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Abstract

Redundant manipulators have more degrees of freedom then minimally required in order to
perform the main manipulation task. This provides more flexibility during the manipulation
task as it allows for simultaneous secondary tasks like obstacle avoidance or modification of
dynamical properties. However, the overall system becomes underdetermined and methods for
redundancy resolution are required.

One technique for redundancy resolution is task space augmentation. Besides the task space
coordinates, another set of coordinates is defined to be used to determine the configuration of a
manipulator. Linear projection is used to ensure that the main task is not disturbed by the new
coordinates. In this thesis a novel kind of task space augmentation is designed, which is based
on dynamical decoupling. By construction, these new coordinates are dynamically independent
and no projection is required. Controllers in both sets of coordinates can be superimposed
without mutual interference.

The additional new set of coordinates is computed by a coordinate function with certain
properties. The mapping from joint space to task space can be seen as a foliation of the joint
space manifold, where the leaves correspond to the self-motion manifolds. Based thereon,
relations of the Jacobian between the task space forward kinematics and the Jacobian of the
desired coordinate function are derived. These relations can be described as an underdetermined
system of partial differential equations. In order to find an approximate solution to this, a
variational principle is employed. In particular, the desired coordinate function is written as a
neural network and the derived requirements on the Jacobians are translated to a cost function.
Training of the neural network simultaneously finds a concrete instantiation of the PDE as well
as a solution to it.

Trained models for different planar robots are evaluated in different settings. Kinematic
evaluation shows decoupling of the two sets of coordinates on first-order dynamics, which
is generally not provided by traditional augmentation methods. Afterwards, the model is
evaluated using simulation of closed-loop dynamics. Impedance controllers in both coordinate
sets control a simulated planar robot. In contrast to the kinematic analysis some couplings are
observable on actual multi-body dynamics. The majority of couplings is due to Coriolis and
centrifugal forces and terms related to the change of the Jacobian. An additional feed-forward
controller compensating the major couplings achieves dynamically decoupled coordinates.

The developed method provides a technique to automatically find dynamically decoupled
coordinates, which can be used for impedance control of redundant robots. These can also be
interpreted as providing potentials and geodetic springs which are advantageous for controller
design.
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1
Introduction

Many modern robots have complex kinematic structures with a lot of degrees of freedom. Each
joint provides additional freedom of motion in order to interact with humans or to manipulate
the environment. Figure 1.1 shows Justin, a modern robot developed within the Institute
of Robotics and Mechatronics at the German Aerospace Center (DLR). In comparison to
traditional industrial robots, this robot is designed using light weight technology. Torque-
sensing and advanced control schemes allow for safe interaction with humans. An overview on
the control approaches operating this robot can be found in [11].

However, many degrees of freedom also result in kinematically redundant structures. A structure
is called redundant when it is equipped with more degrees of freedom than minimally required
to perform the main manipulation task [34]. Redundancy provides more flexibility when
performing manipulation tasks, but also increases the complexity of control algorithms.

For redundant manipulators, the task space controller does not require all degrees of freedom.
This does not necessarily mean that the controller leaves out distinctive joints in the structure,
rather it is only using a subspace of the space spanned by all the joints. In other words,
the task controller does not control the joints individually, but certain combinations of them.
Redundancy resolution techniques allow to control the remaining degrees of freedom in order
to achieve desired properties.

Figure 1.1.: Rollin’ Justin. A wheeled robot with humanoid upper part. Modern robots are
complex structures with many degrees of freedom. Image taken from [4].
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1. Introduction

Classical approaches use a projective technique [80, 34]. This allows to design arbitrary
controllers that compute a joint space torque. A projection matrix then removes all components
of that vector that would interfere with the main task. In this thesis a new approach is
developed, which by construction does not require projection.

1.1. Motivation

Redundant robots provide more degrees of freedom than required to perform the main ma-
nipulation task. As shown in Figure 1.2, the end-effector can be held at the same pose while
constantly reconfiguring the elbow of the robot arm. The remaining degrees of freedom provide
freedom to perform additional tasks. Imagine, for instance, a camera mounted on the elbow of
the robot. Reconfiguration of the arm can move the camera around without affecting the main
task performed with the gripper.

Figure 1.2.: Self-motion of a DLR LBR robot arm. While the end-effector pose is kept constant,
the robot can smoothly move the arm and reconfigure itself. Image source: [48].

Obstacle avoidance is a typical example for additional tasks for redundant robots. In environ-
ments with moving obstacles, the robot can react and avoid collisions without disturbing the
manipulation task at the end-effector. Maciejewski and Klein [47] already have shown examples
for this in 1985. For parallel or tree-structured robots like Rollin’ Justin the redundancy can
also be used for self-collision avoidance [15]. Additionally, for multi-arm setups redundancy
can be used to avoid collisions between the individual robot arms. For example the DLR
MiroSurge robotic system for telesurgery [25] consists of multiple redundant 7-DoF arms.
There, collision avoidance between the individual arms is one of the tasks performed using
the redundancy. Simultaneously, additional tasks are performed in the remaining degrees of
freedom by optimizing kinematic properties.

Kinematic properties are optimized by, for instance, keeping the configuration away from
joint limits and kinematic singularities. Hutzl et al. used a redundant robot to optimize
configurations such that future motions are not constrained by joint limits [31]. This involves
a prediction step for future motions and optimizing the current configuration for those to
become feasible. Also the so-called manipulability index can be optimized using redundancy.

2



1. Introduction

The manipulability index measures how well a robot can generate velocities and forces in the
Cartesian directions of the end-effector [92]. For example in [85] a manipulability optimization
is used in the field of medical robotics.

Also publications using the redundancy in order to optimize the dynamical properties of the
robot are available. As early as 1990 Walker showed a concept of reduction of impact and
contact effects based on redundancy in [89]. Also more recent publications use redundancy to
reduce the reflected mass [49] or to minimize the energy of blunt elastic impacts [69]. Ficuciello
et al. optimize the dynamical properties for more intuitive interaction with humans [20]. In a
hand writing task executed by a light weight robot, they optimize the simulated inertia of the
robot.

1.2. Problem Statement

Clearly, kinematic redundancy provides a lot of advantages and seems superior to non-redundant
constructions. Also the human arm has seven degrees of freedom and is, therefore, a kinematically
redundant system. However, it also comes with complications to the control algorithms as well
as path and trajectory planning for the systems. The application of methods to determine the
particular configuration a robot will have while executing a task, is called redundancy resolution.
The state of the art approach for controlling such systems provides a quite flexible framework
[80]. Basically, it allows to specify arbitrary controllers and control goals, which are then
projected in a way that they do not interfere with the main task. This involves computation
of a properly weighted projection matrix that ensures that no disturbance of the main task
controller occurs [34]. As the projection matrix projects arbitrary vectors into the null space of
the Jacobian matrix, this approach is often called null space control in the literature.

While being very flexible, this approach also has some drawbacks. Klein and Huang pointed
out that a controller based on the projective null space control method can drive the system to
unpredictable configurations [39]. Projection also complicates the process of showing stability.
Usually, it is required to assume convergence of the null space controller before stability of
the main task can be showed. Additionally, often the approach does not provide a minimal
representation of the robot arm configuration in terms of coordinates. Specification of the task
coordinate is usually straightforward, often it will be the pose of the end-effector in terms of its
position and orientation. However, there are no straightforward "coordinates" for the remaining
degrees of freedom. If so, they are hand-designed coordinate functions valid for only one robot
and set of task coordinates (e.g. [78]).

The goal of this thesis is to develop a general method to find a minimal representation of the
remaining degrees of freedom. This will be a kind of coordinate function, where these additional
coordinates together with the task space coordinates fully specify the configuration of the robot.
Additionally, this coordinate function shall be designed such that no projection is required
for the closed-loop control. By construction, any motion in this additional set of coordinates
shall not disturb the task controller and vice versa. Controllers in the new coordinates can
be designed using the same control algorithms known from main task control. They simply
operate on another set of coordinates. Also stability proofs known for the main task control
can directly be adapted to those new coordinates. The non-disturbing nature of the coordinate
is achieved by dynamically decoupling them from the task space coordinates.

The controller that operates the main task of the robot will be called task space controller.
Usually, that controller will control the pose of the end-effector of the robot. A second controller
operates in the new coordinates providing a minimal representation of the remaining degrees of
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1. Introduction

freedom. As pure motion in those coordinates will only effect the internal motions of the arm
without interfering with the task space, it will be called self-motion controller. Similarly, the set
of coordinates are called task space coordinates and self-motion coordinates, respectively. With
the help of the dynamical decoupling, both controllers can simply be superimposed without
interfering with each other. To summarize:

Problem Statement. Develop a method to automatically find minimal coordinates for the
remaining degrees of freedom of redundant manipulators. The target coordinate function shall be
dynamically decoupled from the task space coordinates such that controllers in both coordinates
can be superimposed without interference.

1.3. Approach

Using classical pseudo-inverse based control techniques [34], solutions for the velocities tangent
to the self-motion manifolds are provided. However, there is no possibility to integrate the
desired coordinate function. This argument is based on the non-integrability of the vector field
distribution determined by the pseudo-inverse of the Jacobian of the manipulator [39]. It is
definitely true that a pseudo-inverse is generally not integrable. In contrast to the state of
the art approach, here a decoupling without the pseudo-inverse is targeted. In this thesis an
argument is provided that allows to show that decoupled self-motion coordinates exist.

Under a differential geometric perspective on the task space coordinate function, the task space
coordinates can be viewed as a foliation of the joint space manifold. Then, integrable vector
field distributions do exist such that the integral leads to the desired coordinate function for
the self-motion manifold. However, neither the self-motion coordinates, nor the distribution to
integrate is known in advance. Consequently, finding the self-motion coordinate function can
not be achieved by an integration algorithm on vector fields.

Requirements on the relation between the self-motion coordinates and the task space coordinates
are derived. Particularly, the Jacobians of both coordinate functions must satisfy certain
conditions in order to achieve the dynamical decoupling. The rows of the Jacobian of the
desired coordinate function must be mutually orthogonal to the rows of the task space Jacobian.
This corresponds to finding foliations, which are orthogonal to the foliation induced by the task
space coordinates.

In order to be dynamically consistent, this orthogonality must hold under a particular metric.
Choosing the inverse mass matrix as metric enforces that no accelerations in the other coordinates
are generated.

Given the requirements on the Jacobian of the desired function still does not allow to determine
the vector fields spanned by the Jacobian analytically. The amount of requirements is not
enough to determine the vector fields and the system is underdetermined. The desired coordinate
function can be interpreted as the solution to an underdetermined system of partial differential
equations. Well known PDE solving techniques like finite elements only work for fully determined
systems. In consequence, classical PDE solvers are not directly applicable.

An approach comparable to a variational principle is developed in this thesis. It is assumed that
the desired coordinate function can be written as a parametric function. Then, the parameters
of that function are optimized such that the derived requirements on its Jacobian are fulfilled
as well as possible. In particular, a two-layer neural network is used as parametric model.
Neural networks are universal function approximators and therefore promise to be able to adapt
to the desired coordinate function. For optimization, a cost function based on the derived
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1. Introduction

requirements is designed. Another advantage of neural networks is the large amount of available
tools and software for training and implementation. TensorFlow is used for efficient and fast
evaluation and training of the network as well as for automatic differentiation.

1.4. Contributions and Outline

Coordinate functions that specify the remaining degrees of a robotic manipulator are desirable.
Especially, when the coordinate functions are designed in a way that they do not interfere
with the task space dynamics, controllers in both spaces can operate without interfering with
each other. Those coordinate functions parametrize the foliation induced by the entirety of
self-motion manifolds of the task space forward kinematics. The decoupling of the task space
coordinates is achieved, when foliations that are orthogonal to the self-motion manifolds in
the sense of a specified metric tensor are considered. These will be called orthogonal self-
motion foliations (OSMFs). Coordinates on these foliation will be called orthogonal self-motion
coordinates (OSMCs).

In this thesis a neural network based method to find such OSMC is developed. The main
contributions of the thesis are:

• Providing a foliation view on classical task space forward kinematics. A forward kinematics
function can be interpreted as imposing a foliation of the joint space manifold.

• Providing an argument that these coordinate functions exist locally. This is a direct
consequence of the foliation view on forward kinematics by applying Frobenius’ theorem.

• Development of an algorithm to train a neural network approximation of OSMF. The
method parametrizes the foliation by explicitly approximating coordinates in terms of
OSMCs on it.

• Concept of a controller scheme using OSMCs to simultaneously control the task space
dynamics and the remaining degrees of freedom in a decoupled fashion.

• Experimental validation of closed-loop dynamics using the new control scheme on simulated
models of planar manipulators.

Chapter 2 shows an overview of related work in the field of robotics and compares them to the
method developed in this thesis. In Chapter 3 a more systematic introduction to differential
geometry in robotics required for the later chapters is provided. After this introductory part of
the thesis, Chapter 4 shows the concept and rationale on the existence OMSFs. Additionally,
the requirements on coordinates (OMSCs) on the foliations and the limitations in terms of
(non)-globality of the coordinates are explained. Then, the chapter finishes by showing a control
scheme using a coordinate function for the remaining degrees of freedom.

Chapter 4 only establishes the requirements on OMSCs, but no approach to find such a function
was provided. Subsequently, Chapter 5 provides a concrete algorithm to find a solution to the
requirements in the modeling chapter. The coordinate function is written as neural network and
a training algorithm is developed, which aims to update the model parameters such that they
fulfill the requirements. For the training, a cost function and a training data sampling strategy
are required, which are developed in Chapter 5. After the description of the neural-network,
Chapter 6 shows results of various trained models for different planar manipulators. The
evaluation is performed on a geometric, kinematic and dynamic level. In low dimensional spaces
the models can be visualized as curves and surfaces in the plane or volume. Orthogonality can
be visually observed and validated. After that, one example model is evaluated on a kinematic
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1. Introduction

level using a first order differential equation in closed-loop. Then, another example model is
used for dynamic evaluation. The model is used for an impedance controller, which is applied to
a simulated multi-body dynamics equation of a manipulator. Chapter 7 compares the proposed
method to the state of the art approach and discuses advantages and disadvantages. Finally,
Chapter 8 concludes the thesis by summarizing the content and providing an outlook to future
work. Throughout the thesis, some links to animations and videos are provided in the footnotes.
It is recommended to follow the links for an intuitive understanding of the statements, results
and concepts explained.

6



2
Related Work

In this thesis a novel approach for redundancy resolution is proposed. Several techniques
for redundancy resolution exist. The subsequent section summarizes available techniques for
redundancy resolution and compare the novel approach of this thesis to the latter. A neural
network will be used for the novel approach. To our knowledge there is no other publication
using machine learning techniques for the given problem. However, several publications deal
with learning of dynamic and kinematics models, which are summarized in section 2.2.

2.1. Redundancy Resolution Techniques

Redundancy resolution is a broadly discussed research topic in the literature. The tutorial by
Siciliano [80] groups the approaches into four different categories:

1. Simple Jacobian-based Techniques

2. Gradient Projection Method

3. Task Space Augmentation

4. Inverse Kinematic Functions

which are briefly explained below.

2.1.1. Simple Jacobian-based Techniques

Already in the 1960s articles dealing with this topic were published. In early publications the
focus is mostly on a kinematic level only, i.e. the dynamic model of a robot is not taken into
account for those studies. Initially, the usage of the Moore-Penrose inverse of the Jacobian for
redundancy resolution was proposed by Whitney in 1969 [91]. Using a pseudo-inverse, desired
task velocities can be transformed to joint velocities. For redundant robots this mapping is not
unique, for a given rectangular matrix infinitely many pseudo-inverses exist. The Moore-Penrose
pseudo-inverse is a special choice for an identity-weighted case. This minimizes the Euclidean
norm of the resulting joint velocities. Another common weighing matrix is the inverse mass
matrix of the robot, which minimizes the kinetic energy of the manipulator. Also proposals on
minimization of the joint torques for redundancy resolution have been proposed [29].

The redundancy resolution techniques based on the pseudo-inverse also have some drawbacks. As
Klein and Huang [39] state it, the approach can drive the system to unpredictable configurations
[54]. This is a direct consequence of the non-integrability of the Moore-Penrose pseudo-inverse.
They provide a very intuitive visualization of this in their review [39], which is reproduced in
Figure 2.1. A robot with three degrees of freedom is following a square multiple times, where the

7



2. Related Work

robot trajectory is computed on a kinematic level based on the Moore-Penrose pseudo-inverse
of the Jacobian. Each time the manipulator passes by the lower-left corner of the square, the
configuration is plotted.

Obviously, the configurations at the lower-left corner is different after tracing out the square.
As the Moore-Penrose pseudo-inverse is non-integrable, a round trip in the corresponding vector
fields does not lead back to the initial state. While tracing out the square, the configurations may
or may not converge, reach joint limits or come arbitrary close to singularities [39]. Therefore,
the behavior of the system can not be considered deterministic.

-0.4 -0.2 0.0 0.2 0.4 0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 2.1.: Non-Integrability of the Moore-Penrose pseudo-inverse visualized. The robot
configuration is shown after each full cycle of following the square shape with the end-
effector. The Moore-Penrose inverse is used for computation of joint velocities. The
non-integrability results in different configurations after the full cycles. Animation
of the robot here: http://thesis.aaarne.de/square-tracing.gif

Mussa-Ivaldi and Hogan showed that integrable pseudo-inverses exist on simply-connected and
singularity-free regions in joint space [54]. For special weighing matrices, the pseudo-inverse
becomes integrable. In their approach, they take a function and show that its derivative can
be written as a weighted pseudo-inverse. The particular weighing matrix is not constant, but
rather a position-dependent function.

2.1.2. Gradient Projection Method

The gradient projection is an extension of simple Jacobian-based techniques. All of the
pseudo-inverse based approaches for redundancy resolution allow for direct application of null
space control. The projection matrix required for null space control can be straightforwardly
computed given the pseudo-inverse. Then all of the projection-based control schemes already
mentioned in the introduction can be applied. These, for instance, include obstacle avoidance
[36], self-collision avoidance (e.g. [15]), joint limit avoidance [31], singularity avoidance (e.g.
[25]) and modification of dynamic properties [85, 89, 49, 69, 20].

Non-integrability may lead to non-deterministic behavior as could be observed in Figure 2.1.
Following the square might be possible for only a limited amount of iterations. Without
intervention, the robot may at some point run into joint limits or singularities. This can be
prevented by adding another controller for joint-limit and singularity avoidance acting in the
null space. Basically, using the additional null space controllers the non-deterministic behavior
can be forced into a desirable direction. In particular, the robot can be kept manipulable by

8
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2. Related Work

avoiding unfavorable configurations and collisions with obstacles.

Gradient projection methods also allow to specify more than one task in a hierarchy. Higher
priority tasks will never be disturbed by lower priority tasks. In [13] an overview of projection
matrices is provided. A recent publication by Mansfeld et al. also shows techniques for
temporarily relaxing the hierarchy [50]. Using this technique, the main task may temporarily
be disturbed by the secondary task such that the secondary task can achieve the control goal.

The projection matrix is computed based on a pseudo-inverse as well. Therefore, the same
limitations apply. The projection method does not ensure integrability either. Additionally, the
projection can result in local minima when evaluating the closed-loop behavior with controllers
on the lower priority tasks. These can lead to suddenly discharging virtual springs upon small
variation of the robot configuration.

2.1.3. Task Space Augmentation

All of the aforementioned approaches are based on pseudo-inverses of the task Jacobian and
have one thing in common: they are inherently local. Task space augmentation techniques
augment the task coordinates by additional so-called constraint tasks, that employ at most all
redundant degrees of freedom [80]. The constraint tasks have a Jacobian with respect to the
joint angles. As many constraint tasks are added as needed to form a square-shaped Jacobian
matrix for the augmented task space. Then, the inverse Jacobian can be used for redundancy
resolution. However, it is not easy to find a constraint tasks such that a manipulator can achieve
both tasks exactly. Then, least squares techniques can be used and the gradient projection
method is used for least squares solution of the constraint tasks. Also, there is no methodology
for finding such constraint tasks. They are hand-designed for each use case and task.

Egeland used a task space augmentation method for a macro-micro manipulator [17] and in
[74] the approach is used for narrow-passage passing of a highly redundant robot.

2.1.4. Global Inverse Kinematic Functions

Another approach is to use global inverse kinematic functions for redundancy resolution [90]. The
inverse kinematics function maps a task space pose to joint angles. Once an inverse kinematics
function exists, one task pose always maps to the same joint angles, so no redundancy resolution
is required. Basically, the manipulator behaves non-redundantly when viewed through the
global inverse kinematic function. Of course, infinitely many of those functions can exist.
For redundant manipulators the forward kinematics pre-image are always infinitely many
configurations. If a global inverse kinematic function is selected, only one of those is taken.
This would be very restrictive as the redundancy can not be used. Hence, the global inverse
kinematic function can be written as parametric functions. Some parameters allow to select
which of the infinitely many pre-images the global inverse kinematics function will select.

Wampler [90] restricted the work space of a redundant manipulator to a region, where a global
inverse kinematic function exists. Shimizu et al. showed a method for a 7-DoF robot in [78].
They use the angle between the plane spanned by the elbow angle and a reference angle as
a parameter to the global inverse kinematic function. Also by fixing some of the joint angles
a global inverse kinematics function can be obtained. This type of redundancy resolution
is implemented on the kuka LBR iiwa. The angle of the third axis is fixed for the global
inverse kinematic function. Then, there are only countably many solutions left. For instance,
also when fixing one of the joints, the robot still has elbow-up and elbow-down configurations.
Additionally, fixing the signs of some angles yields a global inverse kinematics function [76].

9



2. Related Work

The programming API also provides the redundancy resolution based on the angle of the elbow
plane.

2.1.5. Classification of the Novel Approach

In this thesis a method is developed that finds a coordinate function for the remaining the
degrees of freedom. Therefore, it is a task space augmentation method. However, in contrast to
existing approaches, the idea is to design dynamically (and kinematically) decoupled coordinates.
The Jacobian of the new coordinates must be in the null space of the task Jacobian. In other
words, applying the projection would have no effect, because by construction the coordinates
have no effect on the task space.

2.2. Learning of Kinematic and Dynamic Models

The approach in this thesis uses a machine learning technique in order to find the self-motion
coordinates. To my best knowledge there is so far no publication showing this approach.
However, for many other use cases in the control field of robotics, machine learning techniques
are widely researched and many results have been published.

The dynamics of the robot is usually modeled as a differential equation arising from multi-body
dynamics known in mechanics. Therefore, for this model to be valid the entire robot has to be
known. This includes the kinematics as well as inertial properties. Given the structure of the
differential equation, standard system identification techniques (e.g. [44]) can be used on order
to fit the unknown parameters of the robot. Many physical phenomena of the actual robot
usually remain unmodelled. This includes joint friction, delays, unmodelled nonlinearities and
the dynamics of the drives [71]. Machine learning techniques allow to learn the dynamics model
without the strict structure enforced by the multi-body dynamics model. Therefore, a machine
learning technique can potentially also learn the features, which are not modelled in classical
multi-body dynamics. Some publications show machine learning based system identification of
forward dynamic models. This can be achieved using classical regression techniques. Consider
[84] for a comparative overview on regression. For instance, classical neural networks [57] and
radial basis function networks [86] have been used to perform regression of a forward model.

In contrast to the forward dynamic and kinematic models, the inverses generally have no
closed-form analytic solution. Therefore, the motivation to learn inverse models is significantly
larger than learning forward models. This can be observed also in the amount of publications,
the majority of articles focus on learning of inverse models. D’Souca et al. [9] use locally
weighted projection regression (LWPR) [88] in order to learn inverse kinematics of a redundant
manipulator. Especially, learning of inverse dynamic models is researched extensively. Inverse
dynamic models can be directly used as feed-forward control input of the robot [55]. LWPR-
based techniques are often used for inverse dynamics models. Schaal et al. [72] used learned
LWPR-based models that were trained for specific tasks like devil sticking and pole balancing.
They also showed that it is possible to learn the inverse dynamic model of manipulators using
LWPR. In [64] the inverse dynamics learning is extended to an operational space framework for
redundant manipulators. Holonomic mobile robots are usually equipped with omniwheels in
order to be able to maneuver in every direction. Omniwheels provide flexibility, but are also
inherently hard to model as the resulting forces are highly dependent on ground friction. In
[59] different models for adaptive feed-forward control of mobile robots with omniwheels are
compared. Also Gaussian processes [65] are frequently used for inverse dynamics regression.
For instance, Shon et al. [79] use Gaussian process regression to perform imitation learning
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2. Related Work

of motions captured from humans. In [56] use local Gaussian processes for real-time online
learning of inverse dynamics. Furthermore, Calinon et al. [7] show results of Gaussian mixture
models (GMM) on humanoid robots.

On the one hand, learned inverse models can be directly fed to the robot and the output can be
used as feed-forward control signal, on the other hand, the model is almost certainly not perfect
and errors will occur. Additionally, many quantities can be computed analytically, which is
faster and exact. Salaün et al. [71] combine learned models with the analytical operational
space framework for control of redundant manipulators

11



3
Differential Geometry in Robotics

This chapter introduces and wraps up fundamentals of robot kinematics, dynamics and control
presented in a differential geometric perspective. Fundamental equations and concepts needed
to derive the orthogonal foliation control approach are presented here.

Generally, a robotic manipulator is a set of links connected by joints. Joints connect adjacent
links in order to form a kinematic structure. In this thesis only serial structures without
kinematic loops or parallelisms are considered. Figure 3.1 shows a schematic drawing of such a
serial interconnection of links. Joints occur in a variety of appearances, prismatic and rotational
joints being most common examples of those. The configuration of a robot can be uniquely
parametrized given the values of all joint parameters, where the required amount of parameters
per joint corresponds to that joint’s degrees of freedom [53, Chapter 3].

Joint 1

Link 1
Joint 2

Link 2

Link 0

Joint n

Link n

Figure 3.1.: A robotic manipulator is a set of links connected by joints. Figure adapted from
[35, Section 1.2]

Tasks are usually specified in Cartesian coordinates. Robot configurations, however, are
described in terms of joint configurations like joint angles for example. In order to perform
tasks with the manipulator, a relationship between joint- and task space is required. Therefore,
a coordinate function, which maps from joint- to task space will be defined. Considering only
static configurations of the manipulator, the study of that relationship is known as kinematics.
The subsequent section shows concepts from kinematics and instantaneous kinematics required
to understand how positions, velocities and forces transform between those spaces. Additionally,
the terms non-redundant and redundant manipulators will be defined. Afterwards, interpreting
the interconnection of links and joints as a multi-body system, the dynamics of the manipulator
is formulated using multi-body dynamics. As for the static cases, also the manipulator dynamics
can be transformed between spaces. Given the dynamics of the manipulator, control schemes
will be presented. The focus is on the impedance controller scheme, which simulates a virtual
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3. Differential Geometry in Robotics

spring-damper system in respective spaces. It will be shown that task space impedance control
leads to left-over (uncontrolled) dynamics of redundant manipulators. Finally, the terms vector
field, integrability and foliation will be introduced. The chapter concludes stating the important
Frobenius’ theorem on integrability, a necessary and sufficient condition for existence of solutions
to underdetermined systems of partial differential equations.

3.1. Coordinates, Kinematics and Jacobians

Links of a manipulator are connected by joints, which come in a variety of types. Joint types
can be characterized according to their configuration space. Table 3.1 summarizes a selection
of joint types [45]. The joints connect two links, which are depicted in blue and orange,
respectively. Dependent on the joint type, the relative position between the two connected links
is parametrized by different parameters. Additionally, different types may also leave more or
less degrees of freedom. The space of all parameters required to describe the configuration of the
joint is called configuration space of the joint. For instance, the revolute joint in Table 3.1 needs
one such parameter, namely the angle between the two links. Because the joint configuration
of the revolute joint is specified by an angle, the topology of the configuration space is the
one-sphere S

1. On the contrary, the state of the prismatic joint is the shift between the two links
and the topology of the configuration space is simply the Euclidean space of the real numbers
R. Based on this, the degrees of freedom of one joint are defined as the dimensionality of its
configuration space. The spherical joint has three degrees of freedom, because the topology of
the configuration space is a three-sphere. From now on, only joints with one degree of freedom
will be considered. Note that joints with more than one degree of freedom can be transformed
to multiple single degree of freedom joints by adding virtual links.

Table 3.1.: Example joint types. Different joint types have different configuration spaces with
different topologies. The dimensionality of the configuration space is called the
degrees of freedom. Drawings are inspired by [41, Chapter 3].

Revolute Prismatic Cylindrical Spherical

Drawing

Configuration Space Qr “ S
1 Qp “ R Qc “ R ˆ S

1 Qs “ S
3

Degrees of Freedom dim Qr “ 1 dim Qp “ 1 dim Qc “ 2 dim Qs “ 3

Manipulators consist of multiple joints. The configuration space of the manipulator Q is simply
the Cartesian product of all configuration spaces of the joints Qi [53, Chapter 2]

Q “
n

ą

i“1

Qi . (3.1)

The configuration space of a manipulator is also referred to as the manipulator’s joint space.
This term will be used from now on. Most robotic manipulators consist of rotational joints only,
where each joint i has a one-sphere topology. The product of n one-spheres is an n-dimensional
hypertorus denoted

T
n “

n
ą

i“1

S
1 . (3.2)
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3. Differential Geometry in Robotics

It is important to notice that the Cartesian product of two one-spheres S
1 is not the two-sphere

S
2, but a torus T

2. Toroidal topologies are easier to handle, especially sampling schemes using
uniform distributions are easy on toroidal topologies and complicated on spheres. Therefore,
usual joint spaces are hypertori. If the robot also has linear actuators and prismatic joints the
overall joint space will be Q “ T

r ˆ R
r for r rotational and p prismatic joints [53].

3.1.1. Task Space

When performing tasks with a robotic manipulator, the specification of motions, forces and
desired dynamic properties is usually not described in the joint space directly. Rather, robotic
tasks are usually specified in a Cartesian coordinate system. Let the task space M of a
manipulator be the space where tasks are specified. In most of the cases, this will be the
Cartesian pose of the end-effector [45, Chapter 4]. Therefore, in most of the cases the task
space will be the Special Euclidean Group M “ SEpnq with n “ 2 for planar and n “ 3

for non-planar robots. The Special Euclidean Groups specify rigid body transformations in
Euclidean spaces. Basically, elements of these groups describe poses (position and orientation)
of objects in R

2 or R
3, respectively. [53, Chapter 3] is a reference for further information.

Note that this choice is not complete, a task might be any holonomic constraint. For instance,
distances from obstacles can also be regarded as task space coordinates, which are not SEpnq.
Task spaces are only for pure translational quantities Euclidean. As soon as orientations are
incorporated for the choice of the task space coordinates, the task space M is described by
a manifold, which is only locally Euclidean. Also, the special Euclidean groups SEpnq are
manifolds embedded in Euclidean space.

Figure 3.2 shows a visualization of this concept with an exemplary robotic manipulator. The
robot consists of two rotational joints and has a 2-torus joint space Q “ T

2. Here, the choice
for the task space M is only the translational component of the endeffector position specified
by x1- and x2-coordinates. In other words, the orientation is irrelevant for the task space
coordinate here. For example, this task space choice would be sufficient to draw with a pen on
paper with the robot.

Joint Space Task Space

Forward Kinematics

x “ fpqq

q1

q2 x1

x2

q1

q2

f1pqq

f2pqq

Figure 3.2.: An exemplary planar robot with its configuration- and task space. The joint space
represents the space of all possible joint configurations, while tasks and forces are
usually specified in task space. The mapping from joint to task space is known as
forward kinematics.
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3. Differential Geometry in Robotics

3.1.2. Forward Kinematics

In order to perform tasks with the manipulator a relationship between joint- and task space
coordinates is required. Therefore, the forward kinematics function is defined [53, Chapter 3].

Definition 1 (Forward Kinematics). Let q P Q and x P M, the function f : Q Ñ M

x “ fpqq (3.3)

that maps joint space configurations to task space coordinates is called forward kinematics.

Given a joint configuration q of the robot, the function computes the position x of the robot in
task space. Usually, the forward kinematics is derived by chaining rigid-body transformations
between the links. Refer to e.g. [8, Chapter 3] for further information on the derivation of
the forward kinematics function. The function f is generally not bijective, as multiple joint
configurations may result in the same task space coordinates.

For the example robot introduced in Figure 3.2 the forward kinematics function f is plotted
in Figure 3.3. Isolines show configuration with constant x1 and x2 components, respectively.
Additionally, two configurations with the same task space coordinate are shown.

Figure 3.3.: Forward kinematics of the example robot. Each joint configuration is mapped to
the position of the endeffector in Cartesian space. Blue lines denote isolines of the
x1 component and orange lines of the x2 component, respectively. The mapping
is not bijective. The black dots denote an example of configuration with different
joint configurations, but the same endeffector position.

3.1.3. Tangent Spaces, Vectors, Jacobians

Next, concepts from instantaneous kinematics are introduced, which are required to transform
vectors and covectors between the tangent and cotangent spaces of the joint- and task space
manifolds Q and M. Forward kinematics describe only the static and stationary configuration
of a manipulator. Let again M be the task space manifold, the tangent space of M at the
point x is denoted TxM [32, Section 1.2]. The tangent space is dependent on the location
x P M on the manifold (Figure 3.4). In contrast to the task space manifold, its tangent space
is a vector space and all vector space properties apply. The elements of the tangent space TxM
are called vectors.
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3. Differential Geometry in Robotics

Figure 3.4.: A manifold M and its tangent space TxM at x P M. If M represents the task
space manifold the columns of the forward kinematics Jacobian span the tangent
space under the condition that the configuration is non-singular.

Further, the definition of tangent bundles is required in order to analyze integrability in the
later section. The tangent space TxM is a local vector space tangent to the manifold M at the
point x P M. According to [58, Chapter 2] the tangent bundle is defined as

Definition 2 (Tangent Bundle). The union of all tangent spaces for all x P M is called the
tangent bundle T M of the manifold M

T M “
ď

xPM

TxM . (3.4)

Given the vectorial tangent spaces, vector quantities such as velocities for a robotic manipulator
can be defined. Velocities are vectors and live in the tangent spaces TxM of the manifold. For
the choice of Cartesian task spaces SEp2q and SEp3q the tangent spaces at x are TxSEp2q “ R

3

and TxSEp3q “ R
6, respectively. The term twist is defined for that case [19]

Definition 3 (Twist). The elements of the tangent spaces TxSEp3q of the special Euclidean
group SEp3q are called twists. They describe instantaneous screw motions.

Usually the task space manifold is SEp3q. Consequently, often the term twist is used when
task space velocities are considered.

Joint- and task space are both manifolds with tangent spaces each. Consider a velocity in
joint space 9q P TqQ. For a manipulator consisting of rotational joints only, this would be a
vector of angular rates for each joint. Next, the question arises how the effect of this velocity
is in task space. In other words, how does the joint space vector transform to a task space
velocity 9x P TxM? The answer is the Jacobian matrix of the manipulator, which is obtained
by differentiating the forward kinematics x “ fpqq [75, Section 4.5]:

Definition 4 (Jacobian Matrix). The matrix of all partial derivatives of the forwards kinematics
function f : Q Ñ M is called Jacobian matrix

Jpqq “
„ Bfi

Bqj



“

»

—

–

Bf1

Bq1
. . . Bf1

Bqn

...
. . .

...
Bfm

Bq1
. . . Bfm

Bqn

fi

ffi

fl
, (3.5)

where n denotes the number of joints and dimpTxMq “ m.
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The Jacobian J : Q Ñ R
mˆn is dependent on the joint configuration q. The Jacobian of a

differentiable mapping (as the forward kinematics function is) transforms vectors from the
tangent space of the input manifold to the tangent space of the output manifold [21, Chapter
2]. In plain differential geometry, the concept of a Jacobian is called a push-forward associated
with f [42, Chapter 3], because the push vectors in TqQ forward to vectors in TxX . This can
be directly applied to robotics. Velocities are vectors and are therefore transformed according
to a linear transformation with the Jacobian matrix

9x “ Jpqq 9q . (3.6)

Consider Figure 3.5 for a schematic viewing of this concept. Because vectors transform according
to this rule, they are said to be transformed contravariantly [42, Chapter 4]. While the forward
kinematics x “ fpqq is generally nonlinear, the transformation between velocities and other
vector quantities is a linear transformation with Jpqq. Note however, that the Jacobian itself
depends, potentially nonlinearly, on the joint configuration q. Provided that the Jacobian is a
square matrix and is non-singular, the transformation between and task space velocities can
also be inverted

9q “ J´1pqq 9x . (3.7)

This is an important property of the linear transformation that is heavily used for iterative
inverse kinematics or the generation of desired task space velocities.

Jpqq

TqQ

TxM
M

Q

q

x

Figure 3.5.: The Jacobian matrix of a forward kinematics function maps vectors between the
tangent spaces of the manifolds. While the rows of the Jacobian span a subspace of
the tangent space of the joint space manifold, the columns span the tangent space
of the task space provided that the Jacobian is nonsingular.

3.1.4. Cotangent Spaces, Covectors, Wrenches

Recall the definition of dual spaces known in linear algebra

Definition 5 (Dual Space of a Vector Space). Let V be a vector space. The space of all linear
functionals η : V Ñ R is called dual space of V and denoted V ˚. Its elements η P V ˚ are called
covectors. The application of a covector η P V ˚ to a vector v P V is called duality pairing and
is also denoted 〈¨, ¨〉 : V ˚ ˆ V Ñ R.

Tangent spaces TxM of a manifold M are vector spaces and therefore the definition of dual
spaces can be applied to those as well. In differential geometry, the dual spaces of tangent
spaces are called cotangent spaces and defined as [42, Chapter 4]

17



3. Differential Geometry in Robotics

Definition 6 (Cotangent Space). Let M be a smooth manifold. The space of all linear
functionals η : TxM Ñ R at a point x P M is called cotangent space at x and is denoted T ˚

x M.
The cotangent space T ˚

x M is dual to the tangent space TxM. Its elements are called tangent
covectors, or simply covectors at x.

For the robotic manipulator, covectors represent forces and torques. For example, for a robot
with only rotational joints, a covector would consist of all joint torques at the individual joints.
On the other hand, for a choice of Cartesian task coordinates, a task space covector could be
translational forces along and torques about the principal axes. As for velocities, if the task
space choice is SEp3q, covectors have special properties and a special term is used [19]

Definition 7 (Wrench). The elements of the cotangent space T ˚
x SEp3q are called wrenches.

While twists live in the tangent spaces of SEp3q and represent velocities based on instantaneous
screws, the analogous covectors in the cotangent spaces of SEp3q are called wrenches and
represent forces by virtually applying torques to screws with specific pitches.

For scalar quantities, the product of a force and the velocity is a power. The same is true
for multiple dimensions, where the duality pairing of a force covector and a velocity vector
computes a scalar power. Let τ P T ˚

q Q be a joint space force and f P T ˚
x M a task space

force. Then, τ J 9q “ Pjoint computes the power exerted on or by the robotic manipulator.
Similarly, fJ 9x “ Ptask also computes the power. By the principle of conservation of power it is
known that Pjoint “ Ptask. Using the principle of conservation of power, the transformation of
covectors can be derived

Pjoint “ τ J 9q “ fJ 9x “ Ptask

τ J 9q “ fJJpqq 9q

τ “ JJpqqf (3.8)

While Jpqq maps vectors from joint- to task space, JJpqq transforms covectors in the opposite
direction. Therefore, this mapping is also called a pullback in differential geometry [42, Chp. 4].

This type of transformation is called covariant transformation [21]. Again, if the Jacobian Jpqq
is a square matrix and non-singular, the transformation can be inverted in order to compute
task space forces

f “ J´Jpqqτ . (3.9)

The vector and covector transformation is visualized for the planar example manipulator in
Figure 3.6. While the i-th column of Jpqq represents the velocity of the endeffector when
rotating the i-th joint at unit speed, the j-th row of Jpqq represents the joint torques when
pushing with a unit force in the j-th principal direction of the endeffector coordinates.

3.1.5. Singularities

In order to compute the required joint space velocity to generate a desired task space velocity
9x, the inverse of the Jacobian J´1pqq is required. At singular configurations, this inversion is
not possible, because the Jacobian matrix becomes singular. The manipulator is said to loose
degrees of freedom with respect to the task space in singular configurations.

Singularities arise when columns of the Jacobian become collinear or vanish entirely. Figure 3.7
shows two example configurations, which are singular with respect to the position of the end
effector. At the first configuration, the columns of the Jacobian are linearly dependent. Therefore,
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9q1

9x1? 9x2?
9q2

(a) Vector mapping of Jpqq

fx1

fx2

τ?

τ?

(b) Covector mapping of JJpqq

Figure 3.6.: Example of the usage of the Jacobian matrix to transform vectors and covectors
between joint- and task space. (a) Mapping of velocities. Rotating the joint at
unit speed, the columns of Jpqq specify the velocity vector in task space for the
respective joint. (b) Mapping of forces. Pushing the endeffector with a unit force
into the principal direction of the task space, the rows of Jpqq compute the torques
on the joints.

the Jacobian only spans a one-dimensional vector space in this configuration. Components
of task space velocities corresponding to the direction denoted in red can not be generated.
Similarly, task space forces acting in that direction do not generate any torque τ . At the second
singular configuration shown in (b), one of the rows even vanishes.

columns of Jpqq

(a) Configuration 1 (b) Configuration 2

Figure 3.7.: Singular configuration of an exemplary planar robot with two degrees of freedom.

For now, it is assumed that the number of task space coordinates matches the degrees of freedom
of the manipulator. The next section generalizes this to redundant manipulators. Formally,
singularities can be defined in terms of the determinant of the Jacobian

Definition 8 (Singularity). A joint configuration q P Q is called singular with respect to the
task space coordinates, if

det Jpqq “ 0 . (3.10)
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3.2. Kinematic Redundancy

Kinematic redundancy of a manipulator depends on the number and interconnection of joints
as well as on the choice of the task space coordinates. From now on the task space coordinates
are assumed to be minimal, meaning that there are no dependencies. For example a coordinate
function computing the x-component and half the x-component of the endeffector pose of a
manipulator would not be considered minimal as it computes only one independent quantity.
Then, the term kinematic redundancy can be defined [34].

Definition 9 (Kinematic Redundancy). A manipulator is kinematically redundant under a
choice of task space coordinates, when there are more degrees of freedom in the joint space n

than there are dimensions m in the task space coordinates

n “ dim Q ą dim M “ m . (3.11)

The difference r “ n ´ m is called the degree of redundancy of the manipulator.

3.2.1. Self-Motion Manifolds

For non-redundant robots where the degrees of freedom matches the dimensionality of the task
space coordinates, isolated points in joint space may map to the same task space coordinates.
This was shown in Figure 3.3 for the exemplary planar robot. For redundant manipulators
however, joint space configuration that map to the same task space coordinates lie on a
continuum. These continua form one or more r-dimensional manifolds in the joint space.
Because moving in these manifolds will change the robot configuration without changing the
task space coordinates, these manifolds are called self-motion manifolds. Formally [6]:

Definition 10 (Self-motion Manifold). Each of the disjoint r-dimensional manifolds in the
inverse kinematic preimage will be termed a self-motion manifold.

For example, when another rotational joint is added to the example planar manipulator, while
keeping the choice of using the x1 and x2-component of the position of the endeffector as
task space coordinates, the manipulator becomes kinematically redundant. There are n “ 3

degrees of freedom and m “ dimR
2 “ 2 independent task space coordinates. The degree

of redundancy is r “ n ´ m “ 1. Figure 3.8 (left) shows the one-dimensional self-motion
manifold for the planar manipulator with three degrees of freedom. On the right, four robot
configurations corresponding to four sampled points on the self-motion manifold are shown.
Similarly, when choosing only a one-dimensional forward kinematics function m “ dim M “ 1,
the degree of redundancy becomes r “ 3 ´ 1 “ 2 and the self-motion manifold will be two-
dimensional. Choosing only the x1-component of the endeffector position as coordinate function,
the self-motion manifold of the planar three degree of freedom looks like the surface in Figure 3.9.
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(a) Self-motion manifold
(b) Robot configurations.

Figure 3.8.: Self-motion manifold of a planar robot with three rotational joints and unit-length
links. The chosen task space coordinates are the x and y component of the
translational position of the end-effector of the robot. The orientation of the
end-effector is not considered as task space coordinate. On the left, the self-
motion manifold for xd “ r1.404, 1.417sJ is shown. The blue line represents the
one-dimensional self-motion manifold. Four points are selected depicted with an
orange dot. Those configurations are shown on the right. Animated robot here:
http://thesis.aaarne.de/animated.gif

Figure 3.9.: Manifold for x “ 0 for a single dimensional taskspace of a 3DoF planar robot
without joint limits. The surface is created using the marching cubes algo-
rithm described in [43] on the forward kinematics. 3D view of the surface here:
http://thesis.aaarne.de/self-motion-manifold.stl

3.2.2. Null Space of the Jacobian Matrix

For redundant manipulators, the Jacobian matrix Jpqq P R
mˆn is no longer a square matrix.

As there are more degrees of freedom than task space coordinates, joint space velocities that do
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not generate any task space velocity are possible. These velocity vectors lie in the null space
ker Jpqq of the Jacobian. All joint velocities 9q0 P ker Jpqq vanish in task space coordinates and
do not result in any task space velocity. Consider Figure 3.10 for a schematic drawing.

For non-redundant cases the null space of the Jacobian ker Jpqq is trivial and only contains
the origin, provided the Jacobian is nonsingular. At kinematic singularities however, also the
Jacobian of non-redundant manipulators locally has a non-trivial null space. In contrast, for
kinematically redundant manipulators, the null space ker Jpqq is always non-trivial and at least
dimpker Jpqqq ě r. Similar for the non-redundant case, the notion of kinematic singularities
can be defined for redundant manipulators.

Definition 11 (Singularities of Redundant Manipulators). Let r be the degree of redundancy
of a manipulator. For given kinematics and task space coordinates, a configuration is called
non-singular, when dimpker Jpqqq “ r and singular when dimpker Jpqqq ą r.

In other words, a configuration q is singular, when the Jacobian Jpqq is row-rank deficient.

Jpqq

TqQ TxM

R
mR

n

ker Jpqq

n

?

Figure 3.10.: The Jacobian matrix maps from the n-dimensional tangent space TqQ to the
m-dimensional task space tangent space TxM. For kinematic redundancies n ą m

the mapping is projective and leaves a nontrivial kernel of the Jacobian matrix.
Vectors in ker Jpqq are mapped to zero.

While transformation of vectors still works from joint to task space (3.6) the inversion is no longer
possible, since the inverse of the Jacobian is no longer defined. Equivalently, covectors can still
be transformed from task- to joint space (3.8), but not the other way around. Straightforwardly,
pseudo-inverses can be used to perform the inverse transformations. Let A# denote a pseudo-
inverse of the matrix A. Then the inverse transformation of vectors is [39]

9q “ J#pqq 9x (3.12)

and for covectors
f “ J#Jpqqτ . (3.13)

The mapping from task space vectors to joint space vectors is underdetermined. Therefore,
there exists an infinite amount of pseudo-inverses for a rectangular matrix. One such matrix is
the well-known Moore-Penrose pseudo-inverse (e.g. [63]):
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Definition 12 (Moore-Penrose Pseudo-Inverse). The Moore-Penrose pseudo-inverse A` P
R

nˆm of the matrix A P R
mˆn is the result of

A` “ AJ
`

AAJ
˘´1

. (3.14)

A generalization of the Moore-Penrose pseudo-inverse is the weighted pseudo-inverse [16]:

Definition 13 (Weighted Pseudo-Inverse). Let W “ W J ě 0 be a positive-definite and
symmetric weighing matrix. The weighted pseudo-inverse AW # of the matrix A is

AW # “ W ´1AJ
`

AW ´1AJ
˘´1

. (3.15)

For W “ I the weighted pseudo-inverse equals the Moore-Penrose pseudo-inverse. For the
transformation of vectors either of the pseudo-inverses can be used. However, the inverse
mapping is underdetermined and different generalized inverses optimize the mapping for
different things. One common choice is to choose the weighing matrix equal to the mass matrix
of the manipulator W “ Mpqq. Then, the inverse mapping computes a joint space velocity
9q “ JM#pqq 9x with the minimal kinetic energy 1

2
9qJM 9q of the manipulator.

3.3. Multi-Body Dynamics of a Manipulator

So far, only static configurations and kinematics of manipulators were considered. Dynamics
describes the relationship between forces, velocities and acceleration and also depend on inertial
properties of the links. In particular, the moments of inertia of the links are additionally required
to derive the dynamics. An interconnection of rotating multiple bodies also introduces effects
like Coriolis and centrifugal forces. Let n be again the degrees of freedom of the manipulator.
The dynamics of the serial interconnection of links and joints can be written as an n-dimensional
system of second-order differential equations [53, Chapter 4]

Mpqq:q ` Cpq, 9qq 9q ` gpqq “ τ , (3.16)

where q represents the vector of joint position and τ the vector of applied joint torques, i.e. the
sum of motor and external torques. Further, 9q and :q represent joint velocity and acceleration
vectors. The remaining terms are

• Mpqq: The symmetric and positive-definite mass or inertia matrix. The mass matrix
generally depends on the configuration q of the robot as moments of inertia change
with changing angles between links. The off-diagonal coefficients of Mpqq introduce
second-order couplings between the joint dynamics.

• Cpq, 9qq: Matrix of Coriolis and centrifugal forces. This matrix also introduces nonlinear
couplings between the joint dynamics. The choice of Cpq, 9qq is generally not unique.
Here it is assumed to be chosen such that 9Mpq, 9qq “ Cpq, 9qq ` Cpq, 9qqJ as in [11].

• gpqq: The effect of gravity on the joint torques.

For the derivation of the quantities the kinematic model as well as inertial properties of the
links are required. Further information on the derivation and properties of the dynamics can
be found in [45, Chapter 8]. In this thesis, the dynamics model of the manipulator (3.16) is
assumed to be known. Rewriting the dynamics a block diagram of the multi-body dynamics
can be derived

:q “ M´1pqq rτ ´ Cpq, 9qq 9q ´ gpqqs , (3.17)
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which is shown in Figure 3.11. This model can be used for simulation of manipulator dynamics
and will be used in the evaluation chapter for simulating the closed-loop behavior of control
schemes with a manipulator in the loop.

M´1pqq
ş

Cpq, 9qq

gpqq

τ q
9q:q

ş

Figure 3.11.: Block diagram of the multi-body dynamics of a robotic manipulator.

For the planar example robot in Figure 3.2, the dynamics equation is a two-dimensional second-
order differential equation. Without external torques τ “ 0 the dynamics equals the one of an
unforced double pendulum.

3.3.1. Task Space Dynamics

The differential equation (3.16) expresses the dynamics of the manipulator in joint space by
relating torques, velocities and positions of the manipulator in joint space. The consequent next
step is to consider the dynamics model in task space. This model then shows how the robot
mass and coupling forces feel when observed in task space. Therefore, the dynamics model can
be transformed to task space (e.g. [34])

Mxpqq:x ` Cxpq, 9qq 9x ` gxpqq “ f , (3.18)

where cxpq, 9qq denotes end-effector Coriolis and centrifugal forces and gxpqq the effect of gravity
to the end-effector. For a derivation see [33]. The main observation here is that the mass
observed when applying forces to the end-effector is

Mxpqq “
“

JpqqM´1pqqJJpqq
‰´1

, (3.19)

which naturally depends on the joint configuration q.

3.3.2. Task Space Dynamics and Redundant Manipulators

Above, the equations for task space dynamics were derived. For non-redundant robots the
relation between forces and joint torques is τ “ JJpqqf . For redundant manipulators, however,
this relation becomes incomplete. The set of task space coordinates is insufficient to completely
describe the dynamical behavior of the manipulator. Consequently, the relation between task
space forces and joint torques can be completed by adding null space torques [34]

τ “ JJpqqf `
”

I ´ JJpqqJ#Jpqq
ı

τ 0 , (3.20)

where τ 0 is an arbitrary joint torque vector. The matrix
“

I ´ JJpqqJ#Jpqq
‰

:“ P pqq is a
projector matrix that projects the vector τ 0 into the null space of J#J. The interpretation
of this, is that any vector τ N projected by τ N “ P pqqτ 0 will not interfere with any torque
τ “ JJpqqf generated by a task space force. These torques τ N are also called nondriving
torques, those joint torques that cannot be balanced by any task space force [16]. Any projector
satisfying this is called statically consistent:
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Definition 14 (Static Consistency). A null space projector matrix P pqq is called statically
consistent if any joint torque does not interfere with torques generated by a task space force. It
must hold that

J#JpqqP pqq “ 0 . (3.21)

As before, there are infinitely many pseudo-inverses J#Jpqq of the transposed Jacobian. Only
one of those is consistent with the system dynamics meaning that no task space accelerations
:x “ 0 are generated. If so, the projector is called dynamically consistent [37]:

Definition 15 (Dynamical Consistency). A null space projector P pqq is called dynamically
consistent if it is statically consistent and never generates task space accelerations

JpqqM´1pqqP pqq “ 0 . (3.22)

When using the weighted pseudo-inverse JW #Jpqq for the null space projector

P 2pqq “ I ´ JJpqqJW #Jpqq (3.23)

and choosing the configuration dependent weighing matrix W “ Mpqq results in a dynamically
consistent null space projector [33].

3.4. Joint- and Task Space Impedance Control

Impedance controllers impose desired dynamic behavior by virtually attaching linear springs
and dampers to the manipulator. The idea is to have a framework, where springs and dampers
with tunable stiffnesses and damping coefficients can be adapted to match the desired dynamic
behavior for different tasks [28]. Then, the control goal is to change the manipulator dynamics
such that it simulates the virtual system of springs and dampers. When programming the
robotic manipulator, not only the desired positions are commanded, but additionally the desired
dynamical properties. Springs and dampers can either be specified in joint or task space.

Figure 3.12 shows both cases for the example manipulator. On the left, the springs are attached
to the robot joints, i.e. each joint simulates dynamics with linear rotational springs and dampers.
In contrast, for most actual tasks the impedance of the end-effector in task space shall be
controlled. On the right, the springs are attached in task space and the control goal is then to
actuate the robot in a way such that the dynamics of the end-effector match the desired task
space impedance.

The impedance controllers summarized here, set desired joint torques for the system. Another,
lower level, controller then controls the motors in order to achieve the desired torque imposed
by the outer level impedance controller. Feedback torque controllers require the torques in the
joints, which need to be measured directly or estimated from other quantities. The DLR light
weight robot [27], for instance, is a 7DoF robot with rotational joints, where each of the joints
is equipped with torque sensors. Harmonic drive gears, which are used as gearing between
motors and joints, induce flexibility which needs to be compensated in the torque controllers.
An overview on torque controllers for modern robots is given in [2].

3.4.1. Joint Impedance Control

Let qd be the desired joint position and 9qd be the desired joint velocity. When only regulation
and no trajectory tracking is desired, the desired velocity is set to zero 9qd “ 0. For joint
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q1

q1d

(a) Joint Impedance Control

x

xd

(b) Task Space Impedance Control

Figure 3.12.: Impedance controllers impose dynamics of a manipulator by controlling the
mechanical impedance of the structure. The robot simulates a virtual spring-
damper system, where the stiffnesses and damping coefficients are usually task-
specific design parameters. For joint impedance control each joint simulates a
system with a rotational spring and damper, while for task space impedance
control task space springs and dampers are defined. The springs and dampers are
spanned between the desired and actual positions of the manipulator.

impedance control, the desired dynamic behavior of the robot is

Mpqq:q ` Dp 9q ´ 9qdq ` Kpq ´ qdq “ τ ext , (3.24)

where K and D are positive definite and symmetric stiffness and damping matrices. Usually,
these are diagonal and parametrize the stiffness and damping of each of the joints as shown in
Figure 3.12a. The control approach is a PD controller with additional gravity compensation

τ “ ´Kpq ´ qdq ´ Dp 9q ´ 9qdq ` gpqq . (3.25)

Then, for the case of regulation 9qd “ 0 the achieved dynamic behavior of the system is

Mpqq:q ` pCpq, 9qq ` Dq 9q ` Kpq ´ qdq “ τ ext (3.26)

3.4.2. Task Impedance Control

Let ex “ x ´ xd be the deviation of the desired pose from the actual pose in task space
coordinates. The desired dynamics of the end-effector are

Mxpqq:ex ` Dx 9ex ` Kxex “ f ext , (3.27)

where Mxpqq denotes the transformed mass matrix (3.19) and Kx, Dx are the desired task
space stiffness and damping parameters, respectively. Again, here only the case of regulation
9x “ 0 is considered, but it can easily be extended to trajectory tracking. First, the controller
imposing the desired task space impedance is completely formulated in task space coordinates

f c “ ´Kxpfpqq ´ xdq ´ Dx 9ex . (3.28)

When choosing second order dynamics, the damping ratio ζ P r0..1s is a good parameter to
tweak for the user. The mass matrix is not constant, but depends on the configuration of
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the robot. Observing the dynamics equation (3.18), it becomes obvious that the damping
matrix Dx must be selected dependent on the configuration q as the mass is not constant.
Hence, it will be written Dxpqq. One approach to choose the task space damping Dxpqq is
the factorization design [1]. Let M

1{2
x pqq and K

1{2
x be the matrix square roots of the matrices

Mxpqq and Kx. Further, let Dζ “ diagtζiu be a diagonal matrix of the chosen damping ratios
in the task space principal directions. Then, the configuration dependent damping matrix is
computed using [1]

Dxpqq “ M1{2
x pqqDζK1{2

x ` K1{2
x DζM1{2

x pqq . (3.29)

Given the task space controller the output force is transformed to joint torques and fed to
the lower level torque controller. The overall task space impedance controller is then (using
9x “ Jpqq 9q)

τ “ JJpqqf c ` gpqq (3.30)

“ JJpqq r´Kx pfpqq ´ xdq ´ Dxpqq pJpqq 9q ´ 9xdqs ` gpqq , (3.31)

where again a term for gravity compensation is added. Figure 3.13 shows a schematic view of
this control approach.

Task Space Joint Space

Robot
q

9q

τ

x P M

9x

Torqueτ d
JJpqq

Jpqq

Task Space
Impedance
Controller Controller

xd f

gpqq

Kx, Dx

fpqq

τ m

Figure 3.13.: Task space impedance control scheme. The task space impedance controller
imposes a task space impedance by computing a task space force, which is
transformed to joint space torques using the transposed Jacobian. The desired
torque computed by the outer loop impedance controller is then fed to the inner
loop torque controller. Measured or estimated torques are compared to the desired
values and the motors are driven in order to achieve the torques set by the outer
loop. Forward kinematics and its Jacobian are needed in the outer loop feedback
closure for computation of the task space deviation and velocity. Gravity torques
are also compensated in the control scheme.

3.4.3. Self-Motion Control aka Null Space Control

For redundant manipulators the set of task space coordinates is insufficient to completely
describe the dynamics of a manipulator. Similarly, the task space impedance controller (3.30)
does only control part of the manipulator dynamics. Recall that the completed relation between
joint torques and task space forces is

τ “ JJpqqf
looomooon

τ x

`
”

I ´ JJpqqJ#Jpqq
ı

τ 0
loooooooooooooomoooooooooooooon

τ N

. (3.32)
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When choosing the dynamical consistent null space projector, there are two independent sets of
control vector fields:

1. τ x: joint torques corresponding to forces acting at the end-effector and

2. τ N : joint torques that only affect internal motions.

The task space impedance controller (3.30) only controls the dynamics corresponding to τ x and
leaves uncontrolled dynamics corresponding to τ N . The redundancy can be used to add subtasks
with lower priority. Subtasks are then projected into the null space of the task space Jacobian
and not interfere with the task space impedance controller. Typical goals of such subtask
controllers are avoidance of singularities [77], obstacles [47], joint limits and self-collisions [15].
Also approaches to minimize the reflected mass [49], to alter contact effects[89] or to minimize
the energy of impacts [69] have been used.

The basic idea is to design another controller τ “ Φpq, 9qq for the subtask. For collision and
joint limit avoidance tasks this is usually derived using repulsive potentials. Then, the output
of that controller is projected to the null space using the null space projector matrix. The
overall controller is then

τ “ JJpqq r´Kxpfpqq ´ xdq ´ Dxpqq p 9x ´ 9xdqs
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

task space controller

`
”

I ´ JJpqqJ#Jpqq
ı

Φpq, 9qq
looooooooooooooooomooooooooooooooooon

self-motion controller

`gpqq . (3.33)

Note that this approach can also be continued recursively to generate a hierarchy of tasks,
where lower priority tasks never interfere with higher priority tasks. [13] gives an overview on
the approach for more than one subtask.

3.5. Vector Fields, Foliations and Integrability

This section wraps up some concepts from differential geometry and the connection to dynamical
systems based on [82, 58]. The notions of vector fields and distributions on manifolds are
introduced in order to state Frobenius’ theorem. Finally, foliations are introduced, which are a
fundamental concept in this thesis.

Vector fields on a manifold are defined in [42, Chapter 3]. Figure 3.14 shows an exemplary
vector field on a 2-sphere.

Definition 16 (Vector Field). Let M be a smooth manifold. A vector field f : M Ñ TxM on
M is a section of its tangent bundle T M. It can be viewed as an assignment of a vector to
each point x P M such that the assigned vector lies in the tangent space at that point TxM.

Given a set of multiple vector fields on a manifold they form a distribution defined as

Definition 17 (Distribution). Let M be a manifold and suppose we have k vector fields f i. At
every point the span of the vectors f i forms a subspace of TxM. This assignment of subspaces
of TxM for every point x P M is called distribution and is denoted

∆ “ span tf1, ..., fku . (3.34)

For instance, for the robotic manipulator each of the rows of the Jacobian matrix are vector
fields on Q. At every configuration q P Q, a row of the Jacobian matrix Jpqq assigns a vector to
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Figure 3.14.: Schematic drawing of a vector field on a manifold. The vector fields assign a
vector to each point on the manifold such that the assigned vector lies within the
tangent space at that point.

the point q. These vectors lie in the tangent space TqQ and represent the direction of greatest
ascent in the respective task space coordinates. The span of all the rows of the Jacobian
at every point q P Q forms a distribution on Q. Because the rows of the Jacobian are the
gradient of a function, it is known that the distribution is integrable. This implies that the the
system of partial differential equations given by the distribution of the vector fields in Jpqq
can be integrated in order to get the forward kinematics back. However, in general not every
distribution is integrable.

Single vector fields can be integrated, if they are a gradient to a scalar function. In vector
calculus it is known that only curl-free vector fields represent a gradient [51]. Curl-free vector
fields are also called conservative vector fields and can be integrated. For integrability of
distributions of vector fields another property called involutivity of the distribution is required.
In order to define involutivity, first the definition of the Lie bracket is required.

Definition 18 (Lie Bracket). Let fpxq and gpxq be vector fields. The Lie Bracket r¨, ¨s of f

and g computes a third vector field defined as

rfpxq, gpxqs “ Bg

Bx
fpxq ´ Bf

Bx
gpxq . (3.35)

Using the definition of Lie brackets, involutivity can be defined in the next step [82].

Definition 19 (Involutivity of a Distribution). A distribution ∆ of k vector fields is called
involutive if applying the Lie bracket to each pair of the vector fields in ∆ implies that the
resulting vector field lies also within ∆. Formally,

@i, j P r1..ks : f i, f j P ∆ ùñ rf i, f js P ∆ . (3.36)

Frobenius’ theorem provides a sufficient and necessary condition for a distribution to be
integrable [42, Theorem 14.5]

Theorem 1 (Frobenius). Every involutive distribution is completely integrable.

Complete integrability here means that it is possible to find a function whose gradients
correspond to the vector fields in the distribution. Another interpretation is based on foliations.
The term foliation is defined as in [42].
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Definition 20 (Foliation). A collection F of disjoint, connected r-dimensional submanifolds
of M, whose union is M, is called r-dimensional foliation of M. The submanifolds in F are
called leaves of the foliation.

Figure 3.15 shows an example foliation of the solid torus. Important is that the leaves of the
foliation never intersect and that the union of all of the leaves reconstructs the torus.

Complete integrability of a distribution means that there exists a foliation of integral manifolds.
Take any of the leaves of that foliation. Then at every point on the leaf, the tangent space
corresponds to the vector fields of the distribution. Starting at any point on one of the leaves
and integrating along the vector fields will never leave the leaf.

Figure 3.15.: Reeb foliation of a torus. Only some of the leaves of the foliation are shown. The
union of all of the leaves of the foliation restores the entire torus. Figure inspired
by [30].
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This chapter introduces the new approach for foliation-based impedance control of redundant
robots. Forward kinematics f : Q Ñ M map from the n-dimensional joint- to the m-dimensional
task space manifold. Task space impedance controllers do not control the entire dynamics and
do not use all of the degrees of freedom of a manipulator. Here, a task space augmentation
approach [80] with a special set of minimal coordinates is proposed for redundancy resolution.
Task space augmentation means that besides the task coordinates an additional set of coordinate
is chosen to control the remaining degrees of freedom. This new set of coordinates will be termed
self-motion coordinates and denoted ξ P S. For now, the manifold S abstractly represents the
manifold of self-motion coordinates. Then, the coordinates are minimal if dim S “ n ´ m “ r.
Figure 4.1 shows an example with the planar three DoF manipulator for a choice of only
translational task space coordinates.

x = const

ξ = ξ1

ξ = ξ2

ξ = ξ3

ξ = ξ4

Figure 4.1.: Concept of coordinates for self-motions. The additional coordinate ξ assigns a
self-motion coordinate to each of the configuration.

Similar to task space coordinates, these coordinates also have a "forward kinematics" function

ξ “ ϕpqq . (4.1)

There exist already many choices for task space augmentations like [76], [73] or the one
implemented on the kuka iiwa [10]. In this thesis, the main contribution is to design a set of
self-motion coordinates which are orthogonal with respect to a given metric tensor. Choosing
the inertia tensor as metric, dynamical decoupling from task space control is achieved. Dynamic
decoupling refers to the fact, that any motion in ξ shall by construction not interfere with the
task space controller. Vice versa, task space motions shall not affect the ξ-coordinates. In
particular, these statements shall hold when considering the pure dynamics of the manipulator
without external forces. This implies that using the task space impedance controller (3.30)
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without any self-motion control should not affect the ξ coordinates, when no external forces are
present. Additionally, the function ϕpqq shall be smooth or at least continuously differentiable.
Then, it also has a Jacobian and all transformations, equations and controllers known from
task space can directly be applied to ξ-coordinates.

Let Npqq denote the Jacobian of ϕpqq computed by the partial derivatives

Npqq “
„Bϕi

Bqj



“

»

—

–

Bϕ1

Bq1
. . . Bϕ1

Bqn

...
. . .

...
Bϕr

Bq1
. . . Bϕr

Bqn

fi

ffi

fl
. (4.2)

By simple pattern matching, the transformation of vectors can be derived. Let 9ξ P TξS be a
generalized self-motion velocity. It is transformed according to

9ξ “ Npqq 9q . (4.3)

Similarly, generalized forces η P T ˚
ξ S in ξ-coordinates are transformed to joint torques by

τ “ NJpqqη . (4.4)

Equation (3.32) showed the decomposition of two dynamically decoupled control vectors in the
relationship between joint torques and task forces [34]. This can be resembled without the null
space projector

τ “ JJpqqf ` NJpqqη . (4.5)

By construction, the self-motion coordinates are designed dynamically decoupled from the task
space coordinates. Therefore, equation 4.5 is also dynamically decoupled and controllers in
both coordinates can act independently.

The remainder of this chapter will develop the further insights needed to design these coordinates
and give an argument why these coordinates can exist. First, a foliation-based perspective
on task space forward kinematics is presented. The close relation between foliations and
integrability of a distribution will be used to conclude the existence of such decoupled self-
motion coordinates. In order to achieve the desired decoupling between the coordinate functions,
the Jacobians must be in a certain relation. This relation is derived afterwards. First, only
the kinematic level and static case are considered. Subsequently, the approach is extended for
dynamical consistency using the multi-body dynamics equation. Finally, an overall controller
using the coordinate function is designed.

All the statements and insights in the subsequent sections are valid under the assumption that
the task space Jacobian Jpqq has full-rank for all q P Q. For actual task space coordinates this
is not true. Still, it is always possible to find regions in the joint space, which are singularity-free
and the approach developed here is valid in these. By the end of this chapter, it will be shown
how all the singularity-free regions can be combined to apply the concept in the entire joint
space.

4.1. Foliation Perspective on Forward Kinematics

Distributions of vector fields that correspond to the tangent bundle of a foliation are integrable.
For redundant manipulators, task space coordinates determined by the forward kinematics
function can essentially be interpreted as a certain type of foliation. This will be derived in this
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section. Starting with only one task space coordinate, it will be shown that the choice of that
forward kinematics function corresponds to a pn ´ 1q-dimensional foliation of the joint space
manifold Q, where n “ dim Q represents the degrees of freedom of the manipulator. Then,
it will be shown that for each additional task space coordinates, a joint space foliation with
one dimension less is obtained. Finally, the complete forward kinematics f : Q Ñ M creates a
r-dimensional foliation, where r denotes the degree of redundancy of the robot.

Consider a smooth one-dimensional task space forward kinematics x “ f1pqq. It assigns a
scalar to every joint configuration q P Q. The submanifolds, where fpqq “ const are called
self-motion manifolds (definition 10). Here, because the task space coordinate is a scalar, the
self-motion manifolds are pn ´ 1q-dimensional. For the scalar forward kinematics, the Jacobian
is a simple row vector of partial derivatives J1pqq “ gradJ fpqq. The gradient is normal to the
self-motion manifold. Figure 4.2 shows a schematic drawing of this.

The function fpqq is defined everywhere on the joint space, i.e. every q P Q is assigned a
task space coordinate. Because the manipulator is redundant, every task space coordinate
x P M1 corresponds to a self-motion manifold. Additionally, the self-motion manifolds can
never intersect1. Combining these insights, it follows that the entirety of self-motion manifolds
creates a foliation of the joint space manifold. Let F1 denote the foliation corresponding to the
self-motion manifolds of f1.

x “ const
gradJ fpqq “

”

Bf
Bq1

. . . Bf
Bqn

ı

Figure 4.2.: Schematic drawing of self-motion manifolds patches for a scalar task space coor-
dinate. The evaluation of the forward kinematics yields constant values for the
points on one leaf. The Jacobian is normal to the surface. For the scalar case, the
Jacobian corresponds to the transposed gradient. Drawing inspired by [40].

This concept is shown for the planar manipulator with three degrees of freedom. Choosing only
the x-component of the end-effector pose of the example manipulator from Figure 4.1 creates
such a scalar coordinate function. The degree of redundancy is r “ 3 ´ 1 “ 2. Consequently,
the self-motion manifolds are two-dimensional surfaces in the joint space manifold. Figure 4.3
shows self-motion manifolds computed for different values of the scalar task space coordinate x.
The surfaces are extracted using marching-cubes [43]. On the right, the entire joint space is
shown from ´π to π is shown. Note the toroidal topology of the space. The cube shown in
the figure can be smoothly continued in every direction by stacking exact copies of it in every
direction. On the left, the front-top subcube of the joint space is shown. By rotating it (left
bottom) it can be seen that the foliation structure continues in the inside of the cube. The
colors encode the value of the task space coordinate x1 “ f1pqq.
In the next step, consider a second coordinate function y “ f2pqq, which creates another
foliation F2 of the joint space manifold. The leaves of the foliations generated by the self-motion

1This can be seen by contradiction using the intermediate value theorem.
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Figure 4.3.: Two-dimensional foliation of the joint space of the example manipulator. On the
left the foliation is shown for the entire joint space from ´π to π for each of the
three joint angles. Each of the leaves corresponds to one value for x “ fpqq “ const.
The front-top subcube with edge length π

2
is cut out and shown on the right.

Rotating this subcube shows that the foliation continues in the inside of the joint
space. Colors denote the value of the scalar coordinate x. Therefore, each leaf has
a constant color.

manifolds of f1 and f2 intersect. Figure 4.4(a) shows this schematically. For now, it is assumed
that the Jacobian is non-singular. This implies that the leaves of the foliation never touch
tangentially, but intersect at every point. As shown in the figure, the intersection of the leaves
creates another manifold of lower dimension. This lower dimensional manifold corresponds to a
self-motion manifold of

f12pqq “
„

x

y



“
„

f1pqq
f2pqq



. (4.6)

Again, this is shown for a small patch of the joint space of the example manipulator in
Figure 4.4(b).

The self-motion manifolds of f12 are also dense in Q and never intersect. Therefore, intersecting
all the leaves of the foliations creates another foliation F12 “ F1 X F2 of Q. This new foliation
is now pn ´ 2q-dimensional.

Also this can be verified using the example manipulator. Figure 3.8 already showed a single
self-motion manifold. In order to observe the foliation structure, Figure 4.5 shows many of
those corresponding to different values x12 “ f12pqq. Further information on the geometry
of those manifolds can be found in [6, Section 3]. Note, that all the curves are closed when
considering the toroidal structure of Q. Only the view in the Cartesian coordinate system
shows open lines, but they all can be smoothly continued on the opposite side of the cube.

Imagine continuing the process until all task space coordinates are contained in the coordinate
function f . The task space coordinates f : Q Ñ M correspond to a r-dimension foliation of
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x “ x1

x “ x2

y “ y1

y “ y2

„

x

y



“

„

x1

y1



„

x

y



“

„

x2

y2



„

x

y



“

„

x1

y2



„

x

y



“

„

x2

y1



(a) Concept
(b) Patch for example robot

Figure 4.4.: Intersection of the leaves of the self-motion manifolds corresponding to different
coordinate functions creates manifolds of lower dimension. These correspond to
self-motion manifolds of a combined coordinate function, where both coordinates
stay constant.

q1
q2

q3

(a) Front View

q1

q2

q3

(b) Top View

Figure 4.5.: One-dimensional foliation of the example manipulator using the end-effector position
as task space coordinates. The lines create a foliation of the joint space Q.

the joint space, where the leaves of the foliation are the self-motion manifolds. This leads to:

Observation 1. The entirety of self-motion manifolds corresponding to the task space coordi-
nates x “ fpqq creates an r-dimensional foliation of Q, where r is the degree of redundancy of
the manipulator.
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4.2. Orthogonal Foliations

The goal is to design a coordinate function ξ “ ϕpqq that does not interfere with the task
space coordinates. Based on the foliation view on the forward kinematics, this section derives
the required relation between the functions f and ϕ on a kinematic level, i.e. for now only
kinematics are considered and the dynamics of the robot is not taken into account.

Consider the drawing on the left in Figure 4.6. Basically, the idea of the self-motion coordinates
ξ “ ϕpqq is to assign a coordinate chart onto the self-motion manifolds of the foliation induced
by the task space coordinates. Additionally, when moving from one leaf to the next one the
self-motion coordinates shall not jump, but vary smoothly. This is indicated by the dashed
lines between the grids.

x “ x0 ` ∆x

x “ x0

ξ “ p0, 0q
ξ “ p1, 0q

ξ “ p0, 1q

(a) Coordinate chart on manifolds

x “ constvpqq “
”

Bf
Bqi

ı

n1pqq “
”

Bϕ1

Bqi

ı

n2pqq “
”

Bϕ2

Bqi

ı

(b) Orthogonal Jacobians

Figure 4.6.: Coordinate on the self-motion manifolds. This drawings are valid if the Euclidean
metric is used to define orthogonality. On the left the basic concept of assigning
coordinates on the self-motion manifolds is presented. The coordinates shall be
consistent when moving from one to the next leaf of the foliation induced by the task
space coordinates. On the right, it is shown that the Jacobian of the self-motion
coordinates must be in the tangent space of the manifold. Only then the effect on
the task coordinates vanishes.

The effect of joint space displacements ∆q on task space displacements ∆x is

∆x “ Jpqq∆q . (4.7)

In order to avoid any task space displacement ∆x, the projection of the rows of the Jacobian
Npqq of ϕ onto the rows of Jpqq must vanish. In other words, the rows of Npqq must be
orthogonal to the rows of Jpqq. Orthogonality between the rows of Npqq and Jpqq can only
be defined with respect to a given metric tensor as two vectors cannot be directly multiplied
with each other. The rows nJ

i pqq of Npqq are vectors in the tangent space of the self-motion
manifolds. Figure 4.6(b) depicts this graphically for the choice of the Euclidean metric to define
orthogonality. This leads to

Observation 2. The rows nJ
i pqq of Npqq are vector fields that map into the tangent bundle

of the self-motion manifolds.

Essentially, this leads to orthogonal foliations. The task space foliation and the foliations
induced by the new ξ-coordinates need to intersect orthogonally in order to fulfill the conditions
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on the Jacobian. Consider the trivial example in Figure 4.7. The blue leaves represent a trivial
foliation of a solid cube sliced into axis-aligned planes. Then, the other two foliations depicted
in orange and gray are orthogonal at every point. Note, that only some leaves of the foliation
are shown. The orthogonality condition, however, is also true at every point in the cube when
considering the three leaves intersecting it.

Figure 4.7.: Trivial example for orthogonal foliations. The surfaces represent trivial foliations
of a solid cube by slicing it into axis-aligned planes. The image only shows some of
the infinitely many leaves. At each point in the solid cube, three leaves intersect
orthogonally.

When the base foliation is not that trivial, also the orthogonal foliations become more compli-
cated. Figure 4.8 shows a foliation of the solid cube of the left. The solid unit cube is foliated
into paraboloids. On the right, an approximate orthogonal foliation is shown by the leaves in
gray and orange. The orthogonal foliations denoted in gray and orange were generated using
the neural network based method developed later in this thesis.

These systems of curved surfaces in three-dimensional space are also subject of research in math
(e.g. [3]) and called triply orthogonal systems. In three dimensions, Dupin’s theorem provides a
statement about the lines of intersection of the surfaces [83]:

Theorem 2 (Dupin). Given three mutually orthogonal surfaces, the line of intersection of any
two surfaces of different families is a line of curvature for the surfaces.

4.2.1. Existence of Orthogonal Self-Motion Foliations

This section combines the two observations of the previous section in order to conclude that
orthogonal self-motion foliations (OSMFs) exist. Task space forward kinematics correspond to
a pn ´ mq-dimensional foliation of Q. The Jacobian Npqq is unknown, but it is known that
each of the rows of Npqq are orthogonal to the rows of the task space Jacobian Jpqq under
a metric tensor. Hence, in order to fulfill the (for now kinematically) decoupled coordinates
ξ “ ϕpqq, the Jacobian of ϕ must map into the tangent bundle of the self-motion manifolds.

Using the following theorem [42, Lemma 14.12] (rewritten according to [62])

Theorem 3. If F is a r-dimensional foliation of Q, then the collection of tangent spaces to
the leaves of F form an involutive distribution.

it can be concluded that the rows of Npqq form an involutive distribution. Additionally,
Frobenius’ theorem states that every involutive distribution is integrable (Thm. 1). Therefore,
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(a) Cube foliation with paraboloids
(b) Triply orthogonal system

Figure 4.8.: Less trivial example of orthogonal foliation by a paraboloid-based foliation of
a solid cube (blue). The orange and gray surface correspond to leaves of the
two orthogonal foliations. 3D view of the orthogonal foliations on the right here:
http://thesis.aaarne.de/triply-orthogonal-paraboloid.stl

Observation 3. Orthogonal self-motion foliations (OSMFs) exist.

The OSMFs provide a per se coordinate-free structure, i.e. a topological space. However,
for computations in this space coordinates are required. For instance, they can be used for
motion planning and impedance controllers. The arguments above show that the OSMFs exist.
However, it does not provide statements about coordinates on the foliation. These coordinates
will be called orthogonal self-motion coordinates (OSMCs).

Although it is known that the Jacobian Npqq of the OSMCs spans the tangent spaces of the
self-motion manifolds, there are infinitely many instantiations of the r independent row-vector
in Npqq in each tangent space. The huge majority of choices will not lead to integrable vector
fields. This is the case for example for null space basis vectors generated by pseudo-inverses.

Consequently, the main question is how to obtain integrable vector fields Npqq in the integrable
distribution and how to find the integrals in terms of the coordinate function of the OSMCs.

4.2.2. Dynamical Decoupling

So far, the relation between the coordinate functions f : Q Ñ M and ϕ : Q Ñ S was only
analyzed on a kinematic level. Implicitly, it was assumed that the metric for orthogonality was
the identity matrix, i.e.

nJ
i pqqIvjpqq “ 0 , (4.8)

where nJ
i pqq denotes the i-th row of Npqq and vJ

j denotes the j-th row of Jpqq. In what
follows the required metric for dynamical consistency will be derived.

Recall the multi-body dynamics equation of the manipulator

Mpqq:q ` Cpq, 9qq 9q ` gpqq “ τ ` τ ext . (4.9)

The mass matrix is generally non-diagonal and introduces second-order couplings between the
differential equations. In the following, the explicit dependency of the matrices on the joint
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configuration q is dropped in order to improve readability. The goal is to achieve decoupled
task- and self-motion dynamics (cmp. to Khatib’s version [34, eq. (19)])

τ “ JJf ` NJη . (4.10)

Consider the case without external forces and assume the gravity torques are already compen-
sated by the controller. Equations 4.9 and 4.10 can be matched to obtain

M :q ` C 9q “ JJf ` NJη . (4.11)

Left-multiplication by JM´1 yields

J :q ` JM´1C 9q “ JM´1JJf ` JM´1NJη . (4.12)

Using J :q “ :x ´ 9J 9q this can be rewritten to

:x ´ 9J 9q ` JM´1C 9q “ JM´1JJ
loooomoooon

M´1
x

f ` JM´1NJ
looooomooooon

!
“0

η . (4.13)

The effect of η to the task space acceleration :x is JM´1NJη. Consequently, the required
metric for orthogonality between J and N is the inverse mass matrix:

Observation 4. For dynamical consistency, the required metric for defining the scalar product
between the rows of the Jacobians Jpqq and Npqq is the inverse mass matrix

JpqqM´1pqqNJpqq “ 0 . (4.14)

Here, the condition of dynamical consistency (definition 15) of null space projectors reap-
pears. Additionally, the Jacobian Npqq is also statically consistent (definition 14). Using the
dynamically consistent pseudo-inverse in the definition of static consistency yields

´

JM#
¯J

NJ “
`

JJM´1J
˘´1

JM´1NJ
looooomooooon

“0

“ 0 . (4.15)

The same analysis can be done for the acceleration :ξ. Analogous to the previous derivation,
the resulting dynamics is

:ξ ´ 9N 9q ` NM´1C 9q “ NM´1JJ
looooomooooon

!
“0

f ` NM´1NJ
looooomooooon

M´1

ξ

η . (4.16)

The mass matrix is symmetric, and inverses of symmetric matrices are symmetric again.
Therefore,

“

JM´1NJ
‰J “ NM´1JJ (4.17)

and it can be concluded that ensuring JM´1NJ “ 0 also enforces NM´1JJ “ 0. In
consequence, also a task space force f does not result in any immediate acceleration :ξ.
Comparing equations 4.13 and 4.15 and rewriting them yields

:x “ M´1
x f ` 9J 9q ´ JM´1C 9q (4.18)

:ξ “ M´1
ξ η ` 9N 9q ´ NM´1C 9q . (4.19)
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For the static equilibrium 9q “ 0, the simplified dynamics is Mx :x “ f and M ξ
:ξ “ η. However,

the matrices J “ Jpqq, N “ Npqq and M “ Mpqq are not constant, but depend on the
configuration q. For 9q ‰ 0, the accelerations also depend on the change of the Jacobians 9J and
9N and on the Coriolis and centripetal forces.

It can be concluded, that enforcing JM´1NJ “ 0 leads to decoupled coordinates. Any force
in one space does not generate any immediate acceleration in the other space. In other words,
the immediate effect of a generalized force η on the task space acceleration :x is zero. However,
a force η still accelerates the manipulator and accumulates a velocity 9q. This velocity 9q may
later lead to a task space acceleration via :x “

´

9J ´ JM´1C
¯

9q. The same holds for the effect

of a task space force f on the acceleration :ξ. Note that also the classical approach with the
null space projectors has this problem.

4.2.3. Globality with Euclidean Parametrization of Self-Motion Manifolds?

The OSMCs live on an r-dimensional manifold, that was denoted S so far. Due to the foliation-
version of Frobenius’ theorem it is always possible to integrate the OSMFs. Suppose, that we
can only design a function ϕ : Q Ñ R

r, i.e. a function that maps into Euclidean space. In
fact, the method developed in the subsequent chapter will be based on a neural network, which
inherently maps into an Euclidean space.

In the remainder of this section it will be shown that it is not always possible to express the
r-dimensional OSMCs by Euclidean spaces of dimension not larger than r. However, locally
it is always possible provided that the task space coordinate function is smooth. Recall the
definition of a diffeomorphism, which creates a smooth an invertible maps between manifolds:

Definition 21 (Diffeomorphism). Let X and Y be smooth manifolds. An invertible function
f : X Ñ Y is called diffeomorphism if both, the function and its inverse are smooth.

This is a special case of a homeomorphism, where the smoothness condition has been added.
Here, the stronger version of a homeomorphism is required, because the Jacobian of ϕ shall
be smooth. In order to find a global function ξ “ ϕpqq, where ϕ : Q Ñ R

r there must exist a
diffeomorphism between S and R

r. If no such diffeomorphism exists, a function ϕ mapping into
Euclidean space can only be locally valid. Note that this is no contradiction with the statement
on integrability and the existence of self-motion coordinates. Potentially, it is always possible
to find the coordinate function ϕ, however it is generally not always possible to do this with a
function mapping into an Euclidean space.

As soon as any of the single self-motion manifolds is not topologically equivalent (or homeo-
morphic) to the Euclidean space R

r, no globally valid function ϕ : Q Ñ R
r with the desired

properties can exist. Still, locally valid functions can always be found.

Consider Figure 4.9(a). The blue lines show three self-motion manifolds for the example
manipulator with three joints and the end-effector positions as task space coordinates. Then,
r “ 1 and there is only one OSMC. The required function ϕ needs to find a parametrization
of an orthogonal foliation such that the self-motion manifolds are normal to the leaves of the
ξ-foliation. Topologically, the three depicted self-motion manifolds are homeomorphic to the
1-sphere S

1. Essentially, the OSMC assigns a number to each point on those manifolds, which
is indicated by the orange ticks in the figure. This corresponds to parametrizing the unit circle
with the real number line, which is not globally possible.

The Borsuk-Ulam theorem provides an even more general explanation why this is not globally
possible [70, Chapter 6]:
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(a) Grid on lines

fpxq

fp´xq

min fpxq

max fpxq

(b) Non-bijective mapping

Figure 4.9.: Coordinate grid on lines.

Theorem 4 (Borsuk-Ulam). Given a continuous function f : Sn Ñ R
n, there exists x P S

n

such that fpxq “ fp´xq.

In consequence, it is never possible to find a diffeomorphism between the n-sphere S
n and

n-dimensional Euclidean space R
n, because at least two points are mapped to the same image

under the mapping.

The right half of Figure 4.9 shows this graphically. Suppose, one of the self-motion manifolds
on the left has been mapped to the circle on the right. This is always possible, because they are
homeomorphic. Then, there are no globally unique coordinates. Two points map to the same
value by Borsuk-Ulam. Consequently, there arises a minimum and a maximum. No unique
mapping is possible. This problem can be counteracted when using two coordinates, i.e. the
1-sphere is then embedded into a higher dimensional space. For example, the sine and cosine of
an angle-parametrization of the circle provides a singularity-free and global mapping using two
parameters.

As a second example, the self-motion manifolds of the same manipulator are used, but this time
the y-component of the end-effector position is dropped from the task space coordinate function.
Each of the links has a length of 1

3
. Then, two-dimensional self-motion manifolds are obtained.

Figure 4.10 shows those manifolds for different ranges of the task space coordinate. Recall that
the configuration space has toroidal topology and only the embedding into Euclidean space is
shown here. For task space values smaller than ´1

3
and larger than 1

3
the self-motion manifolds

show 2-sphere topology, i.e. they are closed, have no holes and the surface is two-dimensional.
Between those values, the self-motion manifolds have one hole and are no longer homeomorphic
to the 2-sphere. Therefore, the self-motion manifolds even change the topology in different
regions.

Another restriction arises when a coordinate grid on even-dimensional spheres shall be designed.
For instance, the self-motion manifolds on the leftmost and rightmost leaves in Figure 4.10 have
S

2 topology. Previously, for the 1-sphere mapping, the embedding into the Euclidean space
could be repaired by adding another parameter and embedding the 1-sphere in R

2 instead. For
spheres of even-dimension the hairy ball theorem adds another restriction [66, Thm. 9.3]:

Theorem 5 (Hairy Ball Theorem). The sphere S
n admits a nowhere-zero tangent vector field

if and only if n is odd.

This implies that it is not possible to find a non-vanishing vector field on the 2-sphere. On
S

1 it is no problem to find a non-vanishing smooth vector field, for instance Figure 4.11(a)
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x ă ´1
3

x ą 1
3´1

3
ă x ă 1

3

more leaves inside

Figure 4.10.: Topology change of the self-motion manifolds. For specific range in task space
coordinates, the self-motion manifolds show different topologies when embedding
in Euclidean space.

shows a vector field with clock-wise rotating vectors. However, on S
2 no such field is possible.

Figure 4.11(b) shows a vector field on S
2 with one pole. Naturally, that is not the only possible

vector field on the 2-sphere, but a vector field without any pole can never be constructed
as stated by the hairy ball theorem. As the self-motion manifolds on the left and right of
Figure 4.10 are homeomorphic to the 2-sphere, non-vanishing vector field cannot be found on
them. In consequence, in addition to the parametrization problem of the manifold, it is not
possible to find a singularity-free vector field distribution on them. When considering the entire
self-motion manifolds with 2-sphere topology, each of the rows of Npqq must vanish at least at
one point as implied by the hairy ball theorem.

(a) Vector field on S
1 (b) Vector field on S

2

Figure 4.11.: Hairy ball theorem. While odd-dimensional spheres admit nowhere-zero vector
fields, even-dimensional spheres do not. On the left a nowhere-zero vector field is
shown on the 1-sphere. The vector fields on the right has one pole. (b) is inspired
by [67].

It can be concluded that it is generally not possible to find singularity-free OSMCs. Only in
exceptional cases, when the topology of every self-motion manifold admits this, singularity-free
coordinates can be designed. This is, among others, possible when r “ 1. On one-dimensional
manifolds non-vanishing vector fields always exists. This can be summarized in the following
observation:

Observation 5. Generally, it is not possible to find a coordinate function for OSMCs, which
is singularity-free, i.e. its Jacobian will be rank-deficient at least at one point per self-motion
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manifold. This does not hold when r “ 1.

Additionally, the topology of the self-motion manifolds is generally not homeomorphic to R
r.

Therefore, the embedding of the self-motion manifolds into R
r is not possible. For instance, the

self-motion manifolds shown in Figure 4.9(a) can not be globally embedded in R
1. As shown in

Figure 4.9(b) the embedding still works locally, where the 1-sphere is split into two hemispheres.
This leads to

Observation 6. Embedding of the r-dimensional OSMCs into R
r is generally not globally

possible as closed surfaces are not homeomorphic to R
r. When embedding into R

r is required,
this leads to only locally unique coordinates. Globally, they may be ambiguous.

The classical null space projection method has the same problem. The pseudo-inverse would lead
to vanishing joint space components for specific settings. This is an intrinsic topological problem
that arises due to the generally non-Euclidean manifolds. On general manifolds, an atlas of
coordinate charts is required to cover the entire manifold with singularity-free coordinates:

Observation 7. An atlas of coordinate charts is required to navigate on a non-Euclidean
manifold. This holds for the earth as well as for the self-motion manifolds of redundant
manipulators.

4.3. Overall Controller

The OSMCs are chosen such that they do not interfere with the task space coordinates.
Consequently, the control approach is to add two independent impedance controllers. The task
space part is controlled using

f c “ ´Kx pfpqq ´ xdq ´ Dxpqq 9x (4.20)

and the self-motion part is controlled by another impedance controller with individual stiffness
and damping matrices

ηc “ ´Kξ pϕpqq ´ ξdq ´ Dξpqq 9ξ . (4.21)

Then, the joint torque is computed by adding up the joint torques resulting from the transformed
generalized forces from the individual impedance controllers. Additionally, the term for gravity
compensation is added. The overall controller is

τ d “ JJpqqf c ` NJpqqηc ` gpqq . (4.22)

Figure 4.12 shows the block diagram of this control approach.

As already seen for the task space impedance controller, the damping matrix can not be
constant. The effective task space mass is

Mxpqq “
“

JpqqM´1pqqJJpqq
‰´1

. (4.23)

In order to achieve the same damping behavior for every configuration, the damping matrix
Dxpqq must depend on the effective mass. It is chosen using the damping design equation
(3.29). Similarly, the effective mass for the self-motion part is

M ξpqq “
“

NpqqM´1pqqNJpqq
‰´1

(4.24)
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and the damping matrix Dξpqq is also chosen using damping design (3.29) using the mass
matrix M ξpqq and the stiffness Kξ.

In the framework of task space augmentation [80] this approach can be written as new coordi-
nates xa

xa “ fapqq “
„

fpqq
ϕpqq



“
„

x

ξ



. (4.25)

Then, the resulting Jacobian of the new coordinates is

Japqq “
„

Jpqq
Npqq



, (4.26)

where the first and the second block of Japqq are mutually orthogonal. The impedance controller
can then be written as

fa “ ´Ka

ˆ„

fpqq
ϕpqq



´
„

xd

ξd

˙

´ DapqqJa 9q . (4.27)

Again, the damping matrix Dapqq can be designed via damping design, where the mass matrix
Mapqq “

“

JaM´1JJ
a

‰´1
and the stiffness Ka are used in the damping design equation (3.29):

Dapqq “ M1{2
a DζK1{2

a ` K1{2
a DζM1{2

a . (4.28)

The overall controller is then obtained by transforming the force fa “
“

fJ ηJ
‰J

to joint
space

τ “ JJ
a fa ` gpqq . (4.29)

The Jacobian Japqq is a square-shaped n ˆ n matrix and can be, except for singularities,
inverted. This can be useful for numerical inverse kinematics, computation of forces and for
design of feed-forward controllers as will be shown later.

4.4. Summary

This section summarizes the concept for control of redundant kinematic structures using
orthogonal foliations. Basically, the idea is to find coordinates ξ “ ϕpqq that specify the
remaining free choices of the configuration of a robot arm when only the desired task space
coordinate is given. Then, any motion in those new coordinates shall by construction not
interfere with the task in task space coordinates. Pure motion in those coordinates will
only affect the configuration of the robot, but not the task space position. Therefore, the
coordinate are called orthogonal self-motion coordinates (OSMCs). Throughout the chapter
some important observation were highlighted. These are summarized here.

In the beginning of the chapter it was shown that choosing a task space coordinate function
corresponds to implicitly imposing a foliation of the n-dimensional joint space manifold Q.
For redundant manipulators, the preimages of the task space forward kinematics lie on r-
dimensional manifolds, where r “ n ´ m denotes the degree of redundancy of the manipulator
and m the number of task space coordinates. Because, these so-called self-motion manifolds
are dense within Q and they can never intersect, they form a foliation. Suppose, we have r

linearly independent vector fields in the tangent spaces of the self-motion manifolds. Then, the
distribution of these vector fields is integrable because of Frobenius’ theorem. These r vector
fields correspond to the rows of the Jacobian Npqq of the OSMCs ϕ. In order to achieve the
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Robot
q

9q

τ

Torqueτ d

Controller

gpqq

τ m

Task Space

x

9x

JJpqq
JpqqTask Space

Impedance
Controller

xd

f

Kx, Dx

fpqq
´

τ x

ϕpqq

Npqq

ξ

9ξ

ξd

Kξ, Dξ

NJpqq
η

τ ξ

Self-Motions

Self-Motion
Impedance
Controller

´

Figure 4.12.: Overall controller. Two independent impedance controllers compute forces in the
respective spaces. Using the transpose of the Jacobian, the forces are transformed
to joint torques. The torques are added up and fed to the inner control loop
controlling the actual joint torques of the joints using the electrical drives. For
appropriate coordinate functions f and ϕ the generated torques do not interfere
with each other.

desired decoupling between the r vector field in the rows of Npqq must be orthogonal to the
rows of Jpqq. Consequently, the function ϕ creates r orthogonal foliations, where orthogonal
refers to the fact that every leaf of the foliations is orthogonal to the task space Jacobian Jpqq.
For dynamical consistency, the inverse mass matrix M´1pqq needs to be chosen for the metric
for that orthogonality condition. Then, any motion in one of the coordinates will not generate
accelerations in the opposite coordinate space.

Generally, it is not possible to find an OSMC function ξ “ ϕpqq, which is globally singularity-
free. Additionally, the r-dimensional self-motion manifolds can generally not be embedded
in R

r. When this embedding into r-dimensional Euclidean space is required, this leads to
ambiguous coordinates, i.e. more than one point of the self-motion manifolds may map to the
same ξ.

The next chapter will develop a neural network based approach to approximately find such a
function ϕ for OSMCs.
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The goal of this thesis is to design a coordinate function ϕ : Q Ñ S for the OSMCs, where
Q denotes the n-dimensional joint space manifold and dim S “ r. In the previous section,
conditions on the Jacobian Npqq P R

rˆn of that function were derived. Particularly, it is
required that the rows of Npqq are orthogonal to the rows of Jpqq under some metric Apqq.
Here, Jpqq P R

nˆn refers to the Jacobian of the task space forward kinematics f : Q Ñ M,
where M denotes the m-dimensional task space manifold. This orthogonality condition can be
written as

JpqqApqqNJpqq “ 0 . (5.1)

Two different choices for the metric Apqq P R
nˆn will be used later for the experiments. For

Apqq “ I the coordinates are decoupled on a kinematic level and the orthogonality conditions
can be geometrically interpreted as orthogonality between vectors in the common, Euclidean
sense. On the other hand, when incorporating the dynamics of the manipulator it was shown
that the metric Apqq “ M´1pqq needs to be chosen for dynamically consistent coordinates, i.e.
coordinates that do not generate interfering accelerations in the opposite space.

This problem can be reinterpreted as finding a solution to a system of partial differential
equations with varying coefficients. When explicitly writing the Jacobian Npqq in terms of the
elements this can be clearly observed:

JpqqApqq

»

—

–

Bϕ1

Bq1
. . . Bϕr

Bq1

...
. . .

...
Bϕ1

Bqn
. . . Bϕr

Bqn

fi

ffi

fl
“ 0 , (5.2)

which essentially describes a system of r independent partial differential equations of the form

JpqqApqq∇ϕjpqq “ 0 , @j P t1, . . . ru . (5.3)

Each of the r equations describes an independent partial differential equation with the same
varying coefficients JpqqApqq. Therefore, the PDE in (5.2) would be fulfilled when choosing
ϕ1pqq “ . . . “ ϕrpqq. Additionally, choosing a constant function ϕjpqq “ const also trivially
fulfills the PDE. However, these two settings are not desirable. For the control approach, the
coordinates need to be non-constant and in order to control every remaining degree of freedom
the rank of Npqq needs to be r. By requiring @q P Q : rank Npqq “ r, both of the problems
can be avoided.

The target function ϕ is a solution to an underdetermined system of partial differential equations.
This can be observed because the coefficient matrix JpqqApqq P R

mˆn is rectangular for
redundant manipulators. Additionally, when considering how the Jacobian and mass matrix are
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usually computed, it can be seen that the coefficients JpqqApqq are complicated combinations
of weighted sines and cosines of different angles and other smooth terms. Consequently, the
matrix JpqqApqq behaves smoothly, but writing down the functions generating the coefficients
leads to page-filling expressions for common robots.

In interconnection and damping assignment passivity-based control (IDA-PBC) (e.g. [60]) also
underdetermined systems of partial differential need to be solved with additional constraints,
like positive-definiteness, on the solution. For example, in the non-parametrized approach [61]
to solve IDA-PBC, the remaining rows of the coefficient matrix are chosen by educated guesses
such that the coefficient matrix is full-rank and the system is transformed to a square-shaped
system. Then, the system becomes determined up to boundary conditions and a solution can
be obtained by standard PDE methods. However, this approach requires finding a function
computing the remaining rows of JpqqApqq. For the problem at hand it is not clear how to do
this, because of the complicated expressions leading to the Jacobian and inverse mass.

For the approach of this thesis, it is sufficient when any solution to the PDE is obtained,
provided that it fulfills the condition on the row rank of the Jacobian Npqq. This chapter
will develop a method to find a solution to the underdetermined system of partial differential
equations given by (5.2). The basic idea is to use a variational principle via a neural network
(Figure 5.1). The model parameters are optimized in order to satisfy the PDE and the additional
conditions on the rank of the Jacobian. Training of the model corresponds to simultaneously
finding a solution ϕ and a concrete instantiation of the PDE.

q1

qn

ξ1

ξr

1
2
3
4

5

n1

1
2

3

n2

Figure 5.1.: Neural network for variational principle to find a smooth coordinate function ϕ.
The input neurons take the joint angle and the output neurons correspond to the
self-motion coordinates ξi.

First, the forward model of the neural network will be shown. Looking at the output with
respect to input Jacobian of the neural network model, it can be observed that the model
can also be optimized based on a scalar cost function that is dependent on the Jacobian of
the network and not only the plain output. Subsequently, a cost function needed for the
optimization of the neural network will be developed. The cost function is evaluated on a set
of discrete samples, which are commonly known as training samples. Fortunately, here the
training samples can be generated on the fly based on the robot model. This is beneficial,
because classical problems like overfitting on training data and too little data do not occur
here. The sampling strategy for training samples is shown later in this chapter. Finally, some
implementation details and the training loop are presented.
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5.1. Variational Principle via Neural Network

Any of the full rank solutions to the partial differential equation satisfies the need for a
coordinate function ϕ : Q Ñ S. Basically, the idea is that a solution to the function can, at
least approximately, be written as

ξ “ ϕθpqq , (5.4)

where ϕθ is a nonlinear function with a lot of parameters that can be tuned in order to match
the conditions on the solution. Given a parameter vector θ, it can be evaluated how well the
function fits to the equations and conditions. In particular, the Jacobian N θpqq of ϕθpqq should
satisfy (5.2) and also should be full rank. How well the parameters θ perform is evaluated
based on a scalar cost function Lpθq. Then, the parameters of the function are updated using
gradient descent on the cost function.

Neural networks are nonlinear functions with a layered structure and many tunable parameters.
They are in a sense very universal function approximators and the required model capacity
can be adapted by adding/removing layers or neurons per layer. Here, the function ϕθ is a
neural network with two hidden layers and nonlinear activation functions act1, act2 acting
component-wisely (cmp. Figure 5.1 for a graphical view on this)

ξ “ ϕθpqq “ W out ract1 pW 2 ract2 pW 1q ` b1qs ` b2qs ` bout , (5.5)

where W 1, W 2 and W out are weight matrices and b1, b2 and bout are bias vectors. The
parameter vector θ denotes a collection of all of the elements on the weight matrices W and
the bias vectors b. Let there be n1 neurons and n2 neurons in the first and second hidden
layer, respectively. Then, the dimensions of the weight matrices and bias vectors are shown in
Table 5.1.

Table 5.1.: Dimensions of the parameter matrices and vectors
Linear Weight Matrix Bias Vector

Hidden Layer 1 W 1 P R
n1ˆn b1 P R

n1

Hidden Layer 2 W 2 P R
n2ˆn1 b2 P R

n2

Output Layer W out P R
rˆn2 bout P R

r

Typical activation functions are the rectified linear unit (ReLU), the sigmoid function σp¨q
or the hyperbolic tangent function. The function ReLUpxq “ maxp0, xq would lead to a
differentiable, but not continuously differentiable model. As the model is required to be
continuously differentiable, the rectified linear unit function can not be used. In this thesis
the hyperbolic tangent function tanh is chosen. It generally performs better than the logistic
sigmoid [23, Sec. 6.3.2].

5.1.1. Network Jacobian

Differentiating ϕθ with respect to q leads to the Jacobian of the neural network

N θpqq “
„Bpϕθqi

Bqj



pqq . (5.6)

Except for bout, the network Jacobian N θpqq also depends on all the parameters θ. Moreover,
when applying the chain rule on the forward pass model (5.5), an analytical expression of the
Jacobian N θpqq can be derived. This also enables differentiation of N θpqq with respect to the
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5. Neural Networks for Orthogonal Foliations

parameters θ. It can be concluded that the cost function Lpθq can also depend on the Jacobian
N θpqq and gradient descent for optimization of θ can be performed. Because N θpqq is the
Jacobian of the function ϕθpqq, changing the parameters θ changes the Jacobian as well as the
function. By definition, ϕθpqq is always a solution to the PDE given by N θpqq. Note that this
approach can also be used for integration of vector fields by basically performing regression on
given vector fields. For the regression, however, not the model output is fitted to the given
vector field, but the input-output Jacobian of the model. Then, the actual output of the model
approximates the integral of the vector field. This shows a motivating example for using a
neural model, or more generally a parametrizable and optimizable function, for integration
problems without analytic solution.

Note that is is essential to know that the distribution is integrable. Otherwise, the network
would only provide the best approximation in a regression sense. Remember that integrability
has been shown in Section 4.2.1.

5.1.2. Loss Function

For optimization of the model a scalar cost function is required. It will be evaluated on a set of
training samples qk for k P t1, ..., Ku. Let Apqq be the metric with respect to which we require
the vector fields to be orthogonal. Further, a notation vJ

i pqq for the rows of the task space
Jacobian Jpqq and for the rows nJ

i pq, θq of the self-motion Jacobian N θpqq is introduced as

Jpqq “
„ Bfi

Bqj



“

»

—

–

vJ
1 pqq
...

vJ
mpqq

fi

ffi

fl
(5.7)

and N θpqq “
„ Bgi

Bqj



“

»

—

–

nJ
1 pq, θq

...
nJ

r pq, θq

fi

ffi

fl
. (5.8)

Given a training sample qk, the metric Apqkq, the Jacobian Jpqkq and the predicted self-motion
Jacobian N θpqkq are computed. In order to remove clutter from the equations, the explicit
dependency of A, vJ

i and nJ
i on q and θ is omitted when clear out of context.

For the cost function one more definition from discrete mathematics is required.

Definition 22 (Iverson Bracket). The Iverson bracket rSs is defined as [24]

rSs “
#

1, if S is true,

0, otherwise .
(5.9)

Then, for one training sample the cost function is computed by summing all cosines of the
angles between all rows of the task- and self-motion Jacobians and all cosines between mutual
rows of the self-motion Jacobian. Let

`

n
k

˘

denote the binomial coefficient. Then the loss of one
training sample q is computed according to

Lpq, θq “ 1

2mr

m
ÿ

i“1

r
ÿ

j“1

ˆ

vJ
i Anj

|Avi| ¨ |nj |

˙2

looooooooooooooooomooooooooooooooooon

task vs. self-motion

` 1

2
`

r
2

˘

r
ÿ

i“1

r
ÿ

j“1

«

ˆ

nJ
i Anj

|Ani| ¨ |nj |

˙2

ri ą js
ff

loooooooooooooooooooooooomoooooooooooooooooooooooon

self-motion vs. self-motion

, (5.10)

where the Iverson bracket ri ą js ensures that each combination is only counted once and that
each row is not compared to itself. Generally, the neural network is a function approximator and
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will therefore never be able to exactly converge to the desired function. However, as stated earlier,
also any constant function satisfies the PDE. Neural networks can model constant functions
exactly without remaining residuals. Consequently, the constant function ϕθpqq “ const

would be a global optimum to the cost function and a cost function taking the pure metric
Lbad,ijpq, θq “ pvJ

i Anjq2 would guide the parameters towards that undesirable optimum. In
order to counteract this, the metrics between the vectors are normalized in the designed cost
functions. Essentially, this can be interpreted as summing up the squared cosines of the angles
between the vectors for Apqq “ I. For other metrics, one of the vectors is first rotated and
stretched by the metric and then the cosine is computed.

The second term in Lpq, θq ensures that the Jacobian N θpqq does not become rank deficient.
Additionally, it even dynamically decouples the individual functions ξi “ ϕipqq by using the
same metric as for the decoupling between J and N . Therefore, this loss function not only
leads to decoupled task- and self-motion coordinates, but also the individual components of the
self-motion coordinates are decoupled.

Finally, let there be K training samples available. The total cost of the parameters θ is

Lpθq “ 1

K

K
ÿ

k“1

Lpqk, θq . (5.11)

5.1.3. Generalization

Regularization refers to any modification of the training process that aims to lower the
generalization error, but not the training error [23, Chap. 7]. In order to avoid overfitting and
improve generalization of the model, regularization techniques are generally required.

Parameter norm penalties [23, Sec. 7.1] are very widely used techniques that basically penalize
the magnitude of the parameters. For the PDE integration objective in this thesis this approach
can not be used. Similar to unnormalized dot-products between the Jacobian, parameter norm
penalties create gradients pushing the network to the undesired global optimum ϕpqq “ const.
Indirectly, parameter norm penalties penalize the length of the Jacobian vectors as well. Any
penalization of the length of the Jacobian vectors must be avoided, else the network tends
towards the global optimum of a constant function.

Fortunately, the robot model and the task space coordinate function are known and can be
evaluated for arbitrary joint space configurations q. In order to provide generalization of the
network, the set of training samples will be exchanged frequently during the training process.
During the training, new training samples can be generated randomly, which can potentially
generate as many samples as desired. Using this technique, generalization of the model can
be achieved. The training process is separated into multiple epochs. In each epoch the model
is trained on a new set of training samples. Still, overfitting may occur in each epoch, which
needs to be reverted in the beginning of the next epoch when the training samples have been
replaced. Therefore, the amount of training steps per epoch needs to be tuned in order to
prevent overfitting by the end of the epoch. This corresponds to an epoch-wise early stopping
regularization [23, Sec. 7.8].

5.2. Training Sample Generation

Training samples can be generated randomly based on the robot model. These samples can
then be used for both, training and evaluation of the model. Singular configurations should not
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be part of the sample set in order to not disturb the training process. At singular configurations
the task space Jacobian becomes row-rank deficient and the task space coordinates are no longer
a good representation of the manipulator for control. The task space Jacobian Jpqq P R

mˆn is
not square, so no straightforward computation of a determinant-based rank is possible. In order
to evaluate the row-rank of the rectangular Jacobian matrix and to be robust to numerical
instabilities, the singular value decomposition [87] of the Jacobian

UΣV J “ Jpqq (5.12)

is used. Only the smallest singular value σmn is used to determine if the Jacobian is row-rank
deficient. For efficiency, the matrices U , V do not need to be computed. If the smallest singular
value is smaller than a predefined threshold α2

thrshld, then the Jacobian will be considered
rank-deficient.

Additionally, the model can be trained for only specific ranges in the task space. Computing the
forward kinematics, the task space position of a joint space sample can be evaluated. For faster
training and smaller model sizes, only samples corresponding to specific task space positions
can be sampled.

Sampling of training data is implemented using a rejection sampling scheme. Algorithm 1
summarizes the procedure used for sampling. The joint space vectors are uniformly sampled
in a predefined region called bounds. Then, the Jacobian of the sampled joint configuration
is evaluated and the singular values are computed. If the smallest singular value is large
enough, the sampled joint configuration becomes a candidate for the sample set. Afterwards,
the forward kinematics function is evaluated and the sample is kept when it satisfies the desired
task space region. When no further task space constraints are desired, the check on the task
space range always returns true. If either of the checks fails, the sample is rejected. The loop
is implemented parallelized and the generated samples are written to a stream. As soon as n

samples are collected from the stream, the sampling procedure finishes.

Algorithm 1 Rejection sampling for training data

1: function sampleConfigurations(n)
2: Q Ð tu
3: repeat Ź Implemented as parallel loop
4: sample q „ Upboundsq Ź Uniform distribution on volume in Q
5: U , Σ, V J Ð svd(Jpqq) Ź Singular value decomposition
6: if

?
σmn ě αthrshld then Ź Check last singular value of Jpqq

7: x “ fpqq Ź Compute forward kinematics
8: if checkTaskSpaceRange(x) then

9: Q Ð Q Y tqu Ź Keep q

10: end if

11: end if

12: until |Q| = n
13: return Q

14: end function

The approach with the rejection sampling based on a uniform distribution works fine for
manipulators with toroidal Tn topology or hypercylinder-like topology T

r ˆR
p. These topologies

arise for manipulators with only 1-DoF joints. If, however, the manipulator also has spherical
joints the uniform sampling of the joint parameters is no longer useful. On spherical topologies,
uniform sampling of the joint parameters leads to denser distributions close to the poles.
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Consider Figure 5.2 for a visualization. For better sampling in spherical topologies other
distributions can be used. On S

3 the uniform sampling on the surface can also be achieved
when expressing the 3-sphere in terms of quaternions.

(a) Bad (b) Good

Figure 5.2.: Sampling on a sphere. Uniform sampling of the joint parameters does not lead to
uniform distributions on the surface of the sphere. Figure adapted from [68].

Figure 5.3 shows example results from the rejection sampling scheme for the example robot
with three rotational joints. The task space coordinate function is again chosen as the end
effector position. The left column shows the selected samples and the right column rejected
samples. Here, a value of αthrshld “ 0.2 is chosen for detection of row-rank deficiency. The
bounds for the joint values are chosen qi P r´π, πs for each joint angle. While top row shows
results without further task space constraints, the bottom row shows results for a task space
range of x ě 0 and ´0.5 ď y ď 0.5. The value of the smallest singular value is indicated by the
color code of the samples. Each of the plots additionally shows three example samples.

5.3. Implementation

TensorFlow [52] allows to automatically differentiate expressions symbolically and to generate
fast code running on the GPU. The neural network model developed here is therefore imple-
mented using TensorFlow. Automatic differentiation then allows to compute symbolic and fast
expressions for the Jacobian Npqq and for the gradient of the loss function ∇θLpθq used for
optimization. Essentially, the overall loss function

Lpθq “ 1

2Kmr

K
ÿ

k“1

m
ÿ

i“1

r
ÿ

j“1

ˆ

vJ
i Anj

|Avi| ¨ |nj |

˙2

` 1

2K ¨
`

r
2

˘

K
ÿ

k“1

r
ÿ

i“1

r
ÿ

j“1

«

ˆ

nJ
i Anj

|Ani| ¨ |nj |

˙2

ri ą js
ff

,

can be efficiently implemented based on tensors. The elements summed up do not depend on
each other and can be computed in parallel. The actual gradient descent of the parameters
θ is implemented using the Adam [38] optimizer, which is also shipped with TensorFlow.
Algorithm 2 summarizes the training process of the network.

At the beginning the parameters θ are randomly initialized. For the parameters of the weight
matrices W Xavier initialization [22] is used and the initial biases b are set to zero. The
training is separated into multiple nepochs epochs. Each epoch starts by sampling new training
data qi. The sampling algorithm is described in the subsequent section. Then, the task space
Jacobians Jpqiq and the metrics Apqiq are computed for each sample. By calling the Adam
optimizer repeatedly for nsteps times, the parameters θ are updated. Finally, a new set of
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Figure 5.3.: Rejection sampling results for an example manipulator. On the left the selected
and on the right rejected samples are shown. While the bottom row shows results
including additional task space constraints, the top row shows results without.

samples is generated for evaluation. The cost function is evaluated for those new samples. This
can be used to detect if too many steps nsteps are used in the inner loop. Too many steps lead
to overfitting on the training samples, which would result in a significantly higher evaluation-
than training loss.

In order to find suitable hyperparameters for the training of the model, it is trained for different
settings. The model was trained on the robot with four degrees of freedom and two task space
coordinates. No further task space constraints were added in the joint configuration sampler,
i.e. the rejection sampling only removed samples being too close to singularities. The number
of neurons is set to n1 “ 1024 and n2 “ 512. The GPU memory allows to train on 104 samples
per epoch without need to transfer training data between RAM and GPU memory. However,
with that many training samples the effect of epoch-wise overfitting is small. In order to tune
the hyperparameter for the steps per epoch, only 100 samples per epoch were generated in
the training sample generation step. This only uses a small percentage of the available GPU
memory. Using less samples amplifies the effect of epoch-wise overfitting. Then, the model
was trained using four different settings for the steps per epoch. The total amount of steps
ntotal “ nepochs ¨ nsteps was fixed to 5000. Among the different experiments the training was
separated into different amounts of epochs.

Figure 5.4 shows the resulting training and validation loss curves. Note, that the x-axis of the
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Algorithm 2 Training loop

1: function optimizeNetwork

2: initialize parameters θ

3: for epoch Ð 1, nepochs do

4: Q Ð sampleConfigurationspnq Ź Perform rejection sampling
5: compute J “ tJpqiq | qi P Qu Ź Jacobian for each qi P Q

6: compute A “ tApqiq | qi P Qu Ź Corresponding metric for each qi P Q

7: for step Ð 1, nsteps do

8: θ Ð adamOptimizer(Q, J, A, θ) Ź Gradient descent of Lpθq via Adam

9: end for

10: Qval Ð sampleConfigurationspnq Ź New samples for validation
11: compute Jval “ tJpqiq | qi P Qvalu Ź Validation Jacobians
12: compute Aval “ tApqiq | qi P Qvalu Ź Validation metric
13: evaluate Lpθ | Qval, Jval, Avalq
14: end for

15: end function

graphs denotes steps, not physical time. In physical time, the first training (a) was slowest,
while (d) was fastest. Once the training data have been transfered to the GPU memory, the
steps are fast. However, sampling and copying the training data to the GPU takes time and
more epochs required more sampling. For only few epochs and consequently more steps per
epochs, the model tends to overfit on the training samples by the end of the epoch. This can be
observed in (c) and (d). By the end of each epoch the validation loss is significantly higher than
the training loss. As soon as a new epoch has started, the training loss jumps to a higher value
and the validation loss quickly shrinks, i.e. the model is reverting the effect of overfitting from
the previous epoch. Using more epochs fixes this issue. The results in (a) show basically no
tendency of training and validation loss drifting apart. At 50 steps per epoch a good tradeoff
between performance and training time is achieved. The total training time was 2.71min.
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Training
Validation

10´1

10´2

(a) 10 steps per epoch

10´1

10´2

(b) 50 steps per epoch

10´1
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(c) 100 steps per epoch

10´1
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10´3

10´4

(d) 500 steps per epoch

Figure 5.4.: Different amounts of steps per epoch result in different training performance. Each
time a total amount of 5000 steps was used. Among the different trials the training
steps were separated into more or less epochs. When there are too few epochs the
model tends to overfit on training data.
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6
Geometric and Closed-Loop Evaluation

The neural network based approach provides a framework for finding an approximate function
ϕ of OSMCs for a given manipulator and task space coordinate function x “ fpqq. For the
training procedure, only the Jacobian Jpqq and the (inverse) mass matrix M´1pqq is required.
The training procedure was executed for different planar robots.

This chapter shows the results from the evaluation of the final functions ξ “ ϕpqq. Three
different evaluation types are shown:

1. Geometric: First, some models are evaluated geometrically. When choosing the identity
matrix as metric, the foliations are required to be orthogonal in a Euclidean sense. The
effect of the theorems 2 to 5 will be directly observable when visualizing the results. It
will be seen that the model can, as expected, not be globally valid. However, the local
validity regions are large.

2. Kinematic: Secondly, the function ϕ is used in closed-loop on a first-order equation.
In particular, the behavior is analyzed on a kinematic level only, i.e. the true physical
dynamics of the manipulator is not considered. This allows to analyze the performance of
the model without the presence of coupling terms like Coriolis/centrifugal forces and the
term corresponding to the change of the Jacobian.

3. Dynamical: Finally, the true multi-body dynamics is used in closed-loop. This requires
a model trained based on the inverse mass matrix as metric. This simulates how the
controller would perform on a torque-controlled physical robot. Using the physical
multi-body dynamics, the effects of the coupling terms can be observed.

Three different planar robots with different amounts of joints are used throughout this chapter.
Figure 6.1 shows the manipulators. Chapter B in the appendix shows how the forward kinematics
and the Jacobians are computed. Table 6.1 provides a guide to the remainder of this chapter.

Table 6.1.: Overview of the evaluation sections.

# Type DoF Task Space Metric Network Settings Section

1 Geometric 2 x I n1 “ 512, n2 “ 128 6.1.1

2 Geometric 3 x, y I n1 “ 512, n2 “ 256 6.1.2

3 Geometric 3 x I n1 “ 512, n2 “ 256 6.1.3

4 Kinematic 4 x, y I n1 “ 1024, n2 “ 512 6.2

5 Dynamical 3 x M´1pqq n1 “ 512, n2 “ 256 6.3
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Figure 6.1.: The robots used for evaluation. The total link lengths always sum up to 1.

6.1. Geometric Evaluation

This section shows training results for a selection of manipulators and task space coordinates.
Throughout these examples the model is trained using the identity matrix as metric for
orthogonality, i.e. the model is not trained for dynamical consistency. This is beneficial for first
analysis of the training, because the condition becomes geometrical orthogonality of vectors,
lines and surfaces. These can be visualized in diagrams and interpreted intuitively.

6.1.1. 2 Degrees of Freedom, 1 Task Space Coordinate

First, a trained model for a manipulator with two degrees of freedom is analyzed. The task
space coordinate is the x-component of the end-effector position. The link lengths are set to
0.5 units for each link. Figure 6.2(a) shows the forward kinematics function of the manipulator.
The blue lines show isolines of the function, i.e. on every point on the isolines the forward
kinematics x “ fpqq is constant. Additionally, the black arrows show the Jacobian Jpqq on a
regular grid. For this manipulator the Jacobian Jpqq is a single row vector with two elements.
The rows of the Jacobian correspond to the direction of greatest ascent in x. Consequently, the
vectors are normal to the isolines.

For identity metric between the rows of Jpqq and Npqq, the vectors must be orthogonal in a
Euclidean sense. Therefore, fitting line integrals to the vector field given by Jpqq yields isolines
of the desired OSMC. Figure 6.2(b) shows many of those line integrals for the manipulator
with two degrees of freedom. These lines show manifolds, where the desired function ϕ is
known to be constant. However, the actual value of the OSMC is not known from this analysis.
Nevertheless, these lines can be used to validate the results of the neural network approach.
The expected result is, that visualizing the isolines of a trained ξ “ ϕθpqq resembles the lines
shown in Figure 6.2(b).

A neural network model has been trained on the entire joint space from ´π to π for both joints.
No task space region restriction has been added, i.e. every sample, except for configurations
close to singularities, is taken for the training. The model achieves a training loss of 5.4 ¨ 10´3

after 5000 training steps organized into 100 epochs. It has n1 “ 512 and n2 “ 128 neurons in
the first and second hidden layer, respectively. For a first evaluation of the model, a set of
10000 joint configurations have been sampled. Figure 6.3(a) shows a histogram of the angle
between the Jacobians Jpqq “ vJpqq and Npqq “ nJpqq for the sampled test configurations.
Among the test configurations are also samples close to singularities. The self-motion manifolds
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Figure 6.2.: Simplest redundant manipulator with two joints.

shown as isolines in Figure 6.2 are homeomorphic to S
2. Consequently, the function ξ “ ϕpqq

can not find a globally unique parametrization on the isolines (Theorem 4). Therefore, no
perfect model can be expected as the model is trained on the entire joint space. The histogram
shows that at most of the test configurations, the rows of the task- and self-motion Jacobian
are orthogonal. However, there are also configurations where the orthogonality is off by some
degrees. Figure 6.3(b) shows the location of the sampled test configuration. Additionally, the
color of the scatter plot denotes the angle between the Jacobians at that configuration. The
performance of the trained model is worse in regions which are singular or close to singular.
For a color-coded map of the singular values of Jpqq see Figure A.1(a).
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(b) Scatter of Angles

Figure 6.3.: Angles between the Jacobians of the trained network of the example manipulator
with two joints. On the left the histogram shows the angles distribution for
randomly sampled test configurations. The peak is at 90˝. On the right, the
position of these samples in joint space is shown, while the color encodes the angle
at that position. The distribution of the residual angles is position dependent.

Finally, Figure 6.4 shows the resulting isolines of the trained model combined with the isolines
of the task space forward kinematics. For a larger version including labels on the isolines
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consider Figure A.2 on page II. As expected the isolines of the trained OSMC function ξ “ ϕpqq
resemble the integrated line integrals of the task space Jacobian in the regions, where the
model performs well. Because the single number ξ can never parameterize the self-motion
manifolds with sphere topology, the model is not globally valid. Close to the singularities, the
approximation of the integrated isolines becomes worse. Additionally, the regions where all
the line integrals converge, are not properly imaged in the model. In these regions the ξ-value
would need to vary very quickly, which the smooth neural network can not resemble properly.
Note that the integrated isolines from Figure 6.2(b) do not provide any label, i.e. ξ-value, on
the lines. The trained model, however, does. This is essential in order to be used for control
approaches. The model can be used for the developed impedance control in the large white
regions.
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Figure 6.4.: Results of the training process on a manipulator with two degrees of freedom
and task space coordinate. The blue lines show isolines of the task space forward
kinematics and the orange lines show isolines of the resulting function ϕ of the
training process. In the background, the color code shows the performance of the
model in terms of the angle between the Jacobians.

6.1.2. 3 Degrees of Freedom, 2 Task Space Coordinates

For three degrees of freedom (Figure 6.1(b)) and choosing the end-effector position as task space
coordinates, the self-motion manifolds are curves in three-dimensional space. The degree of
redundancy is r “ 1 and therefore there is one single OSMC ξ1 “ ϕpqq. Basically, the leaves of
the task space foliation show two different geometries. This can be seen in Figure 4.5. Further,
[6] explains why these different types of geometry arise. For task space positions close to the
origin, one of the joints can continuously rotate into the same direction. In contrast, this is no
longer possible for larger task space values and all of the joints need to rotate back and forth
on the self-motion manifold. Note that all of the self-motion manifolds are closed curves on the
toroidal topology.

Figure 6.5 shows training results for this setting. The orange surface denotes iso-surfaces of
the ξ1-coordinate and the blue curves show some exemplary leaves of the task space foliation.
It can be seen that the surfaces are normal to the self-motion manifolds shown in blue. This
example also shows that the coordinates are not global. Each surface is intersected twice by
each of the self-motion manifolds. This is a consequence of the Bursuk-Ulam theorem (Thm. 4):
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there is no bijective mapping from S
n to R

n.

(a) View 1 (b) View 2

Figure 6.5.: Visualization of the training results for three degrees of freedom and two task
space coordinates. The blue lines show some self-motion manifolds and the orange
surfaces show isosurfaces of ξ1 “ ϕpqq.

6.1.3. 3 Degrees of Freedom, 1 Task Space Coordinate

Removing the y-coordinate from the task space coordinate choice, leaves two-dimensional
self-motion manifolds. These have already been shown in Figure 4.10. For x ą 1

3
, the manifolds

have a two-sphere topology. One of those is shown in Figure 6.6. On the left, the black and
white lines show isolines of the ξ1 and ξ2-coordinate. As predicted by the hairy ball theorem,
the Jacobian Npqq must vanish at least at one point for both rows. When considering the
exact values of the coordinates, both coordinates show exactly one minimum and one maximum
on the manifold. At the extrema, the Jacobian Npqq becomes singular. Figure A.3 in the
appendix shows the two coordinates color-coded on the manifold.

Dupin’s theorem is also observable in the visualization. The lines of intersection coincide with
the lines of principal curvature. This can be observed in the outer regions of Figure 6.6(a). In
Figure 6.6(b) the model is visualized by showing the isosurfaces.

(a) Isolines of ϕ
(b) Foliation view

Figure 6.6.: Results for geometric analyisis for n “ 3 and m “ 2. 3D View here:
http://thesis.aaarne.de/n3-m1-orthfol.stl
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6.2. Kinematic Evaluation

For kinematic analysis the model is tested on first-order dynamics. The true second-order
multi-body dynamics of the manipulator introduces couplings between the coordinates via
velocity-dependent terms. In particular, the velocity 9q couples into the task space dynamics
via Coriolis and centrifugal forces as well as via the change of the Jacobian 9J . The acceleration
:x is governed by

:x “ M´1
x f ` 9J 9q ´ JM´1C 9q . (6.1)

In order to analyze the model without these interfering effects, first-order dynamics is used in
closed-loop. This corresponds to analysis on only a kinematic level. Particularly, it is assumed
joint velocities can be commanded directly

9q “ JJKxpxd ´ fpqqq ` NJKξpξd ´ ϕpqqq . (6.2)

Essentially, the true second-order dynamics of the manipulator (3.16) is replaced by the pseudo-
dynamics τ “ 9q. This choice of dynamics equation is also used in numerical inverse kinematics,
where it is known as the transposed Jacobian approach [81, Sec 3.7.2].

The neural network model ξ “ ϕθpqq is trained for a manipulator with four degrees of freedom.
The task space coordinates are the x- and y-coordinate of the position of the end-effector.
Initially, the configuration of the manipulator is set to the configuration shown in Figure 6.1(c).
This configuration q0 is determined by computing transpose Jacobian based numerical inverse
kinematics for x0 “ r0.5, 0.5sJ. Then, the OSMCs ξ0 “ ϕpq0q is evaluated. In the beginning
of the simulation, the desired values are set to ξd “ ξ0 and xd “ x0, respectively. Table 6.2
shows the resulting configurations upon variation of the self-motion coordinates. Afterwards,
the desired values are updated by a predefined schedule. In particular, jumps in all directions
of the task coordinates and OSMCs are commanded.

Table 6.2.: Configurations for the same task space position and different values for the self-
motion coordinates. Columns: variation of ξ1. Rows: variation of ξ2.

ξ1 ´ ∆ξ1 ξ1 ξ1 ` ∆ξ1

ξ2 ` ∆ξ2

ξ2

ξ2 ´ ∆ξ2
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The first-order dynamics (6.2) is simulated using an explicit fourth-order Runge-Kutta method
[26]. The desired values xd and ξd become functions of time and are determined by the
experiment schedule. Explicit integration schemes are suitable for integration of non-stiff
differential equations. The stiffness of an ordinary differential equation is the ratio of the fastest
and the slowest time constant in the linearized system. This corresponds to the quotient of the
largest and smallest magnitude of the eigenvalues [5]. In order to check if an explicit integration
scheme is suitable for the differential equation, the numerical stiffness needs to be evaluated.
Assuming stationary Jacobians, the linearized system can be written as

∆ 9q “ ´JJKxJ∆q ´ NJKξN∆q “ ´JJ
a

„

Kx 0

0 Kξ



Ja

looooooooooomooooooooooon

Ãpqq

∆q . (6.3)

The block diagonal matrix of the gains is positive definite. Therefore, the quadratic form is
strictly positive and the system matrix ´Ãpqq is negative definite. Consequently, the dynamics
are stable. Figure 6.7 shows a histogram of the numerical stiffness ratio for randomly sampled
configurations q. The real part of the individual eigenvalues is shown in Figure A.4. The
differential equation is sufficiently numerically nonstiff and the explicit integration scheme can
be used. The eigenvalues are sorted in descending order according to their magnitude.

Figure 6.8 shows the results. The top and mid diagram shows the coordinate functions x “ fpqq
and ξ “ ϕpqq, respectively. Additionally, the dashed lines in those diagrams show the desired
values xd and ξd. On the bottom the joint angles are shown. In the first 30s jumps in the task
space coordinate are commanded. The coordinate functions show typical first-order transients
with different time constants. Note that the task space coordinates are not decoupled. Upon
jumps in one coordinate, significant coupling into the other coordinate can be observed.

Subsequently, jumps in the self-motion coordinates are commanded. In contrast to the task
coordinates, the OSMCs show good decoupling with respect to the task coordinates and to each
other. Due to the decoupling there are only small disturbances in the task space coordinates.
Additionally, the second term in the loss function (5.13) also achieves decoupling between
mutual OSMCs. Finally, starting from t “ 60s, the task space position is changed and again
jumps in the self-motion coordinates are commanded. In other words, by changing the task
space position of the manipulator, the system is moved onto another leaf of the task space
foliation. Because of the foliation structure, the decoupling also works there. The joint angles
on the bottom show that also the motions corresponding to jumps in the self-motion coordinate
result in significant reconfiguration of the manipulator.

0 20 40 60 80
0

2000
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10000

12000

numerical stiffness ratio

Figure 6.7.: Histogram of numerical stiffness ratio of the first order dynamics for the kinematic
analysis.
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Figure 6.8.: Kinematic evaluation with a manipulator with four joints. The position of the
end-effector is the task space coordinate. Top: the values of the task coordinates
over time. The dashed value denote the desired value. Mid: the values of the
self-motion coordinate function and corresponding desired values. Bottom: the
joint angles. The diagrams show the decoupling between the coordinates. While
the task coordinate show large mutual couplings, the OSMCs are well decoupled
from the task coordinates and from each other. Animated manipulator of the
experiment here: http://thesis.aaarne.de/kinematic.gif
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6.3. Closed-Loop Dynamical Evaluation

For dynamic evaluation, a planar robot with three joints is used. A dynamic model (3.16)
is derived for this manipulator. The mass is assumed to be equally distributed on the links,
i.e. the center of mass is at the center of the links. Consequently, the moments of inertia are
computed using Ii “ 1

3
mil

2
i .

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

m1 “ 3

m2 “ 3

m3 “ 3

equally distributed mass

Figure 6.9.: Manipulator with dynamic parameters. The center of masses are assumed to be at
the center of the links and the mass is equally distributed on the links.

The task space is chosen as the x-component of the end-effector. The dynamics equation (3.16)
as well as the controller

τ “ ´JJ
a

„

Ka

ˆ„

fpqq
ϕpqq



´
„

xd

ξd

˙

´ DapqqJa 9q



` gpqq (6.4)

are implemented in Simulink. The OSMCs ϕpqq as well as the last two rows are provided
by the trained neural network. The network is reimplemented in Matlab and the optimized
parameters from TensorFlow are imported. This time, the neural network model is trained
using the inverse mass matrix as metric. For computation of the damping matrix Dapqq the
damping design equation (3.29) is used.

First, a set of two interleaved jumps on the x- and the ξ1-coordinate is commanded. The
damping ratio is set to ζ “ 0.7. Figure 6.10 shows the results.

On the left the values for the x and ξ1 coordinate, as well as their desired values are shown.
Generally, the task space acceleration depends on the following terms

:x “ M´1
x f ` JM´1NJη

loooooomoooooon

:xerr

` 9J 9q
loomoon

:xcurv

´ JM´1C 9q
looooomooooon

:xCC

. (6.5)

The diagram on the right shows different disturbing effects on the task space acceleration :x. In
particular, the following disturbing task space accelerations are shown:

• Self-Motion Manifold Curvature: The curvature of the self-motion manifolds gener-
ates a task space acceleration via the term :xcurv “ 9J 9q. This disturbing acceleration is
shown by the solid blue lines.

• Coriolis and Centrifugal Forces: The task space acceleration resulting from Coriolis
and centrifugal forces :xCC “ JM´1C 9q are depicted by a dashed blue line.

• Training Error: Finally, the neural network only provides an approximation of ϕpqq.
The task space acceleration which are due to training errors :xerr “ JM´1NJη are
shown in orange.
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(b) Disturbing task space accelerations

Figure 6.10.: Closed-loop behavior of manipulator and augmented impedance controller for a
damping ratio of ζ “ 0.7. On the left: actual and desired values of the coordinates.
On the right: the effects on the task space acceleration.

The decoupling does not perform as well as in the kinematic analysis. However, when considering
the different effects on the task space acceleration in diagram (b), the main contribution is
the term 9J 9q. The accelerations due to training error are comparatively small. The velocity 9q

couples in to the task space dynamics via the change of the Jacobian 9J . Consequently, at low
velocities the coordinates show decoupled behavior.

Figure 6.11 shows the trajectory of the manipulator for the interleaved jumps in the xξ1-plane.
The diagram (b) shows the trajectory corresponding to the experiment for ζ “ 0.7. On the
left and right experiments with the same stiffness parameters, but different damping ratios
are shown. Overdamped systems have slower transients and velocities are lower. For a higher
damping ratio of ζ “ 1.0 the decoupling performs better. In contrast, underdamped systems
generate higher velocities and the disturbing accelerations based on the change of Jacobian and
the Coriolis and centrifugal force generate large disturbances. This is shown on the right for a
damping ratio of ζ “ 0.3. In each of the diagrams, the trajectories initially tend towards the
same direction. This is shown by the gray vector in the diagrams. As soon as the manipulator
accumulates velocity, the trajectories deviate from the straight path. The lower the damping
ratio, the higher the joint velocity 9q and the higher the disturbances.
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Figure 6.11.: Trajectory of the manipulator for interleaved jumps in the x- and ξ1-coordinate.
The trajectories are shown in the xξ1-plane. The trajectories result from closed-
loop dynamics with the augmented impedance controller for different damping
ratios.

65



6. Geometric and Closed-Loop Evaluation

So far, only the ξ1-coordinate was used for the evaluation. The second OSMC ξ2 was kept at 0

using the impedance controller. Figure 6.13 shows the results of the closed-loop simulation for
a longer experiment using all the coordinates for a damping ratio ζ “ 0.7. While the topmost
diagram shows the task space coordinate, the second diagram shows the self-motion coordinates.
Diagram (c) shows the disturbing task space accelerations and (d) the joint angles.

In the first 14 seconds, the desired value for the task space coordinate is kept constant at x “ 0.
Simultaneously, jumps in the self-motion coordinates are commanded. The trajectory of the
manipulator in joint space is visualized on the manifold in Figure 6.12.

A

B

Figure 6.12.: Trajectory on manifold for ζ “ 0.7. The trajectory shows the first 14s

of the simulation shown in Figure 6.13. Video the of the animated tra-
jectory on different leaves of the foliation on the entire time series here:
http://thesis.aaarne.de/traj-on-manifold.mp4

Especially in regions of high curvature of the self-motion manifolds the Jacobian changes quickly.
Consider the commanded jump in ξ1 at tAB denoted in Figure 6.13. This corresponds to a
jump from configurations A to B shown in Figure 6.12. For the jump from configuration A
to configuration B, the trajectory passes through a region of high curvature. Therefore, the
change of the Jacobian 9J is comparatively large. The manipulator accumulates a velocity 9q

that is then coupled in to the task space dynamics. This leads to a delayed disturbance in the
task space position x.

As this curvature-based disturbance is proportional to the joint velocity 9q, the effect is larger
at higher velocities. Keeping the stiffness Ka constant and changing the damping ratio ζ,
results in higher or lower velocities. Decreasing the damping ratio to ζ “ 0.3 increases the joint
velocities and oscillations arise on the transients. At ζ “ 0.3 the disturbance on the jump from
A to B is larger, whereas at ζ “ 1.0 it becomes smaller. This is due to higher joint velocities at
ζ “ 0.3 and lower joint velocities for the overdamped behavior at ζ “ 1.0. For results of the
experiments for different damping ratios, consider Figures A.5 and A.6 in the appendix.
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Figure 6.13.: Simulation results for closed-loop behavior of manipulator and the augmented con-
trol scheme using neural-network based coordinates. The results are for a damping
ratio of ζ “ 0.7. Animated robot here: http://thesis.aaarne.de/anim-07.gif

6.3.1. Feed-Forward Controller

In this section a feed-forward controller is added to the control scheme in order to compensate
for the disturbing accelerations resulting from the curvature of the self-motion manifold and
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the Coriolis and centrifugal forces. Here, the bold x denotes augmented coordinates

x “
„

fpqq
ϕpqq



“

»

–

x

ξ1

ξ2

fi

fl “ fapqq . (6.6)

Suppose a desired trajectory specified by xd, 9xd and :xd is provided. As before, the feedback
controller is the impedance controller in augmented coordinates

fF B “ Ka rxd ´ fapqqs ` Dapqq r 9xd ´ Ja 9qs . (6.7)

The augmented Jacobian Ja is a stack of J and N

Ja “
„

J

N



, (6.8)

which is always a square matrix. Together with the feed-forward controller, the closed-loop
dynamics is

M :q ` C 9q ` gpqq “ JJ
a rfF F ` fF Bs ` gpqq . (6.9)

In order to design the feed-forward controller fF F perfect tracking is assumed. Therefore,
consider the case for fF B “ 0. Then, equation 6.9 is pre-multiplied by JaM´1 to obtain

Ja:q ` JaM´1C 9q “ JaM´1JJ
a

looooomooooon

M´1
a

fF F . (6.10)

Using,

9x “ Ja 9q
d
dtÝÑ :x “ 9Ja 9q ` Ja:q

the feed-forward controller fF F can be derived based on

:x ´ 9Ja 9q ` JM´1C 9q “ M´1
a fF F . (6.11)

For perfect tracking the condition :x
!“ :xd must be fulfilled. Therefore,

fF F “ Ma

”

:xd ´ 9JaJ´1
a 9xd ` JaM´1CJ´1

a 9xd

ı

. (6.12)

Combining the feedback and the feed-forward controller yields the overall controller

τ “ JJ
a

¨

˚

˚

˝

Ma

”

:xd ´ 9JaJ´1
a 9xd ` JaM´1CJ´1

a 9xd

ı

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

feed-forward

` Ka rxd ´ fapqqs ` Dapqq r 9xd ´ Ja 9qs
loooooooooooooooooooooooomoooooooooooooooooooooooon

feedback

˛

‹

‹

‚̀

gpqq .

For the application of the feed-forward control term, a desired trajectory in terms of position,
velocity and acceleration is required. In order to generate a desired trajectory out of the
discontinuous jumps, a second order prefilter is implemented. This prefilter is based on the
transfer function

Gpsq “ Xpsq
X̂psq

“ ω2
0

s2 ` 2ζpω0s ` ω2
0

. (6.13)

Using this transfer function, any desired value x̂d is transformed into a twice differentiable
trajectory in terms of xd, 9xd and :xd. Figure 6.14 shows the block diagram of the transfer
function. In the integrator chain, the acceleration, velocity and position can be extracted. The
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9xd
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2ζω0

ω2
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ω2
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x̂d

Figure 6.14.: Prefilter for the desired trajectory. This dynamics generates a desired trajectory
based on a second order transfer function. Jumps on the input are transformed
two a twice differentiable trajectory xdptq.

prefilter acts component-wisely on the the input x̂d. For the experiments the natural frequency
is set to ω0 “ 2π and ζp “ 0.7.

Figure 6.15 shows a block diagram including the controllers and the prefilter. The input x̂d is
transformed to a twice differentiable trajectory, which is fed to the controller blocks. Note, that
the matrices Ja, C and M used in the feed-forward controller depend on the joint configuration
q. This part of the signal flow is omitted in the block diagram.

xd

9xd

:xd

x̂d
2nd Order
Prefilter

Feed-Forward

Feedback JJ

a Robot

gpqq

fF F

fF B τ q

9q

Figure 6.15.: Complete control structure consisting of feedback and feed-forward controller and
the prefilter. The prefilter generates a desired trajectory out of an arbitrary input
x̂d. The forces generated by the controllers are transformed to joint torques via
the transpose of the augmented Jacobian.

The experiment with the interleaved jumps in the x- and ξ1-coordinate (Figure 6.10) is repeated
using the new control scheme including the feed-forward controller. The desired value x̂d is
set to the exact same values as in the previous experiment. Figure 6.16 shows the results of a
dynamic simulation using the new control scheme. The feed-forward terms on the Coriolis and
centrifugal forces as well as on the term related to the curvature of the self-motion manifolds,
result in almost perfect decoupling between the coordinates. Also in the xξ1-plane (b) no
disturbances are observable.

Finally, also the longer experiment schedule including all the available coordinates is repeated.
Figure 6.17 shows the results and Figure A.7 shows the trajectory on the task space foliation.
Also for the longer experiment, the coordinates show almost perfect decoupling. The major
contribution to the disturbances without the feed-forward controller, is the acceleration corre-
sponding to the self-motion manifold curvature. By predicting the curvature change related
acceleration, the coordinates show decoupled behavior also at non-zero joint velocities.
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Figure 6.16.: Results of dynamic simulation of interleaved steps in the x- and ξ1-coordinate.
These results are obtained using the control scheme using the feed-forward and
feedback controller. The coordinates show almost perfect decoupling.
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Figure 6.17.: Results for combined feedback and feed-forward control. The co-
ordinates show almost perfect decoupling. Animated robot here:
http://thesis.aaarne.de/anim-07-ff.gif

70

http://thesis.aaarne.de/anim-07-ff.gif


7
Discussion

In this chapter, the orthogonal foliation based control approach is compared to the gradient
projection control approach of redundant manipulators. The approach requires optimization of
a parametric function approximator in advance, while the state of the art approach requires
no training at all. However, OSMCs also provide significant advantages. In contrast to the
state of the art approach they provide a set of minimal coordinates. This allows to employ
known techniques from task space manipulator control directly to self-motion control. Actually,
the term self-motion control only partly describes the possibilities of such coordinates. Rather
than only controlling the self-motion, it provides a set of decoupled coordinates that allow
to superimpose controllers in both coordinates. This is captured by the term orthogonal in
orthogonal self-motion coordinates (OSMCs).

The state of the art approach uses projections into the null space of the task space Jacobian

τ “ JJf `
”

I ´ JJJ#J
ı

τ 0 . (7.1)

This implicitly assumes a hierarchy of the control goals. A controller τ 0 “ Φpq, 9qq can not
achieve arbitrary control goals, as parts of the torque are projected out. The new approach
defines new coordinates ξ “ ϕpqq that are minimal in a sense that they span each of the
self-motion manifolds, but not more. A force η in those coordinates will not interfere with the
task space controller. The decoupling works without a projector

τ “ JJf ` NJη . (7.2)

In a sense, the method finds a new forward kinematics function fapqq, where the first m

coordinates are the task space coordinates. This new forward kinematics function renders the
redundant manipulator non-redundant under the new coordinates. Table 7.1 summarizes the
arguments in the discussion, which are elaborated in the subsequent sections.

Table 7.1.: Comparison of state of the art and new approach

Null Space Projectors Orthogonal Foliations

(State of the art) (New approach)
Decoupling based on τ “ JJf ` rI ´ JJJ#Jsτ 0 τ “ JJf ` N Jη

Provides coordinates no yes
Spring nature projective geodetic

Provides a potential no yes
Asymptotic Convergence Proof complex straightforward

Computational complexity low high
Requires Training/Optimization no yes
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In the experiments with planar manipulators it was shown that the decoupling works equally
well with both approaches. In closed-loop, the main contribution to disturbances were couplings
of the joint velocity 9q via the curvature of the self-motion manifolds and the Coriolis and
centrifugal forces. Both approaches have this drawback. Using an additional feed-forward
controller, the couplings almost entirely vanished.

The availability of coordinates provides some advantages compared to the state of the art
approach. For instance, they can be used to perform linear motions in task space with additional
reconfiguration of the robot arm using standard methods from instantaneous kinematics for
trajectory generation. Also, for planning the existence of OSMCs promises advantages as
planning algorithms can compute trajectories in task space and in an additional set of minimal
coordinates. Usually, motion planning tasks are performed in joint space, where linear motions
in task space are expressed by many via points. Given the augmented Jacobian, this can be
computed without planners only using the Jacobian.

Moreover, the coordinates can be interpreted as potentials that allow to make statements on
stability of the system. This is explained in section 7.1. Additionally, controllers in those
coordinates can be interpreted as geodetic springs (section 7.2). It was concluded, that the
coordinates, generally, can not be globally unique. Section 7.4 shows details on this and how to
counteract the non-globality. Finally, section 7.4 provides a discussion on the interpretability of
the coordinates.

7.1. Coordinates as Potential

The coordinates ξ “ ϕpqq can also be interpreted as potential functions in joint space. Fig-
ure 7.1a shows this concept. The blue lines represent leaves of the task space foliation and the
orange lines represent leaves of the OSMF. The red line shows a path in joint space, which
would result from two interleaved jumps in the respective coordinates. After the transition
q0 Ñ q1 Ñ q2 Ñ q3 Ñ q0 the start configuration is reached again. On the right (Figure 7.1b)
this is shown for an actual simulation result corresponding to the experiment in Figure 6.16.

x “ x1

x “ x2

x “ x3

q1
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ξ “ ξ1 ξ “ ξ5
ξ “ ξ4

ξ “ ξ3ξ “ ξ2

q
0

q
1

q
2

q
3

(a) 2D example (b) Simulation result

Figure 7.1.: Coordinates can be interpreted as potential functions. On the left: schematic
drawing. On the right: results from actual dynamic simulation.

Potentials allow to straightforwardly conclude statements on stability of the system. They
enable the design of a straightforward Lyapunov function for the self-motion control part
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and to apply Lyapunov-based stability theorems. For instance, in (6.3) it was trivial to show
stability based on the quadratic form of a positive-definite matrix. The classical approach uses a
pseudo-inverse and a projection in the controller, which makes conclusion of stability properties
hard. For instance, [14] and [12] show analysis of stability using the classical approach. Using
the new approach, the same techniques to show stability with respect to the task space dynamics
can be applied to the new set of coordinates.

Additionally, as Klein and Huang pointed out, a controller based on the classical approach can
drive the system to unpredictable configurations [39]. This is due to the non-integrability of
the classical pseudo-inverse. The potential provided by the OSMC function ϕpqq does not have
this issue. Figure 7.2 shows this experimentally. The idea for this experiment originates from
[39]. A redundant manipulator traces out a square and the configurations are plotted after each
full turn. On the left the Moore-Penrose pseudo-inverse is used

∆q “ J`pqq∆x . (7.3)

The non-integrability leads to different configurations after each full turn. On the right, the
inverse of the augmented Jacobian J´1

a pqq is used and a fixed value is used for the ξ “ ξ0 “ const
coordinate:

∆q “ J´1
a

„

∆x

0



. (7.4)

After each full cycle the manipulator returns to the same configuration. In both cases a
correctional velocity is added in order to keep the manipulator exactly on the square (cmp.
(20) in [39]). Note that on the right open-loop control is applied to the ξ-coordinate. With an
additional closed-loop correction on ξ no configuration change would be observable.
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(a) Moore-Penrose pseudo-inverse
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Figure 7.2.: Tracing out a square with a redundant manipulator. The robot configuration
after each full cycle is shown in the diagrams for ten cycles. On the left: the
non-integrability of the pseudo-inverse leads to different configurations. On the
right: the robot stays at constant configurations after each cycle.
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7.2. Geodetic Springs

The classical approach uses a controller in joint space τ 0 “ Φpq, 9qq, which is projected into the
null space of the task space Jacobian. Due to the projective nature of this mapping, it might
result in a vanishing torque after the projection τ N “

“

I ´ JJJ#J
‰

τ 0. This corresponds
to a linear spring in joint space, which is projected into the tangent space of the self-motion
manifolds. Dependent on the specific geometry of the task space foliation, this can lead to
instable or stable equilibria. Especially for concave self-motion manifolds this may lead to
strongly attractive local minima. Additionally, this may lead to strongly tensioned springs,
which have no effect in one configuration, but that suddenly discharge upon small variations of
the configuration. In contrast, a controller generating a generalized force η, corresponds to a
geodetic spring on the self-motion manifolds. Figure 7.3 shows this graphically.

qd

q

τ 0

no torque τ N !

(a) Classical approach

qd

q

τ

(b) Geodetic spring

Figure 7.3.: Joint space spring versus geodetic spring. On the left: the classical approach with
the null space projection stays in a stable equilibrium and no joint torque τ N

is generated. The spring remains stretched. On the right, the geodetic spring
generates a joint torque and will relax.

7.3. Locality

Generally, it is not possible to find a minimal set of OSMCs that globally and uniquely define
the configuration of the robotic manipulator. In particular, the spherical topology of typical
self-motion manifolds makes it impossible to bijectively map Euclidean spaces to it. Additionally,
even-dimensional spheres do not admit nowhere vanishing vector fields.

Non-redundant manipulators have as many task space coordinates as degrees of freedom in
joint space. However, also for non-redundant manipulators the forward kinematics function
in generally not unique. Typically, robot arms show different solutions like elbow-up and
elbow-down configurations. Also the forward kinematics of a non-redundant manipulator do
not provide a globally unique and bijective mapping.

Essentially, the augmented coordinate function fapqq renders a redundant manipulator non-
redundant. Consequently, the new coordinate function has the same limitations as well-known
forward kinematic functions of non-redundant manipulators. In the results chapter, it could be
observed that the validity regions are large. When staying in the valid region, the locality of
the coordinate function is no drawback. However, when large motions are required another
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approach needs to be used.

If globality is required, an atlas of coordinate functions can be used. An atlas is a collection
of local coordinates that smoothly overlap at the boundaries. The entirety of maps of the
atlas allows to reach every point on the manifold such that the local map is full rank. At
the boundaries the coordinates can be switched from one set of coordinates to the next one.
Figure 7.4 shows two coordinate functions ϕ1 and ϕ2 schematically. They provide a mapping
from the manifold depicted in blue, to an Euclidean space. The coordinate functions are valid
in the regions A and B, respectively. In the orange regions both coordinates are valid and they
can be switched.

A B

ϕ1
ϕ2

ϕ2 ˝ ϕ´1
1

Figure 7.4.: Coordinate switching. When no global coordinates are possible, then coordinate
switching can be applied. Coordinate functions are then valid only in regions on
the manifold. At the intersection of valid regions, the coordinates can be switched.
Figure adapted from [42, Fig. 1.3].

Then, this is no longer a global foliation of the manifold. When the coordinate functions are
only valid in regions, this corresponds to a lamination [46] of the manifold. A set of foliations,
which are valid in subsets of a manifold are called a lamination. It might or might no be
possible to merge all the foliations of the subsets to a foliation of the entire manifold [18].

7.4. Interpretability

The neural network model provides coordinates, whose interpretation is not intuitively clear.
The base problem is an integration problem, so a constant offset ξ0 can be added to the
coordinates without altering the validity. Additionally, the underlying PDE is underdetermined
and consequently the neural network has a lot of freedom to find a specific instantiation of the
solution ξ “ ϕpqq. The PDE neither provides information about the scaling of the coordinates,
nor on the offset or the assignment. Effectively, the neural network simply finds any of the
theoretically infinitely many solutions. The solution obtained strongly depends on the initial
training parameters, which are sampled in the beginning of the training procedure. Enforcing
additional boundary constraints on the solution leads to a contradiction with the initial training
parameters and the network needs more time to train and is more likely to get stuck in local
minima. Therefore, the best results are obtained when no boundary conditions at all are added
to the training loss. In order to enforce boundary constraints, the initial parameters of the
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network need to be consistent with the boundary conditions to avoid convergence to local
minima.

For the experiments, the network was trained without any boundary conditions. After the
training procedure the offset and the scaling of the coordinates were experimentally investigated
by moving the robot around and checking the values of the coordinate function ϕ.

When specifying stiffnesses Kξ it is not intuitively clear, how they feel on the physical robot
as they do not provide any unit. Another trained model for the same manipulator may need
another stiffness matrix in order to achieve the same dynamical properties.

Given a trained coordinate function ϕ, an arbitrary full-rank diagonal scaling matrix and an
arbitrary offset ξ0 can be applied to the coordinate without changing the requirements on the
orthogonality to the task space Jacobian. For example, consider the results for the model used
in Figure 6.13. The two coordinates ξ1 and ξ2 show different offsets. In the experiments the
scaling of the coordinates was always similar. The architecture of the neural network and the
initialization scheme for the weights does not lead to a significant difference in the scaling of
the coordinates. However, the offset was different for each trained model. Additionally, the
model sometimes flipped the coordinates ξ1 and ξ2 in the experiments. The direction of the
row vectors in the neural network Jacobian Npqq is basically fixed by the lines of principal
curvature (Thm. 2). On the other hand, the order of the rows and the scaling of the vectors is
free.

Other state of the art techniques for redundancy resolution use more interpretable represen-
tations. For example, the additional coordinate function for the self-motion coordinates may
simply be a minimal subset of the joint angles. Consider a robot with seven degrees of freedom
operating in three-dimensional task space. This requires six degrees of freedom, which leads
to a degree of redundancy of one. Choosing, for instance, ξ “ ϕpqq “ q1 also locally leads to
a coordinate function that can be used for redundancy resolution. This choice of coordinate
function clearly is interpretable as joint angles are used directly. Another method [78] for a
seven-dimensional uses the angle between the plane spanned by the elbow joint and the table
plane as an additional coordinate. This type of coordinate is implemented on the light weight
robot kuka iiwa and described in [76]. Also this approach provides direct interpretability of the
coordinate function. However, both examples do not provide dynamical decoupling of the task
space dynamics. They require using the method based on the Jacobian null space projector.
Therefore, these methods do not provide geodetic springs or potentials.

It can be concluded, that the approach chosen here currently does not lead to intuitively
interpretable coordinates for the self-motion part of the dynamics. Improvement of the
interpretability is a question for further research.

7.5. Neural Network Issues

The neural network approach provides only an approximative solution for the desired OSMCs.
In the results it was shown that the training error is small compared to the disturbing effects
resulting from the terms proportional to the velocity 9q. For larger robot models with many
degrees of freedom the number of neurons required to accurately model the desired function
might become intractable and larger training errors are to be expected. The classical approach
does not need any trained model, so it has no problem with larger robot models.

For models with larger training errors, a combined approach is conceivable. The resulting
torque from the controller in the new coordinates can be explicitly projected into the Jacobian
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null space using
τ “

”

I ´ JJJ#J
ı

NJη . (7.5)

This definitely results in a torque not interfering with the task space controller. Still, the neural
network model would provide approximative geodetic springs, so local minima problems can be
avoided. If the training error is still reasonably low, the model also provides an approximation
of the potential.

From a computation perspective, the neural network also has the disadvantage of larger
computational effort. As the neural network and its input-output Jacobian need to be evaluated
in the control loop, it might limit the control frequency. However, the implementation using
TensorFlow is fast. TensorFlow generates analytical expressions for the Jacobian, which
are evaluated on the GPU in microseconds. Also the forward pass of the network is highly
parallelizable and GPUs are efficient in computing it. Certainly, this leads to additional
requirements on the control computer. Evaluation of the neural network and its Jacobian on a
CPU is comparatively slow. Consequently, especially for models with a large amount of neurons,
a GPU is required on the control computer.

When comparing the regression approach via the neural network to alternative approaches,
it shows some advantages. An alternative would be a grid-based technique. Based on the
conditions on the Jacobian the coordinate can be grown from a starting configuration on a grid
in joint space. Then, interpolation techniques could be used in order to interpolate off-grid
points. Clearly, the grid-based approach would highly suffer from the curse of dimensionality.
The amount of grid points required per grid explodes with the number of joints due to the
exponential growth. For function approximation using parametric functions the issue of the
curse of dimensionality is less severe. Still, the amount of required training samples would
probably increase exponentially, but the size of the final model can be limited by fixing the
number of parameters of the model. In fact, the training results have shown that the number
of neurons required does not grow exponentially with the number of joints.
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8.1. Summary

Throughout the thesis, a concept for a special task space augmentation method for redundancy
resolution was developed. The basic idea was to find a minimal function providing coordinates
for the remaining degrees of freedom for redundant manipulators. In contrast to existing task
space augmentation schemes, the coordinates are designed such that they are dynamically
decoupled from the task space dynamics.

First, a foliation view on the classical task space forward kinematics was given. The entirety of
self-motion manifolds can be regarded as a foliation of the joint space manifold. This provides
a very geometrical understanding of the given problem. It follows that the rows of the task
space Jacobian must be orthogonal to the rows of the Jacobian of the desired OSMCs. For
dynamical consistency, the required metric for this orthogonality is the inverse mass matrix.
Fundamental theorems from differential geometry show that the desired function can not be
globally singularity-free and unique. However, the OSMC function exists locally. It was also
shown how the OSMCs can be used for a simple impedance control scheme. Because of the
dynamical decoupling, controllers in both coordinates can be additively superimposed without
mutual disturbances.

The requirements on the Jacobian of the desired function can be interpreted as an under-
determined system of partial differential equations. In order to obtain a solution for this, a
variational principle is applied. The target function is written as a two layer neural network
and the network is optimized using gradient descent. The cost function is based on the derived
requirements on the Jacobian.

Multiple trained models were evaluated kinematically and dynamically. Kinematic evaluation
showed the decoupling of the coordinates on first-order dynamics. Then, for dynamic evaluation
a manipulator is simulated in closed-loop with an impedance controller using the neural-network
based coordinate function. On the actual multi-body dynamics, slight couplings occur. However,
the major contribution to the couplings are the curvature of the self-motion manifold and
Coriolis and centrifugal forces. An additional feed-forward controller leads to almost perfect
decoupling of the coordinates. The method currently provides no straightforward interpretability
of the self-motion coordinates. Additionally, the neural-network based method is approximative.

In contrast to simple Jacobian-based techniques and gradient projection methods, the approach
developed in this thesis provides coordinates that can be interpreted as potential. Because no
projection is required the springs corresponding to the controller can be considered geodetic
springs instead of projected linear springs.
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8.2. Future Work

The present thesis can be regarded as a proof of concept for the orthogonal foliation based
self-motion coordinates. All results have only been shown on simulated planar manipulators
with comparatively few degrees of freedom. The consequent next steps are training of models
and showing experiments for non-planar robots and with more degrees of freedom. Additionally,
the models have not been evaluated on an actual physical robotic system so far. In simulation
everything is known, the dynamics model of an actual physical robot is almost certainly not
exact. Furthermore, simulation can be arbitrarily slow and time can be stretched when more
computation time is needed. On hardware, timing is strict and real-time applications are
required. Therefore, the performance needs to be evaluated on actual hardware in the future.

The neural network is one approach to find an approximate solution to the underdetermined
system of partial differential equations under constraints. Neural networks are a strong tool in
the computer scientist’s toolbox that allow to quickly try out things in an approximate way.
However, other techniques to find a solution to the constrained and undertermined system
of partial differential equations may exist. Further research on alternative solutions will be
conducted in the future.

Currently, the network is trained using a least-squares cost function on the residual angles
between the rows of the Jacobian. The network generally can not find a globally valid function.
However, it is trying to do its best under the given cost function. Least squares leads to a
non-sparse distribution of the residuals. The effect of a L2-norm in the loss function is known
to lead to results that rather distribute the error throughout the space instead of having small
regions with large errors. Therefore, another loss function that leads to sparser distributions of
the error might result in a better overall performance. Also this needs further experiments and
research. For the given least-squares cost function, the performance becomes better when no
training samples are generated in the regions, where the network simply can not approximate
the function. Else, the training would try to distribute the error out of those regions and also the
performance elsewhere becomes worse. In consequence, a good region selection for the sampling
of training samples is essential in order to achieve good performance. For low-dimensional
problems the regions can be graphically estimated when the foliations are visualized. This is
no longer possible for more than three dimensions. An algorithm to automatically find those
regions is also future work. Also the total number of existing regions is not always clear. In
order to transition from the valid regions of one model to the next, also the coordinate switching
scheme shortly introduced in the discussion needs to be implemented.

The non-interpretability of the self-motion coordinates is currently a drawback of the proposed
methods. Additionally, multiple training runs almost certainly lead to different coordinates.
Further research is required in order to increase the interpretability of the coordinates and the
repeatability of trainings.

In the present thesis, the only model evaluated was a traditional neural network based on
the multilayer perceptron (MLP) scheme. The literature on machine learning techniques for
learning of inverse dynamics and kinematics shows that different model choices perform better
for those use cases. Especially locally weighted projection regression (LWPR) and Gaussian
processes perform better than standard MLP models. Here, no inverse model is learned so
the results can not directly be applied to the given problem. However, further investigation is
required in order to find out if other models perform better for the given problem of finding
dynamically decoupled self-motion coordinates.
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Figure A.1.: Additional figures for section 6.1.1.
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Figure A.3.: Color coded values of the self-motion coordinates on one self-motion manifold.
Green values denote values close to zero. More negative values are indicated by
bluer colors, black being most negative. More positive values are encoded in red,
white being the most positive value.
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Figure A.5.: Simulation results for closed-loop behavior of manipulator and the augmented con-
trol scheme using neural-network based coordinates. The results are for a damping
ratio of ζ “ 1.0. Animated robot here: http://thesis.aaarne.de/anim-10.gif
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Figure A.6.: Simulation results for closed-loop behavior of manipulator and the augmented con-
trol scheme using neural-network based coordinates. The results are for a damping
ratio of ζ “ 0.3. Animated robot here: http://thesis.aaarne.de/anim-03.gif
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Figure A.7.: Visualization of the joint trajectory on three leaves of the task space foliation.
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B
Planar Cartesian Forward Kinematics

This chapter briefly describes how the forward kinematics function and the Jacobian of the
planar robots is computed. The links of the robot are rigid bodies. Therefore, turning the
angles of the manipulator corresponds to a rigid body transformation. Consider the drawing in
Figure B.1. Each of the links i has a frame tFiu attached at the end. The base frame tF0u is
fixed. In homogeneous coordinates, the transformation from frame tFi´1u to tFiu is given by
the transformation matrix

T i´1,i “

»

–

cos qi ´ sin qi li cos qi

sin qi cos qi li sin qi

0 0 1

fi

fl . (B.1)

Then, the final transformation between tF0u and the final links tFnu can be computing by
chaining the transformation matrices

T 0,n “
n

ź

i“1

T i´1,i . (B.2)

Given the overall transformation matrix T pqq “ T 0,n the forward kinematics function is
computed using

x “ fpqq “

»

–

x

y

ϕ

fi

fl “

»

–

T1,3

T2,3

atan2pT2,1, T1,1q

fi

fl . (B.3)

An analytic expression for the Jacobian Jpqq “
”

Bfi

Bqi

ı

is obtained by symbolically differentiating

the elements of fpqq. Listing B.1 shows the implementation of the forward kinematics and
the symbolic differentiation in Python. This code was used to generate the expressions for the
Jacobian for the training and evaluation procedures within the thesis.

q1

q2

q3

tF0u tF1u

tF2u
tF3u

l2

l1

l3

Figure B.1.: Planar example robot with frames attached to the links.
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B. Planar Cartesian Forward Kinematics

Listing B.1: Code generator for planar forward kinematics and Jacobians
1 from sympy import *

2 from functools import reduce

3 from argparse import ArgumentParser

4

5

6 def create_cartesian_forward_kinematics_expr(dof):

7 """Create symbolical expressions for the forward kinematics and

8 Jacobian of a n-dim planar robot"""

9

10 def generate_trafo(q, l):

11 """Create a planar homogeneous transformation matrix for one joint"""

12 return Matrix([

13 [cos(q), -sin(q), l*cos(q)],

14 [sin(q), cos(q), l*sin(q)],

15 [0 , 0, 1]

16 ])

17

18 q = [Symbol(f’q[{i}]’) for i in range(dof)]

19 l = [Symbol(f’l[{i}]’) for i in range(dof)]

20

21 # Chain transformations to compute the end-effector pose:

22 trafos = (generate_trafo(qi, li) for qi, li in zip(q, l))

23 tcp = reduce(lambda x, y: x @ y, trafos)

24

25 # Forward kinematics f(q) = [x, y, phi]:

26 fkin = Matrix([

27 tcp[0, 2],

28 tcp[1, 2],

29 sum(q)

30 ])

31

32 # Differentiate fkin wrt. qi:

33 J = Matrix([diff(fkin, qi).T for qi in q]).T

34

35 return fkin, J

36

37

38 if __name__ == ’__main__’:

39 parser = ArgumentParser(description="Planar␣Robot␣Code␣Generator")

40 parser.add_argument("dof", type=int, help="Degrees␣of␣Freedom")

41 args = parser.parse_args()

42

43 fkin, J = create_cartesian_forward_kinematics_expr(args.dof)

44

45 def sympy_to_numpycode(expr):

46 """Convert sympy matrix to executable python expression with numpy arrays"""

47 return str(expr).replace("Matrix", "np.array")

48

49 print("Forward␣Kinematics:")

50 print(sympy_to_numpycode(fkin))

51

52 print("Jacobian:")

53 print(sympy_to_numpycode(J))
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