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Abstract

Helicopters operating in terrestrial and maritime missions are required to execute com-

plex tactical maneuvers. To enhance performance and mission success, the helicopter

must be made agile, robust to uncertainties caused by exogenous factors such as turbu-

lence and endogenous factors such as imperfect modeling information, and must possess

automatic trajectory generation and tracking capabilities. However, the complex dy-

namic responses and the inherent instability in helicopters pose a formidable challenge

for control augmentation and autonomous flight guidance.

To fulfil these objectives and overcome the inherent challenges, this thesis first pro-

poses a novel, robust helicopter flight control design suitable for agile and aggressive

maneuvers. The control problem is posed as one of robust translational and attitude

command tracking with the required closed-loop responses specified to conform to the

predicted Level 1 handling qualities (HQ). The required closed-loop axial responses are

enforced by an output tracking sliding mode control (SMC) technique by treating axes

cross-coupling and exogenous turbulence as matched, bounded uncertainties. To mit-

igate the chattering effect of SMC, a continuous approximation of the discontinuous

control is applied using the boundary layer concept. Any potential actuator saturations,

particularly in aggressive maneuvers, are mitigated by reference command adaptation

laws using the Pseudo-control Hedging (PCH) technique. The overall closed-loop stabil-

ity and tracking performance in the presence of the given uncertainties are analyzed.
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Next, the thesis proposes a novel online trajectory generation method for tracking

waypoints with velocity vector constraints. The translational equations of motion and

tracking objectives are decoupled to reduce the dimensions of the numerical problem in

terms of the number of simultaneous algebraic equations to be solved. The trajectory

generation problem in each axis is formulated as an independent, nonlinear quadratic

regulator and solved analytically using the state-dependent Riccati equation technique.

The waypoint guidance scheme is then extended to a rendezvous guidance scheme for

tracking a constant velocity planar target. For this purpose, the lateral axis engagement

kinematics and tracking objectives are formulated as a nonlinear quadratic regulator and

solved analytically using the SDRE technique.

The new guidance and control schemes are integrated in a high-fidelity, real-time-

capable, representative rotorcraft simulation environment for closed-loop performance

evaluation. Several simulation results are presented for autonomous, unpiloted heli-

copter mission tasks. The first set of simulation results demonstrate that the SMC

flight controller is capable of satisfying predicted Level 1 HQ. The results also validate

the desired performance in two mission task elements flown autonomously that require

moderate to aggressive agility. The SMC technique is then compared with an explicit

model-following controller with regard to HQ criteria and the results that ensue are

discussed. Thereafter, several autonomous waypoint and rendezvous guidance scenarios

illustrate the application of the SDRE-based guidance laws. Furthermore, rendezvous

scenarios with a slow maneuvering target show the robustness of the SDRE-based guid-

ance laws. This set of results demonstrates precise waypoint and velocity vector tracking,

with smooth and continuous trajectories for the state and control variables. Finally, an

autonomous shipboard approach in high-intensity turbulence demonstrates the optimal

and online guidance coupled with the robust trajectory tracking for a realistic application

within a representative simulation environment.
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1 Introduction

“The helicopter is probably the

most versatile instrument ever

invented by man.”

(Igor Sikorsky, 1889–1972,

aviation pioneer and inventor)

A helicopter represents a complex dynamic system. Unlike fixed-wing aircraft, the

motion of helicopters (and rotary-wing aircraft, in general) is characterized and strongly

influenced by higher order rotor dynamics. A helicopter’s rotor system forms the pri-

mary means of generating thrust, propulsive forces, and moments. The dynamics of

helicopters are also highly coupled; a single control input produces responses in the

rotor dynamics, in the inflow dynamics, and subsequently in all the fuselage degrees

of motion. Furthermore, dynamic interactions also exist between the engine, the drive

train, and the rotor system. Although the moments and the forces are induced in the

rotor system, the fuselage motion is of principal interest for piloting purposes. Indeed,

the states of the fuselage are the quantities monitored and controlled by a pilot (or an

autopilot) in order to execute the intended flight maneuver. However, the presence of

higher-order dynamics, a high number of degrees of freedom, and complex aerodynamic

interactions pose a formidable challenge for piloting and controlling the helicopter.
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1 Introduction

The term “flying qualities” is often used to characterize the dynamic responses of

helicopters, nay all aircraft in general. According to Padfield, flying qualities can be

categorized into handling qualities, “those that reflect the aircraft’s behavior in response

to pilot controls”, and ride qualities, “those that reflect the aircraft’s response to external

disturbances” [1]. Cooper and Harper, in their seminal work on the use of pilot ratings,

define handling qualities as “those qualities or characteristics of an aircraft that govern

the ease and precision with which a pilot is able to perform the tasks required in support

of an aircraft role.” [2]. Evidently, an aircraft’s flying qualities are strongly influenced

by the type of mission, the phase of flight, and the prevalent environmental conditions.

Evidence suggests that external factors such as visibility conditions and turbulence have

a detrimental effect on pilot workload [3]. Since helicopters are more often than not

flown in low altitudes and in unfavorable environmental conditions, the spare capacity

available with the flight crew to perform mission duties depends on the workload that

the primary piloting tasks induce. The major design challenges in helicopters are thus,

to minimize pilot workload, to automate piloting and guidance tasks, and thereby to

maximize both flight safety and mission success.

For quantifying and characterizing flying qualities, the concept of mission task ele-

ments (MTE) has been employed in the literature, particularly in the US Army’s han-

dling qualities requirements - Aeronautical Design Standard Performance Specification

Handling Qualities Requirements For Military Rotorcraft, ADS-33E-PRF [4]. ADS-33

provides a rational and systematic basis for helicopter handling qualities assessment.

Since helicopter operations consist of multiple missions, each mission can be essentially

broken down into multiple, contiguous mission task elements (MTEs). Each MTE can

then be described by a set of maneuvers that must satisfy temporal and spatial perfor-

mance requirements [1]. Furthermore, ADS-33 also identifies different kinds of on-axis

response characteristics to on-axis step input commands, also known as response-types.

The response-types can be in the form of rate command, attitude command, or trans-
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lational command. The choice of the response-types is guided by the applicable MTE,

airspeed regime, external visual conditions and the presence of any visual augmentation

systems, as well as pilot preferences [4, 5].

Helicopter flying qualities can be measured and evaluated by both subjective and

objective criteria. Objective criteria quantify an aircraft’s dynamic responses in the

time and frequency domains, and then compare these responses to established numerical

references. Subjective criteria enable test pilots to rate the aircraft’s dynamic responses

using standardized subjective rating techniques. Ratings are assigned in regard to the

pilot’s ability to fly the given MTEs within the required performance and workload

constraints. Accordingly, ADS-33 helps characterize the helicopter’s handling qualities

at three levels (1,2,3), where Level 1 represents the most desired response characteristics

for ease of piloting and Level 3 represents major deficiencies [4]. Whereas the HQ ratings

resulting from objective criteria are termed as predicted HQ levels, those resulting from

subjective criteria are termed as assigned HQ levels. In this sense, ADS-33 serves as a

useful reference in benchmarking the bare-airframe responses as well as the augmented

responses of full-scale helicopters.

In practice, many conventional, bare-airframe, unaugmented helicopters (single main

rotor and tail rotor type) do not respond in a manner specified by the HQ requirements,

and therefore tend to possess poor HQs. Indeed, most helicopters are not even designed

to comply with such handling quality requirements. Some of these helicopters, such as

the bearingless BO-105, are inherently unstable in their pitch axis, since they exhibit an

unstable phugoid mode. As mentioned earlier, helicopters also exhibit strong interaxis

coupling and a melange of primary responses (angular rate, attitude, and translation)

in all axes of motion. Moreover, the nature of the responses and the level of coupling

are found to vary substantially between hover, low speed, and forward flight regimes.

Furthermore, their main and tail rotors possess additional degrees of freedom (DOF),

which reduces the bandwidth for controlling the fuselage translational and rotational
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states. According to Padfield, the overall effective time delay between pilot control in-

put and rotor control demand can be greater than 100 ms and such a delay can halve the

response bandwidth capability of an ‘instantaneous’ rotor [1, p.81]. Despite these limita-

tions, helicopters remain the only piloted aerial vehicles in operation that can maneuver

equally well in hover, low-speed and forward flight. It is thus natural that helicopters are

deployed in demanding tactical and maritime missions including emergency evacuation,

aerial reconnaissance, search and rescue, attack, shipboard launch and recovery, among

others. For successful mission execution, helicopters must possess excellent maneuvering

capabilities, agility, piloting precision, stability in turbulent winds, and the capability to

automate piloting tasks. In most cases, these objectives can only be achieved when the

helicopter’s natural responses are augmented and its trajectory generation and track-

ing tasks are automated. The control designer, however, faces several design challenges

along this direction; some of these challenges are summarized in the following points:

First, the identification of helicopter system models suitable for the purpose of control

design remains a major challenge. The presence of higher-order dynamics leads

to a large number of unknown parameters to be idenfitied. High vibrations levels

in the vehicle tend to contaminate measurement data that are recorded for the

purpose of parameter and system identification. Moreover, the inherent instability

of most single main rotor helicopters types itself is a factor that limits the amount

of flight test data that can be gathered [6, 7]. These challenges mean that he-

licopter system and parameter identification is a lengthy and expensive process

that requires specialized skills, tools and personnel. Flight control designs must,

therefore, aim to reduce their dependence on accurate models.

Second, the flight mechanical parameters that are extracted from flight data by system

identification methods are often found to correlate poorly to true flight behavior.

Evidence suggests that the correlation of cross-coupling elements is particularly

poor [6]. Flight control designs must, therefore, account for the uncertainties in
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the identified models, as well as any unmodeled dynamics and nonlinearities that

the nominal models fail to capture fully and effectively.

Third, the synthesized closed-loop control laws must satisfy the required closed-loop re-

sponse characteristics and flight stability over the full flight envelope that he-

licopters operate in, and adequately compensate for all unintended off-axis re-

sponses to control and disturbance inputs. Furthermore, any stability and control

augmentation system and/or autopilot has to demonstrate compliance with appli-

cable certification specifications. [8] Since the helicopter’s natural responses vary

with the airspeed regime, this objective is clearly non-trivial.

Fourth, the closed-loop control laws must produce dynamic responses representative of a

lower-order system that are more intuitive for pilots to fly than its natural re-

sponses of a higher-order [4, 9]. This approach should also ease the integration of

advanced navigation and guidance systems. The fulfilment of the specified han-

dling qualities requirements so as to produce deterministic closed-loop dynamic

responses satisfying temporal and spatial performances is a key objective along

this direction.

Fifth, closed-loop control laws designed to produce dynamic responses directly in the

form of the helicopter’s inertial motion are more likely to improve success in mis-

sion tasks. Such responses types that allow direct control of the helicopter’s trans-

lational rates are referred to as advanced response-types. Advanced response-types

have already shown to markedly alleviate the workload of skilled pilots in demand-

ing maritime missions [10], and even shown a potential to allow low-skilled, amateur

pilots to fly conventional full-scale helicopters as personal aerial vehicles [11].

Sixth, aggressive maneuvers may drive the actuators into saturation or undesirable be-

havior. To mitigate any adverse effects, flight controllers must incorporate the

physical characteristics of actuators into the design.
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Seventh, to facilitate higher levels of piloting autonomy, it is essential that trajectory gen-

eration and tracking in mission tasks be automated and operated in a real-time

sense, and coupled directly to the flight controller. Such an architecture will allow

flight crew to merely specify waypoints or target location, and then let the system

compute and execute an optimized trajectory “on the fly”, in what is expected to

increase the level of autonomy of rotorcraft [12].

Helicopters have been in operation for well over six decades, and the problems and

the requirements described herein are naturally well known. Many published works

by subject matter experts have adopted different strategies, and the major approaches

will be reviewed in the next chapter. The present thesis aims to address these very

problems in helicopter guidance and control, albeit using newer, effective, and previously

unexplored control theoretical techniques.

1.1 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 reviews the major pub-

lished works relevant to the current problem and discusses their main benefits and short-

comings. Chapter 3 outlines the key control theoretical concepts - sliding mode control

(SMC), state-dependent Riccati equation (SDRE), and pseudo-control hedging (PCH)

- that will be used to solve the flight control and guidance problem. Chapter 4 de-

scribes the framework for high-fidelity, real-time-capable, and representative rotorcraft

simulation environment that will be used to validate the proposed concepts in closed-

loop. Chapter 5 applies the SMC and PCH concepts to design robust helicopter attitude

and translational command control laws in a two-loop architecture. Chapter 6 applies

the SDRE technique to synthesize translational acceleration guidance laws for tracking

static waypoints with velocity vector constraints. Chapter 7 extends the SDRE tech-

nique for rendezvousing with mobile, planar targets. Chapter 8 presents closed-loop
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simulation results and discusses the effectiveness of the proposed control and guidance

designs. Chapter 9 concludes by summarizing the main ideas of this thesis, along with

their benefits and shortcomings. Finally, Chapter 10 envisions some future directions of

research.
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2 State of the Art

To gain a foothold in the area of flight guidance and control in full-scale helicopters,

this chapter reviews the existing scientific literature and the state-of-the-art technologies.

First, the different control theoretical methods for handling qualities enhancements in

conventional helicopters are surveyed. Thereafter, methods for automatic trajectory

generation and tracking static waypoints as well as rendezvous with moving waypoints

are surveyed.

2.1 Helicopter Control Augmentation

Conventional approaches to full-scale helicopter control design have relied upon classical

control techniques such as PID feedback control [13, 14] and explicit model-following

control [15, 16]. PID-based schemes require gain scheduling and design iterations to

comply with handling quality requirements, and are limited in their performance due

to a highly nonlinear, multivariable plant. While model-following approaches showed

promise for Level 1 HQs in flight tests, they require accurate knowledge of the system

for inverting the commanded states to the blade inputs. Another approach, eigenstruc-

ture assignment, affords the advantage of a direct design of feedback gains that satisfy

required handling characteristics [5, 17, 18]. However, since it relies on a nominal linear

model, robustness in the face of uncertainties and explicit axis decoupling are not guar-

anteed. An interesting approach for decoupling of the lateral and longitudinal helicopter
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dynamics was presented using the individual channel design approach, which is a global

structural analysis framework [19]. The authors of that study proposed a robust feed-

forward controller to overcome cross-couplings and a feedback control to demonstrate

Level 1 HQ in the forward flight regime. Some of the limitations of classical methods

can be remedied by modern control techniques for helicopter control, such as neural

networks (NN) [20], nonlinear dynamic inversion (NDI) [10] and incremental nonlinear

dynamic inversion (INDI) [21, 22], model predictive control (MPC) [23, 24], and H∞

control [25, 26, 27, 28, 29, 30]. While the NN-based approach in Ref. [20] was robust to

disturbances, its training requirements and a rather complex control architecture may

limit its practical use. NDI is a model-based approach in that it involves feedback lin-

earization of an approximate model. Yet, it was shown to be suitable for higher levels of

augmentation in the ship airwakes [10]. INDI partially resolves some drawbacks of NDI

by using filtered acceleration measurements in place of the state-dependent terms. As

a result, INDI was shown to be more robust to model uncertainties than conventional

NDI [21]. Recently, an INDI-based limited authority controller was developed for the

Apache AH-64D Longbow helicopter with the aim of overcoming limitations of its exist-

ing EMF controller. Piloted simulation testing in hover and low-speed showed improved

handling qualities using the INDI technique [22]. The MPC-based approach also showed

good performance especially for helicopter in the ship airwakes. However, one needs

to account for additional computational costs at implementation stages in MPC-based

designs [23, 24]. Other works that addressed flight control in the context of helicopter-

shipboard operations include Ref. [31] that examined pilot workload on the basis of pilot

models under the influence of turbulent ship airwake. The authors later developed a

flight control design [32] to augment gust rejection properties in turbulent ship airwake.

Further, several approaches based on modern robust H∞ design and loop shaping were

evaluated in ground-based simulations [30] and in flight [25, 26, 27]. While guaranteed

closed-loop stability makes H∞ an attractive option, the authors of Ref. [26] noted that
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their H∞ controller did not adequately compensate for cross-coupling dynamics during

piloted evaluations. More recently, Ref. [28] proposed helicopter control design based on

H∞ and µ control for transforming conventional helicopters into personal aerial vehicles

that can be operated by untrained pilots. It may be noted that some control design ap-

proaches surveyed herein may not be certifiable in accordance with existing certification

rules and the associated guidance material [8].

The issue of actuator saturation in helicopter flight control is particularly evident

in the design of partial authority flight controllers and during aggressive maneuvers,

even though actuators saturation does not appear to show any substantial impact on

piloted handling quality assessment [33]. To mitigate any undesirable behavior when

actuator operate at their limits, previous approaches have sought to incorporate the

actuator limits directly into the control design. In Ref. [34], a limited authority attitude

command flight controller was developed and the actuator authority was specified by

the value of the attitude at which the series actuator would saturate. Refs. [29, 30]

demonstrated application of the H∞ design technique without driving the actuators into

saturation, and the latter was designed as a limited authority system.

At this juncture, it is also worthwhile to visit two extensive, yet non-exhaustive survey

papers on full-scale helicopter flight control systems [35, 36]. These surveys evaluated

several contemporary and classical helicopter flight control schemes that are based on

time domain methods, frequency domain methods, model reference techniques, and out-

put feedback techniques. Ref. [36] also summarized the key features of modern control

techniques applied to helicopter flight control. The key theme that is reflected in these

surveys is this: ensuring robustness to the exogenous and endogenous uncertainties by

classical control techniques requires one to determine appropriately spaced operating

points and then to optimize the controller parameters at each such operating point. The

number of necessary operating points is often a function of the robustness of the given

technique.

11



2 State of the Art

Control laws synthesized using robust control techniques offer several design bene-

fits. First, robust control laws can be designed to actively reject/compensate known

or unknown uncertainties in the nominal models, which can be particularly advanta-

geous in highly nonlinear, coupled, and poorly identified system models. This benefit

assumes significance given the many challenges and pitfalls that may be encountered

during helicopter system identification [6]. Second, robust control laws can assure the

required closed-loop characteristics over a wider flight envelope without gain scheduling

and additional system identification effort. This benefit assumes significance given that

pilots assign higher handling quality ratings when the responses are precise, predictable,

stable, and representative of an ideal lower-order system [37]. Third, some of the estab-

lished robust control techniques (especially H∞ control, INDI control, and sliding mode

control) have a wealth of theoretical analyses that can be leveraged for design assurance

purposes in the qualification and certification processes.

A promising technique for formulating robust control laws is the sliding mode control

(SMC) technique. The underlying idea of SMC is the design of a surface in the system’s

state space that satisfies the required closed-loop dynamics, and the synthesis of a con-

trol law that steers the system’s trajectory towards this surface. SMC is particularly

well-known for its guaranteed finite-time convergence, accuracy, and insensitivity to a

class of uncertainties [38]. For this reason, SMC has found applications in a variety of

aerospace control problems, such as missile guidance and control [39], reusable launch

vehicle control [40], fighter aircraft control [41], fault-tolerant flight control [42, 43],

among others. For helicopter control augmentation, it is conceivable to design a sliding

surface conforming to the required closed-loop behavior and then synthesize SMC laws

to enforce this behavior. Not only will the closed-loop system satisfy HQ requirements,

but it will also ensure performance despite exogenous disturbances, modeling uncertain-

ties and parametric variations. The available literature on full-scale helicopter SMC is,

however, limited. In Ref. [44], a model-reference SMC was designed and its robustness
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to parametric variations and external disturbances were demonstrated on a linear plant

model. Refs. [45, 46] both applied model-reference SMC for attitude command control,

albeit using higher fidelity nonlinear plants. Both works demonstrated Level 1 HQs in

attitude tracking tasks.

To the best knowledge of the author, the literature on full-envelope helicopter trans-

lational control using nonlinear control techniques is rather limited [28, 10], and none is

available that employs the SMC technique.

2.2 Trajectory Generation and Tracking Control

Currently, the preferred procedure to fly large rotorcraft safely at low altitude is by

following a flight path consisting of a sequence of waypoints connected by flight legs. In

course-to-fix waypoint navigation, the aircraft’s ground track is guided along the straight

line joining two waypoints. This method induces an overshoot of the desired flight path

at waypoint transitions [47]. Moreover the aircraft is restricted to the vicinity of the

geometric path giving little flexibility during path tracking. However, many advanced

rotorcraft missions, including new vertical takeoff and landing platforms slated for the

future such as unpiloted air taxis and personal aerial vehicles, will require the ability to

generate and track feasible trajectories online and in a real-time sense.

Motion planning for aerial vehicles involves multiple objectives, including obstacle

avoidance, feasible trajectory generation, and trajectory following. The voluminous lit-

erature in this field has been the subject of multiple survey papers [12, 48]. Geometric

paths that avoid obstacles are typically generated in the higher rungs of the motion

planning hierarchy. In the lower rungs, the paths are parameterized and trajectories

are executed while keeping the vehicle within its flight envelope [49, 50]. Most trajec-

tory generation methods attempt to solve a constrained optimal control problem. To

achieve real-time capability within acceptable computational costs, configuration space
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transformations and fast numerical techniques are applied, which render the control so-

lution suboptimal. In [51], the optimization problem is solved on a lower dimensional

space with reduced constraints before projecting the solution to a higher dimensional

space, yielding a suboptimal solution. In [52], an analytical, suboptimal control solu-

tion is obtained from a parameterized optimal trajectory and a linearized vehicle model.

In [53, 54], the differential flatness property of quadrotors is exploited for generating

polynomial-based smooth, efficient and optimized trajectories. Feasibility of the rota-

tional motion and hard constraints on states and controls can be achieved with explicit

6DOF dynamics in a model predictive control (MPC)-based framework [55, 56]. How-

ever, the resulting numerical optimization problem has to be solved iteratively which

increases the computational cost. More recent MPC schemes, such as waysets with a

variable horizon formulation [57], or sequential linear quadratic solvers [58], have also

shown real-time feasibility. Yet, the need for iterative numerical methods still persists.

To alleviate computational load in real-time, a library of parameterized paths can be

computed and stored offline and used to construct feasible paths online. One such ap-

plication was demonstrated using motion primitives [59]. Other applications based on

geometrical curves, such as clothoids [60], B-splines [61], Bézier curves [62], and four-

parameter logistic curves [63], are found to generate smooth, contiguous and feasible

flight paths. Depending on the type of curvature, these methods may require extensive

pre-computations, iterative solutions, vehicle-specific parametric values, and supplemen-

tary translational commands to execute the flight paths. The Dubin’s path, which is

a relatively fast computation, was used to track waypoints with heading constraints in

minimum time [64]. The flight paths were however based on geometric considerations

(turn radius) and only valid for constant speed aerial vehicles. It may again be noted

that the inherent complexity and computational aspects may hinder formal certification

and serial deployment of some of the surveyed techniques [8].
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2.3 Rendezvous Guidance

A key feature contributing to enhancing the on-board autonomy is the online genera-

tion and tracking of trajectories for rendezvousing with moving targets. In rendezvous

guidance, a follower, starting from an arbitrary initial position and velocity vector, is

required to intercept a mobile target and attain zero relative velocity with respect to

the target at the time of interception. In this sense, rendezvous guidance can be posed

as a problem of feasible trajectory generation with terminal constraints on the vehicle’s

position, velocity, and, if necessary, time.

Rendezvous guidance is an essential component in many aerospace applications and

different approaches have been explored to meet this objective. In [65], model predictive

control was used to execute a spacecraft docking maneuver, whereas in [66] autonomous

spacecraft rendezvous with collision avoidance was demonstrated. A comprehensive re-

view of spacecraft rendezvous and intercept applications was presented in [67]. Many

aerial applications, too, necessitate some form of rendezvous guidance. In missile guid-

ance, terminal impact angle constraints were imposed on the missile, and guidance laws

using optimal control [68] and sliding mode control [39] were synthesized. In UAV

applications, missions involving surveillance, tracking, and loitering by UAVs around

ground-based targets were investigated using geometric [69] and Lyapunov-based ap-

proaches [70]. Other UAV missions were aimed at rendezvous with cooperative aerial

vehicles using sliding mode control [71] and pursuit guidance [72]. Air-to-air refueling is

another mission requiring precise rendezvous that was demonstrated using proportional

navigation guidance [73] and linear optimal guidance [74].

The approach and landing of helicopters on maritime vessels can also be thought of

as a rendezvous guidance problem. An interesting application in Ref. [75] demonstrates

automatic deck landing using optical flow theory, which relies on a fundamental parame-

ter used by humans and animals to guide bodily movements. The authors demonstrated

automatic shipdeck landing in a manner similar to that achieved by an actual pilot.
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Ref. [76] developed a guidance system using relative INS/GPS and flight path control

autopilot and reported flight test results of large helicopters operating from small ships.

More recently, Ref. [77] presented control laws for autonomous shipdeck recovery for

the final approach and landing phases. The inner loop controller was based on dynamic

inversion and the outer loop was designed for a constant glideslope approach path and

constant relative azimuth to the landing deck. However, this work assumed that the

helicopter’s airspeed and heading are close to the desired approach conditions.

To simplify mission planning and execution, guidance commands are expected to be

generated in a real-time sense. The resulting trajectories must be feasible for the heli-

copters’s physical characteristics and its controller/actuator performances. Additionally,

it may be desirable to achieve optimality with respect to certain performance criteria,

and to satisfy additional terminal constraints (e.g. final time). An important factor

that determines real-time suitability of any guidance scheme is its computational ease.

Despite advances in numerical schemes and computing capacities, closed-form analytical

solutions for guidance laws remain the natural choice for online execution. Closed-form

solutions are readily obtained using classical guidance schemes such as proportional nav-

igation [78, 73] and pursuit guidance [78, 72]. These schemes, however, provide only the

lateral acceleration and are not suitable for more complex maneuvers in 3D space. Re-

cent work using a linear optimal control approach also yielded a closed-form solution for

an air-to-air refueling scenario [74]. However, since it was based on linearized kinematics,

and the follower and the target were closely aligned, its suitability for rendezvous from

arbitrary initial positions is not granted.

2.4 Thesis Objectives and Scope

On this background, the main scientific contributions of this thesis can be summarized

as follows:
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1. The thesis first proposes axial sliding mode control-based attitude and transla-

tional control laws that not only enforce the required closed-loop performance

corresponding to predicted Level 1 HQ, but also offer stability and robustness to

the given uncertainties. Mathematical proofs for the overall closed-loop stability

and robustness also form a key contribution of this thesis. It is noted that piloted

evaluations using subjective rating techniques of the SMC controller is beyond the

scope of this thesis. This thesis also does not address the use of rotor state feedback

(flap, lead-lag, torsion) in the closed-loop control design.

2. Next, the thesis proposes an adaptation law for the reference command based on

the pseudo-control hedging concept to mitigate actuator saturation in aggressive

maneuvers.

3. Thereafter, the thesis proposes a novel state-dependent Riccati equation-based

waypoint trajectory generation. The optimality in the SDRE solution lies in the

minimization of the state and control deviations over the entire horizon of the

trajectory. The SDRE solution yields deterministic, closed-form (and hence real-

time capable), and suboptimal guidance laws for the lateral, vertical, and forward

accelerations. These accelerations are then directly coupled and tracked by the

SMC robust flight controller.

4. Finally, the SDRE-based approach for waypoint guidance is extended to a ren-

dezvous guidance scenario, and 3D helicopter rendezvous with a slower maneuver-

ing target is demonstrated.
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3 Theoretical Framework

In this chapter, the control theoretical concepts underpinning the helicopter guidance

and control laws developed in this thesis are studied. Robustness to modeling and

exogenous uncertainties is an important consideration in the development of control laws

for enhanced handling qualities. The choice of the sliding mode control technique in the

present work is motivated firstly by its desirable robustness properties, and secondly,

the fact that sliding mode-based control laws are yet to be synthesized and evaluated

for full-scale helicopter translational rate command control.

Likewise, the state-dependent Riccati equation technique offers desirable asymptotic

stability and asymptotic optimality properties for multivariable, nonlinear systems. These

properties are ideally suited to the nonlinear kinematics that govern the evolution of the

helicopter’s flight path in 3D space. Moreover, state-dependent Riccati equation-based

guidance laws are yet to be synthesized and evaluated for a full-scale helicopter guidance

problem.

Following a brief outline of each technique, simple, illustrative examples are presented

to enable the reader to develop an intuitive understanding of each technique.
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3.1 Sliding Mode Control Technique

3.1.1 Overview

A system’s behavior and its operational envelope are often affected by endogenous and

exogenous disturbances. Although it may be possible to quantify some of the uncer-

tainties, it is unrealistic to expect a complete and accurate characterization of these

uncertainties (else they would no longer be called ‘uncertainties’). Despite the presence

such uncertainties, the controlled system is required to satisfy its closed-loop performance

specifications. To fulfil this objective, the closed-loop control laws must be sufficiently

robust to the uncertainties acting upon and affecting the performance the system.

A promising technique that can achieve accurate command (or output) tracking of

a class of nonlinear, time-varying systems in the presence of a class of uncertainties is

the sliding mode control (SMC) technique [38, 79, 80, 81]. SMC allows the designer to

specify a desired, stable sliding surface in the form of desired reduced-order dynamics

in the system’s state space. An appropriate control law is chosen that, firstly, attracts

the system states towards this sliding surface, and thereafter, ensures that the system

states remain on the sliding surface in the presence of the given disturbances and/or

modeling uncertainties. In many instances, such a control law involves a discontinuous

function of the specified sliding surface in order to force the system states to reach and

subsequently remain on the sliding surface. The discontinuous action makes the SMC

law nonlinear; indeed, as it will be seen, it is also what makes SMC insensitive to a class

of uncertainties. These are uncertainties occurring in the input channels that cannot be

characterized, but whose bounds are well known. The essence and properties of SMC

will become clearer in the derivations and the illustrative example that follow.

The effect of a discontinuous feedback control law applied to a nonideal system (i.e.

system with unmodeled or internal dynamics, actuator dynamics, imperfections due to

discrete states, etc.) is that the resulting control signal oscillates at a high, but finite
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3.1 Sliding Mode Control Technique

frequency. This is referred to as the chattering effect. Needless to say, chattering is un-

desirable and particularly so in mechanically actuated systems such as the helicopter, as

this can lead to serious component fatigue. Fortunately, the literature proposes several

means to mitigate the effect of chattering. One such approach is to approximate the

discontinuous control law by a continuous control law. The consequence of this approx-

imation is a pseudo-sliding mode control, in which some of the robustness properties of

the original sliding mode control are degraded [38, 80]. However, for the helicopter flight

control problem considered in this work, it will be shown that it is possible to achieve

an acceptable compromise between robustness to uncertainties and practical suitability

of the control laws.

3.1.2 Robust Multivariable Sliding Mode Control Synthesis

The flight control design in this work follows the approach of Edwards and Spurgeon [38]

for robust output tracking using integral action. Although the helicopter is inherently

highly nonlinear, a piecewise linear representation of its true dynamics will be used for

the controller synthesis, which is in accordance with both classical and modern control

design philosophies discussed in the preceding Sec. 2.1. Nevertheless, the nonlinearities

and unmodeled dynamics that are not captured by the linear state-space representation

will be regarded as unknown but bounded uncertainties. Consider a linear, multivariable,

uncertain system of the form:

ẋ(t) = Ax(t) +Bu(t) + f(x,u, t) (3.1)

y(t) = Cx(t) (3.2)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector, y ∈ Rp is the output

vector, A ∈ Rn×n is the system matrix, B ∈ Rn×m is the control matrix, n ≥ m, and

C ∈ Rp×m is the output matrix. The control matrix B is assumed to have full rank.
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f ∶ Rn × Rm × R+ → Rn are unknown but bounded uncertainties (nonlinearities and

unmodeled dynamics) appearing in the input channels only. The control objective is

for y to asymptotically track a reference signal r(t) ∈ Rp using the concept of integral

action. The output tracking error is defined as ẋe = y − r. For notational simplicity,

time dependency of will be dropped in the remaining analysis. The matrices (A,B,C)

are obtained in a special canonical form, called the regular form, as follows:

A =
⎡⎢⎢⎢⎢⎢⎣

A11 A12

A21 A22

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

0

B2

⎤⎥⎥⎥⎥⎥⎦
, C = [C1 C2] , (3.3)

This regular form can be readily obtained via QR decomposition, as discussed in Ref. [38,

Chapter 4].

In the first step, the state vector is augmented by the error states to the new state

vector x̃ = [xe x]T . The system and control matrices of the augmented system are:

Ã =
⎡⎢⎢⎢⎢⎢⎣

0 C

0 A

⎤⎥⎥⎥⎥⎥⎦
B̃ =

⎡⎢⎢⎢⎢⎢⎣

0

B

⎤⎥⎥⎥⎥⎥⎦

Since (A,B) are in regular form, (Ã, B̃) are also in regular form.

In the second step, a hyperplane is chosen in the state-space of the augmented system,

as shown below:

S = {x̃ ∈ Rp+n ∶ Sx̃ = 0} (3.4)

where σ(x̃) = Sx̃ is the switching function and S ∈ Rm×(p+n) is a design matrix that

determines the closed-loop system dynamics when sliding motion is induced. Note that

the nominal system is underactuated if n > m, and fully actuated if n = m, but the

augmented system is necessarily underactuated since (p + n) >m. Now, the augmented
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system dynamics can be expressed as:

˙̃x = Ãx̃ + B̃u − T̃r + f̃ (3.5)

where, T̃ = [Ip×p 0n×p]T.

In the third step, a control law is proposed that drives the augmented system in

Eqn. (3.5) to the sliding manifold of Eqn. (3.4) in finite time, and sustains sliding motion

thereafter. Consider the following control law, which is comprised of a linear component

and a discontinuous, nonlinear component:

u = ul + un (3.6)

where ul = −(SB̃)−1(SÃ −ΦS)x̃ + (SB̃)−1ST̃r (3.7)

un = −ρ (SB̃)−1 Pσ

∥Pσ∥ (3.8)

where, Φ ∈ Rm×m is a stable design matrix, and P ∈ Rm×m, P = PT > 0 satisfy the

Lyapunov equation PΦ +ΦTP = −Im. The linear component in Eqn. (3.7) stabilizes the

nominal system and the nonlinear component in Eqn. (3.8) is designed to overcome the

uncertainty.

At this point, the scalar ρ > 0, which bounds the uncertainty terms, remains to be

determined. The existence of sliding motion in finite time also remains to be shown.

Suppose sliding motion occurs at t = tr and is sustained thereafter. Then, ∀t > tr,

σ = σ̇ = 0. Substituting from Eqn. (3.5)– (3.8) followed by algebraic manipulations

yields:

σ̇ = Φσ − ρ Pσ

∥Pσ∥ + Sf̃ (3.9)
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A candidate Lyapunov function is chosen as V = σTPσ > 0, and its time derivative is

given by:

V̇ = σT(ΦTP +PΦ)σ − 2ρ∥Pσ∥+2σTPSf̃ (3.10)

Since σTPSf̃ ⩽ ∥Pσ∥ ∥Sf̃∥, Eqn. (3.10) can be expressed as an inequality as follows:

V̇ ⩽ −∥σ∥2−2∥Pσ∥(ρ − ∥Sf̃∥) ⩽ −∥σ∥2−2γ∥Pσ∥ (3.11)

The last inequality is obtained by setting ρ ≥ ∥Sf̃∥+γ for γ > 0 to guarantee quadratic

stability in the presence of bounded uncertainties in the input channels. Finally, the

reaching time is given by [38]:

tr ⩽
1

γ

¿
ÁÁÀ V (t = 0)

min(eig(P)) (3.12)

The foregoing discussion reveals two salient features of SMC, namely its insensitivity

to bounded uncertainties, and its guaranteed finite reaching time of the specified closed-

loop dynamics. Both reasons make the SMC a potent technique for the design of robust

control laws in a wide spectrum of physical systems and processes [81]. For the same

reasons, the output tracking SMC approach becomes a natural choice for the robust

helicopter flight control problem posed in Chapter 5.

Before proceeding to the flight control design, two issues need to be addressed. First, as

evident from Eqn. (3.6), the control law includes a high-frequency switching action, which

is detrimental to the integrity of the helicopter’s mechanical actuators, control links and

swashplates. This drawback can be mitigated by the boundary layer concept [38, 42, 40],

where the unit vector in Eqn. (3.6) is replaced by a continuous approximation as follows:

u = −(SB̃)−1(SÃ −ΦS)x̃ + (SB̃)−1ST̃r − ρ(SB̃)−1SAT(ξ/ε) (3.13)
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where ξ = Pσ, SAT(ξ/ε) = [sat(ξ1/ε) sat(ξ2/ε) . . . sat(ξm/ε)]T and the saturation func-

tion is defined as:

sat(ξi/ε) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sgn(ξi/ε) if ∣ξi/ε∣> 1

ξi/ε if ∣ξi/ε∣⩽ 1

(3.14)

and ε > 0 defines the size of the boundary layer, within which the nonlinear component

operates as a high gain linear term. Within the boundary layer, ideal sliding motion does

not occur and the system is not completely insensitive to the matched uncertainties. The

stability of this continuous SMC can be evaluated using the derivative of the Lyapunov

function in Eqn. (3.11), which is modified to:

V̇ ⩽

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−2∥ξ∥(ρ − ∥Sf̃∥) if ∥ξ∥> ε

−2∥ξ∥(ρ∥ξ∥/ε − ∥Sf̃∥) if ∥ξ∥⩽ ε
(3.15)

Defining ρ ≥ ∥Sf̃∥+γ gives V̇ < 0,∀∥ξ∥> ε, and the boundary layer is reached in finite

time. The switching function is attracted and thereafter remains uniformly bounded to

∥ξ∥⩽ ε. This implies that xe also remains bounded to a neighborhood about the origin

that depends on ε [38]. The actual value of ε is often a compromise between robustness

to uncertainties and chattering avoidance.

The second issue stems from the fact that insensitivity to uncertainties is only guar-

anteed after sliding motion has been induced. To reduce the the likelihood of instability

during the reaching phase, tr must be made small, which, however, requires a high value

for γ. Consequently, the risk of actuator saturation is high, particularly when the track-

ing error is large. To remedy this issue, an adaptation law for the reference signal r(t) is

proposed using pseudo-control hedging (PCH), which will be described in the following

Sec. 3.3.
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3.1.3 Illustrative Example

To fully appreciate the philosophy of sliding mode control, consider an illustrative ex-

ample of a second-order system from [79]. The motion of many dynamic systems can be

approximated to a second order system which is expressed as:

ẍ −Ψẋ = u (3.16)

Suppose Ψ > 0, then the system defined by Eqn. (3.16) is clearly unstable for any

linear control law that uses state feedback of the form u = kx and u = −kx, k > 0. For

the purpose of illustration, let Ψ = 0.5 and k = 2.25. For these values, the closed-loop

eigenvalues are obtained as {1.7707,−1.2707} for k = 2.25, and {0.2500 ± 1.4790i} for

k = −2.25. Due to the presence of closed-loop eigenvalues with positive real parts, the

system in Eqn. (3.16) is not stabilized by state feedback only. This behavior can be

visualized from the phase plots of the system’s closed-loop response, as illustrated in

Fig. 3.1. It can be noticed that the system trajectories (x, ẋ) are both not driven to zero

if they start from any arbitrary initial values.

Although the second-order system in Eqn. (3.16) can be stabilized using various non-

linear control schemes, the application of the sliding mode control scheme will be illus-

trated here. It can be noticed that one of the two state-feedback control laws yields one

stable closed-loop eigenvalue, namely −1.2707. The system’s trajectory moves towards

the origin along the eigenvector corresponding to this negative eigenvalue before depart-

ing away from the origin along the eigenvector corresponding to the positive eigenvalue.

This system behavior can be exploited to develop a switching control scheme that drives

the system trajectory toward the stable eigenvalue and subsequently toward the origin.

Let the closed-loop behavior of the system be required to exhibit a stable, first-order

behavior as ẋ = −cx for some c > 0. This is typical of real world systems, whose open-loop

behavior may be unstable but whose closed-loop behavior must be stabilized. Moreover,
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(a) u = −kx
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Figure 3.1: Phase portraits of the second order system, ẍ−Ψẋ = u, using linear feedback control

this example is analogous to the higher-order helicopter system that is required to re-

spond as an ideal lower-order system. For the present example, without loss of generality,

let c = 0.5. To satisfy this closed-loop behavior, one may synthesize a control law that

drives the system trajectory towards ẋ + cx = 0 and thereafter keeps the system on it.
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This behavior can be achieved using a variable structure controller of the form:

u =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

kx . . . if x(ẋ + cx) > 0

−kx . . . if x(ẋ + cx) < 0

(3.17)

If the control law in Eqn. (3.17) is applied to the system in Eqn. (3.16), then the

resulting phase portrait is as shown in Fig. 3.2.
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-3.1

-3.05

-3

Figure 3.2: Phase portraits of the second order system, ẍ−Ψẋ = u, using sliding mode control,
ẋ + cx = 0 and x = 0

In this illustration, σ = ẋ + cx is a straight line in the state space of the system in

Eqn. (3.16). It represents the desired closed-loop behavior of the system under con-

sideration and is defined as the sliding variable. It can be noticed in Fig. 3.2 that the

system states, despite starting from any arbitrary initial values (represented by black

solid dots), are first driven to the sliding surface σ = ẋ + cx = 0 and then kept in it

28



3.2 State-Dependent Riccati Equation Technique

thereafter. Once σ = 0 is reached, the states are asymptotically driven to x → 0 and

ẋ→ 0. The control law in Eqn. (3.17) that drives the system states to the sliding surface

in finite time and sustains the sliding motion thereafter is referred to as the sliding mode

control law. Finally, it can be observed that the system trajectory oscillates at high

frequency about the sliding surface, or in other words, slides along the surface σ = 0.

3.2 State-Dependent Riccati Equation Technique

3.2.1 Overview

In many control applications, the system’s states must be regulated so that they return

to the prescribed value (or zero) from an arbitrary initial value. In contrast to linear

quadratic regulators (LQR) for linear systems, state-dependent Riccati equation (SDRE)

is a technique that can be used to design nonlinear regulators. In fact, SDRE involves a

direct parameterization to transform the nonlinear system into a linear-like structure [82,

83, 84].

The SDRE approach can be applied to nonlinear, multivariable, control-affine systems

that have the general form ẋ = f(x) + g(x)u. For such a system, a linear-like structure

with state dependent coefficients (SDC) is first obtained by direct parameterization as

ẋ = A(x)x +B(x)u. SDRE seeks to find the nonlinear feedback control solution u that

minimizes the linear quadratic sum of the states and controls, as it will be described in

the following derivation. To obtain the control solution, an algebraic Riccati equation

must be solved analytically (if possible) or numerically [82]. The advantage of an

analytical solution of the algebraic Riccati equation is that a closed-form control law

is directly obtained. Such a control law can be readily applied in a real-time sense for

flight guidance or control purposes and without incurring significant computational cost.

However, in a higher order multivariable system, finding an analytical solution to the

algebraic Riccati equation is not possible, and a numerical solution must be sought.

29



3 Theoretical Framework

Numerical techniques require finite computational time and resources to arrive at a

solution, which reduces the attractiveness for online implementation.

It must be noted that the SDRE control solution of a general multivariable system is

suboptimal because, while the Pontryagin’s necessary condition for optimality is always

satisfied, the costate condition is only satisfied asymptotically at a quadratic rate as

the states are driven to the origin [84]. In other words, the SDRE control solution of

a general multivariable system becomes optimal when all the states are regulated to

zero. The performance of the SDRE controller can be tuned using the control and state

weighting matrices to ensure adequate performance cover a large flight envelope. This

approach can potentially eliminate the need for gain scheduling or approximations.

The state-dependent Riccati equation (SDRE) technique has been previously applied

to several problems in aerospace guidance and control. Bogdanov et al.[85] tested an

SDRE-based flight control design for small autonomous helicopters with compensation

for model mismatch. Cloutier et al. [86] applied SDRE for accurate control of the

position and attitude of a spacecraft to perform constrained maneuvers. Ratnoo et al.

[87] solved a missile guidance problem with constraints on the final heading using SDRE.

The missile lateral acceleration was commanded to achieve a desired impact angle. The

reader is referred to [84], which surveys a wide spectrum of aerospace control applications

using SDRE. For the present work, the choice of SDRE is motivated by the nonlinearities

in the guidance kinematics and the need to achieve an online, real-time capable, optimal

guidance law.

3.2.2 Nonlinear Regulation Using State–dependent Riccati Equation

This section outlines the essential steps in the design of SDRE nonlinear regulators. For

the associated mathematical proofs, the interested reader is referred to [82]. Consider
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the following control–affine nonlinear system:

ẋ = f(x) + g(x)u (3.18)

The nonlinear structure of f(x) can be parameterized to obtain a linear-like structure

as follows:

ẋ = A(x)x + B(x)u (3.19)

where, x ∈ Rn, u ∈ Rm. Both f(x) = A(x)x and B(x) = g(x) are differentiable, and

moreover f(0) = 0 and g(x) ≠ 0. A(x) and B(x) are the state–dependent coefficients

for the state vector x and control vector u respectively. In the multivariable case, an

infinite number of parameterizations exist for f(x) = A(x)x [82]. Now, consider an

infinite–horizon nonlinear regulation problem given by:

Minimize J = 1

2
∫

∞

t0
[xTQ(x)x + uTR(x)u] dt (3.20)

where, Q(x) ≥ 0 and R(x) > 0 for all x. Eqn. (3.20) seeks to minimize the states and

control efforts over an infinite time horizon. The parameterization of the nonlinear

system in Eqn. (3.19) is controllable if the state–dependent controllability matrix given

by:

M(x) = [B(x), A(x)B(x), . . . , A(n−1)(x)B(x)] (3.21)

has full rank over the domain of interest. For the optimal control problem in Eqns. (3.19)

and (3.20), a state-feedback controller is sought with the following form:

u∗ = K(x)x (3.22)
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where the feedback gain that minimizes Eqn.(3.20) is given by [82]:

K(x) = − R−1(x)BT(x)P(x)x (3.23)

and where P(x) is the unique, symmetric, and positive-definite matrix obtained from

the solution of the algebraic Riccati equation:

AT(x)P(x) +P(x)A(x) −P(x)B(x)R−1(x)BT(x)P(x) +Q(x) = 0 (3.24)

Thus, the nonlinear state-feedback control law is obtained as:

u∗ = − R−1(x)BT(x)P(x)x (3.25)

The weighting matrices Q(x) and R(x) are design parameters which shape the tra-

jectories of the state vector x and the control vector u respectively. A relatively higher

value of Q acts upon the states x for tighter state regulation, whereas a relatively higher

value of R acts upon the control vector u for lower control effort. For the scalar case,

it can be shown that the control law in Eqn. (3.25) is globally optimal. However, for

the multivariable case, the control law in Eqn. (3.25) is suboptimal because the SDRE

optimality criterion is asymptotically satisfied as x→ 0 [82].

3.2.3 Illustrative Example

The SDRE technique is best illustrated by a simple example. Consider a scalar system

taken from [88] written as:

ẋ = x − x3 + u (3.26)

where x ∈ R, u ∈ R are the scalar state variable and control variable, respectively. It is

required to find the optimal value of u = u∗ and the system trajectory (x(t), u(t)) that
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minimizes the following cost function with respect to x and u:

J = ∫
∞

t0
(x2 + u2)dt (3.27)

subject to the dynamic constraint of Eqn. (3.26). An analytical optimal control solution

can be obtained using the necessary conditions for optimality [89], as follows:

∂H

∂u
= 0 (3.28)

λ̇ = −∂H
∂x

(3.29)

ẋ = x − x3 + u (3.30)

where the Hamiltonian H is given by:

H = (x2 + u2) + λ(x − x3 + u) (3.31)

According to [88], the analytical solution of Eqns. (3.28)–(3.30) is obtained as:

u∗ = −(x − x3) − x
√
x4 − 2x2 + 2 (3.32)

Now, the problem in Eqns. (3.26)–(3.27) can be solved by the SDRE technique using

the steps described previously [90]. Comparing Eqns. (3.18) and (3.26), f(x) = f(x) =

(x − x3) and g(x) = g(x) = 1. The system can be parameterized to obtain the state-

dependent coefficient form as follows:

ẋ = (1 − x2)x + u (3.33)

so that A(x) = (1−x2) and B(x) = 1. Comparing Eqns. (3.20) and (3.27), Q = 1, R = 1.

P(x) = p(x) is used since the system is scalar. The Algebraic Riccati Equation (3.24) is
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obtained as:

2(1 − x2)p − p2 + 1 = 0 (3.34)

which gives:

p = 1 − x2 ±
√
x4 − 2x2 + 2 (3.35)

Using the positive-definite solution of Eqn. (3.35), the optimal control solution u∗ is

obtained according to Eqn.( 3.25) as:

u∗ = −x + x3 − x
√
x4 − 2x2 + 2 (3.36)

which is identical to Eqn. (3.32). This shows that SDRE yields the optimal control

solution for the scalar case.

Further, in [88, 90], another approach using feedback linearization is considered to

compare the optimal solutions. Suppose the control applied to the system in Eqn. (3.26)

is u = x3 − 2x then the closed loop system becomes:

ẋ = −x (3.37)

which is a globally exponentially stable system. However, it can be noticed that the

required control effort for large initial value of x(t = t0) is the third power of x.

The system trajectory x and control input u is plotted in Figs. 3.3a and 3.3b, re-

spectively. Starting from the same initial condition x(0) = 3, both SDRE and feedback

linearization controllers are successful in stabilizing the system. However, it can be seen

that the SDRE solution, which is identical to the analytical optimal solution, requires

significantly less control effort as compared to feedback linearization. It is also evident

that cost x2 + u2 is minimized by the SDRE controller.
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Figure 3.3: System trajectories of Eqn. (3.26) for initial condition x(0) = 3, SDRE optimal
control and Feedback Linearization

3.3 Pseudo-control Hedging

3.3.1 Overview

Pseudo-control Hedging (PCH) aims to protect actuators from being commanded values

that they physically cannot achieve, either due to their saturation limits, rate limits or

other physical characteristics. Conceptually, PCH moves (hedges) the reference com-

mand signal in the opposite direction and in proportion of the amount that the plant

did not close the tracking error. PCH was originally proposed by Johnson and Calise in

a model-reference adaptive control framework [91], where the adaptive element is pre-

vented from “seeing” the plant or actuator characteristics. Owing to its simplicity and

effectiveness, PCH has been applied in several aerospace control applications, includ-

ing adaptive control for a small-scale autonomous helicopter [92], and incremental NDI

control for a full-scale helicopter [21].

3.3.2 Reference Command Adaptation Law

In the present work, an optional PCH layer in each SMC loop adapts the reference

signal according to the tracking performance of the dynamics in its lower hierarchy.
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This adaptation ensures that when PCH is active, the SMC law is prevented from seeing

a very high tracking error xe, which is typically encountered in aggressive maneuvers, and

which may otherwise generate an intractable control signal. To obtain the adaptation

law, let the SMC signal u in Eqn. (3.6) be applied to the original uncertain system in

Eqn. (3.1). Substituting Eqn. (3.6) in Eqn. (3.1) yields the commanded pseudo control

ν = ẋ, as follows:

ν = Ax −B(SB̃)−1((SÃ −ΦS)x̃ − ST̃r + ρSAT(Pσ/ε)) + f (3.38)

Now, suppose û is the actual control achieved by the actuator, which may not be identical

to u due to actuator and plant characteristics. û is either measured from the actual

control applied, or it can be estimated by an appropriate actuator model. The estimated

pseudo control, ν̂ = ˙̂x, corresponding to the actual control is obtained as:

ν̂ = Ax +Bû + f (3.39)

The difference between the commanded and estimated pseudo control, νh = ν − ν̂ is

obtained as:

νh = −B(SB̃)−1((SÃ −ΦS)x̃ + ST̃r − ρSAT(Pσ/ε)) −Bû (3.40)

νh is then inserted in the reference model which adapts the reference signal r as follows:

ṙh = Kh(r − rh) − νh (3.41)

The gain matrix Kh can be tuned for the required adaptation performance. In ac-

cordance with Eqn. (3.41), the actual reference signal applied to the SMC is rh, which

moderates the tracking error xe = y − rh when it becomes large and intractable. However,

when the commanded control becomes identical to the achieved control, then Eqn. (3.41)
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simply acts as a first order filter model to the SMC. Nevertheless, it is evident that PCH

introduces additional closed-loop dynamics that affect the helicopter’s agility in reference

command following tasks, as it will be shown in the simulation results.

3.3.3 Illustrative Example

With PCH

Without PCH
Feedback

Linearization

Actuator

1
s

Plant
ucom

uact

vh

x
ẋ = f(x,u)

rh

ffbl(x)

Kh

Figure 3.4: Closed-loop control with and without PCH

To illustrate how reference command adaptation is applied to practical systems, con-

sider the same scalar example as Eqn. (3.26) in the previous section [88]. The difference

in this example is that a first-order actuator model is considered. The system dynamics

are written as follows:

ẋ = x − x3 + ucom (3.42)

where ucom is the commanded control to the actuator. The actuator dynamics are

represented by a simple first-order transfer function as:

uact

ucom
= 1

τs + 1
(3.43)
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where τ is the actuator time constant and uact is the actuator output that is applied

to the plant. Let a feedback linearization control command of the form u = x3 − 2x be

applied to the actuator[88, 90]. Now, due to the presence of actuator dynamics, the

commanded control signal is not identical to the actual control signal. This is illustrated

in Fig. 3.4.
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Figure 3.5: Illustration of actuator saturation without PCH

The control and state variables with the feedback linearized control and without the

PCH reference command are depicted in Fig. 3.5. The commanded control as seen in

Fig. 3.5a is high. The actuator attempts to track this commanded control as seen in

Fig. 3.5b, but fails to match the commanded values. Moreover, the output of the actuator

38



3.3 Pseudo-control Hedging

reaches very close to its upper bound (defined arbitrarily for illustration purposes). The

system state in Fig. 3.5c is, however, found to be regulated to zero, as expected.
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Figure 3.6: Illustration of the mitigation of actuator saturation with PCH

Next, the PCH reference command adaptation adaptation is activated and the re-

sponses are plotted in Fig. 3.6. In this case, the command applied to the actuator is the

hedged command rh, which considers the commanded and actual control and hedges (or

adapts) the reference command ucom by an amount proportional to the difference be-

tween the actual and commanded control. The result of this adaptation can be observed

in Figs. 3.6b–3.6c. The actuator output matches the reference command rh more closely

than before. Furthermore, the actuator outputs are far from the saturation limits. The

39



3 Theoretical Framework

state variable in Fig. 3.6d is regulated to zero, albeit with delays due to the additional

closed-loop dynamics introduced by the PCH layer.
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4 Modeling and Simulation Framework

This chapter describes the modeling and simulation environment that will be used

for validating the new guidance and control formulations. The simulation environment

includes a comprehensive, full-scale, nonlinear flight mechanics code representing the

helicopter plant and an empirically derived turbulence model. The eigenspace of the

helicopter plant is analyzed with regard to its open loop stability characteristics. The

simulation models are hosted in a real-time Matlab/Simulink environment and integrated

in the rotorcraft simulation environment located in the premises of the Institute of

Helicopter Technology.

4.1 Helicopter Simulation Model

A conventional helicopter model of constant massm and inertia J is considered. Through-

out the thesis, the term conventional helicopter refers to the single main rotor and tail

rotor helicopter configuration. The 6-DOF nonlinear rigid body equations of motion of

the fuselage are expressed in a vehicle-carried reference frame as:

v̇b = 1

m
F + g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sin θ

cos θ sinφ

cos θ cosφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−ω × vb (4.1)

ω̇ = J−1(M −ω × Jω) (4.2)
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The forces and moments are contributed by the principal structural components - main

rotor, tail rotor, fuselage, vertical fin and horizontal stabilizer. The main and tail ro-

tor blades are assumed to be rigid. Rotor DOF up to the first harmonics of the flap

(β0, β1c, β1s), lag (ζ0, ζ1c, ζ1s), and torsion modes are modeled by the blade element

theory and analytical downwash models. The Euler attitudes and velocity vector are

expressed using an inertial North-East-Down (NED) reference frame as:

θ̇ = Ωω (4.3)

V̇ = 1

m
TbeF +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

where Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Tbe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and s(⋅), c(⋅), t(⋅) denote sin(⋅), cos(⋅), tan(⋅), respectively. For translational rate command

tracking tasks, it is necessary to obtain the relation between the local inertial transla-

tions (forward, lateral and vertical accelerations) and the main rotor thrust vector. For

this purpose, Eqn. (4.4) is expressed in a new, vehicle-carried local reference frame by

rotating the NED frame about its vertical axis by an angle ψ and translating it to the

vehicle center of gravity. The local reference frame obtained thus has its Z-axis (local ver-

tical) pointed vertically down, its X-axis (local horizontal) aligned with the helicopter’s

heading, and its Y-axis (local lateral) pointed port side. The translational equations of
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4.1 Helicopter Simulation Model

motion in the local frame can be approximated as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ax

ay

az

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Fmr

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sin θ cosφ

sinφ

− cos θ cosφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F ′

h

F ′

l

F ′

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

where [F ′

h F
′

l F
′

z]T represent force components excluding the main rotor thrust and grav-

ity in the local frame. The translational motion of conventional helicopters from handling

qualities perspective can be characterized by three distinct speed regimes: hover, low

speed flight, and forward flight. Hover and low speed flight includes the flight enve-

lope up to 23 m/s ground speed and forward flight includes the flight envelope beyond

23 m/s ground speed [4]. In hover and low speed flight, a lateral acceleration is typically

designed to yield a proportional change in lateral velocity, whereas in forward flight a

lateral acceleration is designed to yield a proportional turn rate. The forward and ver-

tical accelerations in both flight regimes are designed to yield proportional changes in

forward and vertical velocities, respectively. Thus:

ax = V̇h (4.6)

ay =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V̇l . . .hover and low speed

χ̇Vh . . . forward flight

(4.7)

az = V̇z (4.8)

The helicopter plant model described by Eqns. (4.1)–(4.4) is implemented in real-

time using the software package GenSim, which is a comprehensive model developed

and validated over the past three decades. For the interested reader, Refs. [93, 94] de-

scribe GenSim’s structure in greater detail, and Ref. [95] presents a comparison between

similar state-of-the-art comprehensive rotorcraft models. The schematic of GenSim is

reproduced from Ref. [93] in the following Fig. 4.1 for convenience. It shows a modular
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architecture for the different helicopter structural components, as well as the interactions

and the data flow between them. Additionally, characteristic rotorcraft phenomena such

as in ground and out of ground effects are also modeled and simulated by GenSim. Gen-

Sim permits the vehicle, aeromechanical and simulation parameters to be set by input

data files, and during runtime it outputs the fuselage and rotor states for visualization

and feedback purposes. For the simulation studies undertaken in this thesis, the vehicle

and aeromechanical parameters for a BO105 model, which has a hingeless rotor system,

are chosen. Thus, the helicopter plant model simulates realistic flight dynamics that are

suitable for an economical assessment of flight guidance and control algorithms.

Figure 4.1: Code structure of the GenSim flight mechanics model, adapted from Ref. [93]

4.2 Model Linearization and Eigenspace Analysis

The vehicle dynamics in Eqns. (4.1)–(4.4) are not affine in terms of the pilot controls,

namely displacements of the cyclic stick, the collective stick, and the pedals. Similarly,

the Euler angles appear in the translational Eqn. (4.5) as trigonometric functions. To

ease controller development, the nonlinear dynamics are linearized in this section. In
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4.2 Model Linearization and Eigenspace Analysis

addition to easing the control law development, a linearized system is well suited to

analyze the stability characteristics of a bare-airframe helicopter.

For linearizing the vehicle dynamics, operating points are defined at fixed airspeed

intervals of 5 m/s between hover (V = 0 m/s) and forward flight (V = 70 m/s) in steady,

straight, and level flight condition. At each operating point, a trim routine determines

the set of control inputs that yields steady-state conditions (v̇b → 0, ω̇ → 0). Numerical

perturbations around the steady-state then yield the stability and control derivatives,

A∗ and B∗, respectively, which are conveniently expressed in the state–space form as:

ẋ8(t) = A∗x(t) +B∗u(t) (4.9)

where x8 ≡ [φ θ u v w p q r]T ∈ R8 and u ≡ [Dθ Dα Dβ Dδ]T ∈ R4 denote change from

trim at any operating point. It is found that the pair {A∗,B∗} is controllable and B∗

is full column rank over the full flight envelope. Note that, for the purpose of control

design, rotor states have been neglected as they operate at much higher frequencies than

the fuselage states that operate in the medium and low frequency range. Instead, the

steady-state effects of the rotor modes are directly absorbed into the stability and control

derivatives. Although rotor state feedback has shown to improve controller bandwidth

and disturbance rejection for advanced rotorcraft applications, real-time measurements

of rotor states is expensive and impractical. For this reason, rotor state feedback is

considered beyond the scope of this work.

Fig. 4.2 plots the open loop eigenvalues of Eqn. (4.9). It can be seen that the phugoid

mode, with positive real parts, is unstable over the full speed range. Among the other

longitudinal modes, the heave mode is lightly damped and the pitch mode is heavily

damped. Among the lateral/directional modes, the Dutch roll mode is lightly damped

and its period varies with forward speed. While the spiral mode is lightly damped, the

roll mode is heavily damped. Previous works reporting on flight testing the BO105 [96,
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Figure 4.2: BO105 open-loop eigenvalues using quasi-steady 6-DOF linear model
( longitudinal modes, lateral-directional modes, ○ ○ hover, ∗ ∗ 70 m/s)

97] and those identifying the linear system models of the BO105 [6] corroborate the

findings in Fig. 4.2.

Finally, the simplified translational dynamics of Eqn. (4.5) are linearized such that the

forward and lateral accelerations are affine in terms of the attitude angles. The following

linear translational system is obtained:

⎡⎢⎢⎢⎢⎢⎣

ax

ay

⎤⎥⎥⎥⎥⎥⎦
≈
⎡⎢⎢⎢⎢⎢⎣

−g g tan θ tanφ

0 g/(cos θ)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

∆θ

∆φ

⎤⎥⎥⎥⎥⎥⎦
(4.10)

where ∆ identifies changes from trim. Note that in obtaining Eqn. (4.10), velocity

stability derivatives have been neglected due to their much smaller influence as compared

to the control derivatives.

4.3 Turbulence Model

A realistic simulation of harsh environmental conditions, such as the influence of ship

airwakes on the helicopter dynamics, requires high fidelity turbulence models. However,

conventional methods for turbulence modeling in rotorcraft applications suffer from high

complexity and computational cost. The need for simpler, real-time-capable turbulence

simulation for helicopter control design purposes led to the development of an empirical
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4.3 Turbulence Model

Control Equivalent Turbulence Input (CETI) model. CETI was originally proposed by

Lusardi et al. for the UH-60 Black Hawk [98] and later extended by Seher-Weiss et

al. for the EC135 [99]. The underlying principle is to use flight test data and system

identification methods to extract white-noise driven turbulence filters that reproduce

the same system responses as real gusts. Previous flight control applications that used

CETI include a SA330 Puma helicopter in a shipboard approach [24], and a precision

hover task of a BO105 helicopter [18]. The CETI filters representing high turbulence in

hover and low speed are identified by the following structure [99]:

δDβ

Wn
= 5.99

(s + 3) (4.11)

δDα

Wn
= 6.07

(s + 3) (4.12)

δDδ

Wn
= 21.5

(s + 7.28) (4.13)

δDθ

Wn
= 0.974(s + 60)

(s + 1.89)(s + 15) (4.14)

The nature of the turbulence inputs are illustrated in Fig. 4.3. The figure shows the

percentage of displacements of the main rotor longitudinal cyclic, main rotor lateral

cyclic, main rotor collective, and tail rotor collective simulated for 10 s. To simulate

turbulence in closed-loop, these CETI filter outputs are superimposed on the controller

output before inserting the sum in the plant model. Note that Eqns. (4.11)–(4.14) were

obtained from EC135 tests and are primarily applicable in hover and low speed flight.

However, due to the similarity of the EC135 and BO105 rotor systems, Eqns. (4.11)–

(4.14) are assumed to be applicable to the BO105 model. This assumption is also

validated by previous works applying the EC135 turbulence filters to a BO105 physi-

cal model [18]. Moreover, as turbulence filters in forward flight are not yet available,

Eqns. (4.11)–(4.14) will be used for a qualitative assessment in forward flight in the

simulations that follow.
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Figure 4.3: Illustration of control equivalent turbulence inputs applied to the main and tail

rotor actuators

4.4 Matlab/Simulink Environment

The helicopter simulation model described in Sec. 4.1, together with the robust control

design and optimal guidance laws that will be developed in Chapters 5–7, are hosted in

a Matlab/Simulink framework within a rotorcraft simulation environment as described

in Ref. [100]. The Matlab/Simulink development environment handles all internal data

exchange between the controller and the plant, as well as external data exchange with the

cockpit and the image generator. Fig. 4.4 depicts a high-level Simulink block diagram.

It consists of a simulation control and flight control block, a flight dynamics block, a

visualization block and an output feedback block. The simulation pace is set such that

1 s of simulation time corresponds to 1 s of clock time to yield real-time capability.

Fig. 4.5 shows the modules that comprise the flight dynamics block. The GenSim plant

model has been originally developed in Fortran. For simulation purposes, the Fortran

code is integrated as an external S-function into Simulink and is operated at 1000 Hz.

This S-function receives parametric and control inputs at runtime and it outputs the

fuselage and rotor states as outputs. Next, Fig. 4.6 shows the modules contained within
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the simulation and flight control block. In this block, all the simulation parameters that

are required at simulation start, including sampling time, initial trim estimates, and

initial flight condition (position, speeds), are set. Runtime data required by GenSim,

including control commands, engine parameters, switches, and environmental conditions

are also supplied by this block. The guidance and control algorithms that are developed
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Figure 4.6: View of the simulation and flight control block [100]

in the following sections are integrated into the “Guidance & Control” module in Fig. 4.6.

This module is operated at 100 Hz, which is of the same order of magnitude at which

modern computing platforms of most serial helicopter avionics suites are operated.
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This chapter is based on the following journal publication:

[J2] O. Halbe and M. Hajek, “Robust Helicopter Sliding Mode Control for Enhanced

Handling and Trajectory Following,” Journal of Guidance, Control, and Dynamics,

vol. 43, no. 10, pp. 1805–1821, 2020.

Following the theoretical foundation of the sliding mode control technique outlined

in Chapter 3, this chapter aims to synthesize sliding mode control laws that satisfy heli-

copter handling quality specifications and robustness to interaxis coupling, turbulence,

and other unmodeled dynamics. In this approach, first the required response types for

enhancing helicopter handling qualities are specified, followed by a synthesis of a two-

loop control architecture. Finally, stability analyses of the proposed control architecture

and a comparative assessment with an explicit model following controller are presented.

5.1 Required Response Types

Helicopter handling becomes easier as the perceived closed loop dynamics move closer

to an ideal system. The equivalent systems approach for enhancing HQ prescribes ide-

alized lower order axial response characteristics in helicopters that are otherwise char-

acterized by higher order dynamic modes [9]. The present work aims to demonstrate

predicted Level 1 handling, autonomous execution of MTEs requiring moderate to ag-

gressive agility, and turbulence rejection properties. For attitude and rate commands, the
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5 Robust Helicopter Control Design

following response-types are chosen: attitude command attitude hold (ACAH) in both

pitch and roll axes, rate command height hold (RCHH) in the vertical axis, and rate

command direction hold (RCDH) in the yaw axis. While ACAH tracks the commanded

attitude (pitch or roll) using the cyclic control input, RCHH tracks a commanded iner-

tial vertical speed via normal speed dynamics and the collective control input. RCDH

provides directional control in hover and low speed using the pedal input, and ensures

turn coordination in forward flight. To assure predicted Level 1 HQs for each response-

type, the on-axis responses must satisfy amplitude requirements at three levels: small,

moderate, and large, and frequency requirements in three ranges ranges: long-term,

mid-term, and short-term behavior. Moreover, the off-axis responses to on-axis inputs

must remain within their specified bounds [4]. To satisfy these requirements, previous

studies sought to define the on-axis responses as ideal transfer functions and to design

feedback gains for satisfying the required closed-loop control performance [5, 17, 28].

This approach is particularly attractive because it offers design flexibility in choosing

closed-loop response characteristics, while remaining independent of the underlying he-

licopter dynamics. Following previous studies, pitch and roll ACAH response-types in

this work are specified as ideal second-order transfer functions, and RCDH and RCHH

are specified as ideal first-order transfer functions, as follows:

ACAH: θ̇ + 2ζθωθθ + ω2
θ ∫

t
0 (θ − θc)dτ = 0 (5.1)

φ̇ + 2ζφωφφ + ω2
φ ∫

t
0 (φ − φc)dτ = 0 (5.2)

RCDH: r + λr ∫ t0 (r − rc)dτ = 0 (5.3)

RCHH: w + λz ∫ t0 (w −wc)dτ = 0 (5.4)

It has been suggested in [37] that bandwidth (ωbw), which is the stability margin

available for piloting tasks, plays a critical role in ensuring Level 1 HQ.
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5.1 Required Response Types

For the second-order ACAH response types in Eqns. (5.1)–(5.2), the bandwidth is the

frequency at which the phase angle between command signal and output signal is −135°.

From [37], ωbw can be expressed in terms of the natural frequency and the damping ratio

as follows:

ωbw,θ = ωθ(ζθ +
√
ζ2
θ + 1) (5.5)

ωbw,φ = ωφ(ζφ +
√
ζ2
φ + 1) (5.6)

Here, ωbw,(θ,φ) > 2 rad/s satisfies Level 1 HQ for both pitch and roll response types [4, 5,

37]. The ACAH response parameters in this work are used from recent helicopter HQ

studies [28]: ζθ = 0.9, ωθ = 2.34, ζφ = 0.75, ωφ = 2.34, which yield ωbw,θ = 5.25 rad/s and

ωbw,φ = 4.68 rad/s. Fig. 5.1b shows that the pitch and roll bandwidth values correspond

to their respective −135° phase angles. Furthermore, the required limits on pitch and

roll oscillations, according to [4], are plotted in Fig. 5.1a. This suggests that the ACAH

transfer function structure and parameters will ensure Level 1 HQ for both pitch and

roll responses.

For the first-order RCDH and RCHH response types in (5.3)–(5.4), the bandwidth is

defined by the cutoff frequency at −3 dB. For Level 1 HQ, ωbw,r > 2 rad/s and ωbw,w >

0.2 rad/s are required according to [4, 5]. Using λr = 4 and λw = 0.8 from [28], ωbw,r =

4 rad/s and ωbw,w = 0.8 rad/s are obtained. Fig. 5.1b shows that these yaw and heave

bandwidth values correspond to their respective −3 dB gain limits.

Further, a translational rate command (TRC) response-type is chosen for trajectory

following and execution of guidance commands. In hover and low speed TRC, pitch and

roll attitudes produce a proportional change in forward and lateral velocities, respec-

tively. In forward flight TRC, pitch and roll attitudes produce a proportional change in

forward velocity and turn rate, respectively. Furthermore, ADS-33 requires a qualitative

first-order behavior for the translational rates. To satisfy these requirements, the track-
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Figure 5.1: Frequency characteristics of the attitude command response types

ing errors in the ground velocities and the track angle are specified as ideal first-order
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transfer functions, as follows:

TRC: (Vh − Vh,c) + λh ∫ t0 (Vh − Vh,c)dτ = 0 (5.7)

TRC hover/low speed: (Vl − Vl,c) + λh ∫ t0 (Vl − Vl,c)dτ = 0 (5.8)

TRC forward flight: (χ − χc) + λχ ∫ t0 (χ − χc)dτ = 0 (5.9)

Table 5.1: Summary of required on-axis response-types and parametric values

Commanded Intermediate Response- Flight
state state type envelope ζ ω λ

θ – ACAH full 0.9 2.34 –
φ – ACAH full 0.75 2.34 –
r – RCDH full – – 4
Vz w RCHH full – – 0.5
Vl φ TRC hover/low speed – – 0.2
Vh θ TRC full – – 0.2
χ φ TRC forward flight – – 0.1

Note that the set of ideal transfer functions Eqns. (5.1)–(5.9) is independent of the

plant model. Table. 5.1 summarizes all commanded states and response-types. As

discussed, the system parameters shown in Table. 5.1 are those that accord predicted

Level 1 HQs based on previous studies [28, 5]. Moreover, these parametric values assure

higher bandwidths in both pitch and roll ACAH response-types, as compared to the

TRC response-type, which ensures adequate time-scale separation [28]. In summary, the

control problem is to synthesize robust feedback control laws that ensure:

1. Required on-axis responses to on-axis control inputs according to Eqns. (5.1)–(5.9)

2. Regulation of off-axis responses to on-axis control inputs according to ADS-33

quantitative criteria

3. Stability of the overall closed-loop control architecture

4. Trajectory following in MTEs requiring moderate to aggressive agility
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5. Turbulence rejection in shipboard approach and precision hover tasks

5.2 Sliding Mode Control Objectives

SMC-based robust control laws in a two-loop control architecture are now developed

according to the steps outlined in Sec. 3.1.2. In a conventional helicopter configuration,

the main rotor thrust magnitude controls its normal translation, the main rotor thrust

inclination controls its pitch and roll rates, and the tail rotor thrust magnitude controls

its yaw rate. For helicopter multivariable control law synthesis, it is thus prudent to

group in the inner loop all directly actuated fuselage states, namely pitch and roll atti-

tudes and angular rates, normal velocity, and yaw rate, even if they all do not operate

on the same time scale. The translational rates required for guidance command execu-

tion are grouped in the outer loop. For controller synthesis, the problem statements in

Sec. 5.1 can be translated into SMC objectives for the inner and outer loops as follows:

1. Design sliding surfaces to enforce ideal on-axis system responses according to

Eqns. (5.1)–(5.9) and Table 5.1, and to asymptotically track the reference com-

mand signal, limt→∞ ∥y(t) − r(t)∥ = 0

2. Induce and sustain sliding motion in the presence of matched, bounded uncer-

tainties in the form of interaxis coupling elements, turbulence effects, and any

unmodeled dynamics

3. Ensure single-loop and two-loop stability

5.3 Attitude/Rate Command Sliding Mode Control

For simplicity, the notations used in Sec. 3.1.2 are retained in the inner loop control

synthesis. The inner loop state, control, output, and command signal vectors are x6 ≡

[φ θ w p q r]T, u ≡ [Dθ Dα Dβ Dδ]T, y ≡ [φ θ w r]T, and r ≡ [φc θc wc rc]T, respectively.
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Note that u and v are omitted from the inner loop state vector as inertial translational

commands are handled in the outer loop. The subscript in x6 is also dropped for brevity.

The command vector is partitioned as r = [r1 r2]T, where r1 ≡ [φc θc]T is generated by

an outer loop TRC SMC, and r2 ≡ [wc rc]T is generated using the respective kinematic

relationships for trajectory following. As discussed previously, identification of cross-

coupling system and control derivatives are found to have varying degrees of mismatch

with actual flight data [6]. For this reason, all on-axis derivatives are separated from

all off-axis derivatives in the stability matrix A∗ and in the control matrix B∗. The

resulting on-axis stability and control matrices, A and B, respectively, are therefore

block-diagonal. All off-axis derivatives, together with CETI terms and any unmodeled

dynamics are grouped into the unknown but bounded function f(x,u + δu, t), where δu

represents the CETI terms. This formulation has the effect of enhancing robustness to

cross-coupling effects, albeit at the expense of higher gains of the discontinuous control

terms. However, it will be shown in the simulation results that both chattering and

saturation effects can be effectively mitigated by this approach. Using Eqn. (3.1)–(3.2),

the uncertain inner loop linear system can be expressed as follows:

ẋ(t) = Ax(t) +Bu(t) + f(x,u + δu, t) (5.10)

y(t) = Cx(t) (5.11)

It is assumed that f(x,u + δu, t) = B Γ(x,u + δu, t) and ∥Γ∥≤ L, a known upper bound.

This assumption holds because the upper bounds of the cumulative off-axis responses

and turbulence effects can be estimated using flight or model data within the opera-

tional flight domain. Furthermore, although the pitch and roll attitude dynamics are

unmatched, they do not contain any uncertainties. Thus, both matching and bound-

edness conditions of the uncertainties are satisfied. Next, as discussed in Sec. 3.1.2,

(A,B,C) are obtained in a special canonical form, known as the regular form, as fol-
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lows:

A =
⎡⎢⎢⎢⎢⎢⎣

A11 A12

A21 A22

⎤⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎣

0

B2

⎤⎥⎥⎥⎥⎥⎦
C = [C1 C2] (5.12)

where A11 ∈ R2×2, A12 ∈ R2×4, A21 ∈ R4×2, A22 ∈ R4×4, B2 ∈ R4×4, C1 ∈ R4×2, and

C2 ∈ R4×4. Also see Appendix A for details of the matrix structure.

Now, according to the first step in SMC synthesis, the output tracking error vector is

defined as ẋe = (y − r) and the augmented state vector becomes x̃ ≡ [xe x]T. x̃ can be

repartitioned into unmatched and matched states as x̃ ≡ [x1 x2]T where x1 ∈ R6 and

x2 ∈ R4. The augmented uncertain system dynamics are then obtained as:

⎡⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Ã11 Ã12

Ã21 Ã22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

B2

⎤⎥⎥⎥⎥⎥⎦
u −

⎡⎢⎢⎢⎢⎢⎣

T1

0

⎤⎥⎥⎥⎥⎥⎦
r +

⎡⎢⎢⎢⎢⎢⎣

0

B2Γ

⎤⎥⎥⎥⎥⎥⎦
(5.13)

Note from Eqn. (5.13) that while the uncertainties present in x2 are matched, the refer-

ence commands in x2 are unmatched. Eqn. (5.13), when written in compact form, yields

the same form as Eqn. (3.5) and is reproduced for clarity:

˙̃x = Ãx̃ + B̃u − T̃r + f̃ (5.14)

In the second step, a suitable sliding surface is designed to enforce the ideal system

behavior, specified by Eqns. (5.1)–(5.4), as follows:

σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w + λw ∫ t0 (w −wc)dτ

r + λr ∫ t0 (r − rc)dτ

φ̇ + 2ζφωφφ + ω2
φ ∫

t
0 (φ − φc)dτ

θ̇ + 2ζθωθθ + ω2
θ ∫

t
0 (θ − θc)dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.15)
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In terms of the new state vector x̃, the sliding surface of Eqn. (5.15) can be written as:

S = {(x1,x2) ∶ σ = S1x1 + S2x2 = 0} (5.16)

where S1 and S2 contain the corresponding ideal system parameters listed in Table 5.1

(also see Appendix A). When sliding motion is induced, σ = 0. Since S2 is square and

nonsingular for nonzero gains, it follows that x2 = −S−1
2 S1x1. Using Eqn. (5.13), one

obtains:

ẋ1 = (Ã11 − Ã12S
−1
2 S1)x1 −T1r (5.17)

Since the nominal system is controllable, the pair (Ã11, Ã12) is also controllable in

accordance with [38]. Furthermore, Eqn. (5.17) reveals that ideal sliding motion yields

a system where the output tracking errors in x1 are insensitive to the uncertainties.

In the third step, a control law is proposed to drive the system in Eqn. (5.13) to the

sliding manifold in Eqn. (5.16) and sustain the sliding motion thereafter. In physical

terms, the helicopter is expected to exhibit the required attitude and normal response

characteristics on the sliding manifold. For simplicity, setting Φ = −0.5 I4×4 in the Lya-

punov equation gives P = I4×4. The inner loop continuous control law is then obtained

according to Eqn. (3.13) as:

u = −(SB̃)−1((SÃ − 0.5 S)x̃ + ST̃rh − ρ SAT(σ/ε)) (5.18)

where S = [S1 S2], ρ = diag(ρ1, ρ2, ρ3, ρ4), and SAT(σ/ε) = [sat(σ1/ε) . . . sat(σ4/ε)]T.

Note that an optional PCH layer can be added to the inner loop so that σ in Eqn. (5.18)

is computed using rh, where rh is computed from r according to Eqn. (3.41). However,

when control saturation is not an issue, r from the outer loop can be directly applied to

Eqn. (5.18).
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As shown in Sec. 3.1.2, the boundary layer is reached in finite time despite the contin-

uous approximation in Eqn. (5.18). However, ideal sliding motion does not occur within

the boundary layer and the system is not completely insensitive to the matched uncer-

tainties [38]. When the saturation element operates in the linear region (i.e., ∥σ∥⩽ ε),

the augmented inner loop SMC law has a high-gain PID-like structure, as follows:

u = −(SB̃)−1((SÃ − 0.5S + ρ
ε
S)x̃ − ST̃r) (5.19)

Substituting Eqn. (5.19) in Eqn. (5.14), one obtains:

˙̃x = (Ã − B̃(SB̃)−1(SÃ −ΦS + ρ
ε
S))x̃ + (B̃(SB̃)−1ST̃ − T̃)r + f̃ (5.20)

The closed-loop augmented system in Eqn. (5.20) is of the form ˙̃x = (Ã − B̃K̃1)x̃ + (B̃K̃2 − T̃)r + f̃ .

Fig. 5.2 plots the closed-loop eigenvalues of the nominal augmented system that are

found to have negative real parts. Furthermore, the eigenvalue variations with airspeed

are small. This suggests that the closed-loop nominal system is stabilized within the

boundary layer, and that the system responses between hover, low speed, and forward

flight are uniform.

5.4 Translational Rate Command Using Sliding Mode Control

In forward flight, the outer loop state, control, output, and command vectors are denoted

by z ≡ [χ Vh]T, r1 ≡ [φ θ]T, w ≡ [χ Vh]T, and q ≡ [χc Vh,c]T, respectively. Note that,

in obtaining Eqn. (4.10), the nonlinearities have been neglected and the coupling of

attitudes and translations has been simplified. For this reason, the TRC SMC law

needs to be robust to the unknown but bounded uncertainties. Using Eqn. (4.10), the
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Figure 5.2: BO105 closed-loop eigenvalues using SMC feedback (0 m/s to 70 m/s)

horizontal inertial translational dynamics are written as:

ż(t) = Fz(t) +Gr1(t) + d(z, r1, t) (5.21)

w(t) = Hz(t) (5.22)

where F = 02×2, G from Eqn. (4.10), and H = I2 are already in regular form. The dis-

turbance term that groups the nonlinearities and any neglected effects of the pitch and

roll attitudes on the translational rates is matched and assumed to be bounded, so that

d(z, r1, t) = G Γo(z, r1, t) and ∥Γo∥≤ Lo. The control objective is for the command signal

q to asymptotically track the output w, and enforce the required closed-loop behavior

of Eqns. (5.7)–(5.9).

In the first step, defining the tracking error as że = (w − q), the augmented state

vector is obtained as z̃ ≡ [ze z]T. Since the number of outputs is identical to the number

of inputs, a further partitioning is not necessary. The augmented system dynamics are
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expressed as:

˙̃z = F̃z̃ + G̃r1 − T̃oq + d̃ (5.23)

where F̃ =
⎡⎢⎢⎢⎢⎢⎣

0 I

0 0

⎤⎥⎥⎥⎥⎥⎦
, G̃ =

⎡⎢⎢⎢⎢⎢⎣

0

G

⎤⎥⎥⎥⎥⎥⎦
, T̃o =

⎡⎢⎢⎢⎢⎢⎣

I

0

⎤⎥⎥⎥⎥⎥⎦
,and d̃ =

⎡⎢⎢⎢⎢⎢⎣

0

d

⎤⎥⎥⎥⎥⎥⎦

In the second step, a sliding surface is designed for enforcing the required translational

response characteristics in Eqns. (5.7)–(5.9). In forward flight, the sliding surface is

obtained as:

µ =
⎡⎢⎢⎢⎢⎢⎣

(χ − χc) + λχ ∫ t0 (χ − χc)dτ

(Vh − Vh,c) + λh ∫ t0 (Vh − Vh,c)dτ

⎤⎥⎥⎥⎥⎥⎦
(5.24)

and expressed in terms of the new state vector as:

R = {(ze,z) ∶ µ = R1ze +R2z −R3q = 0} (5.25)

In the third step, a control law is proposed that drives the system of Eqn. (5.23) to the

sliding surface of Eqn. (5.25) and sustains sliding motion thereafter. Using Φ = −0.5 I2×2,

P = I2×2 as before, and replacing the discontinuous control term with a saturation

function in Eqn. (3.13), the outer loop continuous control law is obtained as:

r1 = −(RG̃)−1((RF̃ − 0.5R)z̃ + (0.5R3 −RT̃o)qh −R3q̇h + ρosat(µ/εo)) (5.26)

where R = [R1 R2], ρo = diag(ρo,1, ρo,2), and sat(µ/εo) = [sat(µ1/εo) sat(µ2/εo)]T. An

optional PCH layer can be added to the outer loop so that the command vector qh

in Eqn. (5.26) and in the sliding variable µ is the output of the outer loop PCH layer

according to Eqn. (3.41).
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Alternatively, in hover and low speed flight, the outer loop state, output, and command

vectors become z ≡ [Vl Vh]T, w ≡ [Vl Vh]T, and q ≡ [Vl,c Vh,c]T, respectively, while the

control vector r1 is identical. The hover/low speed SMC law can be easily synthesized

analogous to Eqn. (5.26), and is therefore omitted for brevity.

The transition point between forward flight and low speed is 23 m/s corresponding to

the 45 kts threshold in ADS-33. However, the transition between the two sets of lateral-

directional SMC laws can be a challenge due to the presence of integrators. To avoid

instabilities and to ensure a smooth transition, the integrators in the lateral-directional

control laws are reset at each transition point crossing such that their outputs match

the current state values.

5.5 Yaw/Normal Rate Command Using Kinematics

To complete the control design, r2 ≡ [wc rc]T remains to be computed. These commands

are readily obtained using algebraic manupulations of their respective kinematic rela-

tionships in forward flight and low speed/hover. This obviates the need for a separate

SMC loop.

In the yaw axis, a yaw rate command (rc) in turning forward flight is generated

internally for executing a steady, coordinated turn. This yaw rate command ensures

that the helicopter’s heading is sufficiently aligned with the ground track angle and

sideslip remains small. From [101], when the helicopter is in a steady turn about an

Earth-referenced vertical axis with a turn rate ψ̇, the yaw angular rate about the body

axis is:

r = ψ̇ cos θ cosφ, (5.27)
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and the bank angle is related to the turn rate as:

tanφ = ψ̇Vh
g
. (5.28)

Eliminating turn rate, the yaw rate command is obtained as:

rc =
g sinφ cos θ

Vh
. (5.29)

In straight, level forward flight, the commanded yaw rate is simply rc = 0. Alternatively,

in hover and low speed flight, the yaw rate can be approximated to the rate of heading

change. To effectuate a required heading change, a constant yaw rate magnitude can be

commanded for the time required to execute the heading change.

In the vertical axis, an inertial vertical speed command (Vz,c) that is issued by the

guidance loop can be transformed into a proportional normal speed command (wc)

using the transformation matrix Tbe. Assuming small sideslip in a coordinated turn,

the inertial vertical speed can be expressed as:

Vz,c = −u sin θ +w cos θ cosφ (5.30)

Using the actual values of the longitudinal speed, pitch and roll attitudes, the com-

manded normal speed is obtained as:

wc =
u sin θ + Vz,c
cos θ cosφ

(5.31)

5.6 Two-Loop Stability Analysis and Controller Implementation

Although the continuous SMC laws ease controller implementation, further analysis is

needed on the overall stability and tracking performance of the two-loop controller, as

discussed in [42, 40]. From Eqn. (3.9), the inner loop sliding variable dynamics can be
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written as:

σ̇ = (0.5I − ρ/ε)σ + Sf̃ (5.32)

The stability of the inner loop continuous SMC can be proved using the Lyapunov

analysis in Eqn. (3.15). If the inner loop sliding variable σ lies outside the boundary

layer, then it is attracted and remains uniformly bounded to ∥σ∥< ε, where the reaching

time is given by Eqn. (3.12). From this result, the inner loop output tracking performance

can be shown to be bounded to a region that is a function of the inner loop boundary

layer size as ∥ẋ1∥< Λ(ε). Furthermore, asymptotic tracking performance is achieved if

∥Sf̃∥→ constant [42].

When ideal inner loop sliding motion does not occur (i.e. σ ≠ 0), Eqn. (5.17) is

modified to:

ẋ1 = (Ã11 − Ã12S
−1
2 S1)x1 + Ã12S

−1
2 σ −T1r (5.33)

The inner loop controller tracks the outer loop SMC commands with an error ẋe =

y − r. The true outer loop sliding variable dynamics (µ) must therefore account for this

tracking error in the form of the actual output, y = ẋe + r. Furthermore, since only

pitch and roll tracking errors from the inner loop are transferred to the outer loop, the

subset of the output vector that influences the outer loop dynamics is y1 = Mẋ1 + r1,

where y1 ≡ [φ θ] and M ∈ R2×6. The true outer loop sliding dynamics can be obtained

analogous to Eqn. (3.9) as:

µ̇ = (0.5I − ρo/εo)µ +R2GMẋ1 +Rd̃ (5.34)
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The Lyapunov function for the outer loop using the continuous SMC form can be

expressed as:

V̇o ⩽ −2∥µ∥(ρo∥µ∥/εo − ∥R2GM∥∥ẋ1∥−∥Rd̃∥) (5.35)

For negative definiteness of its derivative, requiring V̇o ⩽ −2∥µ∥γo and γo > 0 yields

∥µ∥⩽ ρ−1
o εo(γo + ∥R2GM∥∥ẋ1∥+∥Rd̃∥). As ∥ẋ1∥ is bounded, it implies that the outer

loop sliding variable µ, and consequently the translational rate tracking error że, are

both uniformly bounded. Using Eqn. (5.25) and the fact that że = w − q = Hz − q, the

outer loop tracking error can be expressed in terms of the outer loop sliding variable as:

że = HR−1
2 µ −HR−1

2 R1ze − q (5.36)

It is clear that the output tracking performance depends on the choice of the boundary

layer sizes and the SMC gains. In the outer loop, ρo should be sufficiently large to over-

come uncertainties and εo should be sufficiently small to constrain µ to a smaller bound,

and yet avoid chattering. Moreover, to avoid overwhelming the outer loop dynamics

with inner loop tracking error ẋe, ρ should be large and ε should be small. Ideally, the

inner loop should achieve its commanded values at a much faster rate and thereby ensure

adequate time-scale separation with the outer loop. For this reason, in addition to the

choice of the ideal system parameters in Table 5.1, ρ is set much higher than ρo.

For controller implementation, offline simulations were performed in different oper-

ational conditions within the flight envelope of interest to determine the values of the

SMC gains and the boundary layer sizes. The final SMC gains applied to the closed-loop

controller are as follows: ρθ = 1.5, ρφ = 2, ρr = 1, ρw = 1, ρχ = 0.2, and ρV h = ρV l = 0.5.

Boundary layer sizes of εo = ε = 0.2 were found to provide adequate robustness while

nearly avoiding chattering effects.
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Fig. 5.3 illustrates the controller implementation as part of the closed-loop flight simu-

lation environment. It consists of a two-loop SMC structure with an optional PCH layer

in each loop. The outer loop receives guidance commands q and generates a virtual

control signal r1 for the inner loop. The inner loop receives r1 and r2 via an optional

PCH layer. The inner loop then generates collective, cyclic, and pedal commands, which

are added to their respective trim values. These control commands are expressed as a

percentage of their absolute displacement, where 0 % represents collective stick down,

longitudinal cyclic stick aft, lateral cyclic stick left, and maximum left pedal. These

control commands drive the main and tail rotor swashplate actuators and, together with

CETI turbulence filters, form the inputs to the helicopter plant.

5.7 Comparison with an Explicit Model-Following Control

Design

In contrast to SMC, the explicit model-following (EMF) control design approach relies on

a full, well-identified linear model to synthesize feedforward control laws. For the purpose

of comparative evaluation, EMF-based attitude and rate control laws are developed in

this section based on the work of [15]. It is noted that the EMF approach has been

evaluated on many contemporary helicopter platforms [15, 16, 102]. Synthesis of EMF-

based translational rate command control laws and their comparison with the SMC-based

translational rate command laws are, however, beyond the scope of this thesis.

First, the directly controlled states are separated from the Euler angles to obtain a

reduced dimensional linear system as:

˙̄x(t) = A22x̄(t) +B2u(t) + f2(x̄,u,t) (5.37)

where x̄ ≡ [w p q r]T and u as before. In contrast to the SMC synthesis, both A22 and B2

in Eqn. (5.37) now contain all axial and cross-coupling stability and control derivatives.
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Furthermore, the availability of full state feedback is assumed. To satisfy the required

response types Eqns. (5.1)–(5.4), model states are obtained from commanded states as

follows:

wm = λw
s + λw

wc (5.38)

rm = λr
s + λr

rc (5.39)

φm =
ω2
φ

s2 + 2ζφωφs + ω2
φ

φc (5.40)

θm = ω2
θ

s2 + 2ζθωθs + ω2
θ

θc (5.41)

The remaining model states are obtained using the kinematic relationships between the

Euler angular rates and the body angular rates as follows:

ψ̇m = (rm + θ̇m sinφm)/(cos θm cosφm) (5.42)

pm = φ̇m − ψ̇m sin θm (5.43)

qm = θ̇m cosφm + ψ̇m cos θm sinφm (5.44)

Note that Eqns. (5.38)–(5.41) also yield ẇm, ṙm, φ̇m, and θ̇m, respectively, which are

required in Eqns. (5.42)–(5.44). The first derivatives of pm and qm are computed by

numerical differentiation. The required feedforward control inputs that satisfy the com-

mand model states, x̄m ≡ [wm pm qm rm]T are then obtained by inverting the nominal

linear model as follows:

uff = B−1
2 ( ˙̄xm −A22x̄m) (5.45)

where B2 is known to be square and invertible. In obtaining Eqn. (5.45), the first

derivatives of the command model states are computed by numerical differentiation. A

feedback stabilization control component is computed using the command model states
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Figure 5.4: Closed-loop simulation of an EMF attitude/rate controller

and measured states as follows:

ufb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gw(wm −w)

Gφ(φm − φ) +Gp(pm − p)

Gθ(θm − θ) +Gq(qm − q)

Gr(rm − r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.46)

whereG(⋅) are tunable feedback gains. Eqn. (5.46) seeks to stabilize the system Eqn. (5.37)

in the presence of f2 that includes turbulence, unmodeled dynamics, and any unstable

modes that may be excited by the feedforward component. Finally, using Eqn. (5.45)

and Eqn. (5.46), the cumulative control applied to the plant is:

u = uff + ufb (5.47)

Fig. 5.4 illustrates the closed-loop implementation of the EMF attitude, yaw rate

and vertical rate controller. The commanded states are passed through the command

model and then inverted to obtain the feedforward control component uff . uff and the

stability feedback control component ufb together form the control input that is then

superimposed over the trim control.

It is noted that EMF does not explicitly offer robustness to f2. Nevertheless, the

EMF feedback gains must be carefully tuned for acceptable system performance. On
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5.7 Comparison with an Explicit Model-Following Control Design

the one hand, G(⋅) should be sufficient to stabilize the system against uncertainties; on

the other hand, large G(⋅) will tend to excite the high frequency rotor fuselage coupled

modes, which may affect stability or produce oscillatory responses. Based on offline

simulations, the following values are found to be acceptable: [Gw Gφ Gp Gθ Gq Gr] =

[0.1 0.5 0.04 0.4 0.04 0.25].
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6 Online Waypoint Trajectory Generation

This chapter is based on the following journal publication:

[J1] O. Halbe and M. Hajek, “Online Waypoint Trajectory Generation Using State-

Dependent Riccati Equation,” Journal of Guidance, Control, and Dynamics, vol. 42,

no. 12, pp. 2687–2693, 2019.

This chapter describes the development of SDRE-based suboptimal guidance control

laws following the steps outlined in Sec. 3.2. This aim is to demonstrate for a full-scale

helicopter flight model automatic flight path vector generation and tracking between

waypoints with constraints on the flight path vector at each waypoint.

6.1 Trajectory Generation Problem Definition

Consider the scenario depicted in Fig. 6.1. The local reference frame originates at the

rotorcraft’s center of gravity. The Z-axis (local vertical) points vertically up, the X-axis

(local horizontal) is rotated from North about the Z-axis to align with the rotorcraft’s

heading, and the Y-axis (local lateral) points port side. Sideslip has been neglected.

The rotorcraft is in trimmed forward flight at present position (x, y, z) with velocity

vector (Vh, Vz, χ). The final states at the next waypoint are denoted by (Vh,t, Vz,t, χt),

which are assumed to be computed using an appropriate path planner, such as [49]. The
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Figure 6.1: Waypoint trajectory generation geometry

kinematics using a point mass model are:

Horizontal Axis

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ḋ = −Vh cos(χ − η)

V̇h = ax
(6.1)

Lateral Axis

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η̇ = Vh
d sin(χ − η)

χ̇ = ay
Vh

(6.2)

Vertical Axis

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ż = Vz

V̇z = az − g

(6.3)
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6.2 Translational Acceleration Command Generation

The necessary conditions for successful tracking of waypoint coordinates and velocity

vector are:

� Lateral Axis: η → χt and χ→ χt for horizontal position and ground track;

� Vertical Axis: z → zt for altitude and Vz → Vz,t for vertical velocity;

� Horizontal Axis: Vh → Vh,t for horizontal velocity.

Note that lateral axis objectives imply χ − η → 0, which from Eqn. (6.1) will ensure

ḋ → −Vh, and therefore d → 0 for Vh > 0. Defining the state vector X = [Vh Vz χ η z]T

and the control vector U = [ax ay az]T , the trajectory generation problem essentially

becomes a problem of state tracking. Control limits in terms of the maximum values of

the forward, lateral and vertical acceleration are not explicitly considered in the problem

formulation. Rather, these limits are enforced during implementation using rate limiters

and saturation blocks at the output of the guidance command generation.

6.2 Translational Acceleration Command Generation

As shown in Section 3.2, the SDRE nonlinear regulator is ideally suited for a nonlinear

control-affine system of the form ẋ = F(x) +B(x)u. Note that the system of Eqns. (6.1)–

(6.3) is affine in control. In SDRE, a linear-like structure with state dependent coeffi-

cients (SDC) is first obtained by direct parameterization as ẋ = A(x)x +B(x)u. The

algebraic Riccati equation is then solved to obtain the nonlinear feedback control law [82].

The SDRE control solution of a multivariable system is suboptimal, and converges to

its optimal solution as the states are driven to zero [84]. SDRE has been successfully

applied to several probems, including helicopter flight control [85] and impact angle

constrained missile guidance [87]. The reader is referred to [84], which surveys a wide

spectrum of aerospace control applications using SDRE. In the present work, the state

tracking problem in each axis is decoupled under the condition that dynamic effects in
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6 Online Waypoint Trajectory Generation

any axis, due to control inputs in another axis in a single time step, are small. This

approach leads to the formulation of three independent infinite-horizon nonlinear regu-

lators. Axis decoupling serves two purposes. First, it simplifies the parameterization of

the state-dependent coefficients, which plays a key role in recovering the optimal control

solution. Second, the algebraic Riccati equations are solved analytically to guarantee

deterministic control solutions in finite-time, as opposed to iterative numerical methods

for the general multivariable case [103]. It will be shown in Sec. 8 that a trajectory

tracking flight controller with cross-coupling compensation can overcome any impact of

acceleration decoupling on control performance.

6.2.1 Lateral Acceleration Control Law

The state tracking errors in the lateral axis are given by eχ = χ−χt and eη = η−χt. With

(χ − η) ≡ (eχ − eη), Eqn. (6.2) is parameterized for eη and eχ, and written in nonlinear

SDC form as:

⎡⎢⎢⎢⎢⎢⎣

ėη

ėχ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−Vh sin(eχ−eη)
d(eχ−eη)

Vh sin(eχ−eη)
d(eχ−eη)

0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

eη

eχ

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

1
Vh

⎤⎥⎥⎥⎥⎥⎦
ay (6.4)

with x = [eη eχ]T and u = [ay]. B(x) ≠ 0 for Vh > 0. The SDRE necessary conditions are

recalled from [82] as: 1) {A,B} is controllable; 2) F(x) is continuously differentiable;

and 3) F(0) goes through the origin. To verify the first condition, the rank of the

controllability matrix M(x) is found using:

∣M(x)∣= ∣{B(x), A(x)B(x)}∣=
RRRRRRRRRRRRRRR

0
sin(eχ−eη)
d(eχ−eη)

1
Vh

0

RRRRRRRRRRRRRRR
= −sin(eχ − eη)

ur(eχ − eη)
≠ 0

except for χ − η = π. In Fig. 6.1, this condition occurs when the rotorcraft flies along

the horizontal line of sight but radially away from the next waypoint. This point is

considered outside the domain of operation, and the system is therefore controllable at
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6.2 Translational Acceleration Command Generation

all points of interest. The differentiability condition and initial condition are satisfied as

follows:

F(x) =
⎡⎢⎢⎢⎢⎢⎣

Vh
d sin(eχ − eη)

0

⎤⎥⎥⎥⎥⎥⎦
∈ C1 and F(0) =

⎡⎢⎢⎢⎢⎢⎣

Vh sin(0)

0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎦

Consider the following infinite horizon quadratic cost function to be minimized.

J = 1

2
∫

∞

t0
[xTQx + uTRu] dt (6.5)

The weighting elements for the present problem are chosen as Q = diag(q2
1, q

2
2) > 0 and

R = [1]. The feedback control law is obtained by solving the algebraic Riccati equation

for the unique, symmetric and positive-definite matrix P(x) [82].

AT(x)P(x) +P(x)A(x) −P(x)B(x)R−1BT(x)P(x) +Q = 0 (6.6)

Upon substitution, one obtains:

⎡⎢⎢⎢⎢⎢⎣

−Vh sin(eχ−eη)
d(eχ−eη)

0

Vh sin(eχ−eη)
d(eχ−eη)

0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−Vh sin(eχ−eη)
d(eχ−eη)

Vh sin(eχ−eη)
d(eχ−eη)

0 0

⎤⎥⎥⎥⎥⎥⎦

−
⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0

1
Vh

⎤⎥⎥⎥⎥⎥⎦
[1] [ 0 1

Vh
]
⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

q2
1 0

0 q2
2

⎤⎥⎥⎥⎥⎥⎦
= 0

This yields three simultaneous algebraic equations in p11, p12 and p22. Denoting ξ ≡
Vh sin(eχ−eη)
d(eχ−eη)

, the system of equations is solved analytically to obtain:

p22 = −ξV 2
h ± Vh

√
ξ2u2 + 2ξVh

√
q2

1 + q2
2 + q2

2

p12 = Vh

√
q2

1 + q2
2 − p22
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6 Online Waypoint Trajectory Generation

Since {A,B} is controllable, the existence of a positive definite solution of P(x), which

also gives the optimal control solution for the system, is guaranteed [84]. Clearly, p22

has two real roots, one positive and one negative. Note that p11 does not need to be

explicitly computed as it does not appear in the final control law of Eqn. (6.7). Using

the positive root of p22, the closed form lateral acceleration control law is obtained from

the solution of the algebraic Riccati Eqn. (6.6) as a∗y = −R−1B(x)TP(x)x, according

to [82].

a∗y = −p12(η − χt)
Vh

− p22(χ − χt)
Vh

= −[ξVh −
√
ξ2u2 + 2ξVh

√
q2

1 + q2
2 + q2

2 +
√
q2

1 + q2
2 ](η − χt)

−[ − ξVh +
√
ξ2u2 + 2ξVh

√
q2

1 + q2
2 + q2

2](χ − χt) (6.7)

6.2.2 Vertical and Forward Acceleration Control Laws

To simplify the vertical axis tracking, consider Vz,t = 0. The altitude tracking error is

ez = z − zt, and from Eqn. (6.3), ėz = ż = Vz. V̇z is also given by Eqn. (6.3). To satisfy

SDRE conditions at the origin, the gravity term is removed from the formulation and

added directly to the final control law. The vertical axis equations are parameterized

and written in matrix form as:

⎡⎢⎢⎢⎢⎢⎣

ėz

V̇z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ez

Vz

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
az (6.8)

x = [ez Vz]T and u = [az]. B(x) ≠ 0. The controllability matrix M(x) has full rank,

since:

∣M(x)∣= ∣{B(x), A(x)B(x)}∣=
RRRRRRRRRRRRRRR

0 1

1 0

RRRRRRRRRRRRRRR
= −1 ≠ 0
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The system is thus controllable. The differentiability condition and initial condition are

also satisfied:

F(x) =
⎡⎢⎢⎢⎢⎢⎣

Vz

0

⎤⎥⎥⎥⎥⎥⎦
∈ C1 and F(0) =

⎡⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎦

Using the cost function of Eqn. (6.5), with Q = diag(q2
1, q

2
2) > 0 and R = [1], the algebraic

Riccati Eqn. (6.6) in the vertical axis is obtained as:

⎡⎢⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎦

−
⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
[1] [ 0 1 ]

⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

q2
1 0

0 q2
2

⎤⎥⎥⎥⎥⎥⎦
= 0 (6.9)

The analytical solutions using the positive roots of p12 and p22 are:

p12 = q1

p22 =
√

2q1 + q2
2

The closed-form vertical acceleration control law is obtained using a∗z = −R−1BTPx,

and is compensated with the gravity term.

a∗z = −[q1(z − zt) + Vz
√

2q1 + q2
2] + g (6.10)

Eqn. (6.10) can be extended to Vz,t ≠ 0 by modifying its second term such that it

vanishes at Vz = Vz,t. Eqn. (6.10) becomes:

a∗z = −[q1(z − zt) + (Vz − Vz,t)
√

2q1 + q2
2] + g (6.11)

79



6 Online Waypoint Trajectory Generation

For the forward acceleration, it is recalled that d → 0 is satisfied by the lateral accel-

eration control law. Therefore, it only remains to regulate eVh = (Vh−Vh,t)→ 0 using ax,

as d→ 0. The derivation of ax is trivial, because ėVh = V̇h from Eqn. (6.1) is scalar, linear

in control, and without state dependencies. For R = [1] and Q = [q2], the closed-form

forward acceleration becomes:

a∗x = −q(Vh − Vh,t) (6.12)

6.2.3 Waypoint Spacing Analysis

The closed-form acceleration control laws operate without reference trajectories between

waypoints. However, successful convergence to the terminal constraints depends on the

rotorcraft’s performance limits, the horizontal and vertical distances to the waypoint,

and the chosen SDRE weights. To ensure convergence, it is proposed to identify the lim-

iting horizontal and vertical distances to the velocity vector constrained waypoint. First,

to satisfy χ → χt, dχ is parameterized in terms of the rotorcraft’s minimum turn radius

as dχ > Γ Rmin. For a conventional helicopter configuration in a steady, level turn and

low sideslip, Rmin = V 2
h

g tanφmax
. For the variable horizontal velocity case, max(Vh, Vh,t) is

used in the numerator. Γ > 0 is determined by closed-loop simulations, using values of

the pair {χ,χt} that represent all combinations of the four quadrants. Note that the Du-

bins long path, which consists of a curved path, a straight line, and another curved path

sequentially, is defined for Γ ⩾ 4 [104]. Next, to satisfy (Vh → Vh,t), dVh is estimated using

the maximum forward acceleration as dVh >
∣V 2
h −V

2
h,t∣

2∣axmax ∣
. This value is conservative, because

the actual along-track distance in a turning flight will be greater than the straight-line

distance between waypoints. Thus, the minimum horizontal waypoint separation is ob-

tained as max(dχ, dVh). Finally, the achievable dz can be estimated using the maximum

vertical acceleration from level flight as dz < 0.5∣azmax ∣t2go, where tgo for max(dχ, dVh) is

approximated by Eqn.(6.14) in the following section.
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6.3 Design Parameters and Implementation Aspects

6.3 Design Parameters and Implementation Aspects

The choice of the SDRE weighting factors determines the evolution of the trajectory

between waypoints. The state regulation error at the start of the trajectory is typically

large, which may result in a large control demand leading to control saturation. Since

R = [1] in each axis, choosing the diagonal elements of Q as inversely proportional to

the time–to–go (i.e. the estimated time to reach the waypoint) ensures a smooth and

gradually converging state trajectory, and reduces the likelihood of control saturation,

as demonstrated in [87].

q(⋅) =
N(⋅)

tgo

where (⋅) denotes any state tracking variable. The tgo is approximated at the kth time

step using the following approximations for the actual horizontal distance–to–go, hori-

zontal velocity and forward acceleration.

if tgo,(k) ≈
−Vh,(k−1) +

√
V 2
h,(k−1)

+ 2ax
(k−1)

d(k−1)

ax
(k−1)

for ax
(k−1)

≠ 0, (6.13)

else tgo(k) ≈
d(k−1)

Vh,(k−1)

Gain values N(⋅) are selected such that the state tracking component and control com-

ponent in the cost function Eqn. (6.5) have the same order of magnitude. Extremal

values of state tracking errors, accelerations and time-to-go give the numerical range for

gain selection. With this logic, the following gain values were found to satisfy tracking

constraints while avoiding control saturation over a wide envelope: Nη = 800, Nχ = 200;

Nz = 0.07, NVz = 0.05; and NVh = 1.

For simulation purposes of the guidance law, forward flight conditions are used:

u ∈ [20,60]m/s, w ∈ [−6,6]m/s. Moreover, obstacle-free paths are assumed. The

acceleration commands are constrained by saturation blocks to the following limits:
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6 Online Waypoint Trajectory Generation

ay ∈ [−10,10]m/s2 corresponding to ∣∆φmax∣= 45°, az ∈ [−0.5,0.5]m/s2 correspond-

ing to the available an margin at ∣∆φmax∣, and ax ∈ [−1.5,1.5]m/s2 corresponding to

∣∆θmax∣= 10°.
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7 Online Rendezvous Trajectory Generation

This chapter is based on the following conference publication:

[C5] O. Halbe and M. Hajek, “Online Rendezvous Guidance for Helicopter Using State

Dependent Riccati Equation,” in AIAA Scitech 2020 Forum (GNC Session), Or-

lando, FL, USA, January 2020, AIAA Paper 2020–1827.

This chapter applies the state-dependent Riccati equation (SDRE) technique for online

rendezvous guidance to a moving target waypoint. For this purpose, the SDRE-based

online guidance to a fixed waypoint described in Chapter 6 is extended to a mobile

target scenario. A 3D rendezvous scenario of a helicopter with a slower maneuvering

target is considered. The guidance objective is to intercept the 3D target position

with zero relative velocity. Three independent, decoupled, nonlinear state regulation

problems in each of the lateral, vertical and forward axes of motion are formulated using

the SDRE technique [82]. The resulting algebraic Riccati equations are then solved

analytically to obtain deterministic, closed-form, state-feedback guidance laws for the

vehicle accelerations.

7.1 Trajectory Generation Problem Definition

Consider the scenario depicted in Fig. 7.1. The helicopter is in trimmed forward flight at

present position (x, y, z) in the North-East-Down (NED) frame with track angle χ with

respect to North. A local, vehicle-carried XYZ reference frame is obtained by rotating
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7 Online Rendezvous Trajectory Generation

the NED frame about its vertical axis by an angle χ and translating it to the helicopter’s

center of gravity. The helicopter’s horizontal velocity Vh lies along this local X-axis, and

its vertical velocity Vz lies along the local Z-axis. Sideslip is neglected for the purpose of

guidance command generation. Although helicopters exhibit nonzero sideslip in practice,

most helicopter autopilots can effectively regulate sideslip and ensure turn coordination

using an appropriate yaw rate command.

Consider a moving target of constant speed Vt < Vh, course angle χt with respect to

North, and current position at (xt, yt, zt) as shown in Fig. 7.1. The horizontal position

East

χt

Vt

η
(ay)

χ
(Vh, ax)

North

r

Y
X

x

y

Target

yt

xt
Down

Figure 7.1: Helicopter-target rendezvous trajectory generation geometry

error is d =
√

(xt − x)2 + (yt − y)2, the vertical position error is z − zt, and the angle of

the horizontal line of sight with respect to North is η = arctan((yt − y)/(xt − x)). The

84



7.2 Translational Acceleration Command Generation

engagement kinematics are governed by the following equations:

η̇ = Vh
d

sin(χ − η) − Vt
d

sin(χt − η) (7.1)

χ̇ = ay

Vh
(7.2)

ż = Vz (7.3)

V̇z = az − g (7.4)

V̇h = ax (7.5)

where ax, ay, and az are the helicopter’s forward, lateral, and vertical accelerations,

respectively, in the local frame. It can be noticed in Fig. 7.1 that the sufficient conditions

for successful 3D rendezvous are:

1. η → χt and χ→ χt,

2. z → zt and Vz → 0, and

3. Vh → Vt

These conditions together will ensure that the helicopter reaches the target position

with a velocity vector identical to that of the target. Defining the state tracking errors

as eη = η − χt, eχ = χ − χt, ez = z − zt, eVz = Vz, and eVh = Vh − Vt, the rendezvous

guidance problem can be posed as a nonlinear state regulation problem with the lateral,

vertical, and forward accelerations as control variables. Analytical solutions for these

accelerations are derived in the following section.

7.2 Translational Acceleration Command Generation

7.2.1 Lateral Acceleration Guidance Law

The state vector for regulating the horizontal position error is defined as [eη eχ]T. The

control variable is the lateral acceleration ay. For a slow maneuvering target, χ̇t is much
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7 Online Rendezvous Trajectory Generation

smaller than the helicopter heading rate χ̇. Therefore, χ̇t can be neglected and one

obtains ėη = η̇ and ėχ = χ̇. Knowing that (χ − η) ≡ (eχ − eη), Eqns. (7.1)-(7.2) followed

by algebraic manipulations yield the following dynamic equation:

ėη =
Vh
d

sin(eχ − eη) +
Vt
d

sin(eη) (7.6)

which can be parameterized in terms of the states as follows:

ėη =
Vh sin(eχ − eη)
d(eχ − eη)

eχ −
Vh sin(eχ − eη)
d(eχ − eη)

eη +
Vt sin(eη)

deη
eη (7.7)

The lateral kinematics can be represented in nonlinear SDC form according to Eqn.(3.19),

and written in matrix form as follows:

⎡⎢⎢⎢⎢⎢⎣

ėη

ėχ

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

(X − Y ) Y

0 0

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A(x)

⎡⎢⎢⎢⎢⎢⎣

eη

eχ

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

1/Vh

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
B(x)

ay (7.8)

where,

X = Vt sin(eη)
deη

(7.9)

Y = Vh sin(eχ − eη)
d(eχ − eη)

(7.10)

Note that B(x) ≠ 0 for Vh > 0. The SDRE necessary conditions are recalled from [82]

as: 1) The pair {A,B} is controllable; 2) f(x) is continuously differentiable; and 3) f(0)

goes through the origin. To verify the first condition, the rank of the controllability

matrix M(x) is given by:

∣M(x)∣= ∣{B(x), A(x)B(x)}∣=
RRRRRRRRRRRRRRR

0 Y
Vh

1
Vh

0

RRRRRRRRRRRRRRR
= − Y

V 2
h

≠ 0
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7.2 Translational Acceleration Command Generation

as Vh > 0, d > 0, and limx→0
sinx
x = 1, except for the case χ − η = π. This singular case is,

however, considered outside the domain of interest. Furthermore, f(x) ∈ C1 and f(0) = 0

are easily verified from Eqns. (7.8)–(7.10).

Using Eqn. (3.20), the quadratic cost function becomes:

minimize J = 1

2
∫

∞

t0
[xTQx +Ra2

y] dt (7.11)

where Q =
⎡⎢⎢⎢⎢⎢⎣

q2
1 0

0 q2
2

⎤⎥⎥⎥⎥⎥⎦
and R = [1] are chosen.

Substituting the relevant terms from Eqn. (7.8) into the algebraic Riccati Eqn. (3.24),

one obtains:

⎡⎢⎢⎢⎢⎢⎣

(X − Y ) 0

Y 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

(X − Y ) Y

0 0

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0

1
Vh

⎤⎥⎥⎥⎥⎥⎦
[0 1

Vh
]
⎡⎢⎢⎢⎢⎢⎣

p11 p12

p12 p22

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

q2
1 0

0 q2
2

⎤⎥⎥⎥⎥⎥⎦
= 0

which yields three algebraic equations:

p12(X − Y ) + p11Y − p12p22

V 2
h

= 0 (7.12)

2p11(X − Y ) + q2
1 −

p2
12

V 2
h

= 0 (7.13)

2p12Y + q2
2 −

p2
22

V 2
h

= 0 (7.14)

It now remains to determine p11, p12, p22. Elimination of p11 and p12 from Eqns. (7.12)–

(7.14) yields a quartic polynomial in p22 as follows:

p4
22 − [4u2(X − Y )]p3

22 + [4u4(X − Y )2 − 2u2q2
2]p2

22 +

[4u4(X − Y )q2
2]p22 + [V 4

h q
4
2 − 4Y 2u6q2

1 − 4u6(X − Y )2q2
2 = 0 (7.15)
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7 Online Rendezvous Trajectory Generation

The general quartic function x4 + bx3 + cx2 + dx + e = 0 has at least two real roots if the

derived polynomial D = 64a3e − 16a2c2 + 16ab2c − 16a2bd − 2b4 < 0 and P = 8ac − 3b2 < 0.

This can easily be shown in the case of Eqn. (7.15) for q1 > 0, q2 > 0, Vh > 0, and X ≠ Y ,

as follows:

D = −256V 6
h [(X − Y )2q2

2 + Y 2q2
1] < 0 (7.16)

P = −16u2[V 2
h (X − Y )2 + 16q2

2] < 0 (7.17)

Eqn. (7.15) can be solved for p22 using existing numerical techniques for polynomi-

nal roots. Using the positive real root of p22, p11 and p12 are readily computed using

Eqns. (7.13)–(7.14). Finally, the suboptimal lateral acceleration control law is obtained

as follows:

a∗y = −
p12(η − χt)

Vh
− p22(χ − χt)

Vh
(7.18)

7.2.2 Vertical and Forward Acceleration Guidance Law

The target motion is assumed to be planar so that the target has no motion in the vertical

plane. This assumption makes the engagement geometry in the vertical and forward axes

identical to the geometry depicted in the Chapter 6.1, Fig. 6.1b. The derivation of the

vertical and forward acceleration guidance laws is also identical to Sec. 6.2.2. For the

sake of brevity, the derivations are not reproduced here.

7.2.3 Design Parameters and Implementation Aspects

A similar approach as Sec. 6.3 is followed for the choice of the parameters. The static

gains N(⋅) are selected in a manner that balances the state and control components in the

SDRE cost function. The following gain values were found to satisfy tracking constraints

while avoiding control saturation over a wide envelope: Nσ = 700, Nχ = 450; Nz = 0.07,

Nw = 0.05; and Nu = 1.

88



8 Simulation Results and Discussion

The flight controller and guidance laws synthesized in the preceding chapters are now

evaluated with regard to their closed-loop performance. The real-time capable modeling

and simulation framework hosted in Matlab/Simulink and presented earlier in Section 4.4

is used for this purpose.

It is important to note the following points in respect of the simulation results pre-

sented in this section:

1. All simulations are performed in a real-time sense on a desktop computer that

hosts the previously described Matlab/Simulink-based simulation environment.

2. With regard to handling quality ratings of the controller, an objective assessment

based on the time-domain response criteria described in Ref. [4] is presented.

3. Subjective handling quality ratings based on pilot-in-the-loop evaluations are be-

yond the scope of this thesis.

8.1 Controller Performance Evaluation

The first set of simulations evaluates the performance of the SMC flight controller using

the ADS-33 temporal responses criteria for each of the required response-types and

interaxis coupling. Where relevant, the results are accompanied by a discussion of the

HQs enhancement using the EMF controller [15], as well as the HQs of an unaugmented

89



8 Simulation Results and Discussion

BO105 helicopter based on flight testing results [96, 97]. Simulation results are then

presented for the two selected MTEs.

8.1.1 Response-Types Characteristics

This section evaluates the character of SMC attitude hold, heading hold, and altitude

hold by measuring impulse responses in trimmed hover, in accordance with the crite-

ria specified by ADS-33E-PRF [4]. Beginning from t = 0, successive impulses of 20 %

displacement from trim are inserted directly in the main and tail rotor actuators in

the following sequence: longitudinal cyclic at t = 3 s, lateral cyclic at t = 6 s, tail rotor

collective at t = 9 s, and main rotor collective at t = 12 s, as depicted in Fig. 8.1.
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Figure 8.1: Impulse inputs in hover inserted in the main and tail rotor actuators, as required
by ADS-33E-PRF [4] ( open loop, closed loop using SMC)

The resulting fuselage state histories in open-loop and closed-loop are plotted in

Fig. 8.2. On the one hand, the open-loop responses highlight the helicopter’s unsta-

ble dynamics and interaxis coupling. A longitudinal cyclic impulse induces a 5 °/s peak

pitch rate accompanied by smaller roll and yaw rates, which lead to divergent longi-

tudinal and lateral velocity components. An unstable phugoid mode can be observed

from the longitudinal velocity response. Thereafter, a lateral cyclic impulse induces a
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Figure 8.2: Open and closed-loop state responses to impulse inputs in hover ( open loop,
closed loop using SMC)

10 °/s peak roll rate leading to a divergent roll attitude and lateral velocity component.

The pitch rate continues to increase in amplitude. Subsequently, a tail rotor impulse

produces a peak yaw rate, and finally, a main rotor collective affects both the normal

velocity component and the yaw rate. On the other hand, the closed-loop responses are

found to stabilize the angular rates. The pitch and roll attitudes, the normal velocity

component, and the yaw rate return to their trim values within 1 s and remain stable

thereafter, as required by ADS-33. Furthermore, the flapping and lead-lagging angle

plots in Fig. 8.2 show all oscillations decaying to zero indicating that the continuous

SMC laws stabilize the helicopter without interfering with the rotor dynamic modes.
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8 Simulation Results and Discussion

These closed-loop responses also validate the controller’s attitude hold, direction hold,

and height hold characteristics.

8.1.2 Attitude Quickness and Interaxis Coupling

Attitude quickness determines the level of agility by measuring how rapidly commanded

attitude changes are achieved. Whereas the required attitude changes must be quick,

the resulting cross-coupling responses must be sufficiently mitigated. In hover and low

speed, the interaxis coupling criteria specified by ADS-33 are pitch due to roll, roll due

to pitch, and yaw due to collective. In forward flight, pitch due to roll, roll due to pitch,

and pitch due to collective are specified. The following results evaluate predicted HQ

for the SMC closed-loop with PCH and without PCH.

8.1.2.1 Pitch/roll attitude quickness and pitch/roll coupling
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Figure 8.3: Pitch/roll quickness and coupling in hover ( command, SMC, SMC with
PCH)

Fig. 8.3 plots the responses of the pitch and roll attitudes and angular rates, and the

cyclic inputs in hover to a ±5° commanded pitch attitude change from trim and a ±10°

commanded roll attitude change from trim. As expected, both pitch and roll attitudes
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8.1 Controller Performance Evaluation

exhibit qualitative second-order system characteristics in accordance with the specified

behavior for the ACAH response-type given by Eqn. (5.1)–(5.2).

SMC without PCH results in higher peak pitch and roll angular rates of 6 °/s and

16 °/s, respectively, as compared to 4 °/s and 14 °/s, respectively, for SMC with PCH. The

corresponding control demand without PCH is also higher as compared to the control

demand with PCH. In reaching the new steady states, the control inputs are devoid of

reversals in the sign relative to the initial trim position. Furthermore, both the control

inputs and the state responses are not found to contain high frequency chatter, which

suggests that the choice of the boundary layer has provided a satisfactory continuous

approximation for the discontinuous sliding mode control terms.

Pitch attitude quickness, which is measured as the ratio of peak pitch rate to change

in pitch attitude (qpk/∆θpk), is 1.2 without PCH and 0.8 with PCH, whereas the Level

1 threshold in hover is (qpk/∆θpk) > 0.65 [4]. Likewise, roll attitude quickness, measured

as (ppk/∆φpk), is 1.6 without PCH and 1.4 with PCH, whereas the Level 1 thresh-

old in hover is (ppk/∆φpk) > 1.4 [4]. Thus, the closed-loop SMC including PCH sat-

isfies predicted Level 1 HQ measured against the moderate amplitude pitch and roll

attitude quickness criteria. In comparison, previous flight testing suggests that a bare-

airframe BO105 possesses Level 1 HQ for the moderate amplitude pitch and roll criteria

in hover [96]. This implies that SMC with PCH retains the Level 1 roll quickness HQ of

the bare-airframe helicopter.

Next, roll due to pitch (or pitch due to roll) coupling is measured as the ratio of

the peak off-axis roll attitude response (or peak off-axis pitch attitude response) from

trim within 4 seconds to the required pitch attitude response (or required roll atti-

tude response) from trim at 4 seconds. Quantitatively, both ∣∆φpk/∆θ(t=4)∣ ⩽ 0.25

and ∣∆θpk/∆φ(t=4)∣ ⩽ 0.25 for Level 1 HQ [4]. From Fig. 8.3, it is observed that

∣∆φpk/∆θ(t=4)∣ ⩽ 0.07 and ∣∆θpk/∆φ(t=4)∣ ⩽ 0.04 for the SMC closed-loop with PCH

and without PCH, so that predicted Level 1 HQ are easily satisfied for the pitch and roll
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8 Simulation Results and Discussion

interaxis coupling. In comparison, a bare-airframe BO105 was found to possess Level

3 HQ for roll due to pitch coupling, and Level 1 and Level 2 HQ for pitch due to roll

coupling in left and right roll motion, respectively [96]. This suggests that SMC in-

cluding PCH significantly overcomes the severe pitch/roll coupling of the bare-airframe

helicopter.

8.1.2.2 Yaw due to collective
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Figure 8.4: Yaw due to collective coupling in hover ( command, SMC, SMC with
PCH)

Yaw due to collective coupling assumes significance in hover and low speed when

changes in the main rotor torque result in a yawing moment on the fuselage without

the pilot’s yaw compensation. Fig. 8.4 plots the responses in hover to vertical speed

commands of ±6 m/s. It can be noticed that the vertical speed response has a qualitative

first-order appearance as required for the RCHH response-type, and that steady state

is reached within 5 s for both descent and climb. The response of the SMC closed-loop

without PCH is more aggressive with peak incremental normal acceleration of 0.5g from

1g flight on either side, compared to 0.38g from 1g flight with PCH. The peak yaw rate

induced by the collective input is bounded to within ±2 °/s and decays to zero within

4 s following the collective input. The helicopter heading remains essentially constant in
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8.1 Controller Performance Evaluation

descent and climb both. The collective and pedal control inputs are devoid of reversals

in the sign relative to the initial trim position and are also free of high frequency chatter.

Yaw due to collective coupling is measured in terms of r3/∣Vz,(t=3)∣°/s/ft/s and ∣r1/Vz,(t=3)∣°/s/ft/s,

where r1 is the first yaw rate peak following a vertical speed command, and r3 = r(t=3)−r1

for r1 > 0, or r3 = r1 − r(t=3) for r1 < 0. The Level 1 HQ boundaries are set as

−0.15 ⩽ r3/∣Vz,(t=3)∣ ⩽ 0.2 and ∣r1/Vz,(t=3)∣ ⩽ 0.65 [4]. These metrics for the SMC closed-

loop with and without PCH, as computed from Fig. 8.4, are found to lie in the following

range: −0.12 ⩽ r3/∣Vz,(t=3)∣ ⩽ −0.08 and 0.08 ⩽ ∣r1/Vz,(t=3)∣ ⩽ 0.12. This implies that

the SMC closed-loop responses lie within the Level 1 thresholds for yaw due to collec-

tive coupling. In contrast, a bare-airframe BO105 was found to possess Level 3 HQ for

the yaw due to collective coupling criteria for climb and descent both [97], once again

highlighting the efficacy of the SMC closed-loop.

8.1.2.3 Pitch due to collective
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Figure 8.5: Pitch due to collective in 40 m/s forward flight ( SMC, SMC+PCH)

Fig. 8.5 plots the responses in 40 m/s forward speed to vertical speed commands of

±6 m/s. As in the hover case, the vertical speed response in forward flight too depicts a

qualitative first-order appearance as required for the RCHH response-type, and steady

state is reached within 5 s. The SMC closed-loop without PCH induces a higher peak
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incremental normal acceleration of 0.48g from 1g flight on either side as compared to

0.37g from 1g flight with PCH. The deviation of pitch attitude from trim is bounded to

within ±1.5°.

Pitch due to collective is measured as the ratio of the peak change in pitch altitude

within the first 3 s to the peak incremental normal acceleration. As the change in col-

lective inputs amounts to a torque change of less than 20 %, the small collective input

criterion is applied so that ∣∆θpeak/∆nzpeak∣< 1°/ft/s2 for Level 1 HQ [4]. From Fig. 8.5,

∣∆θpeak/∆nzpeak∣⩽ 0.1°/ft/s2 is observed in both descent and climb indicating that Level

1 HQ are achieved. In comparison, a bare-airframe BO105 has Level 2 pitch/collective

coupling [96], which demonstrates the improved responses with the SMC closed-loop.

8.1.3 Slalom Mission Task Element

The ADS-33 slalom MTE from Ref. [4] is chosen to evaluate maneuverability, turn

coordination, and axes decoupling in forward flight. Slalom is an aggressive task element

and requires moderate agility: θc ∈ [−30,+20]°, φc ∈ [−60,+60]° and rc ∈ [−22,22]°/s for

Level 1 HQs [4].

Figure 8.6: Course setup and desired flight path in the slalom MTE from Ref. [4]

Fig. 8.6 depicts the course setup and the required flight path in the slalom MTE. The

maneuver is initiated in trimmed, level flight oriented along North. A series of turns at

500 ft. (150 m) are performed on each side of the North axis. Each turn requires at

least 50 ft. (15 m) and up to 100 ft. (30 m) of lateral distance from the North axis. For
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the purpose of command tracking by the flight controller, the required flight path can

be modeled using sinusoidal functions of the y-coordinate and the ground track angle as

follows:

y = Asl sin(2πx

dsl
) (8.1)

χc = arctan{2πAsl

dsl
cos(2πx

dsl
)} (8.2)

Vh,c = [20,30]m

s
(8.3)

where Asl ∈ [15,30]m, and dsl = 600 m. Executing slalom at 30 m/s is considered desir-

able, whereas 20 m/s is considered adequate. The altitude shall be maintained essentially

constant in the entire maneuver. During simulations, actuator saturations were observed

in the slalom MTE. To alleviate this issue, PCH layers in the inner and outer loop were

activated.

Fig. 8.7 plots the ground positions and the altitude in a slalom MTE flown at 30 m/s

forward speed and 30 m altitude. It shows that for the SMC closed-loop with PCH and

without PCH, the lateral flight path successfully passes between the ground markers

on either side of the reference line until wings level at 750 m horizontal distance. Also

observed in Fig. 8.7 is the altitude that is held to within ±1 m from its reference value

during the entire maneuver.
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Figure 8.7: Flight paths during slalom MTE at 30 m/s ( desired, SMC, SMC with
PCH)
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Figure 8.8: State variables during slalom MTE at 30 m/s ( command, SMC, SMC
with PCH)

The time histories of the fuselage states are plotted in Fig. 8.8. It can be observed that

the deviation in forward speed (Vh) and vertical speed (Vz) from the respective reference

values is small. The ground track (χ) plot shows the rapid track changes induced while

passing between the ground markers. The successive turns induce high roll rates (p)

of up to 50 °/s, and peak pitch rates (q) and peak yaw rates (r) of 18 °/s and 15 °/s,

respectively. Sideslip (β) remains within ±10° during the entire maneuver suggesting

that the yaw rate command achieves satisfactory turn coordination. It can be observed

that the angular rate responses for the SMC closed-loop with PCH are significantly less

aggressive than those without PCH while still meeting the desired level of performance

in the slalom MTE.

The time histories of the control inputs are plotted in Fig. 8.9. It can be observed that

the SMC closed-loop without PCH commands aggressive lateral cyclic (Dα) and pedal

(Dδ) leading to actuator saturations in these control channels in the initial phase of the
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Figure 8.9: Control inputs in slalom MTE at 30 m/s ( SMC, SMC with PCH)

trajectory. The pedal is again saturated while executing a right banked turn around

one of the ground markers. However, the control responses of the SMC closed-loop with

PCH are found to be smoother, less aggressive, and devoid of actuator saturations while

still meeting the desired level of performance. These results illustrate the effectiveness

of PCH in moderating aggressive SMC control action in the presence of uncertainties.

8.1.4 Combined Acceleration/Deceleration and Bob-Up/Bob-Down Mission

Task Element

A combination of two MTEs, namely the acceleration/deceleration MTE requiring ag-

gressive agility, and the vertical maneuver MTE requiring moderate agility, both based

on Ref. [4], is chosen to evaluate maneuverability and axes decoupling in low speed and

hover. For aggressive agility, the large amplitude requirements for Level 1 HQs are:

θc ∈ [−30,30]°, φc ∈ [−60,+60]° and rc ∈ [−60,60]°/s [4].

Fig. 8.10 depicts the course setup and the required flight path in the combined acceler-

ation/deceleration and bob-up/bob-down MTE. The maneuver is initiated in trimmed,

level flight at an altitude of 50 m and forward speed 25 m/s. The helicopter is rapidly

decelerated to stable hover, followed by a 30 m descent and stabilization for 2 s, followed
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8 Simulation Results and Discussion

Figure 8.10: Course setup and required flight path in the acceleration/deceleration and bob-
up/bob-down MTE from Ref. [4]

by a 30 m ascent and stabilization for 2 s. Thereafter, the helicopter is rapidly acceler-

ated to 25 m/s followed by a deceleration back to stable hover. Finally, a 30 m ascent,

stabilization for 2 s, and a 30 m descent completes the task.
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Figure 8.11: Flight paths during combined acceleration/deceleration and bob-up/bob-down
MTE ( desired performance bound, SMC, SMC with PCH)

In the combined acceleration/deceleration and bob-up/bob-down MTE, the roll at-

titude tracks lateral velocity commands for regulating the cross-track error, and the

yaw rate regulates heading to zero. In Fig. 8.11, the ground positions plot shows that

the desired path performance of up to 3 m cross-track deviation from the centerline is
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8.1 Controller Performance Evaluation

achieved. The altitude remains constant during acceleration/deceleration, and rapidly

achieves the 30 m ascent and descent while in hover.
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Figure 8.12: State variables during combined acceleration/deceleration and bob-up/bob-down
MTE ( command, SMC, SMC with PCH)

Fig. 8.12 plots the fuselage states. The deceleration to hover and acceleration to

forward flight phases observed in the forward speed (Vh) plot demand a peak pitch

change (∆θ) of 30°, as required for desired performance [4]. The peak pitch rate (q) is

30 °/s without PCH, and 20 °/s with PCH. The ground track (χ) and the sideslip (β)

are held within ±6° as a consequence of the commanded yaw rate (r) and roll attitude

(φ) tracking in the inner loop, respectively, which also satisfies desired performance [4].

The vertical speed (Vz) plot is regulated to zero during the acceleration/deceleration,

and depicts a first-order behavior in climb and descent rates.

Fig. 8.13 plots the four control inputs. As observed there, actuator saturation is not

encountered in this MTE. The control performance of the SMC closed-loop is satisfactory

with PCH and without PCH. These results suggest that ADS-33 desired performance
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Figure 8.13: Control inputs during combined acceleration/deceleration and bob-up/bob-down

MTE ( SMC, SMC with PCH)

criteria are met in the case of the acceleration/deceleration and bob-up/bob-down ma-

neuver.

8.1.5 Comparison of SMC and EMF Control Performances

For comparison purposes, the same required response characteristics that were chosen

for the SMC (see Sec. 5.1) were also applied to the EMF controller: ζθ = 0.9, ωθ = 2.34,

ζφ = 0.75, ωφ = 2.34. These parameters yield ωbw,θ = 5.25 rad/s and ωbw,φ = 4.68 rad/s.

However, during simulations with the EMF controller, it was observed that larger roll

amplitude commands led to instabilities. Therefore, only ωφ in Eqn. (5.2) for the EMF

controller was reduced from 2.34 to 1.6. This modification, however, degrades the roll

axis HQ in EMF as seen in the following discussion.

8.1.5.1 Comparison of Moderate Amplitude Responses

The achievable on-axis handling qualities for the SMC and EMF controller are com-

pared here. Figs. 8.14a–8.14c plot qpk/∆θpk versus ∆θmin for pitch attitude quickness,

ppk/∆φpk versus ∆φmin for roll attitude quickness, and rpk/∆ψpk versus ∆ψmin for yaw
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Figure 8.14: Comparison of the moderate-amplitude responses between SMC and EMC con-
troller

attitude quickness, respectively. Here, (⋅)pk is the peak following a step command and

(⋅)min is the minimum after the first peak. Using thresholds defined by ADS-33 [4], it is

observed that the SMC controller satisfies predicted Level 1 HQ in pitch, roll, and yaw

axes, whereas the EMF controller satisfies predicted Level 1 HQ in pitch and yaw axes,

but only Level 2 HQ in roll axis. The roll axis HQ degradation is, however, a result of

the reduction in natural frequency of the required response characteristics in the EMF

controller.
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8 Simulation Results and Discussion

8.1.5.2 Comparison of Level of Interaxis Coupling

Fig. 8.15 shows a summary of the comparison of the level of interaxis coupling achieved

by each of the two flight controllers - SMC and EMF - using the thresholds specified in

ADS-33 [4]. A comparison of the pitch due to roll coupling, plotted in Fig. 8.15a, shows

that the off-axis peak pitch attitude response of the EMF controller in hover extends

to the Level 2 zone. In low-speed, however, its response remains well within the Level

1 threshold. In contrast, the same quantity measured for the SMC controller remains

within the Level 1 threshold in both hover and low-speed.

Further, Fig. 8.15b plots the off-axis peak roll attitude to the on-axis desired pitch

attitude and the corresponding thresholds specified in ADS-33 [4]. It is noticed that

both SMC and EMF are well within the Level 1 threshold in both hover and low-speed.

Finally, Fig.8.15c shows the yaw due to collective in hover for climb and descent based

on the evaluation criteria and thresholds specified in ADS-33 [4]. It can be noticed that

the EMF controller in both climb and descent possesses Level 2 HQ, whereas the SMC

controller lies within the Level 1 threshold.

8.1.5.3 Comparison of Hover Performance in Turbulence

This simulation compares the robustness of the SMC and the EMF controllers in a

station-keeping task in the presence of turbulence. The helicopter is oriented along

north (ψ = 0) in stable hover and the CETI filters, defined in Sec. 4.3, corresponding to

high-intensity turbulence are applied [99]. Each controller is command to regulate the

pitch, roll, and yaw attitudes in order to maintain stable hover despite the turbulence.

No additional robustness countermeasures are applied.

The dynamic responses are plotted in Fig. 8.16. The responses using the SMC con-

troller depict maximum deviations of 1.5°, 3°, and 4° in pitch, roll, and yaw attitudes,

respectively, from the respective trim values. The vertical speed variation lies in the

range of ±0.2 m/s. Fig. 8.16 also shows that the helicopter is able to hold ground posi-
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Figure 8.15: Comparison of interaxis coupling between SMC and EMF controllers

tion to within 0.25 m from simulation start. The corresponding responses using the EMF

controller show maximum deviations of 4°, 3°, and 10° in pitch, roll, and yaw attitudes,

respectively, from the respective trim values. The vertical speed variation with EMF

lies in the range of ±0.6 m/s. Ground positions using EMF are held to within 0.6 m from

simulation start. These results suggest that SMC has a slight advantage over EMF in

terms of tracking accuracy and active exogenous disturbance rejection.

8.1.6 Summary of Predicted Handling Quality Enhancement

Table 8.1 summarizes the predicted HQ levels evaluated from the preceding simula-

tion studies for each of the different control augmentation approaches evaluated in this
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Figure 8.16: SMC versus EMF performance in high-intensity turbulence ( θ, φ, ψ,
Vz, ground positions)

section. Unsurprisingly, the BO105 bare-airframe responses, determined from exten-

sive flight testing in Ref. [96, 97], are rather poor. While EMF control design shows

satisfactory performance with up to Level 1 HQ for the moderate amplitude criterion,

its interaxis coupling performance is unsatisfactory. In contrast, the SMC controller

achieves Level 1 HQ for both moderate amplitude and interaxis coupling criteria. The

inclusion of the PCH layer, as discussed, reduces the peak angular rates but still achieves

up to Level 1 HQ.

It is noted that the closed-loop sliding mode control responses are in accordance with

the required lower-order response characteristics as defined in Section 5.1. For other

helicopter flight controllers where comfort is desirable (for instance in civilian applica-
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8.2 Waypoint Guidance Performance Evaluation

Evaluation Method Predicted HQ Level

Criterion Axes
BO105

Bare-airframe
From [96, 97]

EMF SMC
SMC

+PCH

Moderate Pitch NA 1 1 1
Amplitude Roll 1 2 1 1

Yaw NA 1 1 1

Interaxis Pitch due to roll 1-2 2 1 1
Coupling Roll due to pitch 3 1 1 1

Pitch due to collective 2 2-3 1 1
Yaw due to collective NA 2 1 1

Table 8.1: Summary of predicted handling quality enhancement using sliding mode control

tions), the designer may choose to specify lower-order response characteristics that yield

less aggressive responses.

8.2 Waypoint Guidance Performance Evaluation

In this section, the waypoint guidance laws are evaluated in a real-time, online sense for

different waypoint constraints and different target maneuvers. Once again, all simula-

tions are performed in a real-time sense on a desktop computer that hosts the previously

described Matlab/Simulink-based simulation environment. In the following simulations,

the success criterion for waypoint tracking is set as r < 10 m.

8.2.1 Minimum Waypoint Spacing

To demonstrate waypoint spacing limits, a scenario with Vh = Vh,t = 60 m/s, z = zt =

800 m, and {χ,χt} ∈ {−135°,−45°,45°,135°} is considered. For ∣φmax∣≈ 45°, Rmin = 370 m

is obtained. Closed-loop simulations are performed from initial position (0,0,800)m.

At Γ = 6, and dχ = 2220 m, the trajectories converge to ∣eχ∣⩽ 15° and d ⩽ 20 m for all

{χ,χt}, and the convergence improves for Γ ⩾ 6. The 2D flight paths with Γ = 6 are

plotted in Fig. 8.17. Note that, for ∣axmax ∣ and for all Vh ∈ [20,60]m/s, dVh < 2220 m

is obtained. Furthermore, dz ⩽ 340 m is estimated using dχ and tgo from Eqn. (6.14).
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Figure 8.17: 2D flight paths for dχ = 2220 m, ∣φmax∣≈ 45°, χt ∈ {−135°,−45°,45°,135°}

These results indicate that the SDRE guidance laws are suboptimal in terms of the

flight path distance between two waypoints, when compared to the Dubins long path

distance, where the Dubin’s long path consists of a curved path, a straight line, and
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8.2 Waypoint Guidance Performance Evaluation

another curved path sequentially. However, beyond the minimum horizontal distance,

satisfactory convergence to the terminal constraints with minimum number of turns

is observed. Furthermore, by directly delivering acceleration commands to the flight

controller, an intermediate trajectory generation step for path following is avoided.

8.2.2 3D Waypoint Trajectory Generation Results and Discussion
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Figure 8.18: 3D flight path under terminal velocity vector constraints ( Case1 Case2
Case3 Case4)

Next, two waypoints with ground coordinates (0,0)m and (4000,0)m are considered

for simultaneous tracking of three-dimensional velocity vector constraints. Four cases

are simulated to cover different combinations of horizontal, lateral and vertical flight

path profiles. Case 1 is a deceleration from 60 m/s to 20 m/s with a descent from 800 m

to 500 m. The initial and final track angles are −90°. Case 2 is an acceleration from

30 m/s to 60 m/s with a climb from 500 m to 800 m. The initial track is 60° and the final

track is −60°. Case 3 is a deceleration from 60 m/s to 30 m/s with a climb from 500 m to

800 m. The initial and final track angles are 90°. Case 4 is an acceleration from 20 m/s

to 60 m/s and a descent from 800 m to 500 m. The initial track is −60° and the final track

is 60°.

The ground position and altitude histories are plotted in Fig. 8.18, which shows a

smooth evolution (i.e. without discontinuities) of the flight paths from the initial to the
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Figure 8.19: Velocity and track angle trajectories under terminal velocity vector constraints
( Case1 Case2 Case3 Case4)

final coordinates. Lateral turns and altitude changes are evenly distributed over the flight

path trajectories. The velocity vector and line-of-sight histories are plotted in Fig. 8.19.

The required horizontal velocities are achieved and the vertical velocities approach zero,

allowing the helicopter to level off at the terminal waypoint. The actual ground track

and the line-of-sight angle are simultaneously regulated to the value of the required final

track angle to ensure precise directional and ground position tracking. The corresponding

acceleration commands for each case are depicted in Fig. 8.20. The forward and vertical

acceleration commands approach zero, yielding steady-state conditions in these axes.

The lateral acceleration plot depicts a steady demand for turning flight tending to zero

towards the end.

Finally, a scenario with a sequence of 6 waypoints, each separated by 2800 m horizon-

tally and 100 m vertically, is simulated. The constraints on the horizontal velocity and

110



8.2 Waypoint Guidance Performance Evaluation

t [s]
0 50 100 150 200

a
x
[m

/s
2
]

-0.8

-0.4

0

0.4

0.8

t [s]
0 50 100 150 200

a
y
[m

/s
2
]

-10

-5

0

5

10

t [s]
0 50 100 150 200

a
z
−
g
[m

/s
2
]

-0.5

-0.25

0

0.25

0.5

Figure 8.20: Acceleration histories under terminal velocity vector constraints ( Case1
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Figure 8.21: 3D flight path in a waypoint sequence

ground track are varied in the range of [20,40]m/s and [−90,135]° respectively, and each

waypoint requires a level off (Vz,t = 0 m/s) as shown by the arrowheads in Fig. 8.21.
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Figure 8.22: Velocity and track angle trajectories in a waypoint sequence

Also shown in the same figure are the actual smooth geometric flight paths between the

waypoints executed by the helicopter. The corresponding velocity vector histories plotted

in Fig. 8.22 highlight that the velocity vector constraint at each waypoint is achieved.

The helicopter reaches steady state at each waypoint. In all simulation scenarios, it is

observed that despite decoupling of the axes for trajectory generation, the flight path

and velocity vector objectives in each axis are satisfied.

8.3 Rendezvous Guidance Performance Evaluation

A slow moving target with constant speed Vt = 20 m/s is considered for rendezvous. Four

cases of lateral maneuvering profiles for the target are simulated: constant heading,

constant heading rate, sinusoidal heading rate, and multisinusoidal heading rate. In all

cases, the target’s initial position is (2000,2000,10)m. The helicopter’s initial position,

horizontal velocity, and heading are (0,0,400)m, 50 m/s, and 0°, respectively.
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To reduce the likelihood of aggressive lateral maneuvers in low speed, the horizontal

velocity regulation is performed in three phases. The first phase applies when r > 250 m,

in which the helicopter is required to attain a target horizontal velocity as Vh → 30 m/s.

The second phase applies when 250 m < r < 100 m, in which the horizontal velocity of

the helicopter is held constant at Vh = 30 m/s. The third phase applies when r < 100 m,

in which the target horizontal velocity of the helicopter is Vh → Vt. Moreover, for

successful rendezvous, the helicopter’s final horizontal velocity at rendezvous is required

to be slightly higher than the target’s ground speed.

8.3.1 Case A: Target With Constant Heading
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Figure 8.23: 3D positions for constant heading target, ◯ Initial Position, ☆ Rendezvous Posi-
tion, Helicopter, Target

Case A simulates a target with a constant heading angle of 120° and a constant speed

of 20 m/s. The ground positions and altitude profiles for both scenarios are plotted in

Fig. 8.23. The guidance laws with the chosen static gains appear to result in a pursuit-

like guidance, as seen from the ground position plot. The altitude plot shows successful

descent to the target altitude. The ground position and altitude profiles both depict a

smooth evolution of the flight path.

The velocity vector and target parameters are plotted in Fig. 8.24. The horizontal

velocity plot shows three distinct phases of deceleration terminating in a final horizontal

velocity slightly greater than the target velocity. The vertical velocity plot approaches
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Figure 8.24: State variables for constant heading target, Helicopter, Target

zero well before the rendezvous point, indicating level off at the target altitude much be-

fore interception. The helicopter’s ground track angle approaches the target’s track angle

and the horizontal line of sight simultaneously, which satisfies the necessary conditions

for rendezvous.

The translational accelerations are plotted in Fig. 8.25. The forward acceleration plot

depicts the three deceleration phases described earlier. The lateral acceleration demand

is high in the beginning especially for the scenario that induces a reversal in the turn

direction. The reversal is due to a large difference between the initial values of the

horizontal line of sight angle and the helicopter ground track angle. Both the lateral and

vertical accelerations converge to zero prior to the point of interception. This indicates

that the helicopter achieves stable and almost stationary flight with respect to the target

at rendezvous point.
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Figure 8.25: Helicopter accelerations to controller for constant heading target
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Figure 8.26: 3D positions for constant heading rate target, ◯ Initial Position, ☆ Rendezvous
Position, Helicopter, Target

8.3.2 Case B: Target with Constant Heading Rate

Case B simulates a target with constant heading rate of χ̇t = 1.5 °/s, which is considerably

smaller than the maximum heading rate achievable by the helicopter. The speed of the

target is kept constant at 20 m/s. The ground positions and altitude profiles are plotted

in Fig. 8.26. Despite being formulated and solved for a constant heading target, the
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guidance laws are found to robustly achieve rendezvous in the horizontal plane with

a smooth evolution of the flight path. Similarly, the altitude profile shows successful

descent to the target altitude.
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Figure 8.27: State variables for constant heading rate target, Helicopter, Target

The velocity vector and target parameters are plotted in Fig. 8.27. The horizontal

velocity plot in red shows the three distinct deceleration phases. The vertical velocity

plot in both scenarios approaches zero before the rendezvous to allow the helicopter to

level off at the end of the trajectory. The helicopter’s ground track angle successfully

aligns with the target’s track angle and the horizontal line of sight.

The translational accelerations are plotted in Fig. 8.28. The forward, lateral, and

vertical accelerations approach zero towards the end of the trajectory. One outlier can

be seen for the lateral acceleration plot in red, which appears to command higher values

at the interception point. This behavior appears to result from a small misalignment

between the horizontal line of sight and the helicopter ground track angle, as observed

previously in Fig. 8.27. This indicates that although the rendezvous guidance laws
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Figure 8.28: Helicopter accelerations to controller for constant heading rate target

appear to be robust to variable heading over most of the trajectory, they may lead to a

large lateral acceleration demand in proximity to the target position.

8.3.3 Case C: Target With Sinusoidal Heading
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Figure 8.29: 3D positions for target with sinusoidal heading, ◯ Initial Position, ☆ Rendezvous
Position, Helicopter, Target
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8 Simulation Results and Discussion

Case C simulates a target with a sinusoidally varying heading rate as χ̇t = A sin(ωt),

where A = 1.5 °/s and ω = 0.075 rad/s. Although this heading rate is higher than Case B,

it is still much lower than the maximum heading rate achievable by the helicopter. The

speed of the target is held constant at 20 m/s. The ground positions and altitude profiles

for both scenarios are plotted in Fig. 8.29. The guidance laws are again found to robustly

achieve rendezvous in the horizontal and vertical planes with a smooth evolution of the

flight path.

0 50 100 150
t(s)

10

20

30

40

50

60

u
,u
t
(
m
/
s)

0 50 100 150
t(s)

-6

-4

-2

0

w
(
m
/
s)

0 50 100 150
t(s)

-60

-40

-20

0

20

40

χ
,χ
t
(
°
)

0 50 100 150
t(s)

-50

0

50

σ
,χ
t
(
°
)

Figure 8.30: State variables for target with sinusoidal heading, Helicopter, Target

The velocity vector and the kinematics are plotted in Fig. 8.30. The horizontal velocity

plot the three distinct deceleration phases. The helicopter’s final velocity is close to the

target velocity. The vertical velocity approach zero well before the rendezvous point.

The track angle and horizontal line of sight plots show that the helicopter’s ground

track angle successfully aligns with the target’s track angle and the horizontal line of

sight.
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Figure 8.31: Helicopter accelerations to controller for target with sinusoidal heading

The translational accelerations are plotted in Fig. 8.31. The forward and vertical

accelerations approach zero towards the end of the trajectory. However large control

action is observed in the lateral acceleration plot close to the rendezvous point, which

can be attributed to the guidance scheme’s inability to track large target maneuvers

close to the rendezvous point.

8.3.4 Case D: Target With Multisinusoidal Heading Rate

Finally, case D simulates a target whose heading rate is the sum of sinusoids of varying

amplitudes and frequencies as χ̇t = ∑15
i=1Ai sin(ωit + Φi), where A ∈ [1.5,12.5]°/s, ω ∈

[0.1,1.5]rad/s, and Φ ∈ [−3,3]rad. The lower frequency components are assigned higher

amplitudes whereas the higher frequency components are assigned lower amplitudes.

The speed of the target is held constant at 20 m/s. The ground positions and altitude

profiles are plotted in Fig. 8.32. Again, in both scenarios, the guidance laws are found to
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Figure 8.32: 3D positions for multisinusoidal heading rate target, ◯ Initial Position, ☆ Ren-
dezvous Position, Helicopter, Target

achieve a successful rendezvous in both the horizontal and vertical planes. The evolution

of the flight paths is also found to be smooth.
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Figure 8.33: State variables for multisinusoidal heading rate target, Helicopter, Target

The velocity vector and the kinematics are plotted in Fig. 8.33. The horizontal velocity

plot indicates deceleration profiles which are less smooth than for the previous cases.

This behavior stems from a variable tgo due to the unpredictable target maneuvers.

Yet, the helicopter’s final velocity is close to the target velocity in both scenarios. The
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Figure 8.34: Helicopter accelerations to controller for multisinusoidal heading rate target

vertical velocities in both scenarios are smooth, and they approach zero well before the

rendezvous point. The track angle and horizontal line of sight plots indicate that despite

the uncertain target behavior, the helicopter is able to achieve successful rendezvous in

the horizontal plane.

The translational accelerations are plotted in Fig. 8.34. The forward and vertical

accelerations approach zero towards the end of the trajectory. However, non-smooth

lateral acceleration profiles can be observed in both scenarios demanding non-zero control

action close to the rendezvous point. Nevertheless, all three accelerations are well within

their respective saturation bounds.

8.4 Shipboard Approach in High Intensity Turbulence

To demonstrate a realistic application of the rendezvous guidance laws coupled with the

robust flight controller, an automatic, unpiloted approach to a moving shipboard in high
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8 Simulation Results and Discussion

intensity turbulence is chosen. This scenario allows to assess the 3D trajectory generation

and tracking performance, as well as the overall robustness to turbulence in the forward

flight and low-speed regimes. The helicopter-ship engagement geometry is identical to

the geometry depicted previously in Sec. 7, Fig. 7.1. A ship of constant speed 10 m/s,

constant course of 120°, and initial position of (2000,2000,10)m is the designated target

for approach and rendezvous. The helicopter is located at (0,0,400)m, oriented along

North, and in trimmed forward flight at 60 m/s. High-intensity turbulence is simulated

using the CETI model (Sec. 4.3, [99]). The objective is to perform a 3D approach from

the rearward direction of the ship’s motion and to achieve relative hover over the landing

deck.

To simplify guidance tasks, the flight phases are separated between initial approach

performed in the forward flight regime, and the final approach performed in the low-

speed/hover regime. In the initial approach phase, the helicopter is commanded to

decelerate to 23 m/s, attain 40 m altitude, and the acquire the ship’s heading. In this

phase, the roll attitude commands a track angle change and the yaw rate commands turn

coordination. Next, in the final approach phase, the helicopter is commanded to reach

within a radius of 5 m around the ship’s deck, 10 m altitude, and the acquire the ship’s

ground speed and heading. In this phase, the roll attitude commands lateral velocity

and the yaw rate commands heading.

Fig. 8.35 shows the evolution of the horizontal and vertical paths of the ship, resulting

in a successful rendezvous with the ship.
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Figure 8.35: Flight paths in shipboard approach ( helicopter, ship, ◯ initial, ☆ final)
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8.4 Shipboard Approach in High Intensity Turbulence

Fig. 8.36 plots the helicopter’s states. The forward velocity (Vh) decreases gradually

despite gusts affecting the pitch attitude (θ) and the pitch rate (q), and equals the

ship’s ground speed at rendezvous. Likewise, the helicopter ground track (χ) gradually

converges upon the ship’s course despite gusts affecting the roll attitude (φ) and the

roll rate (p), and is held constant thereafter until rendezvous. A vertical speed of

−8 m/s for the descent is commanded during approach. Sideslip (β) remains within

±10° during arrival, but reaches upto 15° in the approach phase to compensate for

the cross-track errors in this phase. The final angular rates and the final vertical speed

approach zero, suggesting that the helicopter is trimmed and attains stable hover relative

to the shipboard. Finally, Fig. 8.37 depicts the control inputs generated by the SMC
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Figure 8.36: State variables in shipboard approach ( command, helicopter, ship)

during the entire maneuver. The pedal control approaches its upper limit during turn

coordination for ground track angle control, but does not saturate. All other control
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8 Simulation Results and Discussion

inputs remain well within their operating margins of [0−100]%. In summary, the effects

of turbulence and interaxis coupling are not found to adversely affect 3D trajectory

tracking performance in forward flight and hover/low-speed both. Furthermore, the

transition from the forward flight to low-speed mode is smooth.
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Figure 8.37: Control inputs during shipboard approach
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9 Conclusions

This thesis has put forth three novel ideas with regard to helicopter guidance and

control. First, the thesis proposed a sliding mode-based robust flight control design for

enhancing helicopter handling qualities up to Level 1, and for enabling robust trajectory

following. Second, the thesis demonstrated the application of the state-dependent Riccati

equation technique to solve an online trajectory generation problem between waypoints

with velocity vector constraints. Finally, the thesis extended the state-dependent Riccati

equation approach for a scenario of rendezvous with a slow maneuvering target.

The key findings, advantages, and shortcomings of the work performed in this thesis

are now summarized in the following points:

1. The proposed sliding mode flight controller satisfies the required on-axis behavior

and tracking performance, as well as robustness to interaxis coupling and exoge-

nous disturbances in a highly nonlinear and coupled system. In this sense, the need

for explicit axes decoupling necessitated by some contemporary control techniques

was obviated. The flight controller was implemented in a dual-loop architecture

and the overall closed-loop system was proved to be stable. The helicopter with

SMC controller achieved Level 1 HQs in terms of attitude quickness and interaxis

coupling criteria, and it satisfied adequate performances in the slalom, accelera-

tion/deceleration and bob-up/bob-down MTEs. Stability was also maintained in

large amplitude attitudes that required high angular rates. The chattering effect,

which is characteristic of the classical SMC technique, was effectively mitigated
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using the boundary layer concept. The inclusion of optional PCH layers for refer-

ence command adaptation was shown to reduce overshoot and to mitigate actuator

saturations in the slalom maneuver. Furthermore, a comparative assessment of the

SMC flight controller was performed with an EMF controller synthesized from the

literature. The SMC controller showed advantages particularly in performance

against the interaxis coupling criteria. Some of the benefits of the sliding mode

controller can be summarized as follows:

a) It has a low dependency on system models, which can potentially reduce costs

and efforts in practical flight control development.

b) It satisfies the required closed-loop performance specification in the form of

the required axial response-types specified as transfer functions.

c) It provides a mathematical basis for stability in the presence of the uncer-

tainties, insofar as the upper bounds of the uncertainties can be estimated,

and the uncertainties can be overcome by control action.

d) The closed-form solution is obtained as simple, high gain PID-like feedback

structure (within the boundary layer) and does not impose any additional

computational effort. The closed-form controller being deterministic, it is

also well-suited to satisfy many of the operational performance standards

and certification requirements applicable to airborne platforms.

Despite these strengths, the proposed flight controller has the following limitations:

a) The PCH layers were found to slightly reduce agility and proper tuning was

required to avoid degrading the overall handling qualities. This behavior

occurs because the PCH layers introduce additional dynamics in the closed-

loop, which, although stable in nature, increase the command tracking delays.

b) The SMC controller was designed using a 6DOF rigid-body dynamic model,

which assumes quasi-steady rotor dynamics. This means that steady-state
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effects of the rotor modes are directly absorbed into the stability and control

derivatives of the rigid body model. Although the resulting controller did not

lead to instability in the rotor dynamics (particularly in the lead-lag states

which are lowly damped), the higher frequency rotor dynamics could not be

explicitly and directly accounted for in the control law synthesis.

c) The sliding mode gains were chosen based on the worst case scenario that

represent upper bounds of the uncertainties. It is known that for helicopter

flight control, high gains on the angular rate feedback tend to amplify the

high frequency modes, and may also lead to instability.

d) Finally, the SMC controller does not explicitly account for constraints on the

control inputs and on the state variables, an aspect that may be required to

assure flight envelope protection.

2. With regard to the SDRE-based waypoint guidance, the principle of axis decou-

pling was applied to reduce the dimensionality and thereby ease the computational

complexity of the state tracking problem. Three independent, nonlinear regulator

problems were solved analytically to obtain closed-form control laws for transla-

tional accelerations. The limiting horizontal and vertical distances for convergence

to the terminal velocity vector constraints were analyzed, and it was shown that

the trajectory generation problem converges for all cases where the distance to the

next waypoint is greater than the minimum distance. The minimum distance was

shown to be a function of the helicopter’s performance thresholds. The feasibility

of generating trajectories online was demonstrated in a closed-loop by coupling it

with the sliding mode controller and a comprehensive full-scale helicopter simu-

lation model. The simulation results using a two-waypoint scenario as well as a

sequence of 3D waypoints with different altitude and velocity constraints showed

smooth evolutions of the flight path, and the state and control trajectories. Due to
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9 Conclusions

its low computational cost, the proposed approach can potentially simplify guid-

ance command generation in manned and unmanned rotary wing platforms for

tactical and maritime missions. However, a major drawback of the proposed ap-

proach is that the constraints on the state and control variables, such as flight

envelope protection, are not addressed in the guidance law synthesis.

3. The proposed rendezvous guidance scheme was formulated using the actual target

information for generating the required translational accelerations. The trans-

lational accelerations were also obtained as deterministic, closed-form solutions.

This obviates the need for pre-computed reference trajectories. The feasibility of

the proposed rendezvous guidance scheme was demonstrated by coupling it with

the sliding mode controller and a comprehensive full-scale helicopter simulation

model. A 2D target motion was simulated as a constant speed and constant head-

ing. Additional cases were evaluated to determine its robustness for different target

maneuvers: constant heading rate, sinusoidal heading rate, and multi-sinusoidal

heading rate. In all cases, the rendezvous guidance laws coupled to the sliding

mode controller were able to accurately track the required accelerations and achieve

rendezvous with the target. Although the rendezvous guidance laws were robust

to variable target lateral maneuvers, their performance was found to degrade for

larger target maneuvers. In particular, the performance was found to worse if the

target has large maneuvers when the helicopter is in proximity to the target loca-

tion. The lack of state and control constraints is also a drawback of the proposed

rendezvous guidance.
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10 Recommendations for Future Work

This chapter proposes some recommendations for extending the present work in order

not only to to introduce newer features, but also to overcome some drawbacks that have

been identified, as well as measures to improve its practical suitability.

1. While the sliding mode control technique is known to be robust to uncertainties,

demonstrating its robustness to sensor and actuator faults can improve its practical

suitability for the helicopter flight control problem. For this purpose, the reader is

referred to previous works on sliding mode-based fault tolerant schemes [42, 43],

which can be a good starting point for fault tolerant helicopter flight control.

2. The present sliding mode control used fixed sliding gains based on the uncertainty

estimates. As mentioned earlier, this choice is designed for the worst case scenario.

However, high gains are not required when the uncertainties are small, such as

in calm wind conditions, or when accurate system models are available a priori.

For this purpose, adaptation-based approaches for tuning the sliding mode gains

based on the actual uncertainty bounds may prove useful and alleviate some of the

drawbacks observed in the present approach. Such adaptive gain tuning would also

obviate the need for the pseudo-control hedging layers in the closed-loop structure.

A recent work [105] has introduced new methodologies for adaptive sliding mode

control, which provides a strong mathematical basis for the development of an

adaptation sliding mode helicopter flight control.
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10 Recommendations for Future Work

3. The high frequency chattering effect of the present sliding mode control approach

is perhaps the most undesirable of all, especially when dealing with mechanical

systems. Although the boundary layer approach pursued in this thesis showed

good results, it leads to a pseudo-sliding mode control, in which the inherent

robustness properties of sliding mode control stand degraded. Notably, the closed-

loop does not become completely insensitive to uncertainty and an ideal sliding

motion no longer takes place inside the boundary layer. It has been shown in the

literature [106] that resorting to the so-called higher-order sliding mode control

approach not only mitigates chattering while retaining all robustness properties,

but also permits its application to systems whose relative degree with respect to

the sliding variable is greater than one. It is therefore recommended to pursue

helicopter flight control based on the higher-order sliding mode control approach.

4. With regard to the trajectory generation guidance laws, further extensions may

be envisaged by explicitly including state and control limits in the synthesis of the

guidance laws. This feature will allow the trajectories to avoid sensed obstacles,

no-fly zones, and also ensure that the trajectories lie within the helicopter’s flight

envelope.

5. The present dissertation has provided a basis to demonstrate the efficacy and

mathematical framework for nonlinear control and guidance algorithms. Avionics

software development and integration in accordance with the minimum operational

performance standards remains an important aspect that was clearly beyond the

scope of this work. For any subsequent implementation on airborne platforms, it

will be necessary to pursue further development and demonstrate compliance with

applicable certification specifications (for instance, Ref. [8]).
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A Appendix A

A.1 Structure of System and Control Matrices

The matrices referred to in Chapter 5 are expanded below. Here, s(⋅), c(⋅), t(⋅) represent

sine, cosine, and tangent respectively; Z(⋅), L(⋅), M(⋅), N(⋅) represent partial derivatives

of normal force, roll, pitch, and yaw moments respectively.

The full linear system model used in the synthesis of the EMF control laws is repre-

sented by:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 sφtθ cφtθ

0 0 0 0 cφ −sφ

0 0 Zw Zp Zq Zr

0 0 Lw Lp Lq Lr

0 0 Mw Mp Mq Mr

0 0 Nw Np Nq Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

Zθ Zα Zβ Zδ

Lθ Lα Lβ Lδ

Mθ Mα Mβ Mδ

Nθ Nα Nβ Nδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

147



A Appendix A

The sparse linear model used in the synthesis of the SMC attitude control laws is repre-

sented by:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 sφtθ cφtθ

0 0 0 0 cφ −sφ

0 0 Zw 0 0 0

0 0 0 Lp 0 0

0 0 0 0 Mq 0

0 0 0 0 0 Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

Zθ 0 0 0

0 Lα 0 0

0 0 Mβ 0

0 0 0 Nδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The output matrix for both controllers is represented by:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented system matrices for the SMC controller are represented by:

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

04×4 C1 C2

02×4 A11 A12

04×4 A21 A22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̃ =
⎡⎢⎢⎢⎢⎢⎣

06×4

B2

⎤⎥⎥⎥⎥⎥⎦
, T̃ =

⎡⎢⎢⎢⎢⎢⎣

I4×4

06×4

⎤⎥⎥⎥⎥⎥⎦
, f̃ =

⎡⎢⎢⎢⎢⎢⎣

06×1

B2Γ

⎤⎥⎥⎥⎥⎥⎦

The SMC gain matrices are represented by:

S1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 λw 0 0 0

0 0 0 λr 0 0

ω2
φ 0 0 0 2ζφωφ 0

0 ω2
θ 0 0 0 2ζθωθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 1 sφtθ cφtθ

0 0 cφ −sφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A.2 BO105 Linear Model

A.2 BO105 Linear Model

The system and control matrices of the linearized system in Eqn. 4.9 and in Appendix A.1

are expanded below.

Hover

A∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1.0000 −0.0058 0.0784

0 0 0 0 0 0 0.9973 0.0734

0 −0.1706 −0.0269 −0.0112 0.0130 −0.0013 0.0159 −0.0004

0.1702 0.0010 0.0190 −0.0672 −0.0083 −0.0154 0.0008 −0.0002

0.0125 −0.0134 0.0233 −0.0002 −0.2754 −0.0005 −0.0014 0.0085

0 0 9.6100 −14.2400 0.1285 −9.5330 2.1290 −0.7146

0 0 3.2970 2.9340 −2.8510 −0.1193 −3.2580 −0.0396

0 0 1.6880 −1.5440 0.0209 −1.6420 0.4045 −0.3294

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0.0857 −0.1681 0.0075 −0.0000

0.0009 −0.0159 0.1956 0.0359

−1.0130 −0.0113 0.0036 0.0001

2.0940 −14.4451 75.1196 −0.4211

−3.1080 22.7306 2.4491 −0.1022

13.2500 −2.9615 12.0676 −5.2350

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Low-speed, 20 m/s

A∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1.0000 −0.0021 0.0796

0 0 0 0 0 0 0.9996 0.0267

0 −0.1706 −0.0241 −0.0056 0.0245 0.0008 −0.0083 −0.0010

0.1706 0.0004 0.0069 −0.0794 0.0016 0.0120 0.0025 −0.3470

0.0046 −0.0136 −0.0866 −0.0124 −0.4540 0.0134 0.3494 0.0085

0 0 −2.9120 −11.2100 7.9430 −8.6120 2.8520 −0.7062

0 0 3.0930 1.4180 −0.5912 −0.7654 −3.5970 −0.0704

0 0 −3.1960 −0.4223 −0.1211 −1.6410 0.8938 −0.5083

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0.0596 −0.1513 −0.0169 −0.0056

−0.0145 −0.0200 0.1780 0.0212

−1.0150 −0.1220 0.0126 −0.0005

4.4070 −13.1207 69.9613 −0.2477

2.0950 21.0346 4.6937 −0.0113

9.8130 −3.9019 10.9844 −3.0860

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A.2 BO105 Linear Model

Forward flight, 40 m/s

A∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1.0000 −0.0007 0.0316

0 0 0 0 0 0 0.9998 0.0208

0 −0.1711 −0.0384 −0.0030 0.0131 −0.0001 −0.0038 −0.0004

0.1710 0.0001 0.0059 −0.1162 −0.0131 0.0081 0.0012 −0.6950

0.0036 −0.0054 0.0131 −0.0085 −0.5711 0.0140 0.6966 0.0088

0 0 −2.9020 −10.4400 3.6570 −7.5750 2.3210 −0.4796

0 0 2.4250 0.5813 0.0982 −0.5913 −3.3910 −0.0880

0 0 −2.5800 0.0393 −1.1710 −1.3890 1.0190 −0.6843

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0.0135 −0.1823 −0.0204 −0.0169

−0.0178 −0.0400 0.1562 0.0395

−1.1930 −0.3137 0.0195 −0.0006

3.3560 −11.7840 67.6947 −0.4641

8.1560 23.7585 4.9963 0.1814

6.3260 −3.0240 11.7131 −5.7560

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B Appendix B: Full Derivation and Analysis

of Cascaded Two-Loop Dynamics

B.1 Attitude and Rate Command Control

Consider the full-order 6DOF rigid-body linearized multivariable uncertain system:

ẋ(t) = Ax(t) +Bu(t) + f(x,u,t) (B.1)

y(t) = Cx(t) (B.2)

where A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×n, n ≥m. The system of Eqns. (B.1)–(B.2) is iden-

tical to Eqn. (5.10), except that the longitudinal and lateral speed states are not dropped.

For the helicopter dynamics, x ≡ [φ θ u v w p q r]⊺, u ≡ [Dθ Dβ Dα Dδ]⊺, y ≡

[φ θ w r]⊺ giving n = 8, m = 4, and p = 4. The states and controls are as defined in

the nomenclature section. y is a subset of the state vector that must robustly track a

command signal r ≡ [φc θc wc rc]⊺. Note that for the purpose of controller synthesis,

full state feedback is assumed. The unknown function f ∶ R8 × R4 × R+ → R8 collects

unknown but matched and bounded uncertainties, which implies that it can be expressed

as f(x,u,t) = BΓ, where ∥Γ∥≤ L.
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B Appendix B: Full Derivation and Analysis of Cascaded Two-Loop Dynamics

The system and control matrices in Eqn. (B.1) containing the partial derivatives and

the output matrix in Eqn. (B.2) take the form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 −g Xu Xv Xw Xp Xq Xr

g 0 Yu Yv Yw Yp Yq Yr

0 0 Zu Zv Zw Zp Zq Zr

0 0 Lu Lv Lw Lp Lq Lr

0 0 Mu Mv Mw Mp Mq Mr

0 0 Nu Nv Nw Np Nq Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

Xθ Xα Xβ Xδ

Yθ Yα Yβ Yδ

Zθ Zα Zβ Zδ

Lθ Lα Lβ Lδ

Mθ Mα Mβ Mδ

Nθ Nα Nβ Nδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.3)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.4)

To allow asymptotic tracking of the command vector by the output vector, the tracking

error is defined as xe(t) = ∫ t0 (y(t) − r(t))dt. An augmented state vector is defined as

x̄ ≡ [xe x]⊺ and the augmented system and control matrices are defined as:

Ā =
⎡⎢⎢⎢⎢⎢⎣

0 C

0 A

⎤⎥⎥⎥⎥⎥⎦
, B̄ =

⎡⎢⎢⎢⎢⎢⎣

0

B

⎤⎥⎥⎥⎥⎥⎦
. (B.5)

where Ā ∈ R12×12 and B̄ ∈ R12×4.
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B.1 Attitude and Rate Command Control

There exists an orthogonal transformation matrix Tr satisfying

TrB̄ =
⎡⎢⎢⎢⎢⎢⎣

0

B2

⎤⎥⎥⎥⎥⎥⎦
, (B.6)

where B2 ∈ R4×4. The matrix Tr can be computed via QR decomposition.

The transformed state vector is:

x̃ = Trx̄ (B.7)

This allows the original system x̄ ≡ [xe x]⊺ to be represented as x̃ ≡ [x1 x2]⊺, where

x1 ∈ R8 represents the indirectly actuated states states, and x2 ∈ R4 represents the states

on which the control vector acts (directly actuated states). Tr also permits the inverse

transformation from x̃ into the original coordinates x̄ without loss of numerical accuracy.

For further details, see Ref. [38, Sec. A.2.5].

The system dynamics from Eqn. (B.1) in the transformed coordinates can be written

as:

⎡⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Ã11 Ã12

Ã21 Ã22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

B2

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

T1

0

⎤⎥⎥⎥⎥⎥⎦
r +

⎡⎢⎢⎢⎢⎢⎣

0

f

⎤⎥⎥⎥⎥⎥⎦
(B.8)

where Ã11 ∈ R8×8, Ã12 ∈ R8×4, Ã21 ∈ R4×8, Ã22 ∈ R4×4, B2 ∈ R4×4, and T1 ∈ R8×4, and

B2 is in row echelon form.

The system in Eqn.(B.8) can be written in compact form as:

˙̃x = Ãx̃ + B̃u − T̃r + f̃ (B.9)

and the time dependence is dropped for brevity.
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B Appendix B: Full Derivation and Analysis of Cascaded Two-Loop Dynamics

The sliding variable from Eqn. (5.15) is ordered differently and written as:

σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇ + 2ζφωφφ + ω2
φ ∫

t
0 (φ − φc)dτ

θ̇ + 2ζθωθθ + ω2
θ ∫

t
0 (θ − θc)dτ

w + λw ∫ t0 (w −wc)dτ

r + λr ∫ t0 (r − rc)dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.10)

Assuming φ̇ ≈ p and θ̇ ≈ q, σ can be written in the original coordinates as:

σ = Sx̄, (B.11)

where

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
φ 0 0 0 2ζφωφ 0 0 0 0 1 0 0

0 ω2
θ 0 0 0 2ζθωθ 0 0 0 0 1 0

0 0 λw 0 0 0 0 0 1 0 0 0

0 0 0 λr 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.12)

In the transformed coordinates, S can be written as:

S̃ = [S1 S2]⊺ = ST⊺

r (B.13)

where S1 ∈ R4×8 and S2 ∈ R4×4. Also note that

det(S̃B̃) = det(S2B2) = det(S2)det(B2) (B.14)

S̃B̃ is nonsingular if S̃2 is invertible, since det(B2) ≠ 0.

From Eqn. (B.11), the sliding variable in the transformed coordinates is:

σ = S1x1 + S2x2 = S̃x̃. (B.15)
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B.1 Attitude and Rate Command Control

The first derivative of Eqn. (B.15) gives:

σ̇ = S1ẋ1 + S2ẋ2 = S̃ ˙̃x. (B.16)

Substituting ˙̃x from Eqn. (B.9) gives:

σ̇ = S̃Ãx̃ + S̃B̃u − S̃T̃r + S̃f̃ . (B.17)

To enforce σ̇ < 0, consider the ideal sliding mode control law (analogous to Eqn. (5.18)

but without continuous approximation for the discontinuous control term):

u = −(S̃B̃)−1⎛
⎝
(S̃Ã −Φ1S̃)x̃ + S̃T̃r − ρ P1S̃x̃

∥P1S̃x̃∥
⎞
⎠
, (B.18)

where P1 is a positive definite matrix satisfying the Lyapunov equation P1Φ1 +Φ⊺

1P1 =

−I.

Insert the control law in Eqn. (B.18) into Eqn. (B.17) followed by algebraic manipu-

lations to obtain:

σ̇ = Φ1σ − ρ
P1S̃x̃

∥P1S̃x̃∥
+ S̃f̃ = Φ1σ − ρ

P1σ

∥P1σ∥ + S̃f̃ . (B.19)

The presence of Φ1 in Eqn. (B.19) gives global asymptotic stability about σ = 0 for

the nominal system without the disturbance term (S̃f̃) and with the linear component

of the control law only, i.e. σ̇ = Φ1σ, where Φ1 is stable, i.e. Re(eig)(Φ1) < 0. Note

that P1 exists if and only if Φ1 is stable [80, Theorem D.3].

To show global finite-time stability about σ = 0, consider the Lyapunov function

candidate V = σTP1σ > 0, which satisfies V (0) = 0, V(σ→∞) →∞. Its time derivative is
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B Appendix B: Full Derivation and Analysis of Cascaded Two-Loop Dynamics

given by:

V̇ = σ̇⊺P1σ +σ⊺P1σ̇ (B.20)

Substitute for σ̇ from Eqn. (B.19) to obtain:

V̇ =
⎛
⎝
Φ1σ − ρ

P1σ

∥P1σ∥ + S̃f̃
⎞
⎠

⊺

P1σ +σ⊺P1
⎛
⎝
Φ1σ − ρ

P1σ

∥P1σ∥ + S̃f̃
⎞
⎠

(B.21)

which upon simplification gives:

V̇ = σ⊺(P1Φ1 +Φ⊺

1P1)σ − 2ρ
σ⊺P2

1σ

∥P1σ∥ + 2σ⊺P1S̃f̃ (B.22)

V̇ = −σ⊺σ − 2ρ∥P1σ∥+2σ⊺P1S̃f̃ (B.23)

Equation (B.23) can be written as an inequality:

V̇ ≤ −∥σ∥2−2ρ∥P1σ∥+2∥P1σ∥ ∥S̃f̃∥ (B.24)

V̇ ≤ −2∥P1σ∥(ρ − ∥S̃f̃∥) (B.25)

If the sliding mode gain vector is set as ρ > ∥S̃f̃∥+γ for some γ > 0 then V̇ < 0 is

ensured except if σ = 0. For this choice of the sliding mode gain, global asymptotic

stability about σ = 0 is ensured.

Using ρ > ∥S̃f̃∥+γ, Eqn. (B.25) becomes:

V̇ < −2γ∥P1σ∥ (B.26)

Using [38, p.53], the reaching time for σ = 0 can be shown by first writing ∥P1σ∥2=

(
√

P1σ)⊺P1(
√

P1σ) ⩾ λmin(P1)∥P1σ∥2= Λmin(P1)V and then writing Eqn. (B.26) as:

V̇ < −2γ
√

Λmin(P1)V (B.27)
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B.2 Translational Rate Command Control

where Λmin(P1) represents the minimum eigenvalue of P1. Integrating Eqn. (B.27)

in the time interval t = 0 at initial value V0 to t = tr with V = 0, the estimate of tr is

obtained as:

tr <
1

γ

√
V0

Λmin(P1)
. (B.28)

Thus, sliding mode σ = 0 occurs at t = tr which implies that σ = S1x1 + S2x2 = 0 and

thus x1 and x2 can be expressed algebraically as:

x2 = −S−1
2 S1x1, (B.29)

since S2 is square and invertible. From Eqn. (B.8), the system dynamics when sliding

mode occurs can be expressed as:

ẋ1 = (Ã11 − Ã12S
−1
2 S1)x1 −T1r (B.30)

ẋ2 = −S−1
2 S1(Ã11 − Ã12S

−1
2 S1)x1 + S−1

2 S1T1r (B.31)

The closed-loop system upon σ = 0 is totally insensitive to the disturbance f and

Ãcl = (Ã11 − Ã12S
−1
2 S1) has stable eigenvalues.

B.2 Translational Rate Command Control

Identical to Sec. 5.4, the uncertain inertial translational dynamics are written as:

ż(t) = Fz(t) +Gr1(t) + d(z, r1, t) (B.32)

where

F = 02×2, G =
⎡⎢⎢⎢⎢⎢⎣

g/(V cos θ) 0

g tan θ tanφ −g

⎤⎥⎥⎥⎥⎥⎦
≈
⎡⎢⎢⎢⎢⎢⎣

g/V 0

0 −g

⎤⎥⎥⎥⎥⎥⎦
(B.33)
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B Appendix B: Full Derivation and Analysis of Cascaded Two-Loop Dynamics

and z ≡ [χ Vh]⊺, r1 ≡ [φ θ]⊺. The state vector z is required to asymptotically track

the command signal q ≡ [χc Vh,c]⊺. Note that Sec. 5.4 considered an output signal w

identical to the state vector z. However, in the present analysis, w will be used to denote

the output also for conciseness. The tracking error is defined as ze = ∫ t0 (z − q) and an

augmented state vector is defined as z̃ ≡ [ze z]T. The augmented system dynamics are

expressed as:

˙̃z = F̃z̃ + G̃r1 − T̃oq + d̃ (B.34)

where F̃ =
⎡⎢⎢⎢⎢⎢⎣

0 I2

0 0

⎤⎥⎥⎥⎥⎥⎦
, G̃ =

⎡⎢⎢⎢⎢⎢⎣

0

G

⎤⎥⎥⎥⎥⎥⎦
, T̃o =

⎡⎢⎢⎢⎢⎢⎣

I2

0

⎤⎥⎥⎥⎥⎥⎦
,and d̃ =

⎡⎢⎢⎢⎢⎢⎣

0

d

⎤⎥⎥⎥⎥⎥⎦

The sliding variable is defined as:

µ =
⎡⎢⎢⎢⎢⎢⎣

(χ − χc) + λχ ∫ t0 (χ − χc)dτ

(Vh − Vh,c) + λh ∫ t0 (Vh − Vh,c)dτ

⎤⎥⎥⎥⎥⎥⎦
(B.35)

and expressed in terms of the augmented state vector as:

R = {(ze,z) ∶ µ = R1ze +R2z −R3q = 0} (B.36)

where R1 =
⎡⎢⎢⎢⎢⎢⎣

λχ 0

0 λh

⎤⎥⎥⎥⎥⎥⎦
, R2 = I2, R3 = I2. (B.37)

The first derivative of Eqn. (B.35) gives:

µ̇ = R1że +R2ż −R3q̇ = R˙̃z −R3q̇, (B.38)

where R = [R1 R2]. Substitute from Eqn. (B.34) to obtain:

µ̇ = RF̃z̃ +RG̃r1 −RT̃oq +Rd̃ −R3q̇ (B.39)
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B.2 Translational Rate Command Control

For negative definiteness of µ̇, consider the ideal sliding mode control law:

r1 = −(RG̃)−1⎛
⎝
RF̃z̃ −Φ2Rz̃ +Φ2R3q −RT̃oq −R3q̇ + ρo

P2µ

∥P2µ∥
⎞
⎠

(B.40)

where P2 is a positive definite matrix satisfying the Lyapunov equation P2Φ2 +Φ⊺

2P2 =

−I. Substitute Eqn. (B.40) into Eqn. (B.39) to obtain:

µ̇ = Φ2µ − ρo
P2µ

∥P2µ∥
+Rd̃ (B.41)

To show global finite-time stability about µ = 0, consider the Lyapunov function

candidate V = µTP2µ > 0, which satisfies V (0) = 0, V(µ→∞) →∞. Its time derivative is

given by:

V̇ = µ̇⊺P2µ +µ⊺P2µ̇ (B.42)

Substitute for µ̇ from Eqn. (B.41) to obtain:

V̇ =
⎛
⎝
Φ2µ − ρo

P2µ

∥P2µ∥
+Rd̃

⎞
⎠

⊺

P2µ +µ⊺P2
⎛
⎝
Φ2µ − ρo

P2µ

∥P2µ∥
+Rd̃

⎞
⎠

(B.43)

which upon simplification gives:

V̇ = µ⊺(P2Φ2 +Φ⊺

2P2)µ − 2ρo
µ⊺P2

2µ

∥P2µ∥
+ 2µ⊺P2Rd̃ (B.44)

V̇ = −µ⊺µ − 2ρo∥P2µ∥+2µ⊺P2Rd̃ (B.45)

Equation (B.45) can be written as an inequality:

V̇ ≤ −∥µ∥2−2ρo∥P2µ∥+2∥P2µ∥ ∥Rd̃∥ (B.46)

V̇ ≤ −2∥P2µ∥(ρo − ∥Rd̃∥) (B.47)
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B Appendix B: Full Derivation and Analysis of Cascaded Two-Loop Dynamics

If the outer loop sliding mode gain vector is set as ρo > ∥Rd̃∥+γo for some γo > 0

then V̇ < 0 is ensured except if µ = 0. For this choice of the sliding mode gain, global

asymptotic stability about µ = 0 is ensured.

Remark: Eqn. (B.39) is valid only if the outer loop control command r1 is ideally

tracked by the inner loop so that the inner loop output is identical to the outer loop

control, i.e. y1 = [φ θ]⊺ = r1. However, the inner loop will track the outer loop command

signal r1 with some non-zero error and the two-loop stability in this case is discussed in

the following section.

B.3 Two-Loop Coupled System Dynamics and Stability

Analysis

The two-loop stability analysis follows the backstepping approach discussed in Ref. [40].

To account for imperfect outer loop command command tracking in the inner loop, µ̇

must consider y1 = r1 + ẋe1, where y1 = [φ θ]⊺, r1 = [φ θ]⊺, and ẋe1 = [(φ−φc) (θ − θc)]⊺.

Thus, Eqn. (B.39) must be rewritten as:

µ̇ = RF̃z̃ +RG̃y1 −RT̃oq +Rd̃ −R3q̇ (B.48)

ẋe1 can be written in terms of the transformed inner loop system coordinates as

ẋe1 = MT−1
r

˙̃x, where M = [I2 02×10] selects the states (φ − φc) and (θ − θc) from the

original state vector. Recall from Eqn. (B.7) that the inner loop state transformation

is x̃ = T−1
r x̄ where x̄ = [xe x]⊺ are the original inner loop system coordinates. Thus

Eqn. (B.48) can be written as:

µ̇ = RF̃z̃ +RG̃r1 +RG̃MT−1
r

˙̃x −RT̃oq +Rd̃ −R3q̇ (B.49)
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B.3 Two-Loop Coupled System Dynamics and Stability Analysis

Inserting Eqn. (B.40) into Eqn. (B.49) gives:

µ̇ = Φ2µ − ρo
P2µ

∥P2µ∥
+Rd̃ +RG̃MT−1

r
˙̃x (B.50)

From Eqns. (B.30)–(B.31), the inner loop transformed system dynamics upon the

sliding surface can be expressed as:

⎡⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

(Ã11 − Ã12S
−1
2 S1) 0

−S−1
2 S1(Ã11 − Ã12S

−1
2 S1) 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎥⎦
(B.51)

−
⎡⎢⎢⎢⎢⎢⎣

T1

−S−1
2 S1T1

⎤⎥⎥⎥⎥⎥⎦
r (B.52)

In compact form: ˙̃x = Ăx̃ − T̆r (B.53)

Substituting Eqn. (B.53) in Eqn. (B.50) gives:

µ̇ = Φ2µ − ρo
P2µ

∥P2µ∥
+Rd̃ +RG̃MT−1

r Ăx̃ −RG̃MT−1
r T̆r (B.54)

Also, using Eqn. (B.36) and że = z − q, one obtains:

z = R−1
2 (µ −R1ze +R3q) (B.55)

że = R−1
2 µ −R−1

2 R1ze + (R−1
2 R3 − I)q (B.56)

B.3.1 Discontinuous Inner Loop, Continuous Outer Loop

The first analysis assumes that the inner loop dynamics are implemented by the dis-

continuous control as given in Eqn. (B.18), which ensures σ = 0 in finite time given by

Eqn. (B.28). Therefore, the two-loop dynamics can be represented by the outer loop

tracking error ze, the outer loop sliding variable µ, and the inner loop augmented state

vector x̃.
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B Appendix B: Full Derivation and Analysis of Cascaded Two-Loop Dynamics

If the outer loop control is implemented by a continuous control approximation of the

form:

r1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−(RG̃)−1
⎛
⎝
RF̃z̃ −Φ2Rz̃ +Φ2R3q −RT̃oq −R3q̇ + ρoP2µ

εo

⎞
⎠

. . . if ∥P2µ∥⩽ εo

−(RG̃)−1
⎛
⎝
RF̃z̃ −Φ2Rz̃ +Φ2R3q −RT̃oq −R3q̇ + ρo P2µ

∥P2µ∥

⎞
⎠

. . . if ∥P2µ∥> εo
(B.57)

where the discontinuous unit vector has been replaced by a high-gain linear term inside

a boundary layer of size εo, then the outer loop sliding dynamics are represented by:

µ̇ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Φ2 − ρoP2

εo
)µ +Rd̃ +RG̃MT−1

r
˙̃x . . . if ∥P2µ∥⩽ εo

Φ2µ − ρo P2µ
∥P2µ∥

+Rd̃ +RG̃MT−1
r

˙̃x . . . if ∥P2µ∥> εo
(B.58)

Substituting for ˙̃x from Eqn. (B.53) in Eqn. (B.58), we obtain::

µ̇ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Φ2 − ρoP2

εo
)µ +Rd̃ +RG̃MT−1

r Ăx̃ −RG̃MT−1
r T̆r . . . if ∥P2µ∥⩽ εo

Φ2µ − ρo P2µ
∥P2µ∥

+Rd̃ +RG̃MT−1
r Ăx̃ −RG̃MT−1

r T̆r . . . if ∥P2µ∥> εo
(B.59)

Notice that Eqns. (B.53), (B.59), and (B.56) represent the two-loop coupled system

dynamics. Assuming that the outer loop sliding dynamics operates inside the boundary

layer, i.e. for the case ∥P2µ∥⩽ εo, the two-loop coupled system in state space form can

be written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

że

µ̇

˙̃x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R−1
2 R1 R−1

2 0

0 Φ2 − ρoP2/εo RG̃MT−1
r Ă

0 0 Ă

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ze

µ

x̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

RG̃MT−1
r T̆

T̆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R−1
2 R3 − I

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Rd̃

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.60)
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B.3 Two-Loop Coupled System Dynamics and Stability Analysis

The two-loop coupled system dynamics Eqn. (B.60) has a globally asymptotically sta-

ble equilibrium about {ze,µ, x̃}⊺ = 0 if the eigenvalues of the system matrix are stable.

Inserting the values of matrices R1 = diag(0.2,0.2), R2 = R3 = I2, G ≈ [−9.8 0; 0 9.8],

M = [I2 02×10], Φ2 = −0.5I2, which gives P2 = I2, ρo = 0.5, εo = 0.2, Tr from

Eqn. (B.6), S̃,S1,S2 from Eqn. (B.13), then the following eigenvalues are obtained:

[−0.2, −0.2, −3, −3, 0, 0, 0, 0, −4, −1.7550 + 1.5478i, −1.7550 − 1.5478i, −2.1012 +

1.0238i, −2.1012 − 1.0238i, −0.9500, −0.0085, −0.0239]. The first four eigenvalues cor-

respond to the states ze and µ. The four zero eigenvalues are associated to the four x2

states, due to their linear algebraic relation to the states x1. The last eight eigenvalues

are associated with the states x1, which also represent the desired closed-loop eigenvalues

of the inner loop.

B.3.2 Continuous Inner Loop, Continuous Outer Loop

In contrast to Appendix Sec. B.3.1, the second analysis considers that the inner loop

is also implemented by a continuous approximation of the discontinuous control. Thus,

Eqn. (B.18) is modified to the following form:

u =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(S̃B̃)−1((S̃Ã −Φ1S̃)x̃ + S̃T̃r − ρ P1σ
ε ) . . . if ∥P1σ∥⩽ ε

−(S̃B̃)−1((S̃Ã −Φ1S̃)x̃ + S̃T̃r − ρ P1σ
∥P1σ∥

) . . . if ∥P1σ∥> ε
(B.61)

The inner loop sliding variable dynamics can be modified from Eqn. (B.19) to the

following:

σ̇ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Φ1σ − ρ P1σ
ε + S̃f̃ . . . if ∥P1σ∥⩽ ε

Φ1σ − ρ P1σ
∥P1σ∥

+ S̃f̃ . . . if ∥P1σ∥> ε
(B.62)
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B Appendix B: Full Derivation and Analysis of Cascaded Two-Loop Dynamics

For these inner loop sliding dynamics, the Lyapunov analysis of Eqn. (B.25) is modified

to the following cases:

V̇ ⩽

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−2∥P1σ∥(ρ∥P1σ∥/ε − ∥Sf̃∥) if ∥P1σ∥⩽ ε

−2∥P1σ∥(ρ − ∥Sf̃∥) if ∥P1σ∥> ε
(B.63)

Setting sliding mode gain greater than the uncertainty bound, inequalities (B.63) imply

that σ < ε in finite time, but σ ≠ 0. Therefore, using Eqn. (B.15), Eqn. (B.29) is modified

to:

σ = S1x1 + S2x2 (B.64)

x2 = S−1
2 σ − S−1

2 S1x1 (B.65)

Then, inserting Eqn. (B.65) into Eqn. (B.8), Eqns. (B.30)–(B.31) are modified to

include the effect of nonzero σ and we obtain:

ẋ1 = (Ã11 − Ã12S
−1
2 S1)x1 + Ã12S

−1
2 σ −T1r (B.66)

ẋ2 = S−1
2 σ̇ − S−1

2 S1(Ã11 − Ã12S
−1
2 S1)x1 − S−1

2 S1Ã12S
−1
2 σ + S−1

2 S1T1r (B.67)

⎡⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

(Ã11 − Ã12S
−1
2 S1) 0

−S−1
2 S1(Ã11 − Ã12S

−1
2 S1) 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎣

Ã12S
−1
2

−S−1
2 S1Ã12S

−1
2

⎤⎥⎥⎥⎥⎥⎦
σ −

⎡⎢⎢⎢⎢⎢⎣

T1

−S−1
2 S1T1

⎤⎥⎥⎥⎥⎥⎦
r +

⎡⎢⎢⎢⎢⎢⎣

0

S−12

⎤⎥⎥⎥⎥⎥⎦
σ̇ (B.68)

In compact form: ˙̃x = Ăx̃ + D̆σ − T̆r + S̆σ̇ (B.69)

Using Eqn. (B.16): ˙̃x = Ăx̃ + D̆σ − T̆r + S̆S̃ ˙̃x (B.70)

which gives: ˙̃x = (I − S̆S̃)−1(Ăx̃ + D̆σ − T̆r) (B.71)
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B.3 Two-Loop Coupled System Dynamics and Stability Analysis

The modified inner loop system dynamics given in Eqn. (B.53) have an influence on the

outer loop sliding dynamics through Eqn. (B.50). Thus, the outer loop sliding dynamics

(inside the boundary layer) can be written from Eqn. (B.50) as:

µ̇ =
⎛
⎝
Φ2 − ρo

P2

εo

⎞
⎠
µ +Rd̃ +RG̃MT−1

r (I − S̆S̃)−1Ăx̃

+RG̃MT−1
r (I − S̆S̃)−1D̆σ −RG̃MT−1

r (I − S̆S̃)−1T̆r (B.72)

Thus, the two loop system dynamics of Eqn. (B.60) must be extended to include the

inner loop sliding variable σ. The two-loop dynamics are obtained as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

że

µ̇

˙̃x

σ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R−1
2 R1 R−1

2 0 0

0 Φ2 − ρoP2/εo RG̃MT−1
r (I − S̆S̃)−1Ă RG̃MT−1

r (I − S̆S̃)−1D̆

0 0 (I − S̆S̃)−1Ă (I − S̆S̃)−1D̆

0 0 0 Φ1 − ρP1/ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ze

µ

x̃

σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

RG̃MT−1
r (I − S̆S̃)−1T̆

(I − S̆S̃)−1T̆

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R−1
2 R3 − I

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Rd̃

0

S̃f̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.73)

The two-loop coupled system dynamics Eqn. (B.73) has a globally asymptotically

stable equilibrium about {ze,µ, x̃,σ}⊺ = 0 if the eigenvalues of the system matrix are

stable. In addition to the previously defined values, inserting P1 = I2, ρ = 0.5, ε =

0.2 into the two-loop coupled system matrix, the following eigenvalues are obtained:

[−0.2, −0.2, −3, −3, 0, 0, 0, 0, −4, −1.7550 + 1.5478i, −1.7550 − 1.5478i, −2.1012 +

1.0238i, −2.1012 − 1.0238i, −0.9500, −0.0085, −0.0239, −3, −3, −3, −3]. The four

additional stable eigenvalues are associated with the inner loop sliding variable σ. Thus,

it can be seen that despite the continuous control laws both in the inner and outer loop,

the overall two-loop coupled dynamics is rendered globally asymptotically stable.
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