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Abstract
On the way towards fusion energy devices numerical plasma simulations play a key role.
For both, fusion research as well as risk mitigation in the planning process of fusion devices,
numerical models are an important building block. Especially, five-dimensional gyrokinetic
turbulence simulations are believed to deliver a good qualitative understanding of the
plasma behavior and precise quantitative data. In the plasma core these models are well
established for turbulence and transport studies. However, in the plasma edge, close to
the device boundary, numerical models are still only at the beginning of covering the rich
physics. Since this region is of significant importance for achievable fusion power and
lifetime of plasma-facing components, covering the present additional challenges is vital.
In particular, steep density and temperature gradients and large fluctuation amplitudes
are dominant in this region and call for a “full-f” treatment. Since the current gyrokinetic
core codes are not yet capable to tackle these complications, the development of new
gyrokinetic models for the plasma edge is necessary. Some development efforts already
started, but several research topics are still untouched.
Therefore, in this thesis we present the newly developed code PICLS, which is aimed to
specifically study turbulence in open magnetic field line systems, as present in the Tokamak
scrape-off layer (SOL) region. PICLS is a gyrokinetic particle-in-cell code and is based on
an electrostatic full-f model with linearized field equation and kinetic electrons. For the
discretization, B-spline Finite elements are applied. The plasma sheath that builds up
directly in front of the device wall is modeled via logical sheath algorithms. In an open field
line plasma, where the field lines are hitting the device wall the sheath region is critical.
To model particle collisions, a Lenard-Bernstein collision operator was implemented.
With this setup we performed the first gyrokinetic particle-in-cell simulations of a well-
studied one-dimensional parallel transport problem during an edge-localized mode in
the SOL. This case was studied in the collisionless and collisional case. After thorough
investigation and successful comparisons with previous continuum gyrokinetic simulations,
we were confident to extend the model to three-spatial dimensions to study 3D open field
line systems.
For the extension of the code to 3D, we implemented a so called “2D1D solver” with a
normal Poisson solver in the 2D plane and a Fast Fourier Transformation (FFT) in the
third spatial dimension. As a first 3D application we studied ion temperature gradient
(ITG) modes in a periodic screw pinch setup without sheath boundary conditions. We
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Abstract

chose this simple setup to test the main 3D features of PICLS, such as the particle pusher
and the 2D1D field solver against analytic solutions. This was an important validation
and verification step since for open field line systems no analytical solutions are available.
In a first attempt, as a final test case for this thesis we selected a 3D helical slab setup
to study turbulence in helical open field lines. This test case was previously studied by
a continuum gyrokinetic code and the results serve as comparison for our simulations.
Applying this setup, most of the open field line features implemented in PICLS can be
applied and first curvature-driven turbulence results can be obtained with PICLS. As this
is only a first attempt, further studies and verification tests will have to be done in the
future.
With developments and concepts introduced in this thesis a major step towards a gyrokinetic
particle-in-cell code for transport and turbulence studies in the Tokamak scrape-off layer
region was taken. The knowledge gained from this work can be used to independently
study open field line configurations, or to further extend existing plasma core models
towards the plasma edge/SOL region.
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Zusammenfassung
Numerische Plasma-Simulationen spielen eine Schlüsselrolle bei der Entwicklung hin zu
Fusionsenergie-Reaktoren. Sowohl in Bezug auf Fusionsforschung, also auch zur Risikomin-
imierung während des Planungsprozesses von Fusionsreaktoren, sind numerische Modelle
ein wichtiger Baustein. Vor allem von fünf-dimensionalen gyrokinetischen Turbulenz-
Simulationen glaubt man, dass diese ein gutes qualitatives Verständnis und präzise quanti-
tative Daten liefern können. Im Plasmainneren sind diese Modelle bereits für Transport-
und Turbulenz-Simulationen etabliert. Im Plasma-Randbereich, nahe der Gefäßwand,
stehen numerische Modelle hingegen immer noch erst am Anfang die dort vorherrschende
vielfältige Physik zu erfassen. Da diese Region von grundlegender Bedeutung für die erre-
ichbare Fusionsenergie und die Lebensdauer der dem Plasma ausgesetzten Komponenten
ist, müssen die dort vorherrschenden zusätzlichen Herausforderungen verstanden werden.
Speziell steile Dichte- und Temperatur-Gradienten und große Fluktuations-Amplituden
sind dominant in dieser Region und verlangen die Verwendung der gesamten Verteilungs-
funktion (“full-f”). Aktuell verfügbare gyrokinetische Codes für das Plasmainnere können
diese Effekte noch nicht behandeln und deshalb ist die Entwicklung neuer gyrokinetischer
Modelle für die Plasma-Peripherie notwendig. Einige Entwicklungen in diese Richtung
sind bereits gestartet, doch es gibt noch zahlreiche unbeantwortete Forschungsfragen.
Aus diesem Grund stellen wir in dieser Arbeit den neu entwickelten Code PICLS vor,
der speziell auf die Erforschung von Turbulenz in Plasmen mit offenen magnetischen
Feldlinien abzielt, wie sie in der äußersten Schicht eines Tokamak-Reaktors (der sogenan-
nten “Scrape-off Layer (SOL)”) vorliegen. PICLS ist ein gyrokinetischer Particle-in-Cell
Code und basiert auf einem elektrostatischen full-f Modell mit linearisierter Feldgleichung
und kinetischen Elektronen. Für die Diskretisierung werden B-Spline Finite Elemente
benutzt. Die Plasmaschicht, die direkt vor der Reaktorwand entsteht (“Sheath”), wird
durch “logical sheath - Algorithmen” modelliert. In einem Plasma mit offenen Feldlinien,
wo die Feldlinien auf die Reaktorwand auftreffen, ist die Sheath-Region entscheidend. Für
die Teilchenstöße wurde ein Lenard-Bernstein Stoßoperator implementiert.
Mit dieser Konfiguration konnten wir die ersten gyrokinetischen Particle-in-Cell Simulatio-
nen eines bereits gut erforschten ein-dimensionalen parallelen Transport-Problems während
einer am Rand lokalisierten Mode (“ELM”) im SOL durchführen. Dieser Fall wurde mit
und ohne Stöße analysiert. Nach gründlichen Untersuchungen und erfolgreichem Vergleich
mit vorherigen gyrokinetischen Kontinuum-Simulationen, haben wir unser Modell auf
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Zusammenfassung

drei räumliche Dimensionen erweitert, um damit 3D Systeme mit offenen Feldlinien zu
untersuchen.
Für die 3D-Erweiterung des Codes wurde ein so genannter “2D1D” Löser mit einem
einfachen 2D Poisson Löser innerhalb einer Ebene und einer Fast Fourier Transforma-
tion (FFT) in der dritten räumlichen Dimension eingeführt. Als erste 3D Anwendung
wurden Ionen-Temperatur-Gradient (ITG) Moden in einem periodischen “Screw pinch”
ohne Sheath Randbedingungen studiert. Diesen einfachen Aufbau haben wir gewählt,
um die wichtigsten 3D Features in PICLS, wie z. B. den Teilchen Pusher und den 2D1D
Feldlöser, an Hand analytischer Lösungen zu testen. Dies war ein wichtiger Validierungs-
und Verifikationsschritt, da für Systeme mit offenen Feldlinien keine analytischen Lösungen
zur Verfügung stehen.
In einem ersten Versuch haben wir als finalen Testfall für diese Arbeit eine 3D spiralför-
mige Slab Konfiguration gewählt, um Turbulenz in spiralförmigen offenen Feldlinien zu
erforschen. Dieser Fall wurde zuvor bereits mit Hilfe eines gyrokinetischen Kontinuum
Codes untersucht und dessen Resultate dienen uns als Vergleich für unsere Simulationen.
Durch die Verwendung dieses Aufbaus können der Großteil der in PICLS implementierten
Features im Gesamtverbund getestet und erste Krümmungs-getriebene Turbulenz-Resultat
mit PICLS erzielt werden. Da es sich bei den präsentierten Ergebnissen um einen er-
sten ambitionierten Versuch handelt, werden zukünftig noch weitere Untersuchungen und
Verifikations-Tests gemacht werden müssen.
Mit den Entwicklungen und Konzepten, die in dieser Arbeit eingeführt wurden, konnte
ein großer Schritt hin zu einem gyrokinetischen Particle-in-Cell Code für Transport- und
Turbulenz-Studien in der Tokamak Scrape-off Layer Region gemacht werden. Das in
dieser Arbeit gewonnene Wissen kann dazu genutzt werden unabhängig offene Feldlinien-
Konfigurationen zu studieren, oder existierende numerische Modelle für das Plasmainnere
in Richtung Plasmarand und SOL Region zu erweitern.
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1 Introduction: No virtual tokamak
without the edge

The global population is already approaching 8 billion people and according to calcula-
tions of the United Nations Department of Economic and Social Affairs / Population
Division this number will exceed 11 billion by 2100 [1]. Several reports state that despite
some energy efficiency optimization effects, the world energy consumption will further
increase, amongst others due to increasing economic wealth in developing countries
(e.g., [2], [3]).
Unfortunately, energy production from fossil fuels is one of the key human contributions
to global warming. This statement is still not globally accepted, but several inter-
national institutions support it (e.g., see a report from the Intergovernmental Panel
on Climate Change [4]). Independent whether one supports this theory or not, due
to the massive social pressure major governments are shifting away from traditional
energy sources and thus alternative technologies for energy production become more
and more relevant. An example for this is Germany, where the exit from coal energy
until 2038 was decided by the government in 2018, or the European Union that released
an ambitious “Green Deal” in 2019 to reduce greenhouse gas emissions. Also in the light
of the upcoming electric mobility, a pre-condition to create a really significant, rather
than only an idealistic impact on carbon dioxide reduction, is to produce electricity
from alternative, low emission (especially carbon dioxide) energy sources.
Renewable energies have shown to be a key contributor for future greenhouse gas neutral
energy production, but recent studies expect that they will not be able to cover all
global requirements in mid-term future (e.g. [3]). However, if this is true or not can
not be said, yet, as this also heavily depends on the social and political acceptance
of these technologies. From a technical point of view, especially their volatility to
environmental conditions is problematic for base load production. Nuclear fission was
also seen as a significant source for the increasing energy consumption, but drastic
events like Tschernobyl and Fukushima provoked severe skepticism within the public
opinion towards this technology. In the course of these events, society is becoming more
and more reluctant towards fission and a shift in mindset is not foreseeable.
A promising alternative that is under discussion, especially for base load energy pro-
duction, is nuclear fusion. As an upcoming technology it still has to prove its viability
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1 Introduction: No virtual tokamak without the edge

as a reliable and essential energy source. The large-scale experiment ITER, which is
currently under construction and expected to have its first Deuterium-Tritium (D-T)
plasma burning in 2035, is a key step towards checking this viability. However, alone
for the construction of an experiment of that size investments of EUR 18-22 billion are
planned [5]. To set this number in relation, the construction cost of USD 3.9 billion of
the tallest skyscraper of New York, the One World Trade Center, shall be noted for
comparison. In projects of that size small deviations or false assumption of machine
specifications can lead to significant delays and increase in cost. From a cost and project
management view mitigation measures and a thoughtful preparation are key for success.
An important and extremely valuable building block for risk mitigation, but also for
further developments in fusion research are numerical plasma simulations (see e.g.,
[6]). Since one of the most promising concepts for future fusion energy production and
also the concept of ITER, is the tokamak, simulations of this concept are of particular
interest.
Plasma theory and simulation has advanced significantly during the past decades, but
to model a whole virtual tokamak, still certain areas must be further investigated. One
key topic to study is the plasma periphery, including the so-called edge and scrape-off
layer, where the plasma approaches the machine wall. Exactly in studying models
for the turbulent plasma fluxes towards the device wall lies the focus of this thesis.
But before we start to further detail our motivation some relevant terms need to be
introduced in the following sections.

1.1 Tokamaks

A plasma generally consists of charged particles (electrons and ions) that balance out
towards neutrality on larger scales, which is called quasi-neutrality. Plasmas that
are relevant for fusion reactors must be heated up to several million Kelvin so that
the positively charged nuclei can overcome the repulsive electric force. Due to the
extreme heat required for the fusion reaction, the plasma needs to be confined and
insulated against thermal losses. In tokamaks this is done via magnetic fields. Magnetic
confinement basically uses the Lorentz force which obliges charged particles on helical
orbits around the field lines. Thus, the particle is free to move along the magnetic field
line, but perpendicular to it its motion is forced on a helical trajectory ([7], [8], [9]).
Up to today, the most developed and successful reactor concept is the tokamak, which
is also the concept of choice for ITER. Another alternative concept with constantly
improving and promising results is the stellarator, such as Wendelstein 7-X ([10], [11]).
However, the development status of these machines is still considered less mature than
in the tokamak case.

2



1.2 Scrape-off layer (SOL)

In tokamaks, by placing a set of planar electric coils a strong magnetic field is created
that confines the charged particles on helical orbits along the field lines. One might
expect that by assembling the coils in a ring and thus closing the magnetic field lines in
a ring, the particles could already be confined within this ring. However, various drift
effects due to the inhomogeneity of the magnetic field lead to very poor confinement
properties of such a configuration. Such a machine has a magnetic field proportional
to its radial distance to the symmetry axis R of the machine, Btor ∝ R−1. Thus, it is
maximal close to the symmetry axis. Together with the curvature drift it creates a
vertical charge dependent particle drift. This implies that the electrons and ions are
vertically separated and the evolving electric field subsequently causes an additional
drift in radial direction for both kinds. Hence, the plasma confinement is lost.
To solve this problem and obtain stable plasma confinement, field lines need to be
twisted in helical shape. Therefore, a current is driven in the plasma, which induces
an additional poloidal magnetic field, that adds up to the purely toroidal external
field introduced by the circularly arranged field coils. The transformer principle is
applied to drive the current, by placing the primary coil in the center of the plasma
ring. As a secondary coil, the plasma itself is used. Due to the resistivity of the plasma,
an increasing current needs to flow in the central transformer coil. Because of this,
tokamaks are nowadays operated in pulsed mode, but for future devices also other
operational modes are planned. The resulting helically twisted magnetic field lines
compensate the particle drifts. The toroidal field component is in general much stronger
than the poloidal contribution and thus toroidally nested closed flux surfaces are created
([12], [7], [8], [9]).
For a schematic representation of the concept see figure 1.1.

1.2 Scrape-off layer (SOL)

Despite the fact, that the constructed magnetic field in a tokamak confines the charged
particles on nested flux surfaces, the confinement is still not perfect. Turbulent behavior
of the plasma due to micro instabilities and collisions with other particles cause particle
and heat transport across these flux surfaces [7, 13]. And even disruptions - macroscopic
instabilities - can appear and cause an extinction of the plasma and even more severe,
large power and force loads on the materials that surround the plasma [14]. But already
in case of smaller instabilities, when the plasma has contact with the reactor wall, it
provokes a sputtering of impurities into the plasma region. This has to be minimized,
since the impurities are a key contributor to radiation loss and can severely reduce the
fusion yield [12].
To avoid these negative effects, a controlled plasma-wall contact needs to be established,

3



1 Introduction: No virtual tokamak without the edge

Inner poloidal
field coils
(transformer coil)

Induced plasma
current

Magnetic field
line (red)

Toroidal field
coils

Plasma (yellow)

Vertical field
coils

Figure 1.1: Schematic illustration of the tokamak fusion reactor concept. (Source: Max-
Planck Institute for Plasmaphysics (IPP) Garching, adapted)

to guide impurities towards defined positions at the wall material and therewith prevent
contact with other regions. In modern machines, a divertor concept has proven most
successful and will also be used for ITER. Here, additional coils cause a poloidal field
null point at one (or sometimes more regions), the so-called X-point. Additionally,
the plasma-wall contact is shifted away from the hot plasma region, to guarantee a
pure plasma center ([15], [12]). An alternative to the divertor is the limiter concept,
which has shown to be inferior, e.g. in terms of helium ash and impurity influx into the
confined plasma region. Thus, using a divertor also was a key success factor to discover
the high confinement mode, H-mode, in ASDEX ([16], [17]).
Looking at the poloidal cross-section of the ASDEX Upgrade tokamak with a divertor
geometry, shown in figure 1.2, three main plasma regions can be distinguished: Core,
edge and scrape-off layer (SOL) region.
The core is the region, where fusion power is produced. It is the innermost and

hottest region of the plasma. Here temperatures have to exceed at least ∼ 10keV
(equal to ∼ 100 million ◦C) to reach the ignition condition for D-T fusion ([18]). The
magnetic flux surfaces in the core region are nested and closed. The edge region is
the subsequent region further towards the plasma wall, which also is characterized by
closed flux surfaces. It is a rather thin layer and compared to the core often exhibits
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Figure 1.2: Illustration of the core,
edge and SOL region in a poloidal cross-
section of the ASDEX Upgrade tokamak
with divertor geometry (profile: #17151,
4s). The last-closed flux surface (LCFS)
is indicated in red and separates clearly
edge (yellow) and SOL (green) plasma.
The blue-lines resemble the magnetic
flux surfaces and are reconstructed from
the real shot. In the core (orange) and
edge region, the flux surfaces are closed,
whereas in the SOL the flux surfaces are
open.

steep pressure gradients [19].
Once crossing the last closed flux surface (LCFS or Separatrix) an often even thinner
layer of open field lines begins, the scrape-off layer (SOL). Here, the open field lines
wind around toroidally several times before they hit the divertor target. Thus, in the
SOL energetic particles are lost to the machine surface. Further details on the SOL
are noted in section 1.2.1, as for our work we are mainly interested in this region. In
general, the greatest part of the plasma lies within the core and edge region. This is
required, to achieve high enough confinement for the fusion reaction. Particles that
would be confined by the closed flux surfaces, however, can be transported across the
surfaces by turbulence and collisions [20].

1.2.1 SOL physics
In the SOL, plasma that is transported out of the confined region, in general is lead to
the divertor targets before it can reach the wall. This region is highly important for
regulating the impurity level and confining the plasma. Plasma dynamics in the SOL
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1 Introduction: No virtual tokamak without the edge

are defined by a balance of plasma outflow from the core, turbulent transport across
magnetic field lines, parallel flow and losses towards the divertor targets [20–22]. Typical
characteristics for the SOL are low plasma density and temperature (Te ∼ 10− 100eV,
due to the plasma-wall interaction [19]) high collisionality and large-scale turbulences
of amplitudes of order of unity compared to the background (in density, electron
temperature Te and electrical potential). Experimentally measured profiles confirmed
these large amplitude fluctuations and the exponential decay of radial profiles [7].

Parallel & cross-field transport

In parallel direction along the field lines, electrons and ions rapidly flow towards the
divertor targets, where they re-combine and thus are lost for the plasma [21]. Initially
electrons hit the divertor faster than ions, due to their higher mobility. The plasma
establishes a thin layer of net positive charge of a few Debye lengths (due to Debye
shielding), directly at the plasma-wall interface, the so-called Debye sheath ([8, 21]).
This layer builds up a potential barrier that accelerates incident ions into the wall and
repels incident electrons (only the fastest electrons can overcome the potential barrier).
The particle fluxes of both species are kept approximately equal, thus the plasma is
maintained quasi-neutral. The SOL plasma properties and the particle and energy flux
towards the surface are significantly influenced by this sheath.
As mentioned earlier, in addition to the predominant parallel transport along the field
lines also turbulence driven cross-field transport appears. In the SOL, however, radial
transport is not only driven by turbulence or collisions, but also due to convection
of coherent structures called filaments or blobs [23–26]. Typical scales for blobs are
∼ 1− 10m parallel to the field lines, due to the fast parallel charged particle motion
and much smaller scales of ∼ 1− 10cm perpendicular to the field, which leads to an
elongation along the field line. This fast transport towards the plasma chamber walls -
not as desired along the field lines to the divertor - can damage the wall material and
lead to impurity contamination of the core plasma [24, 27]). Radiative cooling due
to the introduced impurities eventually lowers the core plasma temperature and can
reduce the fusion yield. The practical implication of blobs on fusion reactors is still
under research [28, 29]. In this thesis we will focus on the parallel transport towards
the wall, since the majority of the lost power (also in a controlled fusion reactors) is
lost along this path.

Power exhaust

A certain part of the fusion power from the plasma core is exhausted into the SOL as
the outermost plasma region, where it has to be absorbed somehow. Since the exhaust
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1.2 Scrape-off layer (SOL)

power increases with the machine size and power, controlling the exhaust is essential
for the construction of large-scale devices, such as ITER. For ITER in the SOL the
unmitigated steady-state parallel heat flux is expected to be ∼1 GW m−2 [30] and for
DEMO even ∼20 GW m−2 [31]. However, the maximum tolerable heat flux normal to
the divertor target for current materials is only ∼10 MW m−2 for steady-state and ∼20
MW m−2 for transient states [30] (e.g. from disruptions and edge-localized modes). To
avoid damage or strong stress on the divertor, strategies are required to reduce the
actual heat load hitting the target plates. These strategies are still under investigation
and comprise radiative divertor detachment via impurities seeding (e.g., N, Ne) [32, 33],
advanced divertor geometries [34] and applied resonant magnetic perturbations [35].
Although the power loads in ITER, which is planned to work with partial detachment,
are already extreme, they are still expected to be manageable with the described
strategies. For DEMO, however, the heat flux towards the divertor is significantly
higher and remains a major problem that needs to be solved.
One of the main challenges is the extremely narrow heat-flux width at the outer
midplane. Studies on current experimental machines showed that this width is not
sensitive to the machine size, but at least for conventional aspect ratio tokamaks, rather
to an inverse scaling with plasma current. By extrapolating the scaling to an ITER
H-mode plasma, an outer-midplane heat-flux width of only ∼ 1 mm was determined
[36, 37]. This is much smaller than the 5 mm heat-flux width specified for the ITER
design. However, the validity of the empirical extrapolation to ITER is still unclear.
The small heat-flux width predicted by Eich et al. (2013) was also confirmed by a
heuristic drift-based model of Goldston (2011). But in this model, no turbulence
effects are included. Thus, the extrapolation to ITER SOL parameter regimes can be
questioned, since for example no turbulent heat transport along the divertor legs can be
modelled. Therefore in 2017, C. S. Chang et al. used the electrostatic gyrokinetic XGC1
code to study the heat-flux-width with turbulent simulations based on first-principles.
For ITER, the simulations predicted an outer-midplane heat-flux width of ∼ 5.9 mm,
which would be in the ITER design specifications. The issue is that at the moment no
other gyrokinetic code is capable to benchmark these findings.
This example shows the relevance of understanding the SOL physics and developing
further expertise in first-principle based simulations in the SOL. The plasma confinement
significantly depends on the power exhaust in the SOL [20] and thus is also of extreme
importance for the realization of future power plants.
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1.3 SOL modeling

The complex physics in the SOL region also increase the complexity for plasma modeling
and simulation [40]. In addition to the effects known from the plasma core, also
radiation losses, sheath and atomic physics have to be regarded. Apart from that,
the size of plasma structures ranges from the gyro-radius to machine size with strong
gradients perpendicular and along the field lines. Also time scales vary in a wide range
between the gyro-motion and turbulence time scales. Fluctuations are of the order of
unity compared to the background, which means that in simulations a linearization
of quantities (i.e., splitting the distribution function in a constant background and a
perturbation f = δf + f0) as often applied in the plasma core is not valid anymore [7].
And finally, also the divertor geometry adds up to the increase in complexity.
Although there exist fully six-dimensional kinetic code developments [41, 42], large time
and length scale tokamak simulations that solve the Vlasov–Maxwell or Vlasov–Poisson
equations require processing and memory capabilities that are far beyond what nowadays
supercomputers can provide. Even now, when we approach exascale computing, the
simulations are still way too costly. To cope with these computational restrictions,
physical approximations are required to reduce the numerical calculation efforts.
Therefore, simulations within the SOL have been and are still primarily performed with
the help of fluid- & gyrofluid-based codes. There are different types of codes, differing in
the physical and numerical models they use (for a brief overview see section 1.3.1). One
of the most widely used codes and the main tool used for ITER edge/SOL-plasma and
divertor modeling is certainly the SOLPS package [43–45]. The key advantage of fluid
codes is their computationally relatively low effort, compared to kinetic approaches.
These models have been of use to analyse the qualitative physics of edge & SOL plasma,
but for reliable quantitative prediction of plasma properties kinetic simulations are
believed to be required [46, 47]. Also direct or indirect coupling of fluid transport codes
to kinetic turbulence codes is seen to be an option [48].
Due to these quantitative drawbacks, there are major efforts to develop gyrokinetic
first-principle codes for the SOL and edge plasma. The underlying physical model is a
5D description of low-frequency plasma dynamics reduced from the initial 6D kinetic
equations [49–51]. Currently the most advanced gyrokinetic code is probably XGC1,
which gained popularity with its calculation of the ITER scrape-off layer width [39], but
also other developments are currently on-going (see section 1.3.2). The key advantage
of this method is the reduced computational cost, compared to kinetic models and the
intrinsic capability to study turbulent behavior with kinetic effects.
Due to their wide applications and expected up-coming relevance for edge and SOL
simulations, selected fluid and gyrokinetic code developments are presented in the
following section. Additionally, we want to note that all the simulations in this thesis
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are designed to test the theoretical models and are based on generic modeling, where
hypothetical situations are modeled with simplified assumptions.

1.3.1 Fluid models

Since the purpose of this thesis is to develop a code for gyrokinetic SOL simulations, in
this section we only want to mention the main physical models used for fluid simulations
and highlight specific developments. For a broader overview we refer to [52] and [53].
A large group of codes is calculating simplified transport models based on Braginskii
fluid equations in 2D with assumed axisymmetry and are therefore also referred to as
boundary-plasma transport codes. Unfortunately, plasma turbulence is not intrinsically
included in these models. Thus, to simulate turbulent transport across magnetic flux
surfaces, a coupling to turbulence codes, or the use of anomalous diffusion terms (based
on experimental studies) is needed. The earlier mentioned SOLPS package is part of
this group and contains a two-dimensional edge/SOL-plasma transport component,
which for neutrals transport is coupled to a kinetic Monte Carlo code [54]. However,
SOLPS still is the main tool for ITER SOL simulations since several important physical
characteristics, such as impurities, ionization and radiation are implemented.
Another larger group of codes are boundary plasma turbulence models that solve drift-
ordered fluid equations in 2D or 3D. Usually, they are derived by using a low-frequency
approximation to the Braginskii equations. The frequencies of the gyro-motion are
therefore ordered fast compared to the relevant frequencies [55]. These codes are
computationally more expensive, but compared to the transport codes turbulence is
directly included in the model. An example for this code class is the plasma turbulence
code GRILLIX [56–60] that uses a global electromagnetic drift-reduced Braginskii model
[53]. The key feature of this code is the application of a flux coordinate independent
approach (see e.g., [58, 61]), which has the ability to cross the separatrix and perform
X-point simulations.
A last big class of fluid codes are so-called gyrofluid codes, which solve 3D electromagnetic
gyrofluid equations. These models can simulate finite-Larmor-radius and Landau-
damping effects (see e.g. [62]). They can treat ion-gyroradius scale dynamics and even
smaller. In this regime, drift-ordered fluid models normally break down [63]. But not
all potentially relevant kinetic effects are captured, such as trapped particles, due to
the few moments they keep in the models [64]. Two examples for these types of code
are the BOUT++ [65] code and the GEM3 model [66].
But as already mentioned in section 1.3, fluid and gyrofluid approaches were quite
successful in producing qualitatively viable results, but for quantitative studies, kinetic
simulations are believed to be required at least to some extent [46].
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1.3.2 Gyrokinetic models

As described earlier, in a gyrokinetic model, the original 6D problem is reduced to a
5D problem by applying small parameter assumptions and therewith the model focuses
on low-frequency plasma dynamics. The fast gyromotion thus can be systematically
removed from the description of the dynamics, by assuming strong magnetic background
fields as present in tokamaks and stellarators [50, 51]. This results in a considerable
simplification and improved computational cost.
Especially, in the plasma core these gyrokinetic simulations are nowadays widely used
and produce comparable turbulence results across various codes (see e.g. [67]). But due
to the extremely rich physics in the plasma edge/SOL (see section 1.3), these models
are much less developed in this region. Recent efforts already suggested consistent
models for the edge/SOL regions ([68]), but their applicability in the plasma periphery
still has to be proven. To only name a few challenges that are especially relevant for
gyrokinetic models in this region: large amplitude fluctuations, sheath boundaries, wide
range of space and time scales, atomic physics, etc. As a result, code developments in
the SOL need to specifically address these complications.
Most commonly, there are two basic methods applied to numerically solve the gyrokinetic
system, particle-in-cell (PIC) methods [69, 70] and continuum methods [71]. Also a
third hybrid method of the two, called semi-Lagrangian exists, but it is less widely used
for gyrokinetic modeling and thus, we only want to refer to the development done in
the GYSELA code [72].
In a PIC code Monte Carlo methods are applied that approximate integrals over phase
space (e.g., the particle distribution function) by a finite number of markers [73]. In a
more tangible picture, the markers can be described as “superparticles” that comprise
many physical particles. The number of markers used in practice is much lower than
the physical particle number [74]. These markers are initially distributed in the phase
space and according to their positions, the 3D field equations are solved from this
charge distribution on a fixed grid. Then the resulting fields are interpolated back
to the marker positions and using these fields the markers are advanced to their new
position according to the gyrokinetic Euler-Lagrange equations. This procedure is then
repeated again and again for the new distributions.
In the continuum case (also called “Eulerian”) on the other hand, the 5D gyrokinetic
equations are discretized on a fixed phase-space mesh and solved on this mesh. The
resulting partial differential equations are then solved with numerical methods like
finite-volumes, finite-elements, etc. Equal to the PIC approach, also for continuum
codes the 3D fields are calculated by using grid-based algorithms [71].
Both methods have their advantages and disadvantages, compared to the other. One of
the main challenges of PIC algorithms is their inherent statistical noise in the distribution
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function, due to their Monte Carlo sampling approach. For N markers, this error scales
with 1/

√
N . This effect is extremely relevant for the validity of results and thus several

techniques for noise reduction have been developed [75–78]. Another often discussed
problem resulting from statistical noise is the so-called Ampère’s law cancellation
problem in electromagnetic simulations, where two large terms in the Ampère’s law
cancel out numerically at average to high plasma β and small perpendicular wave
numbers. But since its discovery, various mitigation techniques were introduced with
convincing results [79–82] and nowadays it is not seen as a showstopper anymore.
For continuum models however, Monte Carlo related problems do not play a role.
A key challenge for this method is their restriction of the time-step size for explicit
time stepping, according to the Courant-Friedrichs-Levy (CFL) condition [75]. Thus,
even when the fastest dynamics do not influence the simulation results, they still
have to be resolved. Using semi-implicit and implicit time-steps as mitigation can be
computationally very costly. Another issue that needs to be addressed in continuum
codes is that the positivity of the distribution function is not automatically maintained
[75].
Apparently, numerical models and challenges behind PIC and continuum codes are
quite different. Thus, to be able to perform reliable quantitative studies, it is important
to develop both further and use cross-checks between both methods for validation.

Current code developments

The development of gyrokinetic continuum codes in the edge/SOL plasma was lagging
behind drastically until only several years ago. As investigated by R. Cohen et al. 2008
three main codes - G5D [83], TEMPEST [84] and FEFI [66] - made efforts to study
SOL physics, but eventually did not further follow this path, due to difficulties and
not reported causes. Hence, in more recent papers of the codes, no further efforts in
this direction could be found. However, several rather new developments are currently
pushing the code capabilities further towards the plasma boundary.
In the range of continuum codes, the COGENT code development, was originally based
on a fourth-order finite-volume discretization scheme for 4D (axisymmetric) simulations
and spanned from the plasma core, across the separatrix into the SOL. To deal with
the strong plasma transport anisotropy and the complex X-point divertor geometry
COGENT applies a mapped multiblock grid technology. COGENT is constantly ex-
tended and in a recent effort, an extension to a 5D phase space (3D2V) to study
fully kinetic turbulences in a tokamak edge region is addressed [85–88]. Another very
promising development is the Gkeyll code developed at the Princeton Plasma Physics
Laboratory. Gkeyll is a gyrokinetic code based on discontinuous Galerkin algorithms
and can handle open field line plasmas and plasma-wall interactions, such as present
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in the SOL [89–91]. Recently, gyrokinetic plasma turbulence simulations in the Texas
Helimak device, a simple magnetized torus with features similar to the tokamak SOL,
were modeled with the help of Gkeyll [92] and also electromagnetics were introduced
into the model recently [93]. The GENE code, which is based on a finite-difference
discretization and widely used for plasma core turbulence simulations, has chosen a
similar approach and started to expand its capabilities towards the plasma edge and
SOL by implementing sheath boundary conditions [94, 95]. In a very recent work
within the GENE code family, the GENE-X code (for more details on GENE-X see
[96]) was developed, which uses a locally field-aligned coordinate system following the
flux-coordinate independent approach of the previously mentioned fluid code GRILLIX.
This development is still on-going, but also very important for the field, since GENE
with its wide range of capabilities is a suitable model for quantitative benchmarks with
other boundary plasma codes, such as the previously mentioned XGC1 code.
On the PIC side, XGC1 is at the moment surely the most developed gyrokinetic code
that can model the plasma edge and SOL. With XGC1 simulations across the separatrix
are possible, where in a recent study turbulent fluxes across the separatrix were ana-
lyzed [97]. In another very recent publication, neoclassical and electrostatic turbulent
transport under resonant magnetic perturbations (RMPs) was studied in a DIII-D
H-mode edge plasma [98]. The current model includes a realistic divertor geometry,
charge-exchange and ionization interactions, neutral particles and radiation cooling.
With this advanced setup, XGC1 was able to produce the often discussed and previously
mentioned (see section 1.2.1) ∼ 5.9mm outer-midplane heat flux width result [39].
To improve confidence in the heat-flux width calculation for ITER, XGC1 also could
reproduce the heat-flux values for three major current experiments. Since the dominant
effect in the ITER case was turbulent electron-heat-flux spreading, the relevance of
gyrokinetic simulations for SOL simulations becomes obvious. However, the simulations
performed for this study were extremely costly and thus other cheaper codes and varying
physical models should also be studied. Another interesting but especially in terms
of geometry less advanced 5D development is the ELMFIRE code [99]. ELMFIRE is
capable of simulating a circular concentric background and includes a limiter scrape-off
layer. For a recent study, logical boundary conditions were implemented to perform
electrostatic simulations of a limited plasma [100].
In summary, compared to current PIC code developments, continuum approaches
caught up significantly but are still not at the same level. Further improvements in
both approaches are essential to achieve reliable and comparable quantitative results.
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1.4 Motivation and outline

To achieve the goal of a complete virtual tokamak it is still a far way to go. One of the
key challenges is to be able to qualitatively and quantitatively model the edge and SOL
region of a fusion plasma. For quantitative studies especially gyrokinetic models have
proven to be reliable and still computationally affordable in the core region. In the
edge region first promising results were achieved, but further research has to be done.
Essential topics to be investigated in this region are fluxes and plasma-wall interaction.
In this thesis we address exactly these points, by developing a gyrokinetic full-f particle-
in-cell code for open field lines in the SOL, called PICLS. Of specific interest in our case
are sheath models for the Debye sheath, which build up right before the wall material or
divertor and thus are influencing the particle and heat flux towards the wall. Another
important aspect is the application and behavior of the finite-element discretization
scheme we implement in PICLS.
Since PICLS is a new code developed from scratch, a step by step approach towards
relevant physical models is required. Hence, we start with a rather simple simulation
setup and then gradually progress towards more complex and realistic systems. In
practice this means that we start with a one-dimensional slab geometry and then extend
our simulations towards more challenging three-dimensional cases. An intermediate
step for our code development is to study helical field lines, such as TORPEX [101] or
simple tokamaks. Since the occurrent sheath physics are very important, this reduction
of complexity also helps us to focus on the relevant sheath effects. For more advanced
geometries like tokamak experiments, major development efforts will be required.
As mentioned before, a comparison of different algorithmic models, especially for
quantitative gyrokinetic studies, is essential. Thus, the results produced with PICLS,
are also relevant to benchmark and compare with other SOL code developments like
GENE and Gkeyll. On the path towards full virtual tokamak simulations, the algorithms
developed in PICLS could also be implemented in existing PIC codes for the plasma
core, such as ORB5, to extend its capabilities towards the plasma edge and SOL. Or
coupling the SOL code PICLS to a dedicated core plasma code could also be a potential
solution.
In chapter 2 we therefore introduce the main concepts and equations of the applied
physical model. We start with deriving our gyrokinetic Lagrangian with an electrostatic
particle Lagrangian. From this we derive the required Euler-Lagrange equations and
the polarization equation for the calculation of the electric field. The special case of the
equations in slab geometry and the applied normalization schemes are also presented.
We conclude this section with deriving the total conserved energy in the electrostatic
system.
Chapter 3 is dedicated to the introduction of the sheath models we implemented for the
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plasma wall boundary. Therefore, we first shortly explain the basic principle of a Debye
sheath that appears directly in front of the device wall. Since in gyrokinetic simulations
we are not able to resolve this very small region, logical sheath algorithms need to
be used. The sheath models and algorithms implemented in PICLS are presented in
the following and additional considerations for further development of these models
are shortly discussed. Apart from this, we also introduce our method on how to treat
particle reflections at the plasma wall for non-perpendicular incident B-field angles.
Another relevant ingredient for realistic plasma simulation in the SOL are collisions.
Hence, in chapter 4 we specify the collision operator employed in PICLS. We shortly
cover Coulomb collisions and the Landau operator to then focus on the implemented
Lenard-Bernstein collision operator. The discretization of the operator via the Langevin
approach and its conservation properties are discussed and several conservation tests
are performed.
Since PICLS is a new code development, in chapter 5 the main numerical methods we
used are explained. We start with its algorithmic structure to quickly dive into the
applied Finite Element methods. Here, we cover its discretization via B-splines Finite
Elements and discuss the employed 1D and 3D solver. The 3D solver uses a normal 2D
solver routine in a 2D plane and an FFT in the third dimension. We conclude this part
with describing PICLS’ main data structures, its parallelization scheme and qualitative
scaling tests.
With chapter 6 we start to apply PICLS to plasma turbulence simulations. We initially
focus on a simplified 1D ELM heat-pulse problem without collisions, which was already
previously studied by gyrokinetic continuum codes. After the introduction of a second
velocity component we repeat the same test case with collisions in a 1D2V setup and
again compare with previous results.
With the gained confidence from the 1D test case, we then apply PICLS to a 3D
test case in chapter 7. Here, we study ion temperature gradient (ITG) modes in a
periodic screw pinch setup without sheath boundary conditions. As part of this chapter,
we use this simple 3D configuration to test the main 3D code features, such as the
particle pusher and the 2D1D field solver. Since for open field line systems no analytical
solutions are available this is an important validation and verification step.
For our simulations in chapter 8 we select a setup, where most of the previously
introduced SOL features implemented in PICLS can be applied. This implies a 3D
helical slab configuration to study turbulence in helical open field lines with sheath
boundary conditions. Therewith plasma blob formation and convective radial transport
of plasma blobs can be investigated. Since this test case was previously studied by a
continuum gyrokinetic code, the results serve as comparison for our simulations. The
results we show are only a first attempt and hence, further studies and verification tests
will have to be done in the future.
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The main results of this work are summarized in chapter 9. Here we also give an outlook
on potential future research priorities and a near-term development plan.

15





2 The model behind PICLS

2.1 Gyrokinetic model

In general, the physical model behind PICLS is based on gyrokinetic (GK) theory.
Here, one tries to reduce the original 6D Vlasov-Maxwell problem (3 velocity and
3 spatial coordinates) to a 5D problem (2 velocity and 3 spatial coordinates), by
describing the plasma particle motion in terms of drifts of the gyrocenter, rather than
combining gyromotion and drifts of the particles. As a result, computational time can
be significantly reduced. Since many plasma phenomena in tokamaks appear on time
scales much longer than the short gyromotion, in GK theory this fast gyromotion is
decoupled from the motion of the gyrocenter (see figure 2.1). Even more important than
the reduced dimensionality for particle-in-cell algorithm is the fact that the restrictions
on the timestep can be relaxed from the plasma period to turbulent time scales. Also the
restrictions on the grid spacing can be relaxed from the Debye length to the gyroradius
[75]. An example therefore are low-frequency electromagnetic fluctuations responsible
for the turbulent transport in tokamaks.
The small parameter assumptions, also called GK orderings, that are generally applied
in GK theory are the following ([51]):

1. εω = ω/Ω0 � 1 (scale separation of fast particle gyrofrequency Ω0 = eB0/mc)

2. k‖/|k⊥| = O(εω)� 1 (anisotropy of turbulence in ‖ and ⊥ direction)

3. |k⊥|ρ = O(1) (⊥ spatial scales comparable to gyroradius)

In addition to this, an additional ordering on the background magnetic field is often
assumed: εB = ρ/LB � 1 (small spatial variations of external magnetic field). With ρ
the gyroradius, LB the background magnetic field length scale, k‖ and |k⊥| the wave
vectors in parallel and perpendicular direction to the unperturbed field B0.
For the derivation of the gyrokinetic Lagrangian the small parameter εB is required in
the phase-space transformation to remove the fast gyromotion time scale (see 2.1.1).
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Figure 2.1: By decoupling the fast gyromotion from the gyrocenter motion, the problem
can be decreased from 6D to 5D. In the picture of GK theory one can regard plasma particles
as "charged rings" around a gyrocenter.

2.1.1 Derivation of gyrokinetic Lagrangian

Several ways exist to deduce the gyrokinetic equations ([69]). While in initial papers the
GK equations were constructed by gyroaveraging the Vlasov equations with recursive
methods (e.g., [70]), in more modern gyrokinetic theory the non-linear gyrokinetic equa-
tions are derived from a systematic Hamiltonian theory. In the following, this modern
derivation of the gyrokinetic Lagrangian shall only be sketched and not performed in
detail, due to the rather long equations appearing during the execution. We already
applied this method for the derivation of the GK models in our previous publication
(see [102]). Details on the derivation can be found in [49], [50], [103], [104] and [105].
As explained in [49], the small parameters εB and εδ = (k⊥ρth)eφ1/Ti), representing
small amplitudes of the fluctuating fields are used for the derivation. Where φ1 is the
amplitude of the fluctuating electrostatic potential, ρth the thermal Larmor radius and
Ti the ion temperature. This choice comes from the assumption that the temporal
variations of the fluctuating fields are small compared to the background. The idea
behind gyrokinetic theory is to completely decouple the gyroangle dependency from the
other variables and achieve trivial dynamics for the magnetic moment µ, i. e. µ̇ = 0.
The reduced five-dimensional phase-space dynamics of the particle are then described
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by (R, v‖,µ). Where R describes the gyrocenter position and v‖ velocity of the particle
parallel to the magnetic field.
The phase-space Lagrangian of a particle in a magnetic field is the starting point for
this derivation:

L0 =
(
e

c
A(x) +mv

)
· ẋ−H(x, v, t) (2.1)

with x and v the position and velocity of the charged particle. The first term (propor-
tional to ẋ) represents the symplectic part, the second one the Hamiltonian part. Via
the phase-space Lagrangian perturbation, electromagnetic perturbations are introduced:

L1 = εδ

(
e

c
A1(x, εδt) · ẋ− eφ1(x, εδt

)
(2.2)

Starting from the corresponding perturbed one-form, two major steps are executed:

1. The θ dependency of the symplectic part is moved to the Hamiltonian part, by
applying a suitable velocity shift and performing a guiding center reduction. By
translating the particle velocity v to v̄ = v+ εδ

e
mcA1(x, εδt), Littlejohn’s guiding

center theory can directly be applied [105]. Additional to the velocity shift, the
particle position needs to be adjusted by a modified Larmor radius.

2. The remaining θ dependency within the Hamiltonian part is then removed by
applying a canonical Lie transform on the Hamiltonian to average with respect to
the fast gyroangle. Canonical Lie transforms are near-identity canonical changes
of coordinates and only act on the Hamiltonian part and thus do not modify the
symplectic part (for further information see [106]).

We want to mention that in a novel approach, the near-identity coordinate transfor-
mations could also be constructed as polynomial transforms [107]. Constructing the
Lagrangian in the described way, shifts the dependence on dynamical variables to the
Hamiltonian or in the free field terms. Another important characteristic of the resulting
Lagrangian is that self-consistent nonlinear Vlasov-Maxwell equations can be derived
without any additional ordering. Thus, exact energy conservation of the resulting GK
equations is satisfied ([69]). As a result, the Lie-transformed low-frequency particle
Lagrangian can be achieved:

Lp ≡
(
e

c
A+mpv‖b

)
· Ṙ +

mpc

ep
µθ̇−Hp. (2.3)

With the velocity variables v‖ (parallel velocity), µ = mpv⊥/(2B) (magnetic moment)
and θ (gyroangle), the magnetic field strength B, the mass mp and the background

19



2 The model behind PICLS

vector potential A. Variables with a perpendicular subscript lie within the plane
perpendicular to the magnetic background field B, whereas variables with a parallel
subscript lie along the magnetic background field. For the subsequent derivations, we
use the following second order electrostatic Hamiltonian, but also other choices would
be possible:

Hp = mp
v‖

2

2 + µB + epJp,0φ−
mpc

2

2B2 |∇⊥φ|
2, (2.4)

which can be expressed as:

Hp ≡ Hp,0 +Hp,1 +Hp,2, (2.5)

Hp,0 =
mpv‖

2

2 + µB, (2.6)

Hp,1 = epJp,0φ, (2.7)

Hp,2 = −mpc
2

2B2 |∇⊥φ|
2. (2.8)

The gyroaveraging operator Jp,0 is applied to the potential φ in Hp,1. Jp,0 applied to
an arbitrary function ψ in configuration space is defined by:

(Jp,0ψ)(R,µ) = 1
2π

∫ 2π

0
ψ(R + ρ(θ)) dθ, (2.9)

where ρ is the vector from the guiding center position to the particle position.
The total gyrokinetic Lagrangian is then given by ([50]):

L =
∑
p

∫
dW0dV0fp(Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t)

+
∫

dV E
2 −B2

⊥
8π (2.10)

where Z ≡ (R, v‖,µ, θ), dW and dV stand for the volume elements in velocity and
physical space. f(Z0) = fp is the distribution function for the species p at initial time
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2.1 Gyrokinetic model

t0. With the following definitions:

dW =
2π
mp

B∗‖dv‖dµ, (2.11)

dV = J(X,Y ,Z)dXdY dZ, (2.12)
dΛ = dV dW , (2.13)
B∗‖ ≡ B∗ · b = B +

cmp

ep
v‖∇× b · b, (2.14)

B∗ = B+
mpc

ep
v‖∇× b, (2.15)

b = B/B (2.16)

Here, mp is the mass and ep the charge of species p. We can further condense the total
Lagrangian to:

L =
∑
p

∫
dΛLpfp +

∫
dV E

2 −B2
⊥

8π . (2.17)

Now by entering eq. (2.3) into eq. (2.17), we achieve the required total gyrokinetic
particle Lagrangian used in the following derivations:

L =
∑
p

∫
dΛ

((
ep
c

A+mpv‖b
)
· Ṙ +

mpc

ep
µθ̇−Hp

)
fp +

∫
dV E

2 −B2
⊥

8π . (2.18)

For consistency, the GK Vlasov equation shall also be derived by the fact that the
distribution function is conserved along the particle trajectories f(Z(Z0, t0; t), t) =
f(Z0, t0). Taking the time derivative of this equation, we end up with the GK Vlasov
equation:

d

dt
f(Z(Z0, t0; t), t) = ∂

∂t
f(Z, t) + dZ

dt ·
∂

∂Z
f(Z, t) = 0. (2.19)

2.1.2 Lagrangian approximations

The resulting Lagrangian (2.18) can be further approximated, according to GK theory
without losing self-consistency of the final equations and energetic consistency ([50]).
Two approximations are performed in this work, the so-called quasi-neutrality approxi-
mation and the linearized polarization approximation, which are widely used in GK
simulations. Here, the approximation is performed according to the steps shown in [69],
as already presented in our previous work [102].
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2 The model behind PICLS

Quasi-neutrality approximation

The E2 term in the free field part of the Lagrangian is ordered small compared to the
so-called E×B term, which corresponds to the second order φ term in the Hamiltonian.
To show this relation, we introduce the Debye length squared λ2

De ≡
kBTe

4πnpe2 and the

squared ion Larmor radius ρ2
s ≡

kBTemic
2

e2B2 . The ion Larmor radius in fusion plasmas is
normally much larger than the Debye length, which delivers:

ρ2
s

λ2
De

=
4πnpmpc

2

B2 =
c2

v2
a
� 1, (2.20)

with va the Alfvén velocity. In the sum of the E2 term in the free fields and the second
order φ term in the Hamiltonian this relationship can now be applied:

∫
dV E

2

8π +
∫

dΩf
m

2
c2

B2 |∇⊥φ|
2 =

1
8π

∫
dV

E2
‖ +

1 + ρ2
s

λ2
De

 |∇⊥φ|2
 . (2.21)

In the end, the whole E2 term can be neglected, since the E2
‖ term is even smaller than

the perpendicular part.

Linearized polarization approximation

For the second Lagrangian approximation, we assume that only the (Hp,0 +Hp,1) part
of the Hamiltonian multiplies with the full distribution function f and that Hp,2 is
linearized. Therefore, we multiplyHp,2 with a time-independent equilibrium distribution
function fM,p:

L =
∑
p

∫
dΛ

((
ep
c

A+mpv‖b
)
· Ṙ +

mpc

ep
µθ̇−Hp,0 −Hp,1

)
fp

+
∑
p

∫
dΛ

mpc
2

2B2 |∇⊥φ|
2fM,p −

∫
dV B

2
⊥

8π . (2.22)

This linearized field part is called the linearized polarization approximation. The Hp,2
term thus only affects the field equations and does not contribute to the drift motion.
This linearized field part, is the only part of the model that does not use the full
distribution function f . In a strict sense the model thus is also not a complete full-f
model, but is also not comparable with δ-f models, where a background Maxwellian
is assumed for the whole distribution and only perturbations from this Maxwellian
background are modeled.
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2.1 Gyrokinetic model

Neglecting electromagnetic perturbations

Finally, also electromagnetic perturbations are neglected, by setting A‖ = 0, which
implies B2

⊥ = 0 and therewith the
∫

dV B2
⊥

8π term in the field part vanishes. Our final
electrostatic total Lagrangian therewith becomes:

L =
∑
p

∫
dΛ

((
ep
c

A+mpv‖b
)
· Ṙ +

mpc

ep
µθ̇−Hp,0 −Hp,1

)
fp

+
∑
p

∫
dΛ

mpc
2

2B2 |∇⊥φ|
2fM,p. (2.23)

2.1.3 Euler-Lagrange equations
For the derivation of the Euler-Lagrange equations, the variational principle is applied
on the action integral, as described in [69] and [50]. Denoting:

Ip =
∫ t2

t1
Lpdt (2.24)

as the action integral (or functional). Due to Hamilton’s least action principle, the
motion of a mechanical system is extremal with respect to the paths of the action
integral. Applying the functional derivative delivers:

δI [Z,φ] =
∫ t2

t1
δLp[Z,φ]dt =

∫ t2

t1

 6∑
α=1

δLp
δZα
· δZα +

δLp
δφ
· δφ

 dt. (2.25)

By taking the functional derivative of Ip with respect to Z = (R, v‖,µ), the extremal
behavior of the paths of the action integral results in δI

δZ = 0. And since t1 and t2 are
arbitrary, also δLp

δZ = 0 is valid.
The functional derivative of Lp with respect to a function φ is defined for an arbitrary
variation δφ in the same function space as φ by:

δLp
δφ
· δφ =

d

dε |ε=0
Lp(φ+ εδφ) = lim

ε→0
Lp(φ+ εδφ)−Lp(φ)

ε
. (2.26)

By taking the functional derivative of Lp with respect to Z, we can now obtain the
particle equations of motion and from this the corresponding Euler-Lagrange equations
for Lp can be derived. The drift motion of the gyrocenters can be described by them as:

d
dt
δLp

δŻ
=
δLp
δZ

. (2.27)
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2 The model behind PICLS

All required derivatives of Lp can be obtained by following [69]. For the θ derivatives
one can calculate ∂Lp

∂θ̇
= µ and ∂Lp

∂θ = 0. The Euler-Lagrange equation for θ thus results
in dµ

dt = 0, which shows that µ is an exact invariant. Since the dependence on θ has
been removed from the Lagrangian no evolution equation for θ is required.
The Euler-Lagrange equations for R and v‖ yield:

Ṙ =
∂Hp,0&1
∂v‖

B∗

B∗‖
+

c

epBB∗‖
B×∇Hp,0&1,

v̇‖ = −B∗

B∗‖
· ∇Hp,0&1, (2.28)

with the remaining parts of the Hamiltonian in the full-f model with the linearized
polarization term:

Hp,0&1 =
mpv‖

2

2 + µB + epJp,0φ. (2.29)

The gradient of the remaining Hamiltonian can be calculated as:

∇Hp,0&1 = µ∇B + ep∇Jp,0φ. (2.30)

By entering (2.30) into equation (2.28) eventually gives the required Euler Lagrange
equations:

Ṙ = v‖
B∗

B∗‖
+

c

epBB∗‖
B×

[
µ∇B + ep∇Jp,0φ

]
,

v̇‖ = −B∗

B∗‖

1
mp
·
[
µ∇B + ep∇Jp,0φ

]
. (2.31)

Without linearizing the Hp,2 part, one can also derive the complete full-f system, by
using:

Hp,0&1&2 =
mpv‖

2

2 + µB + epJp,0φ−
mpc

2

2B2 |∇⊥φ|
2 (2.32)

and the gradient of the full Hamiltonian Hp,0&1&2:

∇Hp,0&1&2 = µ∇B + ep∇Jp,0φ−
mpc

2

2B2 ∇|∇⊥φ|
2 +

mpc
2

B3 ∇B|∇⊥φ|
2. (2.33)
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2.1 Gyrokinetic model

By entering the full Hamiltonian Hp,0&1&2 from (2.33) instead of the remaining Hp,0&1
into equation (2.28) the full-f Euler Lagrange equations are derived:

Ṙ = v‖
B∗

B∗‖
+

c

epBB∗‖
B×

µ∇B + ep∇Jp,0φ−
mpc

2

2B2 ∇|∇⊥φ|
2 +

mpc
2

B3 ∇B|∇⊥φ|
2

 ,

v̇‖ = −B∗

B∗‖

1
mp
·

µ∇B + ep∇Jp,0φ−
mpc

2

2B2 ∇|∇⊥φ|
2 +

mpc
2

B3 ∇B|∇⊥φ|
2

 . (2.34)

2.1.4 Polarization equation
For the derivation of the polarization equation (or GK Poisson equation), we need to
calculate the functional derivative of L with respect to the electrostatic potential φ and
set it to 0:

δL

δφ
= 0. (2.35)

In the first term of equation (2.23) the only φ-dependence is in the Hp,1 part. By using
that the gyro-average operator Jp,0 is a linear operator of φ, we receive:

δL

δφ
δφ = −

∑
p

∫ dΛepJp,0(δφ)f +
∫

dV mpc
2

B2 ∇⊥φ · ∇⊥δφfM,p

 = 0. (2.36)

This equation is solved in the code and is also known as the weak form of the polarization
equation. The strong form can be derived by using the Hermiticity of Jp,0:∫

φJp,0(f)dW =
∫
fJp,0(φ)dW , (2.37)

and from applying the Green’s formula on the second integral of (2.36). Another
assumption is that φ vanishes at the boundary and B∗‖ is taken out of dW = 2π

mp
B∗‖dv‖dµ.

Therewith eq. (2.36) can be rewritten as:

−
∑
p

∫
dV δφ

∫
dW

epJp,0f + 1
B∗‖
∇⊥(

mpc
2

B2 B∗‖fM,p∇⊥φ)

 = 0. (2.38)

Since the choice of δφ is arbitrary, also

∑
p

∫
dW

epJp,0f + 1
B∗‖
∇⊥

mc2
B2 B

∗
‖fM,p∇⊥φ


 = 0 (2.39)
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2 The model behind PICLS

has to be fulfilled.
The velocity integral over the Maxwellian distribution can now be performed, by noting
that in the second term the spatial gradient and the integral with respect to dW

commute, to achieve:

−
∑
p
∇⊥

np,0mpc
2

B2 ∇⊥φ =
∑
p

∫
dWepJp,0f . (2.40)

Here, np,0 stands for the density of the equilibrium Maxwellian fM :

np,0 =
∫

dWfM,p. (2.41)

Note that for electrons Jp,0 = 1, which means that due to their small Larmor radius we
neglected electron FLR effects and also the polarization is neglected for the electrons.
The resulting linear equation has the form of a quasi-neutrality condition, ∑p enp = 0,
with the particle charge density enp.
In the full-f version without linearization, the polarization equation looks very similar:

−
∑
p
∇⊥

ni,0mpc
2

B2 ∇⊥φ =
∑
p

∫
dWepJp,0f , (2.42)

but with a different definition for the density ni,0:

ni,0 =
∫

dWfi,0. (2.43)

2.1.5 Summary
In the following, the relevant equations for the GK model implemented in PICLS shall
be summarized again for a better visibility.

Summary for linearized full-f

Starting with the Euler-Lagrange equations of the full-f model with a linearized polar-
ization term:

Ṙ = v‖
B∗

B∗‖
+

c

epBB∗‖
B×

[
µ∇B + ep∇Jp,0φ

]
,

v̇‖ = −B∗

B∗‖

1
mp
·
[
µ∇B + ep∇Jp,0φ

]
,

µ̇ = 0. (2.44)

26



2.1 Gyrokinetic model

The polarization equation shall be displayed again:

−
∑
p
∇⊥

ni,0mpc
2

B2 ∇⊥φ =
∑
p

∫
dWepJp,0f . (2.45)

With ni,0 =
∑
i ni being the sum over the background density of all ion species. For

completeness of the set of equations, the Vlasov equation is shown, as well:

d

dt
f =

∂f

∂t
+ Ṙ∇f + v̇‖

∂f

∂v‖
. (2.46)

Despite the approximations we assumed during the derivation, this set of equations
is still able to correctly describe a huge class of micro-instabilities that are excited
by temperature and density gradients. Examples for these instabilities would be ion
temperature gradient (ITG) modes and trapped electron modes (TEM) (see [69]).

Summary for full-f without linearization

Also in the full-f case without linearized polarization approximation, the relevant
equations shall be shown again. First the Euler-Lagrange equations:

Ṙ = v‖
B∗

B∗‖
+

c

epBB∗‖
B×

µ∇B + ep∇Jp,0φ−
mpc

2

2B2 ∇|∇⊥φ|
2 +

mpc
2

B3 ∇B|∇⊥φ|
2

 ,

v̇‖ = −B∗

B∗‖

1
mp
·

µ∇B + ep∇Jp,0φ−
mpc

2

2B2 ∇|∇⊥φ|
2 +

mpc
2

B3 ∇B|∇⊥φ|
2

 ,

µ̇ = 0. (2.47)

And the non-linearized polarization equation:

−
∑
p
∇⊥

nimpc
2

B2 ∇⊥φ =
∑
p

∫
dWepJp,0f . (2.48)

With ni,0 =
∑
i ni being the sum over the real density of all ion species. The Vlasov

equation is the same as in the delta-f case. A non-linear Polarization equation is not
yet included in PICLS, but an implementation in the near future is planned. For this,
Alexey Mishchenko’s iterative method (see [108]) could help as a guideline.
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2.2 Equations in slab geometry

Within a large part of this thesis we are solely using slab geometry for our simulation
domains. In a later stage, we also apply simple cylindrical, or circular tokamak
geometries. Other more complex coordinate systems, like field-aligned coordinates (see
[109]), that would be required for more advanced geometries (e.g., a realistic Tokamak
geometry) were not applied, but are discussed for future development. In slab geometry,
however, in 1D (one spatial dimension) the respective domain is represented by a
straight line and in 3D by a square or flux tube.

2.2.1 Reduction of B-field equations

Resulting from the slab geometry, many B-field related terms can be further simplified
and used in our set of equations. Here, a general overview of relevant terms is listed:

J(X,Y ,Z) = 1, (2.49)
B = B(x, y, z)ez, (2.50)

∇×B =
∂B

∂y
ex −

∂B

∂x
ey, (2.51)

∇B =
∂B

∂x
ex +

∂B

∂y
ey +

∂B

∂z
ez, (2.52)

b = ez, (2.53)

b×∇B = −∂B
∂y

ex −
∂B

∂x
ey, (2.54)

b · ∇B =
∂B

∂z
, (2.55)

∇× b =
1
B

(∇×B+ b×∇B) (2.56)

=
1
B

(
∂B

∂y
− ∂B

∂y

)
ex −

1
B

(
∂B

∂x
− ∂B

∂x

)
ey = 0, (2.57)

B∗ = B, (2.58)
B∗‖ ≡ B∗ · b = B. (2.59)

2.2.2 Equations of motion

Using the simplified B-field equations of the previous section 2.2.1 we can rewrite the
equations of motion (2.31) in the slab case, that are implemented in PICLS for slab
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geometry simulations:

Ṙ = v‖b+
c

ep
µ

B×∇B
B2 + c

B×∇Jp,0φ
B2 ,

v̇‖ = − µ

mp
b · ∇B − ep

mp
b · ∇Jp,0φ. (2.60)

2.3 System of units and normalization

2.3.1 System of units

The system of units we chose is the so-called centimetre–gram–second system (or CGS)
and is based on the idea to develop a system of units based on three basic units length
mass and time. This system was first introduced by the British Association for the
Advancement of Science in 1873 ([110]). For electromagnetic studies this system is
particularly interesting, since both, the E- and the B-field have the same units in CGS.
In the following, some of the relevant units used throughout this thesis are shown:

e = [g]1/2[cm]3/2[s]−1, (2.61)
e

c
= [g]1/2[cm]1/2, (2.62)

B = [g]1/2[cm]−1/2[s]−1, (2.63)
E = [g]1/2[cm]−1/2[s]−1, (2.64)
µ = [g]1/2[cm]5/2[s]−1, (2.65)

kBT = [g]1[cm]2[s]−2, (2.66)
∇⊥ = [cm]−1. (2.67)

2.3.2 Normalized variables

In PICLS we implemented two different sets of normalization schemes for verification
of the code normalization. In the first set, the code uses the normal CGS units of the
physical quantities. In the second one, the equations are normalized before numerical
solutions are calculated. In this section we want to discuss this normalized system of
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2 The model behind PICLS

equations implemented in PICLS. The full set of normalization equations is:

t = τ t̄, R = Lx̄, v‖ = V v̄‖, k⊥ = k̄⊥/ρce,
ep = eZ̄p, mp = Mm̄p, Tp = kBT T̄p,

E ≡ ∇Jp,0φ = EnormĒ = kBT
eL Ē,

B = BnormB̄ = 1
V
kBT
eL B̄, µ = µnormµ̄ = eLV 3M

ckBT
µ̄, (2.68)

with the electron charge −e, the electron mass M = me and the initial thermal electron
velocity V =

√
kBT/me. B and T are initialized by its input values B0 and T0 in the

code. The spatial scale L is set to the electron gyroradius:

ρce =
√
mekBTe

c

eB0
. (2.69)

Subsequently, τ becomes the inverse electron cyclotron frequency w−1
ce = mec

eB0
and k⊥ is

normalized to the inverse of the electron cyclotron radius 1/ρce.
Our primary reason for the choice of the normalization scheme is to easily perform
a-dimensional scans in the future (e.g., on ρ∗ or ν∗). Nevertheless, other normalization
schemes (or no normalization, such as SI or CGS) are also justifiable. For our numerical
calculations this choice is not decisive, since double precision numbers can easily handle
variations of magnitudes.

2.3.3 Normalized set of equations

By taking the normalization of section 2.3.2 and entering it into the equations of motion
in slab geometry from section 2.2.1, the normalized equations of motion implemented
in the code can be derived:

∂x̄

∂t̄
= c(− 1

eZp
µ̄µnorm

∂B̄
∂ȳ

Bnorm
L

B̄Bnorm
− ĒyEnorm
B̄Bnorm

)
τ

L
,

∂ȳ

∂t̄
= c(− 1

eZp
µ̄µnorm

∂B̄
∂x̄

Bnorm
L

B̄Bnorm
+
ĒxEnorm
B̄Bnorm

)
τ

L
,

∂z̄

∂t̄
= v̄‖,

∂v̄‖
∂t̄

= (− µ̄µnorm
Mm̄p

∂B̄

∂z̄

Bnorm
L
− eZp
Mm̄p

ĒzEnorm)
τ

V
. (2.70)
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Entering the normalization factors into the polarization equation (2.40) yields:

−
∑
p
∇⊥

n0Mm̄p

B̄2B2
norm
∇⊥φ =

∑
p

∫
dWeZ̄pJp,0f . (2.71)

2.4 Total energy for the electrostatic system

Simply by deriving the equations from the not directly time dependent Lagrangian
density, the energy is already conserved, because adjusting the Lagrangian on the
level of the Hamiltonian conserves energy. Contrary to this energy conservation can
be violated, if terms are dropped at a later stage. The total conserved energy in our
electrostatic model is [111]:

Etot =
∑
p

∫
dWdV Hpfp = Ek + Ef. (2.72)

Here, the particle energy (or total kinetic energy) Ek has the same definition for full-f
with and without linearization in the polarization term:

Ek =
∑
p

∫
dWdV Hp,0fp. (2.73)

The definition for the field energy in the case with linearization is:

Ef =
∑
p

∫
dWdV Hp,1fp +

∑
p

∫
dWdV Hp,2fM,p (2.74)

=
∑
p

∫
dWdV epJp,0φfp −

∑
p

∫
dWdV mpc

2

2B2 |∇⊥φ|
2fM,p. (2.75)

In the next step, we consider the polarization equation (2.40), multiply it times φ and
integrate over space:

−
∑
p

∫
dV dW

∇⊥fp,0mpc
2

B2 ∇⊥φ

φ =
∑
p

∫
dWdV epJp,0fφ. (2.76)

Now we integrate by parts, and use the Hermiticity of Jp,0 and divide by 2, to obtain:

∑
p

∫
dV dW fp,0mpc

2

2B2 |∇⊥φ|2 =
∑
p

1
2

∫
dWdV epJp,0φfp. (2.77)
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Inserting this result in the second term of equation (2.75) gives:

Ef =
∑
p

1
2

∫
dWdV epJp,0φfp. (2.78)

For the field energy in the case without linearization, the procedure is equal:

Ef =
∑
p

∫
dWdV Hp,1fp +

∑
p

∫
dWdV Hp,2fp (2.79)

=
∑
p

∫
dWdV epJp,0φfp −

∑
p

∫
dWdV mpc

2

2B2 |∇⊥φ|
2fp. (2.80)

This time, we use the polarization equation of the full-f case without linearization (2.42),
multiply it again times φ and integrate over space:

−
∑
p

∫
dV dW

∇⊥fpmpc
2

B2 ∇⊥φ

φ =
∑
p

∫
dWdV epJp,0fpφ, (2.81)

Again, integrating this expression by parts, using the Hermiticity of Jp,0 and dividing
by 2 gives:

∑
p

∫
dV dW fpmpc

2

2B2 |∇⊥φ|
2 =

∑
p

1
2

∫
dWdV epJp,0φfp. (2.82)

In the end, the same result as in the linearized case (see eq. (2.78)) is obtained:

Ef =
∑
p

1
2

∫
dWdV epJp,0φfp (2.83)

and the total conserved energy of the system in both cases can be written as:

Etot = Ek + Ef =
∑
p

∫
dWdV Hp,0fp +

∑
p

1
2

∫
dWdV epJp,0φfp, (2.84)

with Hp,0 = 1
2mpv‖

2 + µB in the kinetic part.
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3.1 Physical Debye sheath
Plasma within fusion devices, such as tokamaks or stellarators, is mostly confined within
a volume of nested magnetic surfaces that are closed in themselves. Thus, plasma
motion along the field lines in adequately constructed devices does not lead to plasma
loss. However, collisions and drifts cause plasma to diffuse into a loss region and from
there the particles are transported towards the device wall - e.g., a divertor or limiter -
via open magnetic field lines. In their work Chodura [112] and Stangeby [21] describe
that on this path towards the plasma wall, the plasma particles have to pass two regions,
the presheath and the sheath, that both add up to the scrape-off layer:

1. Pre-sheath: The pre-sheath is closer to the plasma core and the by far larger
region. Compared to the sheath its gradients are rather weak and generally the
flow is subsonic.

2. Sheath: This is a very narrow region directly attached to the wall with large
gradients (e.g., for temperature and density) and supersonic velocity of the flow.

The models and methods developed and tested within this thesis are dedicated to open
field line simulations and thus specifically to sheath models. Subsequently, we want to
focus on sheath models for the rest of this chapter and refer the reader to [112], [21]
and [113] for further details on these regions.
Physically, the sheath that builds up in front of the mostly grounded device wall is a
region of net positive charge and thus also called electrostatic Debye sheath. Due to a
potential drop within the sheath (see figure 3.1), ions are accelerated towards the wall,
whereas the faster electrons are to a large extent reflected back towards the plasma.
Gradients of electric field and flow variables are comparably high in the sheath. The
reason therefore is that the plasma flow in the sheath is accelerated, but in general at
very small length scales, i.e. the Debye length and the ion gyro radius. The collisionality
within the sheath can generally be ignored.
To show the discrepancy of the scales present in the Debye sheath and the scales, we
want to list some values for the LAPD experiment (see [52]):
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Wall
Po

ten
tial

Coordinate perpendicular to wall

Plasma

Sheath

~ few λ De

Φsh

Φw

ni > neni = ne

∆Φ = Φsh ‐Φw

Region resolvable with GK simulations

Figure 3.1: Schematic sketch of the potential close to the plasma-wall interface. The sheath
is represented by the small grey region and is only of the size of some electron Debye lengths.
Here, we have an excess of protons and thus a net positive charge. These small length scales
and net positive charge cannot be simulated via gyrokinetic theory, which is constructed
to comply with quasi-neutrality condition. Thus, a different set of boundary conditions is
required to model its effects.

• Length: By comparing the Debye length (λDe ≈ 10−6m) with the ion gyro radius
(∼ 10−2m) and the much larger turbulence scale (∼ 10m), shows already the huge
scaling difference.

• Frequency: This picture is reassured, when comparing the very large electron
plasma frequency (ωpe ≈ 109s−1) to the ion gyro frequency (≈ 106s−1) and the
even smaller turbulence frequencies of interest (ω∗ ≈ 104s−1)

Apparently, the scales present within the Debye sheath are quite different from the
ones that can be treated via gyrokinetic models. Additionally, increasing spatial and
temporal resolution solely for being able to simulate the sheath is computationally not
viable. But for the simulation of open field line plasmas, covering heat and particle
fluxes towards the wall is significant. To resolve this dilemma, we need an appropriate
sheath model, which is able to model the effects of a sheath, without actually resolving
it. The so-called logical sheath boundary conditions are a suitable model for this task,
and will be shown in sections 3.2 and 3.3.
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3.2 Logical (or insulating) sheath

3.2 Logical (or insulating) sheath

We generally base the setup of the logical sheath model used in this thesis on Parker’s
model, published in 1993 ([114]), and have already published our implementation
previously (see [102]). He originally developed his model for fully kinetic 1D2V PIC
simulations, where he tried to find a model that essentially resembles sheath effects for
sheath simulations with coarse spatial grids. In recent works, also Shi [115] and Pan [94]
implemented Parker’s logical sheath boundary conditions for parallel heat flux studies
in gyrokinetic 1D1V Vlasov-simulations. We will also take this boundary condition as a
method of choice for our 1D1V simulations in chapter 6, which were already described
in [102]. A variant of this model is also used in the XGC gyrokinetic PIC code [116].
In this model, the total parallel current to the wall is set to zero (j‖ = 0) at every point
in time and thus the wall can be regarded as insulating. Subsequently, these boundary
conditions are called insulating sheath boundary conditions, as well.
From a physical point of view, incident ions that flow towards the sheath boundary
are accelerated by the dropping sheath potential. Whereas electrons are only absorbed
if their velocity is high enough to overcome the sheath potential drop at the wall.
Electrons below this critical velocity are reflected back into the domain. Within the
logical sheath model j‖ = 0 is set, which means that only the fastest electrons can
overcome the sheath potential drop to exactly balance the number of ions that hit the
wall. In case of the ions, however, all of them can freely exit the system. The velocity
of the slowest electron still exiting the domain is defined as the electron cut-off velocity
vce. The sheath potential then can be calculated from vce according to:

δφ = φsh − φw =
m

2ev
2
ce, (3.1)

where φsh is the sheath potential and φw the wall potential. This can be seen as a
negative step jump from the sheath potential to the wall as correctly approximated by
λDe → 0. For a grounded wall with φw = 0 this resembles exactly the sheath potential.
With z as spatial coordinate, we can write the j‖ = 0 condition at the sheath position
zsh as:

Σiqi

∫ ∞
0

fi(zsh, v‖, t)v‖dv‖ = e
∫ ∞
vce

fe(zsh, v‖, t)v‖dv‖. (3.2)
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The total absorption of ions and the partial absorption of electrons at zsh, leads to the
following distribution functions for electrons and ions at the wall:

fi(zsh,−v‖, t) = 0 v‖ > 0, (3.3)

fe(zsh,−v‖, t) =

0 v‖ > vce

fe(zsh, v‖, t) vce > v‖ > 0.
(3.4)

Here, −v‖ stands for velocities of particles moving away from the wall, back into the
system. We want to emphasize, that the formulation of the boundary condition on the
ions in equation (3.3) would not be sufficient to treat the cold ion case. In our case, no
force accelerates the ions towards the wall. Eq. (3.3) also does not imply a force on the
ions from the potential drop across the logical sheath and thus the Bohm criterion will
not be satisfied. Implementing these effects in the equations could be considered for
future work.
The j‖ = 0 condition in the described 1D1V model is valid on each field line. However,
in a three-dimensional model a current flow out of the wall at one point and an inflow
at a different point is permitted. Nevertheless, the total integrated in- and outflow of
the wall still has to cancel and j‖ = 0 must hold for the total parallel current into the
walls.

3.2.1 Algorithm
Numerically, the logical sheath model in our code is implemented according to the
following algorithm (based on [114]), as described in our previous work [102]:

1) Advance particle trajectories

2) At each time, step count number of electrons ne and ions ni that hit the wall

3) Compare ne and ni
a) If ni ≤ ne (probable condition)
− Order all ne electrons according to velocity
− Let fastest ni electrons and ni ions leave the domain
− Reflect remaining ne − ni slow electrons

b) If ne ≤ ni (very improbable condition)
− Order all ni ions according to velocity
− Let fastest ne ions and ne electrons leave the domain
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3.2 Logical (or insulating) sheath

− Reflect slowest ni − ne ions
− (Alternative: Absorb all ions and maintain net positive wall charge for

next time step)

In figure 3.2 a graphical representation of the algorithm’s functionality is displayed.
Following this algorithm, the electron cut-off velocity vce can be computed and based on

Figure 3.2: Schematic representation of number of outgoing ions and electrons at the sheath
position as a function of v‖ (with different scales). As described in the algorithm in section
3.2.1, all ni ions are absorbed by the wall, whereas only the fastest ni electrons are absorbed.
The ne − ni slower electrons are reflected back into the plasma.

vce, we can calculate the sheath potential according to eq. (3.1). The very improbable
ne ≤ ni case described by the b) part is rather for completeness and appears only in
very rare occasions. Nevertheless, by writing the algorithm in the current form, the
j‖ = 0 condition is fully met.
The alternative approach to store the excess ions as net positive wall charge would
contribute to the potential calculation of the next time step. But with assuming a
grounded wall the charge hitting the wall for the next time step would be neglected.
In general, we implemented two different versions of this insulating sheath model. The
first option is to apply the j‖ = 0 criterion to each cell in the x/y-plane at the sheath
position. Thus, for each cell a cut-off velocity vce can be calculated. The second option
is to see the entire x/y-plane as one cell and apply j‖ = 0 for the entire plane. In this
case, only one single vce is calculated for all particles.
Alternative sheath models to the logical/insulating sheath that allow a net current

37



3 Sheath model

flowing into the wall j‖ 6= 0 are so-called conducting sheath models. These will be
introduced in section 3.3.

3.3 Conducting sheath
The main difference compared to the insulating sheath model is that the total current
towards the wall is not bound to 0, thus j‖ 6= 0 is allowed. In other words, the number
of ions that are absorbed by the wall per time step does not have to equalize the number
of electrons as in the insulating sheath case.
In this model, no boundary conditions are applied on the ions. This means that all ions
that hit the boundary are absorbed and none of them are reflected back into the plasma.
However, the absorption/reflection criterion for the electrons is again depending on the
electron cut-off velocity from equation (3.1). But this time vce is calculated from the
sheath potential φsh, according to:

vce =

√
2e
m
φsh, (3.5)

with the wall taken to be just outside the simulation domain and potential set to zero
(φw = 0). The sheath potential is calculated at the sheath position (z = 0 or z = Lz)
from the previously derived polarization equation (or GK Poisson equation) (2.42).
This procedure is valid in the case that more electrons than ions are hitting the wall,
which is the vast majority of cases. In the more unusual case that more ions than
electrons are hitting the wall, all electrons would be absorbed and the sheath condition
would apply to the ions.
Sheath currents are able to self-consistently fluctuate in interaction with turbulence
in and out of the wall and are only reflected by the sheath potential that builds up.
Starting for example from an initial condition where electrons and ions are uniformly
distributed in space, electrons will quickly leave the plasma. This causes a net positive
charge in the plasma, which rapidly leads to an increase in the sheath potential and
eventually reflects electrons back into the plasma. Apparently, fluid codes employ a
similar procedure. These codes calculate the potential from the fluid vorticity equation
everywhere in the domain (including φsh) and then set the boundary condition on the
parallel electron velocity with the help of the calculated φsh [117, 118].
Within PICLS for the conducting sheath we use two different approaches to calculate
the potential and thus also the cut-off velocity per hitting electron (see also figure 3.3):

1. Calculate φsh per sheath cell: For each simulation cell that is located at the
sheath boundary the sheath potential is calculate at the center of the x/y-plane
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3.3 Conducting sheath

directly at the sheath position (z = 0 or z = Lz). This is possible, due to the
usage of bspline Finite Elements. Thus, for all particles that hit the sheath
within this x/y-plane the same cut-off velocity is calculated. In this case, nx× ny
potential values have to be calculated for each domain boundary.

2. Calculate φsh per electron position: Depending on the (x,y,z) coordinates
where the particle hits the sheath (with z = 0 or z = Lz), φsh(x, y, z) is calculated
for each electron, individually. The velocity of each electron is then compared
with its individual vce. This approach is more precise than the previously men-
tioned, but depending on the number of hitting electrons can require much more
computation time.

1 2

43

a) Calculation of Φsh per sheath cell

Φ1 Φ2

Φ3 Φ4

vce(Φ3)

vce(Φ1)

vce(Φ1)

vce(Φ2)

vce(Φ4)

vce(Φ4)

1 2
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b) Calculation of Φsh per electron position

Φ1

Φ3

Φ4

Φ6

vce(Φ4)

vce(Φ2)

vce(Φ1)

vce(Φ3)

vce(Φ5)

vce(Φ6)

Φ2

Φ5

Figure 3.3: Illustration of the two different approaches for the φsh calculation for a conducting
sheath (see section 3.3). The blue dots indicate the positions of hitting electrons in the (x, y)
plane directly at the sheath (with z = 0 or z = Lz). The red crosses indicate the (x, y)
position, where the potential for the cut-off velocities of the electrons is calculated. In a)
φsh is calculated at the center of the x/y-plane and valid for each hitting electron in this
cell. In b) however, φsh is calculated for each electron, individually, depending on the (x, y, z)
coordinates where the particle hits the sheath (with z = 0 or z = Lz).

For both cases holds, that all electrons that exceed the calculated cut-off velocity are
absorbed by the wall, the rest are reflected back into the domain. The calculation of
the sheath potential on the specific sheath position is done via spline interpolation. No
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further boundary conditions (e.g., on the current) are taken into account in the imple-
mented conducting sheath models. It is important to mention that so far conducting
sheath boundary conditions are only implemented for cases where the B-field strikes
the domain wall perpendicularly. For arbitrary angles the calculation of the sheath
potential then requires additional boundary conditions. The main complication here is
the calculation of the potential at the sheath position. However, for the adaptation of
the particle trajectories at the boundary, already a suitable approach was derived and
will be presented in the following section.

3.4 Non-perpendicular B-field on sheath
In case a marker is hitting the sheath boundary of the domain, it can either be absorbed
by the wall and thus exit the domain, or it can be reflected back into the simulation
domain. In this section we want to focus on how different angles of B-fields onto the
boundary surface affect the reflection / absorption behavior of markers by the wall. The
simplest case one can imagine is a B-field line that strikes the sheath in a 90° angle (see
fig. 3.4 a)). In this case, a marker that follows this field line and hits the sheath can be
reflected back into the domain by simply reversing its parallel velocity v‖ → −v‖ and
reflecting it back along the incident field line in z-direction. The x- and y-coordinate
remain untouched. This approach can be chosen in the drift-kinetic, as well as the
gyrokinetic model. Once the field line strikes the sheath surfaces with an angle α 6= 90°,

a) (xold,yold,zold)
b)

α

(xold,yold,znew)

(xold,yold,zold)

(xnew,ynew,znew)

Figure 3.4: Illustration of particle trajectories along a B-field line (black line) that are
reflected from the boundary back into the plasma domain. In a) the B-field line strikes the
surface perpendicularly and thus only the z-coordinate needs to be updated. In b) the angle
α between the surface and the direction of B is 6= 90°. Hence, all spatial coordinates need to
be updated.

the reflection process becomes more complicated. In a drift-kinetic model, in addition
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3.4 Non-perpendicular B-field on sheath

to reversing v‖, now all three spatial coordinates need to be updated according to
the reflection of the marker along the B-field line. In figure 3.4 b), this reflection of
the marker along the B-field line is illustrated. However, in a gyrokinetic model the
complexity of the reflection behavior increases even more, due to the gyro-ring, which
is now not perpendicular to the boundary surface anymore. To understand how this
can be treated for arbitrary B-field incidence angles, we will in the following introduce
our approach for the rotation of the gyro-ring in the (x, y, z)-domain, the calculation of
the marker velocity perpendicular to the boundary and the reflection along the incident
B-field line.
It is important to mention that we did not yet treat the case of non-perpendicular
B-field angles for the calculation of the electric potential. So far in PICLS the Poisson
equation can only be consistently solved for perpendicular strike angles onto the domain
boundary.

3.4.1 Rotation of the gyro-ring
This consideration is obviously only required for a gyrokinetic model and not for a drift-
kinetic one. In the gyrokinetic case, the gyro-ring of a marker is always perpendicular
to the B-field vector B at the gyro-center coordinate (x, y, z). By a given B, Bx, By
and Bz the direction of B can be defined by two angles, the angle between B and the
z-axis αz and the angle between B projected on the x/y-plane (Bxy) and the x-axis αx
(this is a free choice). These angles are illustrated in figure 3.5. With the definitions

x

z

y

Bαz

αx
Bxy

Bx

By

Bz

Figure 3.5: Illustration of an arbitrary B-field vector B in the (x, y, z) domain. The direction
of B can be determined by the angle between B and the z-axis αz and the angle between B
projected on the x/y-plane (Bxy) and the x-axis αx.
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Bxy =
√
B2
x +B2

y and B =
√
B2
x +B2

y +B2
z , we obtain:

sin(αz) =
Bxy
B

, cos(αz) =
Bz
B

, tan(αz) =
Bxy
Bz

, (3.6)

sin(αx) =
By
Bxy

, cos(αx) =
Bx
Bxy

, tan(αx) =
By
Bx

. (3.7)

These angles can be used to identify the plane in which the gyro-ring lies. The approach
we use is to construct the gyro-ring in the (x, y)-plane and then rotate the plane
perpendicularly to B.

1) Construct gyro-ring

Using the definition of the Larmor radius (in CGS):

rL =
√

2µm/B · c
|q|

, (3.8)

we can calculate the x/y-coordinates of the Larmor-points around the point of origin
(0, 0, 0) in the x/y/z = 0-plane:

x1,i = rL · cos(2πi/nL),
y1,i = rL · sin(2πi/nL). (3.9)

Where we define i as the index of the specific Larmor point and nL as the number of
Larmor points per gyro-ring. Here we use, that in our PIC scheme a finite number of
gyro-markers needs to be distributed across the gyro-ring to take gyrokinetic effects
into account. The number of gyro-markers depends on the size of rL and is calculated
within the simulation (typical values are 4-8). The z-coordinate remains unchanged:

z1,i = 0. (3.10)

2) Rotate around y- and z-axis

We now apply two consecutive rotations around the y- and z-axis to rotate the gyro-ring
into the plane perpendicular to B. First, we rotate the gyro-ring around the y-axis
with the previously calculated angle αz by using the matrix:

My(αz) =

 cos(αz) 0 sin(αz)
0 1 0

− sin(αz) 0 cos(αz)

 . (3.11)
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In a second step we now rotate the already y-rotated gyro-ring around the z-axis by
the angle αx, to eventually position it in the plane perpendicular to B. Therefore, we
define a second rotation matrix:

Mz(αx) =

cos(αx) − sin(αx) 0
sin(αx) cos(αx) 0

0 0 1

 . (3.12)

Both matrices can be multiplied to obtain a rotation matrix Myz(αz,αx) around the y-
and z-axis with the angles αz and αx:

Myz(αz,αx) =

cos(αx) cos(αz) − sin(αx) cos(αx) sin(αz)
sin(αx) cos(αz) cos(αx) sin(αx) sin(αz)
− sin(αz) 0 cos(αz)

 . (3.13)

We can now multiplyMyz(αz,αx) with the original gyro-ring coordinates (x1,i, y1,i, z1,i)
and add the coordinates of the gyro-ring center (x0, y0, z0) to get the coordinates of
the gyro-points (xi, yi, zi) in the plane perpendicular to B:

xi = x0 + x1,i cos(αx) cos(αz)− y1,i sin(αx) + z1,i cos(αx) sin(αz), (3.14)
yi = y0 + x1,i sin(αx) cos(αz) + y1,i cos(αx) + z1,i sin(αx) sin(αz), (3.15)
zi = z0 − x1,i sin(αz) + z1,i cos(αz) (3.16)

Using that z1,i = 0 and equations (3.9), we obtain:

xi = x0 + rL · cos(2πi/nL) cos(αx) cos(αz)− rL · sin(2πi/nL) sin(αx), (3.17)
yi = y0 + rL · cos(2πi/nL) sin(αx) cos(αz) + rL · sin(2πi/nL) cos(αx), (3.18)
zi = z0 − rL · cos(2πi/nL) sin(αz)′ (3.19)

3.4.2 Velocity perpendicular to boundary

In case of perpendicular B-field lines on the sheath boundary one of the key parameters
to consider is v‖, which is also perpendicular to the sheath boundary and determines
whether the incoming particle has enough velocity to overcome the sheath potential
or not. For non-perpendicular B-field lines, however, the direction of v‖ is also not
perpendicular anymore, but under a certain angle 6= 0. In this case, one could assume
that the velocity we would have to calculate is the velocity perpendicular to the sheath
boundary, which differs from v‖. This perpendicular velocity could be calculated from
the incident angle of the field line, the distance of the particle to the sheath surface and
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the gyro-ring radius. However, in most cases the reflection or absorption of particles is
sufficiently determined by v‖. Thus, using v‖ as velocity for the logical sheath criterion
is appropriate. Only for very small incident angles of the B-field (approximately < 2°)
this cannot longer be justified, due to the influence of collisions on the cross-field
transport [119].

3.4.3 Reflection along B-field line
Once evaluated that a marker is reflected back into the plasma domain, the reflection
trajectory needs to be calculated. Our approach is to evaluate how far the marker
would have travelled out of the domain along the z-direction, if no boundary would be
present. Therefore, we define the z-position where the particle starts as zold and the
position where the particle would end as znew. The distance between both is defined as:

δz = |znew − zold|. (3.20)

In addition, we define the length of this path within and out of the domain:

zin = |zold − zsh|,
zout = |znew − zsh|, (3.21)

where zsh is the z-position of the sheath (see figure 3.6). We assume that the marker
follows the same trajectory before and after the reflection. Therefore, we calculate the
fraction of time the particle travels away from its old position as:

δt =
|zin − zout|

δz
· ∆t, (3.22)

where we used eqs. (3.21) and the finite time step ∆t. The direction of the net particle
movement away from its “old” position depends on whether zin > zout, or not, and can
be taken into account by setting:

v‖,old → v‖,old, for zin < zout,
v‖,old → −v‖,old, for zin > zout. (3.23)

The new marker coordinates (x, y, z, v‖)new can thus be calculated by applying the
Euler-Lagrange equations on the “old” spatial marker coordinates (x, y, z, v‖)old, with
the “old” E-field values, the updated velocity (see eq. (3.23)) and the new time step
δt (see eq. (3.22)). v‖,new remains the same velocity as calculated within the particle
pusher, only its sign changes to v‖,new = −v‖,new.
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α

(x,y,z,v||)old

(x,y,z,v||)new

zin

zin

zout

δz

Figure 3.6: Illustration of a marker’s trajectory along a B-field line which is reflected from the
boundary back into the plasma domain. The B-field line strikes the boundary surface under
an angle α. δz is the distance the particle would travel in z-direction without a boundary.
zin and zout are the distances the marker travels inside and outside the wall. The marker in
reality is reflected at the boundary and travels back on the incident field line with the same
length zin in the z-direction.

3.5 Additional considerations for sheath models

Due to their relevance in plasma physics, there are numerous studies and a vast literature
on sheaths. Sheaths have been studied with different incident angles of the magnetic field
and also kinetic effects have been taken into account [119]. For gyrokinetic turbulence
studies, the Polarization equation (2.40) needs to be solved to couple the gyrokinetic
upstream region with the sheath region. This coupling heavily depends on the specific
model and how it calculates the electric field close to the boundary.
The previously described insulating and conducting sheath models are simplified models
that mainly determine the particle flux into the wall by either determining the sheath
potential, or the current into the boundary. However, several effects are not yet taken
into account. For the conducting sheath for example, the currents can freely flow into
the wall, which at short time scales can lead to a violation of the quasi-neutrality
condition. However, due to the effect of the electric field on longer time scales, the
plasma reacts to restore its quasi-neutrality. To also prevent this short time violation,
a current flow from one region of the sheath to another region could be implemented to

45



3 Sheath model

ensure j|| = 0 over the whole sheath.
In addition, our implemented models do not guarantee the Bohm sheath criterion.
Here, for a steady-state sheath in the sheath entrance, the ion outflow velocity needs to
exceed the sound speed cs. However, if the pressure and potential gradients from the
source to the sheath region are large enough to accelerate ions to near-sonic velocities,
this criterion does not have to be enforced additionally. In the simulations within this
thesis, we generally start with a low density and increase it steadily, until a steady state
is reached over a period of a few sound transit times. During this time, the potential
and pressure drop from the central source towards the boundaries is sufficiently large,
to accelerate the ions to near-sonic velocities.
Other physically relevant factors, such as a neutrals model, which is relevant to achieve
detached plasma states, could also be added to a more realistic sheath model. Also
charge exchange, recycling and recombination at the vessel wall could be of interest.
Different from gyrokinetic models in fluid models in recent years a lot of research
was dedicated to improving sheath models, to ensure the development of consistent
boundary conditions (e.g., [117], [120], [121]). Despite the achieved progress, sheath
models still remain to be an open research topic and the results gained from fluid code
studies could in future also become relevant to GK codes.

3.6 Source term
As described, we apply sheath boundary conditions on both sides of the domain in
z-direction at positions z = 0 and z = Lz to reflect open field lines starting and ending
at a divertor. These boundary conditions can also be seen as particle sinks, depending
on the criteria determined by the sheath to exit the domain. Hence, we also need to
allow particles to enter the domain between these two boundaries. Within PICLS, this is
done via a particle source, which generates particles from a pre-defined source function
(e.g., Maxwellian distribution) via a Monte Carlo method. The type of source function
strongly depends on the simulation setup and the specific problem to be studied. In
general it is dependent on the plasma temperature, the plasma density and the position
within the domain. In addition, a particle source intensity can be defined, which defines
the number of particles inserted per time.
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4.1 Collisions in the SOL

As mentioned in section 1.2 apart from micro instabilities, collisions are a key driver to
transport particles across closed magnetic flux surfaces that would be confined otherwise
[20]. With the resulting particle transport also heat transport across flux surfaces is
achieved [7, 13]. These collisional transport phenomena are described by the classical
and, in the specific case of a tokamak, neoclassical transport theory [13, 122].
In the SOL, collisions are of specific relevance, since they cause plasma to diffuse from
the confined region into SOL from where they are transported towards the device wall
[20]. Collisionality is higher in the edge/SOL region than in the core region, due to
lower temperature there. It plays a dominant role at the plasma edge and then changes
significantly across the SOL [15, 20].
This importance of collisional effects in the SOL was also suggested by fully kinetic
PIC simulations ([123],[124]). Especially in highly collisional machines, such as LAPD,
collisions are significant for the transport behavior in open field lines.

4.2 Coulomb collisions and Landau operator

In gyrokinetics, apart from the self-consistent electromagnetic mean fields, due to the
collective particle behavior, plasma particles of same and different species are also
coupled through binary interactions (collisions). For charged particles these collisions
are expressed by Coulomb collisions [125].
Here, two charged particles with charge q1 and q2 and mass m1 and m2 are considered.
Figure 4.1 sketches an exemplary electron-ion Coulomb collision, with the relative
position r and v = dr

dt initially along the x axis, the impact parameter b, the angle
α and the deflection angle θ. Introducing the reduced mass µ = m1m2/(m1 +m2)
delivers the equation of motion:

µ
dv
dt

=
q1q2r

4πε0r3 (4.1)
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x

y

+
r

e-

θαb v

Figure 4.1: Exemplary representation of an electron-ion Coulomb collision.

and the angular momentum conservation:

vb = r2α̇→ 1
r2 =

α̇

vb
. (4.2)

With equations 4.1 and 4.2 the relative velocity gain and thus a relation between the
impact parameter and the deflection angle can be calculated:

tan θ2 =
|q1q2|

4πε0µv2b
=
b0
b

, (4.3)

where b0 = |q1q2|/4πε0µv2 is the impact parameter that would result in a 90◦ deflection.
The deflection angle is related to the center of mass.
To account for these Coulomb collisions in a gyrokinetic model, a collision operator
needs to be introduced. A general total collision operator for species p includes the sum
of contributions from collisional interactions with all other species p′ (where p = p′ is
possible):

Cp[fp] =
∑
p′
Cpp′ [fp′ , fp], (4.4)

where fp is the particle distribution function of species p. The full Landau operator
accounts for the binary particle interaction between charged particles by considering
the electrostatic fields they generate [122, 126]. The Landau operator can be written in
an explicit drag and diffusion form [125]:

Cpp′ [fp′ , fp] =
∂

∂vp
·
[
Γpp′fp −

∂

∂vp
· (D̄pp′fp)

]
, (4.5)
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with the drag vector Γpp′ and the diffusion tensor D̄pp′ defined as:

Γpp′ =
q2
pq

2
p′ ln Λ

8πε20m2
pµpp′

∫
Ū(u) ·

∂fp′

∂vp′
d3vp′ , (4.6)

D̄pp′ =
q2
pq

2
p′ ln Λ

8πε20m2
p

∫
Ū(u)fp′d3vp′ . (4.7)

Here, the collision relative velocity u = vp − vp′ as well as the tensor Ū(u) =
1/u(1− ûû) are used. ln Λ is the Coulomb logarithm, defined as the integral over the
inverse collision impact parameter b, ln Λ =

∫ λD
b0

db
b , and ε0 is the permittivity of the

free space. In our model however, we implement a simplified and less computationally
heavy Lenard-Bernstein (or Dougherty) collision operator, which will be describe in the
following chapter and which was already introduced in [127].

4.3 Lenard-Bernstein (LB) collision operator
The Lenard-Bernstein (LB) collision operator can be used in the presence of small-angle
collisions and allows exact analytic solution. This model conserves certain features of
the actual Landau collision terms. In particular, collision driven diffusion in velocity
space, which causes a relaxation of the distribution function towards the Maxwell
distribution and conserves the number of particles. In the limit of infrequent collisions,
the results of a Landau operator can be retrieved [128]. However, the evaluation of so-
called Rosenbluth potentials (see [126]) is avoided by using the simplified LB operator.
These Rosenbluth potentials are expressions that appear in the drag and diffusion
terms of the previously shown Landau operator. In addition to the relaxation towards
a Maxwellian, the operator also conserves particle number, momentum, and energy
analytically and implies pitch-angle scattering. It is long wavelength and thus ignores
finite-Larmor-radius (FLR) corrections, which implies classical cross-field diffusion.
Collisions with neutrals are neglected in the current version.
The Lenard-Bernstein collision operator acting on the full-f model can be written as:

Cp[fp] =
∑
p′
Cpp′ [fp] (4.8)

=
∑
p′
νpp′

∂

∂v
·
[
(v− u‖,p′)fp + v2

T,pp′
∂fp
∂v

]

=
∑
p′
νpp′

 ∂

∂v‖

(v‖ − u‖,p′)fp + v2
T,pp′

∂fp
∂v‖

+ ∂

∂µ

2µfp + 2
mpv

2
T,pp′

B
µ
∂fp
∂µ


 ,
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with the definitions:

u‖ =

∫
d3vv‖fp

np
, (4.9)

mpv
2
T,pp′ =

∫
d3vmp(v− up′)

2fp
3np

, (4.10)

np =
∫

d3vfp. (4.11)

Additionally, for the collision frequencies for self-species collisions standard expressions
can be used [129]:

νee =
4
√

2πneλe4

3√meT
3/2
e

and νii =
4
√
πniλe4

3√miT
3/2
i

, (4.12)

with the Coulomb logarithm λ = 6.6− 0.5 ln(n0/1020) + 1.5 lnTe0, where the initial
density n0 is expressed in m−3 and the initial electron temperature Te0 in eV. The
collision frequency is velocity independent and thus neglects the v−3 dependence
expected for Coulomb collisions.
For electron-ion collisions for simplicity we also apply the Lenard-Bernstein collision
operator with the collision frequency νei = νee/1.96. This value approximately accounts
for the plasma’s parallel conductivity coefficient. An option to solely apply pitch-
angle-scattering is also implemented in the code [125, 130]. Ion-electron collisions
are neglected, since its collision frequency νie is much smaller than the ion-ion term
(νie/νii ∼

√
me/mi). Due to this small collision frequency, neglecting ion-electron

collisions does not have a significant effect. This approximation is also used in previous
gyrokinetic continuum code studies in Gkeyll [90] and GENE [95].
From equation (4.8), the drag coefficient Γ and diffusion coefficient D can be excerpted:

Γ = −νpp′(v− u‖,p′), (4.13)
D = νpp′v

2
T,pp′ . (4.14)

Both coefficients are required for the discretization of the collision operator in a particle-
in-cell model.
Instead of the selected Lenard-Bernstein collision model, also other options would have
been possible, such as a simple Krook operator, or a more advanced Fokker-Planck
operator, which also evaluates the Rosenbluth potentials (see [125]). However, the
reason for our choice was to implement a collision operator that was similar to the
one used for other gyrokinetic continuum simulations [90, 95], to ensure comparability.
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Additionally, for our current studies the characteristics of the LB operator are sufficient
and computationally relatively reasonable. In future, however, to achieve a more
realistic collisional model, we plan to implement a non-linear Fokker-Planck collision
operator, similar to the one introduced in [125].

4.4 PIC discretization of LB collision operator

For the discretization of the described Lenard-Bernstein collision operator for our PIC
model, the so-called Langevin approach is used, as explained in Vernay (2013) [125].
Here, a collection of particles subjected to deterministic and stochastic motion in a
general 1D phase space (x,t) is considered. The probability that a particle moves from
position x1 to x2 between times t1 and t2, P (x1,x2, t1, t2) · (x2− x1) is introduced. The
statistical particle distribution then can be defined as:

f(x, t) =
∫
f(x− ∆x, t− ∆t)P (x− ∆x,x, t− ∆t, t)d∆x (4.15)

Eq. (4.15) can be Taylor expanded with respect to ∆x, by assuming that the deflections
∆x are small:

f(x, t) ≈ f(x, t− ∆t)
∫
P (x− ∆x,x, t− ∆t, t)d∆x︸ ︷︷ ︸

=1

− ∂

∂x

f(x, t− ∆t)
∫

∆xP (x− ∆x,x, t− ∆t, t)d∆x︸ ︷︷ ︸
=〈∆x〉



+
∂2

∂x∂x

f(x, t− ∆t)
∫

∆x∆xP (x− ∆x,x, t− ∆t, t)d∆x︸ ︷︷ ︸
=〈∆x∆x〉

 . (4.16)

Dividing (4.16) by ∆t and taking the limit ∆t→ 0 gives the Fokker-Planck equation:

∂f

∂t
+

∂

∂x
(Γf)− ∂2

∂x∂x
(Df) = 0, (4.17)
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with the drag and diffusion coefficients defined as:

Γ = lim
∆t→0

〈∆x〉
∆t

, (4.18)

D = lim
∆t→0

〈∆x∆x〉
2∆t

. (4.19)

By introducing particles to model the distribution function f , equation (4.17) can
be solved with the Langevin approach [125, 131]. The time evolution of the whole
distribution f is therefore represented by individual single particle motions. For particle
n at time t, the position in phase space xn(t), is given by its previous position xn(t−∆t)
at time step t− ∆t. The temporal change of the variable ∆xi is thus given by:

∆xn = xn(t)− xn(t− ∆t) = 〈∆x〉+R
√
〈∆x∆x〉 = Γ∆t+R

√
2D∆t. (4.20)

R is a random number which is sampled from a probability distribution function (PDF)
of average 0 and variance 1. This random number is required for the diffusive motion
in the second moment of the probability function P (last term of eq. 4.16). In terms
of the PIC algorithm, the Langevin approach performs random kicks on the velocity
coordinates of the particles, that maintain the previously mentioned features, such as
energy conservation.
Treating collisions in the gyrokinetic 2D velocity space (v‖,µ) with random numbers
on a finite time step can however cause ξ = v‖/v to leave its correct interval of [−1, 1]
[125]. Thus, for the collision operation the velocity space needs to be expanded back
to the real 3D space (vx, vy, vz). Based on the form of the LB collision operator we
choose a coordinate system where the velocity of the incoming particle vin lies in the
x/z-plane. In particular, v⊥,in lies on the x-axis and v‖,in on the z-axis:

vin =

v‖,in
v⊥,in


2D

=


v⊥,in

0
v‖,in


3D

=

vxvy
vz


3D

, (4.21)

with v⊥ =
√

2B(R)µ/m.
We can use the drag and diffusion coefficients (4.13, 4.14) in the Langevin approach
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(4.20), to achieve the following form for the velocity change in the vx, vy, vz space:

∆v = Γ∆t+R
√

2D∆t
= −νpp′(v− u‖,p′)∆t+

√
2νpp′v2

T,pp′∆tR

= −νpp′(


v⊥,in

0
v‖,in

−


0
0

u‖,p′

)∆t+ vT,pp′
√

2νpp′∆tR, (4.22)

where we used that u‖,p′ is in the v‖/z-direction. For the changes in x/y/z-direction
we then get:

∆vx = −νpp′v⊥,in∆t+ vT,pp′
√

2νpp′∆tR1,

∆vy = vT,pp′
√

2νpp′∆tR2,

∆vz = −νpp′(v‖,in − u‖,p′)∆t+ vT,pp′
√

2νpp′∆tR3, (4.23)

with the independent random numbers R1, R2 and R3; each of them sampled from a
PDF of average 0 and variance 1. One has to reverse transform the coordinates back to
the 2D gyrokinetic velocity space, to obtain the velocity values for the particle after
the collision operation:

v‖,out = v‖,in + ∆vz, (4.24)

v⊥,out =
√
(v⊥,in + ∆vx)2 + ∆v2

y . (4.25)

This provides the outgoing gyrokinetic velocity variables (v‖out,µout =
1
2mv

2
⊥,out/B)

and ensures that ξout ∈ [−1, 1].

4.4.1 Conservation of moments

Conservation of particle number, parallel momentum 〈v‖〉 and kinetic energy 〈v2〉 is
essential for the implementation of the collision operator. In the case of the Lenard-
Bernstein operator analytically these quantities are conserved for an infinite number of
particles and infinitely small time steps. Nevertheless, for finite values of particle number
and time step length, we can introduce corrections to make sure that conservation
relations hold up to round-off. As an initial step, we want to focus on a correction
where we take a finite time step ∆t into account, but not account for statistical errors
related to finite number of particles. This is the equation implemented in PICLS so far
and for our usage already shows good conservation of moments, as shown in section
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4.5.2.
Particle number is intrinsically conserved in PICLS, because the code is based on a
full-f model. However, for the parallel momentum and the kinetic energy, the idea is
to regard u‖ and vT as free parameters, which are then determined in order to ensure
conservation of moments. In case of the parallel momentum, the change of the parallel
velocity, which is similar to ∆vz from equation (4.23) since v‖ lies in the z-direction, is
thus set to zero. Additionally, all marker weights within a configuration space bin are
summed up to obtain:

0 =
N∑
n=1

wn∆v‖,n =
N∑
n=1

wn∆vz,n (4.26)

=
N∑
n=1

wn
[
−ν(v‖,in,n − u‖)∆t+ vT

√
2ν∆tR3,n

]
, (4.27)

with the total number of markers within the bin N . Using the relation 〈R3,n = 0〉,
which comes from our choice of the random numbers, the second term drops and we
can write a relation for 〈u‖〉 to conserve parallel momentum:

〈u‖〉 =
N∑
n=1

wnv‖,in,n/
N∑
n=1

wn. (4.28)

This is precisely the PIC discretization relation for (4.9). Hence, in the picture of infinite
particle numbers, for u‖ no correction is necessary to conserve parallel momentum. In
order to conserve kinetic energy, we now have to derive a relation for vT, for which, we
can apply the already derived relation for u‖ (4.28). For the total kinetic energy change
due to Langevin kicks, the following relation must be valid on average over all particles:

0 = v2
out − v2

in = (v + ∆v)2 − v2 = 2v∆v + (∆v)2. (4.29)
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Writing the explicit expression of eq. (4.22) for ∆v and expressing the total velocity
values as sum over the markers yields:

0 =
N∑
n=1

wn

{
2(vin,n − ezu‖) ·

[
−ν∆t(vin,n − ezu‖) + vT

√
2ν∆t ~Rn

]
+
[
−ν∆t(vin,n − ezu‖) + vT

√
2ν∆t ~Rn

]2 }
(4.30)

=
N∑
n=1

wn

{
− ν∆t(2− ν∆t)(vin,n − ezu‖)2

+2vT
√

2ν∆t(1− ν∆t)(vin,n − ezu‖)Rn + 2v2
Tν∆t ~R2

n

}
, (4.31)

where ~R = (R1,R2,R3). We can invoke the properties of the PDF for the random
numbers 〈 ~Rn〉 = 0 and 〈 ~R2

n〉 = 〈R2
1,n〉+ 〈R2

2,n〉+ 〈R2
3,n〉 = 3 to obtain:

3(
N∑
n=1

wn)2ν∆t〈v2
T〉 = ν∆t(2− ν∆t)

N∑
n=1

wn(vin,n − ezu‖)2. (4.32)

From eq. (4.32), we can directly derive a relation for 〈v2
T〉 to conserve kinetic energy:

〈v2
T〉 = (1− ν∆/2)

∑N
n=1wn(vin,n − ezu‖)2

3∑N
n=1wn

. (4.33)

This relation is the required PIC discretization of (4.10). We want to remark that the
correction factor (1− ν∆t/2) is required to achieve conservation of kinetic energy for
finite time steps.
As a next step, relations for u‖ and vT can be derived to ensure conservation to round-
off even in the presence of a finite number of particles, i.e. allowing for statistical
fluctuations. We derived these relations, but did not implement them in the code, since
the relations (4.28) and (4.33) already showed sufficient conservation properties for our
requirements. The derivation for u‖ and vT relations again works very similar as in
the previously described case, but this time no averages over markers are applied to
account for fluctuations.
By enforcing conservation of parallel momentum, a first relation for vT and u‖ can be
derived:

vT =
√
ν∆t/2

B −Au‖
C

, (4.34)
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where the definitions A =
∑N
n=1wn, B =

∑N
n=1wnv‖,in,n and C =

∑N
n=1wnR3,n were

used. The second relation for vT and u‖ can be achieved from presuming kinetic
energy conservation (see eq. 4.29) and using the definitions D =

∑N
n=1wnR2

n, E =∑N
n=1wnv

2
in,n and F =

∑N
n=1wnvin,nRn:

2ν∆tDv2
T = ν∆t(2− ν∆t)(E − 2Bu‖ +Au2

‖)

− 2(1− ν∆t)
√

2ν∆t(F −Cu‖vT). (4.35)

By inserting (4.34) into (4.35), a quadratic second order equation can be obtained for
u‖:

0 = (ν∆t)2
[
(
A

C
)2D−A

]
u2
‖ + 2ν∆t

[
B − ν∆t

ABD

C2

]
u‖

+

[
(ν∆t)2(

B

C
)2D− ν∆t(2− ν∆t)E + 2

√
2ν∆t(1− ν∆t)F

]
. (4.36)

One of the resulting roots for u‖ then has to be inserted in equation (4.34) to obtain a
relation for vT. But as mentioned previously, since the conservation properties of our
first correction are more than sufficient for our requirements, we did not implemented
this correction term and thus cannot comment on its stability.

4.5 Test of collision operator
To test the implementation of basic collision operator features, it is helpful to decrease
the complexity of the system in a first step. After successful testing of basic features, the
behavior of the full collision operator with its conservation properties can be studied.

4.5.1 Basic tests with constant u‖ and vT

In order to test against analytical functions and decrease complexity, we choose a
simplified setup with only a single species s with self-species collisions and set u‖ = 0,
vT = const and ν = const. Therewith, we can rewrite equation (4.8) as:

∂

∂t
f = Cp[f ] = ν

∂

∂v
·
[
vf + v2

T
∂f

∂v

]
. (4.37)

With the definitions:

n =
∫

d3vf , 〈v〉 = 1
n

∫
d3vvf , 〈v2〉 = 1

n

∫
d3vv2f , (4.38)
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for density n, average velocity 〈v〉 and kinetic energy of the system 〈v2〉, analytical
expressions (exponential relaxations) can be derived and compared with the numerical
simulations.
First, we take the time derivative of 〈v〉, to achieve an analytical expression for the
evolution of the average velocity over time:

d
dt〈v〉 =

1
n

∫
d3vv

∂f

∂t
=
ν

n

∫
d3vv

∂

∂v

[
vf + v2

T
∂f

∂v

]
(4.39)

= −ν
n

∫
d3v

[
vf + v2

T
∂f

∂v

]
= −ν 1

n

∫
d3vvf︸ ︷︷ ︸

=〈v〉

(4.40)

= −ν〈v〉. (4.41)

A solution of this equation can be found by the exponentially decaying function:

〈v〉(t) = 〈v〉(t = 0)e−νt. (4.42)

To achieve an analytical expression for the kinetic energy, we can again use the same
approach, starting with the time derivative:

d
dt〈v

2〉 =
1
n

∫
d3vv2∂f

∂t
=
ν

n

∫
d3vv2 ∂

∂v

[
vf + v2

T
∂f

∂v

]
(4.43)

= −2ν
n

∫
d3v

[
v2f + v2

Tv
∂f

∂v

]
= −2ν〈v2〉+ 6ν

n
v2
T

∫
d3vf︸ ︷︷ ︸
=n

(4.44)

= −2ν(〈v2〉 − 3v2
T). (4.45)

In this case, the analytical solution can be expressed as:

〈v2〉(t) = 3v2
T +

[
〈v2〉(t = 0)− 3v2

T
]
e−2νt. (4.46)

To now test the collision operator implementation in the code, an arbitrary initial
velocity distribution can be chosen. This distribution has to relax according to the
relations derived in (4.46) and (4.42). Additionally, the initial velocity distribution has
to relax towards a Maxwellian distribution with the initially defined u‖ and vT.
In figure 4.2, the time evolution of 〈v‖〉 and 〈v2〉 is plotted in non-normalized units.
Together with the simulation results, also the analytical solutions from equations (4.42)
and (4.46) are plotted and show very good agreement. The implemented collision
operator apparently is able to reproduce the analytical results in this simplified test
case.
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Figure 4.2: Time evolution of 〈v‖〉 and 〈v2〉 in non-normalized units plotted per time step
until a steady state is reached. The simulation results (blue) show very good agreement with
the analytical solutions (green) from equations (4.42) and (4.46).

In figure 4.3 the marker distribution in v‖ and ξ = v‖/v is shown for (a) an arbitrary
positive initial distribution with only parallel velocity components and (b) an equili-
brated state after 4000 time steps (arbitrarily chosen), to which the system relaxes. In
the equilibrated state, the distribution in v‖ has reached a Maxwellian with the defined
values for u‖ and vT. In ξ the distribution has reached an equilibrated state with equal
distribution of parallel and perpendicular velocity components, as expected.
After successful testing of the simplified setup against analytical solutions, specific
features of the actual collision operator shall be tested.

4.5.2 Test of conservation features and relaxation
After having performed tests on a simplified test case with a single species s and u‖ = 0,
vT = const, we now let the algorithm calculate u‖ and vT self-consistently from the
particle distribution at each time step acc. to (4.28) and (4.33). It is important to
mention that here the correction factor (1− ν∆/2) for vT is implemented, as described
in section 4.4.1. For the conservation tests, we still keep one single species and thus also
only self-species collisions. Due to the construction of the collision operator, for any
arbitrary initial state, the particle distribution should relax towards a Maxwellian in v‖
and conserve 〈v‖〉 and its kinetic energy 〈v2〉. The number of particles is automatically
conserved, due to the chosen full-f model, which conserves the marker weights.
As already shown in [127], figure 4.4 displays the time evolutions of 〈v‖(t)〉/〈v‖(0)〉
and 〈v(0)2〉/〈v(0)2〉 for an exemplary simulation to highlight the changes of parallel
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(a)

(b)

Figure 4.3: Marker distribution in v‖ (non-normalized units) and ξ = v‖/v for simulations
with constant u‖ and vT is shown for (a) an arbitrary positive initial distribution with only
parallel velocity components and (b) an equilibrated state which the system reaches (at
4000 time steps – arbitrarily chosen). In the equilibrated state, the distribution reaches a
Maxwellian with the initially set u‖ and vT. In ξ the distribution reaches an equal distribution.

momentum and kinetic energy. In figure 4.4, despite choosing an ≥3 times lower marker
number per bin (of 100, 000) than in the 1D heat pulse simulations in section 6.5,
〈v‖〉 and 〈v2〉 are largely conserved and show only a variation of < 2% around their
initial value (already published in [127]). Depending on the number of particles and the
time step size ∆t chosen, the deviations are smaller or larger. Therefore, in figure 4.5
the convergence of the conservation error for 〈v‖〉 and 〈v2〉 is shown. The deviations
decrease with increasing marker number and follow a 1/

√
Nc dependence, where Nc is

59



4 Collision operator

Figure 4.4: Time evolution of 〈v‖(t)〉/〈v‖(0)〉 and 〈v(t)2〉/〈v(0)2〉 for simulations with
self-consistent calculation of u‖ and vT and 100, 000 particles per cell plotted for a total
simulation time (in ν · t). Parallel momentum and kinetic energy are mostly conserved with
∼ 1% deviation from initial values.

the number of markers per cell. In figure 4.6, again the marker distribution in v‖ and

Figure 4.5: Convergence of the conservation error for 〈v‖〉 and 〈v2〉 with varying number of
markers per cell (Nc). Each blue cross coincides with a conservation study similar to figure 4.4
for a specific Nc and a random initialization of markers (the data point of fig. 4.4 is indicated
in red). The convergence in both cases is ∝ 1/

√
Nc (indicated by the grey line).

ξ = v‖/v is shown (for ∼ 30, 000 markers per bin) for (a) an arbitrary positive initial
distribution with only parallel velocity components and (b) an equilibrated state after
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4.5 Test of collision operator

4000 time steps (arbitrarily chosen), to which the system relaxes. In the equilibrated
state, the distribution in v‖ again reaches a Maxwellian, but this time its maximum
remains at the initialized u‖. Since u‖ is not fixed to a specific value and the parallel
momentum conservation property of the collision operator holds, the particle velocities
remain distributed around their initial u‖. In ξ the distribution is biased towards
positive values, due to the choice of a positive initial particle distribution.

(a)

(b)

Figure 4.6: Marker distribution in v‖ (non-normalized units) and ξ = v‖/v for simulations
with self-consistent u‖ and vT is shown for (a) an arbitrary positive initial distribution
with only parallel velocity components and (b) an equilibrated state the system reaches (at
4000 time steps – arbitrarily chosen). In the equilibrated state, the distribution reaches
the Maxwellian with the initialized u‖. In ξ the distribution reaches a steady state with a
distribution biased towards positive values, due to the initial positive particle distribution.
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4 Collision operator

4.6 Summary
In this chapter, we introduced the Lenard-Bernstein collision operator, which is the
collisional model currently implemented in PICLS. This operator conserves particle
number, momentum, and energy analytically and implies pitch-angle scattering. We
then derived its particle-in-cell discretization via the Langevin approach. Here, we
showed that in the discretized operator additional modifications are required to achieve
conservation of parallel momentum and energy for finite values of particle number and
time step length. Therefore, in our current implementation we added a correction factor
to achieve conservation of moments for finite time steps, but not for a finite number
of particles. We tested this operator against analytic solutions and achieved good
agreement. Convergence studies with varying number of markers per cell (Nc) showed
an expected 1/

√
Nc dependence, which showed to be sufficient for our simulations.

For the future, the implementation of a more advanced full-f collision operator (i.e.
Fokker-Planck) is planned.
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5 PICLS: Numerical methods
In this chapter the algorithmic scheme and the numerical methods used in PICLS are
described. Since PICLS is a very recent code development and not part of an already
existing plasma simulation code, some further understanding of its functionalities is
essential. In the following, we will sketch the general algorithmic structure of PICLS
and subsequently focus on the most relevant properties.

5.1 Background and general algorithmic structure
On a high level, PICLS can be described as a gyrokinetic Particle-in-Cell code for
simulations in the scrape-off layer, or open field line regions. The code was initially
designed to study sheath boundary models and heat and particle fluxes from the plasma
towards the wall, but gets constantly extended towards more complicated open field
line geometries. Just as a short side note, this is also the reason for its name “PICLS”,
a combination of “PIC” for Particle-In-Cell and “LS” for Logical Sheath1.
The algorithmic structure of PICLS is mainly based on two PIC codes initially developed
in the Swiss Plasma Center at EPFL Lausanne:

1. ORB5: Here I want to refer to the official ORB5 webpage (https://www.epfl.ch/
research/domains/swiss-plasma-center/research/theory/codes/research_
theory_codes_orb5/). ORB5 is a global, gyrokinetic, Lagrangian, Particle-In-
Cell (PIC), finite element, electromagnetic, GPU-enabled code developed at SPC
Lausanne, with important contributions from the Max-Planck IPP in Garching
and Greifswald and the University of Warwick. (e.g., see [132]).

2. GK-engine: The so-called GK-engine is a gyrokinetic PIC code, written in a
modular and portable structure, to provide a testbed for different numerical
methods or data structures developed at SPC Lausanne (e.g., see [133]).

In general PIC is a numerical algorithm, that uses Monte Carlo methods to sample a
finite collection of initial positions in phase space by a set of particles, or mostly called
markers [69]. This is done via a random pull from the particle distribution function. In

1The pronunciation is similar to the food “pickles”
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5 PICLS: Numerical methods

a very simplified picture, the PIC algorithm applied on gyrokinetic plasma simulations
advances these particles according to the Euler Lagrange equations, with the help of
a force field which is set up by a particle distribution. This distribution results from
particle charge and current contributions ([134],[135]). Thus, every time a particle gets
pushed by the force field towards a new position, the charge distribution resulting from
these new particle positions is calculated and from the resulting potential, the new
fields for the next particle advance are calculated (see figure 5.1). In section 5.2, we

A)

B)

C)

x

x

x

Figure 5.1: Schematic representation of main steps of a PIC algorithm. A) For each time step
“particle” (indicated by black circles) positions within grid cells are calculated. B) “Particle”
charges are deposited to grid cells where fields are calculated (indicated by blue boxes). C)
These fields then act on the “particle” motions.

want to describe some of PICLS’ main features.

5.2 Main properties and finite element methods
As mentioned in the previous section, PICLS is a gyrokinetic PIC code for simulations
in open field line regions. In this part, we want to focus on the main numerical feature
that are incorporated within its PIC engine. Specific details on its application in the
SOL, or algorithms representing the plasma-wall interaction are not given here, but
can be found in chapter 3.
Important to mention is that the algorithm is written in different variations for different
spatial dimensions since several functions are not required in lower dimensionality cases.
So far, a rather simple 1D (one spatial domain) case and a more advanced 3D case is
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5.2 Main properties and finite element methods

implemented in PICLS. In both cases, the algorithm basically starts with an initial
loading of the particle distribution, on which it applies the high-level procedures shown
in figure 5.2.
According to this, starting from the particle distribution the charges are deposited

Charge deposition

Gyro‐average

Particle pushing Larmor point setup

Potential & field calc.Diagnostics

Only in 3D

Figure 5.2: Schematic representation of main procedures applied at each time step of
simulation. Procedures with bright grey background are only applied in 3D case if Larmor
radius effects are considered. Other procedures are used for each dimensionality (1D and 3D).

on a field grid and from this resulting charge distribution, the potential and fields are
calculated. In the simplified 1D case one now can already apply the diagnostics for
system analysis and subsequently advance the particles towards their new positions
according to their equations of motion. In the 3D case, however, one has to take into
account that the particles are actually gyrating around their gyrocenter. This is done
by setting up “Larmor points” on the Larmor radius around the gyrocenter before
the charge deposition and by averaging across these Larmor points directly after the
field calculation. The number of Larmor points depends on the thermal velocity of
the particles and thus on the size of the gyroradius. A larger gyroradius requires a
higher number of Larmor points, since the points are distributed further and thus the
probability for the fields — that act on the particles — to significantly vary their value,
increases.
These procedures are repeated again and again in so-called timesteps via a Runge-Kutta
4th order time integrator and for each time step system diagnostics can be extracted.
If collisions are considered, the position of the collision operator depends on whether
the FLR corrections are taken considered or not. In the case of our implemented LB
collision operator they are not and thus the collision operator in our case acts at the
beginning of the time step. In the following, we want to show the most relevant methods
used within this algorithm.
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5 PICLS: Numerical methods

5.2.1 Distribution function discretization
As noted in section 5.1 and shown in [102], the particle distribution function f(x) in a
PIC code is represented by discrete markers. In the full-f representation — where the
whole distribution will be simulated — the particle distribution function thus can be
expressed as:

f(R, v‖, t) =
N∑
n=1

wn(t)δ(R−Rn(t))δ(v‖ − v‖n(t)) (5.1)

with N the number of markers, wn the marker weights, Rn their position and v‖n
their parallel velocity. With the definition for the initial number of physical particles,
Nph =

∫
n0(R)dR, the weights in our case are uniformly initialized with

wn =
1
N

(5.2)

for all markers. The weights for the full-f case are constant and thus do not change
over time:

d

dt
wn = 0. (5.3)

In the δf -case, where only the perturbed part of the distribution function is simulated,
the weight evolution would be given by the Vlasov equation:

d

dt
wn =

Ω
Nph

dRn

dt
· ∇f0,n +

dv‖n
dt

∂f0,n
∂v‖

 , (5.4)

with f0 the background distribution and Ω the total phase space volume.

5.2.2 Finite Element method: B-splines
Here, we do not want to give an exhaustive overview on B-splines, but rather provide
the most important properties for our application. For further and more detailed
information, we refer to [136].
PICLS uses a Finite Element (FE) discretization scheme with B-splines as basis
functions. To understand how B-splines are used in the code, we first need to introduce
the Finite Element method. In general, for computer simulations which can just store
a finite amount of information the simulation problem needs to be discretized. Several
discretization schemes, like Finite Differences, Finite Volumes and Finite Elements
exist. Our method of choice is the Finite element method (e.g., [137], [138]). The idea
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5.2 Main properties and finite element methods

behind this method, is to find a solution in a finite dimensional vector space. Hence,
within a well-chosen vector space Vh, with basis (φi)0≤i≤N−1, the approximate solution
uh(x) of the original function u(x) has the form:

uh(x) =
N−1∑
i=0

uiφi(x). (5.5)

The approximate solution uh is completely determined by its coefficients ui, in the given
basis. A basis that has specifically proven well for FE methods are so-called B-splines.
For the introduction of B-splines, we first need a finite interval [a, b] subdivided into
Nx intervals:

a = t0 ≤ t1 ≤ ... ≤ tNx = b. (5.6)

This sequence ti (i = 0, ...,Nx) of grid points (or knots) can be irregularly spaced. The
i-th spline of degree k Λk

i defined on this sequence can be constructed via the recurrence
relation:

Λk
i (x) = wki (x)Λ

k−1
i (x) + (1−wki+1(x))Λ

k−1
i+1 (x), (5.7)

with the k = 0 spline and the formula for wki :

Λ0
i (x) =

1 ti ≤ x < ti+1

0 otherwise,

wki =
x− ti
ti+k − ti

. (5.8)

Starting from the Λ0
i (x)-spline, all splines can be constructed according to equation

(5.7). This procedure needs to be applied on all intervals [ti, ti+1], i = 0, ...,Nx − 1 to
produce the sequence of Nx + k degree k splines: Λk

−k(x), ..., Λk
Nx−1(x).

B-spline properties

Some important properties of B-splines are listed in the following:

• Non-negative: Λk
i (x) > 0 in ti < x < ti+k+1

• Compact support for Λk
i (x); contained in [xi, ...,xi+k+1]

• Piecewise polynomial of degree k
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5 PICLS: Numerical methods

• Partition of unity: ΣNx−1
i=0 (x) = 1, ∀x ∈ R

• Local linear independent

• Ck−m at knot xi, with multiplicitym = 1 for all except boundary knots (m = k+ 1
at boundary)

B-spline derivative

The B-spline derivative of degree k can be written in the following way:

d

dx
Λk
i (x) = k

Λk−1
i (x)

ti+k − ti
−

Λk−1
i+1 (x)

ti+k+1 − ti+1

 (5.9)

Hence, the derivative of a spline with degree k can directly be calculated by splines
with degree k− 1. This also leads to the Ck−1 continuity of degree k splines.

Boundary conditions

For the generation of all splines on a finite domain [t0, tNx ] via the recurrence (5.7),
Nx + k splines of degree k need to be constructed:

Λ−ki (x), Λ−k+1
i (x), ..., ΛNx−1

i (x). (5.10)

To generate all these splines, additional knots have to be defined beyond the ends of the
interval [t0, tNx ]. There are generally two different options depending on the boundary
conditions (BCs):

• Periodic BCs: additional knots are defined through periodicity:

t−µ = tNx−µ − (b− a)
tNx+µ = tµ + (b− a), with µ = 0, ..., k. (5.11)

As a result, in eq. (5.10) the k+ 1 leftmost and rightmost splines are identical.

Λk
−µ(x) = Λk

Nx−µ(x) (5.12)

• Non-periodic BCs: the choice we have taken in the non-periodic case is:

t−k = ... = t0 = a, b = tNx = ... = tNx+k (5.13)
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5.2 Main properties and finite element methods

The first spline Λk
−k(x) in the first interval [t0, t1] is thus constructed as:

Λk
−k(x) =

(
t1 − x
t1 − t0

)k
Λ0

0, (5.14)

and the last spline Λk
Nx−1(x) in the last interval [tNx−1, tNx ] is constructed as:

Λk
Nx−1(x) =

(
x− tNx−1
tNx − tNx−1

)k
Λ0
Nx−1. (5.15)

All non-periodic splines, except the first(last) one should vanish at x = a (x = b),
due to the fact that the sum of all splines is 1 and splines are non-negative:

Λk
j (a) = δj,−k, Λk

j (b) = δj,Nx−1. (5.16)

In figure 5.3, B-splines with degree k = 1, 2, 3 are displayed for the case of periodic
boundary conditions in a domain with Nx = 10 equidistant grid cells. For comparison
also the k = 3 B-spline for the non-periodic case is shown.

Spline expansion and ppform

Using a renumbering of spline index i, we can rewrite eq. (5.5) for the approximation
of function u(x) via B-splines to receive the so-called spline expansion:

u(x) ≈ uh(x) =
N+k−1∑
i=0

ciΛk
i (x), (5.17)

with support of Λk
i (x) in [ti−k, ti+1] and ti ≤ ti+1 → Λk

i−k(x), ..., Λk
i (x) ≥ 0.

Computing u(x) according to equation (5.17) can be computationally costly, because
of the spline evaluation. Therefore, by applying truncated Taylor series in each in-
terval [tν , tν+1] to expand u(x), one can derive its Piecewise Polynomial Function
representations (or ppform):

f(x) =
k∑
r=0

Πk
rν(x− tν)r, tν ≤ x ≤ tν+1 (5.18)

with

Πk
rν =

1
r!
dr

dxr
u(tν) =

1
r!
∑
j

cj
dr

dxr
Λk
j (tν) =

∑
j

cjαiνr. (5.19)
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Figure 5.3: Representation of B-spline basis functions in a Nx = 10 equidistant grid. The
upper three examples are B-splines of degree p = 1, 2, 3 for the case of periodic boundary
conditions. For comparison, also the k = 3 B-spline for the non-periodic case is shown.
Different B-spline functions are shown with different colors. Note that at every grid point,
the sum of all B-splines at that point is exactly 1 (partition of unity).

It is important to notice that

αiνr =
1
r!
dr

dxr
Λk
j (tν) (5.20)

only depends on spline specifications and thus can be pre-calculated. Eventually, only
the spline coefficients are required to calculate u(x) and its derivatives. In the code, we
apply this ppform to reduce computational cost.

5.2.3 1D electric potential solver
A key task of the code is to solve the potential for a given particle distribution at
each timestep and then calculate the electric field from this potential. In the following
timestep particles are advanced with the help of this E-field. As mentioned in section
5.2, the potential is calculated based on the “Larmor point” distribution. After calcu-
lating the E-field values per “Larmor point”, they are gyro-averaged to calculate their
action on the gyrocenter. Therefore, the potential is calculated on specifically defined
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5.2 Main properties and finite element methods

field grid points and then the E-field is projected back to each marker position via the
B-spline functions defined in 5.2.2.

Weak form

As shown in [102], to calculate the potential φ, we need to insert the discretized form
of f(x) from equation (5.1) into the polarization equation (2.40):

−
∑
p
∇⊥

np,0mpc
2

B2 ∇⊥φ =
∑
p
ep

N∑
n=1

wp,n(t)δ(Rp −Rp,n) (5.21)

with p the index for particle species and N the number of markers. We now multiply
both sides with a test function ψ and integrate over the whole spatial domain V to get:

∫
V
ψ

−∑
p
∇⊥

np,0mpc
2

B2 ∇⊥φ

 dR =
∑
p
ep

N∑
n=1

wp,n(t)ψ(Rn). (5.22)

By integrating by parts and applying the divergence theorem, the left-hand side can be
simplified to:

∫
V
ψ(
∑
p
∇⊥(

np,0mpc
2

B2 ∇⊥φ))dR =

=
∫
V
(
∑
p
∇⊥(ψ

np,0mpc
2

B2 ∇⊥φ))dR−
∫
V
(
∑
p

np,0mpc
2

B2 ∇⊥ψ∇⊥φ)dR

=
∫
∂V

(
∑
p
ψ
np,0mpc

2

B2 ∇⊥φ)dσ︸ ︷︷ ︸
=0

−
∫
V
(
∑
p

np,0mpc
2

B2 ∇⊥ψ∇⊥φ)dR. (5.23)

Using that the integral over the domain boundary is zero and inserting this expression
in equation (5.22) then yields:

∑
p

∫
V

np,0mpc
2

B2 ∇⊥ψ∇⊥φdR =
∑
p
ep

N∑
n=1

wp,n(t)ψ(Rn). (5.24)

Note that the same equation can be directly derived from the weak form of the polar-
ization equation (2.36), by using an arbitrary test function for the potential variations δφ.
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Spline form

We now represent the potential φ with the B-spline basis functions defined in equation
(5.17) to receive:

φ(R) =
∑
µ
φ̂µΛk

µ(R), (5.25)

where µ in the 1D case is a single index and ranges from 1 to the number of grid
cells Nx (µ = 1, ...,Nx). Whereas in the 3D case, µ = (i, j, r) is a tridimensional
index, with i = 1, ...,Nx, j = 1, ...,Ny and r = 1, ...,Nz. to represent the 3D spline
Λk
i,j,r(R) = Λk

i (x)Λ
k
j (y)Λ

k
r (z). By also choosing ψ(R) = Λk

β(R) for the test function,
we can rewrite eq. (5.24):

∑
µ
φ̂µ
∑
p

∫
V

np,0mpc
2

B2 ∇⊥Λk
β(R)∇⊥Λk

µ(R)dR =

∑
p
ep

N∑
n=1

wp,n(t)Λk
β(Rn). (5.26)

By defining the matrix Pµβ and the right-hand-side ρβ in the following way:

Pµβ = φ̂µ
∑
p

∫
V

np,0mpc
2

B2 ∇⊥Λk
β(R)∇⊥Λk

µ(R)dR,

ρβ =
∑
p
ep

N∑
n=1

wp,n(t)Λk
β(Rn), (5.27)

we receive a system of equations of the form:

Pφ̂ = ρ. (5.28)

For the calculation of both, P and ρ, the spline definitions from section 5.2.2 are
essential. The so-called Poisson matrix P is not time-dependent and thus only needs to
be calculated once at the beginning of the simulation. The right-hand-side ρ, however,
needs to be recalculated at each step according to the particle positions and can be
interpreted as the charge distribution of the particles. Once having calculated ρ, we
can easily compute φ̂ from equation (5.28).
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E-field

From the resulting potential, the electric field E can then be easily calculated from the
relation:

E = −∇φ. (5.29)

Via B-spline functions, the E-field is eventually projected back from the potential/field
grid on the particle positions to obtain the E-field at each particle position.

5.2.4 3D electric potential solver
Solving the 3D electric potential with finite elements in all three dimensions can be
computationally extremely costly, depending on the number of grid cells in each direction
(nx,ny,nz). However, if the regarded problem is periodic in one of the three dimensions,
a Fast Fourier Transform (FFT) can be applied to this periodic dimension. Depending
on the size of the problem, this can reduce the computational cost of the simulation
significantly. The remaining two dimensions can still be calculated based on a 2D finite
element field solver. This is independent on whether those dimensions are periodic,
or non-periodic. The electric field can then still be calculated for each cell of the 3D
domain. In the following, we want to discuss the setup of such a so-called 2D1D solver,
with an FFT in the periodic direction.

2D finite element solver for a 3D problem with 2D profiles

In 3D the electrostatic potential can be discretized with the finite-element method:

φ(x, t) =
NF E∑
w

φw(t)Λ̃w(x) , (5.30)

where from now on x = (x, z, y) for slab geometry and x = (r, θ,ϕ) or x = (s, θ,ϕ) for
cylinder or screw pinch configurations. Here, s is the radius r of the cylinder normalized
to its minor radius. We consider an axisymmetric geometry, where the equilibrium
does not depend on one of the coordinates, typically y for slab, the toroidal angle ϕ for
cylinder or screw pinch. The finite elements Λ̃w are the tensor products of the usual
B-splines Λj(x), typically cubic:

Λ̃w(x) = Λwj′(x)Λwk′(z)Λwl′(y) . (5.31)

The tilde notations are used throughout this manuscript to indicate the tensor-product
nature of both the finite elements and their indexes, illustrated by Eq. (5.31). Similarly,
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we define:
NF E∑
w

=
∑
j′

∑
k′

∑
l′

. (5.32)

The integer indexes j, k, and l (or j′, k′, l′) of the one-dimensional B-splines change
from zero to the number of B-splines used in the respective direction. The electrostatic
potential φ, can be represented in terms of the usual B-splines as follows:

φ(x, z, y) =
Ny−1∑
l′=0

∑
j′k′

φj′k′l′(t)Λwj′(x)Λwk′(z)Λwl′(y) , (5.33)

with Ny being the number of the toroidal B-splines in y, the “axisymmentric” coordinate,
assumed to be periodic. The number of splines in the other directions will depend
on the choice of periodic or non-periodic splines. Therefore, the spline coefficients
φj′k′l′ can be Fourier transformed in the y coordinate. For simplicity, we assume
that y is periodic in 2π. If not, a change of coordinates is required. Therefore, the
Discrete-Fourier-Transform is used (see [139]):

φj′k′l′ =
Ny−1∑
n=0

φ
(n)
j′k′(t) exp

[
2πi
Ny

nl′
]

, (5.34)

leading to

φ(x, z, y) =
Ny−1∑
l′=0

∑
j′k′

Ny−1∑
n=0

φ
(n)
j′k′(t) exp

[
2πi
Ny

nl′
]

Λwj′(x)Λwk′(z)Λwl′(y). (5.35)

The mass matrix problem

The mass matrix problem corresponds to the projection of a function φ on a spline
basis. It is obtained by multiplying eq. (5.35) by a spline test function and integrating
over the full space (the so-called weak formulation):∫

dx φ(x, z, y)Λ̃t(x) (5.36)

=
∫
dx

Ny−1∑
l′=0

∑
j′k′

Ny−1∑
n=0

φ
(n)
j′k′(t) exp

[
2πi
Ny

nl′
]

Λwj′(x)Λwk′(z)Λwl′(y)

 Λ̃t(x) .
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Where the test function Λ̃t is once again the tensor products of the usual B-splines
Λj(x):

Λ̃t(x) = Λtj(x)Λtk(z)Λtl(y) . (5.37)

This is a matrix equation of the form:∑
w
Bwtφw(t) = ct, (5.38)

with

ct =
∫
dx φ(x, z, y)Λ̃t(x). (5.39)

The Fast-Fourier-Transform is used (see [139]):

Bwt =
Ny−1∑
n=0

B
(n)
wt exp

[
2πi
Ny

nl

]
, (5.40)

ct =
Ny−1∑
n=0

c
(n)
t exp

[
2πi
Ny

nl

]
. (5.41)

For the Fourier coefficients B(n)
jk , we have to compare eq. (5.36) and eq. (5.40):

Bjkl =
Ny−1∑
n=0

B
(n)
jk exp

[
2πi
Ny

nl

]

=
Nϕ−1∑
n=0

M (n) exp
[

2πi
Ny

nl

]∑
j′k′

φ
(n)
j′k′

∫
Λj′(x)Λk′(z)Λj(x)Λk(z) J(x, z) dx dz.

Thus, for the individual toroidal modes, we have to compute:

B
(n)
jk = M (n)

∑
j′k′

φ
(n)
j′k′

∫
Λj′(x)Λk′(z)Λj(x)Λk(z) J(x, z) dx dz

= M (n)
∑
j′k′

φ
(n)
j′k′bjkj′k′ . (5.42)
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5 PICLS: Numerical methods

The matrix equation becomes, for a specific mode n:

∑
j′k′

φ
(n)
j′k′bjkj′k′ =

1
M (n)

c
(n)
jk . (5.43)

This is constructed via the product of the Fourier transform of the spline coefficients,
φ
(n)
j′k′ , the two-dimensional mass matrix,

bjkj′k′ =
∫

Λj′(x)Λk′(z)Λj(x)Λk(z) J(x, z) dx dz , (5.44)

and the quantity M (n), defined by:

M (n) exp
[

2πi
Ny

nl

]
=

Ny−1∑
l′=0

2π∫
0
dy Λl′(ϕ)Λl(ϕ) exp

[
2πi
Nϕ

nl′
]

. (5.45)

Calculation of matrix M (n) for slab geometry

By using the properties of the B-splines, we can rewrite eq. (5.45):

M (n) exp
[

2πi
Ny

nl

]
= exp

[
2πi
Ny

nl

] p∑
k=−p

2π∫
0
dy Λl+k(y)Λl(y) exp

[
2πi
Ny

nk

]

where p is the order of the B-splines. Hence, we obtain:

M (n) =
p∑

k=−p
exp

[
2πi
Ny

nk

] 2π∫
0
dy Λl+k(y)Λl(y).

Now, we can define a new variable t, with y = (2π/Ny) t to write:

mk =

2π∫
0
dy Λl+k(y)Λl(y) =

2π
Ny

Ny∫
0
dt Λl+k(t)Λl(t) . (5.46)

Using the B-spline polynomials formulation of degree p defined within a grid cell, with
the notation of [140], we can reformulate the expressions for mk and M (n):

mk =
2π
Ny

Ny∫
0

Λl+k(t)Λl(t) dt =
2π
Ny

p−k∑
j=0

1∫
0
P
(p)
j+k(t)P

(p)
j (t) dt , (5.47)
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M (n) =
p∑

k=−p
exp

[
2πi
Ny

nk

]
2π
Ny

p−k∑
j=0

1∫
0
P
(p)
j+k(t)P

(p)
j (t) dt .

By using the symmetry of the splines (and of the complex exponential) we then obtain:

M (n) =
2π
Ny

2
p∑

k=1
cos

(
2π
Ny

nk

)
mk +m0

 ,

mk =
p−k∑
j=0

1∫
0
P
(p)
j+k(t)P

(p)
j (t) dt .

The coefficients can be calculated analytically. For the linear B-splines, p = 1, we thus
can derive:

m0 =
2
3 , m1 =

1
6 , (5.48)

M (n) =
2π
Ny

cos
(

2π
Ny

n

)
+ 2

 1
3 .

For the quadratic (p = 2) B-splines holds:

m0 =
11
20 , m1 =

13
60 , m2 =

1
120 , (5.49)

M (n) =
2π
Ny

 1
60 cos

(
2π
Ny

2n
)
+

13
30 cos

(
2π
Ny

n

)
+

11
20

 ,

which can be more conveniently rewritten by using:

cos
(

2π
Ny

2n
)
= 2 cos2

(
2π
Ny

n

)
− 1. (5.50)

Leading to:

M (n) =
2π
Ny

 1
30 cos2

(
2π
Ny

n

)
+

13
30 cos

(
2π
Ny

n

)
+

8
15

 .
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For the cubic (p = 3) B-splines we obtain:

m0 =
151
315 , m1 =

397
1680 , m2 =

1
42 , m3 =

1
5040 , (5.51)

M (n) =
2π
Ny

 1
2520 cos

(
2π
Ny

3n
)
+

1
21 cos

(
2π
Ny

2n
)
+

397
84 cos

(
2π
Ny

n

)
+

151
315

 ,

which again can be more conveniently rewritten by using eq. (5.50) and

cos
(

2π
Ny

3n
)
= 4 cos3

(
2π
Ny

n

)
− 3 cos

(
2π
Ny

n

)
. (5.52)

Leading to:

M (n) =
2π
Ny

 1
630 cos3

(
2π
Ny

n

)
+

2
21 cos2

(
2π
Ny

n

)
+

33
70 cos

(
2π
Ny

n

)
+

136
315

 .

2D1D Poisson solver in slab geometry

In PICLS, one general setup is a slab geometry, where the ignorable coordinate is now
part of the perpendicular gradient. We can think of: z parallel direction, x radial
direction, and y ignorable periodic direction. This also applies to cylindrical geometries,
if the ignorable coordinate lies in the perpendicular plane (e.g., in θ-direction). The
GK polarization (Poisson) equation is an elliptic equation given by:

−∇ ·

∑
sp=i

nsp(x)mspc
2

B(x, z)2 ∇⊥φ

 =
∑
sp=i,e

qspnsp . (5.53)

The index sp corresponds to a sum on the different ion (i) and electron (e) species. Note
that the polarization density, left-hand-side of eq. (5.53), does not contain electron
contributions (drift-kinetic approximation for electrons). The gyro-averaged density is
nsp(x) =

∫
d6Z fsp δ(R+ ρ−x) (gyrocenter densities), ρsp =

√
mspTsp/(qspB) is the

thermal gyroradius, qsp is the charge of the particle, and d6Z = B∗‖ dR dv‖ dµ dα is the
phase-space volume, more details about the GK model can be found, for example, in
[141]. The perpendicular plane in slab geometry is given by (x, y), leading to:

∇2
⊥ =

∂2

∂x2 +
∂2

∂y2 . (5.54)
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5.2 Main properties and finite element methods

The weak formulation of eq. (5.53) leads to the following Polarization equation:

−
∫
dx ∇ ·

∑
sp=i

nsp(x)mspc
2

B(x, z)2 ∇⊥φ

 Λ̃t(x) =
∫
dx

 ∑
sp=i,e

qspnsp

 Λ̃t(x) . (5.55)

Integrating it by parts leads to:

∑
sp=i

∫
dx csp(x, z)∇⊥φ∇⊥Λ̃t(x) +

∫ dydz csp(x, z) ∂
∂x
φ
∂

∂x
Λ̃t(x)

)∣∣∣∣∣∣
xmax

xmin

=
∫
dx

 ∑
sp=i,e

qspnsp

 Λ̃t(x), (5.56)

with the definition:

csp(x, z) =
∑
sp=i

nsp(x)mspc
2

B(x, z)2 .

The second term on the RHS of eq. (5.56) corresponds to the so-called natural boundary
condition. Inserting eq. (5.35) into the Polarization equation we get, for the left-hand
side:

Bjkl =
Ny−1∑
l′=0

Ny−1∑
n=0

exp
[

2πi
Ny

nl′
] 2π∫

0

∂

∂y
Λl′(y)

∂

∂y
Λl(y) dy (5.57)

∑
j′k′

φ
(n)
j′k′

∫
csp(x, z) ∂

∂x
Λj′(x)Λk′(z)

∂

∂x
Λj(x)Λk(z) J(x, z) dx dz

Here, the indexes j, k, l and n are integers. Again, we use the Fast-Fourier-Transform
(see [139]) to obtain:

Bjkl =
Ny−1∑
n=0

B
(n)
jk exp

[
2πi
Ny

nl

]
, (5.58)

with:

ct =
∫
dx

 ∑
sp=i,e

qspnsp

 Λ̃t(x). (5.59)
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For the Fourier coefficients B(n)
jk , we have to compare eq. (5.57) and eq. (5.58) to get:

Ny−1∑
n=0

B
(n)
jk exp

[
2πi
Ny

nl

]
=

Ny−1∑
n=0

DD(n) exp
[

2πi
Ny

nl

]
·

∑
j′k′

φ
(n)
j′k′

∫
csp(x, z) ∂

∂x
Λj′(x)Λk′(z)

∂

∂x
Λj(x)Λk(z) J(x, z) dx dz.

Thus, for the individual toroidal modes, we have to compute:

B
(n)
jk = DD(n)

∑
j′k′

φ
(n)
j′k′

∫
csp(x, z) ∂

∂x
Λj′(x)Λk′(z)

∂

∂x
Λj(x)Λk(z) J(x, z) dx dz .

The matrix equation becomes, for a specific mode n:

∑
j′k′

φ
(n)
j′k′bjkj′k′ =

1
DD(n)

c
(n)
jk . (5.60)

Practically, it is convenient to solve this equation by applying the usual charge assign-
ment, perform an FFT on the spline coefficients in y to get the Fourier components
c
(n)
jk and divide them by DD(n). The equation is constructed via the product of the
Fourier transform of the spline coefficients, φ(n)j′k′ , the two-dimensional mass matrix,

bjkj′k′ =
∫
csp(x, z) ∂

∂x
Λj′(x)Λk′(z)

∂

∂x
Λj(x)Λk(z) J(x, z) dx dz , (5.61)

and the quantity DD(n), defined by

DD(n) exp
[

2πi
Ny

nl

]
=

Ny−1∑
l′=0

2π∫
0
dy

∂

∂y
Λl′(y)

∂

∂y
Λl(y) exp

[
2πi
Ny

nl′
]

. (5.62)

Once the φ(n)j′k′ Fourier coefficients are known, the electrostatic potential is given by eq.
(5.35).

Calculation of matrix DD(n) for slab geometry

Similar to the derivation of M (n), by using the properties of the B-splines we obtain:

DD(n) exp
[

2πi
Ny

nl

]
= exp

[
2πi
Ny

nl

] p∑
k=−p

2π∫
0
dy

∂Λl+k(y)

∂y

∂Λl(y)

∂y
exp

[
2πi
Ny

nk

]
,
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5.2 Main properties and finite element methods

where p is the order of the B-splines.
Therewith we can write:

DD(n) =
p∑

k=−p
exp

[
2πi
Ny

nk

] 2π∫
0
dy

∂Λl+k(y)

∂y

∂Λl(y)

∂y
.

Now, we can define a new variable t, y = (2π/Ny) t to get:

ddk =

2π∫
0
dy

∂Λl+k(y)

∂y

∂Λl(y)

∂y
=
Ny
2π

Ny∫
0
dt
∂Λl+k(t)

∂t

∂Λl(t)

∂t
. (5.63)

Using again the B-spline polynomials formulation of degree p defined within a grid cell
with the notation of [140], we can rewrite ddk and DD(n) as:

ddk =
Ny
2π

Ny∫
0

∂Λl+k(t)

∂t

∂Λl(t)

∂
dt =

Ny
2π

p−k∑
j=0

1∫
0

∂P
(p)
j+k(t)

∂t

∂P
(p)
j (t)

∂t
dt , (5.64)

DD(n) =
p∑

k=−p
exp

[
2πi
Ny

nk

]
Ny
2π

p−k∑
j=0

1∫
0

∂P
(p)
j+k(t)

∂t

∂P
(p)
j (t)

∂t
dt .

By using the symmetry of the splines (and of the complex exponential) we then obtain:

DD(n) =
Ny
2π

2
p∑

k=1
cos

(
2π
Ny

nk

)
ddk + dd0

 ,

ddk =
p−k∑
j=0

1∫
0

∂P
(p)
j+k(t)

∂t

∂P
(p)
j (t)

∂t
dt .

Also here, the coefficients can be calculated analytically.
For the linear B-splines, p = 1, we can derive:

dd0 = 2 , dd1 = −1 , (5.65)

DD(n) =
Ny
2π

−2 cos
(

2π
Ny

n

)
+ 2

 .
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For the quadratic (p = 2) B-splines holds:

dd0 = 1 , dd1 = −1
3 , dd2 = −1

6 , (5.66)

DD(n) =
Ny
2π

−1
3 cos

(
2π
Ny

2n
)
− 2

3 cos
(

2π
Ny

n

)
+ 1

 ,

which can be more conveniently rewritten by using:

cos
(

2π
Ny

2n
)
= 2 cos2

(
2π
Ny

n

)
− 1. (5.67)

Leading to:

DD(n) =
Ny
2π

−2 cos2
(

2π
Ny

n

)
− 2 cos

(
2π
Ny

n

)
+ 4

 1
3 .

For the cubic (p = 3) B-splines we obtain:

dd0 =
2
3 , dd1 = −1

8 , dd2 = −1
5 , dd3 = − 1

120 , (5.68)

DD(n) =
Ny
2π

− 1
60 cos

(
2π
Ny

3n
)
− 2

5 cos
(

2π
Ny

2n
)
− 1

4 cos
(

2π
Ny

n

)
+

2
3

 ,

which again is more conveniently rewritten by using eq. (5.67) and

cos
(

2π
Ny

3n
)
= 4 cos3

(
2π
Ny

n

)
− 3 cos

(
2π
Ny

n

)
. (5.69)

Leading to:

DD(n) =
Ny
2π

− cos3
(

2π
Ny

n

)
− 12 cos2

(
2π
Ny

n

)
− 3 cos

(
2π
Ny

n

)
+ 16

 1
15 .

Note that the DD(n) matrix vanishes for n = 0. A special treatment is therefore
required for the n = 0 mode in slab geometry.
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2D1D Poisson solver in tokamak geometries

The same exact procedure as described in the previous section can be applied to the
polarization equation:

−∇ ·


∑
s=i

q2
sns
Ts

ρ2
s

∇⊥φ
 =

∑
s=i,e

qsn1s, (5.70)

where n1s =
∫
d6Z fs δ(R+ ρ− x) is the gyrocenter density, ρs =

√
msTs/(qsB) is

the thermal gyroradius, qs is the charge of the particle, and d6Z = B∗‖ dR dv‖ dµ dα is
the phase-space volume. The weak formulation, “Poisson Matrix”, after integration by
parts, leads to the usual polarization equation. The right-hand side (charge density)
can thus be written as:

bjkl =
∫  ∑

s=i,e
qsn1s

 (s, θ,ϕ)Λj(s)Λk(θ)Λl(ϕ) J(s, θ) ds dθ dϕ. (5.71)

Whereas, for the left-hand side (GK Poisson/Polarization equation) we get:

Bjkl =
∫
N(s, θ)∇⊥φ(s, θ,ϕ)∇⊥(Λj(s)Λk(θ))Λl(ϕ) J(s, θ) ds dθ dϕ, (5.72)

with:

N(s, θ) =
∑
s=i

q2
sns
Ts

ρ2
s. (5.73)

Note that it is crucial that N does not depend on ϕ. This could be a problem for the
nonlinear Poisson case, but for the moment we can deal with it using a linear Poisson
equation.
We can now use the Fourier representation of eq. (5.35) to write:

Bjkl =
Nϕ−1∑
l′=0

Nϕ−1∑
n=0

exp
[

2πi
Nϕ

nl′
] 2π∫

0
Λl′(ϕ)Λl(ϕ) dϕ

∑
j′k′

φ
(n)
j′k′(t)∫

N(s, θ)∇⊥(Λj′(s)Λk′(θ))∇⊥(Λj(s)Λk(θ)) J(s, θ) ds dθ. (5.74)
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The Poisson equation in matrix form, Bjkl = bjkl, with fast Fourier is:

Nϕ−1∑
n=0

B
(n)
jk exp

[
2πi
Nϕ

nl

]
=

Nϕ−1∑
n=0

b
(n)
jk exp

[
2πi
Nϕ

nl

]
. (5.75)

This means that for individual toroidal modes we have to solve:

B
(n)
jk = M (n)

∑
j′k′

φ
(n)
j′k′

∫
N(s, θ)∇⊥(Λj′(s)Λk′(θ))∇⊥(Λj(s)Λk(θ)) J(s, θ) ds dθ = b

(n)
jk ,

with the same M (n) calculated previously for the mass matrix case. Practically, it is
more convenient to solve:

∑
j′k′

φ
(n)
j′k′

∫
N(s, θ)∇⊥(Λj′(s)Λk′(θ))∇⊥(Λj(s)Λk(θ)) J(s, θ) ds dθ =

b
(n)
jk

M (n)
. (5.76)

This is done by performing the usual charge assignment, then performing an FFT on
the spline coefficients in ϕ to get the Fourier components b(n)jk and dividing them by
M (n). Meanwhile, the 2D matrix

Aj′k′jk =
∫
N(s, θ)∇⊥(Λj′(s)Λk′(θ))∇⊥(Λj(s)Λk(θ)) J(s, θ) ds dθ (5.77)

has to be constructed (as usual). Note that the matrix does not depend on ϕ. Finally
a set of Nϕ matrix equations, one for each toroidal mode n must be solved (Lapack):

∑
j′k′

φ
(n)
j′k′ Aj′k′jk =

b
(n)
jk

M (n)
. (5.78)

Once the φ(n)j′k′ Fourier coefficients are known, the electrostatic potential is given by eq.
(5.35).
To get a better understanding of the structure of the 2D matrix Aj′k′jk we want to refer
to figure 5.4. Here, the logarithm of the absolute values of the matrix elements of an
exemplary Aj′k′jk matrix is plotted without boundary conditions applied to the matrix.
The logarithm was chosen to better distinguish between the values of the individual
elements. The matrix has 121× 121 elements and corresponds to a field grid with
nx × ny = 8× 8 with a spline degree of k = 3. The matrix clearly exhibits a banded
structure with 1 + 2k bands. With non-periodic boundary conditions (see section 5.2.2)
applied to the matrix in the first direction, several matrix elements have to be adjusted.
The result can be seen in figure 5.5. As visible, always the first and last cells of the
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Figure 5.4: Plot of the logarithm of the absolute values of the matrix elements of the
Aj′k′jk matrix, without boundary conditions applied to the matrix. The matrix has 121× 121
elements and corresponds to a field grid with nx × ny = 8× 8 with a spline degree of k = 3.

matrix blocks are affected. The reason for this is that the boundary conditions were
chosen to be on the first index of the matrix (x-direction). A matrix with boundary
conditions in the y-direction exhibits a different structure. For an even clearer picture,
the difference of the two matrices is plotted in figure 5.6. To be more specific, what is
actually plotted is the logarithm of the differences of the absolute values of the matrix
elements of the two matrices shown in figure 5.4 and figure 5.5. The matrix shown here
are only exemplary for the tokamak case, but the same principle applies to the 2D
matrix in the slab case.

Calculation of matrix M (n) for tokamaks

Similar to the previous calculation of the matrix M (n), by using the properties of the
B-splines, we can write:

M (n) exp
[

2πi
Nϕ

nl

]
= exp

[
2πi
Nϕ

nl

] p∑
k=−p

2π∫
0
dϕ Λl+k(ϕ)Λl(ϕ) exp

[
2πi
Nϕ

nk

]
.
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5 PICLS: Numerical methods

Figure 5.5: Plot of the logarithm of the absolute values of the matrix elements of the
Aj′k′jk matrix (compare to figure 5.4), with boundary conditions applied to the first index
of the matrix. The matrix has 121× 121 elements and corresponds to a field grid with
nx × ny = 8× 8 with a spline degree of k = 3.

Here, p is the order of the B-splines. Hence, we achieve:

M (n) =
p∑

k=−p
exp

[
2πi
Nϕ

nk

] 2π∫
0
dϕ Λl+k(ϕ)Λl(ϕ).

Now, we define a new variable t, ϕ = (2π/Nϕ) t to obtain:

mk =

2π∫
0
dϕ Λl+k(ϕ)Λl(ϕ) =

2π
Nϕ

Nϕ∫
0
dt Λl+k(t)Λl(t). (5.79)

Using the B-spline polynomials formulation of degree p defined within a grid cell, with
the notation of [140], mk and M (n) can be reformulated as:

mk =
2π
Nϕ

Nϕ∫
0

Λl+k(t)Λl(t) dt =
2π
Nϕ

p−k∑
j=0

1∫
0
P
(p)
j+k(t)P

(p)
j (t) dt , (5.80)
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Figure 5.6: Plot of the logarithm of the differences of the absolute values of the matrix
elements of the two matrices shown in figure 5.4 and figure 5.5.

M (n) =
p∑

k=−p
exp

[
2πi
Nϕ

nk

]
2π
Nϕ

p−k∑
j=0

1∫
0
P
(p)
j+k(t)P

(p)
j (t) dt .

By using the symmetry of the splines (and of the complex exponential) we can then
write:

M (n) =
2π
Nϕ

2
p∑

k=1
cos

(
2π
Nϕ

nk

)
mk +m0

 ,

mk =
p−k∑
j=0

1∫
0
P
(p)
j+k(t)P

(p)
j (t) dt .

The coefficients again can be calculated analytically. For the linear B-splines, p = 1,
we thus obtain:

m0 =
2
3 , m1 =

1
6 , (5.81)

M (n) =
2π
Nϕ

cos
(

2π
Nϕ

n

)
+ 2

 1
3 .
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For the quadratic (p = 2) B-splines holds:

m0 =
11
20 , m1 =

13
60 , m2 =

1
120 , (5.82)

M (n) =
2π
Nϕ

 1
60 cos

(
2π
Nϕ

2n
)
+

13
30 cos

(
2π
Nϕ

n

)
+

11
20

 ,

which is more conveniently rewritten by using:

cos
(

2π
Nϕ

2n
)
= 2 cos2

(
2π
Nϕ

n

)
− 1. (5.83)

Leading to:

M (n) =
2π
Nϕ

 1
30 cos2

(
2π
Nϕ

n

)
+

13
30 cos

(
2π
Nϕ

n

)
+

8
15

 .

For the cubic (p = 3) B-splines we can derive:

m0 =
151
315 , m1 =

397
1680 , m2 =

1
42 , m3 =

1
5040 , (5.84)

M (n) =
2π
Nϕ

 1
2520 cos

(
2π
Nϕ

3n
)
+

1
21 cos

(
2π
Nϕ

2n
)
+

397
84 cos

(
2π
Nϕ

n

)
+

151
315

 ,

which is more conveniently rewritten by using Eq. (5.83) and

cos
(

2π
Nϕ

3n
)
= 4 cos3

(
2π
Nϕ

n

)
− 3 cos

(
2π
Nϕ

n

)
. (5.85)

Leading to:

M (n) =
2π
Nϕ

 1
630 cos3

(
2π
Nϕ

n

)
+

2
21 cos2

(
2π
Nϕ

n

)
+

33
70 cos

(
2π
Nϕ

n

)
+

136
315

 .

Special case in slab geometry, n=0

Let us define a φ̄ = 1
Ly

∫ Ly
0 φ dy, equivalent to the n = 0 component of the Fourier

Transform of φ, φ(0) (with periodicity Ly). Taking the integral in y of the polarization
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equation, the polarization equation for φ̄ reads:

−∇ · csp(x, z)∇⊥φ̄ =
∑
sp=i,e

qspn̄sp. (5.86)

Since none of the terms depends on y anymore, all the terms containing a derivative in
y are identically zero. Therefore, the perpendicular gradient reduces to:

∇⊥ =
∂

∂x
ex. (5.87)

We can now use the Fourier representation of Eq. (5.35) for n = 0:

Bjkl =
Ny−1∑
l′=0

Ny−1∑
n=0

2π∫
0

Λl′Λl(y) dy
∑
j′k′

φ
(n)
j′k′(t)

∫
csp(x, z)

∂Λj′(x)

∂x
Λk′(z)

∂Λj(x)

∂x
Λk′(z) J(x, z) dx dz. (5.88)

The Poisson equation in matrix form, Bjkl = bjkl, with fast Fourier Transformation for
n = 0 can be written as:

B
(0)
jk = MM (0)∑

j′k′
φ
(0)
j′k′

∫
csp(x, z)

∂Λj′(x)

∂x
Λk′(z)

∂Λj(x)

∂x
Λk(z) J(x, z) dx dz = b

(0)
jk ,

where we still have to calculate the new coefficients MM (0) as shown previously. It is
more convenient to solve:

φ
(0)
j′k′

∫
csp(x, z)

∂Λj′(x)

∂x
Λk′(z)

∂Λj(x)

∂x
Λk(z) J(x, z) dx dz =

b
(0)
jk

MM (0) .

Which again is done by performing the usual charge assignment, then applying an
FFT on the spline coefficients in ϕ to get the Fourier components b(0)jk and dividing
them by MM (0) = 2π/Ny (after having performed the usual change of variable from
y = [0 : Ly] to ŷ = [0 : 2π], using the factor 2π/Ly).

Fourier filter

In summary, the main steps of the PIC solver to get the electric potential φjkl from the
right-hand side (or charge density) bjkl can be written in the following way:

bjkl
DFT−−−→ b

(n)
jk

backsolve−−−−−→ φ
(n)
jk

IDFT−−−→ φjkl, (5.89)
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where DFT stands for the discrete Fourier transform and IDFT for its inverse operation.
Solving for the Fourier transformed potential φ(n)jk from b

(n)
jk is called “backsolve”.

Statistical noise which is created by the discretization of markers can now be filtered
by a numerical trick, where the density Fourier modes that are not physical are filtered.
Therefore, this Fourier filtering needs to be applied after the right hand side has been
Fourier transformed, at the beginning of the “backsolve”. These non-physical modes
correspond to high frequency components in the FFT-direction. These pre-conditions
can be formulated as:

|n| ≤ nmax. (5.90)

To avoid truncation of physical modes, it is important to choose nmax carefully.

Geometries

With the previously described tokamak and slab 2D1D solvers several geometries can
be studied. As discussed, the main difference between the two solver types is that
once the FFT-direction lies along the main B-field direction and once it is directed
perpendicular to the B-field. Using this property, we define three different geometries
that are implemented in PICLS (see also figure 5.7 for illustration):

1. Cylinder: In this case, the geometry is cylindrical with the coordinates (s, θ, z),
where s is the radius r of the cylinder normalized to the minor radius a, θ the
poloidal angle and z goes in the “toroidal” direction. The cylinder geometry can
also be used as cylindrical tokamak, for which z is replaced by the toroidal angle
φ. In this case, the magnetic field B has only a component in z direction and
also the FFT direction is along z. Hence, for solving the field equation of this
geometry, equation (5.78) has to be used.

2. Pinch: This geometry in general is similar to the “Cylinder” case, except that
the B-field can have an additional component in the poloidal θ direction.

3. Slab: Here, we use a 3D slab geometry, with the spatial coordinates (x, y, z). The
magnetic field is aligned along the z coordinate, but different from the “Cylinder”
and “Pinch” case, the FFT direction is along the perpendicular y direction. The
choice of y as FFT-coordinate here is arbitrary, x would be equally viable. To
solve the field equation for this setup, equation (5.60) has to be used.
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Figure 5.7: Illustration of the three different geometries “Pinch”, “Cylinder”, and “Slab” that
are currently implemented in PICLS. “Pinch” and “Cylinder” are implemented in cylindrical
coordinates (s, θ, z), whereas “Slab” uses (x, y, z) coordinates. The red arrows indicate the
direction of the B-field of the respective geometry. The green arrows indicate the direction of
the coordinate for the FFT of the electric field solver.

5.3 Data structures
Our code is generally based on a data structure centric approach, which was chosen to
guarantee a smooth transition to GPU architectures in the future. In the following the
main data types we have implemented are shown for the 3D case. In the 1D case the
data types are generally the same but smaller, due to the reduced dimensionality. The
main types are:

• Marker attributes: A structure of arrays for the marker attributes (called
particle_att) of size 25×N , where N is the number of markers. Each array
represents a specific attribute of the markers and contains N entries for all marker
positions. The stored attributes are the marker’s position in 3D space, parallel and
perpendicular velocity, weight, electric field, etc. The 5 attributes for position in
3D, parallel velocity and weight are replicated three times. One time to store the
system state at the beginning of a timestep, one time to compute their derivatives
and to do the virtual Runge-Kutta step, and one time to update the effective
displacement.

• Poisson matrix: The time-independent band matrix Aj′k′jk is calculated at
the beginning and stored for the rest of the simulation (called poisson_matrix,
or mass_matrix). Only the bands of the matrix have to be stored to decrease
memory requirements.
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• RHS and potential: To store the right-hand side and the potential for each
time step, 6 nx × ny × nz arrays need to be calculated. The actual RHS and
potential, as well as their Fourier transforms (with complex type) and transposed
copies of both needed by the parallelization scheme have to be stored therefore.

5.4 Parallelization
For the parallelization scheme the two main PIC principles of calculating particle
trajectories and solving the field equations need to be taken into account. Both require
a specific parallel treatment to save computational cost and thus will be discussed in
the following.

5.4.1 Parallelization: particles

Running high resolution plasma simulations with a gyrokinetic PIC code, in general
means that a significant number of markers and grid cells is required. However, the
more markers and cells we introduce, the higher the computational costs become. As
a result, an efficient parallelization scheme needs to be implemented, to share data
between multiple processors to join their computation resources and to optimize the
memory use.
In PICLS, we use a hybrid OpenMP and MPI approach. The specific methods we apply
for the parallelization of the MPI tasks are called domain decomposition and domain
cloning.
In the domain decomposition approach, the grid cells are split up into different domains.
Each domain is then contributed to a MPI task and also the particles that are present
within the cell at the specific timestep are contributed to this task. For our domain
decomposition, we split the cells in the physical y-direction, along the periodic FFT-
direction.
In the domain cloning approach, however, the number of particles is divided between
the number of defined MPI clones. Each clone has a copy of the whole domain to
deposit the charges. The sums of the charges of each clone are then added up via MPI
communication to calculate the fields for the total particle distribution.
Each MPI task eventually is responsible for a specific clone and a specific domain.
Within each of these MPI tasks, the particle operations are performed in parallel and
OpenMP is applied, to optimally use computational resources. Since the particles
can move from one domain to the other, based on the forces acting on it, a function
"particle_move" is implemented that moves the particles from the exiting to the entering
MPI domain for the calculations. In figure 5.8 this parallelization scheme is sketched.

92



5.4 Parallelization
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Figure 5.8: Illustration of the PICLS parallelization scheme with 4 domains and two clones.
The blue dots represent the particles and the orange arrows the communication between the
MPI domains. In the example, the communication is displayed exemplary for domains 3 & 4
and clones 1 & 2. With the green box we indicated to which processors the particle sums are
reduced for the field solve. The total number of processors (indicated by #) is equal to the
number of domains times the number of clones.

5.4.2 Parallelization: field solver

As mentioned in section 5.4.1, MPI domain decomposition and domain cloning are
applied and within each domain the total charge distribution (right-hand side) is
calculated and sent to the first clone. For more detailed information on domain cloning,
we refer to [142] Some of the spline coefficients are common to several subdomains, since
splines of order p are 6= 0 on p+ 1 intervals. These spline values that are contributing
to different subdomains have to be stored in so-called guard cells. At the end of the
charge deposition step, all p guard cells of a subdomain are sent to its neighbors and
added up there.
To execute the Fourier transforms on the ignorable dimension, the so-called parallel
data transpose has to be applied, where the partitioning of the RHS is switched with
another dimension. In general, a parallel data transpose is always performed before
and after each Fourier transform. How the partitioning is done during the different
steps of the solver can be explained by the following workflow, where y stands for the
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ignorable coordinate:

rhs(i, j, [k]) remove guard cells−−−−−−−−−−−→ rhs(i, j, [k[) data transpose−−−−−−−−−→ rhs(j, i, [k[)
DFT in y−−−−−−→ rhs(n, i, [k[) n filter−−−−→ rhs(n, i, [k[) data transpose−−−−−−−−−→ rhs(i,n, [k[)
backsolve−−−−−→ phi(i,n, [k[) data transpose−−−−−−−−−→ phi(n, i, [k[) IDFT in y−−−−−−→ phi(j, i, [k[)
data transpose−−−−−−−−−→ phi(i, j, [k[) add guard cells−−−−−−−−−→ phi(i, j, [k])

Here, (I)DFT is the (Inverse) Discrete Fourier Transform and the brackets indicate the
partitioned dimension, with (or without) guard cells if they are closed (or open). Note
that the n filter step includes the division of the RHS by the M (n) or DD(n) matrix as
explained in section 5.2.4.

5.5 Scaling tests
To get an indication for the computational efficiency of the code implementation we
will in the following discuss the strong scaling with OpenMP of PICLS in a more or
less realistic test case. We do not want to provide a very detailed analysis of the codes
speed up, but only want to show its key characteristics for a given test case. The strong
scaling can be identified by fixing a specific test case and increasing the number of
processors for the execution. With the increasing number of processors, the speed-up of
the execution time is measured to achieve the speed-up per additional processor. The
problem size is not changed to get strong scaling. Due to its hybrid OpenMP/MPI
parallelization, we will also consider the scaling of the MPI parallelization separately.
However, here we will increase the problem size together with the number of nodes. We
measure the time elapsed for 100 time steps, once the system has overcome the initial
start up phase of the simulation.
The OpenMP test case is designed to represent the actual open field line simulations
we performed in three-dimensional slab and cylindrical setups so far. Therefore, we
choose a electron deuterium plasma with a reduced mass ratio of me/mi = 1/400, a
domain size of (lx, ly, lz = 1m, 1m, 10m), 8 cells in each dimension and ∼ 1000 particles
per cell. For the MPI test case, we increase the number of cells and the length in the
y-direction together with the number of nodes to maintain the number of particles per
cell. The simulation domain is periodic in each direction, which means that no sheath
boundary routines are measured. However, due to the generally low number of particles
crossing the sheath within our simulations the time consumption of this routine is not
critical. In addition, we do not apply sheath BCs in all of our simulations and therefore
their impact would not be meaningful for parts of our runs. Only drift-kinetic particles,
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without gyro-rings are considered and collisions are introduced via a Lenard-Bernstein
collision operator (see 4.3). The diagnostics routines are not considered, since they are
not part of each time step, but only applied after several cycles. The B-field is chosen
to be constant with a z-component of Bz = 2.0T only.
The scaling tests are performed on the MARCONI Eurofusion HPC system, which
consists of 2× 24−cores Intel Xeon 8160 CPUs (Skylake) at 2.10 GHz.
For the future, we plan to port our code to GPUs to further exploit modern HPC
architectures. This could be of specific interest, since in the current code version three
routines are the most time consuming: the charge deposition, the mapping of the E-field
to the markers and the particle pushing. These routines account for > 90% of the
elapsed computational time with similar shares for each of them. With the help of
GPUs and further code optimization this is expected to decrease significantly.

5.5.1 OpenMP scaling / intra-node
For the OpenMP scaling, only one single node is used and only one single MPI task.
Starting from one single OpenMP process, the scaling test is performed for up to 48
processes. In figure 5.9 we therefore plot the speed up against the number of used
OpenMP threads Nomp. The speed up is defined as t1/tNomp , where t1 is the elapsed
time with only one core and tNomp the time elapsed with Nomp cores. The blue line
shows the speed up for OpenMP only and already with ∼ 16 cores is well below the
optimal speed up of t1/tNomp = Nomp shown by the grey line. This mainly comes
from the too small problem size for the increasing number of OpenMP processes. By
introducing for example 8 MPI tasks introduced by clones with 6 OpenMP processes
for each of these tasks the speed up can be increased significantly. In the graph this is
shown by the red point for 48 processes, which is close to the optimal speed up.
From figure 5.9, we can see that the problem is obviously not perfect for our test, but
we already get a good indication, that the full node can be exploited with a good speed
up, when the OpenMP and MPI parallelization is applied correctly.

5.5.2 MPI scaling / inter-node
To test the MPI scaling with several nodes, we now fix the number of MPI clones (see
5.4) per node to 4 and the OpenMP threads per MPI clone to 12. As mentioned earlier,
for this test case we keep the markers per cell ∼ 1000 and increase the problem size
(total number of particles, length and cells in y) together with the number of nodes
Nnode. The total number of MPI tasks then is the number of nodes multiplied by 4
clones. In figure 5.10, the time elapsed for each run is plotted against the number of
nodes used. The time is normalized to the time required for the run with only one
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Figure 5.9: The plot shows the speed up against the number of used OpenMP threads Nomp.
The speed up is defined as t1/tNomp , where t1 is the elapsed time with only one core and
tNomp the time elapsed with Nomp cores. The speed up for OpenMP only (blue line) with
∼ 16 cores is already well below the optimal speed up of t1/tNomp = Nomp (grey line). The
main reason for this is the too small problem size for the increasing number of OpenMP cores.
The red point shows a test run with 8 MPI tasks with 6 OpenMP processes for each and
shows a huge speed up.

node.
We see that after a small decrease for 2 nodes with increasing number of nodes,

also the required time increases slightly. However, the increase is still rather small for
up to 32 nodes, where the elapsed time is only ∼ 9% higher than for the run with 1 node.

In general, we have to say that these scaling tests were done rather superficial and
could still be significantly improved by optimizing the test case, the core pinning and the
OpenMP vs. MPI ratio. But for a quick overview of the code’s current scaling behavior,
they already give a sufficient indication. A more detail investigation is planned for the
future, together with a code optimization effort.
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Figure 5.10: The plot shows the time elapsed for each run for a different number of applied
nodes Nnode. With increasing number the problem size increases simultaneously. The time is
normalized to the time required for the run with only one node. The number of MPI clones
per node is fixed to 4 and the number of OpenMP threads per MPI clone is 12.
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To focus on the sheath physics and reduce complexity of the system, we start with
investigating a one-dimensional electrostatic model with straight open field lines and
sheath boundaries at both sides of the domain. We apply a gyrokinetic full-f model
with a linearization in the polarization equation. The specific problem we want to look
at was already studied by two gyrokinetic continuum codes by E. Shi et al. 2015 and
Pan et al. 2016. Here, a central hot source, which resembles an edge-localized-mode
(ELM) heat-pulse, heats the domain and thus the parallel transport in the SOL onto
the divertor plate is simulated. The applied parameters are chosen to model an ELM
heat pulse in the JET tokamak. Principally, in our simulations the same set-up as in
the two continuum code studies is used to investigate the similarities and differences
of the continuum approaches compared to our PIC based approach. Also PIC specific
subtleties and challenges, such as statistical noise, for studying this specific problem
will be presented. This initial step is needed to be able to go to more complex geome-
tries with the required confidence of correctly functioning key features such as sheath
algorithms. Due to the GK model and the logical sheath boundary conditions we are no
longer bound to the spatial (λDe) and temporal (w−1

ce ) resolution requirements, but can
increase these significantly. In the following, we will show results for the collisionless as
well as the collisional case.

6.1 Introduction
A key issue for high-power tokamaks like ITER and beyond is the power load on plasma
facing materials (such as the divertor or first wall components) from periodic energy
outbursts into the SOL in the high-confinement mode. Type I ELMs (or “giant” ELMs)
[143] are mainly causing these outbursts at high-power level. An ELM can be described
as a MHD instability which causes a loss of stored energy and a profile relaxation and
is triggered by steep pressure gradients in the plasma edge region (such as the H-mode
pedestal) [144]. The eroded material potentially will have to be replaced more frequently
in ITER and eroded atoms that penetrate into the plasma thus deteriorate the energy
gain. As shown by previous studies, in only one single ITER discharge hundreds of
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ELMs are expected to occur [30]. Due to this high number of plasma wall interaction
via ELMs, to limit the damage on plasma facing components the suppression of ELMs
is essential. Here, mainly two schemes are currently under investigation for ELM
suppression: ELM control coils within the vessel and pellet injection [145]. However,
an accurate prediction of heat transport in the SOL for future devices by simulation is
required, to further develop these and other concepts.
With ELM heat pulse simulations decisive information on material erosions, due to loads
on divertor plates and peak surface temperatures due to ELMs can be gained. Pitts et al.
studied fully kinetic collisional 1D3V PIC simulations of the parallel propagation of ELM
heat pulses with different energies, temperatures, densities and durations already in
2007 [123]. The typical heat-flux increase time on the order of the fast-ion sound-transit
time as measurable on several machines could be investigated with their simulations.
They were able to correctly predict the quantity range of the fraction of energy that
was deposited in a JET measurement before the heat flux peak (0.25-0.35). Based
on these results for low ELM energies, they felt confident to also make a prediction
for a small Type I ELMs of 2.46MJ in ITER (∼ 30). According to the authors the
main motivation they had not use fluid, but to use kinetic simulations was the usual
application of assumed constant sheath heat-transmission coefficients and approximate
flux limiters on parallel heat fluxes in fluid models.
The ELM heat flux problem again was addressed by Havlıíčková et al. in 2012, where
they performed a benchmark on three different code types: a fluid, a kinetic Vlasov
and a kinetic PIC code [146]. Their simulation focused on only one spatial dimension
parallel to the field line. A rather simple model was used by them for the ELM, where
it was modeled as a hot source near the midplane without trying to calculate the MHD
instability and reconnection processes that drive the ELM. This setup is viable to
simulate divertor heat fluxes and parallel transport in the SOL, although it is a quite
reduced model.
With this simplified model we can also focus on testing the general code features. In
general, the same problem was chosen by E. Shi et al. [115] and Pan et al. [94] for their
ELM simulations with gyrokinetic continuum codes, except for the initial conditions.
In addition to kinetic electrons, E. Shi [52] also implemented an adiabatic electron
response. Both implemented logical-sheath boundary conditions [114], which are able
to model the effects of a Debye sheath, but have the advantage, that it actually does
not have to be resolved (see section 3.2). Compared to kinetic codes, this combination
of gyrokinetics and a logical sheath provides a significant speed up, since the restriction
towards small time steps of ∼ w−1

ce and spatial resolutions of ∼ λDe is lifted. This
approach is surely computationally heavier than some fluid models, but on the other
hand ensures that kinetic effects are included.
We chose to implement exactly the same model for our gyrokinetic PIC simulations as
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previously used by E. Shi et al. [115] and Pan et al. [94] for kinetic electrons to have the
ability to benchmark its consistency with the previously published results. Therewith,
we can gain confidence of the correct code implementation. This is important, since for
this type of open field line systems analytic solutions do not exist. This one-dimensional
setup also prepares for studying plasma physics phenomena of real linear devices in
higher dimensions, such as LAPD [147]. This machine was previously studied by the
full-f gyrokinetic continuum codes Gkeyll [90] and GENE [95]. As PIC codes have their
own subtleties, such as statistical noise or different methods for the particle distribution
initialization, we also want to address these in our work.
In section 6.2 we describe the specific electrostatic gyrokinetic equations implemented
in PICLS for the 1D heat pulse problem. In section 6.3 the setup of the heat pulse
simulation is described. The corresponding results for the non-collisional and the
collisional cases are shown in sections 6.4 and 6.5. The summary and some conclusions
are shown in the last section 6.6.

6.2 Physical model implemented
The model we chose for this chapter consists of the gyrokinetic equations in the full-f
case in one spatial dimension, with a linearization in the field equation. We neglect
Larmor radius effects (due to the 1D set-up) and focus on long-wavelengths in the
drift-kinetic limit. The electric potential is calculated based on the Polarization equation
introduced in eq. 2.40, with additional adaptations required for the 1D case.

6.2.1 Gyrokinetic electrostatic model in 1D1V with kinetic
electrons

The Hamiltonian of the applied electrostatic full-f gyrokinetic model (with a linearized
field equation) is Hp,0&1 =

mpv‖
2

2 + µB + epJp,0φ as already shown in equation 2.29.
Therewith the equations of motion in slab geometry can be derived for the 3D case (see
eqs. 2.60). Within this chapter the 1D1V versions of these equations are required to
evolve the markers according to the PIC algorithms applied. These can be written as:

Ṙ = v‖b,

v̇‖ = − ep
mp

b · ∇Jp,0φ. (6.1)

The B-field in the 1D case is parallel to the z-direction of the domain and in our case
B = const. Thus, in the Ṙ equation the B×∇B, as well as the B×∇Jp,0 term cancel
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out. For the 1V case also µ = 0 applies and thus also the first term in the v̇‖ equation
disappears.
The equation we use for the calculation of the electric potential is the polarization
equation (eq. 2.40):

−
∑
p
∇⊥

np,0mpc
2

B2 ∇⊥φ =
∑
p

∫
dWepJp,0f . (6.2)

But additional modifications are necessary to adjust the equation to the 1D heat pulse
problem, we want to study (see section 6.2.2).
The total conserved energy of the system consists of a field part and a kinetic part, as
shown in section 2.4 [111]:

Etot = Ek + Ef =
∑
p

∫
dWdV Hp,0fp +

∑
p

1
2

∫
dWdV epJp,0φfp, (6.3)

with Hp,0 = 1
2mpv‖

2 + µB in the kinetic part.

6.2.2 Modification of the Polarization equation

We modify the Polarization equation, following the derivations in [52]. Thus, in the
following we only want to sketch the modifications without going into detail of the
derivation.
In a first step the Polarization equation 6.2 and the Hamiltonian evolution equation
∂Fp

∂t = {Hp,Fp} are linearized and Fourier transformed to obtain a wave dispersion
relation. Assuming that qe = qi and neglecting ion perturbations, one obtains:

k2
⊥ρ

2 + [1 + εZ(ε)] = 0, (6.4)

with ρ2 = Te/(miΩ2
ci), ε = w/(

√
2k‖vte), vte =

√
Te/me and the plasma dispersion

function Z(ε) = π−1/2 ∫ dt exp(−t2)/(t− ε). The solution to this dispersion relation
for ε� 1 is a wave with frequency:

wH =
k‖vte

|k⊥|ρ
. (6.5)

From the equation, we see that for k⊥ρ � 1 this wave must be treated with care to
guarantee numerical stability. The resulting wave is the electrostatic limit of the shear
Alfvén wave ([148]) and due to its high frequency does not affect parallel transport in
the SOL.
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Thus, in the electrostatic case a modification of the Polarization equation is required,
to set a minimum value for k⊥ and thus slow down the electrostatic shear Alfvén wave.
By introducing the shielding factor s⊥(z, t) = k2

⊥(z)ε⊥(z, t), with ε⊥ =
∑
p
np,0mpc

2

B2 ,
one can write the modified polarization equation as:

−∇⊥Cε∇⊥φ+ s⊥(z, t)(φ− 〈φ〉) =
∑
p

∫
dWepJp,0f . (6.6)

Where we use the flux-surface-averaged, dielectric-weighted potential:

〈φ〉 =
∫
dzs⊥φ∫
dzs⊥

. (6.7)

This equation can be further simplified towards an algebraic form by setting the fixed
coefficient Cε to Cε = 0 as a limit. This discards the usual differential term and should
work well for low frequency dynamics. Also k⊥(z) can be set to a constant value to
only allow a single wave number. Setting this value is crucial since it needs to be small
enough that the frequency of the wave from eq. 6.5 is high enough to not interact with
other relevant dynamics, and in addition, small enough to prevent a too small time
step. Both, E. Shi [52] and Pan et al. [94] found that simulation results within this
range are not sensitive to the perpendicular wave number and chose k⊥ρ = 0.2 as an
appropriate value.
In eq. 6.6, the flux-surface-averaged potential 〈φ〉 is subtracted from φ to assure that the
gauge invariance of the modified polarization equation is maintained. Also the applied
logical sheath boundary conditions are a reason for this choice. In the chosen 1D case
specifically, the net guiding center charge vanishes,

∫
σtotdz =

∫ ∑
p
∫

dWepJp,0fdz = 0,
because the net flux is set to j‖ = 0. The polarization charge density averages to 0
as well, which can be shown by applying the integral over dz on the left-hand-side of
equation 6.6. Nevertheless, this subtraction of 〈φ〉 can be neglected for calculating
the E-field and does not influence the gyrokinetic equations of motion. The modified
Polarization equation used in our model as already presented in [102] is:

s⊥(z)φ(z) = k2
⊥(z)

∑
p

np,0mpc
2

B2 φ(z) =
∑
p

∫
dWepJp,0f . (6.8)

Eventually, in our PIC algorithm with finite-element discretization the Poisson matrix,
has to be changed to the mass matrix with an additional factor of k2

⊥.
k⊥ is normalized to the inverse of the electron cyclotron radius 1/ρce and can be
expressed as k⊥ = k̄⊥/ρce. By setting lnorm = ρce in our simulations, the normalized
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form of the Fourier transformed Polarization equation can be obtained as:

∑
p
k̄⊥

2 n0Mm̄p

B̄2B2
norm

φ(z) =
∑
p

∫
dWeZ̄pJp,0f , (6.9)

with k̄⊥ = 0.2. For the calculation of the conserved energy, the 〈φ〉 term would have
to be taken into account, as shown in [115]. However, in section 6.2.1 we showed the
conserved energy for the more general case of the original Polarization equation 2.40.

6.2.3 Geometry of the ELM heat-pulse problem
As described in section 6.1, we want to study an ELM heat pulse occurring at the
center or mid-plane of the plasma and from there propagating through the SOL towards
the divertor targets. In 1D the associated open field lines become straight lines along
the dimension z, that force the particles to propagate along this direction. The actual
curved structure of the field lines thus is not taken into account. An illustration of the
applied simplification is sketched in figure 6.1.

Core/ 
Source

Source

Divertor/wall

Field line

Figure 6.1: Illustration of the simplified geometry applied for the 1D1V ELM heat-pulse
model. The in reality curved field lines are reduced to straight lines along the z-direction with
a hot source in the center of the simulation domain.

6.3 Simulation setup
At the beginning of the simulation, electrons and ions are set to predefined initial
conditions, similar to the setup shown in [115] and [94] to be able to benchmark with
their work. At time t = 0 an intense particle source, which is supposed to resemble an
ELM, is switched on. At t = 200µs the source is significantly decreased to model a less
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intense inter-ELM phase until the end of the simulation run at t = 350µs. This setup
was already shown in our previous publication [102].

6.3.1 Initial conditions

Initially, electrons and ions are set to a fixed spatial and velocity distribution, to be
able to benchmark with previous studies. The simulation results, however, are mainly
insensitive to the initial background distribution. In their fully kinetic PIC simulations
for example, Pitts et al. [123] performed runs with a weaker initial pre-ELM source to
achieve a quasi-steady state.

Electron initial conditions

The initial electron distribution function can be written as:

fe0(z, v‖,Te0) = ne0(z)FM(v‖,Te0), (6.10)

where FM(v,Tp0) = 1√
2πTp0/mp

exp
(
−mpv‖

2

2Tp0

)
is the Maxwellian distribution in 1D

for species p (in this case p stands for electrons). The initial temperature is fixed to
Te0 = 75eV and the electron density profile (in 1013cm−3) can be formulated as:

ne0(z) = 0.7 + 0.3
(

1−
∣∣∣∣ zL
∣∣∣∣
)
+ 0.5 cos

(
πz

Ls

)
H

(
Ls
2 − |z|

)
(6.11)

with L, which is half the size of the simulation domain [−L;L], the source size Ls and
the Heaviside step function H(.).

Ion initial conditions

In the case of the ions, the initial distribution function is expressed as a combination of
right and left half-Maxwellian distribution functions:

FL(z, v‖,Ti0) = 2ni0(z)FM(v‖,Ti0)H(−v‖)
FR(z, v‖,Ti0) = 2ni0(z)FM(v‖,Ti0)H(v‖) (6.12)
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with the initial ion density ni0, which is set equal to the initial electron density ne0.
Depending on the particle’s position z, the ion distribution function reads:

fi0(z, v‖,Ti0) =


FL z < −Ls

2 ,(
1
2 −

z
Ls

)
FL +

(
1
2 +

z
Ls

)
FR −Ls

2 < z < Ls
2 ,

FR
Ls
2 < z.

(6.13)

The ion temperature profile is defined as (in eV):

Ti0(z) = 100 + 45
(

1−
∣∣∣∣ zL
∣∣∣∣
)
+ 30 cos

(
πz

Ls

)
H

(
Ls
2 − |z|

)
. (6.14)

These initial conditions for electrons and ions are equal to the set-up in [94]. Except
for the ion particle distribution, this setup is also equal to the one chosen in [115].
Here, in order to minimize the excitation of high-frequency shear Alfvén waves in the
electrostatic limit, the ion density profile initially is determined in a way that electrons
are distributed according to the Boltzmann relation. But similar to Pan et al. [94], by
setting the initial ion density equal to the initial electron density also in our simulations
no numerical issues occur. As stated in [94], replacing the cos(πz/Ls) combined with
the Heaviside function H(Ls/2− |z|) which are used in the initial and source term
profiles by an exponential function

√
2/π exp(−(πz/Ls)2/2), changes the simulation

results only marginally.

6.3.2 ELM and inter-ELM phase

The parameters and set-up we use for the ELM and inter-ELM phases were already
applied by Havlıíčková et al. [146] and are based on a simplified case from the JET
tokamak. Generally, a plasma blob exhausted in an ELM crash is represented by this
model and is simulated via a hot electron-deuterium source at the SOL midplane. This
source in our 1D setup is placed at the center of the domain [−L,L] and two divertor
plates are positioned at each end as boundaries. After 200µs at the end of the ELM
phase, an inter-ELM phase with a colder and weaker source follows. The source function
SELM depends on time t, position z and velocity v‖ and is expressed by:

SELM(z, v‖, t) = g(t)S(z)FM(v‖,Ts(t)) (6.15)
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with

S(z) = S0 cos
(
πz

Ls

)
H

(
Ls
2 − |z|

)
, (6.16)

g(t) =

1 0 ≤ t ≤ 200µs
1/9 200µs < t,

(6.17)

Te =

1500eV 0 ≤ t ≤ 200µs
210eV 200µs < t,

(6.18)

Ti =

1500eV 0 ≤ t ≤ 200µs
260eV 200µs < t.

(6.19)

The particle source intensity S0, which scales with the pedestal density and temperature,
is set to S0 = Anpedcs,ped/Ls = 9.066× 1017cm−3s−1. A, the proportionality constant,
is set to 1.2

√
2 ≈ 1.7. The particle source within the code is modeled via a Monte-Carlo

generation of particles based on the introduced source function.

Relevant parameters

The key parameters for the simulation are taken from [146] and are shown in table 6.1.

Parameter Value Description
2L 80m Length of simulation domain
Ls 25m Length of source region
tELM 200µs Duration of ELM phase
τi 149µs Ion transit time (L/cs,ped)
τe 2.5µs Electron transit time (L/vte,ped)
Tped 1500eV Ion and electron temperature at ELM pulse
S0 9.066× 1017cm−3s−1 Particle source intensity
k⊥ρ 0.2 Perpendicular wave number
B 2T B-field strength in parallel direction

Table 6.1: Simulation parameters used for 1D1V ELM heat pulse simulations.

To test convergence, simulations with varying numbers of field grid cells, particles per
cell and perpendicular wave numbers were executed. We chose a minimum value of
∼ 10, 000 particles per cell to achieve high enough resolution for the relevant sheath
parameters (sheath potential, heat flux, etc.). With a lower number of particles per
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cell the physical results are still obtainable, however the signal to noise ratio can
be affected. We did not want to study numerical convergence in detail here, thus a
rather high number of markers was chosen to ensure good resolution. To ensure high
enough spatial resolution of the fields in z-direction, a minimum value of nz ≥ 16 grid
cells should be implemented. The following results were performed with ∼ 100, 000
particles per cell, nz = 32 and k⊥ρ = 0.2. We discuss the effect on the simulation
results of varying k⊥ρ (0.05− 1.0). We obviously use an excessive number of particles
per cell for this simulation, however, since our runs finish within hours, there was no
necessity to decrease resolution. One must keep in mind that generally for full-f codes
a higher number of particles per cell (> 1, 000) is required than for delta-f. For the 3D
simulations, we reduced the number of particles per cell and plan to implement further
noise-reduction techniques to save computational time, if required.

6.4 Simulation results: collisionless 1D1V model
In this section we study the plasma behavior during the ELM phase and beyond.
Therefore, the spatial profiles at the end of the ELM phase, together with the time-
dependent heat flux towards the divertor as well as the sheath potential φsh development
over time will be investigated. Our problem is symmetric, thus, φsh can be measured
deliberately at the right or left boundary; we therefore chose the right boundary. In this
section only simulations without collisions are regarded, which we already published in
[102]; for collisional studies we refer to section 6.5 or to our respective publication [127].

6.4.1 ELM phase spatial profiles
For the heat flux problem the relevant spatial profiles for species p are density np,
parallel temperature T‖,p, parallel particle flux Γp and parallel heat flux Qp and can be
written as:

np =
∫ ∞
−∞

fpdv, (6.20)

Γp =
∫ ∞
−∞

fpvdv, (6.21)

Qp =
1
2mp

∫ ∞
−∞

fpv
3dv+ T⊥

∫ ∞
−∞

fpvdv, (6.22)

T‖,p =
1
np
mp

∫ ∞
−∞

fp(v− 〈v〉p)2dv. (6.23)

Here, fp is the particle distribution function and the perpendicular temperature T⊥ is
set to the pedestal temperature T⊥ = Tped = 1500eV (equal to previous publications).
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For all figures within this section, values for the nz grid cells were calculated and we
applied a cubic spline interpolation on 128 diagnostics cells, to smooth the shape of the
profiles. The mentioned profiles are plotted in figure 6.2 for k⊥ρ = 0.2 shortly before
the system comes into the post-ELM phase when the source is switched off (at 200µs).
We want to emphasize that in the upper left plot in figure 6.2 the gyrocenter density

Figure 6.2: Spatial profiles of electrons (black) and ions (red) of gyrocenter density ngc,
parallel particle flux Γ, parallel heat flux Q and parallel temperature T‖ within the 1D
simulation domain for k⊥ρ = 0.2. The snapshot of the profiles is taken shortly before the end
of the ELM phase at 200µs.

is shown. This means that in the electron case the polarization term of equation 6.8 is
added. The overlap of the ion and electron gyrocenter density implies that the electrons
are mostly bound to the ions and are transported towards the target with the same flux
rate, which is a good indicator for the accuracy of the simulation. This largely agrees
with the results seen in Pan et al. [94]. Directly at the boundaries a small excess of
electrons can be detected, which is due to the logical sheath boundaries, that lead to
an absorption of ions and reflection of electrons by the boundary.
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The remaining spatial profiles are in good agreement with Pan et al.’s results, as
well. The electron temperature for example is slightly higher than in Pan et al.’s case,
however, the overall lower value for electrons compared to ions still is due to the same
origin of selective loss of high-energy electrons to the wall. This slightly higher value
indicates that higher energy electrons are introduced by our particle sources. A lower
limit for the electron velocity in the source distribution function thus can decrease the
electron temperature. In case of the parallel particle and heat flux the electron fluxes
oscillate around the ion profiles, however, still a good overlap was obtained. The reason
for this are PIC-inherent noise effects. The profiles can be further flattened and an
even better overlap between both species can be achieved by increasing the number of
particles, or averaging over the diagnostics cells.
The drop of the fluxes towards the domain boundary in both cases clearly indicate,
that the system has not yet reached an equilibrium between the lost particles at the
walls and the introduced particles from the source after 200µs. In equilibrium, towards
the domain boundary the flux profiles outside the source region are flat.
The densities for ions and electrons (without the Polarization term) together with the
Polarization s⊥(z)φ(z) (divided by e to achieve comparability), are plotted in figure 6.3
for values of k⊥ρ = 0.05− 1.0, to discuss the effects of varying k⊥ρ. The ion (electron)
density is decreasing (increasing) with decreasing k⊥ρ. The electrons are the lighter
and more mobile species, hence the effect on their density profile is stronger. This
in turn implies that the difference between the ion and electron densities decreases,
as directly seen in the decreasing Polarization term s⊥(z)φ(z), where s⊥(z)φ(z)/e is
equal to the density difference. Or in other words the electrons are stronger bound to
the ions. Hence, varying k⊥ρ has hardly any effect on the other profiles: temperature,
particle and heat flux.

6.4.2 Divertor heat flux and sheath potential
For calculating the parallel heat flux on the divertor targets in gyrokinetic simulations
additional sheath effects have to be taken into account, compared to the calculation of
the heat flux spatial profile (see eq. 6.22), to obtain:

Qp =
1
2mp

∫ ∞
vc,p

fpv‖
3dv‖ + (T⊥ + qpφsh)

∫ ∞
vc,p

fpv‖dv‖. (6.24)

The electrons that are reflected back into the plasma are not taken into account, hence
the lower boundary of the integrals is vc,p =

√
max(−2qpφsh/mp, 0). This is based on

the definition of the cut-off velocity as shown in eq. (3.1). The same would be valid
for the reflected ions, in the less probable case where more ions than electrons hit the
divertor. To account for the acceleration (deceleration) of outgoing ions (electrons) by
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Figure 6.3: Spatial density profiles for electrons (without the polarization term) and ions
and the polarization s⊥(z)φ(z) divided by e for varying k⊥ρ = 0.05− 1.0.

the sheath, the additional φsh term has to be added.
A moving average of about 50 time steps (∼ 0.1µs) was chosen, for all graphs within
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this section, to be able to decrease the number of required particles per cell and thus
achieve fast simulations and results with low enough noise. The heat flux on the right
sheath boundary and the number of particles that hit this boundary are displayed
in figure 6.4 for the same k⊥ρ = 0.2 run as in the previous section. The majority of
electrons is reflected and only as many electrons as ions are eventually leaving the
domain, due to the applied logical sheath boundary conditions. Looking at the bottom
plot of figure 6.4, we see that for our simulations more electrons than ions are hitting
the wall at each point in time. This means, that the number of electrons and ions that
are absorbed by the wall is forced to be equal to the number of ions that hit the wall.
For values smaller than 0.5τe = 0.5L/

√
Tped/me, a quick rise of the parallel electron

heat flux can be seen, which results from the first fast electrons of the hot ELM source
hitting the wall. Shortly after, the electron heat flux slightly decreases before staying
at a constant level of ∼ 0.4× 109W/m2 until ∼ 0.5τi. During the same time period,
a very slight increase of the ion heat flux can be measured initially and the heat flux
remains at a rather low value of ∼ 0.1× 109W/m2. This leads to a constant total heat
flux of ∼ 0.5× 109W/m2 until shortly before 0.5τi. The sheath potential that builds
up at ∼ 0.5τe is responsible for the slight increase (decrease) of the ion (electron) heat
flux at this time (see figure 6.5). In previous studies with continuum codes (Fig. 2 in
[94] and Fig. 3 in [52]), however, the ion heat flux increases as much as the electron
heat flux drops at 0.5τe and remains higher for the rest of their simulations. But their
results show a similar increase of the total heat flux to ∼ 0.5× 109W/m2 in this time
period. In case of simulations with a fully-kinetic PIC code (Fig. 2 in [146]), similar to
our case, for this time period the electron heat flux stays continuously above the ion
heat flux.
Then, at about half of the ion transit time, when the first fast ions from the ELM
source arrive, the electron as well as the ion heat fluxes increase steeply until t = 200µs
when the ELM crashes. Here, a peak total heat flux of ∼ 5.1× 109W/m2 is obtained.
The electron heat flux drops immediately at this moment, whereas a significantly
slower ion response is observable, which leads to a deferred drop. Again, we can
compare this period to the previous simulations with continuum codes, to obtain a
good qualitative agreement. However, the peak total heat flux for electrons and ions
and thus also the total heat flux is slightly higher in our case (∼ 5.1× 109W/m2

compared to ∼ 4.1× 109W/m2). The main reason for this difference is the differing
source implementation of our PIC compared to the continuum codes of previous studies.
The same maximum values of the heat fluxes can actually be constructed, by cutting-
off the electron velocities at lower values or narrowing the particle sources’ velocity
distributions. The peak total heat flux in case of the fully-kinetic PIC code is very
similar to our result, but the peak ion (electron) heat flux is significantly higher (lower)
than in our simulations. This could be due to the differences between their fully-kinetic
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Figure 6.4: Evolution of ion (red), electron (black) and total (blue) heat flux, according
to eq. (6.24), and number of hitting particles on right sheath boundary. The (half of the)
thermal ion and electron transit times τe and τi are indicated by (grey) black vertical lines.

and our gyrokinetic model.
The total ELM energy delivered to the divertor for each species can be calculated by
integrating the fluxes over time. This is 66.6% (33.4%) of the total ELM energy in case
of the ions (electrons) and again shows very similar values compared to the previous
continuum code simulations.
Different from the SOL heat fluxes in section 6.4.1, the heat fluxes on the domain wall
include deceleration (acceleration) of electrons (ions). By looking at the number of
hitting particles in figure 6.4, we can comprehend the reason for the strong increase of
the heat flux at ∼ 0.5τi. The graph clearly shows a steep increase of incoming ions at
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the sheath boundary. The number of incident ions is still rising after 200µs, which is a
good indicator for the deferred ion heat flux drop, too. And in case of the electrons as
expected the increase of hitting particles starts directly at ∼ 0.5τe and immediately
drops after switching off the ELM source.
An even more complete physical picture can be obtained by looking at the time-
dependent evolution of the sheath potential φsh in figure 6.5. At the start of the
simulation, only the cold initial distribution determines φsh. Around ∼ 0.5τe, due to the
incoming suprathermal electrons from the ELM source, the potential quickly rises to
∼ 3keV. Then, the potential stays mainly constant, until the suprathermal ions arrive
at ∼ 0.5τi. The large sheath potential causes a deceleration and reflection of electrons
at the divertor plates. Most of the electrons are prevented from hitting the divertor,
which stops the increase of the electron heat flux at ∼ 0.5τe and slightly inverts it. The
sheath potential then drops steadily after the arrival of suprathermal ions and allows an
increase of ion as well as electron heat flux. The qualitative behavior is very similar to
the results in Pan et al.[94], with the main difference, that the increase is even steeper
in the previous study and the absolute value slightly below ours (< 3keV). This again is
an indicator for the introduction of faster electrons into the system by our PIC specific
ELM source.
We already mentioned before that the quantitative differences of our results compared to

Figure 6.5: Time-dependent evolution of the potential at the right sheath boundary. The
(half of the) thermal ion and electron transit times τe and τi are indicated by (grey) black
vertical lines.

the previous continuum code results from [94] and [52] are mainly due to our PIC-specific
implementation of the velocity distribution functions. The sources we implemented
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Figure 6.6: Comparison of the heat flux on the divertor for the originally implemented
source (transparent) and for a source with a decreased limit for the maximum of the velocity
distribution (opaque), where v ≤ 2.2vth is set.

are assumed to allow faster particles than the sources used in the mentioned studies.
Therefore, in figure 6.6 the heat flux on the divertor for a simulation with a lower maximal
limit for the particle sources’ velocity distribution is plotted. We thus only initialize
electrons and ions up to a lower maximum velocity of v‖ ≤ 2.2vth = 2.2

√
kBTp/mp

(vs. v‖ ≤ 3.7vth), or with fp(v‖)/fp,max = 10% (vs. 0.1%), compared to our previous
simulation runs. The qualitative behavior of the heat flux can still be maintained
compared to the previous run. The peak values, however, are decreased because of the
limited velocity of the fastest introduced particles.
By narrowing the distribution function and subsequently limiting the very high velocity
particles, too, a similar picture can be achieved (not shown here). Again, the sheath
potential φsh can thus only reach lower peak values by setting a lower velocity limit.
However, the spatial profiles are only slightly affected, since most of the particles
anyways are below the velocity limit. Hence, the effects of the fastest particles are less
drastic.

6.5 Simulation results: collisional 1D2V model
The simulations we performed so far are based on a collisionless model in the 1D1V
(z, v‖) phase-space. However, to perform realistic SOL simulations particle collisions
need to be introduced, especially in the 3D case. As described in section 4.1, collisions
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are a key driver for particle transport across closed magnetic flux surfaces which would
otherwise be confined. Due to collisions plasma is caused to diffuse from the confined
region into the SOL and from there the plasma is eventually transported towards the
vessel wall (or divertor) [20]. Within this section we therefore use the Lenard-Bernstein
collision operator, described in section 4.3, for same-species collisions for electrons
as well as ions. In addition, we added the magnetic moment µ as a second velocity
component to study the previous 1D1V heat pulse problem in a domain with one
spatial and two velocity coordinates (z, v‖,µ) with and without collisions. We already
published these results in our previous work [127]. Inter-species collisions between
electrons and ions are neglected to achieve comparability with the work done by E. Shi
et al. 2015.
By introducing µ, also T⊥ changes over time due to collisions and is no longer a
simulation parameter. The perpendicular temperature for the source however is fixed
at Tped, which even applies after the ELM heat pulse ends. The exact same setup as
described in 6.3 will be employed for the parallel temperature. The equation for the
parallel heat flux (6.24) needs to be altered, due to the evolving T⊥ and the additional
velocity component µ:

Qp =
∫ ∞
vc,p

fpv‖

(
1
2mpv‖

2 + µB

)
dv‖ + qpφsh

∫ ∞
vc,p

fpv‖dv‖. (6.25)

Within this section for all simulations we initialize the marker distribution with ∼
300, 000 markers per bin. This is ≥3 times higher than in the presented conversion
study in figure 4.4 in section 4.5.2. Thus, we can ensure that the conservation error is
small enough. Once the particle sources introduce particles into the simulation domain,
the total number of markers even increases further. Obviously, this high number of
markers per cell is excessive, however, since only some hours are required to run the
simulations, we decided to not allow an increase of the noise by lowering the marker
number.
The heat flux on the divertor target for collisionless and collisional 1D2V simulations is
compared in figure 6.7. We want to stress the fact that the non-collisional case differs
from the 1D1V simulations in section 6.4.2, because of the source applied for the µ
initialization. The collision frequencies are slightly decreased for ions and electrons
in the collisional case, by multiplying eqs. (4.12) with 0.5. Looking at the start of
the simulation, one differences we encounter between both graphs is a lower initial
heat flux before ∼ 0.5τi for the non-collisional run (∼ 50% of the collisional case). As
soon as the suprathermal ions hit the wall, the ion heat flux in the collisional case
rises even higher than in the non-collisional case. For the electrons, however, a slight
decrease of maximum heat flux values is visible. In the collisional case, the total heat

116



6.5 Simulation results: collisional 1D2V model

Figure 6.7: Comparison of the evolution of ion (red), electron (black) and total (blue)
heat flux in the 1D2V case, according to eq. (6.25), with and without same-species Lenard-
Bernstein collisions. Thermal ion and electron transit times τe = 2.5µs and τi = 149µs are
indicated by black vertical lines (0.5τe and 0.5τi are indicated by grey lines).

flux thus reaches an ∼ 8% higher maximal value (4.04 · 109W/m2 vs. 4.38 · 109W/m2).
Further investigation of the heat flux in the collisional (non-collisional) case reveals
more differences. For the share of the total heat flux over time deposited before the
peak at 200µs we achieve 55% (61%) and for the total heat flux deposited by ions vs.
electrons we obtain shares of 74% vs. 26% (72% vs. 28%). In addition, a 9% higher
total heat flux deposited over time in the collisional case is measurable, compared the
non-collisional case. The collisions introduced clearly lead to an increase in the ion
heat flux and cause a higher heat flux on the target in total over time. The increase
largely depends on the increased particle flux, but for a better understanding of the
heat flux evolution, in figure 6.8 we show a comparison of the sheath potential φsh
with and without collisions. φsh in both cases is only determined by the cold initial
distribution, at the beginning. Then, around ∼ 0.5-1 τe both curves rapidly increase,
due to the arriving suprathermal electrons from the ELM source. φsh immediately rises
to ∼ 3keV in the non-collisional case, where it stays mainly steady until suprathermal
ions arrive at ∼ 0.5τi. In the collisional case on the other hand φsh rapidly increases to
∼ 1.5keV and then gradually rises up to a maximum of ∼ 2.5keV, until the arrival of
the suprathermal ions at τi. This indicates, that due to drag on ions or thermalization
through self-collisions, the collision operator lowers the high-v‖ tail of the velocity
distribution. Differing from our results in [52] the collisional φsh mostly follows the
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Figure 6.8: Comparison of the time-dependent evolution of the potential at the right sheath
boundary in the 1D2V case with and without same-species Lenard-Bernstein collisions.
Thermal ion and electron transit times τe = 2.5µs and τi = 149µs are indicated by black
vertical lines (0.5τe and 0.5τi are indicated by grey lines).

non-collisional one and already surpasses it at ∼ 20µs. The sheath potential causes a
deceleration and reflection of electrons at the wall in both cases. Most of the electrons
are prevented from leaving the domain, which leads to a stop in the increase of the
electron heat flux at ∼ 0.5τe. After the inflow of suprathermal ions, the sheath potential
decreases constantly and hence an increase of the ion as well as the electron heat flux
can be seen. However, in the collisional case after ∼ 0.5τi until the end of the simulation
φsh still remains higher. Here again the collision operator apparently is able to replenish
high-v‖ electrons through pitch-angle scattering.
As mentioned before, the simulation results shown in figures 6.7 and 6.8 only contain
intraspecies collisions, i.e. electron-electron and ion-ion collisions. Therefore, in figure
6.9 we show the same collisional heat flux on the divertor as in figure 6.7 on the right,
but we compare it with the heat flux of a collisional run that includes electron-ion
interspecies collisions on the left. Due to their small collision frequency, ion-electron
collisions are still neglected. From the plot we can see that adding electron-ion collisions
hardly has an effect on the heat flux of both the electrons and the ions. Only for
electrons a slight decrease of the heat flux can be seen at the beginning, until ∼ 0.5τi
when the first suprathermal ions arrive at the wall. After ∼ 0.5τi both graphs show a
very similar behavior.
This initial difference of both simulations can also be seen when looking at the
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Figure 6.9: Comparison of the evolution of ion (red), electron (black) and total (blue) heat
flux in the collisional 1D2V case, according to eq. (6.25), with and without electron-ion
interspecies collisions. The heat flux graph without interspecies collisions on the right is
exactly the same as the heat flux with collisions on the right of figure 6.9. Thermal ion and
electron transit times τe = 2.5µs and τi = 149µs are indicated by black vertical lines (0.5τe
and 0.5τi are indicated by grey lines).
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Figure 6.10: Comparison of the time-dependent evolution of the potential at the right sheath
boundary in the collisional 1D2V case with and without interspecies collisions. The sheath
potential without interspecies collisions (red) is exactly the same as φsh with collisions (red)
shown in figure 6.8. Thermal ion and electron transit times τe = 2.5µs and τi = 149µs are
indicated by black vertical lines (0.5τe and 0.5τi are indicated by grey lines).

comparison of the sheath potential φsh for these two cases in figure 6.10. The electron-
ion collisions apparently lead to a slower increase of the sheath potential until the first
suprathermal ions arrive at ∼ 0.5τi again. This could be an indicator, that the collisions
of electrons with the slower ion species leads to a deceleration of the fastest electrons
and thus to a lower φsh. After ∼ 0.5τi, the sheath potential is mainly determined by
the ion dynamics and both plots overlap almost perfectly.
We also performed simulations where instead of using the Lenard-Bernstein collision
operator for interspecies electron-ion collisions, we simply used pitch angle scattering
[125, 130]. However, the differences in the heat flux and the sheath potential between
both cases were only marginal and thus we do not show the results here. For the future,
it could still be interesting to study the difference of both methods further.

6.6 Conclusions
As a first test case for PICLS, we implemented a well-studied 1D ELM heat pulse
problem for the collisionless ([115], [94]), as well as collisional case ([52]). Here, a
central heat pulse that propagates along the field line towards the divertor target was
modeled and for the collisions, a Lenard-Bernstein collision operator was implemented.
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6.6 Conclusions

We already published most of the results in this chapter previously (for more details
see [102] and [127]).
In the non-collisional case, the results we achieved for the heat flux on the divertor
are consistent with previous simulation results of fully kinetic continuum, PIC, fluid
and gyrokinetic continuum codes. Our results could reproduce the key aspects of the
previous findings: the ELM heat flux loading on the divertor mainly happens on the ion
transit time scale; deceleration (acceleration) of electrons (ions) by the sheath causes
an asymmetric heat flux on the divertor of electrons and ions; the majority of electrons
are confined due to a strong negative potential that builds on the electron transit time.
Because of the code specific particle source implementation, a differences in the peak
values occur compared to previous gyrokinetic continuum simulations. In addition to
previous results, it was shown that varying k⊥ρ mainly affects the electric potential and
therewith the ion polarization. However, the heat flux on the divertor and the sheath
potential are hardly affected (at least for values of 1.0 ≥ k⊥ρ ≥ 0.05).
In the collisional case, we performed 1D2V heat pulse simulations and compared the
results with non-collisional results. The effect of the collisions on the heat flux deposited
on the sheath, lead to a total increase of 9%. Due to collisions, also the sheath potential
φsh is changed and thus shows a deferred increase and lower maximum value of ∼ 2.5keV
(compared to ∼ 3.0keV). Including interspecies electron-ion collisions, however, only
had a very mild effect on the heat flux and φsh at electron time scales, but the total
heat flux over time was hardly affected.
Due to the implementation of the non-linear Poisson equation (6.8) only a single k⊥
mode was assumed. We were tempted to re-run the simulation setup with the more
accurate linearized Polarization equation (2.40), which would account for the coupling
of several k⊥ modes. For more realistic edge plasma simulations or real 3D devices
(such as linear experiments or tokamaks) a coupling of different k⊥ modes is essential.
However, just expanding the given test case to three spatial dimensions would not
provide significant gradients in x and y. Thus, also the Polarization equation cannot be
used as a field solver in such a system. Hence, we decided to move on to simulate more
appropriate and realistic setups with the full 3D code setup. The collision operator
which we investigated in this section is also an important ingredient for simulations
with more than one dimension.
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7 ITG simulations in screw pinch

Going from a 1D to a 3D spatial domain is not trivial and requires careful implementation
and testing. Several main aspects of our PIC algorithm, especially the field solver and
the particle pusher, need to be adjusted to allow for higher dimensional simulations.
Therefore, we initially want to study a known problem of ITG (Ion Temperature
Gradient) instabilities in a screw pinch geometry (see for example [149]) and test our
results against the pre-existing results. As mentioned in section 5.2.4, the screw pinch
is a cylindrical pinch device with the coordinates (r, θ, z), where r is the radius, θ the
poloidal angle and z the coordinate along the cylindrical axis (or toroidal direction). Its
name comes from the helical shape of the magnetic field with components in the z and
θ direction. The electric potential solver we use for the screw pinch is the 2D1D solver
for tokamak geometries described in section 5.2.4, with an FFT in the periodic toroidal
z-direction, periodic boundary conditions in the poloidal direction and non-periodic
Dirichlet zero boundary conditions in the radial direction. The particles leaving the
domain in radial direction are reflected back into the domain. Thus, no sheath boundary
conditions will be studied within this chapter.
In section 7.1, we will give further details on the physical model regarded within these
simulations. Here, we will focus on the setup of the magnetic field components (see
7.1.1) and a theoretical background on ITG modes in slab geometry (see 7.1.2) as
studied in this section. The specific setup of our test case is mainly based on a study
done by Brunner within his PhD thesis (see [149]) and will be presented in section 7.2.
In section 7.3, we will present the results for the particle trajectory and potential solver
test, as well as the slab-ITG simulations. The results will be shortly summarized in
section 7.4. This is a valuable test case to study the key features of PICLS’ 3D code
setup and delivers an interesting full-f ITG-slab study in screw pinch geometry.

7.1 Model details
In this section we want to focus on two important aspects of the model used for the
ITG-slab instability studies in screw pinch geometry that we simulate in this chapter.
First, we introduce the specific B-field with its helical shape, due to components in
the z and θ direction. We also discuss all necessary derivatives to achieve the required
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Figure 7.1: Illustration of the screw pinch geometry with the shape of the helical field lines
sketched by black lines.Where s is the radius r normalized to the minor radius a of the pinch.

Euler-Lagrange equations. In a second step, we focus on theoretical aspects of ITG-slab
instabilities, which we will mostly base on the work of Brunner ([149]).

7.1.1 B-field and Euler Lagrange equations

An important aspect of the screw pinch is its helical shape of the magnetic field with
components in the z and θ direction (see also figure 7.1):

B = B0(−
r

Rqs(r)
θ+ z), (7.1)

with the radius r, the q-factor qs(r) = α+ β(r/a)2, the normalized radius s = r/a, the
constant magnetic field B0 and R = Lz

2π (Lz is the length of the cylinder in z-direction).
The coordinates r and θ can also be expressed in Cartesian coordinates by:

r2 = (x− x0)
2 + (y− y0)

2, (7.2)

θ = tan−1(
y− y0
x− x0

), (7.3)

θ = − sin(θ)x +− cos(θ)y (7.4)
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and the derivatives of r and θ can be expressed as:

dr

dx
=

x− x0
r

, (7.5)
dr

dy
=

y− y0
r

, (7.6)

dθ

dx
= −y− y0

r2 , (7.7)
dθ

dy
=

x− x0
r2 . (7.8)

With the definition:

g(r) = − rB0
Rqs(r)

, (7.9)

we can rewrite the magnetic field B from equation (7.1) as:

B = sin(θ)g(r)x + cos(θ)g(r)y +B0z. (7.10)

The magnetic field is required for the calculation of the Euler-Lagrange equations for
the screw pinch case, which can be written as:

Ṙ = v‖
B∗

B∗‖
+

c

epBB∗‖
B×∇B,

v̇‖ = −B∗

B∗‖
· µ
m
∇B. (7.11)

Here we used the previous definitions for B∗ and B∗‖ :

B∗ = B+
mpc

ep
v‖∇× b, (7.12)

B∗‖ ≡ B∗ · b = B +
cmp

ep
v‖∇× b · b. (7.13)

By using ∇×(Bb)
B = ∇× b+ ∇B×b

B , we can rewrite equation (7.12) as:

B∗ = B+
mpc

ep
v‖

(
∇×B
B

+
B×∇B
B2

)
. (7.14)
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To calculate the required quantities for

∇×B = x
(
∂Bz
∂y
− ∂By

∂z

)
− y

(
∂Bz
∂x
− ∂Bx

∂z

)

+z
(
∂By
∂x
− ∂Bx

∂y

)
,

∇B =
∂B

∂x
x +

∂B

∂y
y +

∂B

∂z
z,

B×∇×B = B× (∇×B), (7.15)

first the relevant derivatives need to be calculated. We start with the derivatives of B,
using that B2 = g2(r) +B2

0 to obtain:

dB

dx
=

dB

dr

dr

dx
= 2g(r)dg

dr

dr

dx
=
x− x0
Br

gg′, (7.16)
dB

dy
=

y− y0
Br

gg′, (7.17)

dB

dz
= 0, (7.18)

with

g′s(r) =
B0
Rqs

+
rB0
Rq2

s
q′s, (7.19)

q′s(r) = 2r. (7.20)
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Using equations (7.5, 7.6, 7.7, 7.8), the derivatives of the x, y and z components of the
magnetic field Bx = − sin(θ)g(r), By = cos(θ)g(r) and Bz = B0 can be calculated:

dBx
dx

=
dBx
dθ

dθ

dx
+
dBx
dr

dr

dx
= cos(θ)g(r)y− y0

r2 − sin(θ)g′(r)x− x0
r

, (7.21)
dBx
dy

= − cos(θ)g(r)x− x0
r2 − sin(θ)g′(r)y− y0

r
, (7.22)

dBx
dz

= 0, (7.23)
dBy
dx

= sin(θ)g(r)y− y0
r2 + cos(θ)g′(r)x− x0

r
, (7.24)

dBy
dy

= sin(θ)g(r)x− x0
r2 + cos(θ)g′(r)y− y0

r
, (7.25)

dBy
dz

= 0, (7.26)
dBz
dx

= 0, dBz
dy

= 0, dBz
dz

= 0. (7.27)

Inserting these derivatives in equations (7.15), we obtain:

∇×B = z
(
∂By
∂x
− ∂Bx

∂y

)
≡ Czz,

∇B =
∂B

∂x
x +

∂B

∂y
y ≡ Gxx +Gyy,

B×∇×B = ByCzx−BxCzy, (7.28)

which can finally be used to calculate the required expression for B∗ in eq. (7.12).

7.1.2 ITG instabilities in slab geometry

As mentioned earlier, the theoretical considerations on ITG modes within this section
are based on the work of Brunner [149], for more details please refer to their publication.
We are considering a slab geometry without toroidal effects to investigate the desta-
bilizing effects of ion temperature gradients (ITG). A local dispersion relation can be
derived by using a single plane wave component:

φ = φ̂ exp (k · r− ωt) . (7.29)
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The gyrocenter trajectories reduce to the parallel motion for the ions and thus the
gyrokinetic equations can be solved. With the definitions:

ω∗ = ωn(1 + ηT∂/∂T ) and η = d lnT/d lnn. (7.30)

we can obtain:

ḡi = e

Ti

ω− ω∗i
ω− k‖v‖

fM,iJ0

(
k⊥v⊥

Ωi

)
φ̂ exp (k · r− ωt) . (7.31)

Respectively, the diamagnetic drift frequencies related to density and temperature
gradients can be written as:

ωn =
T

qB

d lnn
dx

ky and ωT = ηωn =
1
qB

dT

dx
ky. (7.32)

By assuming that in the standard case n and T decrease along ex, we can define the
characteristic lengths:

Ln = −
(
d lnn
dx

)−1
and LT = −

(
d lnT
dx

)−1
. (7.33)

The ion density can be obtained by replacing exp (ik · r) by exp
(
ik · (r+ v× e‖/Ωi)

)
,

which means we are returning to the particle variables:

n̄i =
∫
dvf̄i = −

ne

Ti

1−
∫
dvJ2

0

(
k⊥v⊥

Ωi

)
ω− ω∗i
ω− k‖v‖

fM,i
n

 , (7.34)

with dv = 2πv⊥dv⊥dv‖. The integration over the gyroangle led to a second Bessel
function J0. The term −Nqφ/T corresponds to the adiabatic response. Now, we
need to introduce the scaled modified Bessel function Λp(x) = e−xIp(x) to write the
integrals over v‖ and v⊥, and formulate the plasma dispersion function W (z):

W (z) =
1√
2π

∫ +∞

−∞

x

x− z
exp

−x2

2

 dx, =(z) > 0. (7.35)
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Hence, by considering adiabatic electrons, the quasi-neutrality relation gives the required
dispersion relation:

0 =
1
τ
+ 1 +

(
1− ω∗i

ω

)
(W − 1)Λ0 (7.36)

=
1
τ
+ 1 +

[
1− ωn,i

ω

(
1− ηi

2

)]
(W − 1)Λ0

−ωn,i
ω
ηi

z2
i
2 WΛ0 + (W − 1)ζ(Λ1 −Λ0)

 ,

with the notations τ = Te/Ti for the temperature ratio, ζ = (k⊥λL)
2, z = ω/|k‖|vth,

Λp = Λp(ζi) and W = W (zi). Following [149], for cold ions the dispersion relation
7.36 can be further simplified. For |k‖cs| � ωn,e the ion-acoustic or ion sound wave can
be obtained:

ω2 '
(k‖cs)

2

1 + (k⊥λ∗L)
2 , (7.37)

where c2s = Te/mi is the sound velocity squared and λ∗L = cs/Ωi the ion Larmor radius.
For |k‖cs| � ωn,e one of the two roots becomes:

ω ' ωn,e, (7.38)

which is the electron drift mode. This mode can be destabilized by non-adiabatic
electron dynamics.
In a second case, a finite inhomogeneous ion temperature with Ti ' Te is considered.
Here, an ion driven instability can arise. Following the considerations of [149] again
and assuming a flat density profile yields:

1−
(
k‖vth,i
ω

)(
1− ωT,i

ω

)
= 0. (7.39)

For |k‖vth,i| � ωT,i, this relation contains the slab-ITG instability or ηi-instability, an
unstable root ω = ωr + iγ, with γ > 0, which can be written as:

ω ' 1/2(1 + i
√

3)
[
(k‖vth,i)

2ωT,i
]1/3

. (7.40)

At the limit of applicability of this result we get ωr ' γ ' ωT,i. However, accurate
results can only be obtained by solving the full kinetic dispersion relation (7.36), since
maximal growth rates appear for longitudinal phase velocities of the order vth,i and
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Figure 7.2: Instability condition of ηi as a function of k⊥λL,i for the slab-ITG instability.

perpendicular wavelengths of the order λL,i.
It can be shown that two instability conditions exist at finite values of ηi. The first one
is for ηi, which gives for arbitrary values of k⊥λL,i:

ηi > ηc,i =
2

1 + 2ζi(Λ0 −Λ1)/Λ0
or ηi < 0. (7.41)

This condition is plotted in figure 7.2 as a function of k⊥λL,i.
The second condition is on k‖. Here, for |k‖| < k‖,lim with k⊥λL,i � 1 we can get:

k‖,lim =
1
2

(
1− 2

ηi

)1/2 |ωT,i|
vth,i

=
1
2

(
1− 2

ηi

)1/2
λL,i
LT ,i

ky. (7.42)

However, the instability is suppressed by Landau damping for the case |k‖| > k‖,lim. As
shown in [149], γ and k‖,lim both have their maximum for k⊥λL,i ' 1. For even shorter
wavelengths the drive becomes less dominant since the potential acting on the ions
tends to be averaged out over their Larmor gyration.
By regarding a circular cross-section equilibrium of (similar to (7.1)):

B = B0
R

r

(
− ρ

Rqs
eθ + eφ

)
, (7.43)
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with the q-profile qs and the toroidal radius ρ, we can get an understanding of the
structure of such an eigenmode. Due to the symmetry of the equilibrium, we have a
fixed toroidal mode number n. However, due to the weak toroidal coupling such a mode
also contains a dominant poloidal mode number m, which gives:

φ ' φ(ρ) exp[i(mθ+ nφ)]. (7.44)

Following [149], the parallel wave number can be obtained:

e‖∇φ ' i
1
Rqs

(nqs −m)φ ⇒ k‖(ρ) =
1

Rqs(ρ)
(nqs(ρ)−m). (7.45)

Since |k‖| < k‖,lim holds, such a modes shows a tendency to be localized around the
corresponding mode rational surface ρ = ρr = const. Here, qs(ρr) = m/n and as a
result k‖(ρr) = 0. At a distance of δρ from this surface for k‖ holds |k‖| = δρ|kθ|/Ls,
with the shear length Ls = Rqs/s̄ and the poloidal mode number kθ = m/ρ. The
radial extent of such a mode for k⊥λL,i � 1, can be estimated from equation (7.42)
and by using that here ωT = −Tkθ/qB0LT holds, to obtain:

δρ ' 1/2
(

1− 2
ηi

)1/2
Ls
LT ,i

λL,i. (7.46)

Two such modes with same toroidal wave number n that are centered on neighboring
rational surfaces can overlap. Where in the fluid regime ηi � ηc,i the condition for this
overlap is:

δρ &
1
nqs

⇒ εT ,i . k̃θqs, (7.47)

with k̃θ = kθλL,i and εT = LT/R. An interesting result of this is that for one fixed
toroidal wave number many independent modes can form a fluctuating structure with
a large radial extent that spans over the corresponding mode rational surfaces.

7.2 Simulation setup

As mentioned earlier, for the simulations in this chapter the cylindrical coordinates
(r, θ, z) are used and the 2D1D solver for tokamak geometries described in section 5.2.4
is applied as potential solver. Here, the two derivatives are within the poloidal plane
and do not affect the FFT in the z-direction.
The marker weights are chosen to be constant, which comes from the application of
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PICLS to slab and SOL simulations. For cylindrical test cases, as present in this chapter,
this choice is not optimal since in the center of the cylinder the size of the cells and
thus also the number of markers per cell decreases. For our current simulations this is
not a significant problem, but requires a higher total number of markers to achieve a
sufficient resolution in the center of the cylinder. This could be changed in the future
by varying the marker weights and increasing the number of markers in the center
compared to the outer region.
For our slab-ITG simulations, we again used a very similar setup as the one described
in [149]. There, a hydrogen plasma is chosen with the following parameters: minor
radius a = 0.2m, major radius R = 1m, magnetic field on axis B0 = 2T, safety
factor profile qs(s) = 1 + 2s2, density profile n(s)/n0 = 1− s2, ion temperature profile
Ti(s)/Ti0 = (1− s2)3, electron temperature profile Te(s)/Te0 = (1− s2)2, temperatures
on axis Te0 = Ti0 = 2keV. With s = r/a the normalized radial variable is defined. The
average ion Larmor radius is λL,i ' 1.5 · 10−3m to obtain ε = λL,i/a ' 7.5 · 10−3.
Within our simulations, however, we chose a deuterium plasma and changed the minor
and major radius to a = 13.6cm and R = 10m. For the density we use a flat profile and
for the safety factor profiles we use flat ones as well as profiles of the form qs(s) = 1+ 3s2.
Also the temperature profiles differ from the ones in [149], as for the simulations within
this section the following profiles are used:

Te/i = B · exp(A ·C), (7.48)

where A, B and C are defined as:

A = −3/
(
1− cosh(0.5/0.1)−2

)
,

B =

cosh
(
s− 0.5

0.1

)−2(B·0.12)

,

C = −
(
s2 − 0.52

) (
1− cosh(0.5/0.1)−2

)
+ 2 · 0.1 tanh

(
s− 0.5

0.1

)
s.

The reason for choosing different parameters is that we wanted to compare our simula-
tions with simulations of the delta-f code ORB5. ORB5 cannot be run with a screw
pinch geometry, but only with a tokamak geometry. Thus, we especially had to adjust
the major radius R, to achieve a comparable setup.
With this model, slab-like ITG instabilities as described in section 7.1.2 can evolve
within the plasma. Thus, the plasma is locally unstable for fixed mode numbers (m,n)
if around the respective mode rational surface ηi > ηc,i ' 1 holds. Since ηi ≡ 3, as a
result, at any mode rational surface the plasma is unstable.
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For these simulations, right at the beginning at the first time step an initial perturbation
is applied to drive turbulence in the plasma. Therefore, we use the mass matrix to
project an analytical potential onto the potential grid and thus apply a force onto
the initial particle distribution. In the code an option is implemented which allows to
“freeze” this pre-defined potential and apply it to the particles at each time step. This
is a helpful tool to analyze the validity of the particle trajectories and thereby test the
particle pusher routines (see 7.3.1). Note that no collisions are applied for any of the
simulations within this chapter.

7.3 Simulation results
As mentioned earlier, for extending PICLS towards three spatial dimensions, several
features had to be adjusted. We therefore want to use the cylindrical setup presented
in this chapter to check the correct functionality of two main code blocks, the particle
pusher and the field solver. Therefore, we will start with presenting dedicated tests for
the particle trajectories and the field solver. With the gained confidence we then focus
on the actual ITG instability simulations.

7.3.1 Particle trajectory tests

Within a PIC code, the Euler-Lagrange equations are solved at every time step of the
simulation to evolve the particle trajectories. The main routine involved here is the
particle pusher. To test the particle trajectories, we therefore use an option implemented
in PICLS, where the potential and thereby the field is fixed throughout the simulation.
Thus, at the beginning of the simulation a potential is constructed and “frozen” to act
on the particles. For this test case, a realistic electron/ion mass ratio was used and a
flat q-profile of qs = 2 was chosen.
Figure 7.3 shows a poloidal plane of this potential. The 8 maxima and minima clearly
indicate the poloidal mode number of m = 8. The red (blue) line represents the particle
trajectory of one single electron (ion) in poloidal direction. The exact same potential is
also shown in figure 7.4 for a toroidal plane. Here, the toroidal wave number is n = 4
as visible by the four maxima/minima. The red (blue) line again represents the particle
trajectory of one single electron (ion) in toroidal direction. Note that the simulation
domain is periodic along the toroidal z-direction.
To further study the electron and ion trajectories, we will in the following discuss their
evolution along different spatial and velocity directions. In figure 7.5 we therefore focus
on the evolution of the trajectory of one single ion along r, v‖ and z with time (in the
figure time steps are used). Without an electric field, particles would be bound to a
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Figure 7.3: Initialized field acting on the particle trajectories in the poloidal plane. The red
line corresponds to the electron trajectory and the blue line to the ion trajectory.

Figure 7.4: Initialized field acting on the particle trajectories in the toroidal plane. The red
line corresponds to the electron trajectory and the blue line to the ion trajectory.
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Figure 7.5: Trajectory of a single ion within the initialized field over time (here shown in
time steps) for the three coordinates (r, v‖, z). The dashed lines show the trajectory of the
same ion without an electric field.

gyrating motion on a circular trajectory around the center of the cylinder. From the
plot at the top, however, we see a clear drift of the ions in radial direction, which is
caused by the E ×B drift related to the “frozen” field. Note that the E ×B drift has
two components, an oscillatory one related to poloidal variation of the electric field and
a secular drift proportional to the toroidal component of the potential in the presence
of a poloidal magnetic field. Comparing this radial trajectory with the trajectory in z
(bottom plot), we see that for each time the ion crosses the domain in z-direction, 8
plateaus and slopes appear in the radial trajectory. This exactly matches the n = 4
structure of the potential. The same behavior can be detected in the v‖-direction
(middle plot), due to the so called parallel nonlinearity in the evolution equation for v‖.
Here, a periodic sinusoidal change of velocity appears with exactly 8 maxima for one
toroidal crossing.
For the electrons in general the same applies as described for the ions only on a faster
time scale. In figure 7.6 we therefore plotted the evolution of the trajectory of one
single electron along r, v‖ and z with time. Note that here the time scale is different,
since much less time steps are required for the electron to cross a toroidal plane. Apart
from this the electron trajectory is affected by the “frozen” field in a very similar way
as the previously shown ion trajectory.
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Figure 7.6: Trajectory of a single electron within the initialized field over time (here shown
in time steps) for the three coordinates (r, v‖, z). The dashed lines show the trajectory of the
same electron without an electric field.

With these results we are confident that the particle pushing routines work correctly in
the 3D setup.

7.3.2 Potential solver test
Apart from the particle pusher, another decisive building block in a PIC code is the
potential solver for the fields acting on the particles. As mentioned, for the three-
dimensional simulations in this chapter we use a 2D1D solver for tokamak geometries
as described in section 5.2.4. The approach we use to verify our implemented solver is
based on the Method of Manufactured Solutions (MMS) [150]. With this technique
a code can be verified even without analytical results. Therefore, in general a known
or manufactured solution is provided e.g., by adding source terms to the equations.
The deviation of the numerical solution of the equation compared to the provided
manufactured solution is then checked.
In our specific case, this method is slightly adapted and applied to check, whether the
solver routines calculate a correct potential from a given charge distribution. Therefore,
we perform the following procedure:

1. First a specific output potential is constructed. This can be of any type, no
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matter if analytical function or a specifically constructed solution.

2. On this solution the M -matrix is applied to retain the Fourier coefficients of the
potential (see 5.2.4).

3. Multiplying the non-factorized Poisson matrix Aj′k′jk with the Fourier coeffi-
cients of the matrix then gives the corresponding right-hand side (RHS) to the
constructed solution.

4. Finally the normal solver routine is applied to the derived RHS to get the solved
potential.

The constructed potential is then compared with the solved one to study the similarity
of both and thus identify potential deviations. In figure 7.7 the constructed and solved
potentials are plotted in the poloidal, toroidal and r/θ-plane for a potential with wave
numbers m = 8 and n = 4. Both potentials show a good overlap in all three planes
and give us confidence of the solver’s validity. Obviously, for further verification the
error between the two potentials could be compared for and a convergence study for
increasing number of cells could be done. But this must be postponed to the future.

7.3.3 Slab-ITG simulations
After successfully testing two key features, the particle pusher and the field solver, the
code can now be applied to the slab-ITG instability studies. The setup described in 7.2
was applied with a q-profile of qs(s) = 1 + 3s2. We tried several different mass ratios
with similar results. Thus, in the following we will show plots of a deuterium plasma
with mi = 3670 electron masses and for me = mi/100 and me = mi/40. In addition,
for all simulations within this section, we filtered out modes with n > 10. Thus, only
modes with mode numbers from 0 to 10 are included.
Therefore, in figure 7.8 we show the profiles in radial direction (with the normalized
radius r/a) for density n, temperature and pressure and the particles (or markers)
per cell for a/LT = 8 and mi/me = 40. These profiles are calculated from the initial
particle distribution in phase-space and coincide with the profiles described in 7.2. For
the density n we clearly see the flat distribution in the radial direction. The increase
of particles per cell with the radius comes from the radially increasing cell size in the
cylindrical setup. The pressure shows the same shape as the temperature, as expected.
In figure 7.9 the profile of the electron temperature Te as a function of r/a is now
regarded for different times for mi/me = 40. The initial Te profile at t = 0µs (blue
line) is equal to the Te profile in figure 7.8. Te is quickly relaxing with time and after
∼ 0.13µs (yellow line) already shows an almost flat shape. At this point, the initial
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Figure 7.7: MMS test of the potential solver: On the left side the manufactured potential
solution is shown for the poloidal, toroidal and r/θ-plane (where r is the radius). The same
potential is shown on the right-hand side for the three planes as a result of the solver routine,
where the input RHS was constructed from the manufactured solution. The two potentials
coincide very well.

drive of the turbulence already ended and no significant turbulent behavior is present
in the system anymore.
In figure 7.10 the L2-norm of the electric potential‖φ‖L2

as a function of time is plotted
for varying a/LT and mi/me = 40. For runs with stronger temperature gradients, i. e.
a/LT = 4, 8, 20 a clear linear phase appears initially. The larger a/LT, the steeper is
the linear phase that occurs. After the initial linear increase,‖φ‖L2

reaches a maximum
of and then reveals a mostly flat evolution. In this phase, no turbulence is driven in
the system anymore. Again, the larger a/LT is the faster the maximum is reached.
For simulations with a/LT = 0, 2 no linear phase can be achieved. This is an indicator
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Figure 7.8: Initial profiles for density n, temperature and pressure and particles (or markers)
per cell with respect to the normalized radius r/a. The characteristic length of the temperature
gradient was chosen as a/LT = 8 and the mass ratio is mi/me = 40.

that the temperature gradient is too small to drive turbulence in the system.
A similar result can be obtained for the field energy Ef (see figure 7.11). The field
energy can be calculated as shown in equation (2.78):

Ef =
∑
p

1
2

∫
dWdV epJp,0φfp.

Similar to ‖φ‖L2
, a turbulence-driven initial increase of Ef can only be obtained for

large enough a/LT (4, 8, 20). Here holds, the larger a/LT, the faster the maximum is
reached and the larger is its maximum value. In addition, the maxima of Ef match the
maxima of‖φ‖L2

shown in figure 7.10. In case of small a/LT (0, 2), Ef has a flat shape,
which is another indicator for the lack of turbulence within these simulations.
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Figure 7.9: Profiles of the electron temperature Te (in eV ) as a function of r/a for different
times. Note that the time t is shown in µs. The characteristic length of the temperature
gradient was chosen as a/LT = 8 and the mass ratio is mi/me = 40.

To investigate the influence of the mass ratio on these simulations, in figures 7.12 and
7.13 we again plot ‖φ‖L2

and Ef similar to figures 7.10 and 7.11, but this time with
mi/me = 100. Mind the different length of the simulations. Looking at the evolution
of the L2-norm (figure 7.12) again a steep initial linear phase can be detected with
similar maximum values. But this time even in the a/LT = 2 case a faster and steeper
initial increase is detectable compared to the mi/me = 40 case. A similar picture is
exhibited in the field energy Ef for mi/me = 100 (figure 7.13). Also here, we see slight
maximum appearing at ∼ 8µs, where in the mi/me = 40 case Ef remains flat. These
findings reveal that in the mi/me = 100 case also the a/LT = 2 case shows a slight
linear phase. Further approaching the real mass ratio of mi/me = 3670 continues with
this trend.
To better understand the turbulent behavior appearing in the initial linear phase,
in figure 7.14 the potential in a fixed poloidal plane is shown for several time steps
during the initial linear phase. Note that we selected a/LT = 20 and a mass ratio
of mi/me = 40 as in the previous plots. The initial turbulent behavior evolves into
a short mode structure and then gets quickly dissolved again. The mode structure
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Figure 7.10: Evolution of the L2-norm of the electric potential ‖φ‖L2
with time for varying

a/LT and mi/me = 40.

is best visible in the snapshot t = 0.9320µs, but seems to be overlapped by another
n = 1 mode. We want to remind the reader, that compared to a delta-f code this mode
structure is less clearly visible, but also appears in our full-f model.
To achieve a more visible plot of the appearing mode structure in the linear phase, in
figure 7.15 we again plot the potential in a fixed poloidal plane (similar to figure 7.14),
but this time with a mass ratio of mi/me = 100. In this figure, the appearing linear
phase is more clearly visible before it dissolves again. However, since we changed the
mass ratio, in this case the mode structure appears earlier and already is clearest in
the snapshot t = 0.4747µs.
In a qualitative comparison of our PICLS results to simulations of the delta-f code ORB5
with a similar setup, good agreement was achieved in the initial linear phase. This can
be seen in figure 7.16, where Ef is compared for both codes. The same parameters were
applied for both codes as described in section 7.2 with a/LT = 8 and mi/me = 40.
The PICLS result was already shown in figure 7.11, but in figure 7.16 it is slightly
shifted on the time axis to better compare both linear phases. Apparently, in the delta-f
code ORB5 the linear phase is reached at a later point in time. However, within the
linear phase both curves show a very similar increase. After this phase, both curves
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Figure 7.11: Field energy Ef (see (2.78)) as a function of time for varying a/LT and
mi/me = 40.

divert, which is a result of the different models implemented in both codes. Thus, the
delta-f code ORB5 uses a Maxwellian background and only evolves the perturbations
and the full-f code PICLS always evolves the full distribution function. With this, we
could nicely show the good agreement of both codes in the linear phase. However, for a
more sophisticated quantitative comparison additional work will have to be done in the
future.

7.4 Conclusions
Within this chapter, we applied the 3D version of PICLS to a periodic screw pinch
setup to study slab-ITG modes. This simple 3D setup was chosen to test the main
3D features of PICLS, such as the particle pusher and the 2D1D field solver. Thus,
no sheath boundary conditions were applied in this test case. To validate the particle
pusher, we performed a test on the particle trajectories. Here, the electric potential
was initialized according to a predefined m=8, n=4 mode structure and maintained
throughout the whole simulation. The effect of this “frozen” potential was clearly visible
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Figure 7.12: Evolution of the L2-norm of the electric potential ‖φ‖L2
with time for varying

a/LT and mi/me = 100.

in the trajectories of the particles. To test the 2D1D field solver used in this test case,
we applied an MMS-like test of the potential solver. Therefore, a charge distribution
was “back-engineered” from a chosen analytical potential. The resulting RHS was then
solved via the 2D1D field solver and the resulting solution showed a good overlap with
the initially chosen potential. After successfully testing these two routines, PICLS was
applied to the slab-ITG instability test case. We performed several simulations with a
q-profile of qs(s) = 1 + 3s2, different characteristic lengths of the temperature gradient
and varying mass ratios. The gradient length showed to be important, since significant
turbulent behavior could only be achieved for runs with high enough a/LT (4, 8, 20).
The turbulence caused a steep linear phase in Ef and ‖φ‖L2

at the beginning of the
simulation. After the drive of the turbulence ended, also the profiles started to relax.
The mode structure in the linear phase could also be shown in the potential of the
poloidal plane. We finally showed a good agreement of the linear phase between the
delta-f code PICLS and the full-f code ORB5. Obviously, several more aspects could be
studied with this setup in the future. For example, convergence studies with varying
number of particles per cell or a more quantitative comparison with a delta-f model (i.
e. ORB5) could deliver interesting results.
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Figure 7.13: Field energy Ef (see (2.78)) as a function of time for varying a/LT and
mi/me = 100.
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Figure 7.14: Plot of the potential in a fixed poloidal plane for several times (in µs) during
the initial linear phase. a/LT = 20 and a mass ratio of mi/me = 40 was chosen.
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Figure 7.15: Plot of the potential in a fixed poloidal plane for several times (in µs) during
the initial linear phase. a/LT = 20 and a mass ratio of mi/me = 100 was chosen.
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Figure 7.16: Field energy Ef (see (2.78)) as a function of time for the full-f code PICLS
and the delta-f code ORB5. For both codes we chose a similar setup with a/LT = 8 and
mi/me = 40. Note that the PICLS result was already shown in figure 7.11, but here it is
slightly shifted in time to overlap the linear phases of both runs.
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8 3D helical slab SOL simulations

In this chapter we make a first attempt to run 3D SOL simulations in a 3D slab
geometry with helical field lines. In addition, this allows us to study several code
implementations in the 3D SOL setup. Coming from the reduced 1D SOL setup
thorough testing is required for the extended features to ensure validity of the code
in 3D. Therefore, we chose a test case, which was already studied by Shi et al. [91]
with a continuum gyrokinetic code and is useful to combine several code features
(3D logical sheath boundaries, 3D particle pusher in slab, etc.). With the current
implementations, however, PICLS would already be able to tackle more challenging
problems. As mentioned in section 5.2.4, for example, PICLS is able to treat slab,
cylindrical and simple circular tokamak geometries. Thus, in the future SOL simulations
with different setups and geometries are planned.

8.1 Introduction
Within this chapter we want to make a first attempt to apply the 3D version of PICLS
to helical open field lines to study cross-field transport in the SOL.
For magnetic fusion devices, such as tokamaks, in the SOL the propagation of blobs
(also called plasma filaments) can convectively transport heat, particles, momentum and
current across magnetic field lines and thus lead to a highly discontinuous cross-field
transport ([26], [19], [23], [19]). Based on previous studies ([151], [152]) it is believed that
in tokamak devices across the blob cross-section the curvature and ∇B forces establish
a charge-separated dipole potential. This mainly causes an outward radial propagation
of the blob, due to convective E×B transport. For advanced fusion devices, such as
ITER and beyond, the balance between parallel and cross-field transport in the SOL is
decisive for how heat and particles are exhausted ([30]). Thus, for future performance
predictions of fusion devices, modelling of these turbulent transport phenomena in the
SOL region is important.
Blobs have in the past already been studied numerically via seeded-blob fluid simulations
([153], [154], [155], [156]). Also self-consistent formation of blobs was simulated with
two-dimensional ([157], [158]) and three-dimensional turbulence models ([159], [160],
[58], [161], [56], [162]). And very recently, Gkeyll was extended towards helical (or
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curved) open magnetic field lines ([52, 91]). With this setup of Gkeyll blob formation
was studied in the helical open field line plasma of a Texas Helimak like setup, which is
a simple magnetized torus experiment (SMT) ([92], [163]). These gyrokinetic studies
were in a later publication also compared to fluid code simulations of the GDB code
([164]).
However, the most advanced code up to now is probably the particle-in-cell code XGC1
([159], [165]), which is the only one able to study turbulence in 3D diverted geometries
and was able to study the SOL heat flux width with turbulent simulations ([39]).
Within this chapter, we apply our gyrokinetic full-f particle-in-cell code PICLS ([102],
[127]) to helical open field lines in a 3D slab geometry, as previously done by Shi et
al. ([91]). Therefore, we had to extend our previous 1D code to a 3D version which
can cope with simple slab, cylindrical and circular tokamak geometries and includes
magnetic curvature and ∇B terms. With this setup also simple magnetized tori, such
as TORPEX ([101]) and Helimak ([163]) could be studied. Similar to Shi et al. ([91]),
we use the same tokamak SOL-like parameters and only consider open magnetic field
lines, as in real tokamak devices. We are the first gyrokinetic particle-in-cell code
studying this problem and thus use the previously generated continuum code results
for comparison. However, the simulations presented here are still only a first attempt
and further studies will have to be performed in the future.
In section 8.2 we describe the model we use for these simulations, including the Euler-
Lagrange equations, the geometrical setup and the sheath boundary conditions. The
simulation setup with relevant parameters, the initial conditions and the source term
is shown in section 8.3. In section 8.4 first results for our helical slab simulations
are presented for two different simulation time steps. And in section 8.5 we shortly
summarize our findings.

8.2 Model
We use the low-frequency, electrostatic gyrokinetic model with kinetic electrons described
in chapter 2. In the following, we only want to highlight the key concepts applied, for
more details on the physical model and numerical setup used in PICLS, we want to
refer to chapter 2 or our previous work ([102]).
For our model, we use the (electrostatic) Hamiltonian shown in eq. (2.4):

Hp = mp
v‖

2

2 + µB + epJp,0φ−
mpc

2

2B2 |∇⊥φ|
2.

With the velocity variables v‖ (velocity parallel to magnetic field) and µ = mpv
2
⊥/(2B)

(magnetic moment), the magnetic field strength B and the gyroaveraging operator
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(J0ψ)(R,µ) = 1
2π
∫ 2π
0 ψ(R + ρ(θ)) dθ. Here, R is the gyrocenter position and ρ the

vector from the guiding center position to the particle position.
As described in section 2, with this Hamiltonian, the quasi-neutrality approximation
and the linearized polarization approximation, our total gyrokinetic Lagrangian can be
formulated ([50], [69], [49]) as (see eq. (2.23)):

L =
∑
p

∫
dΛ

((
ep
c

A+mpv‖b
)
· Ṙ +

mpc

ep
µθ̇−Hp

)
fp +

∫
dV E

2 −B2
⊥

8π .

The corresponding Euler-Lagrange equations were already shown in equations (2.31):

Ṙ = v‖
B∗

B∗‖
+

c

epBB∗‖
B×

[
µ∇B + ep∇Jp,0φ

]

v̇‖ = −B∗

B∗‖

1
mp
·
[
µ∇B + ep∇Jp,0φ

]
, (8.1)

with B∗ = B+ mpc
ep
v‖∇× b and B∗‖ ≡ B∗ · b.

From the total GK Lagrangian (8.1) the GK Poisson equation can be derived as shown
previously (see eq. (2.40)):

−
∑
p
∇⊥

np,0mpc
2

B2 ∇⊥φ =
∑
p

∫
dWepJp,0f . (8.2)

With the definition np,0 for the gyrocenter density, which is similar to the density of
the equilibrium Maxwellian fM:

np,0 =
∫

dWfM,p (8.3)

Note that Jp,0 = 1 for electrons, which means that electron FLR effects are neglected,
due to their small Larmor radius. However, for the ions Larmor points are created and
thus, FLR effects are taken into account. To solve for the potential, we apply the 2D1D
Poisson solver for slab geometry as presented in 5.2.4.
To account for collisions, the conservative Lenard-Bernstein collision operator shown in
section 4.3 is used ([127], [128]), which avoids the evaluation of Rosenbluth potentials.
Due to their small collision frequency, ion-electron collisions are neglected. Electron-ion
and self-species, however, are included in our model.
As in previous Gkyell simulations ([91], [92]), we also use a non-orthogonal field-line-
following coordinate system. Here, x is the radial coordinate, z is the distance along
field lines, and y measures the distance between field lines and is constant along a field
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line. This geometry resembles a flux tube on the outboard side of a SMT that circulates
around the torus several times and starts/ends at one of the two ends in z. To map
these field-aligned coordinates (x, y, z) to cylindrical coordinates (R,φ,Z), we define
the constants Rc = R0 + a0 and the field line pitch sin θ = Bv/B, with the device
major radius R0, the device minor radius a0 and the vertical (poloidal) magnetic field
Bv. Thus, we can write R = x and Z = z sin θ. This simplified model has no magnetic
shear and only vertical flux surfaces (thus ignores flux expansion). Since the vacuum
toroidal field mainly dominates the field strength, we assume B = B0(R0/x)ez.
We chose periodic boundary conditions (BC) in y for the particles and the fields. In
x non-periodic Dirichlet BCs with φ = 0 are applied and prevent particles to cross
the domain boundary in x. Conducting sheath BCs are the method of choice in the
z direction (see section 3.3 and [90], [52]). Here, depending on the sign of the sheath
potential, which is determined by solving the Polarization equation (8.2), particles
of one species are absorbed, while particles of the other species are partly reflected
back into the plasma. In the simulations presented in this chapter we use the option
to calculate the sheath potential for each particle entering the sheath individually
according to its position in the x/y-plane at z = 0 (for more details see section 3.3).
The particle dependent sheath potential φsh is calculated from the polarization equation
at the position of the particle at the sheath entrances (at z = 0) and determines whether
the particles are reflected back into the plasma by φsh, if their parallel velocity is not
high enough. The conducting sheath BCs in general allow self-consistent currents in and
out of the boundaries. This is in contrast to our previous 1D publications ([102],[127]),
where we used logical or insulating sheath BCs ([114], [100], [115], [116]). As explained
in section 3.2, for insulating sheath BCs the total parallel current to the wall is set to
zero (j‖ = 0) and thus the wall can be regarded as insulating. We also tried insulating
sheaths for the helical slab simulations presented here, but did not see a significant
difference in the turbulent behavior so far.

8.3 Simulation setup
In the following we specify the key parameters used throughout the simulations, the
implemented initial conditions and the source conditions during the simulation phase.

8.3.1 Relevant parameters

The parameters we use approximate a singly ionized H-mode deuterium plasma in the
NSTX SOL ([166], [28]), and are similar to the ones used in Shi et al. ([91]): Te ∼ 40
eV, Ti ∼ 60 eV, ni,0 = 7× 1018 cm−3, R0 = 0.85m, a0 = 0.5m and B0 = 0.5T. But we
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want to stress that we do not attempt to capture H-mode physics, since our simulations
only include the SOL with open field lines and not the pedestal in the edge region.
As we are approximating a flux tube at the outboard side of a torus, our dimensions
are defined as: Lx = 50ρs0 ≈ 14.6 cm, Ly = 100ρs0 ≈ 29.1cm, Lz = Lp/ sin θ. With
the poloidal distance from midplane to end plates Lp = 2.4m, and the ion sound radius
normalization ρs0 = cs0/Ωi = 2.91mm and the magnetic field line incidence angle
θ. The magnetic field in our simulations approximates the tokamak SOL by using a
helical field line geometry that mainly consists of a toroidal component and a smaller
vertical component. Within the simulation part of this chapter (section 8.4), we are
looking at a field pitch of sin θ = Bv/Bz = (0.3) that results in Lz = 8m. This is in
contrast to the previous work of Shi et al., who considered three different field pitches
sin θ = Bv/Bz = (0.2, 0.3, 0.6) that resulted in Lz = 12, 8, 4m. However, this will still
be studied in the future. We are not considering the magnetic field line incidence angle
in the sheath boundary conditions. However, the sheath model in PICLS would already
be able to treat non-perpendicular incident field line angles for the particle sheath
conditions.
The particles are generated via a Monte Carlo method according to their distribution
function in the (x, y, z, v‖,µ)-space. The corresponding position-space extents are x ∈
[−Lx/2+R0 + a0,+Lx/2+R0 + a0], y ∈ [−Ly/2,+Ly/2] and z ∈ [−Lz/2,+Lz/2].
And the maxima for the particle velocity generation are v‖s,max = 4vth,s = 4

√
Ts/ms

and µs,max = (3/4)msv
2
‖s,max/(2B0R0/(R0 + a0)). However, during the simulation

run the velocities are not limited by these values and can also achieve higher values.
This will also be discussed later. For the presented results, we use a uniform grid
with (Nx,Ny,Nz) = (32, 64, 20) cells and approximately 1000 particles per cell at the
beginning of the simulation.

8.3.2 Initial conditions

The initial conditions for the particle distribution are estimated by the steady state
solution of 1D fluid equations (for details see appendix of [91]). The reason for this is to
decrease the computational time until a steady state is reached during the simulation.
Within the initial source region (|z| < Lsrc/2 = Lz/4) the initial fluid velocity, density
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and temperature profiles are z-dependent and can be written as:

us(z) =

√
3

2

√
2Ts0
mi

1−
√

1− z2/(Lsrc/2)2

z/(Lsrc/2)

 , (8.4)

ns(z) =
2
√

5LsrcSn
3css

1 +
√

1− z2/(Lsrc/2)2

2

 , (8.5)

Ts(z) =
3
5Ts0

3 + 5
√

1− z2/(Lsrc/2)2

4 + 4
√

1− z2/(Lsrc/2)2

 , (8.6)

with css =
√
(10/3)Ts0/mi. For our simulations, the initial source particle rate we use

Sn = 1.14× 1023m−3s−1 as shown in [52]. Outside this region (|z| ≥ Lsrc/2), ns and
Ts are constant and equal to the values calculated from (8.4), (8.5) and (8.6) at the
edge of the source regions (z = −Lsrc/2 and z = Lsrc/2). For the initialization of the
particle velocities, we use a Maxwellian distribution which is shifted towards the fluid
velocity calculated in eq. (8.4).

8.3.3 Simulation phase

We define the source region for these simulations as the region with x < xs + 3λs and
the SOL region as the region with x ≥ xs + 3λs, where xs = −0.05m+R0 + a0 and
λs = 0.5cm. The x = xs + 3λs plane can be referred as the LCFS, however, we want
to stress that still no closed field line regions are included. Hence, also the temperature
profiles of the source are distinguished between these two regions:

Ti,e(x) =

74eV x < xs + 3λs
33eV x ≥ xs + 3λs.

(8.7)

The velocity profiles are based on a Maxwellian distribution without a shift of the
average velocity as in the initial conditions (see (8.4)). And for the plasma density
source a x- and z-dependency is assumed for ions and electrons:

S(x, z) =


S0max

[
exp

(
−(x−xs)

2

2λ2
s

)
, 0.1

]
|z| < Lz/4

0 else.
(8.8)
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From multiplying the total power into the scrape-off layer PSOL = 5.4MW by the fraction
of the total machine volume that is covered by the simulation box, an expression for
the total source power (electrons + ions) can be obtained as Psource = 0.27Lz/Lz0,
with Lz0 = 4m. S0 is chosen as to obtain this expression for Psource. To avoid regions
with n� n0 at large x, a floor of 0.1S0 is set in |z| < Lz/4. This was done by Shi et
al. ([91]) to prevent issues with distribution-function positivity which does not cause
problems with our PIC algorithm, but we will keep it for comparability. Considering
the distribution functions to be non-drifting Maxwellians and taking the specified
temperature profile into account, leads to a source particle rate of ≈ 9.6× 1021s−1 for
the specified Lz = Lz0 (Bv/Bz = 0.6) case.

8.4 Simulation results
In the following, we will present simulation results with two different time steps, a
“large” one with dt ≈ 3.7ns and “small” one with dt ≈ 0.1ns. The reason for choosing
these time steps is that during our investigation of this test case we found out that
we need a relatively small time step to ensure that the fast electron species is not
accelerated excessively. Up to now we could not identify the exact reason, but we
already have a good indication, which will be discussed later and needs to be analyzed
further in the future. Thus, the following results are only a first attempt to study this
test case with PICLS, but still no verification could be done, and further studies are
required.
The time steps in general are chosen by considering how many time steps a thermal
electron needs to cross one cell in the direction parallel to the magnetic field. This
means that to calculate the time step dt, the cell size in z-direction is divided by the
thermal velocity of a source electron vth,e =

√
Te,src/me. This value is then divided by

a factor which determines how many time steps a thermal electron needs to cross the
cell in z-direction. In the end, we get dt = cell size in z

#time steps×vth,e
. For dt ≈ 3.7ns we chose a

number of timesteps to cross the cell in z-direction of 60 and for dt ≈ 0.1ns a factor of
2000. The second value seems to be excessive, but as mentioned before, was necessary
to limit the acceleration of the electron species.
Due to the high resource requirements of the small time step, we will perform our
simulations only up to ∼ 25-30µs and not up to ∼ 650µs as done in [52]. An investigation
of longer simulation times is planned, once the restriction on the very low time step
is lifted. For both time steps, we investigated insulating as well as conducting sheath
boundary conditions. But in the following we will only show the results for conducting
sheath BCs, since the results did not drastically differ for the parameters and time
interval we were looking at.
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For the profile heatmap plots within this section we used 64 diagnostics cells in each
spatial direction and applied a bicubic interpolation.

8.4.1 Simulations with “large” time step dt ≈ 3.7ns
For the helical slab test case we first look at simulations with a time step of dt ≈ 3.7ns,
which is equivalent to a thermal electron crossing one cell in z-direction after 60 time
steps. To start, we want to study the evolution of the electron density with time.
Therefore, in figure 8.1 snapshots of the electron density (in 1018m−3) for t ≈ 17µs,
21µs and 27µs, in the x/y-plane at z = 0m are plotted, similar to the data shown in
[91]. The particle sources quickly trigger curvature-driven modes by steepening the

Figure 8.1: Snapshots of the electron density ne (in 1018m−3) in the x/y-plane perpendicular
to the B-field at z = 0m at t ≈ 17µs, 21µs and 27µs for a time step of dt ≈ 3.7ns. The color
scale of the snapshots is equal to achieve comparability. Mind the different scales in x- and
y-direction.

profiles. The turbulence is only driven by the sources, no additional perturbations are
applied. Far from the original source region, radially elongated structures in x-direction
are extending and broken up by the sheared flows in y-direction in the source region.
This leads to blobs propagating in the SOL. Comparing our data with the results in
[91], the repetitive uniform blobs cannot be reproduced, but more erratic structures are
obtained. Our absolute density also is lower than in their publication, which could be
an indication that the sources are implemented differently with our PIC algorithms.
However, the absolute density values and the time scale for the growth of the mode is
in a comparable range. Snapshots of previous times were not shown, since no relevant
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turbulent behavior appears earlier.
For the snapshot t ≈ 27µs in figure 8.2 we also want to show the electron temperature
Te (in eV) and the potential φ (in V). What is most striking, is the electron temperature

Figure 8.2: Snapshots of the electron density ne (in 1018m−3), the electron temperature Te
(in eV) and the potential φ (in V) in the x/y-plane perpendicular to the B-field at z = 0m at
t ≈ 27µs for a time step of dt ≈ 3.7ns. Mind the different scales in x- and y-direction.

(middle plot in figure 8.2), which with values of up to ∼ 800eV is much higher than
the temperature of the particles introduced by the sources Te,i. Hence, also the sheath
potential which shows maximum values of φ ∼ ±200V is far from the expected positive
values of ∼ 3Te/e. Comparing Te and φ with the results in [91] delivers very different
shapes and values (note that the snapshot in [91] shows t ≈ 650µs).
The main reason for the unphysical behaviors of Te and φ in our simulations comes
from the electron velocities. To investigate this, in figure 8.3 we plotted the evolution
of the average (left plots) and maximum (right plots) of the absolute value of electron
(top plots) and ion (bottom plots) velocity in cm/s. For each subfigure, we show the
evolution of these values for v⊥ (in blue) and v‖ (in red). In dashed lines the maximum
parallel velocity for the particle sources v‖s,max = 4vth,s = 4

√
Ts/ms is plotted (as

defined in 8.3). At the beginning, the ion maximum velocities max(|v⊥/‖,i|) are quickly
increasing, but remain at a velocity only slightly above v‖i,max. Only some ions seem to
be slightly accelerated, since

〈
|v⊥/‖,i|

〉
is not increasing. Due to the conducting sheath

boundary conditions, which absorb the fast ions that hit the domain wall,
〈
|v⊥/‖,i|

〉
is

even decreasing. However, the more interesting species in figure 8.3 are the electrons.
Similar to the ions, the maximum velocities max(|v⊥/‖,e|) are quickly increasing, but
this time exceed v‖e,max drastically by a factor of ∼ 6− 7. Apparently, this does not
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Figure 8.3: Evolution of the average (left plots) and maximum (right plots) of the absolute
values of electron (top plots) and ion (bottom plots) velocity in cm/s for a time step of
dt ≈ 3.7ns. The blue (red) lines show the evolution for v⊥ (v‖). The dashed lines indicate the
maximum velocity for the particle sources v‖s,max = 4vth,s = 4

√
Ts,src/ms, with Ts,src = 74eV.

happen for a few electrons only, as
〈
|v⊥/‖,e|

〉
is also increasing steadily. This is a clear

indicator that the electrons within our simulations are accelerated too fast.
Further investigations showed that the acceleration of the electrons is caused by the
second term in the v̇‖ Euler-Lagrange equation (see eq. (8.1)) where B∗ is multiplied
with ∇Jp,0φ. This is the only place in the equations, where the z-component of the
electric field enters. Thus, we are currently investigating what causes the problems in
the z-component of the electric field. Within our studies, we found out that decreasing
the time step also decreases the influence of the faulty B∗ · ∇Jp,0φ term in the v̇‖
equation. Thus, in the next section we want to do the same study with an even lower
time step.

158



8.4 Simulation results

8.4.2 Simulations with “small” time step dt ≈ 0.1ns
In the previous section (8.4.1), we saw that for a time step of dt ≈ 3.7ns an unphysical
acceleration of the electron species appeared. Thus, we decrease the time step to
dt ≈ 0.1ns which is equivalent with a thermal electron crossing one cell in z-direction
after 2000 time steps. This value seems to be excessively small, but helps us to
understand the issue of the accelerating electrons described in section 8.4.1.
Therefore, in figure 8.4 the evolution of the average (left plots) and maximum (right
plots) of the absolute value of electron (top plots) and ion (bottom plots) velocity in
cm/s is plotted similar to 8.3 but with the smaller time step dt ≈ 0.1ns. Roughly

Figure 8.4: Evolution of the average (left plots) and maximum (right plots) of the absolute
values of electron (top plots) and ion (bottom plots) velocity in cm/s for a time step of
dt ≈ 0.1ns. The blue (red) lines show the evolution for v⊥ (v‖). The dashed lines indicate the
maximum velocity for the particle sources v‖s,max = 4vth,s = 4

√
Ts,src/ms, with Ts,src = 74eV.

the same simulation time of ∼ 25-30µs is used. For the ions, almost nothing changes
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compared to the case with dt ≈ 3.7ns. However, for the electrons the maximum velocity
max(|v⊥/‖,e|) remains around v‖e,max and does not exceed it by several factors anymore.
This means that the electrons are not accelerated to these extreme velocities as in
the dt ≈ 3.7ns case. This can also be seen in

〈
|v⊥/‖,e|

〉
, which is only very slightly

increasing for the whole simulation time. This means that with decreasing the time
step to a very small value, the unphysical acceleration of the electrons could be avoided.
The reason therefore can be identified in figure 8.5, where we plotted a snapshot of
the potential φ (in V) at t ≈ 27µs (similar time as in 8.2). The potential is plotted

Figure 8.5: Snapshot of the potential φ (in V) at t ≈ 27µs (similar time as in 8.2). The
potential is plotted for the x/y-, z/y- and z/x-planes, where the extent of the spatial
dimensions for each subplot is the full domain (x ∈ [−Lx/2 +R0 + a0,+Lx/2 +R0 + a0],
y ∈ [−Ly/2,+Ly/2] and z ∈ [−Lz/2,+Lz/2]). All planes are positioned at the middle of the
not shown direction (e.g., z = 0m for x/y-plane). Mind the different scales for the different
directions.

for the x/y-, z/y- and z/x-planes. Here, for each subplot the extent of the spatial
dimensions always is the full domain (x ∈ [−Lx/2 + R0 + a0,+Lx/2 + R0 + a0],
y ∈ [−Ly/2,+Ly/2] and z ∈ [−Lz/2,+Lz/2]) and the planes are positioned at the
middle of the not shown direction (e.g., z = 0m for x/y-plane). Thus, the scales are
different for the different directions. The important thing in this plot is the strong
periodic structure of the potential along the z-direction. We did this analysis for varying
numbers of nz, up to nz = 200 to assure that this is not a resolution problem. However,
the periodic structure in z remains for different nz and always shows ∼ nz/2 maxima
and minima in z-direction. Thus, we eliminated the possibility that the cause for this is
an inherent physical mode. This periodic structure in z also appears in the simulations
with larger dt. Compared to the simulations with dt ≈ 3.7ns, we now also understand
why the electrons are not accelerated here. The values of the periodic potential changes
in z are similar for the dt ≈ 3.7ns and the dt ≈ 0.1ns case, but the time step itself
is different. As a result, a much higher acceleration of the electrons is caused by the
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B∗ · ∇Jp,0φ term in the v̇‖ equation for the larger time step.
The result of this non-physical field in z-direction is plotted in 8.6. Here, a snapshot at
t ≈ 27µs of the electron density ne (in 1018m−3), the electron temperature Te (in eV)
and the potential φ (in V) is shown, similar to 8.2. As the electrons are less drastically

Figure 8.6: Snapshots of the electron density ne (in 1018m−3), the electron temperature Te
(in eV) and the potential φ (in V) in the x/y-plane perpendicular to the B-field at z = 0m at
t ≈ 27µs for a time step of dt ≈ 0.1ns. Mind the different scales in x- and y-direction.

accelerated in the dt ≈ 0.1ns case, compared to dt ≈ 3.7ns, this time the electron
temperature Te is in the right quantitative range. However, ne and Te do not show a
significant turbulent behavior, but mostly maintain the structure of the source functions.
This most likely comes from the incorrect potential in z-direction, which can lead to a
trapping or acceleration of particles. Due to the periodic changes of φ in z, also the
x/y-plane of φ shown in figure 8.6 cannot act as a reliable data point. The x/y-plane
cuts differ significantly for different z-positions.
As a result, the simulations presented here can only provide a first glance at the studied
helical slab test case and further analysis to resolve the remaining issues will be needed.

8.5 Conclusions
As a last test case for this manuscript, we selected a 3D helical slab setup and made a
first attempt to study turbulence in helical open field lines. This test case was previously
run by E. L. Shi et al. (see [52, 91]), whose results we used for comparison. As the
studies presented here were only a first attempt, the test case was only run for up to
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∼ 30µs, a domain size in z-direction of Lz = 8m and two different simulation time
steps dt ≈ 3.7ns and dt ≈ 0.1ns.
Our current results showed that for the regarded time period we could achieve turbulent
structures with the larger time step that showed similar temporal and spatial scales
as presented in [91]. However, the qualitative behavior differed compared to [91]. A
more thorough investigation and the application of a smaller time step showed that the
potential in z-direction reveals a strong unexpected and almost certainly incorrect mode-
like structure. The structure appears for different nz and exhibits ∼ nz/2 maxima and
minima in z-direction. This structure in the potential eventually leads to an unphysical
acceleration and trapping of particles.
Hence, the current results can only be regarded as a first attempt and still show a
probably unphysical structure in the z-component of the potential. Further studies
will have to be done in the future to investigate the described issue and obtain more
physical insights of this 3D helical slab test case.
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The aim of this thesis was the development of the full-f gyrokinetic particle-in-cell code
PICLS for simulations of the scrape-off layer or open field line regions. Gyrokinetic
simulations are widely believed to be the way to go for quantitative turbulence studies
in fusion relevant plasmas. Therefore, with the development of the gyrokinetic PICLS
code we set the basis to contribute to open research questions in the plasma periphery.
In the following, we want to summarize the main achievements of this work and give
an outlook towards future development paths.

9.1 Summary
As explained, the key task of this thesis was to develop a full-f gyrokinetic particle-in-cell
code for open field line simulations. Before starting a new code development for fusion
plasma simulations, the physical and numerical models have to be determined. Hence,
in chapter 2 we derived the gyrokinetic model from the total gyrokinetic Lagrangian.
We used a Lie-transformed low-frequency particle Lagrangian and applied two com-
mon approximations — quasi-neutrality approximation and linearized polarization
approximation — to achieve the implemented electrostatic total Lagrangian. With the
help of the variational principle, we then derived the Euler-Lagrange equations and
the linearized Polarization equation, which are implemented in the code. In addition,
we also derived the simplified equations in slab geometry for our slab test cases and
introduced the applied system of units. For completeness, the total conserved energy
for the electrostatic system was formulated.
A key region of open field line simulations is the sheath region at the interface of plasma
and vessel wall, a few Debye lengths in front of the wall material. This physical Debye
sheath was described in chapter 3. Here, we also mentioned that due to its very short
time and length scales this region cannot be resolved within our gyrokinetic simulations,
but rather has to be modeled via so-called logical sheath algorithms. Two types of
logical sheath algorithms were presented. The insulating and the conducting sheath,
which mainly differ by allowing or prohibiting currents into the device wall. These
models are rather simplified, but already provide a sufficient approximation of plasma
sheaths for our simulations. In addition, we derived a method to treat particles at the
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domain boundary with non-perpendicular incident B-field angle. However, a similar
approach for the electric field for this case still has to be found. Further considerations
of alternative sheath models, such as realistic neutral models were also shortly discussed
in this chapter. We concluded this part by explaining the particle generation from
pre-defined source functions via a Monte Carlo method.
In chapter 4 we introduced the collisional model that we implemented in PICLS. There-
fore, we used the so-called Lenard-Bernstein (or Dougherty) collision operator, which
reproduces the results of a Landau collision operator for infrequent collisions, but does
not evaluate the Rosenbluth potentials. This collision operator analytically conserves
the number of particles, parallel momentum and kinetic energy and relaxes towards
a Maxwellian. The numerical implementation via the Langevin approach was also
shown. Here, we demonstrated that with our current numerical implementation parallel
momentum and kinetic energy are only conserved for an infinite number of particles, but
the moment conservation is sufficient for our test cases. We also showed the convergence
of parallel momentum and kinetic energy according to the 1/

√
Nc, with the number of

markers per cell Nc.
The complete set of numerical methods was then derived in chapter 5. A key element
of our particle-in-cell algorithm is its discretization via B-spline Finite Elements. We
shortly explained the main features of this discretization method, before using it to
derive the implemented 3D electric potential solver. The solver uses a Fast Fourier
Transformation (FFT) in the periodic direction to gain computational efficiency. There-
with, PICLS in its current setup can perform simulations in 3D slab and cylindrical
geometry. However, these setups require different types of solver implementations,
which were also derived in chapter 5. Additional code specifics as the data structures,
the parallelization schemes and a short performance analysis were also included at the
end of this chapter.
After thoroughly deriving the code basis, in the following chapters 6, 7 and 8 we applied
PICLS to its first open field line and scrape-off layer simulations. We started with a
simplified 1D heat pulse test case in chapter 6, to test the basic validity of our derived
model. Here, a central particle source mimics an ELM for a certain period of time and
therewith creates parallel heat and particle transport onto the domain boundaries. For
this test case we could show that the main part of the heat flux in the investigated time
period was driven by the ions (66.7%) and that the contribution of the ion heat flux
started at half of the ion transit time τi. We performed the same simulation with a
non-collisional 1D1V model (only parallel velocity v‖) and a collisional 1D2V model
(also including µ) with a Lenard-Bernstein collision operator. Where the collisions
resulted in an increase by 9% of the total heat flux loaded on the device wall and a
deferred increase of the sheath potential.
After successfully studying plasma systems with one spatial domain in chapter 7 we
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applied PICLS to its first 3D simuations, where we studied ion temperature gradient
(ITG) modes in a periodic screw pinch setup without sheath boundary conditions. Since
going from 1D to 3D included significant changes in the models and algorithms applied,
we selected this test case to verify the validity of the two key features, particle pusher
and field solver. For the particle pusher we fixed the electric field acting on the particles
and studied the particle trajectories and for the field solver, we applied a Method of
Manufactured Solutions (MMS) based approach. Both verification tests were passed
and thus PICLS could be applied to study slab-ITG instabilities in the cylindrical setup.
Here, we could show turbulent behavior with a short initial linear phase, which could be
seen in the evolution of the field energy and the L2-norm of the potential ‖φ‖L2

. After
this linear phase, the profiles relax and the drive for the turbulence ends. In addition,
we could compare the linear phase of the field energy of a simulation with our full-f
code PICLS with the results of a comparable simulation with the delta-f code ORB5
and achieved good qualitative agreement of both codes.
At the end of this thesis we did a first attempt to study turbulence in a 3D helical
slab setup with open field lines in chapter 8. This test case was based on a previously
studied application and served to test most of the open field line features implemented
in PICLS and to achieve first curvature-driven turbulence and blob propagation results.
We studied two different simulation time steps and compared the results with previous
continuum code simulations. Blob-like structures for the “large” time step case were
achieved. However, a deeper analysis showed that an unphysical mode structure in
z-direction appears, which leads to an acceleration and trapping of electrons and thus
significantly affects the simulation results. We are still working on identifying the root
cause of this issue and expect it in the slab-specific field solver. Thus, the results shown
in this thesis can only be seen as a first glimpse on this 3D helical slab test case, but
further studies and verification test will be done in the future.

9.2 Outlook

With the current development state of the full-f gyrokinetic particle-in-cell code PI-
CLS already several simplified test cases and physical questions can be addressed (see
chapters 6, 7 and 8). Based on this solid ground, in the future there are in general
two paths to take: exploit PICLS’s current capabilities and further extend the code
towards more realistic and challenging simulations. With the current setup of PICLS,
the plasma behaviour of several simple machines, such as LAPD [147], TORPEX [101]
or HELIMAK [163] could already be studied. Studies on these machines were already
performed by different gyrokinetic and fluid codes. Thus, executing simulations on
similar or new test cases could be a valuable contribution to cross-check existing results
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and achieve new insights. Nevertheless, the even more valuable (but also significantly
more challenging) task is to push PICLS further towards realistic scrape-off layer
simulations in tokamak-like machines.
PICLS already includes several key features to address open field line simulations, such
as sheath models, full-f treatment, etc. However, to simulate a real tokamak scrape-off
layer major development efforts are still required. These can be grouped in physical
and HPC requirement tasks.

In terms of physical adaptations an initial focus lies on lifting the current delta-f
limitations to further push the code towards a setup for gyrokinetic edge simulations.
The code already mainly includes a full-f model, however, in its current version the
Polarization equation is linearized. Implementing a non-linear Polarization equa-
tion therefore would be a logical next step. The work done on an iterative method by
Alexey Mishchenko (see [108]) could help as a guideline here. Another obvious step to
take is the extension of the implemented Lenard-Bernstein collision operator to a more
advanced full-f collision operator. A Fokker-Planck collision operator, as shown in
[125], could be good choice here.
To progress towards realistic tokamak simulations still some larger development efforts
to improve the applied physics will be needed. To achieve results that are closer to the
physical reality, the current electrostatic model will have to be extended to an electro-
magnetic one by implementing an Ampère’s law (see [167]). Furtermore, coupling to
impurity and neutral physics will be required for realistic edge simulations. In a
first step, PICLS could then be coupled to an existing core code (such as ORB5)
to perform limiter simulations. Once reaching more complicated geometries an
extension of the field/particle boundary conditions to arbitrary geometries
will be necessary. Also a revision of the GK equations for specified edge parameters
is thinkable. In a second and significantly more advanced step, PICLS could be applied
to cross the separatrix within a real tokamak geometry. Potential options therefore
would be to couple with core codes, similar to the mentioned approach for limiters, or
to implement an FCI (flux-coordinate indipendent; see [56]) approach together with
unstructured grids (see [168, 169]) for the field calculation into PICLS. Both approaches
will probably mean significant modifications and still have to be refined further in the
future in terms of effort and feasibility.
Another major field to investigate is the numerical transition from a gyrokinetic core
model towards an edge model. An important ingredient for this is the implementation
of a noise control mechanism as presented in [170]. With this, PICLS could be used
to execute numerical studies on the transition from a delta-f to a full-f model,
which is of relevance for the coupling of core and edge simulations. In addition, also
the transition from open- to closed field lines, which is decisive for crossing the
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separatrix, could be studied in simplified geometries.

The current version of PICLS is based on a hybrid OpenMP and MPI parallelization.
Apart from general code optimization, additional effort will be needed to port the
code to GPUs to fully exploit the capabilities of new computing systems. Potential
options here are OpenACC and OpenMP-offload, which have to be further evaluated.
Another relevant task is to implement IMAS interfacing for a standardized data
output.

There is still a lot of work ahead to extend PICLS towards realistic turbulence
simulations of the tokamak scrape-off layer region. But with its current setup we
constructed a solid basis for future development. The PICLS project remains to be
a collaborative effort of IPP Garching and SPC Lausanne and concrete plans for the
development of several of the discussed problems are already on the way. Furthermore,
a potential collaboration with IPP Greifswald on the development of a non-linear
Polarization equation is planned. The progress of the PICLS project therewith seems
to be secured and further physical results and publications are expected in the near
future.
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