into detail, we will walk
through an example, using an R-tree index. After sampling the input dataset,
an R-tree is built on the sample. Sampling helps in capturing the density dis-
tribution of the input dataset, and indexing the samples in an R-tree spatially
partitions the sample, thereby providing the partitions boundaries of the sam-
ple dataset. The minimum bounding rectangle (MBR) of the leaves of the
R-tree are then used as the partition boundaries. Once the partition boundaries
have been determined, the input dataset can then be loaded in parallel using
these boundaries. Now since these partition boundaries were determined
using only a sample of the dataset, and the input dataset may contain spatial
objects that do not lie, or even overlap multiple partition boundaries. The
common practice today is to expand the partition boundaries or duplicate
the object in multiple partitions. We refer the readers to [39] to understand
the trade-offs related to such decisions. Once the partitions have been built,
the individual partition are indexed in an R-tree. The index does not neces-
sarily have to be an R-tree but for the sake of continuity, we continue using
the R-tree as an example. These index within individual partitions are called
local index (i.e., local to a partition). Once these local indexes have been built,
finally a global index is built using the spatial extent of these local indexes.
We walked through an example with R-tree as the index to determine the
partition boundaries, but R-tree may not be the best partitioning scheme in
certain scenarios. We refer the readers to [39], which thoroughly compares
and evaluates various spatial partitioning techniques.

Why is it done?: Spatial partitioning an input dataset helps in query pro-
cessing. To better understand the importance of spatial partitioning, we will
walk through an example. Consider a large input dataset, and a range query
is issued to determine which spatial objects in the input dataset lie within
the given range. The Global index is first used to determine which partitions
the input range overlaps and then the overlapping partitions can be scanned
with the given range. This saves unnecessary scans of the partitions that do
not overlap the input range. This is a very simple example, but things get

4.8. Related Work 81

more complex when join queries are considered. A join query can be pro-
cessed as follows: the global indexes of the two datasets are first consulted
to determine the partitions that overlap each other and then these partitions
can be joined in parallel. This is again a very simple example of how the
spatial partitions and indexes can be used to process a join query, and how
to avoid joining partitions that do not spatially overlap. In reality, the sys-
tems deploy query optimizers that determine the best way to join the two
datasets. For example, when the two global indexes are considered to de-
termine which partitions overlap, it could very well be that a large number
of partition pairs overlap (since they are two different datasets). A system
may choose to repartition one dataset to minimize these overlapping parti-
tion pairs. These are design choices that these systems make, and they are
based on various trade-offs. We refer the readers to the individual systems
to better understand these design choices and trade-offs.

4.8 Related Work

To the best of our knowledge, no previous work in literature has evaluated
the spatial libraries studied here empirically. One research work [73] com-
pares indexing techniques for big spatial data, where the authors consider
many big spatial data systems and one spatial library JSI, only to report the
performance of each system/library on a standalone basis. [197] implement
spatial query processing in Apache Spark, and Apache Impala using JTS and
GEOS, respectively. They do observe some of the implementation differences
between JTS and GEOS, but largely the work is about a comparative study of
spatial processing in the Spark and Impala. [128] compares five Spark based
spatial analytics systems, some of which use JTS library for spatial query
processing. [54] shows how to efficiently implement distance join queries in
distributed spatial data management systems.

4.9 Conclusions

In this work we empirically compared popular spatial libraries using four
different queries: range query, distance query, k-NN query, and a point-in-
polygon join query. We performed a thorough experimental evaluation of
these libraries using two real-world points datasets. While we evaluated the
libraries on the point dataype, there are other datatypes (such as linestring,
polylines etc.) in the libraries that should also be evaluated. We leave evalu-
ating the libraries on other geometric datatypes for future work.

Table 4.4 summarizes the strengths and weaknesses of the spatial li-
braries.

There is no clear winner for each of the considered queries, and this is
mostly because all the indexes available in the libraries do not support all
these queries natively (i.e., do not have specialized tree traversal algorithms
for each query). ESRI geometry API and JTS/GEOS are complete planar ge-
ometry libraries, and are rich in features. They support multiple datatypes,

82 Chapter 4. Modern Spatial Libraries

Table 4.4: Strengths/Weaknesses of the Libraries

Library Strengths Weaknesses

ESRI (1) Active development and support (1) Quadtree requires tuning

(2) Full geometric types, refinements,
and operations

JSI (1) R-tree performance as a filter (1) No active development

(2) No geometric refinements

GEOS
and JTS

(1) Active development and support (1) Memory management in
GEOS requires improvement

(2) Full geometric types, refinements,
and operations

jvptree (1) Best distance and k-NN perfor-
mance

(1) No geometric refinements

S2 (1) Best suited for geographic data

(2) Active development and support

(3) Many practical queries natively
supported

and have a variety of topological and geometry operations. They are also
under active development and have a community for support. They do,
however, come with some drawbacks. ESRI Quadtree has to be tuned for
the dataset that it indexes, and memory management in GEOS could be im-
proved. The k-d tree in JTS lacks support for the k-NN query. There are
algorithms available to traverse the k-d tree efficiently in order to answer the
k-NN queries and implementing the algorithm in the index would be a wel-
come addition. The R-tree in JSI exhibited the best performance for range
lookups, however, JSI is very limited in features, and is also not under active
development. Google S2 is a spherical geometry library and is best suited
to work with geographic data. It is active under development and is used
in many multimillion-dollar industries. It also has many practically used
queries that are implemented natively on various indexes. Finally, jvptree, is
a library that implements the Vantage Point Tree. It exhibits the best perfor-
mance for distance and k-NN queries as it is specifically designed to answer
these queries. The index can only be used as a filter for other queries, and
users have to implement their own refinement operations for such queries.

We also identified areas of potential pitfalls in using the planar geometry
libraries which can be critical from the perspective of actual users, either of
these libraries or any system that is based on them. Particularly for distance
computations, the differences can be significant when using planar geometry
for processing GPS coordinates. Many important business decisions might be
based on the outcome of such queries and there are potentially hundreds of

4.9. Conclusions 83

users and companies that are using software that is based on these state-of-
the-art spatial libraries. While these libraries and systems correctly execute
what they are designed to do, users should be aware of how to use them
correctly.

85

Chapter 5

The Case For Learned Spatial
Indexes

Excerpts of this chapter have been published in [130].

5.1 Introduction

With the increase in the amount of spatial data available today, the database
community has devoted substantial attention to spatial data management.
For e.g., NYC Taxi Rides open dataset [122] consists of pickup and drop-
off locations of more than 2.7 billion rides taken in the city since 2009. This
represents more than 650,000 taxi rides every day in one of the most densely
populated cities in the world, but is only a sample of the location data that
is captured by many applications today. Uber, a popular ride hailing service
available via a mobile application, operates on a global scale and completed
10 billion rides in 2018 [183].

The unprecedented rise of location-based services has led to a consider-
able amount of research efforts that have been focused on four broad areas;
(1) systems that scale out [2, 8, 40, 42, 61, 173, 175, 178, 192, 197, 203, 204,
202, 17], (2) support for spatial processing in databases [112, 106, 114, 126,
129], (3) improving spatial query processing [53, 82, 83, 84, 159, 180, 179, 181,
208, 146, 130, 201, 200], and (4) leveraging modern hardware and compiling
techniques [36, 37, 168, 169, 206, 98], to handle the increasing demands of
applications today.

Recently, Kraska et al. [91] proposed the idea of replacing traditional
database indexes with learned models that predict the location of a key in
a sorted dataset, and showed that learned models are generally faster than
binary search. Kester et al. [79] showed that index scans are preferable over
optimized sequential scans in main-memory analytical engines if a query
selects a narrow portion of the data.

In this chapter, we build on top of these recent research results, and pro-
vide a thorough study for the effect of applying ideas from learned index
structures (e.g., Flood [117]) to classical multi-dimensional indexes. In par-
ticular, we focus on five core spatial partitioning techniques, namely Fixed-
grid [15], Adaptive-grid [119], Kd-tree [14], Quadtree [46] and STR [101].
Typically, query processing on top of these partitioning techniques include
three phases; index lookup, refinement, and scanning (Details of these phases

86 Chapter 5. The Case For Learned Spatial Indexes

ML BS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Gain: 25%Gain: 25%

index and
refinement
dominates

index and
refinement
dominates

Low SelectivityLow Selectivity
ML BS

0

50

100

150

200

scan
dominates
scan
dominates

High SelectivityHigh Selectivity

Q
u

er
y

ti
m

e
[µ

s]
Q

u
er

y
ti

m
e

[µ
s]

Index Time Refinement Scan

Figure 5.1: Machine Learning vs. Binary Search. For low
selectivity (0.00001%), the index and refinement phases
dominate, while for high selectivity (0.1%), the scan
phase dominates (parameters are tuned to favor Binary

Search)

(a) Fixed grid (b) Adaptive grid (c) k-d tree

(d) Quadtree (e) STRtree

Figure 5.2: An illustration of the different partitioning
techniques

are in Section 5.2.3). We propose to replace the typical search techniques
used in the refinement phase (e.g., binary search) with learned models (e.g.,
RadixSpline [86]).

Interestingly, we found that, by using a learned model as the search tech-
nique, we can gain a considerable speedup in the query run-time, especially
for low selectivity range queries (Similar to the observation from Kester et
al. [79]). Figure 5.1 shows the average running time of a range query us-
ing Adaptive-grid on a Tweets dataset, which consists of 83 million records
(Section 5.3.1), with and without learning. It can be seen that for a low se-
lectivity query (which selects 0.00001% of the data, i.e., 8 records) the index

5.2. Approach 87

and refinement times dominate the lookup, while for a high selectivity query
(which selects 0.1% of the data, i.e., 83 thousand records) the scan time dom-
inates. Another interesting finding from our study is that 1-dimensional grid
partitioning techniques (e.g., Fixed-grid) can benefit from the learned models
more than 2-dimensional techniques (e.g., Quadtree). Our study will assist
researchers and practitioners in understanding the performance of different
spatial indexing techniques when combined with learned models.

5.2 Approach

In this section, we first explain how a range query processing has been imple-
mented. Then, we describe the spatial partitioning techniques that we have
implemented in our work. We conclude the section by describing the search
techniques used within the individual partitions.

5.2.1 Partitioning Techniques

Multidimensional access methods are generally categorized into Point Ac-
cess Methods(PAMs) and Spatial Access Methods (SAMs) [49]. The Point
Access Methods have been primarily designed to perform spatial searches
on point data, which do not have any spatial extent. Spatial access methods,
however, manage extended objects such as linestrings, polygons etc. In this
work we primarily focus on PAMs.

Spatially partitioning a dataset into partitions (or cells), such that the ob-
jects within the partitions are also close in space, is known as spatial par-
titioning. Spatial partitioning techniques can be classified into space parti-
tioning techniques (partitions the embedded space) or data partitioning tech-
niques (partitions the data space). In this chapter, we employ Fixed-grid [15],
Adaptive-grid [119], and Quadtree [46] as space partitioning techniques; and
Sort-Tile-Recursive [101] and K-d tree [14] as data partitioning techniques.
We will refer to the set of these five spatial partitioning techniques as α. Fig-
ure 5.2 illustrates these techniques on a sample of the Tweets dataset used
in our experiments (details are in Section 5.3.1), where sample points and
partition boundaries are shown as dots and grid axes respectively.

Fixed and Adaptive Grid

The grid (or cell) methods were primarily designed to optimize retrieval of
records from disk and generally they share a similar structure. The grid fam-
ily imposes a d-dimensional grid on the d-attribute space. Every cell in the
grid corresponds to one data page (or bucket) and the data points that fall
within a particular cell boundary resides in the data page of that cell. Ev-
ery cell thus has to store a pointer to the data page it indexes. This map-
ping of grid cells to data pages is known as the grid directory. The Fixed-
grid [15] method requires that the grid subdivision lines to be equidistant.
The Grid File [119], or the Adaptive-grid, on the other hand relaxes this re-
striction. Since the grid subdivision lines are not equidistant in the case of

88 Chapter 5. The Case For Learned Spatial Indexes

Grid File, it introduces an auxiliary data structure called linear scales, which
are a set of d-dimensional arrays and define the partition boundaries of the
d-dimensions. Flood [117] is a state-of–the–art learned multi-dimensional in-
dex for d-dimensional data, which partitions the data using a grid over d-1
dimensions and uses the last dimension as the sort dimension. In our im-
plementation, the grid partitioning techniques use a similar approach where
the space is divided in one dimension and the other dimension is used as the
sort dimension.

Quadtree

Quadtree [46] along with its many variants is a tree data structure that also
partitions the space like the k-d tree. The term quadtree is generally referred
to the two-dimensional variant, but the basic idea can easily be generalized
to d dimensions. Like the k-d tree, the quadtree decomposes the space us-
ing rectilinear hyperplanes. The important distinction is that quadtree is
not a binary tree, and the interior nodes in the tree have 2d children for
d-dimensions. For d = 2, each interior node has four children, each corre-
sponding to a rectangle. The search space is recursively decomposed into
four quadrants until the number of objects in each quadrant is less than a
predefined threshold (usually the page size). Quadtrees are generally not
balanced as the tree goes deeper for the areas with higher densities.

K-d tree

K-d tree [14] is a binary search tree that recursively subdivides the space into
equal subspaces by means of rectilinear (or iso-oriented) hyperplanes. The
subdivision alternates between the k dimensions to be indexed. The splitting
hyperplanes at every level are known as the discriminators. For k = 2, for
example, the splitting hyperplanes are alternately perpendicular to the x-axis
and the y-axis, and are called the x-discriminator and the y-discriminator
respectively. The original K-d tree partitioned the space into equal partitions,
for example if the input space consists of GPS co-ordinate system (-90.0, -180
to 90, 180) the space would be divided into equal halves (-45, -90 to 45, 90). K-
d trees are thus not balanced if the data is skewed (most of which might only
lie in one partition). K-d tree can be made data-aware by selecting a median
point from the data and dividing the data into two halves. This ensures that
both partitions in the binary tree are balanced. We have implemented the
data-aware k-d tree in our work.

Sort-Tile-Recursive (STR) packed R-tree

An R-tree is a hierarchical data structure that is derived from the B-tree and
is primarily designed for efficient execution of range queries. R-tree stores a
collection of rectangles and any arbitrary geometric object can be stored by
the approximation of the object in the form of a minimum bounding rectangle
(MBR). At every level a node in the R-tree stores a maximum of N entries,
each of which contains a rectangle R, and a pointer P. At the leaf level, the

5.2. Approach 89

pointer points to the actual object and R is the minimum bounding rectangle
of the object, while in the internal nodes R represents the minimum bounding
rectangle of the subtree pointed to by P.

Sort-Tile-Recursive [101] is a packing algorithm to fill R-tree [59] and aims
to maximize space utilization. The main idea behind STR packing is to tile
the data space into S× S grid. For example, consider the number of points
in a dataset to be P and N be the capacity of a node. The data space can
then be divided into S× S grid where S =

√
P/N. The points are first sorted

on the x-dimension (in case of rectangles, the x-dimension of the centroid)
and then divided into S vertical slices. Within each vertical slice, the points
are sorted on the y-dimension, and packed into nodes by grouping them into
runs of length N thus forming S horizontal slices. The process then continues
recursively. Packing the R-tree in this way packs all the nodes completely,
except the last node which may have fewer than N elements.

5.2.2 Building Index

In this section, we outline how a learned index can be used to index a given
location dataset D. The location dataset D consists of locations available
in latitude/longitude format. For ease of understanding, we will refer to
them as x-dimension and y-dimension respectively. We first sort D on the
x-dimension. Note that for Quadtree partitioning techniques this step is not
required. Next, we partition the input dataset D using one of the techniques
described in 5.2.1 (or in other words from α). The size of each partition is l
(also called the leaf size or the partition size) locations. Once the input dataset
has been partitioned, we loop over all the partitions of the dataset. For each
partition, we sort all the points within the partition on the y-dimension and
then we build a learned index on the y-dimension. The algorithm for build-
ing the index is outlined in Algorithm 1.

Algorithm 1 : A generic way of building indexes
Input : D: the input location dataset; l: the partition size
Output : D′: the partitioned and indexed input dataset

1 Sort(D, x)
2 P← Partition(some approach from α, l)
3 for p ∈ P do
4 Sort(p, y)
5 BuildLearnedIndex(p, y)
6 end
7 return D′

5.2.3 Range Query Processing

A given range query takes as input a query range q that has a lower and an
upper bound in both dimensions. More specifically, q is represented by a

90 Chapter 5. The Case For Learned Spatial Indexes

lower bound (qxl, qyl) and an upper bound (qxh, qyh). It also takes as input
a set of input location dataset D, where each location point p is represented
by the two dimensions, i.e., (px, py). The range query returns all objects in D
that are contained in the query range q. Formally:

Range(q, D) = { p|p ∈ D : (qxl ≤ px) ∧ (qyl ≤ py) ∧
(qxh ≥ px) ∧ (qyh ≥ py) }.

Algorithm 2 : Range Query Algorithm
Input : D′: a partitioned and indexed input dataset; q: a query

range
Output : RQ: a set of all points in D′ within q

1 RQ← {}
2 IP← IndexLookup(D′, q) /* find intersected partitions (IP) */
3 for ip ∈ IP do

/* if completely inside x-dimension range */
4 if qxl <= ipxl and ipxh <= qxh then

/* if also completely inside y-dimension range, copy whole
partition */

5 if qyl <= ipyl and ipyh <= qyh then
6 memcpy(RQ, ip.begin(), sizeof(ip))
7 else
8 lb← EstimateFrom(ip, qyl) /* lower bound */

9 LocalSearch(ip, lb, qyl) /* get exact lower bound */

10 ub← EstimateTo(ip, qyh) /* upper bound */

11 LocalSearch(ip, ub, qyh) /* get exact upper bound */

12 memcpy(RQ, ip + lb, ub− lb)
13 end

/* Scan Phase */
14 else
15 lb← EstimateFrom(ip, qyl) /* lower bound */

16 LocalSearch(ip, lb, qyl)
17 ub← ip.end()
18 for i ∈ [lb, ub] and ipyh <= qyh do
19 p← ipi /* ith point in partition ip */
20 if p within q then
21 RQ← RQ ∪ {p}
22 end
23 end
24 end
25 end
26 return RQ

For faster query processing we use the partitioned and indexed input
dataset D′ from algorithm 1. Range query processing is shown in algorithm 2

5.2. Approach 91

and works in three phases:

• Index Lookup: In index lookup, we intersect a given range query using
the grid directories (or trees) to find the partitions the query intersects
with. These partitions are represented by IP (stands for intersected par-
titions and is reflected in line 2 of the algorithm 2). Note, that the index
lookup is specific to each partitioning technique.

• Refinement: Once the partitions intersected have been determined
from the index lookup phase, we use a search technique to find the
lower bound of the query on the sorted dimension within the partition.
There can be various cases on how a query intersects with the partition,
and we only consult the search technique when it is actually needed to
find the lower bound of the given query on the sorted dimension. For
example, a partition could be fully inside the range query, and in such
a case we simply copy all the points in the partition rather than use a
search technique. This is one simple case and is reflected in line 6 of the
algorithm 2.

• Scan: Once the lower bound in the sorted dimension has been deter-
mined in refinement, we scan the partition to find the qualifying points
on both dimensions. We stop as soon as we reach the upper bound of
the query on the sorted dimension, or we reach the end of the partition.
Scan phase is reflected in the algorithm 2 from line 14 onwards.

Search Within Partition

As mentioned earlier, we use a search technique on the sorted dimension (y-
dimension) to look for the lower bound (and in some cases upper bound) of
the query range q. A search technique can either be a learned index or binary
search (hereby search technique). In all our experiments, we have sorted on
the longitude value of the location.

We use a RadixSpline [86, 85] over the sorted dimension which consists
of two components: 1) a set of spline points, and 2) a radix table to quickly
determine the spline points to examine for a lookup key (in our case the
dimension over which the data is sorted). At lookup time, first the radix
table is consulted to determine the range of spline points to examine. In
the next step, these spline points are searched over to determine the spline
points surrounding the lookup key. In the last step, linear interpolation is
used to predict the position of the lookup key in the sorted array. Unlike the
RMI [91], the RadixSpline only requires one pass over the data to build the
index, while retaining competitive lookup times. The RadixSpline and the
RMI, at the time of writing, only work on integer values, and we adapted
the open-source implementation of RadixSpline to work with floating-point
values (spatial datasets generally contain floating point values). In our im-
plementation, we have set the spline error to 32 in all experiments.

It is important to make a distinction between how we use RadixSpline
and binary search for refinement. In case of binary search, we do a lookup

92 Chapter 5. The Case For Learned Spatial Indexes

for the lower bound of the query on the sorted dimension. As learned in-
dexes come with an error, usually a local search (signified by LocalSearch()
in algorithm 2) is done to find the lookup point (in our case the query lower
bound). For range scans, as we do, there can be two cases. The first case is
that the estimated value from the spline is lower than the actual lower bound
on the sorted dimension. In this case, we scan up until we reach the lower
bound on the sorted dimension. In the second case, the estimated value is
higher than the actual lower bound, hence, we first scan down to the lower
bound, materialize all the points in our way until we reach this bound, and
after that we scan up until the query upper bound (or the partition end).
In case the estimated value is lower than the upper bound of the query (i.e.
the estimated value is within both query bounds), the second case incurs zero
cost for local search as we can scan in both directions until we reach the query
bounds within the partition.

5.2.4 Distance Query Processing

A distance query takes a query point qp, a distance d, and a set of geometric
objects D. It returns all objects in D that lie within the distance d of query
point qp. Formally:

Distance(qp, d, D) = { p|p ∈ D ∧ dist(qp, p) ≤ d}.

As in the case of Range query processing(Section 5.2.3), we use the parti-
tioned and indexed input dataset D′ from algorithm 1 for faster query pro-
cessing. Distance query has been implemented using the filter and refine [127]
approach, which is also used in popular database system Oracle Spatial [76].

Algorithm 3 : Distance Query Algorithm
Input : D′: partitioned and indexed input dataset; qp: a query point;

d: distance
Output : DQ: a set of all points in D′ within distance d of qp

/* Filter using MBR */
1 MBR← GetMBR(q, d) /* generate mbr using q and d */
2 RQ← RangeQuery(D, mbr)
3 DQ← {}
/* Refine */

4 for p ∈ RQ do
5 if WithinDistance(p, qp, d) then
6 DQ← DQ ∪ {p}
7 end
8 end
9 return DQ

Algorithm 3 shows the algorithm for distance query processing. We first
filter using a rectangle (reflected in line 1 of algorithm 3), whose corner ver-
tices are at a distance of d from the query point q. We issue a range query

5.2. Approach 93

using this rectangle, and then refine the resulting candidate set of points by
using a withinDistance predicate. Please note that we are using GPS coor-
dinates (or Geographic coordinate system). Special care needs to be taken
if either of the poles or the 180th meridian are within the query distance d.
We compute the coordinates of the minimum bounding rectangle by moving
along the geodesic arc as described in [21], and then handle the edge cases of
the poles and the 180th meridian. At the time of writing, we only utilize one
bounding box, but this is not the optimal way and would lead to materializ-
ing a large number of points in case the 180th meridian is in the query circle.
One way to avoid such a case is to break the bounding box into two parts,
one at either side of the 180th meridian. We leave this case of optimization
for future work. Once we have materialized all the points in the MBR of q
and d, we refine these candidate set of points. We compute the Haversine
distance between the query point q and these candidate set of points. If the
distance between them is less than d, then we add such points to the final
result.

5.2.5 Join Query Processing

A spatial join takes two input sets of spatial records R and S and a join pred-
icate θ (e.g., overlap, intersect, contains, within, or withindistance) and re-
turns a set of all pairs (r, s) where r ∈ R, s ∈ S, and the join predicate θ is
fulfilled. Formally:

R ./θ S = { (r, s) | r ∈ R, s ∈ S, θ(r, s) holds }.

We implemented a join query between a set of polygons, and the parti-
tioned and indexed input location dataset D′. The join algorithm is outlined
in algorithm 4. The join query has also been implemented using the filter
and refine [127] approach, where we use the minimum bounding rectangle of
each polygon, and run a range query using this rectangle. We then refine
these candidate set of points with the predicate θ as contains. The query thus
returns all points contained in each polygon. The contains predicate has been
implemented using the ray-casting algorithm, where a ray is casted from the
candidate point to a point outside the polygon, and then number of inter-
sections with polygon edges is counted. Some polygons could potentially
contains hundreds or thousands of edges. To facilitate quick lookup of the
edges intersected with the ray, we index the polygon edges in an interval
tree. Interval trees allows us to quickly lookup the edges that the ray would
intersects with, and the interval tree is implemented using a binary search
tree.

94 Chapter 5. The Case For Learned Spatial Indexes

Algorithm 4 : Join Query Algorithm
Input : D′: partitioned and indexed input dataset; POLYGONS: a

set of polygons
Output : JQ: a set of sets, a set of points within each polygon in

POLYGONS

1 JQ← {}
2 for polygon ∈ POLYGONS do

/* Filter using MBR */
3 MBR← GetMBR(polygon) /* get mbr of the polygon */
4 RQ← RangeQuery(D, mbr)
5 contained← {}

/* Refine */
6 for p ∈ RQ do
7 if Contains(polygon, p) then
8 contained← contained ∪ {p}
9 end

10 end
11 JQ← JQ ∪ {contained}
12 end
13 return JQ

5.3 Evaluation

All experiments were run single threaded on an Ubuntu 18.04 machine with
an Intel Xeon E5-2660 v2 CPU (2.20 GHz, 10 cores, 3.00 GHz turbo)1 and
256 GB DDR3 RAM. We use the numactl command to bind the thread and
memory to one node to avoid NUMA effects. CPU scaling was also disabled
during benchmarking using the cpupower command.

5.3.1 Datasets

For evaluation, we used three datasets, the New York City Taxi Rides dataset [122]
(NYC Taxi Rides), geo-tagged tweets in the New York City area (NYC Tweets),
and Open Streets Maps (OSM). NYC Taxi Rides contains 305 million taxi
rides from the years 2014 and 2015. NYC Tweets data was collected using
Twitter’s Developer API [182] and contains 83 million tweets. The OSM
dataset has been taken from [128] and contains 200M records from the All
Nodes (Points) dataset. Figure 5.3 shows the spatial distribution of the three
datasets. We further generated two types of query workloads for each of
the three datasets: skewed queries (which follows the distribution of the un-
derlying data) and uniform queries. For each type of query workload, we
generated six different workloads ranging from 0.00001% to 1.0% selectivity.
For example, in the case of Taxi Rides dataset (305M records), these queries

1CPU: https://ark.intel.com/content/www/us/en/ark/products/75272/intel-
xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html

5.3. Evaluation 95

(a) Twitter (b) Taxi Trips (c) OSM

Figure 5.3: Datasets: (a) Tweets are spread across New
York, (b) NYC Taxi trips are clustered in central New

York, and (c) All Nodes dataset from OSM

would materialize 30 records to 3 million records. These query workloads
consist of one million queries each. To generate skewed queries, we select
a record from the data, and expand its boundaries (using a random ratio in
both dimensions) until the selectivity requirement of the query is met. For
uniform queries, we generated points uniformly in the embedding space of
the dataset and expand the boundaries similarly until the selectivity require-
ment of the query is met. The query selectivity and the type of query are
mostly application dependent. For example, consider the application Google
Maps, and a user issues a query to find the popular pizzeria near the user.
The expected output for this query should be a handful of records, i.e. a low
selectivity query (a list of 20-30 restaurants near the user). On the other hand
a query on an analytical system, would materialize many more records (e.g.
find average cost of all taxi rides originating in Manhattan).

Firstly, we compare the performance of learned indexes and binary search
as search techniques within a partition. Furthermore, we compare our im-
plementation of the learned indexes with two best performing indexes from
Chapter 4. More specifically, we compare our implementations with STRtree
implementation from Java Topology Suite (JTS), and S2PointIndex from
Google S2 for the range and the distance queries. For the join query, we
make use of the S2ShapeIndex available in Google S2.

5.3.2 Range Query Performance

In this section, we first explore tuning the partition sizes, and why tuning
is crucial to obtain optimal performance. Next, we present the total query
runtime, when the partition sizes for each index is tuned for optimal perfor-
mance. Here, we also compare the performance of the learned indexes with
the two state-of-the-art spatial indexes mentioned earlier.

Tuning Partitioning Techniques

Recent work in learned multi-dimensional and spatial indexes have focused
on learning from the data and the query workload. The essential idea behind

96 Chapter 5. The Case For Learned Spatial Indexes

2 4 6 8

1
0

skewed queries
T

w
eets

(83M
)

2
.5

5
.0

7
.5

1
0
.0

1
2
.5

1
5
.0

T
axi

R
id

es
(305M

)

2
.5

5
.0

7
.5

1
0
.0

1
2
.5

O
S

M
(200M

)

1
0

2
1
0

3
1
0

4
1
0

5
1
0

6

0

2
0

4
0

6
0

uniform queries

1
0

2
1
0

3
1
0

4
1
0

5
1
0

6

0

5
0

1
0
0

1
5
0

2
0
0

1
0

2
1
0

3
1
0

4
1
0

5
1
0

6

0

2
0
0

4
0
0

6
0
0

A
verage

num
b

er
of

p
oints

p
er

partition
(log)

Average query time [µs]
m

l-fi
xed

-grid
b

s-fi
xed

-grid
m

l-ad
ap

tive-grid
b

s-ad
ap

tive-grid
m

l-q
u

ad
tree

b
s-q

u
ad

tree

Figure
5.4:R

ange
query

configuration
-M

L
vs.B

S
for

low
selectivity

(0.00001%
)

5.3. Evaluation 97

103 104 105 106

Average number of points per partition

2

3

4

5

6

7

8

9

A
ve

ra
ge

q
u

er
y

ti
m

e
[µ

s]

Query runtime

Number of cells

Scanned points

0

1

2

3

4

5

6

N
u

m
b

er
of

ce
lls

×105

0

500

1000

1500

2000

2500

3000

3500

S
ca

n
n

ed
P

oi
n

ts

Figure 5.5: Effect of number of cells and number of
points scanned for Fixed-grid on Taxi Trip dataset for

skewed queries (0.00001% selectivity)

learning from both data and query workload is that a particular usecase can
be instance-optimized. To study this effect, we conducted multiple exper-
iments on the three datasets by varying the sizes of the partitions, tuning
them on two workloads with different selectivities (to cover a broad spec-
trum we tune the indexes on queries with low and high selectivity) for both
skewed and uniform queries.

Figure 5.4 shows the effect of tuning when the indexes are tuned for the
lowest selectivity workload for the two query types. It can be seen in the
figure that it is essential to tune the grid partitioning techniques for a partic-
ular workload. Firstly, they are susceptible to the size of the partition. As the
size of the partition increases, we notice an improvement in the performance
until a particular partition size is reached which corresponds to the optimal
performance. After this point, increasing the size of the partitions only de-
grades performance. It can be seen that, usually, for grid (single-dimension)
partitioning techniques the partition sizes are much larger compared to parti-
tioning techniques which filter on both dimensions (only Quadtree is shown
in the figure but the same holds for the other partitioning techniques we have
covered in this work, we do not show the other trees because the curve is sim-
ilar for them). Due to the large partition sizes in grid partitioning techniques,
we notice a large increase in performance while using a learned index com-
pared to binary search. This is especially evident for skewed queries (which
follow the underlying data distribution). We encountered a speedup from
11.79% up to 39.51% compared to binary search. Even when we tuned a
learned index to a partition size which corresponds to the optimal perfor-
mance for binary search, we found that in multiple cases learned index fre-
quently outperformed binary search. Learned indexes do not help much for
partitioning techniques which filter on both dimensions, instead the perfor-
mance of Quadtree (and STRtree) dropped in many cases, see Table 5.1. The
reason is that the optimal partition sizes for these techniques is very low (less

98 Chapter 5. The Case For Learned Spatial Indexes

102 103 104 105

Average number of points per partition

3

4

5

6

7

8

A
ve

ra
ge

q
u

er
y

ti
m

e
[µ

s]

0.0

0.5

1.0

1.5

2.0

2.5

N
u

m
b

er
of

ce
lls

×106

0

500

1000

1500

2000

2500

3000

S
ca

n
n

ed
p

oi
n

ts

0.6

0.8

1.0

1.2

1.4

1.6

In
d

ex
T

im
e

Query runtime

Number of cells

Scanned points

Index Time

Figure 5.6: Effect of number of cells and number of
points scanned for Quadtree on Taxi Trip dataset for

skewed queries (0.00001% selectivity)

than 1,000 points per partition for most configurations). The refinement cost
for learned indexes is an overhead in such cases. K-d tree on the other hand,
contains more points per partition (from 1200 to 7400) for the optimal config-
uration for Taxi Trips and OSM datasets and thus learned indexes perform
faster by 2.43% to 9.17% than binary search. For Twitter dataset, the optimal
configuration contains less than 1200 points per partition, and we observed
a similar drop in performance using learned indexes.

Figure 5.5 shows the effect of number of cells and number of points that
are scanned in each partition on query runtime for Fixed-grid on Taxi Trips
dataset for lowest selectivity. As the number of points per partitions increases
(i.e. fewer number of partitions), the number of cells decreases. At the same
time, the number of points that need to be scanned for the query increases.
The point where these curves meet is the optimal configuration for the work-
load which corresponds to the lowest query runtime. For tree structures, the
effect is different. Figure 5.6 shows that the structures that filter on both di-
mensions do most of the pruning in the index lookup. The dominating cost
in these structures is the number of points scanned within the partition and
the query runtime is directly proportional to this number. To minimize the
number of points scanned, they do most of the pruning during index lookup
which require more partitions (i.e. less number of points per partition), but
then they pay more for index lookup.

Query Performance

Figure 5.7 shows the query runtime for all learned index structures. It can
be seen that Fixed-grid along with Adaptive-grid performs (1D schemes)
perform the best for all the cases except uniform queries on Taxi and OSM
datasets. For skewed queries, Fixed-grid is 1.23× to 1.83× faster than the
closest competitor, Quadtree (2D), across all datasets and selectivity. The

5.3. Evaluation 99

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

skewedqueries
T

w
ee

ts
(8

3
M

)
T

ax
i

R
id

es
(3

0
5

M
)

O
S

M
(2

0
0

M
)

1
e-

0
5

0
.0

0
0

1
0

.0
0

1
0

.0
1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

uniformqueries

1
e-

0
5

0
.0

0
0

1
0

.0
0

1
0

.0
1

1
e-

0
5

0
.0

0
0

1
0

.0
0

1
0

.0
1

Q
ue

ry
S

el
ec

ti
vi

ty
(i

n
p

er
ce

nt
)

Averagequerytime[µs]
m

l-
fi

xe
d

-g
ri

d
m

l-
ad

ap
ti

ve
-g

ri
d

m
l-

kd
tr

ee
m

l-
q

u
ad

tr
ee

m
l-

st
rt

re
e

jt
s-

st
rt

re
e

s2
-p

o
in

ti
n

d
ex

Fi
gu

re
5.

7:
To

ta
lr

an
ge

qu
er

y
ru

nt
im

e
w

it
h

pa
ra

m
et

er
s

tu
ne

d
on

se
le

ct
iv

it
y

0.
00

00
1%

100 Chapter 5. The Case For Learned Spatial Indexes

slight difference in performance between Fixed-grid and Adaptive-grid comes
from the index lookup. For Adaptive-grid, we use binary search on the linear
scales to find the first partition the query intersects with. For Fixed-grid, the
index lookup is almost negligible as only an offset computation is needed
to find first intersecting partition. It can also be seen in the figure that the
Quadtree is significantly better for uniform queries in case of Taxi Rides
dataset (1.37×) and OSM dataset (2.68×) than the closest competitor Fixed-
grid. There are two reasons for this, firstly the Quadtree intersects with fewer
number of partitions than the other index structures, see Table 5.2. Secondly,
for uniform queries, the Quadtree is more likely to traverse the sparse and
low-depth region of the index. This is in conformance with an earlier re-
search [80], where the authors report similar findings while comparing the
Quadtree to the R*-tree and the Pyramid-Technique.

In Figure 5.7, we can also see the performance of learned indexes com-
pared to JTS STRtree and S2PointIndex. Fixed-grid is 8.67× to upto 43.27×
faster than JTS STRtree. Fixed-grid is also 24.34× to upto 53.34× faster than
S2PointIndex. Quadtree, on the other hand, is 6.26× to upto 33.99× faster
than JTS STRtree, and by 17.53× to upto 41.91× faster than S2PointIndex.
Note, that the index structures in the libraries are not tuned, and are taken as
is out of the box with default values. The poor performance of S2PointIndex
is because it is not optimized for range queries. S2PointIndex, is a B-tree on
the S2CellId’s (64-bit integers), and the cell id’s are a result of the Hilbert
curve enumeration of a Quadtree like space decomposition. Hilbert curve
suffers from skewed cases where the range query rectangle covers the whole
curve. To avoid such a case S2PointIndex, decomposes the query rectangle
into four parts so as to avoid hitting every portion of the curve. It still ends
up scanning many superfluous points.

5.3.3 Distance Query Performance

Similar to range query processing, we first carry out experiments to deter-
mine the best partition size for each index. The results are similar to range
query performance. Next we compare the performance of the learned in-
dexes with JTS STRtree and S2PointIndex. As mentioned earlier in Sec-
tion 5.2.4, we implemented the distance query using the filter and refine [127]
approach, which is a norm in spatial databases such as Oracle Spatial [76],
and PostGIS [136]. Note that we use GPS coordinates to index the points and
use the Harvesine distance in the refinement phase.

Tuning Partitioning Techniques

Figure 5.8 shows the effect of tuning when the indexes are tuned for the low-
est selectivity workload for the two query types. Similar to range query, the
1D partitioning techniques again are highly susceptible to the size of parti-
tion, while the 2D schemes do not seem to be affected unless the partition size
becomes large. For 1D partitioning techniques, as the size of the partition in-
creases, we observe improvement in performance until a particular partition

5.3. Evaluation 101

Ta
bl

e
5.

1:
To

ta
lr

an
ge

qu
er

y
ru

nt
im

e
(i

n
m

ic
ro

se
co

nd
s)

fo
r

bo
th

R
ad

ix
Sp

li
ne

(M
L)

an
d

bi
na

ry
se

ar
ch

(B
S)

fo
r

Ta
xi

R
id

es
da

ta
se

to
n

sk
ew

ed
an

d
un

if
or

m
qu

er
y

w
or

kl
oa

ds
(p

ar
am

et
er

s
ar

e
tu

ne
d

fo
r

se
le

ct
iv

it
y

0.
00

00
1%

)

Ta
xi

Tr
ip

s
(S

ke
w

ed
Q

ue
ri

es
)

Ta
xi

Tr
ip

s
(U

ni
fo

rm
Q

ue
ri

es
)

Fi
xe

d
A

da
pt

iv
e

Q
ua

dt
re

e
Fi

xe
d

A
da

pt
iv

e
Q

ua
dt

re
e

Se
le

ct
iv

it
y

(%
)

M
L

BS
M

L
BS

M
L

BS
M

L
BS

M
L

BS
M

L
BS

0.
00

00
1

1.
78

2.
35

1.
86

2.
40

2.
77

2.
51

2.
02

2.
58

81
.4

10
.5

4
1.

48
1.

31

0.
00

01
4.

54
5.

82
4.

67
6.

12
6.

12
5.

82
5.

85
6.

91
22

8.
1

27
.6

9
3.

69
3.

42

0.
00

1
14

.9
7

18
.8

3
15

.3
2

19
.4

9
20

.8
4

19
.4

7
22

.8
7

24
.3

4
70

8.
8

87
.4

9
13

.5
9

12
.9

8

0.
01

90
.1

3
97

.0
4

89
.4

8
95

.9
6

11
7.

01
10

4.
37

14
1.

24
15

1.
47

26
34

.4
30

9.
62

98
.8

5
11

2.
77

0.
1

67
8.

12
69

8.
39

67
5.

14
69

6.
49

92
2.

67
79

3.
96

98
8.

35
92

2.
96

96
09

.9
11

74
.7

9
89

1.
24

11
01

.9
5

1.
0

83
33

.9
4

84
08

.1
5

83
01

.5
6

83
99

.6
9

10
67

8.
04

95
12

.2
9

88
43

.7
1

87
53

.6
8

85
74

.8
4

88
36

.2
8

10
64

7.
97

12
37

7.
14

102 Chapter 5. The Case For Learned Spatial Indexes

Table 5.2: Average number of partitions intersected for
each partitioning scheme for selectivity 0.00001% on

Taxi Rides and OSM datasets

Taxi Rides OSM

Partitioning Skewed Uniform Skewed Uniform

Fixed 1.97 7.98 1.72 23.73

Adaptive 1.74 31.57 1.51 24.80

k-d tree 1.70 21.62 1.56 30.95

Quadtree 1.79 2.12 1.37 7.96

STR 2.60 47.03 1.90 11.05

size is reached which coincides with the optimal performance, after which
the performance starts degrading. We again observe that for optimal perfor-
mance the partition size of the 1D techniques is much larger than the corre-
sponding 2D techniques. These results are a direct consequence of the filter
and refine approach, since we utilize the range query to answer the distance
query. Another thing to notice is that the difference between learned indexes
and binary search reduces for distance queries. This is because after the fil-
ter phase, we refine using the Haversine distance, which is computationally
expensive. Haversine distance requires multiple additions, multiplications,
and division as well as three trigonometric function calls. Although, we only
use Harvesine distance on a subset of points from the filter phase, it still is
expensive to compute. Morever, there are cases where a query contains the
180th meridian. As mentioned earlier in Section 5.2.4, a way to mitigate this
problem is to divide the range into two part, one on each side of the 180th
meridian. We leave these improvements for future work.

Query Performance

Figure 5.9 shows the distance query runtime for all partitioning techniques
as well as the two spatial indexes, S2PointIndex, and JTS STRtree. In the fig-
ure we can make two important observations. First is that the difference in
performance between the learned indexes diminishes quickly as we increase
the selectivity of the query. Grid based index perform the best for lower se-
lectivities (0.00001% and 0.0001%), except for uniform queries for Taxi Rides
and OSM datasets where Quadtree is better (similar to range query). But
after that, the dominant cost is Haversine distance, as more points qualify
the filter phase, and thus all partitioning schemes mostly converge in their
respective performances. Second observation is that S2PointIndex outper-
forms most of the indexes for uniform queries on the OSM dataset. The
reason for this is that after the filter phase, many points need refinement
for uniform queries for the OSM dataset. For example for the OSM dataset,

5.3. Evaluation 103

2
.5

5
.0

7
.5

1
0
.0

1
2
.5

skewedqueries

T
w

ee
ts

(8
3M

)

1
0

2
0

3
0

T
ax

i
R

id
es

(3
05

M
)

5

1
0

1
5

2
0

O
S

M
(2

00
M

)

1
0

2
1
0

3
1
0

4
1
0

5
1
0

6

0

2
0

4
0

6
0

8
0

uniformqueries

1
0

2
1
0

3
1
0

4
1
0

5
1
0

6

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

1
0

2
1
0

3
1
0

4
1
0

5
1
0

6

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

A
ve

ra
ge

nu
m

b
er

of
p

oi
nt

s
p

er
pa

rt
it

io
n

(l
og

)

Averagequerytime[µs]
m

l-
fi

xe
d

-g
ri

d
b

s-
fi

xe
d

-g
ri

d
m

l-
ad

ap
ti

ve
-g

ri
d

b
s-

ad
ap

ti
ve

-g
ri

d
m

l-
q

u
ad

tr
ee

b
s-

q
u

ad
tr

ee

Fi
gu

re
5.

8:
D

is
ta

nc
e

qu
er

y
co

nfi
gu

ra
ti

on
-M

L
vs

.B
S

fo
r

lo
w

se
le

ct
iv

it
y

(0
.0

00
01

%
)

104 Chapter 5. The Case For Learned Spatial Indexes

the average number of points that need refinement after the filter phase for
skewed queries are 25, 257, and 2561 for the selectivities 0.00001%, 0.0001%
and 0.001%. For uniform queries, the average number of points that need re-
finement after the filter phase are 4257, 7263, 17612 for the OSM dataset. The
dominant cost again is the Haversine distance computation, and thus we also
do not observe much difference in performance between the learned indexes.
S2PointIndex has some optimization for distance queries, where it carefully
increases the radius of the a data structure called S2Cap (a circular disc with
a center and a radius). Distance query with S2PointIndex for uniform queries
on OSM dataset is 1.91× to upto 7.75× faster than the learned indexes. The
comparison is a bit fairer with JTS STRtree since the learned indexes and JTS
STRtree both deploy the filter and refine approach to answer distance queries.
Fixed-grid is 1.33× to upto 11.92× faster that JTS STRtree.

5.3.4 Join Query Performance

For join queries, we utilized the filter and refine approach for the learned in-
dexes and JTS STRtree. We use the bounding box of the polygon objects,
and issue a range query on the indexed points, while in S2, we utilize the
S2ShapeIndex which is especially built to test for containment of points in
polygonal objects. As mentioned in Section 5.2.5, we index the polygon ob-
jects using an interval tree in case of the learned indexes. For JTS STRtree,
we utilize the PreparedGeometry2 abstraction, to index line segments of all
individual polygons, which helps in accelerating the refinement check.

We utilized, three polygonal datasets for the location datasets that are
in the NYC area (i.e., Tweets and Taxi Rides datasets). We used the Bor-
oughs, Neighborhood, and the Census block boundaries (polygons) for the
join query. Boroughs consists of five polygons, Neighborhoods dataset con-
sists of 290 polygons, and the Census blocks dataset consists of approxi-
mately 40 thousand polygons. For the OSM dataset, we join it with the
Countries dataset which consists of 255 country boundaries. Similar to range
and distance queries, we first find the optimal partition size for each of the
learned index for each dataset.

Figure 5.10 shows the join query performance. It can be observed in the
figure that most of the learned indexes are similar in join query performance.
The reason behind this is that Filter phase is not expensive for the join query,
and the Refinement phase is the dominant cost. This reasoning is similar to
what we have already discussed in Section 4.7.1. Although, we use an in-
terval tree to index the edges of the polygons for quickly determining which
edges to intersect the ray casted from the candidate point, this phase is still
expensive. For future work, we plan to investigate the performance using
the main-memory index for polygon objects proposed in [82].

It can also be seen in the figure, that the learned indexes are consider-
ably faster than JTS STRtree, and S2ShapeIndex for the join query. Fixed-
grid, for example, is 1.81× to 2.69× faster than S2ShapeIndex, and 2.7× to

2https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/
prep/PreparedGeometry.html

https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html

5.3. Evaluation 105

1
0

1

1
0

2

1
0

3

skewedqueries
T

w
ee

ts
(8

3
M

)

1
0

1

1
0

2

1
0

3

1
0

4

T
ax

i
R

id
es

(3
0

5
M

)

1
0

1

1
0

2

1
0

3

1
0

4

O
S

M
(2

0
0

M
)

1
e-

0
5

0
.0

0
0

1
0

.0
0

1
0

.0
1

1
0

1

1
0

2

1
0

3

1
0

4

uniformqueries

1
e-

0
5

0
.0

0
0

1
0

.0
0

1
0

.0
1

1
0

1

1
0

2

1
0

3

1
0

4

1
e-

0
5

0
.0

0
0

1
0

.0
0

1
0

.0
1

1
0

2

1
0

3

1
0

4

Q
ue

ry
S

el
ec

ti
vi

ty
(i

n
p

er
ce

nt
)

Averagequerytime[µs]
m

l-
fi

xe
d

-g
ri

d
m

l-
ad

ap
ti

ve
-g

ri
d

m
l-

kd
tr

ee
m

l-
q

u
ad

tr
ee

m
l-

st
rt

re
e

jt
s-

st
rt

re
e

s2
-p

o
in

ti
n

d
ex

Fi
gu

re
5.

9:
To

ta
ld

is
ta

nc
e

qu
er

y
ru

nt
im

e
w

it
h

pa
ra

m
et

er
s

tu
ne

d
on

se
le

ct
iv

it
y

0.
00

00
1%

106 Chapter 5. The Case For Learned Spatial Indexes

3.44× faster than JTS STRtree for the Tweets dataset across all three polyg-
onal datasets. Similarly, for Taxi Rides dataset Fixed-grid is 2.39× to 4.96×
faster than S2ShapeIndex, and 3.017× to 4.49× faster than JTS STRtree. Fi-
nally, for the OSM dataset, it is 2.89× faster than S2ShapeIndex, and 7.311×
faster than JTS STRtree for the join query.

5.3.5 Indexing Costs

Figure 5.11 shows that Fixed-grid and Adaptive-grid are faster to build than
the tree based learned indexes. Fixed-grid is 2.11×, 2.05×, and 1.90× faster
to build than closest competitor STRtree. Quadtree is the slowest to build
because it generates a large number of cells for optimal configuration. Not
all partitions in Quadtree contain an equal number of points as it divides
space rather than data, thus leading to an imbalanced number of points per
partition. Fixed-grid and Adaptive grid do not generate large number of
partitions, as the partitions are quite large for optimal configuration. They are
lower in size for similar reasons. The index size in Figure 5.11 also includes
the size of data being indexed.

In the figure, we can also see that the learned indexes are faster to built
and consume less memory that S2PointIndex and JTS STRtree. Fixed-grid,
for example, is 2.34× to upto 15.36× faster to build than S2PointIndex, and
11.09× to upto 19.74× faster to build than JTS STRtree. It also consumes less
memory than S2PointIndex (3.04× to upto 3.4×), and JTS STRtree (4.96× to
upto 8.024×). The comparison on index size with JTS STRtree is not com-
pletely fair. As mentioned earlier in Section 4.6.1, JTS STRtree is a SAM (spa-
tial access method), where it stores four coordinates for each point (since the
points have been stored as degenerate rectangles). The learned indexes im-
plemented in this work are PAMs (point access method), where we only store
two coordinates for each data point.

5.4 Related Work

Recent work by Kraska et al. [91] proposed the idea of replacing traditional
database indexes with learned models that predict the location of a key in a
dataset. Their learned index, called the Recursive Model Index (RMI), only
handles one-dimensional keys. Since then, there has been a corpus of work
on extending the ideas of the learned index to spatial and multi-dimensional
data.

Flood [117] is an in-memory read-optimized multi-dimensional index
that organizes the physical layout of d-dimensional data by dividing each
dimension into some number of partitions, which forms a grid over d-
dimensional space. Points that fall into the same grid cell are stored together.
Flood adapts to the data and workload in two ways: first, it automatically
learns the best number of partitions in each dimension by using a cost model.
Second, it spaces the partitions in each dimension so that an equal number
of points fall in each partition.

5.4. Related Work 107

b
or

o
u

g
h

s
n

ei
g

h
b

or
h

o
o

d
s

ce
n

su
s

01020304050

JoinTime[s]

T
w

ee
ts

(8
3

M
)

b
or

o
u

g
h

s
n

ei
g

h
b

or
h

o
o

d
s

ce
n

su
s

0

5
0

10
0

15
0

20
0

25
0

30
0

T
ax

i
R

id
es

(3
0

5
M

)

co
u

n
tr

ie
s

010203040506070

O
S

M
(2

0
0

M
)

m
l-

fi
xe

d
-g

ri
d

m
l-

ad
ap

ti
ve

-g
ri

d
m

l-
kd

tr
ee

m
l-

q
u

ad
tr

ee
m

l-
st

rt
re

e
jt

s-
st

rt
re

e
s2

-p
o

in
ti

n
d

ex

Fi
gu

re
5.

10
:J

oi
n

qu
er

y
pe

rf
or

m
an

ce
fo

r
th

e
th

re
e

da
ta

se
ts

108 Chapter 5. The Case For Learned Spatial Indexes

Tweets
(83M)

Taxi
(305M)

OSM
(200M)

101

102

In
de

x
B

ui
ld

T
im

e
[s

]

Tweets
(83M)

Taxi
(305M)

OSM
(200M)

0

5

10

15

20

In
de

x
S

iz
e

[G
B

s]

ml-fixed-grid

ml-adaptive-grid

ml-kdtree

ml-quadtree

ml-strtree

jts-strtree

s2-point-index

Figure 5.11: Index build times and sizes for the three
datasets

Learning has also been applied to the challenge of reducing I/O cost
for disk-based multi-dimensional indexes. Qd-tree [194] uses reinforcement
learning to construct a partitioning strategy that minimizes the number of
disk-based blocks accessed by a query. LISA [103] is a disk-based learned
spatial index that achieves low storage consumption and I/O cost while sup-
porting range queries, nearest neighbor queries, and insertions and deletions.

Past work has also aimed to improve traditional indexing techniques
by learning the data distribution. The ZM-index [188] combines the stan-
dard Z-order space-filling curve with the RMI from [91] by mapping multi-
dimensional values into a single-dimensional space, which can then be learned
using models. The ML-index [32] combines the ideas of iDistance [72] and
the RMI to support range and KNN queries. [60] augment existing indexes
with light-weight models to accelerate range and point queries.

All of these works share the idea that a multi-dimensional index can be
instance-optimized for a particular use case by learning from the dataset and
query workload. In our work, we apply these same ideas of learning from
the data and workload to improve traditional multi-dimensional indexes for
spatial data.

5.5 Conclusions and Future Work

In this work, we implemented techniques proposed in a state-of-the-art
multi-dimensional index, namely, Flood [117], which indexes points using
a variant of the Grid-file and applied them to five classical spatial indexes.
We have shown that replacing binary search with learned indexes within
each partition can improve overall query runtime by 11.79% to 39.51%. As
expected, the effect of using a more efficient search within a partition is more
pronounced for queries with low selectivity. With increasing selectivity, the
effect of a fast search diminishes. Likewise, the effect of using a learned index

5.5. Conclusions and Future Work 109

is larger for (1D) grid partitioning techniques (e.g., Fixed-grid) than for (2D)
tree structures (e.g., Quadtree). The reason is that the partitions (cells) are
less representative of the points they contain in the 1D case than in the 2D
case. Hence, 1D partitioning requires more refinement within each cell.

In contrary, finding the qualifying partitions is more efficient with 1D than
with 2D partitioning, thus contributing to lower overall query runtime (1.23x
to 1.83x times faster). Currently, we are using textbook implementations for
Quadtree and K-d tree. Future work could study replacing these tree struc-
tures with learned counterparts. For example, we could linearize Quadtree
cells (e.g., using a Hilbert or Z-order curve) and store the resulting cell iden-
tifiers in a learned index.

So far we have only studied the case where indexes and data fit into RAM.
For on-disk use cases, performance will likely be dominated by I/O and the
search within partitions will be of less importance. We expect partition sizes
to be performance-optimal when aligned with the physical page size. To
reduce I/O, it will be crucial for partitions to not contain any unnecessary
points. Hence, we expect 2D partitioning to be the method of choice in this
case. We refer to LISA [103] for further discussions on this topic.

We also compared the performance of the learned indexes with two state-
of-the-art indexes, namely, S2PointIndex, and JTS STRtree (also evaluated in
Chapter 4). These indexes are used in many applications as well as systems.
We observed that learned indexes are faster than the aforementioned indexes
in most cases. We also discussed, throughout this chapter, many optimiza-
tions that can still be applied to the learned indexes, and we plan to address
them in future work.

111

Chapter 6

Future Work

In this thesis, we have made multiple contributions to the research area
of spatial analytical database systems. In Chapter 2, we implement spa-
tial datatypes, and spatial processing in a main-memory database system,
HyPer. We show that, even by building an index on-the-fly, HyPerSpace
achieves a much lower latency than other related systems. While we did
study the performance of HyPerSpace by computing the SuperCovering on-
the-fly, it would be interesting to see the improvement in latency when the
SuperCovering can be persisted. We expect a 4× performance improvement
for subsequent calls to spatial functions, once the SuperCovering or CellIds are
persisted as an index.

In Chapter 3, we studied various modern big spatial analytics systems.
Out of all the systems studied, GeoSpark comes close to a complete spa-
tial analytics systems because of data types and queries supported and the
control user has while writing applications. It also exhibits the best per-
formance in most cases. While, the systems are promising as they can effi-
ciently scale out with the increase in data, we believe a performance improve-
ment is needed for them to be truly real-time. Luckily, one of the systems,
namely GeoSpark, is actively under development and is now incubating as
an Apache Project under the name Apache Sedona. We believe that with
hundreds of software engineers contributing to the system, this will soon be
addressed and Sedona will be the state-of-art system to measure against in
the upcoming years.

In Chapter 4, we carried out an experimental evaluation of the modern
spatial libraries. These libraries are used by hundreds of systems, appli-
cations, and in various research areas today. This work will facilitate re-
searchers, and practitioners alike in choosing a library that best suits their
needs. We believe that improvements in the libraries are needed, especially
in the implementation of the index structures, which are widely used for
spatial partitioning, and indexing spatial data. GEOS is one very popular li-
brary which is used in hundreds of libraries, including PostGIS and Shapely
(a popular python geospatial library, used by more than 12 thousand projects
in GitHub). We showed that the STRtree implementation in GEOS, at every
node, retrieves the bounding boxes of every child node from the memory
to check if it intersects with the query range, and thus suffers from a large
number of cache misses. We showed that one way to mitigate this problem is
by storing the bounds of the children node in contiguous memory, and only
retrieve (and visit) the children which actually intersect with the query. We

112 Chapter 6. Future Work

believe the performance of GEOS STRtree will then be at par with JTS coun-
terpart. We plan to address this problem, by contributing to the open-source
project.

In Chapter 5, we proposed an approach to apply learned indexes to five
classical spatial indexes in order to improve spatial query processing on
location-data. We showed that learned index outperform binary search for
searching within a spatial partition and that spatial index structures require
tuning for various datasets and query workloads for optimal performance.
While we manually tuned every index structure for optimal partition size
based on the query workload, one potential improvement can be using ma-
chine learning to learn the optimal partition size based on the dataset and
the query workload. [117] use a synopsis/sketch from the dataset and query
workload, where they essentially sample from the dataset and query work-
load, and decide the optimal data layout based on the synopsis. This tech-
nique can directly be applied to learn the optimal layout for the learned
spatial indexes as well. We also show that the effect of using a learned index
is larger for (1D) grid partitioning techniques (e.g., Fixed-grid) than for (2D)
tree structures (e.g., Quadtree). The reason is that the partitions (cells) are less
representative of the points they contain in the 1D case than in the 2D case.
Hence, 1D partitioning requires more refinement within each cell. In con-
trary, finding the qualifying partitions is more efficient with 1D than with 2D
partitioning, thus contributing to lower overall query runtime (1.23x to 1.83x
times faster). At the moment, we implement a textbook implementation of
2D partitioning techniques, and in future work we plan to linearize the tree
structure for the 2D schemes (since they generate hundred of thousands of
partitions for optimal configuration), apply learned indexes on them, and
observe the effect. Also, in Chapter 5 we have studied the learned indexes
based on location-data (spatial data with zero extent). Another potential
future work is incorporating spatial data with non-zero extents, using a tech-
nique known as query expansion [214, 167]. With learned spatial indexes,
we studied the case where all data fits into memory. Another potential re-
search area is to utilize byte-addressable non-volatile memory (NVM). NVM
has been leveraged in database systems in previous works [143, 145, 144]. It
would be interesting to see learned indexes for spatial data and spatial data
in general, can be adapted to NVM. We also compared the performance of
the learned indexes with two state-of-the-art indexes, namely, S2PointIndex,
and JTS STRtree (both evaluated in Chapter 4). These indexes are used in
many applications as well as systems. We observed that learned indexes are
faster than the aforementioned indexes in most cases. The learned indexes
can act as drop in replacement for spatial indexes used in big spatial analyt-
ics systems for location-data to improve spatial query processing. We also
discussed, throughout the Chapter 5, multiple micro-optimizations that can
still be applied to the learned indexes, and we plan to address them in future
work.

113

Acknowledgments

This work has been partially supported by the TUM Living Lab Connected
Mobility (TUM LLCM) project and has been funded by the Bavarian Ministry
of Economic Affairs, Energy and Technology (StMWi) through the Center
Digitisation.Bavaria, an initiative of the Bavarian State Government.

115

Bibliography

In compliance with § 6 Abs. 6 Satz 3 Promotionsordnung der Technischen
Universität München, publications by the author of this thesis are marked
with an asterisk (*).

[1] Jemal H. Abawajy. “Comprehensive analysis of big data variety land-
scape”. In: Int. J. Parallel Emergent Distributed Syst. 30.1 (2015), pp. 5–
14.

[2] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xi-
aodong Zhang, and Joel H. Saltz. “Hadoop-GIS: A High Performance
Spatial Data Warehousing System over MapReduce”. In: PVLDB 6.11
(2013), pp. 1009–1020.

[3] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan
Zhang. “Automatic Database Management System Tuning Through
Large-scale Machine Learning”. In: Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017. ACM, pp. 1009–1024.

[4] Amazon Elastic Block Store: Easy to use, high performance block storage at
any scale. https://aws.amazon.com/ebs/.

[5] Amazon Elastic File System (Amazon EFS). https://aws.amazon.com/
efs.

[6] Amazon Relational Database Service (RDS): Set up, operate, and scale a re-
lational database in the cloud with just a few clicks. https://aws.amazon.
com/rds/.

[7] Amazon S3: Object storage built to store and retrieve any amount of data
from anywhere. https://aws.amazon.com/s3/.

[8] Koichiro Amemiya and Akihiro Nakao. “Layer-Integrated Edge Dis-
tributed Data Store for Real-time and Stateful Services”. In: NOMS
2020 - IEEE/IFIP Network Operations and Management Symposium, Bu-
dapest, Hungary, April 20-24, 2020. IEEE, pp. 1–9.

[9] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB - The
Definitive Guide: Time to Relax. O’Reilly, 2010. ISBN: 978-0-596-15589-6.

[10] Apache Hadoop. https://hadoop.apache.org.

[11] Azure Disk Storage: High-performance, highly durable block storage for
Azure Virtual Machines. https : / / azure . microsoft . com / en - us /
services/storage/disks/.

https://aws.amazon.com/ebs/
https://aws.amazon.com/efs
https://aws.amazon.com/efs
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/s3/
https://hadoop.apache.org
https://azure.microsoft.com/en-us/services/storage/disks/
https://azure.microsoft.com/en-us/services/storage/disks/

116 Bibliography

[12] Azure SQL Database: Build apps that scale with the pace of your busi-
ness with managed and intelligent SQL in the cloud. https://azure.
microsoft.com/en-us/services/sql-database/.

[13] Jason Barkes, Marcelo R Barrios, Francis Cougard, Paul G Crumley,
Didac Marin, Hari Reddy, and Theeraphong Thitayanun. “GPFS: a
parallel file system”. In: IBM International Technical Support Organiza-
tion (1998).

[14] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for
Associative Searching”. In: Commun. ACM 18.9 (1975), pp. 509–517.

[15] Jon Louis Bentley and Jerome H. Friedman. “Data Structures for
Range Searching”. In: ACM Comput. Surv. 11.4 (1979), pp. 397–409.

[16] Blob storage: Massively scalable and secure object storage for cloud-native
workloads, archives, data lakes, high-performance computing, and machine
learning. https://azure.microsoft.com/en-us/services/storage/
blobs/.

[17] Nemanja Boric, Hinnerk Gildhoff, Menelaos Karavelas, Ippokratis
Pandis, and Ioanna Tsalouchidou. “Unified Spatial Analytics from
Heterogeneous Sources with Amazon Redshift”. In: Proceedings of the
2020 International Conference on Management of Data, SIGMOD Con-
ference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
ACM, pp. 2781–2784.

[18] Panagiotis Bouros and Nikos Mamoulis. “Spatial joins: what’s next?”
In: SIGSPATIAL Special 11.1 (2019), pp. 13–21.

[19] Mohamed Ben Brahim, Wassim Drira, Fethi Filali, and Noureddine
Hamdi. “Spatial data extension for Cassandra NoSQL database”. In:
Journal of Big Data 3.1 (2016), pp. 1–16.

[20] Eric A. Brewer. “Towards robust distributed systems”. In: Proceedings
of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, July 16-19, 2000, Portland, Oregon, USA. ACM, p. 7.

[21] Ilja N Bronshtein and Konstantin A Semendyayev. Handbook of mathe-
matics. Springer Science & Business Media, 2013.

[22] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. “Apache Flink™: Stream and Batch
Processing in a Single Engine”. In: IEEE Data Eng. Bull. 38.4 (2015),
pp. 28–38.

[23] Josiah L Carlson. Redis in action. Manning Publications Co., 2013.

[24] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes,
and Robert E. Gruber. “Bigtable: A Distributed Storage System for
Structured Data”. In: ACM Trans. Comput. Syst. 26.2 (2008), 4:1–4:26.

[25] Jinchuan Chen, Yueguo Chen, Xiaoyong Du, Cuiping Li, Jiaheng Lu,
Suyun Zhao, and Xuan Zhou. “Big data challenge: a data manage-
ment perspective”. In: Frontiers Comput. Sci. 7.2 (2013), pp. 157–164.

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/

Bibliography 117

[26] Zhida Chen, Gao Cong, and Walid G. Aref. “STAR: A Distributed
Stream Warehouse System for Spatial Data”. In: Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM,
pp. 2761–2764.

[27] Christopher Cherry. The Value of Location Intelligence in the Communi-
cations Industry. https://www.pb.com/docs/US/pdf/Products-
Services / Software / Articles / Identify - Market - Expansion -
Opportunities / Value - of - Location - Intelligence - in - the -
Telecommunications-Industry-WhitePaper.pdf. 2012.

[28] Kristina Chodorow and Michael Dirolf. MongoDB - The Definitive
Guide: Powerful and Scalable Data Storage. O’Reilly, 2010. ISBN: 978-1-
449-38156-1.

[29] CockroachDB: The most highly evolved database on the planet. https://
www.cockroachlabs.com/product/.

[30] James C. Corbett et al. “Spanner: Google’s Globally Distributed
Database”. In: ACM Trans. Comput. Syst. 31.3 (2013), 8:1–8:22.

[31] Benoît Dageville et al. “The Snowflake Elastic Data Warehouse”. In:
Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016. ACM, pp. 215–226.

[32] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. “The
ML-Index: A Multidimensional, Learned Index for Point, Range, and
Nearest-Neighbor Queries”. In: 2020 Conference on Extending Database
Technology (EDBT).

[33] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”. In: 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California, USA,
December 6-8, 2004. USENIX Association, pp. 137–150.

[34] GlusterFS Developers. Gluster File System 3.3. 0 Administration Guide.
2006.

[35] Jialin Ding et al. “ALEX: An Updatable Adaptive Learned Index”. In:
Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June
14-19, 2020. ACM, pp. 969–984.

[36] Harish Doraiswamy and Juliana Freire. “A GPU-friendly Geometric
Data Model and Algebra for Spatial Queries”. In: Proceedings of the
2020 International Conference on Management of Data, SIGMOD Confer-
ence 2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM,
pp. 1875–1885.

[37] Harish Doraiswamy and Juliana Freire. “A GPU-friendly Geometric
Data Model and Algebra for Spatial Queries: Extended Version”. In:
CoRR abs/2004.03630 (2020). https://arxiv.org/abs/2004.03630.

https://www.pb.com/docs/US/pdf/Products-Services/Software/Articles/Identify-Market-Expansion-Opportunities/Value-of-Location-Intelligence-in-the-Telecommunications-Industry-WhitePaper.pdf
https://www.pb.com/docs/US/pdf/Products-Services/Software/Articles/Identify-Market-Expansion-Opportunities/Value-of-Location-Intelligence-in-the-Telecommunications-Industry-WhitePaper.pdf
https://www.pb.com/docs/US/pdf/Products-Services/Software/Articles/Identify-Market-Expansion-Opportunities/Value-of-Location-Intelligence-in-the-Telecommunications-Industry-WhitePaper.pdf
https://www.pb.com/docs/US/pdf/Products-Services/Software/Articles/Identify-Market-Expansion-Opportunities/Value-of-Location-Intelligence-in-the-Telecommunications-Industry-WhitePaper.pdf
https://www.cockroachlabs.com/product/
https://www.cockroachlabs.com/product/
https://arxiv.org/abs/2004.03630

118 Bibliography

[38] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R.
Narasayya, and Surajit Chaudhuri. “Selectivity Estimation for Range
Predicates using Lightweight Models”. In: Proc. VLDB Endow. 12.9
(2019), pp. 1044–1057.

[39] Ahmed Eldawy, Louai Alarabi, and Mohamed F. Mokbel. “Spatial
partitioning techniques in SpatialHadoop”. In: PVLDB 8.12 (2015),
pp. 1602–1605.

[40] Ahmed Eldawy and Mohamed F. Mokbel. “SpatialHadoop: A MapRe-
duce framework for spatial data”. In: ICDE 2015, Seoul, South Korea,
April 13-17, 2015. IEEE Computer Society, pp. 1352–1363.

[41] Ahmed Eldawy and Mohamed F Mokbel. “The era of big spatial
data”. In: Data Engineering Workshops (ICDEW), 2015 31st IEEE Inter-
national Conference on. IEEE, pp. 42–49.

[42] Ahmed Eldawy, Ibrahim Sabek, Mostafa Elganainy, Ammar Bakeer,
Ahmed Abdelmotaleb, and Mohamed F. Mokbel. “Sphinx: Empow-
ering Impala for Efficient Execution of SQL Queries on Big Spatial
Data”. In: Advances in Spatial and Temporal Databases - 15th International
Symposium, SSTD 2017, Arlington, VA, USA, August 21-23, 2017, Pro-
ceedings, pp. 65–83.

[43] Engineering with a Global Dataset. https://labs.strava.com/.

[44] EPSG:32118: New York Long Island. https://spatialreference.org/
ref/epsg/32118/.

[45] Nivan Ferreira Ferreira, Jorge Poco, Huy T. Vo, Juliana Freire, and Clü-
dio T Silva. “Visual Exploration of Big Spatio-Temporal Urban Data:
A Study of New York City Taxi Trips”. In: IEEE Transactions on Visual-
ization and Computer Graphics, pp. 2149–2158.

[46] Raphael A. Finkel and Jon Louis Bentley. “Quad Trees: A Data Struc-
ture for Retrieval on Composite Keys”. In: Acta Inf. 4 (1974), pp. 1–
9.

[47] Reuben Fischer-Baum and Carl Bialik. Uber Is Taking Millions Of
Manhattan Rides Away From Taxis. http://fivethirtyeight.com/
features/uber-is-taking-millions-of-manhattan-rides-away-
from-taxis/.

[48] Foursquare. https://foursquare.com/about.

[49] Volker Gaede and Oliver Günther. “Multidimensional Access Meth-
ods”. In: ACM Comput. Surv. 30.2 (1998), pp. 170–231.

[50] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fon-
seca, and Tim Kraska. “FITing-Tree: A Data-aware Index Structure”.
In: Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30
- July 5, 2019. ACM, pp. 1189–1206.

https://labs.strava.com/
https://spatialreference.org/ref/epsg/32118/
https://spatialreference.org/ref/epsg/32118/
http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-from-taxis/
http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-from-taxis/
http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-from-taxis/
https://foursquare.com/about

Bibliography 119

[51] Enrico Gallinucci and Matteo Golfarelli. “SparkTune: tuning Spark
SQL through query cost modeling”. In: Advances in Database Technol-
ogy - 22nd International Conference on Extending Database Technology,
EDBT 2019, Lisbon, Portugal, March 26-29, 2019. OpenProceedings.org,
pp. 546–549.

[52] Amir Gandomi and Murtaza Haider. “Beyond the hype: Big data
concepts, methods, and analytics”. In: Int. J. Inf. Manag. 35.2 (2015),
pp. 137–144.

[53] Francisco García-García, Antonio Corral, Luis Iribarne, and Michael
Vassilakopoulos. “Improving Distance-Join Query processing with
Voronoi-Diagram based partitioning in SpatialHadoop”. In: Future
Gener. Comput. Syst. 111 (2020), pp. 723–740.

[54] Francisco García-García, Antonio Corral, Luis Iribarne, Michael Vassi-
lakopoulos, and Yannis Manolopoulos. “Efficient distance join query
processing in distributed spatial data management systems”. In: Inf.
Sci. 512 (2020), pp. 985–1008.

[55] Karl Friedrich Gauss and Peter Pesic. General investigations of curved
surfaces. Courier Corporation, 2005.

[56] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The
Google file system”. In: Proceedings of the 19th ACM Symposium on
Operating Systems Principles 2003, SOSP 2003, Bolton Landing, NY,
USA, October 19-22, 2003. ACM, pp. 29–43.

[57] Google Zeitgeist: 1.2 trillion searches. https://archive.google.com/
zeitgeist/2012/#the-world. 2012.

[58] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul
Pathak, Stefano Stefani, and Vidhya Srinivasan. “Amazon Redshift
and the Case for Simpler Data Warehouses”. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Mel-
bourne, Victoria, Australia, May 31 - June 4, 2015. ACM, pp. 1917–1923.

[59] Antonin Guttman. “R-Trees: A Dynamic Index Structure for Spatial
Searching”. In: SIGMOD’84, Proceedings of Annual Meeting, Boston,
Massachusetts, USA, June 18-21, 1984. ACM Press, pp. 47–57.

[60] Ali Hadian, Ankit Kumar, and Thomas Heinis. “Hands-off Model
Integration in Spatial Index Structures”. In: CoRR abs/2006.16411
(2020). https://arxiv.org/abs/2006.16411.

[61] Stefan Hagedorn, Philipp Götze, and Kai-Uwe Sattler. “The STARK
Framework for Spatio-Temporal Data Analytics on Spark”. In: Daten-
banksysteme für Business, Technologie und Web (BTW 2017), 17. Fachta-
gung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS),
6.-10. März 2017, Stuttgart, Germany, Proceedings, pp. 123–142.

[62] Michael Hausenblas and Jacques Nadeau. “Apache Drill: Interactive
Ad-Hoc Analysis at Scale”. In: Big Data 1.2 (2013), pp. 100–104.

https://archive.google.com/zeitgeist/2012/#the-world
https://archive.google.com/zeitgeist/2012/#the-world
https://arxiv.org/abs/2006.16411

120 Bibliography

[63] Alex Heath. Snap confirms that it paid $213 million to buy Zenly and $135
million for Placed. https://www.businessinsider.com/snapchat-
paid- 213- million- for- zenly- and- 135- million- for- placed-
2017-8/. 2017.

[64] Jeffrey Heer and Sean Kandel. “Interactive analysis of big data”. In:
XRDS 19.1 (2012), pp. 50–54.

[65] Mark Hung. “Leading the iot, gartner insights on how to lead in a
connected world”. In: Gartner Research (2017), pp. 1–29.

[66] IBM Cloud Object Storage: Flexible, cost-effective and scalable cloud storage
for unstructured data. https://www.ibm.com/cloud/object-storage.

[67] Stratos Idreos and Tim Kraska. “From Auto-tuning One Size Fits All
to Self-designed and Learned Data-intensive Systems”. In: Proceedings
of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019.
ACM, pp. 2054–2059.

[68] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. “Over-
view of Data Exploration Techniques”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015. ACM, pp. 277–281.

[69] Stratos Idreos et al. “Design Continuums and the Path Toward Self-
Designing Key-Value Stores that Know and Learn”. In: CIDR 2019,
9th Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org.

[70] Introduction to BigQuery GIS. https://cloud.google.com/bigquery/
docs/gis-intro.

[71] Hojjat Jafarpour. “Quantcast File System (QFS)”. In: CIDR 2013, Sixth
Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org.

[72] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.
“IDistance: An Adaptive B+-Tree Based Indexing Method for Nearest
Neighbor Search”. In: ACM Trans. Database Syst. 30.2 (2005), 364–397.
ISSN: 0362-5915.

[73] Abdul Jhummarwala, Mazin Alkathiri, Miren Karamta, and M. B.
Potdar. “Comparative Evaluation of Various Indexing Techniques of
Geospatial Vector Data for Processing in Distributed Computing En-
vironment”. In: Proceedings of the 9th Annual ACM India Conference,
Gandhinagar, India, October 21-23, 2016, pp. 167–172.

[74] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Pa-
tel. “Selecting Subexpressions to Materialize at Datacenter Scale”. In:
Proc. VLDB Endow. 11.7 (2018), pp. 800–812.

[75] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay
Bag, Marc Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram
Rao. “Computation Reuse in Analytics Job Service at Microsoft”. In:
(2018), pp. 191–203.

https://www.businessinsider.com/snapchat-paid-213-million-for-zenly-and-135-million-for-placed-2017-8/
https://www.businessinsider.com/snapchat-paid-213-million-for-zenly-and-135-million-for-placed-2017-8/
https://www.businessinsider.com/snapchat-paid-213-million-for-zenly-and-135-million-for-placed-2017-8/
https://www.ibm.com/cloud/object-storage
https://cloud.google.com/bigquery/docs/gis-intro
https://cloud.google.com/bigquery/docs/gis-intro

Bibliography 121

[76] Kothuri Venkata Ravi Kanth, Siva Ravada, and Daniel Abugov. “Quad-
tree and R-tree indexes in oracle spatial: a comparison using GIS
data”. In: Proceedings of the 2002 ACM SIGMOD International Confer-
ence on Management of Data, 2002. ACM, pp. 546–557.

[77] Avita Katal, Mohammad Wazid, and R. H. Goudar. “Big data: Issues,
challenges, tools and Good practices”. In: Sixth International Conference
on Contemporary Computing, IC3 2013, Noida, India, August 8-10, 2013.
IEEE, pp. 404–409.

[78] Alfons Kemper and Thomas Neumann. “HyPer: A hybrid OLTP &
OLAP main memory database system based on virtual memory snap-
shots”. In: Proceedings of the 27th International Conference on Data Engi-
neering, ICDE 2011, April 11-16, 2011, Hannover, Germany, pp. 195–206.

[79] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. “Access
Path Selection in Main-Memory Optimized Data Systems: Should I
Scan or Should I Probe?” In: Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017. ACM, pp. 715–730.

[80] You Jung Kim and Jignesh M. Patel. “Rethinking Choices for Multi-
dimensional Point Indexing: Making the Case for the Often Ignored
Quadtree”. In: CIDR 2007, Third Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 7-10, 2007, Online Pro-
ceedings. www.cidrdb.org, pp. 281–291.

[81] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A.
Boncz, and Alfons Kemper. “Learned Cardinalities: Estimating Cor-
related Joins with Deep Learning”. In: CIDR 2019, 9th Biennial Con-
ference on Innovative Data Systems Research, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings. www.cidrdb.org.

[82] * Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa,
Christoph Anneser, Eleni Tzirita Zacharatou, Harish Doraiswamy,
Peter A. Boncz, Thomas Neumann, and Alfons Kemper. “Adaptive
Main-Memory Indexing for High-Performance Point-Polygon Joins”.
In: Proceedings of the 23nd International Conference on Extending Database
Technology, EDBT 2020, Copenhagen, Denmark, March 30 - April 02, 2020.
OpenProceedings.org, pp. 347–358.

[83] * Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa,
Peter A. Boncz, Thomas Neumann, and Alfons Kemper. “Adaptive
Geospatial Joins for Modern Hardware”. In: CoRR abs/1802.09488
(2018).

[84] * Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa,
Peter A. Boncz, Thomas Neumann, and Alfons Kemper. “Approxi-
mate Geospatial Joins with Precision Guarantees”. In: 34th IEEE Inter-
national Conference on Data Engineering, ICDE 2018, Paris, France, April
16-19, 2018, pp. 1360–1363.

122 Bibliography

[85] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Al-
fons Kemper, Tim Kraska, and Thomas Neumann. “RadixSpline: a
single-pass learned index”. In: Proceedings of the Third International
Workshop on Exploiting Artificial Intelligence Techniques for Data Man-
agement, aiDM@SIGMOD 2020, Portland, Oregon, USA, June 19, 2020.
ACM, 5:1–5:5.

[86] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Al-
fons Kemper, Tim Kraska, and Thomas Neumann. “RadixSpline: A
Single-Pass Learned Index”. In: CoRR abs/2004.14541 (2020). https:
//arxiv.org/abs/2004.14541.

[87] * Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas
Neumann, and Alfons Kemper. “Analytics on Fast Data: Main-Memory
Database Systems versus Modern Streaming Systems”. In: Proceedings
of the 20th International Conference on Extending Database Technology,
EDBT 2017, Venice, Italy, March 21-24, 2017. Pp. 49–60.

[88] * Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas
Neumann, and Alfons Kemper. “Scalable Analytics on Fast Data”. In:
ACM Trans. Database Syst. 44.1 (2019), 1:1–1:35.

[89] Marcel Kornacker et al. “Impala: A Modern, Open-Source SQL En-
gine for Hadoop”. In: CIDR 2015, Seventh Biennial Conference on In-
novative Data Systems Research, Asilomar, CA, USA, January 4-7, 2015,
Online Proceedings. www.cidrdb.org.

[90] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani
Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram
Nathan. “SageDB: A Learned Database System”. In: CIDR 2019, 9th
Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org.

[91] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Poly-
zotis. “The Case for Learned Index Structures”. In: Proceedings of the
2018 International Conference on Management of Data, SIGMOD Confer-
ence 2018, Houston, TX, USA, June 10-15, 2018. ACM, pp. 489–504.

[92] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Heller-
stein, and Ion Stoica. “Learning to Optimize Join Queries With Deep
Reinforcement Learning”. In: CoRR abs/1808.03196 (2018).

[93] John Krumm, Nigel Davies, and Chandra Narayanaswami. “User-
Generated Content”. In: IEEE Pervasive Comput. 7.4 (2008), pp. 10–11.

[94] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. “Twitter Heron: Stream Processing at
Scale”. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015. ACM, pp. 239–250.

https://arxiv.org/abs/2004.14541
https://arxiv.org/abs/2004.14541

Bibliography 123

[95] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Ro-
lia. “Skew-resistant parallel processing of feature-extracting scientific
user-defined functions”. In: Proceedings of the 1st ACM symposium on
Cloud computing. ACM, pp. 75–86.

[96] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized
structured storage system”. In: ACM SIGOPS Oper. Syst. Rev. 44.2
(2010), pp. 35–40.

[97] Doug Laney. “3D data management: Controlling data volume, veloc-
ity and variety”. In: META group research note 6.70 (2001), p. 1.

[98] Harald Lang, Andreas Kipf, Linnea Passing, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. “Make the most out of your SIMD
investments: counter control flow divergence in compiled query
pipelines”. In: Proceedings of the 14th International Workshop on Data
Management on New Hardware, 2018. ACM, 5:1–5:8.

[99] Kisung Lee, Raghu K. Ganti, Mudhakar Srivatsa, and Ling Liu. “Effi-
cient spatial query processing for big data”. In: Proceedings of the 22nd
ACM SIGSPATIAL, 2014.

[100] Kisung Lee, Ling Liu, Raghu K. Ganti, Mudhakar Srivatsa, Qi Zhang,
Yang Zhou, and Qingyang Wang. “Lightweight Indexing and Query-
ing Services for Big Spatial Data”. In: IEEE Trans. Services Computing
12.3 (2019), pp. 343–355.

[101] Scott T. Leutenegger, J. M. Edgington, and Mario Alberto López.
“STR: A Simple and Efficient Algorithm for R-Tree Packing”. In: Pro-
ceedings of the Thirteenth International Conference on Data Engineering,
April 7-11, 1997, Birmingham, UK. IEEE Computer Society, pp. 497–
506.

[102] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. “QTune: A Query-
Aware Database Tuning System with Deep Reinforcement Learning”.
In: Proc. VLDB Endow. 12.12 (2019), pp. 2118–2130.

[103] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. “LISA:
A Learned Index Structure for Spatial Data”. In: Proceedings of the
2020 International Conference on Management of Data, SIGMOD Confer-
ence 2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM,
pp. 2119–2133.

[104] Ling Liu and M. Tamer Özsu, eds. Encyclopedia of Database Systems,
Second Edition. Springer, 2018.

[105] Making the most detailed tweet map ever. https://blog.mapbox.com/
making-the-most-detailed-tweet-map-ever-b54da237c5ac.

[106] Antonios Makris, Konstantinos Tserpes, Giannis Spiliopoulos, and
Dimosthenis Anagnostopoulos. “Performance Evaluation of Mon-
goDB and PostgreSQL for Spatio-temporal Data”. In: Proceedings of
the Workshops of the EDBT/ICDT 2019 Joint Conference, EDBT/ICDT
2019, Lisbon, Portugal, March 26, 2019. Vol. 2322. CEUR Workshop
Proceedings. CEUR-WS.org.

https://blog.mapbox.com/making-the-most-detailed-tweet-map-ever-b54da237c5ac
https://blog.mapbox.com/making-the-most-detailed-tweet-map-ever-b54da237c5ac

124 Bibliography

[107] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara.
“Evaluating Geospatial Geometry and Proximity Queries Using Dis-
tributed Hash Tables”. In: Computing in Science and Engineering 16.4
(2014), pp. 53–61.

[108] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara.
“Polygon-Based Query Evaluation over Geospatial Data Using Dis-
tributed Hash Tables”. In: IEEE/ACM 6th International Conference on
Utility and Cloud Computing, UCC 2013, Dresden, Germany, December
9-12, 2013.

[109] Ryan Marcus and Olga Papaemmanouil. “Deep Reinforcement Learn-
ing for Join Order Enumeration”. In: Proceedings of the First Interna-
tional Workshop on Exploiting Artificial Intelligence Techniques for Data
Management, aiDM@SIGMOD 2018, Houston, TX, USA, June 10, 2018.
ACM, 3:1–3:4.

[110] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Moham-
mad Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tat-
bul. “Neo: A Learned Query Optimizer”. In: Proc. VLDB Endow. 12.11
(2019), pp. 1705–1718.

[111] Chris A. Mattmann. “Computing: A vision for data science”. In: Nat.
493.7433 (2013), pp. 473–475.

[112] MemSQL Geospatial. http://www.memsql.com/content/geospatial/.

[113] João Miranda. Uber Unveils its Realtime Market Platform. http://www.
infoq.com/news/2015/03/uber-realtime-market-platform/.

[114] MongoDB Releases - New Geo Features in MongoDB 2.4. https://www.
mongodb.com/blog/post/new-geo-features-in-mongodb-24/. 2013.

[115] Laurence Moore. “Transverse Mercator Projections and US Geological
Survey Digital Products”. In: US Geological Survey, Professional Paper
(1997).

[116] NASA OpenNEX. https://nex.nasa.gov/nex/static/htdocs/site/
extra/opennex/.

[117] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska.
“Learning Multi-Dimensional Indexes”. In: Proceedings of the 2020 In-
ternational Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020. ACM, pp. 985–
1000.

[118] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. “Fast
Serializable Multi-Version Concurrency Control for Main-Memory
Database Systems”. In: Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pp. 677–689.

[119] Jürg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. “The
Grid File: An Adaptable, Symmetric Multikey File Structure”. In:
ACM Trans. Database Syst. 9.1 (1984), pp. 38–71.

http://www.memsql.com/content/geospatial/
http://www.infoq.com/news/2015/03/uber-realtime-market-platform/
http://www.infoq.com/news/2015/03/uber-realtime-market-platform/
https://www.mongodb.com/blog/post/new-geo-features-in-mongodb-24/
https://www.mongodb.com/blog/post/new-geo-features-in-mongodb-24/
https://nex.nasa.gov/nex/static/htdocs/site/extra/opennex/
https://nex.nasa.gov/nex/static/htdocs/site/extra/opennex/

Bibliography 125

[120] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon
Bringhurst, Indranil Gupta, and Roy H. Campbell. “Stateful Scalable
Stream Processing at LinkedIn”. In: Proc. VLDB Endow. 10.12 (2017),
pp. 1634–1645.

[121] Number of smartphones sold to end users worldwide from 2007 to 2020.
https://www.statista.com/statistics/263437/global-smartphone-
sales-to-end-users-since-2007/.

[122] NYC Taxi and Limousine Commission (TLC) - TLC Trip Record Data.
https : / / www1 . nyc . gov / site / tlc / about / tlc - trip - record -
data.page. 2019.

[123] One Million Rides a Day. https : / / blog . lyft . com / posts / one -
million-rides-a-day.

[124] Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike
Hörhammer, Daniel Geringer, Siva Ravada, Theo Tijssen, Martin
Kodde, and Romulo Goncalves. “Massive point cloud data man-
agement: Design, implementation and execution of a point cloud
benchmark”. In: Comput. Graph. 49 (2015), pp. 92–125.

[125] OPTIMIZE LOCAL AND GLOBAL DECISIONS WITH SNOWFLAKE’S
GEOSPATIAL SUPPORT. https : / / www . snowflake . com / blog /
optimize - local - and - global - decisions - with - snowflakes -
geospatial-support/.

[126] Oracle Spatial and Graph Spatial Features. https : / / www . oracle .
com/technetwork/database/options/spatialandgraph/overview/
spatialfeatures-1902020.html/. 2019.

[127] Jack A. Orenstein. “Redundancy in Spatial Databases”. In: Proceedings
of the 1989 ACM SIGMOD International Conference on Management of
Data, Portland, Oregon, USA, May 31 - June 2, 1989.

[128] * Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper.
“How Good Are Modern Spatial Analytics Systems?” In: Proc. VLDB
Endow. 11.11 (2018), pp. 1661–1673.

[129] * Varun Pandey, Andreas Kipf, Dimitri Vorona, Tobias Mühlbauer,
Thomas Neumann, and Alfons Kemper. “High-Performance Geospa-
tial Analytics in HyPerSpace”. In: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Fran-
cisco, CA, USA, June 26 - July 01, 2016, pp. 2145–2148.

[130] * Varun Pandey, Alexander van Renen, Andreas Kipf, Jialin Ding,
Ibrahim Sabek, and Alfons Kemper. “The Case for Learned Spatial
Indexes”. In: AIDB@VLDB 2020, 2nd International Workshop on Applied
AI for Database Systems and Applications, Held with VLDB 2020, Monday,
August 31, 2020, Online Event / Tokyo, Japan.

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://blog.lyft.com/posts/one-million-rides-a-day
https://blog.lyft.com/posts/one-million-rides-a-day
https://www.snowflake.com/blog/optimize-local-and-global-decisions-with-snowflakes-geospatial-support/
https://www.snowflake.com/blog/optimize-local-and-global-decisions-with-snowflakes-geospatial-support/
https://www.snowflake.com/blog/optimize-local-and-global-decisions-with-snowflakes-geospatial-support/
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/spatialfeatures-1902020.html/
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/spatialfeatures-1902020.html/
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/spatialfeatures-1902020.html/

126 Bibliography

[131] * Varun Pandey, Alexander van Renen, Andreas Kipf, and Alfons Kem-
per. “An Evaluation Of Modern Spatial Libraries”. In: Database Sys-
tems for Advanced Applications - 25th International Conference, DAS-
FAA 2020, Jeju, South Korea, September 21-24, 2020, Proceedings, Part II.
Vol. 12113. Lecture Notes in Computer Science. Springer, pp. 157–174.

[132] * Varun Pandey, Alexander van Renen, Andreas Kipf, and Alfons Kem-
per. “How Good Are Modern Spatial Libraries?” In: Data Sci. Eng. 6.2
(2021), pp. 192–208.

[133] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. “QuickSel:
Quick Selectivity Learning with Mixture Models”. In: Proceedings of
the 2020 International Conference on Management of Data, SIGMOD Con-
ference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
ACM, pp. 1017–1033.

[134] Wendel Góes Pedrozo, Júlio César Nievola, and Deborah Carvalho
Ribeiro. “An Adaptive Approach for Index Tuning with Learning
Classifier Systems on Hybrid Storage Environments”. In: Hybrid Ar-
tificial Intelligent Systems - 13th International Conference, HAIS 2018,
Oviedo, Spain, June 20-22, 2018, Proceedings. Vol. 10870. Lecture Notes
in Computer Science. Springer, pp. 716–729.

[135] Persistent Disk: Reliable, high-performance block storage for virtual machine
instances. https://cloud.google.com/persistent-disk.

[136] PostGIS. http://postgis.net/.

[137] Project voldemort: A distributed database. https : / / www . project -
voldemort.com/voldemort/. 2010.

[138] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. “Effec-
tively Learning Spatial Indices”. In: Proc. VLDB Endow. 13.11 (2020),
pp. 2341–2354.

[139] Matt Ranney. Scaling Uber’s Real-time Market Platform. https://www.
infoq.com/presentations/uber-market-platform/. 2015.

[140] T. Ramalingeswara Rao, Pabitra Mitra, Ravindara Bhatt, and A.
Goswami. “The big data system, components, tools, and technolo-
gies: a survey”. In: Knowl. Inf. Syst. 60.3 (2019), pp. 1165–1245.

[141] David Reinsel, John Gantz, and John Rydning. “The digitization of the
world from edge to core”. In: Framingham: International Data Corpora-
tion (2018). https://storecloud.org/media/idc-seagate-dataage-
whitepaper.pdf.

[142] Frank Ren, Xiaohu Li, Devin Thomson, and Daniel Geng. Geosharded
Recommendations Part 1: Sharding Approach. https://tech.gotinder.
com/geosharded-recommendations-part-1-sharding-approach-2/.
2018.

https://cloud.google.com/persistent-disk
http://postgis.net/
https://www.project-voldemort.com/voldemort/
https://www.project-voldemort.com/voldemort/
https://www.infoq.com/presentations/uber-market-platform/
https://www.infoq.com/presentations/uber-market-platform/
https://storecloud.org/media/idc-seagate-dataage-whitepaper.pdf
https://storecloud.org/media/idc-seagate-dataage-whitepaper.pdf
https://tech.gotinder.com/geosharded-recommendations-part-1-sharding-approach-2/
https://tech.gotinder.com/geosharded-recommendations-part-1-sharding-approach-2/

Bibliography 127

[143] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neu-
mann, Takushi Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada,
and Mitsuru Sato. “Managing Non-Volatile Memory in Database Sys-
tems”. In: Proceedings of the 2018 International Conference on Manage-
ment of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. ACM, pp. 1541–1555.

[144] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,
and Alfons Kemper. “Building blocks for persistent memory”. In: The
VLDB Journal (2020), pp. 1–19.

[145] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,
and Alfons Kemper. “Persistent Memory I/O Primitives”. In: Pro-
ceedings of the 15th International Workshop on Data Management on New
Hardware, DaMoN 2019, Amsterdam, The Netherlands, 1 July 2019. ACM,
12:1–12:7.

[146] Keven Richly. “Optimized Spatio-Temporal Data Structures for Hy-
brid Transactional and Analytical Workloads on Columnar In-Memory
Databases”. In: Proceedings of the VLDB 2019 PhD Workshop, co-located
with the 45th International Conference on Very Large Databases (VLDB
2019), Los Angeles, California, USA, August 26-30, 2019. Vol. 2399.
CEUR Workshop Proceedings. CEUR-WS.org.

[147] Victoria Rubin and Tatiana Lukoianova. “Veracity roadmap: Is big
data objective, truthful and credible?” In: Advances in Classification Re-
search Online 24.1 (2013), p. 4.

[148] S2 cells and Pokémon GO. https://pokemongohub.net/post/wiki/s2-
cells-pokemon-go/. 2018.

[149] S2Geometry Overview - Spherical Geometry. https://s2geometry.io/
about/overview/.

[150] Zahra Sadri, Le Gruenwald, and Eleazar Leal. “Online Index Selec-
tion Using Deep Reinforcement Learning for a Cluster Database”. In:
36th IEEE International Conference on Data Engineering Workshops, ICDE
Workshops 2020, Dallas, TX, USA, April 20-24, 2020. IEEE, pp. 158–161.

[151] Shubham Saxena. Appreciating the geo/S2 library. https : / / blog .
gojekengineering.com/fe-f0e4a909d56f. 2017.

[152] AMM Scaife. “Big telescope, big data: towards exascale with the
Square Kilometre Array”. In: Philosophical Transactions of the Royal
Society A 378.2166 (2020), p. 20190060.

[153] Todd Schneider. Analyzing 1.1 Billion NYC Taxi and Uber Trips, with a
Vengeance. http://toddwschneider.com/posts/analyzing- 1- 1-
billion-nyc-taxi-and-uber-trips-with-a-vengeance/.

[154] Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. “Geodetic
Distance Queries on R-Trees for Indexing Geographic Data”. In: Ad-
vances in Spatial and Temporal Databases - 13th International Symposium,
SSTD 2013, Munich, Germany, August 21-23, 2013. Proceedings, pp. 146–
164.

https://pokemongohub.net/post/wiki/s2-cells-pokemon-go/
https://pokemongohub.net/post/wiki/s2-cells-pokemon-go/
https://s2geometry.io/about/overview/
https://s2geometry.io/about/overview/
https://blog.gojekengineering.com/fe-f0e4a909d56f
https://blog.gojekengineering.com/fe-f0e4a909d56f
http://toddwschneider.com/posts/analyzing-1-1-billion-nyc-taxi-and-uber-trips-with-a-vengeance/
http://toddwschneider.com/posts/analyzing-1-1-billion-nyc-taxi-and-uber-trips-with-a-vengeance/

128 Bibliography

[155] Raghav Sethi et al. “Presto: SQL on Everything”. In: 35th IEEE Inter-
national Conference on Data Engineering, ICDE 2019, Macao, China, April
8-11, 2019. IEEE, pp. 1802–1813.

[156] Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa, and
Kyoung-Sook Kim. “GeoFlink: A Distributed and Scalable Frame-
work for the Real-time Processing of Spatial Streams”. In: CIKM
’20: The 29th ACM International Conference on Information and Knowl-
edge Management, Virtual Event, Ireland, October 19-23, 2020. ACM,
pp. 3149–3156.

[157] Shipments of Wearable Devices Leap to 125 Million Units, Up 35.1% in the
Third Quarter, According to IDC. https://www.idc.com/getdoc.jsp?
containerId=prUS47067820. 2020.

[158] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. “The Hadoop Distributed File System”. In: IEEE 26th Sym-
posium on Mass Storage Systems and Technologies, MSST 2012, Lake Tahoe,
Nevada, USA, May 3-7, 2010. IEEE Computer Society, pp. 1–10.

[159] Darius Sidlauskas, Sean Chester, Eleni Tzirita Zacharatou, and Anas-
tasia Ailamaki. “Improving Spatial Data Processing by Clipping Min-
imum Bounding Boxes”. In: 34th IEEE International Conference on Data
Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE Com-
puter Society, pp. 425–436.

[160] Antoine Sinton. Geospatial indexing on Hilbert curves. https://blog.
zen.ly/geospatial-indexing-on-hilbert-curves-2379b929addc/.
2018.

[161] Uthayasankar Sivarajah, Zahir Irani, and Vishanth Weerakkody. “Eval-
uating the use and impact of Web 2.0 technologies in local govern-
ment”. In: Gov. Inf. Q. 32.4 (2015), pp. 473–487.

[162] Uthayasankar Sivarajah, Muhammad Mustafa Kamal, Zahir Irani,
and Vishanth Weerakkody. “Critical analysis of Big Data challenges
and analytical methods”. In: Journal of Business Research 70 (2017),
pp. 263–286.

[163] Swaminathan Sivasubramanian. “Amazon dynamoDB: a seamlessly
scalable non-relational database service”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012. ACM, pp. 729–730.

[164] Spatial Reference. https://spatialreference.org/.

[165] SR-ORG:6864 | EPSG:3857. https://spatialreference.org/ref/
sr-org/6864/.

[166] Ram Sriharsha. Magellan: Spark as a Geospatial Analytics Engine. https:
//databricks.com/session/magellan-spark-as-a-geospatial-
analytics-engine/. 2019.

https://www.idc.com/getdoc.jsp?containerId=prUS47067820
https://www.idc.com/getdoc.jsp?containerId=prUS47067820
https://blog.zen.ly/geospatial-indexing-on-hilbert-curves-2379b929addc/
https://blog.zen.ly/geospatial-indexing-on-hilbert-curves-2379b929addc/
https://spatialreference.org/
https://spatialreference.org/ref/sr-org/6864/
https://spatialreference.org/ref/sr-org/6864/
https://databricks.com/session/magellan-spark-as-a-geospatial-analytics-engine/
https://databricks.com/session/magellan-spark-as-a-geospatial-analytics-engine/
https://databricks.com/session/magellan-spark-as-a-geospatial-analytics-engine/

Bibliography 129

[167] Emmanuel Stefanakis, Yannis Theodoridis, Timos K. Sellis, and Yuk-
Cheung Lee. “Point Representation of Spatial Objects and Query Win-
dow Extension: A New Technique for Spatial Access Methods”. In:
Int. J. Geogr. Inf. Sci. 11.6 (1997), pp. 529–554.

[168] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. “How to Ar-
chitect a Query Compiler, Revisited”. In: Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018. ACM, pp. 307–322.

[169] Ruby Y. Tahboub and Tiark Rompf. “Architecting a Query Compiler
for Spatial Workloads”. In: Proceedings of the 2020 International Confer-
ence on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020. ACM, pp. 2103–2118.

[170] Ruby Y. Tahboub and Tiark Rompf. “On supporting compilation in
spatial query engines: (vision paper)”. In: Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, GIS 2016, Burlingame, California, USA, October 31 - Novem-
ber 3, 2016. ACM, 9:1–9:4.

[171] Javid Taheri, Albert Y. Zomaya, Howard Jay Siegel, and Zahir Tari.
“Pareto frontier for job execution and data transfer time in hybrid
clouds”. In: Future Gener. Comput. Syst. 37 (2014), pp. 321–334.

[172] MingJie Tang, Ruby Y. Tahboub, Walid G. Aref, Mikhail J. Atallah,
Qutaibah M. Malluhi, Mourad Ouzzani, and Yasin N. Silva. “Similar-
ity Group-by Operators for Multi-Dimensional Relational Data”. In:
IEEE Trans. Knowl. Data Eng. (2016).

[173] MingJie Tang, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani,
and Walid G. Aref. “LocationSpark: A Distributed In-Memory Data
Management System for Big Spatial Data”. In: PVLDB 9.13 (2016),
pp. 1565–1568.

[174] The size of the World Wide Web (The Internet). www.worldwidewebsize.
com/.

[175] Konstantinos Theocharidis, John Liagouris, Nikos Mamoulis, Pana-
giotis Bouros, and Manolis Terrovitis. “SRX: efficient management of
spatial RDF data”. In: VLDB J. 28.5 (2019), pp. 703–733.

[176] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham
Murthy. “Hive - a petabyte scale data warehouse using Hadoop”.
In: Proceedings of the 26th International Conference on Data Engineering,
ICDE 2010, March 1-6, 2010, Long Beach, California, USA. IEEE Com-
puter Society, pp. 996–1005.

[177] John Paul Titlow. How Foursquare Is Building A Humane Map Frame-
work To Rival Google. https://www.fastcompany.com/3007394/how-
foursquare- building- humane- map- framework- rival- googles/.
2013.

www.worldwidewebsize.com/
www.worldwidewebsize.com/
https://www.fastcompany.com/3007394/how-foursquare-building-humane-map-framework-rival-googles/
https://www.fastcompany.com/3007394/how-foursquare-building-humane-map-framework-rival-googles/

130 Bibliography

[178] Theodoros Toliopoulos, Nikodimos Nikolaidis, Anna-Valentini Micha-
ilidou, Andreas Seitaridis, Anastasios Gounaris, Nick Bassiliades,
Apostolos Georgiadis, and Fotis Liotopoulos. “Developing a Real-
Time Traffic Reporting and Forecasting Back-End System”. In: Re-
search Challenges in Information Science - 14th International Confer-
ence, RCIS 2020, Limassol, Cyprus, September 23-25, 2020, Proceedings.
Vol. 385. Lecture Notes in Business Information Processing. Springer,
pp. 58–75.

[179] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Mano-
lis Terrovitis. “Parallel In-Memory Evaluation of Spatial Joins”. In:
Proceedings of the 27th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, SIGSPATIAL 2019, Chicago,
IL, USA, November 5-8, 2019. ACM, pp. 516–519.

[180] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Mano-
lis Terrovitis. “Parallel In-Memory Evaluation of Spatial Joins”. In:
CoRR abs/1908.11740 (2019).

[181] Dimitrios Tsitsigkos, Konstantinos Lampropoulos, Panagiotis Bouros,
Nikos Mamoulis, and Manolis Terrovitis. “A Two-level Spatial In-
Memory Index”. In: CoRR abs/2005.08600 (2020). https://arxiv.
org/abs/2005.08600.

[182] Tutorials: Filtering Tweets by location. https://developer.twitter.
com/en/docs/tutorials/filtering-tweets-by-location. 2020.

[183] Uber. Uber Newsroom: 10 Billion. https://www.uber.com/newsroom/
10-billion/. 2018.

[184] Understanding Memory Management | Oracle. https://docs.oracle.
com / cd / E13150 _ 01 / jrockit _ jvm / jrockit / geninfo / diagnos /
garbage_collect.html/.

[185] Jeffrey S Vitter. “Random sampling with a reservoir”. In: ACM Trans-
actions on Mathematical Software (TOMS) 11.1 (1985), pp. 37–57.

[186] Hoang Vo, Ablimit Aji, and Fusheng Wang. “Sato: A spatial data par-
titioning framework for scalable query processing”. In: Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems. ACM, pp. 545–548.

[187] Mehul Nalin Vora. “Hadoop-HBase for large-scale data”. In: Proceed-
ings of 2011 International Conference on Computer Science and Network
Technology. Vol. 1. IEEE, pp. 601–605.

[188] H. Wang, X. Fu, J. Xu, and H. Lu. “Learned Index for Spatial Queries”.
In: 2019 20th IEEE International Conference on Mobile Data Management
(MDM), pp. 569–574.

[189] Eric W Weisstein. “Great circle”. In: (2002).

[190] Wing: Air delivery when you need it. https://wing.com/.

[191] Chris Wong. FOILing NYC’s Taxi Trip Data. http://chriswhong.com/
open-data/foil_nyc_taxi/.

https://arxiv.org/abs/2005.08600
https://arxiv.org/abs/2005.08600
https://developer.twitter.com/en/docs/tutorials/filtering-tweets-by-location
https://developer.twitter.com/en/docs/tutorials/filtering-tweets-by-location
https://www.uber.com/newsroom/10-billion/
https://www.uber.com/newsroom/10-billion/
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html/
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html/
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html/
https://wing.com/
http://chriswhong.com/open-data/foil_nyc_taxi/
http://chriswhong.com/open-data/foil_nyc_taxi/

Bibliography 131

[192] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo.
“Simba: Efficient In-Memory Spatial Analytics”. In: Proceedings of the
2016 International Conference on Management of Data, SIGMOD Confer-
ence 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 1071–
1085.

[193] Qihe Yang, John Snyder, and Waldo Tobler. Map projection transforma-
tion: principles and applications. CRC Press, 1999.

[194] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke,
Yinan Li, Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann,
and Rajeev Acharya. “Qd-tree: Learning Data Layouts for Big Data
Analytics”. In: Proceedings of the 2020 International Conference on Man-
agement of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020. ACM, pp. 193–208.

[195] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan
Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan,
and Ion Stoica. “Selectivity Estimation with Deep Likelihood Mod-
els”. In: CoRR abs/1905.04278 (2019).

[196] Peter N. Yianilos. “Data Structures and Algorithms for Nearest Neigh-
bor Search in General Metric Spaces”. In: Proceedings of the Fourth An-
nual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 Jan-
uary 1993, Austin, Texas, USA. Pp. 311–321.

[197] Simin You, Jianting Zhang, and Le Gruenwald. “Large-scale spatial
join query processing in Cloud”. In: 31st IEEE International Conference
on Data Engineering Workshops, ICDE Workshops 2015, Seoul, South Ko-
rea, April 13-17, 2015, pp. 34–41.

[198] Simin You, Jianting Zhang, and Le Gruenwald. “Spatial join query
processing in cloud: Analyzing design choices and performance com-
parisons”. In: Parallel Processing Workshops (ICPPW), 2015 44th Interna-
tional Conference on. IEEE, pp. 90–97.

[199] YouTube for Press. https://blog.youtube/press/.

[200] Jia Yu, Raha Moraffah, and Mohamed Sarwat. “Hippo in Action: Scal-
able Indexing of a Billion New York City Taxi Trips and Beyond”. In:
33rd IEEE International Conference on Data Engineering, ICDE 2017, San
Diego, CA, USA, April 19-22, 2017. IEEE Computer Society, pp. 1413–
1414.

[201] Jia Yu and Mohamed Sarwat. “Two Birds, One Stone: A Fast, yet
Lightweight, Indexing Scheme for Modern Database Systems”. In:
Proc. VLDB Endow. 10.4 (2016), pp. 385–396.

[202] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. “A demonstration of
GeoSpark: A cluster computing framework for processing big spa-
tial data”. In: 32nd IEEE International Conference on Data Engineering,
ICDE 2016, Helsinki, Finland, May 16-20, 2016. IEEE Computer Society,
pp. 1410–1413.

https://blog.youtube/press/

132 Bibliography

[203] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. “GeoSpark: a cluster com-
puting framework for processing large-scale spatial data”. In: Proceed-
ings of the 23rd SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems, Bellevue, WA, USA, November 3-6, 2015,
70:1–70:4.

[204] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. “Spatial data manage-
ment in apache spark: the GeoSpark perspective and beyond”. In:
GeoInformatica 23.1 (2019), pp. 37–78.

[205] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. “Reinforce-
ment Learning with Tree-LSTM for Join Order Selection”. In: 36th
IEEE International Conference on Data Engineering, ICDE 2020, Dallas,
TX, USA, April 20-24, 2020. IEEE, pp. 1297–1308.

[206] Eleni Tzirita Zacharatou, Harish Doraiswamy, Anastasia Ailamaki,
Cláudio T. Silva, and Juliana Freire. “GPU Rasterization for Real-Time
Spatial Aggregation over Arbitrary Polygons”. In: Proc. VLDB Endow.
11.3 (2017), pp. 352–365.

[207] Eleni Tzirita Zacharatou, Andreas Kipf, Ibrahim Sabek, Varun Pandey,
Harish Doraiswamy, and Volker Markl. “The Case for Distance-
Bounded Spatial Approximations”. In: 11th Conference on Innovative
Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021,
Online Proceedings. www.cidrdb.org.

[208] Eleni Tzirita Zacharatou, Darius Sidlauskas, Farhan Tauheed, Thomas
Heinis, and Anastasia Ailamaki. “Efficient Bundled Spatial Range
Queries”. In: Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL
2019, Chicago, IL, USA, November 5-8, 2019. ACM, pp. 139–148.

[209] Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker,
and Ion Stoica. “Spark: Cluster computing with working sets.” In:
HotCloud 10.10-10 (2010), p. 95.

[210] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. “Discretized streams: fault-tolerant stream-
ing computation at scale”. In: ACM SIGOPS 24th Symposium on Oper-
ating Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6,
2013. ACM, pp. 423–438.

[211] Zeroghan. A Comprehensive Guide to S2 Cells and Pokémon GO. https:
//pokemongohub.net/post/article/comprehensive- guide- s2-
cells-pokemon-go/. 2019.

[212] Feng Zhang, Ye Zheng, Dengping Xu, Zhenhong Du, Yingzhi Wang,
Renyi Liu, and Xinyue Ye. “Real-Time Spatial Queries for Moving
Objects Using Storm Topology”. In: ISPRS Int. J. Geo Inf. 5.10 (2016),
p. 178.

https://pokemongohub.net/post/article/comprehensive-guide-s2-cells-pokemon-go/
https://pokemongohub.net/post/article/comprehensive-guide-s2-cells-pokemon-go/
https://pokemongohub.net/post/article/comprehensive-guide-s2-cells-pokemon-go/

Bibliography 133

[213] Ji Zhang et al. “An End-to-End Automatic Cloud Database Tuning
System Using Deep Reinforcement Learning”. In: Proceedings of the
2019 International Conference on Management of Data, SIGMOD Confer-
ence 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM,
pp. 415–432.

[214] Rui Zhang, Jianzhong Qi, Martin Stradling, and Jin Huang. “Towards
a Painless Index for Spatial Objects”. In: ACM Trans. Database Syst.
39.3 (2014), 19:1–19:42.

[215] Zheng Zhao, Ruiwen Zhang, James Cox, David Duling, and Warren
Sarle. “Massively parallel feature selection: an approach based on
variance preservation”. In: Mach. Learn. 92.1 (2013), pp. 195–220.

[216] Tianyu Zhou, Hong Wei, Heng Zhang, Yin Wang, Yanmin Zhu, Haib-
ing Guan, and Haibo Chen. “Point-polygon topological relationship
query using hierarchical indices”. In: 21st SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL
2013, Orlando, FL, USA, November 5-8, 2013, pp. 562–565.

[217] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. “Database
Meets Artificial Intelligence: A Survey”. In: IEEE Transactions on
Knowledge and Data Engineering (2020).

[218] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma,
Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. “BestConfig: tap-
ping the performance potential of systems via automatic configura-
tion tuning”. In: Proceedings of the 2017 Symposium on Cloud Comput-
ing, SoCC 2017, Santa Clara, CA, USA, September 24-27, 2017. ACM,
pp. 338–350.

	Preface
	Introduction
	Big Data And Challenges
	Big Data Ecosystem
	Workloads
	Data Source
	Data Storage
	Distributed SQL Query Engines
	Big Data Computing Frameworks

	Spatial Data
	The Learned Era
	Contributions

	HyPerSpace
	Introduction
	HyPerSpace
	Evaluation
	Visualization using HyPerSpace
	Take-away message

	Modern Spatial Systems
	Introduction
	Motivation
	Queries
	Range Query
	k Nearest Neighbors Query
	Spatial Join
	k Nearest Neighbors Join

	Spatial Analytics Systems
	Hadoop-GIS
	SpatialHadoop
	SpatialSpark
	GeoSpark
	Magellan
	SIMBA
	LocationSpark

	Experimental Setup
	Cluster Setup And Tuning Spark

	Tuning Amazon EMR and Apache Spark
	Datasets
	Spark Memory Management Model and Caching RDDs
	Performance Metrics

	Evaluation
	Memory Costs
	Range Query Performance
	kNN Query Performance
	Distance Join Performance
	Spatial Joins Performance
	kNN Join Performance
	US Census TIGER Dataset
	Distance Join Performance
	kNN Join Performance
	Spatial Joins Performance

	Conclusions And Future Work

	Modern Spatial Libraries
	Introduction
	Background
	Geometry Models
	When Can Things Go Wrong In Planar Geometries?

	Queries
	Range Query
	Distance Query
	k-nearest neighbors Query
	Spatial Join

	Libraries
	ESRI Geometry API
	Java Spatial Index
	JTS Topology Suite and Geometry Engine Open Source
	Google S2 Geometry
	Vantage Point Tree

	Methodology
	Evaluation
	Indexing Costs
	Range Query
	Distance Query
	k-NN Query
	Point-In-Polygon Join Query

	Discussion
	Why Refinement Should Be Looked At?
	Distributed Spatial Analytics Systems
	Spatial Partitioning

	Related Work
	Conclusions

	The Case For Learned Spatial Indexes
	Introduction
	Approach
	Partitioning Techniques
	Fixed and Adaptive Grid
	Quadtree
	K-d tree
	Sort-Tile-Recursive (STR) packed R-tree

	Building Index
	Range Query Processing
	Search Within Partition

	Distance Query Processing
	Join Query Processing

	Evaluation
	Datasets
	Range Query Performance
	Tuning Partitioning Techniques
	Query Performance

	Distance Query Performance
	Tuning Partitioning Techniques
	Query Performance

	Join Query Performance
	Indexing Costs

	Related Work
	Conclusions and Future Work

	Future Work
	Acknowledgements

