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Abstract

In this thesis, we present a method to quantify complex systems' development in the sense

of Gunderson and Holling's adaptive cycle metaphor. The metaphor describes systems' evo-

lution as alternation of predictable and stochastic periods, de�ned by the three systemic

variables of potential, connectedness, and resilience. There have been various attempts to

capture the metaphor in quantitative terms, however, all of them system-speci�c. We in-

troduce a universally applicable method to estimate a system's position within the adaptive

cycle, requiring time-series of components' abundance data only. By means of Schreiber's

transfer entropy, this data is transferred into networks of information transfer, serving as a

basis to compute the three systemic variables. Our de�nitions of potential and connected-

ness are inspired by Ulanowicz's notions of capacity and ascendancy. In order to measure

resilience, we de�ne a variant of the established graph theoretical measure of connectivity.

Various case studies, ranging from economic, over ecological, to micro-biological systems,

validate our method and demonstrate its broad �eld of application. By means of an agent-

based model, we identify the interplay of adaptation and perturbation as possible driver of

the adaptive cycle.
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Zusammenfassung

In dieser Dissertation stellen wir eine Methode vor, mittels derer sich der Entwicklungsprozess

komplexer Systeme im Sinne von Gunderson und Hollings Adaptive Cycle Metaphor quan-

ti�zieren lässt. Die Metapher beschreibt den Entwicklungsprozess als Wechsel zwischen

stabilen und chaotischen Phasen, welche durch die drei systemische Variablen Potenzial,

Connectedness, und Resilienz de�niert sind. Unsere Methode ermöglicht es, die Position

eines allgemeinen komplexen Systems im adaptiven Zyklus zu schätzen. Dabei benötigt sie

lediglich Zeitreihen von Abundanzdaten der Systemkomponenten. Diese Daten werden mit-

tels Schreibers Transfer-Entropie in Informations-Netzwerke umgewandelt, auf deren Basis

die drei systemischen Variablen berechnet werden. Unsere De�nitionen von Potenzial und

Connectedness sind aus Ulanowicz's Ascendancy Theory entlehnt. Resilienz messen wir in

Form einer Variante des etablierten graphentheoretischen Maÿes der Konnektivität. Anhand

verschiedener Fallbeispiele aus den Bereichen der Ökonomie, Ökologie und Mikrobiologie va-

lidieren wir unsere Methode und demonstrieren ihr breites Anwendungsgebiet. Abschlieÿend

identi�zieren wir anhand eines Agenten-basierten Modells das Zusammenspiel von Adapta-

tion und Perturbation als möglichen Treiber des adaptiven Zyklus.
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Introduction

There is nothing permanent except change.

� Heraclitus (544 BC - 483 BC)

Our world is de�ned by change. Changes over millions of years, like the Earth's devel-

opment throughout the geological eras, changes over decades, like the industrial revolution,

changes over years, like economic crises, changes over days, like the movements on stock

markets, or changes over minutes, like local drops of temperature. Some changes, like the

shift of continental plates, can span the whole Earth, others, like human cell development,

span just a few micrometers. Changes do not only di�er in their extent but in the way they

are evaluated as well. While changes like medical advancement or technical progress are

supported and actively driven, there are others which people fear and try to prevent, among

them the global climate change as most recent example. In order to handle the changes of

today and prepare for the changes of tomorrow, we need to understand them. The main

challenge lies in the fact that they usually result from a multitude of interacting factors.

Economic crises can be traced back to the interplay of most diverse �nancial, political, and

social events. Ecological succession is not only driven by the most dominant plant species.

On the contrary, it is not uncommon that initially inconspicuous species turn out to be

key players in change. Besides, abiotic factors like climatic and soil conditions can have a

huge impact as well. Hence, understanding change means understanding the dynamics and

mechanisms of the underlying complex system.

In this thesis, we develop a method to quantify the process of change in complex sys-

tems. The theoretical foundations for our method were established at the end of the 20th

century, when a group of ecologists and economists around L.H. Gunderson and C.S. Holling

formed with the aim to develop a uniform theory of change [39]. They had realized that,

independent of temporal and local scale, ecological, economic, and socio-ecological systems

share a certain pattern of change. This pattern is subject of the adaptive cycle metaphor, a

schematic description of complex systems' development. According to the metaphor, system

development is de�ned by three variables: the system's potential for future changes, the con-

nectedness among its components and internal processes, and its resilience to unpredicted

perturbations. Four repeating phases of system development can be distinguished. During

the long phases of exploitation and conservation, stability and predictability prevail. The

subsequent rapid phases of release and reorganization are characterized by unpredictability

and chance. The alternation between growth and renewal allows the system to adapt to

changing environmental conditions.

The adaptive cycle metaphor does not provide a computational framework for system

development. It is meant to be a conceptual description, a �tool for thought� [1]. Naturally,

ix



various attempts to quantitatively capture the adaptive cycle followed. Applications range

from urban systems [62], over public governance of land use [17], to coastal-marine sys-

tems [22], and phytoplankton communities [10]. However, in all of these examples, system-

speci�c variables are used to measure potential, connectedness, and resilience. Hence, these

approaches cannot be readily transferred to other systems. In this thesis, we develop a

method to determine a complex system's position within the adaptive cycle. The method

is independent of the underlying system, aiming to be universally applicable and thereby

satisfying the abstract nature of the metaphor itself.

Our method follows a two-step approach. In the �rst step, we derive an interaction-

based network representation of the system, which then, in the second step, provides the

basis for quantifying potential, connectedness, and resilience independently of the concrete

instantiation of the system.

Some notes on the �rst step: with complexity emerging from interactions among system

components, interactions constitute the lowest common denominator of complex systems.

Basing our method on interactions therefore ensures its general applicability. Naturally,

interactions occur in di�erent forms, be it predator-prey relationships in ecological systems,

nutrient �uxes in microbiological systems, services in social systems, or cash �ows in eco-

nomic systems. In reality, these interactions are often di�cult to quantify. Assuming that

any e�ective interaction among system components leads to a transfer of information among

them, interactions can be quanti�ed via Schreiber's measure of transfer entropy [67], result-

ing in networks of information transfer. We estimate transfer entropy on basis of time series

of components' abundance data re�ecting the outcome of interactions. Depending on the

system, this data can be of various types. In ecological systems, the abundance of a compo-

nent could be measured by the number of individuals or the total biomass of a species, in

economic systems, a company's abundance could be quanti�ed by its capital.

Our de�nitions of potential and connectedness are inspired by the information theoretical

notions of ascendancy and capacity, which were introduced by Ulanowicz in the course of his

ascendancy theory [76]. But while he applied them to systems being represented as networks

of physical �ows, we apply them to networks of information transfer. The main challenge

of the operationalization lies in the de�nition of resilience. All previous proposals are either

depending on the speci�c observed system (see e.g. [23, 28, 63, 73]) or, originating from

dynamic systems or viability theory, requiring deep knowledge of the underlying systems'

dynamics (see [57] for an overview). Ulanowicz provided a measure of resilience in the course

of his ascendancy theory. However, according to this de�nition, resilience is completely

determined by the values of capacity and ascendancy, making it redundant in our case.

Within the last years, the notion of resilience has been increasingly studied from network

perspective (see e.g. [29,43]). Considering complex systems as networks, this is our starting

point as well. Our de�nition is inspired by the well-established measure of connectivity of
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undirected graphs [25], the smallest non-trivial eigenvalue of the graph's Laplacian matrix,

quantifying its vulnerability to perturbations. Transferring this notion to directed graphs

and applying it to systems' networks of information transfer yields a suitable measure of the

resilience of a system.

Our method is mainly based on three assumptions. In the �rst step, we implicitly assume

that networks of information transfer re�ect complex systems' interaction dynamics. This

assumption is an aspect of the established practice to consider (living) complex systems

as computing systems [53]. We introduce this practice and illustrate its application with

a model of a simpli�ed human intestinal microbiota. In the second step, we assume that

our de�nitions of potential, connectedness, and resilience capture Gunderson and Holling's

understanding of these notions. We support our choices by means of an agent-based model

imitating a system on its course through the adaptive cycle. Finally, we assume that the

adaptive behavior of a system is indeed re�ected in its interaction dynamics. We justify

this assumption by extracting the typical cyclic pattern from the purely interaction-based

Tangled Nature Model [24].

Due to its high generality and the fact that it requires only the most basic information

about a system, our method opens a wide �eld of application. The application examples

in this thesis range from (simulated and real-world) ecological, over microbiological, to

economic systems, demonstrating the method's capabilities in comparing, exploring, and

understanding system development.

The various case studies show that the developmental pattern described in the adaptive

cycle metaphor naturally occurs in complex systems. This raises the question of general

drivers behind this phenomenon. We hypothesize that constant small perturbations in com-

bination with cascading adaptive moves of the system's components result in the typical

cyclic behavior. We support this hypothesis by means of numerical and theoretical exami-

nations of an agent-based model.

The thesis starts with a review of the adaptive cycle metaphor in Section 1. The cycle's

phases and de�ning variables are described and illustrated by means of an ecological example.

Section 2 provides the mathematical framework for our method in form of an introduction

to information theory. We derive the notions and laws that we will refer to throughout the

thesis. After introducing the basic notions in Section 2.1, we put them in the wider context

of total information composition in Section 2.2. Subsequently, we extend the de�nitions to

continuous variables in Section 2.3, since we are mainly considering those in practice.

Section 3 is the centerpiece of the thesis. In this section, we explain our approach, present

our method, and study basic properties of the systemic variables. In Section 3.1, we start

with a description of the �rst step of our method, the estimation of networks of information

transfer. In the following, we derive our de�nitions of potential and connectedness in Section

3.2, referring back to Ulanowicz's ascendancy theory (Section 3.2.1). The check of continuity
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in Section 3.2.2 allows the application of these measures to continuously developing networks.

The derivation of our de�nition of resilience (Section 3.3) requires more preliminary work.

We present basic graph theoretical notions in 3.3.1 as basis for the introduction of directed

Laplacian matrices in Section 3.3.2. Having de�ned resilience, we prove its relation to the

graph's topology in Section 3.3.3, thereby justifying our choice. The study of the three

systemic variables on simple Gilbert graphs in Section 3.4 gives a �rst impression of their

behavior. In Section 3.5, we give an overview of the method, illustrated by a little toy

example. Finally, we brie�y present the R package QtAC, which allows a straightforward

application of our method, in Section 3.6.

The application examples in Section 4 contribute to the validation of our method. We

examine the distributed computation of a human intestinal microbiota in Section 4.1. Our

de�nitions of potential, connectedness, and resilience are tested in Section 4.2. A study of

the tangled nature model in Section 4.3 supports our interaction-based approach.

Section 5 comprises three case studies. We compare the development of di�erent countries

during the Euro crisis in Section 5.1. The exploration of two ecological systems is subject

of Section 5.2. The �rst example treats the succession of a plant community on the volcanic

island of Surtsey (Section 5.2.1). In the second example, a prairie-forest ecotone exposed to

human intervention is considered (Section 5.2.2).

In Section 6, we address the question for the drivers of the adaptive cycle. We hypothesize

that the typical pattern of change described in the adaptive cycle metaphor can result from

the interplay of two processes, adaptation and perturbation. We test these hypotheses

by means of an agent-based model, which is described in Section 6.1. Both simulation

results (Section 6.2) and a mathematical examination of the model (Section 6.3) support

our hypotheses.

The thesis ends with a conclusion, including a brief outlook to future research.
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1

1 The Adaptive Cycle Metaphor

The adaptive cycle metaphor is a heuristic model of change, schematically describing the

development of general complex systems. Complex system is a very broad term and we do

not intend to de�ne it more precisely than as a set of interacting agents. In particular, we

do not make any restrictions on the agents' and the interactions' nature.

This review contains excerpts of [83]. It is based on the descriptions in [39].

The metaphor is based on the assumption that the future behavior of a complex system

is shaped by the development of three comprehensive properties, potential, connectedness,

and resilience. According to Gunderson and Holling, a system's potential encompasses the

capacity the system has at its disposal to react to future changes. It thereby determines

the range of options possible. The connectedness between internal variables and processes

captures the level of inner organization and regulation, in contrast to a high sensitivity to

external variation. It can be understood as a measure of �exibility or rigidity. Resilience is

de�ned as �the magnitude of disturbance that can be absorbed before the system changes the

variables and processes that control behavior � [39, p.28].

Referring solely to the de�nitions given by Gunderson and Holling, it is di�cult to prop-

erly separate the three properties. They all a�ect the system's relation to its surrounding,

however, there are subtle di�erences, given as follows.

� Potential measures the magnitude of external variation a system can survive. Survival

can involve deep internal structural changes.

� Connectedness quanti�es the internal controllability of a system, i.e. the degree to

which it controls its own development. It contrasts the degree to which external

variation forces the system into internal changes.

� Resilience measures the magnitude of internal structural change which can be reversed

by the system.

The application of these de�nitions to speci�c systems is still not obvious since some notions

leave scope for interpretation. When does a system �survive�? If all of its components are

still alive? And when is a change a �structural change�? Answers to these questions are

always case speci�c and subjective.

Let us brie�y illustrate the three systemic variables in the context of a speci�c system,

a community of plant species being exposed to an unexpected drought. A high number and

a good state of health of the individual plants contribute to the system's chance of survival

and thereby to its potential. Assume smaller plants at ground level keep the soil moisture

for larger plants, which, in return, provide shelter for the smaller plants. Symbioses like

this lead to a higher connectedness since they increase the plants' mutual regulation and

decrease their sensitivity to weather conditions. Imagine the drought is so severe that the
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large species get extinct. In this case, the small species, depending on the large species'

shade, will probably disappear as well. Even some time after the drought, the system won't

be able to return to its former state. Hence, its resilience was not high enough to absorb

the e�ects of the drought without changing its de�ning structure.

We will now describe the predicted development of the three systemic variables in the

course of the adaptive cycle. Envisioning an environment of largely unexplored resources, a

system will �rst tend to make use of these resources without any need for higher e�ciency. In

ecology, this is the opportunity for r-strategists [64]. These generalists are characterized by

a high dispersal ability [31], large growth rates, and few demands on their habitat. Following

this terminology, the exploitation phase is also called the r-phase of system development.

Connectedness is still low, potential �rst needs to be build-up, while resilience is typically

high.

Starting to make use of the resources, the system will increase its inner level of organi-

zation. Expertise is generated and through the action of the system, new opportunities (i.e.

niches [60]) are generated, contributing to an optimization in resource utilization. Subsets of

components begin to develop closer relationships and resources are accumulated. Potential

and connectedness slowly increase. However, while increasing levels of optimization make

better use of resources, the dependency among processes and components grows and the in-

creased level of internal organization and specialization has to be sustained. Organization is

not free of cost and therefore requires a share of the resources being captured. These factors

typically lead to a decrease in resilience. At some point, the system enters the conservation

or K-phase. Indeed, in ecological terms, K-strategists dominate this period. These special-

ists have a slower growth rate and lower dispersal ability but are strongly competitive. The

K-phase is characterized by high e�ciency and thus extreme rigidity.

The probability of encountering an external event the system cannot immediately cope

with increases. �In the cases of extreme and growing rigidity, all systems become accidents

waiting to happen� [39, p.45]. Sooner or later, a presumably small trigger then leads to a

breakdown of the current organization in the following Ω-phase. Resources being captured

by the system will be released, connections are broken. Connectedness and potential strongly

decline while resilience increases.

Eventually, processes of mobilization initiate the beginning of a new cycle in form of the

α-phase. Various opportunities will be exploited, some of them leading to new developments,

while others quickly disappear. A system is exposed to a high level of stochasticity. During

this period, the system is being driven by changing environmental conditions, rather than

being capable of shaping the environment towards its own favor. New components might

enter the system, while others get lost. At the shift from α- to r-phase, the collapse of

organization [39, p.38] and the sequestration of remaining capital by components slowly

settling in lead to a decrease in potential. Note that, in our case studies, the α-phase
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is mainly characterized by its lack of a clear pattern in the variables' development. In

particular, we do not generally see a collapse of organization.

Visualizing the development of the variables in the space spanned by potential, con-

nectedness, and resilience generates the typical �lying-eight� depicted in Figure 1. The

alternation between periods of predictability and stability (front loop) and shorter periods

of �creative destruction� [39, p.73] and renewal (back loop) enables complex systems to adapt

to a changing environment. Gunderson and Holling consider a balanced interplay between

these two antagonistic tendencies as key to complex systems' sustainability.

Figure 1: Visualization of Holling's and Gunderson's adaptive cycle metaphor (as appeared
in [83]).

The metaphor's high degree of generality makes it a valuable framework to classify the

development of a broad range of complex systems. However, it has its limits as well. There

are systems living totally passively with external variability, like open-water communities,

and systems anticipating and manipulating variability that do not run through the whole

adaptive cycle but remain in single phases [39]. The case studies underlying the idea of the

adaptive cycle metaphor were all of a third kind: systems (partially) controlling variability

and thereby minimizing its in�uence on the internal structure, like temperate, terrestrial

ecosystems [39]. We will give an example of a system following this strategy to illustrate

the adaptive cycle metaphor.

In the 1960s, the island of Surtsey was formed during a volcanic eruption south of Iceland.

Since then, the �ora and fauna on the island has been closely monitored, providing a unique

possibility to follow every developmental stage of a natural ecosystem. In [55], Magnússon

et al. provide an overview of the succession waves on Surtsey (see Figure 2 for a schematic
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representation). Further details can be found in [65]. We will now interpret the succession

development in the context of the adaptive cycle metaphor.

Figure 2: The adaptive cycle of the ecosystem on Surtsey. Edited version of Figure 20 in [55].

During the �rst decade, both lava and sand soil on Surtsey are largely nutrient-poor and

barren. Only a few mosses, lichen species, and shore plants are found growing on Surtsey.

Their seeds have been brought to the island by wind. Honckenya peploides, or sea sandwort,

is the most successful among the pioneer plants and starts forming patches. At the end of

the decade, the �rst birds are breeding on the island and ten of the twelve observed vascular

plant species have become established.

Considering the ecosystem on Surtsey as complex system, we interpret the �rst years after

the island's formation as α-phase. Typically for this phase, the system is driven by its

environmental conditions, captured by a low connectedness, and various opportunities are

exploited in form of new species trying to settle down. Potential is still low, whereas resilience

is high since the system could easily return to this state after most types of perturbation.

As soon as the �rst pioneer plants have established, the system's r-phase starts. It is

characterized by the slow growth and spreading of r-strategists, in this case undemanding

pioneer plants.

During the next decade, the succession more or less stagnates. Several new species are
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observed on the island, however, only a few of them have become established at the end

of the decade. Among the successful new colonizers is Leymus arenarius, or lyme grass,

which starts forming communities with Honckenya peploides [34]. Honckenya grows close

to the ground, keeping the soil's top-layer moist for tall-growing and extensively rooting

Leymus, which, in turn, provides shelter for Honckenya. The third actor in this community

are breeding gulls. The lyme grass dunes provide nesting material and shelter. The plants,

in return, take advantage of the nutrients introduced by the birds.

We assign the �rst years of this new decade still to the system's r-phase since potential is

slowly accumulated in form of biomass and species' richness, however, no close relationships

among components have been formed yet and the future course of the system is not pre-

dictable. With the just described symbiosis forming, the system passes into its K-phase.

The relationships among the components lead to a strong decrease in sensitivity to external

variability and thereby to an increase in connectedness. Potential in form of biomass is com-

parably high whereas resilience is low. This is mainly due to the fact that symbioses have

created strong dependencies among the species. For some years, the system is characterized

by stability and constancy.

In 1985, the lesser black-backed gulls (Larus fuscus) arrive on the island. There is a sharp

increase in the breeding population and thereby in the nutrients being introduced into the soil

through excreta, lost bits of chick feed, and carcasses. Old colonizers, formerly unsuccessful

due to the nutrient-poor conditions, reoccur. Besides, various new colonizers are brought to

the island by the birds. The plants on the island, serving as nesting material and breeding

space, are now exposed to destruction through the birds. During the following years, the

future course of the ecosystem is formed with former established and newly introduced

species competing. After some time, it becomes apparent that mainly grasses can bene�t

from the new conditions. Vegetation cover is extending and at the end of the decade, the

gull colony region of Surtsey has turned into forb-rich grassland.

We consider the sudden population explosion of gulls as the event triggering the Ω-phase

of the ecosystem. Environmental conditions change drastically, leading to a decline in some

existing species' abundance and to a chance for new species to enter the system. Former

connections are broken, new species have not yet built relationships among each other,

provoking a decline in connectedness. The pressure to adapt to new conditions leads to an

overall decrease in average species' potential. Stochasticity increases along with resilience.

There is a �uent transition from Ω- to α-phase, being characterized by competition among

species. With grasses settling down, the system enters its second r-phase, during which

potential in form of biomass and species richness is accumulated. This phase eventually

leads to another K-phase, shaped by wide, forb-rich grassland.

Note that a more precise division into the four phases is di�cult in this case. The information

provided in literature allows to distinguish periods of change and renewal (back loop of the

cycle) and periods of growth and stability (front loop of the cycle) but phase changes within
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this period cannot be reliably determined.

In summary, following our interpretation, the ecosystem on Surtsey runs through two

adaptive cycles during the �rst three decades. After the formation of the island, di�erent pi-

oneer species occur and vanish again during the α-phase. Some shore plants get established

in the r-phase and form strong relationships in the K-phase, when further colonization stag-

nates. The sudden increase in breeding gulls in 1985 triggers the Ω-phase. New components

enter the system and compete with established ones during the α-phase. The following

r-phase is characterized by the expansion of grasses. Eventually, continuous swards form,

shaping the system during its K-phase.

In this case study, the Ω-phase results in a succession wave, enhancing vegetation and di-

versity. This illustrates the progression and advancement a system breakdown can cause.

In Section 5.2.1, we will return to the succession on Surtsey and derive our - so far

descriptive - explanations from data. More precisely, we apply our method to species'

abundance data collected in an experimental plot on the island between 1990 and 2018,

capturing the local succession events in this period. However, in order to properly present

our method, we �rst need to establish the theoretical foundation. We will start with an

introduction to information theory in the following section.
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2 Information Theoretic Framework

Our method to quantify the adaptive cycle is based on information theoretical concepts

at two crucial points. Firstly, in the estimation of a system's network representation via

Schreiber's transfer entropy, and secondly, in the computation of potential and connected-

ness, being variants of entropy and mutual information of the network's edges. We will

therefore provide an introduction to the basic concepts of information theory in this section.

Section 2.1 serves as an overview of the most fundamental notions of information theory,

starting from a variable's (Shannon) entropy. After presenting some variants of entropy,

we will consider the information structure between several variables, leading from the com-

mon measure of mutual information to transfer entropy. Information being transferred from

other variables is not the only source of information. The total information composition

is examined in Section 2.2. This requires, inter alia, the introduction of active information

storage. Since many of the naturally occurring complex systems are of continuous nature,

we will consider the continuous analogues of the information theoretical measures in Section

2.3.

Throughout the whole thesis, we follow the conventions that 0 · log(0) = 0 and 0
0 = 0.

2.1 Basic notions

Let X be a discrete random variable taking values in the alphabet αX . In this context,

discrete means that αX is �nite. We denote the probability that X takes on a value x ∈ αX
by p(x). Note that we distinguish probability distributions by their argument only, i.e.

p(x) = P (X = x), p(y) = P (Y = y), p(x, y) = P (X = x, Y = y), etc.

We will now present a fundamental measure of information content, the Shannon entropy.

Imagine a message telling us that X = x for some x ∈ αX . This message is very surprising

or, equivalently, contains a lot of information, if p(x) is small. If X = x is very likely

to happen, the message is neither surprising nor really informative. This property can be

quanti�ed by the (Shannon) information content or local entropy [20, Ch.3]

HX(x) = − log (p(x)) .

Using the natural logarithm returns information in nats, base 2 yields information in bits.

Averaging over all possible values of X yields its Shannon entropy [27, Ch.2].

De�nition 1. The (Shannon) entropy of a discrete random variable X over the alphabet

αX , following the probability distribution p(x), is de�ned as

HX = −
∑
x∈αX

p(x) · log (p(x)) .

The entropy of X can be understood as the expected information content in the outcome
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of X, or, in other words, as the expected degree of surprise in a message about the outcome

of X. Considering the logarithm of base 2, H(X) has a very concrete interpretation. Assume

you want to encode the outcome of X in bits, hence, assign a unique string of bits c(x) to

every element x ∈ αX . Let l(c(x)) be the length of this string. An encoding which minimizes

the expected length ∑
x∈αX

p(x) · l(c(x))

is called optimal encoding. Then, dH(X)e measures the average minimum length of c(x) in

an optimal encoding [20, Ch.3].

The idea of entropy can be naturally extended to two variables [27, Ch.2].

De�nition 2. Let X and Y be two discrete random variables over the alphabets αX and

αY , respectively, following the probability distributions p(x) and p(y), respectively. The joint

entropy of X and Y is de�ned as

HX,Y = −
∑
x∈αX

∑
y∈αY

p(x, y) · log (p(x, y)) .

Their conditional entropy is de�ned as

HY |X = −
∑
x∈αX

∑
y∈αY

p(x, y) · log (p(y|x)) .

The individual summands are referred to as the respective local values.

Intuitively, conditional entropy quanti�es the remaining uncertainty about the outcome

of Y when the outcome of X is known. A short computation shows that [27, Ch.2]

HX,Y = HX +HY |X . (1)

The shared information between two random variables is measured by the variables' mutual

information [27, Ch.2].

De�nition 3. Let X and Y be two discrete random variables over the alphabets αX and αY ,

respectively, following the probability distributions p(x) and p(y), respectively. The mutual

information between X and Y is de�ned as

IX;Y =
∑
x∈αX

∑
y∈αY

p(x, y) · log

(
p(x, y)

p(x) · p(y)

)
=
∑
x∈αX

∑
y∈αY

p(x, y) · log

(
p(x|y)

p(x)

)
=
∑
x∈αX

∑
y∈αY

p(x, y) · log

(
p(y|x)

p(y)

)
.
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An individual summand is referred to as local mutual information.

Mutual information symmetrically captures the expected reduction in uncertainty about

the outcome of one variable if knowing the outcome of the other variable. This relation is

re�ected by the equality [27, Ch.2]

IX;Y = HX −HX|Y = HY −HY |X = IY,X . (2)

Together, Equations (1) and (2) yield

IX;Y = HX +HY −HX,Y . (3)

Equations (1), (2), and (3) hold for the local values of the measures as well.

The measure of conditional mutual information allows to distinguish between directly

shared information and information which both variables gain from a third variable Z [20,

Ch.3].

De�nition 4. Let X, Y , and Z be three discrete random variables over the alphabets αX ,

αY , and αZ , respectively, following the probability distributions p(x), p(y), and p(z), respec-

tively. The mutual information between X and Y conditioned on Z

IX;Y |Z =
∑
z∈αZ

∑
x∈αX

∑
y∈αY

p(x, y, z) · log

(
p(x|y, z)
p(x|z)

)

is called conditional mutual information. An individual summand is referred to as local

conditional mutual information.

Analogously to Equation (3), we obtain

IX;Y |Z = HX|Z +HY |Z −HX,Y |Z . (4)

Equation (4) applies to the local version of the measures as well.

Note that mutual information and conditional mutual information are always non-negative

[20, Ch.3]. However, their local values can be negative. Consider

IX;Y (x, y) < 0 ⇐⇒ p(x, y)

p(x) · p(y)
< 1 ⇐⇒ p(x|y) < p(x).

In this case, the occurrence of y decreases our expectation of the occurrence of x. Hence, in

a situation where x and y occur together, y is misinformative about x. The summand

p(x, y, z) · log

(
p(x|y, z)
p(x|z)

)
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quanti�es the expected amount of misinformation about x by y.

Having considered static variables so far, we will now focus on processes, i.e. sequences of

random variables. In absence of a measure capturing dynamical and directional information

exchange among processes, Schreiber proposed the measure of transfer entropy [67]. Let

X = (. . . , Xi, Xi+1, . . . ) and Y = (. . . , Yi, Yi+1, . . . ) be two stationary discrete Markov

processes of �nite order k and l, respectively. Stationarity implies that both joint and

individual probability distributions are not time-dependent. By discrete we mean that the

alphabets αX and αY underlying the random variables X and Y , respectively, are �nite.

Note that, in the following, we will distinguish the alphabets αXi , αXi+1 , . . . although they

are all equal. This emphasizes the dynamical character of the measures and facilitates the

understanding of the measures' estimators. The Markov orders tell us that

p(xi+1|xi, . . . , xi−k+1) = p(xi+1|xi, . . . , xi−k+1, xi−k) and

p(yi+1|yi, . . . , yi−l+1) = p(yi+1|yi, . . . , yi−l+1, yi−l).

In the following, we will use the short form x
(k)
i = (xi, . . . , xi−k+1). If the generalized

Markov property

p
(
xi+1

∣∣∣x(k)i

)
= p

(
xi+1

∣∣∣x(k)i , y
(l)
i

)
(5)

holds, the state of Y has no in�uence on the transition probabilities of X. The degree to

which the state of Y has an in�uence on the transition probabilities of X is quanti�ed by

Schreiber's (apparent) transfer entropy (TE) [67].

De�nition 5. Let X = (. . . , Xi, Xi+1, . . . ) and Y = (. . . , Yi, Yi+1, . . . ) be two stationary

discrete Markov processes of order k and l, respectively. Denote by αXi
the alphabet of

Xi. Set X
(k)
i = (Xi, Xi−1, . . . , Xi−k+1) over the alphabet α

X
(k)
i
, and Y

(l)
i analogously. The

transfer entropy from Y to X is de�ned as

TY→X =
∑
αXi+1

∑
α

Y
(l)
i

∑
α

X
(k)
i

p
(
xi+1, x

(k)
i , y

(l)
i

)
· log

p
(
xi+1

∣∣∣x(k)i , y
(l)
i

)
p
(
xi+1

∣∣∣x(k)i

)
 . (6)

The individual summands are called local transfer entropies.

It can be easily seen that

TY→X = I
Xi+1;Y

(l)
i |X

(k)
i
.

As such, transfer entropy is always non-negative. Local transfer entropy is negative if

p
(
xi+1

∣∣∣x(k)i , y
(l)
i

)
< p

(
xi+1

∣∣∣x(k)i

)
.

Hence, in this case, its absolute value measures the expected amount of misinformation

about xi+1 by y(l)i . Since transfer entropy is a directed measure of statistical dependence
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between two processes, we will from now on distinguish between the source (process) (Y in

the above de�nition) and the destination (process) (X in the above de�nition). Following

this terminology, transfer entropy can be understood as the average amount of information

in the source Y about the next state of the destination X that was not already contained in

the past of X itself. Whenever the source process Y is a possible information contributor of

the destination process X [51], TY→X can be interpreted as information transfer from Y to

X, giving insights about the emergent computation of the underlying system. Information

transfer can be clearly distinguished from the frequently used notion of information �ow,

which captures direct causal e�ects [51].

We will now consider the amount of information in the outcome xi+1 of a variableXi+1 as

the amount of information needed to compute state xi+1 at time i. This information can be

assigned to di�erent sources, inter alia the history of the process itself and the history of other

processes, being possible information contributors. Introducing two additional information

theoretical measures allows a total information composition for systems of multiple processes.

2.2 Total information composition

This review follows [69] and is based on the descriptions in [53]. Consider a system V =

{. . . , X, Y, Z, . . . } of countably many processes which can be approximated by stationary

discrete Markov processes. From now on, we will refer to the processes as the system's

agents. The average information contained in the states of an agent X is captured by the

agent's entropy

HX = −
∑
αX

p(x) · log (p(x)) .

It measures the expected amount of information needed to predict xi+1 at time i. This

information can be decomposed into three components.

The �rst component is the information being stored in the agent's past and being in use

in computing its next state. It is quanti�ed by the active information storage (AIS) [53].

De�nition 6. Let X = (. . . , Xi, Xi+1, . . . ) be a stationary discrete Markov process of order

k. The active information storage of X is de�ned as

AX =
∑
αXi+1

∑
α

X
(k)
i

p
(
xi+1, x

(k)
i

)
· log

p
(
xi+1

∣∣∣x(k)i

)
p(xi+1)

 .

An individual summand is referred to as local active information storage.

Clearly,

AX = I
Xi+1;X

(k)
i
.
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As mutual information, active information storage is always non-negative. However, the

local quantities are negative if

p
(
xi+1

∣∣∣x(k)i

)
< p(xi+1),

measuring the expected amount of misinformation between the past x(k)i and the next state

xi+1.

The information provided by other agents and not being contained in X's own past is

comprised in the second component. We con�ne ourselves to agents whose information could

possibly be processed by X in order to avoid artifacts. The subset of possible information

contributors can be determined on basis of background knowledge of the system or using

computational methods (compare [51]). Let VX =
{
. . . , Zs, Zs+1, . . .

}
⊂ V be the set of all

possible information contributors of X in the system except for X itself and

VX,i =
(
. . . , Zsi , Z

s+1
i , . . .

)
.

Let αVX,i
be the alphabet of VX,i and denote an element of the alphabet by vX,i. The

information being transferred to X from other agents is combined in the collective transfer

entropy [53].

De�nition 7. Let X = (. . . , Xi, Xi+1, . . . ) be a stationary discrete Markov process of order

k. The collective transfer entropy of X is de�ned as

TX =
∑
αXi+1

∑
α

X
(k)
i

∑
αVX,i

p
(
xi+1, x

(k)
i , vX,i

)
· log

p
(
xi+1

∣∣∣x(k)i , vX,i

)
p
(
xi+1

∣∣∣x(k)i

)
 .

An individual summand is called local collective transfer entropy.

In contrast to apparent TE, which captures only single-source transfers, collective TE

captures single-source transfers as well as interaction-based transfers to X. Note that the

collective transfer entropy is not the sum of the apparent transfer entropies from all sources

but a sum of incrementally conditioned transfer entropies [53]. Analogously to the case of

local AIS, negative local (collective) TE indicates that the sources' past states have been

misinformative about the agent's next state.

Information in the agent's state neither being stored in its past nor being transferred from

other agents is the third component and measured by the local intrinsic uncertainty [53].

De�nition 8. Let X = (. . . , Xi, Xi+1, . . . ) be a stationary discrete Markov process of order
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k. The intrinsic uncertainty of X is de�ned as

UX =
∑
αXi+1

∑
α

X
(k)
i

∑
α
V(k)
Xi

−p
(
xi+1, x

(k)
i , vx,i

)
· log

(
p
(
xi+1

∣∣∣x(k)i , vx,i

))
.

We refer to an individual summand as local intrinsic uncertainty.

Hence, the information needed to predict the next state of an agent is a composition of

information being stored in the agent's own past, information being transferred from other

agents, and intrinsic uncertainty. Formally, this can be expressed as [53]

HX = AX + TX + UX . (7)

Equation (7) holds true for the local versions as well [53].

The local and non-local versions of the information-theoretic measures di�er in their

scope of application. The local measures are highly sensitive to short-term changes in the

underlying time series, allowing a temporally more detailed analysis while at the same time

increasing the amount of noise in the results. In contrast, the non-local measures yield

smoother results, which is helpful in analyzing long-term development but can prevent the

detection of small changes in the underlying data.

So far, we have only considered information theoretic measures of discrete random vari-

ables. We will now extend these de�nitions to continuous random variables.

2.3 Di�erential entropy

Information theoretic measures of continuous random variables are based on the de�nition

of di�erential entropy, the continuous analogue of Shannon entropy ( [27, Ch.8]).

De�nition 9. Let X be a continuous random variable with probability density function f(x)

and SX the support of f(x), i.e. the set where f(x) > 0. The di�erential entropy of X is

de�ned as

HX = −
∫
SX

f(x) · log (f(x)) dx.

Note that the di�erential entropy of X is not necessarily equal to the Shannon entropy

obtained when discretizing X. The di�erential entropy of X changes with scaling of X and

can be negative [49]. In contrast, the di�erential mutual information of X and Y , which we

will de�ne in the following, is equal to the mutual information of the discretized variables

X4 and Y 4 for the bin size limit 4 → 0 [49]. In particular, the two measures share the

same properties.

De�nition 10. Let X and Y be continuous random variables with density functions f(x)

and f(y), supports SX and SY , respectively, and joint density function f(x, y). The di�er-
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ential mutual information between X and Y is de�ned as

IX;Y = −
∫
SX ,SY

f(x, y) · log

(
f(x, y)

f(x) · f(y)

)
dx dy.

Analogously, continuous transfer entropy can be de�ned [45]. Just like mutual informa-

tion, it is always non-negative [82].

De�nition 11. Let X and Y be two stationary continuous Markov processes of order k and
l. The continuous transfer entropy from Y to X is de�ned as

TY→X =

∫
SXi+1

∫
S
X

(k)
i

∫
S
Y

(l)
i

f
(
xi+1, x

(k)
i , y

(l)
i

)
· log

f
(
xi+1, x

(k)
i , y

(l)
i

)
f
(
xi+1, x

(k)
i

)
 dxi+1 dx

(k)
i dy

(l)
i ,

where SXi+1
, S

X
(k)
i
, and S

Y
(l)
i

are the supports of the respective density functions.

The main challenge in applying these measures to real-world data lies in the fact that

probability or density functions underlying the data sets are usually not known. Hence, they

have to be estimated on basis of the available samples. See [20, Ch.3 and Ch.4], [49], or [45]

for a general overview of various estimation techniques.

Now that we have brie�y introduced the information theoretic concepts being used in this

thesis, we will return to the key question: how can we make the adaptive cycle computable?
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3 Quanti�cation of the Adaptive Cycle

After its �rst publication in 2001 [40], the idea of the adaptive cycle metaphor has entered

several �elds of research, in particular the �eld of socio-ecology. There have been various

attempts to capture the adaptive cycle in terms of quantitative measurements. However,

all of these approaches are system-speci�c. In this thesis, we develop a two-step universally

applicable method to determine a complex system's position in the adaptive cycle. The

method has been published by zu Castell and the author in [83].

In order to achieve universal applicability, our de�nitions of potential, connectedness,

and resilience need to be de�ned on a very general representation of complex systems. We

create such a representation in the �rst step of our method, making use of the abstract

nature of information theory. Before going into detail, we want to outline the theoretical

background of this �rst step.

Let V be a complex system. We identify each of its agents with a stationary Markov pro-

cess X = (. . . , Xi, Xi+1, . . . ), specifying the agent's state at each time point. Assuming that

every e�ective interaction among the agents leads to a transfer of information between them,

transfer entropy as de�ned in (5) can be used to quantify interactions within the system.

Following the notation of transfer entropy after De�nition 5, every transfer determines a

source and a destination agent. We consider the destination agent, being the one which pro-

cesses information, as the active agent. Let TY→X be the (local) transfer entropy from agent

Y to agent X. Considering the system's agents as nodes and the transfer entropy between

them as edges yields a network representation which serves as a basis to compute potential,

connectedness, and resilience independently of the concrete instantiation. While networks

of averaged transfer entropy re�ect the system's overall interaction structure, networks of

local transfer entropy capture its interaction structure in the event of speci�c outcomes of

the Markov processes.

In reality, the only information available about systems' agents X are series of states

X̃ = (x̃1, . . . , x̃T ) for a �nite number of time points 1, . . . , T . We assume stationarity of

the underlying processes X. Since the probabilities/densities occurring in the de�nition of

transfer entropy are usually not known, they have to be estimated on basis of the available

samples. Let Ỹ be the realization of another agent. Transfer entropy from Y to X can be

approximated via [45]

T̃Y→X =

N−1∑
i=max{k,l}

log

 p̃
(
x̃i+1|x̃(k)i , ỹ

(l)
i

)
p̃
(
x̃i+1|x̃(k)i

)
 , (8)

where p̃ denote the probabilities/densities estimated on basis of X̃ and Ỹ . Common es-

timation techniques include for example Gaussian and kernel estimation (see [49] for an
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overview). The single summands represent estimations of the local transfer entropies.

The technique described above allows us to estimate one network, which then serves as

a basis to compute the three systemic variables. However, one absolute value of potential,

connectedness, and resilience each does not give us any insight about the system's position

in the adaptive cycle. We need to know the development of the three systemic variables to

determine the phase it is currently in. Hence, we need to extract a series of information

networks, capturing the system's information dynamics. One possibility would be to consider

networks of local transfer entropy, since they represent the system's interaction structure

at speci�c time points. However, local values are very sensitive to noise in the underlying

data. We estimate transfer entropy for certain time windows of data, creating a compromise

between detailed dynamics and reliability. Hence, in order to estimate transfer entropy at

time t (max{k, l} + 1 ≤ t ≤ T ), setting a window size of wt (max{k, l} + 1 ≤ wt ≤ T ), we

calculate

T̃ tY→X =

t−1∑
i=t−wt+1+max{k,l}

log

 p̃
(
x̃i+1|x̃(k)i , ỹ

(l)
i

)
p̃
(
x̃i+1

∣∣∣ x̃(k)i

)
 , (9)

with the probabilities/densities p̃ being estimated on basis of data in the time window, i.e.

X̃ = (x̃t−wt+1, . . . , x̃t) and Ỹ = (ỹt−wt+1, . . . , ỹt).

In the following, we will present our approach and its implementation in detail. We

will start with the method's �rst step, the estimation of networks of information transfer

(Section 3.1) and continue with the de�nitions of potential, connectedness and resilience in

Sections 3.2 and 3.3. After a short examination of the three variables' behavior on random

graphs (Section 3.4), we provide an overview of the method and illustrate its structure with

a toy example in Section 3.5. Section 3.6 presents the R package QtAC (Quantifying the

Adaptive Cycle), which enables a straightforward application of our method.

3.1 Estimation of networks of information transfer

This section is partly taken from [83]. Let V be a complex system whose agents X can be

identi�ed with stationary Markov processes X = (. . . , Xi, Xi+1, . . . ), specifying the agent's

states at each time point. Assume that the only available information about each process is

a �nite realization X̃ = (x̃1, . . . , x̃T ) at time points 1, . . . , T . Let X and Y be two di�erent

agents of the system. In order to quantify their e�ective interaction, we estimate transfer

entropy between them. At this point, the stationarity assumption is indispensable. It allows

us to consider the data points {x̃i|i = 1, . . . , T} as samples of only one random variable.

Omitting this assumption, a reliable estimation would require several realizations of X,

which are, in reality, rarely available. The validity of the stationarity assumption of course

depends on the concrete application example, however, it is in many cases justi�able for at

least time windows of a certain length.
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In order to estimate transfer entropy at time t, we use all samples falling within a time

window preceding time t, i.e. (x̃t, . . . , x̃t−wt+1). The size wt of this windows can either be

�xed, or depend on the time t, i.e. wt = t. In the �rst case, the window is shifted along

with t to guarantee transfer entropy always being estimated on the same number of samples.

Stationarity of the underlying processes has to be assumed for the �xed window size only.

In the second case, the window starts at the beginning of the time series and is extended

with increasing t. In this case, the full history of the time series is considered for estimating

transfer entropy. The choice of the window size depends on the system under consideration

and the speci�c question. In any case, it should be at least as large as the assumed order of

the underlying Markov process.

Depending on the size of wt and the data being available, it can be useful to increase

the number of data points falling within every window by interpolation. To this end, we

use the function pchip as being implemented in Matlab and R. Interpolation stabilizes the

estimation in case of small window sizes. At the same time, interpolating too many points

reduces stochasticity in the time series due to the deterministic component being introduced

by the interpolation model. Thus, there is a trade-o� between stochasticity and stability

which has to be taken into account.

We estimate the networks of information transfer using the �rst Kraskov-Stögbauer-

Grassberger (KSG) estimator TransferEntropyCalculatorKraskov as being provided with

the JIDT toolkit [49]. It is based on the principles of a simple kernel estimator. The re-

quired probability density functions are estimated via kernel functions and used directly to

compute local transfer entropy at each sample
(
x̃i+1, x̃

(k)
i , ỹ

(l)
i

)
. Averaging over the local

values results in the transfer entropy between the two processes in the respective time win-

dow (compare Equation (8)). We use the KSG estimator since it is optimized to deal with

small sample sizes. See [45,48,49] for details.

Table 1 displays those arguments of the estimation function, whose values will vary through-

out the case studies presented in this thesis. We always use the default values for the pa-

rameters not mentioned here. When estimating transfer entropy from Y to X at time t,

we use (ỹt−wt+1, . . . , ỹt) as source data and (x̃t−wt+1, . . . , x̃t) as destination data. Applying

the function in the mode computeAverageLocalOfObservations yields non-local transfer

entropy. The embedding lengths of past history k and l should be at least as large as the

orders of the underlying Markov processes. This order can either be determined on basis of

background knowledge of the system or be estimated using the Ragwitz optimization tech-

nique incorporated in the toolkit [49]. The so-called embedding delay kτ ∈ N is included via

x
(k)
i = (xi, xi−τ , . . . , xi−(k−1)·τ ) and can be used to better empirically capture the state of

the underlying variable. The delay u between source and destination denotes the time lag

between the destination's next element xi+1 and the source's last element yi−u. It should

be increased according to the expected causal delay within the system.
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Description Default

source series of observations for the source process

destination series of observations for the destination process

mode local TE or average over local values

k embedding length of destination past history 1

kτ embedding delay for the destination variable 1

l embedding length of source past history 1

lτ embedding delay for the source variable 1

delay u time lag between source and destination 1

Table 1: Arguments of the Kraskov-Stögbauer-Grassberger estimator incorporated in the
JIDT toolkit.

To distinguish actual interactions from random noise, we test the estimate via bootstrap-

ping using the function computeSignificance incorporated in the toolkit. If the estimate

is non-negative and below a given signi�cance level, we accept it as weight of edge eY→X .

Repeating this procedure with all pairs of di�erent components at �xed time t results in a

weighted, directed graph

Gt = (V, {eY→X |(Y,X) ∈ V × V}) (10)

with weight function

ωt : V × V → R+

eY→X 7→

T̃ tY→X , if the value is non-negative and signi�cant,

0, otherwise,

as being our inferred model of interaction at time t. Given time series of abundances of

length T for each component, we can estimate a sequence of interaction networks for time

points w1, w1 + 1, . . . , T .

Summarizing, the �rst step of our method infers models of information among the given

variables in form of a series of networks Gw1 , . . . , GT , capturing the dynamics of the system's

e�ective interaction pattern. The network Gt provides the basis for the computation of

potential, connectedness, and resilience of the system at time t.

3.2 De�nition of potential and connectedness

In order to quantify potential and connectedness of a complex system at a given time,

we take recourse to information theoretic measures provided in the course of Ulanowicz's

ecological ascendancy theory [74]. Ulanowicz was not the �rst to apply information theory
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(IT) to ecology. Indeed, it was in 1955 that MacArthur presented an approach of how IT

could be used to analyze networks of ecological �ows [54]. He thereby provided an innovative

framework for ecologists following the idea of Odum (see e.g. [61]) to consider an ecosystem

as the ensemble of relationships among its components. In the subsequent years, however,

IT was increasingly used in an autecological sense, applying it to distributions of numbers

of organisms. Giving rise to ambiguity and yielding only few insights, disappointment arose

and �nally resulted in a broad rejection of IT in ecology [75]. In the seventies, Rutledge et

al. revived and re�ned MacArthur's approach, paving the way for Ulanowicz, who was at

this time seeking for a quanti�cation of ecological succession.

We will now present Ulanowicz's quantitative approach to ecological succession, leading

to our de�nitions of potential and connectedness. Afterwards, we will prove the measures'

continuity.

3.2.1 Ulanowicz's ascendancy theory

In the late 20th century, several formal descriptions of ecological succession existed, among

them Odum's 24 attributes of ecosystems in mature stages [61]. These attributes include a

large amount of organic matter, a well-organized community structure, narrrow niches, and

a high information content. However, a purely numerical description of ecological succession

was still missing. Ulanowicz addressed this task by developing the ascendancy theory [74].

The theory is based on the assumption that the main driver behind succession is auto-

catalysis, a positive feedback mechanism consisting only of positive component interactions.

Ulanowicz demonstrates that autocatalysis can explain various system behaviors like growth,

selection, and competition. Speaking in terms of ecological networks, autocatalysis induces

the transfer from loosely coupled, random exchanges to determinate, e�ective exchanges.

It has both extensive e�ects, showing in an increase in total system activity, and intensive

e�ects, which can be understood as focusing on autocatalytically e�ective processes. He

combines the quanti�cation of both e�ects in the measure of ascendancy, which we will now

de�ne.

Consider an ecosystem at a given time as the directed, weighted network G of physical

�ows e among its set of components V, i.e.

G = (V, {eY→X |(Y,X) ∈ V × V})

with weight function

ω : V × V → R≥0
eY→X 7→ FY→X .
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Then, the total system throughput

F =
∑

(Y,X)∈V×V
FY→X

serves as a measure of total system activity and by this the extensive e�ects of autocatalysis.

In order to quantify the intensive e�ects of autocatalysis, consider random variables A and

B describing the �ow of medium out of and into components, respectively. Recall that

mutual information measures the constraint and thereby the deviation from indeterminacy

between two variables (see De�nition 3 in Section 2). Let AY be the event of medium

leaving component Y and BX the event of medium entering component X. Then, the

mutual information between A and B is

IA;B =
∑

(Y,X)∈V×V
p(AY , BX) · log

(
p(AY , BX)

p(AY ) · p(BX)

)
.

Using the estimators p(AY , BX) = FY→X/F and

p(AY ) =
∑
X′∈V

FY→X′/F

p(BX) =
∑
Y ′∈V

FY ′→X/F,

we can estimate the mutual information via

ĨA;B =
∑

(Y,X)∈V×V

FY→X
F

· log

(
FY→X · F∑

X′∈V FY→X′ ·
∑
Y ′∈V FY ′→X

)
.

Note that a summand of ĨA;B becomes maximal if

FY→X =
∑
X′∈V

FY→X′ =
∑
Y ′∈V

FY ′→X ,

hence, if the only edge leaving Y and the only edge arriving at X is the edge from Y to X.

In this case, knowing that medium is leaving Y means knowing that medium is arriving at

Y and the other way round. The transfer is determinate and focused. Scaling ĨA;B with the

total system throughput F yields the system's ascendancy

A =
∑

(Y,X)∈V×V
FY→X · log

(
FY→X · F∑

X′∈V FY→X′ ·
∑
Y ′∈V FY ′→X

)
.

Coming back to the characteristics of ecosystem maturation as described by Odum,

Ulanowicz notes that all of them necessarily lead to an increase in ascendancy. He states

the following principle [74, p.311]:
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�In the absence of major perturbations, ecosystems exhibit a propensity towards

a con�guration of ever-greater network ascendancy.�

Under this assumption, system's ascendancy can be understood as a quanti�cation of suc-

cession.

The ascendancy of a system is always bounded from above by the system's aggregate

indeterminacy or capacity [76]

K = −
∑

(Y,X)∈V×V
FY→X · log

(
FY→X
F

)
.

Note that the capacity is a (scaled) entropy estimator of the random variable which de-

scribes the system's �ows (see De�nition 1). As such, it is high in the case of many, equally

weighted �ows.

The di�erence between capacity and ascendancy indicates the degree of disorder, indeter-

minacy, and ine�ciency in the network. Those aspects prove to be advantageous in times

of perturbations and thereby contribute to the system's stability and ability to survive.

Ulanowicz understands capacity as a measure of the system's sustainability since it quanti-

�es both e�cient growth and stability.

In his computations of ascendancy and capacity, Ulanowicz usually uses 2 as base for the

logarithm [74,76].

Let us recall our heuristic de�nitions of potential and connectedness from Section 1.

Potential measures the magnitude of external variation a system can survive. Survival can

involve deep internal structural changes. Ulanowicz's measure of capacity captures exactly

this idea. Sustainability requires the capability to survive external variation. Conversely,

e�cient growth and stability are essential for the survival in a changing environment.

Connectedness quanti�es the internal controllability of a system, i.e. the degree to which

it controls its own development. It contrasts the degree to which external variation forces

the system into internal changes. A system of high ascendancy is characterized by e�ec-

tive, streamlined interactions, which create dependencies and mutual regulation among the

agents and decrease sensitivity towards environmental variation. Hence, ascendancy can be

understood as a measure of a system's connectedness. Ulanowicz himself made that connec-

tion between his theory and the adaptive cycle when describing a system of high ascendancy

as a �catastrophe waiting to happen� [74, p. 311] - words that Holling used to characterize

a system of high connectedness in [40].

We use Ulanowicz's capacity and ascendancy as measures of potential and connectedness,

respectively. But we go beyond Ulanowicz's approach by applying his measures to networks

of information transfer as de�ned in Section 3.1 instead of networks of physical �ows. We

identify a system V at a given time with the weighted, directed network G of information
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transfers among its components following Equation (10). We de�ne the system's potential

at the given time as

P = −
∑

(Y,X)∈V×V
TY→X · log2

(
TY→X
T

)
and the system's connectedness at the given time as

C =
∑

(Y,X)∈V×V
TY→X · log2

(
TY→X · T∑

X′∈V TY→X′ ·
∑
Y ′∈V TY ′→X

)
.

Applying the measures to a system's information theoretic structure instead of its ex-

plicit interaction structure does not change the measures' meaning. The consequences of an

e�ective interaction, be they positive or negative for the components involved, are re�ected

in suitable components' abundance data, on the basis of which the networks of information

transfer are estimated. Every e�ective interaction will thus result in a transfer of information

between the respective components. Hence, our approach builds on the e�ects of interac-

tions, irrespective of their concrete instantiation. The change to information networks does

not cause any information loss. On the contrary, as a network of information transfer only

captures e�ective interactions among the components, it can yield an even more re�ned

picture of the system's internal dynamics than networks of physical �ows. A further advan-

tage of the information theoretic approach is the practical applicability. In contrast to data

on physical �ows of a system, which is rarely available in practice, components' abundance

data belongs to the most basic information about a system. The estimation does not even

require homogeneous units. Hence, considering networks of information transfer instead of

networks of physical �ows signi�cantly expands the application possibilities of our method.

It remains to verify the continuity of these measures with respect to edges whose weight

is converging to zero.

3.2.2 Continuity of the measures

Let N ∈ N and V = {1, . . . , N}. Recalling the conventions 0
0 = 0 and 0·log(0) = 0, potential

and connectedness are de�ned as functions

P : RN×N≥0 → R

(x)ij 7→
∑

(i,j)∈V×V
xi,j · log

(xi,j
x

)
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and

C : RN×N≥0 → R

(x)ij 7→
∑

(i,j)∈V×V
xi,j · log

(
xi,j · x∗∗
xi∗ · x∗j

)
,

where

x∗∗ =
∑

(i,j)∈V×V
xi,j xi∗ =

N∑
j=1

xi,j x∗j =

N∑
i=1

xi,j .

Besides, de�ne

xi,j∗∗ = x∗∗ − xi,j ,
xi,ji∗ = xi∗ − xi,j ,
xi,j∗j = x∗j − xi,j .

We want to show that the extension of the functions P and C from RN×N>0 to RN×N≥0 is

continuous. We only have to verify continuity of one summand of P and C. The continuity

of P and C, respectively, directly follows. Let us start with function P . Consider

P = (ρ)ij ∈ RN×N≥0

with ρs,t = 0 for some (s, t) ∈ V × V . Let (Pn)n∈N such that

Pn = (ρn)ij ∈ RN×N≥0 ∀n and lim
n→∞

Pn = P.

Let ρns,t = Pn(s, t) and ρs,tn = ρn∗∗ − ρns,t . We have∣∣∣∣∣ρns,t
· log

(
ρns,t

ρns,t
+ ρs,tn

)∣∣∣∣∣
=
∣∣ρns,t

· log
(
ρns,t

)
− ρns,t

· log
(
ρns,t

+ ρs,tn
)∣∣

≤
∣∣ρns,t

· log
(
ρns,t

)∣∣︸ ︷︷ ︸
(A)

+
∣∣ρns,t

· log
(
ρns,t

+ ρs,tn
)∣∣︸ ︷︷ ︸

(B)

.

According to L'Hospital,

(A) →
n→∞

0.

In order to determine the limit of term (B), we have to distinguish two cases. If ρ∗∗ > 0, we



24 3 QUANTIFICATION OF THE ADAPTIVE CYCLE

have

lim
n→∞

∣∣ρns,t
· log

(
ρns,t

+ ρs,tn
)∣∣ =

∣∣∣ lim
n→∞

ρns,t
· log

(
lim
n→∞

(
ρns,t

+ ρs,tn
))∣∣∣

=
∣∣0 · log

(
ρs,t
)∣∣

= 0.

If ρ∗∗ = 0, we know that for n large enough, ρns,t and ρ
s,t
n are small enough such that

1 ≥ ρns,t
+ ρs,tn ≥ ρns,t

.

Hence, ∣∣log
(
ρns,t

+ ρs,tn
)∣∣ ≤ ∣∣log

(
ρns,t

)∣∣ ,
and thereby

(B) ≤
∣∣ρns,t

· log
(
ρns,t

)∣∣ →
n→∞

0.

The proof for function C requires similar arguments. Let

ρs,tns∗
= ρns∗ − ρns,t

and

ρs,tn∗t = ρn∗t − ρns,t
.

We have∣∣∣∣∣ρns,t · log

(
ρns,t · (ρns,t + ρs,tn )

(ρns,t + ρs,tns∗) · (ρns,t + ρs,tn∗t)

)∣∣∣∣∣
=
∣∣ρns,t · log

(
ρ2ns,t

+ ρns,t · ρ
s,t
n

)
− ρns,t · log

(
ρ2ns,t

+ ρns,t · (ρ
s,t
ns∗ + ρs,tn∗t) + ρs,tns∗ · ρ

s,t
n∗t

)∣∣
≤
∣∣ρns,t · log

(
ρ2ns,t

+ ρns,t · ρ
s,t
n

)∣∣︸ ︷︷ ︸
(A)

+
∣∣ρns,t · log

(
ρ2ns,t

+ ρns,t · (ρ
s,t
ns∗ + ρs,tn∗t) + ρs,tns∗ · ρ

s,t
n∗t

)∣∣︸ ︷︷ ︸
(B)

At �rst, let us consider term (A). For n large enough, ρns,t
is small enough such that

1 ≥ ρ2ns,t
+ ρns,t

· ρs,tn ≥ ρ2ns,t
.

Thereby, ∣∣∣log
(
ρ2ns,t

+ ρns,t · ρs,tn
)∣∣∣ ≤ ∣∣∣log

(
ρ2ns,t

)∣∣∣
and hence,

(A) ≤
∣∣∣ρns,t · log

(
ρ2ns,t

)∣∣∣ →
n→∞

0.
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Let us now address term (B). If ρs∗ · ρ∗t > 0, we get

lim
n→∞

∣∣∣ρns,t
· log

(
ρ2ns,t

+ ρns,t
· (ρs,tns∗

+ ρs,tn∗t) + ρs,tns∗
· ρs,tn∗t

)∣∣∣
=
∣∣∣ lim
n→∞

ρns,t
· log

(
lim
n→∞

(
ρ2ns,t

+ ρns,t
· (ρs,tns∗

+ ρs,tn∗t) + ρs,tns∗
· ρs,tn∗t

))∣∣∣
=
∣∣0 · log

(
ρs,ts∗ · ρs,t∗t

)∣∣
=0

If ρs∗ · ρ∗t = 0, we know that for n large enough, ρs,tns∗
· ρs,tn∗t is small enough such that

1 ≥ ρ2ns,t
+ ρns,t

· (ρs,tns∗
+ ρs,tn∗t) + ρs,tns∗

· ρs,tn∗t ≥ ρ2ns,t

and therefore ∣∣∣log
(
ρ2ns,t

+ ρns,t · (ρs,tns∗
+ ρs,tn∗t) + ρs,tns∗

· ρs,tn∗t
)∣∣∣ ≤ ∣∣∣log

(
ρ2ns,t

)∣∣∣ .
We can conclude that

(B) ≤
∣∣∣ρns,t

· log
(
ρ2ns,t

)∣∣∣ →
n→∞

0.

We have now quantitatively de�ned two of three systemic variables. In order to determine

the position of a complex system in the adaptive cycle at a given time, it remains to de�ne

Holling's and Gunderson's notion of resilience. We will approach this task in the following

section.

3.3 De�nition of resilience

In 1973, Holling introduced the notion of resilience in the context of ecosystems, de�ning it as

�a measure of the persistence of systems and of their ability to absorb change and disturbance

and still maintain the same relationships between populations or state variables� [41, p.14].

This understanding of resilience was revived in the Resilience Alliance's panarchy theory [39].

In quantifying resilience, we were inspired by an established measure in spectral graph theory,

the connectivity of a graph [33]. However, this measure had so far mainly been used in the

context of undirected graphs.

In the following, we will introduce the notions of Laplacian matrices and connectivity

(Section 3.3.1) and subsequently transfer them to the case of directed graphs (Section 3.3.2).

These sections build on the descriptions in [83]. Eventually, we will prove a relation between

the directed Laplacian spectrum and the underlying graph's topology which justi�es our

choice of a de�nition for resilience (Section 3.3.3).
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3.3.1 Graph theoretical preliminaries

The following two sections build on [83]. Let G = [V, E] be a weighted, undirected graph

with N ≥ 1 nodes and weight function ω : E → R≥0. We call

du =
∑
v∈V

ω(u, v)

the degree of a node u. The graph's adjacency matrix is de�ned as

A(u, v) = ω(u, v) ∀u, v ∈ V,

its degree matrix as

D(u, v) =

du, if u = v

0, otherwise.

From now on, we will follow the convention D−1(u, u) = 0 if D(u, u) = 0. Multiplying

(D −A) with D−
1
2 from both sides, yields the Laplacian matrix of G:

L = D−
1
2 · (D −A) ·D− 1

2

= I −D− 1
2 ·A ·D− 1

2 .

Therefore, we have

L(u, v) =


1− ω(u,u)

du
, if u = v and du 6= 0

−ω(u,v)√
du·dv , if u 6= v and du 6= 0, dv 6= 0

0, otherwise.

As the Laplacian matrix is symmetric, all of its eigenvalues are real. A short computation

shows that all eigenvalues are non-negative and that 0 is always an eigenvalue of L [25, Ch.

1.4]. Let σ0 = 0 ≤ σ1 ≤ · · · ≤ σn−1 be the spectrum of L. It has been shown that the

multiplicity of the eigenvalue 0 is equal to the number of components of G [25].

Our interest lies in the smallest non-trivial eigenvalue σG of the Laplacian matrix, often

called its connectivity [33]. It can be understood as a measure of how �easily� a new com-

ponent can be generated by deleting edges of G. Recall that the spectrum of a matrix is

continuous with respect to the matrix's entries. Hence, if σG is close to 0, a slight change of

the Laplacian matrix can shift σG to 0. Observe that the non-diagonal entries of the Lapla-

cian matrix are continuous with respect to the underlying graph's edge weights. Therefore,

we know that if σG is close to 0, a small perturbation, like the deletion of a low-weighted

edge, can generate a new component. Whereas, if σG is high-valued, a great disturbance like

the deletion of many or high-weighted edges might be needed to generate a new component.
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Hence, σG quanti�es the vulnerability of a graph to perturbation in form of edge deletion.

Let us recall our heuristic de�nition of resilience at a given time as the magnitude of

internal structural change which can be reversed by the system (see Section 1). In the

system's information network, such a change of internal processes could express itself in

the omission of a transfer between one agent X and another agent Y . If an alternative

path of information transfer between X and Y exists, there is a chance of it compensating

the information loss. Whenever the omission of an edge provokes the generation of a new

component, a compensation of the loss via existing structures is not possible. In this case,

the system's internal processes will at least partially change.

However, the classical form of σG is insu�cient for us as it is only de�ned for undirected

graphs. We are interested in directed graphs (digraphs), considering the direction of transfers

within a system as crucial for its identity. Therefore, we need to transfer these notions to

the case of directed graphs. Several versions of the Laplacian matrix of a directed graph

exist in literature [15, 26, 81], mainly di�ering in their normalization and the fact whether

they are based on the out- or in-degrees of the graphs' nodes.

3.3.2 Directed Laplacian matrices and their eigenvalues

Let G = [V, E] be a weighted, directed graph with N ≥ 1 nodes and weight function

ω : E → R≥0. We de�ne

du,out =
∑
u→v

ω(u, v)

and

du,in =
∑
v→u

ω(v, u)

the out- and in-degree of a node u, respectively. Let c ∈ R>0 be a standardization constant.

We de�ne the directed Laplacian matrices of G by

Lout(u, v) = c ·


√
du,out − ω(u,u)√

du,out

, if u = v and du,out 6= 0,

−ω(u,v)√
du,out

, if u 6= v and du,out 6= 0,

0, otherwise

(11)

and

Lin(u, v) = c ·


√
du,in − ω(u,u)√

du,in

, if u = v and du,in 6= 0,

−ω(u,v)√
dv,in

, if u 6= v and dv,in 6= 0,

0, otherwise.

(12)

Note that in the case of G being a network of information transfer following De�nition

10, ω(u, u) = 0 ∀u ∈ V, since we only consider transfer between distinct agents. However,
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we provide a more general de�nition here, broadening the range of application possibilities.

Analogously to the undirected case, the Laplacian matrices have a relation to the adja-

cency matrix A and the directed degree matrices

Dout(u, v) =

du,out, if u = v

0, otherwise

and

Din(u, v) =

du,in, if u = v

0, otherwise.

De�ne D−1out (and D
−1
in analogously) as

D−1out(u, u) =

D(u, u)−1, if D(u, u) 6= 0

0, if D(u, u) = 0.

A short computation shows that

Lout = c ·D−
1
2

out (Dout −A) , and Lin = c · (Din −A)D
− 1

2
in .

From now on, whenever statements apply to Lout and Lin or Dout and Din, we will subsume

both matrices under L∗ and D∗, respectively. We will write LG∗ in case we want to specify

the graph G underlying L∗.

Eventually, we can formulate our de�nition of resilience. To this end, we want to �nd an

analogue of the eigenvalue λG de�ned in the previous section. But we have to be aware of

the di�erences between the two cases. Previously, we were considering symmetric matrices

with real, positive eigenvalues. Now we are dealing with general matrices with complex

eigenvalues. Therefore, we restrict ourselves to the absolute values of the real parts of the

eigenvalues. Furthermore, by our de�nition, a directed graph has two Laplacian matrices,

so our de�nition should respect both of them.

Let V be a system at a given time being identi�ed with the weighted, directed network

G of information transfers among its components following Equation (10). Let Lin and Lout
be the Laplacian matrices of G. Given that the network contains at least one nontrivial

transfer, we de�ne

R = min {|Rσ| : σ ∈ Spec(Lout) ∪ Spec(Lin), σ 6= 0} .

as the system's resilience. If all transfers are trivial, the system's resilience is set to 0 to

ensure continuity of the measure.
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Example 1. Let G be a complete graph with N > 1 nodes and uniform edge weight s > 0.

Then,

L∗ = c ·



√
s · (N − 1) −s√

s·(N−1)
. . . −s√

s·(N−1)

−s√
s·(N−1)

. . .
. . .

...

...
. . .

. . . −s√
s·(N−1)

−s√
s·(N−1)

. . . −s√
s·(N−1)

√
s · (N − 1)


.

This Laplacian matrix has eigenvalue 0 with corresponding right eigenvector

(1, . . . , 1)

and eigenvalue

c ·
√
s ·N√
N − 1

with corresponding eigenvectors

{(1,−1, 0, . . . , 0), . . . , (1, 0, . . . , 0,−1)}.

Hence, the resilience of a complete graph with uniform edge weight s is

R(G) = c ·
√
s ·N√
N − 1

.

Remark 1. Before computing a system's resilience, one should ask questions like `Do I want

the resilience to depend on the absolute edge weights? Hence, should a complete graph with

uniform edge weight 2 be more resilient than a complete graph with uniform edge weight 1?'

or `Do I want the resilience to depend on the number of nodes? Hence, should a complete

graph on 10 nodes be more resilient than a complete graph on 5 nodes?'. There is no right

or wrong answer to these questions. The answer is depending on the speci�c context to be

studied. The measure of resilience can be adjusted to the respective requirements by means

of its standardization constant c. Especially when it comes to the comparison of resilience of

di�erent systems, standardization can be a helpful tool. Let M be the maximal edge weight

of a graph G. Example 1 demonstrates that

c =

√
N − 1

N
or c =

1√
M

are reasonable choices to standardize R regarding the number of nodes or the maximal edge

weight, respectively.

Remark 2. Note that in some of our earlier case studies, we use a symmetrically normalized
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version of the Laplacian matrices, namely

Lout = c ·D−
1
2

out(Dout −A)D
− 1

2
out , and Lin = c ·D−

1
2

in (Din −A)D
− 1

2
in .

By now, we are only using the Laplacian matrices de�ned in Equations (11) and (12). They

have the advantage that their eigenvalues change continuously with the edge weights of the

underlying graph. For the case studies presented in this thesis, both versions qualitatively

yield comparable results.

In the following, we will show that the spectra of directed Laplacian matrices are related

to the underlying graph's topology in a similar way as the spectrum of the undirected

Laplacian matrix. This relation justi�es our choice of R as measure of a system's resilience.

3.3.3 The Laplacian spectrum related to the graph's topology

We will start with a rough estimate of the eigenvalues of Lin and Lout. For this purpose,

we calculate the Gershgorin circles of these matrices (see for example [79]).

Let u ∈ V. The center of the corresponding Gershgorin circle of Lout is located at c ·
√
du,out.

Its radius is ∑
v∈V,v 6=u

|Lout(u, v)| = c ·
∑

v∈V,v 6=u

w(u, v)√
du,out

=
c√
du,out

∑
v∈V,v 6=u

w(u, v)

=
c · du,out√
du,out

= c ·
√
du,out.

Therefore, the real parts of the eigenvalues of Lout cannot be negative. Column-wise con-

sideration of Lin shows that its Gershgorin circles have center and radius c ·
√
din. Hence,

the real parts of Lin's eigenvalues cannot be negative as well. Observe that, due to their

position in the Gershgorin circles, for both Lout and Lin, there cannot be an eigenvalue with

real value 0 except for 0 itself. Besides, due to the fact that all row sums of Lout and all

column sums of Lin are 0, every Laplacian matrix has eigenvalue 0.

In the following, we want to examine the multiplicity of the eigenvalue 0 of normalized

Laplacian matrices. To this end, we introduce the following notions.

De�nition 12. A directed graph G = [V, E] is called tree if there is a node v ∈ V such that

for every other node u ∈ V, there is exactly one directed path from v to u.

De�nition 13. Let G = [V, E] be a directed graph. A spanning (forest) of G is a set of

subgraphs Gi = [Vi, Ei], i ∈ I, of G such that every Gi is a tree and that
⋃
i∈I Vi = V. We
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say that together, the trees Gi span the graph G. A spanning of G is called minimal if every

other spanning contains at least as many trees.

In [80] and [81], it is shown that the multiplicity of the zero eigenvalue of L = Dout−A is

equal to the number of trees in a minimal spanning of the reversal of the underlying graph.

We transfer this result to our version of directed Laplacian matrices, following the structure

of the proofs of [80, Theorem 9 and 10].

We start by proving a lemma which is well known for unnormalized directed Laplacian

matrices (see for example [81]). To this end, we �rst have to introduce some new notions.

De�nition 14. A directed graph (digraph) G = [V, E] is called strongly connected i� for all

u 6= v ∈ V, there exists a path from u to v.

De�nition 15. The reversal of a digraph G = [V, E] is de�ned as Ḡ = [V, Ē], where an

edge (u, v) ∈ Ē i� the edge (v, u) ∈ E.

Lemma 1. A digraph is strongly connected i� its Laplacian matrix is irreducible.

Proof. We need to prove the statement only for Lout because Lin is just LTout of the reversal

of the underlying graph and a graph is strongly connected i� the same holds for its reversal.

Let Lout be reducible. Then there exists a permutation matrix M such that

MLoutM
T =

(
Lss 0

Lts Ltt

)
,

where Lss ∈ Rs×s, s ∈ {1, . . . , N − 1}. It becomes clear that there is a disjoint union

V = I ∪ J such that

Lout(i, j) = 0 ∀i ∈ I = {1, . . . , s}, j ∈ J = {s+ 1, . . . , N}.

Hence, there is no directed path from any node i ∈ I to any node j ∈ J and therefore, the

underlying graph is not strongly connected.

We will now show the other direction. Let the underlying graph of Lout not be strongly

connected. Then there exists a node u and a node v such that there is no directed path

from u to v. Let Vv be the set of nodes with directed path to v, including v, and Vv its

complement. Note that Vv is not empty as u ∈ Vv. Clearly, there is no edge from a node in

Vv to a node in Vv. After a possible reordering of the nodes, we can write Lout as

MLoutM
T =

(
Lss 0

Lts Ltt

)
,

where the �rst s rows of the matrix correspond to the nodes in Vv, the last N − S ones to

the nodes in Vv. Therefore, Lout is reducible.
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Corollary. The Laplacian matrix of a strongly connected graph has eigenvalue 0 of multi-

plicity one.

Proof. Let L∗ be the Laplacian matrix of a strongly connected graph. We consider

B = k · I − L∗,

where k > 2·c·max{du,∗|u ∈ V }. Clearly, all entries of matrix B are non-negative. According

to Lemma 1, L∗ and thereby B is irreducible. Therefore, the Perron-Frobenius Theorem

tells us that the spectral radius of B is a simple eigenvalue of B (see for example [79]).

Thanks to the choice of k, this is equivalent to 0 being a simple eigenvalue of L∗.

De�nition 16. Consider a matrix A ∈ RN×N , N ∈ N. The matrix A is N -reducible if it

is diagonal. For 1 ≤ m < N , the matrix A is m-reducible if it is not (m+ 1)-reducible and

it can be written as

A = M



B1 B1,2 . . . B1,k+m

. . .

Bk Bk,k+1 . . . Bk,k+m

Bk+1 0 0

. . . 0

Bk+m


MT , (13)

where M is a permutation matrix and Bi are square irreducible matrices.

Remark 3. Let L∗ be a Laplacian matrix. Written in form (13), Bk+1, . . . , Bk+m are the

Laplacian matrices of strongly connected components of the underlying graph.

Lemma 2. A Laplacian matrix L∗ is m-reducible i� the multiplicity of its eigenvalue 0 is

m.

Proof. Let Lout be the Laplacian out-matrix of a graph G. Being m-reducible, the matrix

can be written in form (13), where Bk+1, . . . , Bk+m are the Laplacian matrices of strongly

connected components of the graph. According to Corollary 3.3.3, each of these matrices

has a simple 0 eigenvalue. Hence, the multiplicity of eigenvalue 0 of Lout is at least m.

We know that for all i with 1 ≤ i ≤ k, there exists j > i such that Bi,j 6= 0, otherwise,

Lout would be at least m + 1-reducible. Hence, one of the row sums of Bi is positive and

by [80, Theorem 1], Bi is non-singular, i.e. has no eigenvalue 0. For 1 ≤ i ≤ k, let li be

the number of rows of matrix Bi. Consider a left eigenvector v of Lout. Assuming that

v corresponds to eigenvalue 0, one can show recursively that the �rst
∑

1≤i≤k li entries of

v have to be 0. Therefore, the multiplicity of the eigenvalue 0 of Lout is maximally and

thereby exactly m.
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If Lout is not m-reducible, it is m′-reducible for some m′ 6= m. Then the multiplicity of the

eigenvalue 0 of Lout is m′.

In order to see that the statement is true for Lin of graph G, notice that the transpose of

Lin is the Laplacian out-matrix of the reversal of G, i.e.

LGin = LGout.

Now we can relate this equality to the topology of the underlying graph:

Theorem 1. The multiplicity of the eigenvalue 0 of a Laplacian matrix Lout is equal to the

number of trees in a minimal spanning of the reversal of the underlying graph. Analogously,

the multiplicity of the eigenvalue 0 of a Laplacian matrix Lin is equal to the number of trees

in a minimal spanning of the underlying graph itself.

Proof. Let Lout be the Laplacian out-matrix of a graph G. We know that the multiplicity

of the eigenvalue 0 is equal to its order of reducibility. Let this order be m. Thereby, G

has m strongly connected components, Bk+1, . . . , Bk+m such that there is no edge (u, v)

with u ∈ Bk+i and v 6= Bk+i for 1 ≤ i ≤ m. Hence, for any spanning directed forest of

the reversal of G, each of these components must contain the root of a tree. Therefore, any

spanning forest consists of at least m trees.

Since Lout is m-reducible, we know that for every i ≤ k, there is some j > i such that

Bi,j 6= 0. It is easy to see that, starting from any node u, there is a directed path into one

of the strongly connected components Bk+1, . . . , Bk+m. Consequently, there is a path from

any node u to the root being part of one of the components Bk+1, . . . , Bk+m . Hence, there

exists a spanning forest of the reversal of the graph with m trees.

If Lout is not m-reducible, it is m′-reducible for some m′ 6= m. Then the number of trees in

a minimal spanning of G is m′.

In order to show the analogue result for Lin, we just have to apply the proof to LGout and

again use

LGin = LGout.

Let us interpret Theorem 1 in the context of our understanding of a system's resilience.

A tree in the spanning forest of a system's information network can be understood as a set

of agents being supplied with information tracing back to one source agent. The occurrence

of another tree in the minimal spanning forest after a perturbation of the graph results from

the fact that all paths between a set of agents and their former source agent have been

separated. The agents are now supplied with information tracing back to (possibly several)

other source agents. The overall information structure of the system has changed. This
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would not be the case if there still existed paths between the agents and their source agent

after the perturbation, hence, alternatives to the perturbed paths.

A tree in the spanning forest of the reversal of a system's information network can be

interpreted as a set of agents supplying one destination agent with information. Whenever

a perturbation is followed by the occurrence of another tree in the spanning forest, we

know that all paths between a set of agents and their former destination agent have been

separated. Again, a structural change which could, due to the lack of alternative paths, not

be compensated. By considering both Laplacian matrices, we identify the weak point of the

graph.

The occurrence of new trees in the minimal spanning forests of G and its reversal represent

just one type of structural internal change. There are others which may not be captured

by R. For example, one can easily construct a directed graph in which the deletion of an

edge leads to a new component but not to an increase in the number of trees in the minimal

spanning. However, with minimal spannings covering important aspects of a graph's overall

topology, their structure is a comprehensive indicator for the graph's vulnerabilities. Indeed,

R shows to re�ect the cycling resilience of a system during its course through the adaptive

cycle (see Sections 3.4 and 4.2).

In order to gain a �rst impression of the behavior of potential, connectedness, and re-

silience depending on the topology of the underlying graph, we examine the three systemic

variables on a simple model of random graphs, so-called Gilbert graphs [37].

3.4 Potential, connectedness, and resilience of random graphs

Let G ∈ G(N, p) be a Gilbert graph, i.e. a directed graph with N nodes, where each edge is

of weight 1 (or active) with probability p and of weight 0 with probability 1 − p. Assume

that G has no self-loops. We consider G as information network and its edges as channels of

communication. Hence, the edge weight represents the strength of communication between

two agents. The weights are described by the weight function ω : E → {0, 1}. We denote

the set of nodes by V. Let
W =

∑
(u,v)∈V×V

ω(u, v).

Recall the graph's potential

P = −
∑

(u,v)∈V×V
w(u, v) · log2

(
ω(u, v)

W

)
.

In order to compute the expected potential of G depending on N and p, we de�ne Xuv as

the independent random variables describing the weight of the edge from node u to node v
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and X =
∑
u,v∈V Xuv. Hence,

P = −
∑
u,v∈V

Xuv · log2

(
Xuv

X

)
.

We then have

E(P ) = E

− ∑
u,v∈V

Xuv · log2

(
Xuv

X

)
= −

∑
u,v

E

(
Xuv · log2

(
Xuv

X

))
,

with

E

(
Xuv · log2

(
Xuv

X

))

= p ·
2·(N

2 )−1∑
i=1

pi · (1− p)2·(N
2 )−1−i ·

(
2 ·
(
N
2

)
− 1

i

)
· log2

(
1

1 + i

)

= −
N ·(N−1)−1∑

i=1

pi+1 · (1− p)N ·(N−1)−1−i ·
(
N · (N − 1)− 1

i

)
· log2(1 + i).

This gives

E(P ) = −
∑

u,v∈V

−
N·(N−1)−1∑

i=1

pi+1 · (1− p)N·(N−1)−1−i ·

(
N · (N − 1)− 1

i

)
· log2(1 + i)

= 2 ·

(
N

2

)
·
N·(N−1)−1∑

i=1

pi+1 · (1− p)n·(N−1)−1−i ·

(
N · (N − 1)− 1

i

)
· log2(1 + i)

= N · (N − 1)

N·(n−1)−1∑
i=1

pi+1 · (1− p)N·(N−1)−1−i ·

(
N · (N − 1)− 1

i

)
· log(1 + i).
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We expect E(P ) to increase for p ∈]0, 1]. In order to show this, we compute the derivative

of E(P ). Setting m := N · (N − 1)− 1, we receive

d

dp
E(P ) = n · (N − 1) ·

m∑
i=1

(
m

i

)
· log2(1 + i)

·
(
(i+ 1) · pi · (1− p)m−i − (m− i) · pi+1 · (1− p)m−1−i

)
= N · (N − 1) ·

m∑
i=2

pi · (1− p)m−i ·
(

m

i− 1

)
· log2(i)︸ ︷︷ ︸

(A)

·
(

(i+ 1) ·
(
m

i

)
· log2(i+ 1)− (m− i+ 1) ·

(
m

i− 1

)
· log2(i)

)
︸ ︷︷ ︸

(B)

+2 · p · (1− p)m−1 ·m︸ ︷︷ ︸
(C)

The Terms (A) and (C) are obviously positive for p ∈]0, 1[. For term (B), we have

(i+ 1) ·
(
m

i

)
· log2(i+ 1)− (m− 1 + i) ·

(
m

i− 1

)
· log2(i)

=
m!

(i− 1)! · (m− i)! ·
(

log2(i+ 1) · i+ 1

i
− log2(i) · m− i+ 1

m− i+ 1

)
(?)
=

m!

(i− 1)! · (m− i)! ·
(

log2(i+ 1) · i+ 1

i
− log2(i)

)
> 0

for p ∈]0, 1[. Equality (?) follows from the term's properties as telescoping series. It remains

to compute d
dpE(P ) at p = 1. We get

d

dp
E(P )(1) = N · (n− 1) · log2(m) · ((m+ 1) · log2(m+ 1)−m · log2(m))

> 0

Hence, we have shown that the expected potential of a random graph G ∈ G(N, p) increases

on p ∈ [0, 1]. In other words, the expected potential increases along with the number of

expected edges of weight 1. Coming back to information networks, this coincides with the

perception of potential as a measure of the underlying system's possible future options. The

more active channels of information, the broader the range of possible interaction structures.

The left column of Figure 3 displays the expected potential for graphs of sizes N = 5, 10,

and 25. Note that the values of expected potential increase along with the number of nodes

N . This is due to the fact that potential is scaled with the total system throughput.
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Figure 3: Expected potential E(P ) and expected connectedness E(C) of Gilbert graphs
G ∈ G(N, p) as function of p for N = 5, 10, and 25.

We will now continue with the expected connectedness of Gilbert graphs. Set

Wu∗ =
∑
v∈V

w(u, v) and W∗v =
∑
u∈V

w(u, v).

As a reminder, a graph's connectedness is de�ned as

C =
∑
u,v∈V

w(u, v) · log

(
w(u, v) ·W
Wu∗ ·W∗v

)
.

Again, we write

C =
∑
u,v∈V

Xuv · log

(
Xuv ·X
Xu. ·X.v

)
,
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with Xu∗ =
∑
v∈V Xuv and X∗v =

∑
u∈V Xuv. Combinatory considerations show that

E(C) = E

 ∑
u,v∈V

Xuv · log
(

Xuv ·X
Xu∗ ·X∗v

)
=
∑

u,v∈V
E

(
Xuv · log

(
Xuv ·X
Xu∗ ·X∗v

))

=
∑

u,v∈V
p ·

2·
(
N
2

)
−1∑

k=1

pk · (1− p)
2·
(
N
2

)
−1−k ·

 min{k,N−2}∑
i=max{0,m1}

min{k−i,N−2}∑
j=max{0,m2}

Si,j


= N · (N − 1) ·

N·(N−1)−1∑
k=1

pk+1 · (1− p)N·(N−1)−1−k ·

 min{k,N−2}∑
i=max{0,m1}

min{k−i,N−2}∑
j=max{0,m2}

Si,j

 ,

with

Si,j =
(N − 2

i

)
·
(N − 2

j

)
·
(2 ·

(N
2

)
− 2 · (N − 2)− 1

k − (i+ j)

)
· log

(
k + 1

(i+ 1)(j + 1)

)
,

m1 = k −
(
2 ·
(N
2

)
− 1− (N − 2)

)
= k +N · (2−N)− 1,

m2 = k −
(
2 ·
(N
2

)
− 2 · (N − 2)− 1

)
− i = k +N · (3−N)− 3− i.

We use this representation of E(C) to examine it numerically . The right column of

Figure 3 shows E(C) depending on p for N = 5, 10 and 25. The numeric evaluation shows

that E(C) has exactly one maximum in [0, 1]. The larger N , the smaller the value where

the maximum is taken. Considering networks of information transfer, the fact that E(C) is

maximal for intermediate values of p is in line with with Gunderson and Holling's under-

standing of connectedness. On the one hand, in order to reach a high internal controllability,

a certain amount of active information channels is needed. On the other hand, too many

active channels can generate redundancy and decrease e�ciency in information processing

and thereby exploitation of potential. Note that, just like in the case of expected potential,

the values of expected connectedness increase with increasing number of nodes N due to the

scaling.

To get an impression of the resilience of Gilbert graphs, we generated 100 random graphs

for various constellations of p and N . Resilience of the graphs was computed using the

standardization constant c = 1. Figures 4 and 5 display the results in form of boxplots.

As could be expected, for p → 1, resilience converges from below to N√
N−1 , which is the

resilience of a complete unweighted graph (recall Example 1). Clearly, the vulnerability of

a graph with respect to edge deletions is minimal when all possible edges are active. In

a certain distance to 0, which decreases with increasing N , the median approaches 1 from

below (see Figure 5). This is due to the fact that for relatively small p, the graph's maximal

weakly connected component is likely to consist of only two nodes and one active edge,

yielding a resilience of 1. For p → 0, the median will then converge to 0 as the probability
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Figure 4: Boxplots showing the resilience R of Gilbert graphs G ∈ G(N, p) for di�erent
values of p for N = 5, 10 and 25. For every combination of N and p, 100 graphs were
generated.

of an edge appearing in the graph becomes smaller and smaller, leading by de�nition to a

resilience of 0.

Studying the three systemic variables on unweighted random graphs helps in getting a
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Figure 5: Boxplots showing the resilience R of Gilbert graphs G ∈ G(N, p) for di�erent
values of p for N = 5, 10 and 25 and p close to 0. For every combination of N and p, 100
graphs were generated.

feeling for their behavior in a stochastic environment and their relation to the number of

edges of the underlying graphs. The results coincide with our understanding of potential,

connectedness, and resilience as de�ned by Gunderson and Holling and thereby support our
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choice of de�nitions. However, such simple random graphs lack the speci�c topological struc-

tures of information networks of natural complex systems, which e.g. typically show certain

degree distributions [21]. Hence, the question remains: can we observe a cyclic behavior of

potential, connectedness, and resilience in the information networks of (naturally) develop-

ing systems? Do connectedness and resilience show the expected opposite behavior during

the networks' development? And, taking one step back, is the interaction structure of a

complex system indeed captured by its networks of information transfer? We will approach

these questions in Section 4.

3.5 Overview of the method

Our method to quantify the adaptive cycle combines several ideas, concepts, and tools but

eventually follows a simple structure. We will now provide a heuristic overview of the method

in Table 2 and illustrate its functionality with the aid of a toy example. A similar example

has been presented in [83].

Input The method requires time series of system's components' abundance data. By

abundance data, we mean any data capturing the e�ects of interactions among

the components. Within a system, the data can be heterogeneous, i.e. the

abundance of di�erent components can be measured in di�erent units. It is

one of the advantages of the information theoretical approach that the results

are not depending on the concrete instantiation of the system.

Step 1 In the �rst step, networks of information transfer are estimated. Precisely,

pair-wise transfer entropy between the system's components at a given time is

estimated on basis of a certain preceding time window of abundance data. By

shifting the time window or extending it, networks for subsequent time points

are achieved. Only transfers passing a certain signi�cance level are taken into

account.

Step 2 In the second step, the three systemic variables potential, connectedness, and

resilience are computed for every information network.

Output The method yields time series of potential, connectedness and resilience and

thereby the course of the system through the adaptive cycle for a certain period

of time. Next to the systemic variables, the information networks themselves

can provide important insights into the underlying mechanisms and the role of

individual components in the system's development.

Table 2: Structural overview of our method to quantify the adaptive cycle.
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Figure 6: Illustration of the method's structure by means of a toy example. The �gure is
inspired by Figure 2 in [83]. (a) Time series of abundance data of the system's components
A, B, C, D, and E. The �gure displays the window shifting method with window size w, i.e.
the time window serving as a basis for the estimations of information networks is shifted
forward by one in order to receive the subsequent network. Time series in the toy example
are of length 10, w = 5, t = 6, signi�cance level is 0.05. (b) Networks of information transfer
for time points t and t + 1. Here, and in all following plots of information networks, the
edges' width is proportional to the information transfer's strength. (c) Three-dimensional
plot of potential, connectedness, and resilience at time points t and t+ 1.

Figure 6 demonstrates the structure of our method by means of a toy example. The

system under consideration consists of �ve components, A, B, C, D, and E, whose time

series of abundance were randomly generated. Figure 6(a) displays these time series. At

�rst, a window size w has to be chosen. In order to estimate the course of the system through

the adaptive cycle from time point t to time point t+ 1, we then estimate pairwise transfer

entropy based on the samples in window (t−w+1, . . . , t) and (t−w+2, . . . , t+1), respectively.

The shaded areas mark the shifting window. Transfers passing a certain signi�cance level are

taken into account as edges in the resulting networks of information transfer, which are shown

in Figure 6(b). Here, and in all subsequent network plots, edge width is proportional to the

strength of the respective information transfer. Potential, connectedness, and resilience

at time points t and t + 1 are computed as properties of the respective networks. Their
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development between time point t and time point t + 1 is displayed in 6(c). The three-

dimensional plot shows that potential and resilience are increasing, while connectedness is

decreasing. We will take a closer look at the corresponding networks to explain this behavior.

The system's potential is higher at time point t + 1 since more transfers increase the total

system throughput and the capacity of the system to react to future changes. Resilience

at time point t is lower since component E is connected with the rest of the system by one

edge only, which renders the system vulnerable. A perturbation of edge A→ E would fully

decouple E from the system. Typically, the increase in resilience coincides with a decrease

in connectedness. This decrease can be explained by the fact that the transfers are more

equally distributed and thereby less constrained at time point t+ 1.

In order to enable a straightforward application of our method, we developed the R

package QtAC, which we will present in the following section.

3.6 R package QtAC

The R package QtAC (Quantifying the Adaptive Cycle) provides an implementation of our

quanti�cation method. It is accessible via repository [66]. The repository contains a demo

script including a sample application to a simulated bacterial community. The manual of

the package can be found in Supplementary A of this thesis. Nevertheless, we will brie�y

present the main functions here.

In order to estimate a system's course through the adaptive cycle, the user needs to

have time series of the system's components' abundance data in a tab separated �le. The

function QtAC.TXT.reader imports the data in R. The main function QtAC combines several

steps. At �rst, the data is split up into windows of size num_timepoints, each of which

shifted by one time point (the package does not yet provide the window expanding method).

Note that the window size needs to be at least �ve, otherwise the main function will return

an error. We set this minimum to avoid receiving statistically unreliable results. If the

number of time points in a window is below 15, the amount of data in every window is

tripled by means of a piecewise cubic spline interpolation. Now the networks of information

transfer are estimated using the parameters k, k_tau, l, l_tau, and delay, which can be

set by the user. See Section 3.1 for a description of the parameters. Furthermore, the

signi�cance of every transfer is calculated via a bootstrapping signi�cance test. The number

of surrogate samples num_PermCheck to generate the distribution in the signi�cance test

can be set by the user as well. The output of the main function is a list of adjacency and

corresponding signi�cance matrices for each time window. The signi�cance matrices contain

the signi�cance of each estimation in the adjacency matrix. The adjacency matrices can

be �ltered according to a user-de�ned signi�cance level signfac by means of the function

QtAC.Signfactor. The three systemic variables of the (�ltered) adjacency matrices can be

computed using QtAC.maturation. Concerning resilience, the user can choose between two
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normalization variants and several standardizations of the underlying Laplacian matrices.

The two normalization variants are res_norm = "continuous", i.e.

Lout = c ·D−
1
2

out (Dout −A) , and Lin = c · (Din −A)D
− 1

2
in ,

and res_norm = "symmetric", i.e.

Lout = c ·D−
1
2

out(Dout −A)D
− 1

2
out , and Lin = c ·D−

1
2

in (Din −A)D
− 1

2
in .

Let M be the maximal information transfer at the corresponding time point. Then a com-

mon choice for the standardization constant res_stand is c = 1√
M

("maxweight") in the

continuous version and c = 1
M ("maxweight2") in the symmetric version. A standardiza-

tion with respect to the number of nodes N is possible via c =
√
N−1
N ("nodes"). In the

continuous version, a standardization with respect to both nodes and maximal transfer is

possible via "maxweightnodes", i.e. c =
√
N−1

N ·
√
M
.

QtAC o�ers various options of visualizing the results. The adjacency matrices can be

plotted in form of networks using QtAC.network. Layout of the network and several graphi-

cal parameters can be chosen by the user. The development of potential, connectedness, and

resilience can be plotted over time using QtAC.2dplot. Besides, the variables can be plotted

with respect to each other in two dimensions using QtAC.2dmixplot or in three dimensions

using QtAC.3dplot.

At the time of submission of this thesis, QtAC allows a quick and uncomplicated �rst

analysis of a system's maturation process in the sense of the adaptive cycle. However,

various variants and subtleties of the method have not been incorporated in the package

yet. At �rst, only the window shifting method is implemented. Another example would

be the inclusion of statistical tests for the choice of the estimation parameters k, k_tau, l,

l_tau, and delay as being provided in the JIDT toolkit [49]. In particular, it should be

possible to set the parameters component-dependently. Furthermore, the consideration of

networks of local transfer entropy can be useful as well. These and further re�nements will

be subject of future work.
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4 Validation of the Method

Our method to quantify the adaptive cycle is based on several assumptions. In this section,

we will provide case studies supporting them. E�ectively, the proper functioning of our

method depends on the correctness of three assumptions:

1. We assume that a complex system can be understood as a computing entity whose ef-

fective interaction structure is captured in the transfer entropy among its components.

In other words: every e�ective interaction leads to a transfer of information.

2. We assume that our de�nitions of potential, connectedness, and resilience capture

Gunderson and Holling's conception of these notions.

3. We assume that the adaptive behavior of a system is re�ected in the interactions

among its components, i.e. that the system's interaction structure shows distinguish-

able, phase-speci�c patterns.

The understanding of biology as information processing, or, in other words, computation,

has been around for many decades (see e.g. [18, 30, 58]). E�ectively, the structure of DNA

inspires to consider life itself as processing of genetic code [42]. The computational approach

builds on the idea that on a certain level of abstraction living entities and systems follow

the same information theoretical principles as information-processing machines. Hence, the

same language can be used to describe the information dynamics of a human cell or an

ecosystem as well as the logical functioning of a computer. In this language, information

processing can be divided into the component operations of information storage, transfer,

and modi�cation [52]. Accordingly, the total information of a computing entity consists of

information being stored in its own past, information being transferred from other entities

and information being modi�ed [50].

The common mathematical framework for studying information processing is informa-

tion theory. This theory provides the notions of active information storage and transfer

entropy, which serve as measures of information storage and transfer, respectively. Informa-

tion modi�cation has for example been measured by means of separable information [52].

Understanding the information dynamics of living entities or systems can provide important

insights into the mechanisms underlying their behavior. Within the last years, there have

been multiple applications of this concept to complex biological systems, including neural

and ecological systems, see for example [77, 78]. In order to support the rationality of the

�rst assumption, we examine the distributed computation of a simulated bacterial commu-

nity in Section 4.1. It demonstrates, inter alia, the usability of abundance-based information

transfer in capturing a system's interaction structure.

In Section 4.2, we address the second assumption. In order to further justify our de�ni-

tions of potential, connectedness, and resilience, we investigate the variables' behavior in a
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classical adaptive cycle scenario. To this end, we simulate the development of an information

network following Gunderson's and Holling's descriptions in [39].

Having validated our information theoretical approach and our concrete choice of de�-

nitions, we can address the third assumption in Section 4.3: is the adaptive behavior of a

system re�ected in the system's mere interaction structure? For this purpose, we apply our

method to a purely interaction-based model, the Tangled Nature Model as being provided

by Christensen et al. [24]. The occurrence of the typical cyclic pattern in the system's con-

nectedness and resilience demonstrates that interactions indeed capture a system's adaptive

development in the sense of the adaptive cycle metaphor.

4.1 Justi�cation of the information theoretic approach

This chapter is except for smaller modi�cations taken from [69]. The human intestinal

microbiota is of growing interest due to its e�ects on host physiology and health. Never-

theless, there are still large gaps in the understanding of the molecular mechanisms and the

functional role of its members [19]. In the following case study, we consider the bacterial

system as computing entity, allowing us to examine its development by means of established

information theoretical tools. Here, our focus will be on the following question: does the

information transfer among components re�ect the system's interaction structure?

In order to cope with the high complexity of the intestinal microbiota and the limits of

in-vivo data, we take two steps.

� We con�ne ourselves to the simpli�ed human intestinal microbiota (SIHUMI). It con-

sists of seven species representing metabolic activities that are shared among all hosts:

Anaerostipes caccae, Bacteroides thetaiotaomicron, Bi�dobacterium longum, Blautia

producta, Clostridium ramosum, Escherichia coli, and Lactobacillus plantarum. This

community has been cultivated successfully in in vivo experiments [16].

� We consider an in silico SIHUMI community. This enables us to compare our results

with the underlying metabolic activity of the community at every time point. Such

data is di�cult to collect in vivo. Besides, a simulation allows controlled perturbations

of the system and provides time-series long enough for a reliable statistical analysis.

Using BacArena [14], we simulate the metabolic activity of individual bacteria of the

seven SIHUMI species in a nutrient-enriched environment for 184 time steps (see [56] for the

reconstructed metabolic models used). The models were manually curated and checked using

published experimental data. The bacterial species were selected according to their relevance

and abundance within the human gut microbiota to represent a simpli�ed human intestinal

microbiota (SIHUMI). The simulation comprises production and consumption of nutrients,

reproduction as well as extinction of the individuals. It comprises all relevant fermentation
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paths, interacting with chemical parameters of the substrate. After time points 35, 62, and

121, nutrients are added to the environment. These feeding events allow us to examine the

reaction of the system to external intervention. We extracted the metabolic activity of the

species using the function plotSpecActivity. The cross-feeding �uxes were estimated via

findFeeding3. The function plotSubCurve was used to determine the amount of substances

in the media. The functions yield values in mmol/g_dw, where g_dw denotes the dry weight

of all living microbes. See [69] for details on the simulation.

The following description is based on the notation introduced in Sections 2.1 and 3.1. We

consider every bacterial species as agent of a computing system. All information theoretical

estimations are based on the species' abundance. Recall that the abundance of a species

re�ects the internal dynamics as it modi�es according to the species' success or failure of

its interactions. Be it a lost competition or the bene�ts of a mutualism, both will e�ect the

species' abundance and thereby be memorized. We applied the Ragwitz optimization method

as provided in Lizier's JIDT toolkit [49] to each agents' time series in order to estimate its

Markov order. As the history length k should be at least as long as the Markov order of the

underlying random process [49], we set the maximal value of the estimated Markov orders,

10, as common k. When computing local AIS of an agent X, we used the whole time series

as basis for the probability estimation. Analogously, when computing local TE between two

agents, we used their whole time series to compute their (joint) probability. In order to gain

non-local measures, we used a window size of wt = 30. The window size was chosen as a

compromise between a statistically large enough sample size and the analytical requirement

to display the �rst feeding time. Being commonly set to 1, we decided to increase the delay u

to 2 in this case. Our choice is due to the fact that nutrients produced by species in one time

step are not available to other species until the next time step. Hence, changes in abundance

and thereby metabolic activity of a species can be taken into account by other species two

steps later at the earliest. We determined the signi�cance of the transfer entropies and

rejected all entropies with p-value above 0.05. Table 3 shows an overview of the data and

parameters used in the case study.

Our results support the following three hypotheses:

� Hypothesis 1: Environmental changes are re�ected in sudden decreases of local active

information storage.

� Hypothesis 2: Transfer entropy captures commensalistic and competitive interactions

among the system's components.

� Hypothesis 3: In an interaction, the agent mainly receiving information is generally

more successful than the agent mainly sending information.

Hypothesis 1 is clear from a mathematical point of view. Sudden environmental changes

lead to unexpected changes in a species' abundance and therefore to a decrease of local active
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system simpli�ed human intestinal microbiota

components bacterial species

number of components 7

type of abundance data number of individuals

length of time series 184

window size wt 30

interpolated window size 30

history lengths k, l 10

delay u 2

signi�cance level 0.05

Table 3: Data and parameters of the SIHUMI case study. The parameters refer to the
computation of (average) transfer entropy.

information storage. But also translated to a real-world scenario, this relation is plausible.

If the environmental conditions change, a living entity's development will be less predictable

from its past development than under stable environmental conditions. Hypothesis 2 sup-

ports the information theoretical approach of our method. It can be expected under the

assumption that, in reality, every interaction leads to a transfer of information and that

these dynamics can be found in the model as well.

Hypothesis 1: Environmental changes are re�ected in sudden decreases of local

active information storage. Figure 7(a) shows that species' abundances are strongly

varying around the external feedings after time steps 35, 62, and 121. Two e�ects are of

interest for us. Firstly, there are species' abundances which decrease strongly before feedings

due to a lack of certain essential nutrients in the environment and then stabilize after the

feedings. Examples of these species are Bacteroides at the �rst feeding or Bifodobacterium

at the second feeding. Second, there are species' abundances which increase strongly after

feeding events, see e.g. Bi�dobacterium or Anaerostipes after the third feeding. In both

cases, the feeding events lead to sudden changes in abundance development since these

species are primary users of the new resources. Hence, we can expect the information

composition of the system to re�ect the feeding. In order to gain an overview of the whole

system's long-term information dynamics, we averaged all species' AIS, collective TE, and

E at every time step, displayed in Figure 7(b). The time series start at time step 30 since

we are considering the average of the local values over the last 30 time steps.

The system's (averaged) AIS shows a cyclic behavior with clearly de�ned local minima.

The �rst minima are located right after the �rst and right at the second feeding event. The

third minimum around time step 80 coincides with a sudden increase of several species'

abundance following a mainly constant period. Concurrently to the third feeding after time
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Figure 7: Information composition in the SIHUMI community. Dashed lines show the feeding
events. (a) Abundance of the seven species. (b) AIS and collective TE averaged over all
species.
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step 162, there is another local minima in AIS. From time step 170 on, with some extinction

events interrupting a rather stable phase, the system's AIS stays in another local minimum.

The system's collective TE does not show such a clear cyclic behavior but we can see a

certain pattern: Whenever AIS has a local minima, collective TE has small local maxima.

At the third feeding event and toward the end of the simulation, collective TE takes even

higher values than AIS. This goes with the common understanding of these two measures. In

times of unpredictability, the species' past development is rather misleading when trying to

determine their next state and other species' development becomes more informative. In this

case study, unpredictability is induced through lack of nutrients and the subsequent feeding

events. The phenomenon that information transfer alternates with information storage in

complex systems has been found in other complex systems as well, see e.g. [77].

Let us now take a more direct look into the relation between abundance and AIS by

considering local AIS of single species (Figure 8 (a) and (b)). However, we have to be aware

of the fact that the outcomes contain a higher amount of noise than the twice averaged out-

comes we considered before. This is also a result of a certain amount of random Gaussian

noise added to the data in the estimation process, which is essential for the estimator to

work properly in all data situations [48, 49]. Note that the time series start at time step 10

due to the chosen history lengths k and l.

Figure 8(a) shows that the AIS of Bi�dobacterum is mostly positive, except for four times.

The �rst time is concurrently to the second feeding, when the abundance of Bi�dobacterium

decreases strongly. The second time is around time step 85, when the abundance of Bi�-

dobacterium shows a short but steep increase. After the third feeding, the abundance of

Bi�dobacterium strongly increases in two steps, re�ected by two negative values of AIS.

Note that the �rst feeding has no signi�cance e�ect on the AIS of Bi�dobacterium since its

abundance is not a�ected at all.

Let us compare the AIS of Bi�dobacterium with the AIS of Clostridium (Figure 8(b)).

Clostridium's mainly positive AIS is also interrupted by four negative local minima. The

�rst one is right at the beginning, around time step 15, when the species' abundance sud-

denly increases in its slope. At the �rst feeding, the AIS of Clostridium decreases strongly

due to the increase in abundance but it remains positive. The second and third negative

minima are concurrent to the second and third feeding. While the �rst of these two min-

ima re�ects the strong decrease right before the feeding, the second minimum re�ects the

increase after the third feeding. Towards the end of the simulation, the AIS of Clostridium

becomes negative again as a result of its sudden decrease in abundance. Note that the AIS

of Bi�dobacterium did not get negative during its extinction. This is due to the fact that

we only measure AIS of living species and the abundance of Bi�dobacterium decreases to

zero in one time step.

Examination of the local measures con�rms our hypothesis: Environmental changes, in our

example arti�cially induced through sudden addition of nutrients to the media, are re�ected
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Figure 8: Local AIS of single species. (a) Comparison of Bi�dobacterium's local AIS and
abundance. (b) Comparison of Clostridium's local AIS and abundance.
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in the species' abundance and thereby in strong decreases in AIS.

Hypothesis 2: Transfer entropy captures commensalistic and competitive in-

teractions among the system's components. There are various types of interactions

among the species in the simulated SIHUMI community. Two of the most common ones are

commensalism and competition. In a commensalistic interaction, one of the agents pro�ts

from the presence of the other one while the other one neither pro�ts nor su�ers. This hap-

pens in our case when one of the species is feeding on nutrients being produced by another

species. A competition takes place when two species are competing for the same, possibly

rare, nutrient. We found that transfer entropy re�ects both these interactions.

Let us start with examples of commensalism. Figure 9(a) shows the sum over all (ap-

parent) transfer entropies from and to Bacteroides. In the following, we will denote this

quantity by total information transfer. We distinguish between the information transfer ar-

riving at a species, its information in�ow, and the transfer leaving a species, its information

out�ow. Note that the plot starts at time step 30 since it shows values averaged over the

last 30 time steps.

In the case of Bacteroides, the information out�ow clearly exceeds the in�ow. Recalling the

de�nition of transfer entropy, the impact of Bacteroides' development on the other species'

development is signi�cantly higher than the other way round. This phenomenon can easily

be traced back to the metabolic activity of Bacteroides. Bacteroides is producing a consid-

erably higher amount of products than all the other species (see Figure 9(b)). For many

nutrients, the amount produced by Bacteroides exceeds the amount externally added as well.

Bacteroides is the main provider of nutrients like hydrogen, formate, and succinate. The

fact that those nutrients are among the main feeding components of almost all of the other

species explains the strong information out�ow of Bacteroides. This dominance of out�ow

becomes particularly apparent in the case of Anaerostipes (see Figure 10(a)). This is due to

the fact that Anaerostipes is strongly depending on the succinate production of Bacteroides

between the �rst and second feeding. Indeed, during this period of the simulation, succinate

is the second largest feeding component of Anaerostipes (compare Figure 11(a)) and by far

most of it is provided by Bacteroides (see Figure 10(b)).

E.coli serves as another example of commensalism. Figure 12(a) shows an interesting

pattern in the information transfer of E.coli : a strong dominance of out�ow abruptly turns

into a dominance of in�ow around time points 50 and 140. The explanation of this phe-

nomenon requires some understanding of E.coli's metabolic activity. Within the SIHUMI

community, E.coli is the only facultative anaerobe. On anaerobic conditions, which set in

shortly after the feeding times (see Figure 13(a)), formate is released as a product of E.coli's

fermentation process (see Supplementary Figure 11(b)). Right after the �rst feeding, E.coli

becomes the community's main formate producer. The fact that all the other species except

for Bacteroides and Clostridium are consuming formate during this period explains the con-
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Figure 9: Information theoretic and metabolic activity of Bacteroides. (a) Total TE from
and to Bacteroides. (b) Comparison of Bacteroides' and the maximum over all other species'
metabolic activity. Consumption is shown below the x-axis, production above the x-axis.
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tion of succinate compared to the other species' production of succinate.
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Figure 12: Information theoretic and metabolic activity of E.coli. (a) Total TE from and to
E.coli. (b) Amount of formate being produced by E.coli and consumed by other species.
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Figure 13: Amount of certain nutrients in the media. (a) Amount of oxygen in the media.
(b) Amount of acetaldehyde in the media.
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current dominance of information out�ow. Figure 12(b) shows that around time step 50, the

amount of formate being produced by E.coli and consumed by other species has decreased

to zero again, turning the dominance of information out�ow into a dominance of in�ow.

After the third feeding, E.coli starts producing formate again, which is mainly consumed by

Anaerostipes and Clostridium now. This interaction results in a strong dominance of infor-

mation out�ow again. With the two species stoppping their formate consumption around

time step 140 (see Figure 12(b)), E.coli's dominance of information out�ow is abruptly

changing into a dominance of information in�ow.

There is a strong competition for acetaldehyde (see Figure 14) between Anaerostipes

and Clostridium. Acetaldehyde is the main feeding component of both species and, as can

be seen in Figure 13(b), a limiting factor shortly after the feedings. Following the third

feeding, Anaerostipes signi�cantly increases its consumption of acetaldehyde and becomes

Clostridium's main competitor. This interaction is re�ected in a high information transfer

from Anaerostipes to Clostridium (see Figure 15(b)).

Hypothesis 3: In an interaction, the agent mainly receiving information is gen-

erally more successful than the agent mainly sending information. Let us take

a closer look at some of the interactions just presented, starting with Bacteroides. From

a metabolic view, Bacteroides is highly productive. However, from an information theo-

retic view, it is mainly passive, since only receiving information transfer indicates active

processing. This lack of active adaptation to the other species' development is re�ected in

the abundance of Bacteroides. It increases quicker than the abundances of the other species

during the �rst steps. It seems to have an initial advantage when the others are not yet

established. This advantage gets lost as soon as all the others are established: Bacteroides is

the �rst species to start decreasing in abundance again. The decrease happens right before

the �rst feeding. The feeding is able to prevent a further decrease but there is no increase

in abundance. Shortly before the second feeding, all the individuals die abruptly.

In contrast, consider Clostridium. Throughout the whole simulation, Clostridium is

one of the least abundant species. Nevertheless, it does not become extinct until three

steps before the end of the simulation. Figure 15(a) shows that the information in�ow

of Clostridium is clearly dominating its out�ow. Compared to Bacteroides, being a clear

out�ower to get extinct quickly, Clostridium can compete with the other species on the long

run.

Finally, recall the competition between Clostridium and Anaerostipes. There is a clear

dominance of information transfer from Anaerostipes to Clostridium. While Anaerostipes

gets extinct around time step 150, Clostridium maintains its population size for another 30

time steps.

These examples and several more suggest that the act of receiving information transfer from
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Figure 14: Acetaldehyde consumption of single species. (a) Acetaldehyde consumption by
Anaerostipes. (b) Acetaldehyde consumption by Clostridium.
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Figure 15: Information theoretic role of Clostridium. (a) Total transfer entropy from and to
Clostridium. (b) Transfer entropy between Anaerostipes and Clostridium.



4.2 Interplay of the systemic variables 61

other species can be understood as an active adaptation process, thereby bene�ting the

chances of survival in the community.

This case study nicely illustrates that considering complex systems as computing entities

can be a fruitful approach to system analysis. E�ective interactions, in this case competition

for nutrients and feeding among each other, are clearly re�ected in the abundance-based

transfer entropy among the system's components. Examples like this further enhance our

con�dence in the information theoretic approach of our method.

Having transferred time series of abundance into networks of information transfer, the next

crucial step in our method is the computation of the networks' potential, connectedness,

and resilience. In the following chapter, we will address the question whether our measures

do indeed agree with Gunderson and Holling's understanding of these complex notions.

4.2 Interplay of the systemic variables

The core of our method to quantify the adaptive cycle is the computation of its three

de�ning variables, potential, connectedness, and resilience. In Sections 3.3 and 3.2, we

presented and explained our choice of de�nitions. From a theoretical point of view, this

choice should be comprehensible at this point. However, we still need to demonstrate the

suitability of the three measures in practice. To this end, we will simulate the development

of a complex system's information network during a classic course through the adaptive

cycle. The simulation will be designed on basis of Gunderson and Holling's descriptions of

phase speci�c system properties given in [39]. Table 4 summarizes these properties and their

meaning with regard to a system's information network.

According to Table 4, the topological evolution of a system's information network is likely

to alternate between a slow contraction to a few, high-weighted edges during r/K phase and

an abrupt expansion to many, low-weighted edges at the onset of the Ω-phase. We call this

developmental pattern �contract and spread�. In this section, we simulate a series of graphs

which follows this pattern, building on the principle of overexploitation. Overexploitation

denotes the mechanism that an interaction between components of a system becomes inop-

erable or unpro�table due to overuse.

Note that, although the �contract and spread" pattern is the classic way of how the in-

formation network develops during a course through the adaptive cycle, other patterns of

development are in accordance with the descriptions in Table 4 as well. We will see examples

of such alternative patterns throughout this thesis.

We are simulating the interactions (and thereby the transfer of information) between the

N components of a system in an agent-based model type approach. We want to outline the

main ideas before describing the implementation in detail. Heuristically, the interactions

follow the principles below.
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Phase General system properties Network properties

α-phase "internal regulation is week"

"low connectivity among vari-

ables"

"unexpected associations and

recombinations"

quickly changing, low-weighted

edges

r-phase "subset of species begins to de-

velop close interrelations"

"intense activity"

"future starts to be more pre-

dictable"

increasing weight on a subset of

edges

growing consistency in network

topology

K-

phase

"extreme and growing rigidity"

"streamlining operations"

high consistency in network

topology

focus on a few high-weighted

edges

Ω-phase "connections are broken"

"resources are released"

"sudden explosive increase in

uncertainty"

disappearance of high-weighted

edges

occurrence of new edges

Table 4: Properties of a system during the di�erent phases of the adaptive cycle as given
by Gunderson and Holling in [39, pp.41-46] and translated into the language of network
topology.

� Interactions can be positive/negative for both interaction partners or positive for one

and negative for the other partner.

� If a component has a positive interaction with another component, the probability of

choosing this component as cooperation partner again increases. Though, the proba-

bility of this cooperation turning out positively decreases (overexploitation).

� If a component has a negative interaction with another component, the probability of

choosing this component as cooperation partner again decreases to zero. The proba-

bility of this cooperation turning out positively increases.

� If the probability to choose a component is zero, this component is only taken into

account as a cooperation partner again when there are no other options left.

� Each of the components is assigned a �capital� C, which it invests into its interactions.

A component's capital increases after positive interaction and decreases after negative

interaction. The amount of gain/loss is equal to the amount of capital invested in the
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respective interaction. We call the amount of capital invested into an interaction the

interaction's strength.

These rules are implemented as follows. We create a uniformly distributed random

matrix P of size N × N , whose (i, j)-th entry contains the probability that an interaction

between i and j is positive for component i. Analogously, its (j, i)-th entry contains the

probability that an interaction between i and j is positive for component j. The stochastic

matrix R stores component i's probability to choose component j as interaction partner

in its (i, j)-th entry. An interaction with oneself is not possible. Initially, the probability

to choose an interaction partner is equally distributed. Furthermore, in every simulation

step, we compute the matrix K to store the strength of the interactions. With Ci being the

capital of component i, we set K(i, j) = Ci ·R(i, j). Hence, each component invests its whole

capital in its interactions, proportionally to the interaction probabilities. We consider K

as adjacency matrix of the information network of the system. In addition, three constants

0 ≤ c, cp, cC ≤ 1 have to be chosen. Their function will become clear later.

The simulation performs S rounds, each of which follows the same routine. Based on the

probabilities in matrix R, every component i randomly selects an interaction partner j.

Every component can thereby be part of several interactions, the one it has chosen itself

and the ones for which it has been chosen as interaction partner. Based on the probabilities

P (i, j) and P (j, i), two coins are tossed for every interaction, deciding whether the interaction

is positive or negative for i and j. In random order, which is determined anew after each

round, the interactions chosen by the components are executed as follows. We refer to the

execution of one interaction as one simulation step.

Assume component i has chosen component j as interaction partner. If the interaction

between i and j is positive for component i, the capital Ci of i increases to Ci +Ci ·R(i, j),

whereas P (i, j) decreases to max{P (i, j) − cP , 0}. The probability for i to choose j again,

R(i, j), increases to min{R(i, j) + cC , 1}. The other entries in R(i, :) decrease uniformly to

maintain row sum 1. If the interaction is negative for component i, the capital decreases

by Ci · R(i, j), whereas P (i, j) increases by cP . The entry R(i, j) is set to zero. The other

non-zero entries of R(i, :) increase uniformly. There is one exception to this procedure: if

R(i, j) is equal to one, component i's capital is set to the initial value, representing a restart

after the last interaction possible has turned out to be negative.

Subsequently, the same interaction is executed for j. If the interaction between i and j is

positive for j, the capital Cj of j increases to Cj + Cj ·R(j, i), whereas P (j, i) decreases to

max{P (j, i)−cP , 0}. The probability R(j, i) for j to chose i again increases to min{R(j, i)+

cC , 1}. The other entries in R(j, :) decrease uniformly. If the interaction is negative for

component j, the capital decreases by Cj ·R(j, i) whereas P (j, i) increases by cP . The entry

R(j, i) is set to zero, the other non-zero entries of R(j, :) increase uniformly. The exceptional

rule described above applies analogously for j.

Finally, components i and j reinvest their capital in their interactions, hence, the matrix K
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is computed based on the new values of R(i, j), R(j, i), Ci, and Cj . We compute potential,

connectedness, and resilience of matrix K, completing one step of the simulation. Hence,

the simulation yields time series of networks and systemic variables of length S ·N .

Our simulation produces series of networks showing the desired �contract and spread�

behavior for a broad range of parameters. An exemplary series of 64 networks can be found

in Supplementary B, the corresponding parameters are listed in Table 5. At the beginning

of the simulation, the network has many edges, resembling a complete graph. The number

of edges reduces and the edges' weight increases until time point 11. From time point 12 on,

there is an opposite trend: the number of edges suddenly increases again and the network

approaches its initial topological structure. The network contracts again until time point 25,

where only a few edges are left. From time point 25 to time point 26, the second turnaround

takes place. The network becomes more dense again and keeps this structure for more than

ten time points. From time point 40 on, the edges clearly start contracting again. Starting

at time point 48, the number of edges increases slightly, followed by a strong increase at

time point 54. At time point 55, the network resembles a complete graph again. Summing

up, we identify three contracting periods followed by spreading events, or, in the language

of Gunderson and Holling, three runs through the adaptive cycle.

N 5

S 16

C 10

c 0.5

cP 0.1

cC 0.1

Table 5: Parameters used in the overexploitation simulation underlying Figures 16 and 17.

What behavior of the three systemic variables do we expect? Following the descriptions of

the adaptive cycle metaphor, connectedness should increase during the contracting periods

due to the accumulation of overall capital and the rising constraints, whereas resilience

should decrease due to the network's growing vulnerability. Potential should increase as

long as the e�ect of increasing capital outweighs the e�ect of the decreasing number of

edges. The sudden breakdowns should be re�ected by a decrease in connectedness and an

increase in resilience. The behavior of potential during breakdowns is again dependent on

the weighting of the di�erent e�ects but we expect an overall decrease. Figure 16 shows

that the development of potential, connectedness, and resilience ful�lls our expectations.

Considering the system's connectedness, three clear breakdowns can be detected: the �rst

at time point 12, the second at time point 26, and the third at time point 48. The system's

potential shows a similar behavior. Both variables capture, besides the pure topology of the

graph, the increasing total capital during contraction periods and its decrease at spreading
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events. Resilience, typically opposite to connectedness, slowly decreases during times of

contractions and suddenly and strongly increases at times of breakdowns.
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Figure 16: Potential, connectedness, and resilience of the �rst 64 time points of one run of
the simulation. The corresponding networks are displayed in Supplementary B.

Figure 17 displays the output of a second realization. Here we used the same parameters

as in the �rst realizations (see Table 5), except for the number of time steps, which we set

to S = 20. The interplay of the three systemic variables indicates two clear cycles, with the

�rst taking place at time point 32, the second at time point 70. In both cases, resilience

suddenly increases while connectedness strongly decreases. The networks shown exemplify

the network's topology before and after the breakdowns. Before the breakdowns, at times

of high connectedness and potential, the network has a comparably low number of edges,
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some of which are signi�cantly stronger than others, (compare networks 29 and 63). After

the breakdowns, the networks resemble complete graphs with rather equally weighted edges

(compare networks 32 and 70). This topology is re�ected in the networks' high resilience and

low connectedness. Both connectedness and potential indicate a smaller third breakdown

around time point 50. But it does not result in a complete graph-like topology like at

time points 32 and 70, therefore it is not clearly re�ected in the network's resilience. The

situation is similar to the period between time points 48 and 54 in the �rst realization:

connectedness has just declined but resilience is still comparably low. Considering the

corresponding networks, one can see that they are less constrained than before time point

48, hence the lower connectedness, but they do not receive their complete graph-like topology

before time point 55.

Figure 17: Potential, connectedness, and resilience of a second run of the simulation. The
corresponding network is shown for time points 29, 32, 63, and 70.

The results just presented demonstrate that the three systemic variables behave as ex-

pected in a particular adaptive cycle network development scenario. They therefore con-

tribute to the validation of the variables' de�nitions. However, as already mentioned, other

development scenarios with very di�erent topological properties can be in accordance with

the adaptive cycle metaphor as well. We will see an example in the following section, ad-

dressing the question whether the adaptive behavior of a system can be extracted from
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purely interaction-based data.

4.3 Capturing cyclic development in an interaction-based model

The following section is except for smaller modi�cations an excerpt of [83]. The Tangled

Nature Model (TNM) [24] is an abstract model of co-evolutionary interactions. It simulates

the development of a community of genotypes, being represented by binary vectors of a �xed

length. Each of the genotypes provides an opportunity for individuals of this type to be

born, mutate, reproduce, or die. The probability for these events is based on an underlying

interaction pattern among the genotypes which is randomly generated at the beginning of the

simulation. The model yields time series of abundances of representatives of genotypes. We

consider each genotype as an agent of a system. Since there is no metabolism being modeled,

it is the interactions only, which drive the dynamics of the simulation and potential does

not di�er from connectedness. Therefore, we will restrict our analysis to only two of the

systemic variables, namely connectedness and resilience. Note that the model has been

shown to generate alternating phases of stability and change [24]. It therefore provides an

ideal testing scenario for our assumption that the interaction structure of a complex system

captures its cyclic adaptive behavior.

We chose a genome space of size 32 and simulated an evolution of 5000 time steps. The

simulation is based on the code provided by Jensen & Palmieri [24]. See Suppl. Table 1 for

a list of the parameters used. During the whole simulation, 24 di�erent genotypes occurred.

For the estimation of the information networks, we used a window size of wt = 100. History

lengths and delay were set to 1. Only transfers passing a signi�cance level of 0.01 were taken

into account. Resilience was computed by means of symmetrically normalized Laplacian

matrices, being standardized with respect to the maximal edge weight M via c = 1
M . An

overview of the data and parameters used in this case study can be found in Table 7.

Considering the development of connectedness and resilience of the simulated system, one

can immediately observe an antagonistic cyclic behavior (Figure 18(a)) with connectedness

peaking while resilience drops and vice versa. This behavior perfectly matches with the

variables' anticipated development. Taking a closer look at breakdowns, two di�erent kinds

of breakdown can be identi�ed (see Figure 18(b)). One type of structural change occurs right

before the composition of the genome space changes (1), while the other arises in the middle

of a compositionally stable phase (2). The �rst case literally follows the adaptive cycle

metaphor: release and a subsequent phase of reorganization are characterized by structural

changes of the system. The second type seems to be non-intuitive at �rst glance. However,

an Ω-phase does not need to result in compositional changes. A structural breakdown of

organization can also manifest itself in internal reorganization. The external structure of

the system thereby appears to remain una�ected. Examples of such an internal crisis are

abundant in both ecology and socio-economical systems.



68 4 VALIDATION OF THE METHOD

system community of genotypes

components genotypes

number of components 24

type of abundance data number of individuals

length of time series 5000

window size wt 100

interpolated window size 100

history lengths k, l 1

delay u 1

signi�cance level 0.01

normalization type symmetric

standardization constant c 1
M

Table 6: Data and parameters of the TNM case study.

Let us now consider the networks of information transfer underlying the systemic vari-

ables. A clear pattern in the development of the information networks re�ects the di�erent

phases of the cycle. As exemplarily shown for time step 3121 (see Figure 18(c)), the network

of information transfer does only have a few edges in times of higher resilience. From step to

step, these edges quickly change and do not exhibit any pattern of continuity. This is typ-

ically the case during phases of release and reorganization. Recall that the transition from

K- to Ω-phase is characterized by connections being broken, low connectivity among vari-

ables, and unexpected associations and recombinations appearing (see [39, p. 45 et seq.]). In

contrast, in times of lower resilience, the network reveals many edges (see, e.g., the network

at time step 3376 in Figure 18(c)). Here, the edges range from very low-weighted edges,

representing weak transfers of information, to temporally more constant, heavy-weighted

edges, re�ecting strong transfers and thereby more closely connected components. This

matches the description of the four phases by Gunderson & Holling [39] There are structural

di�erences to the development scenario in Section 4.2. However, as already mentioned, their

descriptions allow di�erent developmental patterns of systems' information networks.

In this case study, we extracted the typical cyclic, antagonistic pattern of connectedness

and resilience from a purely interaction-based model following simple rules of co-evolutionary

development. These results support our assumption that the adaptive behavior of a system

indeed expresses itself in the lowest common denominator of all complex systems, i.e the

interactions among its components.

Having validated the main ideas underlying our method, we will now demonstrate its

broad �eld of application by means of three di�erent case studies.
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Figure 18: Information theoretical analysis of a Tangled Nature Model system. (a) Resilience
and connectedness of the system (genome size of 32) over 5000 time steps. (b) Occupation
of genome space. The blue lines mark two di�erent kinds of breakdowns. After 1), the
composition of the genome space changes. Breakdown 2) happens in the middle of a stable
phase. (c) Networks of information transfer of the simulated system at time steps 3121 and
3376.
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5 Cases of Application

Complex systems are as diverse as our world itself. No less diverse are our questions when

it comes to understanding speci�c complex systems. The strength of our method lies in its

generality. In the last section, we already saw it being applied to a simulated microbiome

and a model of co-evolutionary interactions. Now, it is time to illustrate its use in investi-

gating real-world systems. By means of an economic example, we demonstrate the method's

capability in comparing systems (Section 5.1). Here, the concrete question is: How does the

development of three European countries di�er from each other during the Euro crisis?

Subsequently, in Section 5.2, we go more into detail, showing our method's ability to explore

complex systems. Exploration does not end with the consideration of a system's course

through the adaptive cycle. It includes the examination of the cycle's speci�c underlying

driving forces. We can gain insight into these forces by studying the estimated informa-

tion networks themselves. The development of nodes' positions in the network contains

important information about the role of single components or interactions in the transition

between the adaptive cycle's phases. We will illustrate this analysis technique by means of

two ecological systems.

Recall that it is important to keep in mind that we cannot and should not expect any real

system to exactly follow the idealistic pattern of the adaptive cycle. The metaphor should

rather be seen as a description of the baseline development of a system which can be taken

as background for a detailed analysis of a given instantiation of the system. In particular,

deviations from the ideal allow to identify speci�cities in system development which are due

to the particular interaction patterns given in a concrete situation.

5.1 Comparing economic systems during the Euro crisis

This section is except for smaller modi�cations an excerpt of [83]. In the second decade of

the 21st century, Europe was shaken by a �nancial crisis. In the following case study, we

will analyze and compare the development of three European countries during this crisis.

Considering each country as an economic system, classical economic variables such as export,

import and gross national product can be considered as agents. We complemented this set of

monetary variables with logistic variables such as the amount of goods transported by road or

by railway to incorporate logistic capacity. Variables such as �nal consumption expenditure

of households, motorization rate, or people at risk of poverty or social exclusion re�ect

the prosperity of a country. Additionally, environmental indicators such as greenhouse gas

emissions are considered. Our data set comprises yearly quantities of 19 economic variables

from 2004 to 2015, being obtained from the Eurostats database [3]. The data is provided

in the supplementary material. See Suppl. Table 3 for a complete list of the variables

used. The units of the variables are heterogeneous, ranging from Euro over tonnes to the

number of individuals. We used an expanding window size of wt = t, starting at t = 7, and
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an interpolated window size of 18 for the estimation of the information networks. History

lengths and delay were set to 1. Only transfers passing a signi�cance level of 0.01 were taken

into account. Symmetrically normalized Laplacian matrices standardized with respect to the

maximal edge weight M via c = 1
M were used for the computation of resilience. See Table

7 for an overview of the data and parameters used.

system European country

components economic variables

number of components 19

type of abundance data heterogeneous

length of time series 12

window size wt t (starting at 7)

interpolated window size 18

history lengths k, l 1

delay u 1

signi�cance level 0.01

normalization type symmetric

standardization constant c 1
M

Table 7: Data and parameters of the Europe case study.

Retrospectively, European countries were split into two major classes, the Northern

countries representing creditor states, and Southern/peripheral countries, representing the

debtor states. These two groups drifted into the crisis under di�erent prerequisites and

consequently played very di�erent roles. As a representative of the former group, we chose

Germany. For the debtor group, we chose Greece and Italy. Greece has a special position

among the southern countries. In contrast to other debtor states, the Greek crisis was a

genuine sovereign debt crisis right from the beginning, and it is one of only two countries

in which dept restructuring became necessary to overcome the crisis [36]. In contrast, Italy

represents a Southern state without international intervention or control during the study

period.

Let us start with the consideration of Germany. Figure 19(a) shows a classical Ω-phase

during 2010 to 2011. A breakdown in potential and connectedness is accompanied by an

increase in resilience. This phase of economic decline can also be seen at the �nancial market.

Note that an increase in returns from ten-year government bonds (see Figure 19(d)) re�ects

decreasing trust in the governments capacity to act at the onset of the crisis [32]. From 2011

to 2013, potential and connectedness recover, indicating a clear r/K phase. This increase

goes along with a loss of resilience, leading to a second breakdown in 2013. These phases

can also be followed in the development of government bond yields, decreasing from 2011

to 2013 followed by another increase until the �rst months of 2014. From 2014 to 2015, the
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Figure 19: Information theoretical analysis of European countries during the Euro crisis.
(a)-(c) Development of potential, connectedness, and resilience of Germany, Greece, and
Italy considered as economic systems. (d) Ten-year government bond yield of Germany,
Greece, and Italy [9]. The labels mark the month January of the respective year.

yields decreased again with the system starting into another α-phase. Overall, Germany

runs through a complete adaptive cycle during these years. This well matches the fact that

Germany has not been hit by the Euro crisis so hardly. Like most of the Northern countries,

Germany had a �nance surplus when the global �nancial crisis started, which allowed the
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country to take-in the role of a creditor [36].

From a system point of view, the development of the Greek economy shows a similar

behavior (Figure 19(b)). After a breakdown in 2010�11, a classical r-phase can be identi�ed

from 2011 to 2012, with potential and connectedness increasing and resilience decreasing.

Considering yields of ten-year government bonds (Figure 19(d)), the conclusion would be

partially opposite. The beginning of the r-phase from 2011 to 2012 is coming along with

a steep increase in yields, showing the fact that the markets lost their trust in the Greek

economy. Recall that at the end of 2009, Greece's credit ratings have been downgraded

after the Greek government had disclosed an extraordinary high budget de�cit [35]. In the

following, �nancial assistance programs have been approved (e.g. �Six-Pack of reforms� in

December 2011 [35]) aiming at the stabilization of the economy. From our system perspec-

tive, these external actions seem to have had a stabilizing and growth encouraging e�ect

from 2011 onwards, being re�ected in strongly increasing potential and more or less con-

stant connectedness. Thus, through the intervention of the European community, actual

market development as being captured by economic performance indicators and thereby by

our three systemic variables has been decoupled from the �nancial assessment of the coun-

try's economy, as being re�ected in governmental bonds. After a second �nancial assistance

package in March 2012 [35], potential further increases until 2014. However, connectedness

slightly declines from 2012 on, resilience increases from 2013 on. Hence, while potential

still indicates that the system is in its r/K phase, connectedness and resilience more and

more indicate a system breakdown. This 'atypical' behavior might indicate the fact that

the exploitation phase has been triggered externally. Due to the formation of a new govern-

ment, European payments were suspended from August 2014 to July 2015 [4]. With internal

control taking over again in that period, a second breakdown can be seen, with potential

and connectedness decreasing and resilience increasing. This breakdown is now indeed being

re�ected in a second peak in governmental bond yields.

In the form of Italy, we will now consider a debtor state which has not been subject to

external intervention. From 2010 to 2011, the systemic variables show the same behavior as

in the other two countries: Potential and connectedness decrease along with an incline in

resilience (Figure 19(c)). At the same time, yields of ten-year government bonds increased

(Figure 19(d)). We identify this period as a classical Ω-phase. During the following three

years, yields �rst continued increasing and subsequently decreased again. This is accom-

panied by an in- and decrease in connectedness and an overall slight decrease in resilience.

Potential remains low during the whole period. We interpret this period as comparatively

long α-phase. This matches the fact that, although a bailout could be avoided, structural re-

forms and austerity measures progressed slowly [44]. The country faced massive increases in

unemployment and poverty, and populist and anti-establishment parties were strengthened

in the sequel [36]. A particularly strong decline in governmental yields can be observed be-

tween 2014 and 2015, leading to a local low at the beginning of 2015. Indeed, 2014 is the year
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where potential and connectedness start increasing again while resilience strongly decreases.

Here, we identify a classical r-phase. In summary, the systemic analysis well matches the

economic situation of the country and the �nancial assessment via governmental bonds.

In the following two case studies, we will exploit the full potential of our method by

including the information networks themselves into the analysis. To this end, we return to

the metaphor's original source of inspiration, ecosystems.

5.2 Exploring systems

In the following, we will investigate the development of two ecosystems. First, a vascular

plant community on a volcanic island near Iceland (Section 5.2.1) is presented. Second, we

consider a plant community in the prairie-forest ecotone of Kansas (Section 5.2.2). The

two systems di�er in a crucial aspect: while the plant community of Iceland is largely

unspoiled, the experimental plot in Kansas is exposed to human intervention in form of

triennial spring burns. We analyze their development from the adaptive cycle point of

view, taking into consideration the networks of information transfer themselves. Knowing

the systems' characteristics during and at the transition of the cycle's phases is the key to

understanding the systems' development.

5.2.1 Systemic analysis of a developing plant community on the island of Surt-

sey

We will now come back to the vascular plant system on the volcanic island of Surtsey, whose

�rst years of development have been generally described in Section 1. The following case

study is taken from [70] in large parts. It provides a detailed analysis of a particular plant

community on the island, aiming to locally explore the succession events following 1990.

Our analysis is based on time series of vascular plant species' abundance data collected

in a 10x10m plot (Plot 1) on the Southern part of Surtsey. The plot is within a sea-gull

nesting site on sand-�lled sheet lava (see Figure 20(d)). During the observation period,

twelve di�erent species were recorded (Table 8).

Data has been collected biennially in July by the Icelandic Institute of Natural History

from 1990 to 2018. Next to species' abundances, the number of sea-gull nests within the plot

was counted from 2004 onwards. This quantity is included into our analysis in form of the

variable nesting density (ND). For more information on data collection and the approach

to monitoring, see [55]. Precipitation data has been obtained from the weather station

on Stórhöfði, the main island in the Vestmannaeyjar archipelago, about 18 km away from

Surtsey (provided by the Icelandic Institute of Natural History in January 2019).

The estimations of information networks are based on windows of a �xed size of wt = 6.

By interpolation, we increased the number of data points in every window to 18. History
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Species Abbreviations

Cerastium fontanum CF

Cochlearia o�cinalis CO

Festuca rubra FR

Honckenya peploides HP

Leymus arenarius LA

Matricaria maritima MM

Poa annua PA

Poa pratensis PP

Puccinellia distans PD

Sagina procumbens SP

Stellaria media SM

Taraxacum T

Table 8: Species of vascular plants recorded in Plot 1 between 1990 and 2018.

length and delay were set to 1. An estimated transfer was taken into account only if its

signi�cance was ≤ 0.1. We used symmetrically normalized Laplacian matrices, standardized

with respect to the maximal edge weight M via c = 1
M to compute the system's resilience.

Table 9 summarizes features of the data and the parameters used in this case study.

system vascular plant community

components plant species and nesting density

number of components 13

type of abundance data heterogeneous

length of time series 15

window size wt 6

interpolated window size 18

history lengths k, l 1

delay u 1

signi�cance level 0.1

normalization type symmetric

standardization constant c 1
M

Table 9: Data and parameters of the Surtsey case study.

Since data has been provided on a biennial basis, we decided to con�ne ourselves to merge

the two phases of predictability into a single r/K-phase and the phases of stochasticity into

an Ω/α phase, correspondingly. Doing so, analyzing the community of vascular plants and

sea-gull nests on the study plot reveals four clearly distinguishable phases. Our observation
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period starts with a clear r/K-phase in 2000 � 2004. While potential and connectedness

increase, resilience decreases (see Figure 20(a and c)).

Figure 20: (a) Potential, connectedness, and resilience of the vascular plant system in the
monitoring plot. (b) Percentage of the monitoring plot covered by the di�erent plant species.
(c) Three-dimensional plot of potential, connectedness, and resilience of the vascular plant
system in two di�erent perspectives. (d) Bird's-eye view of Surtsey with the red arrow
displaying the location of the monitoring plot. Edited version of Figure 2 in [55].

The following period from 2004 to 2010 can be interpreted as an Ω/α-phase, primar-

ily indicated by monotonously decreasing connectedness. Potential shows an overall de-

crease, resilience an overall increase during this period. However, their development is not

monotonous. Potential peaks in 2008 while resilience is concurrently at a local minimum.

The period from 2010 to 2016 reveals a second r/K-phase. This conclusion is mainly

supported by the increase of connectedness. An associated loss of resilience follows slightly

delayed, as starting in 2012. Potential does not follow the idealistic pattern of the adaptive

cycle. Although the system does increase its inner level of organization, it cannot build up

potential. Such atypical development hints towards external drivers, hindering the system

from fully exploiting its capabilities.

Finally, the years 2016 and 2018 indicate a second Ω/α-phase of reorganization. All three

variables show the classical behavior as expected by theory. However, we will not discuss



78 5 CASES OF APPLICATION

this last phase in detail since it seems to be still ongoing. Overall, the system runs through

two adaptive cycles during the study period. In the following, we will provide a deeper

analysis of the �rst three of the observed phases. Here, the decrease in potential during the

second r/K phase is of special interest.

The �rst r/K phase � the end of an era. Let us �rst consider species composition

during the period 2000 � 2004. Robust species being capable of surviving under harsh

conditions still prevail. At the beginning of the period, Honckenya peploides and Leymus

arenarius, along with Cerastium fontanum, together make up more than 80% of land cover.

Towards the end of the period, the contribution of these early colonizers decreases down

to less than 50%. In 2004, Poa pratensis has gained dominance. This perennial grass

outcompetes annual community members such as Poa annua and Sagina procumbens. Plant

community composition exhibits a clear transition from early pioneers and opportunistic

species towards a grassland community. The well-established association of Honckenya with

Leymus (compare Section 1), which has been important in establishing sustainable plant

life on the island [34], starts to give way to experts of higher competition under stabilized

environmental conditions. This development is associated to the increasing nutrient content

of the soil, which can be traced back to the growing population of breeding birds on the

island [55].

Switching to the networks of information transfer, we gain insight into the inner func-

tioning of the plant community. Strikingly, Stellaria media takes a central position in the

network in 2000, 2002 and 2004 (see Supplementary F). Note that there is a net-in�ow of

information into Stellaria, indicating that the species is actively taking into account the

other species' development (see Figure 21(c)). This might come as a surprise considering

the fact that Stellaria′s abundance is monotonously decreasing during this period. How-

ever, we have to keep in mind that the information structure of the system is computed on

basis of the twelve preceding years. Indeed, Figure 20(b) shows a peak phase of Stellaria

in the middle and late nineties. The active role of Stellaria during this period of upcoming

change can be ecologically underpinned. Being a short-lived, annual plant of typically high

growth rate and capable of producing seeds rapidly and abundantly [38], Stellaria can take

the opportunity being opened by the transition from an early pioneering plant community

towards establishing a grassland ecosystem. Stellaria can be considered as indicator of a

transition in community composition. Note that 2004 is the �rst time in eight years of plant

communities on the plot (data provided by the Icelandic Institute of Natural History) that

plant cover falls below 100%.

H. peploides, which was a driver of community development in the early period of land

capturing [34, 55], is taking a peripheral position in the information networks during these

�rst years (see Supplementary F). Just like Stellaria, Honckenya shows a net-in�ow of infor-

mation, re�ecting its active adaptation to the environment. With the environment opening
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Figure 21: (a) Percentage of monitoring plot covered by H. peploides. (b) Number of nests
in the monitoring plot. Recall that no data was collected before 2004. (c) Information
transfer from and to S. media with the red line marking the net transfer. (d) Information
transfer from and to nesting density with the red line marking the net transfer.

up for competition, H. peploides′s lower competitiveness hereafter leads to a decrease in

abundance.

Resilience during this �rst period clearly is low, since stability has been provided by

associations of the pioneers Honckenya and Leymus during the early phase of community

development. These connections are now dissolving with the decline of Honckenya. At the

same time, warrantors of the period to come have not yet established themselves strongly

enough. The system indeed is facing a new era to come.

The �rst breakdown � from pioneers to perennials. The years 2004 to 2008 mark a

period of dramatic change on the island. �During 1999 - 2005, colonization declined to 0�3

species per year indicating that it was leveling o�. This was however followed by a sharp

increase in 2006 and 2007 with 5 new species found on the island each year. In addition, a

few species, which had been unsuccessful colonizers on the island in the past, have invaded

the island again.� [55, p.62] A plausible trigger for this breakdown is the accumulated e�ect

of the gulls having been breeding on this part of the island for several years. The birds
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serve both as provider of nutrients (in particular nitrogen), as well as source of seeds [55].

Thereby, they change the environmental conditions for all components of the system. We

can �nd clear signals on the role that nesting density played in the breakdown of the system

and the resulting Ω/α phase.

There is a remarkable di�erence between the network in 2004 and the network in 2006 (see

Supplementary F). Surprisingly, H. peploides gains the most central position in the system.

For the �rst time, its information out�ow dominates its in�ow, indicating the transition

from an active role to a passive one (recall the de�nition of information transfer). In the

same year, the decrease in abundance of Honckenya slows down considerably (Figure 21(a)).

Meanwhile nesting density obtains a role as active player in 2006 (compare Figure 21(d)),

reaching a central position in 2008 (see Supplementary F). Its information in- and out�ow

are comparably high in this year, indicating both an active adaptation to the plant species'

development and, the other way round, a strong in�uence on these species' development.

This phenomenon can be explained by the fact that, on the one hand, the birds are depending

on the vegetation in building their nests and raising their chicks, and, on the other hand,

the specialized and demanding species of the second succession wave rely on the nutrient

input by the birds. Furthermore, the e�ect of bird damage has to be considered. In 2010,

at the end of the α-phase, information out�ow is dominating (see Figure 21(d)), capturing

the strong in�uence of the breeding birds on the vegetation.

During 2006 and 2010, the plot is dominated by the higher competitive species P. pratensis

and L. arenarius. Both plants together contribute almost all of surface cover during this pe-

riod (see Figure 20(b)). Towards the end of the period, Festuca rubra is entering the scene.

Just like L. arenarius and P. pratensis, it forms dense mats by extensive lateral spread

above and below ground [55]. During this period, it takes a central and active position in

the information networks (see Supplementary F). In 2010, the network stabilizes as being

indicated by a rather balanced set of edges with more equally distributed �ows of entropy.

This indicates the end of the Ω/α phase and the start of a new period of growth.

On a system level, the accumulated nutrients and the newly established plant colonizers

lead to an increase in potential in the α-phase between 2006 and 2008. The subsequent

loss of potential is typical for a system's late α-phase. Resilience develops contrarily to

potential: it classically increases during the breakdown between 2004 and 2006, decreases

when potential is accumulated and continues increasing at the end of the α-phase.

The second cycle � a plan being failed The second r/K phase lasts from 2010 to 2016.

Connectedness increases while resilience declines antagonistically, although with a delayed

start. Surprisingly, potential does not follow the expected pattern. Despite a small increase

at the beginning, the system constantly looses potential from 2012 onwards. We are thus

faced with an atypical phase of exploitation and conservation.
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Almost all species are decreasing in abundance between 2012 and 2014 with Honckenya

and Cerastium becoming extinct at the plot. It is S. media only that can increase during

this year, pro�ting from released nutrients through dead plant material and indicating the

opening of unexpected opportunity. While at the �rst occurrence, Stellaria's appearance

marked a period of internal system change, this time lack of rain being an environmental

factor is perturbing the system during its move of exploitation. Figure 22 shows the mean

rainfall during the vegetation period as being measured at Stórhöfði weather station, 18km

away from the island of Surtsey. In 2012, precipitation has been at a long term minimum

of less than 50mm. Although the amount of precipitation was comparably low in 2007,

the plants have, according to personal correspondence with Borgþor Magnússon from the

Icelandic Institute of National History in October 2020, never shown such severe drought

symptoms before. This might be, inter alia, due to the fact that the drought in 2012 is

hitting the plant community at the onset of its exploitation phase. In addition, a peak in

the population of birds in 2012 (see Figure 21(b)) presumably provides additional stress for

the plants given the dry conditions during that summer. Thus, the system (temporarily) has

to invest into managing extreme environmental conditions rather than building up potential

for future growth.

While the system has been shaped under humid climatic conditions and moderate dis-

turbance through birds, the plant community is suddenly confronted with completely un-

expected conditions. The plan laid out during the late α-phase is doomed to fail. The

community is exhibiting features of a system �nding itself in conditions it has not been

adapted to. Under these circumstances, the system is vulnerable, indicated by its extremely

low resilience. Indeed, towards the end of the period, resilience reaches an estimated mini-

mum in 2015. We note in passing that no data has been taken during odd numbered years.

Thus, the exact point of change of the system cannot be determined within a year's precision.

Concerning the entropy networks, Festuca rubra and L. arenarius show an active and

central role from 2012 onwards (see Supplementary F). Both species are capable of dealing

with harsh conditions due to their extensive root system and might therefore su�er less

from the dry summer. From 2014 on, S. media′s in�ow of information increases strongly,

matching its preceding growth in abundance. However, it cannot take a central position

in the network before 2016, the year of the second breakdown. The system seems to start

into another Ω-phase, indicated by decreasing potential and connectedness and increasing

resilience. The breakdown is clearly visible in a decentralization of the information network's

topology (see Supplementary F).

Summing up, the systemic assessment of the plant community under the adaptive cycle's

point of view coincides with the ecological assessment. There are two large breaks during

the observation period, namely a restructuring of the community composition around 2006

and a drought hitting the system in 2012. The community restructuring is re�ected by

a systemic breakdown. Here, the corresponding information networks clearly indicate the
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Figure 22: Mean rainfall measured at the weather station on Stórhöfði from May to July.

driving position of nesting density. The drought is re�ected by a decrease in potential

during the system's r/K-phase, hence, by a deviation from the expected behavior of the

systemic variables. Moreover, the role of single species, like S. media as indicator of change,

is emphasized.

5.2.2 A prairie-forest ecotone under human intervention

In the following case study, we will examine the development of a plant community in the

prairie-forest ecotone of Eastern Kansas. This case study is except for smaller modi�cations

an excerpt of [83]. The data underlying this case study was collected yearly in the course of

a succession experiment in an experimental plot in Kansas from 2002 to 2015. We excluded

those species which appeared at most once during the observation period, covering less or

equal ten percent of the experimental plot. In this way, we took 39 out of 47 species into

account, including grasses, forbs, shrubs, trees, and vines. Their relative abundances have

been measured every June. In 2008, 2011 and 2014, intentional spring burns have been

executed shortly before data collection. For details on the experiment and data collection,

see [6, Exper. 1, Unit 13]. For a complete list of the plant species and their features used in

the ecological interpretation see Suppl. Table 2.
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For the estimation of the information networks, we used a window size of wt = 6 and

an interpolated window size of 18. History lengths and delay were set to 1. Only transfers

passing a signi�cance level of 0.05 were taken into account. The system's resilience was com-

puted by means of symmetrically normalized Laplacian matrices, standardized with respect

to the maximal edge weight M via c = 1
M . The parameters used are summed up in Table

10. We computed the nodes' unscaled eigencentrality using the function eigen_centrality

as being provided by the R package igraph.

system plants community

components plant species

number of components 39

type of abundance data percentage of plot covered

length of time series 14

window size wt 6

interpolated window size 18

history lengths k, l 1

delay u 1

signi�cance level 0.05

normalization type symmetric

standardization constant c 1
M

Table 10: Data and parameters of the Kansas case study.

In order to gain an overview of the system's dynamics, we start with a consideration

of the three characteristic variables. Figure 23(a) and (c) shows that their development

indicates a clear division into four phases. At the beginning, from 2007 �2008, we can iden-

tify a classical Ω-phase, with potential and connectedness strongly decreasing and resilience

increasing. Supposedly, this breakdown results from the preceding spring burn, releasing

resources and breaking connections. Within the next two years, the system is not able to

considerably regain potential or connectedness. At the same time, resilience monotonously

decreases. This changes abruptly with the spring burn in 2011, which naturally leads to

a strong increase in resilience. Now the three variables are in a classical initial situation

for another r/K phase: resilience is high, while potential and connectedness are low. The

following climax phase leads to a peak in potential and connectedness in 2013. The sub-

sequent breakdown in potential and connectedness coincides with the third intervention in

2014. Interestingly, resilience increases one year earlier, from 2013�2014, but not during the

supposed breakdown. From 2014�2015, with potential and connectedness still decreasing,

resilience still does not fully recover. We will come back to this atypical behavior of the

systemic variables during the second breakdown.

Now that we have an overview of the system's dynamics, the networks of information



84 5 CASES OF APPLICATION

Figure 23: Information theoretical analysis of a prairie-forest plant community being exposed
to human intervention. (a) Potential, connectedness and resilience of the system during the
study period. For every year, the labels mark the month June, when data was collected. The
�ames indicate the times of the spring burns. (b) Networks of information transfer of the
plants' community in 2007, 2008, 2013, and 2015. The nodes are colored according to their
eigencentrality. Red marks low values of eigencentrality, orange eigencentrality of medium
height, and green high values of eigencentrality. (c) Three-dimensional plot of potential,
connectedness, and resilience of the system.

transfer will give us deeper insights into the mechanisms and structures driving this behav-

ior (see Figure 23(b)). Considering the overall topology of the networks, a clear pattern

in recognizable. At times of high connectedness (e.g. n 2007 and 2013), the network is

characterized by a large number of nodes showing high eigencentrality. In contrast, at times

of low connectedness (e.g. in 2008 and 2015), there are fewer nodes of high eigencentrality.

At the same time the number of loosely connected nodes increases. Hence, there is a large

central core of strongly connected nodes, which partly dissolves when the system collapses

during its Ω-phases. Since the structure of the core appears to be closely related to the

dynamics of the system, further information on the system's driving forces can be drawn

from the core's composition. Partitioning the set of nodes according to their centrality over

time, �ve groups of plants can be identi�ed (see Figure 24). Group 4 is characterized by

high centrality values at the beginning of the study period, only, whereas Group 2 shows the
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opposite behavior. Group 1 and Group 3 exhibit comparably high eigencentrality all over

the study period, with the former being lower at the beginning and the latter towards the

end. Finally, Group 5 comprises species which are of small centrality all the time.

Figure 24: Heatmap showing the eigencentrality of the species in the networks of information
transfer from 2007 to 2015. The species are divided into �ve groups according to the pattern
of their eigencentrality development.

Taking a closer look at the ecological features of the plants in either group (see Suppl.

Table 2), this pattern can be explained. The �rst two groups contain considerably more

perennial and �re tolerant species than the other groups. Hence, these species should be

expected to gain importance throughout the sequence of �re interventions. This is indeed

the case since both groups' eigencentrality increases toward the end of the study period.

Furthermore, the species in the �rst and third group tend to have higher growth rate and

higher vegetative spread rate. These features should favor a long-term central role under

repeated interventions. This coincides with the permanently high eigencentrality of these

groups. Comparing both properties with respect to the groups' eigencentrality, being peren-

nial and �re tolerant (Group 2) seems to be bene�cial over time, while higher reproduction

capabilities (Group 3) cannot cope with repeated �re intervention on a longer term. Note

that these �ndings are not immediately visible in raw abundance data.
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Finally, let us return to the atypical breakdown in 2013. It is the only time that re-

silience increases without the spring burn as external trigger and during the subsequent

breakdown of potential and connectedness, it still remains low compared to the preceding

years. This phenomenon seems to have natural reasons. Regional climate data shows that

total precipitation has been extraordinary low in 2012. In the �rst half of 2013, the situa-

tion seems to relax slightly. But in June, when data was collected, total precipitation again

dropped signi�cantly below normal (Figure 25). Thus, the plants have been exposed to an

unusual high drought stress during the system's r/K-phase. On top of that, the central

core during this phase mainly consists of species of comparably low drought tolerance. The

breakdown starting in 2013 with the increase in resilience is thus likely to be caused by

increased vulnerability of the plants. Just like in the Surtsey case study, the system �nds

itself in a situation it has not been adapted to during its α- and early r-phase. The twofold

perturbation eventually results in the atypical situation of low potential, connectedness, and

resilience in 2015. This last observation nicely shows the di�culty in analyzing ecosystems

under experimental intervention scenarios. E�ects due to the planned disturbance always

also interact with systemic e�ects under natural conditions. Nevertheless, our approach

allows to dissect the two types of perturbation.

Figure 25: Precipitation in Lawrence, Kansas. The plot shows the total precipitation in
Lawrence, where the experimental plot is located. In comparison, the normal precipitation
for this area is shown [8]. The stars label the month June of the respective year.

So far, we could detect adaptive behavior in various complex systems, supporting the

general idea of the adaptive cycle metaphor. Taking a step back, the question for the
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mechanisms and drivers behind this pattern naturally arises. We will address this question

in the following section.
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6 Drivers of the Adaptive Cycle

The results of this section are part of [68]. The adaptive cycle metaphor describes complex

systems' development as alternating phases of change and stability, leading to an antag-

onistic cyclic behavior of connectedness and resilience. While stressing its metaphorical

character, our analyses of various real-world systems generally con�rm this description. The

information networks underlying the systemic variables usually show a typical �contract and

spread� pattern. The contraction periods are re�ected in increasing connectedness, inter-

rupted by temporary small decreases only, capturing local spreading events. Eventually, the

contraction period is terminated by a global spreading event, leading to a sudden and strong

decrease in connectedness. This pattern reiterates constantly. In contrast to connectedness,

resilience slowly decreases during the contraction period and strongly increases during a

global spreading event. In real-world complex systems, various di�erent internal and ex-

ternal processes shape a system's speci�c dynamics of change. However, we hypothesize

that the observed pattern can result from the interplay of only two (antagonistic) processes,

which are an inherent part of general complex systems' dynamics:

� A (cascading) adaptation process, driven by optimization goals, manifesting in in-

creasing connectedness and decreasing resilience (compare Ulanowicz' ascendancy the-

ory [74]).

� Random perturbations of the same type, provoking breakdowns of connectedness and

increases of resilience.

In particular we do not think that the extent of a system's breakdown is necessarily related

to the strength of the trigger. The crucial factor is the state of the system in the moment

of the trigger. This idea has formed the basis of earlier models, see for example Per Bak's

work on self-organizing criticality [11].

In this section, we will support our hypothesis by means of an agent-based model solely

based on the just described processes of adaptation and perturbation. More precisely, we

model the development of a complex system's information network, with the nodes being

the model's agents. There are two aspects which distinguish our model from most of the

existing ones:

� We do not make any assumptions about the speci�c optimization goal(s) of the system.

We only model the result of such an optimization process, re�ected in a concentration

of the information structure and thereby in an increase of connectedness.

� We model dynamically changing networks of information transfer.

Observe that this model and the one de�ned in Section 4.2 clearly di�er in the �rst aspect.

The latter is build on the assumption that agents tend to increase their capital through
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positive interactions, thereby explaining the increase of connectedness. Some notes on the

second aspect: there are various network-based models examining information-theoretic

dynamics in relation to network topology (see e.g. [46, 47, 50, 59]). In order to generate

dynamic behavior, they for example assign Boolean functions to the nodes [50] or consider

particle swarm optimization on the networks [46]. Hence, the values assigned to the nodes

change throughout a simulation while network topology remains �xed.

In Section 6.1, we will describe our model in detail. Simulations of the model support our

hypothesis that the interplay of adaptation and perturbation processes lead to the pattern

of change described in the adaptive cycle metaphor (Section 6.2). Section 6.3 underpins the

hypothesis mathematically. In this course, we de�ne the event of a phase change, denoting a

profound reorganization of the simulated information network, and show that the interplay

of the two processes almost surely leads to a phase change. Furthermore, we examine

the expected frequency of phase changes in the system under the in�uence of the di�erent

parameters of the model.

6.1 Description of the model

The model produces a sequence of networks consisting of N nodes {x1, . . . , xN} and directed,
weighted edges between them. The edges represent the information being transferred among

the agents. We say that an edge exists if its weight is non-zero. In the following, a random

selection means a selection according to the uniform distribution. A positive integer maximal

weight W , a sensitivity threshold θ (0 ≤ θ ≤ 1), and a perturbation probability q (0 ≤ q ≤ 1)

are selected. In the initial graph, every edge exists with probability p and, if existent, is

assigned a random, positive, integer weight between 1 and W . We denote the weight of the

edge eij from node i to node j by wij . There are no self-loops. We assign the eigenvector

centrality to every node xi, computed as

C(xi) =
∑
j 6=i

wij · din(xj), 1 ≤ i ≤ N.

For a node xi, we call the set of nodes {xj |wij 6= 0} its out-neighbors and the set {xj |wji 6= 0}
its in-neighbors. We call the transition from network at time point i to the network at time

point i + 1 the ith step. Every step consists of an adaptation phase (initial adaptation try

and possible triggered adaptation cascade) and a perturbation phase.

� For the initial adaptation try, a node xi is randomly chosen, where the probability P

to choose xi is indirectly proportional to its eigenvector centrality, i.e.

P =


1

C(xi)·
∑N

j=1 C(xj)−1 if C(xi) 6= 0

0 otherwise.
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Note that in modeling complex systems' evolution, it is common practice to choose

the in some sense �weakest� agent for mutation (see e.g. [12]), which is re�ected in the

selection process above. An out-neighbor xj of this node and a node xk 6= xi (not

necessarily an out-neighbor of xi) are selected randomly. If xj = xk, nothing happens.

If xj 6= xk, the in-degrees of these two nodes are compared. If din(xk) ≤ din(xj),

nothing happens. If din(xk) > din(xj), the edge eij is deleted and its total weight

wij is added to the edge wik. Well call this shift adaptation. This accounts for the

goal of an adaptation being the increase the adapting node's eigencentrality. When

an adaptation has taken place, xi is called adapted node and an adaptation cascade is

started.

� The adaptation cascade always follows the same principle: whenever an in-neighbor

of an adapted node is connected �closely enough� with the adapted node, it tries an

adaptation itself. To be precise, let xl be an in-neighbor of a just-adapted node xi. If

wli
dout(xl)

≥ θ,

xl carries out an adaptation try. The in-neighbors of adapted nodes carry out their

adaptation tries in random order and the cascade continues until it �dries out� by

itself. The idea behind this mechanism is that agents of a system have a certain

sensitivity toward changes in their environment, which in this case is constituted by

their neighboring nodes. If an agent's environment changes, a new strategy might be

more pro�table, leading to adaptation moves of the agent itself. The sensitivity of the

agents will be one of the parameters of our model. Note that for very small θ, it can be

reasonable to set an upper limit for the number of adaptations to prevent extremely

long or in�nite adaptation cascades.

� With probability q, a perturbation is executed after the adaptation phase. In the

perturbation phase, an edge is chosen randomly. The edge is deleted, i.e. its weight

is set to 0. Its previous weight w is distributed by randomly assigning w independent

weight units among all edges (existing and not yet existing) which leave the starting

node of the deleted edge. In particular, edge weights are always integers. The idea

behind this mechanism is the fact that in real-world systems, existing pathways of

interaction or communication can suddenly become unusable due to environmental or

internal changes. We say that a node is perturbed when one of its outgoing edges is

perturbed.

The two phases of adaptation and perturbation can be understood as antagonistic. While

the phase of adaptation will in general increase order and coherence, perturbation will

increase chaos and randomness. Note that, with a growing number of agents, scaling might

become necessary to balance the two processes and to make e�ects visible. There are various
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ways of scaling the processes. For example, one can apply the initial adaptation try to a

suitable fraction of nodes instead of to a single node only. Besides, the perturbation can

a�ect several edges instead of only one edge. Observe that for �xed N , W , p, q, and θ, our

model de�nes a Markov process on

{0, . . . , (N − 1) ·W}N×N .

6.2 Simulation of the model

We will now present simulation results demonstrating that our model indeed generates the

desired network dynamics. For all of the following plots, the system consists of seven agents.

The initial probability for every edge to exist is p = 0.8 and the maximum weight is W = 6.

If a perturbation takes place, seven random edges are perturbed in random order. The

maximal number of adaptations in an adaptation avalanche is set to 35. The plots start at

step 10 in order to exclude initial noise.

First of all, the simulation produces - in a large range of parameters - the typical �slowly

contract and quickly spread� pattern of the network's topology and the consequent antago-

nistic behavior of its systemic variables. See Figure 26 for an exemplary development. Here,

the sensitivity threshold is θ = 0.3 and the perturbation probability q = 0.1. We can see an

overall increase in connectedness until time step 59. This increase is suddenly interrupted by

a strong decrease, followed by another slow increase. Resilience behaves contrarily. It shows

an overall decrease until time step 59 and strongly increases during the system's breakdown.

During the whole simulation, decreases in connectedness are accompanied by increases in

resilience. At times of high connectedness, the underlying network does typically have fewer,

comparably thick edges, while networks at times of low connectedness do resemble complete

networks. Networks 59 and 61 represent these two types of topology. In terms of the adap-

tive cycle metaphor, we would call the period from time step 10 to 59 r/K-phase. It ends

with the sudden entry into an Ω/α-phase, eventually leading into another r-phase.

Figure 27 shows the in�uence of an increasing number of perturbations on this pattern.

For better comparability, we �xed the times of perturbations at every 100th, 50th, 20th,

and second time step. It becomes clear that in the case of rare perturbations, their average

e�ect on connectedness is larger than in the case of frequent perturbations. In Figure 27(a),

every perturbation leads to a typical system breakdown, while in Figures 27(b) and (c),

only some of the perturbations result in a strong decline of connectedness. In Figure 27(d),

with perturbations happening at every second step, the typical �slowly contract and quickly

spread� pattern has turned into an irregular �contract and spread� pattern.

Beyond our hypothesis, we made two interesting observations. The �rst concerns the ef-

fects of perturbations of systems' connectedness. Perturbations hitting the system in times

of low connectedness can lead to a strong increase in connectedness. Figure 28 illustrates



6.2 Simulation of the model 93

Figure 26: Resilience and connectedness of a 100-step simulation with θ = 0.3, q = 0.1.
The vertical red lines denote the times of the perturbations. The underlying information
network right before (59) and shortly after (61) a classical system breakdown is shown.

this phenomenon. The perturbations at time steps 37, 69, and 74 provoke classical break-

downs of the system, re�ected in strong declines in connectedness and contemporaneous

increases in resilience. In contrast, the perturbations at time steps 42 and 77 cause increases

in connectedness. It is comprehensible that during times of low connectedness, when the

number of edges is high and the average edge weight low, random rearrangements can lead to

a contraction of the network. From time step 77 to 78, this contraction and the consequent

decline in resilience and increase in connectedness is clearly visible in the corresponding

networks. From time step 42 to 43, both connectedness and resilience increase.
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Figure 27: Resilience and connectedness of 300-step simulations with θ = 0.3 and an in-
creasing number of equidistant perturbations, marked by vertical red lines. (a) Perturbation
at every 100th step. (b) Perturbation at every 50th step. (c) Perturbation at every 20th
step. (d) Perturbation at every second step.

Our second observation concerns the adaptation cascades. We see a power-law behavior

of the length (number of mutated edges) and frequency of adaptation cascades (see Figure

29). This phenomenon is called criticality and has been detected in many real-world and

simulated systems (see for example Bak's sand-pile model [13], Bak and Sneppen's model

for Darwinian evolution [71], or Kau�man's NKC model [47]). With decreasing sensitivity

threshold θ, the average length of cascades increases, better revealing the power-law in the

distribution of lengths.

The results con�rm our hypothesis that the interplay of optimization processes and per-

turbations of the same type can lead to the cyclic behavior of network topology and systemic

variables as described in the adaptive cycle metaphor. The frequency, amplitude, and reg-

ularity of these cycles is depending on various parameters, among them the perturbation

probability q and the sensitivity threshold θ. According to the distribution of the adapta-

tion cascades' lengths, the model generates systems in the state of criticality. We will now

approach the model's characteristics mathematically.
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Figure 28: Resilience and connectedness of a 100-step simulation with θ = 0.3, q = 0.1.
Every perturbation is marked by a vertical red line. The underlying information network
before and after perturbations provoking an increase in connectedness is shown.

6.3 Mathematical exploration of the model

The simulation results show that our model indeed generates the network dynamics described

in the adaptive cycle metaphor. In this section, we want to underpin this observation

mathematically. To this end, we introduce the notion of a phase change. In the context

of complex systems, a phase change or transition typically includes a sudden change of the

system's behavioral identity, i.e. of its de�ning structures and processes (see e.g. [72]). In

the language of the adaptive cycle metaphor, the sudden onset of the Ω-phase, showing in

profound structural changes, can be understood as a phase change of the underlying system.

Such a phenomenon occurs in our model as well, mainly if a perturbation hits a highly

contracted, rigid system, leading to wide-ranging rearrangements and a sudden decrease in

connectedness.

Let e be the number of edges being perturbed in the perturbation step of our model. We

denote by a phase change the situation of a perturbation hitting a prede�ned number c ≤
min(N, e) of edges each of which being the only positively-weighted outgoing edge of a node.

Of course a phase change is only possible if at least c nodes are assigned non-zero outgoing
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Figure 29: Connectedness and histograms of cascade lengths for 1000-step simulations with
q = 0.1. (a) θ = 0.5. (b) θ = 0.3. (c) θ = 0.1.

edges in the initial graph. If this is the case, we say that the initial graph allows a phase

change.

Theorem 2. If in an in�nite realization of the Markov process de�ned in Section 6.1, q > 0

and the initial graph allows a phase change, it happens with probability 1.

Proof. For �xed N , W , p, q, and θ, our model de�nes a stationary Markov process on a

�nite state space of adjacency matrices

D = {0, . . . , (N − 1) ·W}N×N .

Consider an in�nite realization (Kn)n∈N of the process. Recall that the sum over all entries

in a row of a matrix Kn represents the total outgoing weight of the respective node, which

stays constant throughout the process. Let r = (r1, . . . , rN ) be the vector of these row

sums. Let Dr ⊂ D be the set of all adjacency matrices with row sums (r1, . . . , rN ). It

follows directly from the de�nitions that �nitely repeated perturbation can transfer any

state of Dr into any other state of Dr. Since there is a chance of the adaptation step leaving

the system una�ected, the Markov process de�ned by the model is irreducible when being

restricted to Dr. In the following, we work with this irreducible Markov process.
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IfKn has at most one nonzero entry in each row we say the system ismaximally contracted

at time n. In this case, since a phase change is possible by assumption, there is a positive

probability ε1 of a phase change occurring in step n.

Due to the irreducibility and the �nite state space of the Markov process, we know that

there is a number of steps s such that, irrespective of the current state of the system, the

probability of the system reaching a maximally contracted state within the next s steps

is bounded from below by some uniform ε2 > 0. We divide the sequence (Kn)n∈N into

successive non-overlapping sub-strings Si of length s + 1. By the previous considerations,

the probability of the system reaching a maximally contracted state during the �rst s steps

of Si and going through a phase change in the subsequent step is bounded from below by

ε := ε1 · ε2, independent of the state of the system at the beginning of Si.

Let Ai denote the event that no phase change happens during Si, i.e. at none of the time

steps (i− 1) · (s+ 1) + 1, . . . , i · (s+ 1). Then it follows that

P

Ai
∣∣∣∣∣∣
⋂

j≤i−1
Aj

 ≤ 1− ε

since the condition of
⋂
j≤i−1Aj only concerns the state of the system prior to Si. As a

consequence, we obtain

P

⋂
j≤i

Aj

 = P

Ai
∣∣∣∣∣∣
⋂

j≤i−1
Aj

 · P
 ⋂
j≤i−1

Aj


=

i∏
k=2

P

Ak
∣∣∣∣∣∣
⋂

j≤k−1
Aj

 · P (A1)

≤ (1− ε)i →
i→∞

0,

which proves the theorem.

Hence, we have learned that the interplay of adaptation and perturbation indeed almost

surely leads to phase changes and thereby to the �contract and spread� pattern described in

the adaptive cycle metaphor. However, the theorem gives an existence statement, only. We

want to gain insight into how the parameters q and θ a�ect the frequency of phase changes.

To this end, we restrict ourselves to a simpli�ed version of our model, which however still

shares its de�ning characteristics with the original model. The simpli�ed model is identical

to the original model except for the following changes.

� There is no cascade e�ect.

� The adapting node is chosen randomly and not according to its eigenvector centrality.
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� An adaptation is carried out in any case, independently of the eigenvector centrality

of the edge's old and new destination.

In the simpli�ed model, the development of one node's distribution of weight on its outgoing

edges is independent of the weight distribution on all other edges. Thus, the development

of a single node's weight distribution de�nes a Markov process. The global behavior of the

simpli�ed model is described by these local Markov processes. So in the following, we �x a

node and examine the Markov process on the state space of the node's weight distributions.

Let n := N − 1 be the number of possible out-neighbors of the node and h > 0 the total

weight on its outgoing edges. Then

D :=

{
(w1, . . . , wn)

∣∣∣∣∣
n∑
i=1

wi = h, wi ∈ N0

}

is de�ned as state space of the Markov process, i.e. all possible integer partitions of the total

weight h on the possible n edges.

We assume that one edge is perturbed during perturbation. We de�ne a phase change as

the situation in which all outgoing weight of the node is accumulated on a single edge and

the edge is perturbed in the perturbation step. Analogous argumentation as in the proof of

Theorem 2 yields that in in�nite realizations of the Markov process, phase changes happen

with probability 1 if the initial graphs allows it.

Fix an order of the elements of D. Let S, M ∈ RD×D denote transition probability matrices

describing perturbation and adaptation, respectively. Then, D together with the transition

probability matrix S·M de�nes a stationary Markov process. For every two states d1, d2 ∈ D,
d2 can arise from d1 through �nitely many perturbation steps. Since there is a chance of

the adaptation step not having any e�ect on the system, it follows that the Markov process

is irreducible. In the following, we will determine S and M , consider them as transition

matrices of separate Markov processes, and examine their limit distributions.

The perturbation step

For two states v, w ∈ D, we compute the probability that v = (v1, . . . , vn) transitions into

w = (w1, . . . , wn) via a perturbation. For j ∈ {1, . . . , N}, consider the jth unit vector ej .

Let ◦ denote the Hadamard product, i.e. the component-wise multiplication of two vectors.

Set

Vj := (w − (v − v ◦ ej)). (14)

This vector speci�es how, in case of a perturbation of edge j, the weight of j has to be

distributed among the other positions such that v transitions into w. If any entry of Vj is

negative, then a transition from v to w via perturbation of edge j is not possible. Let Vj(i)
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denote the ith entry of Vj . Clearly, the total weight of vector Vj is the weight of edge j. Let

bj :=

n∑
i=1

Vj(i)

denote the weight of edge j. The probability that Vj is the result of distributing bj weight

units randomly on n edges of weight zero is

PSVj
=

(
1

n

)bj
·
n−1∏
l=1

(
bj −

∑l−1
s=1 Vj(s)

Vj(l)

)
,

under the convention that
(
a
b

)
= 0 for b < 0. To see this, note that there are bj distinguishable

weight units, which get distributed to n possible edges, making for a total of nbj outcomes.

We are interested in those results where Vj(i) units get assigned to the ith edge. In this case,

in particular, a subset of Vj(1) many of the weight units is assigned to the �rst edge and

there are
( bj
Vj(1)

)
possibilities to choose this subset. Now for each of these possibilities, there

are
(bj−Vj(1)

Vj(2)

)
many possibilities of which of the remaining bj − Vj(1) weight units are the

ones which get assigned to the second edge. Continuing this process inductively, we obtain

the product formula above.

Taking into account that the perturbing edge is chosen randomly among all possible outgoing

edges of the node, the probability of a transition from v to w via a perturbation is

PS(v → w) =
1

n
·
n∑
j=1

PSVj

=
1

n
·
n∑
j=1

(
1

n

)bj
·
n−1∏
l=1

(
bj −

∑l−1
s=1 Vj(s)

Vj(l)

)
.

Just like in the original model, a perturbation is taking place with probability q and if it

takes place, the perturbing node is chosen randomly. Hence, the perturbation matrix S is

de�ned as

S(w, v) =

q ·
1

n+1 · PS(v → w) w 6= v

(1− q) + q ·
(

n
n+1 + 1

n+1 · PS(v → w)
)

w = v.

The perturbation matrix S and the state space D de�ne an irreducible Markov process.

Numerical computations indicate that, independently of N and k, the limit distribution of

this process is the uniform distribution.

Remark 4. Considering the possible numbers of non-zero outgoing edges, what does the

limit distribution look like? Intuitively, one would say that, if the total outgoing weight h is
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high enough, having x (0 ≤ x ≤ n − 1) outgoing edges of weight zero should be less likely

than having x + 1 outgoing edges of weight zero. The following computation con�rms the

assumption and yields the required value of h. We have

|Dx| = |{v = (v1, . . . , vn) ∈ D |{i|vi = 0}| = x}|

=

(
h− 1

n− 1− x

)
·
(
n

x

)
To see this, note that for an element of Dx, there are

(
n
x

)
possibilities of which x edges are

the ones with zero weight. Then, since at least one weight unit has to be assigned to each of

the remaining n − x edges, there are h − (n − x) weight units left to be distributed among

n − x edges, for which there are again
(
h−1

n−1−x
)
possibilities. Hence, for 0 ≤ x ≤ n − 2, we

get

|Dx| − |Dx+1| > 0

⇔
(

h− 1

n− 1− x

)
·
(
n

x

)
−
(

h− 1

n− 2− x

)
·
(

n

x+ 1

)
> 0

⇔ h >
n2 − n · x− x− 1

x+ 1
.

The term on the right hand side reaches its maximum at x = 0, yielding

h > n2 − 1.

Hence, under this condition, the most likely number of edges with positive weight is n. This

underpins the intuition that the perturbation process is antagonistic to the adaptation process,

which we will show to converge to a maximally contracted state.

The adaptation step

Let us now de�ne a second Markov process on D with the transition probabilities describing

the adaptation of the simpli�ed model. To this end, consider again two states v, w ∈ D,
and the corresponding vector Vj (as de�ned in Equation (14)). If Vj contains more than one

non-zero entry, a transition from v to w by adapting edge j is not possible. If Vj contains

exactly one non-zero entry, v transitions to w with a probability of 1
n when adapting edge

j. Formally, the probability that v transitions into w when edge j is adapted is

PMVj
=

 1
n , |{i|Vj(i) 6= 0}| = 1,

0, else.

Set g = |{i|vi 6= 0}|. Taking into account that the adapting edge is chosen randomly
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among all outgoing edges of the node, the probability of a transition from v to w via an

adaptation is

PM (v → w) =
1

g
·
∑
j|vj 6=0

PMVj
.

In the simpli�ed model, the adapting node is chosen randomly. Hence, the adaptation

matrix is de�ned as

M(w, v) =

 1
n+1 · PM (v → w), w 6= v,

n
n+1 + 1

n+1 · PM (v → w), w = v.

The adaptation matrixM together with state spaceD de�nes a reducible Markov process.

Reducibility is due to the fact that the number of positively-weighted outgoing edges cannot

increase throughout the process. In the following, we will show that this Markov process

always converges. Consider an event d = (w1, . . . , wn). Assume that

|{i|wi > 0}| = j ≥ 2.

The probability that j reduces to j − 1 in an adaptation step is 1
n+1 ·

j−1
n > ε. Hence, the

probability that the node has only one positively-weighted edge left after t simulation steps

is greater or equal

1−
j−2∑
x=0

εx · (1− ε)t−x ·
(
t

x

)
. (15)

In the above expression, increasing t by 1 leads to each summand being multiplied by the

factor (1 − ε) t+1
t+1−x . Since x is �xed for each summand, this factor converges to 1 − ε for

large t. Consequently, expression 15 converges to 1 if t goes to in�nity.

We will now turn to the in�uence of di�erent parameters on the expected frequency of

phase changes. A phase change is usually a result of a perturbation after a long adaptation

without e�ective perturbation. Thus a value of interest is the expected number of unper-

turbed adaptations after which all weight of the node is assembled on a single edge. This of

course depends on the number of edges of nonzero weight in the initial network. We denote

by ti the expected time, i.e. the number of adaptation steps, until all weight is accumulated

on a single edge, starting with positive weight on exactly i outgoing edges for 1 ≤ i ≤ N −1.

Obviously, t1 = 0. The other values can be determined via the recursive formula

ti = 1 +

(
1− N − 2

N · (N − 1)

)
· ti +

N − 2

N · (N − 1)
· ti−1, 2 ≤ i ≤ N − 1. (16)
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In particular, we deduce that

k := tN−1 =

N−1∑
i=2

N · (N − 1)

N − i (17)

gives an upper bound for the expected number of adaptation steps, independent of the initial

network. For t ≥ 0, we call a series of t unperturbed steps followed by one perturbation of the

node a perturbation break of length t+1. Following the observation above, intuitively, there

is a strong correlation between the frequency of perturbation breaks of a certain lengths

and the frequency of phase changes. Note, however, that the occurrence of a phase change

is not necessarily the result of a perturbation break of a certain length. This is due to the

possibility that a perturbation does not cause a large spreading of edge weights.

In the above light, the question ensues after how many steps in the model the �rst

perturbation break of length k+ 1 can be expected. We denote by s∗ the expected time, i.e.

the number of steps, starting at the initial situation ∗ as speci�ed below, until a perturbation
break of length k has happened. Possible initial situations for 1 ≤ i ≤ k are

1 the last step was a perturbed step following less than k unperturbed steps

0, i the last step was the ith unperturbed step in a row after a perturbed step

k, 1 the last step was a perturbed step following k unperturbed steps

We are interested in l := s1. Clearly, sk,1 = 0. Denote by q′ = q
N the probability that the

node is perturbed. The s∗ are connected via the following recursive formulas for 1 ≤ i ≤ k−1.

s1 = 1 + q′ · s1 + (1− q′) · s0,1
s0,i = 1 + q′ · s1 + (1− q′) · s0,i+1

s0,k = 1 + q′ · sk,1 + (1− q) · s0,k

A short computation shows that

l := s1 =
1

(1− q′)k · q′ . (18)

Example 2. In a network of 5 nodes, we have k = 37 with k de�ned as above. For a

perturbation probability of q = 0.01, the expectation value of the number of steps after which

a perturbation break of length k+ 1 has taken place, is bounded from above by l = 539 steps.

For q = 0.1, l decreases to 106 steps, for q = 0.75, it increases to 2726 steps.

Example 2 already indicates that l might be maximal for some intermediate value of q.

We will prove this assumption in the following remark.



6.3 Mathematical exploration of the model 103

Remark 5. Computing the derivative of l (Equation (18)) with respect to q′ yields insights

into the in�uence of the perturbation probability on the expected time after which a phase

change has happened.

d

dq′
1

(1− q′)k · q′ =
−(1− q′)k−1 · (1− (k + 1) · q′)

(1− q′)2k · q′2
< 0, if q′ < 1

1+k ,

= 0, if q′ = 1
1+k ,

> 0, if q′ > 1
1+k .

The fact that term l(q′) has one local minimum for an intermediate q′ depending on k is

very intuitive and matches the intuition for the analogous behavior with respect to phase

changes. With decreasing q′ (and thereby q), the probability of a perturbation triggering a

phase change increases. However, perturbations happen so rarely that phase changes are rare

as well. On the contrary, if q′ is large, perturbations happen very often but the network has

not enough time to contract between the perturbations and hence, phase changes are very

rare.

Remark 6. Increasing the probability for an adaptation, e.g. by adapting several nodes

in one time step, the convergence speed of the adaptation process increases. An increased

convergence speed leads to a decrease in k (Equation (17)) and thereby to a decrease in l

(Equation (18)). This matches the intuition that an accelerated concentration process of the

edges leads to a higher frequency of phase changes. Both this and the previous remark can

be qualitatively transferred to the original model.
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Conclusion

We developed a method to quantify the maturation process of general complex systems on

basis of the adaptive cycle metaphor. The abstract nature of the metaphor itself and our

two-fold information theoretic approach open up a wide �eld of application. So far, this �eld

comprises simulated and real-world ecological, microbiological, and economic systems.

Our case studies support the general idea of the adaptive cycle. At the same time, they

stress its metaphorical character. Oftentimes, the systemic variables do not exactly follow

the idealistic �lying-eight� �gure of the adaptive cycle. Deviations from the classical pattern

of potential, connectedness, and resilience are often indicators for exceptional interactions

between internal and external processes. We cannot con�rm all details described in the

metaphor. For instance, following our case studies, phases of release and reorganization are

not of a generally shorter duration than phases of exploitation and conservation.

Future work on the method lies, inter alia, in improving scalability of the approach. We

address this task in a current project, dealing with the mycorrhizal community of drought-

stressed beeches and spruces (see [5] for an overview of the experimental background). De-

pending on the taxonomic level, the system under consideration might consist of a few

hundred components. Besides, we are currently studying river systems being exposed to

�ood events (see [2] for preliminary results). At the moment, this analysis is restricted to

a small system during a two month time window but the project is aiming at a local and

temporal extension of the analysis to the last decades of Europe-wide river systems.

By means of our agent-based model, we provide another perspective on the adaptive cycle

metaphor. It allows us to identify internal and external mechanisms whose interplay causes

adaptive cycles in complex systems' development. A detailed statistical exploration of the

systems' properties will yield further insights into the interaction of the model's parameters

and thereby the cycles' driving forces.

So far, we have used our method to analyze and understand the development of a com-

plex system retrospectively. However, the knowledge and experience gained in such a back-

ward analysis can form the basis to predict the system's future development. Using these

predictions for guiding interventions, our method can serve as a powerful tool for system

management.

Our research was driven by the question if the adaptive cycle metaphor can serve both as

a conceptional and computational framework to comprehend and analyze change in complex

systems development. On basis of our results, we a�rm this question. In most cases, we

are still far from understanding, not to mention controlling change. However, accepting

change as part of existence, being aware of its destructive potential while at the same time

embracing its innovative capability, is a �rst step in the right direction.
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2 QtAC

QtAC QtAC (Main function)

Description

This function calculates the transfer entropy between two species each for shifting time windows of
fixed length. The output is a list of adjacency matrices and the corresponding significance matrices.

Usage

QtAC(
Data,
num_timepoints = 5,
JavaPath,
num_PermCheck = 1000L,
k = 1L,
k_tau = 1L,
l = 1L,
l_tau = 1L,
delay = 1L

)

Arguments

Data data array containing time series of the system’s components’ abundance data

num_timepoints length of the time windows of abundance data serving as basis of the transfer
entropy calculations

JavaPath path of the file "infodynamics.jar"

num_PermCheck number of surrogate samples to bootstrap to generate the distribution in the sig-
nificance test

k embedding length of destination past history to consider

k_tau embedding delay for the destination variable

l embedding length of source past history to consider

l_tau embedding delay for the source variable

delay time lag between last element of source and destination next value

Value

list of two lists (adjacency and corresponding significance matrices)
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QtAC.2dmixplot 3

QtAC.2dmixplot 2dmixplot

Description

This function plots two selected systemic variables w.r.t. each other.

Usage

QtAC.2dmixplot(
Mat,
prop1,
prop2,
Save = FALSE,
filename = paste("2dmixplot", prop1, prop2, sep = "_")

)

Arguments

Mat data frame containing the systemic variables

prop1 variable on x-axis ("potential","connectedness","resilience")

prop2 variable on y-axis ("potential","connectedness","resilience")

Save If Save = TRUE, the 2D plot will be saved in a PNG file.

filename If Save = TRUE, the network will be saved in a file called filename.

Value

2D plot and, if Save = TRUE, a PNG file containing the plot

QtAC.2dplot 2dplot

Description

This function plots graphs of potential, connectedness and resilience with respect to time.

Usage

QtAC.2dplot(
Mat,
prop = NULL,
time_int = NULL,
Save = FALSE,
filename = "2dplot"

)
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4 QtAC.maturation

Arguments

Mat dataframe containing the systemic variables

prop If prop = NULL, the three systemic variables are plotted w.r.t time in one plots
each. If prop = "potential", "connectedness", or "resilience", only the selected
systemic variable is plotted w.r.t time.

time_int vector containing start time, end time, and step size to define the xaxis

Save If Save = TRUE, the 2D plot will be saved in a PNG file.

filename If Save = TRUE, the network will be saved in a file called filename.

Value

2D plot and, if Save = TRUE, a PNG file containing the plots.

QtAC.3dplot 3dplot

Description

3D plot of the three systemic variables w.r.t each other.

Usage

QtAC.3dplot(Mat, Mat_points = FALSE)

Arguments

Mat data frame containing the three systemic variables

Mat_points If Mat_points = TRUE, the maturation points are visible.

Value

3D plot

QtAC.maturation maturation

Description

This function computes the three systemic variables (potential, connectedness, and resilience) of
each adjacency matrix.

Usage

QtAC.maturation(result_mtx, res_norm = "continous", res_stand = "maxweight")
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QtAC.network 5

Arguments

result_mtx list of adjacency matrices and significance matrices

res_norm normalization variant of the Laplacian matrices ("continous", "symmetric"). If
res_norm = "symmetric", Lout = c·D−

1
2

out (Dout −A) and Lin = c·(Din −A)D
− 1

2
in .

If res_norm = "symmetric", Lout = c · D−
1
2

out(Dout − A)D
− 1

2
out and Lin =

c ·D−
1
2

in (Din −A)D
− 1

2
in .

res_stand standardization constant c of the Laplacian matrices ("none", "maxweight", "maxweight2",
"nodes", "maxweightnodes"). Let N be the number of nodes of the underlying
graph and M its maximal edge weight. If res_stand = "none", c = 1. If res_stand
= "maxweight", c = 1√

M
. If res_stand = "maxweight2", c = 1

M . If res_stand =

"nodes", c =
√
N−1
N . If res_stand = "maxweightnodes", c =

√
N−1

N ·
√
M

.

Value

dataframe containing the three systemic variables (potential, connectedness, and resilience) of each
adjacency matrix

QtAC.network network

Description

This function plots a selected adjacency matrix as network.

Usage

QtAC.network(
result_mtx,
num_mtx,
edge_label = FALSE,
dec = 2,
layout = "circle",
edge_width = 3,
arrow_width = 5,
col_node = "palegreen3",
col_edge = "steelblue3",
vertex_label = "short",
Save = FALSE,
filename = "network"

)

Arguments

result_mtx list of adjacency matrices and significance matrices

num_mtx number of the adjacency matrix you want to plot

edge_label If edge_label = TRUE, the weight of the edges are plotted next to the edges.

dec number of decimal digits in the edge labels

layout layout format ("circle","star","fruchterman.reingold","grid","nicely")
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6 QtAC.Signfactor

edge_width muliplicator for the width of the edges

arrow_width muliplicator for the width of the arrows

col_node color of the vertices

col_edge color of the edges

vertex_label If vertex_label = "short", the first 3 letters of the components’ names will be
used as vertex labels, if vertex_label = "long", the whole names will be used as
vertex labels. Via vertex_label = c(...), customized names can be used as vertex
labels.

Save If Save = TRUE, the network will be saved as a PNG file.

filename If Save = TRUE, the network will be saved in a file called filename.

Value

network plot and, if Save = TRUE, a PNG file containing the plot

QtAC.Signfactor Signfactor

Description

This function sets all entries in the adjacency matrices to 0 whose p-value is above the predefined
significance level.

Usage

QtAC.Signfactor(result_mtx, signfac = 0.1)

Arguments

result_mtx list of adjacency and significance matrices

signfac significance level

Value

list of two lists (adjacency matrix containing only significant transfers and significance matrices)
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QtAC.TXT.reader 7

QtAC.TXT.reader TXT-reader

Description

This function is used to import the data in R. The data should be in a tab-seperated file with or
without column/row names. Columns should contain time points, rows the system’s components.

Usage

QtAC.TXT.reader(filename, col_names = FALSE, row_names = FALSE)

Arguments

filename path of the file you want to import

col_names logical operator. TRUE if the file contains column names, FALSE if it does not

row_names logical operator. TRUE if the file contains row names, FALSE if it does not

Value

data array. If no column or row names were given, column or row names of the form "t_ " and "C_
" respectively are added.

QtAC.WriteAdjSgn WriteAdjSgn

Description

This function writes a selected adjacency and significance matrix to CSV files.

Usage

QtAC.WriteAdjSgn(
result_mtx,
num_mtx,
file_name_adj = "adjacency_matrix",
file_name_sgn = "significance_matrix"

)

Arguments

result_mtx list of adjacency and significance matrices

num_mtx number of the adjacency and significance matrix you want to write to a CSV file

file_name_adj name of the file to which the adjacency matrix is written

file_name_sgn name of the file to which the significance matrix is written

Value

two CSV files, one containing the selected adjacency, one the significance matrix
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B Exemplary series of networks generated on basis of the principle

of overexploitation

1

●

●

●

●

●

1

2
3

4
5

2

●

●

●

●

●

1

2
3

4
5

3

●

●

●

●

●

1

2
3

4
5

4

●

●

●

●

●

1

2
3

4
5

5

●

●

●

●

●

1

2
3

4
5

6

●

●

●

●

●

1

2
3

4
5

7

●

●

●

●

●

1

2
3

4
5

8

●

●

●

●

●

1

2
3

4
5

9

●

●

●

●

●

1

2
3

4
5

10

●

●

●

●

●

1

2
3

4
5

11

●

●

●

●

●

1

2
3

4
5

12

●

●

●

●

●

1

2
3

4
5

13

●

●

●

●

●

1

2
3

4
5

14

●

●

●

●

●

1

2
3

4
5

15

●

●

●

●

●

1

2
3

4
5

16

●

●

●

●

●

1

2
3

4
5

121



122 SUPPLEMENTARY

17

●

●

●

●

●

1

2
3

4
5

18

●

●

●

●

●

1

2
3

4
5

19

●

●

●

●

●

1

2
3

4
5

20

●

●

●

●

●

1

2
3

4
5

21

●

●

●

●

●

1

2
3

4
5

22

●

●

●

●

●

1

2
3

4
5

23

●

●

●

●

●

1

2
3

4
5

24

●

●

●

●

●

1

2
3

4
5

25

●

●

●

●

●

1

2
3

4
5

26

●

●

●

●

●

1

2
3

4
5

27

●

●

●

●

●

1

2
3

4
5

28

●

●

●

●

●

1

2
3

4
5

29

●

●

●

●

●

1

2
3

4
5

30

●

●

●

●

●

1

2
3

4
5

31

●

●

●

●

●

1

2
3

4
5

32

●

●

●

●

●

1

2
3

4
5



B Exemplary series of networks generated on basis of the principle of overexploitation123

33

●

●

●

●

●

1

2
3

4
5

34

●

●

●

●

●

1

2
3

4
5

35

●

●

●

●

●

1

2
3

4
5

36

●

●

●

●

●

1

2
3

4
5

37

●

●

●

●

●

1

2
3

4
5

38

●

●

●

●

●

1

2
3

4
5

39

●

●

●

●

●

1

2
3

4
5

40

●

●

●

●

●

1

2
3

4
5

41

●

●

●

●

●

1

2
3

4
5

42

●

●

●

●

●

1

2
3

4
5

43

●

●

●

●

●

1

2
3

4
5

44

●

●

●

●

●

1

2
3

4
5

45

●

●

●

●

●

1

2
3

4
5

46

●

●

●

●

●

1

2
3

4
5

47

●

●

●

●

●

1

2
3

4
5

48

●

●

●

●

●

1

2
3

4
5



124 SUPPLEMENTARY

49

●

●

●

●

●

1

2
3

4
5

50

●

●

●

●

●

1

2
3

4
5

51

●

●

●

●

●

1

2
3

4
5

52

●

●

●

●

●

1

2
3

4
5

53

●

●

●

●

●

1

2
3

4
5

54

●

●

●

●

●

1

2
3

4
5

55

●

●

●

●

●

1

2
3

4
5

56

●

●

●

●

●

1

2
3

4
5

57

●

●

●

●

●

1

2
3

4
5

58

●

●

●

●

●

1

2
3

4
5

59

●

●

●

●

●

1

2
3

4
5

60

●

●

●

●

●

1

2
3

4
5

61

●

●

●

●

●

1

2
3

4
5

62

●

●

●

●

●

1

2
3

4
5

63

●

●

●

●

●

1

2
3

4
5

64

●

●

●

●

●

1

2
3

4
5



125

C Parameters of the Tangled Nature Model simulation

initial population size N(0) = 2

coupling parameters Θ = 0.3 and c = 14.3

reproduction parameter µ = 0.2

mutation probability pmut = 0.001

annihilation probability pkill = 0.02

Supplementary Table 1: Parameters used in the Tangled Nature Model simulation.
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D Species and metadata of the Kansas case study
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Supplementary Table 2: Features of the species occurring in unit 13 of the succession ex-
periment in Kansas [7]. The following abbreviations are used: f - forb/herb, g - graminoid,
t - tree, s - shrub, ss - subshrub, v - vine, a - annual, p - perennial, b - biennial.

127





129

E System components in the Europe case study

Quantity Unit

gross domestic product mio AC
exports of goods and services mio AC
imports of goods and services mio AC
volume of freight transport index (2010 = 100)
volume of passenger transport index (2010 = 100)
greenhouse gas emissions index (1990 = 100)
pollutant emissions from transport nitrogen oxides
greenhouse gas emissions intensity of energy consumption index (2000 = 100)
energy consumption of transport index (2000 = 100)
gross value added of the agricultural industry mio AC
railway passenger volume mio
goods transported by railway thousands of tonnes
motorization rate cars per 1000 inhabitants
goods transported by road thousands of tonnes
air transport of passengers passengers
air transport of goods tonnes
�nal consumption expenditure of households mio AC
people at risk of social poverty or exclusion thousands of people
current account transactions - balance mio AC

Supplementary Table 3: Quantities and the corresponding units used in the Eurostat case
study.
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F Information networks of the vascular plant system on Surtsey
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