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Abstract—Today, on-board passengers desire to have in-flight
services such as Voice-over-IP (VoIP) and video streaming. These
services are usually hosted by geographically distributed Data
Centers (DCs) that are built/rented by the airline companies.
Flights can be connected to these DCs using two types of Air-
to-Ground (A2G) communication alternatives: i) satellite (SC),
and ii) Direct-Air-to-Ground connections (DA2G). These two
options are different in terms of propagation delay, capacity,
and availability. Focusing on reducing the delay of the in-
flight services, each airplane should be assigned to a nearby
DC. However, due to the mobility of flights, a permanent DC
assignment might not lead to an acceptable service delay for
the flight duration. Therefore, the flight needs to be reassigned
to another DC (reconfiguration) along its route, which comes
with a cost. The real challenge in this work is to find the best
assignments of each airplane to DC(s) and determine the required
reconfigurations such that the sum of routing and reconfiguration
delay is minimized.

We model this problem as a Multi-Period Generalized As-
signment Problem (MPGAP) and formulate it as an Integer
Linear Programming (ILP) optimization model. To overcome
the scalability issues of the ILP, we propose Figo, a flight
control framework that solves the MPGAP problem using deep
Q-learning. Considering a realistic European-based Space-Air-
Ground-Integrated Network (SAGIN) and a real set of flights,
we compare the performance of Figo against the optimal. The
results indicate that Figo can achieve 7% optimality gap in the
worst case, while reducing the runtime from hours to seconds.

Index Terms—Assignment, Reconfiguration, Service Migra-
tion, Mobility-Aware, Flight, Deep Q-Learning

I. INTRODUCTION AND BACKGROUND

The era of long flights with a slow or no Internet connection
is over. Today, with a significant increase of worldwide flight
traffic volume, providing Internet-based in-flight services (such
as Voice-over-IP (VoIP), video conferencing, and gaming)
to on-board passengers, has become an important goal for
airline companies. Due to the cost, connectivity, and weight
limitations of planes, these services cannot be stored on the
plane itself. Thus, airline companies usually rent/build Data
Centers (DCs) on the ground to provide resources for hosting
their in-flight service instances. To ensure these services are
reachable during all the flight period with acceptable Quality-
of-Service (QoS) and also to improve the reliability, these DCs
are usually distributed geographically. Therefore, the problem
is to decide which flight should be assigned to which DC at
a given time with minimum delay. In any case, to be able to
provide the services to the passengers, flights must be able to

Fig. 1: An example of a Space-Air-Ground-Integrated Network
(SAGIN) at two different timeslots: At 5 PM (left side), two
flights are assigned to the same middle DC to receive their
services, both using a DA2G connection. After 2 hours, at
7 PM (right side) based on their movement, they are reassigned
to the right DC, incurring two reconfiguration operations. This
example shows how the green plane at 5 PM connects to the
middle DC through the DA2G, whereas, at 7 PM, the airplane
uses the SC to connect to the right DC.

communicate to their assigned DCs using an Air-to-Ground
(A2G) technology. The traditional A2G method is satellite
communication (SC) where the airplane traffic (services) is
relayed by the satellite towards its gateway located on the
ground network, where the DCs are located (See Fig. 1). The
advantage of SC is that it is available globally to the flights.
However, this A2G type has some limitations, especially in
terms of latency and capacity of the link.

Recently, broadband Direct-Air-to-Ground (DA2G) has
brought certain advances in the A2G communication [1]. With
this method, the flights are directly connected to the base
stations (BSs) located on the ground network (See Fig. 1). As
DA2G BSs are distributed through the continents, the DA2G
communication can be offered over the mainland, but not over
the oceans. Nevertheless, the main advantage is the easy and
cheap deployment of DA2G BSs with a high capacity and low
link delay, compared to SC [1]. Thus, considering the different
characteristics of A2G connections, routing the traffic from a
flight to the selected DC becomes another important challenge.

These advances in A2G communications have brought the
opportunity of providing online and interactive services to the
passengers, such as air-to-ground voice/video calls, gaming,
etc. These kinds of services demand a low-delay connection
between the client (passengers) and servers (DCs on the



ground) [2]. Accordingly, to be able to provide these services
with an acceptable delay to the passengers, it is important
to assign each flight to the closest DC (i.e., with the lowest
routing delay). However, due to the mobility of airplanes
overtime, the routing delay from the airplane to DC can
increase, making a single DC inefficient for the whole flight
duration. Therefore, to maintain the service delay, we have the
option of reconfiguration, i.e., changing the DC assignments
during the flight1 (See Fig. 1). However, reconfiguration comes
with a penalty, for example, in terms of delay in migrating
the flight’s session data. Hence, it is crucial to control the
unnecessary reconfigurations.

Therefore, in this paper we tackle three challenges: i)
airplane-to-DC assignment, ii) airplane-to-DC routing, and
iii) reconfiguration decisions for the flight period. We first
model the problem as a Multi-Period Generalized Assignment
Problem (MPGAP) using Integer Line Programming (ILP) to
minimize the total routing and reconfiguration costs (in terms
of delay). Due to the high complexity of the MPGAP [3],
finding an optimal solution is not straightforward for practical-
size problem instances, e.g., several hours for 100 flights. To
overcome these limitations, we propose Figo, a flight control
framework based on deep Q-learning to solve the presented
problem. Figo can be deployed on the central flight controller,
owned/leased by the airline company (See Fig. 1). It can react
in real-time to network changes like new flights and emergency
flight route changes. In case of assigning an airplane to a DC,
the flight controller node sends a command to the in-flight
router (e.g., OpenFlow message) using an A2G connection
to configure the routing for forwarding the traffic (using A2G
options) towards the selected DC. Also, to reassign an airplane
to another DC, the controller triggers the session and data
migration/synchronization between the source and destination
DCs.

Outline: The rest of this paper is organized as follows.
Section II and III presents the related work and system model,
respectively. In Section IV, the ILP optimization model is
presented, followed by the Figo framework design in Sec-
tion V. We evaluate the performance of Figo compared to the
optimal solution in Section VI. Finally, Section VII concludes
the paper.

II. RELATED WORK

As an emerging network architecture, Space-Air-Ground
Integrated Network (SAGIN) [4] has been attracting research
in various areas like resource allocation [5], [6], mobility
management [7], and energy-efficiency [8]. Considering the
in-flight services, there are not many works available in the lit-
erature. In our previous work [6], [9], considering the scenario
of this paper, we have presented a mathematical formulation
for joint placement, routing, and migration of Virtual Machines
(VMs) hosting flight services and proposed two heuristics [10]
to solve it. From the modeling point of view, some works

1In this paper, reconfiguring/reconfiguration is used interchangeably with
reassigning/reassignment.

in the literature have worked on the mobility-aware resource
management schemes. For instance, in the area of Internet
of Vehicles (IoV), the authors in [11] have presented a so-
lution for placement and migration of vehicle services while
guaranteeing the delay in a software-defined-network urban
environment. They presented an algorithm that continuously
monitors the delay level of the connection. Neglecting the cost
of reconfiguration, they migrate the service if a certain minimal
delay threshold is reached. Thus, it only reacts to pre-defined
thresholds, thus providing an unstable QoS.

Moreover, in Mobile Edge Computing (MEC), authors in
[12], [13] have proposed an approach to dynamically place
network functions on MEC servers for mobile users, according
to the handover probability of users for the next time-slot.
They formulate two optimization models with the objective of
minimizing network function migrations and communication
costs (i.e., QoS/QoE) between users and network functions.
Also, the paper [14] takes into account the high mobility
and uncertainty of MEC users and proposes a task migration
algorithm based on reinforcement learning that determines the
migration policy, while predicting the users mobility patterns.

However, [15] sheds light on the SAGIN architecture which
is more challenging compared to the problems other areas.
In particular, there is a high complexity coupled with high
dynamicity in the SAGIN. For example, different flights with
various service requests can dynamically join and leave the
network. Also, the calculation of an efficient routing from the
airplanes to the DCs is challenging, since using different A2G
connections can lead to very different solution qualities in the
long-term. Finally, we consider the cost of reconfiguration,
and try to keep the QoS at an acceptable level during the
whole problem horizon. To the best of our knowledge, there
is no work in the state-of-the-art that solves the mobility-aware
in-flight service assignment and reconfiguration in a realistic
SAGIN based on reinforcement learning.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

Let us define the finite time horizon T and divide it into T/ω
equal timeslots, where ω is the duration of each timeslot. We
define a graph G = (N, L), where N and L are the sets of nodes
and links of the graph in the timeslot t ∈ T , respectively. In
the modeled SAGIN, a graph G consists of four parts:

1) Ground Network: We define NG ⊂ N and LG ⊂ L as
the set of nodes and links of the ground network, respectively.
Besides, we consider a set of DCs at the ground nodes J ⊂ NG .
These DCs host the services of the airline company.

2) DA2G Nodes/Links: As mentioned before, airplanes can
communicate to the ground network through DA2G connec-
tions (via DA2G BSs). We denote the set of DA2G BSs in
the ground network as NDA2G ⊂ N . These DA2G BSs are
connected to the closest network node NG with a ground link
LG . Each DA2G BS has a communication range ΨDA2G km
(i.e., the communication to a plane is possible if the distance
between them is ≤ ΨDA2G). We denote LDA2G ⊂ L as the set
of links that connects airplanes to the closest BS.



Fig. 2: An exemplary SAGIN (graph G) with one flight from
Spain to Sweden in |T | = 8 timeslots.

3) Satellite Nodes/Links: The set of satellite nodes and links
are denoted by NSAT ⊂ N and LSAT ⊂ L, respectively. NSAT

relays the airplane traffic towards the satellite gateways located
in the ground network, defined as NSG ⊂ NG .

4) Flight Nodes/Links: We define F = { f1, f2, ..., f |F |} as
the set of flights over |T | equal timeslots (i.e., the number of
flights during T does not change). Each flight has a location
for each timeslot (considered to be the location in terms of
latitude and longitude at the starting time that timeslot). Each
location corresponds to a different network node. Therefore,
we define the set of airplane nodes denoted by NF ⊂ N where
|NF | = |F |× |T |. For example, in Fig. 2, there is only one flight
F = { f1} from Spain to Sweden, and |NF | = 8 timeslots.

We define the set of requested services at each timeslot t ∈ T
as At . We aggregate the services of a plane and represent it
as one service. These services are generated from the airplane
nodes at a specific timeslot t. For example, in Fig. 2, at t = 1
the first airplane node generates the service request set A1, and
at t = 2 the second airplane node generate A2, and so on. At
each timeslot, each service request a ∈ At should be assigned
to a DC to receive its services. This assignment can be realized
using either SC or DA2G connections (refer to the green plane
in Fig. 1, which uses the DA2G connection at 5 PM and
the satellite connection at 7 PM). These links have different
characteristics in terms of latency, capacity, and availability
which can be considered as the routing cost function.

Considering the mobility of airplanes reconfiguring an air-
plane connection from a DC to another one (as shown in Fig. 1
at 7 PM) can reduce the connection delay from an airplane
to another DC to reduce the overall delay in long-term. This
reconfiguration comes with a penalty, for instance, the delay of
data migration and state synchronization between the source
and destination DCs. The reconfiguration cost (i.e., delay) of
reconfiguring a service request from DC i to j is denoted by
Ri, j .

B. Problem Statement

Given a set of finite timeslots and a SAGIN graph at each
timeslot, the problem is to find: i) Assignment: Which airplane

should be assigned to which DC? ii) Routing: How to reach
from the airplane to the assigned DC? iii) Reconfiguration:
Which airplanes should be reassigned to which DC?, and
iv) Delay consideration: How to jointly answer the above
questions by minimizing the total routing and reconfiguration
delay over the whole time horizon? In this problem, we assume
that the DCs and network links are uncapacitated. Further, the
decisions are made per timeslot and assumed to be valid for
the entire timeslot.

IV. OFFLINE OPTIMIZATION FORMULATION

In this subsection, we formulate the above problem as an
Integer Linear Programming (ILP) optimization model. To
deliver low-delay services to flights, there are two delays that
should be considered: First, we define DT

routing as the sum
of the propagation delay of each link of the path from all the
airplane nodes to the assigned DC at each timeslot:

DT
routing =

∑
t∈T

∑
a∈At

∑
j∈J

∑
(u,v)∈L

lu,v,ta, j Du,v (1)

where lu,v,ta, j ∈ {0, 1} is a decision variable that is equal to
1 if the service request from node a ∈ At is routed towards
DC j ∈ J using the link (u, v) ∈ L at timeslot t ∈ T . Also,
Du,v denotes the propagation delay of link (u, v) ∈ L. Second,
DT

reconf is defined as the total reconfiguration penalties for
all the flights for the whole period T :

DT
reconf =

∑
t∈T

∑
a∈At

∑
(i, j)∈J×J,i,j

r ta,i, jRi, j (2)

where r ta,i, j ∈ {0, 1} is a decision variable that is equal to 1
if the service request from airplane node a ∈ At is reassigned
from DC i to j in timeslot t. Therefore, the ILP optimization
model can be formulated as follows:

min.
(
DT

routing +D
T
reconf

)
, (3)

s.t.
∑

j∈J
xta j = 1, ∀t ∈ T, ∀a ∈ At, (4)∑

v∈δ+(a)

∑
j∈J

la,v,ta, j = 1, ∀t ∈ T, ∀a ∈ At, (5)∑
v∈δ+(u)

∑
j∈J

lu,v,ta, j −
∑

v∈δ−(u)

∑
j∈J

lu,v,ta, j (6)

=

{
0, ∀t ∈ T, ∀a ∈ At, ∀u ∈ N\J, u , a
xta,u, ∀t ∈ T, ∀a ∈ At, ∀u ∈ J

,

lu,v,ta, j ≤ xta, j, ∀(u, v) ∈ L, ∀t ∈ T, ∀a ∈ At, ∀ j ∈ J, (7)

xta, j =
∑

i∈J
r ta, j,i, ∀t ∈ T+, ∀a ∈ At, ∀ j ∈ J, (8)

xta, j =
∑

i∈J
r t+1
a,i, j, ∀t ∈ T\{t |T |}, ∀a ∈ At, ∀ j ∈ J, (9)

vars: xta, j ∈ {0, 1}, ∀t ∈ T, ∀a ∈ At, ∀ j ∈ J,

r ta,i, j ∈ {0, 1}, ∀t ∈ T, ∀a ∈ At, ∀i, j ∈ J × J,

lu,v,ta, j ∈ {0, 1}, ∀t ∈ T, ∀a ∈ At, ∀ j ∈ J, ∀(u, v) ∈ L.

The objective function aims at finding a trade-off between
the routing and reconfiguration delays. Constraints (4) force
all the airplanes to be assigned to one and only one DC at each
timeslot, by using the decision variable xta, j ∈ {0, 1} which is
equal to 1, if the airplane node a ∈ At is assigned to DC
j ∈ J at timeslot t ∈ T . Constraints (5) generate the service
request from the flights at all the timeslots. These service



requests must be going out from the airplane node towards
a neighbor node in the graph which is either the DA2G or
the satellite node. We note that δ+(i)/δ−(i) is a function that
returns the outgoing/incoming links from/to node i ∈ N . The
flow conservation constraints (6) route the traffic flow through
the network towards the assigned DC; the traffic should keep
flowing until a DC node that serves the request. In addition to
flow conservation, the service request traffic of each airplane
node a ∈ At must be forwarded towards the selected DC. This
is ensured by constraints (7). The final set of constraints belong
to the reconfigurations that have to be made. Constraints (8)
and (9) link x and r variables in a flow conservation way.
When xta, j = 0, the airplane node a is not assigned to DC j
at timeslot t, meaning no reconfiguration. xta, j = 1 imposes
that a reconfiguration assigns airplane node a to DC j at
timeslot t and reassigns it at t + 1. This reassignment can be
from the DC j to j, which incurs zero reconfiguration delay:
Ri, j = 0, ∀i, j ∈ (J × J), i = j. We note that no reconfiguration
is possible at the first timeslot.

This problem is considered to be NP-Hard since for |T | = 1,
it can be reduced from the Generalized Assignment Prob-
lem (GAP), which is proven to be NP-hard [3]. This makes
the ILP not applicable to practical-size problem instances with
a large number of flights and timeslots. In the next section,
we propose an efficient algorithm to overcome this issue.

V. FIGO FRAMEWORK DESIGN

In this section, we propose Figo, a framework to solve the
problem presented in Section III-B in an online manner. In
particular, Figo takes a flight with its path and then pre-plan the
airplane-to-DC assignments and the necessary reconfigurations
in real-time. These decisions can be sent to the DCs and
airplanes to apply the necessary configurations at the right
time, e.g., preparing the airplane session migration from a DC
to another one. Figo can be deployed on the central flight
controller (owned by the airline company) to do the delay-
aware service provisioning for the flights of the company. Figo
uses Q-learning to can learn the efficient policy, aiming at
solving the aforementioned problem. Reinforcement learning
methods can observe and learn the dynamics of complex
environments, which makes it suitable to tackle our decision-
making problem [16]. The agent in reinforcement learning
algorithms collects the system state for each episode and
calculates the reward during the last timeslot. Then, it selects
an action according to a predefined strategy, and the system
transfers to a new state in the next timeslot. Similarly, the agent
calculates the reward and chooses new action. We define the
state space, action set, and the reward function as follows.

1) State-Space S: We define the state S(t) for flight f in
form of three elements:

S = {S(t) = (ptf , p |T |
f
, xtf , j) | ∀ f ∈ At, ∀ j ∈ J}, (10)

where pt
f

and p |T |
f

corresponds to the current and final destina-
tion of the flight f , respectively. This conveys both a sense of
mobility and enables the agent to plan for a long-term solution.
In order to diminish our state-space we divided our map (graph

G) into areas on a 100 × 100 grid (as shown in Fig. 2), from
which the positions pt

f
are taken. This enables an improved

exploration during the training phase and also an increase in
performance for unknown flights. The last component of the
state xt

f , j
is the current DC that the airplane is assigned to.

2) Actions X: The actions correspond to each DC that we
assign an airplane to. An action is performed in case of a
reconfiguration operation. Therefore, we define the action set
X as follows:

X = {χj | j ∈ J}, (11)
where χj indicates if the given airplane is assigned to DC j.

3) Reward Function R: At each timeslot, the agent gets a
reward R(S, χ) in a certain state S after executing each possible
action from X. We define the reward function as the following
equation:
R(S, χ) = D̄(S, j) − D̂t

reconf − D̂
t
routing, ∀ j ∈ J, ∀t ∈ T,

(12)
where D̄(S, j) is the delay of Dijkstra’s shortest-path from the
current flight position to the closest DC j. Also, D̂t

reconf
and

D̂t
routing are the reconfiguration/routing delays at the timeslot

t, respectively. The comparison with the minimum delay for
each DC allows all timeslots to have a common baseline.
This prevents large reward variance at each timeslot, thus
avoiding an inconsistent training, which would lead to slow
convergence.

4) Q-Learning: The objective is to find a policy that
maximizes the cumulative reward of each timeslot. Hence, we
need to define a policy that iterates through the state-space
and updates each reward accordingly. In order to maximize
the long-term reward, we need to learn the optimal policy
by determining the optimal reward values for each action, at
each state. That is, given the agent takes the action χ at state
S, we define Q-values as an estimate of the expected long-
term reward. These values can be estimated using the Bellman
equation:

Qt+1(S(t), χ(t)) = (1 − α)Qt (S(t), χ(t)) (13)
+ α[R(t) + γ ·max

X
Qt+1(S(t + 1), χ(t + 1))],

where α is the learning rate, and γ is the discount factor,
which allows us to balance the concentration on short or long-
term rewards. This procedure is called Q-learning, which is not
practical to be used in the case of a large state-space [17]. In
particular, in a large state-space, it is much more difficult for an
agent to visit each state and store all these Q-values. To tackle
this issue, an alternative is Deep Q-learning (DQL), in which
a Deep Neural Network (DNN) is deployed. In particular,
it is used to approximate the optimal action-value function,
enabling it to accurately predict the Q-values for each state.
As shown in [16], the use of DQL allows learning of good
policies within a large and complex state-space use-case.

5) Training: Figo learns by using the continuously received
flight data. Long-term and continuous training enables Figo to
improve the returned solutions for unknown scenarios.

The DNN is updated during training by using a batch of
random picket data from past observations [18]. We define a



Parameter Value

Learning rate α 5 × 10−4

Discount factor γ 0.9
Final exploration factor ε 0.02

Exploration fraction 30%
Batch size n 32

NN Layers (inc. input and output) 4
Training length 105 timeslots

TABLE I: Training hyperparameters

decreasing ε value for the training algorithm to trade-off the
exploration against the exploitation [19]. The last parameter
to be considered is the discount factor γ which balances the
importance of long and short-term rewards. When the value
of γ is close to one, it indicates a higher importance for long-
term rewards. After a grid-search, we decide to use the training
hyperparameters listed in Table I.

VI. PERFORMANCE EVALUATION

In this section, we introduce our simulation scenario and pa-
rameters for evaluation. Thereafter, we compare the proposed
Figo framework against the optimal solution (i.e., ILP model
in Section IV).

Simulation Setup: Our simulation settings are based on
a realistic European-based SAGIN, similar to our previous
work [6] (See Fig. 2). We use the Cost266 topology [20] for
the ground network. The delay of links in LG is determined
according to the link’s length. We assume two DC sets: a
reduced set J={Hamburg, Madrid, Budapest}, and a larger
set J={Strasbourg, Stockholm, Madrid, Athens, Glasgow,
Krakow}. The location of the DA2G BSs is taken from [21]
(|NDA2G | = 295) and its propagation delay is set to 10 ms [22].
Also, we consider two different DA2G connectivity ranges
ΨDA2G of 70 and 150 km, although in reality it can vary
based on, e.g., the antenna type and weather conditions.

For the satellite A2G connection, we consider the LEO
satellites. In contrast to the Geostationary Orbit (GEO) satel-
lites, LEO has a lower delay, which is more suitable for our
use case. According to [5], the number of LEO satellites over
Europe space is rather low (5 LEO satellites in Iridium con-
stellation). For simplification purposes, we abstract the group
of LEO satellites covering Europe as a single satellite node,
i.e., |N̄SAT | = 1. Further, to avoid unrealistic assumptions, we
set the latency of satellite link to the worst-case achievable
latency (i.e., 50 ms). This value is calculated according to the
LEO delay calculations provided in [23]. Also, the satellite
gateway node NSG is assumed to be located in Rome.

The set of flights has been exported from FlightRadar24 live
air traffic for 24 hours on 9.11.2017. We choose a set of 50
random flights from the data, because of the ILP computation
limitation; however, Figo can solve a larger set of flights. Let
us consider a timeslot of ω = 30 min and we consider flights
with two different durations: i) short flights with the duration
of 2 hours, i.e., |T | = 4, and ii) long 4-hour flights i.e., |T | = 8.

Scenario Setting Scenario Setting
ID

(
|J |, |T |, ΨDA2G

)
ID

(
|J |, |T |, ΨDA2G

)
1 (3, 4, 70 km) 2 (3, 4, 150 km)
3 (3, 8, 70 km) 4 (3, 8, 150 km)
5 (6, 4, 70 km) 6 (6, 4, 150 km)
7 (6, 8, 70 km) 8 (6, 8, 150 km)

TABLE II: The considered scenarios with |F | = 50 with dif-
ferent number of DCs |J |, timeslots |T |, and DA2G coverage
ΨDA2G .

For the reconfiguration delay, we assume it to be independent
of the source and destination DCs, thus

Ri, j =

{
R, ∀(i, j) ∈ |J | × |J |, if i , j,
0, ∀(i, j) ∈ |J | × |J |, if i = j .

In our scenario, we consider two services with low and high
reconfiguration delays, R = 5, and R = 25 ms, respectively.

The ILP model is implemented and solved with Gurobi [24]
in Python. Moreover, Figo is implemented with Tensorflow
in Python. The training and simulations are performed on a
machine equipped with Intel Core i7-6560U CPU and 8 GB
of RAM.

Simulation Results: We present the simulation results in
different categories and experiments. We note that each sce-
nario is ran for 30 times randomly.

1) Total Delay and Number of Reconfigurations: We start by
comparing the performance of Figo with the optimal solution
in eight different scenarios summarized in Table II. As de-
picted in Fig. 3a a higher total delay can be observed for larger
reconfiguration delays and an increase of reconfigurations for
the smaller R value. It can be seen that Figo can produce near-
optimal results in all the scenarios. Also, the instances with

(a) Objective function value

(b) Number of reconfigurations

Fig. 3: Comparison of the objective function value and the
number of reconfigurations for Figo and the optimal solution
in the eight different scenarios of Table II.



(a) Impact of |T | (b) Impact of |J | (c) Impact of ΨDA2G

Fig. 4: The impact of |T |, |J |, and ΨDA2G on the achieved optimality gap, showing that Figo achieves around 7% optimality
gap in the worst-case.

higher R have a higher objective function on average. The
reason is that for small R, the algorithm has more flexibility in
improving the objective function. This fact can be observed in
Fig. 3b wherein all scenarios, the number of reconfigurations
is lower in the case of R = 25.

An interesting observation in Fig. 3a is when we compare
scenarios with different |J | (i.e., scenarios (1,5), (2,6), (3,7),
and (4,8)). In these scenarios, the objective function value is
generally lower on average for |J | = 6 compared to |J | = 3.
This can give the algorithm more reconfiguration possibility,
as Fig. 3b indicates. In particular, in scenarios with |J | = 6,
more reconfigurations are performed, especially when R = 5
due to even higher flexibility. That is why the improvement is
generally lower for R = 25 compared to R = 5. Hence, it can
be concluded that if the reconfiguration delay of the services
is low/high, airline companies should go for a higher/lower
number of DCs to achieve the same delay level for their in-
flight services. In addition, Fig. 3a shows that the scenarios
with higher |T | (e.g., Scenarios 3, 7 compared to 1, 5) lead
to obviously higher objective function. Also, higher values of
ΨDA2G (e.g., Scenarios 6, 8 compared to 5, 7) can lead to a
lower objective function value, since higher ΨDA2G makes the
airplane nodes more reachable to the DC locations.

In the following, we investigate the impact of changes in
|T |, |J |, ΨDA2G , and |F | on the optimality gap of Figo with
different reconfiguration R penalties.

2) Impact of |T |: Let us choose some of the challenging
scenarios for a closer analysis. Fig. 4a compares the effect of
|T | on the optimality gap by considering scenarios 6 and 8
where |J | and ΨDA2G are fixed. It shows that the optimality
gap is the lowest for Scenario 8 (|T | = 8) and R = 5, and the
same scenario with R = 25 has the highest gap. The reason
is R = 5 brings more reconfiguration options than the R = 25
case. In this case, the reconfiguration delay is the deal-breaker
in the optimality gap instead of the flight duration. This is an
advantage of Figo, which performs with a close distance to
optimal, even in more realistic scenarios where flights have a
longer duration.

3) Impact of |J |: Fig. 4b compares the optimality gap for
scenarios with fixed |T | and ΨDA2G and varying |J | (i.e.,
Scenarios 4 and 8 with |J | = 3 and |J | = 6, respectively).
We observe that Scenario 4 performs better than 8 when
R = 5; however, for R = 25, they almost perform similarly. We

know that Scenario 8 has a larger state-space, since it scales
exponentially with the number of DCs, making it harder to
achieve a close optimality gap. However, it can achieve a better
optimality gap in both R = 5 and R = 25. We can conclude
that the number of DCs has more impact on the performance
than the reconfiguration delay.

4) Impact of ΨDA2G: In this part, we compare the per-
formance of Figo against the optimal solution for different
ΨDA2G in Fig. 4c. The results indicate that the smaller DA2G
range (i.e., Scenario 7) diminishes the number of DA2G
connections. Considering R = 25, this fact leads to even
less reconfiguration potentials since the ideal DC assignment
would be located near the satellite gateway node.

5) Impact of |F |: A very important characteristic of Figo
is its ability to solve the problem for a large number of
flights with an acceptable optimality gap. To show this we
ran scenario 8 for an additional 30 runs, taking 20, 50, and
100 flights into account. According to the results, it is evident
that the number of flights does not influence the performance
of Figo. In particular, Fig. 5 indicates that the optimality gap
lies between 3% and 6% on average for different numbers of
flights.

Fig. 5: Optimality gap for different number of flights.

6) Training and Runtime: Training duration is mainly in-
fluenced by two parameters, the sample size and convergence
time. To reach an acceptable level of performance, the agent
needs to go through a very large number of simulation runs.
The sample size affects our algorithm in two ways. Firstly, a
larger sample size means a larger graph to analyze. Since we



use Dijkstra to calculate the shortest path, a higher number
of nodes leads to a longer calculation time for each Dijkstra
run. Secondly, reinforcement learning needs a lot of different
samples to learn a generalized behavior. This means that while
we would be able to achieve convergence within seconds and
a few hundred iterations with a single flight, we need to
perform thousands of iterations to be able to teach the agent
something meaningful. In our case, training phase takes around
90 minutes for |F | = 100, |T | = 8, and |J | = 6. After training,
Figo is able to solve the problem for scenarios 7 and 8 with
|F | = 100 in 26 seconds on average. Also, it takes around
18 seconds to solve scenarios 3 and 4 for the same number
of flights (lower DCs leads to having lower runtime). Finally,
we report that in an online manner, given a single flight, Figo
takes around 0.5 seconds to find a solution on average for all
the scenarios.

VII. CONCLUSION

Aiming at minimizing the total delay, we determine the
necessary airplane-to-DC assignment/reassignment operations
along the flight duration. Since calculating the optimal solution
is not scalable, we proposed Figo, a flight controller frame-
work that efficiently solves the aforementioned problem by
employing the Deep Q-Learning method. Moreover, consider-
ing the future airplane positions, it overlooks the short-term
delay improvements for the long-term ones. Our simulations
in a realistic scenario showed that Figo exhibits acceptable
results with a maximum 7% optimality gap, while reducing
the computation time from hours to seconds. We showed that
Figo can solve the problem for a set of flights with different
duration, while keeping an acceptable delay level compared to
optimal. Moreover, it was shown that the services with lower
reconfiguration costs can support more flexibility, enabling
better delay improvements/adaptations with the mobility of
the airplanes. Figo can be used by the airline companies
to improve their in-flight service quality and employing an
efficient and real-time resource management strategy. By using
further data and network metrics collected by airlines during
the flight operation, this work can be extended to consider
parameters such as link capacity, dynamic service requests,
and A2G availability patterns.
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