
Technical University Munich

Department of Mathematics

Chair of Mathematical Modelling

Autophagy in Yeast
Saccharomyces Cerevisiae:
Single-Cell and Multi-Cell

Model Approaches

Master’s Thesis

Melanie Michels

Supervisor / Advisor: Prof. Dr. Christina Kuttler
Submission Date: 19.10.2020





I hereby declare that this thesis is my own work and that no other sources have been
used except those clearly indicated and referenced.

Markt Schwaben, 19.10.2020
Melanie Michels

iii





Abstract

Autophagy is a process, where components within a cell are degraded and recycled
for different purposes. This can especially be helpful when cells are starving and they
have to adapt rapidly to the new conditions to ensure their survival. For studying
this process, yeast has become a model organism, since autophagy is easy to control
and observe within these cells. Furthermore, autophagy could be connected to different
human diseases like cancer or Huntington’s disease. To get a better understanding of
the basic principles and interrelations, mathematical models can be helpful. Therefore,
we want to study the process of autophagy from a mathematical point of view.

In this work, we first set up two single-cell models for starvation induced autophagy
in yeast cells and analyse their properties mathematically. In a next step, we expand the
first single-cell model to the multi-cell case and perform again a mathematical analysis.
Using data on cell densities, we then fit our model parameters and examine the sensitiv-
ity of the model to its parameters. In a final step, we introduce different modifications
of the multi-cell model, to improve the fit of the model to our data. We compare the
resulting model fits and discuss their different properties.
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Glossary

atg2∆ the Atg2 gene is nonfunctional or missing.

AICc a second order Akaike information criterion.

alkaline phosphatase a particular type of protein enzyme.

cytoplasm components within a cell except for the cell nucleus.

eukaryote organisms whose cells possess a nucleus and a nuclear membrane around it.

lysosome a membrane-bound compartment within an animal cell, containing enzymes
to break down biomolecules.

prototrophic to be able to synthesize all required metabolites by itself.

vacuole a membrane-bound compartment within a plant or fungal cell, filled with fluid
and containing enzymes.
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Atg Autophagy-related.

BIC Bayesian Information Criterion.

GFP Green Fluorescent Protein.

IVP Initial Value Problem.

ODE Ordinary Differential Equation.
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1 Introduction

“Autophagy” comes from the Greek words “auto”, meaning self, and “phagy”, meaning
eat. So strictly speaking we look at a process where a cell is “eating itself”. To be
more precise: autophagy is an intracellular process, where cytoplasm is degraded and
recycled for different purposes. This was first observed in mammalian cells, but here the
regulation of autophagy is highly complex and hence hard to study in all its details [1, 2].
As it turned out, autophagy in yeast is much easier to control and with the discovery
of the first Autophagy-related (Atg) proteins, yeast became the model organism to
study this process. In addition, this pathway is highly conserved among eukaryotes.
So discoveries in yeast can be used as a basis for more studies in mammalian cells
[3]. Furthermore, autophagy is nowadays known to be connected to different human
diseases like cancer [4] or Huntington’s disease [5]. Those are only a few reasons making
it interesting to study autophagy also from a mathematical point of view.

In this work we will focus on starvation-induced autophagy in yeast, as it is the
model organism for this process and hence biologically well studied. We will propose
two single-cell models based on the biological findings described below. After analyzing
them mathematically, we will expand our first model to the multi-cell case, examining
again its mathematical properties. Next, we will try to fit our model to a data set and
test different model modifications to improve the fit. We will also look at the sensitivities
of the different models to their parameter sets. In a final step, we will discuss our results
and give an outlook for further possible work on this topic.
All code used for this thesis can be found on https://github.com/Melanie757/Thes

is-Code.

1.1 Biological Background

Under stress conditions like starvation, cells have to adapt rapidly to ensure their sur-
vival. To this end they can use autophagy to degrade and recycle cytoplasmic compo-
nents. The recycled components can then be used, for example, to build new compo-
nents, adapt to the new environmental conditions, or to provide energy [1].

Autophagy can be subclassified into three groups - macroautophagy, microautophagy
and chaperone-mediated autophagy, whereas the last one only appears in mammalian
cells [1]. For our models we will focus on macroautophagy, the most prevalent form,
and hence just refer to it as autophagy.

1.1.1 Autophagy

The process of Autophagy As a first step of the process cytoplasmic components are
sequestered by a membrane, called the phagophore or isolation membrane. When this
membrane closes about the cellular material, it forms a double membrane vesicle, the
autophagosome. In the next step the outer membrane of this vesicle fuses with the

1
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and are not found in mammalian lysosomes.
Autophagosome: The  completed doublemembrane

bound  compartment,  the product  of  phagophore  expan
sion  and  closure, which  sequesters  cytoplasmic  cargos 
during macroautophagy [5, 6]. 
PAS: The phagophore  assembly  site;  a  perivacuolar 

location or  compartment where  the nucleation of  the 
phagophore  initiates. Most components of  the macroau
tophagy core machinery locate at least transiently at the 
PAS  in yeast;  however,  a mammalian  equivalent  of  the 
3$6�KDV�QRW�EHHQ�LGHQWL¿HG�>���@��
Phagophore: The doublemembrane  structure  that 

functions in the initial sequestering of cargo, and thus the 
active compartment of macroautophagy. The phagophore 
further elongates/expands and ultimately closes, generat
ing a completed autophagosome [10].

Figure 1 Schematic depiction of  the  two main  types of yeast autophagy.  In macroautophagy,  random cytoplasm and dys
functional organelles are sequestered by  the expanding phagophore,  leading  to  the  formation of  the autophagosome. The 
autophagosome subsequently  fuses with  the  vacuole membrane,  releasing  the autophagic  body  into  the  vacuole  lumen. 
Eventually,  the sequestered cargos are degraded or processed by vacuolar hydrolases.  In microautophagy, cargos are di
rectly taken up by the invagination of the vacuole membrane, followed by scission, and subsequent lysis, exposing the cargo 
to vacuolar hydrolases for degradation.

The history of discovery
The  term “autophagy” was  coined by Christian de 

Duve at the CIBA Foundation Symposium on Lysosomes 
LQ�������7KLV�ZDV�EDVHG�RQ�KLV�GLVFRYHU\�RI�O\VRVRPHV�LQ�
������ZKLFK�ZRQ�KLP�WKH�1REHO�3UL]H� LQ�3K\VLRORJ\�RU�
0HGLFLQH� LQ������>��@��$XWRSKDJ\�ZDV�QDPHG�PRUSKR
logically  by  the observations  from electron microscopy 
of  rat  hepatic  cell  lysosomes, where  single membrane 
vesicles,  containing  cytoplasm or  organelles  such  as 
mitochondria and endoplasmic reticulum (ER) were ob
served  [1215]. Based on Thomas Ashford’s  and Keith 
3RUWHU¶V�HDUO\�¿QGLQJV�LQ������WKDW�UHYHDOHG�WKH�SUHVHQFH�
of  sequestered organelles  in  rat  hepatocytes  following 
their  exposure  to  glucagon  [12],  de Duve  and his  col
OHDJXHV�FRQ¿UPHG�WKDW�WKLV�KRUPRQH�FDQ�LQGXFH�DXWRSKDJ\ 
[16]. Subsequently,  other  researchers  further  examined 
the hormonal  and  enzymatic  regulation of  autophagy. 

Figure 1.1: The process of autophagy in yeast cells. Cytoplasmic contents are se-
questered by the phagophore. Next the phagophore closes to build the
autophagosome. At last, the autophagosome fuses with the vacuole and
the contents are released to be degraded. Taken from [1].

vacuole (in yeast or plants) or the lysosome (in mammals). The inner part and its
contents can now be degraded and the catabolites can be recycled [3]. A visualization
of this process is shown in fig. 1.1.

Selective and Bulk Autophagy A further differentiation of autophagy is selective and
bulk autophagy. The process described above is the one of bulk autophagy. They both
share most of the core machinery [3] and we therefore do not go into detail regarding
the process of selective autophagy, as this is not relevant for our later models.

Selective autophagy can degrade unnecessary, damaged or even harmful cytoplasmic
contents and thus helps the cell to stay in a stable and healthy state. This type of
autophagy happens at a basal level regardless of starvation or other stress [3]. A com-
mon example in yeast is the Cytoplasm-to-vacuole targeting pathway, the so called Cvt
pathway. Here only the hydrolase aminopeptidase I is selectively transported to the
vacuole [6]. Other examples are the selective degradation of mitochondria (mitophagy)
or of endoplasmic reticula (ER-phagy).

Bulk autophagy, in contrast, has no specific target for sequestration. In yeast, it is in-
hibited in nutrient-rich conditions and can easily be induced in two differente ways. One
way is to shift the cells to a starvation medium. The second way uses an enzyme called
TORC1 (target of rapamycin complex 1), which is crucial for the cell to sense nutrient
availability. If this enzyme is inhibited by a rapamycin treatment, bulk autophagy is
induced [3].
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1.1 Biological Background

1.1.2 Monitoring Autophagy

There are different methods to analyse autophagy in yeast cells. In [3], the authors give
a good overview of such approaches together with their advantages and limitations. We
will not go into biological details here, so we refer the interested reader to [3] for more
information on the methods.

The last steps in autophagy are the delivery of material to the vacuole and the fol-
lowing degradation. Methods trying to monitor this are called end-point measurements.
One possibility to monitor bulk autophagy is to observe activated Pho8∆60 in the vac-
uole. Pho8∆60 is the alkaline phosphatase Pho8, where amino acids 1-60 were deleted.
Outside the vacuole it appears in its inactive form. When it gets transported inside the
vacuole via bulk autophagy, it is being activated. This activity can then be measured.
Another possibility is to measure the delivery of Atg8 (Atg protein 8) to the vacuole.
This can be done if Atg8 is tagged with Green Fluorescent Protein (GFP). These are
the two most commonly used methods to assay bulk autophagy in yeast.

To measure selective autophagy, the above methods can be altered in the following
ways. Pho8∆60 can be fused to a cargo protein or signal sequence to target a certain
cargo organelle. After this, the activity in the vacuole can again be measured. For the
second method, instead of Atg8, a cargo-specific protein can be tagged with GFP and
measured inside the vacuole. Other approaches are the use of antibodies, to recognize
proteins that are part of the cargo, or the isolation of vacuoles and probing for the
cargo of interest. Another, quite straight forward, approach is to directly visualize the
contents of the autophagosomes by electron microscopy.

One advantage of such measurements is, that they collect sensitive data about the
function of the whole pathways. However, they offer no information on single steps in
the pathways.

But there are also assays to obtain information on certain steps of the autophagic pro-
cess. Before the phagophore can form, Atg proteins assemble at the vacuolar membrane
to form the Pre-Autophagosomal Structure (PAS). These assemblies can then be moni-
tored via fluorescence microscopy, to see whether the autophagic pathway starts. When
the autophagosomes have formed, one can visualize them with electron microscopy.
Many autophagosomes, which accumulate in the cytosplasm, could for example indicate
that they fail to fuse with the vacuole. If this step is functional, the autophagosomes
within the vacuole can be visualized by bright-field microscopy. One can see here as
well, if there is an accumulation, indicating a disturbance of the degradation process.
Another method to measure the number of autophagosomes within the vacuole is again
using a GFP marker.

For a mathematical model, one could now take such measurements to quantify au-
tophagy. In chapter 3 and chapter 4, we will set up models describing autophagy in
yeast. Those models have no underlying data but use a qualitative level of autophagy
between 0 and 1. In this way, they do not depend on a certain type of measurement but
different types of data can be adapted to it. For example, if one has measurements of
the number of autophagosomes in the vacuole, the highest number of autophagosomes
could be set as a level of 1. Scaling the measurements accordingly, one can then do a
parameter fit.

3



1 Introduction

Figure 1.2: Saccharomyces cerevisiae cells in DIC microscopy. Taken from [8].

1.1.3 Yeast Saccharomyces Cerevisiae

For brewing and baking, the yeast Saccharomyces cerevisiae (fig. 1.2) has already been
known for over ten thousand years. But for over a century, it is also part of laboratory
research [7].

There are multiple reasons making S. cerevisiae a useful model organism for eukary-
otes. First of all, it is a single-cell organism, hence small, and can be grown on defined
media. This makes it easy to control its whole environment [9]. It has a short doubling
time of about 100 minutes at 30◦C [10], so effects of an experiment can be seen quite
early and many generations can be studied. Furthermore, its lifecycle is ideally suited
to conduct genetic analysis and efficient techniques were developed to study the impacts
of mutations. Those are only some of the reasons, why S. cerevisiae became the first
eukaryote, whose genome was completely sequenced in 1996 [9]. Leading to the setup
of comprehensive gene databases like https://www.yeastgenome.org, this enabled
researchers to create extensive genetic interaction networks for yeast with thousands of
interactions [11]. For such a well-studied organism, comparison with other organism is
then much easier.

Many studies have been made, investigating the connection of gene function in yeast
and humans. For example, Kachroo et al. replaced essential yeast genes by their human
orthologs, i.e. genes, that originated from the last common ancestor. In that way they
could identify genes, which essentially perform the same role in both, yeast and human.
Whether the substitution worked, was also strongly dependent on the pathway, in which
the respective proteins took part [12]. As background for our work, it is particularly
interesting that the basic machinery of autophagy is the same in yeast and in mammalian
cells [13]. Therefore, many studies about autophagy focus on yeast, like [1, 3, 6, 13].

4
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1.2 Further Biological Findings
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Figure 1.3: Left: Measurements of yeast cell density during growth on glucose (3-13 h)
and then ethanol (13-26 h). Right: yeast cell density on a log10-scale and
regression lines for the glucose-utilizing phase (using data from 6-11 h) and
the ethanol-utilizing phase (using data from 16-24 h). Adapted from [15].

1.1.4 Diauxic Growth of Yeast

Diauxie comes from the Greek words “dis”, meaning “twice”, and “auxo” or “auxano”,
meaning “to grow”. Hence, it is quite easy to see why this term should describe a growth
with two different phases.

Yeast cells prefer to grow on carbon sources like glucose if they are available. This
means, that if they are cultured in a medium containing glucose, the glucose is metab-
olized first and ethanol is produced simultaneously. Once the glucose is depleted, the
yeast cells adapt their metabolism and switch to grow on the released ethanol instead.
This adaption takes a short time, in which the growth rate is decreased. This is called
the diauxic shift. After the depletion of ethanol, the cells go into a stationary phase.
[14]

In section 4.4 we will try to fit our multi-cell model from section 4.2 to data taken
from [15]. The authors of this paper wanted to investigate the diauxic growth of yeast
cells and the starvation induced autophagy. Hence, this data provides a good example
for this growth pattern of yeast. In the left plot of fig. 1.3 one can see the measured
densities of the yeast culture throughout the experiment. Between 3 h and 13 h, the
yeast cells grew on the available glucose. After this, between 13 h and 26 h, they used
the produced ethanol to grow. That the growth changed between those two phases can
be seen in the right plot. Here, the regression lines for the two growth phases are shown,
using a logarithmic scale for the cell density.

1.2 Further Biological Findings

Autophagy is especially known as a response to starvation or nutritional stress. But it
could also be linked to many other processes, like the suppression of tumors. In 1999,
autophagy was connected to human breast cancer via the protein beclin 1, whose en-
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1 Introduction

coding gene is structurally similar to an autophagy gene in yeast. It could be shown,
that beclin 1 is less expressed in breast carcinoma cells than in normal breast epithelial
cells. Enforced expression of this autophagy gene in carcinoma cells led to an inhibition
of their tumour-forming potential [4].
A further process, where autophagy is known to take part in, is the intracellular de-
fense against bacteria. Here a certain form of selective autophagy, xenophagy, targets
invading bacteria [16]. Targeted are for example S. typhimurium, involved in human
gastroenteritis [17], or M. tuberculosis, responsible for tuberculosis [18].
As already mentioned above, autophagy can also be connected to several neurodegenera-
tive diseases like Alzheimer’s, Parkinson’s or Huntington’s disease [5]. All are associated
with an aggregation of misfolded proteins [19]. Ravikumar et al. studied the pathways
mediating the degradation of such proteins for Huntington’s disease. They inhibited or
stimulated autophagy, resulting in an accumulation or enhanced clearance of the pro-
teins [5].

6



2 Mathematical Prerequisites

One goal of mathematical modeling is to see the changes of a dynamical system in time
or space. Therefore, a first step are discrete models. They consider just particular time
steps or single locations in space. But in many cases this is not enough and a continuous
model is needed. A handy way of describing a system continuously, for example in time,
are differential equations. In this chapter we first give a short introduction to ordinary
differential equations and related theorems needed in this work. After that we address a
few common growth models and important concepts such as stationary states and their
stability, for the analysis of our models.

2.1 Ordinary Differential Equations

The following is based on [20] and [21].
An Ordinary Differential Equation (ODE) is the relation of an unknown function y(t)

with its derivatives ẏ = dy
dt (t), ÿ, ..., y

n. In contrast to Partial Differential Equations, an
ODE depends only on derivatives in one variable, here time t. Together with an initial
value we get a so-called Initial Value Problem (IVP)

dy

dt
(t) = f(t, y(t))

y(t0) = y0

(2.1)

where f : D → Rn and D ⊆ R × Rn is nonempty, open and connected. In the context
of this work we often set t0 = 0 and t ≥ t0.
If the function f does only depend on y(t) and not on t itself, the ODE is called
autonomous.
The order of an ODE is the order of the highest derivative included in the ODE, so the
above IVP is of first order.
A solution to the IVP is a function y : I → Rn, where I ⊆ R is a nonempty interval
containing t0 and y satisfies the following properties:

(i) ẏ(t) exists for all t ∈ I,

(ii) (t, y(t)) ∈ D for all t ∈ I,

(iii) ẏ(t) = f(t, y(t)) for all t ∈ I,

(iv) y(t0) = y0.

But how do we know whether an ODE, resp. IVP, has a solution at all? We therefore
look at the following theorem.

Theorem 2.1 (Peano’s Existence Theorem). Let f ∈ C(D,Rn) with (t0, y0) ∈ D. Then
there exists ε > 0 such that the IVP (2.1) has at least one solution in [t0 − ε, t0 + ε].

7



2 Mathematical Prerequisites

A proof can be found in [20].
Another important point is the uniqueness of a solution and the domain, where it exists.
We will therefore use the following theorems and definitions from [21, pp. 7-8].

Theorem 2.2 (Picard-Lindelöf). Let f be continuous with respect to t and locally Lip-
schitz with respect to y on D. Then for each (t0, y0) ∈ D there exists an ε > 0 such that
the IVP (2.1) has a unique solution y : [t0 − ε, t0 + ε]→ R.

This theorem gives us the existence of a unique solution on a certain interval, but not
what happens with two different solutions which have intersecting domains. What we
would like to have in this situation is, that the solutions on the intersection coincide.
Then we would also have a unique solution on intersecting intervals. The following
theorem states exactly this.

Theorem 2.3 (Uniqueness of solution). Let f be as in theorem 2.2 and (t0, y0) ∈ D.
Let y1 be the solution to IVP (2.1) on interval I1 and y2 on interval I2. Then for all
t ∈ I1 ∩ I2

y1(t) ≡ y2(t) (2.2)

Now we also want to know the maximal interval, where we have a unique solution.

Definition 2.4 (Continuability). Consider (t0, y0) ∈ D and let y(t) be the solution to
IVP (2.1) on interval I. It is said that solution y(t)

(i) can be continued on the right, if there exists another solution y1(t) on interval I1,
such that I ⊂ I1 and sup I belongs to the interior of I1.

(ii) can be continued on the left, if there exists another solution y2(t) on interval I2,
such that I ⊂ I2 and inf I belongs to the interior of I2.

(iii) is continuable, if it can be continued on the right or on the left, or both.

Definition 2.5 (Maximal Solution). A solution to the IVP (2.1) is called a maximal
solution, if it is not continuable.

Theorem 2.6 (Existence and Uniqueness of a Maximal Solution). Let D ⊆ R× Rn be
open, nonempty and connected and let f be as in theorem 2.2. Then, for each (t0, y0) ∈
D, there exists a unique maximal solution to the IVP (2.1). Moreover, the interval of
definition of such a maximal solution, denoted by Imax = Imax(t0, y0), is open.

Theorem 2.7. Let (a, b) denote the maximal interval of existence for the IVP (2.1). If
|b| <∞, then limt→b− |y(t)| =∞. Similarly for a.

Remark 2.8. We often want to study the long term behaviour of a system and would
like to have b = +∞ in the maximal interval of existence (a, b). Using theorem 2.7,
we can achieve this if we have a bounded solution. This holds, since for |b| < ∞ the
solution would be unbounded for the right boundary of the interval. So, if our solution
is bounded, |b| cannot be finite but has to be +∞, as t0 ≥ 0 lies in the interval.
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2.2 Growth Models
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Figure 2.1: Example for model (2.3) with a = 2.

2.2 Growth Models

To model the increase and decrease of autophagy in cells or whole cell populations, we
need some basic growth models. Since we will not find a negative population of cells or
negative level of autophagy happening, we from now on assume y(t) ≥ 0. As mentioned
above, we also set t0 = 0 for our models.

2.2.1 Verhulst: Saturation

One of the simplest examples of a limited growth model is

ẏ(t) = 1− ay(t) (2.3)

where a > 0 is the death rate. The solution y(t) will always converge to 1
a . This is

quite intuitive, as ẏ will be negative for y > 1
a and positive for y < 1

a . An example can
be found in fig. 2.1. Later we will use this in parts of our models for the increase of
autophagy.
One advantage of this model, besides the boundedness, is its simplicity. So it is easy
to handle. But a main disadvantage for population modeling is the steep increase at
the beginning. If there are initially only a few individuals, the population will first
probably not grow that fast. Instead, the growth will be slower and then increase with
the number of individuals.

2.2.2 Verhulst: Logistic Growth

To deal with the mentioned problem of the last model, we next introduce the well known
logistic growth model. It can be described in the following way:

ẏ(t) = ay(t)

(
1− y(t)

K

)
(2.4)
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Figure 2.2: Example for model (2.4) with a = 1.2 and K = 2.

where a > 0 is the so-called rate constant and K > 0 the carrying capacity. An example
can be found in fig. 2.2. We assume both a and K to be constant, but of course it would
also be possible to choose time dependent versions a(t) and K(t).

For small values of y we have an approximately exponential growth with exponent a,
but with increasing values of y the growth is extenuated proportional to the remaining
capacity [22]. Here, y(t) will converge to K if y(0) > 0 and stay 0 if we start with
y(0) = 0. The solution to this ODE is given as

y(t) =
y0K

e−at(K − y0) + y0
(2.5)

A proof can be found in appendix 1.1, respectively [22, pp. 176-177]. Using this solution,
we can furthermore show that y(t) is point symmetric around K

2 , when using a starting
value between 0 and K (see appendix 1.1).

2.2.3 Generalized Logistic Growth

One can see in fig. 2.2, that the logistic growth model shows a symmetric S-shape
around K

2 . But what if we needed a similar but not necessarily symmetric characteristic
for our model? Then the generalized logistic growth model [23] can be useful. The
corresponding ODE can be formulated in the following way:

ẏ(t) = a
ny(t)

(
1−

(
y(t)

K

)n)
(2.6)

where a,K and n are positive. If we choose n > 1 for example, as in fig. 2.3, we can get
a slower increase for small values of y and a steeper increase when getting near K, due
to the n-th power included. Hence, in contrast to the logistic growth from section 2.2.2,
we get a non-symmetric solution curve. Of course, when setting n = 1, we arrive again
at the (normal) logistic growth model.
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Figure 2.3: Example for model (2.6) with a = 4, K = 2 and n = 5.

2.3 Tools for Model Analysis

After proposing a model, we also want to find different properties to characterize its
behaviour. For example, whether the model exhibits stationary states, like all of the
models above, and whether this states are stable. We mostly follow here the book of
Müller and Kuttler [22].

Definition 2.9. A stationary state (also called equilibrium or stationary point) of an
IVP, as stated in (2.1), is a value of y that does not change in time anymore.
Using the ODE formulation, this means ẏ(t) = f(y(t)) = 0 for such a value of y. We
often denote a stationary state by y∗.

Example 2.10. For the saturation model in section 2.2.1, we obtain the following
stationary state y∗: ẏ(t) = 0⇔ 1− ay∗ = 0⇔ y∗ = 1

a .
This coincides with the findings from the example graphs.

The next question is, whether a stationary state is stable. Roughly speaking, we want
to know: if we are near the stationary state, do we reach it or at least stay near it? For
example, consider the logistic growth in section 2.2.2. There we have two stationary
states, 0 and K. If we start above K or below K, but bigger than 0, we always reach K
in the end. So K is stable. But this is different for the 0. If we start with any y0 > 0,
we will never reach 0 again but converge to K. So 0 is not a stable stationary state.
The following definitions are taken from [22, Definition 2.7 and 2.8]

Definition 2.11 (Stability of a Stationary State). A stationary state y∗ is called stable,
if for all ε > 0 there exists a δ > 0 such that for all y(t0) = y0 with |y0 − y∗| < δ it is
|y(t)− y∗| < ε for all t > t0.

Remark 2.12. If a stationary state fulfills the above definition, we know y(t) will stay
near it if we start close enough. But it does not guarantee us that we will eventually
reach it. Therefore, we look at the next definition.

11



2 Mathematical Prerequisites

Definition 2.13 (Asymptotic Stability of a Stationary State). A stationary state y∗ is
called asymptotically stable, if it is stable and there exists a δ0 > 0 such that for all y0
with |y0 − y∗| < δ0 it holds

lim
t→∞
|y(t)− y∗| = 0 (2.7)

Now we want to study some criteria to determine the stability of a stationary state.
Let us first consider the linear case ẏ(t) = Ay(t), where A ∈ Cn×n. Then the following
proposition from [22, Proposition 1.60] holds.

Proposition 2.14. Let σ(A) be the spectrum of A. Then:

(i) 0 is asymptotically stable ⇔ Reσ(A) < 0

(ii) 0 is stable ⇔ Reσ(A) ≤ 0 and all eigenvalues λ with Reλ = 0 are semi-simple

(iii) If there is a λ ∈ σ(A) with Reλ > 0, then 0 is unstable. (The reverse direction
may be wrong!)

Since we often have nonlinear models, we also need some criterion for this case. The
simplest way is to go back again to the linear case, by using a linearisation (at least
locally). Assume we have an autonomous ODE ẏ = f(y) with f ∈ C1(Rn,Rn), a
stationary state y∗ ∈ Rn (thus f(y∗) = 0) and some small perturbation p(t). We are
interested in solutions y(t) in the neighbourhood of y∗, so p(t) has to be small there.
Using Taylor expansion for such a y(t) = y∗ + p(t), this yields

ṗ(t) = ẏ(t) = f(y(t)) = f(y∗ + p(t)) = f(y∗)︸ ︷︷ ︸
=0

+ḟ(y∗)p(t) + o(||p||)
(2.8)

As p(t) is assumed to be small close to y∗, we arrive at the corresponding linearised
system

ṗ(t) = Ap(t) (2.9)

where A = ḟ(y∗) is the Jacobian matrix of f at y∗.
We can now use this linearisation for our stability analysis of y∗, using again a Propo-
sition from [22, Proposition 2.17].

Proposition 2.15 (Linearisation, Stability, Perron, Lyapunov). If the real parts of all
eigenvalues of A = ḟ(y∗) are negative, then y∗ is exponentially asymptotically stable,
i.e. there are constants δ, C, α > 0 such that ||y(0)− y∗|| < δ implies

||y(t)− y∗|| < Ce−αt for t ≥ 0 (2.10)

From Reσ(A) ∩ (0,∞) 6= ∅ it follows that y∗ is unstable.

Remark 2.16. For a linear, two dimensional system, one can also have a look at fig. 2.4
and table 2.1, which give a good overview.

This is a very helpful statement, but does not tell us whether our linearisation and
nonlinear model also correspond locally. Hence we need one more characterisation of y∗

[22, Definition 2.18, Theorem 2.19].

Definition 2.17. y∗ is called hyperbolic, if 0 /∈ Reσ(A).
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Fig. 1.50 Dynamics for linear, planar systems

tr.A/2 ! 4det.A/ D
!
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4
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! 4 " 1

8
D 49

16
! 8

16
D 41

16
> 0;

hence, there are real eigenvalues and a (two-tangent) stable sink.

There is a simple criterion to decide for or against stability in a linear system:

Proposition 1.60 Consider the linear case Px D Ax, A 2 Cn!n. Let !.A/ be the
spectrum of A.

1. 0 is asymptotically stable, Re !.A/ < 0
2. 0 is stable, Re !.A/ # 0 and all eigenvalues " with Re " D 0 are semi-simple

(i.e., geometric and algebraic multiplicity are the same)
3. If there is a " 2 !.A/ with Re " > 0, then 0 is unstable. (The reversed direction

is wrong!!!)

Remark 1.61 There is a link between stability in the discrete and in the continuous
case. We can create a discrete map of a continuous system (ODE) by choosing e.g.
the solution after a time interval 1 (in the given unit of time). For a linear system
Px D Ax, we get

F.x/ D eAx:

In the continuous case the eigenvalues of A are contained in the negative half-plane
of C, the stationary point x D 0 is stable. Then we get

!feA j !.A/ $ C"g $ fjzj < 1g

(cf. the stability criterion for discrete systems!).

Figure 2.4: Characterization of stationary points, taken from [22].

(I) stable node both eigenvalues real, negative
(II) unstable node both eigenvalues real, positive
(III) stable spiral eigenvalues with a non trivial imaginary, negative real part
(IV) unstable spiral eigenvalues with a non trivial imaginary, positive real part
(V) saddle both eigenvalues real, one negative and one positive

Table 2.1: Different types of stationary points, adapted from [22].
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Theorem 2.18 (Hartman and Grobman). Let y∗ be hyperbolic. Then there is a neigh-
bourhood U of y∗ and a homeomorphism H : U → Rn with H(y∗) = 0, which maps the
trajectories of ẏ = f(y) one-to-one into trajectories of ṗ = Ap, with respect to the time
course.

This means if y(t) is a solution to ẏ = f(y), then p(t) = H(y(t)) is a solution to
ṗ = Ap and vice versa (as long as y(t) does not leave U). So, as long as y∗ is hyperbolic,
we can try and use proposition 2.15 for our stability analysis.

If we alter model parameters, the stationary states and their stability can change.
Consider the following simple example.

Example 2.19. Take the logistic growth from section 2.2.2 with ẏ(t) = f(y(t)) =

ay(t)
(

1 − y(t)
K

)
, but a ∈ R instead of a > 0. As seen above, the logistic growth model

has two stationary states, 0 and K. For a > 0, K is stable and 0 unstable. But if we
now also take a < 0 into account, the stationary states change their stability properties:

f ′(y) = a

(
1− 2y

K

)
(2.11)

so we get f ′(0) = a < 0 and f ′(K) = a(1− 2) = −a > 0. As a consequence, 0 is stable
and K unstable [22, Theorem 2.9].

This example is quite constructed, as we normally just take a > 0. But to get
an impression of changing stability it should be enough. The phenomenon of such a
change in stability depending on parameters is called bifurcation. A parameter, for
which bifurcation is studied, is called bifurcation parameter. There are many types of
bifurcation, hence we just mention a few examples here. See [22, pp. 223-227] for more
details.

• Saddle-Node bifurcation: above a certain threshold of the bifurcation parameter,
a saddle and a node appear.

• Transcritical bifurcation: two stationary states exchange stability at the parameter
value, where both points meet.

• Pitchfork bifurcation: for parameter values below a threshold, e.g. a ≤ a0, a
stationary point is stable, for a > a0 two additional, stable stationary states show
up and the original one becomes unstable.

Another interesting point is the positivity of solutions. Many biological systems do
not exhibit negative states, e.g. when modeling cell populations. So if a model has
a solution, we need to find out if it stays positive and hence biologically meaningful.
Therefore, we look at the following proposition from [24, Proposition B.7.]:

Proposition 2.20 (Non-negativity of Solutions). Suppose the IVP (2.1) has the follow-
ing properties:

(i) solutions y(t) with initial value y0 ≥ 0 are unique, and

(ii) whenever y(t) ≥ 0 satisfies yi(t) = 0, it holds fi(y) ≥ 0, for all i ∈ {1, . . . , n}.

Then it follows y(t) ≥ 0 for all t ≥ t0 in the domain of y, provided y0 ≥ 0.
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3 Single-Cell Models

Here we start with our first models for autophagy in yeast. In this chapter we only
consider one single cell, later we will also look at whole populations (see chapter 4).
The following models involve three main components:

(i) the level of autophagy a(t) from 0 to 1, where a level of 0 corresponds to no au-
tophagy happening and a level of 1 to the maximal production of autophagosomes,

(ii) the level of cytoplasmic material m(t), which can be degraded (and produced) by
autophagy, from 0 to 1,

(iii) the level of catabolites c(t), which are also produced through autophagy and used
to build new cytoplasmic material, from 0 to 1.

Additionally, we include by a function s(t) whether the cell is in a nutrient-rich environ-
ment or a starvation medium. If s(t) = 0, enough nutrients are available, but if s(t) = 1,
there are no nutrients in the environment at all. So we could say, that s(t) represents
the current “starvation state”.
Our first model disregards the catabolites and only models the levels of autophagy and
the cytoplasmic material, often just called material in the following. The second model
also takes the catabolites into account.
Note, that both models are dimensionless, since we only want to study levels here.

3.1 Autophagy and Cytoplasmic Material

As a first model, we chose to consider just autophagy and cytoplasmic material. The
assumption hereby is, that catabolites are straight converted back to material, such that
it is enough to model the material only. This is a simplification made to get a most
simple model, which is easy to analyse for a first impression of the dynamics. The second
assumption made is that s(t) ∈ {0, 1}. This is a quite reasonable simplification, as
starvation stress for the cell can rapidly be induced, e.g. by shifting them to a starvation
medium [3]. Otherwise, it is also easy to keep them in a “perfect” environment.

3.1.1 Model

We first consider the case with no starvation. Here we want a stable level of autophagy,
the basal or selective autophagy, and therefore use the Verhulst saturation model from
section 2.2.1. The mentioned disadvantages of this growth model are not that important
here, as we just want the level of autophagy to converge to a stable, positive state. Fur-
thermore, the formation of new autophagosomes presumably does not depend directly on
the present ones, other than when cell populations grow by cell division. So there might
be a steep increase or decrease at the beginning possible, but this is only an assumption.
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3 Single-Cell Models

Parameter Description

α1 rate constant of the log. growth of a
α2 inhibition of a due to m
β increase of m due to autophagy
γ degradation of a
δ normal degradation of m
M supply of new material

Table 3.1: Description of the parameters in eq. (3.1).

We do not add a dependence on the cytoplasmic material here, as there should always
be enough available in nutrient-rich conditions. For the cytoplasmic material we assume
a constant supply M of new material, an increase due to autophagy and a degradation,
dependent on the present level of material. Like mentioned above, we omit in this model
the catabolites, which are produced through autophagy and then used for building new
material. So actually, here the material is just first degraded and then produced again
due to autophagy. Hence, we have a term β1m(t)a(t)− δ1m(t)a(t) = (β1 − δ1)m(t)a(t)
in the equation for the change of material. To simplify this term, we set β := β1 − δ1.
Furthermore, we assume β > 0 in the following, as otherwise the autophagy would in
sum just degrade the level of material and would give the cell no real advantage in this
model, especially in the starvation case.
When the cell is in a starvation medium, we want the autophagy level to increase until
at most 1, dependent on the material available, and an inhibition of increase or even a
decrease if there is insufficient material left. For modeling the increase we use the logistic
growth from section 2.2.2 and for the decline an additional similar term dependent on
the material level. For the level of material, the constant supply of material is omitted
as there are no nutrients available in the environment.
All of the parameters are given without a unit, since we only study qualitative levels.
The resulting ODE system is

ȧ(t) = (1− s(t)) (1− γa(t))︸ ︷︷ ︸
saturation

+s(t)(α1a(t)(1− a(t))︸ ︷︷ ︸
log. growth

−α2a(t)(1−m(t))︸ ︷︷ ︸
inhibition

)

ṁ(t) = (1− s(t)) M︸︷︷︸
supply

+ βm(t)a(t)︸ ︷︷ ︸
growth due to
autophagy

− δm(t)︸ ︷︷ ︸
degradation

= (1− s(t))M + βm(t)

(
a(t)− δ

β

)
(3.1)

where all parameters are in R>0. A description of their meaning can be found in
table 3.1.

3.1.2 Mathematical Analysis

First we check if our model has a non-negative, unique solution, so whether it is mean-
ingful for our application. Next we analyse the stationary states of the system and look
at their stability. At last we examine the boundedness and domain of solutions.
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3.1 Autophagy and Cytoplasmic Material

Existence of a non-negative, unique solution Given our system (3.1), we want to
know if there exists a solution, which is hopefully even unique. We differentiate between
the cases without starvation, s(t) = 0, and with starvation, s(t) = 1.

Starting with s(t) = 0, our function fn (for no starvation) looks like

fn

(
a(t)
m(t)

)
=

(
1− γa(t)

M + βm(t)
(
a(t)− δ

β

)) (3.2)

fn is continuously differentiable with respect to a and m and hence its derivative stays
bounded in [0, 1]2. Thus, fn is Lipschitz continuous in [0, 1]2 with respect to a and m. It
is also continuous with respect to t, as fn is independent of t. Using theorem 2.2, we get
that for some ε > 0 there exists a unique solution in [t0− ε, t0 + ε]. By theorem 2.6 there
even exists a unique maximal solution on an open interval for initial values in (0, 1)2.
So we have locally unique solutions, hence the first requirement of proposition 2.20 is
fulfilled. Now we check the second requirement:

• Let a(t) = 0 and m(t) ≥ 0, then 1− γa(t) = 1 > 0.

• Let m(t) = 0 and a(t) ≥ 0, then M + βm(t)
(
a(t)− δ

β

)
= M ≥ 0.

Consequently, a solution to our model stays non-negative, if we start with positive initial
values.

Now we consider the case s(t) = 1:

fs

(
a(t)
m(t)

)
=

(
α1a(t)(1− a(t))− α2a(t)(1−m(t))

βm(t)
(
a(t)− δ

β

) )
(3.3)

fs satisfies again the requirements of theorem 2.2, using the same arguments as above.
Hence, there exists a unique solution in [t0 − ε, t0 + ε] for some ε > 0 and even a unique
maximal solution by theorem 2.6 on an open interval. We check the second requirement
of proposition 2.20:

• Let a(t) = 0 and m(t) ≥ 0, then α1a(t)(1− a(t))− α2a(t)(1−m(t)) = 0 ≥ 0.

• Let m(t) = 0 and a(t) ≥ 0, then βm(t)
(
a(t)− δ

β

)
= 0 ≥ 0.

Thus, a solution to our model with starvation stays non-negative, if we start with
positive initial values.

Stationary states Consider first s(t) = 0. Then we want to solve fn = 0:

fn,1 = ȧ(t) = 0⇔ 0 = 1− γa∗ ⇔ a∗ =
1

γ

fn,2 = ṁ(t) = 0⇔ 0 = M + βm∗
(
a∗ − δ

β

)
⇔ m∗ =

M

δ − βa∗
(3.4)

So the only possible stationary state is P = (a∗,m∗) = ( 1
γ ,

M
δ−βa∗ ). To be relevant for

our model, a∗ and m∗ have to be in the interval [0, 1]. Hence we get the additional
constraints γ ≥ 1 and M ≤ δ − β

γ .
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3 Single-Cell Models

For s(t) = 1, we examine fs = 0:

fs,1 = ȧ(t) = 0⇔ 0 = α1a
∗(1− a∗)− α2a

∗(1−m∗)

⇔ a∗ = 0 or a∗ = 1− α2

α1
(1−m∗)

fs,2 = ṁ(t) = 0⇔ 0 = βm∗
(
a∗ − δ

β

)
⇔ m∗ = 0 or a∗ =

δ

β

(3.5)

Thus, we arrive at the following stationary states:

• P0 = (0, 0),

• P1 = (1− α2
α1
, 0),

• P2 = ( δβ , 1 −
α1
α2

(1 − δ
β )), by setting equal a∗ = 1 − α2

α1
(1 −m∗) and a∗ = δ

β , then
solving for m∗.

These stationary states are meaningful for our model, if they lie between 0 and 1. This
gives us some constraints for our parameters:

• for P1: α2 < α1 (if α2 = α1, we arrive at P0),

• for P2: δ ≤ β and 1− α2
α1
< δ

β

(
if 1− α2

α1
= δ

β , we arrive at P1

)
.

Stability We start again with s(t) = 0.
From a biological point of view we want P to be stable, since the cell has enough nutrients
available and should therefore stabilize at a positive level. For the mathematical analysis,
we first determine the Jacobian matrix of system (3.1):

J(a,m) =

(
−γ 0
βm βa− δ

)
(3.6)

Now we insert our stationary state (a∗,m∗):

J(a∗,m∗) = J
(

1
γ ,

M
δ−βa∗

)
=

(
−γ 0

β M
δ−βa∗ βa∗ − δ

)
(3.7)

As this is a lower triangular matrix, we can instantly read off the two eigenvalues −γ
and βa∗ − δ = β

γ − δ. Both are negative, if β
γ − δ < 0. This is the case when P is

biologically meaningful, since then 0 < M ≤ δ − β
γ . Applying proposition 2.15 and

theorem 2.18, it follows that there is a neighbourhood where (a∗,m∗) is exponentially
asymptotically stable.

For s(t) = 1, the Jacobian matrix reads

J(a,m) =

(
α1(1− 2a)− α2(1−m) α2a

βm βa− δ

)
(3.8)

We first insert P0:

J(0, 0) =

(
α1 − α2 0

0 −δ

)
(3.9)
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3.1 Autophagy and Cytoplasmic Material

This is a diagonal matrix, so the eigenvalues are just the diagonal entries. −δ is already
negative and, under the assumption that α1 < α2, α1 − α2 is also negative. With
proposition 2.15 and theorem 2.18, we can deduce that P0 is stable if α1 < α2.
Next we insert P1:

J
(

1− α2
α1
, 0
)

=

(
α1(1− 2(1− α2

α1
))− α2(1− 0) α2(1− α2

α1
)

β · 0 β(1− α2
α1

)− δ

)
=

(
α2 − α1 α2(1− α2

α1
)

0 β(1− α2
α1

)− δ

) (3.10)

This is an upper triangular matrix, hence the eigenvalues are again on the diagonal:
α2 − α1 and β(1 − α2

α1
) − δ. The first eigenvalue is negative if α2 < α1, the same

condition as for the point to be biologically meaningful. The second one is negative if
1− α2

α1
< δ

β . Using again proposition 2.15 and theorem 2.18, P1 is stable if it is relevant

for us and 1− α2
α1
< δ

β .
Taking the biological meaning into account, P1 is not a stationary state we want to be
stable. If there is no cytoplasmic material left, there should also be no autophagy going
on as the cell is dead by then. So for our purposes we need α1 < α2, such that P0 is
stable and P1 is unstable and biologically irrelevant.
Inserting P2 gives us:

J
(
δ
β , 1−

α1
α2

(
1− δ

β

))
=

(
α1(1− 2 δβ )− α2(1− 1 + α1

α2
(1− δ

β )) α2
δ
β

β(1− α1
α2

(1− δ
β )) β δβ − δ

)

=

(
−α1

δ
β α2

δ
β

β(1− α1
α2

(1− δ
β )) 0

) (3.11)

Since we cannot read off the eigenvalues of this matrix, we use a representation of the
eigenvalues with trace and determinant. For details see [22, p. 47]. In the following we
denote the above matrix just by J , for readability reasons.

λ± =
1

2

(
tr(J)±

√
tr(J)2 − 4det(J)

)
(3.12)

For the stability analysis we are only interested in the signs of the eigenvalues. First,
we look at the determinant:

det(J) = −α1
δ

β
· 0− α2

δ

β
· β
(

1− α1

α2

(
1− δ

β

))
= − α2δ︸︷︷︸

>0

(
1− α1

α2

(
1− δ

β

))
︸ ︷︷ ︸
>0 if P2 biol. relevant

(3.13)

So the determinant ist negative, if P2 is biologically relevant. Resulting from this, we
see that

√
tr(J)2 − 4det(J) > |tr(J)| in eq. (3.12). Thus, we have one positive and one

negative eigenvalue, which gives us an unstable stationary state using proposition 2.15.
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Figure 3.1: Bifurcation diagram for our ODE system (3.1) with s(t)=1, where blue shows
stable and red unstable regions of the stationary points.

Bifurcation Above we characterized parameter values for our stationary states to be
meaningful in our model setting. There we saw, that there exist parameter values, for
which two states coincide.

First we consider P0 and P1. For α1 < α2, P0 is stable and P1 is unstable. In contrast,
for α1 > α2, P0 is unstable and P1 is stable. For α1 = α2 both points coincide. So we
have a transcritical bifurcation here.

We also saw that P1 and P2 coincide for 1 − α2
α1

= δ
β . For 1 − α2

α1
< δ

β , P1 is stable

and P2 is unstable, as seen in the last paragraph. But if 1 − α2
α1

> δ
β , the matrix in

eq. (3.10) has one positive eigenvalue und P1 becomes unstable. For P2 we can see, that
det(J) in eq. (3.13) becomes positive. As the trace is negative, both eigenvalues become
negative or have at least a negative real part. Thus, P2 becomes stable. We again have
a transcritical bifurcation.

The changes of stability for the different points are visualized in the bifurcation dia-
gram in fig. 3.1.

Boundedness and domain Our solutions are bounded from below by 0, as we have
shown that they are non-negative. It remains to show, that they are bounded from
above.

For s(t) = 0, we get the following:

• As we consider here a simple saturation model for a(t), like in section 2.2.1, we
know that this will always converge to 1

γ , no matter if we start from above or
below.
Formally, we get for a > 1

γ that ȧ = 1− γa < 1− 1 = 0. Hence, a(t) is decreasing

as soon as it exceeds 1
γ . From our model assumptions we know, that our initial

value a0 := a(t0) ≤ 1. Therefore, a(t) is bounded from above by a0, if a0 >
1
γ , or

else by 1
γ itself.
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3.1 Autophagy and Cytoplasmic Material

• We first assume a0 ≤ 1
γ , hence a(t) does not exceed 1

γ as seen above. For m > M

δ−β
γ

,

we get ṁ = M+m(βa−δ) < M+m(βγ −δ) < M+ M

δ−β
γ

(βγ −δ) = 0, using β
γ −δ < 0

when P is biologically relevant and stable. So m is bounded from above by its
stationary state M

δ−β
γ

, or its initial value.

Now we assume a0 >
1
γ , hence a(t) is bounded by a0 and ṁ ≤ M + m(βa0 − δ).

Further we assume δ 6= βa0, which is in any case biologically unlikely. We look
under which condition ṁ is negative.

M +m(βa0 − δ) < 0⇔ m(βa0 − δ) < −M

⇔

{
m > M

δ−βa0 if βa0 − δ < 0

m < − M
βa0−δ if βa0 − δ > 0

(3.14)

In the second case m would be negative, which is not biologically meaningful.
Thus, we additionally assume βa0 − δ < 0. So if m > M

δ−βa0 , then ṁ < 0. Hence

m is in this case bounded by M
δ−βa0 , or by m0. As m should not exceed 1 in our

model, we need here M ≤ δ − βa0 as an additional constraint.

For s(t) = 1 we assume a,m > 0, as otherwise ȧ and ṁ are already 0.

• If a < δ
β , then ṁ = m(βa− δ) < m(δ − δ) = 0. Thus, as long as a stays bounded

by δ
β , also m stays bounded by its initial value.

• ȧ is negative, if and only if

α1a(1− a)− α2a(1−m) < 0

⇔ α1a(1− a) < α2a(1−m)

⇔ α1(1− a) < α2(1−m)

⇔ (1− a) <
α2

α1
(1−m)

⇔ a > 1− α2

α1
(1−m)

(3.15)

Therefore, a(t) is bounded by 1− α2
α1

(1−m(t)), or its initial value if it lies above.
As a(t) should be bounded by a value of at most 1, we additionally need 1− α2

α1
(1−

m(t)) ≤ 1. This is equivalent to m(t) ≤ 1, what we would like to show anyway.

So for m we know it is decreasing or constant, hence definitely bounded, if a ≤ δ
β . Thus,

if 1 − α2
α1

(1 −m(t)) ≤ δ
β , it would be guaranteed that a and m stay bounded. Solving

for m(t), we get m(t) ≤ 1− α1
α2

(1− δ
β ).

We will consider two different cases for δ
β :

• Let us first assume δ
β ≥ 1. Then 1− α1

α2
(1− δ

β ) ≥ 1 and thus m0 ≤ 1− α1
α2

(1− δ
β )

for all m0 ∈ [0, 1]. Clearly, a0 ≤ δ
β for every a0 ∈ [0, 1]. Hence, we get that for any

meaningful initial values, m is only decreasing or constant and a stays bounded
by δ

β . In particular, a stays bounded by 1 as m ≤ m0 ≤ 1.
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3 Single-Cell Models

• Now we assume δ
β < 1, leading to 1 − α1

α2
(1 − δ

β ) < 1. Thus, as long as m0 ≤
1− α1

α2
(1− δ

β ) and a0 ≤ δ
β ≤ 1, a is bounded by δ

β and m is decreasing or constant.

If 1 − α1
α2

(1 − δ
β ) < m0 ≤ 1 instead, such a threshold for a0 is dependent on the

value of m0.

Unfortunately, we did not find the exact bound in terms of our parameters and ini-
tial values. But we used the chosen parameter set from section 4.4.4, fig. 4.5, to ap-
proximate the bound for a0 by hand in this case. This shows, that also initial values
m0 > 1 − α1

α2
(1 − δ

β ) can give bounded and reasonable solutions. To find a bound for
a0, we simply changed decimal point after decimal point of a0 and plotted the solution
until time point 10000. For the plots we used the function solve_ivp from scipy [25]
with the method LSODA 1. Of course, the derived bound is probably not exact, but it
should be a good approximation. We did only search until we found a value for a0 where
a and m converge to P2, the limit case between the convergence to P0 and divergence
to infinity. This is the case for a small range of values, but we saw no need to specify
the upper bound on a0 more precisely. This would give no beneficial information, as
we still could not derive the formula for the exact bound. Furthermore, we just solved
the ODE-system numerically in python and hence the solution contains small numerical
errors and is dependent on the chosen solver method. Indeed, when using BDF as method
for the solver, a0 = 0.6288 gives already an unbounded solution, whereas the solution
converges to P2 when we use the method LSODA.
In fig. 3.2, one can see that for a0 = 0.62 both a and m converge to 0 like intended. For
a0 = 0.6288, in the second plot, we reach the unstable stationary point P2 and thus still
stay bounded. Note, that having an unstable stationary state does not mean it cannot
be reached with certain parameter values and initial values. The simplest example is
just setting the stationary state as initial value. Then the solution will stay constant.
Looking at definition 2.11 and remark 2.12, stability only means that it is always possi-
ble to start close enough to the stationary state, such that the solution will stay within
a certain distance to the stationary state. Hence, when a stationary state is unstable we
cannot always just start close enough to stay near it, but that does not mean we never
can. This also explains why we get a range of values for a0, where the solutions tend
to P2, and not only one value. For the last plot we chose a0 = 0.63. Then a crosses m
between time point 150 and 175 and both increase rapidly, resulting in an unbounded
solution.
Another interesting finding, which could be helpful when solutions tend to be un-
bounded, is that the bound for a0 gets smaller the higher we choose m0. An example
can be found in appendix 3.1, fig. 1.

For all cases, where our solutions stay bounded, we can now use theorem 2.7. Together
with remark 2.8, it follows that the maximal interval of existence for solutions to our
model is (t0,∞).

Results We have the following constraints for our model parameters:

• If s(t) = 0, we need γ ≥ 1 and M ≤ δ − β
γ (meaning also δ − β

γ > 0 to stay
reasonable) for P to be stable and biologically meaningful. The first inequality
additionally ensures that a(t) stays bounded by 1. The second one ensures that

1See figures.ipynb on https://github.com/Melanie757/Thesis-Code
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Figure 3.2: For all the plots we used the same parameter values as for fig. 4.5. The
initial value of m is always set to 0.9, whereas the initial value of a changes
from top to bottom: first a0 = 0.62, then 0.6288 and last 0.63. We also
added the values of a and m at the last time point.
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3 Single-Cell Models

m(t) stays bounded by 1, as long as a0 ≤ 1
γ . If a0 >

1
γ , we need M ≤ δ−βa0 such

that m stays bounded by 1.

• If s(t) = 1, we need α1 < α2 for P0 to be stable and P1 to be unstable. P2

is unstable or biologically irrelevant anyway. For the boundedness of solutions,
we have considered two different cases: δ

β ≥ 1 and δ
β < 1. In the first case, all

solutions stay bounded, especially by 1, as a0 and m0 should be smaller than
1. The second case is not that easy. Here we have bounded solutions as long
as m0 ≤ 1 − α1

α2
(1 − δ

β ) and a0 ≤ δ
β . If m0 > 1 − α1

α2
(1 − δ

β ), we did not find
appropriate constraints to ensure boundedness. But fig. 3.2 shows, that there are
not only unbounded solutions in this case, but also solutions converging to P0.

3.2 Autophagy, Catabolites and Cytoplasmic Material

Our second model takes furthermore the catabolites within the cell into account. Again
we assume s(t) ∈ {0, 1} for simplicity.

3.2.1 Model

We model the level of autophagy with the same approach as above. We do not add a de-
pendence on the catabolites here, since we still assume the autophagy to just depend on
the available material and not on the catabolites generated. In starvation this should be
sufficient, for catabolites are used to rapidly adapt to the new environment. Hence, they
are quickly turned into new material or additional energy, such that no situation with
too many catabolites should appear. In nutrient-rich conditions we omit a dependence
on the catabolites as there should always be enough available. What could appear, of
course, are some saturation effects when the level of catabolites gets near its maximum.
However, we will not investigate this further here, since we are more interested in the
starvation case.
For the level of material we take additionally new built material out of catabolites into
account, dependent on how much is already present. The increase is extenuated by au-
tophagy and normal degradation happening in the cell, both dependent on the current
level of material. Without starvation, a constant supply M is added.
The level of catabolites is assumed to increase dependent on the material degraded due
to autophagy, and to decrease as new material is build out of catabolites and due to
normal degradation processes. In nutrient-rich conditions we add a constant supply C.
This assumptions are brought together in the following ODE model:

ȧ(t) = (1− s(t))(1− γa(t)) + s(t)(α1a(t)(1− a(t))− α2a(t)(1−m(t)))

ṁ(t) = (1− s(t))M + β1c(t)(1−m(t))︸ ︷︷ ︸
new material out
of catabolites

− β2a(t)m(t)︸ ︷︷ ︸
material degraded

by autophagy

− δ1m(t)︸ ︷︷ ︸
other degradation

mechanisms

ċ(t) = (1− s(t))C + γ1a(t)m(t)︸ ︷︷ ︸
catabolites generated

by autophagy

− γ2c(t)(1−m(t))︸ ︷︷ ︸
catabolites used for

new material

− δ2c(t)︸ ︷︷ ︸
other degradation

mechanisms

(3.16)

with all parameters in R>0. A description of the parameters can be found in table 3.2.
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3.2 Autophagy, Catabolites and Cytoplasmic Material

Parameter Description

α1 rate constant of the log. growth of a
α2 inhibition of a due to the level of material
β1 increase of m due to available catabolites
β2 degradation of m due to autophagy
γ degradation of a
γ1 increase of c due to autophagy and material
γ2 decrease of c due to new built material
δ1 normal degradation of m
δ2 normal degradation of c
C supply of new catabolites
M supply of new material

Table 3.2: Description of the parameters in eq. (3.16).

3.2.2 Mathematical Analysis

We structure our analysis in the same way as in the last section. So we start with the
existence of a solution.

Existence of a non-negative, unique solution In the case where s(t) = 0, we get

fn

 a(t)
m(t)
c(t)

 =

 1− γa(t)
M + β1c(t)(1−m(t))− β2a(t)m(t)− δ1m(t)
C + γ1a(t)m(t)− γ2c(t)(1−m(t))− δ2c(t)

 (3.17)

for our function fn.
This function is Lipschitz continuous in [0, 1]3 with respect to a, m and c and continuous
with respect to t, like in the last model. Using theorem 2.2 and theorem 2.6, there exists
a unique maximal solution on an open interval for initial values in (0, 1)3. Hence the
first requirement of proposition 2.20 is fulfilled and we have to check the second one:

• Let a(t) = 0 and m(t), c(t) ≥ 0, then 1− γa(t) = 1 ≥ 0.

• Let m(t) = 0 and a(t), c(t) ≥ 0, then M+β1c(t)(1−m(t))−β2a(t)m(t)−δ1m(t) =
M + β1c(t) ≥M > 0.

• Let c(t) = 0 and a(t),m(t) ≥ 0, then C + γ1a(t)m(t)− γ2c(t)(1−m(t))− δ2c(t) =
C + γ1a(t)m(t) ≥ C > 0.

Therefore, a solution to our model stays non-negative for positive initial values.
If s(t) = 1, we have

fs

 a(t)
m(t)
c(t)

 =

 α1a(t)(1− a(t))− α2a(t)(1−m(t))
β1c(t)(1−m(t))− β2a(t)m(t)− δ1m(t)
γ1a(t)m(t)− γ2c(t)(1−m(t))− δ2c(t)

 (3.18)

By the same arguments as before, we get a unique maximal solution on an open interval
for initial values in (0, 1)3 and the first requirement of proposition 2.20 is fulfilled. It
holds:
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3 Single-Cell Models

• Let a(t) = 0 and m(t), c(t) ≥ 0, then α1a(t)(1− a(t))− α2a(t)(1−m(t)) = 0.

• Let m(t) = 0 and a(t), c(t) ≥ 0, then β1c(t)(1 −m(t)) − β2a(t)m(t) − δ1m(t) =
β1c(t) ≥ 0.

• Let c(t) = 0 and a(t),m(t) ≥ 0, then γ1a(t)m(t) − γ2c(t)(1 − m(t)) − δ2c(t) =
γ1a(t)m(t) ≥ 0.

So we have a non-negative, unique solution for positive initial values.

Stationary states We start again with s(t) = 0. If we solve fn = 0, we get the
following:

fn,1 = ȧ(t) = 0⇔ 0 = 1− γa∗ ⇔ a∗ =
1

γ

fn,2 = ṁ(t) = 0⇔ 0 = M + β1c
∗(1−m∗)− β2a∗m∗ − δ1m∗

⇔ m∗ =
M + β1c

∗

β1c∗ + β2a∗ + δ1

fn,3 = ċ(t) = 0⇔ 0 = C + γ1a(t)m(t)− γ2c(t)(1−m(t))− δ2c(t)

⇔ c∗ =
C + γ1a

∗m∗

γ2(1−m∗) + δ2

(3.19)

First, we want to notice that

m∗ ≤ 1⇔M + β1c
∗ ≤ β1c∗ + β2a

∗ + δ1 ⇔M ≤ β2a∗ + δ1 := A (3.20)

Inserting the equation for m∗ into the equation for c∗ results in

0 = β1δ2︸︷︷︸
=:U

c∗2 + (γ2(A−M) + δ2A− β1(C + γ1a
∗))︸ ︷︷ ︸

=:V

c∗−(CA+ γ1a
∗M)︸ ︷︷ ︸

=:W

(3.21)

The solutions of this quadratic formula are

c∗1 =
−V +

√
V 2 − 4UW

2U
and c∗2 =

−V −
√
V 2 − 4UW

2U
(3.22)

We look at −4UW :

− 4UW = 4 · β1δ2 · (CA+ γ1a
∗M) > 0 (3.23)

as all parameters are positive. Thus,
√
V 2 − 4UW > |V | and c∗2 is negative.

c∗1 is positive and for our model we additionally need c∗1 ≤ 1:

−V +
√
V 2 − 4UW

2U
≤ 1⇔ −V +

√
V 2 − 4UW ≤ 2U

⇔
√
V 2 − 4UW ≤ 2U + V ⇔ V 2 − 4UW ≤ (2U + V )2

⇔ V 2 − 4UW ≤ 4U2 + 4UV + V 2 ⇔ −UW ≤ U2 + UV

⇔ −W ≤ U + V

⇔ CA+ γ1a
∗M︸ ︷︷ ︸

>0

≤ β1δ2 + γ2(A−M) + δ2A︸ ︷︷ ︸
>0, assuming M≤A

(see eq. (3.20))

−β1(C + γ1a
∗)

(3.24)
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3.2 Autophagy, Catabolites and Cytoplasmic Material

The second last inequality holds, since U > 0. For the last inequality to be meaningful,
δ2(β1 +A) + γ2(A−M) > β1(C + γ1a

∗) has to hold.

So we arrive at the stationary state (a∗,m∗, c∗) =
(

1
γ ,m

∗, c∗1

)
∈ (0, 1]3, assuming the

constraints in eq. (3.20) and eq. (3.24) hold and are meaningful.
Since we assume for s(t) = 0 that all needed nutrients are available, we will especially
consider the case where m∗ = 1. We see from eq. (3.20), that we just need M = A for
this.

For s(t) = 1:

fn,1 = ȧ(t) = 0⇔ 0 = α1a(t)(1− a(t))− α2a(t)(1−m(t))

⇔ a∗ = 0 or a∗ = 1− α2

α1
(1−m∗)

fn,2 = ṁ(t) = 0⇔ 0 = β1c
∗(1−m∗)− β2a∗m∗ − δ1m∗

⇔ m∗ =
β1c
∗

β1c∗ + β2a∗ + δ1

fn,3 = ċ(t) = 0⇔ 0 = γ1a(t)m(t)− γ2c(t)(1−m(t))− δ2c(t)

⇔ c∗ =
γ1a
∗m∗

γ2(1−m∗) + δ2

(3.25)

Inserting the equation for m∗ in the equation for c∗, we arrive at

c∗ = 0 or c∗ =
β1γ1a

∗ −A(γ2 + δ2)

β1δ2
(3.26)

where A := β2a
∗ + δ1 as in eq. (3.20). For detailed computations see appendix 1.2

As a first step, we examine under which conditions each coordinate of these stationary
states lies in [0, 1].

• a∗ = 0 obviously lies in [0, 1]. For the second case of a∗, we get the following:

0 < a∗ ≤ 1⇔ 0 ≤ α2

α1
(1−m∗) < 1⇔ 1− α2

α1
< m∗ ≤ 1 (3.27)

• m∗ is always non-negative, as long as a∗ and c∗ are non-negative. For m∗ ≤ 1 we
need A ≥ 0, but this holds true for every a∗ ≥ 0.

• c∗ = 0 ∈ [0, 1], so we consider the second possibility for c∗. Here it holds

0 < c∗ ≤ 1⇔ 0 < β1γ1a
∗ −A(γ2 + δ2) ≤ β1δ2

⇔ 0 < β1γ1a
∗ − (β2a

∗ + δ1)(γ2 + δ2) ≤ β1δ2
⇔ 0 < a∗(β1γ1 − β2(γ2 + δ2)) ≤ β1δ2 + δ1(γ2 + δ2)

⇔

{
0 < a∗ ≤ β1δ2+δ1(γ2+δ2)

β1γ1−β2(γ2+δ2) if β1γ1 − β2(γ2 + δ2) > 0
β1δ2+δ1(γ2+δ2)
β1γ1−β2(γ2+δ2) ≤ a

∗ < 0 if β1γ1 − β2(γ2 + δ2) < 0

(3.28)

In the second case, a∗ would be negative, hence we will assume β1γ1−β2(γ2+δ2) >
0 in the following. This also implies β1γ1 − β2γ2 > 0.

Now we determine the different possibilities for the stationary states:
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• If c∗ = 0 also m∗ = 0, using the equation for m∗ in eq. (3.25). For a∗ we have
two possibilities, a∗ = 0 and a∗ = 1 − α2

α1
(1 − 0) = 1 − α2

α1
. So we arrive at the

trivial stationary point P0 = (0, 0, 0) and P1 = (1− α2
α1
, 0, 0). P1 is only in [0, 1]3,

if α2 ≤ α1.

• If 0 < c∗ ≤ 1, we have again two possibilities for a∗. For a∗ = 0, we get c∗ =
−δ1(γ2+δ2)

β1δ2
< 0, hence this is not biologically meaningful. Therefore, we consider

the case where a∗ = 1− α2
α1

(1−m∗) = α1−α2
α1

+ α2
α1
m∗. Fist we set the equation for

c∗ in the equation for m∗:

m∗ =
β1c
∗

β1c∗ + β2a∗ + δ1
=

β1c
∗

β1c∗ +A
=

β1γ1a
∗ −A(γ2 + δ2)

β1γ1a∗ −A(γ2 + δ2) +Aδ2

=
β1γ1a

∗ −A(γ2 + δ2)

β1γ1a∗ −Aγ2

(3.29)

Now we can insert a∗ and solve form∗, resulting in the following quadratic equation

α2

α1
ζ1︸ ︷︷ ︸

:=U

m∗2 +
(α1 − α2

α1
ζ1 − δ1γ2 −

α2

α1
ζ2

)
︸ ︷︷ ︸

:=V

m∗−
(α1 − α2

α1
ζ2 − δ1(γ2 + δ2)

)
︸ ︷︷ ︸

:=W

= 0

(3.30)
where ζ1 := β1γ1−β2γ2 and ζ2 := β1γ1−β2(γ2 +δ2) for readability reasons. From
eq. (3.28) it already followed that ζ1, ζ2 > 0.
The solutions for m∗ are

m∗1 =
−V +

√
V 2 − 4UW

2U
and m∗2 =

−V −
√
V 2 − 4UW

2U
(3.31)

which give us two additional stationary states P2 and P3.
Again, we examine whether these solutions are meaningful for our model. To make
the computations easier, we will assume α1 < α2. This is a finding from the next
paragraph about stability, ensuring that P0 is stable in the starvation setting.
With this assumption, we see that V < 0 and W > 0. Hence, both solutions are
positive and real valued if V 2 − 4UW ≥ 0. But as mentioned before, the only
biologically meaningful stationary state in this setting is P0. So we would like to
rule out m∗1 and m∗2. We tried to find constraints directly on the parameters, such
that both are not relevant for our model. Unfortunately, this did not work well
and gave us no meaningful conditions. Thus, we will just assume V 2 − 4UW < 0
here. Then m∗1 and m∗2 are complex and will not be reached if m(t) stays in [0, 1].

Stability With s(t) = 0, we get the Jacobian matrix

J(a,m, c) =

 −γ 0 0
−β2m −β1c− β2a− δ1 β1(1−m)
γ1m γ1a+ γ2c −γ2(1−m)− δ2

 (3.32)

When we insert the stationary state
(

1
γ ,m

∗, c∗1

)
, the eigenvalues are not that easy to

compute. But as we are most interested in the case where m∗ = 1, we only consider
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(
1
γ , 1, c

∗
1

)
here. Then we get again a lower triangular matrix with its eigenvalues on the

diagonal:

J

(
1

γ
, 1, c∗1

)
=

−γ 0 0

−β2 −β1c∗1 −
β2
γ − δ1 0

γ1
γ1
γ + γ2c

∗
1 −δ2

 (3.33)

Thus, the eigenvalues are −γ,−β1c∗1−
β2
γ −δ1 and −δ2, which are all negative when c∗1 is

non-negative. Using proposition 2.15 and theorem 2.18, we can conclude that
(

1
γ , 1, c

∗
1

)
is stable.

For s(t) = 1, the Jacobian looks like

J(a,m, c) =

α1(1− 2a)− α2(1−m) α2a 0
−β2m −β1c− β2a− δ1 β1(1−m)
γ1m γ1a+ γ2c −γ2(1−m)− δ2

 (3.34)

Inserting the trivial stationary state P0, we get

J(0, 0, 0) =

α1 − α2 0 0
0 −δ1 β1
0 0 −γ2 − δ2

 (3.35)

with eigenvalues α1 − α2, −δ1 and −γ2 − δ2. The last two are clearly negative. α1 − α2

is negative for α1 < α2. As the cell should die in a starvation medium in the long run,
we want P0 to be stable and hence will assume α1 < α2 for our model.
This assumption makes the first component of P1 negative and hence, P1 cannot be
reached by a solution starting with positive initial values. We also assumed P2 and P3

to be biologically irrelevant. For this reason we will omit the stability analysis of this
three points here, as this would give us no beneficial information.

Boundedness and domain It remains to show, that our solutions are bounded from
above.

We start with the case s(t) = 0:

• a(t) always converges to 1
γ , like in the last model. Thus, a(t) is bounded by

max
(
1
γ , a0

)
≤ 1.

• Assume a0 ≤ 1
γ . Then we know a0 ≤ a(t) ≤ 1

γ . If we additionally assume
M ≤ β2a0 + δ1, we get for m > 1:

ṁ = M + β1c(1−m)− β2am− δ1m < M − β2a0 − δ1 ≤ 0. (3.36)

Hence, m is bounded from above by 1.
If a0 >

1
γ , we know a(t) ≥ 1

γ . Assuming m > 1, we arrive at

ṁ < M − β2
1

γ
− δ1 = M −A ≤ 0, (3.37)

where the last inequality holds because of eq. (3.20). Thus, m is again bounded
by 1.
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3 Single-Cell Models

• We first assume, that the requirements to ensure 0 ≤ m ≤ 1 are fulfilled. Assuming
furthermore C + γ1 max

(
1
γ , a0

)
≤ δ2, we get for c > 1:

ċ = C + γ1am− γ2c(1−m)− δ2c < C + γ1 max
(1

γ
, a0
)
− δ2 ≤ 0, (3.38)

Therefore, also c is bounded by 1 under the above assumptions.

Next we consider s(t) = 1.

• Let m > β1c
β1c+β2a+δ1

. Then

ṁ = β1c(1−m)− β2am− δ1m

< β1c
β2a+ δ1

β1c+ β2a+ δ1
− β2a

β1c

β1c+ β2a+ δ1
− δ1

β1c

β1c+ β2a+ δ1

=
β1cβ2a+ β1δ1c− β1cβ2a− β1δ1c

β1c+ β2a+ δ1
= 0

(3.39)

So we can deduce, that m stays bounded by β1c
β1c+β2a+δ1

, which is in particular
smaller than 1, as a and c are non-negative.

• Let a > 1− α2
α1

(1−m). Then

ȧ = α1a(1− a)− α2a(1−m)

< a

(
α1

(
1− 1 +

α2

α1
(1−m)

)
− α2(1−m)

)
= a(α2(1−m)− α2(1−m)) = 0

(3.40)

Hence, a is bounded by 1− α2
α1

(1−m). This bound is smaller than 1 if and only
if m < 1, which we showed above.

• Let c > γ1am
γ2(1−m)+δ2

. Then

ċ = γ1am− γ2c (1−m)︸ ︷︷ ︸
>0 as m<1

−δ2c

< γ1am− γ2
γ1am

γ2(1−m) + δ2
(1−m)− δ2

γ1am

γ1(1−m) + δ2

= γ1am− γ1am
γ2(1−m) + δ2
γ2(1−m) + δ2

= 0

(3.41)

Thus, c is bounded by γ1am
γ2(1−m)+δ2

<∞, as a,m ∈ [0, 1].
Just using a,m < 1 to estimate this bound further, gives us that c stays below
1 if γ1 < δ2. But this is quite a rough estimate. In fig. 3.3 2, for example, we
used parameter values with δ2 < γ1. Especially the solution curve of c(t) looks
interesting, as it first decreases but then increases again until over 0.95.

Using the exact bounds instead results in inequalities, which give us no easily

2For the corresponding python code see figures.ipynb on https://github.com/Melanie757/Thesis-C

ode.
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3.2 Autophagy, Catabolites and Cytoplasmic Material
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Figure 3.3: Eq. (3.16) with s(t) = 1, solved numerically with scipy [25] in python. The
used initial and parameter values are given in table 3.3.

Name Value

Initial values
a0 0.2
m0 0.9
c0 0.8

Parameters

α1 0.2
α2 0.205
β1 0.02
β2 0.0065
γ1 0.235
γ2 0.1
δ1 0.015
δ2 0.075

Table 3.3: Initial values for the variables and parameter values used for fig. 3.3.
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3 Single-Cell Models

readable, hence informative, constraints on the parameters. Thus, we omit further
computations here, since the boundedness by any finite value is for now sufficient
for the analysis of our model. When fitting the model to real data, one can still
adjust the parameters to keep c below 1.

Now that we know our solutions to stay bounded (with certain requirements to the
parameters), we can use theorem 2.7. Together with remark 2.8, it follows that the
maximal interval of existence for solutions to our model is (t0,∞).

Results

• If s(t) = 0, then γ ≥ 1 should hold, like in the first model such that a∗ ∈ [0, 1]. For
m∗ ∈ [0, 1], we need M ≤ β2

γ + δ1 (see eq. (3.20)). For c∗ ∈ [0, 1], it is necessary
that δ2(β1 +A) + γ2(A−M) > β1(C + γ1a

∗) must hold (see eq. (3.24)).
Assuming m∗ = 1, the condition for c∗ ∈ [0, 1] also ensures stability of the biolog-
ically meaningful stationary state.
If a0 <

1
γ , M ≤ β2a0 + δ1 is additionally needed for m(t) to stay bounded by 1.

For c(t) to stay below 1, we need C + γ1 max( 1γ , a0) ≤ δ2.

• If s(t) = 1, P0 should be stable and therefore we need α1 < α2. This also ensures,
that P1 is not meaningful for our model. To rule out P3 and P4, we want V 2 −
4UW < 0 with U, V and W defined like in eq. (3.30).
a and m are already bounded by 1 without further conditions. For c we did not
find a good constraint, such that it stays below 1, but at least it is bounded by a
finite value we could specify.
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4 From Single-Cell to Multi-Cell Model

So far we only considered models for single cells. But as cells normally form whole cell
batches, the next step is to extend and adapt our first model to this new setting.

During our research for this work, we also found an interesting article by Ryo Iwama
and Yoshinori Ohsumi [15]. They investigated autophagy in yeast cultures under grad-
ual changes of nutrient supply. In the last chapter we just modeled two situations:
enough nutrients available or no nutrients available at all. This is a reasonable simpli-
fication, as in laboratory research autophagy can rapidly be induced [3]. For studying
the process of autophagy, inducing it at a certain time point is of course convenient. In
nature, however, it is more likely that the nutrient availability changes gradually and
not instantly. Hence, in the second part of this chapter, we will try to fit our model to
the findings of Ryo Iwama and Yoshinori Ohsumi.

We will start by adapting our first model from section 3.1. As the growth of a cell
batch can be expected to be different while the cells are starving or not, we again split
the model into two parts. Furthermore, we assume every single cell to behave exactly the
same, regarding the level of material and autophagy, and neglect the spacial structure
of the cell batch. Again, our model is dimensionless like the single-cell model, since we
only study levels.

4.1 First Adaption of the single-cell Model

When we first tried to adapt the single-cell model from section 3.1 to the multi-cell case,
we had not factored out β, like we now have in all the models. So we took the equations
from section 3.1 as follows

ȧ(t) = (1− s(t)) · (1− γa(t)) + s(t) · (α1a(t)(1− a(t))− α2a(t)(1−m(t)))

ṁ(t) = (1− s(t)) ·M +m(t)(βa(t)− δ)
(4.1)

and adapted them in the following way by choosing a (sort of) logistic growth model
for the cell number Y (t):

Ẏ (t) = (1− s(t)) · rY (t)

(
1− Y (t)

K

)
+ s(t) · rY (t)

(
1− Y (t)

K

)
(m(t)− TmY (t))

ȧ(t) = (1− s(t)) · (αY (t)− γa(t)) + s(t) · (α1a(t)(Y (t)− a(t))− α2a(t)(Y (t)−m(t)))

ṁ(t) = (1− s(t)) ·MY (t) +m(t)(βa(t)− δ)
(4.2)

with all parameters in R>0. For more details see table 4.2 and table 4.3.
By replacing each 1 in the equation for ȧ by Y (t), we tried to make sure that a(t)

stays bounded by Y (t) instead of 1. In this way a(t) would already be scaled according
to Y (t). Thus, we did not add another scaling in the equation for ṁ, except for the
constant supply M . Now a and m denote the summed levels of autophagy and material
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4 From Single-Cell to Multi-Cell Model
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Figure 4.1: Numerical solution of eq. (4.2), computed with scipy [25]. The initial values
and parameter values are given in table 4.1.

Name Value

Initial values
a(14h) 0.282
m(14h) 1.27
y(14h) 1.41

Parameters

α1 0.186
α2 0.5
β 0.6
δ 0.15
K 20
r 0.3
Tm 0.55

Table 4.1: Initial values for the variables and parameter values used for fig. 4.1.

in all cells together.
But this did not work as we wanted. What we did not realize until we factored out β was,
that the sign of m(t)(βa(t)−δ), and hence the sign of ṁ in the starvation case, depended

only half on Y (t). When writing m(t)(βa(t)− δ) = βm(t)
(
a(t)− δ

β

)
, the shortcoming

becomes clear at once. Considering the difference between a(t), whose value is dependent
on Y (t), and δ

β , which does not change with Y (t), is not very reasonable.

One of the best fits we could get with this model in the starvation case is shown in
fig. 4.1. For a detailed description on how the fitting is done and what data is used,
see section 4.4.3 and section 4.4.4. We also plotted δ

β , to illustrate how m increases

while a > δ
β and decreases while a < δ

β . One can see, that δ
β cannot be chosen much

bigger, as then m would first be decreasing while a increases until δ
β . Choosing higher

values for a at the beginning will also not help, as a still has to stay below Y . Hence,
a(14) ≤ Y (14) = 1.41 is needed and thus also δ

β ≤ 1.41. Having this in mind, a(26) has
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4.2 Adjusted Model

Parameter Description

α scaling of Y , if necessary (else set α = 1)
β increase of m due to autophagy
γ degradation of a
δ normal degradation of m
K maximal capacity for the cell batch
M supply of new material per cell
r rate constant of the log. growth of Y

Table 4.2: Description of the parameters in eq. (4.3).

to be around δ
β ≤ 1.41 and a(28) already smaller than that, to get the wanted solution

curve for m. This gives us very small values for the level of autophagy after 26 h. Using
the values for Y (t) from table 1, we get an autophagy level of at most 1.41

Y (26) ≈ 0.28 per
cell after 26 h. This is far away from the level we wanted to achieve.

In the next section we correct the incomplete scaling of ṁ and then analyse the
resulting model.

4.2 Adjusted Model

For readability reasons we omit s(t) here and divide the model instead directly into two
systems of equations. This is equivalent to choosing s(t) ∈ {0, 1} as we did before.

If the cells are cultured in a nutrient-rich environment, we choose a logistic growth
model. Let Y (t) denote the number of yeast cells (or a similar measure). Then we get
the following ODE model:

Ẏ (t) = rY (t)

(
1− Y (t)

K

)
ȧ(t) = αY (t)− γa(t)

ṁ(t) = M · Y (t) + βm(t)

(
a(t)− δ

β
Y (t)

) (4.3)

where all parameters are in R>0. A description of their meaning can be found in
table 4.2. a(t) and m(t) are again given as levels. But as every single cell can have a
level of 1, we get at most a level of Y (t) for the whole batch.

Later we always set α = 1 for the fitting of our model, as Y and a have already
matching units. This has the advantage, that we have one parameter less to fit.

If the cell batch is in a starvation medium, autophagy helps the cells to turn over
cytoplasmic components for new needed components and also to provide energy. In this
way the cells are able to keep growing for some time, although no new nutrients are
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4 From Single-Cell to Multi-Cell Model

Parameter Description

α1 rate constant of the log. growth of a
α2 inhibition of a due to the level of material
Tm ratio of material which is at least needed for Y to grow

Table 4.3: Description of the additional parameters for eq. (4.4).

available. Hence, we assume the cells can grow until the amount of material falls below
a certain ratio of Y , here denoted by Tm:

Ẏ (t) = rY (t)

(
1− Y (t)

K

)
(m(t)− TmY (t))

ȧ(t) = α1a(t)(Y (t)− a(t))− α2a(t)(Y (t)−m(t))

ṁ(t) = βm(t)

(
a(t)− δ

β
Y (t)

) (4.4)

where all parameters are in R>0 and Tm < 1, additionally. A description of the param-
eters which are not already included in table 4.2 can be found in table 4.3.

4.3 Mathematical Analysis

The analysis is again structured as in the last chapter. We begin by showing, that our
model has a non-negative, unique solution. Next we consider the stationary states and
their stability. Last we look at the boundedness and domain of solutions.

Existence of a non-negative, unique solution Starting with the non-starvation case,
we obtain

fn

Y (t)
a(t)
m(t)

 =


rY (t)

(
1− Y (t)

K

)
αY (t)− γa(t)

M · Y (t) + βm(t)
(
a(t)− δ

βY (t)
)
 (4.5)

fn is continuously differentiable with respect to Y , a and m, hence its derivative stays
bounded in [0,K]3. From this it follows, that fn is Lipschitz continuous in [0,K]3

with respect to Y , a and m. Furthermore, it is continuous with respect to t, as it is
independent of t. By using theorem 2.2 and theorem 2.6, we can conclude that our
model has a unique maximal solution on an open interval for positive initial values.
This is the first requirement for proposition 2.20. Now we check the second one:

• Let Y (t) = 0 and a(t),m(t) ≥ 0, then rY (t)
(

1− Y (t)
K

)
= 0 ≥ 0.

• Let a(t) = 0 and Y (t),m(t) ≥ 0, then αY (t)− γa(t) = αY (t) ≥ 0.

• Letm(t) = 0 and Y (t), a(t) ≥ 0, thenM ·Y (t)+βm(t)
(
a(t)− δ

βY (t)
)

= M ·Y (t) ≥
0.

Thus, solutions to our model stay non-negative for positive initial values.
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4.3 Mathematical Analysis

Next, we consider the case where the cells are starving. Here we have

fs

Y (t)
a(t)
m(t)

 =


rY (t)

(
1− Y (t)

K

)
(m(t)− TmY (t))

α1a(t)(Y (t)− a(t))− α2a(t)(Y (t)−m(t))

βm(t)
(
a(t)− δ

βY (t)
)

 (4.6)

Like above, this function is Lipschitz continuous with respect to Y, a and m and con-
tinuous with respect to t. Hence, with theorem 2.2 and theorem 2.6, it follows that
our model has a unique maximal solution on an open interval for positive initial values.
Looking at the second requirement of proposition 2.20:

• Let Y (t) = 0 and a(t),m(t) ≥ 0, then rY (t)

(
1− Y (t)

K

)
(m(t)− TmY (t)) = 0.

• Let a(t) = 0 and Y (t),m(t) ≥ 0, then α1a(t)(Y (t)−a(t))−α2a(t)(Y (t)−m(t)) = 0.

• Let m(t) = 0 and Y (t), a(t) ≥ 0, then βm(t)
(
a(t)− δ

βY (t)
)

= 0.

So our model stays non-negative for positive initial values.

Stationary states We first consider system (4.3). Setting all equations equal to 0, we
arrive at the following:

• Ẏ (t) = 0 ⇔ Y ∗ = 0 or Y ∗ = K.

• ȧ(t) = 0 ⇔ a∗ = α
γ Y
∗.

• ṁ(t) = 0 ⇔ M · Y ∗ + βm∗
(
a∗ − δ

βY
∗
)

= 0 ⇔ m∗ = M

δ−αβ
γ

or m∗ = mn ∈ R, if

Y ∗ = 0.

Hence, we have the following stationary states: (0, 0,mn), with mn ∈ R≥0, as we only

consider non-negative solutions, and
(
K, αγK,

M

δ−αβ
γ

)
. The last one is the stationary

state we want to be stable, as then the cell batch stabilizes at its capacity. But to be
meaningful, we additionally need α

γK ≤ K and 0 ≤ M

δ−αβ
γ

≤ K. These conditions are

equivalent to α
γ ≤ 1 and M ≤ K(δ − αβ

γ ), especially δ > αβ
γ similar to the single cell

case.
For system (4.4), we obtain:

• Ẏ (t) = 0 ⇔ Y ∗ = 0, Y ∗ = K or Y ∗ = m∗

Tm
.

• ȧ(t) = 0 ⇔ a∗ = 0 or a∗ = Y ∗ − α2
α1

(Y ∗ −m∗).

• ṁ(t) = 0 ⇔ m∗ = 0, a∗ = δ
βY
∗ or m∗ = ms ∈ R, if Y ∗ = a∗ = 0.

The only biologically meaningful stationary state is P0 = (0, 0, 0), like in the single
cell models from section 3.1 and section 3.2. To analyse also the stability of the other
possible stationary states, we compute them anyway.
Considering all different and non-negative combinations of the stationary states found
above, we get
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4 From Single-Cell to Multi-Cell Model

• P0 = (0, 0, 0),

• P1 = (K, 0, 0) = K(1, 0, 0),

• P2 = (0, 0,ms), with ms ∈ R>0,

• P3 =
(
K,K

(
1− α2

α1

)
, 0
)

= K
(
1, 1− α2

α1
, 0
)
,

• P4 =
(
K,K δ

β ,K
(
1− α1

α2

(
1− δ

β

)))
= K

(
1, δβ , 1−

α1
α2

(
1− δ

β

))
.

For detailed computations see appendix 1.3.
By factoring out K in P1, P3 and P4, we can see the similarity to the stationary states
of the single cell version, obtained from eq. (3.5).

Stability In the non-starvation case, the Jacobian matrix is stated as follows

J(Y, a,m) =

r
(
1− 2Y

K

)
0 0

α −γ 0

M − δ βm β
(
a− δ

βY
)
 (4.7)

Inserting the first stationary state:

J(0, 0,mn) =

 r 0 0
α −γ 0

M − δ βmn 0

 (4.8)

where mn ∈ R≥0. This matrix has the eigenvalues r,−γ and 0. As one of the eigenvalues
is 0, we cannot use theorem 2.18 this time. But one can see in eq. (4.3), that the equation
for Ẏ (t) is independent of the other two. Hence, if 0 is unstable for Ẏ (t), the whole
stationary point has to be unstable. However, the growth of Y is just described by a
logistic growth, where we know that 0 is unstable.
Now we insert the second stationary state:

J

(
K,

α

γ
K,

M

δ − αβ
γ

)
=

 −r 0 0
α −γ 0

M − δ βM

δ−αβ
γ

K
(αβ
γ − δ

)
 (4.9)

Here, the eigenvalues are −r,−γ and K
(
αβ
γ − δ

)
, which are all negative if δ > αβ

γ . But

this is also a premise for the point to be biologically meaningful. Using proposition 2.15
and theorem 2.18, we can deduce stability here.

No we consider the starvation-case:

J(Y, a,m) =

=

r
(
1− 2Y

K

)
(m− TmY )− rY

(
1− Y

K

)
Tm 0 rY

(
1− Y

K

)
α1a− α2a α1(Y − 2a)− α2(Y −m) α2a

−δm βm β
(
a− δ

βY
)


=

r
(
3TmK Y 2 − 2

(
m
K + Tm

)
Y +m

)
0 rY

(
1− Y

K

)
(α1 − α2)a α1(Y − 2a)− α2(Y −m) α2a

−δm βm β
(
a− δ

βY
)


(4.10)
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Inserting P0:

J(0, 0, 0) =

0 0 0
0 0 0
0 0 0

 (4.11)

Hence, the linearization and the eigenvalues give us no information about stability. The
reason, why we get only zeroes here, is that all terms of the equations in eq. (4.4)
include at least two of the variables Y , a and m or a square of one variable. Thus, the
equations are just too dependent on each other, to ensure they all got to 0 in this way.
For example, Y (t) can only go to 0, if m(t) stays below TmY (t). But m(t) can only go
to 0, if a(t) stays below δ

βY (t). Therefore, it is not that easy to find suitable parameter
conditions, such that Y (t), a(t) and m(t) show a biologically meaningful course and go
to 0 eventually. Later we will fit our model to data and see, that we can find reasonable
parameter sets were the solution curves actually converge to 0, or at least to very small
values.
Looking at the other stationary states:

J(P1) = J(K, 0, 0) =

rKTm 0 0
0 (α1 − α2)K 0
0 0 −δK

 (4.12)

This matrix has at least one positive eigenvalue, rKTm. Hence, P1 is always unstable
according to proposition 2.15 and theorem 2.18. Of course, it could also be the case
that α1 = α2. Then we would have 0 as one eigenvalue and could not make use of
the theorem. But this is very unlikely in a biological model and hence, we just assume
α1 6= α2.
For P2 with ms ∈ R>0, we get

J(P2) = J(0, 0,ms) =

 rms 0 0
0 α2ms 0

−δms βms 0

 (4.13)

Here we have two positive eigenvalues, rms and α2ms, and one that is 0. Hence, P2

is not hyperbolic and we cannot use proposition 2.15 to deduce stability or instability
for the nonlinear system. Our guess is, that P2 is at least not asymptotically stable.
Because as soon as TmY (t) < m(t), which should happen if Y (t) goes to 0 but m(t)
to ms > 0, Ẏ (t) would be positive again, resulting in an increase of Y (t). A similar
argument can be applied to a(t), since ȧ(t) includes the term +α2a(t)m(t). Thus, when
a(t) and Y (t) get small enough, this term is bigger than the rest, causing a(t) to increase
again. But of course, this effects can reverse again, such that Y (t) and a(t) decrease
until once again the above conditions hold. Hence, the point could be stable from what
we see here, as this only means Y , a and m stay “close enough” P2.
Inserting P3:

J(P3) = J
(
K,K

(
1− α2

α1

)
, 0
)

= J
(
K,K α1−α2

α1
, 0
)

=

 rKTm 0 0

K (α1−α2)2

α1
K(α2 − α1) Kα2

α1−α2
α1

0 0 βK
(
α1−α2
α1
− δ

β

)
 (4.14)
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4 From Single-Cell to Multi-Cell Model

The characteristic polynomial of this matrix is

p(λ) =
(
λ− rKTm

)(
λ−K

(
α2 − α1

))(
λ− βK

(
α1 − α2

α1
− δ

β

))
(4.15)

One can now see, that the eigenvalues are just the diagonal entries of the matrix. Thus,
we have again at least one positive eigenvalue, rKTm, such that P3 is also unstable. If
α1 = α2 or α1−α2

α1
= δ

β , one of the eigenvalues could be 0 of course and then we would
not be able to deduce instability so easily. But as this is very unlikely in a biological
model, we assume this does not happen.
When we insert P4 we get:

J(P4) = J
(
K,K δ

β ,K
(

1− α1
α2

(
1− δ

β

)))
=

=

−r(K(Tm + α1
α2
− 1)− α1

α2

δ
β ) 0 0

(α1 − α2)
δ
β −α1

δ
β α2

δ
β

−δ(K − α1
α2

(K − δ
β )) β(K − α1

α2
(K − δ

β )) 0

 (4.16)

From this matrix it is not that easy to derive the eigenvalues. But using the parameter
values of the fit in fig. 4.8, we computed the resulting eigenvalues in python: 9.84, -158.09
and -0.10 (values rounded). Hence, P4 is at least unstable for this certain parameter
set, as we have one positive and two negative eigenvalues.

Boundedness and domain Since we have already shown that solutions to our model
stay non-negative, it remains to show that they are bounded from above.

Starting with the nutrient-rich case:

• Let Y > K. Then Ẏ (t) = rY (t)

(
1 − Y (t)

K

)
< rY (t)

(
1 − K

K

)
= 0. Hence, Y (t)

stays bounded by K.

• Let a > α
γ Y . Then ȧ(t) = αY (t) − γa(t) < αY (t) − αY (t) = 0 and thus, a(t) is

bounded by α
γ Y (t). Especially, since Y is bounded by K, a is bounded by α

γK ≤ K
(see paragraph about stationary states).

• Let m > M

δ−αβ
γ

. Then we get

ṁ(t) = M · Y (t) + βm(t)

(
a(t)− δ

β
Y (t)

)
< M · Y (t) + βm(t)

(
α

γ
Y (t)− δ

β
Y (t)

)
= M · Y (t) +m(t)

(
αβ

γ
− δ
)

︸ ︷︷ ︸
<0, see st. states

Y (t)

< M · Y (t) +
M

δ − αβ
γ

(
αβ

γ
− δ
)
Y (t)

= M · Y (t)−M · Y (t) = 0

(4.17)

Hence, m stays bounded by M

δ−αβ
γ

≤ K (see st. states).
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Now we consider the starvation case. Note that we assume Y, a,m > 0, as otherwise
we would have to cover all cases, where some of the derivatives are already 0.

• We first consider Y (t). Note, that we always assume Y0 ≤ K. Looking at the last
term of Ẏ , we get the following two cases:

– m− TmY > 0 ⇔ m > TmY . As long as this is the case, Y stays bounded by
K because of the logistic growth term rY (1− Y

K ). From a biological point of
view m > TmY should be the case at the beginning of the starvation, as the
cell number should not be instantly decreasing when starvation is induced.
See for example fig. 4.2, where the optical density of the cells is still increasing
a bit after 26 hours, although there are almost no nutrients left.

– m−TmY < 0⇔m < TmY . In this case Y can only be decreasing or constant,
assuming it was bounded by K before and hence rY (1− Y

K ) ≥ 0. Thus, Y is
still bounded by K, or more precisely by m

Tm
.

So in summary, Y stays bounded by K as long as Y0 ≤ K.

• Let a > Y − α2
α1

(Y −m). Then ȧ < 0, similar to the single-cell case. Hence, a is
bounded by Y − α2

α1
(Y −m). We would like the bound to be smaller than Y , but

this is just equivalent to m being smaller than Y , which we want to show anyway.

• ṁ can only be negative, if a < δ
βY .

Considering the conditions on ȧ and ṁ to be negative, we see the similarity to the single
cell case. The only difference is, that we now have Y s instead of 1 in each term. But as
this is the case, we had here the same problems to find constraints for boundedness as
in the single cell model. Hence, we stop here and try to fit our model without further
conditions on this.

Results

• In the nutrient-rich case, we need the following constraints on our parameters:
α
γ ≤ 1 and 0 < M ≤ K(δ − αβ

γ ), including the condition δ > αβ
γ of course. Then

we get a biologically meaningful stable stationary state and bounded solutions.

• In the starvation case, we have two stationary states where we could neither show
instability nor stability, namely P0 and P2. Of course we would like P0 to be stable,
as this would be the biologically meaningful stationary state. But P2 with a very
small value for ms could also be sufficient in practice. P1 and P3 are unstable and
P4 is at least unstable with the fitted parameter set used for fig. 4.8.
Y (t) stays always bounded by its capacity K, like we would expect. For the
boundedness of a(t), we need m(t) to stay below Y (t). But like in the single cell
case, we did not find suitable conditions to ensure this in every case.

4.4 Fitting the Model to Data

Like mentioned at the beginning of the chapter, Ryo Iwama and Yoshinori Ohsumi
studied autophagy in yeast under a gradual change of nutrient availability [15]. In this
section we want to try and fit our model to the data they obtained. First, we shortly
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review the major points of the experimental set-up and results of the study. After this
we go into detail about the parameter fitting and possible model adaptions.

4.4.1 Experimental Set-Up

As a first part, the authors of [15] tried to find a good medium for the yeast to grow.
Like described in section 1.1.4, yeast shows a diauxic growth when cultured in a medium
containing glucose. Because the authors also wanted to obtain more detailed informa-
tion on this sort of growth behaviour, they chose glucose-containing media to try. The
goal was to find a medium, where the yeast growth is only dependent on the availability
of carbon sources, like glucose. To represent the growth of the yeast cell culture, they
measured the optical density at a wavelength of 600 nm, namely OD600. With this value
the number of cells per milliliter can be approximated, when some calibration is done
beforehand. But as the authors stay with the density and hence provide no factor for
this conversion, we will also use the density in our fitting procedure.
In a first step they used a standard medium with glucose (SDCA) to culture prototrophic
wild type cells. But this medium was not appropriate, as the cell growth almost ar-
rested before the available ethanol was depleted. Furthermore, the cells did not grow
logarithmically on ethanol, like they did on glucose. So they deduced, that the growth
arrest was not caused by a too low ethanol concentration, but instead by some other
factors. There are two approaches to get rid of this factors: on the one hand, to in-
crease the concentration of other nutrients, on the other hand, to decrease the glucose
concentration. In the standard medium, the cells reached quite a high cell density when
glucose was depleted. Hence, the authors considered this to have a possible negative
effect on the further growth of yeast on ethanol. But with this in mind, increasing the
concentration of other nutrients would not produce the desired properties of the yeast
growth. Thus, the authors decided to lower the glucose concentration instead, to avoid
such a high cell density.
With a medium containing less glucose (SD0.2CA), the desired diauxic growth pattern
and the dependence on carbon source availability could be achieved. They divided the
cell growth into three phases: glucose-utilizing (3-13 h), ethanol-utilizing (13-26 h) and
ethanol-depleted phase (26-32 h). This time, the yeast growth was also logarithmic in
the ethanol-utilizing phase and arrested when ethanol was depleted, see fig. 4.2.

To investigate bulk autophagy, yeast cells expressing GFP-Atg8 were used. As men-
tioned in section 1.1.2, the delivery of Atg8 to the vacuole can be used as an indicator
for bulk autophagy. For this purpose, Atg8 is tagged with GFP. If this GFP-Atg8 is
then transported inside the vacuole, Atg8 is degraded and free GFP remains. Using a
GFP-specific antibody, GFP-Atg8 and free GFP can be monitored by Western blotting
[3]. As can be seen in fig. 4.3 A, the authors found out that free GFP could only be de-
tected in the ethanol-utilizing and ethanol-depleted phase. Additionally, the cells were
investigated at certain time points using fluorescence microscopy and the ratio of cells
having fluorescence signal in the vacuoles was computed (see fig. 4.3 B). They also used
atg2∆ cells to compare and confirmed, that the delivery of GFP-Atg8 to the vacuole
was almost not possible there, as shown in fig. 4.3.

To investigate selective autophagy, the same assays as above were applied, but with
different proteins. For details on the used proteins see [15].
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Figure 4.2: Measurements of OD600, glucose and ethanol concentrations in medium with
lower initial glucose concentration. The end of the glucose-utilizing phase is
marked in blue (at 13 h) and the end of the ethanol-utilizing phase in red (at
26 h). Adapted from [15], datapoints derived with WebPlotDigitizer [26].

time points (Fig. 3A), and cell lysates were subjected to immu-
noblot analysis using anti-GFP antibodies (Fig. 3, B–F). The
cytosol started to be degraded in the ethanol-utilizing phase,
and its rate of degradation increased in the ethanol-depleted
phase (Fig. 3B). A similar pattern was observed in the ER deg-
radation, although the degradation rate was very low (Fig. 3C).
On the contrary, the mitochondria were degraded only in the
ethanol-depleted phase (Fig. 3D). In contrast to these organ-
elles, degradation of peroxisomes and LDs was not detected
during the experiment period (total cultivation time, 100 h)
(Fig. 3, E and F). Rather, the amount of Pex11-GFP increased
during the ethanol-utilizing and the ethanol-depleted phases,
and Osw5-GFP increased during the ethanol-utilizing phase.
We ascertained that Sec63-GFP and Om45-GFP were delivered
to the vacuolar lumen (Fig. 3G), suggesting that the ER and
mitochondria are degraded in the vacuole. Electron micro-
scopic observation of atg15! cells confirmed that the cytosol,
ER, and mitochondria were incorporated into autophagic bod-
ies (Fig. 3H).

To determine whether autophagy was involved in the degra-
dation of these organelles, we cultured autophagy-defective
mutants expressing Pgk1-GFP, Sec63-GFP, or Om45-GFP in
SD0.2CA medium, lysed the cells, and performed the cleavage
assay on these lysates (Fig. 4). Cytosolic components, ER, and
mitochondria were not degraded in cells lacking ATG2, sug-
gesting that these cellular components are degraded by the
autophagic pathway. Degradation of the cytosol was highly de-

pendent on ATG17, but not ATG11 (Fig. 4A). A similar pattern
was observed for degradation of the ER (Fig. 4B). These results
suggest that cytosolic components and the ER are degraded in
an Atg17-dependent manner under our experimental condi-
tion. Importantly, double-deletion of ATG39 and ATG40
diminished ER degradation (Fig. 4B), suggesting that ER-phagy
receptors are required for ER degradation under these condi-
tions. In contrast, degradation of the mitochondria was highly
dependent on ATG11 but only partially dependent on ATG17
(Fig. 4C). In addition, mitochondrial degradation was not
detected in cells lacking ATG32 (Fig. 4C). These results indicate
that mitophagy occurs in the ethanol-depleted phase. In sum-
mary, bulk autophagy and ER-phagy were induced after glucose
depletion, whereas mitophagy was induced in the ethanol-de-
pleted phase. The possible roles of Atg17 and Atg11 are dis-
cussed below (see “Discussion”).

Low-glucose medium sheds light on mitophagy during
ethanol-depleted condition

Our findings suggest that autophagy is activated to a greater
extent in the ethanol-depleted phase in SD0.2CA medium (Fig.
2A). Consistent with this, the degradation rates of cytosolic
components and the ER were higher in the ethanol-depleted
phase than in the ethanol-utilizing phase (Fig. 3, B and C). The
mitochondria were targets of autophagy during the ethanol-
depleted phase (Fig. 3D). However, mitochondrial degradation
was not observed during prolonged cultivation in SDCA
medium (Fig. 5), suggesting that the mitochondrial degradation
is induced not by long-term cultivation, but rather by ethanol
depletion. It has been reported so far that mitophagy can be
induced by prolonged cultivation on a nonfermentable carbon
source or by shifting from a nonfermentable carbon source to
nitrogen starvation medium containing glucose (12, 13, 31). In
addition to those conditions, we propose that mitophagy is also
induced by ethanol depletion after ethanol-utilizing growth.

Presence of amino acids may sustain autophagy activity
during ethanol-depleted condition

The prototrophic WT yeast cells can synthesize the amino
acids required for growth by themselves. However, as described
above, we used medium containing casamino acids, acid
hydrolysate of casein, to support the yeast growth. To evaluate
effects of the presence of amino acids, we used low-glucose
medium without casamino acids (SD0.2 medium). Growth fea-
ture in SD0.2 medium was similar to that in SD0.2CA medium;
yeast growth is correlated with concentration of glucose and
ethanol (Fig. 6A). However, there were two different aspects
between those two conditions. In SD0.2 medium, the yeast
growth was slower (Figs. 1B and 6A), and biomass was accumu-
lated less in the ethanol-depleted phase (Fig. 6B), indicating
that amino acids are used in the prototrophic yeast.

Using SD0.2 medium, in which ammonium was not depleted
during cultivation (Fig. 6C), we repeated GFP cleavage assay of
GFP-Atg8, Pgk1-GFP, Sec63-GFP, and Om45-GFP (Fig. 6,
D–G). Regarding time points when autophagy is induced,
results similar to SD0.2CA medium were obtained; bulk
autophagy and ER-phagy were induced after glucose depletion,
and mitophagy was induced in ethanol-depleted phase. We also

Figure 2. Autophagy is induced after glucose depletion in low-glucose
medium. A, WT and atg2! cells expressing GFP-Atg8 were inoculated into
SD0.2CA medium at a starting OD600 of 0.01 and then cultured for 44 h. Cells
were collected at the indicated time points and subjected to immunoblot
analysis. Glc., glucose-utilizing phase; Eth., ethanol-utilizing phase; EtOH dep.,
ethanol-depleted phase. pApe1, precursor Ape1; mApe1, mature Ape1. B, WT
and atg2! cells expressing GFP-Atg8 were inoculated into SD0.2CA medium
at a starting OD600 of 0.01 and cultured for 10 h (glucose-utilizing), 22 h (etha-
nol-utilizing), or 46 h (ethanol-depleted). The cells were observed under a fluo-
rescence microscope. Bars, 5 !m. The cells having the vacuoles with fluores-
cence signal were counted, and the ratio is shown. DIC, differential
interference contrast.

Analysis of autophagy in batch culture on low-glucose medium
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Figure 4.3: A: Western blot analysis, B: Fluorescence microscopy with ratios of cells
having fluorescence signal in the vacuoles. For more information see [15].
Taken from [15].
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4.4.2 Results on Autophagy

Autophagy was investigated in each of the phases with the following findings:

• Bulk autophagy and ER-phagy were first induced in the ethanol-utilizing phase.
In the ethanol-depleted phase, the level of bulk autophagy increased further.

• Mitophagy only occurred when ethanol was depleted.

The authors particularly mentioned the induction of autophagy in the ethanol-utilizing
phase, as the availability of ethanol was expected to be sufficient for the yeast to grow.
Hence, autophagy seems to be constitutively induced when glucose is depleted and differ-
ent types of autophagy are induced at different stages of nutrient availability. However,
the authors gave no quantitative data we could use on autophagy for our model, but only
on the amount of yeast cells and the concentration of glucose and ethanol. As shown in
fig. 4.3 B, they computed the ratio of cells with a fluorescence signal in their vacuole,
but this gives us no quantitative information about the level of autophagy happening
within each cell. Thus, we needed to make up some additional test data to be able to
fit our model in python.
Like mentioned before, we assume all cells to behave just the same. This might be a
drawback when we try to fit our model to the data in [15], since fig. 4.3 B shows that the
cells behave quite different. They start autophagy at different time points and hence
also have different levels at each time point. We introduced a model where all cells are
considered to behave identically, as this is the easiest way. But a next step could be to
take this different behaviour of the cells into account.

4.4.3 Data for Fitting

As mentioned before, we had no quantitative data on the level of autophagy and cyto-
plasmic material we could use from the paper. However, the lack of data on the material
was to be expected, as we decided on our model variables without any given datasets.
We chose the material as a variable because it summarizes everything in the cell, which
could get degraded through autophagy, and hence thought this to be a reasonable choice.

We originally set Y (t) to be the number of yeast cells. But as the data in [15] gives
OD600 measurements instead, Y (t) will represent such optical densities in the following.
Since the cell numbers and the OD600 values are linearly dependent, this makes no
difference for our qualitative findings. According to this change, a(t) and m(t) are now
scaled by the optical density instead of the cell number, having theoretically the same
unit as Y (t). In this way we can easily derive the (dimensionless) level per cell again by
dividing a(t), respectively m(t), by Y (t). But this unit for a and m makes practically
not much sense, since OD600 measurements give cell densities and do not indicate what
is happening inside the cells. Hence, a and m are of “arbitrary unit” (a.u.) here.

First, we decided to just make up some test data by hand, to see whether we could
find parameter values producing an approximately, qualitatively fitting course of the
solution. This data can be found in appendix 2, table 1, and was used for fig. 4.1. In
fig. 4.4 we plotted the data points from table 1 and added a plot showing the level of
autophagy and material per cell. In the glucose-utilizing phase we wanted a stable level
of material and basal autophagy in each cell. This is in accordance to the paper, as
additional bulk and selective autophagy are first induced when glucose is depleted. We
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Figure 4.4: Left: y shows the OD600 measurements from [15], a and m are made up for
fitting our model, Right: level of a and m per cell.

chose the level of material per cell in the glucose-utilizing phase to stay at 0.9. First we
tried just a level of 1 per cell, as the cells should be in perfect conditions. But then many
parameter sets led to unbounded solutions for a and m, as m would just have to increase
a bit over Y to change the sign of −α2(Y −m) in the equation for ȧ and hence leading
to a strong increase of a, m and Y . As we solved our model numerically in python, this
could be also an effect of the limited numerical precision. Nevertheless, it was easier
to just choose a value below 1 per cell, such that it would not matter if m increased a
bit. So until 14 h, when glucose is depleted, we set a(t) to be 0.2 · Y and m(t) to be
0.9 · Y (t) in table 1. We chose a scaling of 0.2 for a(t), because in this way a(t) is not
too high at the beginning, but is still visibly bigger 0 in the plots. As we had no data
for the basal level of autophagy, this scaling seemed to be as possible as any other. One
flaw in our dataset is, that the level of autophagy is decreasing in the ethanol-depleted
phase instead of increasing. But as we had already great difficulty in fitting our model
only approximately to this data, this made no real difference. Especially as this part of
the data only comprised 4 of the 16 data points.

Next we used the first of our already derived single-cell models to generate data
instead. Then we could scale this data with the cell densities given in the paper, to
generate data for the whole cell batch. In this way we would hopefully be able to fit the
multi-cell model more easily, as it is derived of the single-cell model.
The data used in the starvation case can be found in appendix 2, table 3, and is plotted
in fig. 4.5 on the left. In the glucose-utilizing phase, the same data as before is used.
First we tried parameter values resulting in a higher maximal value of a(t) than plotted
in fig. 4.5. But there we had great difficulty finding suitable parameter sets, as most of
the time we got unbounded solution curves when a(t), and then also m(t), got too high.
Hence, we thereafter chose parameter values resulting in a maximal value of autophagy
around 0.5, since in this way we avoid problems with unbounded solution so often.
Again, as we have no quantitative data to compare, we only chose in this way for the
named reason.
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Figure 4.5: Left: data from table 3 (data plotted on the right, multiplied with y at each
time point), Right: eq. (3.1) with s(t) = 1, solved in python using a0 = 0.2,
m0 = 0.9, α1 = 0.2, α2 = 0.3, β = 0.04 and δ = 0.032.

4.4.4 Fitting

For the fitting in python we used symfit [27] 1. This is a python package providing
functions and syntax to easily write fitting routines. The algorithms used are taken from
another python package, scipy, more precisely scipy.optimize. A short description
of the algorithms used from this package can be found in appendix 5. Additionally, we
want to note, that we let choose symfit the objective function to be minimized. In our
case, this always ended up with the default, namely least squares.
For some parts, or the fine tuning, we also adapted the parameter values by hand.

Non-starvation case For the first part of the data, in the glucose-utilizing phase, we
used our equations for the non-starvation case (see eq. (4.3)) with α set to 1, such that
we had one parameter less to fit. This can be done as a is already scaled according to
Y and hence we do not need an additional scaling of Y .
Here it was quite easy to find good parameter values, as for Ẏ (t) they could be fitted
independently to the ones of ȧ(t) and ṁ(t). Hence, we first searched good values for
r and K. Next we could use our knowledge of the stationary state and set γ = 5 and
M = 0.9 · K(δ − β

γ ) accordingly, such that a(t) converges to 0.2 · Y (t) and m(t) to
0.9 · Y (t). Thus, the only parameters left to fit were β and δ. We just tried different
values by hand for them, until we found good solution curves.
When fitting only Y (t), we tried different initial points. Since the first two data points
are very small, the error we get when we extract the values with the WebPlotDigitizer
can be comparatively high. For the point at 3 h, we first got a value of 0.04 from the
WebPlotDigitizer. But when we looked at the values on a log10-scale, in fig. 1.3, and
compared to the paper, we saw that this value was too high. Thus, we changed it to
0.023. This already improved our first fits, which shows how sensitive the fit for the

1See fitting.ipynb on https://github.com/Melanie757/Thesis-Code.
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Figure 4.6: Results of fitting only the Y (t) solution curve until 14 h with symfit, using
different points as initial values. y0 corresponds to the solution when using
the first point at 3 h as initial value, y1 when using the point at 6 h, y2 at
9 h and y3 at 10 h. The corresponding RSS scores are also added to the
different plots.

logistic growth curve is to the values in the first, quite even part of the curve. Aside from
that, we consider data from a biological experiment, where it is very unlikely that the
resulting measurements follow an exact logistic growth curve. Hence, we thought it best
to try the first four data points from table 1 as initial value in turn. The results can be
seen in fig. 4.6. We also computed the Residual Sum of Squares (RSS), to decide which
parameter set we wanted to use. We chose this value, since symfit does a least squares
fit by default. Hence, the RSS is the objective function to be minimized. Since its value
is smallest when the third point (at 9 h) is used, we chose the resulting parameter set
with r = 0.849793431417659 and K = 1.4801439740721747. To check the results again
we used scipy’s function solve_ivp. This is a newer function for solving IVPs than
scipy’s odeint, which is used in symfit to compute the solutions.
One problem with solve_ivp was, that we needed to solve the equations also backwards,
as our initial point was not our first data point in time. This worked for Y , like it worked
in symfit, but one of the solutions for a and m were always unbounded when going
back in time. This was probably due to the very small values at the beginning, where
a small numerical error can have a great influence on the computed solution. Before
experimenting with different values for a and m at 9 h, we decided to just read out the
already computed solution for Y (t) from symfit and use the computed value at 3 h as
new initial point. The values for a and m are here only dependent on Y anyway. Then
there would be no need to solve the equations back in time. Later we found out, that
one could also add the initial points as parameters and let the optimization algorithm
do the work. This resulted in almost the same values like we found above, so we stay
with our approach for now.
Putting all together, we got the solution curves plotted in fig. 4.7 on the left. The
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Figure 4.7: Left: Solving eq. (4.3) in scipy with the parameter values given in table 4.4,
Right: Levels of a and m per cell.

Name Value

Initial values
a(3h) 0.17 · y(3h) ≈ 0.0005
m(3h) 0.87 · y(3h) ≈ 0.0025
y(3h) 0.00289816

Parameters

α 1.0
β 0.1
γ 5.0
δ 0.57
K 1.4801439740721747

M 0.9 ·K(δ − β
γ ) ≈ 0.7327

r 0.849793431417659

Table 4.4: Initial values for the variables and parameter values used for fig. 4.7.

corresponding initial values and parameter values can be found in table 4.4. For a and
m we chose initial values that lie slightly below the value they are supposed to reach. We
did this, because in this way the convergence in the single-cell plot, fig. 4.7 on the right,
is good to see. One could also just start with a(3h) = 0.2 ·y(3h) and m(3h) = 0.9 ·y(3h).

Starvation case When we could not find suitable parameter values with symfit, we
tried to just solve a system of equations to get the parameter values, making use of our
data in table 3 to approximate derivatives at each point by difference quotients. But
using the first few points resulted in parameter sets giving far too low solution curves.
When we then used points in the middle of the time span or just some points, that are
distributed over the whole time span, we mostly got unbounded solution curves for a
and m. Additionally, we used the computed parameter values as a starting point for
the fitting in python, but this also did not work. In a further attempt we fixed one of
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the curves, for example a(t), by representing it by a polynome and only tried to fit the
remaining parameter values. Again, this most of the time gave us unbounded solution
curves for a and m. This already led us to the assumption, that we would not be able to
get a “perfect” fit. Furthermore, as mentioned in section 4.4.1, the authors did not only
want to investigate autophagy but also the diauxic growth of yeast. This is something
we did not explicitly include in our model and hence could cause problems when trying
to fit the parameter values.
Because using our data to find parameter values did not work, we again tried to fit our
model with symfit. We used wide ranges for the parameter values, hoping to get an
idea where useful parameter values could lie. But, as was to be expected, with no prior
knowledge on the parameter values we had to experiment quite a while to find good
parameter sets.
To make the fitting easier and faster, we reduced the number of parameters. To achieve
this, we tried to find constraints on some of the parameters, such that they are only
dependent on other parameters. Therefore, we used points of our dataset, where one of
the derivatives should be approximately zero:

• Looking at the time course of a(t) in the left plot of fig. 4.5, one can see that the
level of autophagy still seems to be increasing a bit after 30 hours. This makes
sense, since the authors of [15] wrote about a further increase of autophagy in the
ethanol-depleted phase. However, with our generated data, this increase is only
around 2.64−2.59

2
OD600
h = 0.025OD600

h . Hence, we thought it worth a try to assume
ȧ(32) ≈ 0, to reduce the number of parameters. This resulted in: ȧ(32) ≈ 0 ⇔
α1(5.28− 2.64) ≈ α2(5.28− 3.55) ⇔ α2 ≈ 2.64

1.73α1 ≈ 1.526 · α1.

• For m(t) we see that its derivative is around 0 after 26 hours. Thus, we get
ṁ(26) ≈ 0 ⇔ a(26) = δ

βY (26) ⇔ β ≈ 5.02
2.34 ≈ 2.145 · δ.

The optical cell density still seems to be increasing after 30 hours, but not much anymore.
As we additionally know, that glucose and ethanol are already depleted after 30 hours,
we assumed Ẏ (32) ≈ 0 to get an idea for the value of Tm: Ẏ (32) ≈ 0 ⇔ m(32) ≈
TmY (32) ⇔ Tm ≈ 3.55

5.28 ≈ 0.672. First we tried to set α2, β and Tm fixed in this
way. But then the solution curves we found did not flatten when they reached 30 h.
Instead a and m just rapidly increased, resulting in an unbounded solution. So we
decided to just fix α2 and β, while Tm was fitted in a range from 0.6 to 0.7. We chose
Tm, since we had at least a rough idea where its value should lie. This last approach
worked best so far, as can be seen in fig. 4.8. The corresponding code can be found on
https://github.com/Melanie757/Thesis-Code and in appendix 4 as an example
for the fitting in symfit. Because we knew the equations of the non-starvation case
would be far more easy to fit, we primarily focused on the fitting of the starvation case.
Hence, we always used as initial data the values at 14 h from table 3. Later, when we
had decided on the initial values and parameter values in the non-starvation case, we
used the end points of this solutions as initial data for the starvation case. Instead of
fitting again with this new, but only slightly different, initial data, we just adapted the
values by hand. This is the reason, why some of the values have just three decimal
places, while others have 16, the most python usually outputs. In this way we get a
continuous solution. At first we also wanted the derivatives to be equal at this time
point, to get a smooth solution. But the first problem was, that such a feature is not
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Figure 4.8: Left: Solving eq. (4.4) with the parameter values given in table 4.5, Right:
Levels of a and m per cell.

Name Value

Initial values
a(14h) 0.2811824057660078
m(14h) 1.2673713692691995
Y (14h) 1.4180265001692174

Parameters

α1 6.0
α2 1.526 · α1 ≈ 10.448
β 2.145 · δ1 ≈ 0.222
δ 0.093
K 53
r 0.364
Tm 0.645

Table 4.5: Initial values for the variables and parameter values used for fig. 4.8.
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Figure 4.9: fig. 4.8 with δ
βY (t) added.

yet implemented for ODE-systems in symfit. Another problem was also, that solution
curves for a would then always stay very low. So we decided for now to go on without
smoothness at this point.
The biggest gap by far between our data points and the numerical solution is the high
increase of a between 14 and 15 hours. When adding δ

βY (t) in the plot, like in fig. 4.9,
it instantly gets clear why we need this rapid increase. As ṁ can only be positive if
a > δ

βY , a has to increase that fast to cross δ
βY . Another reason for this increase, of

course, is the small value of Y (t) − m(t) at the beginning. We tried lower values for
δ
β , but then a cannot increase as high as our data points, since otherwise it would not
decrease quickly enough to get ṁ < 0 at the end of the time span. We also attempted
to find values for α1 and α2, such that the increase would not be that steep. As visible
in fig. 4.9, a could also take lower values and would cross δ

βY all the same. But then
the further increase was also very low. This resulted in a similar, albeit lower course of
the solution when considering the levels for a single cell.
Looking at it from a biological point of view, we thought it not that unlikely that the
cells should first rapidly increase their autophagic activity to adapt quickly to the new
conditions. But the following monotone decrease of the levels per cell does not fit to
the results in [15]. What does fit is the convergence of all curves to 0, or at least to a
small positive value, like can be seen in appendix 3.5, fig. 6. As the cells get no further
nutrients in this model, they should eventually die out.

4.5 Sensitivity Analysis

Now that we have found a set of parameter values for our system of equations (4.4), we
are interested in how sensitive the solution curves respond to changes in these values.
Therefore, we want to apply a sensitivity analysis. To get a first overview of different
methods, we refer the interested reader to [28]. We also used this review paper to
decide on the methods we wanted to cover here: the Sobol method and Morris method.
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Reasons why we chose these two methods, are that both are global and show interactions
between parameters. Also, applying two different methods, we have the possibility to
compare the results and see, whether they agree or not. A python implementation of
these two methods is provided in the library SALib [29].

First of all, we give a short description of the two methods and what their differences
are. Next, we show and discuss the results we got with SALib.

Sobol Method ([30]) The Sobol method is a variance based method, meaning that
it computes how much of the model variance is caused by a single parameter or inter-
actions of multiple parameters. In this way, one can find out which parameters reduce
the model variance most when they are fixed. One can also look at parameters, which
lead to no significant change in the model variance, and fix them to reduce the number
of free parameters.
Let Y = f(X1, X2, ..., Xk) be the model to be analysed, where Y is a scalar. Addition-
ally, all parameters are assumed to be independent. The variance caused by a single
parameter (first order sensitivity coefficient) can now be written as

Si =
VXi(EX∼i(Y |Xi))

V (Y )
, (4.18)

where X∼i denotes a matrix of all parameters except Xi. Hence, EX∼i(Y |Xi) is the
mean of Y taken over all possible values of X∼i, where Xi is kept fixed. Taking then
the variance over all possible values of Xi and dividing by V (Y ), gives us a normalized
coefficient (for more details see [30]).
Next, also the total effect index STi for parameter Xi is considered. This index comprises
first and higher order effects of Xi:

STi =
EX∼i(VXi(Y |X∼i))

V (Y )
= 1− VX∼i(EXi(Y |X∼i))

V (Y )
(4.19)

where the identity VX∼i(EXi(Y |X∼i)) + EX∼i(VXi(Y |X∼i)) = V (Y ) was used.
The authors of [30] also describe a scheme for computing the second order effects only.
But as we do not need this for our analysis, as we will see later, we omit a description
here.

Morris Method ([31] and [32]) In contrast to the above method, which gives us
quantitative information on the influence of each parameter (including interactions),
this method only gives us qualitative information. Its aim is to determine, whether
the effects of each parameter are negligible, linear and additive, or nonlinear and/or
involved in interactions. But it does not tell us which certain parameters are involved
in interactions with each other.
Let Y = f(X1, X2, ..., Xk) = f(X) be again the model we want to analyse. Furthermore,
all parameters are assumed to lie in [0, 1]. For each parameter Xi, two main sensitivity
measures are computed: µi, the overall influence of Xi on the output, and σi, as an
estimate for all higher order effects. Both measures depend on the so-called elementary
effect di(X) of parameter Xi. The idea is to use a finite difference scheme for ∂Y

∂Xi
|X,

since this can be seen as a functional index describing the influence of Xi on Y :

di(X) =
Y (X1, ..., Xi−1, Xi + ∆, Xi+1, ..., Xk)− Y (X)

∆
(4.20)
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To be able to compute this finite difference scheme reasonably, a region of experimen-
tation, Ω, is defined. This corresponds to a regular k-dimensional p-level grid. In this
grid, each Xi can take values from {0, 1

p−1 ,
2
p−1 , ..., 1}. Now, the elementary effect of Xi

can be computed for each X ∈ Ω with Xi ≤ 1−∆, where ∆ is a predetermined integer
multiple of 1

p−1 . In [31] and [32] for example, p is chosen even and ∆ = p
2(p−1) .

To now get the desired sensitivity measures µi and σi, different values for X are sam-
pled randomly from Ω to get finite distributions of the elementary effects. From these
distributions, the mean µi and the standard deviation σi can be estimated.
The authors of [32] propose additionally a refined version µ∗i of µi. This measure is
especially effective if elementary effects can have different signs. The problem when
computing µi in this case is, that elementary effects with opposite signs can cancel each
other out. In this way µi may take a value near 0, although the effect of Xi is high,
but can be of positive and negative sign. To avoid this problem, the absolute values of
elementary effects are used to estimate µ∗i . Then both estimates, µi and µ∗i , can be used
to determine, whether Xi has a significant effect and whether this effect has a positive,
negative, or both signs.
In his publication [31], Morris also describes a strategy for efficiently sampling from the
needed distributions. For this purpose, he constructs r trajectories consisting of (k+ 1)
points from Ω. Then, each trajectory provides one elementary effect for each parameter.
This sampling method was later improved by the authors of [32]. They first sample a
higher number of trajectories than needed in the end, with the original strategy. Next,
they choose from these trajectories the ones with the most spread, based on a definition
of distance they give in their article.

Implementation in SALib In SALib, both methods described above are implemented
based on, amongst others, the sources we cited. Furthermore, the library provides sam-
pling functions SALib.sample.saltelli.sample and SALib.sample.morris.sample.
Those functions generate suitably formatted input values, such that the corresponding
model outputs can then be used for the sensitivity analysis. For the Sobol method, an
extension of the Sobol sequence proposed by Saltelli et al. in [30] is used. For the Mor-
ris method, the sampling strategy of Morris in [31] and the improved sampling strategy
proposed in [32] are implemented. After using the sampling functions, one has to input
those samples into the model to get the corresponding output values for the analysis.
So, SALib does not directly interact with the model, but only generates the samples
and then takes the model outputs again for the next step. The model outputs can be
analysed with SALib.analyze.sobol.analyze, respectively SALib.analyze.morris.

analyze.
The output of the Sobol analysis are the first order sensitivities S1, total order sensitiv-
ities ST and second order sensitivities S2, if needed. Additionally, confidence intervals
are given, per default with a confidence level of 0.95. The Morris analysis returns µ, µ∗

with confidence interval and σ.

Results As input for the sensitivity analysis we chose the RSS of each solution curve
with the corresponding data points. We decided on this input, since we want to use,
and already used, this value to compare different fits. In this way we have three scalar
outputs, one for equation Ẏ , ȧ and ṁ. We chose to output a value for each curve instead
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Parameter Minimum Maximum

r 0.346 0.382
K 50.35 55.65
Tm 0.613 0.645
α1 5.700 6.100
α2 9.000 9.614
β 0.190 0.200
δ 0.092 0.098

Table 4.6: Parameter bounds for the Sobol sensitivity analysis.

of only one value, since we also wanted to see the different influences of the parameters
on every single equation.

We begin with the results of the Sobol method. Therefore, one first has to choose
bounds on each parameter, such that within these bounds the samples can be generated.
Our parameter bounds are given in table 4.6. We first started with bounds determined
by adding or subtracting 5% of the original parameter value. But this often led to
samples, which gave unbounded solutions and hence NaNs as RSS. To fix this problem,
we printed for each parameter all the samples in a scatter plot, which led to NaN as
output. Then we tried to restrict our bounds, such that we change the values as little
as possible but get rid of as many NaN-producing values as possible. Of course, we
always wanted the original parameter value to be still within the bounds. After three
runs of this procedure, we got bounds which only rarely produced NaNs. Meaning that,
after running the sampling function at most two or three times, we always got samples
producing only valid outputs. We did not want to restrict the bounds even more, such
that maybe no NaN values are produced at all, since we already have very tight bounds.
Limiting them even more would also exclude many informative parameter sets.
For the sample size we tried different values between 100 and 1500 and found, that a
sample size of 700 gives a quite stable result while running in a short time. The resulting
values for the S1 and ST sensitivities can be found in fig. 4.10 2. As we did not use
greek letters in our python implementations, the parameters are named a bit differently
in the plots: a1 for α1, a2 for α2 and so on. To determine only the influence of higher
order sensitivities, one can subtract the first order sensitivities from the total ones. The
results are visualized in fig. 4.10 in the lower plot.
As it can be seen there, all estimated higher order sensitivities lie clearly between -0.05
and 0.05. Hence, the higher order influences are negligible compared to the first order
ones. This is also the reason why we did not compute the second order sensitivities with
SALib. Of course, negative values should not be possible. But, as the sensitivities are
only estimated numerically, this can happen due to numerical errors. Additionally, we
included the summed confidence intervals. They exceed 0.1 in some cases, but since the
estimated values lie that near to 0, there is evidence that there are no significant higher
order influences.
The plots in fig. 4.10 show, that r and K have nearly no influence on the resulting RSS
(within their bounds). We also experienced this, when we tried to fit parameter values

2For the corresponding code see sensitivities.ipynb on https://github.com/Melanie757/Thesis-Code.
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Figure 4.10: The results of the Sobol method computed with SALib, plotted as errorbars.
Top left: S1 sensitivities with their confidence interval for each parameter
and each equation of system (4.4), Top right: the same for the ST sensi-
tivities, Bottom: total sensitivities minus first order sensitivities, including
the resulting confidence intervals.
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Parameter Minimum Maximum

r 0.355 0.370
K 52.50 53.50
Tm 0.610 0.647
α1 5.800 6.030
α2 9.100 9.610
β1 0.1900 0.1995
δ1 0.0927 0.1000

Table 4.7: Parameter bounds for the Morris sensitivity analysis.

by hand. β1 seems to have only little influence as well, especially on the result for ȧ.
The most influence shows Tm. Interestingly, even more on ȧ and ṁ than on Ẏ .

Next, we want to have a look at the results when using the Morris method. As a
reminder, this method only gives us qualitative information. First, we again have to
choose bounds on the parameters, which are given in table 4.7. One can see, that we
often have even tighter bounds than for the Sobol sampling (table 4.6). One reason for
this is the way, how the samples (respectively trajectories this time) are generated. As
we already mentioned in the paragraph about the Morris method, the trajectories are
generated on a regular k-dimensional p-level grid. By default, p is set to 4. We stayed
with this value at the beginning, as both Morris ([31]) and the authors of [32] used this
value for their different examples. As initial guess for our bounds we used the same
ones as above (±5%). But applying now the method to adjust the bounds as before,
we always have to exclude at least one of the four values, each parameter can take. Of
course, changing the value of p or just trying to extend some of the bounds again could
result in wider parameter ranges. But we thought it might be more reasonable to spend
more time on the analysis. If the results seem inconsistent, we can still work on the
bounds again, to see whether these caused problems.
Another point worth noticing is, that we used the sampling strategy of Morris instead
of the improved strategy. Typically, between 10 and 50 trajectories are used. With
this number the improved strategy has advantages, as it explores the parameter space
more thoroughly than the original strategy with the same number of trajectories [32].
This is particularly interesting when each model evaluation takes a considerable time
and thus only few but well distributed trajectories are needed. We first tried the SALib

implementation for this strategy with 50 trajectories. Generating the samples worked
well, but we got fairly different results of the analysis every time we generated new
ones. Hence, we concluded that the number of trajectories is just not sufficient for
the analysis of our model. But increasing the number of trajectories led to a high
increase in computation time, since more and more trajectories have to be compared to
find the most spread ones. However, as each of our model evaluations does not take a
considerable time, we simply can use far more trajectories generated with the original
strategy instead of using a few well chosen ones. This should cover the parameter space
also well enough for the following analysis. We decided on a number of 1000 trajectories.
This gave us far more stable results than before, but not as stable as we would like to
have. Hence, we tried to increase the value of p from 4 to 8. With this we reached stable
results.
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Figure 4.11: The results of the Morris method computed with SALib. First row: µ∗ and
σ plotted for all parameters and each equation we want to analyse, Second
row: the same for µ and σ, together with µ = ±2 · SEM (dashed lines).

The plots showing µ∗ and σ, respectively µ and σ, can be found in fig. 4.11. The first row
of plots shows µ∗ and σ for every parameter and each equation. Here, one can see that
the Morris method ranks the influence of Tm highest too. K and r show again only small
influences. Especially the elementary effect of K has a mean and standard deviation
of around 0 for every equation. The ranking of the remaining parameters is different
from the one obtained with the Sobol method. This can have multiple reasons, as both
methods rely on different samples and different computational schemes. But getting
the same most and least influential parameters with both methods tells us, that this
should be a reliable result. The second row of plots shows µ and σ, thus the mean and
standard deviation for every elementary effect with its corresponding sign. Furthermore,
we included the Standard Error of the Mean (SEM) in the plots like suggested by Morris
in [31]. The SEM is computed as follows for the i-th parameter:

SEMi =
σi√
r
, (4.21)

where r denotes the number of trajectories. In his publication, Morris uses the wedge
defined by µ = ±2 · SEM , to identify parameters with a non-zero elementary effect. If
a point lies outside the wedge, this could give evidence that µi is really non-zero. Since
we chose r = 1000 rather high, our wedge is very small. Only the points corresponding
to the elementary effect of K1 seem to lie inside, but they are near (0,0) anyway. Hence,
according to Morris, all other effects have probably a non-zero mean.
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When we compare both rows of plots, we do not seem to have problems with canceling
signs. Comparing for example the results for Tm in the first column of plots, we can
see that µ ≈ −µ∗. Hence, we can use the plots with µ∗ (first row) as an easy to read
ranking of the parameter’s influences. The second plots with µ then show us the sign of
the elementary effects. This is especially interesting, as the Sobol method only tells us
the proportion of model variance each parameter accounts for, but no “direction” of the
influence within the parameter bounds. Using µ instead also tells us, that the elementary
effect of Tm for example is probably negative. This suggests that increasing Tm within
its bounds mostly leads to a decrease of our analysed function (see eq. (4.20)), which
is the RSS of the solution curves. Considering the parameter bounds for Tm ([0.610,
0.647]) and the original value (0.645), this makes sense as the original value lies near
the upper boundary and should provide an optimal value within these bounds.
Additionally, one has to keep in mind the standard deviation σ, which indicates higher
order effects like interactions or non-linearity. In all plots of fig. 4.11, Tm has the highest
standard deviation. But taking into account that the Morris method only provides
qualitative results, we would in this case rely more on the result of the Sobol method,
where the higher order effects of Tm were negligible. But for such cases we applied two
methods, to compare and get the most information out of both.
There is one output from SALib.analyze.morris.analyze that we did not use here,
the confidence intervals of µ∗. We tried to add them in the first row of plots in fig. 4.11,
but they were just so small that they were hardly or not at all visible behind the points
already plotted. Thus, we decided to omit them.

To summarize the most important results:

• Both methods suggest, that Tm has the most influence on the resulting RSS, no
matter which of the solution curves (Y , a or m) we consider. Hence, the model
variance can be significantly reduced when this parameter is fixed, but its value
has to be chosen carefully.
The Sobol method also gives only negligible higher order effects for each parameter.

• The influence of K is always around 0 and the influence of r at least very small
compared to the rest. Hence, those two parameters can first tried to be fixed
when fitting the model to data. In this way one could reduce the number of model
parameters, to speed up the fitting procedure.

4.6 Modifications of the Model

In section 4.4.4 we found parameter sets for our model, where the level of autophagy per
cell is first rapidly increasing and then slowly decreasing. That is not what we searched
for according to the results in [15]. Thus, we tried to modify our model to get better
fitting results.

4.6.1 Generalized Logistic Growth

Our first idea to improve the model was to use a generalized logistic growth for the
cell number Y (t) (see also section 2.2.3). This does not attenuate the rapid increase of
autophagy at the beginning, but we thought it to be an interesting approach to improve
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Figure 4.12: A generalized logistic and (normal) logistic growth model fitted to the
OD600 data. In the first part, 3 - 14 h, we used the third data point
as initial value for the fitting procedure. In the second part, 14 - 32 h, we
just used the value at 14 h to get a continuous curve.

the fit for Y (t) at least.
Unlike the (normal) logistic growth, the generalized version can also be non-symmetric,
which seems to be the case for 14 - 32 h. As a short reminder, the equation for the

generalized logistic growth we use is Ẏ = r
nY (t)

(
1 −

(
Y (t)
K

)n)
. To see whether this

could really be beneficial, we fitted the just stated equation to the first part (3 - 14 h)
and second part (14 - 32 h) of the OD600 data. The result can be seen in fig. 4.12.
As we already figured out in section 4.4.4, for the first part from 3 to 14 h, the third

data point seems to work best as initial value for the fitting. Nevertheless, we again
tested the first four data points for the generalized model. The plots with corresponding
RSS and logistic growth curves can be found in appendix 3.2 fig. 2. Again, the third
data point seems to give the best result. However, the fit of the logistic model was
already really good and the generalized version cannot get much better.
Where we get a much better result with the generalized logistic growth is the second
part from 14 to 32 h, like clearly visible in fig. 4.12. This suggests, that the assumption
of a simple logistic growth of the cells in the starvation case could be improved.
However, this result will be different to what we can achieve with our whole model from
eq. (4.4), since we have the additional term (m− TmY ) in our equation for Ẏ there.

According to the above, we changed the equations for Ẏ (t) in the following way:

• when nutrients are available: Ẏ (t) = r
nY (t)

(
1−

(
Y (t)
K

)n)
,

• when the cells are starving: Ẏ (t) = r
nY (t)

(
1−

(
Y (t)
K

)n)
(m(t)− TmY (t)).

The other equations stay the same as in eq. (4.3) and eq. (4.4), respectively.
First, the fitting was done the same way as described in section 4.4.4. But this method
uses a least squares objective, hence all deviations of our solution curves from the data
points are weighted equally. However, since we only aimed an improvement of Y (t),
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Figure 4.13: The resulting solution curves for Y (t), when fitting the model with a gener-
alized logistic growth term in Ẏ (t). Additionally, the corresponding curves
of the model with (normal) logistic growth are plotted. The initial and
parameter values can be found in appendix 3.3, table 4 and table 5.

we tried our own weighted version of a least squares objective, adding also a penalty if
the solution curves tend to infinity 3. Therefore, we chose scipy.optimize.minimize

instead of symfit, since the implementation of a custom objective was easier there. As
starting values we used the parameter set found with symfit before. With this method
the fits for Y (t) and m(t) improved compared to the results of symfit, when considering
the corresponding RSS. For a(t) we get a higher RSS value than before 4. It was to
be expected, that the RSS of either m(t) or a(t) would increase, as they are both not
that highly weighted in the minimization as before. Compared to the original model,
the RSS values of all solution curves improved (see chapter 5). The resulting plots with
all solution curves and parameter values can be found in appendix 3.3. Since we tried
with our modification to improve Y (t), we give here only a plot in fig. 4.13 comparing
this certain curves. As already described before, until 14 h it does not really make a
difference whether to use a logistic growth model or the generalized version. In the
second part, one can see that we get a better fit. The only drawback is, that we already
have a clearly decreasing curve after 30 h, whereas the data points are still increasing
slightly.

Like for the original model, we want to apply a sensitivity analysis. In this way,
changes in the dependence of the model on different parameters can be identified. The
visualized results for the Sobol method and applied bounds can be found in appendix 3.6,
fig. 9 and table 7. One can see, that again Tm has the highest S1 and ST values. Although
the confidence interval of ST−S1 for Tm goes up to around 0.15, the estimates for ST−S1
lie clearly between -0.05 and 0.05. Hence, we assume the higher order influences to be
negligible. This time, the gap between the values for Tm and the other parameters is
even higher. Furthermore, our newly added parameter n has almost no influence on the

3See fitting.ipynb on https://github.com/Melanie757/Thesis-Code.
4See outputs in fitting.ipynb.
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4.6 Modifications of the Model

variance of the RSS. This suggests, that it could be fixed early to reduce the number
of parameters for the fitting. A similar result can be seen in the plots of the Morris
analysis (appendix 3.6, fig. 10). The negative value of µ for Tm can again be explained
by the chosen bounds on this value for the analysis.

4.6.2 First Modification of the Equation for Material

Now we want to improve the equation for ṁ when the cells are starving, to achieve a
slower increase of autophagy instead of a rapid increase. Therefore, we again look at
the equation in its expanded form:

ṁ(t) = βm(t)
(
a(t)− δ

βY (t)
)

= βm(t)a(t)− δm(t)Y (t) (4.22)

First of all, we considered changing the first term into β(Y (t) −m(t))a(t), as then m
would be bounded by Y (t). Additionally, when looking at the equation in this form,
multiplying with Y (t) in the last term seems unnecessary. Hence, we arrive at the new
equation

ṁ(t) = β(Y (t)−m(t))a(t)︸ ︷︷ ︸
increase due to autophagy

− δm(t)︸ ︷︷ ︸
(normal)

degradation

(4.23)

using the same equations for Ẏ and ȧ as in eq. (4.4). Thus, we have again the (normal)
logistic growth term in the equation for the number of cells. We did not want to
additionally change this to a generalized logistic growth, as this would be one parameter
more to fit.
From a biological point of view, the first term denotes again the increase of material due
to the level of autophagy and dependent on the level of material, that is already in the
cells. But this time the increase gets smaller the bigger m is, accounting for the limited
space within each cell. Furthermore, the degradation of material is now only dependent
on the current level of material itself.
With this new system we did not find a better fit to the data. Actually, most fitted
solution curves tended to approximately (K,K,K). This happened when δ was chosen
too small. One stationary point of the system is Y ∗ = K, a∗ = Y ∗ − α2

α1
(Y ∗ − m∗)

and m∗ = βa∗Y ∗

βa∗+δ . Hence, when δ is very small, m∗ and a∗ are approximately Y ∗ = K.
But choosing a bigger δ instead resulted in monotonic decreasing solutions for m(t). So
we tried to find conditions on the parameters such that this point becomes unstable.
Unfortunately, setting the point into the corresponding Jacobian matrix gave us no
practicable constraints.
What we did find was a parameter set, which gives interesting solution curves apart
from fitting the data points (see fig. 4.14 and table 4.8). As our data for autophagy and
cell material are no real measurements anyway, we also want to show such findings.
One arrives at δ = 1.2865 · β, when assuming ṁ(32) = 0 and taking the corresponding
values for Y (32), a(32) and m(32) from table 3.
Although we have again this rapid increase of autophagy at the beginning, we get a
slower increase starting around 26 h, where the cells enter the ethanol-depleted phase.
Furthermore, the levels of autophagy and material per cell almost stabilize between
16 and 26 h. This is not exactly what we searched for. But when considering the
curves, we thought it not that far-fetched, that the cells should first strongly activate
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Figure 4.14: Left: Solving eq. (4.4) with our modified equation for ṁ, eq. (4.23), using
the parameter values given in table 4.8, Right: Levels of a and m per cell.

Name Value

Initial values
a(14h) 0.2811824057660078
m(14h) 1.2673713692691995
Y (14h) 1.4180265001692174

Parameters

α1 9.668
α2 6.566
β 0.163
δ 1.2865 · β ≈ 0.210
K 5.162
r 1.984
Tm 0.500

Table 4.8: Initial values for the variables and parameter values used for fig. 4.14 with
eq. (4.23).
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4.6 Modifications of the Model

autophagy, then stabilize while ethanol is available, and later increase their autophagic
activity again when ethanol is depleted. However, one drawback of this solution is that
all curves stabilize at a level higher than 0. Especially Y (t) stabilizes at its capacity K
and not at m

Tm
, like we would like to have when no nutrients are available. We rather

wanted the solutions to tend to 0 instead, as the cells should eventually die when no
nutrients are available. On the other hand, reading in article [15], one can see in figure
8 B that the cell viability hardly changes the five days after entry into the ethanol-
depleted phase. Thus, the levels could be stable for at least 120 more hours. One reason
for this is probably the entry of the cells into the so-called stationary phase (for details
on the stationary phase in yeast see e.g. [33]). This could suggest, that one needs an
additional part in the model taking care of this effect.

Now, with (Y (t)−m(t)) instead of just m(t) in our equation for ṁ, we got an inter-
esting solution but no better fit to our data. Hence, we tried to finetune this approach.
Therefore, we added a parameter Ty to our ṁ-equation, which should scale the value of
Y (t). The resulting equation looks like follows:

ṁ(t) = β
(
TyY (t)−m(t)

)
a(t)︸ ︷︷ ︸

increase due to autophagy

− δm(t)︸ ︷︷ ︸
(normal)

degradation

(4.24)

where Ty ∈ (0, 1]. With Ty = 1, we simply arrive at eq. (4.23) again. Now the stationary

state of m changes to m∗ = Ty
βaY
βa+δ . Hence, we can scale the stationary state to a value

smaller than K, also for small values of δ, just by choosing Ty < 1.
Looking at it from the biological side, we now assume that the maximal level of material
gets lower when the cells are starving. Breaking it down to a single cell again, we assume
that the level of material within this cell cannot exceed Ty < 1 anymore.
For the fitting procedure, we fixed Tm = 0.672 as computed in section 4.4.4. The whole
list of parameter values can be found in table 4.9. This resulted in a good fit to the
data points, like shown in fig. 4.15 on the left. Also the levels of a and m per cell, in
fig. 4.15 on the right, show a course that fits our assumptions. The level of autophagy
first increases quite quickly, then almost stabilizes, before increasing again. Only the
second increase happens before ethanol is depleted, so a bit too early. At the beginning
the level of autophagy per cell also decreases briefly, because of the steep increase of Y
at this time. The level of material per cell first decreases quickly, but then stabilizes at
lower levels, increasing slightly again when the level of autophagy increases.

Next, we again applied a sensitivity analysis. As a side note, we had this time no
problems with our chosen bounds (±5%) and did not need to adapt them. The sensi-
tivity analysis yielded here a quite interesting result. As it can be seen for the Sobol
method in appendix 3.6, fig. 11, the only parameters with significantly high effects are
Tm and Ty. Especially, when looking only at the higher order influences ST − S1, they
still show values over 0.3. Because of this, we decided to let SALib additionally compute
the S2 sensitivity coefficients this time. This resulted in an S2 value of around 0.43 for
their interaction regarding Ẏ , 0.39 for ȧ and 0.37 for ṁ. Thus, we have a strong inter-
action of Tm and Ty. The Morris analysis, which can be found in appendix 3.6, fig. 12,
likewise suggests a high influence and interaction of Tm and Ty. The influences of all
other parameters seem here negligible. Additionally, we see the sign of the elementary
effects. Since µ is negative for Ty, an increase of Ty seems to decrease the RSS for each
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Figure 4.15: Left: Solving eq. (4.4) with our modified equation for ṁ, eq. (4.24), using
the parameter values given in table 4.9, Right: Levels of a and m per cell.

Name Value

Initial values
a(14h) 0.2811824057660078
m(14h) 1.2673713692691995
Y (14h) 1.4180265001692174

Parameters

α1 0.9420682080843957
α2 1.7377956657273594
β 2.1860515775730747
δ 0.024898361992930614
K 5.155822859681016
r 4.530153836535905
Tm 0.672
Ty 0.7298085885763022

Table 4.9: Initial values for the variables and parameter values used for fig. 4.15 with
eq. (4.24).
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Figure 4.16: Left: Solving eq. (4.4) with our modified equation for ṁ, eq. (4.24), using
the parameter values given in table 4.10, Right: Levels of a and m per cell.

equation. The sign of µ for Tm, on the other hand, is positive, suggesting that a decrease
of Tm also decreases the RSS. With this information we tried to fit the values for Tm
and Ty again. All other parameters were fixed to their already found values, as they
seem not to have a great influence within their bounds. For Tm and Ty we chose the
lower half, respectively upper half, within the bounds given in appendix 3.6, table 9.
This led to only slightly smaller RSS values than before, hence we will not change our
already found parameter set.

The steep increase of Y at the beginning comes from the term m−TmY in the equation
for Ẏ . Since we have no biological foundation for our chosen data for m(t), and thus
the value of Tm and Ty, we decided to try another fit without the data for m. This can
simply be done in symfit by setting the data for m to None. But to ensure an increase
of m at the beginning we took nevertheless an approximation of ṁ(14) with the data

points from table 1 and table 3: ṁ(14) ≈ m(16)−m(12)
16−12 = 1.41−1.071

4 ≈ 0.085. Next we
used this approximation to determine Ty dependent on the other parameters, resulting
in 0.085 ≈ β(TyY − m)a − δm ⇔ Ty ≈ 0.215 1

β + 3.217 δβ + 0.901, were the values for
Y (14), a(14) and m(14) are taken from table 3. In this way we have one parameter less
to fit. The result can be seen in fig. 4.16 and the corresponding parameter values in
table 4.10. Like intended, the steep increase of Y at the beginning is gone because of
the higher value for Tm. The solution for m is similar but higher than before. Moreover,
the steep decrease of the level of m per cell is missing. To evaluate whether this is more
reasonable or not, we would need real data.

In both of the above cases Y (t) converges to K instead of m
Tm

, like we would rather
want for the model.
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4 From Single-Cell to Multi-Cell Model

Name Value

Initial values
a(14h) 0.2811824057660078
m(14h) 1.2673713692691995
Y (14h) 1.4180265001692174

Parameters

α1 1.4587690241816567
α2 9.552509450128724
β 9.223730441798079
δ 0.0033533819911944897
K 5.28029177673666
r 2.4944097900751787
Tm 0.870949265203856

Ty 0.215 1
β + 3.217 δβ + 0.901 = 0.9231398675322214

Table 4.10: Initial values for the variables and parameter values used for fig. 4.16 with
eq. (4.24).

4.6.3 Second Modification of the Equation for Material

Another modification we tried was just changing m(t) to (Y (t)−m(t)) in the equation
for ṁ, thus resulting in

ṁ = β
(
Y (t)−m(t)

)(
a(t)− δ

βY (t)
)

(4.25)

From a biological perspective, we now assume the level of material to increase as long
as the level of autophagy exceeds a certain level. But the increase is extenuated the
higher the level of material gets.
Although this modification would not change the rapid increase of a(t) needed at the
beginning, we wanted to see whether this had a positive effect on the resulting fit.
Like already assumed, it did not really improve the fit, but we had less problems with
unbounded solutions. The corresponding plots and fitted parameter values can be found
in appendix 3.4. One big drawback is, that the fitted curves for Y (t) and a(t) converge
very quickly to 0 and for m(t) even to a negative value, as visible in appendix 3.5,
fig. 7. If m(t) gets negative it is not biologically meaningful anymore. Also the rapid
convergence of Y (t) and a(t) to 0 does not fit the information about cell viability given
in [15].
The plotted results of the sensitivity analysis can be found in appendix 3.6. In both
figures, fig. 13 and fig. 14, we can find three groups of parameters: r and K with very
small sensitivity coefficients, Tm again with the highest values and all other parameters
with similar coefficients in between. This time, all higher order effects ST − S1 are
comparatively high, except for r andK. Hence, we examined the second order sensitivity
coefficients S2. However, the values all lay between -0.09 and 0.008. Thus, the high total
effects must be caused by third or higher order effects, which we cannot examine in this
way.

(Un)fortunately, on time we got a typo in the code and wrote (1−m) instead. Sur-
prisingly, this gave an almost perfect fit. As m is always bigger than 1 for our data in
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Figure 4.17: Left: Solving eq. (4.4) with the modified equation for ṁ, eq. (4.26), using
the parameter values given in table 4.11, Right:Levels of a and m per cell.

Name Value

Initial values
a(14h) 0.2811824057660078
m(14h) 1.2673713692691995
Y (14h) 1.4180265001692174

Parameters

α1 0.1741920909034433
α2 0.26027862251141193
β 0.18705182750308452
δ 0.0935790357918391
K 14.93470846029889
r 0.3610402147878471
Tm 0.672

Table 4.11: Initial values for the variables and parameter values used for fig. 4.17 with
eq. (4.26).

the starvation case, (1−m) is just equivalent to a change of sign of the whole equation.
Hence, we tried instead to fit the following equation for ṁ:

ṁ = βm(t)
(
δ
βY (t)− a(t)

)
(4.26)

This resulted in the solution curves shown in fig. 4.17 and parameter values given in
table 4.11. With this model the curves also seem to tend to 0 or at least to very low
values. The corresponding plot until 10000 h can be seen in appendix 3.5.
However, when looking at the meaning of the terms, this does not match our original

assumptions. In this equation, the increase of m is independent of a. Instead, it just
depends on the current number of cells and level of material. Autophagy only decreases
the level of material here. Thus, as Ẏ does not directly depend on a, the level of
autophagy has a negative effect on the level of material and cell number instead of a
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Figure 4.18: Left: Solving eq. (4.4) with the modified equation for ṁ, eq. (4.27), using
the parameter values given in table 4.12, Right: Levels of a and m per cell.

positive one, as we wanted. That the model fits our data so well could be a side effect
from deriving the data from our single cell model.

4.6.4 Third Modification of the Equation for Material

Instead of having the sign of ṁ dependent on a difference of a and Y , which already
made problems above, we tried an equation where it is dependent on a difference of m
and Y instead. This would also help us staying with a bounded solution. This new
equation for ṁ looks like follows:

ṁ(t) = βa(t)
(
Y (t)− δ

βm(t)
)

= βa(t)Y (t)︸ ︷︷ ︸
increase due to

autophagy

− δa(t)m(t)︸ ︷︷ ︸
degradation due to

autophagy

(4.27)

The first term describes the increase of material due to autophagy and the number of
cells. We did not multiply a term including m here, as the level of autophagy should
decrease when the level of material gets too low anyway. The second term is the decrease
due to autophagy, which is small when there is only little material left. Fitting our model
with this equation for ṁ in symfit, gave us the solution curves shown in fig. 4.18. The
corresponding parameter values are given in table 4.12. This looks similar to our fitted
curves in fig. 4.15. Only when considering the levels per cell, one can see a more uniform
increase of autophagy here.
The sensitivity analysis showed a high influence of Tm, β and δ, whereas the effects
of the other parameters all seem negligible. The corresponding plots can be found in
appendix 3.6, fig. 15 and fig. 16. Considering only the higher order effects ST − S1 in
fig. 15, we see that they still have values between 0.25 and 0.5. Thus, we let SALib

compute the S2 coefficients. For the interaction of Tm with β we got values lower 0.08
for each equation, hence negligible. Also the interaction of Tm with δ showed no higher
values. However, the S2 coefficients for β and δ were 0.1 for Ẏ , 0.23 for ȧ and 0.12 for
ṁ. This suggests an interaction between β and δ. The remaining parts of the total
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Name Value

Initial values
a(14h) 0.2811824057660078
m(14h) 1.2673713692691995
Y (14h) 1.4180265001692174

Parameters

α1 0.5157881010810613
α2 0.9293444104759587
β 3.208759002703862
δ 4.414748255442791
K 5.143422883668531
r 6.607682705570198
Tm 0.69679544430603

Table 4.12: Initial values for the variables and parameter values used for fig. 4.18 with
eq. (4.27).

effects then have to come from third or higher order effects.
Again, Y (t) converges to K instead of m

Tm
here.
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5 Discussion

In the first part of this thesis we proposed two single-cell models describing autophagy
in yeast cells. Therefore, we made use of publications like [1] and [2] to understand
the underlying principles and decide on the variables to use. Next, we analysed our
models mathematically including the existence and non-negativity of unique solutions,
their boundedness and domain, and stationary states together with their stability. We
tried to find constraints on the parameters of each model to ensure desired properties
like boundedness and the stability of certain stationary states. For the first model we
could also conduct a bifurcation analysis, showing critical values where stationary states
change their stability characteristics.

In a second step, we adapted the first single-cell model to a multi-cell setting. We
analysed the resulting model in the same way as done before, trying to find meaningful
constraints to ensure boundedness and stability of certain stationary states.

After this, we tried fitting the model to data we found in an article of Ryo Iwama
and Yoshinori Ohsumi [15]. One drawback was, that we could only use the data on the
cell density from this article, since the other measurements described quantities we did
not incorporate into our model. Thus, we needed to make up test data to be able to
fit our model meaningfully. Furthermore, the authors also wanted to study a second
phenomenon, the diauxic growth of yeast. Our model was not designed to take this
phenomenon into account, hence this could additionally be an issue when trying to find
suitable parameter values. The fitting procedure was then quite complex. A major
difficulty was here, that we had no prior information on the parameter values. The
variables we chose were not used in other models we could find. In fact, we only found
a few publications modeling autophagy in mammalian cells via molecular interactions
and one publication with, probably, another ODE model about autophagy, which was
not accessible. Thus, we could not take parameter values from similar approaches to
get a starting point for our parameter search. Instead, we had to search a wide range of
values, which was not easily possible. Moreover, good starting values are often crucial
for an effective parameter fitting. We tried different means of fixing parameters, to speed
up the fitting process and be able to try wider ranges for the remaining parameters in
an acceptable time. Eventually, we found a parameter set, which gave a good fit (see
fig. 4.8).

Especially the resulting levels of a and m per cell, however, did not match the results
in [15] or our assumptions. Thus, we tried a few modifications of our original model in
the starvation case to improve the fit of the solution curves. In the following, we now
want to compare these different model versions. We do not consider the nutrient-rich
case here, as this part was far more easy to fit and already gave very good results with
our basic model. Furthermore, we omit the first version of our first modification of ṁ,
since we could not get a good fit there. Also the “typo”-version of the second modifica-
tion is left out, because we have no biologically meaningful explanation for it.
Since we always did a least squares fit with symfit, thus minimizing the RSS, we wanted
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5 Discussion

Model RSS AICc

Basic model

RSS(a) = 2.56233

-44.03683984
RSS(m) = 0.35078
RSS(Y) = 0.31339
Sum: 3.2265

Gen. logistic growth

RSS(a) = 2.43485

-44.48642665
RSS(m) = 0.18120
RSS(Y) = 0.15248
Sum: 2.76853

First modification of ṁ, adapted

RSS(a) = 0.06332

-96.85131471
RSS(m) = 0.24739
RSS(Y) = 0.17256
Sum: 0.48327

Second modification of ṁ

RSS(a) = 1.35396

-48.16926159
RSS(m) = 0.86682
RSS(Y) = 0.59053
Sum: 2.81131

Third modification of ṁ

RSS(a) = 0.01825

-109.22116815
RSS(m) = 0.18566
RSS(Y) = 0.16345
Sum: 0.36736

Table 5.1: RSS values and AICc for the basic model and each modification.

to compare this value for all of our models here. Additionally, we chose to compute the
AICc, to have a second criterion also taking the number of parameters into account.
The AICc is a second order version of the AIC. It is bias adjusted for models, where
too less samples are given compared to the number of parameters. K. Burnham and
D. Anderson recommend in their book to use the AICc if the ratio of samples to the
number of parameters is less than 40 [34]. This is the case for our models, as shown
in appendix 6. There we also give more details on the computation of the AICc. We
decided on this criterion, because it is one of the widely used and well studied model
selection criteria. Another criterion, which we first considered, is the Bayesian Informa-
tion Criterion (BIC). But the underlying assumption for this criterion is, that the true
model is in the set of examined models, which we do not think is true in this case. For
more details on the AIC, AICc, BIC and their comparison, see for example [34].
In table 5.1, the computed RSS values (rounded) are given for each model, together
with the AICc. We divided the RSS into values for each single solution curve, as often
only one curve shows a particularly high score. Furthermore, since our data for Y is the
only measured data, we were particularly interested in the RSS value for this curve. The
AICc was then computed with the sum of all RSS scores. Splitting also the AICc into
three different values would not be meaningful, because also the number of parameters
is taken into account. But all of our equations are dependent on each other, hence each
of them is indirectly dependent on every parameter in the model.
Taking first only RSS(Y) into account, the model with generalized logistic growth fits

best. This was to be expected, since this modification aimed only at a better fit for
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Y (t). But also the first and third modification give a good fit considering the RSS(Y).
One drawback of the generalized logistic growth model is the high RSS value for a(t),
which also results in a high sum for the RSS.
When we consider the sum of the RSS values for each model, the third modification is
the best, followed by the first modification. The RSS values for all other models are at
least 5 times higher, mostly due to high RSS scores of a(t). This finding also corresponds
to the AICc scores, where the model with the lowest score should be preferred.
Following this results, one could now try in the starvation case to combine a generalized
logistic growth model for Y (t) with the first or third modification of the ṁ-equation.

Last, we also want to take a look at the parameter values for K in each model
and the results of the sensitivity analysis. When we set up our equation for Ẏ in the
starvation case, the intention was that the cell growth should be limited by the amount
of available material instead of the capacity K. Our assumption here was, that the cell
batch has so much space, that the lack of nutrients hinders the cell growth before the
batch reaches its maximal capacity. Otherwise we would get a mixture of the effects
from the lack of nutrients and the limited space. Hence, our capacity K should be
larger than 5.3, which is approximately the value where the data for Y tends to. The
only fitted models satisfying this requirement are the original model, the generalized
logistic growth version and the model with the second modification for ṁ. Hence, these
models with their parameter values reflect our above assumptions best. Although we
want to mention again, that the long term behaviour for the second modification is not
biologically meaningful, since m(t) converges to a negative value. In this case one has to
decide, whether the solutions are only important in the time span, where measured data
is given, or also in longer time periods. On the other hand, we already mentioned in
section 4.6.2 that the cell viability according to [15] hardly changes for at least 120 hours
after the cells enter the ethanol-depleted phase. All three models we just mentioned,
however, already decrease clearly at the end of our regarded time interval. Thus, one
could also interpret our Ẏ -equation in another way. Assuming that our model is only
valid as long as the cells stay stable in the stationary phase, K could be a starvation
dependent maximal capacity of the cell batch and the term (m− TmY ) only influences
how fast the batch reaches this capacity. Then we would like the solution curves to
stabilize after 32 h and presume, that we need another model when the cell batch
begins to diminish due to the lack of nutrients. In this way the models with the first or
third modification for ṁ would be best, like chosen by the AICc.
Regarding the sensitivity analysis, we first want to note again, that this analysis strongly
depends on the chosen parameter bounds. Starting at different parameter values with
other bounds could change the results considerably. With this in mind, we want to
shortly discuss our main results. For the basic model, we found that Tm has the highest
influence on the resulting RSS. But also the other parameters, except r and K, had
a discernible influence. Thus, one could adjust the solution curves by tuning multiple
parameter values. This has the advantage, that we get many possibilities for different
solution curves. On the other hand, having many parameters to fit is more demanding.
Especially, when only small changes of some parameter values lead to unbounded or
unstable solutions, like it was in our case. Then one would rather like to fix the most
influential parameters, in order to be able to fit the remaining ones. We tried this by
fixing Tm and setting α2 and β at least dependent on other parameters. But this did not
work, probably because the chosen value for Tm was not close enough a value allowing
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5 Discussion

a good fit. Setting only α2 and β, dependent on α1 and δ, then worked. The sensitivity
analysis for the generalized logistic growth version showed a similar result, except that
also n did not have a notable influence. For the model with our first modification of ṁ,
however, the results were quite interesting. Here, only Tm and Ty show non-negligible
influences. Particularly, they also showed a strong interaction. This could explain, why
it was comparatively easy to fit this model when we fixed the value for Tm. Once we had
suitable parameter ranges, all parameters except Ty would not have a great influence
anyway, hence the fitting procedure must only find a good value for Ty. Of course,
finding a good value for Tm and suitable ranges for the other parameters may not be
easy, but either these ranges are very wide in our case or we were just lucky to find them
so quickly. The model with our second modification for ṁ showed again a different result.
Here we had quite clearly three groups of parameters with different levels of influence.
The greatest influence had again Tm. Then came α1, α2, β and γ, all with a similar
value. Last we had r and K with only negligible influences. The higher order influences
of all other parameters were still notable, so we examined the second order interactions
between the parameters. These were all around 0, so we deduced that they have to come
from third or even higher order interactions. This could be an interesting starting point
for further analysis of this model. Especially the parameters, with which Tm has higher
order interactions, could help in making the fitting of the model easier. We also find
it worth noticing, that in this case both parameters included in the ȧ-equation seem to
have no influence. The model with our third and last modification for ṁ showed once
again another result. In both sensitivity analysis, Tm, β and δ had a similar influence,
while all other parameters were negligible. Thus, one could first try to fix these three
parameter values if the model is fitted again, in order to speed up the procedure. Again,
the parameters determining ȧ seem to have no influence.

Certainly, there are many more possible modifications to adapt the model further. A
next step for example could be, to use another function for s(t). We only used here
a step function with one jump from 0 to 1 at 14 h. But one could also try to use a
continuous function. We already played around with different versions for s(t) a bit, but
did not get a good result yet. For example, we tried to simply approximate our previous
step function with a sigmoid function of the form 1

1+e−x+14 . But when the change from
0 to 1 was not quickly enough, we could not easily find a good parameter set.
When we searched for more background about the diauxic growth, we found an interest-
ing article presenting an ensemble of models describing diauxic growth [35]. Since the
effects of diauxic growth are explicitly included in the data we used from [15], it could
also be worth trying to construct a model from this direction. Starting with a model
for diauxic growth, one could try to incorporate the process of autophagy in some way
and get by that an even more realistic model.
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Appendix

1 Detailed Computations and Proofs

In this section we give the detailed computations or proofs of some results we only stated
in the main part.

1.1 Solution and Symmetry of the Logistic Equation

First we want to show that our stated solution for y(t) is the actual solution. The proof
follows [22, pp. 176-177].

To solve ẏ(t) = ay(t)
(
1 − y(t)

K

)
, one can apply the so-called “trick of Riccati”. This

means, we define a new variable for which we can solve the resulting ODE more easily.
In our case we take v(t) = 1

y(t) , thus

v̇(t) = − ẏ(t)

y(t)2
= −

ay(t)
(
1− y(t)

K

)
y(t)2

= −a
y(t)− y(t)2

K

y(t)2

= −a
(

1

y(t)
+

1

K

)
= −av(t)− a

K

(1)

This ODE can now simply be solved by variation of constants. Without loss of generality
we assume here t0 = 0, hence v0 = 1

y0
.

v(t) = v0e
−A(t) +

∫ t

0
e−(A(t)−A(s)) aK ds

= v0e
−at + a

K e
−at
∫ t

0
easds

= v0e
−at + a

K e
−at 1

a(eat − 1)

= v0e
−at + 1

K (1− e−at)

(2)

where we used A(t) =
∫ t
0 a dτ = at for the second equation, since a is constant.

Going now back to our original variable y(t) = 1
v(t) , we arrive at

y(t) =
1

v(t)
=

1

v0e−at + 1
K (1− e−at)

=
1

1
y0
e−at + 1

K (1− e−at)

=
y0K

Ke−at + y0(1− e−at)

=
y0K

e−at(K − y0) + y0

(3)
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Next we show that y(t) is point symmetric around K
2 .

That it should be K
2 can easily be seen by setting the second derivative of y(t) to 0:

ÿ = a
(

1− 2y
K

)
= 0 ⇔ 1 = 2y

K ⇔ y = K
2 . Since we know that ẏ(t) > 0 for y = K

2 , it is an

inflection point. To actually show symmetry, we first need the value ti with y(ti) = K
2 :

y(t) =
K

2
⇔ y0K

e−at(K − y0) + y0
=
K

2

⇔ e−at(K − y0) + y0 = 2y0

⇔ e−at =
y0

K − y0

⇔ t = −1

a
ln

(
y0

K − y0

)
(4)

Let t > 0. Then y(ti − t) + y(ti + t) = K should hold:

y(ti − t) + y(ti + t) =
y0K

e−a(ti−t)(K − y0) + y0
+

y0K

e−a(ti+t)(K − y0) + y0

=
y0K

eate
ln(

y0
K−y0

)
(K − y0) + y0

+
y0K

e−ate
ln(

y0
K−y0

)
(K − y0) + y0

=
y0K

eat y0
K−y0 (K − y0) + y0

+
y0K

e−at y0
K−y0 (K − y0) + y0

=
K

eat + 1
+

K

e−at + 1

= K
eat + 1 + e−at + 1

(eat + 1)(e−at + 1)

= K
eat + 1 + e−at + 1

1 + eat + e−at + 1

= K

(5)

Hence, we can deduce point symmetry for y(t).

1.2 Stationary states 1

Inserting m∗ = β1c∗

β1c∗+β2a∗+δ1
into c∗ = γ1a∗m∗

γ2(1−m∗)+δ2
and using A := β2a

∗ + δ1:

c∗ =
γ1a
∗ β1c∗

β1c∗+A

γ2
(
1− β1c∗

β1c∗+A

)
+ δ2

⇔ c∗
(
γ2

A

β1c∗ +A
+ δ2

)
= γ1a

∗ β1c
∗

β1c∗ +A

⇔ c∗γ2A+ c∗δ2(β1c
∗ +A) = γ1a

∗β1c
∗

⇔ c∗ = 0 or γ2A+ δ2(β1c
∗ +A) = β1γ1a

∗

⇔ c∗ = 0 or β1δ2c
∗ = β1γ1a

∗ − γ2A− δ2A

⇔ c∗ = 0 or c∗ =
β1γ1a

∗ −A(γ2 + δ2)

β1δ2

(6)
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2 Data Tables

1.3 Stationary states 2

Here we compute the stationary states given for the multi-cell model in the starvation
case. We consider different cases, to make the computations more clear.

• We start by setting Y ∗ = 0. Then we have to possibilities for a∗:

– if a∗ = 0, then ṁ = 0, independent of the value of m. Hence, we get the
stationary states P2 = (0, 0,ms) with ms ∈ R.

– if a∗ = Y ∗− α2
α1

(Y ∗−m∗) = α2
α1
m∗, we have again two possibilities to achieve

ṁ = 0:

∗ if m∗ = 0, we get a∗ = 0 and thus the stationary state P0 = (0, 0, 0).

∗ if a∗ = δ
βY
∗ = 0, we set both equations for a∗ equal and arrive at m∗ = 0.

Hence, we get again P0.

• Next we set Y ∗ = K. Again, we have two possibilities for a∗:

– if a∗ = 0, we can get

∗ P1 = (K, 0, 0), when m∗ = 0, or

∗ no valid stationary state, as 0 = a∗ = δ
βK 6= 0 is not possible.

– if a∗ = K − α2
α1

(K −m∗)

∗ and m∗ = 0, we get a∗ = K − α2
α1
K = K

(
1 − α2

α1

)
. Thus, we arrive at

P3 =
(
K,K

(
1− α2

α1

)
, 0
)
.

∗ if a∗ = δ
βK, we can set both equations for a∗ equal and solve for m∗. So

we get m∗ = K
(
1− α1

α2

(
1− δ

β

))
and arrive at P4 =

(
K,K δ

β ,K
(
1− α1

α2

(
1−

δ
β

)))
.

• Last we can set Y ∗ = m∗

Tm
:

– if a∗ = 0, we look at the two possibilities such that ṁ = 0:

∗ if m∗ = 0, also Y ∗ = 0 and we arrive at P0.

∗ if a∗ = δ
β
m∗

Tm
, we get m∗ = 0 by setting both equations for a∗ equal. Thus,

we get again P0.

– if a∗ = m∗

Tm
− α2

α1
(m

∗

Tm
−m∗) = m∗

Tm
(1− α2

α1
(1− Tm)):

∗ if m∗ = 0, it follows that a∗ = 0 and Y ∗ = 0. Hence, we get again P0.

∗ if a∗ = δ
β
m∗

Tm
, we set both equations for a∗ equal and arrive at 1− α2

α1
(1−

Tm) = δ
β . Hence, the value of m∗ does not matter, but we would need

this constraint on the parameters. As we look at a biological model, it
is very unlikely that exactly this constraint holds, except we want it to.
Therefore, we can assume this stationary state to be negligible.

2 Data Tables

In this section we give the data tables used to fit our models. The first test data can be
found in table 1. The single cell data used for the second test data is given in table 2
and the resulting scaled multi-cell data in table 3.
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3 Further plots

t 14 16 18 20 22 24 26 28 30 32

a 0.2 0.25 0.31 0.36 0.4 0.44 0.47 0.48 0.49 0.5
m 0.9 0.86 0.82 0.79 0.77 0.75 0.72 0.71 0.69 0.67

Table 2: Data for 14 - 32 h derived by solving eq. (3.1) numerically with python, using
a0 = 0.2, m0 = 0.9, α1 = 0.2, α2 = 0.3, β = 0.04 and δ = 0.032.

t 14 16 18 20 22 24 26 28 30 32

Y 1.41 1.64 2.24 2.56 3.24 4.13 5.02 5.09 5.23 5.28
a 0.28 0.42 0.69 0.92 1.3 1.81 2.34 2.46 2.59 2.64
m 1.27 1.41 1.85 2.03 2.49 3.08 3.64 3.59 3.60 3.55

Table 3: Data from table 2 multiplied with the given optical cell densities from [15].

3 Further plots

In this section we show additional plots, which can be helpful but are not necessary for
the understanding in the main part.

3.1 Second Example for boundedness

In this example, we chose m0 to be 0.95, instead of 0.9 like in fig. 3.2. Then solutions
are already unbounded for a0 ≥ 0.442, for example, which can be seen in fig. 1. This is
noticeable lower than before, where solutions stayed bounded for a0 ≤ 0.6288, at least.

3.2 Initial Points for the Generalized Log. Growth

Like we did for the logistic growth model for Y (t), we tested the first four data points as
initial value for the fitting of the generalized version. We also added the fitted logistic
curves to the plots in fig. 2, to instantly see differences.

3.3 Fitted Curves for the Generalized Log. Growth Model

The plots shown in fig. 3 and fig. 4 were derived the same way as fig. 4.7 and fig. 4.8.
We had to adapt the value for m(3) a bit, as otherwise the level per cell would have
exceeded 1. We then also adapted the value of a(3), to get a smoother result. Again,
some of the parameter values do not show the whole 16 decimal points of the python
output. We adapted them by hand to get a slightly better result. To compare different
solutions we used the RSS with our data points.

3.4 Fitted Curves for the Second Modification

Changing m to Y −m in the equation for ṁ did not really improve the fit, regarding the
RSS, but it helped staying with bounded solution curve. The resulting fit of eq. (4.4)
with our modification eq. (4.25) can be found in fig. 5.
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Figure 1: For all the plots we used the same parameter values as for fig. 4.5. The initial
value of m is always set to 0.95, whereas the initial value of a changes from
top to bottom: first a0 = 0.44, then 0.44089 and last 0.442. We also added
the values of a and m at the last time point.

Name Value

Initial values
a(3h) 0.18 · y(3h) ≈ 0.0022
m(3h) 0.86 · y(3h) ≈ 0.0104
y(3h) 0.01203952

Parameters

α 1.0
β 0.029
γ 5.0
δ 0.48
K 1.413931678779375

M 0.9 ·K(δ − β
γ ) ≈ 0.6034

n 2.429362977019412
r 1.3819066797483224

Table 4: Initial values for the variables and parameter values used for fig. 3.
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3 Further plots
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Figure 2: Results of fitting a generalized logistic growth model until 14 h with symfit,
using different points as initial values. y0 (generalized) corresponds to the
solution when using the first point at 3 h as initial value, y1 (generalized)
when using the point at 6 h, y2 (generalized) at 9 h and y3 (generalized) at 10
h. The corresponding RSS are also added to the different plots. Additionally,
the fits of the logistic model are plotted (see also fig. 4.6).
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Figure 3: Left: Solving eq. (4.3), adapted with a generalized logistic growth, with the
initial values and parameter values given in table 4, Right: Levels of a and m
per cell.
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Figure 4: Left: Solving eq. (4.4), adapted with a generalized logistic growth, with the
initial values and parameter values given in table 5, Right: Levels of a and m
per cell.

Name Value

Initial values
a(14h) 0.2788898680560751
m(14h) 1.186228590939174
Y (14h) 1.3995981480119983

Parameters

α1 19.94995054
α2 35.97842182
β 0.21027698
δ 0.0851718
K 57.46757584
n 1.94896191
r 0.81570673
Tm 0.66521046

Table 5: Initial values for the variables and parameter values used for fig. 4.
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3 Further plots
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Figure 5: Solution curves of eq. (4.4) with eq. (4.25), using the parameter values given
in table 6.

Name Value

Initial values
a(14h) 0.2811824057660078
m(14h) 1.2673713692691995
Y (14h) 1.4180265001692174

Parameters

α1 3.2217885769458685
α2 1.526 · α1 = 4.9164493684193955
β 2.145 · δ = 1.608284035974072
δ 0.7497827673538797
K 40.80756726756603
r 1.0087272776202856
Tm 0.6478166024785968

Table 6: Initial values for the variables and parameter values used for fig. 5 with
eq. (4.25).
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Figure 6: Solution curves of eq. (4.4) until 10000 h, using the initial and parameter
values given in table 4.5.

3.5 Long Term Behaviour

Solving eq. (4.4) with the parameter values given in table 4.5 until 10000 h in python
(solve_ivp from scipy) gives us the plot shown in fig. 6. We also printed the last
values of the solution curves and got Y (10000) ≈ 0.012 OD600, a(10000) ≈ 0.005 a.u.
and m(10000) ≈ 0.008 a.u. When we computed the solutions until even higher values
of t, the solution curves still got nearer 0. This suggests, that they will converge to 0.

For our second modification for ṁ the solution curves stabilize very quickly, although
m does not converge to 0 as we would like (see fig. 7). When we compute the solution
in scipy only until 70 h, we already clearly see that Y (t) and a(t) go to 0, but m(t)
converges to a negative value. Printing the last value of the plot, we get m(70) ≈
−1.276049046521142 a.u.

When we let the solver compute the solutions of our model with eq. (4.26) until 10000
h, we get the plot shown in fig. 8. Printing the last values of the solution curves, we
got Y (10000) ≈ 0.040OD600, a(10000) ≈ 0.020 a.u. and m(10000) ≈ 0.026 a.u. We also
tried even higher values for t and the solution curves still got nearer 0, suggesting that
they converge to 0.

3.6 Sensitivity Analysis for the Modified Models

Like already done for the original model, we also applied the Sobol and Morris sensitivity
analysis for the model modifications. In this way one can see, whether the dependence
of the model on different parameters changes.

Generalized Logistic Growth When we apply the Sobol method to our generalized
logistic growth model version, we get the plots shown in fig. 9, using the bounds given
in table 7. The corresponding Morris analysis and bounds are given in fig. 10 and
table 8.
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3 Further plots
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Figure 7: Solution curves of eq. (4.4) with the modified equation for ṁ, eq. (4.25), until
70 h, using the initial and parameter values given in table 6.
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Figure 8: Solution curves of eq. (4.4) with the modified equation for ṁ, eq. (4.26), until
10000 h, using the initial and parameter values given in table 4.11.

Parameter Minimum Maximum

r 0.740 0.802
n 1.810 2.001
K 55.10 60.90
Tm 0.629 0.663
α1 19.01 20.10
α2 35.75 37.79
β 0.193 0.206
δ 0.080 0.086

Table 7: Parameter bounds used for the Sobol analysis shown in fig. 9.
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Figure 9: The results of the Sobol method computed with SALib, plotted as errorbars.
Top left: S1 sensitivities with their confidence interval for each parameter and
each equation of eq. (4.4), where Ẏ is changed according to section 4.6.1, Top
right: the same for the ST sensitivities, Bottom: total sensitivities minus first
order sensitivities, including the resulting confidence intervals.

Parameter Minimum Maximum

r 0.742 0.802
n 1.810 1.935
K 55.10 60.90
Tm 0.6290 0.6619
α1 19.01 20.10
α2 35.50 37.79
β 0.193 0.205
δ 0.081 0.086

Table 8: Parameter bounds used for the Morris analysis shown in fig. 10.
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3 Further plots
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Figure 10: The results of the Morris method computed with SALib. First row: µ∗

and σ plotted for all parameters and each equation we want to analyse (see
section 4.6.1), Second row: the same for µ and σ, together with µ = ±2·SEM
(dashed lines).
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Figure 11: The results of the Sobol method computed with SALib, plotted as errorbars.
Top left: S1 sensitivities with their confidence interval for each parameter
and each equation of eq. (4.4), where ṁ is changed according to eq. (4.24),
Top right: the same for the ST sensitivities, Bottom: total sensitivities minus
first order sensitivities, including the resulting confidence intervals.

First Modification We did the sensitivity analysis here only for the adapted modifica-
tion including Ty, since we could not get a good fit for the first version. The results can
be found in fig. 11 and fig. 12 and the corresponding bounds in table 9. The bounds are
derived by computing ±5% of the original values given in table 4.9.

Second Modification Here we chose to only analyse the original modification without
our typo. In the following, the visualized results of the Sobol and Morris method can
be found in fig. 13 and fig. 14. The used bounds (±5% of the original values in table 6)
are given in table 10.

The Morris analysis results here in much larger values than for the other models. This
has a simple explanation, when we look at the single terms of eq. (4.4) and eq. (4.25).
Since Ẏ includes a logistic growth term, Y (t) can at most increase until K. If now Y (t)
becomes K, which can easily happen when we compute the solutions numerically, Ẏ = 0
and Y (t) = K for the rest of the timespan. a(t) and m(t) can then also increase until
at most K, as ȧ and ṁ contain (Y − a) or (Y −m) in each term. Thus, all solution
curves are bounded by K. But this means, that we can have solution curves which
almost instantly increase until K and stay there. Since they do not tend to infinity,
those are valid solutions producing no NaN values, but their RSS score is of course very
high. Computing then the elementary effect between such a solution and a good fit,
results in the high values for µ and µ∗ visible in fig. 14.
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3 Further plots

Parameter Minimum Maximum

r 4.304 4.757
K 4.898 5.414
Tm 0.638 0.706
α1 0.895 0.989
α2 1.651 1.825
β 2.077 2.295
δ 0.24 0.026
Ty 0.693 0.766

Table 9: Parameter bounds used for the Sobol and Morris analysis shown in fig. 11 and
fig. 12.
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Figure 12: The results of the Morris method computed with SALib. First row: µ∗

and σ plotted for all parameters and each equation we want to analyse (see
eq. (4.4) and eq. (4.24)), Second row: the same for µ and σ, together with
µ = ±2 · SEM (dashed lines).
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Figure 13: The results of the Sobol method computed with SALib, plotted as errorbars.
Top left: S1 sensitivities with their confidence interval for each parameter
and each equation of eq. (4.4), where ṁ is changed according to eq. (4.25),
Top right: the same for the ST sensitivities, Bottom: total sensitivities minus
first order sensitivities, including the resulting confidence intervals.

Parameter Minimum Maximum

r 0.958 1.059
K 38.767 42.848
Tm 0.615 0.680
α1 3.061 3.383
α2 4.671 5.162
β 1.528 1.689
δ 0.712 0.787

Table 10: Parameter bounds used for the Sobol and Morris analysis shown in fig. 13 and
fig. 14.

100



3 Further plots
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Figure 14: The results of the Morris method computed with SALib. First row: µ∗

and σ plotted for all parameters and each equation we want to analyse (see
eq. (4.4) and eq. (4.25)), Second row: the same for µ and σ, together with
µ = ±2 · SEM (dashed lines).
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Figure 15: The results of the Sobol method computed with SALib, plotted as errorbars.
Top left: S1 sensitivities with their confidence interval for each parameter
and each equation of eq. (4.4), where ṁ is changed according to eq. (4.27),
Top right: the same for the ST sensitivities, Bottom: total sensitivities minus
first order sensitivities, including the resulting confidence intervals.

Third Modification For our third modification of ṁ, the results of the Sobol and
Morris method can be found in fig. 15 and fig. 16. Furthermore, the bounds are given
in table 11, using again ±5% of the original values given in table 4.12.
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3 Further plots

Parameter Minimum Maximum

r 6.277 6.938
K 4.886 5.401
Tm 0.662 0.732
α1 0.490 0.542
α2 0.883 0.976
β 3.048 3.369
δ 4.194 4.635

Table 11: Parameter bounds used for the Sobol and Morris analysis shown in fig. 15 and
fig. 16.
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Figure 16: The results of the Morris method computed with SALib. First row: µ∗

and σ plotted for all parameters and each equation we want to analyse (see
eq. (4.4) and eq. (4.27)), Second row: the same for µ and σ, together with
µ = ±2 · SEM (dashed lines).
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4 Example Code for Fitting

from symfit import variables, parameters, Fit, D, ODEModel

from symfit.core.minimizers import DifferentialEvolution

y, a, m, t = variables(’y, a, m, t’)

a1, d1, K1, r1, Tm = parameters(’a1, d1, K1, r1, Tm’)

a1.min, a1.max, a1.value = 6, 6.1, 6.03

d1.min, d1.max, d1.value = .08, .1, .09

K1.min, K1.max, K1.value = 44, 45, 44.8

r1.min, r1.max, r1.value = .36, .37, .364

Tm.min, Tm.max, Tm.value = .64, .65, .644

a2 = 1.526*a1

b1 = 2.145*d1

model_dict = {

D(y, t): r1*y*(1-y/K1)*(m-Tm*y),

D(a, t): a1*a*(y-a)-a2*a*(y-m),

D(m, t): b1*m*(a-d1/b1*y)

}

i=0

ode_model = ODEModel(model_dict, initial={t: t1_sc[i], y: y1_sc[i], a:

a1_sc[i] , m: m1_sc[i]})

fit = Fit(ode_model, t=t1_sc, y=y1_sc, a=a1_sc, m=m1_sc, minimizer=

DifferentialEvolution)

fit_result = fit.execute()

print(fit_result.params)

Listing 1: Fitting eq. (4.4) in symfit.

5 Optimization Algorithms from scipy

In this section we give a short description of the two algorithms used in the fitting
routines, based on their documentation. Both methods are global minimizers. For more
details see scipy’s documentation on https://docs.scipy.org/doc/scipy/referen

ce/ and the references within.

5.1 Basin-Hopping

As a first try we often used the Basin-hopping algorithm, since it worked quite good
in our first fitting attempts. This stochastic method consists of mainly two phases: a
global stepping algorithm followed by a local minimization.
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6 AIC and AICc

For a certain number of iterations, by default 100, the algorithm iteratively searches
the global minimum of a function f in the following way: First, a random perturbation
of the coordinates is applied, where one can also play with the used step size. Now a local
minimization is applied, resulting in new coordinates. After this, the new coordinates
are accepted or rejected, depending on the computed function value f(xnew). The de-
fault acceptance test is the Metropolis criterion of the standard Monte Carlo algorithm.
Thus, new coordinates xnew are always accepted if f(xnew) < f(xold). Otherwise, the

acceptance probability is e
−(f(xnew)−f(xold))

T , where T is the so-called temperature.

5.2 Differential Evolution

When we got no good result with the Basin-hopping algorithm or wanted to apply an-
other method on already adjusted parameter ranges, we used the Differential Evolution
algorithm. This is also a stochastic method, attempting to find the global minimum. In
contrast to the Basin-hopping algorithm, this method is population based.

In each generation, the algorithm mutates each candidate solution depending on a
mutation constant and the chosen strategy. The resulting trial candidate then replaces
the original one if its fitness is better. If it is additionally better than the best overall
candidate, it replaces this one as well. For a faster convergence than in the original
algorithm, the best solution vector gets updated continuously within a single iteration
by default.

6 AIC and AICc

The following is based on [34].
The AIC in its general form is formulated as follows:

AIC = −2 log(L(θ̂|y)) + 2K (7)

where K is the number of estimable parameters, θ̂ is an estimator for the parameter θ
of the considered model, y the given data and L is the likelihood. Hence, L(θ̂|y) should
be the maximum value of the likelihood function. When comparing a set of models, the
model with the smallest AIC should be preferred.
Since we used a least squares estimation, we can use a special form of the above criterion,
assuming normally distributed errors with constant variance σ2:

AIC = n log(σ̂2) + 2K

with σ̂2 =
1

n

n∑
i=1

ε̂2i
(8)

where K is the number of estimated parameters, including σ̂2, n is the number of
samples and ε̂i are the estimated residuals of the considered model. Thus, in our case,
σ̂2 can be computed in the following way:

σ̂2 =
1

30

10∑
i=1

(Y (ti)− Yti)2 + (a(ti)− ati)2 + (m(ti)−mti)
2 (9)
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with ti from table 3 and Yti , ati and mti the corresponding values in the same table.
Y (ti), a(ti) and m(ti) denote the values of the considered model at the time point ti.
Our number of samples is 30, since we have 10 time points with 3 values each when
looking only at the starvation case.
Like already mentioned in chapter 5, compared to the number of parameters we have
only few data points. Our basic model has 7 parameters, like two of the modifications,
while the other two modifications have 8 parameters. Thus, together with σ̂2, we have
8, respectively 9, parameters to estimate. When we look at the ratio of samples this
results in 30

8 = 3.75, respectively 30
9 = 3.3. Hence, we are far below 40, which is a

suggested threshold in [34]. In this case, it is recommended to apply the AICc. This is a
second order AIC accounting for the small sample size with a bias adjustment, resulting
in

AICc = AIC +
2K(K + 1)

n−K − 1
(10)

We implemented this criterion in fitting.ipynb, which can be found on https://github

.com/Melanie757/Thesis-Code.
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