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Abstract

Auctions have become a popular means for the distribution of goods when an information
asymmetry between buyers and sellers makes setting a fixed price difficult. Two central
topics in auctions are optimal bidding strategies and auction design. They address the
questions of how high a bidder should bid and how an auction should be designed to
incentivise certain bidder behavior, e.g. truthful bidding. In this dissertation, we address
these questions with three contributions.

Online advertising represents one of the biggest advertising markets worldwide. In dis-
play ad auctions, bidders bid on the opportunity to show their ad to a user. These auc-
tions are performed as second-price auctions which are known to be incentive-compatible,
i.e. truthful bidding is a weakly dominant strategy. However, advertisers are typically
limited by budgets or campaign targets, as a result preferences are no longer separable
and the auction is not incentive-compatible. We study the effects of truthful bidding on
efficiency and bidders’ utility in these auctions. We find that efficiency can be as low as
50% in the worst-case, while in fact it is close to 100% on average. Bidders can gain by
deviating from truthful bidding only if there is little competition. Otherwise, truthful
bidding presents a good strategy.

Another large market, and one of this century’s major challenges, is the expansion of
renewable energy sources. Governments worldwide use auctions to tender renewable
energy capacities in exchange for guaranteed remuneration prices. In Germany, nation
wide auctions are used for the expansion of onshore wind power plants since 2017. Lack-
ing to set the right incentives, they have led to huge discrepancies in the distribution of
capacities between the north and the south. Missing grid capacity causes bottlenecks,
the need for redispatch, and inefficiencies. Furthermore, larger project developers can-
not communicate potential synergies and each individual project receives an individual
price that can be perceived as unfair and intransparent. We develop and evaluate an
alternative combinatorial auction design that allows to define regional capacities and
allows bidders to communicate their synergies via bundle bids. Considering the size of
the market, we compute linear and approximate anonymous Walrasian prices per re-
gion which are strategy-proof in the large. Due to the indivisibility of items Walrasian
prices might not always exist. In this case we introduce minimal personal markups. In
a counterfactual analysis we show that the alternative auction design implements an ef-
ficient allocation while hardly increasing remuneration prices and therefore significantly
decreasing the overall cost for the tax payer. The presented auction design is policy
relevant and can be effectively implemented.
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In smaller markets with fewer participants, strategic interaction between bidders be-
comes more relevant. In fact, many auctions are not incentive-compatible and bidders
have to decide their best bidding strategy. Bayes-Nash equilibrium presents a central
solution concept to such Bayesian games. However, Bayes-Nash equilibria are known for
only very few and simple auctions and finding them is difficult, in fact at least PPAD-
complete. We develop a learning algorithm based on neural networks that we call Neural
Pseudogradient Ascent (NPGA). NPGA learns Bayes-Nash equilibria based on iterative
self-play and evolutionary strategies. We show that NPGA is able to learn approximate
Bayes-Nash equilibria in a wide variety of auction settings, including single-item, multi-
item, and combinatorial auctions. In auctions for which no Bayes-Nash equilibrium is
known, NPGA may provide an estimate for the ε-Bayes-Nash equilibrium by computing
best responses. It demonstrates to be a powerful tool for economists and practitioners
to solve auction games.
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Zusammenfassung
Auktionen stellen ein zunehmend beliebtes Instrument zur Verteilung von Gütern dar,
insbesondere wenn Informationsasymmetrien zwischen Käufern und Verkäufern die Bes-
timmung fixer Preise erschweren. Zwei zentrale Problemstellungen im Zusammenhang
mit Auktionen sind das Auktionsdesign und die optimale Bietstrategie. Konkret stellen
sich die zwei Fragen: (1) wie hoch jeder Bieter mit seinen Geboten gehen sollten und
(2) wie eine Auktion gestaltet sein sollte, um ein bestimmtes Bieterverhalten zu fördern,
wie beispielsweise wahrheitsgemäßes Bieten. In dieser Dissertation behandeln wir beide
Fragen in drei Beiträgen.

Onlinewerbung steht inzwischen für einen Großteil des weltweiten Werbemarktes. In
Display-Ad-Auktionen bieten Werbetreibende darauf, ihre Werbung einem Nutzer zeigen
zu können. Diese Auktionen werden als Zweitpreisauktionen durchgeführt, welche bekan-
ntermaßen anreizkompatibel sind, womit wahrheitsgemäßes Bieten eine schwach dom-
inante Strategie darstellt. Allerdings sind Werbetreibende oft Budgetbeschränkungen
oder Kampagnenzielen unterworfen. Daraus ergibt sich, dass Präferenzen nicht mehr
unabhängig voneinander und die Auktionen nicht länger anreizkompatibel sind. Wir
untersuchen die Effekte von wahrheitsgemäßem Bieten im Hinblick auf Effizienz und den
Bieternutzen in diesen Auktionen. Wir zeigen, dass die Effizienz im schlechtesten Fall
bis auf 50% sinken kann, im Durchschnitt allerdings bei nahezu 100% liegt. Lediglich bei
geringem Wettbewerb können Bieter durch das Abweichen von wahrheitsgemäßem Bi-
eten profitieren. Andernfalls zeigt sich, dass wahrheitsgemäßes Bieten eine gute Strategie
ist.

Einen weiteren großen Markt, und eine der großen Aufgaben dieses Jahrhunderts, stellt
der Ausbau von erneuerbaren Energien dar. Weltweit nutzen Regierungen Auktionen
für den Kapazitätsausbau von erneuerbaren Energien, in welchen sie Projektentwick-
lern garantierte Vergütungspreise anbieten. In Deutschland werden seit 2017 Auktionen
auf nationaler Ebene für den Ausbau der Windenergie zu Land genutzt. Ein man-
gelhaftes System der Anreizsetzung hat in der Vergangenheit allerdings zu einer un-
gleichen Verteilung der Kapazitäten zwischen Nord und Süd geführt. Die mangelnde
Netzkapazität führt zu Engpässen, notwendigen Redispatch-Maßnahmen und Ineffizien-
zen. Darüber hinaus lassen sich potenzielle Synergieeffekte großer Projektentwickler
im derzeitigen Auktionsdesign nicht abbilden und jedes Projekt erhält jeweils einen in-
dividuellen Vergütungspreis. Dies kann als unfair und intransparent wahrgenommen
werden. Wir entwickeln und evaluieren ein alternatives, kombinatorisches, Auktions-
design. Dieses erlaubt es dem Auktionator, regionale Kapazitäten zu bestimmen, als
auch den Bietern ihre Synergien durch Bündelgebote abzubilden. Angesichts der Größe
des Marktes berechnen wir für jede Region lineare und annähernd anonyme Walrasian
prices, welche strategy-proof in the large sind. Aufgrund der Unteilbarkeit der Güter
kann es allerdings sein, dass die Bestimmung eines solchen Preises nicht möglich ist.
In diesem Fall verwenden wir minimale persönliche Aufschläge. Eine kontrafaktische
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Analyse zeigt, dass das alternative Auktionsdesign zu einer effizienten Allokation führt
und gleichzeitig kaum die Vergütungspreise erhöht. Entsprechend führt das Design zu
einer signifikanten Reduktion der Gesamtkosten für den Steuerzahler. Das vorgestellte
Auktionsdesign ist politisch relevant und faktisch umsetzbar.

In kleineren Märkten mit weniger Marktteilnehmern ist strategisches Verhalten der Bi-
eter von größerer Bedeutung. Tatsächlich sind viele Auktionen nicht anreizkompatibel
und entsprechend müssen Bieter sich die Frage stellen was ihre beste Bietstrategie ist.
Ein zentrales Lösungskonzept solcher bayesianischen Spiele liegt in der Berechnung eines
Bayes-Nash Gleichgewichts. Dieses Gleichgewicht ist allerdings nur für wenige, sehr ein-
fache Auktionen bekannt, und es zu finden ist schwer – mindestens PPAD-vollständig.
Basierend auf neuronalen Netzen entwickeln wir einen Lernalgorithmus den wir Neu-
ral Pseudogradient Ascent (NPGA) nennen. NPGA lernt Bayes-Nash Gleichgewichte
durch iteratives Spielen gegen sich selbst sowie durch die Berechnung von Gradienten
mithilfe von evolutionary strategies. Wir zeigen, dass NPGA in der Lage ist, in einer
Reihe von Auktionsumgebungen, einschließlich single-item, multi-item und combinatory
Auktionen, approximative Bayes-Nash Gleichgewichte zu erlernen. Für Auktionen ohne
bekanntes Bayes-Nash Gleichgewicht ermittelt NPGA einen Schätzer für ε-Bayes-Nash
Gleichgewichte, indem er best response Strategien berechnet. NPGA präsentiert sich
sowohl für Ökonomen als auch für alle Beteiligten einer Auktion als bedeutendes Hilfs-
mittel zur Lösung von Auktionsspielen.
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1 Introduction

For over two thousand years, auctions have been used for the distribution of goods.
Technology advancements during the last decades, leading to the rise of electronic mar-
kets, enabled a rapid increase in the application of auctions. In the course of these
developments, auctions have gained increasing interest by researchers as well as practi-
tioners. Some of the most prominent areas of application today are online advertisement
markets (Chen and Stallaert, 2014; De et al., 2010; Yang and Ghose, 2010; Zhao and
Xue, 2012), spectrum sales (Bichler and Goeree, 2017) and the expansion of renewable
energy sources (Winkler et al., 2018). The contemporary importance of auctions has
most recently been highlighted by Paul Milgrom and Robert Wilson being awarded with
the Nobel Prize in Economic Sciences for their contributions to auction theory.

Auction markets inherently involve incomplete information about competitors and strate-
gic behavior of market participants. Understanding decision making in such markets is
imperative for the efficient, i.e. welfare maximizing, allocation of goods. This thesis’ con-
tribution is threefold, presented in four essays that study bidding strategies and auction
design in auction markets.

In the first essay, we study the online advertisement market, in particular the display
ad auctions (Sutterer et al. (2019), Chapter 3). In this market millions of auctions are
performed each day. We find that truthful bidding in such a large market is a good
strategy when bidders encounter medium or high competition. We continue with a
second essay in large auction markets and study the renewable energy market (Bichler
et al. (2020), Chapter 4), in particular auctions for the expansion of onshore wind power
plants. Each year, about one hundred bidders participate in these auctions offering to
build more than one hundred wind power plants. We propose an alternative auction
design that is more efficient and provides linear, near anonymous prices, and is therefore
more transparent than the currently applied design. It hardly increases remuneration
prices but reduces total costs for the tax payer.
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1 Introduction

In many auction markets, including display ad auctions with little competition (Sutterer
et al., 2019), truthful bidding is not a good strategy. In essays 3 and 4, we develop a
learning algorithm for general auction markets. These two essays are consecutive peer
reviewed workshop publications focusing on normal-form games and single-item auctions
(Heidekrüger et al. (2019), Chapter 5), and on more complex combinatorial auctions
(Heidekrüger et al. (2020a), Chapter 6). This research has also been accepted and
presented at other peer-reviewed workshops (Heidekrüger et al., 2020b) and a combined
journal version of the individual workshop contributions is currently under review. The
developed learning algorithm is able to compute Bayes-Nash equilibria for many of these
auction markets helping bidders to find a good strategy. We now introduce each of the
three topics in the following sections.

1.1 Truthful Bidding in Display Ad Auctions

In 2019 online advertising markets represented about half of the total media spending
world wide (emarketer, 2019), effectively making it the most important market for ad-
vertising. Next to keyword auctions, display ad auctions have become the predominant
means to allocate advertisements to users who visit websites. The opportunity to show
an advertisement to such a user is referred to as an impression. Every time a user visits
a website, an auction for such an impression is triggered, leading to many millions of
auctions every day, each conducted within milliseconds. Typically these auctions are
performed as second price auctions, meaning that the winner pays a price in the amount
of the second highest bid. Given a bidder’s quasi-linear utility function and separability
of valuation for items, i.e. the valuation for an item being independent of any previous
allocations, this payment rule is known to be incentive-compatible. As a consequence,
truthful bidding is a weakly dominant strategy for bidders.

However, advertisers usually have decreasing marginal valuation for additional impres-
sions to win, i.e. the valuation for the first impression is not the same as the valuation
after winning thousands of impressions. We consider an economic model where bidders
have quasi-linear utility functions but are restricted by campaign targets. This mod-
els such a valuation function with decreasing marginal valuation, making a sequence of
second-price auctions no longer incentive-compatible. The question is how high a bid-
der’s payoff and the auction’s efficiency is when bidders continue to bid truthfully, and
how much they can gain by deviating from truthful bidding.
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1.2 An Alternative Auction Design for Renewable Energy Auctions

In this study, we show that the efficiency can theoretically be as low as 50%. However,
numerical experiments reveal that this estimate is far too pessimistic. The average
efficiency is close to 100% throughout all experiments. Furthermore, the bidders’ payoff
is relatively high and by deviating from truthful bidding, bidders risk being worse off
when they encounter medium or high competition. Only with few competing bidders is
their payoff relatively low and they can gain by lowering their bid. In general, truthful
bidding can therefore be a good strategy.

1.2 An Alternative Auction Design for Renewable Energy
Auctions

In the second essay, we study another large market, namely the renewable energy mar-
ket. The expansion of renewable energy sources (RES) has gained increasing importance
and a welfare maximizing allocation is crucial for its success. In Europe and Worldwide,
auctions are used to determine the remuneration for RES (Winkler et al., 2018), i.e.
an amount of money per kilowatt hour (kWh) that auction winners receive for build-
ing a renewable energy plant. Bidders typically build renewable energy plants at very
productive sites, potentially far-off the main load centres (Grimm et al., 2017). This
leads to an inefficient allocation because the renewable energy plants’ feeding into the
grid must be decreased when supply and demand are not balanced and transmission
line capacities are restricted, however, not considered in the allocation. This long term
inefficient system configuration is subsidized by the tax payer. They have to bear the
costs for additional grid expansion or for the electricity that is produced but not fed into
the grid. Moreover, in the current auction design, larger project developers can only
submit bids on individual renewable energy plants, i.e. projects, and receive individual
remuneration prices.

For the example of the German onshore wind energy auctions, we propose an alternative
auction design that accounts for economies of scale for larger project developers, by
allowing bundle bids, and that leads to an efficient allocation of wind power plants
by implementing regional target capacities (Grimm et al., 2017). The allocation is
determined by solving a binary linear program that selects the most cost efficient projects
bundles while keeping the exceeding capacity in each region to a minimum.

3



1 Introduction

The proposed combinatorial auction provides a simple pricing rule close to Walrasian
prices and maintains a high level of competition between bidders by permitting package
bids. Walrasian prices are strategy-proof in the large (Azevedo and Budish, 2019), i.e.
approximately incentive-compatible.

In numerical experiments, we evaluate the combinatorial auction compared to three
other RES auction designs: the current German nationwide auction design, a simple
nationwide auction, and regional auctions. We find that the combinatorial auction design
implements a fully efficient allocation due to the possibility of precisely steering the
tendered capacities. At the same time, leveraging the possibility to directly communicate
synergy effects, project developers can offer bundles of wind power plants for lower prices.
The resulting remuneration prices remain low and hardly increase compared to the
current auction design. Considering the overall cost for the tax payer, the combinatorial
auction design can decrease these costs significantly.

1.3 Computing Bayes-Nash Equilibrium Strategies in Auctions

This thesis’ first two essays consider large markets for which truthful bidding often is a
good strategy or the mechanism is even strategy-proof in the large. However, in many
smaller auctions, or even in the large display ad auctions with little competition (Sutterer
et al., 2019), bidders that bid truthfully do overpay.

Bayes-Nash equilibrium is a central solution concept for Bayesian Games such as auc-
tions. Unfortunately, they are known only for some single-item auctions and for very few
multi-item auctions. Computing Bayes-Nash equilibria is at least PPAD-complete, as
computing Nash-equilibria is already PPAD-complete (Daskalakis et al., 2009). Being
able to compute Bayes-Nash equilibria for more complex auction designs could signifi-
cantly improve the welfare when performing these auctions.

In essays 3 and 4, we consecutively develop a learning algorithm first called Neural Self-
Play, later referred to as Neural Pseudogradient Ascent. Neural Pseudogradient Ascent
is an iterative learning algorithm based on neural networks to compute Bayes-Nash
equilibria in general auction markets via self-play. Each bidders’ strategy is modeled by
a neural network, using a bidder’s private information as input and computing a bidder’s
bids as output. Leveraging modern GPU hardware enables us to compute batches of
the same auction but with many different valuations for bidders all at once. In each
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1.4 Outline

learning iteration, we draw batch size many valuations for each bidder, compute their
corresponding bids, evaluate their payoffs, and update the networks’ parameters based
on this feedback.

To update the parameter vector, we cannot use standard backpropagation. Exact gra-
dients of the ex-post utility for a fixed valuation and opponent strategy profiles lead to
problems in gradient updates. The bidder’s ex-post utility will generally be discontinu-
ous in her action as allocations are discrete. Therefore, we use evolutionary strategies
(Salimans et al., 2017) and create random perturbations of the parameter vector by
adding Gaussian noise terms. The resulting perturbed models are evaluated with re-
spect to their performance “fitness”. The model is ultimately updated in the direction
of the weighted average of the noise vectors, with more desirable perturbations being
weighted higher than less desirable ones.

First, we apply Neural Pseudogradient Ascent to a number of normal form games to
compare its performance to classical learning algorithms in these games with discrete
state and action space, namely Fictitious Play and Smooth Fictitious Play. After, we
apply Neural Pseudogradient Ascent to the main Bayesian settings of different single-
item and combinatorial auctions with various value models and payment rules. For some
of these settings Bayes-Nash equilibria are known while for others they are not.

In numerical experiments, we confirm that Neural Pseudogradient Ascent performs sim-
ilar to Fictitious Play and Smooth Fictitious Play when computing Nash equilibria in
normal-form games. In auction games it is able to compute approximate Bayes-Nash
equilibria for each of the settings we considered.

1.4 Outline

The remainder of this thesis is structured as follows: In the next chapter (Chapter 2), we
introduce the theoretical basis for the methodologies applied within this thesis. We begin
by introducing complete information normal-form games and continue with auctions as
games of incomplete information with continuous state and action space. We end with
introducing neural networks and evolutionary strategies.

In Chapter 3, we present the first essay on truthful bidding in online advertisement
markets, followed by the second essay on market design in renewable energy auctions
in Chapter 4. In Chapter 5 and 6, we present two consecutive essays in which we

5



1 Introduction

present Neural Pseudogradient Ascent as a learning algorithm to learn Nash-equilibria
in normal-form games and Bayesian-Nash equilibria in single-item and combinatorial
auctions.

Finally, we discuss this thesis’ overall contribution to the literature of auction theory in
Chapter 7 and conclude in Chapter 8.
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2 Theoretical Background

In this chapter, we illustrate the theoretical concepts this thesis is built on and that are
applied herein. We begin with complete information games and some of their solution
concepts, i.e. Nash equilibria and a learning algorithm called (Smooth) Fictitious Play
(Brown, 1951), originating from the economics branch of research. We continue by
introducing incomplete information games, i.e. Bayesian games, and the extension of
Nash equilibrium to Bayes-Nash equilibrium. Afterwards, we introduce auctions as
Bayesian games and describe several auction payment rules and their properties applied
in this thesis. Finally, we introduce neural networks, much studied in the computer
scientists’ branch of research, as a concept to enable learning in Bayesian games.

The fundamental theory in this chapter is largely based on Bichler (2017), Krishna
(2009), Fudenberg and Levine (1999), Fudenberg and Levine (2009) and Goodfellow
et al. (2016). We lay out the theory and describe how our work build upon it.

2.1 Fundamentals of Game Theory

In this section, we introduce the basics of non-cooperative game theory, beginning with
games of complete information. This mostly builds on Bichler (2017), Fudenberg and
Levine (1999) and Fudenberg and Levine (2009).

Non-cooperative game theory studies the strategic interaction between self-interested
rational agents, in the following referred to as players, maximizing their outcome. In
this context, strategic means that each player makes a decision about her action aware
that it affects the other players, in the following referred to as opponents. Interaction
describes the interdependence of actions, i.e. each player’s outcome depends on her own
actions as well as the actions of her opponents; self-interested means each player is only

7



2 Theoretical Background

interested in her own outcome; and rational means players are free of emotional biases
and pure utility maximizers instead. One of the most well known examples of a complete
information game is the prisoner’s dilemma:

Example 2.1: Prisoner’s Dilemma. Two suspects are accused of jointly having com-
mitted a major crime and are being separately and simultaneously interrogated. Both
have a decision to make either confessing (C) to the accusations or denying (D) them.
The suspects, in the following the players I = {1, 2}, have the same set of actions avail-
able A1 = A2 = {C,D}. If both suspects confess, they receive a sentence of 4 years’
detention each; if both deny, they still receive a sentence of 2 years’ detention each for
lesser crimes they committed. If one suspect chooses to confess and the other to deny,
the former acts as the principal witness and is sentenced to only 1 year, while the latter
is sentenced to 5 years.

These games of complete information in which players need to choose their actions
simultaneously are called normal-form games and can best be represented in matrix
form (see Table 2.1), where player 1 is the row player and player 2 the column player.
The first entry represents the (negative) payoff for player 1 and the second entry the
(negative) payoff for player 2.

C D
C 4, 4 1, 5
D 5, 1 2, 2

Table 2.1: Payoff Matrix in Prisoners Dilemma

Definition 2.1: Normal-Form Game. A finite normal-form game with n players can
be described as a tuple (I, A, u).

• I is a finite set of n players indexed by i.

• A = A1 × · · · × An, where Ai is a finite set of actions available to player i. A
vector b = (b1, . . . , bn) ∈ A is referred to as an action profile.

• u = (u1, · · · , un), where ui : A 7→ R is a payoff or utility function for player i.

As all players are a payoff maximizers they try to find a strategy that maximizes their
own utility ui. These strategies can either represent a particular action, i.e. a pure
strategy, or a probability distribution over a set of actions, i.e. a mixed strategy.

8



2.1 Fundamentals of Game Theory

Definition 2.2: Mixed Strategy. In a normal-form game (I,A, u) the set of mixed
strategies for player i is Σi = ∆(Ai), where ∆(Ai) is the set of all probability distributions
(aka lotteries) over Ai.

The probability that an action bi is played in strategy βi is denoted as βi(bi). When play-
ers choose to play a mixed-strategy profile (β1, · · · , βn), the expected utility of player i
can be described as ui(β) = ∑

b∈A ui(b)
∏n
j=1 (βj(bj)). Notice that the term in parenthe-

ses, ∏n
j=1 (βj(bj)), is the probability that action profile b = (b1, · · · , bn) will be played.

A mixed-strategy profile is the Cartesian product of the individual mixed-strategy sets,
Σ1 × · · · × Σn (Bichler (2017), p. 12). Players can either play pure strategies or mixed
strategies, while in general any pure strategy can also be represented as a mixed strategy
with βi(bi) = 1 for a certain action bi.

In the next section, we introduce solution concepts for normal-form games that help
players play optimal strategies and can serve as predictions for the outcome of a game
with rational players.

2.1.1 Solution Concepts: Equilibria

When players in a normal-form game have to choose a strategy, it is not always straight-
forward what the best strategy is. In economics, several solution concepts exist for these
games that are often referred to as equilibria. An equilibrium denotes a stable state as
a result of a dynamic process in which the players’ behavior is consistent and they have
no incentive to change their behavior (Dixon (2001), p. 24). Therefore, each player is
maximizing their own utility by remaining in this state.

While a few notions of equilibria exist, for this thesis we focus on four that are most rel-
evant in our studies, namely: dominant-strategy equilibrium, Nash equilibrium, Bayes-
Nash equilibrium and Walrasian equilibrium (prices).

In a dominant-strategy equilibrium, a player’s strategy is optimal regardless of what the
opponents’ strategies are. Formally:

Definition 2.3: (Weakly) Dominant Strategy. A strategy βi is called a (weakly)
dominant strategy if it is always better (at least equally good) than any other strategy
β′i ∈ Σi, regardless any of the possible opponents’ strategies.

9
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Definition 2.4: Dominant-Strategy Equilibrium. If each player chooses to play
their dominant strategy, the corresponding strategy profile β denotes a dominant-strategy
equilibrium.

While in a dominant-strategy equilibrium the opponents’ strategies β−i have no impact
on the decision of player i for strategy βi, they can still affect player i’s payoff.

Dominant-strategy equilibria are rare since a player’s optimal strategy often depends
on the opponents’ strategies. A more frequent, and one of the most significant solution
concepts, is the Nash equilibrium (Nash et al., 1950). A Nash equilibrium exists when no
player can increase their payoff by deviating from their current strategy given the current
strategies of all opponents, i.e. each player plays their best-response; or formally:

Definition 2.5: Nash Equilibrium. A strategy profile β = (β1, ...βn) is a Nash equi-
librium if for each i ∈ I: the strategy βi is a best response to the opponents strategies
β−i; therefore, the utility ui(βi, β−i) ≥ ui(β′i, β−i), ∀β′i ∈ Σi.

Both dominant-strategy equilibrium and Nash equilibrium can exist as pure as well
as mixed equilibria. Each dominant-strategy equilibrium is also a Nash equilibrium,
however the reverse is not necessarily true. Note that neither of them is guaranteed to
be Pareto optimal, meaning that all players could still be better off by playing a different
strategy profile β′ all together. If in β′ again no player would have an incentive to change
their strategy then β′ denotes another equilibrium. Otherwise, it is not an equilibrium
and players would not remain in β′.

Definition 2.6: Pareto Optimality. Any strategy profile that is not Pareto-dominated
is Pareto optimal. A strategy profile β Pareto-dominates strategy profiles β′ if, for all
i ∈ I, ui(β) ≥ ui(β′) and there exists a j ∈ I for which uj(β) > uj(β′).

In Example 2.1, for both players to confess is a dominant-strategy equilibrium (therefore
also a Nash equilibrium) since it is always better to confess, regardless the opponent’s
action. However, the Pareto optimal solution would be for both players to deny. They
would both serve 2 instead of 4 years. Yet, to deny is not stable because each player
would be better off by individually deviating and so it is not an equilibrium.

Finding dominant-strategy equilibria is not as hard as finding Nash equilibria because of
the dependencies on opponents’ strategies. In fact, finding a Nash equilibrium has shown
to be PPAD-complete (Daskalakis et al., 2009). In the next section, we introduce two
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classical learning algorithms to solve normal-form games and potentially to find Nash
equilibria.

2.1.2 Learning in Complete Information Games with Discrete State and
Action Space

The theory of learning in games explores how, which, and what kind of equilibria might
arise as a consequence of an iterative learning process. Fudenberg and Levine (1999)
provide deep insights into the theory of learning and their more recent article (Fudenberg
and Levine, 2009) complements the book well. In the following, we briefly present two
fundamental learning algorithms, first introduced by Brown (1951), namely Fictitious
Play and its extension Smooth Fictitious Play.

Fictitious Play

Fictitious Play is an iterative learning algorithm that adapts a player’s strategy based
on past observations of her opponents’ actions. While normal-form games are typically
played only once, Fictitious Play needs multiple iterations to be able to learn and po-
tentially converge. Therefore, it has many interpretations, one of which is that it can be
considered a fictitious pre-play by each player to learn more about a game’s dynamics.

Definition 2.7: Fictitious Play. Fictitious Play is an iterative learning algorithm.
Each player begins with initial beliefs regarding the opponents’ strategies: β̂−i. Given
these beliefs, each player chooses an action bi ∈ Ai that maximizes her expected utility
given her beliefs, i.e. plays a best-response:

bi = arg max
b∈Ai

E[ui(b, β̂−i)]

In the next iteration, beliefs about the opponents’ strategies β̂−i are updated by the actual
observed actions b−i.

Fictitious Play always determines one action to be played and therefore it can only
converge to pure Nash equilibria. If only a mixed Nash equilibrium exists, the actions
chosen by Fictitious Play will oscillate. However, the empirical distribution of actions
chosen by Fictitious Play can still converge. In this case, the strategy profile β is a
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mixed Nash equilibrium (Fudenberg and Levine (1999), p. 44). Therefore, usually the
empirical distribution of actions is considered in Fictitious Play rather than the actual
actions that are played. Fictitious Play does not converge in general (Shapley, 1964)
but has been shown to do so in some general settings. For details about convergence
guarantees in Fictitious Play, we refer the interested reader to Fudenberg and Levine
(1999).

Smooth Fictitious Play

While actions are chosen deterministically in Fictitious Play, Smooth Fictitious Play
provides a probability distribution over actions from which one action is randomly drawn.
There are multiple motivations for this extension. On the one hand, players are less
exploitable due to the inclusion of uncertainty about the final action; on the other hand,
a slight change in the observations does not lead to an abrupt change in the strategy
but players randomize when they are nearly indifferent between actions.

Definition 2.8: Smooth Fictitious Play. Smooth Fictitious Play is an extension
of Fictitious Play in which player i’s actions are drawn according to a best-response
probability distribution. One possible representation is with a logistic best-response such
that the probability of player i to play action bi given her beliefs β̂−i is:

βi(bi|β̂−i) = eτ ·ui(bi,β̂−i)
∑
ri∈Ai

eτ ·ui(ri,β̂−i)

The parameter τ is sometimes referred to as the temperature and determines the level
of stochasticity applied or the level of indifference between actions. When τ → 0 the
player is nearly indifferent between actions, and when τ →∞ the player’s probability of
choosing the best response approaches 1.

As Smooth Fictitious Play considers a probability distribution over actions, it can con-
verge to a mixed Nash equilibrium in actual play, i.e. β, in contrast to Fictitious Play.
For details about convergence results in Smooth Fictitious Play we refer the interested
reader to Fudenberg and Levine (2009).

In Chapter 5 (Heidekrüger et al., 2019) we implement Fictitious and Smooth Fictitious
Play for a number of normal-form games with pure and mixed Nash equilibria and
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compare the results to our own learning algorithm. Finally, we build on fundamentals
in game theory in Chapter 6 (Heidekrüger et al., 2020a).

2.2 Auction Theory

In the previous section, we have introduced the fundamentals of game theory and com-
plete information normal-form games. However, often players are aware of only their
own utility function ui and the set of all players’ utility functions u is unknown to them,
while a probability distribution for u is common knowledge. This results in games of
incomplete information, i.e. Bayesian games. One of the most prominent applications
of such games are auctions.

An auction can be considered a mechanism in which usually one, but possibly more,
players, referred to as auctioneers, offer a good, that is tangible or intangible, for sale.
A number of players, referred to as bidders, compete for this good by submitting bids.
Typically, the bidder with the highest bid wins the good. In the following we refer to
a good as an item. The winner pays a monetary amount determined by some payment
rule.

In the following, we formally introduce auctions as a form of Bayesian games, followed by
the most relevant payment rules, applied in this thesis, and their properties. This section
builds on Bichler (2017) and Krishna (2009) who provide more detailed information on
the topics at hand.

2.2.1 Auctions as Bayesian Games

Throughout this thesis, we restrict ourselves to auctions with one auctioneer who does
not participate as a player in the game but solely offers the item for sale without any
strategic interaction. We follow the standard independent private value framework and
assume bidders’ valuations as known only to themselves, drawn from a common proba-
bility distribution and independent of each other (only in Chapter 6 we consider other
value models). The auctioneer has no valuation for any of her items. For the following
definitions, we consider an auction of only a single item:

Definition 2.9: Auctions as Bayesian Games. An auction can be described as a
Bayesian game by a tuple (I,A,V, u, F ) with:
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• I = {1, ..., n} is a set of n players, i.e. bidders;

• Ai is the set of actions, i.e. bids, available to bidder i, with bi ∈ Ai being a specific
bid and A = A1 × · · · × An;

• V = V1 × · · · × Vn is the set of all possible types, i.e. valuations that bidders
potentially have for an item. Vi is the valuation space of bidder i and vi represents
the actual valuation that bidder i has for an item;

• ui : A×Vi 7→ R or ui(b1, ..., bn; vi) is the payoff or utility function for player i that
depends on the bid profile b = (b1, ..., bn) and the valuation of i.

• F : V → [0, 1] defines a common prior probability distribution of the players’ types
and is assumed to be common knowledge among all players.

In addition to complete information games, we now consider player types V, i.e. valua-
tions in the context of auctions, based on a probability distribution over those types F
that is common knowledge. Due to this extension, we can have three different perspec-
tives on the game, namely: ex-ante, ex-interim and ex-post. Each perspective represents
the game at a different point in time: ex-ante - none of the players knows their own
or the opponents’ types, i.e. valuations, but only the common prior F ; ex-interim -
each player knows their own valuation but not the opponents’ valuations; ex-post - each
player knows the actual outcome of the game.

It is now possible to define a strategy as mapping of a type to an action, or as a valuation
to a bid: βi : Vi 7→ Ai and βi(vi) = bi. The ex-interim utility is now given by the expected
utility over the belief of the opponents’ types and a player’s own type vi:

E(ui(βi, β−i, vi)|β−i, vi) =
∑

v−i∈V−i

ui(βi(vi), β−i(v−i), vi)p(v−i|vi),

with p(v−i|vi) being the conditional probability that the opponents’ valuation profiles
are v−i.

The notion of a Nash equilibrium now easily extends to that of a Bayes-Nash equilibrium
as set out below:

14



2.2 Auction Theory

Definition 2.10: Bayes-Nash Equilibrium . A Bayes-Nash equilibrium is the Nash
equilibrium of a Bayesian game, i.e.,

E(ui(βi, β−i, vi)|β−i, vi) ≥ E(ui(β′i, β−i, vi)|β−i, vi)

for all β′i(vi) and for all types vi occurring with positive probability.

Often Bayes-Nash equilibria are not known and finding them is very difficult. Instead
sometimes ε-Bayes-Nash equilibria are reported which require the computation of best
responses for each player. It is defined as:

Definition 2.11: ε-Bayes-Nash Equilibrium. A strategy profile β forms an ε-Bayes-
Nash equilibrium if no player i ∈ I can improve her utility more than ε by unilaterally
changing her strategy βi to playing a best-response.

Note that an ε-Bayes-Nash equilibrium can be arbitrarily far from a Bayes-Nash equi-
librium with respect to players’ utilities as well as with respect to the corresponding
strategies β. A 0-Bayes-Nash equilibrium, however, is always identical to a Bayes-Nash
equilibrium.

2.2.2 Efficient Allocation in Auctions

So far we have only considered single items. To generalize the possibility of multiple
items being sold at once, we refer to a single item from a set of all items as k ∈ K and
to S ⊆ K as a subset or bundle of items from K.

In each publication in this thesis, we assume bidders to have quasi-linear utility functions
of the form: ui = vi(S)− pi with S being some set of items allocated to i and pi being a
monetary sum that is determined based on some payment rule (see 2.2.3) and needs to
be paid by bidder i.

Typically, economists aim to maximize welfare and therefore seek to assign the items in
a way that the bidders’ sum of valuations are maximized. Assuming bids are a reliable
indicator of bidders’ valuations, in a single item auction we assign the item to the highest
bidder. In an auction with multiple items and the possibility to submit a bid for any
combination of items, i.e. in a combinatorial auction, we can formulate this allocation
problem as an integer program, often referred to as the winner determination problem
(WDP):
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max
xi(S)

∑
S⊆K

∑
i∈I xi(S)vi(S) (WDP)

s.t.
∑
S:k∈S

∑
i∈I xi(S) ≤ 1 ∀k ∈ K

∑
S⊆K xi(S) ≤ 1 ∀i ∈ I

xi(S) ∈ {0, 1} ∀S ⊆ K, ∀i ∈ I

This WDP determines the allocation of bundles to bidders, xi(S), such that it maximizes
the valuations of all bidders. Here, we assume that we have access to the true valuations
of bidders vi(S). In practice, we usually have no access to the true valuations and use
the submitted bids as a proxy. At the same time, we ensure that each item is allocated
no more than once as well as that each bidder is allocated at most one bundle.

After determining the allocation of items, a payment rule determines the monetary
amount that is transferred from the winning bidders to the auctioneer.

2.2.3 Payment Rules and Properties

Before introducing the most relevant payment rules applied throughout this thesis, let
us first introduce three mechanism design criteria in the context of auctions that we
consider important:

The first criterion is allocation efficiency. An allocation is considered efficient if it
maximizes welfare, i.e. the sum of the valuation of all bidders. The WDP is efficient
under the assumption that the bids correctly represent a bidder’s valuation.

The second criterion is incentive-compatibility. An auction is incentive-compatible if it is
best for each bidder to act according to their true valuations. This solves the problem of
finding an optimal strategy β(v) since reporting truthfully is a weakly dominant strategy
for each bidder.

The third criterion is that no bidder should be worse off having participated in an
auction. This is referred to as individual rationality. If a payment rule can generally ask
truthful bidders for payments larger than their received valuation, i.e. pi > vi(x), an
auction is not individual rational since bidders can have negative utility by participating
in the auction.

In the following, we briefly introduce four payment rules, starting with two simple pay-
ment rules frequently applied in single-item auctions and continuing with two payment
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rules explicitly designed for combinatorial auctions. All of the presented payment rules
are considered to be sealed-bid, i.e. bids are submitted without the opponents’ knowl-
edge regarding the bid amount and can subsequently not be altered. This is in contrast
to some iterative auction procedures such as ascending auctions in which bidders openly
submit their bids and can raise them once an opponent’s bid is higher. We end with
the introduction of Walrasian equilibrium prices, which are less considered as a payment
rule but rather as market clearing prices, resulting from a Walrasian equilibrium. Be-
cause we apply these prices in the context of a payment rule, they are introduced in this
section.

First-Price

Payments in a sealed-bid auction based on a first-price payment rule are straightforward.
Here, the winning bidder pays exactly the amount that she bid on the item, i.e. pi = bi

for the single winning bidder i.

However, a bidder’s optimal bid strategy in a first-price payment rule is not straightfor-
ward. If she bids too high, i.e. very close or equal to her valuation, she might win but
loses margin; if she bids too low she might increase her margin but eventually she might
lose because her bid is lower than the opponents’ highest bid. Equilibrium strategies
for simple single-item auctions exist and are described for example in Krishna (2009),
p.14.

Second-Price

The second-price payment rule solves the strategic problem presented above. Here, the
winner’s payment is set to the second highest bid, therefore: pi = max

j 6=i
bj , for the single

winning bidder i.

The winner’s payment is no longer determined by her own bid but by the opponents’ bids.
In a second-price auction it is a weakly dominant strategy to bid truthfully, i.e. bi = vi,
∀i ∈ I. The auction is strategy-proof, i.e. dominant-strategy incentive-compatible.
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Vickrey-Clarke-Groves

The second-price payment rule above can easily be applied to single-item auctions but
not to combinatorial auctions. When multiple items are auctioned at once, the Vickrey-
Clarke-Groves (VCG) mechanism (Vickrey, 1961) provides a general solution to achieve
dominant-strategy incentive compatibility in settings with quasi-linear utility functions.
The idea is that each winning bidder i ∈ W, with W ⊆ I being the set of winners, pays
an amount equal to the opponents’ loss caused by having i participate in the auction;
or equally, each winning bidder i ∈ W pays the valuation they receive in the welfare
maximizing allocation, vi(x∗), minus a discount in the additional welfare w generated
by i participating in the auction. The additional welfare is given by the difference in
welfare generated by the set of all bidders I, w(I), and the welfare generated by all
bidders without i, w(I−i), therefore:

pi = vi(x∗)− (w(I)− w(I−i))

The mechanism incentivises each bidder to submit their bids truthfully. It also requires
each bidder to submit bids on all possible bundles, therefore an exponential amount of
bids in the number of items. As a result, an enormous amount of information might be
required, which is one of the reasons why VCG is barely applied in practice.

Another reason is that the resulting prices can be outside the core. For the time being,
we consider the auction as a cooperative game (N , w) where N is the set of players,
here including the auctioneer, who can form coalitions with transferable utilities and
can freely move won items among them. w defines the coalitional value function for any
coalition C ∈ N as the maximum sum of the participants’ valuation for an allocation
alternative x out of the set of alternatives X . The coalitional value function is:

w(C) =
{

maxx∈X {
∑
i∈C vi (xi)} , if 0 ∈ C

0, if 0 /∈ C

}

For the value function to be positive the auctioneer must be part of the coalition, because
else the bidders have nothing to trade among themselves.

Let ui = vi(xi)− pi be the profit of player i, the set of core payoffs is defined as:
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Figure 2.1: Core violating VCG payments from Example 1 in Day and Cramton (2012)

Core(N , w) =
{
u|

∑

i∈N
ui = w(N ), (∀C ⊂ N )w(C) ≤

∑

i∈C
ui)

}

If some payoff vector u is not in the core, there exists a coalition C that in total is
better off by deviating from the current allocation at current prices and sharing the
total surplus. The example below illustrates this problem.

Example 2.2: Core Violating VCG Payments, (based on Day and Cramton
(2012), Example 1). Consider 5 bidders I = {1, · · · , 5} and 2 items K = {A,B}.
Each bidder submits only one bid equal to her valuation. The submitted bids are the
following: b1(A) = 28, b2(B) = 20, b3(AB) = 32, b4(A) = 14, b5(B) = 12. The unique
winners in this example are: W = {1, 2}; the resulting positive VCG payments are:
pV CG1 = 14, pV CG2 = 12. Note that both bidders together pay 26 while bidder 3 would be
willing to pay 32 and currently has a payoff of 0. She could therefore form a coalition
with the auctioneer and offer a payment larger than 26 but less than her valuation to
receive a positive payoff.
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Core-Price

When VCG payments are outside the core (e.g. see Example 2.2), they can be increased
in a way that they are in the core, i.e. any deviating coalition does no longer exist. Note
that this is always possible in auctions because a pay-as-bid, i.e. first-price, payment
rule is always in the core. There exist multiple different algorithms to adjust the VCG
prices. One of them is the VCG-nearest core payment by Day and Raghavan (2007)
and its refined version by Day and Cramton (2012). Day and Cramton (2012) compute
core-payments such that the Euclidean distance to the VCG payments is minimal. Con-
sidering the example of core violating VCG payments above, the payments would be
increased to pCore1 = 17 and pCore2 = 15 as can be seen in Figure 2.1. Now, no one would
be willing to deviate from the current allocation at the given prices and the outcome
is in the core. However, since core prices deviate from VCG prices it can no longer be
guaranteed that the mechanism is strategy-proof. By keeping this deviation minimal,
the incentive to deviate from truthful bidding is meant to be kept minimal, too.

Walrasian Equilibrium Price

Arrow and Debreu (1954) introduced Walrasian equilibrium as an equilibrium concept
in markets with divisible items or where the quantity exchanged between traders is
small compared to the total quantity being traded. Due to the size of the market, the
individual market participant cannot manipulate the price.

In the context of combinatorial auctions, Blumrosen and Nisam (Nisan (2007), p. 275
- 279) connect linear programming with Walrasian equilibria. They prove that ”if an
integral optimal solution exists for the linear programming relaxation”, i.e. the optimal
solution of a relaxed WDP (Section 2.2.2) returns decision variables that are integer,
”then a Walrasian equilibrium whose allocation is the given solution also exists. [...] A
Walrasian equilibrium is a set of market-clearing prices where every bidder receives a
bundle in her demand set, and unallocated items have zero prices” We can access these
item level prices through the dual of the WDP.

In Chapter 3 (Sutterer et al., 2019) we rely on the implementation of a WDP using
VCG and Core payments for the implementation of an optimal offline allocation and
(nearly) incentive-compatible payment rule. For an online allocation we apply the sim-
ple second-price payment rule. In Chapter 4 (Bichler et al., 2020) we implement two
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additional payment rules to the ones presented here, namely discriminatory payments
and uniform payments (Krishna (2009), p. 174 - 178). Because they are described in
detail in Chapter 4 (Bichler et al., 2020) and are used only therein, we refrain from
introducing them twice. For the implementation of our proposed combinatorial auction
design, we build on the theory of Walrasian equilibrium prices presented here. In Chap-
ter 5 (Heidekrüger et al., 2019) and Chapter 6 (Heidekrüger et al., 2020a) we compare
the performance of strategies learned via our developed learning algorithm Neural Pseu-
dogradient Ascent, to those playing the Bayes-Nash equilibrium. We consider settings
with first-price, second-price, VCG and Core payment rules.

2.3 Learning in Incomplete Information Games with Continous
State and Action Space

In Section 2.1.2 we have introduced Fictitious Play and Smooth Fictitious Play as learn-
ing algorithms, originating from the economics branch of research to learning games of
complete information with discrete action and state space. In fact, both can also be ap-
plied to games of incomplete information as long as the state and action space remains
discrete.

For the Bayesian auction games we consider in this thesis, actions as well as states, i.e.
types, are continuous. In Chapter 5 (Heidekrüger et al., 2019) and 6 (Heidekrüger et al.,
2020a), we rely on the implementation of fully connected neural networks to compute
policy gradients in continuous state and action space, in order to learn Bayes-Nash
equilibria. In Chapter 5 we refer to this learning algorithm as Neural Self-Play while in
Chapter 6 we refer to it as Neural Pseudogradient Ascent (NPGA).

In the following, we explain the concept of fully connected neural networks and evolu-
tionary strategies to provide additional background in order to elevate the understanding
for the implementation of NPGA. We restrict ourselves to a brief and concise descrip-
tion that should provide the reader with the necessary understanding. The following
introduction is mostly based on Chapter 6 in Goodfellow et al. (2016). For further in-
formation on reinforcement learning and neural networks we refer to Goodfellow et al.
(2016) and Sutton and Barto (2018).
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2.3.1 Fully Connected Feedforward Neural Networks

With increasing computational power and availability of mass data at the beginning of
the 21st century, neural networks have become a popular method for all kinds of machine
learning applications. These range from simple prediction tasks to picture classification
to applications in multi-agent reinforcement learning.

Definition 2.12: Neural Network. A neural network defines a mapping y = f(x, θ)
with x being the input data and θ being parameters to be learned for the best function
approximation. The network is composed of a number of sequential functions, i.e. a
chain: f(x) = f (n)(f (n−1)(· · · (f (1)(x)))) that can be represented by an acyclic graph.
The superscript describes the hidden layers 1 to n − 1, ending with the output layer n.
Each of these layers consists of a predefined number of neurons, representing a vector to
scalar operation, and each neuron applies an activation function to allow for non-linear
transformations.

Information in the form of the input x flows through the network, with parameters θ,
and finally result in the output y. This is referred to as a forward pass through all n
layers of the network. The number of layers determines the depth and the number of
neurons determines the width of the network.

Definition 2.13: Neuron. A neuron represents a vector to scalar operation: z =
g(Wx+ b) connecting the layers. x is the output data of the previous layer and z is the
output of the neuron in the current layer. W and b are parameters that are part of the
training process and g is referred to as an activation function.

In a fully connected neural network each neuron of one layer is connected to each neuron
of the following layer. Weights W (l)

r represent a weight vector of neuron r in layer l
connecting neurons of the previous layer to the current. b(l)

r is a scalar bias value of r in
l. Figure 2.2 illustrates a typical fully connected neural network with 1 hidden layer.

Each neuron applies an activation function to its affine transformation, Wx+ b, before
returning the output z.

Definition 2.14: Activation Function. An activation function g transforms the affine
transformation of a neuron, Wx+b, and allows for non-linear transformation. It is part
of the parameters defining the architecture of the neural network and is not trained.
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Input
Hidden
layer
(l = 1)

Output
layer
(l = 2)

x1 g(...)

x2 g(....)

x3 g(...)

Output

Figure 2.2: Fully Connected Neural Network

Typically, all neurons of a single layer use the same activation function. Common acti-
vation functions are: sigmoid, tanh as well as SeLU and ReLU. We use the latter two
for our network design, SeLU in all hidden layers and ReLU in the output layer. They
are defined as:

SeLU(x) = λ

{
x, for x ≥ 0
αex − α, for x < 0

}
ReLU(x) =

{
x, for x ≥ 0
0, for x < 0

}

SeLU is an approximation to ReLU that provides good numerical properties for certain
values of λ and α effectively working as an internal normalization (Klambauer et al.,
2017). It has become very popular lately and has in fact shown to perform well in our
settings, too. Using ReLU in the output layer provides a natural way to avoid negative
bids, which are not allowed in the bidding process.

Figure 2.3 illustrates the computational pipeline of a single neuron. The neuron here has
3 input connections (x1, x2, x3). Each is multiplied with its own weight (w(l)

r,1, w
(l)
r,2, w

(l)
r,3).

The bias, b(l)
r , is added to the summed products of input and weight. Its resulting scalar

is the input of the activation function g leading to output z.

The following example illustrates the usage of a neural network in the context of auc-
tions:
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Figure 2.3: Neural Network Pipeline

Example 2.3: Bidding Strategies via Neural Networks. Consider a first-price
auction for a single item. Bidder i uses a fully connected neural network to compute
her bid. The input is a scalar valuation x = vi. The network has 1 hidden layer l = 1
followed by an output layer l = 2. The hidden layer has 2 neurons and the output layer
has 1 neuron. All layers use a ReLU activation function. Assume the initial weights
are: w(1)

1,1 = −1.1, w(1)
2,1 = 1.2, w(2)

1,1 = 2.1, w(2)
1,2 = 2.2 and b(1)

1 = b
(1)
2 = b

(2)
1 = −0.5.

Bidder i has a valuation of vi = 1 for the item. With x = vi the bid is computed as
follows:

• Input for neuron 1 and 2 in layer 1: x = 1
• Output of neuron 1 in layer 1: ReLU(−1.1 · 1− 0.5) = 0
• Output of neuron 2 in layer 1: ReLU(1.2 · 1− 0.5) = 0.7

– Inputs for neuron 1 in layer 2: x = (z1,1 = 0, z1,2 = 0.7)

– Output of neuron 1 in layer 2: ReLU ((2.1 · 0 + 2.2 · 0.7)− 0.5) = 1.04

The resulting bid is 1.04. Assume the second highest bid is 0.7, bidder i wins the item
but pays more than the item is worth to her.

In this case bidder i would overbid. During training, the parameters θ will be adjusted
such that i should bid less in the next training iteration.
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2.3 Learning in Incomplete Information Games with Continous State and Action Space

2.3.2 Gradient Computation

To be able to train a neural network we need to evaluate the performance of its output
first. The output in NPGA is an action, i.e. a bid, by a player, i.e. a bidder, that results
in the bidder’s utility u. As a consequence, we train a Loss function L(θ) = −E[u].
An efficient way of optimizing loss functions in neural networks with batches of data
x is backpropagation. A batch of data denotes a subset of the complete data set for
which one gradient can be calculated at once. Backpropagation computes the gradient
of the loss function ∇θL, i.e. the direction of the steepest increase of the function. It
can efficiently use the chain rule to compute and store the partial derivatives of each
neuron.

As explained in Chapter 5 and 6, we cannot use backpropagation because of nontrivial
discontinuities in a bidder’s ex-post utilities. Eventually, backpropagation would lead
to zero bids and as a result would lead to zero gradients that do not constitute an
equilibrium. Because of the shape of the ReLU function when x < 0, the gradients
do not receive any more signals and are stuck. This is sometimes referred to as ”dead
ReLU”. To avoid this from happening, we apply evolutionary strategies (Salimans et al.,
2017) instead.

Evolutionary Strategies

Evolutionary strategies (Salimans et al., 2017) create P random perturbations of the
parameter vector θ by adding P i.i.d. zero-mean, σ2 variance Gaussian noise terms
ε1, ..., εP . The resulting P perturbed models are evaluated with respect to their “fitness”,
i.e. achieved utility, ϕp ∈ R. This is used to build the weighted average of the P noise
vectors with more desirable perturbations being weighted higher than less desirable
ones:

∇θL = − 1
σ2P

P∑

p=1
ϕpεp

Example 2.4: Pseudogradient Computation. Consider the setting and network as
described in Example 2.3. We compute P = 2 perturbations of the parameter vector θ =
(w(1)

1,1, b
(1)
1 , w

(1)
2,1, b

(1)
2 , w

(2)
1,1, w

(2)
1,2, b

(2)
1 ). Let us assume ε1 = (0.4, 0.2,−0.3, 0.1,−0.3, 0.2, 0.1)

and ε2 = (−0.2,−0.2, 0.3, 0.3, 0.2, 0.1,−0.2). The corresponding parameters for the
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2 Theoretical Background

first perturbation change to: w(1)
1,1 = −0.7, b(1)

1 = −0.3, w(1)
2,1 = 0.9, b(1)

2 = −0.4, w(2)
1,1 =

1.8, w(2)
1,2 = 2.4, b(2)

1 = −0.4. The resulting bid for θ + ε1 is:

ReLU ((1.8 · 0 + 2.4 · 0.5)− 0.4) = 0.8

making the bidder win at a price of 0.8 with a payoff ui = 0.2. The second perturbation,
θ + ε2, leads to a bid of 2.29 with a payoff ui = −1.29. As a consequence ϕ1 > ϕ2 and
the actual parameter vector θ is updated more in the direction of ε1 and less in that of
ε2, effectively decreasing the bidder’s bid in the next iteration.

2.3.3 Optimization

Backpropagation and evolutionary strategies, provide a (pseudo) gradient that merely
determines the direction for optimization but not the step size. Finding a good step size
represents a whole new optimization problem. The machine learning community has
presented many good working approaches, starting with Stochastic Gradient Descent to
Momentum (Qian, 1999) and Adam (Kingma and Ba, 2017). For our work, we tried
all three optimization algorithms. Depending on the setting, they sometimes perform
better or worse. We finally chose Adam as it produces the most robust results. With
Adam, the parameter update for the next iteration k + 1 is computed as:

θk+1 = θk − α · mk+1
√
vk+1 + ε

using the first momentum, the mean of the gradients:

mk+1 = β1 ·mk + (1− β1)∇θL(θk)

and the second momentum, the variance of the gradients:

vk+1 = β2 · vk + (1− β2)[∇θL(θk) ◦ ∇θL(θk)],

◦ being an element-wise multiplication. α, β1, β2 and ε are all hyperparameters that need
to be determined a priori and can be tuned.

After updating the parameter vector θ, the next iteration starts with another forward
pass, gradient computation via evolutionary strategies, parameter update via Adam,
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etc. Typically, we perform multiple thousand iterations with large batch sizes in our
experiments.

After having briefly introduced fundamentals in game and auction theory to elevate the
understanding for the methodologies applied in this thesis’ publications, we continue with
presenting those publications. In Chapter 7 we review our publications and emphasize
the contribution of each to the research community and practitioners. Finally, we outline
the conclusion of this dissertation in Chapter 8.
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3 Efficiency and Revenue in Display Ad
Auctions
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of total media spending, expected to be surpassing spending on TV advertisement in the U.S. in
2017 (Zenith 2017). Display ad auctions are conducted in milliseconds online, whenever a user
visits a website. This is also referred to as real-time bidding (RTB). Based on available information
about the user and the publisher hosting the website, advertisers determine their valuation for an
impression and place a bid.

The impressions are typically priced via a simple second-price rule (Yuan et al. 2013). For single-
item auctions, this Vickrey payment rule is known to be incentive-compatible (Vickrey 1961), i.e.,
bidders maximize their profit by reporting truthfully. Economic models of keyword and display ad
auctions often assume that the valuations for individual impressions are separable, i.e., a bidder’s
valuation of each impression does not depend on the allocation of other impressions. Each auc-
tion can be considered independently such that the second-price rule is indeed dominant-strategy
incentive-compatible (see, for example, the assumptions in a widely cited paper by Edelman and
Schwarz (2010)). The situation is quite different if the valuations for individual impressions are not
separable anymore. This might be the case, if there is an overall budget constraint or a campaign
target, i.e., a budget beyond which bidders do not have a value for additional impressions anymore.
If all impressions would be auctioned offline at the same time with a Vickrey-Clarke-Groves (VCG)
mechanism, then this mechanism would still be incentive compatible for bidders with a campaign
target. This, however, is not necessarily the case if the impressions are auctioned off dynamically.
With non-separable preferences a sequential auction does not necessarily pick the welfare max-
imizing allocation. However, optimality of the allocation problem is a requirement for the VCG
mechanism to be truthful (Mas-Colell et al. 1995).

An online display ad auction (with truthful bidders) can be seen as an online algorithm to solve
a computationally hard knapsack problem. Unfortunately, worst-case analysis yields that the effi-
ciency of online algorithms can be arbitrarily low for many knapsack problems (Berg et al. 2010;
Chakrabarty et al. 2008). In summary, the online auction might not maximize welfare, and even if
bidders bid truthfully, the payments can differ substantially from those paid in an offline auction
with a VCG payment rule or also competitive equilibrium prices. Equilibrium bidding strategies
in such dynamic auctions are not well understood and require strong assumptions about the na-
ture of the arrival process, the campaign length, and the utility functions (Balseiro et al. 2015). It
is unclear whether advertisers follow such strategies in the field. Given the second-price rule, a
simple strategy, where advertisers express their value for an impression truthfully, is easy to im-
plement and it might still turn out to be a good strategy with high payoff for the bidders. We want
to understand under which circumstances we can expect this to be the case.

1.1 Contributions and Outline
In this article, we analyze the allocative efficiency and the bidders’ payoff in online display ad
auctions when bidders report truthfully. For this, we first study the allocation and prices of the
offline allocation problem, which serves as a baseline to compare the outcome of an online dis-
play ad auction against. This means, we optimally allocate impressions and compute prices in a
hypothetical market, where all impressions arrive at the same time.

The offline allocation problem is computationally hard and results in a binary integer program.
We compute Vickrey-Clarke-Grove (VCG) payments, which are dominant-strategy incentive-
compatible, also for non-separable valuations. Unfortunately, in multi-object auctions such prices
might differ from competitive equilibrium (aka. core) prices unless the VCG outcome is in the core.
In a first theoretical contribution, we show that with a typical value model for display ad auctions,
the outcome of VCG auction is not guaranteed to be in the core. We compute bidder-optimal core
payments and argue that, while VCG payments might be very low, core payments provide a rea-
sonable comparison for prices achieved in an online display ad auction. In a second theoretical
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contribution, we show that the efficiency of an online display ad auction might be as low as 50%
in the worst case.

Finally, we study a simple experimental market to better understand the average case efficiency
and prices in online display ad auction when bidders would report truthfully. In these numerical
experiments, we find that the welfare achieved in the online display ad auction with truthful bid-
ders is very high, and the worst-case analysis is too pessimistic as an estimator for the efficiency
of such auctions in the field.

However, we also show that the bidders pay substantially more on average compared to what
they would need to pay in a corresponding offline auction in which all impressions are available
at one point in time. This is due to the fact that truthful bidders bid on more impressions in the
online process than in the offline problem, which drives up prices. This sets incentives for demand
reduction and non truthful reporting of only a fraction of the actual bidder’s valuation (bid shad-
ing). Indeed, such bidding strategies have also been reported in the field (Balseiro et al. 2015; Zhang
et al. 2014). Therefore, we also consider the case when one bidder unilaterally deviates from truth-
ful bidding by shading his bid. Our results indicate that bidders have incentives to deviate from
truthful bidding only in thin markets with few competitors. With more competitors, bidders lose
on average when shading their bids. This is important for auctioneers and bidders in the field to
understand.

The article is structured as follows. First, we define our economic model more formally. After-
wards, we address the allocation and pricing problem in the offline case, followed by a discussion
of the online model. In the subsequent sections, we describe the experimental design and evaluate
the results of the numerical experiments. Finally, we provide a summary and conclusion.

2 ECONOMIC MODEL
Advertisers in online display ad markets typically want to fulfill a marketing campaign, in which
they are given a fixed budget and want to maximize their payoff by buying impressions with
maximal total value. We introduce a simple value model for a payoff-maximizing advertiser. The
values for a particular type of impression are additive up to a certain target, i.e., a dollar amount
that is determined by the budget of the advertiser. Impressions beyond this campaign target have
zero marginal valuation.

More formally, the participants in the display ad auction are one auctioneer and a number of
|I | bidders. The risk neutral auctioneer sells a set of K = {1, . . . , |K |} impressions of types T =
{1, . . . , |T |}. In real-world markets, |K | is a very large number. For each bidder i ∈ I , Bi denotes
his campaign target, and for each type t ∈ T , his valuation isvit . The campaign target Bi defines a
level at which, once the gained value reaches this level, the bidder has no further valuation for any
type of impressions. His valuations are additive up to that campaign target, Bi . Thus, his valuation
function v (·) takes the following form:

vi (x ) = min
⎧⎪⎨⎪⎩
∑

k

vit (k )xik ,Bi

⎫⎪⎬⎪⎭ , (1)

with vit (k ) being the valuation of bidder i for impression k (of type t (k )), and xik being 1 if bidder
i receives impression k and 0 else. Bidders are risk neutral and want to maximize their payoff. Let
pik be the price that bidder i has to pay for impression k , then his utility function is

ui (x ) = vi (x ) −
∑

k

pikxik . (2)
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Note that ui (x ) is a traditional quasi-linear utility function where bidders are pure payoff max-
imizers. With this traditional quasi-linear utility function, the VCG mechanism is the unique
dominant-strategy incentive-compatible mechanism (Mas-Colell et al. 1995).

Note that the campaign target in our article could also be modeled as a budget constraint on top
of a quasi-linear utility function. However, the consequences of this alternative model are far from
trivial. It is well-known that in the presence of private budget constraints there is no incentive-
compatible mechanism (Dobzinski et al. 2008). Neither the VCG mechanism nor a core-selecting
auction would be incentive-compatible and there is little we know about equilibrium strategies
in markets with private budget constraints at this point. Our value model vi (x ) can be seen as a
reasonable approximation of how advertisers value impressions for an advertising campaign and
it allows us to use VCG and core payments as benchmark to compare against.

Let us now discuss allocation and pricing in a hypothetical offline market and in an online
market modeled after display ad auctions in the field.

3 ALLOCATION AND PRICING IN AN OFFLINE MARKET
The economic model now allows us to formulate the allocation and pricing problem. As usual,
the allocation problem (AP) maximizes overall social welfare. For each advertiser i ∈ I and each
impression k of type t (k ) ∈ T , the integer variable xik indicates whether impression k is assigned
to advertiser i and bi denotes the aggregated valuation of the impressions that advertiser i obtains.

max
∑

i ∈I

bi (AP)

s.t.
bi ≤

∑

k ∈K
vit (k )xik ∀i ∈ I (VL)

bi ≤ Bi ∀i ∈ I (CL)∑

i ∈I

xik ≤ 1 ∀k ∈ K (Supply)

xik ∈ {0, 1} ∀k ∈ K , i ∈ I (Binary)
For each advertiser i ∈ I , constraint (VL) states that his aggregated valuationbi can not be higher

than the sum of the valuations for each individual impression he obtains. Constraint (CL) repre-
sents the campaign target and limits the value of very large packages to that of the advertisers
campaign target. Together, these constraints model the utility function of each advertiser. Con-
straint (Supply) assures that each impression k ∈ K is allocated only once.

Based on this allocation, the payments for all advertisers need to be computed. In the Appendix,
we show that the VCG outcome does not necessarily lie in the core.

Proposition 1. VCG payments do not always lie in the core when considering valuation function
v (·).

Proof. See the Appendix. �

Since the VCG payments do not necessarily lie in the core, we compute bidder-optimal core
prices to compare the payments in the online auction against. Those prices are based on VCG pay-
ments that are computed for each bidder i ∈ I by pV CG

i = vi (x∗i ) − [w (I ) −w (I−i )], with x∗i being
the bundle allocated to i in an efficient allocation x∗ and w (I ) being the total welfare including all
bidders while w (I−i ) is the total welfare excluding bidder i . When VCG payments are not in the
core, the algorithm by Day and Raghavan (2007) minimally increases the prices until there exists
no coalition which would want to deviate from the allocation at current prices (bidder-optimal
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core prices). Such prices constitute a competitive equilibrium in the offline market, where no set
of bidders would want to deviate. Note that the core is not empty, since charging all winners their
true valuation results in a core imputation. Due to space restrictions, we refer the reader to Day
and Raghavan (2007) for details of the core computation. While core payments do not need to co-
incide with VCG payments, in our simulations both payments overlap most of the time such that
we can assume truthful bidding in the offline model.

4 ALLOCATION AND PRICING IN ONLINE DISPLAY AD AUCTIONS
In online display ad auctions impressions are sold sequentially within milliseconds. A second-price
auction per impression is typically used to price these impressions. The highest bidder obtains the
auctioned impression and pays the second-highest bid as a price to the auctioneer. Formally this
is equivalent to the VCG price computation, if the valuations of bidders were separable across
items. As we discussed earlier, this assumptions is typically violated in advertising markets where
advertisers run campaigns for which they have a fixed budget.

Let us provide a brief example to illustrate the differences between the offline and the online
allocation. Consider two bidders I = {b1,b2} and two impressions where the first impression is of
type t (1) = 1 and the second is of type t (2) = 2. Both bidders have a valuation for each impression
type of vit (k ) = 2,∀i ∈ {b1,b2}, t (k ) ∈ {1, 2}; both bidders have a campaign target of Bi = 3. When
solving the offline auction, each bidder receives one impression (which one is irrelevant, because
the valuations are identical). Both bidders value their bundle of a single impression by bi = 2 and
the total welfare is∑i ∈I bi = 4. The VCG payment for a bidder i is computed by the bidders valua-
tion for his bundle bi minus the Vickrey discount, being the total welfare when i participates in the
auction minus the total welfare when i does not participate. This results in pi = 2 − (4 − 3), since
the welfare without i is 3 due to only one bidder being left and the valuation being limited by the
campaign target of Bi = 3, for each bidder. In the online auction, the first impression is assigned
randomly, since both bidders equally bid their valuation of 2. Assuming b1 wins, he would have
to pay a price of p1,1 = 2, because this is the second highest bid. For the next impression, b1 would
only bid 1 as his campaign target is B1 = 3 and he already gained a valuation of 2. The other bidder
b2 wins the auction by bidding his true valuation of 2 and is asked a price of p2,2 = 1 as this is the
second highest bid.

In the following, we compare the allocation that can be achieved in the online setting to an
optimal allocation determined by the offline model. For the efficiency of the allocation, we can
prove that the allocation reached in the online scenario is at least half as good as that of an optimal
allocation. This is in stark contrast to the model in which each advertiser has a fixed budget to
invest in a campaign. This resembles an (online) multiple knapsack problem for which Marchetti-
Spaccamela and Vercellis (1995) show that there is no non-trivial competitive ratio and the result
of the online algorithm can be substantially worse than the result of an optimal offline solution.

Proposition 2. In the worst case, the social welfare obtained in the online display ad auction with
value function vi (x ) is at least half the welfare achieved in an optimal offline allocation.

Proof. See the Appendix. �

5 RESEARCH DESIGN
The worst-case analysis for efficiency, provided in the last section, might not be a good estimator
for the average efficiency of online display ad auctions in the field. We use numerical experiments
to better understand efficiency and pricing in such auctions and compare the results to an opti-
mal offline solution. We are especially interested in the distribution of welfare among the seller
and bidders and the possible benefits for participants by deviating from truthful bidding. In the
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Table 1. Experimental Design

Parameter All Experiments
Number of impressions |K | 1,000
Number of bidders |I | 3,. . . ,15
Bidders campaign target Bi 40,000
Valuations vit Γ(4.0, 26.0)
Number of impression types |T | 2, . . . ,10
Parameter First Setup Second Setup Third Setup
Arrival rates uniform, clustered uniform uniform
Shading factor None None 0.9,0.8,0.7,0.6,0.5,0.25

following, the properties of problem instances, the assumptions and the simulation process are
described.

A single problem instance contains bidders and impressions. Impressions are defined by the
following parameters: number of impression types |T | and number of impressions |K |. All im-
pressions k ∈ K are sequentially created; the probability of an impression k to be of impression
type t ∈ T is given by some probability p (t (k )). Bidders are defined by the following parameters:
number of bidders |I |, campaign target Bi , and valuations for each impression type vit . We use
a gamma distribution with parameter kt for shape and θ for scale. These parameters are set to
Γ (4.0, 26.0), which models the distribution of prices in display ad auctions by Zhu et al. (2017).
Following Zhu et al. (2017), θ = 26 stays constant, while kt changes for each impression type. The
bid data generated for the experiments is available upon request.

In the offline model, the efficient allocation is obtained by solving (AP). Afterwards, payments
are calculated using the core constraint generation algorithm (Day and Raghavan 2007), determin-
ing the bidders’ and auctioneer’s share of the welfare.

In the online model each impression is auctioned off sequentially with k = 1, . . . , |K |. In each
auction, bidders are given the impression type t and asked to submit a bid. Since we assume
truthful bidding and campaign targets, a bidders bid for an impression of type t ∈ T is given
by bit (k ) = min

{
vit (k ),Bi −

∑
l<k vit (l )xil

}
where xil for l < k describes whether bidder i was as-

signed impression l . Prices are determined via the second-price rule.
We study three different experimental setups. In all setups, we consider 1,000 impressions to be

auctioned off and vary the number of bidders participating between 3 and 15. This allows us to
analyze several demand levels. We consider this wide range of bidders, since there is a significant
variance in the number of bidders per impression in the field, however, we are not aware of pub-
licly available statistics. For each bidder, we assume a campaign target Bi of 40,000, which makes
comparisons across treatment combinations easier. The ratio between a bidders campaign target
and the average valuation for one impression determines the number of impressions demanded
by the bidder. The campaign target is set such that considering the current ratio and three bidders,
the average demand of all bidders is more than 1,000 impressions. With this VCG prices in the
offline market are strictly greater than zero on average. A summary for the parameter settings is
displayed in Table 1.

Since the arrival rate of different types of impressions might not be constant and uniformly
distributed across time, we analyze the arrival rate’s impact on efficiency in a first experimental
setup. For this, we compare uniform arrival rates with a setting where all impressions of one type
arrive in one cluster (i.e., in direct succession), followed by impressions of the next type in the
next cluster. For example, in the setting with a constant uniformly distributed arrival rate, the
probabilities of impressions k ∈ K to be of type t ∈ {1, 2} are drawn from a uniform distribution
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with p (t (k ) = 1) = p (t (k ) = 2) = 1
2 at all times. In the second setting, the probability of an im-

pression to be of the first type is 1 in the first 500 impressions and zero later, and vice versa for
impressions of type 2.

For this experimental setup, we have drawn 50 valuations randomly for each number of bidders
and evaluated those on 5 randomly drawn sequences of impressions based on a uniform distribu-
tion and one sequence based on clustered arrivals. Considering 9 different numbers of impression
types (2–10), we analyzed 50 (valuations) · 13 (number of bidder settings) · 9 (impression types) ·
(5 + 1) (impressions) = 35,100 individual experiments.

For the second and the third setup, we focus on constant uniformly distributed arrival rates. Im-
pression types t ∈ T for impressions k ∈ K are drawn randomly with p (t (k ) = t ) = 1

|T | at all times.
We vary the demand by increasing the number of bidders to study the effect on efficiency and bid-
der payoff (i.e., utility). We have drawn 50 valuations randomly for each number of bidders and
evaluated those on 5 randomly drawn sequences of impressions based on the corresponding dis-
tribution. Thus, we analyze 50 · 5 · 13 · 9 (number of impression type settings) = 29, 250 individual
experiments.

While in the first and second experimental setup all bidders bid truthfully, in the third experi-
mental setup, we consider one bidder deviating from truthful bidding. In the absence of predictive
equilibrium strategies, we want to study the gains from deviating from a truthful strategy. If these
gains are low, then deviations become less likely. For each problem instance, we consider each
single bidder deviating from truthful bidding once, while all others continue bidding truthfully.
That other bidder shades his bid with a fixed shading factor of λ = {0.9, 0.8, 0.7, 0.6, 0.5, 0.25}. The
shading factor is multiplied with the valuation to determine the bid. For example, with λ = 0.6 and
a valuation of vit = 1 the resulting bid is 0.6. Considering 6 different levels for the shading factor,
we analyze (50 · 5 · 9 · 13) · (∑15

i=3 (i + 1)) (bidders deviating) · 6 (shading factors) = 1, 755, 000 in-
dividual experiments. However, these could be solved quickly, since the offline solution does not
have to be recomputed.

All experiments were performed on a Xenon E3-1505M v5 @2.80GHz processor with 16GB main
memory. The integer programs for optimal allocation and pricing in the offline problem are solved
with Gurobi version 7.0.1.

6 RESULTS
In the following, we study the efficiency (E) and the total utility of bidders (U) by comparing
online to offline welfare (W). The offline welfare (W(of)) corresponds to the optimal welfare. The
efficiency loss (L) is the difference between the online welfare and the welfare in the optimal offline
solution (W(of) − W(on)). The ratio between bidders utility (U) and total welfare (W) describes
the distribution of welfare between auctioneer and bidders. Considering the ratio between the
bidders utility (U) online to offline, we learn about the relative overpayment by bidders in the
online market.

6.1 Allocative Efficiency
First, we consider varying arrival rates of impression types t . Results of the impact of different
distributions are shown in Table 2. For each realized valuation set, we averaged the efficiency over
five sequences of impressions and considered the average:

Eavд =
1
N

N∑

i=1

1
M

M∑

j=1
E (valuations|sequence of impressions),
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Table 2. Allocative Efficiency

Number of Bidders 3 4 5 6 8 10 12 15
Emin (Clustered ) 0.78 0.84 0.85 0.87 0.90 0.91 0.89 0.89
Emin (Uni f orm) 0.88 0.88 0.89 0.88 0.92 0.91 0.93 0.94
Eavд (Clustered ) 0.99 0.97 0.98 0.98 0.99 0.99 0.99 0.99
Eavд (Uni f orm) 0.98 0.97 0.97 0.98 0.98 0.99 0.99 0.99

where N is the number of valuation sets, M is the number of impression sets, and E (valuations|
sequence of impressions) is the efficiency for a specific valuation set given a certain impression set.
We also report the minimum efficiency observed for any valuation set in any of the five different
sequences of impression types as Emin .

Result 1. The average efficiency of the online display ad auction is close to 100% and increases
with an increasing number of bidders. Even when impressions of common types arrive in clusters, the
average efficiency is not significantly lower. The minimum observed efficiency is much lower but also
increases with the number of bidders.

Efficiency in our experiments is surprisingly high even though the worst-case efficiency can be
as low as 50%, as we have shown formally in the last section. Although the competition for im-
pressions in the online market is high, the impressions are always allocated to the highest valuing
bidder. Inefficiencies occur when a bidder dominates all other bidders and the difference in valua-
tion is low in the first impression type appearing while it is high for impression types appearing
thereafter. The dominating bidder will win the first impressions and consume his budget before
he can win the later impression types for which his value would be much higher compared to
the other bidders. Chances for such extreme cases are low. For a general analysis of worst-case
scenarios, we refer to Proposition 2.

When impression types arrive in clusters, the minimum observed efficiency for each setting
is indeed lower, but not as low as in the worst case. An increasing number of bidders increases
both, the average efficiency as well as the minimal observed efficiency. An increasing number of
impression types does not affect the efficiency significantly (see Tables 9 and 10).

6.2 Welfare Distribution

Result 2. With a large number of bidders most of the welfare gains go to the seller. In contrast,
with a small number of bidders more than one quarter of the welfare gains remain with the bidders
with significant differences between the online and offline auction environment.

Table 3 describes the welfare distribution, i.e., how much of the welfare generated goes to the
bidders and how much to the seller. In this table, we average over all number of impression types.

Considering a small number of bidders, the bidders’ welfare share in the online market is only
40% and 31%, while in the offline market it is 94% and 66% ( U (on)

W (on) and U (of )
W (of ) ) in Table 3). The

differences between the utility in the online and the offline auction with only a few bidders suggests
that they pay too much in the online auction.

With an increasing number of bidders, the bidders’ welfare share becomes very small in online
and offline markets. Considering a large number of bidders, it is only about 16% in the online and
20% in the offline market (see Table 3). The offline utility is much more sensitive to competition,
since VCG payments consider the valuations of all bidders for all impressions while the simple
second price auction considers only the valuation of the second highest bidder for the current
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Table 3. Online and Offline Results w.r.t. the Number of Bidders Participating

Number of
Bidders 3 4 5 6 8 10 12 15

W 116,596 140,391 151,067 162,183 173,717 180,109 189,364 197,663
U(of) 110,517 94,950 56,906 51,378 44,823 41,657 41,364 39,322
U(on) 46,149 42,485 37,427 37,201 34,189 33,068 33,152 32,642

L 1,902 4,689 4,340 3,429 2,642 2,120 1,902 1,520
E 0.98 0.97 0.97 0.98 0.99 0.99 0.99 0.99

U (on)
W (on) 0.40 0.31 0.25 0.23 0.20 0.18 0.17 0.16
U (of )
W (of ) 0.94 0.66 0.37 0.31 0.26 0.23 0.22 0.20
U (on)
U (of ) 0.43 0.50 0.69 0.75 0.78 0.81 0.81 0.84

Table 4. Relative Utility (Online/Offline)

Number Number of Impression Types
of Bidders 2 3 4 5 6 7 8 9 10

3 0.49 0.45 0.45 0.41 0.42 0.41 0.41 0.41 0.40
4 0.58 0.61 0.52 0.52 0.50 0.48 0.43 0.44 0.40
5 0.66 0.68 0.67 0.68 0.70 0.68 0.71 0.71 0.72
6 0.67 0.70 0.71 0.76 0.73 0.77 0.78 0.77 0.80
8 0.60 0.69 0.78 0.81 0.82 0.83 0.80 0.85 0.85

10 0.66 0.72 0.79 0.80 0.86 0.83 0.86 0.87 0.88
12 0.63 0.73 0.78 0.82 0.82 0.87 0.87 0.89 0.90
15 0.67 0.73 0.81 0.87 0.85 0.87 0.89 0.91 0.91

impression when determining the price. The fact that the differences between offline and online
markets are small in markets with many competitors suggests incentives for deviation from truth-
ful bidding are small in the online treatment. In Section 6.4, we analyze the gains bidders can
achieve by deviating from truthful bidding. This can be seen as a measure for robustness against
strategic manipulation.

6.3 Bidders’ Utility in Online vs. Offline Markets
Let us now take a closer look at the differences in bidders’ utility between online and offline mar-
kets taking into account also the number of impressions types that are available. These can have
an impact, because bidders have different preferences for different types of impressions leading
to a further segregation of the overall market and the competition for an individual impression
decreases.

Result 3. With a small number of bidders and impression types the bidders’ utility from the online
display ad auction is significantly lower than that of the offline auction. With an increasing number
of bidders and impression types the differences between both mechanisms become small.

Table 4 shows that with a medium number of bidders the ratio of the bidder utility in the online
auction compared to the offline auction (U (on)

U (of ) ) increases with the number of impression types
in the market. With many bidders and many impression types the utility of bidders in the online
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Fig. 1. Online and offline utility w.r.t. the number of impression types.

auction is close to that in the offline auction (a ratio of 0.91), while there is a substantial difference
(a ratio of only 0.49) in markets with only few impression types and few bidders.

Note that with a small number of bidders an increasing number of impression types does
not lead to higher utility for bidders. This phenomenon can be explained when looking at the
number of impression types in online and offline markets separately (see Figure 1). A higher
number of impression types further separates the market as bidders have also different prefer-
ences for different impression types even though the overall number of impressions does not
change. As a consequence, the bidder utility increases with additional impression types, while
it decreases with additional bidders. Note that the maximum total utility with three bidders is
3 · 40,000(budget)= 120,000, which happens often when VCG prices are 0 because of extremely low
competition.

In the offline auction the bidders’ utility also decreases with an increasing number of bidders.
However, with a medium number of bidders there is no significant difference in the utility with
two, five, or ten impression types. In contrast, with a small number of bidders, a larger number
of impression types can lead to situations in the offline auction, where each of the few bidders
only bids on his most preferred impression types and there is almost no competition. This leads to

ACM Transactions on Management Information Systems, Vol. 10, No. 2, Article 6. Publication date: June 2019.



Are Truthful Bidders Paying too Much? Efficiency and Revenue in Display Ad Auctions 6:11

low prices and high utility with only a few bidders and an increasing number of impression types.
With more bidders, these utility gains are quickly eaten up.

Table 7 in the Appendix summarizes the total utility of bidders in the online auction, while
Table 8 shows the bidders’ utility in the offline auction in numbers.

In summary, in display ad markets where the number of bidders per impression is low, the
bidders pay significantly more in the online auction compared to the hypothetical offline market.
As a consequence, there might be incentives for bid shading. However, considering a medium
or large number of bidders and many impression types the differences decrease rapidly (also see
linear regression in Table 6 in the Appendix).

6.4 Gains from Non-truthful Bidding
The differences in the utility between online and offline auctions suggests that bidders might de-
viate from truthful bidding in our model where bidders have a campaign target. This raises the
question how bidders would behave in such a market and when they would deviate from truthful
bidding. Equilibrium analysis is how economists typically aim to predict bidder behavior in mar-
kets. Auction theory has largely been focusing on offline environments where demand and supply
are present at one point in time (Krishna 2009). The study of online markets where supply arrives
over time is much less developed and even the development of appropriate equilibrium solution
concepts is in its infancy (Balseiro et al. 2015). But even in the offline environment equilibrium
bidding strategies are only known for very specific multi-object auction mechanisms. Given the
number of assumptions that such equilibrium concepts require, it is also an open question whether
they will be predictive for real-world markets with many objects and bidders.

Still, the second-price payment rule used in display ad auctions might set sufficient incentives
to bid truthful as bidders do not have to pay their bid. Whether this is the case also depends on
the expected gains a bidder has from shading his bid below his valuation in a sequence of second-
price auctions. If these gains are low and the risks of losing are high, then bidders have little
incentives to manipulate. In contrast, if the gains are high, this could set incentives to manipulate
bids. Indeed, there are publications that recommend bid shading (Balseiro et al. 2015; Zhang et al.
2014). Note that the model assumptions in these papers differ significantly. However, bid shading
can also be useful in our model. Without bid shading, a truthful bidder might just win too many
low-valued impressions at a high price in the early phases until his campaign target is reached.
Bid shading makes the bidder lose on low-valued impressions in the early phases saving part of
his campaign target for later phases of the campaign. We analyze the gains that a bidder has from
unilateral manipulation and use this to characterize environments that are more or less robust
against strategic manipulation in an online second-price auction.

Result 4. If a bidder shades his value unilaterally while all others bid truthful, then this bidder’s
utility increases significantly when competing with only a small number of bidders. With an increasing
number of bidders, bid shading quickly leads to utility losses as bidders become losing when shading
too much.

Table 5 summarizes the median of the relative differences in utility due to bid shading. In other
words, we report the ratio of the utility that a single bidder would get by shading his bid by a certain
factor vs. bidding truthfully as all other bidders (i.e., 1.0 represents no difference, >1.0 a surplus,
and <1.0 a deficit). The table shows the median as the empirical distribution is not symmetric but
very skewed. The mean might give a wrong impression about the benefits of shading, since it is
very sensitive to extreme values.

The results in Table 5 reveal that with only a small number of bidders competing for an impres-
sion a bidder can gain by unilaterally deviating from truthful bidding. With higher competition
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Table 5. Median Utility Gain by Unilaterally
Deviating from Truthful Bidding

Number Bid Shading Factor
of Bidders 0.9 0.8 0.7 0.6 0.5 0.25

3 1.00 1.19 1.41 1.63 1.76 1.90
4 1.00 1.07 1.17 1.16 1.07 0.57
5 1.00 1.00 1.00 0.75 0.29 0.00
6 1.00 1.00 0.86 0.32 0.00 0.00
8 1.00 0.96 0.16 0.00 0.00 0.00

10 1.00 0.76 0.00 0.00 0.00 0.00
12 1.00 0.61 0.00 0.00 0.00 0.00
15 1.00 0.00 0.00 0.00 0.00 0.00

the gains quickly become losses and a bidder has to be careful not to lose against competing bid-
ders. Overall, this suggests that the potential gain from manipulation might not be worth the risk
to lose in markets with a medium or large number of bidders competing per impression. To bid
strategically, a bidder needs to understand the competition that he can expect for different types
of impressions. The analysis suggests that truthful bidding is no equilibrium in markets with few
bidders where bidders have a campaign target. How much they should shade in an online mar-
ket in equilibrium is a different question and one that is much harder to answer if the auction is
modeled as a dynamic Bayesian game, which is standard in auction theory.

7 CONCLUSION
A wide-spread argument for the second-price rule in display ad, or keyword auctions with one slot
only, is that they are incentive-compatible (Edelman and Schwarz 2010). The argument relies on
the separability of valuations for different impressions. It is unrealistic, however, to assume that
the value for the first impression that an advertiser buys is equivalent to the marginal value of an
impression after having bought already several thousand impressions for a campaign. Actually,
advertisers typically have a campaign target or a budget determining how much they want to
spend (Berg et al. 2010). They either cannot or do not want to spend more money beyond this
target.

In this article, we analyze the allocative efficiency and bidders’ utility of online display ad auc-
tions when bidders have a campaign target and report truthfully. We introduce a simple value
function that reflects the campaign target, but still allows for a standard quasi-linear (i.e., payoff-
maximizing) utility function. When the impressions all arrive at the same time, they could be
allocated optimally using a mathematical program.

The online display ad auction can be seen as a dynamic algorithm to solve this computationally
hard allocation problem. We compare the online to the optimal offline solution, assuming that
bidders report their valuations truthfully at each point in time. While the offline VCG mechanism
would be truthful, the online mechanism is not. First, we show that the worst-case efficiency of the
online allocation in our model is 1/2 of the optimal welfare. Then, we provide results of numerical
experiments showing that the average efficiency of the auction is surprisingly high on average
and increases with the number of bidders.

To compare the revenue and the utility of the bidders in the online and offline setting, we com-
pute core-payments from the offline allocation problem as a baseline. They describe the minimal
competitive equilibrium prices such that no coalition of losing bidders could outbid the winners
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and provide a useful baseline in a model with payoff-maximizing bidders. We prove that these core
payments can be higher than the VCG payments in our model. In the simulations, we find that with
low competition per impression, the bidders pay substantially more in the online auction as com-
pared to the offline auction. With an increasing number of bidders, however, the prices converge to
the valuations and the differences between online display ad auctions and the hypothetical offline
world are small.

Finally, we ask the question how much bidders could gain from bid shading given all others
report truthfully. This analysis helps understand the robustness of the second-price rule in online
markets. In line with the earlier results, the gains from such manipulations are high in markets
with only few competitors per impression. In contrast, in markets with many bidders an unilateral
bid shading can make a bidder lose who would otherwise win resulting in lower utility compared
to a truthful strategy.

Overall, the analysis indicates that in markets with many competing advertisers per impression,
manipulation is risky and there are little incentives for deviations from simple truthful bidding.
There are, however, markets and types of impressions where few bidders compete. In these markets
advertisers have incentives to manipulate in an attempt to increase overall utility in a model where
the preferences for individual impressions are not separable as has been assumed in past literature.

As a note of caution, our simulation model differs from real-world display ad auctions where
the arrival rates of different impression types vary substantially over the day and there are many
more impression types. Our simulation model removes this noise from the daily fluctuations. While
the absolute numbers on efficiency losses do not have external validity for this reason, the model
allows us to better understand causal relationships between the bidding strategy and the efficiency
and revenue of the auctions.

APPENDICES
A PROOFS
Proof of Proposition 1:

To prove this, we rely on the results by Milgrom and Strulovici (2009), who show that the gross
substitutes condition (GS) guarantees VCG to be in the core, and of Fujishige and Yang (2003), who
prove the equivalency of M �-concavity to GS for {0, 1}n valuation functions.

Definition 1 (Shioura and Tamura 2015). A function f : Zn → R ∪ {−∞} is said to be M �-
concave if it satisfies the following exchange property: ∀x ,y ∈ domf ,∀i ∈ supp+ (x − y),∃j ∈
supp− (x − y) ∪ {0}:

f (x ) + f (y) ≤ f (x − χi + χj ) + f (y + χi − χj ),

where N = {1, . . . ,n}, dom f =
{
x ∈ Zn | f (x ) > −∞} , supp+ (x ) = {i ∈ N |xi > 0} , supp− (x ) =

{i ∈ N |xi < 0} for x ∈ Zn , χi is the characteristic vector of i ∈ N , and χ0 = 0.

While a purely additive (or linear) valuation functions is always M �-concave and therefore al-
ways GS (Shioura and Tamura 2015), our valuation function v with a campaign target Bi is not
M �-concave .

Proposition 3. The valuation function v is not M �-concave. As a result GS is violated and the
VCG payments do not necessarily lie in the core.

Proof. We prove the proposition by providing a counterexample for the M �-concavity of the
value function v . Consider n > 6 impressions K = {1, . . . ,n} where the first impression is of type
t1, impressions 2, . . . ,n − 2 are of type t2 and impressions n − 1,n are of type t3. Let b ∈ I be
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a bidder with a campaign target of Bb = n and valuations vbt1 = 2,vbt2 = 1,vbt3 =
n−1

2 . Let x =
(1, 1, . . . , 1, 0, 0) andy = (0, 0, . . . , 0, 1, 1) be two allocations. We show that for i = 1 ∈ supp+ (x − y)
there is no j ∈ supp− (x − y) ∪ {0} for which the exchange property holds.

For j = 0, we get
vb (x ) +vb (y) = n − 1 + n − 1 = 2n − 2 � 2n − 3 = n − 3 + n = vb (x − χ1) +vb (y + χ1), (4)

and for j ∈ {n − 1,n}, we get

vb (x ) +vb (y) = n − 1 + n − 1 = 2n − 2 �
3
2 (n + 1) = n +

n − 1
2 + 2

= vb (x − χ1 + χj ) +vb (y + χ1 − χj ). (5)

Hence, the valuation function is not M �-concave. �

Proof of Proposition 2:

Proof. We first show that the social welfare of an online allocation is bounded from below by
one half of the welfare of an optimal offline solution. Let X be an optimal offline allocation and Y
be an allocation in the online scenario. Consider an impression k for which there exists a bidder i
that is assigned k inX such that this assignment contributesv∗ to the total social welfare inX , but
for which this impression only contributesv ′ < v∗ to the total welfare in Y . Since i is assigned the
impression in the offline allocation, vit (k ) ≥ v∗ has to hold. Consider all remaining impressions
K ′ = K \ {k }. Bidder i obtains a combined value of at least B −v ′ by being assigned impressions
from K ′ in Y , since otherwise i would place a bid greater than v ′ for k (as he has higher value for
this impression). However, he only obtains a combined value for impressions K ′ of at most B −v∗
in X . Let V Y be the sum of values of all impressions that bidder i obtains in Y and let V X be the
sum of values of all impressions for bidder i in X . From above it follows that V X −V Y ≤ v ′ −v∗
or v∗ ≤ v ′ +V Y −V X .

Let KY ⊆ K ′ be the set of impressions obtained by bidder i in Y that he does not obtain inX and
and let KX ⊆ K ′ be the set of impressions obtained by i in X but not in Y . In the worst case, all
bidders who obtained the impressions in KY in X (i.e., those that bidder i does not get there) have
no value for any other impressions and hence are not assigned any impressions in Y . Thus, in this
case, none of these values contribute to the total welfare in the online scenario. Additionally, there
may be no other bidder who values impression in KX , such that these are unassigned in Y as well
and hence also non of these values contribute to the total welfare in Y .

Combining these results, in the worst case, the total welfare contributed by assigning impres-
sions of KX ∪ KY ∪ {k } in Y as compared to X is at least

0 +V Y +v ′

V X +V Y +v∗
≥ V Y +v ′

2V Y +v ′
≥ 1

2 , (6)

i.e., at least half of the social welfare in X . Continuing iteratively with all other impressions and
bidders yields the lower bound.

In the following, we show that this bound is tight by proving an upper bound of one half,
as well. Consider the following example with two bidders, 1, 2 with identical campaign targets
B = B1 = B2, two impressions k, l and valuationsv1t (k ) = v1t (l ) = v2t (k ) = B,v2t (l ) = 0. Then, in an
optimal allocation, bidder 1 obtains impression l while bidder 2 obtains k for a combined welfare
of 2B. However, if impression k is auctioned off first to bidder 1, then the combined welfare is
only B. �
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B TABLES

Table 6. Second Setup: Linear Regression of Relative Utility w.r.t. Grouped Number of Bidders,
Considering Low Competition (3 or 4 Bidders) as Baseline, and Impression Types

Relative Utility
(Intercept) 0.56∗∗∗
Medium Competition (5 or 6 Bidders) 0.09∗∗∗

(0.01)
(0.00)

High Competition (7–15 Bidders) 0.09∗∗∗
(0.01)

Number of Impression Types −0.02∗∗∗
(0.00)

Medium Competition (5 or 6 Bidders): Number of Impression Types 0.03∗∗∗
(0.00)

High Competition (7–15 Bidders): Number of Impression Types 0.04∗∗∗
(0.00)

R2 0.53
Adj. R2 0.52
Num. obs. 29,250
RMSE 0.13
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Table 7. Total Online Utility

Number Number of Impression Types
of Bidders 2 3 4 5 6 7 8 9 10

3 40,734 45,062 44,642 45,530 46,673 48,395 48,199 49,116 46,988
4 37,571 40,962 40,335 38,229 44,560 46,320 44,103 43,193 47,095
5 28,483 34,428 35,865 41,202 37,309 42,439 39,951 38,390 38,780
6 25,921 35,127 38,125 36,312 38,366 40,366 38,119 41,001 41,469
7 28,234 30,875 33,798 37,257 37,641 38,739 37,181 38,742 38,385
8 26,675 30,134 33,880 35,829 32,693 33,778 37,702 38,515 38,493
9 26,408 29,877 34,357 34,507 34,086 38,307 37,533 40,122 37,956

10 25,776 29,531 31,650 30,504 33,351 36,128 36,047 36,061 38,566
11 25,184 29,040 31,092 30,063 36,010 35,641 33,715 34,096 39,198
12 25,516 31,997 29,478 33,565 29,909 35,281 36,616 37,249 38,755
13 25,136 26,383 31,952 32,635 31,990 33,448 39,255 38,439 37,859
14 25,680 28,021 30,192 28,729 31,376 33,692 34,767 37,305 34,658
15 24,327 30,186 27,907 31,697 34,706 36,157 35,277 35,423 38,094
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Table 8. Total Offline Utility

Number Number of Impression Types
of Bidders 2 3 4 5 6 7 8 9 10

3 90,784 103,177 105,214 112,082 112,177 117,648 117,031 118,908 117,629
4 72,089 76,174 85,044 81,982 97,694 101,528 112,197 104,977 122,863
5 46,118 53,671 54,946 64,117 55,744 64,959 59,420 56,543 56,633
6 39,892 52,117 55,291 49,613 53,688 54,367 50,307 54,477 52,646
7 45,370 45,884 46,258 48,307 47,460 49,283 46,107 49,072 46,980
8 46,317 44,675 44,334 44,909 41,045 41,736 48,437 46,027 45,924
9 39,710 40,575 43,518 42,772 41,419 46,169 45,096 47,066 44,026

10 39,848 41,986 41,360 38,702 39,832 44,086 42,197 41,878 45,021
11 43,348 42,780 39,470 38,688 42,631 41,395 38,891 39,088 43,985
12 41,513 44,886 38,585 41,169 36,530 41,763 42,311 42,006 43,517
13 40,487 36,363 40,947 40,679 38,498 39,310 45,505 43,987 41,688
14 38,152 38,977 38,338 34,980 37,206 39,643 39,748 42,210 37,604
15 36,867 41,946 34,861 36,738 40,781 42,016 39,847 38,974 41,870

Table 9. Minimum Observed Efficiency

Number Arrival Number of Impression Types
of Bidders Rate 2 3 4 5 6 7 8 9 10

3 clustered 0.84 0.78 0.92 0.80 0.83 0.85 0.86 0.89 0.91
3 uniform 0.90 0.88 0.90 0.90 0.89 0.91 0.90 0.92 0.89
4 clustered 0.86 0.84 0.89 0.86 0.87 0.87 0.86 0.88 0.89
4 uniform 0.91 0.93 0.91 0.88 0.91 0.89 0.88 0.88 0.92
5 clustered 0.87 0.90 0.89 0.90 0.89 0.88 0.90 0.90 0.85
5 uniform 0.90 0.91 0.91 0.90 0.93 0.92 0.92 0.90 0.89
6 clustered 0.93 0.87 0.89 0.89 0.91 0.90 0.90 0.91 0.92
6 uniform 0.94 0.92 0.94 0.91 0.92 0.88 0.94 0.91 0.94
8 clustered 0.90 0.91 0.94 0.92 0.91 0.90 0.90 0.92 0.93
8 uniform 0.94 0.94 0.93 0.94 0.94 0.94 0.92 0.93 0.95

10 clustered 0.92 0.93 0.93 0.91 0.92 0.93 0.94 0.96 0.93
10 uniform 0.91 0.94 0.96 0.93 0.92 0.95 0.94 0.95 0.96
12 clustered 0.96 0.92 0.89 0.96 0.92 0.96 0.94 0.95 0.95
12 uniform 0.97 0.96 0.95 0.95 0.93 0.96 0.94 0.95 0.95
15 clustered 0.94 0.95 0.94 0.89 0.93 0.91 0.94 0.95 0.96
15 uniform 0.96 0.96 0.97 0.96 0.94 0.94 0.95 0.96 0.96
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Table 10. Average Observed Efficiency

Number Arrival Number of Impression Types
of Bidders Rate 2 3 4 5 6 7 8 9 10

3 clustered 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
3 uniform 0.98 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99
4 clustered 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97
4 uniform 0.98 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96
5 clustered 0.98 0.99 0.98 0.97 0.97 0.97 0.97 0.98 0.97
5 uniform 0.98 0.98 0.97 0.97 0.97 0.96 0.97 0.97 0.97
6 clustered 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
6 uniform 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98
8 clustered 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99
8 uniform 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.99

10 clustered 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
10 uniform 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
12 clustered 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99
12 uniform 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
15 clustered 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
15 uniform 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99

REFERENCES
Santiago R. Balseiro, Omar Besbes, and Gabriel Y. Weintraub. 2015. Repeated auctions with budgets in ad exchanges: Ap-

proximations and design. Manage. Sci. 61, 4 (2015), 864–884.
Jordan Berg, Amy Greenwald, Victor Naroditskiy, and Eric Sodomka. 2010. A knapsack-based approach to bidding in ad

auctions. In Proceedings of the European Conference on Artificial Intelligence (ECAI’10), vol. 215. 1013–1014.
Deeparnab Chakrabarty, Yunhong Zhou, and Rajan Lukose. 2008. Online knapsack problems. In Proceedings of the Workshop

on Internet and Network Economics (WINE’08).
Jianqing Chen and Jan Stallaert. 2014. An economic analysis of online advertising using behavioral targeting. MIS Quart.

38, 2 (2014), 429–449.
R. Day and S. Raghavan. 2007. Fair payments for efficient allocations in public sector combinatorial auctions. Manage. Sci.

53, 9 (2007), 1389–1406.
Liu De, Jianqing Chen, and Andrew B. Whinston. 2010. Ex ante information and the design of keyword auctions. Info. Syst.

Res. 21, 1 (2010), 133–153.
Shahar Dobzinski, Ron Lavi, and Noam Nisan. 2008. Multi-unit auctions with budget limits. In Proceedings of the 49th

Annual IEEE Symposium on Foundations of Computer Science (FOCS’08). IEEE, 260–269.
Benjamin Edelman and Michael Schwarz. 2010. Optimal auction design and equilibrium selection in sponsored search

auctions. Amer. Econ. Rev. 100, 2 (2010), 597–602.
Satoru Fujishige and Zaifu Yang. 2003. A note on Kelso and Crawford’s gross substitutes condition. Math. Oper. Res. 28, 3

(2003), 463–469.
Vijay Krishna. 2009. Auction Theory. Academic Press.
Alberto Marchetti-Spaccamela and Carlo Vercellis. 1995. Stochastic on-line knapsack problems. Math. Program. 68, 1–3

(1995), 73–104.
Andreu Mas-Colell, Michael Dennis Whinston, Jerry R. Green et al. 1995. Microeconomic Theory, vol. 1. Oxford University

Press, New York.
Paul Milgrom and Bruno Strulovici. 2009. Substitute goods, auctions, and equilibrium. J. Econ. Theory 144, 1 (2009), 212–247.
A. Shioura and A. Tamura. 2015. Gross substitutes condition and discrete concavity for multi-unit valuations: A survey. J.

Operat. Res. Soc. Japan 58, 1 (2015), 61–103.
William Vickrey. 1961. Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16, 1 (1961), 8–37.
Sha Yang and Anindya Ghose. 2010. Analyzing the relationship between organic and sponsored search advertising: Positive,

negative, or zero interdependence? Market. Sci. 29, 4 (2010), 602–623.

ACM Transactions on Management Information Systems, Vol. 10, No. 2, Article 6. Publication date: June 2019.



6:18 P. Sutterer et al.

Shuai Yuan, Jun Wang, and Xiaoxue Zhao. 2013. Real-time bidding for online advertising. In Proceedings of the 7th Interna-
tional Workshop on Data Mining for Online Advertising (ADKDD’13), Esin Saka, Dou Shen, Bin Gao, Jun Yan, and Ying
Li (Eds.). ACM Press, New York, New York, 1–8. DOI:https://doi.org/10.1145/2501040.2501980

Zenith. 2017. Internet advertising expenditure to exceed US $200bn this year. Retrieved from https://www.zenithmedia.
com/internet-advertising-expenditure-to-exceed-us200bn-this-year/.

Weinan Zhang, Shuai Yuan, and Jun Wang. 2014. Optimal real-time bidding for display advertising. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1077–1086.

Xia Zhao and Ling Xue. 2012. Competitive target advertising and consumer data sharing. J. Manage. Info. Syst. 29, 3 (2012),
189–222.

Wen-Yuan Zhu, Wen-Yueh Shih, Ying-Hsuan Lee, Wen-Chih Peng, and Jiun-Long Huang. 2017. A gamma-based regression
for winning price estimation in real-time bidding advertising. In Proceedings of the IEEE International Conference on Big
Data (BigData’17). IEEE, 1610–1619. DOI:https://doi.org/10.1109/BigData.2017.8258095

Received June 2018; revised March 2019; accepted April 2019

ACM Transactions on Management Information Systems, Vol. 10, No. 2, Article 6. Publication date: June 2019.



4 Market Design for Renewable Energy
Auctions

Peer-Reviewed Journal Paper
Title: Market Design for Renewable Energy Auctions: An Analysis of Alternative Auc-
tion Formats
Authors: M. Bichler, V. Grimm, S. Kretschmer, P. Sutterer
In: Energy Economics
Abstract: Auctions are widely used to determine the remuneration for renewable en-
ergies. They typically induce a high concentration of renewable energy plants at very
productive sites far-off the main load centres, leading to an inefficient allocation as trans-
mission line capacities are restricted but not considered in the allocation, resulting in
an inefficient system configuration in the long run. To counteract these tendencies ef-
fectively, we propose a combinatorial auction design that allows to implement regional
target capacities, provides a simple pricing rule and maintains a high level of competition
between bidders by permitting package bids. By means of extensive numerical exper-
iments we evaluate the combinatorial auction as compared to three further renewable
energy source auction designs: the current German nationwide auction design, a simple
nationwide auction, and regional auctions. We find that if bidders benefit from high
enough economies of scale, the combinatorial auction design implements system-optimal
target capacities without increasing the average remuneration per kWh as compared to
the current German auction design. The prices resulting from the combinatorial auction
are linear and anonymous for each region whenever possible, while minimal personalised
markups on the linear prices are applied only when necessary. We show that realistic
problem sizes can be solved in seconds, even though the problem is computationally
hard.
Copyright Notice: © 2020 Elsevier B.V.

47



Market design for renewable energy auctions:
An analysis of alternative auction formats

Martin Bichler a, Veronika Grimm b,c,⁎, Sandra Kretschmer b,c, Paul Sutterer a

a Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
b Department of Business and Economics, Friedrich-Alexander University Erlangen-Nuremberg, Lange Gasse 20, 90403 Nuremberg, Germany
c Energy Campus Nuremberg, Fuerther Strasse 250, 90429 Nuremberg, Germany

a b s t r a c ta r t i c l e i n f o

Article history:
Received 9 July 2019
Received in revised form 27 July 2020
Accepted 7 August 2020
Available online 15 August 2020

Auctions are widely used to determine the remuneration for renewable energies. They typically induce a high
concentration of renewable energy plants at very productive sites far-off the main load centres, leading to an in-
efficient allocation as transmission line capacities are restricted but not considered in the allocation, resulting in
an inefficient system configuration in the long run. To counteract these tendencies effectively,we propose a com-
binatorial auction design that allows to implement regional target capacities, provides a simple pricing rule and
maintains a high level of competition between bidders bypermitting package bids. Bymeans of extensivenumer-
ical experiments we evaluate the combinatorial auction as compared to three further RES auction designs, the
current German nationwide auction design, a simple nationwide auction, and regional auctions. We find that if
bidders benefit from high enough economies of scale, the combinatorial auction design implements
system-optimal target capacities without increasing the average remuneration per kWh as compared to the cur-
rent German auction design. The prices resulting from the combinatorial auction are linear and anonymous for
each region whenever possible, while minimal personalised markups on the linear prices are applied only
when necessary.We show that realistic problem sizes can be solved in seconds, even though the problem is com-
putationally hard.
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1. Introduction

Auctions are widely used in Europe and even worldwide to deter-
mine the remuneration for renewable energy sources (RES). Numerous
countries have implemented auction systems to determine feed-in tar-
iffs (FITs) and -premiums (FIPs), deductions or other subsidies for elec-
tricity from renewable power plants, among them Brazil, China,
Denmark, France, Portugal, Germany, South Africa and the United
Kingdom, to name but a few.

Compared to fixed FITs and FIPs, auctions – if designed and imple-
mented appropriately – have the potential to reduce remuneration
and thus avoid overcompensation (de Vos and Klessmann, 2014; del
Río and Linares, 2014; Mora et al., 2017). Renewable energy auctions
are often considered economically efficient, since the resulting remu-
neration is competitively determined, close to the bidders' true cost
and capacity expansion can be steered more effectively (Cozzi, 2012;
del Río and Linares, 2014; Held et al., 2014; Kreiss et al., 2017; Mora

et al., 2017). However, this typically induces a high concentration of re-
newable energy power plants at the most productive (i.e. windy or
sunny) sites, which are often located far from the main load centres
(Gerlach et al., 2015; Ibrahim et al., 2011; IRENA and CEM, 2015).

To counteract these tendencies, some countries, e.g. Germany or
Uruguay, have established mechanisms that modulate support levels
according to the location of a RES plant to induce a broader regional dis-
tribution of plants, in particular closer to main load centres (IRENA and
CEM, 2015; FederalMinistry for Economic Affairs and Energy, 2016). Yet
such location-specific auctionmechanisms frequently fail to account for
relevant aspects like potential network congestion arising from renew-
ables expansion. Overall, the German mechanism, the reference yield
model (Referenzertragsmodell, REM), has been criticised to reduce in-
centives to build wind power plants at efficient sites, while it also
does not provide an effective means to steer generation capacity to par-
ticular target regions: the capacities awarded under the current German
wind auction design with the REM are far from the envisaged targets in
the individual regions (Güsewell, 2016; Jürgens, 2017).

In this paper, we build on advances in auction design to assess the
potential of combinatorial auctions to induce efficient locational choices
for RES and thereby reach the aforementioned efficiency goals. Combi-
natorial auction designs have already been successfully applied in
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transportation, logistics and for spectrum sales (Bichler and Goeree,
2017). In particular, combinatorial auctions allow to determine target
capacities for each region and, at the same time, maintain a sufficient
level of competition between bidders. Moreover, bidders can express
their economies of scale across projects in one ormore regions via pack-
age bids, i.e. they can submit package bids for any arbitrary combination
of their planned projects. The winning bids are then assigned such that
the most efficient combinations of project portfolios are selected while
the tendered capacity per region is met and not overly exceeded.

On the downside, package bids typically do not allow for linear and
anonymous prices. Non-linear and personalised package prices, used
e.g. in spectrum auctions, are often perceived as unfair (Bichler and
Goeree, 2017). For our analyses, we therefore leverage the fact that
RES auctions are large and the resulting non-convexities in the associ-
ated optimisation problems small. Our proposed auction design com-
putes linear and anonymous prices whenever possible, and minimal
mark-ups for the winning bidders on top of these anonymous linear
prices when exact linear and anonymous prices are impossible. I.e. we
determine one price per region for all bidders (potentially with a mini-
mal mark-up for somewinning bidders to avoid losses). The overall de-
sign draws on theoretical insights from the literature on pricing in
combinatorial auctions (Adomavicius et al., 2012; Bichler et al., 2017,
2010; Guo et al., 2012). Even though the allocation pricing is computa-
tionally hard, we can solve realistic problem sizes in minutes, as we
will show.

With this inmind, the focus of this paper is to assess and evaluate the
impact of different RES auction designs on the resulting allocative effi-
ciency and subsidy payments, i.e. the cost for the taxpayer. The short
time span since most RES auction schemes are in place and the limited
data availability renders an empirical evaluation of different RES auction
designs infeasible. Moreover, since combinatorial auctions have not
been used for this purpose in practice, a counterfactual analysis of differ-
ent auction designs with field data is impossible. We therefore conduct
extensive numerical experiments, with our analyses based on the case
of RES auctions in Germany.

Germany constitutes an excellent starting point for our study, as
both comprehensive market data as well as information on system-
optimal RES locations are available to calibrate the numerical model.
Following the European Commission's guidelines to use auction
schemes for RES support (European Commission, 2014), Germany's re-
newable energies support scheme was revised in 2017. Since then, the
capacities and the remuneration of all renewable energy plants exceed-
ing 750 kilowatt (kW) capacity are determined via auctions (see section
22 Renewable Energy Sources Act, EEG, 2017). Pre-defined capacities
are auctioned off to the lowest remuneration rates asked for in up to
four auctions per technology a year (see section 32 EEG, 2017). Like in
most countries with RES auctions, winning bidders are awarded a slid-
ing FIP per kilowatt-hour (kWh), i.e. a subsidy covering the difference
between the current electricity market price and the awarded bid
price, if the market price lies below the awarded bid price (Wigand
et al., 2016).

In our numerical study, we focus on onshore wind auctions, as on-
shore wind power is the capacity-wise largest renewable energy tech-
nology in Germany (section 28 EEG, 2017; Federal Ministry for
Economic Affairs and Energy, 2018). We compare the current design, a
nationwide auction with REM, to (i) a simple nationwide auction de-
sign, (ii) a regional auction design that implements the desired regional
capacities and (iii) a combinatorial auction design that implements the
desired regional target capacities butmaintains a sufficient level of com-
petition. The regional target capacities are taken from a study by Grimm
et al. (2017), who determine the optimal RES locations in Germany ac-
counting for the location of load centres and available network
capacities.

We find that for reasonable synergies among projects, the proposed
combinatorial auction design implements the system-optimal regional
target capacities without considerably increasing the resulting

remuneration compared to the current German auction design. This is
surprising, given that the combinatorial auction exactly implements re-
gional target capacities at less productive sites closer to demand centres,
while the current nationwide auction design does not face those con-
straints. Notably, this remuneration does not even include long-run
cost savings resulting from lower redispatch and network investment
requirements when regional target capacities are met, the cost for
which easily exceed a billion Euro per year (e.g. €1.5bn in 2017) and
are largely caused by the regional mismatch of supply and demand
(Federal Network Agency and Federal Cartel Office, 2019). Grimm
et al. (2017) show that a system-optimal allocation of RES in Germany
enables efficiency gains of up to €2.6bn p.a. Althoughwe focus on a par-
ticular application to the current German wind auctions, key insights
can be obtained for RES auctions in general.

Using auctions as a support mechanism for the deployment of re-
newable energies is no new phenomenon in Europe or evenworldwide.
Numerous European countries have implemented renewable energy
auction systems even before 2017,1 among them e.g. Denmark, France,
Germany, Ireland, Italy, the Netherlands, Portugal and the United
Kingdom – with mixed results.2

Across these eight countries, several trends were apparent: all coun-
tries required bids to be submitted in capacity (kW or MW) andmainly
conducted technology-specific auctions (for this and the following refer
to Wigand et al., 2016). Most countries (Denmark, Germany, Italy, the
Netherlands and the UK) awarded sliding FIPs, while France, Ireland
and Portugal awarded fixed FITs. Equally favoured was the pay-as-bid
pricing rule, which was applied by all countries but the Netherlands
and the UK, who opted for a uniform pricing rule. Furthermore, most
countries chose price-only auction schemes for bid evaluation, while
France and Portugal additionally consider further criteria like a plant's
carbon footprint and the development of industrial clusters, respec-
tively. The duration of the support payments ranged from 12 years in
Denmark to up to 30 years in Italy.

Many auctiondesign choices dependonand reflect political priorities,
the country's market situation and socio-institutional landscape. Conse-
quently, the designs varied regarding further design elements like
technology-specific vs. open auctions, volume vs. budget caps, restric-
tions of bid sizes, concentration rules, frequency of auctions, ceiling
prices, pre-qualification criteria, realisation periods, penalties and bid
bonds (formore on this see IRENAandGWEC, 2012;Wigandet al., 2016).

Lacking grid connections, inadequate bid bonds, low support pay-
ments as a result of speculative bids and missing penalty mechanisms
were some of themain problems that disincentivised project realisation
(del Río and Linares, 2014; Förster, 2016; Gallachóir et al., 2009;McLean
et al., 2007; Tiedemann et al., 2016;Wigand et al., 2016). Up until 2017,
only Denmark and Portugal had achieved realisation rates of 100%, al-
though with serious delays in Portugal (Peña Cabra, 2014; Wigand
et al., 2016). All eight countries reported lower support levels under
their respective auction schemes compared to previous support mecha-
nisms, though remuneration levels still remained comparatively high in
most countries (Fitch-Roy and Woodman, 2016; Heer et al., 2007;
Kitzing and Wendring, 2015; Negri, 2015; Wigand et al., 2016).

Our research builds on several strands of the literature. Building on
experiences with RES auctions in various countries and on insights
from auction theory, there is large consent on the importance of certain
design elements for the general success of renewable energy auctions.
An overview and discussion is provided in e.g. Cramton (2010), IRENA
and CEM (2015), Klemperer (2004), Maurer and Barroso (2011) or del

1 The year as of which the European Commission's State Aid Guidelines recommend all
member states to apply competitive auction schemes for renewables support (European
Commission, 2014)

2 Ireland conducted RES auctions as early as 1995 until 2003, Denmark, France, the
Netherlands, Italy and Germany introduced auctions for some RES already in 2004,
2011, 2013 and 2015, respectively, while in Portugal, auctions took place between 2006
and 2008 for wind and biomass and were just introduced for PV in 2019. The UK intro-
duced its current auction scheme in 2014.
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Río et al. (2015). In particular, several studies stress the need for en-
forceable penalties to preclude project non-realisation, and advise in
this regard to additionally includefinancial securities,fixed construction
deadlines as well as prequalification criteria that require projects to be
in an advanced planning stage, i.e. to conduct ‘late auctions’ (Anaya
and Pollitt, 2015; de Jager and Rathmann, 2008; del Río and Linares,
2014;Maurer and Barroso, 2011;Mora et al., 2017; Toke, 2015). Several
contributions point to a significant trade-off between cost-efficient sup-
port levels, reaching capacity expansion targets and actor diversity (del
Río, 2017; Grashof, 2013; Hauser et al., 2014; Hauser and Kochems,
2014).

The optimal allocation of RES capacity remains largely untouched in
the literature on RES auctions. While traditionally, under fixed feed-in
tariffs, locational choice for renewable energy plants only depended
on site specific weather conditions, several recent studies, among
them Benz et al. (2015) and Grimm et al. (2017), illustrate the systemic
optimality of a decentralised allocation of generation capacity that addi-
tionally accounts for existing network infrastructure and potentially
arising network constraints. They show that closer proximity to main
demand centres can significantly reduce prospective network conges-
tion and, ultimately, the need for transmission line expansion.
Ackermann et al. (2001) and Amado et al. (2017) support this notion
and show that especially renewable energies are very well suited for
distributed generation and smart grids.

Current studies using numerical experiments and simulations to
compare or devise auction designs in an energy-related context have
so far mainly focused on day-ahead auctions (e.g. Contreras et al.,
2001; Fernandez-Blanco et al., 2014; Kardakos et al., 2013), local reserve
energy markets (e.g. Rosen andMadlener, 2013), inter-grid power auc-
tions (e.g. Zhang et al., 2014), carbon allowance auctions (e.g. Tang et al.,
2017), energy contract auctions (e.g. Barroso et al., 2011) or an agent-
based comparison of pay-as-bid vs. uniform price wind auctions
(Anatolitis and Welisch, 2017). To our knowledge, we are the first to
combine the findings on RES auction design and a system-optimal dis-
tribution of generation capacity to analyse whether minor adjustments
to an existing auction design can lead to an improved regional distribu-
tion of generation capacities and compare several auction mechanisms
with regard to the resulting FIPs.

The remainder of the paper is structured as follows: Section 2 illus-
trates the current situation andwind auction design in Germany, before
we describe our model and the analysed auction designs in Section 3.

Section 4 provides information on the data and experimental design,
while we present our results in Section 5. Section 6 concludes.

2. Onshore wind auctions: A discussion based on the German case

As outlined above, the aimof our study is to conduct a counterfactual
analysis of different auction designs to assess the effects of
implementing system-optimal RES locations on the resulting level of
remuneration.

To make the effects quantifiable, we conduct the analysis using data
from the German onshore wind auctions. Germany is an ideal example
to illustrate the comparative performance of different auction designs,
as not only comprehensive market data is available for calibration, but
also information on system-optimal RES locations (see Section 4.1).
We therefore start from the current German wind auction design, be-
fore we discuss and evaluate alternative auction designs. Although we
focus on a particular application to the current German wind auctions,
key insights can be obtained for RES auctions in general.

As a starting point tomotivate and outline the structural background
of ourmodel, this section provides a brief description of the legal frame-
work for wind auctions in Germany, the currently implemented refer-
ence yield model, insights on the system-optimal allocation of RES in
Germany as well as a discussion of alternative RES auction designs.
Building on this, we specify ourmodel and report our results in the sub-
sequent sections.

2.1. Legal framework and results

In Germany, the EEG, 2014 introduced RES auctions for the first
time. Since 2017, the annual auction volume for onshore wind energy
has been 2.8 Gigawatt (see section 28 EEG, 2017). It is divided into
four auctions, which take place quarterly. The rules for each single
tender auction are as follows: (1) For each tender, the Federal Net-
work Agency defines an exact auction volume of onshore wind capac-
ity to be installed; (2) subsequently, bidders compete on the
remuneration per kWh of fed-in electricity; (3) the bidders offering
the lowest remuneration per kWh win, until full capacity is reached;
remuneration is guaranteed for 20 years as follows: (4.a) winners re-
ceive their offered remuneration per kWh or (4.b) receive the highest
accepted remuneration per kWh if they are a so-called ‘citizen energy
cooperative’.

Citizen energy cooperatives (Buergerenergiegesellschaften, BEG)
are local communities that intend to build a wind power plant
(DeutscheWindGuard, 2017). By allowing BEG to participate in the auc-
tions, the legislator wants to foster bidder diversity and thus increase
local acceptance and regional value added. In order for them to be com-
petitive, BEG are granted some simplifications in the auction procedure.
Most importantly, while institutional bidders face a pay-as-bid auction,
BEG are subject to a uniform price auction and receive the tariff of the
highest accepted bid in the same round (sections 3(51) and 36 g
(5) EEG, 2017).3

The final FIP paid to each winner then results from the awarded re-
muneration per kWh minus the average monthly electricity market
price, which is called a “sliding FIP” (annex to section 23a EEG). Since
the final FIPs and thus the subsidy payments by the regulator depend
on the hourly electricity market price, which we do not simulate in
our model, we focus our analysis and discussion on the offered and
awarded remuneration per kWh, and not the resulting FIPs. Note that
this does not limit the interpretation of our results: the difference
between the remuneration levels resulting from the various auction
designs corresponds exactly to the difference in subsidy payments by
the regulator.

Table 1
Design elements of the German onshore wind auction design.

Auction design
element

Implementation

Product Installed capacity (MW)
Pricing rule Pay-as-bid and uniform price sealed-bid auction (for BEG)
Type Price-only multi-item auction
Auctioned volume 2800 MW per year, i.e. 700–1000 MW per round
Remuneration
scheme

Energy-related remuneration (capacity is tendered,
electricity is remunerated)

Price ceiling 7 ct=kWh in 2017; from 2018: average of highest accepted bid
in the last three rounds, increased by 8% (6.3 ct=kWh in 2018,
6.2 ct=kWh in 2019)

Pre-qualification
requirements

Bid bond of 30 €=kW of installed capacity (for BEG: 15 €=kW,
secondary bid bond of 15 €=kW upon winning)
BImSchG-approval 3 weeks before auction

Frequency 3 to 4 auctions a year (every 2–4 months)
Concentration rules Min. 750 kW

Max. 6 bids for max. 18 MW in total for BEG
Penalties 10 €=kW after 24 (48)

20 €=kW after 26 (50) months of delay (for BEG)
30 €=kW after 28 (52)

Form of support Sliding FIP per kWh
Support duration 20 years

Source: Own elaboration.

3 In addition, BEG also face a lower required collateral and penalty fees and are allowed
a longer realisation period (see sections 36 and 36 g EEG).
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In 2017, a price ceiling of 7 ct=kWh was set, abovewhich bids were not
accepted. This price ceiling was lowered to 6.3 ct=kWh in the 2018 and to
6.2 ct=kWh for the 2019 auctions (see sections 36b and 85(1) EEG and
Federal Network Agency, 2019a). Except for the BEG, who can submit
at most six bids for no more than 18 MW in sum, there are no restric-
tions on maximum awarded capacity or number of bids. To ensure a
high realisation rate, bidders must submit approval according to the
Federal Immission Control Act (BImSchG) three weeks prior to the auc-
tion date (sections 36 and 104(8) EEG),4 BImSchG (2017) as well as a

bid bond of 30 €=kW installed capacity (15 €=kW for BEG, with another
15 €=kW due upon winning). Failure to commission a plant within
the prescribed deadline of 24 months (48 months for BEG) results
in a penalty fee of 10 €=kW after 24 (48), 20 €=kW after 26 (50) and 30
€=kW after 28 (52) months. After a delay of 30 (54)months or a default
on the security payments, an awarded tender is withdrawn. Table 1
provides a condensed overview of the main design elements of the
German onshore wind auctions.

2.2. The reference yield model

Another important element of the German onshore wind auctions is
the reference yield model (’Referenzertragsmodell, REM) (see annex 2
EEG). The motivation for its introduction was to create a level playing
field forwind plant projects across various sites in Germany. This is sup-
posed to foster a more even distribution of wind power plants across
Germany to relieve the already heavily loaded transmission lines
(Federal Ministry for Economic Affairs and Energy, 2016).

To provide incentives for plant operators to also build wind power
plants in less windy areas, and not only in the particularly windy
north, a lower site quality of potential plant locations is compensated
by a higher remuneration: The expected electricity yield of a wind
power plant at its planned location is put into proportion with the so-
called reference yield, i.e. the hypothetical electricity yield this particu-
lar wind power plant would generate at a pre-defined reference site,
thereby arriving at a relative site quality factor. At an 80% site, for in-
stance, the expected yield is 20% less than at the reference site, and at
a 120% site, it is 20% higher. For many current wind power plant types,
the reference yield is provided by Fördergesellschaft Windenergie und
andere Dezentrale Energien (FGW), 2017.

Having this in mind, bidders have to submit the bids for their on-
shore wind projects as if they were to be built at the reference site, so
as to make bids for drastically different locations comparable regarding
the wind conditions and site quality. The FIP that winning bidders then
receive is their ask price adjusted by a correction factor based on the

aforementioned relative site quality factor, i.e. for a less windy site the
remuneration is adjusted upwards, while it is adjusted downwards for
a windier one. The correction factor for various site quality levels is
shown in Table 2.

2.3. System-optimal RES capacity allocation

RES support mechanisms often do not accurately account for impor-
tant factors that determine the optimal spatial allocation of RES genera-
tion capacities, since the minimisation of subsidies is typically the main
target criterion and indicator. While the minimisation of subsidies im-
plies that renewable energy plants should be built at the most produc-
tive locations, we follow Grimm et al. (2019; 2018; 2016; 2017) and
expand on the definition of allocative efficiency by additionally consid-
ering existing load centres as well as potential congestion of the
network infrastructure that would, in the medium term, induce costs
for network expansion in case of regionally concentrated RES locations.
This concept naturally implies a closer proximity of generation capacity
to load centres. We call the resulting allocation of generation capacity
“system-optimal”. Grimm et al. (2017) determine this system-optimal
RES allocation for Germany using a comprehensive energy market

Table 2
Site quality and correction factors for German onshore wind auctions.

Site quality
factor

≤ 70% 80% 90% 100% 110% 120% 130% 140% ≥ 150%

Correction factor 1.29 1.16 1.07 1.00 0.94 0.89 0.85 0.81 0.79

Source: Own elaboration based on section 36 h EEG.

4 This encompasses a very thorough examination of compliance with building and en-
vironmental regulation and can take up to 3 months. The approval process is detailed in
section 10 BImSchG (2017).
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model. Theirmulti-level optimisationmodel takes into account long run
(investment) decisions on network and generation capacity as well as
short run decisions on production, consumption and redispatch. In
this framework, there is a trade-off between the concentration of RES
capacities at productive sites (which implies high transmission invest-
ment and redispatch cost) and RES capacity locations closer to load cen-
tres (which comes at lower RES productivity but also lower network
expansion and redispatch cost). In one of their scenarios, Grimm et al.
(2017) determine the system-optimal RES locations for the current Ger-
man market design and show that optimal RES locations imply yearly
welfare gains of at least €2.6 billion compared to the status quo in
Germany.

A precise control of capacity locations via auctions is highly difficult,
since capacity expansion and the final locational choice depend on the
bidders. However, appropriately designed auction mechanisms can at
least steer an allocation in the desired direction and incentivise bidders
to build their plants at system compatible sites. We therefore employ
the system-optimal onshore wind capacity allocation (MaxW) pre-
sented in Grimm et al. (2017) to assess the extent to which it can be
achievedwith adjustments to the current German wind auction design.

2.4. Alternative auction designs

The previous sections have illustrated several aspects concerning the
spatial allocation of RES that are important for auction design. A basic
national auction without any locational steering mechanism would
allocate RES at the most productive locations and thus yield the cost-
minimal remuneration. However, it would ignore additional costs
arising from redispatch and prospectively necessary network expan-
sion. Thus, overall system cost from the induced RES expansion would
be inefficiently high.

The undesirable concentration of RES at productive sites that are
often far from load centres could be mitigated by using mechanisms
like the REM, which compensates the disadvantage of less productive
sites using correction factors on bids. However, determining the correc-
tion factor only based on site productivity and disregarding other im-
portant aspects like load proximity limits the effectiveness of the
approach. It is only by chance that such a mechanism would induce an
almost system-optimal RES allocation.

An alternative approach to ensure a desirable regional distribution is
to set regional target capacities. To implement such target capacities, a
straightforward approach is to conduct regional instead of national auc-
tions. The corresponding regional target capacities are then tendered in
each state or region, thereby exactly implementing the desired regional
distribution of capacity. Under appropriate auction rules, within each
region, themost productive sites are chosenfirst. Even though such a re-
gional auction design implements the desired regional distribution of
generation capacities, it is vulnerable tomarket power. In fact, competi-
tion within each region is the lower the smaller the regions are, i.e. the
more tailored the mechanism is to induce an optimal regional distribu-
tion. To ensure a sufficient level of competition in regional auctions,
they should be conducted less frequently (e.g. only once a year) and
thus, for higher volumes. Note also that separate regional auctions
would impose challenges on bidders that consider sites in different re-
gions as substitutes or complements.

As a superior option, a single national auction with predetermined
regional capacity quotas or targets could be considered, which allows
bidders to place package bids for RES sites in multiple regions. This al-
lows to ensure a sufficient level of competition, both within and be-
tween regions. Moreover, such a mechanism exploits the scope for
further cost reductions by allowing for package bids that enable bidders
to reflect synergies between different projects. Such ‘combinatorial’
auctions have already been used in industrial procurement, logistics as
well as spectrum auctions to increase competition and leverage econo-
mies of scale and scope, which could be equally beneficial for the

procurement of renewable energies (Bichler et al., 2006; Kokott et al.,
2018; Sheffi, 2004; Bichler and Goeree, 2017).

In the remainder of the article we compare the auction formats
sketched in this section using numerical experiments on the basis of
data for the German electricity market.

3. Model

Let us now introduce the model for our numerical simulations. We
first detail our assumptions on project costs and bidder types, before
we precisely specify how we implement the analysed auction designs
and their respective allocation and pricing rules.

3.1. Project cost

Bidders place bids on individual projects,with a project jdescribing a
wind park of capacity yj in kW, which can consist of multiple wind
power plants at the same location. In order for these projects to operate
profitably, bidders need to cover at least their investment costs over the
remuneration period of 20 years. Based on regionally differentiated in-
vestment costs for onshore wind power plants in €=kW and site-specific
wind power generation per installed kW, we derive the break-even
rate cj in ct=kWh for a project j over the remuneration period of 20 years
and divide this by the respective wind efficiency wj at a project's loca-
tion in kWh=kW. Investment costs include all administrative fees and
costs for land improvement, while operating costs are assumed to be
negligible. To allow for project-dependent variations, we randomly
vary the underlying project costs by up to ±5%.

The corresponding project capacity yj is drawn randomly from a
PERT distribution with a minimum 0.75 MW, a maximum of 25 MW
and a region specific mean. The distributional assumptions are based
on the submitted project capacities in 2018 (Federal Network Agency,
2019).5 For every auction, we consider an individual number of projects
per region relative to its size, i.e. at least six projects per region and at
most 100 projects in the largest region. The amount of projects is set
such that the capacity requirements from both the German network de-
velopment plan (‘Netzentwick-lungsplan’, NEP, ÜNB, 2017), which de-
scribes the capacity expansion path currently aimed for by German
politics and the German auction system, as well as theMaxW allocation
(Grimm et al., 2017) can be satisfied. As the largest of the 16 German
states, Bavaria would thus be assigned 100 projects. However, due to
its strict legal constraints regarding permissible wind park locations,
the number of available projects is reduced to 40.6

3.2. Bidder types

We assume price taking behaviour of bidders in all our experiments.
This allows for a transparent comparison among different auction for-
mats. While renewable energy auctions on a national basis are large
markets, we are aware of the fact that strategic behaviour could play a
role if separate regional auctions were implemented. Strategic behav-
iour would be an additional drawback of regional auctions.

In ourmodel there are two types of bidders, namely institutional and
BEG bidders. As BEG are small local bidders, they are active in only one
region. Each BEG is assigned one project in its respective region, with a
capacity y ≤ 18 MW. Based on the status quo of four auctions per year,
we generate up to six BEG bidders per German state and auction, lead-
ing to a total of 384 BEG bidders for 2018. Analogously, we consider 120
institutional bidders for 2018, who are each randomly assigned 0–4

5 We choose a PERT distribution because it fits the empirical data best. PERT is a trans-
formation of the Beta distribution, which allows us to define the shape of the capacity dis-
tribution using the minimum, maximum and expected value.

6 The so-called ‘10H’ rule requires wind power plants to have a distance of at least ten
times thewind power plant's hub height to residential areas, see section 82 of theBavarian
Building Law (2007).
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projects per auction, i.e. 0–16 projects in 2018. The number of BEG and
institutional bidders is based on the 2018 auction data and adjusted
such that the capacity requirements in all regions can be met. Bidders
participate in every subsequent auction unless all their projects won
in earlier auctions.

Since institutional bidders can place bids on multiple projects, they
can realise synergies via economies of scale. There are numerous ways
how such synergies can come into play, which we try to accommodate
by integrating different synergy concepts in our experiments and
checking the consistencyof our results across these.We account for syn-
ergies that arise if a bidder is awarded multiple projects, either subse-
quently or in a single auction. In particular, we distinguish between
synergies for projects within one region (regional synergy), for projects
in neighbouring regions (cross-regional synergy), and for all projects in
Germany (national synergy). Since BEG are small, local bidders that only
place one bid in a single region, they do not realise synergies. An over-
view of the type as well as number of bidders and synergies is given
in Table 3.

Consequently, a project bundle Bi of bidder i can be partitioned into k
sets of synergy groups Sk. A synergy group thus contains all projects of a
bidder that, depending on the synergy concept, would create scale econ-
omies if awarded. Consider e.g. fourprojects assigned to i fromthe follow-
ing regions:R1,R1,R2 andR3,whereR1 andR2 areneighbouring regions. In
the regional synergy concept, the two projects in R1 would be in one syn-
ergy group, the other two each in a separate one, i.e. S1 = {R1,R1}, S2 =
{R2}, S3 = {R3}. For cross-regional synergies, the groups would be S1 =
{R1,R1,R2}, S2 = {R3}; while for national synergies all four projects
would be in one group. In this respect, the more regions enter a single
synergy group, the ‘wider’ the corresponding synergy concept, i.e. the
cross-regional concept is wider than the regional one. The unit cost of
eachproject j in a synergy group Sk is then adjusted by a factorλ∈ [0,1] to

~c j Skð Þ ¼ c j � 1− λ � j Sk j −1
j Sk j

� �� �
: ð1Þ

λ describes the share of cost savings achieved via synergies. For λ=
0 there is no synergy.With each additional project in Sk, themarginal ef-
fect of synergy decreases. To compute the unit cost of a project bundle,
c Bið Þ, we consider the synergy-adjusted unit costs of all individual pro-
jects j ∈ Bi weighted by their respective capacity yj and wind efficiency
wj, i.e.

c Bið Þ ¼ ∑K
k¼1∑ j∈Sk

~c j Skð Þ � yj �wj

∑ j∈Bi y j �wj
ð2Þ

An example calculation of synergy-adjusted project and bundle unit
costs is given in Appendix B.

3.3. Analysed auction designs

For our analyses, we examine only one year, andwe assume that the
regulator intends to expand generation capacity proportionately to the
final allocation. Based on the respective installed capacity, it is possible
to periodically define regional capacity expansion quotas to achieve
some target capacity for e.g. 2035. To answer the question whether a
certain auction design enables an effective steering of generation capac-
ity expansion according to such quotas, it thus suffices to analyse only
one period. More specifically, we do not calibrate our model to most
closelymatch the results of all past auctions.7 Instead,we aim to provide
a sound counterfactual comparison of different auction designs based
on their outcome with the administrative parameters given for 2018,
the first year duringwhich onshore wind auctionswere conducted sub-
ject to the current regulatory framework in Germany. In particular, we
assess the allocative efficiency of four auction designs, whose allocation
mechanisms and pricing rules are described in the following.

3.3.1. Single-lot auction designs
In the single-lot auction designs, one bid always corresponds to a

single project j.

3.3.1.1. National. The National auction design with four auctions a year
constitutes our benchmark for comparison, as it implements the cost-
minimal outcome.

A bid in theNational auction design contains the ask price bj and the
capacity yj for a project j. After all bids are submitted, they are sorted in
ascending order by ask price. Bids are accepted as long as the cumula-
tive capacity of accepted bids is smaller than the tendered capacity. Suc-
cessful BEG bidders receive the remuneration per kWh of the last
accepted bid (uniform-price), while institutional bidders receive the re-
muneration per kWh they asked for (pay-as-bid). This procedure is also
shown in pseudo-code below (Algorithm 1).

3.3.2. National REM
The National REM auction design essentially describes the current

design of the German wind auctions. A total of 2710 MW (the total
wind auction volume in 2018 in Germany, see Federal Network
Agency, 2019) is auctioned off in four auctions. Bidders place bids ac-
cording to the REM for a reference site (see section 2.2), which are
then tendered as in the National auction design. Successful bidders re-
ceive a remuneration adjusted by the correction factor corresponding
to their bid's relative site quality factor as shown in Table 2.

3.3.3. Regional
The Regional auction design exactly implements the regional target

capacities of MaxW. In particular, we analyse individual auctions for
each of the 16 German states, with one auction per state per year,
since the auction volumes would be very small for four auctions per re-
gion and year. All 16 regional auctions are conducted simultaneously
each year. In each state, the total capacity to be built in 2018 according
to MaxW is tendered. Within each region, the most productive and
wind-efficient sites are chosen first. The allocation and pricing proce-
dure for Regional is identical to the National auction design.8

3.3.4. Combinatorial auction design
While all previous auction designs allowbids only for single projects,

we now propose an auction design that allows to submit package bids:
the Combinatorial auction design. As in the Regional auction design, an-
nual target capacities for every region are set according to MaxW, but
auctioned off simultaneously in a single auction. Bids are awarded
such that the resulting allocation is as efficient and subsidy-
minimising as possible. BEG are local and can only place bids in one re-
gion, while institutional bidders can place package bids for projects in
multiple regions. In the following, we introduce the corresponding

Table 3
Overview of bidder types and synergy concepts.

Bidder type Number of
bidders

Projects per
bidder

Synergy concept Synergy
levels

BEG 384 1 None None
Institutional 120 0–16 {regional, cross-regional,

national}
[0,0.5]

7 Since the start of the auction scheme in 2017, the corresponding legal framework has
been subject to change in late 2017. Therefore, the available auction data is difficult to in-
terpret. As amatter of fact, only limited information is provided on the auction results. The
available data are on an aggregate level or simple averages and thus do not allow an intri-
cate empirical analysis.

8 This means that for each auction within each German state, institutional bidders are
subject to a pay-as-bid auction, while BEG bidders are subject to a uniform auction. Thus
in the Regional design, all winning BEG from the same state, e.g. Bavaria, receive the same
FIP. The resulting FIP for winning BEG can thus differ across states in the Regional design.
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allocation and pricing rule. When discussing unit prices, we are refer-
ring to remuneration per kWh in our context.

For each bidder i ∈ I, we determine whether a bundle of projects
Bi ⊆ Pi has been allocated or not by a decision variable zi(Bi). For an
allocated bundle Bi, its unit cost in ct=kWh is denoted by c Bið Þ, its
total capacity in kW at node (i.e. a region) n ∈ N by yn(Bi), and its
average wind efficiency in kWh=kW at node n by wn(Bi). Table 4 sum-
marises the necessary notation.

The sum of the allocated capacities of all accepted bundles must be
larger or equal to the tendered capacity dn for each node n ∈N (demand
constraint), while each bidder canwin atmost one of her bundles (sup-
ply constraint). The objective of the problem is to select the most effi-
cient projects while minimising excess capacities. To do so, we
consider a bundle's unit cost times its capacity. The dual variable of
the demand constraint can then be interpreted as the impact of an in-
crease in the demanded capacity dn of one kWon the objective function,
which leads to a price in ct=kWh.

Min
s:t:

X
i∈I

X
Bi⊆Pi

zi Bið Þ � c Bið Þ �
X
n∈N

yn Bið Þ APð Þ

X
i∈I

X
Bi⊆Pi

zi Bið Þ � yn Bið Þ ≥ dn ∀n ∈N Demandð Þ

X
Bi⊆Pi

zi Bið Þ ≤ 1 ∀i ∈ I Supplyð Þ

zi Bið Þ ∈ 0;1f g ∀i ∈ I;Bi ⊆ Pi Binaryð Þ

This binary linear program used for the allocation problem of a
multi-unit combinatorial procurement auction can be seen as amultidi-
mensional knapsack problem, which is known to be NP-hard (Bichler,
2017, p. 100).We can solve the problem sizes in our analysis to near op-
timality (integrality gap <1%) with standard solvers (Gurobi version
8.1) on commodity hardware within minutes in our experiments.

There is a large literature on pricing in multi-object markets, and
more specifically in combinatorial auctions (Bichler, 2017). Let us
briefly introduce and discuss some basic considerations for our pricing
rule. It is well-known that the Vickrey-Clarke-Groves (VCG)mechanism
is incentive-compatible and implements an efficient outcome (Krishna,
2010). However, bidders' payments under VCG are personalised and
non-linear. This means that prices for a package of objects can differ
from the sum of the prices of individual objects in the package (non-lin-
ear), while prices for a package can also vary across bidders
(personalised) (Bichler and Goeree, 2017). Moreover, the VCG outcome
might not be in the core, i.e. there could be incentives for individuals or
coalitions of bidders to deviate (Ausubel andMilgrom, 2006). As argued
by Milgrom (2004), discriminatory pricing fails to promote the law of
one price and thus may be hard for some people to accept.

Walrasian markets yield linear item-level, anonymous competitive
equilibrium prices, but are not incentive-compatible (Hurwicz, 1972).
However, Walrasian mechanisms are strategy-proof in the large
(Azevedo and Budish, 2019). In other words, such markets are robust
to strategic manipulation if there are many bidders who then become
price takers. The RES market is relatively large (>100 bidders and pro-
jects, Federal Network Agency, 2019, thereby justifying the use of linear
and anonymous prices. Such prices are widely used, e.g. in day ahead
electricitymarkets, aswell as easy to understand and interpret. Unfortu-
nately, with indivisible goods such as projects in RES auctions,
Walrasian prices do not always exist. The types of valuations (e.g. sub-
stitutes valuations) for which Walrasian equilibria exist are in fact
rather limited (Baldwin and Klemperer, 2019).

In the RES market, linear prices exist if the linear programming re-
laxation of the allocation problem (AP) is integral. In other words, if
the last set of constraints zi(Bi) ∈ {0,1} were relaxed to zi(Bi) ∈ [0,1]
and the result were still integral, with all zi(Bi) ∈ {0,1}, then the dual

variables of the Demand constraint (pn) would have a natural interpre-
tation as Walrasian prices. This well-known observation follows from
strongduality in linear programming (Bichler, 2017, p. 144ff). The linear
programming relaxation of AP is rarely integral, but the integrality gap
of the linear programming relaxation, i.e. the difference between theob-
jective function value of the integer program and its relaxation, is small
(on average less than 1% in our experiments). This is due to the large
number of bidders and bids.We leverage this observation for thepricing
rulewe introduce in this paper: due to the small integrality gap, also the
dual variables of the linear programming relaxation are ‘close’ to
Walrasian prices.

Although the integrality gap is small, market prices cannot simply be
derived from the dual linear program, as we show next. To see this, let
us first introduce the dual (DAP) of the linear programming relaxation
of AP:

Max
s:t:

X
n∈N

dnpn −
X
i∈I

πi DAPð Þ

X
n∈N

yn Bið Þpn − πi ≤ c Bið Þ
X
n∈N

yn Bið Þ ∀Bi ⊆ Pi;∀i ∈ I

πi;pn ≥ 0 ∀n ∈N;∀i ∈ I

Note that the objective function value of DAP is less than or equal to
AP such that prices will be too low on average, unless we have integral-
ity of the linear programming relaxation. As a result, the prices will be
below the bids and bidders can make a loss. To avoid this, we introduce
a modified versionMDAP of the dual linear program to compute prices.
MDAP deviates from anonymous prices via a markup only if necessary,
and ensures that bidders do notmake losses (Individual Rationality, IR).
Simultaneously, prices for losing bidders should be below their costs
(NOENVY). This approach is akin to pseudo-dual prices as proposed
for ascending combinatorial auctions (Bichler et al., 2009).

Let us introduceMDAPmore formally. If we reverse the inequality in
DAP and minimise the objective, we get the lowest possible linear and
anonymous prices for the winners, such that all winners W ⊆ I can re-
cover their costs, while we also ensure that prices for the losers L ⊆ I
are below their costswithW∪ L= I andW∩ L=∅. As this is not always
possible, we introduce a slack variable, δ(Bi), for each winner's winning
bundle, describing a personalised markup for this bidder. The bidder's
payment then exactly covers their costs.

Min
s:t:

X
n∈N

dnpn þ
X
Bi∈W

δ Bið Þ �M MDAPð Þ

X
n∈N

yn Bið Þwn Bið Þ pn þ δ Bið Þð Þ ≥ c Bið Þ
X
n∈N

yn Bið Þwn Bið Þ IRð Þ

∀i ∈W;Bi ⊆ Pi : z Bið Þ > 0

Table 4
Notation.

Sets
I Set of bidders
Pi Set of projects of bidder i ∈ I
Bi ⊆ Pi Set of projects in a bundle bid of bidder i ∈ I
N Set of nodes or regions, i.e. states in Germany
Decision variables
zi(Bi) Assign bundle Bi to bidder i ∈ I
Parameters
yn(Bi) Capacity (size) of bundle Bi in node n ∈ N (in kW)
wn(Bi) Average wind efficiency at the generation sites

in a bundle Bi (in kWh=kW)
c Bið Þ Unit cost of bundle Bi in ct=kWh

dn Demanded capacity in node n ∈ N (in kW)
pn Unit price in node n ∈ N (in ct=kWh)
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X
n ∈ N

yn Bið Þwn Bið Þpn < c Bið Þ
X
n∈N

yn Bið Þwn Bið Þ NOENVYð Þ

∀i ∈ L;Bi ⊆ Pi

pn ≥ 0 ∀n ∈N

δ Bið Þ ≥ 0 ∀i ∈W;Bi ⊆ Pi : z Bið Þ > 0

The resulting prices from MDAP are anonymous and linear for the
losers while no winning bidder can make a loss (IR). Markups on the
anonymous prices, δ(Bi), are introduced onlywhen necessary. A penalty
term M keeps these deviations as small as possible. In large auctions
with small integrality gaps, the price computation in MDAP strikes a
balance between different design goals.

4. Data and experimental design

In this section we briefly summarise the data used to parametrise
our numerical experiments and outline our experimental design.

4.1. Data

We use a variety of historical data sets and data based on authorita-
tive forecasts to calibrate our model. In particular, we employ data on
various aspects and areas that are relevant for bidders in wind auctions.

To begin with, we use data on existing and planned renewable en-
ergy generation capacity in each German federal state. Information on
the installed capacity of onshore wind power plants is taken from
Deutsche WindGuard (2018).

In order to generate an amount of projects satisfying the capacity ex-
pansion targets in our different treatments, we use data from scenario B
2035 in the NEP (ÜNB, 2017) and on MaxW (Grimm et al., 2019, 2018,
2017, 2016). Both the NEP and MaxW allocations provide capacity tar-
gets for 2035, with the planned capacity expansion underlying each al-
location corresponding to the difference between the target capacity in
2035 and the current stock. Sincewe consider only one year in our anal-
ysis, we calculate the necessary yearly expansion assuming a linear ex-
pansion until 2035.

Table 5 shows the corresponding regional distribution of capacity
envisaged according to the NEP (second column) and MaxW (third

column). For comparative purposes, the distribution of the capacity
awarded in the 2018 auctions is shown in the first column of Table 5.

The auctioned capacity in each bidding round in the National REM
auction design is defined according to the specifications in section 28
EEG. Based on the resulting annual electricity generation, we determine
the respective capacity that needs to be tendered in theNational,Regional
and Combinatorial auction designs to arrive at the same annual electricity
generation.9We do so since the reference parameter for RES capacity ex-
pansion is generally the annual amount of electricity generation.

Moreover, followingGrimmet al. (2017), we account for regional dif-
ferences in site quality in Germany and within the 16 states by creating
15 classes of technical potential per state to allow for a differentiated
simulation of bidding decisions. To generate the classes, we employ
data from the BundesverbandWindEnergie (2012). In a next step, we al-
locate both the existing installed capacity by the end of 2017 and the tar-
get capacities for 2018 into the 15 classes in descending order up to their
maximum capacity, starting with the best. For our analysis, we assume
that within each region new capacity is bid on in the best available
class of technological potential first, and in lower classes only once the
better ones have reached full capacity. Analogously, we use data on
hourly wind power generation per installed kW in kWh=kW by state and
class of technological potential taken from Grimm et al. (2017).

To adequately model investors' cost structures, we use information
on investment costs for wind power plants in 2018 based on Prognos
(2013). Since only investment cost data for 2013 and 2035 is given in
Prognos (2013), we use linear interpolation to arrive at investment
cost values for 2018. Furthermore, we assume spatially differentiated
plant configurations and investment costs to account for the varying con-
ditions in the German states. In less windy areas, comparably larger and
thus more expensive wind power plants with greater rotor diameter
have to be built to generate an amount of electricity per installed kW
equal to that in very windy states.

For each of the configurations, we calculate an approximation of the
reference yield per installed kWusing data on reference yields of compa-
rable existingwind power plants provided by FGW(2017). To be precise,
we choose wind power plants whose configurations most closely match
those of our four onshore wind categories, extrapolating their reference
yields given by FGW (2017) by adjusting for slight differences in hub
height or rotor diameter, if necessary. For an overview of the compara-
tive values and wind power plants used for each wind category see
Table A.1 in Appendix A. This allows us to simulate the current auction
system including the REM. Table 6 provides an aggregated overview.

4.2. Synergies and cost computations

Institutional bidders can developmultiple projects and realise syner-
gies.We are not aware of real-life estimates of such synergies, as bidders
tend to be secretive about details of their cost functions. Nevertheless,
economies of scale are almost always an issue for large bidders. These
can result from e.g. volume discounts, marginal additional administra-
tion costs, lower maintenance costs, lower logistic costs, etc. In our
study, synergies are a central treatment variable; understanding at
which synergy level combinatorial auctions yield lower costs than alter-
native auction designs that do not consider target capacities is thus of
great interest. In our numerical experiments, institutional bidders bid
their cost for a project jwhile they consider synergies arising from pre-
viously won projects. They do not speculate on potential synergy effects
by winning multiple items in order to avoid making losses.

Table 5
Distribution of awarded capacity in 2018 and capacity expansion paths by state and
allocation.

State 2018 NEP MaxW

Schleswig-Holstein (SH) 7.7% 10.2% 0%
Mecklenburg-West Pomerania (MV) 8.8% 16.6% 7.8%
Hamburg (HH) 0% 0% 0%
Bremen (HB) 0.2% 0.1% 0%
Lower Saxony (NI) 12.1% 19.0% 0%
Saxony-Anhalt (ST) 6.2% 8.8% 0%
Brandenburg (BB) 16.9% 5.4% 0%
Berlin (BE) 0% 0% 0.5%
North Rhine-Westphalia (NW) 13.9% 4.9% 11.5%
Saxony (SN) 1.3% 8.1% 4.9%
Thuringia (TH) 3.3% 9.2% 0%
Hesse (HE) 8.0% 2.8% 16.2%
Rhineland-Palatinate (RP) 10.2% 7.2% 6.7%
Saarland (SL) 0.3% 0% 3.5%
Bavaria (BY) 5.2% 0% 35.2%
Baden-Wuerttemberg (BW) 6.7% 7.7% 13.7%
Sum 100% 100% 100%

Note: 0% in the 2018 column means that no capacity was awarded to projects in these
states in 2018. 0% in theNEP andMaxW columns indicates that no further capacity expan-
sion is necessary in these states to reach the respective capacity targets, i.e. the optimal
capacity in these states subject to the target allocation has already been reached.
Source: Own elaboration based on data from the Federal Network Agency (2019), Grimm
et al. (2017) and ÜNB (2017).

9 Though the resulting distribution of wind capacity in the Regional and Combinatorial
auction designs is system-optimal, it is difficult to ascertain how much CO2 emissions
can be avoided. The resulting emissions are largely determined by surrounding circum-
stances like the extent of the ensuing transmission line expansion and fossil power gener-
ation capacities, which are not included in our model. A discussion of the CO2 emissions
resulting from different scenarios and capacity distributions, including MaxW, can be
found in Grimm et al. (2017).
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In the Combinatorial auction design, which allows bids on bundles of
projects, institutional bidders bid their cost for any possible project bun-
dle Bi ∈ Pi accounting for possible synergy effects, i.e. they bid c Bið Þ. Bid-
ders in theNational,National REM and Regional auction designs consider
only synergies from projects that they already won. When placing bids
on individual projects, they do not lower their bids by speculating on
winning multiple projects. Else, they would risk making losses.

In the National REM auction design, as described in Section 2.2, bid-
ders place bids as if their projects were to be built at the reference site.
Therefore, each project's individual site-specific wind efficiency wj in
kWh=kW is put into proportion with the corresponding reference yield
wj

REM from Table 6, i.e. wj=wREM
j

, which leads to the respective correction

factor as shown in Table 2. The final bid results in the break-even costs
cj divided by the correction factor, anticipating that the final remunera-
tion pj will result from the ask price multiplied by the correction factor.

4.3. Experimental design and focus variables

As described in Section 3.3, we analyse the outcome of four auction
designs for three different synergy concepts and various synergy levels.
An overview of these treatment variables and their possible combina-
tions is given in Table 7.

To make sure that our results are robust, we analyse ten iterations
per treatment combination. With four different auction designs, three
synergy concepts, six synergy levels and ten iterations per treatment
combination, we thus evaluate a total of 1,800 experimental auctions.10

More specifically, we assess our results based on the following focus
variables:

1. The average remuneration per kWh p, in ct/kWh
2. The allocative efficiency δ in %,measured as thepercentage of ca-

pacity allocated to stateswith capacity demand underMaxW. Naturally,
δ = 100% in the Regional and Combinatorial auction designs.

3. The actor diversity η in %, measured as the share of capacitywon
by BEG bidders.

5. Results

Based on our experiments, we report the effect of the four auction
designs on the three primary focus variables: average remuneration
per kWh (p), allocative efficiency (δ) and actor diversity (η). In addition,
we report the total payments p.a. (θ, in €m) and the bidders' average

cost per kWh (c) for the interested reader. As stated above, the National
auction design serves as a benchmark for comparison.

5.1. Synergies

We first compare different auction designs for various synergy
levels. A synergy level of 0.2 indicates that a bundle of projects in a syn-
ergy group (e.g. a region) can cost up to 20% less than the sum of the in-
dividual projects. Themore projects are in that group, the closer the cost
reduction will be to 20%.

5.1.1. Result 1 (Synergies)
A given synergy level has a stronger (negative) impact on the remuner-

ation to be paid in the Combinatorial auction than in the National and Na-
tional REM auction. The lowest impact of synergies on the remuneration is
observed in the Regional auction design.

Table 8 presents the effects of our experimental design elements on
the average remuneration per kWh p obtained from an OLS regression.
The wider the synergy concept (regional < cross-regional < national),
the lower the remuneration, as synergy groups become larger and the
potential for economies of scale increases. However, the difference in ef-
fect size between cross-regional and national synergies is small
(−0:3447ct=kWh vs. −0.3990 ct=kWh), indicating that synergies are most
profitably realised for projects in neighbouring or close regions.

The synergy level has the strongest impact on the remuneration per
kWh in the Combinatorial auction design: an increase of 0.1 in the syn-
ergy level decreases the average remuneration by0.38 ct=kWh. In compar-
ison, it leads to a decrease of only 0.23 ct=kWh in the National auction
design. Since bidders cannot explicitly account for synergies in the Re-
gional auction design, they have no effect on the average price level.
This is due to the fact that only one regional auction takes place per
year so that bidders cannot account for projects won in earlier auctions
when bidding in later auctions. Averaging across synergy concepts, the
Combinatorial auction design yields the same average price as in the Na-
tional auction design for a synergy level of 0.59.

5.2. Allocative efficiency and average remuneration per kWh

In a next step, we evaluate allocative efficiency and the correspond-
ing average remuneration in the four auction designs.

5.2.1. Result 2
The National REM auction design yields a higher allocative efficiency

compared to the National auction at the expense of a higher average remu-
neration per kWh. However, the resulting allocation still differs substan-
tially from the desired MaxW. Both the Regional and the Combinatorial
auction designs implementMaxWprecisely, but at a higher average re-
muneration. For synergies of 0.4, the Combinatorial auction design
yields the average remuneration per kWh of the National REM design.
In case of synergies, among all auction formats, the Combinatorial auc-
tion design yields by far the lowest bidder margins.

Table 6
Investment costs for wind power plants.

Category Investment costs [€/kW] Plant configuration Reference yield p.a. [MWh/MW]

2018 Onshore Wind 1
(HB, HH, MV, SH)

1, 355 Hub height 95 m, 3 MW,
100 m rotor diameter

2, 321

Onshore Wind 2
(BB, BE, NI, NW, ST)

1,456 Hub height 105 m, 3 MW,
100 m rotor diameter

2, 376

Onshore Wind 3
(BW)

1, 630 Hub height 120 m, 2.5 MW,
110 m rotor diameter

3, 915

Onshore Wind 4
(BY, HE, RP, SL, SN, TH)

1, 732 Hub height 130 m, 2.5 MW,
115 m rotor diameter

4, 065

Source: Own elaboration based on Prognos (2013) and FGW (2017).

Table 7
Preview of experimental design.

Treatment variable Value

Auction design {National, National REM, Regional, Combinatorial}
Synergy concept {regional, cross-regional, national}
Synergy level {0, 0.1, 0.2, 0.3, 0.4, 0.5}

10 1,800 auctions=[2(National, National REM) ⋅ 4(February, May, August, October) + 2
(Regional and Combinatorial)] ⋅ 10(iterations) ⋅ 3(synergy structures) ⋅ 6(synergy levels)
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Table 9 shows the outcome of the four action designswith respect to
the focus variables.We focus on allocative efficiency (δ) and the average
remuneration (p) first. Since there is no information on scale economies
for German wind auction bidders in reality, we report our results
for both no synergies and cross-regional synergies with λ = 0.2 and
λ = 0.4.

Allocative efficiency, average remuneration and bidders' costs in-
crease when applying the REM. Without synergies, 89% of the
subsidised capacity in National REM are allocated to regions with a pos-
itive capacity demand under MaxW. This is 40 percentage points more
than in the National auction design. As synergy increases, these shares
as well as their difference decrease, the latter from 40 to 28 (λ = 0.2)
and 25 (λ = 0.4) percentage points. This is mostly due to a decline in
allocative efficiency in the National REM design, since a higher cross-
regional synergy supports a wider distribution of projects. For a graph-
ical illustration of the resulting allocations, see Figs. C.1 and C.2 in
Appendix C.

Meanwhile, the average remuneration per kWh in the National REM
design is 7.2% (λ = 0.0, 0.2) and 5.4% (λ = 0.4) higher than in the Na-
tional auction design. Note that while the REM slightly increases
allocative efficiency, bidders lack incentives to search for efficient sites
when it is applied.

Irrespective of the synergy level, allocative efficiency is at 100% in
both the Regional and Combinatorial auction designs, as we only allow
bidding in regions with positive capacity demand under MaxW. But
this comes at a cost: without synergies, the average remuneration per
kWh in both designs increases by 14.4% and 14.7% compared to the Na-
tionaldesign, respectively,which can be considered a surcharge for forc-
ing the system-optimal allocation of MaxW. Note that, considering no
synergies, the Regional auction design leads to slightly lower prices
than the Combinatorial auction designs. The reason for this is that the
Regional auction design only minimises prices while the Combinatorial
auction design minimises prices and overcapacity, leading to lower
total cost (θ).

However, the average remuneration per kWh in the Combinatorial
auction design becomes similar to that of the currently applied National
REM design in the presence of synergies, and remains only 9.1% (λ =
0.2) and 5.8% (λ = 0.4) higher than in the National auction design. In
other words, for onlymoderate synergies, the Combinatorial auction de-
sign implements the system-optimal allocation without any surcharge
compared to the current German auction design, while maintaining in-
centives to search and bid on the most efficient sites.

It is also notable that in case of synergies the Combinatorial auction
design reduces bidders' margins substantially as compared to all other
auction designs: from 0.38 (0.37, 0.62) ct=kWh in the National (National
REM, Regional) auction design to 0.20 ct=kWh for λ = 0.2 and from 0.69
(0.69, 1.19) ct=kWh to 0.46 ct=kWh for λ = 0.4.

5.3. Bidder diversity

5.3.1. Result 3
The higher the synergies, the more institutional bidders benefit from

economies of scale and the less capacity is allocated to BEG bidders.
The fifth column of Table 9 reports the share of awarded capacity

won by BEG bidders, η(%). Without synergies, this ranges from as
much as 27% in the National REM auction design to 18% in the Combina-
torial design.With increasing synergy levels, institutional bidders gain a
competitive advantage; consequently, the share of successful BEGs de-
creases substantially and generally lies below 10% for λ = 0.4. Since
the Regional auction design is unaffected by synergies, the share of
BEG bidders stays at 19%.

5.4. Computational cost

5.4.1. Result 4
All auction formats can be computed in seconds with realistic problem

sizes. It takes significantly longer to compute the allocation and remunera-
tion per kWh for the Combinatorial auction design than for the other auc-
tion designs, on average 5 seconds.

The average time required to solve the allocation and corresponding
pricing problems in each auction design is provided in Table 10. Note
that we are solving real-world problem sizes. The computation times
would not constitute a practical problem.

5.5. Summary

Forcing the system-optimal allocation of MaxW comes at the cost of
an average increase in remuneration of about 14% compared to the Na-
tional auction design. This changes in the presence of synergies: for λ=
0.2 and λ= 0.4 the average remuneration is only 9.1% and 5.8% higher,
respectively, all thewhilemaintaining the system-optimal capacity allo-
cation of MaxW.

The percentage of capacitywon by BEG bidders decreaseswith stron-
ger synergyeffects, as institutional bidders gain a comparativeadvantage.
Note thatmaintaininga steadyandmoderate shareof successful BEGbid-
ders can also be a policy goal. This could easily be implemented with ad-
ditional allocative constraints in the Combinatorial auction design.

6. Conclusion

Many countries are using auctions to determine the remuneration
for RES, which is however often accompanied by a high concentration
of renewable energy power plants at very productive sites far-off the
main load centres. To counteract these tendencies, we introduce a com-
binatorial auction design that allows to implement regional target ca-
pacities, provides a simple pricing rule and maintains a high level of
competition between bidders by permitting package bids.

The aim of this paper was to assess and evaluate the impact of four
different RES auction designs on allocative efficiency and subsidy

Table 8
Remuneration effects of design variables.

Dep. variable: avg. remuneration p Coef. SE t P>∣t∣

Intercept 6.5436 0.0280 233.51 0.0000
National REM 0.4597 0.0368 12.49 0.0000
Regional 0.8488 0.0368 23.06 0.0000
Combinatorial 0.8878 0.0368 24.12 0.0000
Cross-regional synergy −0.3447 0.0180 −19.17 0.0000
National synergy −0.3990 0.0180 −22.19 0.0000
National × syn. Level −2.2605 0.0860 −26.29 0.0000
National REM × syn. Level −2.5355 0.0860 −29.49 0.0000
Regional × syn. Level −0.0102 0.0860 −0.12 0.9059
Combinatorial × syn. Level −3.7501 0.0860 −43.62 0.0000
R2 0.93
N 720

Table 9
Comparison of auction design outcomes.

Auction design Synergy level (λ) p ct
kWh

� � δ(%) η(%) θ(m p.a.) c ct
kWh

� �
National 0 6.25 49 24 366 6.11
National REM 0 6.70 89 27 389 6.60
Regional 0 7.14 100 19 421 7.11
Combinatorial 0 7.17 100 18 417 7.13
National 0.2 5.81 46 15 332 5.43
National REM 0.2 6.23 74 11 355 5.86
Regional 0.2 7.14 100 19 413 6.52
Combinatorial 0.2 6.34 100 5 362 6.14
National 0.4 5.20 45 8 294 4.51
National REM 0.4 5.48 70 7 308 4.79
Regional 0.4 7.14 100 19 407 5.95
Combinatorial 0.4 5.50 100 5 310 5.04
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payments by means of extensive numerical experiments. Based on the
case of onshore wind auctions in Germany, we compare the current na-
tionwide auction design with the REM to a simple nationwide auction
design, a regional and our proposed combinatorial auction design.

We find that for only moderate synergies, the Combinatorial auc-
tion design implements the system-optimal wind capacity allocation
presented by Grimm et al. (2017) without considerably increasing
the average remuneration per kWh compared to the current German
auction design, while maintaining incentives to search and bid on
the most efficient sites. Grimm et al. (2017) estimate the potential
savings resulting from a system-optimal allocation of RES in
Germany to be at least €2.6 billion a year for a 2035 scenario. Current
cost experiences for redispatch and feed-in management measures
often range above a billion Euro per year and are mainly caused by
the high concentration of onshore wind power plants in northern
Germany, far from the main load centres in southern Germany. This
indicates a high potential for savings resulting from our proposed
Combinatorial auction design.

The prices resulting from the Combinatorial auction are linear and
anonymous for each region whenever possible, while minimal
personalised markups on the linear prices are applied only when

necessary to prevent winning bidders from making losses. At the same
time, prices are set such that no losing bidder would want to produce
at those prices. Due to the size of the problem instances (i.e. the ten-
dered capacity and number of bids), the personalised markups are
minimal.

Combinatorial auctions come at the cost of computational com-
plexity for the auctioneer since the allocation problem that needs
to be solved is an NP-hard combinatorial optimisation problem. In
our experiments, we show that realistic problem sizes can be solved
in seconds due to the large number of relatively small bidders. For
bidders, combinatorial auctions are strategically simpler than having
to bid in a sequence of auctions. In particular, institutional bidders
can bring their scale economies to bear with package bids, which re-
duces costs.

Overall, the combinatorial auction design proposed in this paper is a
viable alternative to location-specific auction mechanisms like the Ger-
man REM. Furthermore, it constitutes a candidate design for renewable
energy auctions not only in Germany, but also in other countries world-
wide where auctions are used to support the expansion of renewable
energy capacity.
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Appendix A

Table A.1
Comparative values for reference yield calculation.

Category Parameter Configuration Comparative value Plant type Reference yield p.a. [MWh
MW ]

1 Rotor diameter (m) 100 100.5 eno 100 3,195.36
Hub height (m) 95 99
Nominal capacity (MW) 3 2.2

2 Rotor diameter (m) 100 100.5 eno 100 3,195.36
Hub height (m) 105 99
Nominal capacity (MW) 3 2.2

3 Rotor diameter (m) 110 112 Vestas V112 2,965.89
Hub height (m) 120 119
Nominal capacity (MW) 2.5 3.3

4 Rotor diameter (m) 115 112 Vestas V112 3,192.87
Hub height (m) 130 140
Nominal capacity (MW) 2.5 3.3

Source: Categories based on Prognos (2013), comparative values taken from FGW (2017).

Appendix B

Example 1. A bidder i has Pi = {P1,P2,P3,P4,P5,P6} projects, repre-
sented by tuples of (region, cost). Those are: (’BW’,10), (’BW’,10),
(’BY’,10), (’RP’,10), (’BB’,10), (’BE’,10). Assuming there are no syner-
gies, the unit cost for each project is: ecj Skð Þ ¼ cj ¼ 10 ct

kWh ,∀j∈Pi and
all partitions Sk of Pi.

Assume synergies are considered to beλ=0.5 for projectswithin a re-
gion. Thesetsofprojects in the samesynergygroupsareS1={P1,P2},S2=
{P3}, S3= {P4}, S4= {P5}, S5= {P6}.Whenwinning Sk, the respective unit
cost for each project in S1 is given by: ecj S1ð Þ ¼ 10⋅ 1−0:5⋅ 12

� � ¼ 7:5 ct
kWh.

The unit cost for all other k> 1 is ecj Skð Þ ¼ 10 ct
kWh.

Table 10
Computation times.

Auction design Mechanism Mean (std) in sec.

National Allocation 0.013 (0.000)
National REM Allocation 0.014 (0.000)
Regional Allocation 0.021 (0.000)
Combinatorial Allocation 4.47 (0.045)
National Pricing 0.003 (0.000)
National REM Pricing 0.005 (0.000)
Regional Pricing 0.019 (0.000)
Combinatorial Pricing 0.816 (0.054)
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Appendix C

Fig. C.1. Capacity allocation in the (a) National and (b) National REM auction design for cross-regional synergies of λ = 0.2.

Fig. C.2. Capacity allocation in the (a) Regional and (b) Combinatorial auction design for cross-regional synergies of λ= 0.2.
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Abstract

Understanding market dynamics means understanding and predicting the behaviour
of the market participants. Nash equilibria have proven to be an effective means in this
regard. Unfortunately, computing equilibria in a complete information or Bayesian
game is computationally hard. We introduce a learning rule based on neural networks
that we call Neural Self-Play. This rule is able to compute approximate Nash equi-
libria for many normal form games as well as for incomplete-information games with
continuous type- and action-space, i.e., sealed bid single-item auctions. Leveraging
GPU hardware architecture, which allows for parallelized computation of large matri-
ces, Neural Self-Play finds approximate Bayesian Nash equilibria in first-price sealed
bid auctions with 10 players within 10s of minutes.

1 Introduction

Market design has received increasing attention in the information systems literature (Bichler
et al. 2010). For market designers, it is important to understand equilibrium behavior of
market participants to predict market outcomes and potential strategic problems. While
early literature on general equilibrium theory focused on competitive equilibria and assumed
players to be non-strategic price takers, auction theory assumes strategic agents and uses
the Nash equilibrium concept to study the price formation process (Nash et al. 1950). More
precisely, auction theory models auctions as Bayesian games and analyzes the Bayes-Nash
equilibria of players.

Unfortunately, for many markets we do not know the Bayes-Nash equilibrium strategy.
For example, Bayes-Nash equilibrium strategies for simple combinatorial first-price sealed-bid
auction are still unknown, except for restricted environments (Kokott et al. 2019). Different
assumptions on the common prior distribution, the risk aversion of the players, or the number
∗stefan.heidekrueger@in.tum.de
†paul.sutterer@tum.de
‡bichler@in.tum.de
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of players and objects all play a role, and the analytical derivation of equilibrium strategies
can be very challenging, often without a closed-form solution if at all possible.

In this paper, we introduce Neural Self-Play (NSP), a method that numerically derives
Bayes-Nash equilibria. In experiments, we focus on environments where we know the ana-
lytical solution and show that NSP closely approximates the analytical equilibrium strategy.
This bears the promise that it can provide such a solution for markets where we cannot
derive analytical solutions. While earlier literature either stems from artificial intelligence or
game theory, equilibrium computation becomes increasingly important as a tool in market
design and other areas of information systems research. This also contributes to the overall
theme of the workshop: markets for policy making and sustainability.

1.1 Related Literature

Nash equilibria (NE) are a central solution concept in non-cooperative game-theory. Infor-
mally, in a Nash equilibrium no agent has an incentive to deviate, given the current behaviour
of all other agents. Therefore, once a NE is found, it is a stable state. However, finding NE
is hard. Actually, it is known to be PPAD complete already for 2-player normal-form games
(Daskalakis et al. 2009) and it is hard to approximate (Rubinstein 2016).

There exist a number of learning rules which try to find NE, two of the most frequently
used are Fictitious Play (FP) (Brown 1951) and Smooth Fictitious Play (SFP), a variant of
the first. The idea of FP is an iterative pre-play process in which each player plays a best
response to the opponents’ expected play, based on past observations. FP applies to games
of complete information, such as normal form games, as well as to games of incomplete
information. While FP works fine for many games, its direct application fails whenever a
game has continuous type- and action-space, as in auctions.

The problem of numerically computing approximate NE in auctions with continuous type-
and action-spaces has previously been studied by Bosshard et al. (2017). Bosshard et al.’s
algorithm is shown to compute verifyable approximate equilibria in the general setting. They
discretize and transform the Bayesian auction game into a normal form game and compute
a pointwise best response. Afterwards, they apply a (smoothed) best response update in the
original continuous game by interpolating the discrete solution such that it guarantees an
upper bound on the utility loss. While their method is shown to converge, the complexity
of calculations in the required discretization grows exponentially with the number of players
and thus becomes intractable for games with many players or multidimensional type or action
spaces.

1.2 Contributions

In this study, we introduce Neural Self-Play (NSP), a learning rule implementing players’
strategies as neural networks, and using evolutionary strategies to update the networks
parameters. We first test the algorithm’s performance on normal form games of complete
information with discrete type- and action-spaces. The algorithm performs similar to FP
and SFP and is able to find pure Nash equilibria (PNE) as well as mixed Nash equilibria
(MNE) in empirical frequencies. While FP and SFP are only able to work with discrete
type- and action-spaces, NSP also works with continuous settings. We test the algorithm
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on games of incomplete information with continuous type- and action-spaces, i.e. on sealed
bid single-item auctions. NSP is able to find approximate Bayes-Nash equilibria (BNE) in
all performed experiments within minutes. It is able to find BNE for settings with many
bidders and scales well even for an increasing number of parameters.

The remainder of this paper is structured as follows: First, in Section 2, we introduce
preliminaries as well as NSP and related learning rules. We then present empirical results
of applying NSP to normal form and auction games in Section 3 before concluding with a
summary of our findings in Section 4.

2 Methodology

In this study, we apply different learning rules for finding Nash equilibria (NE), namely
Fictitious Play (FP), Smooth Fictitious Play (SFP), Mixed Fictitious Play (MFP) which
are well-studied tabular methods. In addition, we introduce a new algorithm for equilibrium
learning based on neural networks that we call Neural Self-Play (NSP). Before we describe
these learning rules, let us briefly introduce a few terms.

Games in normal form (complete information, discrete type- and action space) are defined
by a tuple: G = (N,A, u) where N = {1, ..., n} describes the set of players; A = A1× ...×An
describes the set of action profiles, with Ai being the set of actions available to player i; and
u = (u1, ..., un) is the joint utility function where ui : Ai → R describes the payoff (utility)
function for each player.

Games of incomplete information are described by a quintuple: G = (N,A, V, p, u). N
and A are as above, with Ai potentially being continuous sets Ai ⊂ R; V = V1×...×Vn is the
set of type profiles. At the beginning of the game, each player i is informed of her own type
vi ∈ Vi only (private information). Just as Ai, the Vi are (potentially continuous) subsets
of R.1 p(v) defines a prior probability distribution over type profiles that is assumed to be
common knowledge. The payoff (utility) function is now determined by ui : A×Vi → R, i.e.
players’ utilities depend on all players’ actions but only their own type.

In each game, after receiving the private type information, each player i chooses her
strategy according to some (possibly stochastic) strategy π : Vi → ∆Ai that maps to a
probability distribution over possible actions.2 All the learning rules described here have
in common that the underlying game is played repeatedly—in theory indefinitely—while
players observe each other’s behavior and adjust their strategies πi ("learning") in order to
ultimately find an equilibrium in the game, i.e. a state where no player can improve their
own expected utility by changing their strategy πi any further. Throughout this paper, we
denote by the index −i a profile of types, actions or strategies for all players but player i.

2.1 Fictitious Play

FP was first introduced by (Brown 1951). It can be seen as a process of pre-play by each
player to learn more about the game’s dynamics. In FP, each player starts with initial beliefs
about the other players’ strategies and updates these beliefs based on the observations of

1Private information may also be multidimensional, but we restrict ourselves to the scalar setting here.
2When πi is known to be deterministic, i.e. return an action ai with probability 1, we will use the

following abuse notation: πi(vi) = ai.
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played actions throughout the process. At each step every player i computes her expected
utility ui for any possible action in Ai, given the current beliefs of opponents play σ−i, and
chooses the action ai ∈ Ai that maximizes it, i.e. plays a best response:

ai = arg max
a∈Ai

E [ui(a, σ−i)]

After each round, players update their beliefs about other players’ strategies using Bayesian
updating. As the actual play can only converge to pure Nash equilibria (PNE) due to the way
actions are chosen, it oscillates in games with only mixed Nash equilibria (MNE). However,
the empirical distribution of historical actions may still converge in such games (Fudenberg
and Levine 1999, p.42 - 45) and is thus usually considered when speaking about convergence
of FP. While FP does not converge in general (Shapley 1964), it has been shown to converge
for some general settings such as constant sum games (Robinson 1951) or games that are
solvable through iterated elimination of strictly dominated strategies (Nachbar 1990). For
details on convergence guarantees of FP, we refer the interested reader to any text book on
game theory, e.g. Fudenberg and Levine (1999).

2.2 Smooth Fictitious Play

Smooth Fictitious Play (SFP) is based on FP but differs in that SFP does not determin-
istically play a best response, but adds randomness to the decision process. In our imple-
mentation this is achieved by applying the softmax function to the expected utilities of each
action and sampling an action according to the resulting probability distribution. We fur-
ther apply a temperature parameter τ that controls the level of smoothing, i.e. the degree
of indifference between actions. For τ → ∞, players will be completely indifferent between
actions; as τ → 0, the players probability of playing the best response action approaches 1.
Usually, τ is initialized with 1 and decreases with each step. The probability of player i to
play an action a, given the beliefs of opponents playing σ−i, is then given by:

Pr (ai |σ−i) =
e
ui(ai,σ−i)

τ

∑
ri∈Ai e

ui(ri,σ−i)
τ

,

where we dropped the expectation around ui(·, σ−i) for ease of notation.
SFP can be motivated in multiple ways, among them are: the randomization represents

private information about the utility function of a player; and the introduction of random-
ization allows agents to be less exploitable. In contrast to FP, the actual play in SFP (or the
probability for the actions according to players’ strategies π) is in principle able to converge
to MNE (Fudenberg and Levine 1999, p.131 - 156).

2.3 Mixed Fictitious Play

Mixed Fictitious Play (MFP) is an adjustment of SFP in which players do not sample
an action but can "play" mixed strategies that are observed by others. This adjustment
makes MFP purely fictitious, i.e. a mind experiment, since players cannot actually play
a probability but would have to decide on an action in practice. The advantage is faster
convergence due to lack of noise introduced by sampling. This method is thus only suited for
finding potential NE of a game but not a method for players to learn to reach the equilibrium
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strategy through repeated playing of an actual game.

2.4 Neural Self-Play

We propose Neural Self-Play (NSP) as an alternative iterative learning rule that is applicable
both to normal form games and continuous-action continuous-type Bayesian games. In NSP,
we model players’ strategies using neural networks. In each step, players consider their
opponents to be stationary in their current strategy (as opposed to updating beliefs over
historical play as in FP and variants). The general idea of NSP is that players apply a small
update to their neural network parameters θ that will lead to an improvement in utility.

The canonical way of implementing this idea would be applying a gradient ascent algo-
rithm via backpropagation. In fact, this method is called Policy Gradients in (single-agent)
reinforcement learning and has been previously studied in multi-agent normal form games
where it is called Infinitesimal Gradient Ascent (IGA, Singh et al. 2000; Bowling and Veloso
2002). However, in the following, we demonstrate that this approach fails in the setting of
auctions and instead propose to use an alternative training algorithm based on Evolutionary
Strategies, before introducing the specific model architectures that we use in this study.

2.4.1 Infinitesimal Gradient Ascent

In Infinitesimal Gradient Ascent (IGA), each player adjusts their own strategy in the di-
rection of the gradient of their utility function when considering opponents fixed at their
current strategies3:

πt+1
i := πti + α∇πiui(π

t
i , π

t
−i)

In 2x2 normal form games, this simple learning rule has been shown to either converge to a
NE or end up in cycling behaviour where each player’s average utilities converge to those in
a NE (Singh et al. 2000). However, IGA relies on knowledge of the analytical joint gradient
dynamics and assumes that the joint utility function is differentiable everywhere. This makes
the learning rule unsuitable for continuous-type, continuous-action Bayesian games as these
can involve nontrivial discontinuities as we discuss below. To rectify this, our approach
differs from IGA mainly in the way gradients are computed, particularly in two aspects:

On the one hand, IGA assumes analytical knowledge of—or an efficient way to compute
with arbitrary precision—the global gradient vector field in each step. This assumption,
however, becomes impracticable in infinite information-state spaces, as no closed-form de-
scription might exist or be known. We thus forgo this assumption and instead rely on
stochastic estimation of the gradients: In each iteration, we play a batch of games, i.e. draw
a batch of valuation profiles from the players’ prior distributions and calculate players’ cur-
rent strategy utilities in each of the valuation profiles. Due to the parallel nature of these
calculations, we can leverage modern hardware accelerators such as GPUs to perform these
batched operations at no additional cost in computation time. We then aim to calculate
the gradients for this stochastic joint utility function with respect to each player, which in
expectation will approximate the gradient dynamics of the full Bayesian Game.

3The sceptical reader might wonder how ∇πi
is defined. πi could either be a tabular vector of action-

probabilities, a parametrized function, etc.; the gradient should be understood with respect to the respective
representation determining πi. We use abuse of notation here to illustrate the concept in a general way.
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Figure 1: Utility function ui(bi) in First Price Sealed Bid Auction for stationary opponent
bids b−i with highest opponent bid b(1)−i . For a given current bid bi, the gradient ∇ui(bi) will
be zero whenever the player is not winning the item, and negative whenever she is. Thus,
when all players update their strategies using gradients, they will eventually all bid zero, as
the winner in each round learns to bid less while the losers do not change their strategy.

2.4.2 Evolutionary Strategy Pseudo-gradients

On the other hand, even when available, the exact gradients on this sample may not lead to
proper learning, so we rely on pseudo-gradients computed via an Evolutionary Strategy algo-
rithm instead. Exact gradients are problematic because for a fixed valuation and opponent
strategy profile (vi, π−i), player i’s utility may be discontinuous in her action. Clearly, such
a discontinuity is relevant to playing optimally, but neither the left-sided nor the right-sided
derivatives will contain information about its presence, as outlined in Figure 1. The standard
method of training neural networks, stochastic gradient ascent (SGA)4 via backpropagation,
calculates exact gradients with respect to the training data5; thus, using backpopagation in
the multi-agent setting is simply an implementation of IGA on neural network strategies,
leading to the problems described above and making it unsuitable in our setting.

Recently, Evolutionary Strategies (ES) have been proposed as an alternative to back-
propagation for gradient estimation in neural networks and applied with some success in
reinforcement learning (Salimans et al. 2017). In ES, the parameter vector θ of the model is
perturbed randomly P times, for example by adding P i.i.d. zero-mean, σ2-variance Gaus-
sian noise terms εp. The resulting P perturbed neural networks are then evaluated with
respect to their "fitness" Fp and the model is ultimately updated using a weighted average
of the P noise vectors εp with more desirable perturbations being weighted higher than less
desirable ones: θt+1 = θt + α 1

P

∑P
m=1 Fmεp. While Salimans et al. (2017) mainly motivate

this alternative update with the need for large scale parallelization across CPU clusters
and computational deficiencies of backpropagation, the method also exhibits an important
property that is crucial in our context:

4In the Machine Learning and Nonlinear Programming literature the method is commonly known as
stochastic gradient descent (SGD). Nevertheless, we will use the maximization formulation here.

5Unless impaired by numerical precision.
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The ES pseudo-gradient is in expectation identical to the analytical infinitesimal gradient
for σ → 0; however, in pactice, a small but strictly positive value for σ is used. The resulting
finite perturbations solve the problem of inconsistent gradient signals at discontinuities of the
utility: If an agent is ’barely’ losing an auction, a small perturbation resulting in a higher
bid will also result in the agent winning the auction, thus providing a positive pseudo-
gradient signal. We therefore propose using neural networks trained via ES rather than
backpropagation in the multi-agent continuous-action setting whenever the marginal utility
functions may not be differentiable or even continuous in action-space.

In our implementation, we extend the basic ES algorithm from Salimans et al. (2017)
with two common practices from Reinforcement Learning and Optimization by (a) using the
player’s utility in the previous iteration as a baseline parameter to reduce variance in the
fitness function and (b) replacing the pseudo-gradient update with a momentum update in
order to smoothen the learning trajectories. A complete description of Neural Self-Play with
Evolutionary Strategy training is given in Algorithm 1.

2.4.3 Representing Strategies: The policy network

In NSP, each agent’s strategy is given by a policy model that maps her types vi to (a
distribution over) actions and that is represented by a neural network with a parameter
vector θ: πi(·) = πi,θ(·).

In the normal form game setting, we implement the policy model as follows: Since we
have complete information, there are no information sets and no structure for the neural
network to learn. Thus, the policy model for each player consists of a single weight vector
representing logits for each possible action, θ ∈ R|Ai|. The logits are then normalized by
a softmax function to achieve a vector that can be interpreted as probability distribution:
Pr (a) = eθa∑

j∈Ai e
θj
. This can be interpreted as a no-hidden-layer feed-forward neural network

with a constant scalar input of 1 and an output layer with weight vector θ, no bias parameters
and a softmax activation function. A schematic of this network is shown in Figure 2a. Actions
are then sampled from the resulting distribution.

In the Bayesian, continuous-type-and-action setting, we instead restrict ourselves to de-
terministic policies: The input to the neural network will be a vector representing the player’s
private information, the output will be a vector in action space. In the setting of sealed bid
single-item auctions, both the input (private valuations vi) and outputs (bids bi) happen to
be scalars. The deterministic action is then given by bi = πi,θ(vi). To map inputs to outputs,
we may use an arbitrary neural network architecture; in this study, we restrict ourselves
to fully-connected feed-forward networks with two hidden layers, which were sufficient to
yield desired results. Advanced network architectures such as recurrent neural networks or
attention mechanisms may be required to extend this technique to settings with temporal
structure (such as ascending auctions), but we leave this investigation to future work.
For the reported experiments we use SeLU activations (Klambauer et al. 2017) in the hidden
layers, and a ReLU activation function in the ouput layer. While the ReLU activation in the
output layer fulfills a structural role in ensuring non-negative bids, SeLU was chosen in the
hidden layers because we found it to be most robust in producing good results. The network
architecture used in auction games is illustrated in Figure 2b.
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Algorithm 1: Neural Self-Play with Evolutionary Strategy training
Input: players i ∈ [N ] with initial policy π0

i := πi,θ0i , defined by a model
architecture and initial parameter vector θ0i ;
batch size K; learning rate schedule (αt)t≥1; friction parameter β ∈ [0, 1);
ES population size P ; ES noise stddev σ

1 For each player, initialize momentum buffer m0
i = 0

2 for t := 1, 2, . . . do
3 For each player i, sample a batch of valuations vk,i for k ∈ [K]
4 Calculate joint utility in current strategy profile:

ut−1 :=
1

K

∑

k

u
(
πt−1(vk)

)

5 for each player i do
6 Sample P perturbations of player i’s current policy model:

π̃p := πi,θ̃p , with θ̃p := θt−1i + εp, εp ∼ N (0, σ2I) iid. ∀p ∈ [P ]

7 Evaluate the fitness of perturbations by playing a batch vs current opponents:

Fp :=
1

K

∑

k

ui
(
π̃p(vk,i), π

t−1
−i (vk,−i)

)
− ut−1i︸︷︷︸

baseline

8 Calculate ES pseudo-gradient as fitness-weighted perturbation noise:

∇ES :=
1

σ2P

∑

p

Fpεp

9 Perform a momentum update on the current policy:

mt
i := βmt−1

i +∇ES

θti := θti + αtmt
i

πti := πi,θti
10 end
11 end

3 Empirical Results

We study the learning rules above in two settings, namely complete information normal form
games and incomplete information single item sealed-bid auctions.

3.1 Normal Form Games

We consider a number of very common normal form games, starting with 2 players and 2
actions, namely Prisoners Dilemma (PD), Battle Of the Sexes (BoS), and Matching Pennies
(MP). We also consider a game with 3 players and 2 actions, namely the Jordan-Game (JG)
that has been considered a challenge for FP and its variants (Jordan et al. 1993). We run
10 replications of each game with randomly drawn initial beliefs that are identical for each
learning rule. In each replication, each learning rule performs 5000 (learning) steps. The
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Figure 2: neural network architectures used for normal form games and auctions.

temperature τ (SFP and MFP) is initialized with 1, updated every 10 steps with 0.9 times
the previous value and held constant at a minimum of 0.2. NSP is performed with a batch
size of K = 210, ES noise parameter σ = 5, and P = 10 ES perturbations per step.

3.1.1 2 Player, 2 Action

The following games are described by N = {1, 2} and A1 = A2 = {1, 2}. Due to restricted
space, we do not present each payoff matrix but only name the Nash equilibria (NE). In
PD, the only NE is both players playing action 2 (PNE). In BoS, there are two PNE (both
players play 1 or both players play 2) and one MNE, where player 1 has a 60% probability
of playing action 1 and a 40% probability of playing action 2, while the probabilities are
reversed for player 2. In MP, the unique MNE is that both players have a 50% probability
of playing action 1. Figure 3 illustrates the learning process for these three games and the
four learning rules. Since there are only two actions and the behaviour of player 2 is very
similar to that of player 1, we display only the actual probability of player 1 playing action
1 at any learning step (columns 1-3). The fourth column displays the empirical distribution
of historical probabilities of player 1 playing action 1. Let us describe the results now.

FP (row 1) quickly converges to PNE in PD and BoS (column 1-2) while it oscillates
between actions in scenarios of only MNE, here MP (column 3), as described in the previous
section. However, the empirical distribution (column 4) converges to the MNE. On the
other hand, SFP (row 2) has a tendency of playing mixed and therefore takes about 150
steps to finally play PNE in PD and BoS (column 1-2). However, in games of only MNE,
SFP converges to the MNE in actual play and not only in the empirical distribution (column
3 and 4). Actually, Fudenberg and Kreps (1993) established global convergence to a Nash
distribution in 2×2 games with a unique mixed-strategy equilibrium. MFP (row 3) generally
behaves like SFP, however converges much faster and much smoother, especially in MP
(column 3 and 4). NSP (row 4) behaves similarly to both FP and SFP. In PD and BoS
(column 1 and 2), it is similar to SFP and needs 200 steps in both to converge to the PNE.
In MP (column 3), it is similar to FP and actual play cycles between the actions. However,
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Figure 3: Learning process of player 1 to play action 1 for the four learning rules on three
common 2 player 2 actions normal form games. The actual probability to play action 1
at each learning step is shown in column 1-3 and the empirical distribution of historical
probabilities in column 4.

this cycling is much smoother than in FP. As in FP, the empirical distribution (column 4)
converges to the MNE.

3.1.2 3 Player, 2 Action

While all previous games considered only 2 players, the Jordan-Game (JG) is defined by
N = {1, 2, 3} and A1 = A2 = A3 = {1, 2}. In this game, player 1 wants to choose an action
different to that of player 2 (u1 = 1, else u1 = 0), player 2 wants to choose an action different
to that of player 3 (u2 = 1, else u2 = 0), and player 3 one that is different to player 1 (u3 = 1,
else u3 = 0). The only NE is for all players to play each action with a probability of 0.5
(MNE). Figure 4 shows the probability of actual play (row 1) and the empirical distribution
of historical probabilities (row 2) for each learning rule (columns 1-4) in the JG.

FP (column 1) oscillates in actual play (row 1). However, in contrast to MP, even the
empirical distribution (row 2) does not converge but cycles around the equilibrium. Only in
one repetition the empirical distribution is perfectly in the MNE. Here, the initial beliefs are
such that each player beliefs all other players play action 1, and therefore each player plays
action 2. In the next step, each player updates their beliefs and now beliefs all other players
play action 2, and therefore each player plays action 1, etc.. Note that while all players play
the MNE in the empirical distribution, the actual payoff is 0 at all times. SFP (column 2)
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Figure 4: Convergence of actual and historical probability of player 1 to play action 1 for
the four learning rules on Jordan Game

does not converge either but both actual play (row 1) and the empirical distribution (row 2)
cycle around the equilibrium. This has also been shown by Benaım and Hirsch (1999). The
results are the same for MFP (column 3). However, the cycles around the equilibrium are
much closer here which is in line with previous results of SFP and MFP. NSP (column 4)
performs similar to FP but with even larger cycles of the empirical distribution around the
equilibrium. Both would not be suited to find equilibria in this game.

3.2 Single-Item Sealed-Bid Auctions

We study NSP behaviour in two types of auctions: First Price Sealed Bid (FPSB) auc-
tions and Second Price Sealed Bid Auctions (also called Vickrey auctions).6 The latter is
well known to be incentive compatible, thus bidding truthfully constitutes a BNE for any
combination of valuation distributions. NSP learned a close approxmation to the truthful
strategy after just a few 100s of iterations in all Vickrey settings we performed (uniform and
normal distributed types with up to 10 players). We thus omit detailed quantitative results
for Vickrey auctions for brevity and instead focus on the more challenging case of FPSB
auctions.

In FPSBs, analytical Bayes-Nash equilibria (BNE) are known for n players with arbi-
trary but symmetric prior valuations (Menezes and Monteiro 2005) as well as for 2 players
with asymmetric uniform valuation distributions with a stronger and a weaker player (Plum
1992). We ran experiments in the symmetric settings with uniform and normal distributed
valuations for 2, 3, 5 and 10 players each. In this setting, we take advantage of the symmetry
and implement NSP with model sharing, i.e. symmetric agents share a common parameter
vector θ. In this way, the for-loop in line 5 of algorithm 1 will only have to be computed once

6We also implemented NSP with policy gradient training via backpropagation and found that, in fact,
the problematic behaviour described in Section 2.4.1 always emerges in practice.
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Auction Valuation
Priors n runs iters runtime

(mins)

Utility
in

BNE

Utility
NSP

self play

Utility
NSP

vs BNE

Relative
utility loss
vs BNE (%)

First
Price

Uniform
Symmetric

2 5 2000 7.05 (0.13) 1.667 1.659 (0.007) 1.665 (0.001) 0.083 (0.038)
3 5 2000 7.83 (0.14) 0.833 0.827 (0.008) 0.832 (0.001) 0.208 (0.100)
5 5 3000 13.9 (0.10) 0.333 0.335 (0.006) 0.332 (2. e-4) 0.280 (0.079)
10 3 3000 15.5 (0.15) 0.091 0.100 (0.006) 0.089 (0.001) 2.289 (1.114)

Uniform
Asymmetric 2 6* 5000 18.1 (0.32) weak: 0.969 0.901 (0.025) 0.958 (0.005) 1.160 (0.518)

strong: 5.069 5.102 (0.046) 5.033 (0.007) 0.699 (0.149)

Normal
Symmetric

2 5 5000 10.7 (1.13) 2.779 2.639 (0.074) 2.758 (0.013) 0.778 (0.560)
3 5 5000 24.5 (1.39) 1.401 1.390 (0.057) 1.398 (0.018) 0.876 (1.313)
5 6* 10000 67.6 (5.89) 0.668 0.676 (0.013) 0.667 (0.001) 0.103 (0.149)
10 3 15000 56.5 (1.56) 0.269 0.275 (0.013) 0.267 (0.002) 0.861 (0.565)

Table 1: Results of Neural Self-Play in FPSB auctions. For each metric, we report the mean
(and standard-deviation) of multiple runs as indicated. See Table ?? for experiment hyper-
parameters. *Note: In the uniform asymmetric and normal symmetric 5-player settings, one
run each failed to learn (at least one player bidding constant zero). In these cases, reported
results are calculated over the remaining 5 runs.
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(a) Trajectory of NSP utility in self-play (left) and vs the analytical
Bayes-Nash equilibrium (middle) over three runs of 15k iterations
each. Opaque lines have been smoothed exponentially, actual values
indicated with transparency.

(b) Sampled bids (y-axis) vs valua-
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Figure 5: NSP in 10-player FPSB with symmetric-normal valuation priors

in each time step, giving considerable speedups, especially in settings with many players. In
the asymmetric setting, the weak and strong player naturally have distinct models. Each
experiment was run on a single Nvidia Geforce RTX 2080Ti GPU with batch sizes chosen
as large as possible such that the experiment would fit into GPU-memory.

In all of these settings, we measure players’ utilities in self-play as well as when unilaterally
playing against the known analytical BNE in each observation. We observe convergence of
the players’ utilities to those achieved in the BNE for both notions of utility in all considered
settings: With rudimentary manual hyperparameter tuning, we achieve more than 97.5%
efficiency in all 9 FPSB settings and more than 99% in all but two. Detailed FPSB results
are presented in Table 1. Figure 5 shows selected learning behaviour and resulting policy in
the settings of 10 player symmetric normal valuations.

In asymmetric settings, an interesting phenomenon can sometimes be observed in early
training: Initially, one player i will often randomly play a bid strategy that dominates
all other players (i.e. i wins all auctions in the batch) but that is nevertheless below the
equilibrium bid level. i will then adjust to bid less globally, while other players increase
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Figure 6: (top) NSP utilities (self-play) in first 2000 iterations of 5 repetitions in asymmetric
valuation setting showing both the strong (BNE utility: 5.07) and weak player (0.97).
(bottom) NSP strategies corresponding to the red trajectory on (top). Bidding strategies of
weak (blue) and strong(red) player as learned after 200, 400 and 2000 iterations (f.l.t.r.).

their bid when they get close to winning. This is precisely the behaviour where in IGA, the
’losing’ agent will fail to adjust their bids upwards, resulting in all players bidding 0 after
a while. In NSP with ES, however, we can see that due to the upward correction of the
losing bidder, the level where winning and losing players ’flip’ adjusts upward over time until
it reaches the equilibrium level. An example of this can be seen in Figure 6: The erratic
behaviour in the red trajectories corresponds to this phenomenon and results in oscillations
between achieved utilities much higher than in equilibrium (when ’winning’) and 0 (when
’losing’). Ultimately, the level of bids where these flips happen rise to amounts similar to
the equilibrium at which point players learn to coordinate, each player wins a fraction of the
auctions in each batch.

As expected in deep learning settings, we find that NSP behaviour is sensitive to the
choice of hyperparameters in terms of runtime and performance. In our experiments, hyper-
parameters were chosen and tuned manually and should by no means be considered optimal
for their respective settings. In particular, the choice of learning rate α and friction β were
found to be of high importance. A too high learning rate (and β) can lead to oscillations
around the optimum without convergence. In extreme cases large update steps even lead
to a player submitting all-zero bids in one iteration. This results in a behaviour similar to
a ’dead ReLU’ in backpropagation, where ES can no longer produce valid pseudo-gradient
information and the player will bid constant-zero in all following iterations. On the other
hand, small learning rates naturally lead to very slow convergence, especially in the setting
with many (5, 10) players. A detailed overview of hyperparameters used in the experiments
can be provided upon request.

It should further be noted, that even for small ε, an ε-BNE might be arbitrarily distant
from an exact BNE in type-action space (compare Bosshard et al. 2017). As such, we plotted
players’ policy functions over time for inspection. We often see behaviour where agents do
not conform to the equilibrium strategy for low valuations, particularly in settings with high
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number of players (compare Figures 5b and 6 (bottom right)). This results from the fact that
in equilibrium, a player with a low random valuation will almost never win an auction, and
even if she does, the utility gained will be minuscule. In fact, analysis of learning behaviour
shows that agents learn the correct bid-level for their highest valuation levels very quickly,
then fine-tune the shape of the policy.

4 Conclusion

Nash equilibria are popular means to predict market participants’ behaviour and predict
market outcomes. Unfortunately, computing Nash equilibria is extremely difficult, in fact
PPAD complete. In this study, we propose a new learning rule based on neural networks
that we call Neural Self-Play. First, we show that this learning rule can compete with
common learning rules like Fictitious and Smooth Fictitious Play in normal form games.
While these common learning rules require discrete type- and action-space, we show that
Neural Self-Play is able to find Bayes-Nash equilibria in auction games with continuous type-
and action-space, i.e. sealed bid single-item auctions. We leverage the potential of GPUs
to parallelize computations and find that Neural Self-Play scales well with an increasing
number of parameters, finding approximate Bayes-Nash Equilibria in auction settings with
10 players within 10s of minutes on a single GPU.

After demonstrating the ability of Neural Self-Play to find Bayesian Nash equilibria in
sealed bid single-item auctions, we plan to consider more complex auction designs in future
research, including combinatorial and sequential auctions. For these complex auctions Neural
Self-Play could benefit from more advanced architectures like recurrent neural networks that
provide some sort of advanced memory ability. We plan to compare the results to those of
Bosshard et al. (2017) who implemented a variant of FP for combinatorial auctions with
continuous type- and action-space but whose method is run-time limited for settings with
more than a few players or items.
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Abstract

Applications of combinatorial auctions (CA) are prevalent in practice, yet their
Bayesian Nash equilibria (BNE) remain poorly understood. Analytical solutions are
known only for a few cases where the problem can be formulated as a tractable partial
differential equation (PDE). In the general case, finding BNE is known to be computa-
tionally hard. Previous work on numerical computation of BNE in auctions has relied
either on solving such PDEs explicitly, calculating pointwise best-responses in strategy
space, or iteratively solving subgames with restricted strategy spaces. We present a
generic yet scalable method, representing strategies as neural networks and applying
updates via gradient dynamics in self-play. Most CAs are ex-post nondifferentiable, so
gradients are unavailable or misleading, and we instead rely on suitable pseudogradient
estimates. We observe fast and robust convergence to approximate BNE in a wide
variety of CA games and give a sufficient condition for convergence.

1 Introduction
Auctions are widely used in private sectors, e.g. advertising and procurement, as well as in the
public sector for the allocation of social goods, e.g. for spectrum sales and for the extension
of renewable energy sources. [8, 24, 3, 32]. Auction markets inherently involve incomplete
information about competitors and strategic behavior of market participants. Understanding
decision making in such markets is an important line of research in information systems.
Auctions are typically modeled as Bayesian games and one is particularly interested in the
equilibria of such games to potentially enable welfare maximizing allocations.

It is well-known that equilibrium computation is hard. Finding Nash equilibria is known
to be PPAD-complete even for normal-form games, which assume complete information and
finite action spaces, and in which a Nash equilibrium is guaranteed to exist [16]. In auctions,
however, these assumptions no longer hold. In auction games modeled as Bayesian games
with continuous type and action spaces, agents’ values are drawn from some continuous prior
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value distribution and their actions are typically described as a continuous bid function of
these valuations. For auctions of a single item, the landmark results by Vickrey [31] have
enabled a deep understanding of common auction formats. For multi-item auctions and more
specifically for combinatorial auctions, in which players bid on bundles of multiple items
simultaneously, there has been little progress. While the complexity of computing Bayes-
Nash equilibria (BNE) is not well understood, Cai and Papadimitriou [14] show that BNE
computation for a specific combinatorial auction is already (at least) PP-hard. Furthermore,
finding an ε-approximation to a BNE is still NP-hard. Explicit solutions exist for very few
specific environments, but in general, we neither know whether a BNE exists nor do we
have a solution theory. Combinatorial auctions are widely used in the field [8, 15], thus
understanding their equilibria is paramount, and access to scalable numerical methods for
computing or approximating BNE can have a significant impact on the possibility to enable
social welfare maximizing allocations.

Equilibrium learning in games differs from most learning tasks in that it suffers from the
nonstationarity problem: Each player’s objective depends on other agents’ actions. Prior
literature on equilibrium learning primarily focuses on complete-information games. In
contrast, we focus on Bayes-Nash equilibria in auction games with continuous action space
and continuous prior value distributions. The literature on equilibrium computation for these
games is in its infancy and largely relies on best-response computations. In this paper, we
propose Neural Pseudogradient Ascent (NPGA) as an equilibrium learning method that uses
gradient dynamics. While learning based on gradient dynamics has been used in complete-
information games, this is not the case for Bayesian auction games: First, the underlying
problem is equivalent to an infinite-dimensional variational inequality, for which we do not
know an exact solution method. Second, the (ex-post) payoff function of auction games is
non-differentiable. Finally, gradient dynamics have been known to converge to Nash equilibria
only in restricted games, even under complete information.

NPGA relies on self-play with neural networks, uses evolutionary strategies to compute
gradients, and can exploit GPU hardware acceleration to massively parallelize the compu-
tations. In contrast to some previous work on numerical BNE computation, NPGA does
not require any setting-specific subprocedures or information beyond evaluating auction
outcomes themselves, and it can thus be applied to arbitrary Bayesian games. We discuss
a sufficient condition for convergence of NPGA to a Bayes-Nash equilibrium and provide
extensive experimental results on combinatorial auctions, which pose a benchmark problem
in algorithmic game theory. Interestingly, we observe convergence of NPGA to approximate
BNE in a wide range of small- and medium-sized combinatorial auction environments and
recover the analytical Bayes-Nash equilibrium where it is known.

The development of NPGA as a numerical tool based on machine learning, leveraging
GPU hardware, and the application to a highly relevant economical problem that can lead
to significant increase in social welfare, contributes to the overall theme of the workshop:
Multi-method Design of Intelligent Systems for Social Good.

The remainder of this paper is structured as follows: In Section 2, we formally introduce
the model and the problem. Section 3 examines related work, both in the problem domain
of combinatorial auctions and related to our methodology. Next, we introduce and discuss
NPGA in Section 4, before applying it to a suite of previously studied combinatorial auctions
in Section 5. Finally, we summarize our findings and outline future research directions.
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2 Problem statement
Bayesian games and combinatorial auctions. A Bayesian game or incomplete infor-

mation game is described by a quintuple G = (I,A,V , F, u). Here I = {1, . . . , n} describes
the set of agents participating in the game. Throughout this paper, we denote by the index
−i a profile of types, actions or strategies for all agents but agent i. A = A1 × · · · × An is
the set of possible action profiles, with Ai being the set of actions available to agent i ∈ I.
V = V1× · · ·×Vn is the set of type profiles. F : V → [0, 1] defines a common prior probability
distribution over type profiles that is assumed to be common knowledge among all agents
in the game. For any dependent random variable X, we denote its cumulative distribution
function by FX and its probability density function by fX . For example, Fvi denotes the
marginal distribution of agent i’s type. At the beginning of the game, nature draws a type
profile v ∼ F and each agent i is informed of their own type vi ∈ Vi only, thus the type
constitutes private information based on which each agent chooses their action bi ∈ Ai. Each
agent’s ex-post utility function is then determined by ui : A× Vi → R, i.e. the agent’s utility
depends on all agents’ actions but only on their own type. Agents aim to maximize their
individual utility or payoff ui.

In this paper, we consider sealed-bid combinatorial auctions (CA) onM = {1, . . . ,m}
items. In such an auction, each agent, or bidder in this context, is allocated a bundle
ki ∈ K = 2M of items. Each agent’s types vi ∈ Vi are given by a vector of private valuations
over bundles, i.e. vi = (vi(k))k∈K. Bidders then submit actions, called bids bi, according to
some bid-language: In the general case, where bidders might be interested in any combination
of items, bids are in Ai ⊆ R|K|+ , i.e. each player must submit 2m bids. In practice this is
prohibitive, and one commonly studies settings where valuations exhibit some structure that
allows reducing the dimensionality of the type space as well as the bid language. The settings
we study in Section 5 have type and action spaces R+ or R2

+.
CAs are modeled as Bayesian games: First, nature draws a valuation profile v ∈ V and

each bidder i observes their own type vi. Then, bidders submit bids bi = βi(vi) chosen
according to some strategy or bid function βi : Vi → Ai that maps individual valuations
to a probability distribution over possible actions.1 We denote by Σi ⊆ AVii the resulting
strategy space of bidder i and by Σ ≡ ∏i Σi the space of possible joint strategies. Note that
even for deterministic strategies, the spaces Σi are infinite-dimensional unless Vi are finite.
The auctioneer collects these bids, applies some auction mechanism that determines (a) an
allocation x ∈ Kn; each bidder i receives a (possibly empty) bundle xi ∈ K, s.t. the union of
these bundles is disjoint, ⋃̇ixi ⊆ K, i.e. each item m ∈M is allocated to at most one bidder,
and (b) payments p ∈ Rn that the agents have to pay to the auctioneer. For brevity, we will
restrict ourselves to bidders with quasi-linear utility functions2 given by ui : Vi ×A → R,

ui(vi, bi, b−i) = vi(xi)− pi. (1)
Throughout this paper, we will differentiate between the ex-ante state of the game, where
players know only the priors F , the ex-interim state, where players additionally know their

1Mixed strategies that randomize over actions would also be possible, but we restrict ourselves to pure or
deterministic strategies that choose a specific action with certainty, as most work in auction theory focuses
on pure-strategy Bayesian Nash equilibria.

2This corresponds to risk-neutral bidders, but our method is applicable to arbitrary risk-profiles.
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own valuation vi ∼ Fi, and the ex-post state, where all actions have been played and ui(v, b)
can be observed.

Equilibria in Bayesian games. In non-cooperative game theory, Nash equilibria (NE)
are the central equilibrium solution concept. A set of bids b∗ is a pure-strategy NE of the
complete-information game G = (I,A, u) if ui(b∗i , b∗−i) ≥ ui(bi, b∗−i) for all bi ∈ Ai and all
i ∈ I. In a NE no agent has an incentive to deviate unilaterally, given the equilibrium
strategy of all other agents. Bayesian-Nash equilibria extend the standard notion of NE
to incomplete-information games, calculating the expected utility u over the conditional
distribution of opponent valuations v−i. For a valuation vi ∈ Vi, action bi ∈ Ai and fixed
opponent strategies β−i ∈ Σ−i, we denote the ex-interim utility of bidder i by

ui(vi, bi, β−i) ≡ Ev−i|vi [ui (vi, bi, β−i(v−i))] . (2)
We also denote the ex-interim utility loss of action bi incurred by not playing the best response
action, given vi and β−i, by

`i(bi; vi, β−i) = sup
b′i∈Ai

ui(vi, b′i, β−i)− ui(vi, bi, β−i). (3)

Note that `i can generally not be observed in online-settings because it requires knowledge of
a best-response.

An ε-Bayes-Nash Equilibrium (ε-BNE) is a strategy profile β∗ ∈ Σ such that no agent
can improve her own ex-interim expected utility by more than ε ≥ 0 by deviating from the
common strategy profile. Thus, in an ε-BNE, we have:

`i
(
bi; vi, β∗−i

)
≤ ε for all i ∈ I, vi ∈ Vi and bi ∈ Ai. (4)

A 0-BNE is simply called BNE. Thus, in a BNE, every bidder’s strategy maximizes her
expected ex-interim utility given opponent strategies for every possible type v ∈ V. While
BNE are commonly defined at the ex-interim stage of the game, we also consider ex-ante
Bayesian equilibria as strategy profiles that concurrently maximize each player’s ex-ante
expected utility ũ. We define ũ and the ex-ante utility losses ˜̀ of a strategy profile β ∈ Σ by

ũi(βi, β−i) ≡ Ev [ui(vi, βi(vi), β−i(v−i))]
eq. 2= Evi∼Fvi [ui(vi, bi, β−i)] , (5)

˜̀
i(βi, β−i) ≡ sup

β′i∈Σi
ũi(β′i, β−i)− ũi(βi, β−i). (6)

Then an ex-ante BNE β∗ can be characterized by the equations ˜̀
i(β∗i , β∗−i) = 0 for all i ∈ I.

Clearly, every ex-interim BNE also constitutes an ex-ante equilibrium. The reverse holds
only almost surely.

3 Related work
Gradient dynamics in games have been studied in evolutionary game theory and

multiagent learning. While earlier work considered mixed strategies over normal-form games
[33, 12, 11, 13], more recently, motivated by the emergence of Generative Adversarial Networks,
there has been a focus on (complete-information) games with continuous action spaces and
smooth utility functions [23, 22, 6, 28]. A result found for many of the studied settings and
algorithms is that gradient-based learning rules do not necessarily converge to Nash equilibria
and may exhibit cycling behavior, but often achieve no-regret properties and thus converge
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to Coarse Correlated equilibria (CCE), a solution concept weaker than Nash equilibria. An
analogous result exists for finite-type Bayesian games, where no-regret learners are guaranteed
to converge to a Bayesian CCE [19]. In the present paper, we study equilibrium learning via
gradient dynamics in continuous-type Bayesian games, specifically auctions, where they have
not been investigated previously to our knowledge.

Equilibrium computation in auctions. Earlier approaches to find equilibria in auctions
were usually setting specific and relied on reformulating Equation 4 as a differential equation
(where possible), then solving this equation analytically or numerically [31, 21, 4]. Armantier
et al. [2] introduced a BNE-computation method that is based on expressing the Bayesian
game as the limit of a sequence complete-information games. They show that the sequence of
Nash equilibria in the restricted games converges to a BNE of the original game. While this
result holds for any Bayesian game, setting-specific information is required to generate and
solve the restricted games. Rabinovich et al. [26] study best-response dynamics on mixed
strategies in auctions with finite action spaces. Most recently, Bosshard et al. [9, 10] proposed
a method to find BNE in combinatorial auctions that relies on smoothed best-response
dynamics and is applicable to any Bayesian game. The method explicitly computes point-wise
best-responses in a fine-grained linearization of the strategy space via sophisticated Monte-
Carlo integration. With NPGA, we introduce a method that does not require setting-specific
information while avoiding explicit best-response computations to remain scalable.

4 Pseudogradient dynamics in auction games
Next, we present our method for equilibrium computation in auctions. On a high level, we
propose following the gradient dynamics of the game via simultaneous gradient ascent of all
bidders. As we will see, however, computing the gradients themselves is not straightforward
in the auction setting and we will need some modifications to established gradient dynamics
methods such as [33, 29]. For now, assume that players observe a gradient-oracle∇βiũi(βi, β−i)
with respect to the current strategy profile βt in each iteration. Then the learning rule proposes
that players perform a projected gradient update:

βti ≡ PΣi

(
βt−1
i + ∆t

i

)
with ∆t

i ∝ ∇βiũi(βi, β−i), (7)
where PΣi( · ) is the projection onto the set of feasible strategies for agent i. Several things
should be noted about Equation 7: First, we consider the gradient dynamics of the ex-ante
utility ũ, rather than ex-interim or ex-post utilities. The goal of an individual update step is
thus to marginally improve the expected utility of player i across all possible joint valuations
v ∼ F . This perspective ultimately considers low-probability events less important than
high-probability events, which is in contrast to some other methods, which explicitly aim to
optimize all ex-interim states [10]. Second, to compute the gradient oracle ∇βũ in self-play,
we rely on access to other players strategies, but evaluating each player’s policy relies only
on their own valuation. We thus follow the centralized-training, decentralized-execution
framework common in multi-agent learning. Third, βi ∈ Σi are functions in an infinite-
dimensional function space, so the gradient ∇βiũi is itself a functional derivative. In our
ex-ante perspective, we thus consider this to be the Gateaux derivative over the Hilbert space
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Σi, equipped with the inner product 〈ψ, βi〉 = Ev∼F
[
ψ(v)Tβi(v)

]
(which, in turn, defines the

projection in Equation 7 as PΣi(β) ≡ arg minσ∈Σi〈σ − β, σ − β〉).

Policy networks. To implement this derivative in practice, we represent each bidder’s
strategy by a policy network βi(vi) ≡ πi(vi; θi) specified by a neural network architecture
and a corresponding parameter vector θi ∈ Rdi . Importantly, given a suitable network
architecture, one can ensure that all θi correspond to feasible βi, thus making the projection
in the update step obsolete. In the empirical part of this study, we restrict ourselves to
fully-connected feed-forward neural networks with ReLU activations in the output layer,
which ensure nonnegative bids—the only feasibility constraint in the auctions we study. In any
case, di ∈ N is finite and we thus transform the problem of choosing an infinite-dimensional
strategy into choosing a finite-dimensional parameter vector θi.

Policy pseudogradients. The deterministic policy gradient theorem [29] gives an estab-
lished way to compute the payoff gradient with respect to the parameters θ:

∇θiũi(πi( · ; θi), β−i) = Ev∼F
[
∇θiπ(vi; θi)∇biui(vi; bi, β−i(v−i))|bi=πi(vi;θi)

]
. (8)

0 b (1)
−i

vi
bid of player i

0

vi

ut
ili
ty
 o
f p

lay
er
 i

Figure 1: Utility function ui(bi) in single-item
First-Price Sealed-Bid auction for fixed oppo-
nent bids b−i with highest opponent bid b(1)

−i .

However, the regularity conditions re-
quired by the theorem are commonly vio-
lated in combinatorial auctions. In particu-
lar, due to the discrete nature of the alloca-
tions x, the ex-post utilities ui(vi, bi, b−i) are
usually discontinuous—and thus neither dif-
ferentiable nor subdifferentiable in bi. While
this nondifferentiability does not extend to ũ,
it nevertheless renders the policy gradient for-
mula in Equation 8 inapplicable. Although
the set of discontinuities is a v-nullset in
practice, one can show that even on the dif-
ferentiable intervals of ui(vi, · , b−i), its true
gradient provides systematically misleading
signals:

Consider a first-price sealed-bid auction
in which winning bidders pay their bid
amount bi. The utility graph is separated
into two sections (see Figure 1): (a) Bidding
lower than the highest opposing bid leads
to a zero payoff and thus no learning feed-
back, ∇biui = 0, and (b) winning with a high
enough bid leads to a learning feedback to decrease the bid, ∇biui = −1. In short, back-
propagation will thus lead to a steady decrease of bids in every iteration, until all players bid
constant zero for any valuation.

To alleviate this, we follow the approach of [27] and estimate the policy gradient using a
finite difference approach based on evolutionary strategies. To calculate ∇θũ, we perturb the
parameter vector P times, θi;p ≡ θi+εp, using zero-mean Gaussian noise εp ∼ N (0, σ2), where
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σ is a hyperparameter. We then calculate each perturbation’s fitness, ϕp ≡ ũi(πi(vi; θi;p), β−i),
via Monte-Carlo integration, and estimate the gradients as the fitness-weighted perturbation
noise ∇ES

θ ≡ 1
σ2P

∑
p ϕpεp. Salimans et al. [27] motivated the approach for its parallelization

potential, but here we exploit its property that it gives an unbiased estimator of ∇θũ even
when ∇bu is not well-defined.

The complete pseudocode of NPGA, is described in Algorithm 1. To summarize, NPGA
“implements” Equation (7) via ES-pseudogradients and a neural network parametrization of
strategy functions which renders the projection step unnecessary:

βti ≡ πi( · ; θti) with θti ≡ θt−1
i + ∆t

i where ∆t
i ∝ ∇ES

θti
. (9)

Algorithm 1: Neural Pseudogradient Ascent using Evolutionary Strategy gradients
Input: players i ∈ I; ex-post utility functions ui, initial policy networks

β0
i ≡ πi( · , θ0

i ), with initial parameters θ0
i ∈ Rdi ; ES population size P ; ES

noise standard deviation σ; batch size K
for t := 1, 2, . . . do

Sample a batch (vk)k=1..K of valuation profiles, with vk ∼ F
Calculate joint ex-ante utility in current strategy profile:

ũt−1 := 1
K

∑

k

u
(
βt−1(vk)

)

for each player i ∈ I do
Sample P perturbations of player i’s current policy parameters:

θi;p := θt−1
i + εp with εp ∼ N (0, σ2I) i.i.d. for p ∈ {1, . . . , P}

For each p, evaluate the fitness of the perturbation by playing against current
opponents:

ϕp := 1
K

∑

k

ui
(
πi(vk,i, θi;p), βt−1

−i (vk,−i)
)
− ũt−1

i

Calculate ES pseudogradient as fitness-weighted perturbation noise:

∇ESũt−1
i := 1

σ2P

∑

p

ϕpεp

Perform a (generalized) gradient update step on the current policy:
∆θti ∝ ∇ESũt−1

i , θti := θt−1
i + ∆θti , βti := πi( · , θti)

end
end

Vectorizing auction evaluations. Remarkably, the only information about the game
G needed in the computation of this learning rule is the evaluation of ũ = Ev∼F [u] for a
given strategy profile. Given a vectorized implementation of the joint ex-post utility function
u, estimating ũ via Monte-Carlo integration over V is suitable to parallel execution on
hardware accelerators such as GPUs or TPUs. To this end, we built custom vectorized
implementations of many common auction mechanisms using the PyTorch framework [25],
allowing us to perform this Monte-Carlo estimation multiple orders of magnitude faster
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compared to previous numerical work on auctions. For moderately sized auction games, like
those commonly studied in the literature, allocations x can be computed in a vectorized fashion
via full enumeration of feasible allocations.3 Common payment rules either have inherently
vectorizable closed-form formulation (e.g. first-price auctions) or can be reformulated as
the solution of a constrained linear or quadratic program (e.g. the Vickrey-Clarke-Groves
(VCG) mechanism or core-selecting pricing rules [17]). To solve a large batch of the latter
in parallel, we leverage a custom vectorized implementation of interior-point methods. (A
similar approach has previously been used by [1].)

A convergence criterion. As discussed in Section 3, gradient dynamics do not converge
to Nash equilibria in general. For differentiable, finite-dimensional, complete-information
games, Mertikopoulos and Zhou [23] show that monotonicity of the payoff gradient is a
sufficient condition for convergence of gradient dynamics to a unique Nash equilibrium
as it leads to strict concavity of the game. Ui [30] shows an analogous result for ex-post
differentiable Bayesian games, in which payoff-monotonicity guarantees the existence of a
unique BNE. However, the result does not directly apply to auctions due to their ex-post
nondifferentiability. Instead, we give a slightly less restrictive criterion based on ex-interim
payoff monotonicity that ensures convergence of gradient dynamics and whose formulation is
compatible with auction games.

Definition 1 (Ex-interim payoff monotonicity). Let G = (I,A,V , F, u) be a Bayesian game,
such that the individual ex-interim utilities are continuously differentiable in bi and the
gradients are bounded by ‖∇ui(vi, bi, β−i)‖ ≤ Z. G is called strictly (ex-interim) payoff-
monotone, if for all i ∈ I, β−i ∈ Σ−i, ai, bi ∈ Ai and almost everywhere vi ∈ Vi the following
holds:

〈∇aiui(vi, ai, β−i)−∇biui(vi, bi, β−i), ai − bi〉 < 0. (10)

While analytical verification of this criterion is elusive, except in special settings, it can
(approximately) be checked numerically. We observe it in all settings studied below.

Here, we give a convergence result under ex-interim monotonicity. For convergence
analysis, we will also rely on certain properties of “appropriate” neural network architectures,
most importantly preservation of concavity.

Definition 2 (NPGA Policy Network). An NPGA Policy Network is a neural network
πi : Vi ×Θi → Ai with dim Θi = di and the following properties:

1. πi is a convex neural network in its parameters: For any convex objective function
g : Σi → R, the map θi 7→ g(πi( · , θi)) is convex.

2. πi universally approximates Σi: There exists a δ > 0, s.t. for all βi ∈ Σi there is a
parameter vector θi ∈ Θi with Evi [‖βi(vi)− πi(vi, θi)‖] ≤ δ.

3. πi is Lipschitz-continuous in its parameters in the sense that there’s some L > 0 such
that for all θi, θ′i ∈ Θi: Evi [‖πi(vi, θi)− πi(vi, θ′i)‖] ≤ L‖θi − θ′i‖.

3We note that, with current hardware, this approach remains intractable for some larger auctions that are
applied in the real world.
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Neural networks that are employed in practice (and our empirical analysis) generally do
not comply with Definition 2, but such networks have been shown to exist. For example
Bach [5] studies wide single-hidden layer networks with ReLU activations, in which only the
output-layer weights are being trained.

Proposition 1. (simplified) Let G = (I,A,V , F, u) be a Bayesian game such that the ex-
interim payoff-gradients exist and fulfill strict ex-interim payoff monotonicity. Then, with an
NN architecture as in Definition 2 and appropriate update step sizes, NPGA converges to an
ex-ante ε-BNE of G.

While existence and uniqueness of BNE are generally unknown, Proposition 1 guarantees
efficient computability in a wide range of settings, some of which we explore in the next
section. Nonetheless, it is important to note that there may be auction settings where
payoff-monotonicity does not hold.

An abridged proof of Proposition 1 is given in Appendix A. Due to space constraints, we
omit some of the more technical derivations from the proof and focus on the instructive parts
of the argument.

5 Results
We evaluate NPGA on a benchmark problem in algorithmic game theory: local-global
auctions. Global bidders’ priors allow them to draw higher valuations, so local bidders need
to coordinate to outbid the global bidder. We consider bidders with independent and with
correlated, uniform priors Fvi = U(0, vi) with vl = 1, vg = 2 for local (l) and global (g) bidders.
The standard LLG setting (Section 5.1) has been widely studied [4, 18] for theoretical insight.
The larger LLLLGG setting (Section 5.2) was proposed by [10]. To our knowledge, it is the
most complex environment in which BNE have been computed. We analyze NPGA in six
settings where an analytical BNE is known and three settings where it is not.

We use common hyperparameters across all settings: Fully connected neural networks
with two hidden layers and SeLU activations [20] in the hidden layers, P = 64, Adam
optimizer steps with a learning rate of 0.001, and other hyperparameters as suggested in
the respective original paper. To avoid degenerate initializations of θ (e.g. where one or
more bidders bid constant zero), we perform supervised pre-training to the truthful strategy
βi(vi) = vi. All experiments were performed on a single Nvidia GeForce 2080Ti and batch
sizes in Monte-Carlo sampling were chosen to maximize GPU-RAM utilization: A learning
batch size of K = 218; An evaluation batch size (for `∗, ||β − β∗||) of H = 222; A secondary
evaluation batch size H = 212 and grid size W = 210 (for ˆ̀, ε̂).

Each experiment is repeated ten times over 5,000 iterations each. Only the parameters
for LLLLGG with nearest-vcg differ due to its complexity, i.e. nearest-vcg requires solving
a linear- and a subsequent quadratic optimization problem for each individual auction [17].
Because NPGA solves many thousand auctions at once, we implemented a solver that allows
to solve batches of quadratic optimization problems on the GPU. Nonetheless, we had to
adjust the parameters to: P = 32; K = 214; H = 27 and W = 28; Experiments are repeated
two times with 1,000 iterations each.
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Table 1: Results of NPGA in the LLG auctions with independent and correlated valuations.
1Estimating the utility loss with correlated priors is not straightforward at all but will be
part of future research and is not needed here since `∗ is known.

priors payments bidder `∗ ‖β − β∗‖ ˆ̀ ε̂
conv.
iters

sec per
iter

in
de

pe
nd

en
t

nearest-vcg locals 0.0001 0.0050 0.0002 0.0009 320 0.84global 0.0000 0.0269 0.0000 0.0001

nearest-bid locals -0.0002 0.0073 0.0003 0.0013 540 0.79global 0.0000 0.0424 0.0000 0.0001

nearest-zero locals -0.0001 0.0078 0.0002 0.0019 630 0.79global 0.0000 0.0088 0.0000 0.0001

FPSB locals – – 0.0009 0.0031 1,140 0.65global – – 0.0016 0.0064

co
rr
el
at
ed

nearest-vcg locals -0.0001 0.0042 1– – 0.80global 0.0000 0.0305 – –

nearest-bid locals 0.0003 0.0064 – – 0.83global 0.0000 0.0498 – –

nearest-zero locals 0.0001 0.0059 – – 0.81global 0.0000 0.0072 – –

5.1 The LLG setting
The LLG setting includes two local bidders and one global bidder that bid on m = 2 items.
Local bidders i = 1, 2 are each interested in the bundle {i}, while the global bidder wants the
package {1, 2} of both items. Each bidder submits a bid bi ∈ R+ for their respective bundle.
The setting has been extensively studied in the context of different core-selecting pricing
rules as they are used in spectrum auctions [17, 18]. Closed-form solutions of the unique,
symmetric BNE under three such rules are known in the LLG setting for independent and
correlated priors: the nearest-VCG rule, the nearest-zero (or proxy) rule, and the nearest-bid
rule. The interested reader is referred to [4] for details. For all three core payment rules, it
has been shown that the global bidder is bidding truthfully in the BNE. The local bidders’
BNE strategies differ in each payment rule. We evaluate NPGA on the three core payment
rules with independent and correlated priors as well as the first-price payment rule with
independent priors, for which no exact BNE is known.

Result 1. NPGA converges to the BNE in all six settings with a known BNE after only a
few hundred iterations. The benefit of deviating from the learned strategy in the first-price
auction is minuscule.

Figure 2 depicts the strategy learned by NPGA after 5,000 iterations in comparison to
the analytical BNE strategy for the nearest-zero payment rule, and shows an almost perfect
fit. Numerical results for all rules are presented in Table 1. For the six settings with known
analytical equilibrium strategies, we measure each player’s utility loss `∗i that results from
unilaterally deviating from the BNE strategy profile β∗ by playing the learned strategy βi
instead: `∗ ≡ ˜̀

i(βi, β∗−i) (compare Equation 6.) Because of the close to perfect fit, the losses
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Figure 2: Learned strategies in LLG with
nearest-zero core payment rule. The solid
lines indicate the BNE strategies, the dots
indicate the NPGA bids.
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Figure 3: Ex-ante utility ũ and estimated
loss ˆ̀ of in NPGA self-play in the LLLLGG
first-price auction. Shaded area and line
show min, max, mean over 10 repetitions.

in all core payment rules are minimal, sometimes even negative. This is due to sampling
noise. We also confirm the close to perfect fit by measuring the L2-distance in strategy-space
between the functions βi and β∗i . Here, we still observe a small deviation.

For the first price payment rule, no BNE strategy profile is known. Therefore, we estimate
the potential gains of deviating from the current strategy profile ˆ̀

i ≈ ˜̀
i(βi; β−i) as well as an

estimator ε̂ to the “true” epsilon of β (such that β forms an ex-interim ε-BNE).
For the calculation of the estimators ˆ̀ and ε̂ we additionally introduce a grid of actions

covering the action spaces Ai, and consisting of W equidistant points per player. Using
this grid, and a given valuation vi and bid bi, we then estimate the ex-interim utility loss
`(vi, bi, β−i) of bi at vi via

λ̂i(vi; bi, β) ≡ 1
H

max
w

∑

h

u (vi; bw, β−i(vh,−i))− u (vi; bi, β−i(vh,−i)) . (11)

Note that the batch H only runs across opponent valuations v−i. To evaluate λ̂i at a single
vi, we thus need (W + 1) ·H auction evaluations. We then evaluate

1. the worst-case ex-interim loss: ε̂ = maxh λ̂i(vh,i; βi(vh,i), β−i),

2. the ex-ante loss: ˆ̀= 1
H

∑
h λ̂i(vh,i; βi(vh,i), β−i).

Estimations of λ̂ can be shared for both computations, nevertheless we needO(nWH2) auction
evaluations to calculate these metrics (in contrast, NPGA requires O(nPK) evaluations, with
K < H, P � W ). This is prohibitive with large H, thus we use W = 210, H = 212 for the
experiments and calculate ˆ̀ and ε̂ once every 100 iterations of Algorithm 1.

Both, ˆ̀ and ε̂ are small, considering the average utility of the global bidder is 0.426 and
the average utility of each of the local bidders is 0.149 in the first-price auction. Note that
estimating ˆ̀ and ε̂ is computationally expensive, and is not needed to run NPGA itself. In
practice, these may be used as a stopping criterion to measure convergence, which we likewise
report in Table 1: Once the maximum difference of the last three consecutive measurements
of ˆ̀ decreases below 0.0001, we conclude that NPGA has converged. The average total
computation time for all 5,000 iterations is less than 70 minutes in any LLG setting. Learning
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Table 2: Results of NPGA after 5,000 (1,000) iterations in the LLLLGG first-price (nearest-
vcg) auction. Results are averages over ten (two) repetitions and the standard deviation
displayed in brackets. 1Only the weaker 0.0005 criterion is met. 2Converging criterion was
met in only one of the two runs.

payments bidder ˆ̀ ε̂
conv.
(iters)

sec per
iter

first-price locals 0.0015 (0.0003) 0.0109 (0.0025) 7001 0.97
(0.005)globals 0.0010 (0.0002) 0.0077 (0.0016)

nearest-vcg locals 0.0013 (0.0003) 0.0052 (0.0012) 6001,2 275.22
(0.670)globals 0.0011 (0.0006) 0.0098 (0.0059)

the core payment rules with independent priors converges in less than 1,140 iterations.4

5.2 The LLLLGG setting
In the LLLLGG setting, four local and two global bidders compete for six items, where each
bidder is interested in two (partly overlapping) bundles (containing 2 (local) or 4 (global)
items each), with actions being represented as Ai = R2

+. For this environment, no analytical
BNE are known (except for the trivial VCG pricing rule, where bidding truthfully constitutes
a BNE). We apply NPGA to LLLLGG with a first-price and with a nearest-vcg rule.

Result 2. In the LLLLGG first-price and nearest-vcg auction, NPGA learns strategy profiles
with an estimated ex-ante utility loss ˆ̀< 0.002 for both local and global bidders and both
payment rules. Bidders achieve stable average utilities of 0.238 in first-price and 0.181 in
nearest-vcg for each global and of 0.18, respectively 0.201, for each local bidder.

As shown in Figure 3, applying NPGA, the bidders’ utility as well as the estimated ex-ante
utility losses converge fast, the latter reaching the weaker 0.0005 stopping criteria after only
700 iterations. The estimated ex-ante utility loss for both payment rules is ˆ̀< 0.002 after
the complete 5,000 (1,000 in nearest-vcg) iterations, resulting in an estimated ex-ante utility
loss of below 1% considering the bidders’ average utilities.

6 Conclusion and future work
In this paper, we focus on equilibrium learning in Bayesian games. Gradient dynamics have
been used with some success in a restricted set of complete-information games. This approach
is challenging in Bayesian auction games for several reasons: these games are not differentiable,
and the continuous type- and action spaces lead to challenging infinite-dimensional variational
inequalities that need to be solved. We propose Neural Pseudogradient Ascent as a numerical
method to compute Bayesian Nash equilibria. NPGA uses evolutionary strategies to compute

4The computation of estimated utility loss is not straightforward considering correlated priors since the
sampling of each bidder’s valuations depend on each other. Therefore, we did not compute the estimated
utility loss for this setting and cannot report on the convergence criterion being met. However, the more
relevant utility loss (playing against BNE) is so low that we assume convergence.
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ex-ante gradients of a game that is not (sub)differentiable ex-post. In experiments, we focus
on combinatorial auctions, which in general are highly relevant in practice, among others
for the allocation of social goods. NPGA converges to an approximate BNE for central
benchmark problems in this field. In summary, the method can provide an effective numerical
tool to compute approximate BNE not only for combinatorial auctions but also for other
types of Bayesian games and can help finding higher social welfare solutions in auctions.
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A Proof of Proposition 1
Proof (abridged). First, existence of the ex-interim gradients (required by ex-interim payoff mono-
tonicity) implies that the ex-ante utilities ũi(βi, β−i) = Evi [ui(vi, β(vi), β−i]) are Gâteaux-differentiable
in the Hilbert spaces Σi with Gâteaux-gradients ∇βi ũi[β](vi) = ∇biui(vi, bi, β−i)|bi=βi(vi). (Follows
from 2.54, 2.55, 17.10 of [7] and direct calculations.) With ex-interim payoff-monotonicity, we then
have

〈∇βi ũi[βi, β−i]−∇αi ũi[αi, β−i], βi − αi〉Σi
= Evi

[
〈∇biui(vi, bi, β−i)−∇aiui(vi, ai, β−i), bi − ai〉 |bi=βi(vi),ai=αi(vi)

] eq.10
< Evi [0] = 0.

(12)

I.e. the ex-ante gradients are strictly monotone operators on Σi. It follows that ũi are strictly
concave in βi [see e.g. 7, Thm 17.10].

With a convex neural network as in Definition 2, the functions ŭi(θi) ≡ ũi(πi( · , θi), β−i) are then
also strictly concave in θi for any opponent strategies β−i. We can then construct a finite-dimensional
Parameter Game, in which all players approximate their strategies using policy networks and only
choose their neural net parameters as actions: Ğ ≡ (I,Θ, ŭ). As this game is finite-dimensional and
concave, Mertikopoulos and Zhou [23] establish that (1) it has a unique Nash equilibrium θ̆ and (2)
the dual averaging algorithm converges almost surely to θ̆ given an unbiased and finite-variance
oracle of the gradients ∇θi ŭi(θi; θ−i). We will first argue that θ̆ induces an approximate BNE in the
original Bayesian Game G before showing that Algorithm 1 implements dual averaging in Ğ with
noisy feedback, thus finding a good approximation of θ̆. Let θ̆ thus be the Nash equilibrium of Ğ.
Then for any player i, θ̆i is a best response (BR) to θ̆−i and πi( · , θ̆i) is an ex-ante BR to π−i( · , θ̆−i)
on the Bayesian Game with restricted strategy space of functions expressible by the neural network
architecture. As we assumed universal approximation properties of πi, however, any BR β∗i in the
unrestricted game G must be close in function space to πi( · , θ̆i), and the ex-ante utility loss incurred
by not playing β∗i instead of πi( · ; θ̆i) is bounded: In fact, with the Lipschitz-regularity conditions
on the ex-interim gradients (Definition 1) and universal approximability of π (Definition 2), one can
show the following for arbitrary θ−i: (We omit the details.) If θ̆∗ ∈ Θi and β∗i ∈ Σi are BRs to θ−i
in Ğ and G, respectively, then

˜̀
i(θ̆∗; θ−i) = ũi(β∗i , θ−i)− ũi(θ̆∗i , θ−i) ≤ Zδ (13)

where ũ(θi, θ−i) ≡ ũi(πi( · ; θi), π−i( · , θ−i)). In the NE, all θ̆i are BRs, so we have ˜̀(θ̆) ≤ Zδ.
Finally, we show that NPGA finds a good approximation of θ̆. As noted in , we choose the

NN architecture in such a way that Θ becomes unconstrained, i.e. any parameter θi ∈ Rdi is
feasible, where di is the dimension of the network for player i. On the unconstrained action set Θ,
however, dual averaging is equivalent to Online Gradient Ascent on ŭ. As deliberated above, NPGA
implements Online Gradient Descent on ũ using the gradient oracle ∇ESθ .

To use the convergence result of Mertikopoulos and Zhou [23] of NPGA to θ̆, it would remain
to show that the Neural Pseudogradients ∇ES ũ are finite-variance and unbiased estimators of
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the true gradients ∇θŭ. This is unfortunately violated for strictly positive ES-noise variance
σ2 as used by NPGA (but asymptotically true for σ → 0). However, for σ > 0 we can set
ŭσi ≡ Eε∼N (0,σ2I) [ŭi(θi + ε, θ−i)] and introduce yet another finite-dimensional game Ğσ = (I,Θ, ŭσ).
Now, one can show (We again omit the details.) that (1) Ğσ is, again, concave, that (2) the ES-
gradients are finite-variance and unbiased estimators of ŭσ, and (3) that the loss of any parameter
choice θi in Ğ is bounded by that in Ğσ via

˘̀
i(θi, θ−i) ≤ ˘̀σ

i (θi, θ−i) + 2ZL
√
diσ. (14)

Due to (1), Ğσ again admits a unique NE θ∗ (Theorem 2.2 of [23]), and with (2) and Definition 1
NPGA converges to θ∗ almost surely for appropriate step sizes (Corollary 4.8 of [23]).

To summarize, we showed that NPGA finds a parameter profile θ∗ that forms a NE of Ğσ and
which retains an-ex ante loss in G of

˜̀
i(θ∗) = ũi(β∗i , θ∗−i)−ũi(θ̆∗i , θ∗−i) + ũi(θ̆∗i , θ∗−i)︸ ︷︷ ︸

= 0

−ũi(θ∗)

= ˜̀
i(θ̆∗i ; θ∗−i) + ˘̀

i(θ∗)
(13),(14)
≤ Zδ + 2ZL

√
diσ + ˘̀σ

i (θ∗)︸ ︷︷ ︸
loss in Ğσ = 0

.
(15)

Thus, setting ε ≡ Z(2L
√
dσ + δ) where d ≡ maxi di, NPGA converges almost surely to an ex-ante

ε-BNE of G.
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7 Discussion and Contribution

Research on auctions is manifold, addressing the topic from different angles. Some
research focuses on the bidders’ perspective and the problem of optimal bidding, e.g.
in sequential (online ad) auctions (Zhang et al., 2014, 2015; Zhang and Wang, 2015;
Perlich et al., 2012; Sutterer et al., 2019). In some combinatorial or sequential auction
settings this can be formulated as a Knapsack problem (Berg et al., 2010; Chakrabarty
et al., 2008). A strong game theoretical solution concept to solve Bayesian games such
as auctions are Bayes-Nash equilibria (BNE). However, finding BNE is difficult, in fact
at least PPAD-complete (Daskalakis et al., 2009), and little research has focused on
computing BNE in auctions thus far. Only recently, the computation of (approximate)
BNE in auctions has received increased attention by the research community (Bosshard
et al., 2017, 2020; Heidekrüger et al., 2019, 2020b,a).

Other research focuses on the preceding design of auctions and its properties from a
mechanism design perspective. The goal is to design a mechanism that implies properties
such as efficiency, incentive compatibility, etc. to incentivise bidders to behave in a
certain way. Typically this research focuses on multi-item and combinatorial auction
settings, e.g. spectrum sales (Ausubel et al., 2006; Bichler and Goeree, 2017), fishery
(Bichler et al., 2019), and renewable energy (Bichler et al., 2020; del Río, 2017).

The contribution of this thesis is threefold. Adding to the literature of bidding strategies,
we first evaluate truthful bidding in display ad auctions (Sutterer et al., 2019), and
second, we develop an algorithm for the computation of BNE in auctions (Heidekrüger
et al., 2019, 2020b,a). Thirdly, adding to the literature of auction design, we develop an
efficient alternative auction design for renewable energy sources (Bichler et al., 2020).
Finally, we discuss how our research integrates into the existing literature and emphasize
our contribution.
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7.1 Truthful Bidding in Display Ad Auctions

With the rise of electronic markets an increasing number of auctions are conducted
online. Many of them are performed in sequence, selling similar items, e.g. impressions
in online display ad auctions. Bidders participating in these auctions are often limited
by budgets or campaign targets. As a result, some of these sequential or combinatorial
auctions can be modeled as knapsack problems.

Chakrabarty et al. (2008) study online knapsack problems with very small items com-
pared to the knapsack capacity. Their algorithm starts with picking any items early on.
As the knapsack fills it becomes more selective and only selects items that have a value
higher than the competitive ratio (value/weight). In the context of online ad auctions this
could be a demand-side-platform that bids on behalf of its customers, i.e. advertisers,
and assigns the item to the advertiser who values it the most and has much budget
left.

Zhang et al. (2014) propose a non-linear function approximation to learn optimal bidding
in display ad auctions when bidders are restricted by a strict budget. In contrast to
earlier work their bidding functions propose to bid on more low valued impressions
instead of focusing on few high valued ones.

In Sutterer et al. (2019) (see Chapter 3), we study display ad auctions as a sequence of
second-price auctions and assume for bidders to be constrained by a campaign target,
i.e. a weaker notion of budgets, that models a value function with decreasing marginal
valuation for additional impressions. As a result, the bidders’ utility functions are quasi-
linear and a theoretical offline auction, based on the Vickrey-Clarke-Groves mechanism,
is incentive-compatible. The optimal offline auction serves as a benchmark for the se-
quential second-price online auction. We evaluate the effect of truthful bidding in online
display ad auctions on efficiency and bidders’ utility.

In two theoretical contributions, we show that with a typical value model for display ad
auctions the outcome of a Vickrey-Clarke-Groves auction is not guaranteed to be in the
core. We also show that the efficiency of an online display ad auction might be as low
as 50%.

Next, we perform numerical experiments to better understand the average case efficiency
and bidders’ payoff when they report truthfully. We find that the welfare achieved in the
online display ad auction with truthful bidders is very high, close to optimal, and the
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worst-case analysis is too pessimistic as an estimator for the efficiency of such auctions
in the field. Furthermore, with only a few competitors bidders are able to benefit from
moderate bid shading while they risk making a loss once the number of competitors
increases. These results provide important information for both auctioneers and bidders
in the field and contributes to the literature of bidding strategies in display ad auctions.

7.2 An Alternative Auction Design for Renewable Energy
Auctions

In the course of the turnaround in global energy policy, research on the auction design
of renewable energy sources has intensified. Many of the studies evaluate the overall
tender designs of renewable energy sources. They identify lacking grid connections,
inadequate bid bonds, low support payments, and missing penalties as the major problem
that disincentives project realization (del Río and Linares, 2014; Gallachóir et al., 2009;
McLean et al., 2007; Tiedemann et al., 2016; Wigand et al., 2016). Further, del Río
(2017); Grashof (2013); Hauser et al. (2014); Hauser and Kochems (2014) identify and
emphasize the trade-off between cost efficient support payments that meet the expansion
targets and bidder diversity.

Closest to our study is the article by Anatolitis and Welisch (2017). They develop
an agent-based simulation to compare the effects of a pay-as-bid and a uniform price
payment rule in the context of the German onshore wind auctions. They find that
prices, as well as the participation of weaker market participants, decrease each year.
On average, pay-as-bid leads to lower remuneration prices than a uniform payment rule
at the expense of the bidders’ margin and of the efficiency.

In Bichler et al. (2020) (see Chapter 4), we propose a combinatorial auction design that
allows precise steering of tendered capacities to ensure a welfare maximizing distribu-
tion (Grimm et al., 2017), while enabling project developers to explicitly communicate
synergies in the form of combinatorial bids. Moreover, it is nearly strategy-proof in the
large and eases the strategic bidding problem for bidders. As part of a counterfactual
analysis, we compare this design to three other auction designs in terms of remuneration
prices, allocation efficiency, and bidder diversity. Considering moderate synergy effects
this design hardly increases the remuneration price while significantly reducing the ne-
cessity of expensive grid expansion. The results give a clear indication of the advantages
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over existing auction designs that ignore the location of wind power plants and their
consequence on network congestion. The proposed design is not limited to the German
market only but generally applicable.

With this study, we are the first to combine findings from auction design system optimal
distribution of renewable energy sources. It contributes to the literature of combinato-
rial auction design in renewable energy sources and provides governments with a policy
relevant alternative to the currently applied auction designs that can be effectively im-
plemented.

7.3 Computing Bayes-Nash Equilibrium Strategies in Auctions

Only little research in equilibrium learning explicitly focuses on auctions. Early re-
search in equilibrium learning of complete information and discrete state and action
space (normal-form games) can be classified as best response dynamics. In Cournot
(1838) players play a pure-strategy best-response according to the opponents’ play in
the previous iteration. Later, Brown (1951) propose Fictitious Play where players play
a pure-strategy best-response according to the distribution of the opponents’ complete
past play. In its refinement, Smooth Fictitious Play, a player’s play is no longer a pure-
strategy but a probability distribution of possible actions. If the empirical frequencies
of Fictitious or Smooth Fictitious Play converge, the limit constitutes a Nash equilib-
rium.

To the best of the author’s knowledge, games of incomplete information, i.e. Bayesian
Games, with continuous state and action space and specifically one of its most prominent
applications, i.e. auctions, are not well studied thus far. Bosshard et al. (2017, 2020)
were one of the first to compute approximate BNE in more complex, namely local-global
combinatorial, auctions. Their approach computes point-wise best-responses in a fine-
grained linearization of the strategy space via sophisticated Monte-Carlo integration.
Assuming independent priors and risk-neutrality of agents, their verification method
can guarantee an upper bound on the ex-interim loss in payoff, thus provably finds an
ε-BNE.

In Heidekrüger et al. (2019) and Heidekrüger et al. (2020a) (see Chapter 5 and 6),
we develop an algorithm that we call Neural Pseudogradient Ascent (NPGA) to learn
approximate BNE. NPGA works entirely differently compared to prior best-response
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algorithms. It learns bid functions for all possible values (rather than point-wise) by
searching the parameter space of the bid function via ex ante gradient ascent. It can be
adapted to various types of Bayesian games with low re-implementation effort.

We first apply NPGA to complete information normal-form games as well as simple
first-price auctions with symmetric and asymmetric bidders (Heidekrüger et al., 2019).
We extend the experiments to Bayesian settings with risk-averse or risk-neutral bidders
and multi-unit auctions (Heidekrüger et al., 2020b). Finally, we apply NPGA to more
complex combinatorial auctions with different core payment rules and independent or
correlated priors (Heidekrüger et al., 2020a).

The results of our numerical study confirm that NPGA has the same potential as Fic-
titious and Smooth Fictitious Play to compute Nash equilibria in normal-form games.
Further, it is able to compute approximate BNE for a wide range of different auction
games with continuous type and action space. In auctions with multiple BNE it is es-
pecially difficult to decide which BNE should be played, yet in our experiment NPGA
always converged to the Pareto-dominant BNE. Leveraging GPU-hardware, it is possible
to compute thousands of auctions in one batch and to solve even difficult combinatorial
auction games on consumer hardware within hours.

The value of NPGA to the economic community can be significant. BNE are considered
very effective for predicting market participants’ actions. However, finding BNE is an
extremely difficult task, in fact at least PPAD-complete. With NPGA we provide an
algorithm that allows to efficiently learn strategies in (auction) games that often converge
to the BNE. In any case, it can provide an ε-BNE estimate. This study contributes to
the literature of computational techniques to find BNE and can help bidders find good
bidding strategies in general auction games.
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8 Conclusion

Auctions have become a prominent mechanism for the distribution of goods. The rise of
electronic markets has enabled a rapid increase in their application. Today, auctions are
omnipresent, e.g. they are used in arts and real-estate as well as for fishery, spectrum,
renewable energy, (online) advertisement, and many more.

Auctions are especially useful when an information asymmetry between buyers and sell-
ers makes setting a fixed price difficult. Ideally, competition between rational bidders
leads to an efficient allocation. However, depending on the bidders’ value models and
the auction mechanism applied, bidders face difficult decision problems about the bid
amount to submit. Bayes-Nash equilibria are a central solution concept for these decision
problems. However, they are known only for very few and simple auction designs.

In this thesis’ first two studies, we considered two large markets, namely the online
display ad market and the renewable energy market. We have shown that truthful
bidding often is a good strategy in the online display ad market due its large size in
terms of bidders and number of items to sell. Assuming truthful bidding for another
large market, i.e. the expansion of renewable energy sources, we developed and presented
a combinatorial auction design as a viable alternative to the currently applied auction
design of selling individual items. The proposed design allows an efficient allocation with
almost no increase in remuneration prices and is approximately incentive-compatible in
the large. In a third study, we focused on the strategic bidding problem of bidders
in general auction designs. We developed an algorithm called Neural Pseudogradient
Ascent to learn bidding strategies in a variety of auction games, often leading to Bayes-
Nash equilibria. Throughout the numerical experiments, the algorithm has presented
itself as a powerful tool for the computation of these equilibria.

With this thesis, we contribute to the literature on bidding strategies in display ad
auctions (Sutterer et al., 2019) and to bidding strategies in general auction markets
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(Heidekrüger et al., 2019, 2020a,b) as well as to literature on the design of renewable
energy auctions (Bichler et al., 2020). The publications herein are not only valuable to
the research community but also provide important insights and practical contributions
for practitioners in the field.
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