
Fakultät für Informatik
Lehrstuhl für Algorithmen und Komplexität

Online Algorithms for Packing Problems
in the Random-Order Model

Leon Ladewig

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende/-r: Prof. Debarghya Ghoshdastidar, Ph.D.

Prüfende der Dissertation:

1. Prof. Dr. Susanne Albers

2. Prof. Dr. Thomas Kesselheim

Die Dissertation wurde am 09.12.2020 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 25.05.2021
angenommen.

ii

Abstract
In the theory of algorithms, the field of online algorithms deals with decision-
making under incomplete information. Formally, an online problem can be
modeled as a sequence of requests where an online algorithm must answer
each request immediately and irrevocably. Many real-world optimization
problems are inherently online, as decisions must be made despite the lack of
required information. Therefore, online problems arise in various economic
areas as resource allocation, web advertising, and online market design. As
a consequence, online algorithms are subject of extensive research in the
community of theoretical computer science.

Introduced by Sleator and Tarjan in 1985, the concept of competitive
analysis became a common approach to measure performance of online
algorithms. Here, an online algorithm is compared to an optimal offline
algorithm knowing the entire input in advance. In this framework, considering
fully adversarial inputs often leads to strong impossibility results. A natural
approach beyond worst-case considerations is the random-order model, known
from the famous secretary problem and formally introduced by Kenyon in
1996. Here, the input for the online algorithm is taken from a worst-case
instance, but the order in which the input items are presented to the online
algorithm is drawn uniformly at random. This thesis investigates three online
packing problems in the random-order model.

The first technical part of the thesis deals with the k-secretary problem. In
this natural generalization of the well-known secretary problem, k items can
be accepted and the goal is to maximize the total profit of the selected items.
The problem is not fully understood for small values of k ≥ 2. We propose a
simple algorithm which beats the threshold of 1/e in the competitive ratio
already for k = 2. Moreover, we revisit an algorithm proposed earlier in the
literature and show that the present analysis can be improved.

The problem considered in the second part emerges from the secretary
problem by introducing knapsack constraints. We study the online knapsack
problem in the random-order model, also known as secretary knapsack problem.
Our main contribution is a novel algorithmic approach that combines two
strategies tailored for restricted instances. This outperforms previous work
in terms of competitive ratio. At the submission time of this thesis, our
result is the state-of-the-art algorithm for the knapsack secretary problem.

Finally, the third part of the thesis revisits online bin packing in the
random-order model. For the Best Fit algorithm, we present several improved
bounds. We study a natural special case where at most two items can be
assigned to any bin and also give an improved hardness result for the general
case.

iii

iv

Acknowledgments
First and foremost, I would like to thank my advisor Prof. Dr. Susanne
Albers for her support and advice during my time as a doctoral candidate at
Technical University of Munich. I also want to thank Prof. Dr. Klaus Jansen
for introducing me into the field of online and approximation algorithms
while I was an undergraduate student at Kiel University.

I am highly grateful to Arindam Khan for co-authoring two of my papers
as well as for many insightful discussions.

Many thanks to all of my present and former colleagues at the I14 chair,
including (but not limited to) Alexander Eckl, Waldo Gálvez, Maximilian
Janke, Luisa Peter, Jens Quedenfeld, Harald Räcke, Kevin Schewior, and
Richard Stotz. The time we spent together – during and after work – has
been a really enjoyable and fun time for me.

A special thanks goes to Maria Kosche for proofreading parts of this
thesis.

Finally, I want to express my gratitude to all my family and friends for
their everlasting support and believe in me.

v

vi

Contents

1 Introduction 1
1.1 Literature survey . 3
1.2 Contribution of this thesis . 5
1.3 Thesis outline . 7
1.4 Basic definitions . 8

2 Warm-up: The Secretary Problem 9
2.1 Optimal algorithm . 9
2.2 Analysis . 10

3 The k-secretary Problem 13
3.1 The Single-Ref algorithm . 14
3.2 The Optimistic algorithm . 17

4 The Knapsack Problem 19
4.1 Algorithmic framework: sequential vs. coin tossing approach . 20
4.2 The 2-Knapsack problem . 23
4.3 Results . 23

5 Bin Packing 25
5.1 The Best Fit algorithm . 25
5.2 Upper bound for big items under random order 26
5.3 Lower bound on asymptotic approximation ratio under random

order . 29

6 Conclusion and Open Problems 31

A New Results for the k-Secretary Problem 37

B Improved Online Algorithms for Knapsack and GAP in the Ran-
dom Order Model 59

C Best Fit Bin Packing with Random Order Revisited 85

vii

viii

Chapter 1

Introduction
In our everyday life, we permanently need to make decisions under uncertainty.
However, it is hard or even impossible to decide optimally given incomplete
or faulty information. In particular, the lack of information concerning future
events is challenging in most situations.

Suppose you are looking for a new apartment in Munich. As the informa-
tion in the advertisements is not always reliable (or simply not insightful),
you decide to make a list of n apartments and to inspect each of them. After
each inspection, you are able to rank the current apartment against all others
seen so far but obviously, not against future ones. Your goal is to select
the best apartment, which would be an easy task if you could decide after
having seen all n apartments. Unfortunately, each landlord insists on your
final decision immediately after the inspection. If you dismiss the current
apartment, someone else will get it.

In theoretical computer science, the field of online algorithms deals
with algorithmic problems where the input is revealed incrementally to the
algorithm. This is in contrast to offline problems, where an algorithm can
access the entire input any time. An abstract online problem can be stated
as follows: The input is a list I = (x1, . . . , xn) which is revealed in n rounds
to the online algorithm. In the i-th round, 1 ≤ i ≤ n, the item xi is revealed.
The algorithm needs to make an irrevocable decision for xi immediately on
arrival, without knowledge of the upcoming items xi+1, . . . , xn. Depending
on the problem, the length n of the input is either unknown or revealed to
the algorithm from the beginning.

Throughout this thesis, we deal with online variants of combinatorial
optimization problems. In such problems, the goal is to find a solution that
satisfies all imposed combinatorial constraints and whose objective value, a
cost or profit associated with the solution, is optimal. However, as finding
an optimal solution is typically impossible in online settings, we resort to
algorithms that compute approximate solutions. Depending on the problem
statement, we obtain either a (profit) maximization problem or a (cost)
minimization problem. While computational efficiency is a crucial issue in the
design of offline algorithms, in research on online algorithms, the focus lies on
approximating an optimal solution with incomplete information. Therefore,
it is typically assumed that online algorithms have unlimited computational
power. However, we stress that all online algorithms considered in this thesis
are efficient, i.e., run in polynomial time.

1

Competitive analysis Sleator and Tarjan [44] introduced the notion of
competitive analysis in 1985. In this type of analysis, the solution of an
online algorithm is compared to the solution of an optimal offline algorithm.
The worst-case ratio over all inputs yields the competitive ratio of the online
algorithm. Formally, let us denote by A(I) the objective value of the solution
computed by an online algorithm A on input I. Let OPT(I) denote the
objective value of a solution computed by an optimal offline algorithm. We
say that A is α-competitive if for all inputs I,

{
A(I) ≥ α ·OPT(I)− β for a maximization problem,
A(I) ≤ α ·OPT(I) + β for a minimization problem,

where α is called the competitive ratio and β ≥ 0 is a constant. Depending
on the specific problem, different restrictions on β may be imposed. If β = 0,
we say that A is strictly α-competitive.

Adversarial model In the above type of analysis, we can think of a game
between the online algorithm and a malicious adversary: The adversary
designs a worst-case input for the online algorithm, while the online algorithm
seeks for maximizing its performance compared to the offline algorithm, given
the adversarial input. The consideration of worst-case inputs often leads
to strong impossibility results for online problems [24, 39,45]. In practical
settings, however, such inputs seem rather artificial. Hence, the adversarial
model seems overly pessimistic in some cases. For this reason, the interest in
alternative performance measures and semi-online models has emerged in
the research community during the past years. Here, the goal is to smooth
the relation between online algorithm and adversary to some degree, which
can be reached from two sides: Either, the adversary is given less control
over the input, e.g., by randomizing the input (partially). Or, the online
algorithm is empowered, e.g., by additional resources, or the ability to revoke
decisions in a limited way. The approach studied in this thesis falls into the
first category and is formally described in the following.

Random-order model Kenyon [32] introduced the notion of random-order
performance as alternative performance measure for online algorithms in
1996. Here, the adversary still specifies the set of input items, but has no
control over the order in which they are presented to the algorithm. Instead,
the order of arrival is a uniformly random permutation. Formally, let σ be a
permutation drawn uniformly at random from the set of all permutations of
length n. Let Iσ denote the input list I permuted by σ. We say that A is
α-competitive in the random-order model if for all inputs I,

{
E[A(Iσ)] ≥ α ·OPT(I)− β for a maximization problem,
E[A(Iσ)] ≤ α ·OPT(I) + β for a minimization problem,

2

where the expectation is over the random permutation σ and α, β are defined
as before. If A is a randomized algorithm, the expectation is also over internal
random choices. In the following, we use the term (uniformly) random order
for an input order obtained from a permutation drawn uniformly at random.

Finally, let us revisit the introductory example of finding an apartment.
An easy argument shows that the problem does not admit a constant-
competitive algorithm in the adversarial model. However, this model seems
overly pessimistic; in practice, at least some randomness will occur. Assuming
that the n apartments are inspected in random order, the problem admits an
elegant algorithm which succeeds with probability 1/e ≈ 0.36. In fact, the
problem is a reformulation of the secretary problem [22] (see Problem 2.1)
– a classic problem from optimal stopping theory and a prime example for
random-order analysis.

1.1 Literature survey
In the following, we give an overview of selected results in the random-order
model. For more references, we refer to the recent survey by Gupta and
Singla [27]. Unless stated otherwise, all competitive ratios mentioned below
hold in the random-order model.

Secretary problems The origins of the secretary problem are a bit obscure,
but it dates back to the 1960s or even earlier [18]. Lindley [37] and Dynkin [16]
showed that a surprisingly simple algorithm succeeds with probability at
least 1/e and that this is best possible for n→∞.

More recently, various generalizations of the secretary problem have
become subject of intensive research, also motivated by their applications
in online auctions [7]. Arguably one of the most natural variants is the
k-secretary problem (also known as multiple-choice secretary problem), where
the goal is to maximize the sum of k selected items. Kleinberg [36] showed
that this problem admits an algorithm of competitive ratio 1− 5/

√
k and

that the competitive ratio of any algorithm can be bounded from above by
1− Ω(

√
1/k). Babaioff et al. [6] proposed the optimistic algorithm whose

competitive ratio is at least 1/e for all k ≥ 1. However, no rigorous analysis
of this algorithm is known. Buchbinder et al. [12] analyzed several variants
of the secretary problem using linear programming techniques. In the (J,K)-
secretary problem, an algorithm can select J items and the objective is to
maximize the number of selected top-K items. This problem was revisited
later by Chan et al. [13], who devised an optimal 0.4886-competitive algorithm
for the case J = K = 2. Based on this result, Chan et al. constructed a
0.4920-competitive algorithm for 2-secretary. Despite the progress of [12, 13],
the optimal competitive ratio for k-secretary with k ≥ 2 is still unknown.

The matroid secretary problem, introduced by Babaioff et al. [9], covers

3

various multiple-choice secretary problems and attracted many researchers
during the last decade. In this problem, elements of a matroid arrive in
random order. At any time, the selected elements must form an independent
set in the underlying matroid and the goal is to maximize the combined value
of selected elements. The authors of [9] presented an algorithm of competitive
ratio 1/Ω(log k), where k is the rank of the matroid, and asked whether the
problem admits a constant-competitive algorithm for general matroids. This
question is known as matroid secretary conjecture. Since the introduction
of the problem, progress has been made in many special cases (see [8] for a
recent survey) and also in the general case; the state-of-the-art algorithm [17]
has competitive ratio 1/Ω(log log k). Still, the matroid secretary conjecture
is considered as an open problem of major interest by the community.

Kesselheim et al. [33] studied the secretary problem in a generalized
model where items may arrive in non-uniformly random order.

Knapsack problem and generalized packing problems The online knap-
sack problem under random arrival order was studied first as knapsack
secretary problem by Babaioff et al. [6]. The authors presented an algorithm
of competitive ratio 1/(10e) ≈ 1/27. Significant progress was enabled by
recent results on online linear packing programs under random arrival order.
Kesselheim et al. [35] showed that this problem admits a competitive ratio
of 1 − O(

√
(log d)/B), where d is the maximum number of resources of a

single demand, and B is the ratio between the capacity of a resource and the
maximum demand for it. As a byproduct, Kesselheim et al. [35] obtained
a (1/8.06)-competitive algorithm for the generalized assignment problem
(GAP), which includes the knapsack problem with the special case of a single
resource. Naori and Raz [42] studied higher-dimensional GAP in the random-
order model. The result from [42], published independently and briefly after
our submission [3], coincides with our result in the one-dimensional case.

Bin packing and bin covering In a seminal paper on random-order analysis,
Kenyon [32] showed that the competitive ratio of the best fit algorithm is at
most 1.5 under random order, which is a significantly stronger guarantee than
the tight bound of 1.7 under adversarial order [29]. In Kenyon’s paper, the
upper bound of 1.5 is complemented by a lower bound of 1.08. For the next
fit algorithm, Coffman et al. [30] showed 2-competitiveness under random
order, which coincides with the performance in the adversarial model [28].
Fischer and Röglin [21] observed that other natural algorithms fail to perform
better under random order as well. In his PhD thesis, Fischer [19] presented
a randomized algorithm for online bin packing in the random-order model
with competitive ratio 1 + ε for any ε > 0 and exponential running time.
Also bin covering, the dual problem of bin packing, has been studied in the
random-order model [14,20,21].

4

Scheduling An extensively studied scheduling problem is the makespan
minimization on m identical machines. In 1966, Graham [25] proposed a
simple online algorithm called list, which is (2− 1/m)-competitive under
adversarial order. Osborn and Torng [43] showed that list is 2-competitive
for m→∞ under random order as well. A 1.8478-competitive deterministic
algorithm for makespan minimization was presented recently by Albers and
Janke [2], beating the lower bound for deterministic online algorithms under
adversarial order. Molinaro [40] studied load balancing under `p-norms, a
generalization of makespan minimization, in the random-order model. Göbel
et al. [24] investigated the problem of minimizing the weighted completion
times of jobs scheduled on a single machine.

Graph problems A fundamental online problem is bipartite matching with
one-sided arrivals. The famous ranking algorithm by Karp et al. [31] has
competitive ratio exactly 1− 1/e ≈ 0.632 under adversarial order. Mahdian
and Yan [38] showed that this barrier can be broken under random order; here,
ranking is 0.696-competitive. Kesselheim et al. [34] studied edge-weighted
matching in bipartite graphs with one-sided arrivals and gave an algorithm
of competitive ratio 1/e. Notably, this is optimal, as the problem includes
the secretary problem as a special case. Moreover, online edge-coloring for
bipartite graphs has been examined in the random-order setting [1, 10,11].

1.2 Contribution of this thesis

This publication-based thesis includes three papers [5], [3], and [4], (referred
to as Papers A, B, and C, respectively) considering different online packing
problems in the random-order model. Papers A and B, concerning the
k-secretary problem and the online knapsack problem, deal with the problem
of choosing a set of items that satisfies a capacity constraint and maximizes
the overall profit. While the corresponding offline problems fall into the
class of packing problems, in random-order literature, they are usually seen
as incremental generalizations of the secretary problem. Both problems
are closely related in their nature and applicable techniques. The problem
considered in Paper C is technically different: In bin packing, all items must
be assigned to unit-sized bins, and the goal is to use as few bins as possible.
Below, the contributions of this thesis are described in more detail.

The k-secretary problem (Paper A)

The k-secretary problem is arguably the most immediate and natural gener-
alization of the secretary problem. Here, n items with profits are presented
to the algorithm in uniform random order and the algorithm can accept
k ∈ N items. The goal is to maximize the total profit of the selected items.

5

We propose a simple threshold-based algorithm single-ref for the
problem. Due to additional parameters, the algorithm is a generalization of
the optimal strategy for the secretary problem, hence, it is optimal for k = 1.
Already for k = 2, its competitive ratio is 0.4119, thus significantly greater
than 1/e. We explicitly evaluate the competitive ratio for 1 ≤ k ≤ 100.
Moreover, we revisit the optimistic algorithm proposed by Babaioff et
al. [6] and present a tight analysis for the case k = 2, revealing that its
competitive ratio is 0.4168 in this case. Thus, we confirm that the bound
of 1/e from [6] is not tight. Our proof reveals an interesting combinatorial
property of the algorithm.

Our results particularly address the setting of small k ≥ 2, a relevant
subclass of the problem which is not fully understood in the literature. The
algorithm from [36] only works for k ≥ 25 and beats the barrier of 1/e not
before k = 63. In [6], the authors present two algorithms, but no analyses
beating 1/e for any k. Finally, although [13] gives a strong 0.4920-competitive
algorithm for 2-secretary, deriving algorithms for k ≥ 3 from the connection
to the (J,K)-secretary problem seems overly involved. In contrast, our
algorithm single-ref beats the barrier of 1/e already for k = 2 while being
an easy, threshold-based algorithm. As noted by Buchbinder et al. [12, p. 191],
strong algorithms for the k-secretary problem, even restricted to small k, can
be helpful in solving related problems. In fact, our results for the knapsack
problem (see below) are partially based on insights into this problem.

The knapsack problem (Paper B)

From a broader perspective, the k-secretary problem is a packing problem
where each item consumes the same fraction of 1/k of the resource’s capacity.
By introducing arbitrary item sizes, we obtain the knapsack problem: Here,
the goal is to select a set of items whose total size does not exceed the
resource’s capacity and whose total profit is maximized.

We develop a (1/6.65)-competitive algorithm for the online knapsack
problem in the random-order model, outperforming the previous best algo-
rithm of competitive ratio 1/8.06 [35]. The improvement is based in two
pillars: On one side, we develop a novel algorithmic approach where two
algorithms, tailored for specific item classes, are performed sequentially. This
concept is clearly different from approaches in earlier work [6, 35], where
the algorithms decide for one item class and a corresponding strategy by an
initial random choice. Again in contrast to previous work [35], we define
large items in a way that feasible packings may contain two large items. We
call the resulting problem for large items 2-Knapsack and present a (1/3.08)-
competitive algorithm for the problem. The algorithm mostly ignores item
sizes and selects items according to the single-ref algorithm developed for
the k-secretary problem. Using our proposed algorithm for 2-Knapsack in
combination with an algorithm from [35] within the sequential framework

6

yields the overall knapsack algorithm.
Finally, we discuss how the sequential approach can be applied to the

generalized assignment problem. Here, multiple resources of different capac-
ities are given; the profit and the size of an item depends on the resource.
Our approach yields an algorithm of competitive ratio 1/6.99, improving
upon the result of [35].

Bin packing (Paper C)

In Paper C, we revisit the best fit algorithm for online bin packing under
random arrival order. We present several improved bounds and make the
first progress since Kenyon’s seminal paper from 1996 [32].

For the case where all items are larger than 1/3, we show that the
competitive ratio is at most 1.25, while 1.5 is a lower bound on the competitive
ratio in the adversarial setting. For the proof, we identify certain structures
which occur in a random permutation with high probability. These structures
ensure that best fit maintains parts of the optimal packing. As a technical
side contribution, we show that best fit satisfies a monotonicity property if
and only if no items smaller than or equal to 1/3 exist.

On the hardness side, we show that for any k ∈ N, there exists a list I
with OPT(I) ≥ k such that the competitive ratio of best fit under random
order is larger than 1.10. This tightens the previously best lower bound of
1.08 from [32].

Finally, we initiate the study of strict competitive ratios for the random-
order variant of this problem: The previously mentioned bounds include
additive constants of the form β = o(OPT(I)), corresponding to the notion
of asymptotic approximation ratio in offline approximation algorithms. We
show that the strict competitive ratio of best fit is at least 1.3 in the
random-order model.

1.3 Thesis outline

The remainder of this publication-based thesis is structured as follows. As
a warm-up, we consider the secretary problem in Chapter 2. We present
a slightly different analysis of the optimal algorithm, demonstrating some
techniques used in Papers A and B. In Chapters 3 to 5, we give high-level
descriptions of the results and techniques of Papers A to C, respectively.
Finally, Chapter 6 comprises some concluding remarks and open problems
regarding the results of this thesis.

7

In Appendices A to C, we provide Papers A to C, respectively. All
papers have been accepted at peer-reviewed conferences and are published
in the respective conference proceedings [3–5]. Due to space limits, some
technical proofs are not included in [3–5]. For full versions, we refer to the
corresponding manuscripts on arXiv:

arXiv:2012.00488 [cs.DS]
arXiv:2012.00497 [cs.DS]
arXiv:2012.00511 [cs.DS]

1.4 Basic definitions
Let N = {1, 2, . . .} denote the set of natural numbers. For subsets of N, we
use the symbols [n] := {1, . . . , n} for any n ∈ N and [a..b] := {a, a+ 1 . . . , b}
for any a, b ∈ N with a < b.

As described above, the online problems considered in this thesis fall into
the common framework of a strict online setting (immediate and irrevocable
decisions) under random arrival order. For future reference, we give a formal
definition of this setting below.

Definition 1.1 (Online problem in the random-order model). Let x1, . . . , xn
be the items of the problem input and σ : [n]→ [n] be a permutation drawn
uniformly at random. The items are presented sequentially in n rounds to
the algorithm, where in round i ∈ [n], item xσ(i) is revealed together with all
of its properties. Immediately after arrival of the current item, the online
algorithm needs to make an irrevocable decision about this item, without
knowledge of items arriving later.

8

Chapter 2

Warm-up: The Secretary Prob-
lem
In 1960, Martin Gardner published the following problem in his column
in the Scientific American: Suppose an administrator wants to hire a new
secretary. She interviews all n applicants sequentially, where each of the n!
orders are equally likely. After each interview, the administrator can rank
the current candidate against all seen so far and either chooses the current
candidate, or rejects it forever. Her goal is to hire the best of all candidates.
A formal description of the problem is given below.

Problem 2.1 (Secretary Problem)
A list of n items with ranks 1, . . . , n is presented to the algorithm according
to Definition 1.1. The algorithm knows n and can accept one item.
The payoff is one if the algorithm accepts the best candidate and zero
otherwise.

The first rigorous solutions are attributed to Dynkin [16] and Lindley [37].
Both authors showed that the secretary problem admits a (1/e)-competitive
algorithm and that this is best possible for n→∞.

2.1 Optimal algorithm

The well-known optimal algorithm for the secretary problem is of surprising
elegance and can be motivated by the following reasoning: First, note that
any reasonable algorithm never accepts an item that is not the best so far
(as the payoff is zero in these cases, see Problem 2.1). However, it is also
risky to pick an item which is best so far in early rounds, as the best item
might arrive afterwards.

In fact, the algorithm from [16,37] follows this approach: Let t ∈ [2..n]
be a parameter specified later. Within the first t− 1 rounds, the algorithm
rejects all items. This time interval is called the sampling (phase); the goal of
this phase is to derive a threshold for accepting an item in later rounds. This
threshold is set to the best item that arrived in the sampling phase. From
round t on, the algorithm accepts the first item that beats the threshold item.
A formal description of the discussed algorithm is given in Algorithm 1.

9

Parameters : t ∈ [2..n].
In rounds 1, . . . , t− 1 do

Reject the current item. . sampling phase
In rounds t, . . . , n do

Let a be the rank of the best item in the sampling phase.
Accept the current item if its rank is better than a.

Algorithm 1: Secretary algorithm

2.2 Analysis
In the following, we show that Algorithm 1 is (1/e)-competitive for n→∞
with t ≈ n/e. In fact, a refined analysis shows that for any fixed n, the
parameter t can be chosen such that the competitive ratio is at least 1/e [23].
The text-book proof of Theorem 2.1 is usually quite short; in the proof
given below, we construct the random permutation carefully by a sequence
of random events and analyze it based on the hypergeometric distribution.
This technique is elementary for the analyses in Papers A and B.

Without loss of generality, we identify an item with its rank, i.e., we
assume that the items are 1, . . . , n, where 1 is the best item.

Theorem 2.1. Algorithm 1 has competitive ratio 1/e− 1/n for t = dn/ee.

Proof. According to the definition of Problem 2.1, the payoff is non-zero if
and only if the algorithm selects item 1. Therefore, the competitive ratio
of Algorithm 1 corresponds to the probability p1 of accepting the best item.
We analyze this probability in the following.

Let pos(i) denote the position of item i in a (partially) fixed permuta-
tion. The following process creates a random permutation with uniform
distribution:

1. Draw pos(1) uniformly at random from [n].

2. Draw pos(a) uniformly at random from [n] \ {pos(1)}.

3. Process the remaining free positions in increasing order; for each
position, draw an item from [n] \ {1, a} uniformly at random without
replacement.

Let Ei,a be the event that item 1 is accepted in round i (with t ≤ i ≤ n) and
the best sampling item is a ≥ 2. With respect to the random process defined
above, Ei,a is equivalent to the intersection of the following three events:

• E(1)
i,a : The outcome of step 1 is i.

• E(2)
i,a : The outcome of step 2 is in [t− 1].

10

• E(3)
i,a : The items drawn in step 3 before position i have rank larger than

a.

The event E(1)
i,a happens with probability 1/n. Similarly, Pr[E(2)

i,a | E
(1)
i,a] =

t−1
n−1 . For E

(3)
i,a conditioned on E(1)

i,a ∩ E
(2)
i,a , we investigate the probability of

drawing i− 2 blue balls without replacement from an urn containing exactly
n− a blue balls and n− 2 balls in total. As the number of blue balls in this
random sample follows the hypergeometric distribution, the probability is(n−a
i−2
)
/
(n−2
i−2
)
. Therefore,

Pr[Ei,a] = 1
n
· t− 1
n− 1 ·

(n−a
i−2
)

(n−2
i−2
) .

Summing over all positions i ∈ [t..n] and ranks a ∈ [2..n], we obtain

p1 =
n∑

i=t

n∑

a=2
Pr[Ei,a]

=
n∑

i=t

n∑

a=2

(
1
n
· t− 1
n− 1 ·

(n−a
i−2
)

(n−2
i−2
)
)

= 1
n
· t− 1
n− 1 ·

n∑

i=t

(∑n
a=2

(n−a
i−2
)

(n−2
i−2
)

)
.

The last term can be simplified by observing
∑n
a=2

(n−a
i−2
)

(n−2
i−2
) =

∑n−2
a=0

(a
i−2
)

(n−2
i−2
) =

(n−1
i−1
)

(n−2
i−2
) = n− 1

i− 1 ,

which gives

p1 = t− 1
n
·
n∑

i=t

1
i− 1 . (2.1)

Since 1/(i− 1) decreases monotonically in i, the sum ∑n
i=t

1
i−1 is bounded

from below by the integral
∫ n+1
t

1
i−1 di = ln n

t−1 , see Figure 2.1. Therefore,
with t = dcne for c ∈ (0, 1), we obtain

p1 ≥
dcne − 1

n
· ln n

dcne − 1 ≥
cn− 1
n

· ln n

cn
= c · ln 1

c
− ln(1/c)

n
. (2.2)

The term c · ln(1/c) is maximized for c = 1/e, see Figure 2.2. Thus, we
obtain a competitive ratio of p1 ≥ 1/e− 1/n.

In fact, an equivalent proof can be obtained from a simpler argument:
The probability that the best item is accepted in round i ∈ [t..n] is the

11

t n

1
n−1

1
t−1

1

Figure 2.1: Illustration of the bound∑n
i=t

1
i−1 ≥

∫ n+1
t

1
i−1 di .

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
1/e

Figure 2.2: Probability p1 as func-
tion of c.

probability that it arrives in this round and no item has been accepted
previously, i.e., the best element in rounds 1, . . . , t− 1 is the best element in
rounds 1, . . . , i− 1. The probability for this event is 1

n · t−1
i−1 . Summing over

all positions i ∈ [t..n] yields Equation (2.1).
Dynkin and Lindley [16, 37] showed that 1/e is the best possible compet-

itive ratio for n → ∞. Hence, Algorithm 1 with t ≈ n/e is asymptotically
optimal. An alternative proof of optimality can be obtained from the linear
programming framework for secretary problems by Buchbinder et al. [12].

12

Chapter 3

The k-secretary Problem
In Paper A, we investigate two algorithms for the k-secretary problem. This
chapter provides a high-level description of the approaches and results. We
first give a formal problem definition and a few technical preliminaries.

Problem 3.1 (k-secretary Problem)
Let k ∈ N. A list of n items 1, . . . , n with profits v1, . . . , vn is presented
to the algorithm according to Definition 1.1. The algorithm knows n and
can accept up to k items. The goal is to maximize the total profit of the
accepted items.

We emphasize that the definition of Problem 3.1 allows algorithms to observe
the actual profits, unlike Problem 2.1. This corresponds to the problem
definition in [36]; however, some papers in the literature require k-secretary
algorithms to work only with ordinal information in the following sense.

Definition 3.1. We say that a k-secretary algorithm is ordinal if it only uses
the relative ranks of the items and not their numerical profits.

Chan et al. [13] showed that ordinal algorithms for the k-secretary problem
cannot achieve optimal competitive ratios.

Another natural property of most k-secretary algorithms is monotonicity,
meaning that the probabilities of selecting items grow monotonically with
their profits.

Definition 3.2. We say that a k-secretary algorithm A is monotone if for
any two items i and j with profits vi ≥ vj , it holds that Pr[A accepts i] ≥
Pr[A accepts j].

Next, we introduce some notation used in the following proofs.

Notation Without loss of generality, we assume v1 > v2 > . . . > vn.
For a fixed ordinal algorithm A, we define pi = Pr[A accepts item i] . Let
E[A] = ∑n

i=1 pivi denote the expected profit of the solution returned by A,
and let OPT = ∑k

i=1 vi.
As both algorithms discussed in Sections 3.1 and 3.2 are ordinal and

monotone according to Definitions 3.1 and 3.2, we will use the following
lemma to analyze their competitive ratios.

13

Lemma 3.1. Let A be an ordinal and monotone algorithm for the k-secretary
problem. The competitive ratio of A is (1/k) ·∑k

i=1 pi.
Proof. As p1, . . . , pk and v1, . . . , vk are non-increasing sequences,

1
k
·
k∑

i=1
pivi ≥

(
1
k
·
k∑

i=1
pi

)
·
(

1
k
·
k∑

i=1
vi

)

holds by Chebyshev’s sum inequality [26]. Applying this inequality yields

E[A] =
n∑

i=1
pivi ≥

k∑

i=1
pivi ≥

1
k
·
(

k∑

i=1
pi

)
·
(

k∑

i=1
vi

)
=
(

1
k
·
k∑

i=1
pi

)
·OPT .

Thus, the competitive ratio of A is at least (1/k) ·∑k
i=1 pi. Now, consider a

collection of items with vi ≈ 1 for 1 ≤ i ≤ k and vi ≈ 0 for k + 1 ≤ i ≤ n.
Here, all inequalities used above are tight.

3.1 The Single-Ref algorithm
A natural algorithm for the k-secretary problem can be obtained from the
optimal strategy for the secretary problem discussed in Chapter 2: After an
initial sampling phase of t− 1 rounds, with 2 ≤ t ≤ n, a threshold item v+ is
determined and the first k items beating v+ are accepted subsequently. This
is the underlying idea of the single-ref algorithm developed in Paper A.
Here, the threshold item is the r-th best item from the sampling phase, where
r ∈ [k] is a parameter of the algorithm. Finally, r will be chosen depending
on k in order to derive a reasonable threshold. A formal description of
single-ref is given in Algorithm 2.

Parameters : k ∈ N, r ∈ [k], t ∈ [2..n].
In rounds 1, . . . , t− 1 do

Reject the current item. . sampling phase
In rounds t, . . . , n do

Let sr be the r-th best profit from the sampling phase.
Accept the current item if its profit exceeds sr (and at most k − 1
items have been accepted).

Algorithm 2: The single-ref algorithm

We call Algorithm 2 the single-ref algorithm, as a single reference
element serves as the threshold for accepting items. This is in contrast to
other approaches [6, 13, 36], where several items are involved. Note that
Algorithm 2 includes Algorithm 1 with the special case k = r = 1, thus, for
t ≈ n/e and n→∞, Algorithm 2 is optimal for the secretary problem.

In the following, we assume t− 1 = cn for c ∈ (0, 1), i.e., we assume that
the length of the sampling phase is a constant fraction c of the input length.

14

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

c

p1 p2 c.r.

(a) r = 1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

c

p1, p2, c.r.

(b) r = 2

Figure 3.1: Probabilities p1, p2, and competitive ratio (c.r.) of single-ref
as functions of c in the case k = 2. The gray dashed line represents the value
1/e.

3.1.1 Analysis

The analysis of single-ref is based on the observation that the parameter
r partitions the items from [k] into two classes [1..r] and [r+ 1..k]: Any item
i ∈ [r] belongs to the class of the r (globally) best items, hence, vi ≥ sr.
Therefore, i dominates the reference element (unless vi = sr); it is accepted
whenever it occurs after the sampling and at most k − 1 items have been
accepted previously. We call the items 1, . . . , r dominating items. As the
algorithm does not distinguish between any two dominating items, we have
pi = p1 for any dominating item i ∈ [r]. The items r + 1, . . . , k are called
non-dominating items. The acceptance probabilities of these items are strictly
decreasing with increasing rank. However, these probabilities can still be
related to corresponding probabilities of dominating items.

Case k = 2

We illustrate the general analysis by inspection of the case k = 2. Here, there
are two possible choices for the parameter r ∈ {1, 2}.

If r = 1, item 1 is dominating and item 2 is non-dominating. In Sec-
tions 3.1 and 3.2 of Paper A, we use a counting argument similar to Section 2.2
to show that

p1 = 2c · ln(1/c) + c2 − c− o(1) and
p2 = 2c · ln(1/c) + 2c2 − 2c− o(1) ,

where the o(1)-terms are asymptotic with respect to n (just as the term 1/n
in Theorem 2.1). Clearly, these terms vanish in the common asymptotic
setting n→∞. Thus, we ignore them in the competitive ratio from now on.

15

Table 3.1: Competitive ratio (c.r.) of single-ref for k ∈ [1..10] with
optimal parameters.

k 1 2 3 4 5 6 7 8 9 10
r 1 1 2 2 2 2 3 3 3 3
c 1/e 0.25 0.34 0.29 0.25 0.22 0.28 0.25 0.23 0.21

c.r. 1/e 0.41 0.44 0.47 0.49 0.51 0.53 0.54 0.55 0.56

Through Lemma 3.1, the competitive ratio is

p1 + p2
2 = 2c · ln(1/c) + 3

2 · (c
2 − c) ,

which attains its maximum of 0.4119 for c = 0.2545. Figure 3.1a shows p1
and p2 as functions of c as well as the competitive ratio.

If we set r = 2, both top-2 items are dominating. From Paper A,
Sections 3.1 and 3.2, we obtain

p1 = p2 = 2c− 3c2 + c3 − o(1) .

Thus, p1, p2, and the competitive ratio coincide. Here, the maximum of
0.3849 is attained for c = 1− 1/

√
3 ≈ 0.4226 (see Figure 3.1b).

We conclude that setting r = 1 and c = 0.2545 maximizes the performance
of single-ref in the case k = 2 and yields a 0.4119-competitive algorithm.

3.1.2 Results
The objective in the development of single-ref was an easy, threshold-based
algorithm for the k-secretary problem that beats the barrier of 1/e in the
competitive ratio already for k = 2. A sketch of an analytic proof for k = 2
is given below.

In Paper A, we evaluate the performance of single-ref for larger k in
the asymptotic setting n → ∞ and k = O(1). In other words, we assume
that the number of items n is large enough that lower order terms vanish,
but k is still considered as a constant. The optimal parameters were found
by numerical optimization solvers.

Table 3.1 shows the optimal parameters and the resulting competitive
ratios of the algorithm for k ∈ [10]. The results also demonstrate that both
parameters, the sampling fraction c and the rank r of the reference element,
play a crucial role in the fine-tuning of the algorithm for fixed k. For results
on a larger scale, see Figure 3.2. This figure depicts the competitive ratios
of single-ref with optimal parameters for k ∈ [100] and a comparison
with the algorithm proposed by Kleinberg [36]. In this interval, single-ref
clearly outperforms the algorithm from [36]. While numerical experiments
suggest that this holds true for a much larger interval of k, it is not clear if
single-ref is the superior algorithm for any k.

16

10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

k

co
m
pe

tit
iv
e
ra
tio

Figure 3.2: Competitive ratio of single-ref with optimal parameters (blue)
in comparison to the algorithm from [36] (orange). The gray line represents
the value of 1/e.

3.2 The Optimistic algorithm

Babaioff et al. [6] proposed two simple algorithms for the k-secretary problem.
In Paper A, we revisit the optimistic algorithm from [6], which is formally
described in Algorithm 3. The algorithm is again based on an initial sampling
phase of t− 1 rounds, with k + 1 ≤ t− 1 ≤ n, where all items are rejected.
However, in contrast to single-ref, the k best elements from the sampling
serve as reference elements. Beginning in round t, the first k items that
outperform the current reference element are accepted, where the reference
element after ` accepted items, for 0 ≤ ` ≤ k − 1, is the (k − `)-th best
element from the sampling.

Parameters : k ∈ N, t ∈ [k+2..n+1]
In rounds 1, . . . , t− 1 do

Reject the current item. . sampling phase
In rounds t, . . . , n do

Let sj (for 1 ≤ j ≤ k) be the j-th best profit from the sampling
phase.
Let ` be the number of items accepted so far.
if ` < k then

Accept the current item if its profit exceeds sk−`.

Algorithm 3: The optimistic algorithm from [6]

Regarding the performance guarantee of optimistic, Babaioff et al. [6]
stated the following theorem.

Theorem 3.1 ([6]). For n → ∞ and all k ≥ 1, optimistic is (1/e)-
competitive with t− 1 = bn/ec.

17

However, the authors conjecture that 1/e is in fact only a lower bound
which is not tight for k ≥ 2. Moreover, neither the conference paper [6] nor
the full version [8] provide a rigorous proof of Theorem 3.1. In Paper A,
we present a tight analysis for the case k = 2, demonstrating that the
competitive ratio exceeds 1/e significantly.

Theorem 3.2. For n→∞ and k = 2, optimistic is 0.4168-competitive with
and t− 1 = 0.3521n.

According to Lemma 3.1, Theorem 3.2 follows immediately from analyzing
the probabilities p1 and p2. Here, a key lemma is the following.

Lemma 3.2. The probability that Algorithm 3 for k = 2 accepts the second best
item equals the probability that Algorithm 1 accepts the best item, assuming
that both algorithms sample the same number of rounds.

In Paper A, we prove this interesting connection between both algorithms
by a sophistically tailored bijection between two sets of permutations. This
way, for t− 1 = cn with c ∈ (0, 1), we obtain

p1 = c · ln(1/c) + c2 · (1/c− ln(1/c)− 1)− o(1) ,
p2 = c · ln(1/c)− o(1) ,

yielding a competitive ratio for n→∞ of

p1 + p2
2 = c · ln(1/c) + d2

2 · (1/c− ln(1/c)− 1) .

By setting c = 0.3521, the competitive ratio is maximized and attains a value
around 0.4168. We observe that optimistic slightly outperforms single-ref
in the case k = 2.

18

Chapter 4

The Knapsack Problem
This chapter deals with the online knapsack problem in the random-order
model, formally defined as follows.

Problem 4.1 (Online Knapsack under Random Arrival Order)
Let W > 0 be the capacity of a given resource. For each item i ∈ [n], let
vi be its profit and si its size. The items are presented to the algorithm
according to Definition 1.1, whereby n is known to the algorithm. The
goal is to find a subset S ⊆ [n], called packing, such that ∑i∈S si ≤ W
and ∑i∈S vi is maximal.

One challenge in the design of online knapsack algorithms is the structural
heterogeneity of possible optimal solutions: An optimal packing can be a
single item, a set of numerous small items of approximately equal size, or any
further collection of items with total size at most W . Therefore, a common
algorithmic approach in earlier works [6,35] is to “guess” an optimal packing
as follows: Based on their sizes, items are grouped into two or more classes
(e.g., large and small). The overall algorithm decides for one item class via
initial random choice and then performs an algorithm tailored to this class.

In Paper B, we investigate a novel algorithmic approach: Instead of choos-
ing one item class and corresponding algorithm in advance, our algorithm
performs two strategies for two item classes sequentially. This sequential
approach outperforms the coin tossing approach from [35] as shown in Sec-
tion 4.1. To enhance the overall algorithm further, we study a special case
where at most two items can be packed, which is described in Section 4.2.

Notation Let I denote the item list and let δ ∈ (0, 1) be a parameter
specified later. We say that an item i is large if si > δW and small if
si ≤ δW . Let IL (IS) denote the list I where small (large) items are replaced
by zero-profit large (small) items. Hence, IL and IS are essentially obtained
from I by projection to large and small items, respectively; however, both
lists still contain n items. Let OPTL and OPTS denote the profits of optimal
offline packings for IL and IS , respectively. Note that

OPTL + OPTS ≥ OPT . (4.1)

For simplicity, we assume in the following that for any constant c ∈ (0, 1),
the product cn is integer. For n→∞, this assumption is without loss.

19

4.1 Algorithmic framework: sequential vs. coin toss-
ing approach

In this section, we introduce the sequential approach and show that, even in
a simpler form than in Paper B, it outperforms the coin tossing approach
from [35]. Both approaches make use of an algorithm developed by Kesselheim
et al. [35] for the generalized assignment problem with large capacity ratios.
Applied to the knapsack problem, we obtain Algorithm 4. We denote this
algorithm by AS in the following.

Parameters : d ∈ (0, 1].
In rounds 1, . . . , dn do

Reject all items.
In round ` ∈ {dn+ 1, . . . , n} do

Let IS(`) = {j ∈ IS | j arrived before or in round `}.
Let yj ∈ [0, 1] be the fraction of item j ∈ IS(`) in an optimal
solution to the fractional knapsack problem for IS(`).
Pack the current item i with probability yi if the remaining
capacity is large enough.

Algorithm 4: Algorithm AS for small items from [35]

The following lemma about AS follows from the proof of Theorem 9 in [35].

Lemma 4.1 ([35]). If the maximum item size in IS is (1/2) ·W , we have
E[AS] ≥ (3 · (1− d)− 2 · ln(1/d)) ·OPTS. The maximal competitive ratio of
1− ln(9/4) is achieved for d = 2/3.

Coin tossing approach

First, we briefly review the approach from [35] on a high level. Here, large
and small items are separated according to δ = 1/2. This way, at most
one large item can be part of any feasible packing. Hence, the knapsack
problem for IL becomes the secretary problem, as the goal is essentially
reduced to packing the most profitable item. This leads to the following
algorithm (see Algorithm 5): First, a biased coin is flipped. Depending on
the outcome, either one item from IL is packed using the optimal algorithm
for the secretary problem, or (multiple) small items are packed using AS .

The performance of Algorithm 5 can be evaluated by considering both
branches; the choice of λ maximizes the performance in the inferior case.

Theorem 4.1. The competitive ratio of Algorithm 5 is 3
3e+16 >

1
8.06 , setting

λ = β
1/e+β , with β = 1− ln(9/4), and assuming n→∞.

20

Parameters :λ ∈ [0, 1].
With probability λ do

Apply Algorithm 1 with t = dn/ee on IL.
With probability 1− λ do

Apply AS with d = 2/3 on IS .

Algorithm 5: Coin tossing approach from [35]

Proof. Let E[A] denote the expected profit of the packing returned by Algo-
rithm 5. By Theorem 2.1 and Lemma 4.1, it holds that

E[A] ≥ λ · 1
e
·OPTL + (1− λ) ·

(
1− ln 9

4

)
·OPTS

≥ min
{
λ · 1

e
, (1− λ) ·

(
1− ln 9

4

)}
· (OPTL + OPTS)

= β

1 + eβ
· (OPTL + OPTS) .

The claim follows by Equation (4.1) and β
1+eβ >

1
8.06 .

Sequential approach
One drawback of Algorithm 5 is its disability of adaption after the initial
random choice. Suppose that the secretary algorithm on IL accepts no item
during the first (2/3)n rounds. Then, with significant probability, no item
will be packed at all. This observation motivates the sequential approach:
After a sampling phase, first, an algorithm AL runs on IL, but only within a
dedicated time interval. If no item has been packed after this period, the
strategy is switched to pack small items from IS using AS . A (simplified)
description of this algorithmic framework is given in Algorithm 6.

Parameters : c, d ∈ (0, 1] with c < d.
In rounds 1, . . . , cn do

Reject all items.
In rounds cn+ 1, . . . , dn do

Apply AL on IL.
if the knapsack is empty after round dn then

In rounds dn+ 1, . . . , n do
Apply AS on IS .

Algorithm 6: Sequential approach

For this subsection, we assume that the algorithm AL for large items
in Algorithm 6 is Algorithm 1 with t − 1 = cn. For the analysis, we first

21

consider the expected profit of AL in the corresponding interval.

Lemma 4.2. The expected profit returned by AL in rounds cn+ 1, . . . , dn is
E[AL] ≥ c · ln(d/c) ·OPTL assuming n→∞.

Proof. The claim can be proven analogous to Theorem 2.1, summing up the
probabilities of the events Ei,a only for i with cn ≤ i ≤ dn.

Note that for d = 1, Lemma 4.2 implies E[AL] ≥ c · ln(1/c) ·OPTL, which
is the bound already shown in Section 2.2. In the framework of Algorithm 6,
d will be set to a value smaller than 1 in order to benefit from the subsequent
algorithm AS . This in turn requires that the remaining capacity is large
enough. We have the following lemma.

Lemma 4.3. Let ξ be the event that no item is packed in Algorithm 6 before
round dn+ 1. It holds that Pr[ξ] = c/d.

Proof. The algorithm AL packs no item if and only if the maximum profit
item of the first dn rounds arrives within rounds 1, . . . , cn. In a uniformly
random permutation, this happens with probability (cn)/(dn) = c/d.

Using the previous two lemmas, we are able to analyze Algorithm 6.

Theorem 4.2. Algorithm 6 is (1/6.99)-competitive for n→∞ setting c = 0.52
and d = 0.69.

Proof. The expected profit of AL in rounds cn + 1, . . . , dn is E[AL] ≥
c · ln(d/c) ·OPTL by Lemma 4.2. Let ξ be the event from Lemma 4.3. Condi-
tioned on ξ, all items picked by AS during rounds dn+ 1, . . . , n can be added
to the packing, giving expected profit E[AS | ξ] ≥ (3 · (1− d)− 2 · ln(1/d)) ·
OPTS by Lemma 4.1. Now, let E[A] be the expected profit of the packing
returned by Algorithm 6. Using Lemma 4.3 and the previously mentioned
bounds, we obtain

E[A] = E[AL] + Pr[ξ] · E[AS | ξ]

≥ c · ln d
c
·OPTL + c

d
·
(

3 · (1− d)− 2 · ln 1
d

)
·OPTS

≥ min
{
c · ln d

c
,
c

d
·
(

3 · (1− d)− 2 · ln 1
d

)}
· (OPTL + OPTS) .

The term min {c · ln(d/c), (c/d) · (3 · (1− d)− 2 · ln(1/d))} is maximized for
c = 0.52 and d = 0.69 and is larger than 1/6.99 for these parameters.
Applying Equation (4.1) concludes the proof.

Comparing the results of Theorems 4.1 and 4.2, we observe that the
sequential approach outperforms the coin tossing approach, though both
algorithms are based on the same algorithmic building blocks.

22

4.2 The 2-Knapsack problem
A further improvement upon Theorem 4.2 can be obtained by adjusting the
definition of large items. By choosing δ = 1/3, the knapsack problem on IL
now consists in finding a maximum-profit packing of cardinality 1 or 2. We
call this problem 2-Knapsack.

Problem 4.2 (Online 2-Knapsack under Random Arrival Order)
The problem is identical to Problem 4.1, but for each item i, it holds
that si > (1/3) ·W .

In Paper B, we develop and analyze a simple algorithm for online 2-Knapsack
in the random-order model: Using the single-ref algorithm from Section 3.1
with k = 2 and r = 1, up to two items of high total profit are identified.
While the first item is always packed, the second item can only be packed
if the remaining capacity is large enough. This approach establishes the
following proposition.

Proposition 4.1. The 2-Knapsack problem admits an online algorithm of
competitive ratio 1/3.08 assuming n→∞ in the random-order model.

Note that the problem contains the secretary problem as a special case.
Thus, no algorithm can have a competitive ratio larger than 1/e < 1/2.71.
We leave the existence of a (1/e)-competitive algorithm or a corresponding
impossibility result as an open problem.

4.3 Results
The main result of Paper B is a randomized algorithm for Problem 4.1 based
on the sequential approach.

Theorem 4.3. There exists a (1/6.65)-competitive randomized algorithm for
the online knapsack problem in the random-order model assuming n→∞.

Note that this improves upon the competitive ratio 1/6.99 from the
preliminary result of Theorem 4.2. The final algorithm uses the algorithm for
the 2-Knapsack problem desribed in Section 4.2 as AL instead of Algorithm 1.
This way, the input for AS is a list of items of maximum size (1/3) ·W ,
leading to a stronger performance bound of AS .

Moreover, we discuss the sequential approach for the generalized assign-
ment problem (GAP) in Section 6 of Paper B. By this approach, we improve
the state-of-the-art algorithm for online GAP in the random-order model.

Theorem 4.4. There exists a (1/6.99)-competitive randomized algorithm
for the online generalized assignment problem in the random-order model
assuming n→∞.

23

24

Chapter 5

Bin Packing
Bin packing is a fundamental and widely studied problem in the field of
approximation algorithms. In Paper C, we investigate the following online
variant of the problem.

Problem 5.1 (Online Bin Packing under Random Arrival Order)
A list I of n items is presented to the algorithm according to Definition 1.1,
where item i ∈ [n] has size xi ∈ (0, 1]. The goal is to find a packing
into bins of capacity 1 such that the number of used bins is minimized.
Formally, a packing is an assignment from the set of items to the set
of bins such that for any bin, the total size of assigned items does not
exceed its capacity.

For offline and online bin packing, two performance measures are widely
studied: The absolute approximation ratio of an algorithm A, denoted by
RA, is the worst-case ratio between A(I) and OPT(I) over all lists I; it
corresponds to a strict competitive ratio in the case of online algorithms.
The asymptotic approximation ratio R∞A evaluates the same ratio in the limit
of OPT(I)→∞. Formally,

RA = sup
I∈I
{A(I)/OPT(I)} , (5.1)

R∞A = lim sup
k→∞

sup
I∈I
{A(I)/OPT(I) | OPT(I) = k} , (5.2)

where I is the set of all instances. By replacing the term A(I) by E[A(Iσ)]
in Equations (5.1) and (5.2), where the expectation is over the random
permutation σ of the input, we obtain the random-order equivalents RRA
and RR∞A , respectively. This way, the random-order performance introduced
by Kenyon [32] is precisely RR∞A . In Paper C, we investigate both RRA and
RR∞A for the best fit algorithm.

5.1 The Best Fit algorithm
One of the simplest and earliest algorithms for online bin packing is best
fit, introduced by Johnson et al. [29] in 1974. The algorithm packs the
current item into the fullest bin where it fits, possibly opening a new bin if
no such bin exists. A formal description is given in Algorithm 7.

In the adversarial model, the approximation ratio of best fit is com-
pletely understood: Johnson et al. [29] showed that R∞BF = 1.7, a rather

25

In rounds 1, . . . , n do
Let i be the current item.
Let B be the fullest bin that can accommodate i; if no such bin
exists, let B be a new bin.
Pack i into B.

Algorithm 7: The best fit algorithm

recent result by Dósa and Sgall [15] shows that even RBF = 1.7. These
bounds are clear adversarial bounds in the sense that both item sizes and
arrival order are designed in a way that best fit opens many bins compared
to an optimal offline algorithm. This type of construction is illustrated in
the following example, which shows a slightly weaker lower bound of 5/3.

Example 5.1. Let ` ∈ N, k = 6` and ε ∈ (0, 1/12). Consider the following
list of n = 3k items, where for simplicity, we identify an item with its size:

I =
(

1
6 − 2ε, . . . , 1

6 − 2ε
︸ ︷︷ ︸

k

, 1
3 + ε, . . . , 1

3 + ε
︸ ︷︷ ︸

k

, 1
2 + ε, . . . , 1

2 + ε
︸ ︷︷ ︸

k

)

Clearly, an optimal offline algorithm packs one item from each group per
bin, using OPT(I) = k bins in total (see Figure 5.1a). In contrast, it is
easily verified that best fit opens k/6 bins for the first k items, k/2 bins
for the next k items, and k bins for the last group (see Figure 5.1b). Thus,
BF(I) = k/6 + k/2 + k = (5/3) ·OPT(I).

The above instance is also a prime example demonstrating that best fit
is highly sensitive to the arrival order of items: Assume that I is presented
in reversed order to the algorithm, i.e., items arrive in non-increasing order
of size. It is easily verified that best fit then produces the optimal packing.
In fact, whenever items appear in non-increasing order of size, best fit has
an asymptotic approximation ratio of 11/9. This follows directly from the
analysis of the offline algorithm best fit decreasing [29].

5.2 Upper bound for big items under random order
Let us call an item i large if xi > 1/2, medium if 1/3 < xi ≤ 1/2, and small
if xi ≤ 1/3.

Even if all items are medium or large, the competitive ratio of best fit
under adversarial order is bounded from below by 3/2. This can be seen by
removing the small items in Example 5.1. Therefore, large and medium items
play a crucial role for the hardness in the general case. On the other hand,
we can show that such adversarial inputs are fragile under random order. In
Paper C, we therefore study the special case where no small items exist, i.e.

26

1
6
− 2ε

1
3
+ ε

1
2
+ ε

k

(a) Optimal packing
k/6 k/2 k

1
6
− 2ε

1
6
− 2ε

1
6
− 2ε

1
6
− 2ε

1
6
− 2ε

1
6
− 2ε

1
3
+ ε

1
3
+ ε

1
2
+ ε

(b) best fit packing

Figure 5.1: Visualization of Example 5.1

all items are larger than 1/3. Our main contribution is the following upper
bound.

Theorem 5.1. For any list I of items larger than 1/3, we have E[BF(Iσ)] ≤
(5/4) ·OPT(I) + 1/2, where σ is a permutation drawn uniformly at random.

The proof of Theorem 5.1 is developed in three main steps which we
describe below.

Step 1: Reduction to LM-pairs

We call a bin an LM-bin if it contains a large item and a medium item;
the corresponding pair of items in an LM-bin of the optimal packing is
called LM-pair. Without loss of generality, we can assume that the optimal
packing has only LM-bins. This way, the problem gets more structured:
The approximation guarantee of a packing can be easily measured by the
fraction of LM-bins in the packing. In the proof of the above claim, the
crucial property is the monotonicity of best fit in this case: If all items are
larger than 1/3, increasing the size of an item cannot decrease the number
of bins used by the algorithm. Interestingly, this property does not hold for
best fit in the presence of small items [41].

Step 2: Notion of good LM-pairs

Consider the modified version of Example 5.1 where small items are removed:
Here, best fit uses (3/2) ·OPT(I) bins if the first k items are medium and
the last k items are large. Vice versa, best fit is optimal if all large items
arrive before all medium items. In a random permutation, we expect some
in-between behavior, which can be quantified by the following definition.

Definition 5.1. Consider a fixed order of items. We say that the LM-pair
{li,mi} arrives in good order if li arrives before mi.

27

Example 5.2. Let {li,mi} for i ∈ [4] be the i-th LM-bin of an optimal
packing. In the item list I = (m4, l2,m1, l3, l4,m2, l1,m3), the LM-pairs
arriving in good order are {l2,m2} and {l3,m3}.

The key lemma for the proof of Theorem 5.1 states that the number of
LM-bins in the best fit packing is bounded from below by the number of
LM-pairs arriving in good order.

Lemma 5.1. Let I be a list of items larger than 1/3 and consider a fixed
permutation σ′. Let X be the number of LM-pairs arriving in good order in
Iσ

′. The best fit packing for Iσ′ has at least X LM-bins.

In Paper C, we give an inductive proof of Lemma 5.1 using techniques
from bipartite matching.

Step 3: Analyzing a random permutation

In contrast to adversarial order, a positive constant fraction of LM-pairs
arrives in good order in a random permutation in expectation.

Lemma 5.2. Let X denote the number of LM-pairs arriving in good order
in a random permutation of k LM-pairs. It holds that E[X] = k/2.

Proof. The claim follows immediately from the observation that any LM-pair
arrives in good order with probability 1/2 in a random permutation.

Using the results of Lemmas 5.1 and 5.2, the proof of Theorem 5.1 follows.

Proof of Theorem 5.1. By the reasoning of step 1, we can assume that the
optimal packing of I has only LM-bins without loss of generality. Let
k = OPT(I) denote the number of these LM-bins.

Now, we consider the best fit packing. Let Y be a random variable
for the number of LM-bins in the packing of best fit for Iσ. Hence, Y
large and Y medium items are packed in LM-bins. For the remaining large
items, best fit uses k − Y bins. Similarly, at most d(k − Y)/2e bins are
used for medium items (packed in groups of two, except maybe for the last
bin). Therefore,

BF(Iσ) = Y + (k − Y) +
⌈
k − Y

2

⌉
≤ 3k

2 −
Y

2 + 1
2 .

Now, let X be the number of good order pairs in Iσ. Note that E[Y] ≥
E[X] = k/2 holds through Lemmas 5.1 and 5.2. Using linearity of expectation,
we obtain finally

E[BF(Iσ)] ≤ 3k
2 −

E[Y]
2 + 1

2 ≤
3k
2 −

k/2
2 + 1

2 = 5
4 ·OPT(I) + 1

2 .

28

5.3 Lower bound on asymptotic approximation ratio
under random order

As the second main contribution of Paper C, we prove that the asymptotic
approximation ratio of best fit in the random-order model is larger than
1.10, improving the previous result RR∞BF ≥ 1.08 from [32].
Theorem 5.2. It holds that RR∞BF > 1.10.

The proof of Theorem 5.2 is based on two pillars. The first pillar is the
connection to the i.i.d.-model, a related model for stochastic inputs. Here,
items are drawn independently and identically distributed (i.i.d.) at random.
We denote by In(F) a list of n items drawn i.i.d. from a discrete distribution
F . For a competitive analysis, the online algorithm and an optimal offline
algorithm are evaluated in expectation over In(F).

The random-order model and the i.i.d.-model are related as follows: As
a sequence of i.i.d. items is in uniformly random order by construction, the
performance of any algorithm in the random-order model does not decrease
for i.i.d. inputs. On the other side, a randomly permuted adversarial input
is not necessarily i.i.d. Therefore, hardness results in the i.i.d. model apply
to the random-order model as well.

As sampling with replacement is typically easier to analyze than sampling
without replacement, several hardness results in the random-order model
are based on corresponding hardness results in the i.i.d. model [14, 20, 32].
With respect to our notation and the bin packing problem, we obtain the
following lemma.
Lemma 5.3. Consider any online bin packing algorithm A. Let F be a
discrete distribution and In(F) a list of n i.i.d. samples. For n→∞, there
exists a list I of n items such that

E[A(Iσ)]
OPT(I) ≥

E[A(In(F))]
E[OPT(In(F))] .

Moreover, if Xi ≥ c for all i ∈ [n] and a constant c > 0, it holds that
OPT(I) ≥ cn.

By the first part of Lemma 5.3, it is enough to construct a suitable discrete
distribution F to obtain a lower bound on RRBF. The second claim implies
that for suitable distributions, the term OPT(I) can be made arbitrarily
large. This is necessary to construct a lower bound on RR∞BF.

Therefore, Theorem 5.2 follows from Lemma 5.3 if a suitable discrete
distribution F exists. As stated in the next lemma, a distribution with the
desired properties is surprisingly simple.
Lemma 5.4. Let F be the discrete distribution such that an item of size 1/4
has probability p = 0.60 and an item of size 1/3 has probability 1− p. For
n→∞, it holds that E[BF(In(F))] > (11/10) · E[OPT(In(F))].

29

To prove Lemma 5.4, the expected numbers of bins used by best fit
and an optimal offline algorithm needs to be analyzed. An upper bound on
E[OPT(In(F)] can be obtained easily, as an optimal packing groups items
according to their sizes (possibly except for at most two bins). Hence,

E[OPT(In(F))] ≤ np

4 + n · (1− p)
3 + 2 .

Analyzing the behavior of best fit is more elaborate. The key observation
is that at any time at most two bins in the packing are open, i.e., can accom-
modate items in the future. Also, there is a limited number of configurations
for open bins. Both properties are due to the fact that the number of item
types in F is constant. This way, the behavior of best fit over time can be
modeled as an ergodic Markov chain with nine states. The expected total
number of bins E[BF(In(F))] is related to the stationary distribution of the
Markov chain.

30

Chapter 6

Conclusion and Open Problems
This thesis reports the recent progress of [3–5] in understanding three online
packing problems in the random-order model. In this model, even simple
algorithmic approaches can lead to demanding analyses. Especially for prob-
lems admitting constant competitive ratios, it is not uncommon that existing
probabilistic analyses are not tight, e.g., due to tail bounds. Regarding the
problems considered in this thesis, we see various directions of future work.

In Paper A, we discussed two algorithms for the k-secretary problem.
Our analysis of single-ref seems tight in the setting of n→∞, however, it
remains to characterize the interplay of the parameters k, r, and t formally.
A more fundamental question regards the optimal competitive ratio for
k ≥ 2. For ordinal algorithms, the answer can be obtained from the factor-
revealing LP approach [12, 13]. In contrast and maybe surprisingly, for
general algorithms, this is still an open problem.

Paper B deals with the online knapsack problem under random arrival
order. Again, the optimal competitive ratio for this problem is not known and
the only impossibility result is inherited from the secretary problem. Thus,
it is still open if the problem admits a (1/e)-competitive algorithm. Note
that the result from [34] on edge-weighted bipartite matching demonstrates
that generalizations of the secretary problem may admit (1/e)-competitive
algorithms by all means. We feel that the consideration of special cases as
the 2-Knapsack problem introduced in Paper B may lead to new insights.

In Paper C, we revisited the best fit algorithm for online bin packing
under random arrival order. In the general case, the asymptotic approxima-
tion ratio of this algorithm is still only bounded by 1.1 < RR∞BF ≤ 1.5 and
an obvious direction of future work is to close this gap. Moreover, it would
be interesting to identify other simple online algorithms for bin packing with
a strong performance in the random-order model. For example, is it possible
to slightly modify the best fit algorithm such that it significantly beats
1.5 with respect to competitive ratio under random order? Such algorithms
seem interesting, both from a theoretical and practical point of view.

31

32

Bibliography
[1] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu. Switch scheduling via

randomized edge coloring. In Proc. 44th Symposium on Foundations of
Computer Science (FOCS), pages 502–512, 2003.

[2] S. Albers and M. Janke. Scheduling in the random-order model. In
Proc. 47th International Colloquium on Automata, Languages, and
Programming (ICALP), pages 68:1–68:18, 2020.

[3] S. Albers, A. Khan, and L. Ladewig. Improved online algorithms for
knapsack and GAP in the random order model. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM), volume 145 of LIPIcs, pages 22:1–22:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[4] S. Albers, A. Khan, and L. Ladewig. Best fit bin packing with random
order revisited. In Proc. 45th International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume 170 of LIPIcs, pages
7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[5] S. Albers and L. Ladewig. New results for the k-secretary problem. In
Proc. 30th International Symposium on Algorithms and Computation
(ISAAC), volume 149 of LIPIcs, pages 18:1–18:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[6] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A knapsack sec-
retary problem with applications. In Proc. 10th International Workshop
on Approximation, Randomization, and Combinatorial Optimization
and 11th International Workshop on Randomization and Computation
(APPROX/RANDOM), pages 16–28, 2007.

[7] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Online auctions
and generalized secretary problems. SIGecom Exch., 7(2), 2008.

[8] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Matroid
secretary problems. Journal of the ACM, 65(6):35:1–35:26, 2018.

[9] M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary
problems, and online mechanisms. In Proc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 434–443, 2007.

[10] B. Bahmani, A. Mehta, and R. Motwani. Online graph edge-coloring in
the random-order arrival model. Theory Comput., 8(1):567–595, 2012.

33

[11] S. Bhattacharya, F. Grandoni, and D. Wajc. Online algorithms for
edge coloring via the nibble method. In Proc. 32nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2021 (to appear).

[12] N. Buchbinder, K. Jain, and M. Singh. Secretary problems via linear
programming. Math. Oper. Res., 39(1):190–206, 2014.

[13] T.-H. H. Chan, F. Chen, and S. H.-C. Jiang. Revealing optimal thresh-
olds for generalized secretary problem via continuous LP: impacts on
online K -item auction and bipartite K -matching with random arrival
order. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1169–1188, 2015.

[14] M. G. Christ, L. M. Favrholdt, and K. S. Larsen. Online bin covering:
Expectations vs. guarantees. Theor. Comput. Sci., 556:71–84, 2014.

[15] G. Dósa and J. Sgall. Optimal analysis of best fit bin packing. In
Proc. 41st International Colloquium on Automata, Languages, and
Programming (ICALP), pages 429–441, 2014.

[16] E. B. Dynkin. The optimum choice of the instant for stopping a markov
process. Soviet Mathematics, 4:627–629, 1963.

[17] M. Feldman, O. Svensson, and R. Zenklusen. A simple O(log log(rank))-
competitive algorithm for the matroid secretary problem. Math. Oper.
Res., 43(2):638–650, 2018.

[18] T. S. Ferguson. Who solved the secretary problem? Statistical science,
4(3):282–289, 1989.

[19] C. Fischer. New Results on the Probabilistic Analysis of Online Bin
Packing and its Variants. PhD thesis, Rheinische Friedrich-Wilhelms-
Universität Bonn, 2019.

[20] C. Fischer and H. Röglin. Probabilistic analysis of the dual next-fit
algorithm for bin covering. In Proc. 12th Latin American Symposium
(LATIN), pages 469–482, 2016.

[21] C. Fischer and H. Röglin. Probabilistic analysis of online (class-
constrained) bin packing and bin covering. In Proc. 13th Latin American
Symposium (LATIN), volume 10807 of Lecture Notes in Computer Sci-
ence, pages 461–474. Springer, 2018.

[22] P.R. Freeman. The secretary problem and its extensions: A review.
International Statistical Review/Revue Internationale de Statistique,
pages 189–206, 1983.

[23] J. P. Gilbert and F. Mosteller. Recognizing the maximum of a sequence.
Journal of the American Statistical Association, 61(313):35–73, 1966.

34

[24] O. Göbel, T. Kesselheim, and A. Tönnis. Online appointment scheduling
in the random order model. In Proc. 23rd Annual European Symposium
on Algorithms (ESA), pages 680–692, 2015.

[25] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal of Applied Mathematics, 17(2):416–429, 1969.

[26] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics:
A Foundation for Computer Science, 2nd Ed. Addison-Wesley, 1994.

[27] A. Gupta and S. Singla. Random-order models. In T. Roughgarden,
editor, Beyond the Worst-Case Analysis of Algorithms, chapter 11.
Cambridge University Press, 2020 (to appear).

[28] D. S. Johnson. Fast algorithms for bin packing. J. Comput. Syst. Sci.,
8(3):272–314, 1974.

[29] D. S. Johnson, A. J. Demers, J. D. Ullman, M. R. Garey, and R. L.
Graham. Worst-case performance bounds for simple one-dimensional
packing algorithms. SIAM J. Comput., 3(4):299–325, 1974.

[30] E. G. Coffman Jr., J. Csirik, L. Rónyai, and A. Zsbán. Random-order
bin packing. Discret. Appl. Math., 156(14):2810–2816, 2008.

[31] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm
for on-line bipartite matching. In Proc. 22nd Annual ACM Symposium
on Theory of Computing (STOC), pages 352–358, 1990.

[32] C. Kenyon. Best-fit bin-packing with random order. In Proc. 7th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 359–364,
1996.

[33] T. Kesselheim, R. D. Kleinberg, and R. Niazadeh. Secretary problems
with non-uniform arrival order. In Proc. 47th Annual ACM Symposium
on Theory of Computing (STOC), pages 879–888, 2015.

[34] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. An optimal
online algorithm for weighted bipartite matching and extensions to
combinatorial auctions. In Proc. 21st Annual European Symposium on
Algorithms (ESA), pages 589–600, 2013.

[35] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. Primal beats dual
on online packing LPs in the random-order model. SIAM J. Comput.,
47(5):1939–1964, 2018.

[36] R. D. Kleinberg. A multiple-choice secretary algorithm with applications
to online auctions. In Proc. 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 630–631, 2005.

35

[37] D. V. Lindley. Dynamic programming and decision theory. Applied
Statistics, pages 39–51, 1961.

[38] M. Mahdian and Q. Yan. Online bipartite matching with random
arrivals: an approach based on strongly factor-revealing LPs. In Proc.
43rd Annual ACM Symposium on Theory of Computing (STOC), pages
597–606, 2011.

[39] A. Meyerson. Online facility location. In Proc. 42nd IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 426–
431, 2001.

[40] M. Molinaro. Online and random-order load balancing simultaneously.
In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1638–1650, 2017.

[41] F. D. Murgolo. Anomalous behavior in bin packing algorithms. Discret.
Appl. Math., 21(3):229–243, 1988.

[42] D. Naori and D. Raz. Online multidimensional packing problems in
the random-order model. In Proc. 30th International Symposium on
Algorithms and Computation (ISAAC), pages 10:1–10:15, 2019.

[43] C. J. Osborn and E. Torng. List’s worst-average-case or WAC ratio. J.
Sched., 11(3):213–215, 2008.

[44] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985.

[45] Y. Zhou, D. Chakrabarty, and R. M. Lukose. Budget constrained
bidding in keyword auctions and online knapsack problems. In Proc.
4th International Workshop Internet and Network Economics (WINE),
pages 566–576, 2008.

36

Appendix A

New Results for the k-Secretary
Problem
Bibliographic information S. Albers and L. Ladewig. New results for the
k-secretary problem. In Proc. 30th International Symposium on Algorithms
and Computation (ISAAC), volume 149 of LIPIcs, pages 18:1–18:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

Summary In this paper, we investigate the k-secretary problem, a natural
generalization of the classic secretary problem with cardinality constraint
k ∈ N instead of one. Our focus lies on the relevant case where k is small.
We study simple threshold-based algorithms in the style of the optimal (1/e)-
competitive algorithm for the secretary problem. The main contribution
is a new algorithm single-ref, which is based on the natural approach
of accepting the first k items that beat a reference element after an initial
sampling phase. We explicitly compute its competitive ratios for 1 ≤ k ≤ 100,
showing that the algorithm is 0.4119-competitive already at k = 2, which
significantly beats the barrier of 1/e. Moreover, we revisit the optimistic
algorithm proposed by Babaioff et al. [APPROX’07] for which no rigorous
analysis is known. For the case k = 2, we present a thorough analysis based
on a non-trivial combinatorial property of this algorithm. It turns out that
optimistic is 0.4168-competitive.

Individual contributions

• Initial proposal of the single-ref algorithm, development of the
analyses and numerical optimization of parameters in Section 3

• Observation of Lemma 4.1 and development of the proofs in Section 4

• Composition of the manuscript including all technical and non-technical
parts (refined based on discussions with co-author)

37

38

New Results for the k-Secretary Problem
Susanne Albers
Department of Informatics, Technical University of Munich, Germany
albers@in.tum.de

Leon Ladewig
Department of Informatics, Technical University of Munich, Germany
ladewig@in.tum.de

Abstract
Suppose that n numbers arrive online in random order and the goal is to select k of them such that
the expected sum of the selected items is maximized. The decision for any item is irrevocable and
must be made on arrival without knowing future items. This problem is known as the k-secretary
problem, which includes the classical secretary problem with the special case k = 1. It is well-known
that the latter problem can be solved by a simple algorithm of competitive ratio 1/e which is
asymptotically optimal. When k is small, only for k = 2 does there exist an algorithm beating the
threshold of 1/e [Chan et al. SODA 2015]. The algorithm relies on an involved selection policy.
Moreover, there exist results when k is large [Kleinberg SODA 2005].

In this paper we present results for the k-secretary problem, considering the interesting and
relevant case that k is small. We focus on simple selection algorithms, accompanied by combinatorial
analyses. As a main contribution we propose a natural deterministic algorithm designed to have
competitive ratios strictly greater than 1/e for small k ≥ 2. This algorithm is hardly more complex
than the elegant strategy for the classical secretary problem, optimal for k = 1, and works for all
k ≥ 1. We explicitly compute its competitive ratios for 2 ≤ k ≤ 100, ranging from 0.41 for k = 2 to
0.75 for k = 100. Moreover, we show that an algorithm proposed by Babaioff et al. [APPROX 2007]
has a competitive ratio of 0.4168 for k = 2, implying that the previous analysis was not tight. Our
analysis reveals a surprising combinatorial property of this algorithm, which might be helpful for a
tight analysis of this algorithm for general k.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, secretary problem, random order model

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.18

Funding Work supported by the European Research Council, Grant Agreement No. 691672.

1 Introduction

The secretary problem is a well-known problem in the field of optimal stopping theory and is
defined as follows: Given a sequence of n numbers which arrive online and in random order,
select the maximum number. Thereby, upon arrival of an item, the decision to accept or
reject it must be made immediately and irrevocably, especially without knowing future items.
The statement of the problem dates back to the 1960s and its solution is due to Lindley [23]
and Dynkin [10]. For discussions on the origin of the problem, we refer to the survey [13].

In the past years, generalizations of the secretary problem involving selection of multiple
items have become very popular. We consider one of the most canonical generalizations
known as the k-secretary problem: The algorithm is allowed to choose k elements and the
goal is to maximize the expected sum of accepted elements. Other objective functions,
such as maximizing the probability of accepting the k best [2, 14] or general submodular
functions [20], have been studied as well. Maximizing the sum of accepted items is closely
related to the knapsack secretary problem [3, 19]. If all items have unit weight and thus
the knapsack capacity is a cardinality bound, the k-secretary problem arises. The matroid

© Susanne Albers and Leon Ladewig;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

18:2 New Results for the k-Secretary Problem

secretary problem, introduced by Babaioff et al. [6], is a generalization where an algorithm
must maintain a set of accepted items that form an independent set of a given matroid.
We refer the reader to [11, 12, 22] for recent work. If the matroid is k-uniform, again, the
k-secretary problem occurs. Another closely related problem was introduced by Buchbinder,
Jain, and Singh [8]. In the (J,K)-secretary problem, an algorithm has J choices and the
objective is to maximize the number of selected items among the K best. Assuming the
ordinal model [17] and a monotonicity property of the algorithm, any c-competitive algorithm
for the (k, k)-secretary problem is c-competitive for the k-secretary problem, and vice versa [8].
In the ordinal model [17], an algorithm decides based on the total order of items only, rather
than on their numeric values. In fact, most known and elegant algorithms for the k-secretary
problem assume the ordinal model [3, 10,21,23].

The large interest in generalizations of the classical secretary problem is motivated mainly
by numerous applications in online market design [4,6,21]. Apart from these applications, the
secretary problem is the prototype of an online problem analyzed in the random order model:
An adversarial input order often rules out (good) competitive ratios when considering online
optimization problems without further constraints. By contrast, the assumption that the
input is ordered randomly improves the competitive ratios in many optimization problems.
This includes packing problems [18, 19], scheduling problems [15], and graph problems [7, 24].
Therefore, developing new techniques for secretary problems may, more generally, yield
relevant insights for the analysis of online problems in randomized input models as well.

1.1 Previous Work
The k-secretary problem was introduced by Kleinberg [21] in 2005. He presents a randomized
algorithm attaining a competitive ratio of 1−5/

√
k, which approaches 1 for k →∞. Moreover,

Kleinberg gives in [21] a hardness result stating that any algorithm has a competitive ratio
of 1− Ω(

√
1/k). Therefore, from an asymptotic point of view, the k-secretary problem is

solved by Kleinberg’s result. However, the main drawback can be seen in the fact that the
competitive ratio is not defined if k ≤ 24 and breaks the barrier of 1/e only if k ≥ 63 (see
Figure 2, p. 11).

In 2007 the problem was revisited by Babaioff et al.[3]. The authors propose two algorithms
called virtual and optimistic and prove that both algorithms have a competitive ratio of
at least 1/e for any k. While the analysis of virtual is simple and tight, it takes much more
effort to analyze optimistic [3, 4]. The authors believe that their analysis for optimistic is
not tight for k ≥ 2.

Buchbinder, Jain, and Singh [8] developed a framework to analyze secretary problems
and their optimal algorithms using linear programming techniques. By numerical simulations
for the (k, k)-secretary problem with n = 100, Buchbinder et al. obtained competitive ratios
of 0.474, 0.565, and 0.612, for k = 2, 3, and 4, respectively. However, obtaining an algorithm
from their framework requires a formal analysis of the corresponding LP in the limit of
n→∞, which is not provided in the article [8, p. 192].

Chan, Chen, and Jiang [9] revisited the (J,K)-secretary problem and obtained several
fundamental results. Notably, they showed that optimal algorithms for the k-secretary
problem require access to the numeric values of the items, which complements the previous
line of research in the ordinal model. Chan et al. demonstrate this by providing a 0.4920-
competitive algorithm for the 2-secretary problem which is based on a 0.4886-competitive
algorithm for the (2, 2)-secretary problem. Still, an analysis for the general (J,K)-case is not
known, even for J = K. Moreover, the resulting algorithms seem overly involved. This dims
the prospect of elegant k-secretary algorithms for k ≥ 3 obtained from this approach.

S. Albers and L. Ladewig 18:3

Table 1 Competitive ratios α of single-ref for k ∈ [1..20].

k 1 2 3 4 5 6 7 8 9 10

α 1/e 0.4119 0.4449 0.4785 0.4999 0.5148 0.5308 0.5453 0.5567 0.5660

k 11 12 13 14 15 16 17 18 19 20

α 0.5740 0.5834 0.5914 0.5983 0.6043 0.6096 0.6155 0.6211 0.6261 0.6306

1.2 Our Contribution
We study the k-secretary problem, the most natural and immediate generalization of the
classical secretary problem. While the extreme cases k = 1 and k → ∞ are well studied,
hardly any results for small values of k ≥ 2 exist. We believe that simple selection algorithms,
performing well for small k, are interesting both from a theoretical point of view and for
practical settings. Moreover, the hope is that existing algorithms for related problems based
on k-secretary algorithms can be improved this way [8, p. 191]. We study algorithms designed
for the ordinal model, which guarantees robustness and plainer decision rules.

For this purpose, we propose a simple deterministic algorithm single-ref. This algorithm
uses a single value as threshold for accepting items. Although similar approaches based on
this natural idea have been used to solve related problems [1], to the best of our knowledge,
this algorithm has not been explored for the k-secretary problem so far. As a strength of
our algorithm we see its simplicity: It is of plain combinatorial nature and can be fine-tuned
using only two parameters. In contrast, the optimal algorithms which follow theoretically
from the (J,K)-secretary approach [9] would involve k2 parameters and the same number of
different decision rules.

An important insight for the analysis of single-ref is that items can be partitioned into
two classes, which we will call dominating and non-dominating. Both have certain properties
on which we base our fully parameterized analysis. In Table 1, we list the competitive ratios
of single-ref for k ≤ 20. While the competitive ratio for k = 1 is optimal, we obtain a
value significantly greater than 1/e already for k = 2. Furthermore, the competitive ratios
are monotonically increasing in the interval k ∈ [1..20], already breaking the threshold of 0.5
at k = 6. Numerical computations suggest that this monotonicity holds for general k. See
Figure 2 (p. 11) for the competitive ratios up to k = 100 and a comparison with Kleinberg’s
algorithm [21]. Providing a closed formula for the competitive ratio for any value of k is one
direction of future work (see Section 5).

Moreover, we investigate the optimistic algorithm by Babaioff et al. [3] for the case
k = 2. Although Chan et al. [9] provide the optimal algorithm for k = 2, we think studying
this elegant algorithm is interesting for two reasons: First, a tight analysis of optimistic
is stated as open problem in [3]. Article [3] does not provide the proof of the (1/e)-bound
and a recent journal publication [5] (evolved from [3] and [6]) does not cover the optimistic
algorithm at all. We make progress in this problem by proving that for k = 2 its competitive
ratio is exactly 0.4168 which significantly breaks the (1/e)-barrier. Second, our proof reveals
an interesting property of this algorithm, which we show in Lemma 4.1: The probability
that optimistic accepts the second best item is exactly the probability that the optimal
algorithm for k = 1 from [10,23] accepts the best item. A similar property might hold for
k ≥ 3, which could be a key insight into the general case.

From a technical point of view, we derive the exact probabilities using basic combinatorial
constructs exclusively. This is in contrast to previous approaches [8, 9] which can only
be analyzed using heavyweight linear programming techniques. In addition, we always

ISAAC 2019

18:4 New Results for the k-Secretary Problem

consider the asymptotic setting of n→∞ items, which gives more meaningful bounds on the
competitive ratio. Throughout the analyses of both algorithms, we associate probabilities
with sets of permutations (see Section 2.2). Hence, probability relations can be shown
equivalently by set relations. This is a simple but powerful technique which may be useful in
the analysis of other optimization problems with random arrival order as well.

2 Preliminaries

Let v1 > v2 > . . . > vn be the elements (also called items) of the input. In the ordinal
model, we can assume w.l.o.g. all items to be distinct. Therefore we say that i is the rank
of element vi. An input sequence is any permutation of the list v1, . . . , vn. We denote the
position of an element v given a specific input sequence π with posπ(v) ∈ {1, . . . , n} and
write pos(v) whenever the input sequence is clear from the context.

Given any input sequence, an algorithm can accept up to k items, where the decision
whether to accept or reject an item must be made immediately upon its arrival. Let ALG
denote the sum of items accepted by the algorithm. The algorithm is α-competitive if
E [ALG] ≥ α ·OPT holds for all item sets. Here the expectation is taken over the uniform
distribution of all n! input sequences and OPT =

∑k
i=1 vi.

Notation. For a, b ∈ N with a ≤ b, we use the notation [a..b] to denote the set of integers
{a, a+ 1, . . . , b} and write [a] for [1..a]. The (half-)open integer intervals (a..b], [a..b), and
(a..b) are defined accordingly. Further, we use the notation nk for the falling factorial n!

(n−k)! .

2.1 Algorithms
In the following, we state the optimistic algorithm proposed by Babaioff et al. (Algorithm 1)
and our proposed algorithm single-ref (Algorithm 2) and compare both strategies.

Algorithm 1 optimistic [3].

Parameters : t ∈ (k..n− k] (sampling threshold)
1 Sampling phase: Reject the first t− 1 items.
2 Let s1 > . . . > sk be the k best items from the sampling phase.
3 Selection phase: As j-th accepted item, choose the first item better than sk−j+1.

Algorithm 2 single-ref.

Parameters : t ∈ (k..n− k] (sampling threshold), r ∈ [k] (reference rank)
1 Sampling phase: Reject the first t− 1 items.
2 Let sr be the r-th best item from the sampling phase.
3 Selection phase: Choose the first k items better than sr.

While both algorithms consist of a sampling phase in which the first t − 1 items are
rejected, the main difference is the policy for accepting items: optimistic uses the k best
items from the sampling as reference elements. Right after the sampling phase, the first
item better than sk (the k-th best from the sampling) will be accepted. The following
accepted items are chosen similarly, but with sk−1, sk−2, . . . , s1 as reference items. Note that
this algorithm always sticks to this order of reference points, even if the first item already
outperforms s1. Hence, it is optimistic in the sense that it always expects that high-value
items occur in the future.

S. Albers and L. Ladewig 18:5

single-ref has a simpler structure since it only uses a single item sr from the sampling
as reference point. Here, each item is compared to sr (the r-th best from sampling), thus the
first k elements better than sr will be selected. Despite its simpler structure, the analysis of
single-ref is involved due to the additional parameter r, as it is not clear how to choose
this parameter optimally.

Note that in the case k = 1, optimistic and single-ref (when setting r = 1) become
the strategy known for the classical secretary problem [10,23]: After rejecting the first t− 1
items, choose the first one better than the best from sampling. A simple argument shows
that this strategy selects the best item with probability t−1

n

∑n
i=t

1
i−1 . If n tends to infinity

and t− 1 ≈ n/e, this term approaches 1/e which is optimal.
The following lemma is used to bound the competitive ratios of both algorithms. It

heavily relies on the monotonicity property of the algorithms, i.e., for any vi > vj , both
algorithms select vi with greater or equal probability than vj .

I Lemma 2.1. Let A be optimistic or single-ref and for each i ∈ [n] let pi be the
probability that A selects item vi. The competitive ratio of A is (1/k)

∑k
i=1 pi.

Proof. First, we will argue that pi ≥ pi+1 for all i ∈ [n− 1], i.e., A selects items of smaller
rank with greater or equal probability. This follows if we can show that the number of
permutations where vi+1 is accepted is not greater than the respective number of permutations
for vi (this concept is described more detailed in Section 2.2).

Consider any input sequence π in which vi+1 is accepted. Let sj < vi+1 be the sampling
item to which vi+1 is compared (in case of single-ref we have j = r). Since vi+1 is accepted,
we have sj 6= vi. By swapping vi with vi+1, we obtain a new permutation π′ with the same
reference element sj . This is obvious if vi is not in the sampling of π. Otherwise, note that
in the ordered sequences of sampling items from π and π′, both vi+1 and vi have the same
position. This implies that sj is the j-th best sampling item in π′. Further, item vi is at the
former position of vi+1 in π′, thus A accepts vi at this position since vi > vi+1 > sj .

Thus, both sequences p1, . . . , pk and v1, . . . , vk are sorted decreasingly. Let OPTk =∑k
i=1 vi and E [A] be the expected sum of the items accepted by A. Chebyshev’s sum

inequality [16] states that if a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn, then
∑n
i=1 aibi ≥

(1/n) (
∑n
i=1 ai) (

∑n
i=1 bi). Applying this inequality yields

E [A] =
n∑

i=1
pivi ≥

k∑

i=1
pivi ≥

1
k

(
k∑

i=1
vi

)(
k∑

i=1
pi

)
=
(

1
k

k∑

i=1
pi

)
OPTk .

Note that the above inequalities are tight: Assuming that the first k items are almost
identical, i.e. vi = 1− iε for i ∈ [1..k] and ε→ 0, and vi = 0 for all remaining items of rank
i ∈ (k..n], the competitive ratio is exactly (1/k)

∑k
i=1 pi. J

The same argument is used in [8] to show the equivalence of the k-secretary and the (k, k)-
secretary problem for ordinal monotone algorithms.

2.2 Random Order Model
To analyze an algorithm given a random permutation, we often fix an order u1, u2, . . . , un of
positions. Then, we draw the element for position u1 uniformly from all n elements, next
the element for position u2 from the remaining n− 1 elements, and so on. It is easy to see
that by this process we obtain a permutation drawn uniformly at random.

Moreover, the uniform distribution allows us to prove probability relations using functions:
Suppose that pi is the probability that item vi is accepted in a random permutation, then
pi = |Pi| /n! where Pi is the set of all input sequences where vi is accepted. Thus, we can

ISAAC 2019

18:6 New Results for the k-Secretary Problem

Table 2 Several identities involving binomial coefficients [16].

Rule Equation Parameters

(R1) Sum of products
l∑

k=0

(
l − k
m

)(
q + k

n

)
=
(
l + q + 1
m+ n+ 1

) l,m, n, q ∈ Z with l,m ≥ 0
and n ≥ q ≥ 0

(R2) Symmetry
(
n

k

)
=
(

n

n− k

)
n, k ∈ Z with n ≥ 0

(R3) Trinomial revision
(
r

m

)(
m

k

)
=
(
r

k

)(
r − k
m− k

)
m, k ∈ Z and r ∈ R

prove pi ≤ pj by finding an injective function f : Pi → Pj and get pi = pj if f is bijective.
For example, this technique turns out to be highly useful in the proof of Lemma 4.1, where
probabilities of different algorithms are related.

2.3 Combinatorics
We often need to analyze probabilities described by the following random experiment.

I Fact 2.2. Suppose there are N balls in an urn from which M are blue and N −M red.
The probability of drawing K blue balls without replacement in a sequence of length K is
h(N,M,K) :=

(
M
K

)
/
(
N
K

)
.

This fact follows from a special case of the hypergeometric distribution.
Furthermore, we make use of several identities involving binomial coefficients throughout

the following sections. These equations, denoted by (R1), (R2), and (R3), are listed in
Table 2.

3 Analysis of SINGLE-REF

In this section we analyze our proposed algorithm single-ref, which we denote by A
throughout this section. Recall that this algorithm uses sr, the r-th best sampling item, as
the threshold for accepting items. As implied by the proof of Lemma 2.1, only the k largest
items v1, . . . , vk contribute to the objective function. One essential idea of our approach is
to separate the set of top-k items into two classes according to the following definition.

I Definition 3.1. We say that item vi is dominating if i ≤ r, and non-dominating if
r + 1 ≤ i ≤ k.

The crucial property of dominating items becomes clear in the following scenario: Assume
that any dominating item v occurs after the sampling phase. Since sr is the r-th best item
from the sampling phase, it follows that v > sr. That is, each dominating item outside the
sampling beats the reference item. Therefore there are only two situations when dominating
items are rejected: Either they appear before position t, or after k accepted items.

3.1 Acceptance of Dominating Items
First we focus on dominating items. As we will show in Lemma 3.2, the algorithm cannot
distinguish between them and thus each dominating item has equal acceptance probability.

S. Albers and L. Ladewig 18:7

t

v

i

s1 sr

︷ ︸︸ ︷ ︷ ︸︸ ︷Rank

Position

z >z <z

. . .

1 r. . .

a1 aj. . .

i−j . . . i−1

≤r︷ ︸︸ ︷<z

Figure 1 Event Ẽj(z, i) considered in the proof of Lemma 3.2.

I Lemma 3.2. Let v be a dominating item and j ∈ [0..k). Let Ej be the event that A selects
v as (j+ 1)-th item. It holds that Pr [Ej] = κτ

n

∑n
i=t+j

(
i−t
j

) 1
(i−1)r+j , where τ = (t− 1)r and

κ = (r − 1 + j)j.

Proof. Let Ej(z, i) be the event that A accepts v as (j + 1)-th item at position i = pos(v)
and sr has rank z (thus sr = vz). Note that there must be elements s1, . . . , sr−1 of rank
smaller than z in the sampling (such that sr is in fact the r-th best sampling element).
Similarly, there must be j elements a1, . . . , aj after the sampling but before v of rank smaller
than z (which are accepted by A).

The proof is in several steps. We first consider a stronger event Ẽj(z, i). Later, we show
how the probability of Ej(z, i) can be obtained from Ẽj(z, i). In the end, the law of total
probability yields Pr [Ej].

Analysis of Ẽj(z, i). Event Ẽj(z, i) is defined as Ej(z, i) with additional position constraints
(see Figure 1): Elements s1, . . . , sr are in this order at the first r positions and elements
a1, . . . , aj are in this order at the j positions immediately before v. Therefore, Ẽj(z, i)
occurs if and only if the following conditions hold:
(i) pos(v) = i, pos(s`) = ` for ` ∈ [r], and pos(am) = i− j +m− 1 for m ∈ [j].
(ii) Elements s1, . . . , sr−1 have rank smaller than z
(iii) Elements a1 . . . , aj have rank smaller than z
(iv) All remaining items at positions r + 1, . . . , i− j − 1 have rank greater than z.
Using the concept described in Section 2.2, we think of sequentially drawing the elements
for the positions 1, . . . , r, i− j, . . . , i and then r + 1, . . . , i− j − 1. The probability for (i)
is
∏j+r
`=0

1
n−` = 1/nj+r+1 =: β, since each item has the same probability to occur at each

remaining position. In (ii), the r− 1 elements can be chosen out of z − 2 remaining items
of rank smaller than z (since v is dominating and was already drawn). Therefore we get
a factor of

(
z−2
r−1
)
. After this step, there remain z − 2− (r − 1) = z − r − 1 elements of

rank smaller than z, so we get factor
(
z−r−1
j

)
for step (iii).

Finally, the probability of (iv) can be formulated using Fact 2.2. Note that at this point,
there remain n− (1 + r + j) items and no item of rank greater than z has been drawn so
far. In terms of the random experiment described in Fact 2.2, we draw K = i− j − r − 1
balls (items) from an urn of size N = n− (1 + r+ j) where M = n− z balls are blue (rank
greater than z). Hence, the probability for (iv) is H := h(n− r− j−1, n− z, i− j− r−1).
Therefore we obtain

Pr
[
Ẽj(z, i)

]
= β ·

(
z − 2
r − 1

)(
z − r − 1

j

)
·H . (1)

This term can be simplified further by applying (R3) and (R2). Let R = z− 2, K = r− 1,
and M = j + r − 1. It holds that
(
z−2
r−1

)(
z−r−1

j

)
(R3)=

(
R

M

)(
M

K

)
(R2)=

(
R

M

)(
M

M−K

)
=
(

z−2
j+r−1

)(
j+r−1

j

)
.

Let κ = (j + r − 1)j , then
(
j+r−1
j

)
= κ/j! and we get Pr

[
Ẽj(z, i)

]
= βκ

j! ·
(
z−2
j+r−1

)
·H .

ISAAC 2019

18:8 New Results for the k-Secretary Problem

Relating Ẽj(z, i) to Ej(z, i). In contrast to Ẽj(z, i), in the event Ej(z, i), the elements
s1, . . . , sr can have any positions in [t − 1] and a1 . . . , aj any positions in [t..i). In the
random order model, the probability of an event depends linearly on the number of
permutations for which the event happens. Hence, we can multiply the probability
with corresponding factors (t − 1)r =: τ and (i − t)j =

(
i−t
j

)
j! and get Pr [Ej(z, i)] =(

i−t
j

)
τj! ·Pr

[
Ẽj(z, i)

]
.

Relating Ej(z, i) to Ej . As the final step, we sum over all possible values for i and z to
obtain Pr [Ej]. The position i of item v ranges between t+ j and n, while the reference
rank z is between r+ j+ 1 (there are r−1 sampling elements and j+ 1 accepted elements
of rank less than z) and n. Thus we get:

Pr [Ej] =
n∑

i=t+j

n∑

z=r+j+1
Pr [Ej(z, i)] = τj!

n∑

i=t+j

(
i− t
j

) n∑

z=r+j+1
Pr
[
Ẽj(z, i)

]

= βκτ

n∑

i=t+j

(
i− t
j

) n∑

z=r+j+1

(
z − 2

j + r − 1

)
·H

= βκτ

n∑

i=t+j

(
i− t
j

)
1(

n−r−j−1
i−j−r−1

)
n∑

z=r+j+1

(
z − 2

j + r − 1

)(
n− z

i− j − r − 1

)
, (2)

where the last step follows from Fact 2.2. The sum over z in Equation (2) can be resolved
using (R1). Let L = n− r − j − 1, N = Q = r + j − 1, and M = i− j − r − 1. Then we
have

n∑

z=r+j+1

(
z − 2

j + r − 1

)(
n− z

i− j − r − 1

)
=
n−r−j−1∑

z=0

(
r + j − 1 + z

j + r − 1

)(
n− r − j − 1− z
i− j − r − 1

)

=
L∑

z=0

(
Q+ z

N

)(
L− z
M

)
=
(
L+Q+ 1
M +N + 1

)
=
(
n− 1
i− 1

)
. (3)

Note that in order to apply (R1) we need to verify L,M ≥ 0 and N ≥ Q ≥ 0. We can
assume k ≤ n/2, since for k > n/2, there exist a trivial (1/2)-competitive algorithm.
Therefore, we have L = n − r − j − 1 ≥ n − k − (k − 1) − 1 = n − 2k ≥ 0. Further,
i ≥ t+ j, thus i− j ≥ t ≥ k + 1 ≥ r + 1 which implies M ≥ 0. The condition N ≥ Q ≥ 0
holds trivially. By inserting Equation (3) into Equation (2), we obtain the quotient of
binomial coefficients

(
n−1
i−1
)
/
(
n−r−j−1
i−j−r−1

)
. From (R3) we get

(
n− 1
i− 1

)/(n− 1− (r + j)
i− 1− (r + j)

)
=
(
n− 1
r + j

)/(i− 1
r + j

)
= (n− 1)r+j

(i− 1)r+j .

Recall β = 1/nj+r+1, thus (n− 1)r+j · β = 1/n. Together with Equation (2) we get

Pr [Ej] = βκτ · (n− 1)r+j
n∑

i=t+j

(
i− t
j

)
1

(i− 1)r+j = κτ

n

n∑

i=t+j

(
i− t
j

)
1

(i− 1)r+j , (4)

which concludes the proof. J

Lemma 3.2 provides the exact probability that a dominating item is accepted as (j+ 1)-th
item. However, it is more meaningful to consider the asymptotic setting where n → ∞.
Here, we assume t − 1 = cn for some constant c ∈ (0, 1). For this setting, we obtain the
following lemma.

S. Albers and L. Ladewig 18:9

I Lemma 3.3. Let Ej be defined as in Lemma 3.2. In the asymptotic setting described above,
(A) For r = 1 it holds that Pr [Ej] = c

(
ln 1

c +
∑j
`=1 β`

c`−1
`

)
, where β` = (−1)`+1(j

`

)
for

` ∈ [j].
(B) For r ≥ 2 it holds that Pr [Ej] = c

r−1 −
cr(1−c)j

r−1
∑j
`=0 α`

(
c

1−c

)`
, where α` =

(
j+r−1
`+r−1

)

for ` ∈ [0..j].
The proof of Lemma 3.3 relies on a sequence of technical lemmas and is given in Appendix A.

I Remark. As described in Section 2.1, single-ref generalizes the optimal strategy for the
secretary problem (k = 1). Note that the combinatorial analysis from Lemma 3.2 as well as
the asymptotic bound from Lemma 3.3 give exactly the respective terms from the secretary
problem. To see this, we set r = 1 and consider the probability that the dominating item v1
is accepted as first item. By Lemma 3.2 (with j = 0), the success probability is t−1

n

∑n
i=t

1
i−1 .

Moreover, Lemma 3.3(A) provides the asymptotic bound of c ln(1/c) for this case.

3.2 Non-Dominating Items
It remains to consider the acceptance probabilities of the non-dominating items vr+1, . . . ,

vk. Fortunately, there exist some interesting connections to the probabilities for dominating
items.

I Lemma 3.4. Let i ∈ [1..k − r] and j ∈ [1..i]. For the non-dominating item vr+i it holds
that Pr [vr+i is j-th accept] = Pr [vr+i is (i+ 1)-th accept].

Proof. First we argue that there are in total at least i + 1 accepts if vr+i is accepted.
Assuming that vr+i is accepted, we have sr < vr+i. Let S be the set of elements which
the algorithm may accept, i.e. S = {v1, . . . , vr+i}. Since sr is the r-th best element in the
sampling, at most r − 1 elements from S can be part of the sampling and thus at least
r + i− (r − 1) = i+ 1 elements from S, including vr+i, are accepted.

As described in Section 2.2, we construct a bijective function f : P → Q where P (resp.
Q) is the set of permutations where vr+i is the j-th (resp. (i+ 1)-th) accept. For each input
sequence π ∈ P , let a1, . . . , ai+1 with aj = vr+i denote the first i+ 1 accepts. The function
f swaps the positions of a1, . . . , ai+1 in a cyclic shift, such that aj = vr+i is at the former
position of ai+1. In other words, the relative order of the first i + 1 accepted elements in
f(π) is changed in a way that vr+i is the (i+ 1)-th accept in f(π). Note that the cyclic shift
can be reversed, thus f is bijective. J

While Lemma 3.4 relates the acceptance probabilities of a single non-dominating item,
the claim of Lemma 3.5 is in a way orthogonal by relating probabilities of non-dominating
items to those for dominating items.

I Lemma 3.5. Let i ∈ [1..k−r] and j ∈ [1..k−i]. For the non-dominating item vr+i and any
dominating item v+ it holds that Pr [vr+i is (i+ j)-th accept] = Pr [v+ is (i+ j)-th accept].

Proof. Let P be the set of permutations where vr+i is the (i+ j)-th accept and let Q contain
those where v+ is the (i+ j)-th accept. We prove the claim by defining a bijective function
f : P → Q. Let f be the function that swaps vr+i with v+ in the input sequence.

Consider any input sequence π ∈ P . As vr+i is accepted, sr < vr+i. We can argue that
in f(π) element sr is still the r-th best element of the sampling: This holds clearly if no
item is moved out of or into the sampling. Otherwise, f moves vr+i into the sampling and
v+ outside. But since sr < vr+i < v+, this does not change the role of sr as the r-th best
sampling element. Thus f is injective.

ISAAC 2019

18:10 New Results for the k-Secretary Problem

To prove that f is surjective, let π′ ∈ Q be any input sequence where v+ is the (i+ j)-th
accept. We next consider the rank z of sr = vz. As there must be sampling elements
s1, . . . , sr−1 and accepted elements a1, . . . , ai+j−1, v

+ of rank smaller than z, we have z >
(r − 1) + (i + j − 1) + 1 ≥ r + i. Hence, sr < vr+i. The inverse function of f consists in
swapping back v+ with vr+i. For the same reason as above, this maintains sr. As sr < vr+i,
element vr+i gets accepted, thus f−1(π′) ∈ P . J

Using the previous results for dominating and non-dominating items we are now ready to
state the main result of this section, namely the competitive ratio of single-ref. Due to
the complex expressions from Lemma 3.3 we give numerical results for small values of k.

I Theorem 3.6. In the asymptotic setting of n → ∞ and assuming that t − 1 = cn for a
constant c ∈ (0, 1), single-ref achieves the competitive ratios given in Table 1.

Proof. For an item vi, let p(j)
i be the probability that vi is the j-th accept (with 1 ≤ j ≤ k).

The total acceptance probability of vi is denoted by pi =
∑k
j=1 p

(j)
i . According to Lemma 3.2,

each dominating item has the same acceptance probability for a fixed acceptance position.
Therefore, in the following we simply write p1 (resp. p(j)

1) for the acceptance probability of
any dominating item.

By Lemma 2.1 the competitive ratio can be obtained by summing over the acceptance
probabilities of all items divided by k. Clearly,

∑r
i=1 pi = rp1. Now consider any non-

dominating item vr+i. According to Lemmas 3.4 and 3.5, pr+i can be related to respective
probabilities p(j)

1 : It holds that p(j)
r+i = p

(z)
1 with z = max{j, i + 1}. Therefore pr+i =∑k

j=1 p
(j)
r+i =

∑i
j=1 p

(i+1)
1 +

∑k
j=i+1 p

(j)
1 = ip

(i+1)
1 +

∑k
j=i+1 p

(j)
1 . Hence, we obtain the

competitive ratio

1
k

k∑

i=1
pi = 1

k

rp1 +

k−r∑

i=1

ip(i+1)

1 +
k∑

j=i+1
p

(j)
1

 (5)

with p(j)
1 = Pr [Ej−1] for the event Ej considered in Lemmas 3.2 and 3.3. To evaluate the

performance of our algorithm, we maximized Equation (5) over the parameters r and c using
a computer algebra system. This yields the competitive ratios shown in Table 1 (p. 3). J

For completeness, we evaluated the competitive ratio of single-ref in the interval
k ∈ [1..100] using the optimization procedure mentioned in the previous proof. Figure 2
shows the performance of single-ref in comparison with Kleinberg’s result [21]; our
algorithm reaches competitive ratios of up to 0.75 and outperforms the algorithm from [21]
on this interval. In Appendix A, we provide the full list of optimal parameters for k ∈ [1..100]
(see Table 3, p. 19).

4 Analysis of OPTIMISTIC for k = 2

In this section we sketch the analysis of optimistic for k = 2. Due to space constraints, for
some proofs we refer to the full version of this paper. Let A2 denote optimistic algorithm
with k = 2 in the following. As implied by Lemma 2.1 the competitive ratio is determined by
p1 and p2, the probabilities that A2 accepts v1 and v2, respectively. To find these probabilities,
we make use of the relation between probabilities and sets (see Section 2.2). Let Pi be the
set of permutations in which A2 accepts vi.

S. Albers and L. Ladewig 18:11

0
0.1
0.2
0.3
1/e
0.5
0.6
0.7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

co
m
pe

tit
iv
e
ra
tio

k

SINGLE-REF Kleinberg

Figure 2 Comparison of our algorithm single-ref and the algorithm by Kleinberg [21], for
k ∈ [1..100]. The parameters r and c for single-ref are chosen optimally.

Probability p2. In the next lemma, we show a surprising relation between optimistic for
k = 2 and the algorithm for the classical (1-)secretary problem (see Section 2.1). The proof of
Lemma 4.1 uses a sophistically tailored bijection between two respective sets of permutations.
We sketch the proof method here and give the entire proof in the full version of this paper.

I Lemma 4.1. Let A1 be the algorithm for the classical secretary problem. Assuming that both
algorithms A1, A2 are parameterized with the same t, we have that p2 = Pr [A2 accepts v2] =
Pr [A1 accepts v1].

Sketch of proof. Equivalently, we prove that the corresponding complementary events hap-
pen with the same probability. For this purpose, we define for each permutation π where
A2 does not accept v2 a unique permutation f(π) where A1 does not accept v1. Different
situations where A2 does not accept v2 lead to a total number of five cases. If v2 is in the
sampling of π, we define f(π) such that the positions of v1 and v2 are swapped. Then, A1
clearly does not accept v1 in f(π). Another case is when v2 comes behind two accepted
elements a1, a2 in π and v1 = a1 is the first accept. Note that since a2 is accepted, a2 > s1.
In this case, f(π) can be defined by swapping the positions of both accepts v1 and a2. Recall
that A1 accepts the first item better than s1 following the sampling phase which is a2 in
f(π), thus v1 is not selected.

In the full proof, we consider all five cases according to π. In each case it is enough to
define f such that the positions of at most three elements are swapped. Finally, we have to
argue that the function f is indeed bijective. J

Probability p1. In this part, we argue that p1 = p2 + δ holds for some δ > 0. To obtain δ,
we again consider cardinalities of sets instead of probabilities. First, we observe that P2 can
be related to a set P ′1 ⊂ P1 such that P2 and P ′1 have equal size.

I Lemma 4.2. Let P ′1 = {π ∈ P1 | posπ(v2) < t ⇒ A2 accepts v1 as first item}. It holds
that |P ′1| = |P2|.

Proof. Let f : P2 → P ′1 be the function that swaps v1 with v2 in the given sequence. We
first have to argue that in fact f : P2 → P ′1, therefore let π ∈ P2 be given. Then, v1 gets
accepted by A2 in f(π) at the position posf(π)(v1) = posπ(v2), as v1 is an item of higher
value. So far we have f(π) ∈ P1. If posf(π)(v2) ≥ t, there is nothing to show. Assuming that
posf(π)(v2) < t, it follows posπ(v1) < t, i.e. v1 was the best element in the sampling of π.
Since no item (particularly not v2) can beat v1, but v2 was accepted by A2 in π, we get that
v2 was the first accept in π. Hence v1 is the first accept in f(π).

ISAAC 2019

18:12 New Results for the k-Secretary Problem

Clearly, f is injective. For surjectivity, let π′ ∈ P ′1 and let π the permutation obtained
from π′ by swapping (back) v1 with v2. If posπ′(v2) < t, by definition of P ′1 we know that v1
is the first accept in π′, implying that no item before posπ′(v1) = posπ(v2) is chosen by A2.
In the case posπ′(v2) ≥ t, since posπ′(v1) ≥ t, the smallest rank in the sampling of π′ is 3 or
greater. Therefore, v2 gets accepted if not more than one item before v2 gets accepted. This
is the case in π, as posπ(v2) = posπ′(v1). J

Since |P1| = |P ′1| + |P1 \ P ′1| = |P2| + |P1 \ P ′1|, we therefore get δ = |P1 \ P ′1| /n!, i.e.,
δ is the probability that a random permutation is in the set |P1 \ P ′1|. This probability is
considered in Lemma 4.3.
I Lemma 4.3. Let δ = Pr [π ∈ P1 \ P ′1] where π is drawn uniformly from the set of all
permutations and P ′1 is defined like in Lemma 4.2. It holds that δ = t−1

n
t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1) .

The proof of Lemma 4.3 relies on a counting argument similar to the proof of Lemma 3.2.
We prove Lemma 4.3 in the full version of this paper.

Competitive ratio. From Lemmas 4.1 and 4.3, we know the exact probabilities p2 and p1.
For particular n, the term (p1 + p2)/2 can be optimized over t to find the optimal sampling
size. In the following theorem we consider the asymptotic setting n→∞. Here, we assume
that the sampling size is a constant fraction of the input size, i.e., t − 1 = cn for some
constant c ∈ (0, 1).
I Theorem 4.4. For k = 2, the algorithm optimistic is 0.4168-competitive in the limit
n→∞ and assuming that the sampling size is t− 1 = cn for c = 0.3521.
Proof. According to Lemma 4.1, p2 is the probability that the classical secretary algorithm
accepts the best item, i.e., p2 = t−1

n

∑n
i=t

1
i−1 . This term approaches c ln(1/c) asymptotically.

From Lemma 4.3 we know p1 = p2 + δ, where δ = t−1
n

t−2
n−1

∑n−1
i=t

n−i
(i−2)(i−1) . For n→∞, the

sum
∑n−1
i=t

n−i
(i−2)(i−1) is bounded from above and below by 1

c − ln 1
c − 1. This can be seen by

bounding the sum by two corresponding integrals. Further, limn→∞ t−1
n

t−2
n−1 = c2. Therefore,

δ = c2 (1
c − ln 1

c − 1
)
for large n. According to Lemma 2.1, A2 is α(c)-competitive with

α(c) = 1
2 (p1 + p2) = 1

2 (p2 + δ + p2) = c ln 1
c

+ c2

2

(
1
c
− ln 1

c
− 1
)
.

Setting c = 1/e, we obtain a competitive ratio of α(1/e) = 3e−2
2e2 ≈ 0.4164. However, the

optimal choice for c is around c∗ = 0.3521 < 1/e, improving the competitive ratio slightly to
α(c∗) ≈ 0.4168. J

5 Conclusion and Future Work

We investigated two algorithms for the k-secretary problem with a focus on small values
for k ≥ 2. Aside from a tight analysis of the optimistic algorithm [3] for k = 2, we
introduced and analyzed the algorithm single-ref. For any value of k, the competitive
ratio of single-ref can be obtained by numerical optimization.

We see various directions of future work. For single-ref, it remains to find the right
dependency between the parameters r, c, and k in general and to find a closed formula for the
competitive ratio for any value of k. optimistic seems a promising and elegant algorithm,
however no tight analysis for general k ≥ 3 is known so far. For k = 2, we identified a key
property in Lemma 4.1. Similar properties may hold in the general case. Lastly, to the best
of our knowledge, no hardness results for the k-secretary problem are known (apart from the
cases k ≤ 2).

S. Albers and L. Ladewig 18:13

References
1 S. Agrawal, Z. Wang, and Y. Ye. A Dynamic Near-Optimal Algorithm for Online Linear

Programming. Operations Research, 62(4):876–890, 2014.
2 M. Ajtai, N. Megiddo, and O. Waarts. Improved algorithms and analysis for secretary problems

and generalizations. SIAM Journal on Discrete Mathematics, 14(1):1–27, 2001.
3 M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A Knapsack Secretary Problem

with Applications. In Proc. 10th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems and 11th International Workshop on Randomization
and Computation (APPROX/RANDOM), pages 16–28, 2007.

4 M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Online auctions and generalized
secretary problems. SIGecom Exchanges, 7(2), 2008.

5 M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Matroid Secretary Problems. Journal
of the ACM (JACM), 65(6):35:1–35:26, 2018.

6 M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online
mechanisms. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 434–443, 2007.

7 B. Bahmani, A. Mehta, and R. Motwani. A 1.43-Competitive Online Graph Edge Coloring
Algorithm in the Random Order Arrival Model. In Proc. 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 31–39, 2010.

8 N. Buchbinder, K. Jain, and M. Singh. Secretary Problems via Linear Programming. Mathe-
matics of Operations Research, 39(1):190–206, 2014.

9 T.-H. H. Chan, F. Chen, and S. H.-C. Jiang. Revealing Optimal Thresholds for Generalized
Secretary Problem via Continuous LP: Impacts on Online K -Item Auction and Bipartite
K -Matching with Random Arrival Order. In Proc. 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1169–1188, 2015.

10 E. B Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet
Mathematics, 4:627–629, 1963.

11 M. Feldman, O. Svensson, and R. Zenklusen. A Simple O(log log(rank))-Competitive Algorithm
for the Matroid Secretary Problem. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1189–1201, 2015.

12 M. Feldman, O. Svensson, and R. Zenklusen. A Framework for the Secretary Problem on the
Intersection of Matroids. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 735–752, 2018.

13 T. S. Ferguson. Who Solved the Secretary Problem? Statistical Science, 4(3):282–289, 1989.
14 P.R. Freeman. The secretary problem and its extensions: A review. International Statistical

Review/Revue Internationale de Statistique, pages 189–206, 1983.
15 O. Göbel, T. Kesselheim, and A. Tönnis. Online Appointment Scheduling in the Random

Order Model. In Proc. 23rd Annual European Symposium on Algorithms (ESA), pages 680–692,
2015.

16 R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics - a foundation for
computer science (2. ed.). Addison-Wesley, 1994.

17 M. Hoefer and B. Kodric. Combinatorial Secretary Problems with Ordinal Information. In
44th International Colloquium on Automata, Languages, and Programming (ICALP), pages
133:1–133:14, 2017.

18 C. Kenyon. Best-Fit Bin-Packing with Random Order. In Proc. 7th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 359–364, 1996.

19 T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. Primal beats dual on online packing LPs
in the random-order model. In Proc. 46th Annual ACM Symposium on Theory of Computing
(STOC), pages 303–312, 2014.

20 T. Kesselheim and A. Tönnis. Submodular Secretary Problems: Cardinality, Matching, and
Linear Constraints. In Proc. 20th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems and 21st International Workshop on Randomization
and Computation (APPROX/RANDOM), pages 16:1–16:22, 2017.

ISAAC 2019

18:14 New Results for the k-Secretary Problem

21 R. D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 630–631,
2005.

22 O. Lachish. O(log log Rank) Competitive Ratio for the Matroid Secretary Problem. In Proc.
55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 326–335,
2014.

23 D. V Lindley. Dynamic programming and decision theory. Applied Statistics, pages 39–51,
1961.

24 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based
on strongly factor-revealing LPs. In Proc. 43rd ACM Symposium on Theory of Computing
(STOC), pages 597–606, 2011.

A Technical Proofs for SINGLE-REF

In several lemmas we need to find closed expressions for sums over values of a certain function.
If the function is monotone, such sums can be bounded by corresponding integrals:

I Fact A.1. Let f : R≥0 → R≥0 and a, b ∈ N.
(A) If f is monotonically decreasing, then

∫ b+1
a

f(i) di ≤∑b
i=a f(i) ≤

∫ b
a−1 f(i) di .

(B) If f is monotonically increasing, then
∫ b
a−1 f(i) di ≤∑b

i=a f(i) ≤
∫ b+1
a

f(i) di .

In Lemma 3.3 we consider the acceptance probabilities of dominating items in the
asymptotic setting n → ∞ with t − 1 = cn for c ∈ (0, 1). We can assume further that
j, r ≤ k = o(n). In the following, we prove Lemma 3.3 using some technical lemmas, stated
and proven below the main proof.

Proof of Lemma 3.3. We first consider the sum S :=
∑n
i=t+j

(
i−t
j

) 1
(i−1)r+j from Equation (4)

and obtain the following lower bound:

S =
n∑

i=t+j

(
i− t
j

)
1

(i− 1)r+j = 1
j!

n∑

i=t+j

(i− t)j
(i− 1)r+j ≥

1
j!

n∑

i=t+j

(i− t− j + 1)j
(i− 1)r+j

= 1
j!

n−t−j+1∑

i=1

ij

(i+ t+ j − 2)r+j .

Let f(i) = ij/(i+ y)r+j for y = t+ j − 2. Note that y can be seen as a constant independent
from i. Let m = n− t− j + 1, now the above inequality reads as S ≥ (1/j!)

∑m
i=1 f(i). In

the following we investigate the function f .
Unfortunately, f is in general not monotone, hence we can not apply Fact A.1A or

Fact A.1B directly in order to bound the sum by an integral. However, we can split the sum
into two monotone parts. Let d be defined like in Lemma A.2 (following this proof). Now we
can apply Fact A.1 as follows:

m∑

i=1
f(i) =

d∑

i=1
f(i) +

m∑

i=d+1
f(i) ≥

∫ d

0
f(i) di +

∫ m+1

d+1
f(i) di

=
∫ m+1

0
f(i) di −

∫ d+1

d

f(i) di . (6)

S. Albers and L. Ladewig 18:15

Finding the indefinite integral
∫
f(i) di turns out to be a technical task and is therefore

moved to separate lemmas (see Lemmas A.3 and A.4). If F (i) is a function with F ′(i) = f(i),
we have for κ, τ defined like in Equation (4)

Pr [Ej] = κτ

n
S ≥ κτ

nj! (F (m+ 1)− F (0)− F (d+ 1) + F (d)) . (7)

In the remainder of the proof we consider the two cases r = 1 and r ≥ 2 separately.

Case A: r = 1. Let F (i) and β` be defined like in Lemma A.3. In Equation (7), the factor
κτ
nj! resolves to c as κ = (j + r− 1)j = jj = j! and τ = (t− 1)r = (t− 1)1 = t− 1. Further
it holds that

lim
n→∞

F (m+ 1) = lim
n→∞

(
ln((m+ 1) + y) +

j∑

`=1
β`

y`

`((m+ 1) + y)`

)

= lim
n→∞

(
lnn+

j∑

`=1
β`

(t+ j − 2)`
`n`

)
= lim
n→∞

(
lnn+

j∑

`=1
β`
c`

`

)

and moreover

lim
n→∞

F (0) = lim
n→∞

(
ln y +

j∑

`=1
β`

y`

`y`

)
= lim
n→∞

(
ln(t+ j − 2) +

j∑

`=1
β`

1
`

)

= lim
n→∞

(
ln t+

j∑

`=1
β`

1
`

)
.

Hence, lim
n→∞

(F (m+ 1)− F (0)) = ln 1
c +

∑j
`=1 β`

c`−1
` . It remains to consider F (d) −

F (d+ 1) in the limit of n→∞. It holds that

F (d)− F (d+ 1) = ln(d+ y) +
j∑

`=1
β`

y`

`(d+ y)` − ln(d+ 1 + y)−
j∑

`=1
β`

y`

`(d+ 1 + y)`

= ln
(

d+ y

d+ 1 + y

)
+

j∑

`=1

β`
`

((
y

d+ y

)`
−
(

y

d+ 1 + y

)`)

and since y = t+j−2 = Θ(n) and d = (j/r)y = Θ(y), we get that lim
n→∞

(F (d)− F (d+ 1))
= 0.

Case B: r ≥ 2. In this case let F (i) and α` be defined according to Lemma A.4. Further,
let G(i) = −α0(r − 1)F (i). Using Equation (7) we obtain

= κτ

nj!α0(r − 1) (G(0)−G(m+ 1) +G(d+ 1)−G(d))

= τ

n(r − 1) (G(0)−G(m+ 1) +G(d+ 1)−G(d)) , (8)

where the last equality follows from the definition of α0 =
(
j+r−1
r−1

)
= κ/j!. We first notice

lim
n→∞

τ

n(r − 1) = 1
r − 1 lim

n→∞
(t− 1)r

n
= 1
r − 1 lim

n→∞
(t− 1)r

n
= 1
r − 1c

r lim
n→∞

nr−1 .

Further it holds that

G(m+ 1) =
∑j
`=0 α`(m+ 1)j−`(t+ j − 2)`
(m+ 1 + t+ j − 2)r+j−1 =

∑j
`=0 α`(m+ 1)j−`(t+ j − 2)`

nr+j−1 .

ISAAC 2019

18:16 New Results for the k-Secretary Problem

Note that lim
n→∞

(m+ 1) = lim
n→∞

(n− (t− 1)) = lim
n→∞

(n− cn) = lim
n→∞

(1− c)n and similarly
lim
n→∞

(t+ j − 2) = lim
n→∞

(t− 1) = lim
n→∞

cn. Hence we get

lim
n→∞

G(m+ 1) = lim
n→∞

∑j
`=0 α`(1− c)j−`nj−`c`n`

nr+j−1 = lim
n→∞

∑j
`=0 α`(1− c)j−`c`

nr−1 .

For the term G(0) we obtain

G(0) =
∑j
`=0 α`0j−`y`
yr+j−1 = αjy

j

yr+j−1 = 1
yr−1

and thus lim
n→∞

G(0) = lim
n→∞

1
yr−1 = lim

n→∞
1

(t−1)r−1 = 1
cr−1 lim

n→∞
1

nr−1 .
In Equation (8) it remains to consider G(d+ 1)−G(d). Similarly to case A we can show
that this term approaches 0 for n→∞:

G(d+ 1)−G(d) =
∑j
`=0 α`(d+ 1)j−`y`
(d+ 1 + y)r+j−1 −

∑j
`=0 α`d

j−`y`

(d+ y)r+j−1

≤
∑j
`=0 α`y

`
(
(d+ 1)j−` − dj−`

)

(d+ y)r+j−1

where the numerator approaches 0 since d = Θ(y) = Θ(n). Using Equation (8) and all
limits stated above, we get finally

lim
n→∞

Pr [Ej] = lim
n→∞

1
r − 1c

rnr−1

(
1

cr−1
1

nr−1 −
∑j
`=0 α`(1− c)j−`c`

nr−1

)

= 1
r − 1

(
c−

j∑

`=0
α`c

r+`(1− c)j−`
)

= c

r − 1 −
cr(1− c)j
r − 1

j∑

`=0
α`

(
c

1− c

)`
.

This concludes the proof. J

I Lemma A.2. Let f : R→ R with f(i) = ij/(i+ y)r+j and j ≥ 0, r ≥ 1, and y > 0 does
not depend on i. The function f is monotonically increasing for i ≤ d and monotonically
decreasing for i > d where d = (jy)/r.

Proof. Let g(i) = ij and h(i) = (i + y)r+j . We consider the first derivative f ′(i) =
g′(i)h(i)−g(i)h′(i)

h(i)2 . Since h(i)2 is nonnegative, f grows monotonically if

g′(i)h(i) ≥ g(i)h′(i) ⇔ jij−1(i+ y)r+j ≥ ij(r + j)(i+ y)r+j−1 ⇔ j(i+ y) ≥ i(r + j) .

It is easy to see that the last inequality is equivalent to i ≤ jy
r = d. J

I Lemma A.3. Let f : R→ R with f(i) = ij/(i+ y)r+j and r = 1, j ≥ 0, and y > 0 does
not depend on i. The following function F fulfills F ′(i) = f(i):

F (i) = ln(i+ y) +
j∑

`=1
β`

y`

`(i+ y)`

where β` = (−1)`+1(j
`

)
for 1 ≤ ` ≤ j.

S. Albers and L. Ladewig 18:17

Proof. We need to show F ′(i) = f(i) and observe first that

F ′(i) = 1
i+ y

+
j∑

`=1
β`

−`y`
`(i+ y)`+1 = 1

i+ y
+

j∑

`=1
β`y

`−(i+ y)j−`
(i+ y)j+1

= 1
(i+ y)j+1

(
(i+ y)j +

j∑

`=1
β`y

`(−(i+ y)j−`)
)

and since β0 = (−1)0+1(j
0
)

= −1 we get further

F ′(i) = 1
(i+ y)j+1

j∑

`=0
β`y

`(−(i+ y)j−`) = 1
(i+ y)j+1

j∑

`=0
(−1)`+2

(
j

`

)
y`(i+ y)j−` .

Finally, note that (−1)`+2y` = (−y)`, thus by the binomial theorem the last sum evaluates
to ((i+ y) + (−y))j = ij which concludes the proof. J

I Lemma A.4. Let f : R→ R with f(i) = ij/(i+ y)r+j and j ≥ 0, r ≥ 2, and y > 0 does
not depend on i. The following function F fulfills F ′(i) = f(i):

F (i) = −
∑j
`=0 α`i

j−`y`

α0(r − 1)(i+ y)r+j−1 ,

where α` =
(
j+r−1
`+r−1

)
for 0 ≤ ` ≤ j.

Proof. Let G(i) and H(i) be the numerator and denominator of F (i). It holds that G′(i) =
−∑j

`=0 α`(j − `)ij−`−1y` and H ′(i) = α0(r − 1)(r + j − 1)(i + y)r+j−2 = H(i)r(i) where
r(i) = r+j−1

i+y . In order to prove the claim, we show

G′(i)(i+ y)−G(i)(r + j − 1) = ijα0(r − 1) (9)

since then we have

F ′(i) = G′(i)H(i)−G(i)H ′(i)
H(i)2 = G′(i)−G(i)r(i)

H(i) = G′(i)−G(i)r(i)
α0(r−1)
i+y (i+ y)r+j

= (i+ y)(G′(i)−G(i)r(i))
α0(r − 1)(i+ y)r+j = (i+ y)G′(i)− (r + j − 1)G(i)

α0(r − 1)(i+ y)r+j

With Equation (9), the last term resolves to = ijα0(r−1)
α0(r−1)(i+y)r+j = f(i) . It remains to show

Equation (9):

G′(i)(i+ y)−G(i)(r + j − 1)

= −
(

j∑

`=0
α`(j − `)ij−`−1y`

)
(i+ y) +

(
j∑

`=0
α`i

j−`y`
)

(r + j − 1)

= −
(

j∑

`=0
α`(j − `)ij−`y`

)
−
(

j∑

`=0
α`(j − `)ij−`−1y`+1

)

+
(

j∑

`=0
α`i

j−`y`
)

(r + j − 1)

=
(

j∑

`=0
α`i

j−`y`(r − 1 + `)
)
−
(
j−1∑

`=0
α`(j − `)ij−`−1y`+1

)
.

ISAAC 2019

18:18 New Results for the k-Secretary Problem

Note that the first sum contains all powers of i from i0 to ij , while the latter sum only
powers from i0 to ij−1. Therefore, we can split up the part for ij from the first sum and
group equal powers of i to obtain

α0(r − 1)ij +
j∑

`=1
(α`(r − 1 + `)− α`−1(j − `+ 1)) ij−`y` .

The claim follows if we can show that the last sum evaluates to zero. This is true, since by
definition of α` it holds that

α`(r − 1 + `) =
(
j + r − 1
`+ r − 1

)
(r − 1 + `) = (j + r − 1)!

(`+ r − 1)!(j − `)! (r − 1 + `)

= (j + r − 1)!
(`+ r − 2)!(j − `+ 1)!

(j − `+ 1)
(j − `)! =

(
j + r − 1

(`− 1) + r − 1

)
(j−`+1) = α`−1(j−`+1) . J

S. Albers and L. Ladewig 18:19

Table 3 Optimal parameters and corresponding competitive ratios of single-ref for k ∈ [1..100].
For readibility, the numeric values are truncated after the fourth decimal place.

k r c competitive ratio

1 1 0.3678 0.3678
2 1 0.2545 0.4119
3 2 0.3475 0.4449
4 2 0.2928 0.4785
5 2 0.2525 0.4999
6 2 0.2217 0.5148
7 3 0.2800 0.5308
8 3 0.2549 0.5453
9 3 0.2338 0.5567
10 3 0.2159 0.5660
11 4 0.2570 0.5740
12 4 0.2410 0.5834
13 4 0.2267 0.5914
14 4 0.2140 0.5983
15 4 0.2026 0.6043
16 4 0.1924 0.6096
17 5 0.2231 0.6155
18 5 0.2133 0.6211
19 5 0.2042 0.6261
20 5 0.1959 0.6306
21 5 0.1882 0.6347
22 5 0.1811 0.6384
23 6 0.2054 0.6426
24 6 0.1985 0.6465
25 6 0.1919 0.6502
26 6 0.1858 0.6535
27 6 0.1800 0.6566
28 6 0.1746 0.6595
29 7 0.1947 0.6625
30 7 0.1893 0.6655
31 7 0.1842 0.6684
32 7 0.1793 0.6711
33 7 0.1747 0.6736
34 7 0.1703 0.6760
35 7 0.1662 0.6782
36 8 0.1830 0.6805
37 8 0.1788 0.6829
38 8 0.1748 0.6851
39 8 0.1710 0.6873
40 8 0.1673 0.6893
41 8 0.1638 0.6912
42 8 0.1605 0.6930
43 9 0.1750 0.6948
44 9 0.1716 0.6968
45 9 0.1683 0.6986
46 9 0.1651 0.7004
47 9 0.1621 0.7021
48 9 0.1592 0.7037
49 9 0.1563 0.7052
50 9 0.1536 0.7067

k r c competitive ratio

51 10 0.1662 0.7082
52 10 0.1635 0.7098
53 10 0.1608 0.7113
54 10 0.1582 0.7127
55 10 0.1557 0.7141
56 10 0.1532 0.7155
57 10 0.1509 0.7168
58 10 0.1486 0.7180
59 11 0.1597 0.7193
60 11 0.1574 0.7206
61 11 0.1551 0.7219
62 11 0.1529 0.7231
63 11 0.1508 0.7243
64 11 0.1487 0.7255
65 11 0.1467 0.7266
66 11 0.1447 0.7277
67 11 0.1428 0.7287
68 12 0.1527 0.7298
69 12 0.1508 0.7309
70 12 0.1489 0.7320
71 12 0.1470 0.7330
72 12 0.1452 0.7340
73 12 0.1434 0.7350
74 12 0.1417 0.7360
75 12 0.1400 0.7369
76 12 0.1384 0.7378
77 13 0.1473 0.7387
78 13 0.1456 0.7397
79 13 0.1440 0.7406
80 13 0.1424 0.7415
81 13 0.1408 0.7424
82 13 0.1393 0.7433
83 13 0.1378 0.7441
84 13 0.1363 0.7449
85 13 0.1349 0.7457
86 14 0.1429 0.7465
87 14 0.1415 0.7473
88 14 0.1400 0.7482
89 14 0.1386 0.7490
90 14 0.1372 0.7497
91 14 0.1359 0.7505
92 14 0.1346 0.7512
93 14 0.1333 0.7520
94 14 0.1320 0.7527
95 14 0.1307 0.7534
96 15 0.1381 0.7541
97 15 0.1368 0.7548
98 15 0.1356 0.7555
99 15 0.1343 0.7562
100 15 0.1331 0.7569

ISAAC 2019

58

Appendix B

Improved Online Algorithms for
Knapsack and GAP in the Ran-
dom Order Model
Bibliographic information S. Albers, A. Khan, and L. Ladewig. Improved
online algorithms for knapsack and GAP in the random order model. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM), volume 145 of LIPIcs, pages 22:1–
22:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

Summary We study the online knapsack problem in the random-order
model, introduced as the knapsack secretary problem by Babaioff et al.
[APPROX’07]. Our main contribution is a (1/6.65)-competitive randomized
algorithm, outperforming the previously best algorithm by Kesselheim et al.
[SIAM J. Comp. 47(5)].

Our algorithm is based on a new algorithmic approach that performs
two algorithms, tailored for specific item classes, sequentially. We further
investigate the 2-Knapsack problem, which arises as the special case where
all items consume more than one third of the resource’s capacity. For 2-
Knapsack, we propose a simple algorithm based on our recent progress on
the k-secretary problem [ISAAC’19]. Our overall algorithm is composed of
the latter algorithm for 2-Knapsack and an algorithm by Kesselheim et al.
[SIAM J. Comp. 47(5)] for the generalized assignment problem.

Finally, we discuss the generalized assignment problem and show that our
sequential approach again improves the state-of-the-art competitive ratio.

Individual contributions

• Proposal and analysis of the sequential approach from Section 3

• Development of the analysis for the 2-Knapsack problem from Section
4 and the overall analysis from Section 5

• Composition of the manuscript including all technical and non-technical
parts (refined based on discussions with co-authors)

59

60

Improved Online Algorithms for Knapsack and
GAP in the Random Order Model
Susanne Albers
Technical University of Munich, Germany
albers@in.tum.de

Arindam Khan
Indian Institute of Science, Bangalore, India1

arindamkhan@iisc.ac.in

Leon Ladewig
Technical University of Munich, Germany
ladewig@in.tum.de

Abstract
The knapsack problem is one of the classical problems in combinatorial optimization: Given a set
of items, each specified by its size and profit, the goal is to find a maximum profit packing into a
knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision,
if the current item is packed or discarded forever, must be done immediately and irrevocably upon
arrival. We study the online variant in the random order model where the input sequence is a
uniform random permutation of the item set.

We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the
current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our
algorithm is based on two new insights: We introduce a novel algorithmic approach that employs
two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In
addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem.

The generalized assignment problem (GAP) includes, besides the knapsack problem, several
important problems related to scheduling and matching. We show that in the same online setting,
applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for
GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06
[Kesselheim et al. SIAM J. Comp. 47(5)].

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, knapsack problem, random order model

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.22

Category APPROX

Funding Work supported by the European Research Council, Grant Agreement No. 691672.

1 Introduction

Many real-world problems can be considered resource allocation problems. For example,
consider the loading of cargo planes with (potential) goods of different weights. Each item
raises a certain profit for the airline if it is transported; however, not all goods can be loaded
due to airplane weight restrictions. Clearly, the dispatcher seeks for a maximum profit packing
fulfilling the capacity constraint. This example from [24] illustrates the knapsack problem:
Given a set of n items, specified by a size and a profit value, and a resource (called knapsack)
of fixed capacity, the goal is to find a subset of items (called packing) with maximum total

1 A part of this work was done when the author was at Technical University of Munich.

© Susanne Albers, Arindam Khan, and Leon Ladewig;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

22:2 Online Knapsack and GAP in the Random Order Model

profit and whose total size does not exceed the capacity. Besides being a fundamental and
extensively studied problem in combinatorial optimization, knapsack problems arise in many
and various practical settings. We refer the readers to textbooks [24, 35] and to the surveys
of previous work in [14,19] for further references.

In the generalized assignment problem (GAP) [35], resources of different capacities are
given, and the size and the profit of an item depend on the resource to which it is assigned.
The GAP includes many prominent problems, such as the (multiple) knapsack problem [13],
weighted bipartite matching [28], AdWords [36], and the display ads problem [17]. Further
applications of GAP are outlined in the survey articles [11,41].

We study online variants of the knapsack and GAP problems. Here, n items are presented
sequentially, and the decision for each item must be made immediately upon arrival. In
fact, many real-world optimization problems occur as online problems, as often decisions
must be made under uncertain conditions. For example, consider the introducing logistics
example, if the airline needs to answer customer requests immediately without knowing
future requests. The online knapsack problem has been studied in particular in the context
of online auctions [9, 45].

Typically, the performance measure for online algorithms is the competitive ratio, which
is defined as the ratio between the values of the algorithmic solution and an optimal offline
solution for a worst-case input. It can be shown that, even for the knapsack problem, the
general online setting admits no algorithms with bounded competitive ratio [34,45]. However,
most hardness results are based on a worst-case input presented in adversarial order. In the
random order model, the performance of an algorithm is evaluated for a worst-case input,
but the adversary has no control over the input order; the input sequence is drawn uniformly
at random among all permutations. This model is known from the secretary problem [15,31]
and its generalizations [7, 12,18]; it has been successfully applied to other online problems,
for example, scheduling and packing [1,16,20,25,27,39], graph problems [8,26,33], facility
location [37], budgeted allocation [38], and submodular welfare maximization [30].

1.1 Related Work
Online knapsack problem. The problem was first studied by Marchetti-Spaccamela and
Vercellis [34], who showed that no deterministic online algorithm for this problem can obtain
a constant competitive ratio. Moreover, Chakrabarty et al. [45] demonstrated that this fact
cannot be overcome by randomization.

Given such hardness results, several relaxations have been introduced and investigated.
Most relevant to our work are results in the random order model. Introduced as the secretary
knapsack problem [6], Babaioff et al. developed a randomized algorithm of competitive ratio
1/(10e) < 1/27. Kesselheim et al. [27] achieved a significant improvement by developing a
(1/8.06)-competitive randomized algorithm for the generalized assignment problem. Finally,
Vaze [43] showed that there exists a deterministic algorithm of competitive ratio 1/(2e) <
1/5.44, assuming that the maximum profit of a single item is small compared to the profit of
the optimal solution.

Apart from the random order model, different further relaxations have been considered.
Marchetti-Spaccamela and Vercellis [34] studied a stochastic model wherein item sizes and
profits are drawn from a fixed distribution. Lueker [32] obtained improved bounds in this
model. Chakrabarty et al. [45] studied the problem when the density (profit-size ratio)
of each item is in a fixed range [L,U]. Under the further assumption that item sizes are
small compared to the knapsack capacity, Chakrabarty et al. proposed an algorithm of
competitive ratio ln(U/L) + 1 and provided a lower bound of ln(U/L). Another branch of

S. Albers, A. Khan, and L. Ladewig 22:3

research considers removable models, where the algorithm can remove previously packed items.
Removing such items can incur no cost [22,23] or a cancellation cost (buyback model, [4,5,21]).
Recently, Vaze [44] considered the problem under a (weaker) expected capacity constraint.
This variant admits a competitive ratio of 1/4e.

Online GAP. Since all hardness results for online knapsack also hold for online GAP,
research focuses on stochastic variants or modified online settings. Currently, the only result
for the random order model is the previously mentioned (1/8.06)-competitive randomized
algorithm proposed by Kesselheim et al. [27]. To the best of our knowledge, the earliest
paper considering online GAP is due to Feldman et al. [17]. They obtained an algorithm
of competitive ratio tending to 1− 1/e in the free disposal model. In this model, the total
size of items assigned to a resource might exceed its capacity; in addition, no item consumes
more than a small fraction of any resource. A stochastic variant of online GAP was studied
by Alaei et al. [2]. Here, the size of an item is drawn from an individual distribution that is
revealed upon arrival of the item, together with its profit. However, the algorithm learns the
actual item size only after the assignment. If no item consumes more than a (1/k)-fraction
of any resource, the algorithm proposed by Alaei et al. has competitive ratio 1− 1/

√
k.

Online packing LPs. In contrast to GAP, general packing LPs describe problems where
requests can consume more than one resource. The study of online packing LPs was initiated
by Buchbinder and Naor [10] in the adversarial model. In several papers [1, 16, 27, 39]
it has been shown that the random order model admits (1 − ε)-competitive algorithms
assuming large capacity ratios, i.e., when the capacity of any resource is large compared to
the maximum demand for it. Most recently, Kesselheim et al. [27] showed that there is a
(1− ε)-competitive algorithm if B = Ω((log d)/ε2), where B is the capacity ratio and d is
the column sparsity (the maximum number of resources occurring in a single column).

1.2 Our Contributions
As outlined above, for online knapsack and GAP in the adversarial input model, nearly
all previous works attain constant competitive ratios at the cost of either (a) imposing
structural constraints on the input or (b) significantly relaxing the original online model.
Therefore, we study both problems in the random order model, which is less pessimistic than
the adversarial model but still considers worst-case instances without further constraints on
the item properties. For the knapsack problem, our main result is the following.

I Theorem 1.1. There exists a (1/6.65)-competitive randomized algorithm for the online
knapsack problem in the random order model assuming n→∞.

One challenge in the design of knapsack algorithms is that the optimal packing can have, on
a high level, at least two different structures. Either there are few large items, constituting
the majority of the packing’s profit, or there are many small such items. Previous work [6,27]
is based on splitting the input according to item sizes and then employing algorithms tailored
for these restricted instances. However, the algorithms from [6,27] choose a single item type
via an initial random choice, and then pack items of that type exclusively. In contrast, our
approach considers different item types in distinct time intervals, rather than discarding
items of a specific type in advance. More precisely, we develop algorithms AL and AS which
are combined in a novel sequential approach: While large items appearing in early rounds are
packed using AL, algorithm AS is applied to pack small items revealed in later rounds. We
think that this approach may be helpful for other problems in similar online settings as well.

APPROX/RANDOM 2019

22:4 Online Knapsack and GAP in the Random Order Model

The proposed algorithm AL deals with the knapsack problem where all items consume
more than 1/3 of the capacity (we call this problem 2-KS). The 2-KS problem is closely
related to the k-secretary problem [29] for k = 2. We also develop a general framework that
allows to employ any algorithm for the 2-secretary problem to obtain an algorithm for 2-KS.
As a side product, we obtain a simple (1/3.08)-competitive deterministic algorithm for 2-KS
in the random order model. For items whose size is at most 1/3 of the resource capacity, we
give a simple and efficient algorithm AS . Here, a challenging constraint is that AL and AS
share the same resource, so we need to argue carefully that the decisions of AS are feasible,
given the packing of AL from previous rounds.

Finally, we show that the proposed sequential approach also improves the current best
result for GAP [27] from competitive ratio 1/8.06 to 1/6.99.

I Theorem 1.2. There exists a (1/6.99)-competitive randomized algorithm for the online
generalized assignment problem in the random order model assuming n→∞.

For this problem we use the algorithmic building blocks AL, AS developed in [26,27]. However,
we need to verify that AL, an algorithm for edge-weighted bipartite matching [26], satisfies
the desired properties for the sequential approach. We point out that the assignments of
our algorithm differ structurally from the assignments of the algorithm proposed in [27].
In the assignments of the latter algorithm, all items are either large or small compared to
the capacity of the assigned resource. In our approach, both situations can occur, because
resources are managed independently.

Roadmap. We focus on the result on the knapsack problem (Theorem 1.1) in the first
chapters of this paper. For this purpose, we provide elementary definitions in Section 2.
Our main technical contribution is formally introduced in Section 3: Here, we describe an
algorithmic framework performing two algorithms AL, AS sequentially. In Sections 4 and 5,
we design and analyze the algorithms AL and AS for the knapsack problem. Finally, in
Section 6 we describe how the sequential approach can be applied to GAP. Due to space
constraints, some proofs are deferred to Appendix A (knapsack) and to Appendix B (GAP).

2 Preliminaries

Let [n] := {1, . . . , n}. Further, let Q≥0 and Q>0 denote the set of non-negative and positive
rational numbers, respectively.

Knapsack problem. We are given a set of items I = [n], each item i ∈ I has size si ∈ Q>0
and a profit (value) vi ∈ Q≥0. The goal is to find a maximum profit packing into a knapsack
of size W ∈ Q>0, i.e., a subset M ⊆ I such that

∑
i∈M si ≤W and

∑
i∈M vi is maximized.

W.l.o.g. we can assume si ≤ W for all i ∈ I. In the online variant of the problem, in each
round ` ∈ [n] a single item i is revealed together with its size and profit. The online algorithm
must decide immediately and irrevocably whether to pack i. We call an item visible in round
` if it arrived in round ` or earlier.

Random order performance. We analyze the performance of algorithms in the random
order model. Given a worst case input I, the order in which I is presented is drawn uniformly
at random from the set of all permutations. For an algorithm A, its competitive ratio is
defined as E [A(I)] /OPT(I), where A(I) and OPT(I) denote the profits of the solutions
of A and an optimal offline algorithm, respectively. Here, the expectation is taken over

S. Albers, A. Khan, and L. Ladewig 22:5

Algorithm 1 Sequential approach.
Input :Random permutation π of n items in I, a knapsack of capacity W ,

parameters c, d ∈ (0, 1) with c < d, algorithms AL, AS .
Output :A feasible (integral) knapsack packing.
Let ` be the current round.
if ` ≤ cn then

Sampling phase – discard all items;
if cn+ 1 ≤ ` ≤ dn then

Pack π(`) iff AL packs πL(`);
if dn+ 1 ≤ ` ≤ n then

Pack π(`) iff AS packs πS(`) and the remaining capacity is sufficiently large.

all permutations and random choices of the algorithm. As above, we slightly overload the
notation and also use A as a random variable for the profit of the solution returned by an
algorithm A.

We classify items as large or small, depending on their size compared to W and a
parameter δ ∈ (0, 1) to be determined later.

I Definition 2.1. We say an item i is δ-large if si > δW and δ-small if si ≤ δW . Whenever
δ is clear from the context, we say an item is large or small for short. Based on the given
item set I, we define two modified item sets IL and IS, which are obtained as follows:

IL: Replace each small item by a large item of profit 0
IS: Replace each large item by a small item of profit 0.

Therefore, IL only contains large items and IS only contains small items. We can assume
that no algorithm packs a zero-profit item, thus any algorithmic packing of IL or IS can be
turned into a packing of I having the same profit. Let OPT, OPTL, and OPTS be the total
profits of optimal packings for I, IL, and IS , respectively. A useful upper bound for OPT is

OPT ≤ OPTL + OPTS . (1)

3 Sequential Approach

A common approach in the design of algorithms for secretary problems is to set two phases: a
sampling phase, where all items are rejected, followed by a decision phase, where some items
are accepted according to a decision rule. Typically, this rule is based on the information
gathered in the sampling phase. We take this concept a step further: The key idea of our
sequential approach is to use a part of the sampling phase of one algorithm as decision phase
of another algorithm, which itself can have a sampling phase. This way, two algorithms are
performed in a sequential way, which makes better use of the entire instance. We combine
this idea with using different strategies for small and large items.

Formally, let AL and AS be two online knapsack algorithms and IL and IS be the item
sets constructed according to Definition 2.1. Further, let 0 < c < d < 1 be two parameters
to be specified later. Our proposed algorithm samples the first cn rounds; during this time
no item is packed. From round cn+ 1 to dn, the algorithm considers large items exclusively.
In this interval we follow the decisions of AL. After round dn, the algorithm processes only
small items and follows the decisions of AS . However, it might be the case that an item
accepted by AS cannot be packed because the knapsack capacity is exhausted due to the
packing of AL in earlier rounds. Note that all rounds 1, . . . , dn can be considered as the

APPROX/RANDOM 2019

22:6 Online Knapsack and GAP in the Random Order Model

Algorithm 2 Algorithm AL for large items.

Input :Random permutation of n (1/3)-large items, a knapsack of capacity W ,
parameters c, d ∈ (0, 1) with c < d.

Output :A feasible (integral) packing of the knapsack.
Let ` be the current round.
if ` ≤ cn then

Sampling phase – discard all items.
Let v∗ be the maximum profit seen up to round cn.
if cn+ 1 ≤ ` ≤ dn then

Pack the first two items of profit higher than v∗, if feasible.
if ` > dn then

Discard all items.

sampling phase for AS . A formal description is given in Algorithm 1. Here, for a given
input sequence π of I, let πL and πS denote the corresponding sequences from IL and IS ,
respectively. Note that π is revealed sequentially and πL, πS can be constructed online. For
any input sequence π, let π(`) denote the item at position ` ∈ [n].

In the final algorithm we set the threshold for small items to δ = 1/3 and use Algorithm 1
with parameters c = 0.42291 and d = 0.64570. Under the assumption n→∞ we can assume
cn, dn ∈ N. We next give a high-level description of the proof of Theorem 1.1.

Proof of Theorem 1.1. Let A be Algorithm 1 and AL, AS be the algorithms developed
in Sections 4 and 5. In the next sections we prove the following results (see Lemmas 4.7
and 5.5): The expected profit from AL in rounds cn+ 1, . . . , dn is at least 1

6.65 OPTL, and
the expected profit from AS in rounds dn+ 1, . . . , n is at least 1

6.65 OPTS . Together with
inequality (1), we obtain

E [A] ≥ E [AL] + E [AS] ≥ 1
6.65 OPTL + 1

6.65 OPTS ≥
1

6.65 OPT . J

The order in which AL and AS are arranged in Algorithm 1 follows from two observations.
Algorithm AS is powerful if it samples roughly (2/3)n rounds; a part of this long sampling
phase can be used as the decision phase of AL, for which a shorter sampling phase is
sufficient. Moreover, the first algorithm should either pack high-profit items, or should leave
the knapsack empty for the following algorithm with high probability. The algorithm AL we
propose in Section 4 has this property (see Lemma 4.8). In contrast, if AS would precede
AL, the knapsack would be empty at the beginning of AL with very small probability, in
which case we would not benefit from AL.

Finally, note that better algorithms and parameterizations for the respective sub-problems
exist (see Lemma 4.6 and [27]). However, for the overall performance we need algorithms
AL and AS that perform well evaluated in the sequential framework.

4 Large Items

The approach presented in this section is based on the connection between the online knapsack
problem under random arrival order and the k-secretary problem [29]. In the latter problem,
the algorithm can accept up to k items and the goal is to maximize the sum of their profits.
The k-secretary problem generalizes the classical secretary problem [15, 31] and is itself a
special case of the online knapsack problem under random arrival order (if all knapsack items
have size W/k).

S. Albers, A. Khan, and L. Ladewig 22:7

Table 1 Definition of packing types A-M. We use set notation {i, j} if i and j can be packed in
any order, and tuple notation (i, j) if the packing order must be as given.

type content constraint on j probability pX

A {1, 2} - p12 + p21
B {1, 3} - p13 + p31
C {2, 3} - p23 + p32

D (1, j) - p1
E (2, j) - p2
F (3, j) - p3
G (4, j) - p4

H (1, j) j 6= 2 p1 − p12
I (1, j) j 6= 3 p1 − p13

J (2, j) j 6= 1 p2 − p21
K (2, j) j 6= 3 p2 − p23

L (3, j) j 6= 1 p3 − p31
M (3, j) j 6= 2 p3 − p32

In our setting, each large item consumes more than δ = 1/3 of the knapsack capacity. We
call this problem 2-KS, since at most two items can be packed completely. Therefore, any
2-secretary algorithm can be employed to identify high-profit items and pack them if feasible.
Although this idea applies to any δ and corresponding k, the approach seems stronger for
small k: Intuitively, the characteristics of k-KS and k-secretary deviate with growing k, while
1-KS is exactly 1-secretary. Furthermore, the k-secretary problem is for k = 2 rather well
studied [3, 12], while the exact optimal competitive ratios for k ≥ 3 are still unknown.

In the following, let AL be Algorithm 2. This is an adaptation of the algorithm single-
ref developed for the k-secretary problem in [3]. As discussed above, 2-secretary and 2-KS
are similar, but different problems. Therefore, in our setting it is not possible to apply the
existing analysis from [3] or from any other k-secretary algorithm directly.

Assumption. For this section we assume that all profits are distinct. This is without loss of
generality, as ties can be broken by adjusting the profits slightly, using the items’ identifiers.
Further, we assume v1 > v2 > . . . > vn and say that i is the rank of item i.

4.1 Packing Types
As outlined above, in contrast to the 2-secretary problem, not all combinations of two
knapsack items can be packed completely. Therefore, we analyze the probability that AL
selects a feasible set of items whose profit can be bounded from below. We restrict our
analysis to packings where an item i ∈ {1, 2, 3, 4} is packed as the first item and group such
packings into several packing types A-M defined in the following. Although covering more
packings might lead to further insights into the problem and to a stronger result, we expect
the improvement to be marginal.

Let pX be the probability that AL returns a packing of type X ∈ {A, . . . ,M}. In addition,
let pi for i ∈ [n] be the probability that AL packs i as the first item. Finally, let pij for
i, j ∈ [n] be the probability that AL packs i as the first item and j as the second item.

In a packing of type A, the items 1 and 2 are packed in any order. Therefore, pA = p12+p21.
The types B and C are defined analogously using the items {1, 3} and {2, 3}, respectively. In
a packing of type D, the item 1 is accepted as the first item, together with no or any second

APPROX/RANDOM 2019

22:8 Online Knapsack and GAP in the Random Order Model

cn+1

a

dn

i

kSampling

Item

Pos.

Figure 1 Input sequence considered in Lemma 4.2. The gray dashed slots represent items of rank
greater than a.

item j. This happens with probability pD = p1. Accordingly, we define types E,F, and G
using the items 2,3, and 4, respectively. Finally, for each item i ∈ {1, 2, 3}, we introduce two
further packing types. For i = 1, types H and I characterize packings where the first accepted
item is 1, the second accepted item j is not 2 (type H) and not 3 (type I), respectively.
Therefore, we get pH = p1 − p12 and pI = p1 − p13. Packing types J-K and L-M describe
analogous packings for i = 2 and i = 3, respectively. Table 1 shows all packing types A-M
and their probabilities expressed by pi and pij .

The packing types defined above allow to describe all packings where a specific item
i ∈ {1, 2, 3, 4} is packed as the first item, without covering the same packing multiple times.
For example, packing types A and D (with j = 2) both include the packing (1, 2); however,
we can consider the disjoint packing types A and H.

4.2 Acceptance Probabilities of Algorithm 2
In the following we compute the probabilities pi and pij from Table 1 as functions of c and d.
Throughout the following proofs, we denote the position of an item i in a given permutation
with pos(i) ∈ [n]. Further, let a be the maximum profit item from sampling.

We think of the random permutation as being sequentially constructed. The fact given
below follows from the hypergeometric distribution and becomes helpful in the proofs of
Lemmas 4.2 and 4.3.

I Fact 4.1. Suppose there are N balls in an urn from which M are blue and N −M red.
The probability of drawing K blue balls without replacement in a sequence of length K is
h(N,M,K) :=

(
M
K

)
/
(
N
K

)
.

In the first lemma, we provide the probabilities pi for i ∈ [4] assuming n→∞.

I Lemma 4.2. Assuming n→∞, it holds that

pi =

c ln d
c i = 1

c
(
ln d

c − d+ c
)

i = 2
c
(
ln d

c − 2(d− c) + 1
2 (d2 − c2)

)
i = 3

c
(
ln d

c − 3(d− c) + 3
2 (d2 − c2)− 1

3 (d3 − c3)
)

i = 4 .

Proof. We construct the random permutation by drawing the positions for items sequentially,
starting with the items i and a. For any position k ≥ cn + 1, the permutation fulfills
pos(i) = k and pos(a) ≤ cn with probability 1

n
cn
n−1 = c

n−1 . Next, we draw the remaining
k − 2 items for the slots up to position k. Since i is packed as the first item, all previous
items (except for a) must have rank greater than a (see Figure 1). As these items are drawn
from the remaining n− 2 items (of which n− a have rank greater than a), the probability
for this step is h(n− 2, n− a, k− 2) according to Fact 4.1. Using the law of total probability
for k ∈ {cn+ 1, . . . , dn} and a ∈ {i+ 1, . . . , n} we obtain

pi = c

n− 1

dn∑

k=cn+1

n∑

a=i+1
h(n− 2, n− a, k − 2) = c

n− 1

dn∑

k=cn+1

1(
n−2
k−2
)

n∑

a=i+1

(
n− a
k − 2

)
.

S. Albers, A. Khan, and L. Ladewig 22:9

We can simplify this term further by observing

n∑

a=i+1

(
n− a
k − 2

)
=
n−i−1∑

a=0

(
a

k − 2

)
=
(
n− i
k − 1

)
.

Therefore, pi = c
n−1

∑dn
k=cn+1

(
n−i
k−1
)
/
(
n−2
k−2
)
.

Asymptotics. It holds that

lim
n→∞

(
n−i
k−1
)

(
n−2
k−2
) = lim

n→∞
(n− i)!
(n− 2)!

(n− k)!
(n− i− k + 1)!

1
k − 1 = (n− k)i−1

ni−2
1
k
.

Hence, lim
n→∞

pi = (c/ni−1)
∑dn
k=cn+1 f(k) where f(k) := (n−k)i−1/k. Since f is monotonically

decreasing in k, we have
∫ dn+1
cn+1 f(k) dk ≤∑dn

k=cn+1 f(k) ≤
∫ dn
cn

f(k) dk . Let F be a function
such that

∫ b
a
f(k) dk = F (b) − F (a) for 0 < a < b. As it holds that lim

n→∞
F (dn + 1) −

F (dn) = lim
n→∞

F (cn + 1) − F (cn) = 0, the above bounds are asymptotically tight, i.e.,

lim
n→∞

∑dn
k=cn+1 f(k) = F (dn)− F (cn). Below we give functions F for i ∈ [4].

i f(k) F (k) F (dn)− F (cn)

1 1
k

ln k ln d
c

2 n−k
k

n ln k − k n ln d
c
− dn + cn

3 (n−k)2

k
n2 ln k − 2nk + k2

2 n2 ln d
c
− 2n(dn− cn) + d2n2−c2n2

2

4 (n−k)3

k
n3 ln k − 3n2k + 3

2 nk2 − k3

3 n3 ln d
c
− 3n3(d− c) + 3

2 n3(d2 − c2)− 1
3 n3(d3 − c3)

The claims follow by multiplying the respective terms with c/ni−1. J

Next, we analyze the probabilities pij for i 6= j and i, j ∈ [3]. The next lemma deals with
the cases where j = i+ 1.

I Lemma 4.3. For n→∞ it holds that

p12 = c

(
d− c ln d

c
− c
)
,

p23 = c

(
d− c ln d

c
− c− d2

2 + cd− c2

2

)
.

The proof of Lemma 4.3 is technically similar to the proof of Lemma 4.2 and thus deferred
to Appendix A. It remains to analyze the probabilities p13, p31, p21, and p32. Interestingly,
they all reduce to the two probabilities considered in Lemma 4.3. The following two lemmas
should be intuitively clear from the description of Algorithm 2. For completeness, we give
formal proofs in Appendix A.

I Lemma 4.4. For any two items i and j it holds that pij = pji.

I Lemma 4.5. For any three items i < k < j it holds that pij = pkj.

Therefore, we have p13 = p23 by Lemma 4.5 and p31 = p13, p21 = p12, and p32 = p23 by
Lemma 4.4.

APPROX/RANDOM 2019

22:10 Online Knapsack and GAP in the Random Order Model

4.3 Analysis
Let T be the set of items in the optimal packing of IL. This set may contain a single item,
may be a two-item subset of {1, 2, 3}, or may be a two-item subset containing an item j ≥ 4.
In the following we analyze the performance of Algorithm 2 for each case.

Single-item case. Let case 1 be the case where T = {1}. In case 1, E [AL] ≥ pD OPTL.

Two-item cases. In cases 2–4, we consider packings of the form T = {i, j} with 1 ≤ i <

j ≤ 3. We define cases 2, 3, and 4 as T = {1, 2}, T = {1, 3}, and T = {2, 3}, respectively.
We want to consider all algorithmic packings whose profit can be bounded in terms of
OPTL = vi + vj . For this purpose, for each case 2-4 we build three groups of feasible packing
types, according to whether the profit of a packing is OPTL, at least vi, or in the interval
(vi, vj]. We ensure that no packing is counted multiple times by (a) choosing appropriate
packing types and (b) grouping these packing types in a disjoint way, according to their
profit. Let αw be the probability that the algorithm returns the optimal packing in case
w ∈ {2, 3, 4}. It holds that α2 = pA, α3 = pB, and α4 = pC. In addition, let βw be the
probability that an item k ≤ i is packed as the first item in case w ∈ {2, 3, 4}. We have
β2 = pH, β3 = pI, and β4 = pD + pK. Finally, let γw be the probability that an item k with
i < k ≤ j is packed as the first item in case w ∈ {2, 3, 4}. It holds that γ2 = pJ, γ3 = pE + pL,
and γ4 = pM.

Finally, we define case 5 as T = {i, j} with i ≥ 1, j ≥ 4, and i < j. In this case, note
that packings of type D contain an item of value at least vi, and packings of type E, F, and
G contain an item of value at least vj . Hence, we can slightly abuse the notation and set
α5 = 0, β5 = pD, and γ5 = pE + pF + pG, such that it holds that

E [AL] ≥ αw(vi + vj) + βwvi + γwvj in case w ∈ {2, 3, 4, 5} .

To bound this term against OPTL = vi + vj , consider the following two cases: If βw ≥ γw,
we obtain from Chebyshev’s sum inequality βwvi + γwvj ≥ 1

2 (βw + γw) (vi + vj). If βw < γw,
we trivially have βwvi + γwvj > βw(vi + vj). Thus, we obtain

E [AL] ≥
(
αw + min

{
βw + γw

2 , βw

})
OPTL in case w ∈ {2, 3, 4, 5} . (2)

The competitive ratio of AL is the minimum over all cases 1-5. We obtain the following
two lemmas. If the algorithm is allowed to use the entire input sequence (d = 1), AL has a
competitive ratio of 1/3.08.

I Lemma 4.6. With c = 0.23053 and d = 1, algorithm AL satisfies E [AL] ≥ 1
3.08 OPTL.

Note that 2-KS includes the secretary problem (case 1); thus, no algorithm for 2-KS can
have a better competitive ratio than 1/e < 1/2.71. In the final algorithm we set d < 1 to
benefit from AS . The next lemma has already been used to prove Theorem 1.1 in Section 3.

I Lemma 4.7. With c = 0.42291 and d = 0.64570, algorithm AL satisfies E [AL] ≥
1

6.65 OPTL.

Proof of Lemmas 4.6 and 4.7. For the overall competitive ratio, we build the minimum
over all cases. According to inequality (2), the competitive ratios for the two-item cases
depend on βw ≥ γw or βw < γw. However, for the parameter pairs (c, d) = (0.23053, 1) from

S. Albers, A. Khan, and L. Ladewig 22:11

Table 2 Competitive ratios of Algorithm 2 for the parameters from Lemmas 4.6 and 4.7 in
different cases. Bold values indicate the minimum over all cases and thus the competitive ratio.

two-item cases

c d case 1 case 2 case 3 case 4 case 5

Lemma 4.6 0.23053 1 0.33827 0.34898 0.32705 0.32705 0.32471
Lemma 4.7 0.42291 0.64570 0.17897 0.15039 0.16033 0.16033 0.16231

Lemma 4.6 and (c, d) = (0.42291, 0.64570) from Lemma 4.7 we have βw ≥ γw for any case
w ∈ {2, 3, 4, 5}. This follows from a technical lemma provided in Appendix A (Lemma A.1).
Hence, inequality (2) simplifies to E [AL] ≥

(
αw + βw+γw

2

)
OPTL in case w ∈ {2, 3, 4, 5}.

Using the definitions of pX from Table 1 and the symmetry property of Lemma 4.4 we get

E [AL] /OPTL ≥

p1 case 1
p12 + (p1 + p2)/2 case 2
p13 + (p1 + p2 + p3)/2 case 3
p23 + (p1 + p2 + p3)/2 case 4
(p1 + p2 + p3 + p4)/2 case 5 .

(3)

Note that the algorithm attains the same competitive ratio in case 3 and 4, since p13 = p23.
Table 2 shows the competitive ratios for all five cases obtained from Equation (3). For the
overall competitive ratio, we have

E [AL] ≥ min
{
p1, p12 + p1 + p2

2 , p23 + p1 + p2 + p3
2 ,

p1 + p2 + p3 + p4
2

}
OPTL .

Hence, the competitive ratios are 0.32471 ≥ 1/3.08 and 0.15039 ≥ 1/6.65 for Lemma 4.6 and
Lemma 4.7, respectively. J

Recall that in Algorithm 1, we can only benefit from AS if AL has not filled the knapsack
completely. Thus, the following property is crucial in the final analysis.

I Lemma 4.8. With probability of at least c/d, no item is packed by AL.

Proof. Fix any set of dn items arriving in rounds 1, . . . , dn. The most profitable item v∗

from this set arrives in the sampling phase with probability c/d. If this event occurs, no item
in rounds cn+ 1, . . . , dn beats v∗ and AL will not select any item. J

We finally note that our approach from Section 4.1 provides a general framework to obtain
algorithms for 2-KS using secretary algorithms with two choices. Although stronger algorithms
than Algorithm 2 exist for the 2-secretary objective [3,12] and similar objectives [40,42], it is
not clear if they would improve the performance of the overall algorithm. More sophisticated
algorithms may use weaker thresholds to accept the first item, which decreases the probability
considered in Lemma 4.8. This, in turn, reduces the expected profit gained from AS , as
described above.

5 Small Items

For small items, we use solutions for the fractional problem variant and obtain an integral
packing via randomized rounding. This approach has been applied successfully to packing
LPs [27]; however, for the knapsack problem it is not required to solve LP relaxations in each

APPROX/RANDOM 2019

22:12 Online Knapsack and GAP in the Random Order Model

round (as in [27]). Instead, here, we build upon solutions of the classical greedy algorithm,
which is well-known to be optimal for the fractional knapsack problem. Particularly, this
algorithm is both efficient in running time and easy to analyze.

We next formalize the greedy solution for any set T of items. Let the density of an item
be the ratio of its profit to its size. Consider any list L containing the items from T ordered
by non-increasing density. We define the rank ρ(i) of item i as its position in L and σ(l) as
the item at position l in L. Thus, σ(l) = ρ−1(l) denotes the l-th densest item. Let k be such
that

∑k−1
i=1 sσ(i) < W ≤∑k

i=1 sσ(i). The fraction of item i in the greedy solution α is now
defined as

αi =

1 if ρ(i) < k(
W −∑k−1

i=1 sσ(i)

)
/si if ρ(i) = k

0 else ,

i.e., we pack the k − 1 densest items integrally and fill the remaining space by the maximum
feasible fraction of the k-th densest item. Let OPT(T) and OPT∗(T) denote the profits
of optimal integral and fractional packings of T , respectively. It is not hard to see that α
satisfies

∑
i∈T αivi = OPT∗(T) ≥ OPT(T) and

∑
i∈T αisi = W .

5.1 Algorithm
The algorithm AS for small items, which is formally defined in Algorithm 3, works as follows.
After a sampling phase of dn rounds, in each round ` ≥ dn+ 1 the algorithm computes a
greedy solution x(`) for IS(`). Here, IS(`) denotes the subset of IS revealed up to round `.
The algorithm packs the current online item i with probability x(`)

i . However, generally, this
can only be done if the remaining capacity of the knapsack is at least δW ≥ si.

Note that in case of an integral coefficient x(`)
i ∈ {0, 1}, the packing step is completely

deterministic. Moreover, in any greedy solution x(`), there is at most one item i with
fractional coefficient x(`)

i ∈ (0, 1). Therefore, in expectation, there is only a small number of
rounds where the algorithm actually requests randomness.

I Observation 5.1. Let X denote the number of rounds where Algorithm 3 packs an item
with probability xi ∈ (0, 1). It holds that E [X] ≤ ln(1/d) ≤ 0.44.

Proof. Consider any round ` and let x(`) be the greedy knapsack solution computed by
Algorithm 3. By definition of x(`), at most one of the ` visible items has a fractional coefficient
x

(`)
i ∈ (0, 1). The probability that this item i arrives in round ` is 1/` in a random permutation.

Let X` be an indicator variable for the event that Algorithm 3 packs an item at random in
round `. By the above argument, we have Pr [X` = 1] ≤ 1/`. Since Algorithm 3 selects items
starting in round dn+1, we obtain E [X] =

∑n
`=dn+1 E [X`] ≤

∑n
`=dn+1

1
` ≤ ln 1

d ≤ 0.44 . J

Note that Algorithm 2 and the sequential approach (Algorithm 1) are deterministic algorithms.
Therefore, our overall algorithm requests randomness in expectation in less than one round.

5.2 Analysis
Let α be the greedy (offline) solution for IS and set ∆ = 1

1−δ . Recall that in round dn+ 1,
the knapsack might already have been filled by AL with large items in previous rounds. For
now, we assume an empty knapsack after round dn and define this event as ξ. In the final
analysis, we will use the fact that Pr [ξ] can be bounded from below, which is according
to Lemma 4.8.

S. Albers, A. Khan, and L. Ladewig 22:13

Algorithm 3 Algorithm AS for small items.

Input :Random permutation of n (1/3)-small items, a knapsack of capacity W ,
parameter d ∈ (0, 1).

Output :A feasible (integral) packing of the knapsack.
Let ` be the current round and i be the online item of round `.
if ` ≤ dn then

Sampling phase – discard all items.
if dn+ 1 ≤ ` ≤ n then

Let x(`) be the greedy solution for IS(`).
if the remaining capacity is at least δW then

Pack i with probability x(`)
i .

I Lemma 5.2. Let i ∈ IS and Ei(`) be the event that the item i is packed by AS in round `.
For ` ≥ dn+ 1, it holds that Pr [Ei(`) | ξ] ≥ 1

nαi(1−∆ ln `
dn).

Proof. In a random permutation, item i arrives in round ` with probability 1/n. In round
` ≥ dn+ 1, the algorithm decides to pack i with probability x(`)

i . Note that the rank of item
i in IS(`) is less or equal to its rank in IS . According to the greedy solution’s definition,
this implies x(`)

i ≥ αi. Finally, the δ-small item i can be packed successfully if the current
resource consumption X is at most (1− δ)W . In the following, we investigate the expectation
of X to give a probability bound using Markov’s inequality at the end of this proof.

Let Xk be the resource consumption in round k < `. By assumption, the knapsack is
empty after round dn, we have X =

∑`−1
k=dn+1Xk. Let Q be the set of k visible items in

round k. The set Q can be seen as uniformly drawn from all k-item subsets and any item
j ∈ Q is the current online item of round k with probability 1/k. The algorithm packs any
item j with probability x(k)

j , thus

E [Xk] =
∑

j∈Q
Pr [j occurs in round k] sjx(k)

j = 1
k

∑

j∈Q
sjx

(k)
j ≤ W

k
,

where the last inequality holds because x(k) is a feasible solution for a knapsack of sizeW . By
the linearity of expectation and the previous equation, the expected resource consumption up
to round ` is E [X] =

∑`−1
k=dn+1 E [Xk] ≤∑`−1

k=dn+1
W
k ≤W ln `

dn . Using Markov’s inequality,
we obtain finally

Pr [X < (1− δ)W] = 1−Pr [X ≥ (1− δ)W] ≥ 1− E [X]
(1− δ)W ≥ 1−∆ ln `

dn
. J

Using Lemma 5.2 we easily obtain the total probability that a specific item will be packed.

I Lemma 5.3. Let i ∈ IS and Ei be the event that the item i is packed by AS. It holds that
Pr [Ei | ξ] ≥ αi

(
(1− d)(1 + ∆)−∆ ln 1

d

)
.

Proof. Summing the probabilities from Lemma 5.2 over all rounds ` ≥ dn+ 1 gives

Pr [Ei | ξ] =
n∑

`=dn+1
Pr [Ei(`) | ξ] ≥

n∑

`=dn+1

1
n
αi

(
1−∆ ln `

dn

)

= 1
n
αi

(
n− dn−∆

n∑

`=dn+1
ln `

dn

)
= αi

(
1− d− ∆

n

n∑

`=dn+1
ln `

dn

)
.

APPROX/RANDOM 2019

22:14 Online Knapsack and GAP in the Random Order Model

Since ln `
dn is monotonically increasing in `, we can bound the last sum by the corresponding

integral:
n∑

`=dn+1
ln `

dn
≤
∫ n+1

`=dn+1
ln `

dn
d` = (n+1) ln n+ 1

dn
−(n+1)−(dn+1) ln dn+ 1

dn
+(dn+1) .

This implies limn→∞ ∆
n

∑n
`=dn+1 ln `

dn ≤ ∆
(
ln 1

d − 1 + d
)
. Rearranging terms gives the

claim. J

The following lemma bounds the expected profit of the packing of AS , assuming ξ.

I Lemma 5.4. It holds that E [AS | ξ] ≥
(
(1− d)(1 + ∆)−∆ ln 1

d

)
OPTS.

Proof. Let β = (1− d)(1 + ∆)−∆ ln 1
d . By Lemma 5.3, the probability that an item i gets

packed is Pr [Ei | ξ] ≥ αiβ. Therefore,

E [AS | ξ] =
∑

i∈IS

Pr [Ei | ξ] vi ≥
∑

i∈IS

αiβvi ≥ βOPTS . J

The conditioning on ξ can be resolved using Lemma 4.8. Thus we obtain the following lemma,
which is the second pillar in the proof of Theorem 1.1 and concludes this section.

I Lemma 5.5. With c = 0.42291 and d = 0.64570, we have E [AS] ≥ 1
6.65 OPTS.

Proof. By Lemma 4.8, the probability for an empty knapsack after round dn is Pr [ξ] ≥ c
d .

Thus, from Lemma 5.4 with ∆ = 1
1−1/3 = 3

2 , we obtain

E [AS] = Pr [ξ] E [AS | ξ] = c

d

(
5
2(1− d)− 3

2 ln 1
d

)
OPTS ≥

1
6.65 OPTS . J

6 Extension to GAP

In this section we show that the sequential approach introduced in Section 3 can be easily
adapted to GAP, yielding a (1/6.99)-competitive randomized algorithm. We first define the
problem formally.

GAP. We are given a set of items I = [n] and a set of resources R = [m] of capacities
Wr ∈ Q>0 for r ∈ R. If item i ∈ I is assigned to resource r ∈ R, this raises profit (value)
vi,r ∈ Q≥0, but consumes si,r ∈ Q>0 of the resource’s capacity. The goal is to assign each
item to at most one resource such that the total profit is maximized and no resource exceeds
its capacity. We call the tuple (vi,r, si,r) an option of item i and w.l.o.g. assume that options
for all resources exist. This can be ensured by introducing dummy options with vi,r = 0. In
the online version of the problem, in each round an item is revealed together with its set
of options. The online algorithm must decide immediately and irrevocably, if the item is
assigned. If so, it has to specify the resource according to one of its options.

Again, we construct restricted instances IL and IS according to the following definition,
which generalizes Definition 2.1. Let δ ∈ (0, 1).

I Definition 6.1. We call an option (vi,r, si,r) δ-large if si,r > δWr and δ-small if si,r ≤ δWr.
Whenever δ is clear from the context, we say an option is large or small for short. Based on
a given instance I for GAP, we define two modified instances IL and IS which are obtained
from I as follows.

IL: Replace each small option (vi,r, si,r) by the large option (0,Wr).
IS: Replace each large option (vi,r, si,r) by the small option (0, δ).

S. Albers, A. Khan, and L. Ladewig 22:15

Thus, IL only contains large options and IS only contains small options. However, by
construction no algorithm will assign an item according to a zero-profit option. We define
OPT, OPTL, and OPTS accordingly. Note that the inequality OPT ≤ OPTL + OPTS holds
also for GAP.

The sequential framework of Algorithm 1 can be adapted in a straightforward manner
by replacing terms like packing with assignment to resource r. Here, we set the threshold
parameter to δ = 1/2. In the following subsections, we specify algorithms AL and AS for
(1/2)-large and (1/2)-small options, respectively.

6.1 Large Options
If each item consumes more than one half of a resource, no two items can be assigned to this
resource. Thus, we obtain the following matching problem.

Edge-weighted bipartite matching problem. Given a bipartite graph G = (L ∪R,E) and
a weighting function w : E → Q≥0, the goal is to find a bipartite matching M ⊆ E such
that w(M) :=

∑
e∈M w(e) is maximal. In the online version, the (offline) nodes from R and

the number n = |L| are known in advance, whereas the nodes from L are revealed online
together with their incident edges. In the case of GAP, L is the set of items, R is the set
of resources, and the weight of an edge e = {l, r} is w(e) = vl,r, i.e., the profit gained from
assigning item l to resource r.

Under random arrival order, Kesselheim et al. [26] developed an optimal (1/e)-competitive
algorithm for this problem. Adapting this algorithm to the sequential approach with
parameters c and d leads to the following algorithm AL: After sampling the first cn nodes,
in each round ` the algorithm computes a maximum edge-weighted matching M (`) for the
graph revealed up to this round. Let l ∈ L be the online vertex of round `. If l is matched in
M (`) to some node r ∈ R, we call e(`) = {l, r} the tentative edge of round `. Now, if r is still
unmatched and ` ≤ dn, the tentative edge is added to the matching.

A formal description of this algorithm is given in Appendix B.1. The proof of the
approximation guarantee relies mainly on the following two lemmas; for completeness, we
give the proofs from [26] in Appendix B.1. The first lemma shows that the expected weight
of any tentative edge can be bounded from below.

I Lemma 6.2 ([26]). In any round `, the tentative edge (if it exists) has expected weight
E
[
w(e(`))

]
≥ 1

n OPTL.

However, we only gain the weight of the tentative edge e(`) = {l, r} if it can be added
to the matching, i.e., if r has not been matched previously. The next lemma bounds the
probability for this event from below.

I Lemma 6.3 ([26]). Let ξ(r, `) be the event that the offline vertex r ∈ R is unmatched after
round `. It holds that Pr [ξ(r, `)] ≥ cn

` .

Using Lemmas 6.2 and 6.3, we can bound the competitive ratio of AL in the following
lemma. Note that we obtain the optimal algorithm from [26] for c = 1/e and d = 1.

I Lemma 6.4. For n→∞, it holds that E [AL] ≥ c ln d
c OPTL.

Proof. Let A` be the gain of the matching weight in round `. As the tentative edge
e(`) = {l, r} can only be added if r has not been matched in a previous round, we have
E [A`] = E

[
w(e(`))

]
Pr [ξ(r, `)] for the event ξ(r, `) from Lemma 6.3. Therefore, from

APPROX/RANDOM 2019

22:16 Online Knapsack and GAP in the Random Order Model

Lemmas 6.2 and 6.3 we have E [A`] ≥ 1
n OPTL cn

` = c
` OPTL. Summing over all rounds from

cn+ 1 to dn yields

E [AL] =
dn∑

`=cn+1
E [A`] ≥

(
c

dn∑

`=cn+1

1
`

)
OPTL ≥ c ln dn+ 1

cn+ 1 OPTL .

Here, in the last step we used the fact
∑dn
`=cn+1

1
` ≥

∫ dn+1
cn+1

1
` d` = ln dn+1

cn+1 . The claim follows
by limn→∞ ln dn+1

cn+1 = ln d
c . J

6.2 Small Options
For δ-small options we use the LP-based algorithm AS from [27, Sec. 3.3]. On a high level,
this algorithm works as follows: After a sampling phase of dn rounds, in each round ` the
algorithm computes an optimal fractional solution for the instance revealed so far and uses
the coefficients as probabilities for an integral assignment. In Appendix B.2 we prove the
following lemma, where ∆ = 1

1−δ .

I Lemma 6.5. For n→∞, it holds that E [AS] ≥ c
d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS.

Note that we obtain basically the same competitive ratio as in Lemma 5.4. Since Lemma 6.5
already addresses possible resource consumption due to assignments made by AL in earlier
rounds, the factor c/d arises (see Lemma 6.3).

6.3 Proof of Theorem 1.2
Finally, we prove our main theorem for GAP.

Proof of Theorem 1.2. We set the threshold between large and small options to δ = 1/2
and consider Algorithm 1 with the algorithms AL and AS as defined previously. By
Lemma 6.4, the expected gain of profit in rounds cn + 1, . . . , dn is E [AL] ≥ c ln d

c OPTL.
Further, we gain E [AS] ≥ c

d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS with ∆ = 2 in the following

rounds, according to Lemma 6.5. For parameters c = 0.5261 and d = 0.6906, we obtain
c ln d

c ≥ c
d

(
3(1− d)− 2 ln 1

d

)
and thus, using OPTL + OPTS ≥ OPT,

E [AL] + E [AS] ≥ c

d

(
3(1− d)− 2 ln 1

d

)
(OPTL + OPTS) ≥ 1

6.99 OPT . J

References
1 Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A Dynamic Near-Optimal Algorithm for Online

Linear Programming. Operations Research, 62(4):876–890, 2014.
2 Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. The Online Stochastic Gen-

eralized Assignment Problem. In Proc. 16th International Workshop on Approximation,
Randomization, and Combinatorial Optimization and 17th International Workshop on Ran-
domization and Computation (APPROX/RANDOM), pages 11–25, 2013.

3 Susanne Albers and Leon Ladewig. New results for the k-secretary problem. Unpublished
manuscript, 2018.

4 Moshe Babaioff, Jason Hartline, and Robert Kleinberg. Selling banner ads: Online algorithms
with buyback. In Fourth Workshop on Ad Auctions, 2008.

5 Moshe Babaioff, Jason D. Hartline, and Robert D. Kleinberg. Selling ad campaigns: online
algorithms with cancellations. In Proc. 10th ACM Conference on Electronic Commerce (EC),
pages 61–70, 2009.

S. Albers, A. Khan, and L. Ladewig 22:17

6 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A Knapsack Secretary
Problem with Applications. In Proc. 10th International Workshop on Approximation, Random-
ization, and Combinatorial Optimization and 11th International Workshop on Randomization
and Computation (APPROX/RANDOM), pages 16–28, 2007.

7 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Matroid Secretary
Problems. Journal of the ACM, 65(6):35:1–35:26, 2018.

8 Bahman Bahmani, Aranyak Mehta, and Rajeev Motwani. A 1.43-Competitive Online Graph
Edge Coloring Algorithm in the Random Order Arrival Model. In Proc. 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 31–39, 2010.

9 Christian Borgs, Jennifer T. Chayes, Nicole Immorlica, Kamal Jain, Omid Etesami, and
Mohammad Mahdian. Dynamics of bid optimization in online advertisement auctions. In
Proc. 16th International Conference on World Wide Web (WWW), pages 531–540, 2007.

10 Niv Buchbinder and Joseph Naor. Online Primal-Dual Algorithms for Covering and Packing.
Math. Oper. Res., 34(2):270–286, 2009.

11 Dirk G. Cattrysse and Luk N. Van Wassenhove. A survey of algorithms for the generalized
assignment problem. European Journal of Operational Research, 60(3):260–272, 1992.

12 T.-H. Hubert Chan, Fei Chen, and Shaofeng H.-C. Jiang. Revealing Optimal Thresholds
for Generalized Secretary Problem via Continuous LP: Impacts on Online K -Item Auction
and Bipartite K -Matching with Random Arrival Order. In Proc. 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1169–1188, 2015.

13 Chandra Chekuri and Sanjeev Khanna. A Polynomial Time Approximation Scheme for the
Multiple Knapsack Problem. SIAM Journal on Computing (SICOMP), 35(3):713–728, 2005.

14 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017.

15 Eugene B Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet
Mathematics, 4:627–629, 1963.

16 Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S. Mirrokni, and Clifford Stein.
Online Stochastic Packing Applied to Display Ad Allocation. In Proc. 18th Annual European
Symposium on Algorithms (ESA), pages 182–194, 2010.

17 Jon Feldman, Nitish Korula, Vahab S. Mirrokni, S. Muthukrishnan, and Martin Pál. Online
Ad Assignment with Free Disposal. In Proc. 5th International Workshop Internet and Network
Economics (WINE), pages 374–385, 2009.

18 P.R. Freeman. The secretary problem and its extensions: A review. International Statistical
Review/Revue Internationale de Statistique, pages 189–206, 1983.

19 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating Geometric Knapsack via L-Packings. In Proc. 58th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 260–271, 2017.

20 Oliver Göbel, Thomas Kesselheim, and Andreas Tönnis. Online Appointment Scheduling in
the Random Order Model. In Proc. 23rd Annual European Symposium on Algorithms (ESA),
pages 680–692, 2015.

21 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Online Unweighted Knapsack Problem with
Removal Cost. Algorithmica, 70(1):76–91, 2014.

22 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Randomized algorithms for online knapsack
problems. Theoretical Computer Science, 562:395–405, 2015.

23 Kazuo Iwama and Shiro Taketomi. Removable Online Knapsack Problems. In Proc. 29th
International Colloquium on Automata, Languages and Programming (ICALP), pages 293–305,
2002.

24 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
25 Claire Kenyon. Best-Fit Bin-Packing with Random Order. In Proc. 7th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 359–364, 1996.

APPROX/RANDOM 2019

22:18 Online Knapsack and GAP in the Random Order Model

26 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An Optimal Online
Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions. In
Proc. 21st Annual European Symposium on Algorithms (ESA), pages 589–600, 2013.

27 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal Beats Dual
on Online Packing LPs in the Random-Order Model. SIAM J. Comput., 47(5):1939–1964,
2018.

28 Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-Line Algorithms for Weighted
Bipartite Matching and Stable Marriages. Theoretical Computer Science, 127(2):255–267,
1994.

29 Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 630–631,
2005.

30 Nitish Korula, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online Submodular Welfare
Maximization: Greedy Beats 1/2 in Random Order. SIAM J. Comput., 47(3):1056–1086, 2018.

31 Denis V Lindley. Dynamic programming and decision theory. Applied Statistics, pages 39–51,
1961.

32 George S. Lueker. Average-Case Analysis of Off-Line and On-Line Knapsack Problems. J.
Algorithms, 29(2):277–305, 1998.

33 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing LPs. In Proc. 43rd Annual ACM Symposium on
Theory of Computing (STOC), pages 597–606, 2011.

34 Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems.
Mathematical Programming, 68:73–104, 1995.

35 Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Inc., New York, NY, USA, 1990.

36 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. AdWords and
generalized online matching. Journal of the ACM, 54(5):22, 2007.

37 Adam Meyerson. Online Facility Location. In Proc. 42nd IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 426–431, 2001.

38 Vahab S. Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghaddam. Simultaneous
approximations for adversarial and stochastic online budgeted allocation. In Proc. 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1690–1701, 2012.

39 Marco Molinaro and R. Ravi. The Geometry of Online Packing Linear Programs. Math. Oper.
Res., 39(1):46–59, 2014.

40 ML Nikolaev. On a generalization of the best choice problem. Theory of Probability & Its
Applications, 22(1):187–190, 1977.

41 Temel Öncan. A Survey of the Generalized Assignment Problem and Its Applications.
Information Systems and Operational Research INFOR, 45(3):123–141, 2007.

42 Mitsushi Tamaki. Recognizing both the maximum and the second maximum of a sequence.
Journal of Applied Probability, 16(4):803–812, 1979.

43 Rahul Vaze. Online knapsack problem and budgeted truthful bipartite matching. In Proc.
IEEE Conference on Computer Communications (INFOCOM) 2017, pages 1–9, 2017.

44 Rahul Vaze. Online Knapsack Problem Under Expected Capacity Constraint. In Proc. IEEE
Conference on Computer Communications (INFOCOM) 2018, pages 2159–2167, 2018.

45 Yunhong Zhou, Deeparnab Chakrabarty, and Rajan M. Lukose. Budget Constrained Bidding
in Keyword Auctions and Online Knapsack Problems. In Proc. 4th International Workshop
Internet and Network Economics (WINE), pages 566–576, 2008.

S. Albers, A. Khan, and L. Ladewig 22:19

cn+1 l

a

dn

i

k

j

Sampling

Item

Pos.

Figure 2 Input sequence considered in Lemma 4.3. The gray dashed slots represent items of rank
greater than a.

A Missing Proofs for the Knapsack Result

Proof of Lemma 4.3. Let i ∈ [n− 1] and j = i+ 1. The proof follows the same structure as
the proof of Lemma 4.2. Again, we construct the permutation by drawing the positions for
items i, j, a first and afterwards all remaining items with position up to pos(j). Fix positions
k = pos(i) and l = pos(j). Again, pos(a) ≤ cn must hold by definition of a. The probability
that a random permutation satisfies these three position constraints is β := 1

n
1

n−1
cn
n−2 . All

remaining items up to position l must have rank greater than a (see Figure 2). Thus we
need to draw l − 3 items from a set of n− 3 remaining items, from which n− a have rank
greater than a. This happens with probability h(n− 3, n− a, l − 3). Using the law of total
probability for cn+ 1 ≤ k < l ≤ dn and a ∈ {j + 1, . . . , n}, we obtain

pij = β
dn−1∑

k=cn+1

dn∑

l=k+1

n∑

a=j+1
h(n− 3, n− a, l − 3)

= β

dn−1∑

k=cn+1

dn∑

l=k+1

1(
n−3
l−3
)

n∑

a=j+1

(
n− a
l − 3

)
= β

dn−1∑

k=cn+1

dn∑

l=k+1

(
n−j
l−2
)

(
n−3
l−3
) ,

where in the last step we used the equality
∑n
a=j+1

(
n−a
l−3
)

=
∑n−j−1
a=0

(
a
l−3
)

=
(
n−j
l−2
)
.

We next consider the asymptotic setting n → ∞. For this purpose, we define Q(l) =(
n−j
l−2
)
/
(
n−3
l−3
)
. For (i, j) = (1, 2) we have Q(l) =

(
n−2
l−2
)
/
(
n−3
l−3
)

= n−2
l−2 . The sum

∑dn
l=k+1

n−2
l−2

converges to n ln dn
k for n → ∞. Further, lim

n→∞
∑dn−1
k=cn+1 n ln dn

k = n (F (dn)− F (cn)) for
F (x) := x ln dn

x + x. Hence,

lim
n→∞

p12 = lim
n→∞

βn

(
dn ln dn

dn
+ dn− cn ln dn

cn
− cn

)
= c

(
d− c ln d

c
− c
)
.

In the case (i, j) = (2, 3) it holds that Q(l) =
(
n−3
l−2
)
/
(
n−3
l−3
)

= n−l
l−2 and we have

lim
n→∞

∑dn
l=k+1

n−l
l−2 = n ln dn

k − dn + k. Let F (x) := nx
(
ln dn

x − d+ 1
)

+ x2

2 . Again, by
bounding the sum by the corresponding integral we obtain

lim
n→∞

dn∑

k=cn+1
n ln dn

k
− dn+ k

= F (dn)− F (cn)

= dn2
(

ln dn
dn
− d+ 1

)
+ d2n2

2 − cn2
(

ln dn
cn
− d+ 1

)
− c2n2

2

= n2
(
−d2 + d+ d2

2 − c ln d
c

+ cd− c− c2

2

)

= n2
(
d− c ln d

c
− c− d2

2 + cd− c2

2

)
.

Multiplying the last term with lim
n→∞

β = c/n2 gives the claim for p23. J

APPROX/RANDOM 2019

22:20 Online Knapsack and GAP in the Random Order Model

Proof of Lemma 4.4. Suppose i is accepted first and j is accepted as the second item in
the input sequence π. Consider the sequence π′ obtained from π by swapping i with j. Since
j and i are the first two elements beating the best sampling item in π′, Algorithm 2 will
select j and i on input π′. Hence, the number of permutations must be the same for both
events, which implies the claim. J

Proof of Lemma 4.5. The argument is similar to the proof of Lemma 4.4. Consider any
input sequence π where i is selected first and j second. We know that the best item a from
sampling has profit va < vj < vi and thus any item k with i < k < j must occur after j.
Let π′ be the sequence obtained from π by swapping i with k. Now, i is behind k and j,
thus Algorithm 2 will accept k and j. Again, this proves pij = pkj since the numbers of
corresponding permutations are equal. J

The next lemma is used in the proof of Lemma 4.7 to show that for the given lists of
parameters, we have βw ≥ γw.

I Lemma A.1. Let f(x) = 2 ln x− 6x+ 2x2 − x3

3 . For parameters c,d with f(c) ≥ f(d) it
holds that βw ≥ γw where 2 ≤ w ≤ 5.

Proof. The function f is chosen in a way that f(c) ≥ f(d) is equivalent to β5 ≥ γ5. This
can be verified easily, using β5 = pD = p1, γ5 = pE + pF + pG = p2 + p3 + p4, and Lemma 4.2.
Therefore, the claim for w = 5 holds by assumption. For 2 ≤ w ≤ 4, the claims follow
immediately from f(c) ≥ f(d) and the symmetry property of Lemma 4.4:

β2 = pH = p1 − p12 = p1 − p21 ≥ p2 − p21 = pJ = γ2

β3 = pI = p1 − p13 = p1 − p31 ≥ p2 + p3 − p31 = pE + pL = γ3

β4 = pD + pK = p1 + p2 − p23 ≥ p1 − p32 ≥ p3 − p32 = pM = γ4 . J

B Missing Proofs for the GAP Result

B.1 Large Options

Algorithm 4 Algorithm for edge-weighted bipartite matching from [26] (extended by our
parameters c, d).

Input :Offline vertex set R, number of online vertices n = |L|,
parameters c, d ∈ (0, 1) with c < d.

Output :Matching M .
Set M = ∅.
Let ` be the current round and l be the online vertex of round `.
if 1 ≤ ` ≤ cn then

Sampling phase – do not add any edge.
if cn+ 1 ≤ ` ≤ dn then

Let M (`) be a maximum-weight matching for the graph in round `.
Let e(`) ∈M (`) be the edge incident to l.
if M ∪ e(`) is a matching then

Add e(`) to M .
if ` > dn then

Do not add any edge.

S. Albers, A. Khan, and L. Ladewig 22:21

Proof of Lemma 6.2. Let e(`) be the tentative edge of round ` and let Q ⊆ L with |Q| = ` be
the set of visible vertices from this round. Since each vertex from Q has the same probability
of 1/` to arrive in round `, we have

E
[
w(e(`))

]
=

∑

e={l,r}∈M(`)

Pr [l arrives in round `]w(e) = 1
`
w(M (`)) . (4)

Let M∗ = M (n) be a maximum weight (offline) matching and M∗Q = {e = {l, r} ∈M∗ | l ∈
Q}. We have w(M (`)) ≥ w(M∗Q), since M (`) is an optimal and M∗Q a feasible matching for
the graph revealed in round `. As Q can be seen as uniformly drawn among all `-element
subsets, each vertex l has probability `/n to be in Q. It follows

E
[
w(M (`))

]
≥ E

[
w(M∗Q)

]
=

∑

e={l,r}∈M∗

Pr [l ∈ Q]w(e) = `

n
w(M∗) . (5)

Combining (4) and (5) concludes the proof. J

Proof of Lemma 6.3. In each round k, the vertex r can only be matched if it is incident to
the tentative edge e(k) ∈M (k) of this round, i.e., e(k) = {l, r} where l ∈ L is the online vertex
of round k. As l can be seen as uniformly drawn among all k visible nodes (particularly,
independent from the order of the previous k − 1 items), l has probability 1/k to arrive in
round k. Consequently, r is not matched in round k with probability 1− 1/k. This argument
applies to all rounds cn+ 1, . . . , `. Therefore,

Pr [ξ(r, `)] ≥
∏̀

k=cn+1
1− 1

k
=

∏̀

k=cn+1

k − 1
k

= cn

`
. J

B.2 Small Options
For δ-small options we use the LP-based algorithm from [27, Sec. 3.3] and analyze it within
our algorithmic framework. In order to make this paper self-contained, we give a linear
program for GAP (LP 1), the algorithm, and its corresponding proofs.

maximize
∑

i∈IS
r∈R

vi,rxi,r

subject to
∑

i∈IS

si,rxi,r ≤Wr ∀r ∈ R
∑

r∈R
xi,r ≤ 1 ∀i ∈ IS

xi,r ∈ {0, 1} ∀(i, r) ∈ IS ×R (LP 1)

Let AS be Algorithm 5. After a sampling phase of dn rounds, in each round ` the
algorithm computes an optimal solution x(`) of the relaxation of LP 1 for IS(`). Here, IS(`)
denotes the instance of small options revealed so far. Now, the decision to which resource
the current online item i is assigned, if at all, is made by randomized rounding using x(`):
Resource r ∈ R is chosen with probability x(`)

i,r and the item stays unassigned with probability
1−∑r∈R x

(`)
i,r . Note that it is only feasible to assign the item to the chosen resource if its

remaining capacity is at least δWr.

APPROX/RANDOM 2019

22:22 Online Knapsack and GAP in the Random Order Model

Algorithm 5 GAP algorithm for small options from [27, Sec. 3.3].

Input :Random order sequence of small options,
parameter d ∈ (0, 1).

Output : Integral GAP assignment.
Let ` be the current round and i be the online item of round `.
if 1 ≤ ` ≤ dn then

Sampling phase – do not assign any item.
if dn+ 1 ≤ ` ≤ n then

Let x(`) be an optimal fractional solution of LP 1 for IS(`).
Choose a resource r (possibly none), where r has probability x(`)

i,r .
if the remaining capacity of r is at least δWr then

Assign i to r.

To analyze Algorithm 5, we consider the gain of profit in round ` ≥ dn+ 1, denoted by
A`. For this purpose, let i(`) be the item of that round and r(`) the resource chosen by the
algorithm. Now, it holds that E [A`] = E

[
vi(`),r(`)

]
Pr
[
i(`) can be assigned to r(`)], where

in the first term, the expectation is over the item arriving in round ` and the resource chosen
by the algorithm. The latter term only depends on the resource consumption of r(`) in earlier
rounds. In the next two lemmas we give lower bounds for both terms.

I Lemma B.1 ([27, Sec. 3.3]). For any round ` ≥ dn+1, it holds that E
[
vi(`),r(`)

]
≥ 1

n OPTS.

Proof. The proof is similar to Lemma 6.2. As we consider a fixed round `, we write i and r
instead of i(`) and r(`) for ease of presentation. Further, we write v(α) :=

∑
j∈IS

∑
s∈R αj,svj,s

for the profit of a fractional assignment α.
Fix any set Q of ` visible items in round `. Let x(n) be an optimal (offline) solution to

the relaxation of LP 1. Further, let x(n)|Q denote the restriction of x(n) to the items in
Q, i.e., (x(n)|Q)j,s = x

(n)
j,s if j ∈ Q and (x(n)|Q)j,s = 0 if j /∈ Q. Since x(n)|Q is a feasible

and x(`) is an optimal solution for Q, we have E
[
v(x(`))

]
≥ E

[
v(x(n) |Q)

]
. As in a random

permutation each item has the same probability of `/n to be in Q, it holds that

E
[
v(x(`))

]
≥ E

[
v(x(n) |Q)

]
=
∑

j∈IS

∑

s∈R
Pr [j ∈ Q]x(n)

j,s vj,s = `

n
v(x(n)) = `

n
OPTS . (6)

Similarly, each item from Q is the current online item i with probability 1/`. The resource s,
to which an item j gets assigned, is determined by randomized rounding using x(`)

j,s. Therefore
we get

E [vi,r] =
∑

j∈Q

∑

s∈R
Pr [j = i, s = r] vj,s =

∑

j∈Q

∑

s∈R

1
`
x

(`)
j,svj,s = 1

`
v(x(`)) . (7)

Combining (6) and (7) gives the claim. J

Hence, by the previous lemma the expected gain of profit in each round is a (1/n)-fraction
of OPTS , supposing the remaining resource capacity is large enough. The probability for
the latter event is considered in the following lemma. Here, a crucial property is that we
deal with δ-small options. Let ∆ = 1

1−δ .

I Lemma B.2. For any round ` ≥ dn + 1, we have Pr
[
i(`) can be assigned to r(`)] ≥

c
d

(
1−∆ ln `

dn

)
.

S. Albers, A. Khan, and L. Ladewig 22:23

Proof. Let ξ be the event that no item is assigned to r after round dn. Note that ξ does
not necessarily hold, since AL might already have assigned items to r in earlier rounds. By
Lemma 6.3, Pr [ξ] ≥ c

d . Therefore, it remains to show Pr
[
i(`) can be assigned to r(`) | ξ

]
≥

1−∆ ln `
dn .

For this purpose, assume that ξ holds and let X denote the resource consumption of r
after round `− 1. Further, let Xk be the resource consumption of r in round k < `. We have
X =

∑`−1
k=dn+1Xk. Let Q be the set of k visible items in round k. The set Q can be seen

as uniformly drawn from all k-item subsets and any item j ∈ Q is the current online item
of round k with probability 1/k. Now, the algorithm assigns any item j to resource r with
probability x(k)

j,r , thus

E [Xk] =
∑

j∈Q
Pr [j occurs in round k] sj,rx(k)

j,r = 1
k

∑

j∈Q
sj,rx

(k)
j,r ≤

Wr

k
, (8)

where the last inequality follows from the capacity constraint for resource r in LP 1. By
linearity of expectation and inequality (8), the expected resource consumption up to round `
is thus

E [X] =
`−1∑

k=dn+1
E [Xk] ≤

`−1∑

k=dn+1

Wr

k
≤Wr ln `

dn
. (9)

Now, since i(`) is δ-small, X < (1 − δ)Wr implies X + si(`),r(`) ≤ Wr in which case the
assignment is feasible. Using (9) and Markov’s inequality, we obtain

Pr [X < (1− δ)Wr] = 1−Pr [X ≥ (1− δ)Wr] ≥ 1− E [X]
(1− δ)Wr

≥ 1−∆ ln `

dn
. J

Now, the bound on the competitive ratio of AS from Lemma 6.5 follows.

Proof of Lemma 6.5. We add the expected profits in single rounds using Lemmas B.1
and B.2.

E [AS] =
n∑

`=dn+1
E [A`] =

n∑

`=dn+1
E
[
vi(`),r(`)

]
Pr
[
i(`) can be assigned to r(`)

]

≥
n∑

`=dn+1

1
n

OPTS
c

d

(
1−∆ ln `

dn

)
= c

dn

(
n∑

`=dn+1
1−∆ ln `

dn

)
OPTS

= c

dn

(
n− dn−∆

n∑

`=dn+1
ln `

dn

)
OPTS .

Since `
dn is monotone increasing in `, we have

∑n
`=dn+1 ln `

dn ≤
∫ n+1
dn+1 ln `

dn d` and this integral
evaluates to (n+1) ln n+1

dn+1−(n+1)−(dn+1) ln dn+1
dn +(dn+1). For n→∞, this approaches

n ln 1
d − n+ dn. Hence, we have lim

n→∞
E [AS] ≥ c

d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS . J

APPROX/RANDOM 2019

84

Appendix C

Best Fit Bin Packing with Ran-
dom Order Revisited
Bibliographic information S. Albers, A. Khan, and L. Ladewig. Best fit bin
packing with random order revisited. In Proc. 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS), volume 170 of
LIPIcs, pages 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

Summary In this paper, we revisit the best fit algorithm for online bin
packing in the random-order model. A seminal result by Kenyon [SODA’96]
establishes lower and upper bounds of 1.08 and 1.5 on the asymptotic
approximation ratio of best fit under random arrival order, respectively.
We make progress on this problem in several directions.

First, we consider the case where all items are larger than 1/3 of the bins’
capacity. We show that the asymptotic approximation ratio is at most 5/4
and converges quickly to this value. For the proof, we introduce the notion
of good order pairs and exploit a monotonicity property which holds only
in this case. Second, we construct an improved lower bound of 1.10 on the
asymptotic approximation ratio, improving upon the long-standing lower
bound of 1.08. Finally, we initiate the study of absolute approximation ratio
under random order. For the best fit algorithm, we show that this value is
1.3 and thus, significantly larger than the currently best lower bound on the
asymptotic approximation ratio.

Individual contributions

• Development of the main technical arguments in Section 3 (good order
pairs, monotonicity) and corresponding proofs

• Construction and analysis of the asymptotic lower bound from Section 4

• Composition of the manuscript including all technical and non-technical
parts (refined based on discussions with co-authors)

85

86

Best Fit Bin Packing with Random Order
Revisited
Susanne Albers
Technische Universität München, Germany
albers@in.tum.de

Arindam Khan
Indian Institute of Science, Bangalore, India
arindamkhan@iisc.ac.in

Leon Ladewig
Technische Universität München, Germany
ladewig@in.tum.de

Abstract
Best Fit is a well known online algorithm for the bin packing problem, where a collection of one-
dimensional items has to be packed into a minimum number of unit-sized bins. In a seminal work,
Kenyon [SODA 1996] introduced the (asymptotic) random order ratio as an alternative performance
measure for online algorithms. Here, an adversary specifies the items, but the order of arrival is
drawn uniformly at random. Kenyon’s result establishes lower and upper bounds of 1.08 and 1.5,
respectively, for the random order ratio of Best Fit. Although this type of analysis model became
increasingly popular in the field of online algorithms, no progress has been made for the Best Fit
algorithm after the result of Kenyon.

We study the random order ratio of Best Fit and tighten the long-standing gap by establishing
an improved lower bound of 1.10. For the case where all items are larger than 1/3, we show that the
random order ratio converges quickly to 1.25. It is the existence of such large items that crucially
determines the performance of Best Fit in the general case. Moreover, this case is closely related to
the classical maximum-cardinality matching problem in the fully online model. As a side product,
we show that Best Fit satisfies a monotonicity property on such instances, unlike in the general case.

In addition, we initiate the study of the absolute random order ratio for this problem. In contrast
to asymptotic ratios, absolute ratios must hold even for instances that can be packed into a small
number of bins. We show that the absolute random order ratio of Best Fit is at least 1.3. For
the case where all items are larger than 1/3, we derive upper and lower bounds of 21/16 and 1.2,
respectively.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online bin packing, random arrival order, probabilistic analysis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.7

Funding Work supported by the European Research Council, Grant Agreement No. 691672.

1 Introduction

One of the fundamental problems in combinatorial optimization is bin packing. Given a list
I = (x1, . . . , xn) of n items with sizes from (0, 1] and an infinite number of unit-sized bins,
the goal is to pack all items into the minimum number of bins. Formally, a packing is an
assignment of items to bins such that for any bin, the sum of assigned items is at most 1.
While an offline algorithm has complete information about the items in advance, in the online
variant, items are revealed one by one. Therefore, an online algorithm must pack xi without
knowing future items xi+1, . . . , xn and without modifying the packing of previous items.

© Susanne Albers, Arindam Khan, and Leon Ladewig;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

7:2 Best Fit Bin Packing with Random Order Revisited

As the problem is strongly NP-complete [15], research mainly focuses on efficient approxi-
mation algorithms. The offline problem is well understood and admits even approximation
schemes [8, 18, 26]. The online variant is still a very active field in the community [6], as the
asymptotic approximation ratio of the best online algorithm is still unknown [2,3]. As one
of the first algorithms for the problem, Garey et al. proposed the algorithms Best Fit and
First Fit [14]. Johnson published the Next Fit algorithm briefly afterwards [22]. All of these
algorithms work in the online setting and attract by their simplicity: Suppose that xi is the
current item to pack. The algorithms work as follows:
Best Fit (BF) Pack xi into the fullest bin possible, open a new bin if necessary.
First Fit (FF) Maintain a list of bins ordered by the time at which they were opened. Pack

xi into the first possible bin in this list, open a new bin if necessary.
Next Fit (NF) Pack xi into the bin opened most recently if possible; open a new bin if

necessary.
Another important branch of online algorithms is based on the harmonic algorithm [29].
This approach has been massively tuned and generalized in a sequence of papers [2, 35,36].

To measure the performance of an algorithm, different metrics exist. For an algorithm A,
let A(I) and OPT(I) denote the number of bins used by A and an optimal offline algorithm,
respectively, to pack the items in I. Let I denote the set of all item lists. The most common
metric for bin packing algorithms is the asymptotic (approximation) ratio defined as

R∞A = lim sup
k→∞

sup
I∈I
{A(I)/OPT(I) | OPT(I) = k} .

Note that R∞A focuses on instances where OPT(I) is large. This avoids anomalies typically
occurring on lists that can be packed optimally into few bins. However, many bin packing
algorithms are also studied in terms of the stronger absolute (approximation) ratio

RA = sup
I∈I
{A(I)/OPT(I)} .

Here, the approximation ratio RA must hold for each possible input. An online algorithm
with (absolute or asymptotic) ratio α is also called α-competitive.

Table 1 shows the asymptotic and absolute approximation ratios of the three heuristics
Best Fit, First Fit, and Next Fit. Interestingly, for these algorithms both metrics coincide.
While the asymptotic ratios of Best Fit and Next Fit were established already in early
work [23], the absolute ratios have been settled rather recently [9, 10].

Note that the above performance measures are clearly worst-case orientated. An adversary
can choose items and present them in an order that forces the algorithm into its worst possible
behavior. In the case of Best Fit, hardness examples are typically based on lists where
small items occur before large items [14]. In contrast, it is known that Best Fit performs
significantly better if items appear in non-increasing order [23]. For real-world instances,
it seems overly pessimistic to assume adversarial order of input. Moreover, sometimes
worst-case ratios hide interesting properties of algorithms that occur in average cases. This
led to the development of alternative measures.

A natural approach that goes beyond worst-case was introduced by Kenyon [28] in 1996.
In the model of random order arrivals, the adversary can still specify the items, but the
arrival order is permuted randomly. The performance measure described in [28] is based
on the asymptotic ratio, but can be applied to absolute ratios likewise. In the resulting
performance metrics, an algorithm must satisfy its performance guarantee in expectation

S. Albers, A. Khan, and L. Ladewig 7:3

Table 1 Approximation ratios in different metrics of common bin packing heuristics. In RNF,
the symbol γ refers to the total size of items in the list.

Algorithm A Abs. ratio RA Asym. ratio R∞
A Asym. random order ratio RR∞

A

Best Fit 1.7 [10] 1.7 [23] 1.08 ≤ RR∞
BF ≤ 1.5 [28]

First Fit 1.7 [9] 1.7 [23] –
Next Fit 2− 1/dγe [4] 2 [22] 2 [24]

over all permutations. We define

RR∞A = lim sup
k→∞

sup
I∈I
{E[A(Iσ)]/OPT(I) | OPT(I) = k} and

RRA = sup
I∈I
{E[A(Iσ)]/OPT(I)}

as the asymptotic random order ratio and the absolute random order ratio of algorithm A,
respectively. Here, σ is drawn uniformly at random from Sn, the set of permutations of n
elements, and Iσ = (xσ(1), . . . , xσ(n)) is the permuted list.

1.1 Related work
The following literature review only covers results that are most relevant to our work. We
refer the reader to the article [7] by Coffman et al. for an extensive survey on (online) bin
packing. For further problems studied in the random order model, see [17].

Bin packing. Kenyon introduced the notion of asymptotic random order ratio RR∞A for
online bin packing algorithms in [28]. For the Best Fit algorithm, Kenyon proves an upper
bound of 1.5 on RR∞BF, demonstrating that random order significantly improves upon
R∞BF = 1.7. However, it is conjectured in [7,28] that the actual random order ratio is close to
1.15. The proof of the upper bound crucially relies on the following scaling property: With
high probability, the first t items of a random permutation can be packed optimally into
t
n OPT(I) + o(n) bins. On the other side, Kenyon proves that RR∞BF ≥ 1.08. This lower
bound is obtained from the weaker i.i.d-model, where item sizes are drawn independently
and identically distributed according to a fixed probability distribution.

Coffman et al. [24] analyzed next-fit in the random order model and showed thatRR∞NF = 2,
matching the asymptotic approximation ratio RR∞NF = 2 (see Table 1). Fischer and Röglin [12]
obtained analogous results for worst-fit [22] and smart next-fit [34]. Therefore, all three
algorithms fail to perform better in the random order model than in the adversarial model.

A natural property of bin packing algorithms is monotonicity, which holds if an algorithm
never uses fewer bins to pack I ′ than for I, where I ′ is obtained from I by increasing item
sizes. Murgolo [33] showed that next-fit is monotone, while Best Fit and First Fit are
not monotone in general. The concept of monotonicity also arises in related optimization
problems, such as scheduling [16] and bin covering [12].

Bin covering. The dual problem of bin packing is bin covering, where the goal is to cover
as many bins as possible. A bin is covered if it receives items of total size at least 1. Here, a
well-studied and natural algorithm is Dual Next Fit (DNF). In the adversarial setting, DNF
has asymptotic ratio R∞DNF = 1/2 which is best possible for any online algorithm [5]. Under
random arrival order, Christ et al. [5] showed that RR∞DNF ≤ 4/5. This upper bound was

MFCS 2020

7:4 Best Fit Bin Packing with Random Order Revisited

improved later by Fischer and Röglin [11] to RR∞DNF ≤ 2/3. The same group of authors
further showed that RR∞DNF ≥ 0.501, i.e., DNF performs strictly better under random order
than in the adversarial setting [12].

Matching. Online matching can be seen as the key problem in the field of online algorithms
[32]. Inspired by the seminal work of Karp, Vazirani, and Vazirani [27], who introduced the
online bipartite matching problem with one-sided arrivals, the problem has been studied in
many generalizations. Extensions include fully online models [13, 19, 20], vertex-weighted
versions [1, 21] and, most relevant to our work, random arrival order [21,31].

1.2 Our results
While several natural algorithms fail to perform better in the random order model, Best
Fit emerges as a strong candidate in this model. The existing gap between 1.08 and 1.5
clearly leaves room for improvement; closing (or even narrowing) this gap has been reported
as challenging and interesting open problem in several papers [5, 17,24].

To the best of our knowledge, our work provides the first new results on the problem
since the seminal work by Kenyon. Below we describe our results in detail. In the following
theorems, the expectation is over the permutation σ drawn uniformly at random.

Case of 1/3-large items
If all items are strictly larger than 1/3, the objective is to maximize the number of bins
containing two items. This problem is closely related to finding a maximum-cardinality
matching in a vertex-weighted graph; our setting corresponds with the fully online model
studied in [1] under random order arrival. Also in the analysis from [28], this special case
arises. There, it is sufficient to argue that BF(I) ≤ 3

2 OPT(I) + 1 under adversarial order.
We show that Best Fit performs significantly better under random arrival order:
I Theorem 1.1. For any list I of items larger than 1/3, we have E[BF(Iσ)] ≤ 5

4 OPT(I)+ 1
4 .

The proof of Theorem 1.1 is developed in Section 3 and based on several pillars. First, we
show that Best Fit is monotone in this case (Proposition 3.2), unlike in the general case [33].
This property can be used to restrict the analysis to instances with well-structured optimal
packing. The main technical ingredient is introduced in Section 3.3 with Lemma 3.5 as
the key lemma. Here, we show that Best Fit maintains some parts of the optimal packing,
depending on certain structures of the input sequence. We identify these structures and
show that they occur with constant probability for a random permutation. It seems likely
that this property can be used in a similar form to improve the bound RR∞BF ≤ 1.5 for
the general case: Under adversarial order, much hardness comes from relatively large items
of size more than 1/3; in fact, if all items have size at most 1/3, an easy argument shows
4/3-competitiveness even for adversarial arrival order [23].

Moreover, it is natural to ask for the performance in terms of absolute random order
ratio. It is a surprising and rather recent result that for Best Fit, absolute and asymptotic
ratios coincide. The result of [28] has vast additive terms and it seems that new techniques
are required for insights into the absolute random order ratio. In Section 3.4, we show an
upper bound of 21/16 for 1/3-large items, which is complemented by a lower bound of 6/5.
I Proposition 1.2. For any list I of items larger than 1/3, we have E[BF(Iσ)] ≤ 21

16 OPT(I).
I Proposition 1.3. There is a list I of items larger than 1/3 with E[BF(Iσ)] > 6

5 OPT(I).
A proof sketch of Proposition 1.3 is presented in Section 4.2.

S. Albers, A. Khan, and L. Ladewig 7:5

Lower bounds
We also make progress on the hardness side, which is presented in Section 4. First, we show
that the asymptotic random order ratio is larger than 1.10, improving the previous lower
bound of 1.08 from [28].

I Theorem 1.4. The asymptotic random order ratio of Best Fit is RR∞BF > 1.10.

As it is typically challenging to obtain lower bounds in the random order model, we exploit the
connection to the i.i.d-model. Here, items are drawn independently and identically distributed
according to a fixed probability distribution. By defining an appropriate distribution, the
problem can be analyzed using Markov chain techniques. Moreover, we present the first
lower bound on the absolute random order ratio:

I Theorem 1.5. The absolute random order ratio of Best Fit is RRBF ≥ 1.30.

Interestingly, our lower bound on the absolute random order ratio is notably larger than in
the asymptotic case (see [28] and Theorem 1.4). This suggests either

a significant discrepancy between RRBF and RR∞BF, which is in contrast to the adversarial
setting (RBF = R∞BF, see Table 1), or
a disproof of the conjecture RR∞BF ≈ 1.15 mentioned in [7, 28].

2 Notation

We consider a list I = (x1, . . . , xn) of n items throughout the paper. Due to the online
setting, I is revealed in rounds 1, . . . , n. In round t, item xt arrives and in total, the prefix list
I(t) := (x1, . . . , xt) is revealed to the algorithm. The items in I(t) are called the visible items
of round t. We use the symbol xt for the item itself and its size xt ∈ (0, 1] interchangeably.
An item xt is called large (L) if xt > 1/2, medium (M) if xt ∈

(1
3 ,

1
2
]
, and small (S) if

xt ≤ 1/3. We also say that xt is α-large if xt > α.
Bins contain items and therefore can be represented as sets. As a bin usually can receive

further items in later rounds, the following terms refer always to a fixed round. We define
the load of a bin B as

∑
xi∈B xi. Sometimes, we classify bins by their internal structure. We

say B is of configuration LM (or B is an LM-bin) if it contains one large and one medium
item. The configurations L, MM, etc. are defined analogously. Moreover, we call B a k-bin if
it contains exactly k items. If a bin cannot receive further items in the future, it is called
closed; otherwise, it is called open.

The number of bins which Best Fit uses to pack a list I is denoted by BF(I). We slightly
abuse the notation and refer to the corresponding packing by BF(I) as well whenever the
exact meaning is clear from the context. Similarly, we denote by OPT(I) the number of bins
and the corresponding packing of an optimal offline solution.

Finally, for any natural number n we define [n] := {1, . . . , n}. Let Sn be the set of
permutations in [n]. If not stated otherwise, σ refers to a permutation drawn uniformly at
random from Sn.

3 Upper bound for 1/3-large items

In this section, we consider the case where I contains no small items, i.e., where all items are
1/3-large. In Sections 3.1 to 3.3 we develop the technical foundations. The final proofs of
Theorem 1.1 and Proposition 1.2 are presented in Section 3.4.

MFCS 2020

7:6 Best Fit Bin Packing with Random Order Revisited

3.1 Monotonicity
We first define the notion of monotone algorithms.

I Definition 3.1. We call an algorithm monotone if increasing the size of one or more items
cannot decrease the number of bins used by the algorithm.

One might suspect that any reasonable algorithm is monotone. While this property holds
for an optimal offline algorithm and some online algorithms as ext-fit [25], Best Fit is not
monotone in general [33]. As a counterexample, consider the lists

I = (0.36, 0.65, 0.34, 0.38, 0.28, 0.35, 0.62) and
I ′ = (0.36, 0.65, 0.36, 0.38, 0.28, 0.35, 0.62) .

Before arrival of the fifth item, BF(I(4)) uses two bins {0.36, 0.38} and {0.65, 0.34}, while
BF(I ′(4)) uses three bins {0.36, 0.36}, {0.65}, and {0.38}. Now, the last three items fill up
the existing bins in BF(I ′(4)) exactly. In contrast, these items open two further bins in the
packing of BF(I(4)). Therefore, BF(I) = 4 > 3 = BF(I ′).

However, we can show that Best Fit is monotone for the case of 1/3-large items. Inter-
estingly, 1/3 seems to be the threshold for the monotonicity of Best Fit: As shown in the
counterexample from the beginning of this section, it is sufficient to have one item x ∈

(1
4 ,

1
3
]

to force Best Fit into anomalous behavior.

I Proposition 3.2. Given a list I of items larger than 1/3 and a list I ′ obtained from I by
increasing the sizes of one or more items, we have BF(I) ≤ BF(I ′).

Sketch of proof. For simplicity, first assume that both lists differ only in the i-th element.
All bins in any packing of I or I ′ contain at most two items. We call two 1-bins of BF(I) and
BF(I ′) pairwise-identical if they contain items of the same size. Moreover, we call any two
2-bins of BF(I) and BF(I ′) pairwise-closed, as neither of the two bins can receive a further
item. For ease of notation, let It = I(t) and I ′t = I ′(t). We can show that at any time t, the
packings BF(It) and BF(I ′t) are related in one of three ways:
(1) All bins are pairwise-identical or pairwise-closed.
(2) All bins are pairwise-identical or pairwise-closed, except for two 1-bins B = {b} and

B′ = {b′} in BF(It) and BF(I ′t), respectively, where b < b′.
(3) All bins are pairwise-identical or pairwise-closed, except for a 2-bin C = {c1, c2} in

BF(It) which does not exist in BF(I ′t), and two 1-bins B′1 = {b′1}, B′2 = {b′2} in BF(I ′t)
which do not exist in BF(It).

Note in all three cases, BF(It) ≤ BF(I ′t). As this property is maintained until t = n, it
implies the lemma. J

The entire proof of Proposition 3.2 will be given in the full version of this paper.

3.2 Simplifying the instance
Let I be a list of items larger than 1/3. Note that both the optimal and the Best Fit packing
use only bins of configurations L, LM, MM, and possibly one M-bin. However, we can assume
a simpler structure without substantial implications on the competitiveness of Best Fit.

I Lemma 3.3. Let I be any list that can be packed optimally into OPT(I) LM-bins. If Best
Fit has (asymptotic or absolute) approximation ratio α for I, then it has (asymptotic or
absolute) approximation ratio α for any list of items larger than 1/3 as well.

S. Albers, A. Khan, and L. Ladewig 7:7

L
L

M

M

M

M

a b c dd

(a) OPT(I0) = OPT(I1).

L
L

M

a+ d b+ c

(b) OPT(I2).

L

M

b+ c

(c) OPT(I3).

Figure 1 Construction from Lemma 3.3 to eliminate L-, MM-, and M-bins in the optimal packing.

Proof. Let I0 be a list of items larger than 1/3 and let a, b, c, and d ≤ 1 be the number of
bins in OPT(I0) with configurations L, LM, MM, and M, respectively (see Figure 1a). In
several steps, we eliminate L-,MM-, and M-bins from OPT(I0) while making the instance
only harder for Best Fit.

First, we obtain I1 from I0 by replacing items of size 1/2 by items of size 1/2− ε. By
choosing ε > 0 small enough, i.e., ε < min{δ+−1/2, 1/2−δ−}, where δ+ = min{xi | xi > 1/2}
and δ− = max{xi | xi < 1/2}, it is ensured that Best Fit packs all items in the same bins
than before the modification. Further, the modification does not decrease the number of
bins in an optimal packing, so we have BF(I0) = BF(I1) and OPT(I0) = OPT(I1). Now, we
obtain I2 from I1 by increasing item sizes: We replace each of the a+d items packed in 1-bins
in OPT(I1) by large items of size 1. Moreover, any 2-bin (MM or LM) in OPT(I1) contains at
least one item smaller than 1/2. These items are enlarged such that they fill their respective
bin completely. Therefore, OPT(I2) has a+ d L-bins and b+ c LM-bins (see Figure 1b). We
have OPT(I2) = OPT(I1) and, by Proposition 3.2, BF(I2) ≥ BF(I1). Finally, we obtain I3
from I2 by deleting the a+ d items of size 1. As size-1 items are packed separately in any
feasible packing, OPT(I3) = OPT(I2)− (a+ d) and BF(I3) = BF(I2)− (a+ d). Note that
OPT(I3) contains only LM-bins (see Figure 1c) and, by assumption, Best Fit has (asymptotic
or absolute) approximation ratio α for such lists. Therefore, in general we have a factor
α ≥ 1 and an additive term β such that BF(I3) ≤ αOPT(I3) + β. It follows that

BF(I0) ≤ BF(I2) = BF(I3) + (a+ d) ≤ αOPT(I3) + (a+ d) + β ≤ αOPT(I0) + β . J

By Lemma 3.3, we can impose the following constraints on I without loss of generality.

Assumption. For the remainder of the section, we assume that the optimal packing of I
has k = OPT(I) LM-bins. For i ∈ [k], let li and mi denote the large item and the medium
item in the i-th bin, respectively. We call {li,mi} an LM-pair.

3.3 Good order pairs
If the adversary could control the order of items, he would send all medium items first,
followed by all large items. This way, Best Fit opens k/2 MM-bins and k L-bins and therefore
is 1.5-competitive. In a random permutation, we can identify structures with a positive
impact on the Best Fit packing. This is formalized in the following random event.

I Definition 3.4. Consider a fixed permutation π ∈ Sn. We say that an LM-pair {li,mi}
arrives in good order (or is a good order pair) if li arrives before mi in π.

MFCS 2020

7:8 Best Fit Bin Packing with Random Order Revisited

l1l2 l4 m1

m2

m3 m4

(a) Best Fit packing BF(I(7)).

l1m1

m4 l4

m2

m3

l2∗

∗

(b) Graph G7.

Figure 2 Visualization of Example 3.6. In Figure 2b, BF-edges are solid, while OPT-edges are
thin. An asterisk indicates an OPT-edge in good order.

Note that in the adversarial setting no LM-pair arrives in good order, while in a random
permutation, this holds for any LM-pair independently with probability 1/2. The next lemma
is central for the proof of Theorem 1.1. It shows that the number of LM-pairs in good order
bound the number of LM-bins in the final Best Fit packing from below.

I Lemma 3.5. Let π ∈ Sn be any permutation and let X be the number of LM-pairs arriving
in good order in Iπ. The packing BF(Iπ) has at least X LM-bins.

To prove Lemma 3.5, we model the Best Fit packing by the following bipartite graph:
Let Gt = (Mt ∪Lt, EBF

t ∪EOPT
t), whereMt and Lt are the sets of medium and large items

in Iπ(t), respectively. The sets of edges represent the LM-matchings in the Best Fit packing
and in the optimal packing at time t, i.e.,

EBF
t =

{
{m, l} ∈ (Mt × Lt) | m and l are packed into the same bin in BF(Iπ(t))

}

EOPT
t =

{
{mi, li} ∈ (Mt × Lt) | i ∈ [k]

}
.

We distinguish OPT-edges in good and bad order, according to the corresponding LM-pair.
Note that Gt is not necessarily connected and may contain parallel edges. We illustrate the
graph representation by a small example.

I Example 3.6 (see Figure 2). Let ε > 0 be sufficiently small and define for i ∈ [4]
large items li = 1/2 + iε and medium items mi = 1/2 − iε. Consider the list Iπ =
(l2, l1,m3,m4, l4,m1,m2, l3). Figures 2a and 2b show the Best Fit packing and the corre-
sponding graph G7 before arrival of the last item. Note that Iπ has two good order pairs
({l1,m1} and {l2,m2}) and, according to Lemma 3.5, the packing has two LM-bins.

The proof of Lemma 3.5 essentially boils down to the following claim:

B Claim 3.7. In each round t and in each connected component C of Gt, the number of
BF-edges in C is at least the number of OPT-edges in good order in C.

We first show how Lemma 3.5 follows from Claim 3.7. Then, we work towards the proof of
Claim 3.7.

Proof of Lemma 3.5. Claim 3.7 implies that in Gn, the total number of BF-edges (summed
over all connected components) is at least X. Therefore, the packing has at least X LM-bins
and thus not less than the number of good order pairs X. J

Before proving Claim 3.7, it is reasonable to observe the following property of Gt.

S. Albers, A. Khan, and L. Ladewig 7:9

B Claim 3.8. Consider the graph Gt for some t ∈ [n]. Let Q = (bw, aw−1, bw−1, . . . , a1, b1)
with w ≥ 1 be a maximal alternating path such that {aj , bj} is an OPT-edge in good order
and {aj , bj+1} is a BF-edge for any j ∈ [w − 1] (i.e., a-items and b-items represent medium
and large items, respectively). It holds that bw ≥ b1.

Proof. We show the claim by induction on w. Note that the items’ indices only reflect the
position along the path, not the arrival order. For w = 1, we have Q = (bw) = (b1) and thus,
the claim holds trivially.

Now, fix w ≥ 2 and suppose that the claim holds for all paths Q′ with w′ ≤ w − 1. We
next prove bw ≥ b1. Let t′ ≤ t be the arrival time of the a-item ad that arrived latest among
all a-items in Q. We consider the graph Gt′−1, i.e., the graph immediately before arrival
of ad and its incident edges. Note that in Gt′−1, all items ai with i ∈ [w − 1] \ {d} and bi
with i ∈ [w − 1] are visible. Let Q′ = (bw, . . . , ad+1, bd+1) and Q′′ = (bd, . . . , a1, b1) be the
connected components of bw and b1 in Gt′−1. As Q′ and Q′′ are maximal alternating paths
shorter than Q, we obtain from the induction hypothesis bw ≥ bd+1 and bd ≥ b1. Note that
bd+1 and b1 were visible and packed into L-bins on arrival of ad. Further, ad and b1 would
fit together, as ad + b1 ≤ ad + bd ≤ 1. However, Best Fit packed ad with bd+1, implying
bd+1 ≥ b1. Combining the inequalities yields bw ≥ bd+1 ≥ b1, which concludes the proof.

C

Now, we are able to prove the remaining technical claim.

Proof of Claim 3.7. Note that the number of OPT-edges in good order can only increase on
arrival of a medium item mi where {mi, li} is an LM-pair in good order. Therefore, it is
sufficient to verify Claim 3.7 in rounds t1 < . . . < tj such that in round ti, item mi arrives
and li arrived previously.

Induction base. In round t1, there is one OPT-edge {m1, l1} in good order. We need to
show that there exists at least one BF-edge in Gt1 , or, alternatively, at least one LM-bin
in the packing. If the bin of l1 contains a medium item different from m1, we identified
one LM-bin. Otherwise, Best Fit packs m1 together with l1 or some other large item, again
creating an LM-bin.

Induction hypothesis. Fix i ≥ 2 and assume that Claim 3.7 holds up to round ti−1.

Induction step. We only consider the connected component of mi, as by the induction
hypothesis, the claim holds for all remaining connected components. If mi is packed into
an LM-bin, the number of BF-edges increases by one and the claim holds for round ti.
Therefore, assume that mi is packed by Best Fit in an M- or MM-bin. This means that in
Gti , vertex mi is incident to an OPT-edge in good order, but not incident to any BF-edge.
Let P = (mi, li, . . . , v) be the maximal path starting from mi alternating between OPT-edges
and BF-edges.

Case 1: v is a medium item For illustration, consider Figure 2b with mi = m2 and v = m3.
Since P begins with an OPT-edge and ends with a BF-edge, the number of BF-edges
in P equals the number of OPT-edges in P . The latter number is clearly at least the
number of OPT-edges in good order in P .

Case 2: v is a large item For illustration, consider Figure 2b with mi = m1 and v = l4.
We consider two cases. If P contains at least one OPT-edge which is not in good order,
the claim follows for the same argument as in Case 1.

MFCS 2020

7:10 Best Fit Bin Packing with Random Order Revisited

Now, suppose that all OPT-edges in P are in good order. Let P ′ be the path obtained
from P by removing the item mi. As P ′ satisfies the premises of Claim 3.8, we obtain
li ≥ v. This implies that mi and v would fit together, as mi + v ≤ mi + li ≤ 1. However,
mi is packed in an M- or MM-bin by assumption, although v is a feasible option on arrival
of mi. As this contradicts the Best Fit rule, we conclude that case 2 cannot happen. C

3.4 Final proofs
Finally, we prove the main result of this section.

Proof of Theorem 1.1. Let X be the number of good order pairs in Iσ and let Y be the
number of LM-bins in the packing BF(Iσ). We have Y ≥ X by Lemma 3.5. For the remaining
large and medium items, Best Fit uses (k − Y) L-bins and d(k − Y)/2e MM-bins (including
possibly one M-bin), respectively. Therefore,

BF(Iσ) = Y + (k − Y) +
⌈
k − Y

2

⌉
≤ k +

⌈
k −X

2

⌉
= 3k

2 −
X

2 + ξ(X)
2 , (1)

where ξ(X) = (k −X) mod 2. Using linearity and monotonicity of expectation, we obtain

E[BF(Iσ)] ≤ 3k
2 −

E[X]
2 + Pr[ξ(X) = 1]

2 . (2)

Since σ is uniformly distributed on Sn, each LM-pair arrives in good order with probability
1/2, independently of all other pairs. Therefore, X follows a binomial distribution with
parameters k and 1/2, implying E[X] = k/2 and Pr[ξ(X) = 1] = 1/2. Hence,

E[BF(Iσ)] ≤ 3k
2 −

k/2
2 + 1/2

2 = 5k
4 + 1

4 = 5
4 OPT(I) + 1

4 , (3)

where we used k = OPT(I). This concludes the proof. J

To obtain a slightly weaker bound on the absolute random order ratio (Proposition 1.2),
we analyze some special cases more carefully.

Proof of Proposition 1.2. For k ≥ 4 the claim follows immediately from Equation (3):

E[BF(Iπ)]
OPT(I) = (5k)/4 + 1/4

k
= 5

4 + 1
4k ≤

21
16 .

Since Best Fit is clearly optimal for k = 1, it remains to verify the cases k ∈ {2, 3}.
k = 2 It is easily verified that there are 16 out of 4! = 24 permutations where Best Fit is

optimal and that it opens at most 3 bins otherwise. Therefore,

E[BF(Iσ)] = 1
4! ·

(
16 OPT(I) + 8 · 3

2 OPT(I)
)

= 7
6 OPT(I) < 21

16 OPT(I) .

k = 3 When k is odd, there must be at least one LM-bin in the Best Fit packing: Suppose
for contradiction that all M-items are packed in MM- or M-bins. As k is odd, there must
be an item mi packed in an M-bin. If li arrives before mi, item li is packed in an L-bin,
as there is no LM-bin. Therefore, Best Fit would pack mi with li or some other L-item
instead of opening a new bin. If li arrives after mi, Best Fit would pack li with mi or
some other M-item. We have a contradiction in both cases.
Therefore, for k = 3 we have at least one LM-bin, even if no LM-pair arrives in good order.
Consider the proof of Theorem 1.1. Instead of Y ≥ X, we can use the stronger bound

S. Albers, A. Khan, and L. Ladewig 7:11

Y ≥ X ′ with X ′ := max{1, X} on the number of LM-bins. The new random variable
satisfies E[X ′] = k/2 + 1/2k and Pr[ξ(X ′) = 1] = 1/2 − 1/2k. Adapting Equations (1)
and (2) appropriately, we obtain

E[BF(Iσ)]
OPT(I) = 1

k
·
(

3k
2 −

k/2 + 1/2k
2 + 1/2− 1/2k

2

)
= 5

4 + 1
4k −

1
k2k = 31

24 <
21
16 .J

4 Lower bounds

In this section, we present the improved lower bound on RR∞BF (Theorem 1.4) and the first
lower bound on the absolute random order ratio RRBF.

4.1 Asymptotic random order ratio
Consider the i.i.d.-model, where the input is a sequence of independent and identically
distributed (i.i.d) random variables. Here, the performance measure for an algorithm A is
E[A(In(F))]/E[OPT(In(F))], where In(F) := (X1, . . . , Xn) is a list of n random variables
drawn i.i.d according to F . This model is in general weaker than the random order model,
which is why lower bounds in the random order model can be obtained from the i.i.d. model.
This is formalized in the following lemma.

I Lemma 4.1. Consider any online bin packing algorithm A. Let F be a discrete distribution
and In(F) = (X1, . . . , Xn) be a list of i.i.d. samples. There exists a list I of n items such
that for n→∞,

E[A(Iσ)]
OPT(I) ≥

E[A(In(F))]
E[OPT(In(F))] .

Moreover, if there exists a constant c > 0 such that Xi ≥ c for all i ∈ [n], we have
OPT(I) ≥ cn.

This technique has already been used in [28] to establish the previous bound of 1.08, however,
without a formal proof. Apparently, the only published proofs of this reduction technique
address bin covering [5,11]. We will provide a constructive proof of Lemma 4.1 in the full
version of this paper. Theorem 1.4 follows by combining Lemmas 4.1 and 4.2.

I Lemma 4.2. There exists a discrete distribution F such that for n → ∞, we have
E[A(In(F))] > 11

10 E[OPT(In(F))] and each sample Xi satisfies Xi ≥ 1/4.

Proof. Let F be the discrete distribution which gives an item of size 1/4 with probability p
and an item of size 1/3 with probability q := 1− p. First, we analyze the optimal packing.
Let N4 and N3 be the number of items with size 1/4 and 1/3 in In(F), respectively. We have

E[OPT(In(F))] ≤ E
[
N4
4 + N3

3 + 2
]

= np

4 + nq

3 + 2 = n

(
1
3 −

p

12 + 2
n

)
.

Now, we analyze the expected behavior of Best Fit for In(F). As the only possible item
sizes are 1/4 and 1/3, we can consider each bin of load more than 3/4 as closed. Moreover,
the number of possible loads for open bins is small and Best Fit maintains at most two
open bins at any time. Therefore, we can model the Best Fit packing by a Markov chain
as follows. Let the nine states A,B, . . . , I be defined as in Figure 3b. The corresponding

MFCS 2020

7:12 Best Fit Bin Packing with Random Order Revisited

A

B

C

D

E

F

G

H

I

p

q

p

q

p

q

p

q

1

1

q

p

p

q

p

q

(a) Transition diagram.

State Load of
open bin(s)

A –
B 1/4
C 1/3
D 2/4
E 7/12
F 2/3
G 3/4
H 3/4, 1/3
I 3/4, 2/3

(b) Description of states.

Figure 3 Markov chain from Lemma 4.2. Bold arcs in Figure 3a indicate transitions where Best
Fit opens a new bin.

transition diagram is depicted in Figure 3a. This Markov chain converges to the stationary
distribution

ω = (ωA, . . . , ωI) = 1
λ

(
1, p, q + pqϑ, p2, 2pq + p2qϑ, q2 + 2pq2ϑ, ϑ, qϑ, q2ϑ

)
, (4)

where we defined ϑ = p3

1−q3 and λ = ϑq
(
3− q2) + ϑ + 3. A formal proof of this fact will

appear in the full version of this paper.
Let VS(t) denote the number of visits to state S ∈ {A, . . . , I} up to time t. By a basic result

from the theory of ergodic Markov chains (see [30, Sec. 4.7]), it holds that limt→∞ VS(t) = nωS .
In other words, the proportion of time spent in state S approaches its probability ωS in the
stationary distribution. This fact can be used to bound the total number of opened bins over
time. Note that Best Fit opens a new bin on the transitions A→ B, A→ C, and G→ H

(see Figure 3a). Hence, E[BF(In(F))] = n (ωA + qωG). Setting p = 0.60, we obtain finally

lim
n→∞

E[BF(In(F))]
E[OPT(In(F))] ≥ lim

n→∞
ωA + qωG

1
3 −

p
12 + 2

n

= 1 + qϑ

λ ·
(1

3 −
p
12
) > 11

10 . J

4.2 Absolute random order ratio
Theorem 1.5 follows from the following lemma.

I Lemma 4.3. There exists a list I such that E[BF(Iσ)] = 13
10 OPT(I).

Proof. Let ε > 0 be sufficiently small and let I := (a1, a2, b1, b2, c) where

a1 = a2 = 1
3 + 4ε, b1 = b2 = 1

3 + 16ε, c = 1
3 − 8ε .

An optimal packing of I needs two bins {a1, a2, c} and {b1, b2}, thus OPT(I) = 2. Best Fit
needs two or three bins depending on the order of arrival.

S. Albers, A. Khan, and L. Ladewig 7:13

Let E be the event that exactly one b-item arrives within the first two rounds. After the
second item, the first bin is closed, as its load is at least 1

3 + 16ε+ 1
3 − 8ε = 2

3 + 8ε. Among
the remaining three items, there is a b-item of size 1

3 + 16ε and at least one a-item of size
1
3 + 4ε. This implies that a third bin needs to be opened for the last item. As there are
exactly 2 · 3 · 2! · 3! = 72 permutations where E happens, we have Pr[E] = 72

5! = 3
5 .

On the other side, Best Fit needs only two bins if one of the events F and G, defined in
the following, happen. Let F be the event that both b-items arrive in the first two rounds.
Then, the remaining three items fit into one additional bin. Moreover, let G be the event
that the set of the first two items is a subset of {a1, a2, c}. Then, the first bin has load at
least 2

3 − 4ε, thus no b-item can be packed there. Again, this ensures a packing into two bins.
By counting permutations, we obtain Pr[F] = 2!·3!

5! = 1
10 and Pr[G] = 3·2!·3!

5! = 3
10 .

As the events E, F , and G partition the probability space, we obtain

E[BF(Iσ)]
OPT(I) = Pr[E] · 3 + (Pr[F] + Pr[G]) · 2

2 =
3
5 · 3 +

(1
10 + 3

10
)
· 2

2 = 13
10 . J

The construction from the above proof is used in [23] to prove that Best Fit is 1.5-competitive
under adversarial arrival order if all item sizes are close to 1/3. Interestingly, it gives a strong
lower bound on the absolute random order ratio as well.

Finally, we revisit the case of 1/3-large items. To prove Proposition 1.3, we need to
construct a list I with 1/3-large items and E[BF(Iσ)] > 6

5 OPT(I). Due to space restrictions,
we only sketch the construction here and will provide the entire analysis in the full version of
this paper.

Proof sketch of Proposition 1.3. We construct a list of k = 3 LM-pairs. For sufficiently
small ε > 0 and i ∈ [k] define li = 1

2 + iε and mi = 1
2 − iε. This way, l1 < l2 < l3 and

m1 > m2 > m3. Clearly, OPT(I) = 3. We can show that Best Fit uses 4 instead of 3 bins in
at least 440 permutations. Therefore,

E[BF(Iσ)]
OPT(I) ≥

1
6! · (440 · 4 + (6!− 440) · 3)

3 = 65
54 >

6
5 . J

References
1 A. Al-Herz and A. Pothen. A 2/3-approximation algorithm for vertex-weighted matching.

Discrete Applied Mathematics, 2019. (in press).
2 J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin. A new and improved algorithm for

online bin packing. In Proceedings of the 26th Annual European Symposium on Algorithms
(ESA), volume 112 of LIPIcs, pages 5:1–5:14, 2018.

3 J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin. A new lower bound for classic
online bin packing. In Approximation and Online Algorithms - 17th International Workshop,
(WAOA), volume 11926 of Lecture Notes in Computer Science, pages 18–28. Springer, 2019.

4 J. Boyar, G. Dósa, and L. Epstein. On the absolute approximation ratio for first fit and related
results. Discret. Appl. Math., 160(13-14):1914–1923, 2012.

5 M. G. Christ, L. M. Favrholdt, and K. S. Larsen. Online bin covering: Expectations vs.
guarantees. Theor. Comput. Sci., 556:71–84, 2014.

6 H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali. Approximation and online algorithms
for multidimensional bin packing: A survey. Comput. Sci. Rev., 24:63–79, 2017.

7 E. G. Coffman, J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin packing approximation
algorithms: survey and classification. In Handbook of combinatorial optimization, pages
455–531. Springer New York, 2013.

MFCS 2020

7:14 Best Fit Bin Packing with Random Order Revisited

8 W. F. de la Vega and G. S. Lueker. Bin packing can be solved within 1+epsilon in linear time.
Combinatorica, 1(4):349–355, 1981.

9 G. Dósa and J. Sgall. First fit bin packing: A tight analysis. In 30th International Symposium
on Theoretical Aspects of Computer Science (STACS), volume 20 of LIPIcs, pages 538–549,
2013.

10 G. Dósa and J. Sgall. Optimal analysis of best fit bin packing. In Proceedings of the 41st
International Colloquium on Automata, Languages, and Programming (ICALP), pages 429–441,
2014.

11 C. Fischer and H. Röglin. Probabilistic analysis of the dual next-fit algorithm for bin covering.
In LATIN 2016: Theoretical Informatics - 12th Latin American Symposium, pages 469–482,
2016.

12 C. Fischer and H. Röglin. Probabilistic analysis of online (class-constrained) bin packing and
bin covering. In LATIN 2018: Theoretical Informatics - 13th Latin American Symposium,
volume 10807 of Lecture Notes in Computer Science, pages 461–474. Springer, 2018.

13 B. Gamlath, M. Kapralov, A. Maggiori, O. Svensson, and D. Wajc. Online matching with
general arrivals. In 60th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 26–37, 2019.

14 M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysis of memory allocation
algorithms. In Proceedings of the 4th Annual ACM Symposium on Theory of Computing
(STOC), pages 143–150, 1972.

15 M. R. Garey and D. S. Johnson. "Strong" NP-completeness results: Motivation, examples,
and implications. J. ACM, 25(3):499–508, 1978.

16 R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

17 A. Gupta and S. Singla. Random-order models. CoRR, abs/2002.12159, 2020. arXiv:
2002.12159.

18 R. Hoberg and T. Rothvoss. A logarithmic additive integrality gap for bin packing. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2616–2625, 2017.

19 Z. Huang, N. Kang, Z. G. Tang, X. Wu, Y. Zhang, and X. Zhu. How to match when all
vertices arrive online. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 17–29, 2018.

20 Z. Huang, B. Peng, Z. Gavin Tang, R. Tao, X. Wu, and Y. Zhang. Tight competitive ratios
of classic matching algorithms in the fully online model. In Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2875–2886, 2019.

21 Z. Huang, Z. G. Tang, X. Wu, and Y. Zhang. Online vertex-weighted bipartite matching:
Beating 1-1/e with random arrivals. ACM Trans. Algorithms, 15(3):38:1–38:15, 2019.

22 D. S. Johnson. Fast algorithms for bin packing. J. Comput. Syst. Sci., 8(3):272–314, 1974.
23 D. S. Johnson, A. J. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case

performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput.,
3(4):299–325, 1974.

24 E. G. Coffman Jr., J. Csirik, L. Rónyai, and A. Zsbán. Random-order bin packing. Discret.
Appl. Math., 156(14):2810–2816, 2008.

25 E. G. Coffman Jr. and G. S. Lueker. Probabilistic analysis of packing and partitioning
algorithms. Wiley-Interscience series in discrete mathematics and optimization. Wiley, 1991.

26 N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-
packing problem. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 312–320, 1982.

27 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing (STOC), pages 352–358, 1990.

S. Albers, A. Khan, and L. Ladewig 7:15

28 C. Kenyon. Best-fit bin-packing with random order. In Proceedings of the 7th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 359–364, 1996.

29 C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32(3):562–572,
1985.

30 D. A. Levin and Y. Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Soc., 2017.

31 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based
on strongly factor-revealing LPs. In Proceedings of the 43rd ACM Symposium on Theory of
Computing (STOC), pages 597–606, 2011.

32 A. Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical Computer
Science, 8(4):265–368, 2013.

33 F. D. Murgolo. Anomalous behavior in bin packing algorithms. Discret. Appl. Math., 21(3):229–
243, 1988.

34 P. V. Ramanan. Average-case analysis of the smart next fit algorithm. Inf. Process. Lett.,
31(5):221–225, 1989.

35 P. V. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. On-line bin packing in linear time. J.
Algorithms, 10(3):305–326, 1989.

36 S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002.

MFCS 2020

