
TUM Department of Civil, Geo and Environmental Engineering

Chair of Computational Modeling and Simulation

Prof. Dr.-Ing. André Borrmann

Automated retrieval of shared IFC model

data based on user-specific requirements

Deian Stoitchkov

Master’s thesis

of the Master of Science program Civil Engineering

Author: Deian Stoitchkov

Student ID:

Supervision: Prof. Dr.-Ing. André Borrmann

Sebastian Esser, M.Sc.

Date of Issue: 15. May 2020

Date of Submission: 15. December 2020

Abstract

At the core of Building Information Modeling (BIM) lie models that are designed to contain

large amounts of both semantic and geometric information for a given construction project

that can be used throughout the entire life cycle of a built facility. This inevitably requires

the use of multiple software applications from different vendors. Therefore, buildingSMART

International (bSI) has developed the Industry Foundation Classes (IFC) standard for an

open, vendor-neutral exchange of data models. Since the full IFC schema targets a wide

range of different use cases and requirements, Model View Definitions (MVD) specify a subset

of the IFC schema and are used to certify software applications for the import and export

of IFC models. However, the official MVDs provided by bSI are still considered too general

for many tasks and must be extended for more specific exchange scenarios. BIM models

usually become very large and contain huge amounts of information, of which in many cases

only a part is needed. Therefore, this thesis proposes a method for retrieving IFC model

data based on user-defined requirements. The user criteria are validated against the official

concept templates defined in the mvdXML format by bSI and simplified by using the RuleIDs

of certain attributes. The result is a new valid IFC model that contains only the information

requested by the user. Furthermore, as multiple IFC models are often created for a single

project, it is also advantageous to be able to merge multiple IFC files into a single final

model that contains only a part of the information from the original models. A Common

Data Environment (CDE) provides an environment to store and manage BIM models for

improved collaboration among project participants. Thus, a tool is developed for this work

that allows the user to select models directly from a CDE to retrieve specific data. The

Python library IfcOpenShell is used to interact with IFC data stored in a STEP Physical

File. It is a powerful library providing the necessary tools for reading and modifying existing

IFC models as well as creating new models. Autodesk BIM 360 Docs is used in this thesis as

a representative of the many CDE platforms currently available. In addition, the Autodesk

Forge APIs and services are used to automatically access and retrieve data from BIM 360.

Finally, a Graphical User Interface (GUI) is created specifically for this purpose, allowing the

user to easily interact with the tool.

Zusammenfassung

Den Kern von Building Information Modeling (BIM) bilden Modelle, die so konzipiert sind,

dass sie große Mengen sowohl semantischer als auch geometrischer Informationen für ein

bestimmtes Bauprojekt enthalten, die während des gesamten Lebenszyklus der gebauten

Anlage genutzt werden können. Dies erfordert zwangsläufig den Einsatz mehrerer Software-

anwendungen von verschiedenen Anbietern. Daher hat buildingSMART International (bSI)

den Industry Foundation Classes (IFC)-Standard für einen offenen, herstellerneutralen Aus-

tausch von Datenmodellen entwickelt. Da das vollständige IFC-Schema auf eine Vielzahl

unterschiedlicher Anwendungsfälle und Anforderungen abzielt, spezifizieren die Modellan-

sichtsdefinitionen (MVD) eine Teilmenge des IFC-Schemas und werden zur Zertifizierung

von Softwareanwendungen für den Import und Export von IFC-Modellen verwendet. Die

von bSI bereitgestellten offiziellen MVDs werden jedoch für viele Aufgaben immer noch als

zu allgemein angesehen und müssen für spezifischere Austauschszenarien erweitert werden.

BIM-Modelle werden in der Regel sehr groß und enthalten riesige Mengen an Informatio-

nen, von denen in vielen Fällen nur ein Teil benötigt wird. Daher wird in dieser Arbeit

eine Methode zum Abrufen von IFC-Modelldaten vorgeschlagen, die auf benutzerdefinierten

Anforderungen basiert. Die Benutzerkriterien werden gegen die offiziellen ConceptTemplates

validiert, die vom bSI im mvdXML-Format definiert wurden, und durch die Verwendung der

RuleIDs bestimmter Attribute vereinfacht. Das Ergebnis ist ein neues gültiges IFC-Modell,

das nur die vom Benutzer angeforderten Informationen enthält. Da für ein einzelnes Projekt

oft mehrere IFC-Modelle erstellt werden, ist es außerdem von Vorteil, mehrere IFC-Dateien

zu einem einzigen endgültigen Modell zusammenführen zu können, das nur einen Teil der

Informationen aus den Originalmodellen enthält. Common Data Environments (CDE) bi-

eten eine Umgebung zum Speichern und Verwalten von BIM-Modellen für eine verbesserte

Zusammenarbeit zwischen den Projektteilnehmern. Daher wird für diese Arbeit ein Werkzeug

entwickelt, das es dem Benutzer ermöglicht, Modelle direkt aus einem CDE auszuwählen, um

bestimmte Daten abzurufen. Die Pythonbibliothek IfcOpenShell wird zur Interaktion mit

IFC-Daten verwendet, die in einer STEP Physical Datei gespeichert sind. Es handelt sich

dabei um eine leistungsfähige Bibliothek, die die notwendigen Werkzeuge zum Lesen und

Modifizieren bestehender IFC-Modelle sowie zum Erstellen neuer Modelle bereitstellt. Au-

todesk BIM 360 Docs wird in dieser Arbeit als Beispiel für die vielen derzeit verfügbaren

CDE-Plattformen verwendet. Darüber hinaus werden die APIs von Autodesk Forge verwen-

det, um automatisch auf die Daten von BIM 360 zuzugreifen und diese abzurufen. Dies wird

über eine speziell für diesen Zweck entwickelte grafische Benutzeroberfläche durchgeführt.

IV

Contents

Acronyms 2

List of Figures 3

List of Listings 5

1 Introduction 7

1.1 Motivation . 7

1.2 Structure of work . 8

2 Background information 10

2.1 Industry Foundation Classes . 10

2.1.1 General . 10

2.1.2 Schema . 11

2.1.3 Inheritance . 13

2.1.4 Object relationships . 15

2.1.5 Geometric representations . 16

2.1.6 Object placement . 17

2.1.7 File types . 17

2.2 Example of a STEP physical file . 18

2.3 Model View Definitions . 20

2.3.1 General . 20

2.3.2 MvdXML . 23

2.3.3 Official buildingSMART information 27

3 Current situation and related work 30

3.1 Generation and export of BIM models . 30

3.2 Validate and filter IFC models . 32

1

4 Solution and implementation 35

4.1 IFC libraries: early binding vs. late binding 35

4.2 Software applications and programming languages 37

4.3 Retrieving the official buildingSMART information 40

4.3.1 General . 40

4.3.2 HTML structure . 41

4.3.3 Getting and storing the information 42

4.4 User-defined requirements . 45

4.4.1 General . 45

4.4.2 Search by Attributes . 46

4.4.3 Search by RuleID . 48

4.4.4 Predefined tags and additional functionalities 50

4.5 General workflow of the program . 53

4.6 Retrieving the IFC models from a CDE with a GUI 62

4.6.1 Overview . 62

4.6.2 Implementation with a GUI . 63

5 Case study 66

5.1 Overview . 66

5.2 Filtering and merging using user-defined requirements 68

6 Discussion 72

6.1 Summary . 72

6.2 Limitations . 73

6.3 Conclusion and future outlook . 74

Bibliography 80

2

Acronyms

3D Three Dimensional

AEC Architecture, Engineering, and Construction

API Application Programming Interface

BIM Building Information Modeling

BREP Boundary Representation

bSI buildingSMART International

CAD Computer-Aided Design

CDE Common Data Environment

CPU Central Processing Unit

CSG Constructive Solid Geometry

GUID Globally Unique Identifier

GUI Graphical User Interface

HTML Hypertext Markup Language

IAI International Alliance for Interoperability

IDE Integrated Development Environment

IDM Information Delivery Manual

IFC Industry Foundation Classes

IOS IfcOpenShell

KIT Karlsruhe Institute of Technology

MVD Model View Definition

SPF STEP Physical File

URL Uniform Resource Locator

XML Extensible Markup Language

LIST OF FIGURES 3

List of Figures

1.1 The BIM Maturity Ramp of the UK BIM Task Group defines four discrete

levels of BIM maturity (Bew & Richards, 2011, Borrmann et al., 2018) 7

2.1 IFC as a single exchange format for multiple disciplines and participants . . . 11

2.2 Layers of the IFC data schema (buildingSMART International, 2020a) 12

2.3 Part of the inheritance hierarchy of the IFC data model (Borrmann et al., 2018) 13

2.4 Relationship between entities . 15

2.5 MVD for generation and validation of IFC files (Baldwin, M., 2019) 21

2.6 XML tree structure of the data in Listing 2.3 24

2.7 mvdXML tree structure . 25

2.8 ConceptRoot tree structure . 26

2.9 ConceptTemplate tree structure . 27

2.10 Part of an instance diagram for Quantity Sets representing the mvdXML in

Listing 2.5 . 29

3.1 Most used BIM software vendors for producing drawings and models (NBS

National BIM Report, 2019) . 30

3.2 Section of Revit mapping table for IFC imports 31

3.3 IFC export options in Revit 2021 . 32

4.1 Methodology of using IFC libraries . 35

4.2 Ifc properties for an IfcWall displayed in Autodesk Revit 39

LIST OF FIGURES 4

4.3 Ifc properties for an IfcWall displayed in FZK Viewer 39

4.4 Web scraping methodology . 40

4.5 Part of an instance diagram for the Material Layer Set ConceptTemplate

(buildingSMART International, 2020l) . 47

4.6 Instance diagram for the Material ConceptTemplate (buildingSMART Inter-

national, 2020m) . 48

4.7 Curved wall with a triangulated surface geometry displayed in FZK Viewer . 52

4.8 Definition of the true north direction (buildingSMART International, 2020c) . 53

4.9 General workflow of the developed tool . 54

4.10 Multiple IfcAlignment instances displayed with the FZK Viewer 56

4.11 Authentication process for retrieving a 3-Legged Token (Autodesk Forge, 2020b) 62

4.12 Authorization flow in the web browser . 63

4.13 GUI for accessing files from BIM360 . 64

5.1 Used example IFC model of a 3 storey building 66

5.2 Used example IFC model of a railway line . 67

5.3 The resulting models after using the tool with the requirements in Listing 5.1 69

5.4 Resulting model after filtering and merging the models depicted in Figure in

5.3 with the requirements in Listing 5.2 . 70

5.5 Resulting filtered model of the railway line . 71

6.1 Wall-Opening-Window relationship . 73

LIST OF LISTINGS 5

List of Listings

2.1 HEADER section of a STEP physical file . 18

2.2 Part of the DATA section of an IFC file . 19

2.3 Simple XML example . 23

2.4 Simplified part of the mvdXML specification of an IfcWall 28

2.5 Simplified part of the mvdXML specification of Quantity Sets 29

4.1 An example for an early binding approach for querying IfcDoor entities using

Xbim with C# (Xbim Toolkit, 2020b) . 36

4.2 An example for a late binding approach for querying IfcDoor entities using

IfcOpenShell (IOS) with Python . 36

4.3 Simple HTML example . 42

4.4 Getting the data for IfcWall from the official web page 43

4.5 Parsing a page with BeautifulSoup . 44

4.6 User-defined requirements for filtering IfcWall entities 46

4.7 User-defined requirements for filtering IfcWall entities with specific criteria for

the material . 48

4.8 User-defined requirements for filtering IfcWall entities with specific criteria for

the material using RuleID . 49

4.9 General user-defined requirements for filtering IfcWall entities 50

4.10 User-defined requirements for all IfcBuildingElement entities that are at Level 1 50

4.11 Empty STEP Physical File created with IfcOpenShell 55

LIST OF LISTINGS 6

4.12 Creating an empty IFC and adding an IfcProject with defined GlobalId using

IfcOpenShell in Python . 56

4.13 The DATA section of the resulting STEP Physical File from the code in Listing

4.12 . 57

4.14 Retrieving an IfcProject from one IFC and adding it to another using IfcOpen-

Shell in Python . 57

4.15 Simplified part of the resulting STEP Physical File after adding IfcProject

from an already existing IFC . 58

4.16 Simplified part of STEP Physical File showing an objectified relationship and

local placement . 60

5.1 User-defined requirements for filtering IfcBuildingElement entity instances . . 68

5.2 User-defined requirements for retrieving the load-bearing walls and the slabs . 69

5.3 User-defined requirements for retrieving elements in a specific distance range

along a curve . 71

7

Chapter 1

Introduction

1.1 Motivation

In the Architecture, Engineering, and Construction (AEC) sector, Building Information Mod-

eling (BIM) is one of the most promising developments. An accurate virtual model of a

building is digitally created with BIM technology. This model can be used for the planning,

design, construction and operation of the facility. It helps architects, engineers and designers

to visualize what needs to be built in a simulated environment in order to identify potential

design , construction or operational problems (Azhar, Salman, 2011). This leads to a more

effective and cost-efficient workflow. Therefore, the BIM methodology is currently being

adopted by many companies around the world. The maturity of BIM can be divided into

different levels, each of which uses specific exchange data and information depth (Figure 1.1).

Drawings

Level 1 Level 2

CAD

Federated

BIMs

Geometric
models

Integrated, interoperable
Building Information Models
for the entire life-cycle

2D 3D

Coordinated
Discipline
specific

BIM models

ISO standards

Cloud-based
model management
(BIM Hub)

Paper

IDM, IFC, IFD

Central manage-
mentof files

(Common Data
Environment),

Shared libraries

Depth of information

Coordination and
Collaboration

Proprietary
formats + COBie

File-based
collaboration

Exchange FormatsProprietary
Formats

3leveL0leveL

Integrated

BIM

Figure 1.1: The BIM Maturity Ramp of the UK BIM Task Group defines four discrete levels of BIM
maturity (Bew & Richards, 2011, Borrmann et al., 2018)

1.2. Structure of work 8

BIM’s objective is to implement BIG Open BIM, which includes software products from

various providers using open data exchange formats, and the continuous utilization of digital

building models across multiple disciplines and life cycle phases (Borrmann et al., 2018). For

this purpose the use of ISO standards such as the open file format Industry Foundation Classes

(IFC) is necessary. BIM models can get very complex and contain information that is not

needed for a specific use or workflow. Therefore, the concept of Model View Definition (MVD)

was developed, which represents a subset of the entire IFC data model and does not contain

all the information that can be represented in a BIM model. An MVD specifies the end user

requirements of needed information. There are official MVDs developed by buildingSMART

International (bSI) that are used by software applications to become certified to support the

import or export of IFC data models. However, these MVDs are usually too generic for

specific needs and contain unnecessary information. Therefore, the ability to further filter

IFC models with user-defined criteria is required. There are currently several solutions for

this purpose, but they are generally overly complicated and require a deep understanding of

the IFC schema and often involve the use of multiple software programs.

The ultimate goal is to use cloud services to handle project data so that it is continuously

and consistently maintained throughout the life cycle of a building. Currently, however, BIM

models are often stored in Common Data Environment (CDE) platforms that contain multiple

files for a single project, often filled with information that is too extensive and complex for

specific use cases. As a result, there is a need for a user to be able to filter the required

data and obtain this data from multiple files simultaneously. This work aims at doing so by

allowing a user to filter multiple files stored in a CDE and as a result obtain a single file

containing only the requested information from all files. For this purpose, the IFC models

are also checked for the presence of the required data, so it is also useful to validate models

for the existence of specific information that may be required for further data exchange.

1.2 Structure of work

Chapter 2 contains background information on the open exchange format Industry Founda-

tion Classes (IFC). The basic concepts for understanding the structure of an IFC file are

explained, such as the IFC schema, the inheritance hierarchy of the object-oriented data

model, the relationship between entities as well as the geometric representations and place-

ment of objects. The file types for storing the information are described together with an

example of the most commonly used STEP Physical File (SPF). Furthermore, the necessity

and purpose of the Model View Definition (MVD) and the use of mvdXML to define allowable

values in the IFC file are discussed. The official information provided by buildingSMART

International (bSI) for IFC version 4 and later is also described in Chapter 2.

1.2. Structure of work 9

The current situation and similar work is discussed in Chapter 3. The functionalities and

limitations of the Autodesk Revit IFC Exporter are described. Furthermore, the current

workflow of model validation against an mvdXML is explained and the existing possibilities

for filtering IFC models are discussed.

In chapter 4 an approach is proposed for the filtering and merging of multiple IFC files and

the way of its implementation. First the choice of programming language and libraries is

explained, as well as the software used for this work. For a better understanding of the

working process, key terms, such as early and late binding are clarified. Next the procedure

for automatically extracting the information from the official bSI website with Python is

explained in detail. The structure of the user-defined XML file is described in this chapter,

together with its requirements and limitations. The criteria in the XML file can be defined

in two different ways: direct access to the attributes of an entity in a hierarchical structure

or automatic retrieval of the attributes from an mvdXML concept template using the RuleID

of an attribute. The process of checking an IFC file against the custom XML file is described

next, along with how the corresponding elements are being filtered and, if available, merge

multiple IFC files into a single final result. IFC files can be retrieved automatically from a

CDE, the workflow of which is also explained in chapter 4.

The functionality of the tool created for this work is demonstrated in Chapter 5. Exam-

ple models with the most important entities and properties is presented. The user-defined

requirements written in an XML file are discussed, and finally the resulting models are shown.

In the last chapter 6 the limits of this work are discussed. In this chapter a summary of

the proposed solution is presented together with an overall conclusion and outlook into the

future.

10

Chapter 2

Background information

2.1 Industry Foundation Classes

2.1.1 General

The processes in the Architecture, Engineering, and Construction (AEC) sector are very

complex and take many years involving sometimes even thousands of participants. The life

cycle of a building comprises multiple phases such as design, construction and maintaining.

This requires the coordination of many different disciplines that often work together and

interfere with each other, for which in itself great amount of information flow is needed.

In today’s modern world, digital tools are increasingly being used for the design, construction

and operation of buildings and infrastructure facilities, as this often proves to be more pro-

ductive. This is where Building Information Modeling (BIM) comes into play. With BIM it

is possible to translate the plan, design, construct and manage of buildings and infrastructure

in a intelligent 3D model-based process. What makes such a model very powerful is that it

contains not only the geometric data of building elements, but also describes the relationships

between them and the definition of their relevant properties such as the materials, fire rating

etc. This greatly increases the transfer of information between multiple stakeholders, leading

to an improvement in productivity by reducing the laborious and error-prone manual re-entry

of information that dominates traditional paper workflows as noted in Borrmann et al., 2018.

In such a complex process, the use of several software programs, often from different providers,

is unavoidable. However, the issue is that many of these tools have no or only insufficient

support for the sharing of data between different applications. This results in the need for

an open, vendor-neutral file format, such as the Industry Foundation Classes (IFC). The

purpose of IFC is to allow a standardised exchange of models between different stakeholders

2.1. Industry Foundation Classes 11

performing various calculations and simulations across the entire life cycle of a built facility

(see Figure 2.1).

Designer Architect

Engineer

Constructor

Owner

Facility
Manager

Quantity
take-off

Structural
analysis

Solar
analysis

Drawings
derivation

Clash
detection IFC

Cost
estimation

Figure 2.1: IFC as a single exchange format for multiple disciplines and participants

The first tools for transferring data between different CAD systems were developed in the

1970s. However these formats were meant solely for the exchange of geometric data, but it was

soon realized that a more complex exchange format is required. As a result, the International

Alliance for Interoperability (IAI), currently known as buildingSMART International (bSI),

was formed to develop and support standards for the entire industry. As a result the first

version of Industry Foundation Classes (IFC) was issued in 1997 (Borrmann et al., 2018).

Since then, there have been 6 major versions of the IFC, with IFC2x3 and IFC4 currently

being used most frequently. IFC5 is currently in the early planning phase, with full support

for different infrastructure areas and more parametric functionality planned.

2.1.2 Schema

The complex IFC model is divided into four layers for an easier maintenance and future

extension. The layers from bottom to top are: resource, core, interoperability and domain

layer (see Figure 2.2). The main idea is that elements in a specific layer can only refer to an

elements on the same or lower layer, but not the ones on the higher layers.

2.1. Industry Foundation Classes 12

Building
Controls
Domain

Plumbing
FireProtection

Domain

Structural
Elements
Domain

Structural
Analysis
Domain

HVAC
Domain

Electrical
Domain

Architecture
Domain

Construction
Management

Domain

D
o

m
a

in
 l

ay
er

In
te

ro
p

la
ye

rShared Bldg
Services
Elements

Shared
Component
Elements

Shared Building
Elements

Shared
Management

Elements

Shared
Facilities
Elements

C
o

re
 la

y
er

Control
Extension

Product
Extension

Process
Extension

Kernel

DateTime
Resource

Actor
Resource

Repres-
entation

Resource

Constraint
Resource

Approval
Resource

Structural
Load

Resource

Cost
Resource

Material
Resource

Profile
Resource

External
Reference
Resource

Property
Resource

Geometric
Constraint
Resource

Topology
Resource

Geometric
Model

Resource

Utility
Resource

Geometry
Resource

Measure
Resource

Quantity
Resource

R
e

so
u

rc
e

la
ye

r

Presentation
Appearance

Resource

Presentation
Definition
Resource

Presentation
Organisation

Resource

Figure 2.2: Layers of the IFC data schema (buildingSMART International, 2020a)

The lowest layer, the resource layer, contains all the individual resource definition schemas

that can be used throughout the entire IFC data model. These definitions are not to be

used separately of a definition declared at a higher layer, meaning that they can’t exist as

independent objects in an IFC model and are not derived from the IfcRoot entity like all

other layers. The most important resource schemes include the geometry resource, topology

resource, geometric model resource and the material resource schemes, used and described in

more detail further in this work.

The core layer includes the kernel schema, containing the most general entity definitions, the

understanding of which is important for this work. All the layers above can reference the

2.1. Industry Foundation Classes 13

entities in the this layer. The Kernel schema represents the core of the IFC data model and

comprises basic entities such as IfcRoot, IfcProject, IfcObject, IfcProduct etc. The informa-

tion provided by IfcProject includes the default units, as well as the geometric representation

context such as the the project coordinate system and the precision used within the geomet-

ric representations. Such information is important for the correct placement and geometric

representation of objects, described in Section 2.1.5. The Core Layer also contains the Con-

trolExtension, the ProductExtension and the ProcessExtension. ProductExtension, which

describes the physical and spatial objects, is important for this work, which contains sub-

classes of IfcProduct like like IfcBuilding, IfcBuildingStorey and IfcSpace (Borrmann et al.,

2018).

The next layer up, the interoperability (or shared elements) layer, contains entities derived

from the core layer. Building elements can be found in this layer such as IfcWall, IfcColumn,

IfcWindow, etc., defined in five different so-called SharedElements. The Domain Layer is

the highest layer and contains highly specialized classes such as electrical systems, heating,

ventilation etc. No other layer can reference the classes specified in this layer, as it is at the

top of the hierarchy.

2.1.3 Inheritance

IfcRoot

IfcObjectDefinition IfcPropertyDefinition IfcRelationship

IfcObject IfcTypeObject

IfcProcess IfcActor IfcProduct

IfcSite IfcBuilding

IfcElement

IfcBuildingElement IfcFeatureElement

IfcWindow IfcWall IfcBeam IfcColumn

IfcFillsElement IfcVoidsElement

IfcSpatialStructureElement

IfcSpaceIfcBuildingStorey

IfcProxy

Figure 2.3: Part of the inheritance hierarchy of the IFC data model (Borrmann et al., 2018)

One of the most important features of an IFC is its object-oriented data model, including the

inheritance hierarchy between different elements. This allows objects at lower hierarchical

2.1. Industry Foundation Classes 14

levels to receive attributes from their parent objects, making the definition of classes clearer

and with less redundancy, since all attributes of a given class can be used from its child classes

without having to be redefined.

Some of the most important entities of the inheritance hierarchy are shown in Figure 2.3. It

can be seen that all of these entities inherit from the IfcRoot entity. As explained earlier, this

is not valid for the entities in the resource layer. IfcRoot provides important basic information

about an entity such as the GlobalId, which uniquely identifies each entity within the entire

software world (buildingSMART International, 2020j). As this is the leaf node in the hierarchy

all classes displayed in Figure 2.3 have a GlobalId.

The official information provided by buildingSMART International, 2020a contains data

about the inheritance of attributes of each entity, including the inverse attributes from the

objectified relationships (explained in the next section). This is important because if it is

being looked directly at the attributes of a particular entity, important information defined

in the classes from which the entity inherits is missing. For example, if we look at the entity

IfcObject, the inheritance would be:

IfcRoot ⇒ IfcObjectDefinition ⇒ IfcObject

From this follows that all attributes defined in IfcRoot and IfcObjectDefinition can be accessed

also within the IfcObject. For each entity a well structured documentation is provided by

bSI.

Attribute Type

IfcRoot

GlobalId IfcGloballyUniqueId

OwnerHistory IfcOwnerHistory

Name IfcLabel

Description IfcText

IfcObjectDefinition

HasAssignments IfcRelAssigns

Nests IfcRelNests

IsNestedBy IfcRelNests

HasContext IfcRelDeclares

IsDecomposedBy IfcRelAggregates

Decomposes IfcRelAggregates

HasAssociations IfcRelAssociates

IfcObject

ObjectType IfcLabel

IsDeclaredBy IfcRelDefinesByObject

Declares IfcRelDefinesByObject

IsTypedBy IfcRelDefinesByType

IsDefinedBy IfcRelDefinesByProperties

Table 2.1: Attribute inheritance of IfcObject (buildingSMART International, 2020b)

2.1. Industry Foundation Classes 15

An example for IfcObject presented in buildingSMART International, 2020b can be seen in

Table 2.1 (further information such as cardinality and description of each attribute is also

provided, but for simplicity only the attribute name and type are shown here). In this case

the IfcObject entity possesses all the attributes from IfcRoot and IfcObjectDefinition together

with its own attributes. This holds true for all entities in the inheritance structure (Figure

2.3).

Each entity is assigned a type, which in turn is also an IFC entity. Some of the attributes

are simple types like strings (IfcLabel, IfcText), while others represent inverse attributes

describing complex relationships between entities, like the IfcRelAssociates or IfcRelDefines-

ByProperties, the latter describing how property set definitions and objects relate to one

another. These relationships are an important part of the IFC data model and are explained

in the next section.

2.1.4 Object relationships

In the IFC the concept of objectified relationships is used. This means that there is one

entity that defines the relationship between other entities. Such an entity can be recognized

by the ”Rel” part in its name, e.g. IfcRelAssociatesMaterial, a sub-type of IfcRelAssociates

(see Table 2.1), which defines the relationship between IfcObjectDefinition and IfcMaterial.

IfcObjectDefinition IfcMaterial

IfcRelAssociatesMaterial

(INV) HasAssociations

RelatingMaterialRelatedObjects

Figure 2.4: Relationship between entities

In Figure 2.4 the intermediate entity IfcRelAssociatesMaterial has the attribute RelatedOb-

jects, which contains all entities having a certain material, given by the RelatingMaterial

attribute. The inverse attribute HasAssociations can be used to navigate the reverse path

from the RelatedObjects to the RelatingMateiral, or in other words, it can be used to access

the material of the entity IfcObjectDefinition (Bim supporters, 2020). In general, this applies

to all relationships. Due to the inheritance hierarchy of the IFC data model, all entities that

inherit from IfcObjectDefinition have the attribute HasAssociations. Figure 2.3 shows that

all entities down to IfcWall, IfcColumn etc. have this inverse relationship.

Another essential objectified relationship is the IfcRelContainedInSpatialStructure, which is

used to assign elements to a specific spatial object. For example, IfcWall can be related to

2.1. Industry Foundation Classes 16

IfcBuildingStorey, which means that the wall is located on a certain floor of the building.

Here the intermediate entity has the attribute RelatedElements, similar to RelatedObjects,

which contains all entities in this spatial object. It is important to note that an element can

only be assigned to one spatial object.

2.1.5 Geometric representations

So far, this chapter has explained the semantic description of an IFC. It is not required for

a building element to have a defined geometry and a model can be purely semantic (Tobiáš,

Pavel, 2015). However, a BIM model would not be complete without the ability to define the

geometric representations related to an element. All geometric representations are located

in the resource layer of the IFC schema, meaning that they are not derived from IfcRoot

and cannot exist as independent objects in an IFC model (see Section 2.1.2). Furthermore,

all geometric items used within a representation are derived from the abstract super-class

IfcGeometricRepresentationItem (buildingSMART International, 2020c). A 3D model can be

represented as a surface or solid model, both having their own advantages and disadvantages.

Triangulated meshes are commonly used as a surface model to represent geometry. Almost

all software programs supporting IFC can read this basic type of geometric representation,

which makes it perfect for a general model used by multiple software vendors. The key

drawbacks, however, are that curved surfaces are not represented precisely, but rather only

approximated by triangles (tessellation). This indicates that the geometry of the model is

not of high quality and a very large number of triangles are sometimes required to represent

a 3D body, making it not the most efficient way to construct geometries (Borrmann et al.,

2018). Such a geometry is described in the IFC with the IfcTessellatedFaceSet class.

Implicit and explicit are the two primary categories for describing solid geometric models.

Constructive Solid Geometry (CSG) is an example of an implicit model. It uses a combina-

tion of Boolean operations (union, intersection, difference) applied to 3D bodies to construct

complex geometries. This results in a tree structure, which contains the construction history

of the CSG model, enabling an easy modification of the model later on. The problem with

the implicit models is that complex geometric operations need to be calculated in a specific

manner from the receiving software, resulting in a more complicated implementation. There-

fore not all programs support implicit geometries. However, the smaller file size makes it

ideal for big models, frequently seen nowadays.

In contrast to the implicit models, the Boundary Representation (BREP) - an example for

an explicit solid model - contains all of the information required to represent the geometric

model as explicit boundaries in the IFC file. Such information includes surfaces, edges and

vertices with the corresponding coordinates without the need for further calculation, as is

the case with the CSG construction tree. Some drawbacks of this model include the larger

2.1. Industry Foundation Classes 17

file size, however generally still more compact than the tessellated models, and the unknown

generation process, which in turn makes it difficult to change this type of geometry. In general

it is easily possible to convert an implicit model to an explicit model. The opposite way is

more challenging and limited, however, numerous solutions were proposed, such as Buchele

et al., 2004 and Shapiro et al., 1993.

2.1.6 Object placement

For each object that has a shape representation an IfcObjectPlacement has to be defined,

which is an abstract super-type for the special types defining the object coordinate system

(buildingSMART International, 2020d). There are three ways to represent the object place-

ment: IfcGridPlacement, IfcLinearPlacement and the IfcLocalPlacement. The last of these

is the most widely used, which defines the relative placement of an IfcProduct in relation

to the placement of another such object. A wall with the IfcLocalPlacement is not placed

using global coordinates, but instead relative to the coordinate system of a IfcBuildingStorey,

if it lies in a storey. The following conventions apply to the spatial elements that define a

spatial structure according to buildingSMART International, 2020e, which are important for

the understanding of the relative object placement:

- IfcSite shall be placed absolutely within the world coordinate system established by

the geometric representation context of the IfcProject.

- IfcBuilding shall be placed relative to the local placement of IfcSite.

- IfcBuildingStorey shall be placed relative to the local placement of IfcBuilding.

With the IfcLinearPlacement, first introduced in IFC4x1, the placement and axis direction of

the object coordinate system is defined by a reference to a curve such as IfcAlignmentCurve.

This is very effective for positioning elements for linear construction works, such as roads,

rails, bridges, and others.

2.1.7 File types

The IFC data model mainly relies on the data modelling language called EXPRESS. As such,

the IFC file is stored in the exchange file format defined in part 21 of the STEP standard ISO

10303 with the .ifc file extension. Another way to store an IFC file is to use XML format,

having the file extension .ifcxml. The ifcXML file contains the same IFC information, the only

difference being the way the data is described. However, ifcXML files tend to be significantly

larger than a regular IFC files having the same data, making the STEP Physical File (SPF)

the preferred way for exchanging model data, which is also used in this work. The IFC data

2.2. Example of a STEP physical file 18

may also be compressed within a ZIP file with the file extension .ifcZIP, resulting in a smaller

file size.

2.2 Example of a STEP physical file

A STEP Physical File (SPF) file is divided in two sections. The HEADER is the first part,

which contains general information about the IFC file. This includes the IFC schema version,

the Model View Definition (MVD) and the application which was used for exporting the file

along with the the date and time of the export (Liebich, T., 2009). An example of the

HEADER section of an IFC file, exported from Autodesk Revit 2021, is shown in Listing

2.1. Each SPF starts with a line indicating that the file is specified in ISO 10303 part 21.

The end of each expression is marked with a semicolon. Line 2 indicates the beginning of the

HEADER section, line 6 ends it. In between, the actual HEADER information is described.

The FILE DESCRIPTION contains the formal definition of the underlying view definition

(Karl-Heinz Häfele et al., 2008). After that the FILE NAME displays the file name, creation

time, author, organization, name of the toolbox and the application used, and the author of

the IFC file. Values can also be left empty, which can be placed as empty quotation marks.

The IFC version can be found at the end of the HEADER.

1 ISO−10303−21;

2 HEADER;

3 FILE DESCRIPTION((’ViewDefinition [ReferenceView V1.2]’),’2;1’);

4 FILE NAME(’SampleFile.ifc’,’2020−10−21T11:21:49’,(’’),(’’),’The EXPRESS Data Manager Version

5.02.0100.07’,’Exporter 21.1.0.0’,’’);

5 FILE SCHEMA((’IFC4’));

6 ENDSEC;

Listing 2.1: HEADER section of a STEP physical file

The actual IFC model data is in the DATA section of the SPF file (Listing 2.2). Each instance

of an entity is displayed on a new line, prefixed by a # character and a unique number,

allowing each entity to be referenced by other entities. The object relationships as well as the

geometric representations and object placement, which are described in the previous sections,

are all described here. It is important to note that Listing 2.2 is only a part of a full SPF and

some information is missing for the sake of simplicity. There is an IfcProject describing the

default units (# 109) along with the IfcGeometricRepresentationContext (#114) in the DATA

section, the use of which is mandatory to represent the 3D model view. Since IfcProject is

located in the Kernal of the IFC schema (see Section 2.2), it is derived from the IfcRoot and

has a GlobalId, which uniquely identifies this entity. The IfcSite (#161), IfcBuilding (#138)

and IfcBuildingStorey (#151) are represented next, each with a local placement denoted by

the IfcLocalPlacement (#160, #33 and #149 respectively).

2.2. Example of a STEP physical file 19

1 DATA;

2 ...

3 #6= IFCCARTESIANPOINT((0.,0.,0.));

4 #32= IFCAXIS2PLACEMENT3D(#6,$,$);

5 #33= IFCLOCALPLACEMENT(#160,#32);

6 #42= IFCOWNERHISTORY(#39,#5,$,.NOCHANGE.,$,$,$,1603272486);

7 #43= IFCSIUNIT(∗,.LENGTHUNIT.,.MILLI.,.METRE.);

8 #44= IFCSIUNIT(∗,.LENGTHUNIT.,$,.METRE.);

9 #109= IFCUNITASSIGNMENT((#43,#45,#46,#50,#52,#55, ...));

10 #111= IFCAXIS2PLACEMENT3D(#6,$,$);

11 #112= IFCDIRECTION((6.12303176911189E−17,1.));

12 #114= IFCGEOMETRICREPRESENTATIONCONTEXT($,’Model’,3,0.01,#111,#112);

13 #123= IFCPROJECT(’3mP2wl77X9vuLv 35IW4 d’,#42,’0001’,$,$,’Project Name’,’Project Status’,(#114)

,#109);

14

15 #138= IFCBUILDING(’3mP2wl77X9vuLv 35IW4 c’,#42,’’,$,$,#33,$,’’,.ELEMENT.,$,$,#134);

16 #148= IFCAXIS2PLACEMENT3D(#6,$,$);

17 #149= IFCLOCALPLACEMENT(#33,#148);

18 #151= IFCBUILDINGSTOREY(’3mP2wl77X9vuLv 36jVx5W’,#42,’Level 1’,$,’Level:8mm Head’,#149,$,’

Level 1’,.ELEMENT.,0.);

19 #261= IFCRELCONTAINEDINSPATIALSTRUCTURE(’3Zu5Bv0LOHrPC10066FoQQ’,#42,$,$,(#187)

,#151);

20 #159= IFCAXIS2PLACEMENT3D(#6,$,$);

21 #160= IFCLOCALPLACEMENT($,#159);

22 #161= IFCSITE(’3mP2wl77X9vuLv 35IW4 b’,#42,’Default’,$,$,#160,$,$,.ELEMENT.,(42,21,31,181945)

,(−71,−3,−24,−263305),0.,$,$);

23

24 #168= IFCLOCALPLACEMENT(#149,#167);

25 #175= IFCSHAPEREPRESENTATION(#118,’Axis’,’Curve3D’,(#174));

26 #182= IFCPRODUCTDEFINITIONSHAPE($,$,(#175,#243));

27 #187= IFCWALL(’161akpRoD3Fv0DQZ79Tc2G’,#42,’Basic Wall:Generic − 200mm:346616’,$,’Basic Wall:

Generic − 200mm’,#168,#182,’346616’,.NOTDEFINED.);

28 #202= IFCMATERIAL(’Default Wall’,$,’Materials’);

29 #213= IFCMATERIALCONSTITUENT(’Layer’,$,#202,$,’Materials’);

30 #218= IFCMATERIALCONSTITUENTSET(’Basic Wall:Generic − 200mm’,$,(#213));

31 #239= IFCEXTRUDEDAREASOLID(#233,#238,#20,8000.);

32 #243= IFCSHAPEREPRESENTATION(#120,’Body’,’SweptSolid’,(#239));

33

34 #265= IFCRELAGGREGATES(’30PQja$0fBXx84$o4cZPDT’,#42,$,$,#123,(#161));

35 #269= IFCRELAGGREGATES(’3xYfaATBL1VeB5eW8zrLUB’,#42,$,$,#161,(#138));

36 #273= IFCRELAGGREGATES(’27PCKGLxT4mxtV9cw6mgBW’,#42,$,$,#138,(#151));

37 #281= IFCRELASSOCIATESMATERIAL(’3 iLtDJQX6L8Z3t$XKEfh0’,#42,$,$,(#187),#218);

38 ...

39 ENDSEC;

40 END−ISO−10303−21;

Listing 2.2: Part of the DATA section of an IFC file

2.3. Model View Definitions 20

There is a certain relationship between the spatial structure elements, as explained in 2.1.6.

The objectified relationship between the IfcSite and IfcProject is denoted by #265 with

the IfcRelAggregates relationship, which points to #123 and #161. The same applies to

the relationship of IfcBuilding to IfcSite (#269) and finally IfcBuildingStorey to IfcBuilding

(#273).

The instance of an IfcWall, identified with #187, is placed locally in a IfcBuildingStorey

(#151). Since this is also an objectified relationship it cannot be observed directly nei-

ther on line 27 nor on line 18, but an additional entity IfcRelContainedInSpatialStructure

(#261) is needed to describe the relationship. In this case there is only one entity related

to the IfcBuildingStorey. However, it is possible and often the case that several entities are

linked to a single spatial structural element. The IfcWall defined on line 27 also points to an

IfcProductDefinitionShape (#182), which allows for multiple geometric shape representations

of the same product. A specific geometric representation is denoted by IfcShapeRepresenta-

tion. In this case there are two geometries associated with the IfcWall. The first one with

a ”Curve3D” representation type (#175) and the second one being a ”SweptSolid” pointing

to an IfcExtrudedAreaSolid (#239), which is a representation of a solid model.

As described in Section 2.1.4 materials are specified using the relationship class IfcRelAssoci-

atesMaterial linked to a building element. This can be observed on line 37 with the objectified

relationship connecting the IfcWall (#187) to a material. However, here the relationship is

not directly to an IfcMaterial, but instead to an IfcMaterialConstituentSet, which allows the

assignment of multiple individual materials to specific parts of an element.

The structure of the SPF file is very complex, and the complete file must be available in

order for the relationships to be interpreted correctly. It is also not easy to make changes, as

modifying only one instance of an object may also lead to unwanted changes in the remaining

data. Therefore, several tools exist that provide the functionalities for the modification of an

SPF taking into account all complex relationships, which are discussed in the next chapters.

2.3 Model View Definitions

2.3.1 General

The complete IFC schema is very complex and difficult for software vendors to implement

correctly, since many hundreds entity definitions and thousands of attributes together with

the objectified relationships and geometry representations must be correctly described. It

is not only difficult, but also unnecessary as the exchange of models is often required for a

specific use or workflow and do not need all the information. Therefore, subsets of data can be

defined by parsing the entire IFC schema into smaller ”model views” that specify end-user

requirements for the information needed. For this purpose buildingSMART International

2.3. Model View Definitions 21

(bSI) had developed the concept of Model View Definition (MVD), which defines a subset,

or a “filtered” view, of the overall IFC schema, required for a specific use. The objects,

geometric representations, relationships and attributes that are needed for a specific task are

described in an MVD (buildingSMART International, 2020f).

File generation File validation

Figure 2.5: MVD for generation and validation of IFC files (Baldwin, M., 2019)

MVDs are not only important for the correct interpretation of IFC files from software ven-

dors, but also for validation of existing IFC files against user-defined criteria (see Figure 2.5).

To be able to describe and display the information required as a part of the IFC schema,

bSI developed the Information Delivery Manual (IDM). The IDM was created to solve col-

laboration problems in construction projects by capturing business processes and providing

user-defined specifications about what data should be delivered, when and by whom. These

exchange requirements also specify which data part of the scheme is needed to fulfill such an

exchange (Chipman et al., 2016). As such, IDM is essentially an agreement on the processes

and responsibilities of the project partners, whereas an MVD clarifies the data implementa-

tion details (Weise et al., 2017). Once the knowledge of experts is collected and structured in

a human-readable form, it is translated into a machine-readable technological solution based

on a reusable collection of IFC concepts. In an IDM requirements come from the needs of

the end user and the primary role of Model View Definition (MVD) is to ensure that IFC

implementations support those requirements (Hietanen & Final, 2006).

An MVD can be represented in a mvdXML form, which is a machine readable Extensible

Markup Language (XML) file describing the exchange requirements. The idea behind it is

that software vendors can implement the support for mvdXML and use this mechanism to

create IFC import and export filters and to define validation rules (Figure 2.5). MvdXML

is based on so called Concept Templates that define how a certain piece of data must be

represented in IFC. The structure of such a file is described in detail in the next section

2.3.2.

2.3. Model View Definitions 22

For reliable and consistent data exchange the MVDs are important part of software certifi-

cation. Software programs can be certified for specific MVDs, thus allowing it to correctly

import and export IFC files without the need for implementing the whole IFC schema, which

often includes irrelevant information for the particular use of the software. Thus bSI provides

official MVDs, which can be exported and imported from software applications. According

to buildingSMART International, 2020g as of writing these are:

IFC Schema MVD Name Summary

IFC2x3 TC1 Coordination
View

Handover of model information from planning and
design applications to CAFM and CMMS applications,
as well as the handover of model information from
construction and commissioning software to CAFM and
CMMS applications

IFC2x3 TC1 Space
Boundary
Addon View

Identification and export of additional Space
Boundaries (polygons which define the extents of a
space’s contact with directly adjacent surfaces [e.g.
walls, floors, ceilings] and openings). Can be used for
building energy analysis and quantity take-off.

IFC2x3 TC1 Basic FM
Handover
View

Handover of model information from planning and
design applications to CAFM and CMMS applications,
as well as the handover of model information from
construction and commissioning software to CAFM and
CMMS applications

IFC2x3 TC1 Structural
Analysis
View

The structural analysis model, created in a structural
design application by a structural engineer to one or
many structural analysis applications.

IFC4
ADD2 TC1

Reference
View

Simplified geometric and relational representation of
spatial and physical components to reference model
information for design coordination between
architectural, structural, and building services (MEP)
domains

IFC4
ADD2 TC1

Design
Transfer
View

Advanced geometric and relational representation of
spatial and physical components to enable the transfer
of model information from one tool to another. Not a
”round-trip” transfer, but a higher fidelity one-way
transfer of data and responsibility

Table 2.2: Official Model View Definitions (buildingSMART International, 2020g)

In Table 2.2 only the current official MVDs are represented. There are more MVDs for the

IFC4 currently under development such as the Quantity Takeoff View, Energy Analysis View,

Product Library View and the Construction Operations Building. It is not required for a

software to be certified for both import and export of a specific MVD. This makes it useful

for programs that require external model data to preform simulations or calculations, but

does not provide export functions.

2.3. Model View Definitions 23

2.3.2 MvdXML

As the name suggests, mvdXML relies on the Extensible Markup Language (XML) that

defines a set of document rules in a human-readable and machine-readable format in text-

based file. The purpose of this type of file is to store and transport data. What makes it

versatile is the ability to create custom elements with attributes in a hierarchical structure.

XML does not use predefined tags, so custom tags can be created, making it possible to

describe all different kinds of data.

A simple example of an XML structure is presented in Listing 2.3. It describes a building

with two floors, each containing additional information. The tags, surrounded by an opening

(<) and closing (>) sign (Building, FirstFloor etc.) describe what the elements are. Each

element requires an opening and a closing tag, regardless of how much information is stored

in between. Empty elements that have neither text content nor sub-elements can be closed

with a self-closing tag, like the one in line 4, using the ”/>” symbol. The names of the

attributes can also be specified arbitrarily, with each attribute having a value surrounded by

quotation marks. On line 1 type is the name of an attribute having the value ”Office”. It is

also possible for elements to have multiple attributes and sub-elements.

1 <Building type="Office" location="Germany">

2 <FirstFloor>

3 <Height>2.8</Height>

4 <FirstWall type="External"/>

5 <SecondWall type="Internal"/>

6 </FirstFloor>

7 <SecondFloor>

8 <Height>3.2</Height>

9 <FistColumn material="Concrete"/>

10 <SecondColumn material="Steel"/>

11 </SecondFloor>

12 </Building>

Listing 2.3: Simple XML example

If an element has only text content (e.g. ”2.8” on line 3) without attributes and sub-elements,

it can be written as an attribute, resulting in an XML file with the same information. There-

fore the element Height in line 3 could be written as an attribute to the element FirstFloor

with an attribute name Height and a value ”2.8”. In general, there are no rules about when

to use attributes or when to use elements in XML. However, attributes cannot contain mul-

tiple values or tree structures and are not easily extendable for future changes (W3Schools,

2020a). It is often necessary to use elements within other elements, which results in a hi-

2.3. Model View Definitions 24

erarchical structure. The data defined in Listing 2.3 can be displayed as a tree structure

for better visualization (Figure 2.6). The element Building is located at the top and has 2

child elements, which in turn each have 3 further child elements. With XML, a relatively

complex data structure can be easily stored and read by both humans and computers, which

makes it very common today. Therefore this file format was chosen to describe the required

information from an IFC schema in mvdXML file format.

Building
type="Office"

location="Germany"

FirstFloor SecondFloor

Wall
type="External"

Wall
type="Internal"

Column
material="Steel"

Height = 2.8 Height = 3.2Column
material="Concrete"

Figure 2.6: XML tree structure of the data in Listing 2.3

To describe MVDs and the associated exchange requirements, buildingSMART International

(bSI) has developed the standard mvdXML. The mvdXML file structure starts with an

mvdXML element which has attributes such as uuid and name and define two main sub-

elements: Templates and Views (Chipman et al., 2016). The uuid is a unique identifier that

never changes for a particular element. This is an essential part of any mvdXML as it allows an

element to be referenced by other elements, so that certain information can be reused several

times. Both Templates and Views elements have no attributes and are used to distinguish

between the sub-elements of each element. The tree structure of mvdXML and its elements

is shown in figure 2.7. The element Templates represents a list of several ConceptTemplates,

while Views contains one or more ModelViews. Each ModelView element describes how

ConceptTemplates should be used in a particular Model View Definition (MVD). Some

notable attributes are the unique identifier (uuid) and the IFC schema version to which this

MVD applies (applicableSchema), along with the name of the model view. It contains the

elements (Chipman et al., 2016):

- Definition: a human-readable description of the purpose of generating the MVD docu-

mentation.

- BaseView: reference to a base model view definition, if this model view represents an

add-on model view that extents a base view

- ExchangeRequirements: a list of exchange requirements defined within this model view.

- Roots: a list of ConceptRoots, comprised of concepts, that reference to ConceptTem-

plates.

2.3. Model View Definitions 25

mvdXML
uuid="..."...

Views

ModelView
uuid="..."

...

Roots Exchange
Requirements

ConceptRoot
uuid="..."...

...

Templates

ConceptTemplate
uuid="..."

...
... ...

...

...

... ...

Figure 2.7: mvdXML tree structure

ConceptRoot refers to the respective IFC entity that is derived from IfcRoot. Among others

it has an uuid and an applicableRootEntity as attributes. The latter identifies the class or

datatype of the instance that is described or validated, e.g. IfcWall. The Applicability element

within the ConceptRoot (see figure 2.8) is a set of TemplateRules to specify the applicable

instances of the IFC schema. A set of Concept elements is defined under Concepts, each

having:

- Requirements: a list of Requirement elements that describes how to manage a concept

for each exchange

- Template: references to a ConceptTemplate element

- TemplateRules: a tree of TemplateRule with a Boolean logic between individual ele-

ments (”and”, ”or”).

For this work it is important to understand the path marked in red in Figure 2.8. The

hierarchical structure follows: ConceptRoot ⇒ Concepts ⇒ Concept ⇒ Template. The last

one refers to a ConceptTemplate, which consists of attributes and other entity definitions.

2.3. Model View Definitions 26

ConceptRoot
uuid="..."...

Definitions ApplicabilityConcepts

...Concept
uuid="..."

...

Template
ref="..."

Requirements TemplateRules

... ...

Figure 2.8: ConceptRoot tree structure

ConceptTeplate describes the reusable concepts as templates. Some of its attributes are the

applicableSchema, such as IFC2x3 or IFC4, and applicableEntity, which includes the entity

(e.g. IfcObject) to which the concept applies (Chipman et al., 2016). ConceptTemplate also

has a unique identifier uuid as an attribute, which is used to refer to a specific ConceptTem-

plate by a Template element within a Concept (Figure 2.8). This is done with the help of

the ref attribute. The child elements of ConceptTemplate, which are of importance for this

work are:

- SubElements: an optional element that allows multiple ConceptTemplates to be

grouped under a common criteria.

- Rules: a set of attribute definitions, which relate to the entity defined in the attribute

applicableEntity

Following the red path in Figure 2.9, it can be observed that AttributeRule consists of En-

tityRules, each of which in turn contains AttributeRules and so on. This allows to accesses

attributes in a hierarchical structure. Each AttributeRule element has an attribute Attribute-

Name, e.g. IsDefinedBy or GlobalId. An optional attribute is the RuleID, which identifies

a specific rule within the tree structure. EntityRule contains the attribute EntityName that

specifies the case-sensitive name of the entity, e.g. IfcPropertySet, which can be seen as the

type of an attribute in Table 2.1. This is the main principle of an mvdXML and is illustrated

in the next section with an example from the official information provided by buildingSMART

International (bSI).

2.3. Model View Definitions 27

ConceptTemplate
uuid="..."...

Definitions SubTemplatesRules

...AttributeRule
AttributeName="..."

...

EntityRules

EntityRule
EntityName="..."

...

Constraints

...

References

Template
ref="..."

AttributeRules Constraints

...AttributeRule
AttributeName="..."

...

...

... ...

... ...

Figure 2.9: ConceptTemplate tree structure

2.3.3 Official buildingSMART information

buildingSMART International (bSI) provides official information that is accessible to every-

one. It contains a detailed explanation of each IFC entity, such as the definition of the entity,

the attribute and entity inheritance, and the use of concepts. For IFC version 4 and later,

bSI also provides an mvdXML specification, which is a ConceptRoot element associated with

a particular entity. Furthermore, the mvdXML specifications of ConceptTemplates are also

given by bSI.

A short example for the mvdXML of an IfcWall is presented in Listing 2.4. For simplicity, it

is a representation with only a part of the full mvdXML specification provided in buildingS-

MART International, 2020i, so that certain elements and attributes of elements are missing

(this also holds true for Listing 2.5). The mvdXML starts with a ConceptRoot element that

has a uuid attribute along with name and applicableRootEntity that indicates for which IFC

entity can be used. ConceptRoot contains an element Concepts, which is a list of Concept

elements. In this case there is a single Concept with the attributes uuid, name and override,

2.3. Model View Definitions 28

which means that the concept is reused without any changes (Chipman et al., 2016). The

element Template is a reference to a ConceptTemplate by uuid using the attribute ref. In

this example, Template refers to the ConceptTemplate in Listing 2.5 because the value of ref

corresponds to the uuid of the ConceptTemplate. As depicted in Listing 2.4, this mvdXML

follows the same tree structure highlighted in red in Figure 2.8.

1 <ConceptRoot uuid="492da205-54fd-429c-a458-2d7e655f9cbb" name="IfcWall"

applicableRootEntity="IfcWall">

2 <Concepts>

3 <Concept uuid="c0ad16d6-626a-4af8-9603-387e7e3425b5" name="Quantity Sets"

override="false">

4 <Template ref="6652398e-6579-4460-8cb4-26295acfacc7" />

5 </Concept>

6 </Concepts>

7 </ConceptRoot>

Listing 2.4: Simplified part of the mvdXML specification of an IfcWall

Listing 2.5 starts with a ConceptTemplate element. In addition to the uuid and the name,

the attributes applicableSchema and applicableEntity exist, which define the IFC schema and

IFC entity to which this concept applies. In this case, the ConceptTemplate applies to all

IfcObject entities. Therefore, this concept is also valid for IfcWall, since IfcWall inherits

from IfcObject (see Figure 2.3). Next there is the Rules entity, which comprises attributes

defined at the applicableEntity. As illustrated in Table 2.1, the IfcObject has an attribute

IsDefinedBy, which is of type IfcRelDefinesByProperties. This relationship is described in

Listing 2.5 with AttributeRule having the AttributeName equal to ”IsDefinedBy”, which in

turn is of the entity type defined by the EntityName attribute of the EntityRule element.

The IfcRelDefinesByProperties entity has an attribute RelatingPropertyDefinition of type

IfcElementQuantity, which in turn has an attribute Name. As can be observed, this results

in a tree structure, in which an attribute of an entity is again an entity, whose attributes

can be accessed and so on. This results in the hierarchical structure, which is represented

by the red path in Figure 2.9. The AttributeRules element can contain several AttributeRule

elements, which is also valid for the EntityRules. As explained previously, AttributeRule can

also contain a RuleID attribute to facilitate the referencing of rules defined in Concepts.

The use of concept templates and the tree structure of an mvdXML makes it a very powerful

method to define MVD specific IFC subset schemes describing the required entities and

attributes. It is possible to write an mvdXML based MVD with any text editor. But since

it tends to become very complex, it is expected that special software applications are used

to read and write mvdXML files (Chipman et al., 2016). The use of such software programs

is often not simple, since a deep knowledge of the IFC schema is required and the necessary

2.3. Model View Definitions 29

documentation to create a fully valid mvdXML is often not provided. More information on

this is provided in the next chapter.

1 <ConceptTemplate uuid="6652398e-6579-4460-8cb4-26295acfacc7" name="Quantity

Sets" applicableSchema="IFC4" applicableEntity="IfcObject">

2 <Rules>

3 <AttributeRule AttributeName="IsDefinedBy">

4 <EntityRules>

5 <EntityRule EntityName="IfcRelDefinesByProperties">

6 <AttributeRules>

7 <AttributeRule AttributeName="RelatingPropertyDefinition">

8 <EntityRules>

9 <EntityRule EntityName="IfcElementQuantity">

10 <AttributeRules>

11 <AttributeRule RuleID="QsetName" AttributeName="Name">

12 <EntityRules>

13 <EntityRule EntityName="IfcLabel" />

14 ...

Listing 2.5: Simplified part of the mvdXML specification of Quantity Sets

An additional information provided by buildingSMART International (bSI) is an instance

diagram for each concept template that visually illustrates the mvdXML for this particular

concept. The information from the mvdXML in Listing 2.5 is shown graphically in Figure

2.10. Here it is clearly visible how the objectified relationship IfcRelDefinesByProperties

connects the entities IfcObject and IfcElementQuantity. It is important to note that the

attributes marked in blue have a RuleID defined in the mvdXML in addition to the At-

tributeName. This is the case for the attribute Name of the entity IfcElementQuantity which

is defined in the mvdXML on line 11 in Listing 2.5.

Figure 2.10: Part of an instance diagram for Quantity Sets representing the mvdXML in Listing 2.5

30

Chapter 3

Current situation and related work

3.1 Generation and export of BIM models

The building model is the key element of BIM technology. Buildings and infrastructure ele-

ments can be modeled as virtual representations, which requires a powerful program capable

of modeling in a 3D environment, including not only the geometry of the elements but also

having a rich semantic information. A number of different companies offer such programs,

whose functionalities are similar, but having certain differences that makes each one supe-

rior for certain modeling tasks. However, the use of a particular modeling software depends

strongly on the personal preference of the user.

Autodesk
70%

Graphisoft
15%

Nemetscheck
4%

Bentley
4%

Others
7%

Figure 3.1: Most used BIM software vendors for producing drawings and models (NBS National
BIM Report, 2019)

3.1. Generation and export of BIM models 31

According to a survey made in NBS National BIM Report, 2019 the most widely used software

applications by their vendors are: Autodesk with 70% of the participants using it, Graphisoft

with 15% and Nemetscheck with 4%, as illustrated in Figure 3.1. This survey was conducted

in the United Kingdom, but the results also apply to the rest of the world. The modelling

software application provided by Nemetscheck is called Allplan, Graphisoft has developed

the ArchiCAD and Autodesk offers the Revit software tool.

As mentioned above, Revit is one of the most used applications for building model creation.

Models created with Revit can be saved in a native file with the .rvt extension, which is used

to store and exchange models between participants. However, this file type is supported only

from Autodesk software applications. In large projects, there is often a need to use software

tools from different vendors for certain tasks. For this purpose, BIM modeling applications

offer the possibility to export and import an IFC file (explained in detail in Chapter 2).

The ability to support IFC data models is becoming increasingly important with 77% of

participants used IFC for projects in which they were involved in 2019, which is an increase

from 2018 according to NBS National BIM Report, 2019. Therefore, Revit supports the

export and import of multiple MVDs for the corresponding IFC versions in addition to its

native .rvt format, such as the IFC2x3 Coordination View and IFC4 Design Transfer View

(see Table 2.2 for more information on the official MVDs).

Software applications can be certified to import and export IFC data models for a specific

Model View Definition (MVD). Therefore, an IFC exported from a program is always a

filtered view of the IFC and does not necessarily contain instances of every IFC entity available

in the full schema. In general, however, only the official MVDs can be exported and only

limited customization is possible. The general methodology for exporting an IFC file from

Revit is that for each Build-in category in Revit an appropriate IFC entity type is mapped,

resulting in a mapping table. The mapping table for IFC imports is structured in a similar

way, a part of which can be seen in Figure 3.2.

Figure 3.2: Section of Revit mapping table for IFC imports

3.2. Validate and filter IFC models 32

For example, the Revit category Structural Framing is assigned to the IFC entity IfcBeam.

This table is saved as a text file and can be edited directly in Revit or with any text editor

(Autodesk, Inc., 2018). It is also possible to assign generic family instances that are not yet

mapped to specific IFC entity types.

Figure 3.3: IFC export options in Revit 2021

The IFC export in Revit can be customized to a certain extent. For this purpose, there is

an option to modify the setup for export (see figure 3.3), which allows you to create a new

custom setup. This is still based on one of the official MVDs provided by buildingSMART

International (bSI), such as the coordination view for IFC2x3 or the reference view for IFC4.

The options offered in this menu are important for the richness of the IFC file at the end.

There are 5 tabs: General, Additional Content, Property Sets, Level of Detail and Advanced.

Some notable options include the ability to export only items that are visible in the view,

and whether to export the IFC common property sets or base quantities.

3.2 Validate and filter IFC models

All areas of the building industry are addressed by IFC. While this is beneficial for reasons

of interoperability, it also contributes to some issues, since this method is too general. Since

there are many engineering domains that partly affect each other, there are inevitably optional

types of data that in one domain represent essential information, while in another domain

they are not needed (Baumgärtel et al., 2016). Therefore, the methodology of Information

Delivery Manual (IDM) and Model View Definition (MVD) was developed to define the

exchange requirements for models to specify the IFC entities and attributes together with

their complex relationships and geometry representations (see Chapter 2.3).

3.2. Validate and filter IFC models 33

The MVDs reduce the scope of the complete IFC model to subsets that must be supported

by export and import of software applications. As shown in the previous section, the user can

modify the IFC export, e.g. map native categories correctly to IFC entities or add specific

property sets, which can significantly change the information being exchanged. Accordingly,

the quality of the exported IFC models by end users is validated by software tools during

all life cycle phases of a building to ensure the models carry the required information, in

addition to software implementation quality of IFC import and export capabilities being

subject to the certification processes defined by buildingSMART International (bSI) (Zhang

et al., 2016). Therefore, the exchange requirements can be expressed creating an MVD,

which is used to validate the quality of the information provided in an IFC model. An

MVD can be specified in a machine readable file named mvdXML, which is described in

detail in Chapter 2.3. The exchange requirements are created through declaring classes

and attributes. For this purpose, the official software tool for MVDs from bSI ifcDoc can

be used (buildingSMART International, 2020k). BIMQ is another platform that enables

the definition of MVDs. However, it is important to further improve the instruments for

mvdXML generation and validation since most of the available tools do not support mvdXML

validation without errors, according to Popgavrilova, G., 2020 thus making the checking

results not entirely accurate. There are other commercially available tools such as the Solibri

Model Checker, which can perform clash detection and code compliance checking based on

predefined rule sets, and Simplebim providing a real time data validation.

Since IFC files tend to become very large and complex, and it can sometimes take hours

before they can be simply opened by certain software applications, there is a need to filter

the data for future exchange. In general an mvdXML can be used not only for validation but

also for filtering data, since it can describe the required information. However, most tools

only offer the possibility to validate IFC data models against specific requirements, with no or

only limited filtering possibilities. Several approaches for semantic queries for the IFC object

model have been introduced, guided by the need to provide tools for convenient information

extraction. One of the first query methods for IFC data model was proposed by Adachi,

2003. In this work the Partial Model Query Language (PMQL) was introduced to provide a

general method for select, update, and delete partial model data that contains certain part of

model data. PMQL allows recursive expressions to be used, thereby reducing the complexity

of queries (Tauscher et al., 2016). Another approach, proposed in Weise et al., 2003, is the

Generalized Model Subset Definition (GMSD). This method offers the possibility of dynamic

selection of object instances in model server queries, defined in the EXPRESS language to

be consistent with the IFC data model. The Building Information Model Query Language

(BIMQL) can be used for the selection, addition and update of partial aspects in building

information models, introduced by Mazairac & Beetz, 2016. This domain specific query

language for building models is inspired by PMQL, supporting cascading in order to enable

recursive expressions (Tauscher et al., 2016). To this category of querying languages also

belongs the Query Language for Building Information Models (QL4BIM), first introduced in

3.2. Validate and filter IFC models 34

Daum et al., 2014. QL4BIM is unique, since it allows querying spatial information providing

metric, directional and topological operators for defining filter expressions with qualitative

spatial semantics as stated in Daum & Borrmann, 2014. This allows to query specific building

elements, which answer to questions such as: ”Which columns touch a certain slab?” (Daum

& Borrmann, 2014).

A different approach was proposed in Tauscher et al., 2016, which aims at general information

retrieval using graph theory on the IFC object model, where the classes are nodes and the

relations between them are displayed as edges. The use of a shortest path algorithm between

nodes allows to determine the associations between objects automatically. Retrieving specific

information from BIM models using visual languages is introduced in Preidel et al., 2017.

The visual query language (vQL4BIM) and the visual code checking language (VCCL) are

used, which provide operators to allow handling of relations. Further filtering possibilities

for BIM models were also discussed in Windisch et al., 2012 and Wülfing et al., 2014.

As shown, a lot of work is dedicated to the development of a system for retrieving specific

information from BIM models. This demonstrates the challenge of this task, since there is

no single or best solution and it is still an ongoing topic today. As stated in Preidel et al.,

2017:

”It is very likely that the importance of Data Retrieval features will continue

to grow, as the increased use of BIM in practice results in more and more

engineers and architects applying this method. Furthermore, greater use will

make the projects, the digital models and project structures more complex. For

this reason, the demand for tools architects and engineers can easily use to

extract appropriate information from the models will be higher”.

35

Chapter 4

Solution and implementation

4.1 IFC libraries: early binding vs. late binding

As explained in Chapter 2.2, the STEP Physical File (SPF) is very complex, therefore a

powerful tool is required to create or modify this type of file. There are several tools for

interacting with the IFC model, each offering similar functionality but often using different

programming languages to utilize it. The general methodology of using these tools is shown

in Figure 4.1. A SPF can be read, created and modified using an IFC library to create

an application for a specific task. Xbim is a .NET open source software development BIM

toolkit that supports Industry Foundation Classes (IFC) (Xbim Toolkit, 2020a). It allows

to read, create and view IFC models with support for geometric, topological operations and

visualisation.

IFC STEP
Physical file IFC Library

(Xbim, IOS, IFC++)
Custom

Application

Figure 4.1: Methodology of using IFC libraries

The Xbim functionalities are accessed using the programming language C#. A simple exam-

ple of how to use Xbim is shown in Listing 4.1. An IFC file with the name ”SampleHouse.ifc”

is read and the information is accessed. Queries can easily be handled with Xbim, like the

one on line 4 which retrieves all entities of a certain type, in this case IfcDoor. All instances

of this entity are then stored in a variable and can be retrieved later in the program.

4.1. IFC libraries: early binding vs. late binding 36

1 const string fileName = "SampleHouse.ifc";

2 using (var model = IfcStore.Open(fileName))

3 {

4 var allDoors = model.Instances.OfType<IIfcDoor>();

5 }

Listing 4.1: An example for an early binding approach for querying IfcDoor entities using Xbim

with C# (Xbim Toolkit, 2020b)

Another tool for working with IFC files is IfcOpenShell (IOS). It is also an open source

software library that helps users and software developers to work with the IFC file format

(IfcOpenShell, 2020a). It is a powerful tool that provides everything needed to access and

modify IFC elements. The main difference to Xbim is that IOS provides a module for the

Python language, which is used to present a simple example in Listing 4.2. This example

has essentially the same functionality as the one in Listing 4.1, namely opening an IFC file,

finding all entities of type IfcDoor and storing them in a variable for later use. The examples

show how the two libraries differ in the way they are used for the same task.

1 fileName = "SampleHouse.ifc"

2 model = ifcopenshell.open(fileName)

3 allDoors = model.by_type("IfcDoor")

Listing 4.2: An example for a late binding approach for querying IfcDoor entities using IfcOpenShell

(IOS) with Python

There is an important difference in how the queries are performed in Xbim and IOS. Xbim

uses the so-called early binding approach, which requires each entity in the IFC schema to

be represented as a corresponding class in the programming language, in this case C#. In

Listing 4.1 the OfType method is used to search for elements by their types. In this case a

type IIfcDoor has already been defined, which corresponds to the IFC entity IfcDoor. This

requires the generation of a code that maps the classes from IFC to C# classes, which can

be used later. However, when new IFC entities are added or existing ones are changed, the

data must be mapped again accordingly. Therefore, a separate early binding is required for

each IFC scheme version. (Borrmann et al., 2018). Since the information is predefined and

available during programming, a major advantage of the early binding approach is that when

using a suitable Integrated Development Environment (IDE) for programming with C#, such

as Microsoft Visual Studio, the auto-completion functionality makes it easier to access the

required information without having to know all available predefined classes perfectly.

On the other hand, IfcOpenShell is based on the late binding approach. What this mean

is that this method is used to access entities based on the IFC schema definitions during

program runtime, unlike the predefined classes used in Xbim. This can be seen in Listing 4.2,

4.2. Software applications and programming languages 37

where the method by type from IOS is used to find all entities of type IfcDoor. This method is

accepting a string value, which uniquely identifies the IFC entity and must correspond to the

official entity type, defined by buildingSMART International (bSI). Therefore, when using a

late binding approach, no code generation is required to define classes, making adaptation to

changes made to the underlying schema more flexible (Borrmann et al., 2018). However, the

IFC entities and attributes are accessed via strings, which can have any value and cannot be

checked against a predefined class name. This could lead to syntax errors, since strings are

not checked by the compiler and are only visible after the program has been executed.

As shown above, Xbim and IOS both provide a similar structure for entity queries and

general operation with IFC files. However, they use different methods, each of which has its

own advantages and disadvantages. Therefore it depends on the task to be performed and

the personal preference of programming language and environment. However, as of writing

IfcOpenSchell looks to be the better supported tool with multiple commits each day to the

official GitHub repository (IfcOpenShell, 2020b). This is important, since IFC is continuously

evolving and some BIM tools are still couple of years behind the release of the most recent

IFC versions. Moreover, since IOS is based on the late binding approach, it is not necessary

to write code for each predefined entity, so that the end user of the application can flexibly

define the requirements. This makes it possible to program a tool that can be written once

and used in a variety of situations and also works for the upcoming changes in the IFC

schema.

IFC++ or IfcPlusPlus is also an open source library, which can read and write IFC files in

STEP Physical File (SPF) format (IFC++, 2020). As the name suggests, this is a C++

library that is very efficient and thus makes working with large IFC files very fast. How-

ever, since speed is not of central importance for the purposes of this work, as no real-time

visualization or modification of models is performed, this library was not considered further.

Instead IfcOpenShell was chosen for the reasons explained above and also due to the personal

preference for the programming language Python.

4.2 Software applications and programming languages

As explained in the previous section, IfcOpenShell (IOS) is an open source software library for

operation with the STEP Physical File (SPF). It provides everything needed to read, modify

and create IFC data models, making it the ideal choice for this work. IOS is based on the late

binding approach, which makes it flexible because it relies on strings to access entities during

program runtime, rather than predefined classes as in the case of the early binding approach.

This has the disadvantage, that strings are not checked by the compiler, which means that all

entity type names must be known by the user. However, there is a solution to this problem

4.2. Software applications and programming languages 38

by using the official information provided by buildingSMART International (bSI), which is

explained in section 4.3.

IfcOpenShell is written in C++ and can be compiled (translated from a human-readable

programming code to a machine-readable executable program) using Microsoft Visual Studio

(IfcOpenShell, 2020b). In addition, the IOS library is also available as a Python module,

which can either be compiled from the source code or downloaded as ready-to-use module.

It is available as an Anaconda package and can be installed in a Python environment. In

addition, the Python module is officially provided by IfcOpenShell ready to be downloaded,

which includes the latest updates found in the GitHub repository (IfcOpenShell, 2020c).

Python is a high-level programming language that makes it easier to write programs with

fewer lines of code and offers better code readability compared to similar programming lan-

guages available. This makes Python a good choice for almost any purpose and is therefore

the programming language most sought after by developers who are not currently using it

according to the Stack Overflow 2020 Developer Survey. Python code can be written in any

text editor and executed with the interpreter that comes with the installation. However,

an Integrated Development Environment (IDE) can be used to speed up programming by

providing code completion, error checking and a debugger. In addition, different program-

ming entities are displayed in different colors, typically known as syntax highlighting, which

improves the clarity of the written code. One of the most popular Python IDEs is PyCharm,

developed by JetBrains, a software vendor specialized in creating intelligent development

tools for many programming languages (PyCharm, 2020).

The creation of BIM models requires a powerful tool, that is capable of representing not only

3D geometrical data, but also the associated semantic information. Autodesk is the most

popular software provider of BIM tools, with Revit being the first choice for many projects

(see Chapter 3). Since Revit is certified for the export and import of many of the official

MVDs, it is used in this work to create sample BIM models to test the developed tool. The

models are created in the native Revit environment and are exported in a STEP Physical

File (SPF) for further use. STEP Physical File file can also be loaded into Revit, but since

the main purpose of this tool is not to work with IFC files but with the native Revit .rvt

format, there is a lack of available information when importing IFC files.

In Figure 4.2 is displayed a screenshot from the properties panel of an imported SPF in Revit,

representing the IFC parameters from an IfcWall. The IFC model containing the wall was

modelled in Revit and exported as a SPF. As shown, there are only limited properties avail-

able to the user without providing important information, such as the spatial containment

and relationships. Revit is a modeling tool and as such it offers the possibility to modify

the model, but it lacks the functionality to view all information in a IFC data model in a

structured way. Therefore, there are software applications designed for the specific task of

correctly opening and displaying IFC files.

4.2. Software applications and programming languages 39

Figure 4.2: Ifc properties for an IfcWall displayed in Autodesk Revit

The FZK Viewer was developed by the Karlsruhe Institute of Technology (KIT) and has

established itself as an independent open source viewer (Autodesk, Inc., 2018). It supports

the file formats STEP Physical File and ifcXML from version IFC2X onwards with properties

and relationships between objects that are displayed textually, which improves the readability

of information in an IFC (KIT, 2020). Support for the latest IFC4X3 schema is also available,

a feature that very few tools offer. The FZK viewer can display all of the information provided

in a SPF with not only the direct attributes of an entity, but also the type of geometry

representation and the objectified relationships, such as the spatial containment or materials

that are linked to a specific entity. Therefore, in this work the FZK-Viewer is used to manually

check the correctness of both the geometry and the semantic information of the generated

IFC files.

Figure 4.3: Ifc properties for an IfcWall displayed in FZK Viewer

In addition to the 3D visual representation of the model geometry, the FZK-Viewer offers a

property toolbar that displays the information of a specific instance of an IFC entity. Figure

4.3 shows the toolbar, which displays the information of the same IfcWall instance as the

one in Figure 4.2. This can be seen from the identical Globally Unique Identifier (GUID) in

both figures, which corresponds to the GlobalID of an IfcRoot and all of the classes that are

4.3. Retrieving the official buildingSMART information 40

derived from it (see Chapter 2). As shown, the FZK-Viewer offers far more information than

Revit for the same IFC entity instance. It is well structured and is displayed in the following

3 tabs:

- Element Properties: includes a general entity information, as well as the spatial con-

tainment, the geometry representation, the related material and more (Figure 4.3 Left).

- Properties: contains the property and quantity sets with the corresponding individual

properties and quantities (Figure 4.3 Centre).

- Relations: shows the objectified relationships associated with this entity instance to-

gether with the relating element (Figure 4.3 Right).

Solibri is another tool for viewing BIM models in the SPF format. In contrast to the FZK

Viewer, this is a commercial tool developed by Nemetschek (Solibri, 2020). Solibri offers many

functionalities to not only display models correctly, but also to check them against predefined

rules and to perform collision detection. It is provided in different versions, with Solibri

Anywhere being free to use as of writing, which provides everything needed for opening and

displaying IFC models with both the geometry representation and the semantic information.

However, Solibri does not always correctly display elements from newer IFC versions, such

as the IfcAlignment added in IFC4x1.

4.3 Retrieving the official buildingSMART information

4.3.1 General

The data displayed by most websites can only be viewed with a web browser and cannot be

stored locally. Therefore, web scraping exist, which is a technique for the extraction of large

amounts of data from web sites, whereby the data is extracted and stored in a local file on a

computer or in a database in tabular form (WebHarvy, 2020).

Web scraping
program

WWW

WWW

Web page

WWW

CSV

XML

Figure 4.4: Web scraping methodology

4.3. Retrieving the official buildingSMART information 41

IfcOpenShell (IOS) is a very powerful library for working with STEP Physical File (SPF),

which is constantly being developed and provides support for the latest IFC versions. It is

based on the late binding approach as described in section 4.1. This allows for IFC entities

to be both instantiated and accessed at runtime (Borrmann et al., 2018). This is done by

using string values for each entity name (see Listing 4.2), which creates the flexibility for

the end user of the program to access different entities. Since the purpose of this work is to

make a general filtering tool that can be used for many of the IFC entities, the use of a late

binding approach is chosen, which allows to write a general program that can be operated

with user-defined criteria.

However, since the IFC is very complex, it is impractical for the user to define the attributes

and relationships of an entity solely on his own. This would be difficult and error-prone

process. Therefore, buildingSMART International (bSI) provides official information for each

IFC entity class, which is available for free to everyone (see Section 2.3.3). Among others there

is data about the inheritance of entities and attributes, as well as an mvdXML specification

with a ConceptRoot element that describes the concepts for a particular entity (see Section

2.3.2). For each ConceptTemplate there is also an mvdXML specification that describes

the path for accessing certain attributes with AttributeRule elements containing EntityRules,

which in turn have AttributeRules and so on (Figure 2.9). The result is a tree structure that

can be used to access nested entities.

This information can be accessed to validate the user-defined requirements against it. This

ensures the correctness of the data and allows the user to easily access certain nested prop-

erties using the RuleID found in some of the ConceptTemplate elements. Therefore, the bSI

data provided on the official website is accessed and stored in a structured way that is later

used in the developed tool.

4.3.2 HTML structure

Most of the websites that are currently online provide information to a user using the Hyper-

text Markup Language (HTML). HTML describes the structure of a web page with elements

that instruct the browser how to present the content (W3Schools, 2020b). These elements

are used in a similar way to those in an Extensible Markup Language (XML) file. However,

the main difference is that the HTML element tags are predefined, unlike the XML tags,

which can be defined by the user.

A simple example of an HTML is presented in Listing 4.3. The file starts with a line telling

the browser what type of document it can expect, in this case HTML 5. It is followed by

the html element, which is a container for all other HTML elements. It has the same general

structure as a XML file with opening and closing element tags, where each element can have

sub-elements, attributes and text content.

4.3. Retrieving the official buildingSMART information 42

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Page Title</title>

5 </head>

6 <body>

7 <div class="FirstSection">

8 <h1>Heading text</h1>

9 <p>Paragraph text.</p>

10 </div>

11 </body>

12 </html>

Listing 4.3: Simple HTML example

HTML provides predefined element tags, each of which has a specific purpose and cannot

be changed, such as head, body, div etc. For example, the div element has the function of

defining a section in an HTML document and is recognized as such by web browsers. The body

element contains all of the information that is provided to the user, including text, images

and links to other web pages, while the head element is a container for HTML metadata

about the HTML document that is not displayed on the page (W3Schools, 2020b). The class

attribute of the div element specifies a class name of the element that can be accessed by CSS

and JavaScript to perform certain tasks. The attribute name cannot be changed and is only

used for this purpose, unlike the arbitrarily defined attributes of an XML element. Elements

can contain text between the opening and closing tags, as is the case with the h1 and p

elements. The element tag represents the type of the element and the way it is displayed by

the web browser, while the text is the content that is presented.

The official information provided by buildingSMART International is available on web pages

that are linked with one another using hyperlinks. Therefore, for the purposes of this work,

the available data is accessed and stored, which is described in the next section. This is done

by retrieving the content from various HTML elements and transforming it into structured

data that can be used later.

4.3.3 Getting and storing the information

The first part of scraping a web page is to access and download the page. To get a page, the

Python library requests can be used. HTTP defines a set of request methods to specify the

desired action to be performed on a particular resource (MDN web docs, 2020). These are:

GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, TRACE and PATCH. For

4.3. Retrieving the official buildingSMART information 43

the purpose of this work, only the GET request method from the requests library is needed,

which requests a representation of the specified resource. If successful, the GET request

returns a status code 200, in this case together with the HTML content of the website.

Information for each IFC version from IFC2x on is provided by buildingSMART International

under the section RELEASE. There is also a DEV section which contains information about

future versions and currently has a placeholder also for the expected IFC5. This work focuses

on the released versions IFC4 and IFC4x1 (buildingSMART International, 2020h). Further-

more, the IFC entities are divided into the schemas contained in the 4 main layers of the IFC

schema. The Shared Building Elements schema is located in the interoperability layer and

contains important building elements including IfcWall, IfcBeam, IfcWindow, IfcColumn and

IfcPlate (see Chapter 2.1.2). On the other hand, the Product Extension schema is part of the

core layer and also contains essential entities, such as the IfcElement, from which all building

elements inherit (see Figure 2.3), as well as the IfcAlignment that was first introduced in

IFC4x1. The present work focuses on these two schemes and the entities contained in them,

since they represent some of the most important IFC classes.

To access the data of a particular web page, the correct Uniform Resource Locator (URL)

must be passed to the GET request method. Listing 4.4 shows how to retrieve the information

provided on the official bSI website. After defining the base URL for all IFC versions under

the category RELEASE, the IFC version is defined, which in this case is the final version of

the IFC4x1. Then the schema is defined, in which the entities to be extracted are contained

(line 4). Finally, the name of the entity is specified. All this information is added to a

single string that is passed as an argument to the get method of the requests library. If the

request was successful, the function returns the content of the web page together with other

information about the performed request and stores the data in the variable page, which can

be further used to obtain certain information. This process is improved by automatically

retrieving all entities from the schemas and extracting the data for each one without having

to manually run the program for each individual entity.

1 import requests

2 base_url = "https://standards.buildingsmart.org/IFC/RELEASE/"

3 ifc_version = "IFC4_1/FINAL"

4 schema = "ifcsharedbldgelements"

5 entity = "ifcwall"

6 page = requests.get(f"{base_url}/{ifc_version}/HTML/schema/{schema}/lexical

/{entity}.htm")

Listing 4.4: Getting the data for IfcWall from the official web page

The get method of the requests library returns information about the request together with

the content of the extracted data. However, the content of the website is in an HTML format

4.3. Retrieving the official buildingSMART information 44

from which information is difficult to retrieve. Therefore an additional Python library is used

to access the HTML data and extract the required information. The Beautiful Soup library

for Python is one of the most popular approaches to this task. It can search for certain

HTML tags and retrieve the data contained in them.

As described in the previous section, the visible data of a web page is contained in the body

tag of an HTML. The ConceptRoot definition for some of the most important IFC entities is

provided by buildingSMART International. It is contained in the body of the HTML under

the mvdXML Specification section. The mvdXML is represented within a code HTML tag,

which is used to define text as computer code. In Listing 4.5, after importing the latest version

4 of the Beautiful Soup Python library, the previously requested page content is specified as

a parameter to retrieve a Beautiful Soup object that represents the document as a nested

data structure. HTML elements can now be easily accessed, making data extraction process

more convenient. The Beautiful Soup object bs data has a method find all that retrieves all

of the HTML elements with a specific tag. On line 3 all of the code elements are obtained.

Since the code element containing the mvdXML specification on the bSI web page belongs to

the xsd class, only the elements of this class are retrieved. After all code elements from the

xsd class are present, the next step is to find the one that has a parent element with a text

content ”mvdXML specification”, since this is the one that is wanted.

1 from bs4 import BeautifulSoup

2 bs_data = BeautifulSoup(page.content)

3 html_codes = bs_data.find_all("code", class_="xsd")

Listing 4.5: Parsing a page with BeautifulSoup

After the ConceptRoot for a specific entity has been extracted and saved to a local file, the

next step is to retrieve all ConceptTemplates applicable to that entity (see Section 2.3.2).

The web page of each entity contains information about the concepts, including a hyperlink

to the page describing each individual concept template. Such a link is expressed with the

HTML element ”<a>”, which has an attribute href with a value corresponding to the URL

of the web page. Therefore, with the help of Beautiful Soup, these HTML elements can be

accessed and filtered by using the text content that corresponds to the names of the concepts

defined in the ConceptRoot. On the web page of each ConceptTemplate there is an mvdXML

specification together with a diagram that visually represents the description of the mvdXML.

Therefore, after retrieving the respective URL, the requests library is reused to get the HTML

content and the process of extracting the ConceptTemplate mvdXML is repeated again.

After the script to extract the data for each entity is executed, the information is stored

locally in structured form in XML files so that it is easily accessible for each entity later in

the program. This includes the ConceptRoot definition along with all concept templates that

apply to this entity. This process involves a large amount of information that is extracted

4.4. User-defined requirements 45

repeatedly in the same way for each entity. Since the data for each entity is accessed and

stored independently, the process can run in parallel. All modern CPUs have multiple cores

that allow several tasks to be processed simultaneously. The multiprocessing is a Python

package for process-based parallelism. It is used in this work to speed up the process of

extracting the buildingSMART International information. A new process is created for each

entity, which can run in parallel with other processes, so that the information of several

entities can be retrieved and stored simultaneously. The effectiveness depends strongly on the

CPU used and the internet connection, but in general the parallel execution of the program

is much faster. The program has been tested with the AMD Ryzen 2600x CPU with 6 cores

and 12 threads, which is a typical modern processor at the time of writing. It takes 252

seconds (4.2 minutes) to run the program for all entities in the Shared Building Elements

and the Product Extension schemas for both IFC4 Addendum 2 Technical Corrigendum 1

and IFC4x1 Final using a traditional approach, while the multiprocessing method requires

only 31 seconds (0.5 minutes). This is more than eight times quicker execution time and

significantly reduces the time needed to start the program for the first time, as this process

is only performed once to extract the data, after which it is saved for further use.

4.4 User-defined requirements

4.4.1 General

The goal of this work is to enable a user to define specific custom requirements for retrieving

a certain information from a STEP Physical File. A subset of the IFC schema can be

defined with a Model View Definition (MVD) as described in Chapter 2.3. MVDs in turn

are specified in a machine readable format by creating an mvdXML file. Since the structure

of the mvdXML is very complex, there exist tools for creating such files. IfcDoc is one of

the tools that can be used to define exchange requirements and formulate MVDs into the

mvdXML format (buildingSMART GitHub, 2020).

However, there are often issues associated with creating and exporting the mvdXMLs, as

described in Popgavrilova, G., 2020. In addition, the necessary documentation for using

the tool is lacking, making it difficult to get started with. Therefore, this thesis proposes

a simplified way of accessing entities and attributes, which is still based on the Extensible

Markup Language (XML) file, but can be written and used directly by the developed tool.

This does not require the use of multiple software applications and reduces the complexity

of the entire process. The data downloaded from buildingSMART International is used

to validate the user-defined criteria in XML format and also provides easy access to the

information described in the ConceptTemplates for each entity.

4.4. User-defined requirements 46

4.4.2 Search by Attributes

In an XML file elements can be created with custom tags, that represent information in a

meaningful way. Therefore, certain elements are defined for specific purposes to describe the

data required from a STEP Physical File. To access a specific attribute, the user can define

the path to this attribute in a nested structure. XML is very useful for this, because elements

can be nested inside each other. In addition, the XML elements have attributes that provide

additional information. More information about the Extensible Markup Language can be

found in Chapter 2.3.

The XML file that describes the custom requirements starts with a Requirements element

that contains the information for each entity that is filtered. The entities are described

as sub-elements of the Requirements element. It is allowed to have multiple entities in one

Requirements element, so that multiple IFC entities are filtered from the original SPF. Listing

4.6 provides an example of a user-defined criteria for retrieving the IfcWall entity instances.

The XML element Entity contains all requirements that apply to a specific entity, which is

specified in the Type attribute. The example shown in Listing 4.6 describes the criteria for

filtering all IfcWall instances that have a PredefinedType of ”NOTDEFINED” and a ”Brick,

Common” MaterialLayer, which has a thickness of 90.

1 <Requirements>

2 <Entity Type="IfcWall">

3 <Attribute Name="PredefinedType" Value="NOTDEFINED" />

4

5 <Attribute Name="HasAssociations">

6 <Attribute Name="RelatingMaterial">

7 <Attribute Name="MaterialLayers">

8 <Attribute Name="Name" Value="Brick, Common"/>

9 <Attribute Name="LayerThickness" Value="90.0"/>

10 </Attribute>

11 </Attribute>

12 </Attribute>

13 </Entity>

14 </Requirements>

Listing 4.6: User-defined requirements for filtering IfcWall entities

An attribute of an entity can be accessed with the Attribute tag. The name of the IFC entity

attribute is defined in the XML Name attribute of the element. This allows the user to

define any attribute, since the value of a XML attribute can be an arbitrary string. However,

since each entity has specific attributes, the user-defined values are validated against the

4.4. User-defined requirements 47

official information that was downloaded, the process of which is explained in the previous

section. A certain Value of an attribute can be specified with the Value attribute (lines

3, 8, 9). It is important to note that an attribute can only be assigned a value if it is

a string, number (double and integer) or boolean, such as IfcLabel, IfcLengthMeasure and

IfcBoolean. However, all values are specified as strings by the user, including boolean and

numeric values, so the strings are converted to the corresponding type at runtime. Direct

attributes of entities can be accessed in a single line, such as the criteria for the PredefinedType

specified as ”NOTDEFINED” on line 3.

As described in Chapter 2.1.4 the objectified relationships play a crucial role in each STEP

Physical File. A material can be assigned to any IfcWall with the help of the IfcRelAssoci-

atesMaterial entity. This is an objectified relationship, since this entity defines the relation

between other entities and can be recognized by the ”Rel” part in its name. The inverse at-

tribute HasAssociations can be used to access the objectified relationship from the IfcWall.

The IfcRelAssociatesMaterial in turn has an attribute RelatingMaterial, which can be used

to link a material. In this way, a material can be connected to a wall through the objectified

relationship. This principle applies not only to materials, but also to much of the information

that can be associated with the entities in the IFC schema, such as property sets, quantity

sets, spatial containment, and more.

Figure 4.5: Part of an instance diagram for the Material Layer Set ConceptTemplate (buildingS-
MART International, 2020l)

Listing 4.6 provides an example for the definition of a criteria for a specific material layer

of an IfcWall. XML Attribute elements can be nested within each other, so that attributes

of other entities can be accessed, which are connected by objectified relationships. The path

to access an IfcMaterialLayer from an IfcObjectDefinition, from which IfcWall is derived, is

visually represented in Figure 4.5. Such an instance diagram is officially provided for each

ConceptTemplate. The path to access the material layer is described in an XML format in

Listing 4.6. It starts with an Attribute element that has a Name attribute corresponding to

the inverse attribute of the IfcWall. This attribute in turn is an IfcRelAssociatesMaterial that

has an attribute RelatingMaterial. The resulting connection is described with the Attribute

elements, nested in one another. The Value XML attribute is used to specify the user criteria

in case a certain value of an attribute is required. In this case, certain values are given to

the Name and the LayerThickness of the material layer. An IfcMaterialLayerSet consists

of several IfcMaterialLayer instances, therefore the user requirements for each one must be

checked at program runtime until the correct one is found, if such a material layer exists.

4.4. User-defined requirements 48

4.4.3 Search by RuleID

The previous section introduced the methodology for defining user requirements. Informa-

tion can be retrieved with nested elements, so that complex relationships associated with a

particular entity can be accessed. However, this method tends to become overly complex

with a number of nested elements that must be described correctly in a XML format.

Figure 4.6: Instance diagram for the Material ConceptTemplate (buildingSMART International,
2020m)

This can be seen in Listing 4.7, where an attribute element has been added in addition to the

requirements in Listing 4.6, so that the name of a specific material of a material layer can

be defined. Single materials are represented as an IfcMaterial instances (Figure 4.6). The

user requirements become very complex with many nested elements for each of which the

corresponding closing tag must be available. This could lead to errors made by the user, so a

different approach is proposed, in which the RuleIDs of certain AttributeRules are used (see

section 2.3.3 for more information).

1 <Requirements>

2 <Entity Type="IfcWall">

3 <Attribute Name="HasAssociations">

4 <Attribute Name="RelatingMaterial">

5 <Attribute Name="MaterialLayers">

6 <Attribute Name="Material">

7 <Attribute Name="Name" Value="Brick, Common"/>

8 </Attribute>

9 </Attribute>

10 </Attribute>

11 </Attribute>

12 </Entity>

13 </Requirements>

Listing 4.7: User-defined requirements for filtering IfcWall entities with specific criteria for the

material

The ConceptTemplates for all entities, for which the developed tool can be used, were down-

loaded and stored in a structured way for easy access (see Chapter 4.3). The information

4.4. User-defined requirements 49

provided by them can therefore be used to validate and simplify user requirements. As

described in section 2.3.3, the attributes marked in blue in the instance diagram of a Con-

ceptTemplate have a RuleID defined in the mvdXML in addition to the AttributeName. Since

the mvdXML specification is stored for each concept these RuleIDs can be accessed so that

the path for accessing certain attributes can be taken from the mvdXML file. This allows

the user to specify only the RuleID of a specific attribute without the need to create complex

nested requirements.

1 <Requirements>

2 <Entity Type="IfcWall">

3 <Concept Name="Material Layer Set">

4 <RuleID MaterialName="Brick, Common"/>

5 </Concept>

6 </Entity>

7 </Requirements>

Listing 4.8: User-defined requirements for filtering IfcWall entities with specific criteria for the

material using RuleID

In Listing 4.8 a user-defined criteria is presented to get all IfcWall from an IFC that have a

material with the name ”Brick, Common”, which is accessed with the RuleID MaterialName.

This results in the same requirement as the one described in Listing 4.7. This time instead,

the RuleID of an AttributeRule is used to access it, which is defined in the mvdXML of

the ConceptTemplate. This leads to a significant reduction of the complexity in defining

requirements and thus contributes to the reduction of the errors made by the user. If there are

multiple requirements for a single entity, which is often the case, the reduction in complexity

is exaggerated by the use of RuleIDs. The RuleID element is placed inside a Concept element

that defines the concept template containing this particular RuleID. This information is

provided by bSI for each entity and can be easily accessed by anyone. In Figure 4.6 the

Name attribute of the IfcMaterial entity is marked in blue, which means that there is a

RuleID associated with. This also applies to the LayerThickness, IsVentilated, Name and

Category of the IfcMaterialLayer in Figure 4.5. All of these can be easily accessed with the

RuleID of an AttributeRule.

Using the RuleIDs from the corresponding ConceptTemplate is very useful for defining the

requirements. However, since the RuleID is only provided for a limited number of attributes,

there is also the need to access attributes manually. For the definition of specific criteria,

the complete path with nested elements must therefore still be defined. Furthermore, the

name of an entity attribute is often not identical to its RuleID. For example, the RuleID

of the attribute LayerThickness is the same as the attribute name, but the RuleID of the

IsVentilated is AirGap and can only be accessed with this name (Figure 4.5). However, once

the RuleIDs are known, the user requirements can be created very efficiently.

4.4. User-defined requirements 50

4.4.4 Predefined tags and additional functionalities

The XML elements for the purpose of defining user requirements have predefined tag names

that serve a specific purpose. Each XML file used in the developed program starts with

a Requirements element. This element contains all XML elements corresponding to the

IFC entities that are filtered by the user. An Entity element in turn has a Type attribute

specifying the entity. In Listing 4.9 on line 2, there is an Entity element with a type IfcWall

that contains all requirements for the instances of this IFC entity. The attribute Type can

be arbitrary specified for different entities such as IfcWindow, IfcBeam, IfcSlab etc.

1 <Requirements SurfaceModel="True">

2 <Entity Type="IfcWall" AllAttr="True">

3 <Attribute Name="PredefinedType" Value="NOTDEFINED[or]USERDEFINED"/>

4

5 <Concept Name="Property Sets for Objects">

6 <RuleID PropertyName="ThermalTransmittance" Value="[>]0.1[and][<]0.5"/>

7 <RuleID PropertyName="IsExternal"/>

8 <RuleID PropertyName="LoadBearing" Value="True" />

9 </Concept>

10 </Entity>

11 </Requirements>

Listing 4.9: General user-defined requirements for filtering IfcWall entities

It is also possible to define requirements for an entity that is a supertype of other entities.

For example, the user can request all IfcBuildingElement entities from which the elements

IfcWall, IfcSlab, IfcWindow etc. inherit. Listing 4.10 shows an XML example that is used

to retrieve all building elements that are located on the first floor of the building. However,

it is important to note that this would only work if the IfcBuildingElement is contained in

the spatial structure element IfcBuildingStorey.

1 <Requirements SurfaceModel="False">

2 <Entity Type="IfcBuildingElement" AllAttr="True">

3 <Concept Name= "Spatial Containment">

4 <RuleID SpatialElementName="Level 1"/>

5 </Concept>

6 </Entity>

7 </Requirements>

Listing 4.10: User-defined requirements for all IfcBuildingElement entities that are at Level 1

4.4. User-defined requirements 51

The default RelatingStructure for the IfcWall is IfcBuildingStorey. Nevertheless, if it cannot

be assigned to a building storey, the IfcBuilding is taken as a spatial container or IfcSite

when the element is placed on site (buildingSMART International, 2020i). This applies to

other elements besides IfcWall. Therefore, the quality of the filtered model strongly depends

on the quality of the original IFC model, which is to be expected, since all information is

taken from this model.

To describe the requirements of a certain entity the elements Attribute and Concept are used.

The Attribute element is required to have a Name attribute and may also contain a Value

attribute defining the value of that particular attribute. Both are predefined and must be

specified with these XML attribute names. The Concept element is somewhat different. It

has a Name attribute specifying the concept template for which the requirements are given

and contains RuleID elements. Each RuleID element contains attributes, the name of which

matches a specific RuleID from the ConceptTemplate for a particular attribute, and the given

string in the quotation marks is the value of that attribute.

To be able to define the requirements more flexibly, additional special characters were added.

These allow not only to define a certain value of an attribute, but create the possibility to

specify values in a certain range or to have several values, which all are accepted. For this

purpose the [or], [and], [<] and [>] can be added in any string value (Listing 4.9). The latter

two can be used by the user to search for all values that lie within a certain range, which

can be bigger or smaller than a certain value. The [or] can be placed between values to

indicate that the particular attribute may have one of two values. The [and] on the other

side defines two values, which both must be true for the attribute. These special characters

can be combined for even more flexibility. In Listing 4.9 row 6 specifies a requirement for the

thermal transmittance of the walls, which is in the range of 0.1 to 0.5. This can significantly

improve the requirement capabilities in some cases.

In addition to the Name attribute of the Entity element, a further optional AllAtr attribute

can be defined. It accepts a boolean value which is used to define whether all attributes of

a given entity should be added to the filtered IFC. This is helpful, because by default only

the explicitly defined attributes of the entities are added in the final IFC file to reduce the

information. For example, the result of the requirements defined in Listing 4.10 is a model

that contains only the information for the spatial containment of each entity without the

property and quantity sets, materials, etc. This is very useful for certain tasks that require

only certain information from the entities.

The Requirements element has an optional attribute with the name SurfaceModel. If the

value of this attribute is set to true, the geometry representation of all entity instances is

converted to a surface model, regardless of the initial geometry. This is useful because some

software applications are only able to represent explicit geometries and the triangulated sur-

face model is the most basic model. Therefore, it is useful to be able to modify the geometry

4.4. User-defined requirements 52

representation of a IFC model in addition to reducing the semantic information for easier

work with the resulting file. In general the conversion is only possible in one direction from

implicit to explicit geometry, as described in Chapter 2.1.5. This work is further limited to

the ability to convert only into a triangulated surfaces resulting in a IfcFaceBasedSurface-

Model that contains many single IfcFace elements. Each IfcFace is described by 3 points

with the corresponding coordinates of the triangle.

Figure 4.7: Curved wall with a triangulated surface geometry displayed in FZK Viewer

The triangulated surface model is easy to interpret from a software application and is there-

fore used in this thesis as a general geometry representation into which any model can be

transformed. However, the biggest challenge of this method is the description of curved

surfaces, which cannot be described perfectly, but only approximately. The quality of the

approximation depends on the number of triangles used to describe the geometry. This leads

to a large number of triangles and the resulting file size is generally much larger compared

to a model with implicit geometry. In Figure 4.7 is a wall with a triangulated surface ge-

ometry representation, viewed in the FZK Viewer. As shown, each surface of the wall is

represented with a number of triangles, with the curved side requiring many triangles. If-

cOpenShell (IOS) allows to convert any existing geometry into a triangulated surface using

the tesselate method. Since a curved geometry is approximated with triangles, the number of

triangles and thus the quality of the geometry can be determined as needed. The IOS func-

tion tesselate therefore offers a parameter to define how fine the triangulation is generated.

The smaller values indicate a better approximation. The value of this function argument

is left at 1 by default, but can be added as an attribute to the requirements in the future,

allowing the user to define the quality of the resulting triangulated surface.

4.5. General workflow of the program 53

4.5 General workflow of the program

After the user requirements are formulated in an XML file, the next step is to use them to

filter certain elements from a STEP Physical File. For this purpose the corresponding XML

and SPF files must be selected. It is possible to filter either a single or multiple SPFs, each of

which has a corresponding user-defined XML requirements assigned to it. If the user specifies

multiple IFC files as input, it is important to check whether the elements from each file can

be merged into a single file at the end. This is done by comparing the IFC versions of the

selected SPFs. If these are not the same, the program is terminated, since only elements

from the same IFC version can be merged. In Figure 4.9 is presented a diagram that shows

the general workflow of the program and can be used as a reference for the explanation in

this section.

The IfcProject entity provides important information about the context of all elements con-

tained in the SPF file. This includes the default units required to display the elements

properly. A problem that may occur because of the incorrectly defined units could be that

some elements are displayed much larger than others. For example, if an IFC has millimeters

as its standard units and another uses meters, the elements modeled with the corresponding

units will have representations thousands of times smaller or larger. Therefore, the default

units must be checked, as this could lead to entities that are disproportionately large. The

IfcProject also contains important information about the geometric representation context

for exchange structures (buildingSMART International, 2020n). This data is presented in

an IfcGeometricRepresentationContext entity and contains among others information about

the project coordinate system and the true north definition. Both are the key to the correct

representation of IFC elements with the accurate position and rotation.

Figure 4.8: Definition of the true north direction (buildingSMART International, 2020c)

4.5. General workflow of the program 54

Start Read IFC and
XML files

Create empty IFC

Add IfcProject

For each Entity in
XML

Find all
corresponding
IFC instances

For each instance

For each user
requirement

YesNo Is RuleID
requirement?

Get
corresponding

ConceptTemplate

Extract path to
attribute

Yes

NoIFC instance has
attribute?

Yes

No

Multiple IFCs?

No
Yes

Same units and
coordinate system?

End

Add entity
instance to IFC

Mark relationships
linked to instance

Get user defined
path to attribute

Add objectified
relationships

Save in SPF file
format

End

Yes

No

Same IFC versions?

Figure 4.9: General workflow of the developed tool

4.5. General workflow of the program 55

By definition, the use of one instance of the IfcGeometricRepresentationContext is mandatory

for the representation of the 3D model view and a second instance can optionally be used

for the representation of the 2D plan view (buildingSMART International, 2020c). There is

often a difference between the north of the 3D model and the geographic north direction,

so the TrueNorth attribute can be given by a 2-dimensional direction within the xy-plane of

the project coordinate system (see Figure 4.8). If the TrueNorth is not present, the direction

is set to [0.,1.] by default, which means that the positive Y-axis of the project coordinate

system is equal to the geographic north direction (buildingSMART International, 2020c).

The default units of the project and the data in the IfcGeometricRepresentationContext have

to be the same in each IFC to continue with the program (Figure 4.9).

After checking the general information from the input SPFs, the next step is to create a new

IFC with an empty DATA section. This can be done with the file method from IfcOpenShell

(IOS). The method accepts a string value as an argument that defines the IFC version. The

IFC version, e.g. IFC4, is retrieved from the input SPF file so that the resulting output file

has the same version at the end. If there are multiple IFC files, it is required for all to have

the same version, therefore the resulting SPF has the same version as all input files. The IOS

function file generates the HEADER information for the resulting file together with empty

DATA section where all filtered information will be stored. Such an empty SPF can be saved

in a file with the .ifc extension and contains the data displayed in Listing 4.11 for the IFC4

version.

1 ISO−10303−21;

2 HEADER;

3 FILE DESCRIPTION((’ViewDefinition [CoordinationView]’),’2;1’);

4 FILE NAME(’’,’2020−11−16T17:50:17’,(),(),’IfcOpenShell 0.6.0b0’,’IfcOpenShell 0.6.0b0’,’’);

5 FILE SCHEMA((’IFC4’));

6 ENDSEC;

7 DATA;

8 ENDSEC;

9 END−ISO−10303−21;

Listing 4.11: Empty STEP Physical File created with IfcOpenShell

As already explained, the IfcProject contains important information for the representation

of the IFC elements. If this data is missing in the STEP Physical File, there could be issues

with the size and position of the elements. A problem that has been observed due to missing

IfcProject information is the incorrect representation of IfcAlignment objects in the IFC4x1.

In Figure 4.10 are displayed two screenshots from the FZK Viewer of IfcAlignment instances.

Both represent exactly the same IfcAlignment objects, but are displayed differently. The

right image (b) shows the correct representation, where the IfcProject is present in the SPF.

Image (a) in Figure 4.10, on the other hand, shows the IfcAlignment instances incorrectly

with a significant deviation from the actual geometry. The coordinate system in the FZK

4.5. General workflow of the program 56

viewer is also displayed disproportionately large compared to the IFC objects because of the

undefined default units. This example shows the significance of the IfcProject for each SPF.

Therefore, after creating the empty IFC file, the next step is to add this entity to it.

(a) False IfcAlignment representation with
missing IfcProject

(b) Correct IfcAlignment representation with
IfcProject

Figure 4.10: Multiple IfcAlignment instances displayed with the FZK Viewer

After creating an IFC using the IfcOpenShell file method, entities can be added to the file.

This can be done with the create entity method of the the file class, therefore any file created

with IOS has this function. The entity type to be created is passed to the method as a

string together with the values of the attributes that this entity holds. Listing 4.12 shows

an example of creating a new IFC and adding an IfcProject entity to this entity. As shown,

the entity type is specified with a string value that corresponds to the entity name. The

GlobalId attribute of the entity is additionally specified. All direct attributes of an entity

can be defined in a similar way, but not the inverse attributes, which refer to the objectified

relationships. These must be added additionally and contain the relationship to both the

related and relating entities.

1 ifc = ifcopenshell.file(schema="IFC4")

2 ifc.create_entity("IfcProject", GlobalId=ifcopenshell.guid.new())

3 ifc.write("/path/new.ifc")

Listing 4.12: Creating an empty IFC and adding an IfcProject with defined GlobalId using

IfcOpenShell in Python

The IOS write method can be used at the end to store the information that has been created

in a STEP Physical File. The resulting file contains the sections HEADER and DATA. The

latter contains the information of the newly created entity. The create entity function creates

a single line with the corresponding data. In Listing 4.13 the IfcProject is the only entity,

4.5. General workflow of the program 57

since only one entity has been added to this file. The GlobalId is specified as a string, while

all other attributes are marked with a $ character, which means that they are empty and

therefore have no value.

1 ...

2 DATA;

3 #1=IFCPROJECT(’31voKJKDv4L9sguUguFIne’,$,$,$,$,$,$,$,$);

4 ENDSEC;

5 ...

Listing 4.13: The DATA section of the resulting STEP Physical File from the code in Listing 4.12

The create entity method is very useful, and the use of a string value to define the entity

type also makes it flexible. However, there is another method to add an existing entity from

one IFC file to another. This is done with the IfcOpenShell method add. It requires an IFC

entity as an attribute. The entity can be retrieved from the input SPF file. Entities of a

specific type can be retrieved from an IFC using the IOS by type function. This method is

very convenient because it finds all entity instances of a given type. The entity type is again

passed to the function as a string. Listing 4.14 shows how this method is used. The function

by type returns a list of all instances of this particular type that were found in the IFC model.

Therefore, to obtain a specific instance, it is required to access this particular instance in the

resulting list. After a certain entity instance is present, it can be added to another IFC (line

5).

1 ifc = ifcopenshell.open("/path/existing.ifc")

2 project = ifc.by_type("IfcProject")[0]

3

4 new_ifc = ifcopenshell.file(schema="IFC4")

5 new_ifc.add(project)

6 new_ifc.write("/path/new.ifc")

Listing 4.14: Retrieving an IfcProject from one IFC and adding it to another using IfcOpenShell in

Python

The add method adds not only the specific IFC entity instance with its attributes, but also

the entity instances to which the attributes point. Listing 4.15 shows a part of a SPF to

which only a single IfcProject entity instance from another IFC has been added. As it can

be seen, not only the IfcProject was added, but also numerous other entities. All of these

contain information related to the IfcProject. Line 8 describes the added IfcProject together

with its attributes. Some of the attributes have string values, while others point to other

entities. The IfcGeometricRepresentationContext, discussed earlier, is an entity identified

with the #10 to which the RepresentationContexts attribute of the IfcProject refers. The

4.5. General workflow of the program 58

same applies to the IfcUnitAssignment and the IfcOwnerHistory. All this data can also be

added manually by creating each entity and linking it to the corresponding attribute of other

entities. However, since this work is based on already existing SPF files with information

that can be easily accessed, this work is based on the add method provided by IOS, which

significantly reducing the manual creation of entity instances, which is a complex and error-

prone process. Nevertheless, the objectified relationships associated with a given entity are

not added using this method, as mentioned previously. Therefore, they are added manually,

the process of which is explained later in this chapter.

1 DATA;

2 ...

3 #6=IFCOWNERHISTORY(#3,#5,$,.NOCHANGE.,$,$,$,1605185851);

4 ...

5 #10=IFCGEOMETRICREPRESENTATIONCONTEXT($,’Model’,3,0.01,#8,#9);

6 ...

7 #66=IFCUNITASSIGNMENT((#11,#12,#13,#17,#18,#22,...));

8 #67=IFCPROJECT(’1UTGLFNkX8WgcB1e50fxM$’,#6,’0001’,$,$,’Project Name’,’

Project Status’,(#10),#66);

9 ENDSEC;

10 ...

Listing 4.15: Simplified part of the resulting STEP Physical File after adding IfcProject from an

already existing IFC

After the IfcProject is added to the newly created IFC, the next step is to iterate through

each Entity element specified by the user in the XML file that defines the entity type (Figure

4.9). All entity instances of the defined type are found in the existing IFC file using the IOS

by type method described above. If there are multiple IFCs, this process is performed for

each XML file and the corresponding STEP Physical File. The user-defined requirements for

each entity type are checked against each entity instance. For an instance of particular type

to be approved and added to the new IFC, it must have all attributes with the values defined

by the user.

The user requirements can be defined either with the XML Attribute element specifying the

full path to a nested attribute or by using the RuleID of a certain attribute defined in the

mvdXML of the ConceptTemplate. The information for the concepts of the IFC entities has

been previously downloaded and stored locally for easy access (see Chapter 4.4 for more

information). If the user specifies an attribute path, the corresponding attributes of each

entity instance are checked against it, and if they exist and have the same value, the respective

instance is added to the IFC file. If, on the other hand, a concept with a given RuleID is

defined, the respective ConceptTeplate is accessed and the path to the attribute with the

given RuleID is extracted from the mvdXML file and used to access the attribute in the IFC

4.5. General workflow of the program 59

file. Both methods are implemented in Python using a recursive function which searches

through all elements in the given path. For example, if the user defines a certain value for a

property (see Listing 4.9), the program must check all properties within the property sets. If

no such property is found or no property value is equal to the user-defined value, the entity

instance is not further examined. It is sufficient that only one of the user criteria is not met

by a given entity to discard it as a correctly found item and the program continues with the

next entity instance of that type.

IfcOpenShell adds an entity together with the value of its direct attributes as shown previ-

ously. This includes the geometry representation and the object placement of each entity that

has these. The most common object placement is the local placement as described in Chapter

2.1.6. It defines a relative placement of an entity in relation to another object. However,

it depends on the coordinate system defined in the geometric representation context in the

IfcProject, since the IfcLocalPlacement entities are related to each other in a nested structure

until the last one is placed within the world coordinate system defined in the IfcProject. If

the user requires a surface model, the geometry representation of the existing IFC entity is

converted to a triangulated surface before it is added to the new IFC (see Chapter 4.4.4).

Furthermore, if the attribute AllAttr of the XML Entity element is provided with a true

value by the user, the inverse attribute values are added in addition to the direct attributes

of an entity. The inverse attributes point to objectified relationship entities.

As already explained, unlike direct attributes, the inverse attributes of an entity instance

are not directly added to the new IFC using the IOS method add. The inverse attributes

are linked to an objectified relationship entity that defines the relationship between other

entities (see Chapter 2.1.4). For example, the IfcRelContainedInSpatialStructure objectified

relationship is used to assign elements to a certain level of the spatial project structure

(buildingSMART International, 2020o). It has an attribute RelatedElements that refers to all

entity instances in the entire IFC model that are related to this objectified relationship. The

attribute RelatingStructure points to the spatial structure that contains all RelatedElements.

All these related elements have an inverse attribute ContainedInStructure, which can be used

to access the spatial containment of a certain entity. All objectified relationships function in

a similar way, having ”Related” or ”Relating” in their attribute names, which refer to the

corresponding entities.

Listing 4.16 introduces a part of a SPFconsisting of an IfcWall contained in an IfcBuild-

ingStorey. These two entities are connected with the objectified relationship IfcRelCon-

tainedInSpatialStructure. Neither entity has information about the other, so the objectified

relationship is the only connection between them. In this case, the wall is completely in-

dependent of the building storey if the relationship is missing. This is important because

this data cannot be accessed directly from a specific entity, so the receiving software must

correctly read all complex relationships provided in a SPF. The IfcRelContainedInSpatial-

Structure refers to both the IfcWall (#207) and the IfcBuildingStorey (#151), which are the

4.5. General workflow of the program 60

RelatedElements and the RelatingStructure respectively. As explained, it is allowed to have

multiple RelatingElements, which is often the case. As shown, the IfcLocalPlacement of the

IfcWall (#188) places the entity instance with certain position (#185) relative to the place-

ment of the IfcBuildingStorey. This is recognized by the placement of both the wall and the

building storey pointing to the IfcLocalPlacement on line 10 (#149). This in turn is placed

relative to the IfcCartesianPoint on line 3 (#6), which is also used to define the world co-

ordinate system in the IfcGeometricRepresentationContext. Therefore, all entity placements

depend on the coordinate system defined in the IfcProject, as explained above.

1 DATA;

2 ...

3 #6= IFCCARTESIANPOINT((0.,0.,0.));

4 ...

5 #111= IFCAXIS2PLACEMENT3D(#6,$,$);

6 #112= IFCDIRECTION((6.12303176911189E-17,1.));

7 #114= IFCGEOMETRICREPRESENTATIONCONTEXT($,’Model’,3,0.01,#111,#112);

8 ...

9 #148= IFCAXIS2PLACEMENT3D(#6,$,$);

10 #149= IFCLOCALPLACEMENT(#33,#148);

11 #151= IFCBUILDINGSTOREY(’0svl7n0uLAchjkoN2YKaIo’,#42,’Level 1’,$,’Level:8mm

Head’,#149,$,’Level 1’,.ELEMENT.,0.);

12 ...

13 #342= IFCRELCONTAINEDINSPATIALSTRUCTURE(’3Zu5Bv0LOHrPC10066FoQQ’,#42,$,$

,(#207),#151);

14 ...

15 #185= IFCCARTESIANPOINT((-6908.90773634549,-206.816459289012,0.));

16 #187= IFCAXIS2PLACEMENT3D(#185,$,$);

17 #188= IFCLOCALPLACEMENT(#149,#187);

18 ...

19 #207= IFCWALL(’09h4GnkEf9SO3lQDx1U0PW’,#42,’Basic Wall:Generic - 200mm

:346584’,$,’Basic Wall:Generic - 200mm’,#188,#202,’346584’,.NOTDEFINED.);

20 ...

21 ENDSEC;

22 ...

Listing 4.16: Simplified part of STEP Physical File showing an objectified relationship and local

placement

An objectified relationship can be added to an IFC file in the same way as any entity using

the IOS method add. However, this should not be performed directly as IfcOpenShell also

adds all ”Related” and ”Relating” entities. For example, if an IfcWall is contained in an

4.5. General workflow of the program 61

IfcBuildingStorey and the user requests this wall together with its spatial containment, all

other elements contained in this spatial structure element are also added. This will result

in elements being added to the resulting IFC file that are not requested by the user. As

the purpose of this work is to filter only certain elements, this method cannot be used,

since unwanted entities are added automatically. Therefore, after adding a particular entity

instance to the new IFC, the GlobalIds of the objectified relationships associated with this

instance are stored in a Python dictionary. The keys of this dictionary are the GlobalIds of

the objectified relationship entities, where the value for each key is a list of the GlobalIds

of the elements that are related to this particular entity. The GlobalId is used to uniquely

identify an IFC object (see Chapter 2.1.3). IfcOpenShell provides a method by id that finds

a specific entity instance from the entire IFC model. After the program has checked all

entity instances of the types given by the user and the corresponding entities are added to

the newly created IFC, the required objectified relationships are also added. This is done by

getting each objectified relationship entity by its GlobalId, which is stored in the dictionary

explained above, and by changing its ”Related” attribute to contain only the entities that

are filtered. After only the filtered entities are left, the objectified relationship is added

to the new IFC. This automatically adds the entities linked to the ”Related” attribute.

However, this is necessary because the objectified relationship only connects other entities

and does not contain the actual data of the property itself. For example, by adding the entity

IfcRelContainedInSpatialStructure, the RelatingStructure, such as the IfcSite, IfcBuilding and

IfcBuildingStorey, is also included in the resulting IFC.

In conclusion, the user defines requirements in an XML file format that specify which elements

to filter from one or more IFC files. These requirements are used to define the properties

that each entity type should have at the end, which can significantly reduce the complexity

and thus the file size of the resulting IFC file. The corresponding entity instances from the

input files are checked against the user criteria.This can be seen as a validation process,

since the IFC entities must have the attributes and values that are defined by the user. All

entity instances that meet the criteria are added to a new IFC together with the required

objectified relationships that are added additionally at the end of the process. The ultimate

goal is to create a new valid IFC model containing only a part of the initial data. After the

required information is added to the new IFC, it is saved in a .ifc file format, so that it can

be opened by any program that supports this format. In addition, another IFC file is created

in the process, which contains all elements that do not meet the user criteria. This is useful

to validate the IFC file and get a result only of the elements that do not have the required

information. Such elements may be unsuitable for certain tasks, since they do not provide

the necessary data.

4.6. Retrieving the IFC models from a CDE with a GUI 62

4.6 Retrieving the IFC models from a CDE with a GUI

4.6.1 Overview

A Common Data Environment (CDE) is a BIM environment for storing and managing in-

formation in a central repository. With huge amounts of digital data being created and

shared during the lifecycle of a project, which is constantly increasing over the years, CDE

platforms are becoming increasingly common worldwide. A CDE aims to improve collabora-

tion between project members, reduce errors and avoid duplication of data (McPartland, R.,

2016). Project participants retrieve input data from the CDE and in turn store their output

data in it (Borrmann et al., 2018). Each user has a specific access level that gives him or

her permission to interact with certain information. There are a number of CDE platforms,

with Autodesk BIM360 being one of the most popular. The BIM360 Docs can be used to

manage all types of documents and is used in this paper to demonstrate the workflow of the

developed tool.

BIM360 provides a web application that project participants can use in a web browser.

However, to access and use the data stored in the CDE with the custom tool developed for

this work, the Autodesk Forge APIs and services are used (Autodesk Forge, 2020a). An

API allows to programmatically connect with a separate software component or resource

and thus provides the possibility to create interaction between multiple applications. The

BIM360 platform can be accessed via RESTful APIs by using HTTP requests to manage

the data. The data can be uploaded, modified and retrieved using GET, POST, DELETE,

etc. request methods. These requests can be executed using the Python library requests and

return a response containing the required information (see Chapter 4.3.3).

Figure 4.11: Authentication process for retrieving a 3-Legged Token (Autodesk Forge, 2020b)

4.6. Retrieving the IFC models from a CDE with a GUI 63

To retrieve the information stored in BIM360 Docs to which a particular user has access via

the Forge APIs, a 3-legged token must be obtained, which is used to verify the user’s identity.

The process for this is illustrated in Figure 4.11. The first step is to open the web browser

and redirect the user to the authorization flow. The user must first log in using his or her

credentials. After a successful login, the user will be asked to give the explicit consent to

the requested scopes, which are explained in more detail in the following section. The next

step is to receive the authorization code provided in a callback URL to which the user is

redirected. In the final step this code is exchanged for an access token that can be used in

the developed tool to access the CDE information. This complex authorization process is

required to validate the identity of the user and to ensure the security of the data stored in

the BIM360 platform.

4.6.2 Implementation with a GUI

A Graphical User Interface (GUI) is essential for any software application to allow the user

to interact with it without the need for programming knowledge. Therefore a simple GUI

was developed for this work, which allows the user to visually navigate and interact with the

provided information. After the program has been started, the user can choose between two

options: get files from BIM360 Docs or get local files. The second option allows the user to

select IFC files that are stored locally on the device. For each chosen IFC file, a corresponding

XML file must also be selected, in which the user requirements are defined. On the other

hand, if the user chooses to obtain the IFC files from BIM360, the program automatically

opens the default web browser and requests the user’s credentials to log in. After a successful

login, the scopes requested by the program must be accepted by the user (explained in the

previous section).

Figure 4.12: Authorization flow in the web browser

4.6. Retrieving the IFC models from a CDE with a GUI 64

Since the developed tool only requires access to the IFC files from the CDE without modifying

them, the program only requests permission to read the data (Figure 4.12). The required

permissions are given as a string to the HTTP request with the available values for the data

being: data:read, data:write, data:create, data:search.

After the user has allowed the program to view the data from BIM360, the developed GUI

can be used for visual interaction with the data in the CDE (Figure 4.13). The GUI is created

using the Tkinter Python library, which is the most commonly used library for this purpose

as it provides a fast and easy way to create GUI applications. BIM360 consists of hubs

containing projects, which in turn have folder structures to each of which user permissions

are assigned. Furthermore, the folder structures for each project are divided into Plans and

Project Files. Files stored in BIM360 can be downloaded via the API only if they are in the

Project Files directory. Therefore, all IFC files must be saved in this folder in order to access

them. For simplicity, the location of the files must always be in the root Project Files folder

and the nested folder structure cannot be accessed.

Figure 4.13: GUI for accessing files from BIM360

Figure 4.13 displays the Graphical User Interface for the workflow of the program for getting

the IFC files from the BIM360 Docs. The first step is to select the BIM360 hub from the

drop-down menu (1). This menu automatically shows all hubs available for this user that have

been retrieved with the Forge APIs. Once the hub has been selected, the project containing

the files can be chosen, which again is done from a drop-down menu with all possible values

(2). Next, all available IFC files in the root Project Files folder are displayed (3). The user

4.6. Retrieving the IFC models from a CDE with a GUI 65

can select one or more files from the list and click the Choose Files button (4). This will

automatically download the required information and prepare it for the filtering and merging

process. For each selected IFC file, a corresponding XML file containing the user-defined

requirements must be chosen (5). If only one file is selected, the program filters it and creates

a new valid IFC model, which is stored locally on the device. On the other hand, if more

than one file is selected, the program filters and merges them together into a single IFC file

(6). Using the Forge APIs to access the data from BIM360 is an essential component as it

allows the user to retrieve the data and transform it in a single program without having to

manually download and using it in another software.

66

Chapter 5

Case study

5.1 Overview

The ability of the developed tool to handle typical use case scenarios is evaluated using two

different IFC files. For each IFC, a corresponding XML file was prepared to create specific

user-defined requirements for filtering particular elements. The process of the program is the

same in each case, retrieving the input SPF files, automatically creating a new valid IFC and

adding the requested elements along with the specific properties assigned by the user.

Figure 5.1: Used example IFC model of a 3 storey building

5.1. Overview 67

The workflow of the developed program is described in detail in chapter 4.5 and in this

chapter only the initial models, the XML requirements and the final result are shown. The

FZK Viewer is used for all IFC models to open and visually display the initial and resulting

elements. The FZK Viewer has established itself as the independent open source viewer for

IFC files and is therefore the choice for this work to correctly represent both the geometry

and the semantics of the IFC entities.

The first IFC model used to demonstrate the functionalities of the developed tool is a model

of simple three-story building. It was created using Autodesk Revit 2021 and exported to

IFC4 using the Reference View, which is an official Model View Definition (MVD) from

buildingSMART International (see Chapter 2.3). The IFC model is a basic architectural

model and contains walls, slabs, columns, windows, railings and a roof (Figure 5.1). The

program developed for this work can generally be used for much more complex models.

However, for a better visual representation of the elements, a simple model was chosen,

which is sufficient to show the capabilities of the tool.

The second model is an IFC4x1 model of a long railroad line consisting of more than 5000

individual elements representing the railroad sleepers (Figure 5.2). In addition, the catenary

masts are arranged in a certain distance from each other along the line (Figure 5.2 (b)).

The elements are placed linearly along the IfcAlignment entity instances. Such an IFC

model often turns out to be very large and there might be difficulties in opening it. The

FZK Viewer requires more than 20 minutes to open the corresponding SPF. Therefore,

it is highly beneficial to have the possibility to filter and extract certain elements, thus

reducing the overall size of the file and making the collaboration between project participants

more convenient. The next section provides examples of user requirements and the resulting

models.

(a) Full track (b) Zoomed in part of the model

Figure 5.2: Used example IFC model of a railway line

5.2. Filtering and merging using user-defined requirements 68

5.2 Filtering and merging using user-defined requirements

First, the model displayed in Figure 5.1 is filtered to extract only the elements of a certain

building storey. For this purpose, the XML file with the criteria defined in Listing 5.1 is

used. It is requested by the user to retrieve all IfcBuildingElement entity instances that can

be found in the spatial element with name ”Level 2”. This is done using the RuleID of the

specific attribute from the corresponding ConceptTemplate (see Chapter 4.4). Therefore the

program finds all building elements contained in the requested building storey and adds them

to a new IFC model. However, this only works if the elements are actually contained in a

building storey and not the building itself or the site (see Chapter 4.4.4). Furthermore, the

attribute AllAttr of the Entity element is set to true. As a result, all attributes including the

inverse attributes together with the objectified relationships of the original entity instances

are also added to the resulting model, such as the associated materials, property sets, etc.

1 <Requirements SurfaceModel="False">

2 <Entity Type="IfcBuildingElement" AllAttr="True">

3 <Concept Name= "Spatial Containment">

4 <RuleID SpatialElementName="Level 2"/>

5 </Concept>

6 </Entity>

7 </Requirements>

Listing 5.1: User-defined requirements for filtering IfcBuildingElement entity instances

The developed tool can be used several times for the same input IFC model with different filter

criteria, whereby each time a new valid STEP Physical File (SPF) is created, which contains

only the requested elements. In Figure 5.3 2 IFC models are displayed. Both contain elements

extracted from the model in Figure 5.1. The first one (a) contains all IfcBuildingElement

entities that are placed on the second floor, while the second (b) contains the same types of

elements but those located on the third floor of the building. As it is displayed, all building

elements, including the walls, the doors, the windows etc., are present and are correctly

represented in the newly created SPFs. Both IFC models are the result of using the developed

tool for the same initial model with the requirements in Listing 5.1, the only difference being

the value of the SpatialElementName. After the filtering process, the resulting IFC files

are stored in the BIM360 Docs platform, from where they can be automatically accessed as

described in chapter 4.6.2. The user can connect to the BIM360 account and automatically

retrieve the IFC files using the developed Graphical User Interface (GUI). The user can select

the hub and the corresponding project from the BIM360 in which the IFC files are stored.

The available IFC models within the chosen project are presented to the user directly within

the GUI for filtering and merging (Figure 4.13).

5.2. Filtering and merging using user-defined requirements 69

(a) Elements contained in the spatial element
with name ”Level 2”

(b) Elements contained in the spatial element
with name ”Level 3”

Figure 5.3: The resulting models after using the tool with the requirements in Listing 5.1

1 <Requirements SurfaceModel="False">

2 <Entity Type="IfcWall">

3 <Concept Name="Property Sets for Objects" >

4 <RuleID PropertyName="ThermalTransmittance" Value="[<]0.2"/>

5 <RuleID PropertyName="LoadBearing" Value="True" />

6 </Concept>

7 </Entity>

8 <Entity Type="IfcSlab"/>

9 </Requirements>

Listing 5.2: User-defined requirements for retrieving the load-bearing walls and the slabs

The models depicted in Figure 5.3 are further filtered and merged together to demonstrate the

capabilities of the developed tool. Both models are stored in the BIM360 and automatically

retrieved with the help of the Forge APIs as described in Chapter 4.6. Only the walls that

are load-bearing and have a thermal transmittance below 0.2 are requested by the user. In

addition, all slabs are also to be included in the final IFC. These requirements are presented

in Listing 5.2. As shown, the user criteria for the IfcWall entity instances are defined using

the ConceptTemplate for the property sets and the individual properties are accessed with

the corresponding RuleIDs. The XML element Entity for the IfcSlab entities has no sub-

elements, which means that all slabs from the original model are added to the resulting

SPF. The outcome of this is displayed in Figure 5.4. Elements from both original models

are contained in the resulting IFC file. However, only the entities requested by the user are

included. Therefore, there are no windows, doors and railings, but only the load-bearing walls

and the slabs. All elements are represented correctly with an accurate position. Furthermore,

all entities have only the properties defined in the user requirements. The result is a model

5.2. Filtering and merging using user-defined requirements 70

with reduced information that is easier to handle for further collaboration and also faster to

interpret by many applications. Multiple IFC models, stored in BIM360 Docs, are merged

into a single final model that contains only the requested data.

Figure 5.4: Resulting model after filtering and merging the models depicted in Figure in 5.3 with
the requirements in Listing 5.2

Next, the IFC model of the railway line shown in Figure 5.2 is filtered. For this purpose, the

requirements presented in Listing 5.3 are used. All of the railroad sleepers are represented

as IfcBuildingElementProxy entity instances positioned with an IfcLinearPlacement. The

attribute DistanceAlong shows the distance along the basis curve, in this case an IfcAlignment

curve (buildingSMART International, 2020p). The requirements in Listing 5.3 specify the

railroad sleepers and catenary masts that are located between 300 and 500 kilometers along

the curve (line 5). In this case, however, no ConceptTemplate can be used to access the

attribute and both the general type of the IFC entity describing the elements and the object

placement must be known to the user to define the correct requirements. This requires a

good understanding of the IFC schema and become quite complex for some attributes, but

buildingSMART International provides good documentation defining the different entities

and attributes as described in Chapter 2. The IfcAlignment entity instances are also added

to the resulting file as they are also requested by the user in the XML file (line 9). As

previously explained, the corresponding elements are filtered and added to a new valid SPF

that is stored locally so that it can be easily further used.

5.2. Filtering and merging using user-defined requirements 71

1 <Requirements SurfaceModel="True">

2 <Entity Type="IfcBuildingElementProxy">

3 <Attribute Name="ObjectPlacement">

4 <Attribute Name="Distance">

5 <Attribute Name="DistanceAlong" Value="[>]300[and][<]500" />

6 </Attribute>

7 </Attribute>

8 </Entity>

9 <Entity Type="IfcAlignment"/>

10 </Requirements>

Listing 5.3: User-defined requirements for retrieving elements in a specific distance range along a

curve

The SurfaceModel attribute of the Requirements element is set to true (Listing 5.3 line 1).

This converts all geometry representations of the entities into a surface model as described

in chapter 4.4.4. This results in a model that is generally larger in than a model with an

implicit geometry like the Constructive Solid Geometry (CSG), but is easier to interpret and

more commonly accepted by software applications. As already explained, the FZK Viewer

requires more than 20 minutes to open the complete IFC model shown in Figure 5.2. Only by

converting the geometry of all elements into a surface geometry, the time to open the same

data is significantly reduced to less than one minute. In combination with filtering specific

elements, this makes the final IFC more convenient for future use. The IFC model resulting

from the requirements in Listing 5.3 is displayed in Figure 5.5. As shown, only a part of the

elements along the IfcAlignment are contained in the new model corresponding to the filtered

elements between the 300 and 500 kilometers along the curve.

Figure 5.5: Resulting filtered model of the railway line

72

Chapter 6

Discussion

6.1 Summary

The tool developed in this work is capable of successfully filtering existing IFC models and

creating new models that contain only the information requested by the user. The user can

create requirements in an XML format that is both human and machine readable. These

requirements are used to define certain entity types and their attributes that must be present

in the original STEP Physical File (SPF) in order to be added to the resulting model. Due to

the complex structure of the IFC schema, which uses objectified relationships to link entities

with each other, access to certain properties of an IFC entity can become complicated. As

a result, the user needs to have a thorough understanding of the IFC schema in order to

define the correct attribute path that needs to be accessed. Therefore, the official data

provided by buildingSMART International is used to reduce the complexity of this process.

For this purpose, the ConceptTemplates available for the different IFC units are automatically

accessed and downloaded, so that the information contained in them can be used within the

developed application to validate the user criteria. The RuleIDs, which some attributes have

been given in the corresponding ConceptTemplate, can be used by the user to define the

requirements in a more simplified way.

An IFC model can not only be filtered with the developed tool, but the elements from multi-

ple models can also be merged into a single IFC file. The models stored in a Common Data

Environment (CDE) - Autodesk BIM360 Docs is used in this work - can be automatically

accessed through the developed Graphical User Interface (GUI). This is a significant part of

the program, as it allows the user to retrieve and transform data that is not locally avail-

able in a single stand-alone application designed specifically for this purpose. The geometry

representation of the resulting IFC entity instances can also be converted independently of

the initial geometry into a triangulated surface model that is easy to interpret by software

applications and therefore is widely accepted. Therefore, the developed application allows

6.2. Limitations 73

filtering and merging of multiple IFC models with user-defined requirements as well as trans-

formation of the geometry representation of the resulting model. This is achieved using the

Python programming language. The IfcOpenShell (IOS) library is used to work with the

SPFs, which provides everything required to access and modify existing IFC models and to

create new models. The Autodesk Forge APIs and services are also used to automatically

retrieve the data from BIM360 within the developed tool.

6.2 Limitations

The developed tool can be used for general custom requirements to create new valid IFC

files that contain a part of the information found in the original models. However, there

are some limitations associated with using the tool. In general, the user needs to have

a good understanding of the IFC schema, which is a complex subject at first if there is

no prior knowledge. The goal of this thesis is to reduce the required experience with the

Industry Foundation Classes (IFC) by providing simplified access to the attributes of entities

using the RuleIDs defined in the ConceptTemplates, whose information is easily accessible to

everyone, since it is officially provided by buildingSMART International. However, there are

only a limited number of attributes that can be accessed with RuleIDs, which means that

the full path to particular attributes of an entity still has to be defined manually by the user.

Since this work is aimed at filtering and merging existing IFC files, another critical factor

is the quality of the entered IFC models and the user’s knowledge of how the elements are

exported. In addition, modeling software applications are always certified for the import or

export of IFC models against a specific Model View Definition (MVD) that contains only

a portion of the original model data, so there is some data loss when using IFC models.

The geometry representation of the resulting IFC file can be converted into a triangulation

surface model. However, it is important to note that in general it is only possible to correctly

convert implicit into explicit geometry. This work is further limited to the ability to convert

any geometry only into the explicit triangulated surface model. Therefore, either the original

geometry representation of the IFC model is left or all element geometries are converted into

a triangulated surface model. It is also allowed to merge IFC files only if they all share the

same version and have the same default units and coordinate system.

IfcWall IfcOpeningElement

IfcRelVoidsElement

(INV) HasOpenings

RelatedOpeningElementRelatingBuildingElement

IfcRelFillsElement

IfcWindow

(INV) HasFillings (INV) FillsVoids

RelatingOpeningElement RelatedBuildingElement

(INV) VoidsElements

Figure 6.1: Wall-Opening-Window relationship

6.3. Conclusion and future outlook 74

The relationship between the entities is an essential part of any IFC model. However, when

merging multiple files, it is not possible to establish relationships between the entities from

different IFC files, as these cannot be described by the user. The geometry and position of the

entities are still correctly represented relative to each other, but the semantic relationship is

missing. Therefore, it is not possible to create requirements, for example to retrieve the walls

from one IFC model and the windows from another. These two elements are connected by a

middle entity that defines the opening in the wall (Figure 6.1). Both the wall and the window

are connected to this middle element by an objectified relationship, the IfcRelVoidsElement

and the IfcRelFillsElement respectively.

6.3 Conclusion and future outlook

The developed prototype shows promising results in filtering and merging IFC models. A

user can define requirements in an XML format to retrieve specific elements from a model.

However, this is only a prototype and as explained in the previous section, it is associated

with certain limitations. To facilitate the process of requirements creation by the user, the

RuleIDs of attributes can be used. There are certain predefined ConceptTemplates that have

been officially created by buildingSMART International. These describe reusable concepts

that can be applied to a specific IFC entity. Some attributes in the ConceptTemplates, which

are described in a mvdXML format, are given a RuleID. However, not all attributes have a

RuleID, which restricts the choice for the user. Furthermore, there is a limited number of

ConceptTemplates that describe only a part of the possible properties of an entity that can

be accessed. Therefore the user still has to define the full path to certain attributes manually,

which requires a deep understanding of the IFC schema and is a time-consuming task. A

possible solution for this would be that bSI provides a more thorough ConceptTemplate

definitions with available RuleIDs for most of the available attributes that can be accessed

for a given entity.

This thesis provides an approach for merging multiple IFC models into a single valid STEP

Physical File. The original files can be stored in a Common Data Environment (CDE) and

automatically retrieved. For this purpose the BIM360 Docs platform is used to demonstrate

the process. However, this requires the use of the Autodesk Forge APIs and services to connect

to the CDE and automatically retrieve the data so that the user can access it directly in the

developed tool. This is a complex process and in the future the functionality of filtering and

merging IFC models could be built-in directly into the CDE platforms to make it easier for

users to access and use. In general this is possible, but the biggest problem is how the user

defines the required information from a particular model. This always requires at least some

understanding of the IFC schema, which is a complex issue. The process could be simplified

by a GUI designed specifically for this purpose, which allows the user to select the desired

information in a user-friendly way.

BIBLIOGRAPHY 75

Bibliography

Adachi, Y. (2003). Overview of Partial Model Query Language. In proceedings of the 10th

ISPE International Conference on Concurrent Engineering (ISPE CE 2003), 549-555.

Autodesk Forge (2020a). A cloud-based developer platform from Autodesk. https://forge.

autodesk.com/, accessed on 2020-11-25.

Autodesk Forge (2020b). Get a 3-Legged Token with Authorization Code Grant. https:

//forge.autodesk.com/en/docs/oauth/v2/tutorials/get-3-legged-token/, accessed on 2020-

11-25.

Autodesk, Inc. (2018). Revit IFC manual. Detailed instructons for handling IFC files. https://

damassets.autodesk.net/content/dam/autodesk/draftr/2528/180213 IFC Handbuch.pdf,

accessed on 2020-10-30.

Azhar, Salman. (2011). Building information modeling (BIM): Trends, benefits, risks, and

challenges for the AEC industry. Leadership and management in engineering, 11(3), 241-

252.

Baldwin, M. (2019). Der BIM-Manager: Praktische Anleitung für das BIM-

Projektmanagement. Beuth Verlag.

Baumgärtel, K., Pirnbaum, S., Pruvost, H., & Scherer, R. J. (2016). Automatic BIM filtering

using Model View Definitions. In CIB W78 conference, Brisbane, Australia.

Bew, M., & Richards, M. (2011). BIM maturity model, strategy paper for the government

construction client group. London: Department of Business, Innovation and Skills. https:

//www.cdbb.cam.ac.uk/Resources/ResoucePublications/BISBIMstrategyReport.pdf, ac-

cessed on 2020-10-22.

BIM Supporters. The IFC Schema basics. https://app.bimsupporters.com/courses/ifc/

lessons/the-ifc-schema-basics/, accessed on 2020-10-18.

Borrmann, André; König, Markus; Koch, Christian; Beetz, Jakob (2018) Building Informa-

tion Modeling: Technology Foundations and Industry Practice. Cham: Springer Interna-

tional Publishing.

https://forge.autodesk.com/
https://forge.autodesk.com/
https://forge.autodesk.com/en/docs/oauth/v2/tutorials/get-3-legged-token/
https://forge.autodesk.com/en/docs/oauth/v2/tutorials/get-3-legged-token/
https://damassets.autodesk.net/content/dam/autodesk/draftr/2528/180213_IFC_Handbuch.pdf
https://damassets.autodesk.net/content/dam/autodesk/draftr/2528/180213_IFC_Handbuch.pdf
https://www.cdbb.cam.ac.uk/Resources/ResoucePublications/BISBIMstrategyReport.pdf
https://www.cdbb.cam.ac.uk/Resources/ResoucePublications/BISBIMstrategyReport.pdf
https://app.bimsupporters.com/courses/ifc/lessons/the-ifc-schema-basics/
https://app.bimsupporters.com/courses/ifc/lessons/the-ifc-schema-basics/

BIBLIOGRAPHY 76

Buchele, Suzanne & Crawford, Richard. (2004). Three-dimensional halfspace constructive

solid geometry tree construction from implicit boundary representations. Computer-Aided

Design. 36. 1063-1073. 10.1016/j.cad.2004.01.006.

buildingSMART GitHub (2020). IfcDoc. https://github.com/buildingSMART/ifcdoc, ac-

cessed on 2020-11-09.

buildingSMART International (2020a). Introduction. https://standards.buildingsmart.org/

IFC/RELEASE/IFC4 1/FINAL/HTML/introduction.htm, accessed on 2020-10-15.

buildingSMART International (2020b). IfcObject. https://standards.buildingsmart.org/IFC/

RELEASE/IFC4 1/FINAL/HTML/schema/ifckernel/lexical/ifcobject.htm, accessed on

2020-10-16.

buildingSMART International (2020c). IfcGeometricRepresentationItem. https:

//standards.buildingsmart.org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/

ifcgeometryresource/lexical/ifcgeometricrepresentationitem.htm, accessed on 2020-10-

18.

buildingSMART International (2020d). IfcObjectPlacement. https://

standards.buildingsmart.org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/

ifcgeometricconstraintresource/lexical/ifcobjectplacement.htm, accessed on 2020-10-

19.

buildingSMART International (2020e). IfcLocalPlacement. https://standards.buildingsmart.

org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/ifcgeometricconstraintresource/

lexical/ifclocalplacement.htm, accessed on 2020-10-19.

buildingSMART International (2020f). Model View Definition (MVD) - An Introduction.

https://technical.buildingsmart.org/standards/ifc/mvd/, accessed on 2020-10-20.

buildingSMART International (2020g). MVD Database. https://technical.buildingsmart.org/

standards/ifc/mvd/mvd-database/, accessed on 2020-10-20.

buildingSMART International (2020h). Index of /IFC/RELEASE. https://standards.

buildingsmart.org/IFC/RELEASE/, accessed on 2020-11-07.

buildingSMART International (2020i). IfcWall. https://standards.buildingsmart.org/IFC/

RELEASE/IFC4 1/FINAL/HTML/schema/ifcsharedbldgelements/lexical/ifcwall.htm,

accessed on 2020-10-27.

buildingSMART International (2020j). IfcRoot. https://standards.buildingsmart.org/IFC/

RELEASE/IFC4 1/FINAL/HTML/schema/ifckernel/lexical/ifcroot.htm, accessed on

2020-10-13.

https://github.com/buildingSMART/ifcdoc
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/introduction.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/introduction.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifckernel/lexical/ifcobject.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifckernel/lexical/ifcobject.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifcgeometricrepresentationitem.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifcgeometricrepresentationitem.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifcgeometricrepresentationitem.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcobjectplacement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcobjectplacement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcobjectplacement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifclocalplacement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifclocalplacement.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifclocalplacement.htm
https://technical.buildingsmart.org/standards/ifc/mvd/
https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/
https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/
https://standards.buildingsmart.org/IFC/RELEASE/
https://standards.buildingsmart.org/IFC/RELEASE/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcsharedbldgelements/lexical/ifcwall.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcsharedbldgelements/lexical/ifcwall.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifckernel/lexical/ifcroot.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifckernel/lexical/ifcroot.htm

BIBLIOGRAPHY 77

buildingSMART International (2020k). IfcDoc. https://www.buildingsmart.org/standards/

groups/ifcdoc/, accessed on 2020-10-31.

buildingSMART International (2020l). Material Layer Set. https://standards.buildingsmart.

org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/templates/material-layer-set.htm,

accessed on 2020-11-10.

buildingSMART International (2020m). Material. https://standards.buildingsmart.org/IFC/

RELEASE/IFC4 1/FINAL/HTML/schema/templates/material.htm, accessed on 2020-11-

11.

buildingSMART International (2020n). IfcProject. https://standards.buildingsmart.org/

IFC/RELEASE/IFC4 1/FINAL/HTML/schema/ifckernel/lexical/ifcproject.htm, ac-

cessed on 2020-11-16.

buildingSMART International (2020o). IfcRelContainedInSpatialStructure. https:

//standards.buildingsmart.org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/

ifcproductextension/lexical/ifcrelcontainedinspatialstructure.htm, accessed on 2020-11-17.

buildingSMART International (2020p). IfcDistanceExpression. https://standards.

buildingsmart.org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/ifcgeometryresource/

lexical/ifcdistanceexpression.htm, accessed on 2020-11-29.

Chipman, Tim; Liebich, Thomas; Weise, Matthias (2016). mvdXML specification 1.1. Spec-

ification of a standardized format to define and exchange Model View Definitions with

Exchange Requirements and Validation Rules.

Daum, S., Borrmann, A., Langenhan, C., & Petzold, F. (2014). Automated generation of

building fingerprints using a spatio-semantic query language for building information mod-

els. eWork and eBusiness in Architecture, Engineering and Construction: ECPPM, 2014,

87.

Daum, S., & Borrmann, A. (2014). Processing of topological BIM queries using boundary

representation based methods. Advanced Engineering Informatics, 28(4), 272-286.

Gergana Popgavrilova (2020). Assuring building information quality for building analytics

by translating use cases of BIM@SRE standard into the MVD format. Master’s thesis.

TUM Department of Civil, Geo and Environmental Engineering. Chair of Computational

Modeling and Simulation.

Hietanen, J., & Final, S. (2006). IFC model view definition format. International Alliance for

Interoperability, 1-29.

IfcOpenShell (2020a). The open source ifc toolkit and geometry engine. http://ifcopenshell.

org/, accessed on 2020-11-02.

https://www.buildingsmart.org/standards/groups/ifcdoc/
https://www.buildingsmart.org/standards/groups/ifcdoc/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/templates/material-layer-set.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/templates/material-layer-set.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/templates/material.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/templates/material.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifckernel/lexical/ifcproject.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifckernel/lexical/ifcproject.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcproductextension/lexical/ifcrelcontainedinspatialstructure.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcproductextension/lexical/ifcrelcontainedinspatialstructure.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcproductextension/lexical/ifcrelcontainedinspatialstructure.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifcdistanceexpression.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifcdistanceexpression.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifcdistanceexpression.htm
http://ifcopenshell.org/
http://ifcopenshell.org/

BIBLIOGRAPHY 78

IfcOpenShell (2020b). GitHub repository. https://github.com/IfcOpenShell/IfcOpenShell,

accessed on 2020-11-02.

IfcOpenShell (2020c). IfcOpenShell-python. http://ifcopenshell.org/python, accessed on

2020-11-03.

IFC++ (2020). https://ifcquery.com/, accessed on 2020-11-02.

Karlsruhe Institute of Technology (2020). Institute for Automation and Applied Informatics

(IAI). FZKViewer. https://www.iai.kit.edu/english/1648.php, accessed on 2020-11-04.

Karl-Heinz Häfele, Andreas Geiger, Thomas Liebich (2008). Implementation Guide for IFC

Header Section. Version 1.0.2

Liebich, T. (2009). IFC 2x Edition 3 Model Implementation Guide. Technical report, build-

ingSMART International.

Mazairac, W., & Beetz, J. (2013). BIMQL–An open query language for building information

models. Advanced Engineering Informatics, 27(4), 444-456.

McPartland, Richard (2016). What is the Common Data Environment (CDE)? NBS. https:

//www.thenbs.com/knowledge/what-is-the-common-data-environment-cde, accessed on

2020-11-25.

MDN web docs (2020). HTTP request methods. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Methods, accessed on 2020-11-06.

NBS National BIM Report 2019. https://www.thenbs.com/knowledge/

national-bim-report-2019, accessed on 2020-10-29.

Preidel, C., Daum, S., & Borrmann, A. (2017). Data retrieval from building information

models based on visual programming. Visualization in Engineering, 5(1), 1-14.

PyCharm (2020). The Python IDE for Professional Developers. https://www.jetbrains.com/

pycharm/, accessed on 2020-11-03.

Shapiro, V., & Vossler, D. L. (1993). Separation for boundary to CSG conversion. ACM

Transactions on Graphics (TOG), 12(1), 35-55.

Solibri (2020). A Nemetschek company. https://www.solibri.com/, accessed on 2020-11-05.

Stack Overflow 2020 Developer Survey (2020). Most wanted languages. https://insights.

stackoverflow.com/survey/2020, accessed on 2020-11-03.

Tauscher, E., Bargstädt, H. J., & Smarsly, K. (2016, July). Generic BIM queries based on the

IFC object model using graph theory. In The 16th International Conference on Computing

in Civil and Building Engineering.

https://github.com/IfcOpenShell/IfcOpenShell
http://ifcopenshell.org/python
https://ifcquery.com/
https://www.iai.kit.edu/english/1648.php
https://www.thenbs.com/knowledge/what-is-the-common-data-environment-cde
https://www.thenbs.com/knowledge/what-is-the-common-data-environment-cde
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.thenbs.com/knowledge/national-bim-report-2019
https://www.thenbs.com/knowledge/national-bim-report-2019
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.solibri.com/
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

BIBLIOGRAPHY 79

Tobiáš, Pavel. (2015). An Investigation into the Possibilities of BIM and GIS Cooper-

ation and Utilization of GIS in the BIM Process. Geoinformatics FCE CTU. 14. 65.

10.14311/gi.14.1.5..

WebHarvy (2020). What is Web Scraping? https://www.webharvy.com/articles/

what-is-web-scraping.html, accessed on 2020-11-05.

Weise, M., Liebich, T., Nisbet, N., & Benghi, C. (2017). IFC model checking based

on mvdXML 1.1. eWork and eBusiness in Architecture, Engineering and Construction:

ECPPM 2016, 19-26

Weise, M., Katranuschkov, P., & Scherer, R. J. (2003). Generalised model subset definition

schema. CIB report, 284, 440.

Windisch, R., Katranuschkov, P., & Scherer, R. J. (2012, July). A generic filter framework

for consistent generation of BIM-based model views. In Proceedings of the 2012 eg-ice

Workshop.

Wülfing, A., Windisch, R., & Scherer, R. J. (2014). A visual BIM query language. eWork

and eBusiness in Architecture, Engineering and Construction: ECPPM 2014, 157.

W3Schools (2020a). XML Attributes. https://www.w3schools.com/xml/xml attributes.asp,

accessed on 2020-11-05.

W3Schools (2020b). HTML Introduction. https://www.w3schools.com/html/html intro.asp,

accessed on 2020-11-05.

Xbim Toolkit (2020a). https://docs.xbim.net/, accessed on 2020-11-02.

Xbim Toolkit (2020b). Basic model operations. https://docs.xbim.net/examples/

basic-model-operations.html, accessed on 2020-11-02.

Zhang, C., Beetz, J., & Weise, M. (2015). Interoperable validation for IFC building models

using open standards. Journal of Information Technology in Construction (ITcon), 20(2),

24-39.

https://www.webharvy.com/articles/what-is-web-scraping.html
https://www.webharvy.com/articles/what-is-web-scraping.html
https://www.w3schools.com/xml/xml_attributes.asp
https://www.w3schools.com/html/html_intro.asp
https://docs.xbim.net/
https://docs.xbim.net/examples/basic-model-operations.html
https://docs.xbim.net/examples/basic-model-operations.html

	Acronyms
	List of Figures
	List of Listings
	Introduction
	Motivation
	Structure of work

	Background information
	Industry Foundation Classes
	General
	Schema
	Inheritance
	Object relationships
	Geometric representations
	Object placement
	File types

	Example of a STEP physical file
	Model View Definitions
	General
	MvdXML
	Official buildingSMART information

	Current situation and related work
	Generation and export of BIM models
	Validate and filter IFC models

	Solution and implementation
	IFC libraries: early binding vs. late binding
	Software applications and programming languages
	Retrieving the official buildingSMART information
	General
	HTML structure
	Getting and storing the information

	User-defined requirements
	General
	Search by Attributes
	Search by RuleID
	Predefined tags and additional functionalities

	General workflow of the program
	Retrieving the IFC models from a CDE with a GUI
	Overview
	Implementation with a GUI

	Case study
	Overview
	Filtering and merging using user-defined requirements

	Discussion
	Summary
	Limitations
	Conclusion and future outlook

	Bibliography

