
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Quantifying the Effect of Initial Conditions on
Tsunami Simulation Using Bayesian Methods

Mohamed Houssein Zaghdane

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Quantifying the Effect of Initial Conditions on
Tsunami Simulation Using Bayesian Methods

Author: Mohamed Houssein Zaghdane
Supervisor: Prof Dr. Michael Bader
Advisor: Dr. Anne Reinarz
Submission Date: 15/10/2020

I confirm that this bachelor’s thesis in informatics: games engineering is my own work and I
have documented all sources and material used.

Munich, 15/10/2020 Mohamed Houssein Zaghdane

Acknowledgments

I wish to express my deepest gratitude to Dr. Anne Reinarz who has constantly helped me
tackle on and fix all problems that I encountered during my research.

I would also like to thank my family for the continuous support I have received during the
pandemic lockdown.

Abstract

Numerical computations of earthquake generated tsunamis have been carried by multiple
researchers in order to recreate and hopefully predict tsunamis. The Okada model is typically
used for the tsunami wave generation and the Shallow waters equation model is solved for
the wave propagation. The Okada model however requires a lot of uncertain parameters as
input. The markov chain Monte-Carlo (MCMC) methods are sample based bayesian methods
that can be used to efficiently estimate the probability distributions of unknown parameters
in high-dimensionnal problems. In this work we will explore the theory behind tsunami
generation and the Metropolis hastings MCMC algorithm and see the effectiveness of this
algorithm in inferring initial parameters for Shallow water type problems.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Theoretical Background 3
2.1 The tsunami simulation . 3

2.1.1 Wave generation . 3
2.1.2 The 2D shallow water equation . 3
2.1.3 The Exahype Engine . 5

2.2 The Bayesian Inverse problem and Markov Chain Monte-Carlo 7
2.2.1 Bayes Inverse Problem . 7
2.2.2 Markov Chains . 8
2.2.3 Monte-Carlo methods . 8
2.2.4 The Metropolis-Hastings algorithm . 9
2.2.5 The MIT Uncertainty Quantification library 10
2.2.6 MultilevelMCMCExaHyPE . 10

3 The solitary wave on a beach scenario 12
3.1 Description . 12

3.1.1 Setup . 12
3.1.2 Wave parametrisation . 13
3.1.3 Experiments . 14

3.2 Results and analysis . 16
3.2.1 First wave experiments with one unknown parameter 16
3.2.2 The Second wave experiments with two unknown parameters 19
3.2.3 Third wave experiments with three unknown parameters 21

4 The Tohoku Tsunami simulation 25
4.1 Description . 25
4.2 Setup . 25
4.3 results . 25

5 Conclusion 27

v

Contents

List of Figures 28

List of Tables 29

Bibliography 30

vi

1 Introduction

Tsunamis are long and powerful waves that are generated by geological events such as
landslides, rockslides and earthquakes. Tsunamis can be quite devastating as proven by the
Tohoku earthquake tsunami which has caused a death count of 15,641 with 5,007 missing and
a lot of structural damage in 2011[1].

Various researchers have worked on numerical computations of earthquake generated
tsunamis based on real-world bathymetry. This type of tsunamis is caused by faulting
at the bottom of the ocean which causes a displacement at the surface of the water which
generates the tsunami wave [2]. For numerical computations of this procedure of wave
generation the Okada model is generally used [3]. While different methods for the tsunami
propagation exists, the 2D shallow-water equations are appropriate for coastal areas such as
Tohoku.

However there exists a lot of uncertainty with these methods. The Okada model requires
various parameters such fault strike angle, fault rake angle, fault-dip angle,fault length and
fault slip Other factors to consider are the possibly noisy buoy recordings. The Tohoku
tsunami that we will be focusing on has a dataset of more than 5300 locations [1], it is nearly
impossible to approximate the errors that the recordings may contain. Uncertain initial data
also affects the tsunami propagation step as the data used to solve the Shallow-Waters model
is directly dependant on the initial data.

Because of the high dimensionality of the unknown parameters space, a numerical approach
to solving this problem is inappropriate [4]. A popular approach that has gained popularity
these last decades is the Bayes based, Markov chain Monte-Carlo class of algorithms. These
methods rely on picking random samples that are used to solve a model, the results returned
by the model are then used to pick another sample and the cycle repeats. When ran a
high enough amount of time, the candidates picked by the chain can be used to generate
probability distributions and draw expectations from our unknown parameter behaviours [5].

In this paper we will present the background behind tsunami simulations and the Markov
chain Monte-Carlo methods, in particular the metropolis-Hastings algorithm. We will then
run simple simulations with predetermined parameters, try to estimate them using our
MCMC algorithm and analyse the results. We will finally run a simulation of the 2011 Tohoku

1

1 Introduction

tsunami using real recordings of the waves and the bathymetry.

2

2 Theoretical Background

2.1 The tsunami simulation

In this section we will discuss the techniques used for numerical computations of tsunamis
and the engine we will use to realise our simulations

2.1.1 Wave generation

Tsunamis are caused by fault deformations at the bottom of the ocean which causes a water
surface displacement. Tanioka and Satake have documented the effects of the fault and the
horizontal movement of the slope on the amplitude of the generated tsunami waves [2]. The
surface displacement in an elastic half-space can be calculated using the Steketee equation

uk =
1
F

∫∫
∑

∆ui[λδiju
n,n
k + µ(ui,j

k + uj,i
k)]vjd ∑ (2.1)

where λ and µ are lame’s constants, δij is Kronecker’s delta vj is the direction cosine of the
normal to the fault surface element d ∑. ui

k is the kth component of the surface displacement
caused by the ith point force which is of magnitude F [2].

The Okada model, which is based on this equation, is generally used in tsunami simulations
in order to generate the initial wave. When supplied with multiple parameters such as the
fault’s rectangular geometry namely the fault’s length, dip, width, strike and depth. The
okada model calculates the initial sea surface displacement in an elastic half-space [3].

2.1.2 The 2D shallow water equation

For the propagation stage of the tsunami wave, we will use the shallow water equations
as they are appropriate for tsunami scenarios [7]. The 2-dimensional shallow water model
(SWE) is a system of hyperbolic partial differential equations that model the flow of flat water.
The equations neglect vertical velocities which requires the vertical scale of the simulated
domain to be a lot smaller than the horizontal scale for the simulation to be accurate. This is
particularly useful for simulating coastal regions [8].

3

2 Theoretical Background

Figure 2.1: A visualisation of the fault parameters used in the okada model, image taken from
[6]

The SWE are derived from the laws of conservation of mass and linear momentum. The
Exahype engine, which we will be using for the tsunami simulation, offers the following
formulation of the Shallow water equations :

∂

∂t
~Q +

∂

∂x
~F1

(
~Q
)
+

∂

∂y
~F2

(
~Q
)
+ ~B(Q).∇Q = 0 (2.2)

~Q =

h

hu
hv
b

 , ~F1 =

hu

hu2 + 1
2 gh2

huv
0

 , ~F2 =

hv

huv
hv2 + 1

2 gh2

0

 ,~B.∇Q =

0

hg∂xb+
hg∂yb

0

 (2.3)

where :

• ~Q are our conserved quantities, ~F1 and ~F2 are the fluxes, and ~B(Q).∇Q is the non-
conservative part.

– h is the height of the water column.

– u and v represent the horizontal velocities respectively on the x-axis and the y-axis

– b is the bathymetry. The bathymetry refers to the depth of the seafloor relative
to the surface of the ocean. It is used to communicate data about the underwater
terrain [9].

– g is the gravity. A constant value of 9.81m/s2 is typically used.

4

2 Theoretical Background

2.1.3 The Exahype Engine

The exahype engine (Exascale Hyperbolic PDE engine) is a high performance engine for
solving first order hyperbolical partial differential equations. The engine gives access to
multiple numerical solvers and an intuitive way to implement and simulate hyperbolic PDE
systems which may contain conservative and non-conservative terms as long as they are
given in this form :

∂

∂t
Q +∇.F(Q,∇Q) + B(Q).∇Q = S(Q) +

nps

∑
i=1

δi (2.4)

where Q is the state vector containing our conserved variables, F(Q) is the flux tensor and
B(Q) represents is the non conservative part of the equation, S(Q) is the source term and δi
are the point sources [8].
Exahype already includes implementations of the shallow water equations as mentioned
in the section before 2.2 which we will be using for our wave simulations. As seen when
comparing both equations 2.2 and 2.4, The right part of the form is trivial for the SWE and is
equal to zero. The steps to implementing and running a simulation are the following

• Setting up the configuration. While it contains many options, the most relevant part
is setting our physical and temporal domain, the solvers used and our plotters, which
allows us to generate Vtk files to visualise our simulations using tools such as Paraview
but also to record cell data at certain points for successive time-steps which can be used
to simulate buoy recordings.

• Setting up the initial values for our quantity of interest Q. For simple simulations is it
possible to set these values up manually by setting up Q for each cell. For advanced
simulations that recreate real environments with complex geography we use ASAGI,
which is a library that allows us to easily query and set up complex geoinformation
[10].

• Setting up appropriate boundary conditions which define the behavior of boundary
cells.

• Setting up the eigenvalues, fluxes and non conservative products in the predefined
appropriate functions in accord with the shallow water equations, an example of the
intuitive syntax used is presented in code snippet.

• finally we compile and run the simulation. Exahype offers parallelization and scaling
abilities using Intel’s MPI and Threading Building Blocks (TBB). This means that we
can highly accelerate the simulation by using multiple nodes and cores. We will use the
Lrz linux clusters [11] to take advantage of the Exahype scaling features. We can then
use the output Vtk files to visualise the simulations.

5

2 Theoretical Background

f[0] = vars.hu();
f[1] = vars.hu() * vars.hu() * ih + 0.5 * grav * vars.h() * vars.h();
f[2] = vars.hu() * vars.hv() * ih;
f[3] = 0.0;
g[0] = vars.hv();
g[1] = vars.hu() * vars.hv() * ih;
g[2] = vars.hv() * vars.hv() * ih + 0.5 * grav * vars.h() * vars.h();
g[3] = 0.0;

Listing 2.1: A snippet of the implementation of the flux function in exahype, the array f
represents ~F1 and g represents . vars is a variable that contains all our quantities
of interests Q

6

2 Theoretical Background

2.2 The Bayesian Inverse problem and Markov Chain Monte-Carlo

In this section we will explain the Bayesian inverse problem and How the Markov Chain
Monte-Carlo algorithms are used to approach this type of problem

2.2.1 Bayes Inverse Problem

For our simulations, we wish to quantify unknown parameters that affect the outcome of a
tsunami simulation. We can write the equation we want to solve as

y = O ◦ G(θ) + η (2.5)

with θ in Rn and η,y in Rm

• O is the observation operator : Buoys that record water height

• θ a set of parameters which are unknown in our situation

• G is the model : the tsunami

• η measurement errors

• y is the observed data : The output of our buoys

We possess the data y and we wish to infer the unknown parameters but solving this equation
is impossible as the problem is ill-posed [12] :

• We do not know The extent of the measurement error η and cannot approximate it which
means that we can not subtract it from the observed data y to be able to invert accurately
the model G. This makes deriving accurate unknown parameters θ impossible because
of the uncertainty caused by the error.

• In case the dimension of the unknown parameters is higher than that of the solution
n >> m, the system is underdetermined, which means we can have multiple solutions
[13].

To solve this problem we will take an approach based on the Bayes theorem, which is often
presented as follows :

f (θ|O ◦ G(θ) + η = y) =
f (y|θ). f (θ)

f (y)
. (2.6)

7

2 Theoretical Background

• f (θ) is the prior which represents our prior knowledge of θ

• f (y|θ) is the likelihood which represents the probability of observing the data y given a
model M

• f (θ|O ◦ G(θ) + η = y) is the posterior which is what we learned about θ after observing
y

• f(y) is the evidence which serves as a normalising constant [14]

While there are multiple approaches based on Bayesian statistics, in our situation, we need
an optimised algorithm that can work with high-dimensional parameter space and with no
prior knowledge about our unknown. The Markov Chain Monte-Carlo family of alghorithms
represent a good option in this case. [4]

2.2.2 Markov Chains

A Markov Chain is a series of random variables X1,X2,...Xn Where the value of Xk + 1 is only
influenced by Xk. This can be written as :

P(Xn+1|X0, X1, ...Xn) = P(Xn+1|Xn) (2.7)

For that we only need the marginal distribution for x0, the probabilities of each following
possible state and the transition probability to move from one state Xk to another Xk + 1.
Eventually a Markov Chain can reach a stationary distribution π which is unchanged by
transitions. This can be formally written as

π(x) = ∑̃
x

π(x̃)Tn(x̃, x) (2.8)

for a state x and all possible transitions n. All finite Markov Chains possess at least one
stationary distribution.
This stationary state is ideal to estimate expectations for our sampled parameters [4].

2.2.3 Monte-Carlo methods

Monte-Carlo methods are computational algorithms that rely on repeated random sampling
from probability distributions. The Experiment must be repeated a high amount of time in
order to reach our desired quantity of interest. These methods are particularly efficient when
working with complex models and are parallelizable which decreases the execution time [15].
Monte-Carlo methods typically follow these 3 steps [16]:

1. n Independant samples of the random parameters are generated from a certain proba-
bility distribution and within their defined domains

8

2 Theoretical Background

2. For each sample, the model G is solved and the result recorded

3. After all samples have been run, the expectation of the random parameters is calculated.

2.2.4 The Metropolis-Hastings algorithm

Markov Chain Monte-Carlo (MCMC) is a class of algorithms based on a combination of
Monte-Carlo methods and Markov Chains. A Markov Chain Monte-Carlo is thus a sampling
algorithm where ∀ k ∈ [0 .. (n-1)] the selection of the next candidate set of parameters Xk + 1
depends solely on Xk, which means that each sample drawn becomes dependant of the
previous sample.
Markov Chain Monte-Carlo methods are playing a big role in different domains such as
machine learning and statistics [5], as they are typically more efficient than numerical methods
for problems with a high dimensionality [4]. The MCMC method that we use is the classic
Random-walk Metropolis-Hastings algorithm (MH). This method uses rejection samplings
which means that for each candidate sample, we will either accept or reject this candidate
and re-sample depending on the likelihoods of the actual and candidate samples. This helps
make sure that the sampler tends to visit high probability samples more frequently than low
probability samples, while also not get stuck in certain value spaces [5]. As initialisation for
this implementation, we need to first pick an initial sample set of parameters X0 = [θ0, θ1, .. ,
θn] and a proposal distribution.

We will use a Gaussian distribution Normal(0, sigma) as our proposal distribution where
sigma represents the covariance. The Gaussian distribution is a symmetric distribution which
is why our MH algorithm is called a "random walk Metropolis-Hastings". A suitable covari-
ance value must be selected. If the value if too small, the acceptance rate will be too high and
the chain will move slowly and not cover all the domain. On the contrary if its value is too
high, the acceptance rate will be too low and the chain will not move. A perfect value must
be found to reach a medium acceptance rate which is achievable through trial and error [17].

The Metropolis-Hastings algorithm is a popular Markov Chain Monte-Carlo method typically
follows the following steps :

1. a new candidate sample X1 = [θ′0, θ′1, .. , θ′n] is considered. We calculate the acceptance
ratio α. α is a probability based on the likelihood of the new distribution X1, the
likelihood of the old distribution X0, and the proposal distributions Q(X0|X1) and
Q(X1|X0) (2.9).

2. We then generate a random uniform number r in [0,1].

• If r < α, the new candidate is rejected and another one is chosen.

• If r > α, the candidate is accepted and X1 will be used for sampling the next
candidate.

9

2 Theoretical Background

3. If we have no reached our desired total number of samples, we repeat from step 2.

α = min
(

1,
π(X1|y)Q(X0|X1)

π(X0|y)Q(X1|X0)

)
(2.9)

The Acceptance function has this form to guarantee that the stationary distribution obtained
is the one we are interested in [18].

When a high number of samples are run, the Markov Chain will approach a stationary
distribution π. The chain of candidates picked by the sampler can be used to approximate
the estimated values of our parameters.

Because the initial set of values is random and the prior distribution is uninformed, the
Markov Chain needs a certain amount of samples before reaching realistic candidates. The
initial values may be extremely unrealistic and affect our parameter probability distribution,
which is why we discard a part from the start of the chain. This is typically called the
“burn-in” [5].

After running the Algorithm with N Samples, we wish to obtain the expectation for our
unknown quantities, the Markov Chain strong law ensures that [19]:

Ep(x|y)(f (x)) =
∫

f (x)p(x|y)dx (2.10)

we can use this equation to calculate the mean of our parameters by using f (x) = x [5].

µn =
1
N

n

∑
i=1

f (xi)where f (xi) = xi (2.11)

2.2.5 The MIT Uncertainty Quantification library

MUQ (MIT Uncertainty Quantification) [20] is a library for uncertainty quantification. It offers
multiple advanced Markov Chain Monte-Carlo algorithms for computationally expensive
models through parallel approximations.

MUQ offers multiple implementations of MCMC methods, which of course include our used
Random-walk Metropolis-Hastings algorithm. The library offers tools to generate a proposal
distribution and configure our MCMC with the appropriate settings (Sample number, burn in
..). Values of interest are then returned such as the mean and the Quantity of interest.

2.2.6 MultilevelMCMCExaHyPE

MultilevelMCMCExaHyPE [21] is a MUQ interface for Exahype. It allows us to configure
our MCMC settings and pass the configuration directly to MUQ and serves as communicator

10

2 Theoretical Background

that allows Exahype to solve the model during The MCMC steps. After The MCMC process
running on MUQ generates a new candidate sample, the parameters are passed to the Multi-
levelMCMCExaHyPE which we can use to discard problematic samples and pass acceptable
parameters to Exahype where they are used to alter the initial data. A simulation is then run
and data collected by probes at relevant coordinates is then returned and used to calculate
the likelihood of the sample. This likelihood is then used by MUQ for the acceptance function.

Log files are generated by the software which contain the parameters and likelihoods of
each sample that was generated. We can use these files to generate relevant plots for our
analysis.

11

3 The solitary wave on a beach scenario

3.1 Description

Our first simulation will be a simple wave that crashes on a beach. The wave starts at
a relatively close distance from the shoreline which makes the shallow water equations
appropriate as a model to calculate the wave’s propagation. This scenario has simple and
easily modifiable initial parameters, which means we can generate data from a reference
simulation and then compare it to the output of the MCMC .We will use this scenario for
multiple experiments to test the effectiveness of our MCMC implementation.

3.1.1 Setup

For this simulation, we will use the Exahype engine with an ADER-DG solver [8] and the
Shallow water equations as our model. Exahype already includes examples for the SWE
which have implementation for the flux, eigenvalues and non-conservative products. We will
use wall boundary conditions which means that waves are reflected on the boundaries of the
simulation. We only need to adapt the initial data and configuration file to our needs.

As the scenario is simple, we will not need to use a parser for the data. The conserved
quantities Q for each cell will be set up manually using a combination of parameters. All
relevant parameters are documented in 3.1, The unknown parameters that we will infer with
the Markov Chain Monte-Carlo will be picked from them. The velocity on the y-axis is set to
zero for all cells at all time t for this simulation.

The configuration file lets us set up most of the settings for our simulations, the most relevant
settings are :

• The dimensional domains : X ∈ [−10, 60], Y ∈ [0, 1] and T ∈ [0, 0.1] which respectively
represent the horizontal axis, the vertical axis and time. The low time domain is chosen
in order to highly speed up each simulation and doesn’t affect our MCMC.

• Plotters : The locations of the plotters will be adapted depending on the simulations
and they will serve a similar role as buoys which record the wave height at all times

• The mesh size: This setting allows us to highly decrease the time-cost of each simulation
but can lead to very rough output. We will use a relatively high mesh size in order to

12

3 The solitary wave on a beach scenario

accelerate our MCMC

After finishing the configuration, We first run our reference wave simulation with Exahype
only. This simulation’s initial data will be set with the real parameters and we will use it to
get multiple probe recordings that we can use later as a reference for our MCMC’s likelihood
function.

The second step is to configure our Markov chain Monte-Carlo. We will use the MultilevelM-

CMC software we mentioned in the previous chapters. We set up our desired number of

samples and burn-in which we will vary depending on the experiment. We then set the start

values of our unknown parameters to a random number within their domain, we choose

values that do not reflect the real values of the parameters. We finally set an appropriate

likelihood function which is as follow :

l = e∑n
0 −

1
n×0.5×d2×500 (3.1)

• d is the average difference between our reference probe recordings and the probe
recordings output using our sampled set of parameters.

• n is the number of used probes which we will vary depending on the experiment.

As mentioned in previous chapters, our MCMC algorithm will be the Metropolis–Hastings
algorithm with a Gaussian proposal. The initial values for our unknown parameters will be
random. After MUQ select candidate parameter samples, we will discard negative values
selected and not set any upper bound for the selected value. Values inferior to 0.1 for water
depth d are also discarded as values close to zero cause the Exahype simulation time to be
highly increased.

Following the end of the execution of our MCMC, we will use self-written code based
on Plotting related python libraries (Matplotlib, Numpy, Pandas, Seaborn) to analyse the
expectation for each parameter. Most relevant plots are the parameter density plots and the
MCMC iterations.

3.1.2 Wave parametrisation

We will try our MCMC with three different sample dimensions. The wave has a multitude
of initial values that can be used as parameters, their names ,what they represent and their
correlations are represented in the following graph.

13

3 The solitary wave on a beach scenario

Parameter name Description affected by
d The water depth on undisturbed sea ∅
h The wave’s initial peak height (affected by the water depth d) d
β The angle of the ground elevation along the coastline ∅
Γ Affects the initial shape of the wave h, d

X0 Length of the ground elevation along the coastline d, β

L Distance of the wave from the beach Γ, d
eta The water viscosity h, L, d, Γ

Table 3.1: All parameters that affect our wave’s initial shape and how they are correlated to
each others

These parameters help set up the initial values for each cell’s conserved data Q. We will use
different number of parameters from the table. Depending on the parameters chosen we
will place our probes at appropriate locations that allow for meaningful output to infer our
parameter (the beta parameter cannot be inferred with no probe near the coastline).

The experiments will be compared to the same reference simulation, where the wave is ini-
tially located at x3. We will do three base experiments with increasing unknown parameters
to see how the increasing dimensionality of the set of parameters affects results of the MCMC.

Figure 3.1: Rendering of the wave at initial state using Paraview, coloring depends on the
total height of the water and the bathymetry

3.1.3 Experiments

First wave experiments with one unknown Parameter

For the first wave we will be only using a single parameter, which directly affects the maxi-

mum water height h. We will use two probes at respective 2D coordinates
(

3.1
0.4

)
and

(
3.3
0.5

)
.

14

3 The solitary wave on a beach scenario

These coordinates are chosen specially to output relevant data on the wave.

We will then run a MCMC experiment with four probes, respectively at
(

2.0
0.5

)
,
(

3.0
0.5

)
,
(

3.2
0.5

)
and

(
3.4
0.5

)
. We want to use this experiment to study the effect irrelevant probe data, which

means that it’s output unaffected by our unknown parameter h, on the speed at which our
Markov Chain reaches a stationary distribution as irrelevant probe data directly affects our
likelihood function.

Parameter name Real value
h 0.3

Table 3.2: The first wave’s unknown parameter and its real value

Second wave experiments with two unknown Parameter

For the second wave we will be trying to infer two parameters, The water depth d and wave
height h. The goal for this choice of parameters is to see the effect of choosing two correlated
parameters as h’s value is directly affected by d. We will use probes at respective coordinates(

2.0
0.5

)
,
(

3.0
0.5

)
,
(

3.2
0.5

)
,
(

3.4
0.5

)
and

(
3.6
0.5

)
. All probes deliver relevant data.

Parameter name Real value
d 0.15
h 0.3

Table 3.3: The second wave’s experiments parameters

First wave - Three Parameters

Finally we use three parameters : the water height h, the water depth d and Γ which affects
our initial wave’s shape. as seen in the table 3.1. The goal of this experiment to see how the
addition of a third highly correlated parameter affects the chain.

Parameter name Real value
d 0.15
h 0.3
Γ 3

Table 3.4: The third wave’s experiments parameters

15

3 The solitary wave on a beach scenario

3.2 Results and analysis

3.2.1 First wave experiments with one unknown parameter

For our first MCMC run, we have only used two probes. These probes have been selected
to output relevant data about the wave. For only 1000 samples, our mean and posterior
distribution have converged to a mean close to our real value. The density plot 3.4 shows a
high density at values close to our parameter value. A higher burn-in value for this experiment
shows a mean closer to the real value, which is documented in the table below.

Number of samples 1000 1000
burn in 100 300

Parameter h h
Real value 0.3 0.3

output mean value ≈ 0.3512 ≈ 0.33
Error ≈ 0,0519 ≈ 0.03

Table 3.5: First wave results with use of only two probes

For our second experiment Which uses a higher number of probes, the chain clearly takes a
longer time to reach an acceptable distribution of our value expectation. The irrelevant probe
data added affects our likelihood function which causes normally unlikely sample values to
be more frequently visited. Increasing the number of samples and the burn-in causes our
expectation and mean to look more likely and similar to the first experiment.

If we study the MCMC iteration graph 3.7 we can see that the iterations converge towards the
real value of our parameter after approximately 8000 samples. Setting the burn-in to 9000
shows that the mean value is nearly perfectly equal to our real parameter and the graph 3.6
shows high density around this value.

Number of samples 1000 12000 12000 12000
burn in 100 1000 5000 9000

Parameter h h h h
Real value 0.3 0.3 0.3 0.3

output mean value ≈ 0.5 ≈ 0.4 ≈ 0.3546 ≈ 0.3054
Error ≈ 0.2 ≈ 0.1 ≈ 0.0546 ≈ 0.0054

Table 3.6: First wave results with use of four probes

16

3 The solitary wave on a beach scenario

Figure 3.2: 1st wave experiment: Density plot of the h parameter in our first experiment for 2
probes and for a burn-in = 100

Figure 3.3: 1st wave experiment: Sample iteration of the MCMC for the h parameter and 2
probes

Figure 3.4: 1st wave experiment: Density plot of the h parameter in our first experiment for 2
probes

17

3 The solitary wave on a beach scenario

Figure 3.5: 1st wave experiment: Sample iteration of the MCMC for the h parameter and 2
probes

Figure 3.6: 1st wave experiment: Sample iteration of the MCMC for the h parameter and 4
probes

Figure 3.7: 1st wave experiment: Sample iteration of the MCMC for the h parameter and 4
probes

18

3 The solitary wave on a beach scenario

3.2.2 The Second wave experiments with two unknown parameters

For this experiment we want to infer two parameters, h and d. When we analyse the data
collected in the table 3.7, we can make the following observations :

• The burn-in value barely has any effect on the means.

• the mean of the h value is far from the real value of our parameter, However an
observation of the figure 3.10 shows that their are two zones with a relatively high
density with second one being approximately around the value of 1.3. This means that
the mean is not representative of the actual highest probability value which approaches
more the value of 0.19

• The d parameter converges faster to a credible interval at around 0.2. By looking at
both iteration plots 3.9 and 3.11 we see that h gets away from values close to the real
parameter and that a lot of samples are generated around a far away value. If we
consider that d is an independent parameter and h’s value is directly affected by d, we
can deduce that this correlation causes deviation for the chain.

The 2D density plot ?? displays clearly that the highest probability zones are around our real
parameter values. Despite a bigger margin of error, the chain results are acceptable for this
experiment.

Number of samples 15000 15000
burn in 1000 5000

Parameter d d
Real value 0.15 0.15

output mean value ≈ 0.2132 ≈ 0.21
Error ≈ 0.0632 ≈ 0.06

Parameter h h
Real value 0.3 0.3

output mean value ≈ 0.51 ≈ 0.54
Error ≈ 0.21 ≈ 0.23

Table 3.7: Second wave experiment results

19

3 The solitary wave on a beach scenario

Figure 3.8: 2nd wave experiment: Density of the d parameter for a burn-in=5000

Figure 3.9: 2nd wave experiment: Sample iteration for the d parameter

Figure 3.10: 2nd wave experiment: Density of the h parameter for a burn-in=5000

20

3 The solitary wave on a beach scenario

Figure 3.11: 2nd wave experiment: Sample iteration for the h parameter

Figure 3.12: 2nd wave experiment: 2D density of the unknown parameter d and h for a
burn-in=5000

3.2.3 Third wave experiments with three unknown parameters

For the third experiment we use three highly correlated parameters. This experiment is
the most inconclusive of the three experiments. When we analyse the density plot of the d
parameter we see a highly out of the mark high probability interval which is around the value
of 3. The Γ and h parameters however display realistic density plots. Drawing conclusions
regarding the reasons of these results is hard as multiple attempts of running the MCMC

21

3 The solitary wave on a beach scenario

have led to similarly unsatisfactory results. The following reasons can be considered in our
situation :

• The MCMC may need an extremely high number of samples to stabilize because of the
high correlation of the parameters. This was sadly impossible to prove as the MCMC
runs take an extremely long time to finish executing and we couldn’t at the time of
writing this thesis reach a high enough sample number.

• Our MCMC likelihood output has shown multiple similar likelihood values for most
of the samples. While this may clearly seem as an error, the MCMC software relies on
Intel’s Mpi to run multiple communicating processes to highly accelerate the execution.
This has shown problems as some ’NaN’ and unexpected values have appeared during
some of the experiments but the errors caused are inconsistent and should also affect
our other experiments.

• the samples generated may affect Exahype’s output. To maximise the generated number
of samples for our experiments, we have made sure to make the mesh size as rough
as possible without influencing the quality of the probe output. The different sample
values may have an effect on the quality of the output.

Figure 3.13: 3rd wave experiment: Density of the d parameter for a burn-in=5000

22

3 The solitary wave on a beach scenario

Figure 3.14: 3rd wave experiment: Sample iteration for the d parameter

Figure 3.15: 3rd wave experiment: Density of the h parameter for a burn-in=5000

Figure 3.16: 3rd wave experiment: Sample iteration for the h parameter

23

3 The solitary wave on a beach scenario

Figure 3.17: 3rd wave experiment: Density of the Γ parameter for a burn-in=5000

Figure 3.18: 3rd wave experiment: Sample iteration for the Γ parameter

24

4 The Tohoku Tsunami simulation

4.1 Description

In this Scenario we will simulate the tohoku Tsunami that hit the pacific coasts of japan
in 2011 [1]. This simulation is based on the bathymetry of the Tohoku coast and real data
recorded by multiple boys along the ocean during the catastrophy.

4.2 Setup

For this simulation we will use Exahype. As this is a complex scenario, we will have to use
extra libraries to input our initial data. This requires the usage of ASAGI as mentioned in
previous chapters with other software such as Yaml-cpp, Easi and ImpalaJIT. Similarly to
the wave equation, we will use an ADERDG solver and the shallow-water equations as our
model.
Next we set the configuration file up. In contrast to the simple wave simulation we need high
dimensions which we will initially set at X ∈ [−500, 1000], Y ∈ [−750, 750] and T ∈ [0, 10]. We
will use a relatively fine mesh size to increase the clarity of our output when visualised.

4.3 results

At the moment of writing this thesis, this experiment has unfortunately been inconclusive. An
unexpected error which causes the simulation to generate ’NaN’ values at t>0 could not be
resolved as shown in figures 4.1 and 4.2. Different dimensional domains cause different types
of errors. Because of the usage of multiple dependencies in order to parse the data needed
for the simulation, it was not possible to pinpoint what seems to be causing the error.

25

4 The Tohoku Tsunami simulation

Figure 4.1: The initial state of our Tohoku simulation at t=0

Figure 4.2: The Tohoku simulation at any time t>0, the simulation presents unexpected NaN
values

26

5 Conclusion

The aim of this thesis was to see how effective Markov Chain Monte-Carlo methods in
quantifying unknown parameters for tsunami simulations. For our first experiments, The
Metropolis-Hastings algorithm has shown quite satisfactory results with approximating un-
known parameters in a relatively low number of samples despite no prior knowledge of the
tendencies of the parameters we were looking for. The third experiment however displayed
odd results and could not be used to estimate to effectiveness of the MCMC algorithm because
of too much uncertainty. The tsunami simulation has unfortunately displayed errors that pre-
vented further experimentation with quantifying high-dimensional unknown parameter space.

For future work on this subject, I would of course recommend continuing where this thesis
left off and that is the Tsunami simulation. I would also recommend finding an appropriate
likelihood function that can discard irrelevant probe data while still accurately calculating the
sample likelihood.

27

List of Figures

2.1 A visualisation of the fault parameters used in the okada model, image taken
from [6] . 4

3.1 Rendering of the wave at initial state using Paraview, coloring depends on the
total height of the water and the bathymetry . 14

3.2 1st wave experiment: Density plot of the h parameter in our first experiment
for 2 probes and for a burn-in = 100 . 17

3.3 1st wave experiment: Sample iteration of the MCMC for the h parameter and 2
probes . 17

3.4 1st wave experiment: Density plot of the h parameter in our first experiment
for 2 probes . 17

3.5 1st wave experiment: Sample iteration of the MCMC for the h parameter and 2
probes . 18

3.6 1st wave experiment: Sample iteration of the MCMC for the h parameter and 4
probes . 18

3.7 1st wave experiment: Sample iteration of the MCMC for the h parameter and 4
probes . 18

3.8 2nd wave experiment: Density of the d parameter for a burn-in=5000 20
3.9 2nd wave experiment: Sample iteration for the d parameter 20
3.10 2nd wave experiment: Density of the h parameter for a burn-in=5000 20
3.11 2nd wave experiment: Sample iteration for the h parameter 21
3.12 2nd wave experiment: 2D density of the unknown parameter d and h for a

burn-in=5000 . 21
3.13 3rd wave experiment: Density of the d parameter for a burn-in=5000 22
3.14 3rd wave experiment: Sample iteration for the d parameter 23
3.15 3rd wave experiment: Density of the h parameter for a burn-in=5000 23
3.16 3rd wave experiment: Sample iteration for the h parameter 23
3.17 3rd wave experiment: Density of the Γ parameter for a burn-in=5000 24
3.18 3rd wave experiment: Sample iteration for the Γ parameter 24

4.1 The initial state of our Tohoku simulation at t=0 26
4.2 The Tohoku simulation at any time t>0, the simulation presents unexpected

NaN values . 26

28

List of Tables

3.1 All parameters that affect our wave’s initial shape and how they are correlated
to each others . 14

3.2 The first wave’s unknown parameter and its real value 15
3.3 The second wave’s experiments parameters . 15
3.4 The third wave’s experiments parameters . 15
3.5 First wave results with use of only two probes 16
3.6 First wave results with use of four probes . 16
3.7 Second wave experiment results . 19

29

Bibliography

[1] N. Mori, T. Takahashi, T. Yasuda, and H. Yanagisawa. “Survey of 2011 Tohoku earth-
quake tsunami inundation and run-up”. In: Geophysical Research Letters 38.7 (2011). doi:
10.1029/2011GL049210. eprint: https://agupubs.onlinelibrary.wiley.com/doi/
pdf/10.1029/2011GL049210. url: https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1029/2011GL049210.

[2] Y. Tanioka and K. Satake. “Tsunami generation by horizontal displacement of ocean
bottom”. In: Geophysical Research Letters - GEOPHYS RES LETT 23 (Apr. 1996), pp. 861–
864. doi: 10.1029/96GL00736.

[3] Y. Okada. “Surface deformation to shear and tensile faults in a halfspace”. In: Bulletin of
the Seismological Society of America 75 (Aug. 1985).

[4] R. M. Neal. “Probabilistic Inference Using Markov Chain Monte Carlo Methods”. In:
1993.

[5] C. Andrieu, N. Freitas, A. Doucet, and M. Jordan. “An Introduction to MCMC for
Machine Learning”. In: Machine Learning 50 (Jan. 2003), pp. 5–43. doi: 10.1023/A:
1020281327116.

[6] A. Khan. “Seismogenic sources in the Bay of Bengal vis-A -vis potential for tsunami
generation and its impact in the northern Bay of Bengal coast”. In: Natural Hazards 61
(Apr. 2011). doi: 10.1007/s11069-011-9970-x.

[7] F. Løvholt, G. Pedersen, and S. Glimsdal. “Coupling of Dispersive Tsunami Propagation
and Shallow Water Coastal Response”. In: The Open Oceanography Journal 4 (May 2010).
doi: 10.2174/1874252101004010071.

[8] A. Reinarz, D. E. Charrier, M. Bader, L. Bovard, M. Dumbser, K. Duru, F. Fambri, A.-A.
Gabriel, J.-M. Gallard, S. Köppel, L. Krenz, L. Rannabauer, L. Rezzolla, P. Samfass,
M. Tavelli, and T. Weinzierl. “ExaHyPE: An engine for parallel dynamically adap-
tive simulations of wave problems”. In: Computer Physics Communications 254 (2020),
p. 107251. issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2020.107251. url:
http://www.sciencedirect.com/science/article/pii/S001046552030076X.

[9] H. Dierssen and A. Theberge. “Bathymetry: Assessing Methods”. In: Jan. 2014, pp. 1–8.
isbn: 9781439852583. doi: 10.1081/E-ENRW-120048588.

[10] M. B. Sebastian Rettenberger Meister Oliver. 2016. url: https://www5.in.tum.de/pub/
2016_easc_asagi.pdf.

30

https://doi.org/10.1029/2011GL049210
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011GL049210
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011GL049210
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL049210
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL049210
https://doi.org/10.1029/96GL00736
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1007/s11069-011-9970-x
https://doi.org/10.2174/1874252101004010071
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107251
http://www.sciencedirect.com/science/article/pii/S001046552030076X
https://doi.org/10.1081/E-ENRW-120048588
https://www5.in.tum.de/pub/2016_easc_asagi.pdf
https://www5.in.tum.de/pub/2016_easc_asagi.pdf

Bibliography

[11] url: https://doku.lrz.de/display/PUBLIC/Job+Processing+on+the+Linux-
Cluster.

[12] I. M. von Würtemberg. “Ill-posed problems and their applications to climate research”.
In: 2011.

[13] M. Dashti and A. M. Stuart. “The Bayesian approach to inverse problems”. In: arXiv
preprint arXiv:1302.6989 (2013).

[14] K.-R. Koch. “Bayes’ Theorem”. In: Bayesian Inference with Geodetic Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1990, pp. 4–8. isbn: 978-3-540-46601-7. doi:
10.1007/BFb0048702. url: https://doi.org/10.1007/BFb0048702.

[15] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev. “Why the Monte Carlo method
is so important today”. In: WIREs Computational Statistics 6.6 (2014), pp. 386–392. doi:
10.1002/wics.1314. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
wics.1314. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314.

[16] P. Paxton, P. Curran, K. Bollen, J. Kirby, and F. Chen. “Monte Carlo Experiments: De-
sign and Implementation”. In: Structural Equation Modeling-a Multidisciplinary Journal -
STRUCT EQU MODELING 8 (Apr. 2001), pp. 287–312. doi: 10.1207/S15328007SEM0802_
7.

[17] J. S. Rosenthal. “Optimal Proposal Distributions and Adaptive MCMC”. In: ().

[18] I. Yildirim. “Bayesian inference: Metropolis-hastings sampling”. In: Dept. of Brain and
Cognitive Sciences, Univ. of Rochester, Rochester, NY (2012).

[19] D. Vats, N. Robertson, J. M. Flegal, and G. L. Jones. “Analyzing MCMC output”. In:
arXiv preprint arXiv:1907.11680 (2019).

[20] url: http://muq.mit.edu/home.

[21] url: https://github.com/annereinarz/MultilevelMCMCExaHyPE.

31

https://doku.lrz.de/display/PUBLIC/Job+Processing+on+the+Linux-Cluster
https://doku.lrz.de/display/PUBLIC/Job+Processing+on+the+Linux-Cluster
https://doi.org/10.1007/BFb0048702
https://doi.org/10.1007/BFb0048702
https://doi.org/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.1314
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1314
https://doi.org/10.1207/S15328007SEM0802_7
https://doi.org/10.1207/S15328007SEM0802_7
http://muq.mit.edu/home
https://github.com/annereinarz/MultilevelMCMCExaHyPE

	Acknowledgments
	Abstract
	Contents
	Introduction
	Theoretical Background
	The tsunami simulation
	Wave generation
	The 2D shallow water equation
	The Exahype Engine

	The Bayesian Inverse problem and Markov Chain Monte-Carlo
	Bayes Inverse Problem
	Markov Chains
	Monte-Carlo methods
	The Metropolis-Hastings algorithm
	The MIT Uncertainty Quantification library
	MultilevelMCMCExaHyPE

	The solitary wave on a beach scenario
	Description
	Setup
	Wave parametrisation
	Experiments

	Results and analysis
	First wave experiments with one unknown parameter
	The Second wave experiments with two unknown parameters
	Third wave experiments with three unknown parameters

	The Tohoku Tsunami simulation
	Description
	Setup
	results

	Conclusion
	List of Figures
	List of Tables
	Bibliography

