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Abstract

This thesis attempts to identify drivers for energy poverty in Europe using machine
learning. The establishment of predictors for energy poverty valid across countries is
a call made by many researchers active in the field of energy poverty. A previously
defined framework to classify households as being at risk of energy poverty, based on
income and energy expenditure, is applied to a data set from a survey conducted at
the household level in 11 European countries with vastly different climates, cultures,
and economies. A gradient boosting classifier to predict energy poverty risk is success-
fully trained on a set of socio-economic features hypothesized as predictors for energy
poverty in a diverse set of countries in Europe. The classifier’s internal model is an-
alyzed, providing novel insights into the intricacies that underlie energy poverty. We
find that besides the main driver - income - floor area and household size are confirmed
as predictors. These features significantly assist the model in classifying a household as
being at risk. The results suggest that house age and respondent age can be discarded
as predictors. With regards to heating strategy and house detachment as predictors,
the outcomes are inconclusive. We argue that this is possibly due to a severely limited
data set in terms of both quality and quantity. In order to build a model that has the
potential to capture the full complexity of the mechanisms that govern energy poverty,
consistent high-quality data sets are needed. Currently, these were not found to be
available for most European countries. To facilitate more advanced research into en-
ergy poverty in Europe, we recommend to increase household data collection efforts,
both at the country- and EU-level. The establishment of energy poverty predictors valid
across Europe could provide a basis to effectively target energy-poor households with
adequate policy measures.

The thesis is structured in three parts. Part  I is intended as a self-contained piece
that is accessible for the general reader. Here the main aspects of the research, and the
results are discussed. Part  II provides a comprehensive description of the data, prepro-
cessing steps, and the framework used to label the data. In Part  III , a more technical,
in-depth explanation of machine learning techniques and methods to interpret the re-
sulting models, is presented.
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1. Introduction

Traditionally, energy poverty is defined as the lack of access to modern energy services
and is primarily studied in developing countries where access is not assured for a sub-
stantial share of the population. The transition to a more sustainable energy supply is
expected to radically transform energy infrastructure, both in developing and devel-
oped countries. The cost of this transformation needs to be distributed in such a way
that all households continue to be able to afford their energy bills. This has led to the
expansion of the scope of energy poverty research to also include developed countries
that are on the forefront of the energy transition. In those countries, energy poverty is
defined as the inability of a household to afford its energy bills.

Humankind has always evolved around acquiring sufficient energy [ 1 ]; from the dis-
covery and subsequent control of fire to keep warm and provide light, to later inven-
tions, such as electric heating and LED lighting. The concept of energy poverty has been
studied since the oil crises in the 1970s. In the United Kingdom, the term fuel poverty
was coined; a person affected by fuel poverty was defined as “a person [who] is a mem-
ber of a household living on a lower income in a home which cannot be kept warm at
reasonable cost” [  2 ]. In this research, we consider energy poverty a similar, but broader
concept than fuel poverty. The field of energy poverty has become truly widespread on
the European continent since 2008, as in that year EU institutions and consultative com-
mittees began calling for a Europe-wide definition of energy poverty [ 3 ]. In 2013, the
European Economic and Social Committee called for “European energy poverty indi-
cators to be established and for statistics to be harmonised in order to identify, prevent
and tackle the problem more effectively at the European level and to generate solidarity
in this area” [ 4 ]. In 2015, Sovacool studied the Warm Front (WF) scheme, a program in
England that ran between 2000 and 2013 with the aim of combating fuel poverty. He
concluded that the WF “had difficulty identifying fuel poor homes” [ 5 ]. Although fuel
poverty is a field of active research, it is still poorly understood [ 6 ].

A large-scale study in 2019 found that an indicator for energy poverty valid across
countries is still absent. This has resulted in a lack of research comparing countries,
since no metric exists that can be used to contrast them [ 7 ]. Concurrently, Castaño-
Rosa et al. observed a lack of standards to assess energy poverty across Europe and,
instead, argued for a multiple indicator approach as starting point for policy decisions
to reduce energy poverty in Europe [ 8 ]. A recent study assumed that constructing all-
encompassing predictors to assess energy poverty is unfeasible [ 9 ]. These three papers
have in common that they illustrate the call from researchers active in this field for
the establishment of predictors for energy poverty across countries in order to enable
cross-country comparisons and assist European legislation.

Since the 1950s, the field of Artificial Intelligence (AI) has dedicated efforts to en-
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1. Introduction

abling machines to act intelligently; this is in contrast to animals and humans that
possess natural intelligence [ 10 ]. Recently, a sub field of AI, machine learning (ML),
has shown incredible growth and has gained prominence in academic publications and
news headlines. In ML, the approach starts with a generic model with a large number
of parameters and a wide range of potential applications, depending on how these pa-
rameters are set. The goal is to make a machine “learn”, through experience, how these
parameters can be set in an optimal manner for the purposes at hand. The experience
is passed to the model in the form of data [ 11 ]. ML models have demonstrated a po-
tential to reach exceptional performance on diverse problems. Typically, only the ML
model’s input and output are visible, and the increasingly convoluted inner workings
of the model are unknown. These unknown processes in ML models are referred to as
the black box [ 12 ].

ML models play a role in many aspects of our lives: from talking to a virtual assis-
tant on your smartphone to receiving a credit score from a bank. Simultaneously, the
academic debate on our understanding of the black box approach is flourishing. Since
2018, EU legislation ensures that consumers have a basic right to an explanation of how
an algorithm produced an output [ 13 ]. While this is a strong incentive for companies
to understand their models, the extent of this regulation is heavily debated [  14 ]. The
field concerned with opening the black box is “interpretable or explainable artificial in-
telligence” (XAI). This is achieved with various different methods designed to provide
users an easier, more comprehensible explanation of the output [ 15 ]. If successful, ML
models are able to find complex statistical relations in data that would require excessive
amounts of manual labor using statistical tests or running and evaluating standard re-
gressions. As a result, XAI could reduce the time needed for researchers to understand
the sophisticated systems they are working with. This was recently demonstrated, for
example, when XAI enabled researchers to identify crucial predictive biomarkers of
disease mortality briefly after the outbreak of the covid-19 pandemic [ 16 ].

ML has successfully been used to identify energy poverty predictors in the Nether-
lands [ 17 ]. The present research aims to use a similar approach to investigate energy
poverty predictors within a larger geographic area, encompassing several countries in
Europe. Finding predictors valid across Europe could aid the assessment of the preva-
lence of energy poverty in European countries, and subsequently assist adequate pol-
icy design. We attempt to identify pan-European predictors through the use of XAI, a
method that has yet to be applied in the field of energy poverty. In Section  2 the ML
technique of gradient boosting is described, as well as the energy poverty framework
used to categorize households. In Section  3 the results of applying the classification
framework to the data set are analyzed, and the predictors found with a gradient boost-
ing model are discussed. In Section  4 the findings are interpreted and recommendations
regarding the collection and accessibility of data are given, in order to better address
energy poverty in Europe, and provide guidance for future research endeavors in this
field.
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2. Methodology

For this research, a survey on energy use in Europe conducted in 2018 by Enable-EU
was used [ 18 ]. Enable-EU is an ongoing endeavor funded by the European Union’s
Horizon 2020 research and innovation program with the mission statement: “[Enable-
EU] seeks to understand what determines people’s choices in three key consumption
areas: transportation, heating & cooling, and electricity” [ 19 ]. The survey was targeted
at a group of 11 diverse countries in Europe: Bulgaria (BG), France (FR), Germany (DE),
Hungary (HU), Italy (IT), Norway (NO), Poland (PL), Serbia (RS), Spain (ES), Ukraine
(UA), and the United Kingdom (UK). A report outlining and comparing the outcomes
of participating countries was published along with the data set [ 20 ]. While some ques-
tions, for example on prosumers, were country-specific, all respondents were asked
to complete those sections of the survey with generic and socioeconomic questions,
which provides us with a complete data set on these topics. Most notably, participants
were asked to report their income and energy expenditure, two variables crucial in the
labelling of data points. Thus making the data set eligible for (so-called supervised)
machine learning. Most questions were multiple-choice, i.e. one answer was to be
selected from a list of possible options (categories). The diversity in the assessed coun-
tries makes this data set particularly interesting for the purpose of investigating energy
poverty predictors at the European level.

The energy poverty classification framework proposed by Dalla Longa et al. is used
to categorize each household in our data set into one of four energy poverty risk cat-
egories [ 17 ]. The framework operates on an income-energy expenditure grid that is
divided into four quadrants using two thresholds, one for each axis. This is illustrated
in Figure  2.1 . A household with income above and energy expenditure below the re-
spective thresholds is categorized as “No risk” (green). If one of the variables crosses a
threshold, the label “Income risk” (yellow) or “Expenditure risk” (orange) is assigned.
If both thresholds are crossed, the household is categorized as being at highest risk of
energy poverty, labelled “Double risk” (red).

In order to apply this classification framework to the Enable-EU data, the energy ex-
penditure first had to be derived using two questions in which respondents were asked
to report their latest heating and their latest electricity costs. During preprocessing, all
currencies were converted to Euros and all costs to annual costs, after which the yearly
energy expenditures were defined for all households. Combined with a question on
income, all households in the data could now be labelled as one of the risk categories.

The Enable-EU survey required respondents to classify their income into the corre-
sponding decile in their respective country, leaving the results to be categorized into 10
brackets. This enabled a normalized measure of income across the participating coun-
tries. The income threshold is set for all countries between income deciles three and
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Figure 2.1.: Visual representation of the quadrants that the classification framework
uses to assign households to a risk category.

four. This particular threshold choice was made for three main reasons. First, analysis
showed that for most countries the respective minimum wage corresponds to bracket 3.
Second, the Low Income High Costs (LIHC) indicator applied in the UK, results in the
vast majority of households categorized as energy poor being in the first three income
deciles [ 21 ]. Third, this threshold ensures that the risk classes contain enough data
points to produce reliable classifiers [ 17 ]. The energy expenditure threshold is set at the
80th quantile of the absolute energy expenditure in the respective country, resulting in
a different value for every country.

The thresholds used are statistically determined thresholds: the 30th quantile of in-
come and the 80th quantile of energy expenditure. Consequently, every country has
the same share of households that cross the thresholds and are thus at risk, irrespective
of mean income or energy expenditure. This allows the framework to be applied to a
heterogeneous set of countries such as ours. Due to the thresholds’ statistical nature, for
example, if energy becomes cheaper overall, the energy expenditure threshold moves
down with it. The same holds for income. As a result, the only class that can be “ma-
nipulated” by policy or legislation is the intersection between these two groups: the
double risk category. These are the people that earn least money but are still amongst
the households with highest energy expenditure. Therefore, the size of this risk group
can be used as an indication of the prevalence of energy poverty in a set of households.
Policy can attempt to minimize energy poverty by aiming to move the households la-
belled as being in double risk, out of the red quadrant, towards the orange or the yellow
quadrants.

Using ML, we try to identify predictors to classify households at risk of being in
energy poverty. Gradient boosting is an ML technique that incrementally adds weak
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Figure 2.2.: Income distribution of the whole data set (left), and distribution of energy
expenditure per household per year in the whole data set (right).

prediction models, in our case decision trees, to obtain a model with a better perfor-
mance [ 22 ], the resulting model is known as an ensemble. Gradient boosting achieves
state-of-the-art performance on many modelling tasks [ 23 ]. Especially on tabular data,
decision tree methods perform best and provide a vast range of tools to analyze the
internal model [ 15 ,  24 ], which we can exploit to gain insight into the complex origins of
energy poverty in Europe. As the data set contains many categorical features, CatBoost
was chosen as gradient boosting library. CatBoost is a relatively new library by the Rus-
sian tech company Yandex. As opposed to other popular gradient boosting libraries, it
can deal with categorical features without any preprocessing steps required [ 23 ,  25 ].

We attempt to assess possible predictors by estimating the influence a certain feature
has on the model outcome, i.e. the feature importance, according to different metrics.
A feature’s assigned importance can be an indicator of its predictive power. Therefore,
if a feature is assigned high importance for a good model, that would suggest that it
is a true predictor of energy poverty. The preprocessing steps and classification frame-
work are further detailed in Part  II . Gradient boosting, CatBoost, and the some of the
methods used to obtain our results are explained in Part  III .

The distribution over the income deciles in the entire data set can be found in Figure
 2.2 . Ideally, a representative sample of a population has the same number of respon-
dents in each category. However, in the current data set a bias towards the lower-
income brackets can be observed, this is known as selection bias. On the country level,
this discrepancy is more prominent, as some income brackets are completely un- or
severely underrepresented (Figure  A ). This skewness of the income distribution on
the country level is not deemed a fundamental problem, as we are seeking predictors
that are valid across Europe, and over the entire data set the selection bias is less pro-
nounced.

Yearly energy expenditure varies per country: Ukraine has the lowest median per
household of e 

1
 267, and Norway has the highest median of e2311. The majority of

1All euros reported in this research are in e(2018)
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Figure 2.3.: Poverty as reported by all households in the data set.

households in the data set spend up to e2000 per year on energy, with those spending
more than that predominantly being from Norway and, to a lesser extent, from other
Western European countries. The median over the entire data set is e997 per year.

The employed classification framework is supported by Figure  2.3 , which depicts the
answers to a self-reported poverty question for the entire data set. Each household is a
colored line; the color depicts the response to the question “which of the descriptions
bellow [sic] comes closest to how you feel about your household’s income nowadays?”.
All households are plotted on a grid with income bracket on the x-axis and approx-
imated relative energy expenditure on the y-axis. The relative energy expenditure is
approximated and used to provide a uniform measure of energy expenditure, thus al-
lowing all households to be plotted on the same axis. The approximation is detailed in
Section  5.2 .

A gradient from red (“finding it very difficult on current household”) in the top left,
to green (“living comfortably on current income”) in the bottom right can be identified.
It shows similarity to the energy poverty classification framework depicted in Figure
 2.1 , applied to Ukrainian households in Figure  2.4 . The resemblance corresponds to the
close connection between energy poverty and poverty. These plots, with a wide range
of households from different countries and socioeconomic backgrounds, together with
the fact that the framework makes intuitive sense, allows us to confidently claim that
the framework is robust in identifying energy poverty in a diverse set of countries.
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3. Results

The overall findings of applying the framework to the data and the trained ML model
are first presented. In the next section, results obtained by applying XAI to assist in
interpreting the model are detailed.

3.1. Overall findings

The energy poverty class composition that resulted from applying the risk framework
on the data set, for each of the 11 countries in the Enable-EU data set, is plotted in Fig-
ure  3.1 . The countries are sorted by the share of households classified in the double risk
category. The proportion of households classified as being at risk of energy poverty is
readily apparent from this figure. For comparison, data from previous research con-
ducted by Dalla Longa et al. in the Netherlands was added, in which a similar energy
poverty classification framework was applied [ 17 ,  26 ]. The Dutch data set is different
from the Enable data set used in this research; it contains more data points, continuous
numeric answers, and concerns neighborhood averages instead of single households.
As the expenditure threshold was set at the 80th quantile, a horizontal line denoting
this threshold between income risk and expenditure risk can be observed. An exact
80th quantile split cannot be defined for all discrete numbers, therefore, some countries
in the data set show a minor deviation from this boundary.

In a perfectly representative sample of a country, the income risk and double risk
group combined should add up to 30% as the income threshold is set between the third
and the fourth income decile of a country. However, this is not the case in our data
set, where the sum of the two groups ranges between 15% for Germany, to 82% for
Poland. This is because the distributions of sampled households are skewed to the
higher and lower income deciles, for Germany and Poland respectively. As previously
discussed, this is not deemed problematic to the research goal. It does, however, limit
the conclusions that can be drawn regarding the prevalence of energy poverty in each
of the countries, as this can also be caused by selection bias.

We observe a distinction between Western European countries, characterized by lower
double risk shares, and Central and Eastern European (CEE) countries, where double
risk shares are more pronounced. The UK is found to be an outlier in this respect: while
widely considered a Western European country, its significant share of households cat-
egorized in the double risk category position it closer to the CEE countries. Energy
poverty is researched extensively in the UK, and several government policies aimed
at reducing it have been implemented. This could be because disproportionately more
households experience energy poverty in the UK than in other Western European coun-
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Figure 3.1.: Energy poverty classification distribution for countries in the Enable-EU
data set (the columns for the Netherlands is derived from previous research
[ 17 ]).
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3.1. Overall findings

Table 3.1.: Features used in the model, type, and number of unique values.

name type # unique values

income bracket integer 10
floor area integer 7
household size integer 17
house detachment integer 5
house age integer 9
birth year respondent integer 79
heating strategy categorical 5

tries. Energy poverty is shown to affect public health [ 27 ]. Its prevalence might coincide
with the UK having the second most (after Ireland) long-term excess winter mortalities
among 30 European countries [ 28 ]. We speculate that this difference could be explained
by the fact that the UK is the birthplace of capitalism. To this day it is being considered
closer to the free-state market than mainland European countries, generally regarded
to have larger welfare states.

The observed double risk shares are a consequence of two phenomena at play. On
the one hand, we have genuine energy poverty prominence in a country, resulting in
a large number of points in the double risk category. On the other hand, we have
the non-representative sampling of income deciles in countries, resulting in misplaced
thresholds and misrepresented risk groups. To what extent each factor plays a role,
differs per country and falls beyond the scope of this research. Consequently, although
providing an intriguing indication for the prevalence of energy poverty in these coun-
tries. Further research with improved data quality and quantity is necessary to confirm
these observations.

A CatBoost model was trained to classify households into one of the four energy
poverty risk categories. A household is represented by seven selected features that
can be found in Table  3.1 . These features are hypothesized as potential predictors and
selected as a result of extensive data analysis and domain expertise. Some features,
such as floor area, are categorical but have a distinct ordering to them, and are repre-
sented by an integer. These features are therefore depicted as type “integer” and do
not require any treatment before being used in a decision tree model. House detachment
corresponds to the survey question “Which best describes your home?” and has four
possible answers. The answers range from “single-family house detached from any
other house” to “apartment in a building with 6 or more flats,” and are interpreted as a
scale that determines how well insulated the home is by surrounding homes. Multiple
country level studies have hypothesized that the level of house detachment plays an
important role in energy poverty [ 29 ,  30 ]. Heating strategy corresponds to a question on
what heating methods households employ. The feature value can be one of 5 different
heating strategies described. This is a categorical feature with no clear ordering, and
thus cannot be used directly. It has type “categorical” and is handled by the CatBoost
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3. Results

Figure 3.2.: Confusion matrix of the final model, on the validation (left) and test (right)
set.

library. Further details are explored in Part  III .
In Figure  3.2 , a confusion matrix is used to visualize the performance of our model.

A confusion matrix tabulates the labels as predicted by the model versus the true labels.
In this figure, we have normalized all rows to sum to 100%. Values on the diagonal of a
confusion matrix are known as the true positive rates: a model able to correctly identify
all instances would result in a 100% true positive rates for all categories. A model
randomly assigning labels, i.e. random guessing, would result in a score of 25% in all
cells of the confusion matrix. Given our classification framework (Figure  2.1 ), using
income as the only feature would allow a model to learn the income threshold and
split the task into two binary classification tasks. Subsequently, the performance would
deteriorate to almost random guessing (50% diagonal), this has been plotted in Figure
 A.4 . The performance of such a one-feature model can be improved on by including
the other features introduced in Table  3.1 . The resulting model performs much better
than a 50% diagonal in the confusion matrix, yielding true positive rates between 60%
and 74% on the test set. Similar scores were achieved on the validation set, indicating
that the model is not just memorizing the training data - known as overfitting - but that
the performance generalizes well to unseen data.

The true positive rates vary per category. Compared to a similar study of the Nether-
lands, where diagonals scores ranging between 73% and 82% were achieved [  17 ], the
results achieved in this study are worse. The performance difference can be explained
by the small amount of data available for this research, compared to the Dutch research.
While the modelling tasks is extended from one country to multiple countries. This
likely resulted in the model being too simple to capture the full complexity of the con-
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3.2. Interpretable Artificial Intelligence

cept; this is known as underfitting.

3.2. Interpretable Artificial Intelligence

In this section, the model we have trained on the data set is analyzed. We attempt to
open the black box to gain insight into the inner workings of the model.
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Figure 3.3.: Permutation and mean absolute SHAP value feature importance of the
seven features in our model plotted with a symmetrical logscale on the y-
axis.

Having successfully built an ML model to categorize energy poverty in a diverse
group of European countries, we can now assess to what extent the various features
included in the model influence its outcome. In order to accomplish this we introduce
two measures of feature importance: The permutation importance and the mean abso-
lute SHapley Additive exPlanation (SHAP) value. The values of these two metrics for
all seven features in our model are plotted in Figure  3.3 . For both methods, the feature
importance values are normalized, such that the highest value equals 100 and the rest
of the values are given relative to that one. As income bracket is clearly the most impor-
tant feature for both methods, to accommodate easy comparison, the bars are plotted
on a symmetric logarithmic y-axis. To avoid having the plot go to infinity around zero,
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3. Results

the plot is linear in range [−2, 2]. For permutation importance, the features are per-
muted several times, each time yielding a (slightly) different feature importance. The
resulting deviation between runs is depicted by the error bars in the plot. Permutation
importance assigns an importance score to a feature based on the effect of shuffling its
values on the model performance [ 31 ]. SHAP values have a strong mathematical foun-
dation in cooperative game theory [ 32 ]. For a single input, each feature’s contribution
to the final prediction of the model is computed as if it were a coalition game in which
each feature would get a “payout”. This is done for each individual input in the unseen
test set. The mean absolute value of all contributions is used to attribute each feature
an importance.

Both feature importance measures identify income bracket, floor area, and household
size as the main drivers of our model. The features house age and birth year respon-
dent are assigned significantly lower importance values in both metrics. For permu-
tation importance, the error bars span from negative to positive feature importances,
and are centered close to zero for these features. This implies that these are not good
predictors for the model and thus can be disregarded as such. This is confirmed by the
findings of the mean absolute SHAP values, that also indicate they are of little impor-
tance. Although not as overtly as with permutation importance. All features identified
as being important to our model, except income, are directly related to the heat demand
of the household. Household size additionally affects electricity demand, while this is
relatively unaffected by floor area and house detachment.

With respect to heating strategy and house detachment, the results of the two meth-
ods diverge. Permutation importance results rank heating strategy as having no impact
on the model performance with error bars running from negative to positive values,
centered around zero. However, mean absolute SHAP value assigns it equal impor-
tance to house detachment. SHAP values approximate different feature coalitions to
determine the feature importance. This can be exactly determined by training a new
model with a different set of features, this was done several times. The results from
these models led us to confirm the results of the permutation feature importance. Mod-
els with the feature house detachment included perform slightly better than those with
the feature heating strategy. However, in order to assess these features as true predic-
tors, further research is necessary.

A way to assess the effect of a feature value model output is by using Partial Depen-
dence Plots (PDPs). Friedmann proposed PDPs as a comprehensive summary of the
model dependence in his paper introducing gradient boosting [ 22 ]. The PDPs for each
of the risk classes and each of the features are plotted in Figure  3.4 . It shows the par-
tial dependence between the model’s output for every energy poverty risk group and
every single feature of the model, averaging over all other features. The y-axis depicts
the partial probability of the category value being predicted as the line’s corresponding
class. A straight line suggests that the feature has no influence on the model’s predic-
tion. A very volatile line, for example for income, suggests that the feature has a big
impact on the model. The shared y-axis enables a simple comparison of the volatilities
of the partial dependencies. PDPs do not provide a complete explanation of how the
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Figure 3.4.: Partial dependence plots for the seven features of our model.
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Figure 3.5.: Decision plot of a single sample in the test data set. The feature values are
in brackets.

features affect the model’s output but can provide valuable insight into it. Interactions
between features could be averaged out to get this 2-dimensional visualization, thus
are missed. The PDP for income confirms what can also be observed in the confusion
matrices. Based on income bracket, the model reduces the multiclass classification task
to two binary ones: if the income is below the income threshold, probabilities for the no
risk and expenditure risk categories drop to zero. If the income is above the threshold
the inverse is true, and the probabilities of income risk and double risk drop to zero.

In the other plots we can distinguish two pairs of classes with similar profiles. The no
risk and income risk, and the expenditure risk and double risk classes show the same
trends for floor area, household size, and house detachment. Whereas in the features
with a low permutation feature importance, the partial dependence does not deviate
much for each of the answers. The pairs could be interpreted as being the less- and more
at risk classes, respectively, for both binary regimes, based on whether the household’s
energy expenditure spending exceeds the threshold. The plots indicate that a larger
house floor area increases the likelihood of a household being classified in the higher
risk category. The PDP for the feature household size shows a similar profile, where a
larger household shows increased probabilities of being at risk. For house detachment
an inverse relation can be observed, where increasing along the x-axis indicates a home
more insulated by others, results in a decreased probability of being in the higher risk
category as the house detachment category increases.

In order to provide additional insight in the internal workings of our ML model, we
introduce the notion of a decision plot. A decision plot [ 33 ] exploits the additive nature
of the feature contribution assigned by SHAP values by providing an effective visual
summary. A visualization for a single household from the test set can be seen in Figure
 3.5 . The y-axis has the features followed by the feature value in brackets. The effect of
the feature is depicted between the two horizontal lines. The values on the x-axis corre-
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spond to the model output, these values are transformed by the model to probabilities
(Equation  7.7 ), which are depicted in brackets in the legend. The dashed line is the
eventual classification done by the model. This plot depicts how a large household liv-
ing in a large home, detached from other houses, living of an income in the fifth decile,
is correctly classified as being in the expenditure risk group. The split of the task into
two binary classification tasks can clearly be observed (red and yellow versus green and
orange lines). The little impact the features heating strategy, birth year respondent, and
house age have on the prediction is also apparent. By analyzing these plots, one could
in principle differentiate several characteristic decision paths corresponding to certain
types of households that are more prone to be in energy poverty. We believe this could
be beneficial for policy design in the future. In order to properly carry out this type of
analysis, however, one would need a larger and more consistent data set than the one
our current model is based upon.
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4. Conclusion and Discussion

We have successfully applied ML to find features that have demonstrated their predic-
tive power in a heterogeneous data set comprised of 11 countries, representative of the
European continent. The resulting model is better at classifying households categorized
as being at risk of energy poverty than a theoretical model with only income as an in-
put. However, it does not attain the same level of accuracy as a gradient boosting model
achieved in a similar study performed in the Netherlands. This leads us to hypothesize
about the presence of two types of predictors for energy poverty in Europe. Universal
predictors are indicators valid across a varied set of countries, e.g. for the whole of
Europe. Besides these, there are also predictors concerned with the local specificities of
a country, which we call contextual predictors. The universal predictors can serve as a
starting point for European countries to establish an overarching framework to assess
energy poverty. These can then be complemented in individual countries (or regions)
by contextual predictors, thus adequately assessing the prominence of energy poverty
at (sub)national level. This concept of having a national definition of energy poverty
that is complementary to a common European definition has been proposed by other
studies in the literature [ 3 ], our research supplies the first empirical support.

The features income, floor area, and household size were all found to be of signifi-
cant importance to our energy poverty risk classifier. The results suggest these three
features as potential universal predictors on the European continent. While our results
were inconclusive with regards to the house detachment and heating strategy, the fea-
tures house age and birth year of respondent have been found to be insignificant on a
supranational scale. House age has previously been found to be an indicator of energy
poverty [ 34 ]. We assign this apparent discrepancy to the heterogeneous nature of the
data set used. As was established in [ 20 ], house age cannot be considered a proxy for
insulation on a supranational level. Nonetheless, it could potentially be a contextual
predictor. Further research, based on higher quality data sets, is necessary to confi-
dently claim or disregard any of these features as predictors.

The results reported in this thesis should be considered in the light of certain limita-
tions. Absolute energy expenditure was used to categorize households into an energy
poverty risk group, as the data set did not allow for easy conversion to relative energy
expenditure. As a result, some households might have been miscategorized as energy
poor. Furthermore, households that severely under-consume are also missed by this
framework; this atypical form of energy poverty is an open research question and be-
yond the scope of this research.

The lack of data might have caused our model to underfit, resulting in it only solving
part of the complex modelling task. Not enough high quality data was available to
effectively train a more sophisticated model. Therefore, we recommend better data
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4. Conclusion and Discussion

collection. The lack of data regarding energy poverty has long been recognized in the
field [  35 ,  36 ,  37 ,  30 ,  7 ,  38 ]. This is seemingly in the process of being resolved. The
Energy Poverty Observatory (EPOV) was founded with this goal in mind: to improve
and harmonize data collection [ 39 ].

The Enable data set suffered selection bias with respect to the income deciles, we
suggest improving data collection by taking more representative samples. Homogene-
ity across income is an important aspect due to the close relationship between energy
poverty and poverty. Furthermore, to explore the contextual predictors in a country,
more data needs to be collected on the national level. Many national bureaus of statis-
tics were consulted for this research, and data regarding energy poverty at the house-
hold level was requested, but no comprehensive and complete data sets were available
for our purposes.

To stimulate the energy transition to a more sustainable energy supply, some sort of
carbon taxation is imposed in many states in the US and EU. Spending the revenues of
this on energy R&D and technology innovation is a commonly heard suggestion. An-
other suggestion is to use those revenues to assist people in meeting energy poverty
challenges, which may be exacerbated due to stringent climate change mitigation mea-
sures. One question raised is how to determine which people will deserve and re-
ceive assistance, and which do not. Our analysis can help in determining who may
be in dire straits when it comes to affording basic energy services, and ultimately help
determine appropriate types of assistance for different groups of energy poor house-
holds. XAI methods could be instrumental in efforts to distribute greenhouse gas taxes
through policy, if the targets include the alleviation of poverty and establishment of
equity among consumers of energy services.
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5. Data

Enable-EU provides the data set used for this research [ 18 ]. In this section the data set
is described, and the preprocessing steps performed are discussed.

5.1. Data description

The data set is available on the website of Enable-EU and was published in March
2018. It is derived from a survey conducted in eleven countries in Europe. Income
and energy costs, comprising of heating and electricity, are reported for households,
making the data set eligible to apply the framework to. The survey, accompanied by
instructions for the conducting parties, was published along with it. The data set was
published in Excel format. It contains 473 columns and 11.265 rows. The diverse group
of eleven countries can be considered representative of Europe, and thus serves as an
excellent sample to conduct our research of finding energy poverty predictors valid
across Europe.

The survey is divided into several different sections: general questions, mobility,
shift to prosuming, heating and cooling, use of electricity, and governance framework.
Only the general questions were surveyed in each country, namely a section “home /
building characteristics and household possessions” and “social and economic charac-
teristics”. As the research aims to find European predictors, the data set was limited to
only questions in these two sections.

The general section comprised of 24 questions, with sub questions, resulting in 86
columns being available. Most questions required respondents to answer categorically,
the answers were encoded in the data set by integer values representing the categories.
For each of the columns there was a description of the question it represented available
in the Excel file, and the correspondence between the answers and the integer values
was also provided. Missing values were handled inconsistently: for many columns
there was no data, represented by a Not a Number (NaN) value, for some there was a
special integer value indicating that no value was available, and for some there was an
additional indicator column to indicate that the respondent did not answer the ques-
tion.

5.2. Preprocessing

The data set had to go through several preprocessing steps before it was ready to be
used. Data preprocessing steps and data handling were performed in the Python pro-
gramming language [ 40 ], in combination with the pandas library [ 41 ].
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Figure 5.1.: Number of respondents from each respective country in the data set after
cleaning.

In order to label the households in our data set, two variables were necessary: in-
come and energy expenditure. The former could either be reported monthly or annu-
ally, therefore a simple check whether one of these two held a valid value was sufficient
to guarantee income was filled. Energy expenditure was derived from 7 columns re-
garding heating and electricity cost. Two of these were columns indicating whether
the question was answered by a respondent, four concerned yearly and monthly, heat-
ing and electricity costs. The last column corresponded to a question on the number of
months the households paid for heating in the last heating season. After this data clean-
ing, the number of respondents per country ranged between 711 and 1500 respondents
and is plotted in Figure  5.1 .

Income was reported in two columns depicting yearly and monthly income, corre-
sponding to how the people in the respective country generally calculate their income.
The survey required respondents to classify their income into the corresponding decile
in their respective country, leaving the results to be categorized into 10 brackets, rep-
resented by integer values 1 to 10. For some rows, the entry contained a NaN value;
however, a value of 98 and 99 corresponds to “refused to answer” and “do not know”
respectively. The data was cleaned accordingly and a column income bracket was engi-
neered representing a uniform income measure.

The feature energy expenditure is constructed by summing the heating and electric-
ity costs of each household, and - if necessary - convert them from monthly to yearly
costs. The conversion of electricity monthly costs to annual costs is simply done by
multiplying it by 12. Heating costs reported as monthly costs, had an accompanying
column with a question on the number of months in which heating was required. If
this column was filled, the costs were multiplied by it in order to obtain annual costs. If
it was not filled, the costs were multiplied by the median number reported in the coun-
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5.2. Preprocessing

country currency exchange rate

Bulgaria Bulgarian lev 0.511292
France Euro 1
Germany Euro 1
Hungary Hungarian forint 0.003226
Italy Euro 1
Norway Norwegian krone 0.102712
Poland Polish złoty 0.239406
Serbia Serbian dinar 0.008446
Spain Euro 1
Ukraine Ukrainian hryvnia 0.029633
United Kingdom Pound sterling 1.124859

Table 5.1.: Table of countries in the data set with their currency and the first available
exchange rate to euros in 2018.

try. Costs were reported in the currency used in the country in question. Therefore,
the yearly energy expenditures were all converted to euros using the first available ex-
change rate to euros in 2018. This was retrieved from online currency conversion tool
xe [ 42 ]. The currency in each of the countries, and the exchange rate are tabulated in
Table  5.1 .

Household size was was derived from 6 columns making a distinction between age
and gender of members of the household. Summing up the household composition
gives us a household size, irrespective of the gender and age.

As absolute income was not reported in the survey, relative energy expenditure was
not directly available. The thresholds used to delimit the income brackets of each coun-
try in the survey were not supplied in the data set, and a request for this data to the
authors did not yield a response. In the instructions, it is stated that the income deciles
as given by the national statistics for each country. To assign an absolute income to
every income decile, the disposable income of the European Union Statistics on Income
and Living Conditions survey was used [  43 ], such that all approximations came from
the same source. Even though it concerns disposable income instead of gross income,
this was the preferred method to ensure consistency. For the deciles, the 9 cutoffs points
were reported. Linear interpolation and extrapolation was used to approximate an in-
come corresponding to the reported decile, depicted in Figure  5.2 . Unfortunately, there
was no data available for Ukraine, therefore an estimation was performed based on the
relative GDP per capita compared to Serbia using data from the World Bank.
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Figure 5.2.: Approximated yearly incomes corresponding to each income deciles plot-
ted for all countries.

After all preprocessing was complete, the data could be labelled. The class distribu-
tion of the data set can be found in Table  5.2 , and is visualized per country in Figure  3.1 .
The data set is imbalanced, indicating that the data points are not evenly distributed per
class. This has consequences for the training of an ML model, handling the class im-
balance is discussed in Section  7.5 . The data was split into a training set and a test set,
with the test set containing 20% of the samples. This was done in a stratified fashion
which keeps the class distribution similar for both sets.

Risk group Number of households

No risk 2774 44.3%
Income risk 2228 35.5%
Expenditure risk 841 13.4%
Double risk 425 6.8%

Table 5.2.: The energy poverty risk label distribution of the data set
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5.3. Categories

feature category value count

floor area (H3)

Up to 42 m2 1 501
43 – 65 m2 2 1527
66 – 90 m2 3 1774
91 – 120 m2 4 1502

120 – 200 m2 5 717
More than 200 m2 6 200

Missing value 47

heating strategy (H9)

Manually adjust the temperature
(e.g. at night or when no one is at home)

2261

Our household does not
have control over the equipment

1734

Set one temperature and
leave it there most of the time

1277

Program the thermostat to automatically
adjust the temperature during

the day and night at certain times
960

Don’t know / No answer 36

house age (H2)

Before 1950 1 867
1950 to 1959 2 624
1960 to 1969 3 970
1970 to 1979 4 1182
1980 to 1989 5 973
1990 to 1999 6 577
2000 to 2009 7 466
2010 to 2016 8 237
Missing value 372

house detachment (H1)

Single-family house
detached from any other house

1 2738

Single-family house attached to one
or more other houses (for example:

duplex, row or terraced house, or townhome)
2 897

Apartment in a building with 2 to 5 flats 3 662
Apartment in a building with 6 or more flats 4 1955

Missing value 16

Table 5.3.: The categories and corresponding values for each feature, with the corre-
sponding question that can be found in Appendix  B , in brackets.
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6. Energy poverty classification framework

In this section, frameworks for classifying energy poverty in Europe are discussed. In-
dicators for energy poverty can be divided into two categories: self-reported/qualitative
indicators, and measurable/quantitative indicators.

6.1. Existing frameworks

Fuel poverty has been studied for a longer time, resulting in more literature on identi-
fiers being available for fuel poverty. A fundamental academic work for fuel poverty
was published by Brenda Boardman [ 44 ] in which she argues for a clear distinction be-
tween poverty and fuel poverty. It is claimed that energy poverty is not exclusively a
consequence of financial hardship. Consequently, eliminating energy poverty requires
different households to be targeted than those targeted to eliminate poverty. It was
proposed that in energy poverty, three important factors are at play: income, house-
hold energy requirements, and fuel prices.

When in the UK fuel poverty was first defined, a 10% relative energy expenditure
threshold was used to classify households as being fuel poor. Later, this definition
changed to the Low Income High Costs (LIHC) indicator. This classifies households as
being at risk when they have required fuel costs that are above average (the national
median level) and when this amount is deducted from their income, the household
would be left with a residual income below the official poverty line [ 37 ]. This new
indicator received a lot of criticism, and was even argued unlikely to have positive
impacts for most fuel poor households [ 45 ].

The EPOV was founded by the European Commission to improve the knowledge on
energy poverty and thereby help move forward in eliminating energy poverty [ 39 ]. The
EPOV proposes four primary indicators: arrears on utility bills, low absolute energy
expenditure (M/2), high share of energy expenditure in income (2M), and inability to
keep the home adequately warm. The first three are quantitative, and the last one is a
qualitative, self-reported indicator.

The 2M indicator is a statistically determined indicator that uses twice the median rel-
ative energy expenditure of a country as a threshold. A household is labelled as energy
poor if its energy expenditure, as share of their gross income, exceeds this threshold.
Another statistical indicator is the M/2 indicator, that uses half the median of the ab-
solute energy expenditure in a country. A household energy expenditure that is less
than this threshold is believed to be abnormally low. This could be caused by severe
under-consumption to reduce costs, and consequently induce energy poverty [ 39 ].

Additionally, a pool of secondary indicators believed to be relevant to energy poverty
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is mentioned by the EPOV. However, the indicators show contradictory results when
applied to European countries. No coherent framework on how these indicators should
be combined is provided by the EPOV. It is believed that a combination of indicators is
necessary to adequately identify all households suffering from energy poverty [ 8 ].

In Table  6.1 , the 2M and M/2 indicators are tabulated for all countries in the data set
using an approximated income (derived as described in Section  5.2 ). Western European
countries have a 2M indicator that is close to the 10% indicator previously used in the
UK. However, Eastern European countries spend a substantially higher share of their
income on energy. Therefore, a uniformly set threshold, such as the 10% one, appears
unfit as a European indicator. Moreover, the table suggests that the heterogeneity of
the data causes a large deviation in both relative and absolute energy expenditure. This
suggests that this threshold should be determined for every country individually.

6.2. Employed framework

The energy poverty classification framework proposed by Dalla Longa et al. requires an
income and an energy expenditure threshold to be set [ 17 ]. The framework is visualized
in Figure  2.1 . In that paper, the energy expenditure threshold is set at the 80th quantile.
This approach was adapted for our research, such that every participating country has
a distinct energy expenditure threshold corresponding to the 80th quantile.

The data presents a uniform income metric with the deciles it was reported in. This
allows for one threshold to be set for all countries. The minimum wages in 2018 for each
of the countries are retrieved from Eurostat and the corresponding deciles determined.
The third income decile is the mode. Norway and Italy do not have a nationwide mini-
mum wage [ 46 ,  47 ] and minimum wages for Ukraine were not available on Eurostat. A
study conducted in Spain found that for three different energy poverty indicators, 99%
of the households classified as being energy poor, are in the first three income deciles
[ 21 ]. This lead us to set the income threshold between the third and fourth deciles in
the current research.
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Country Households Median 2M M/2 Minimum wage bracket

Norway 499 e 2311 12.6% e 1156 -
United Kingdom 613 e 1215 13.3% e 607 3
Germany 407 e 1900 13.7% e 950 3
Spain 395 e 960 15.8% e 480 3
France 489 e 1890 16.4% e 945 3
Italy 478 e 1890 28.9% e 945 -
Poland 477 e 862 37.5% e 431 4
Hungary 815 e 890 48.2% e 445 5
Bulgaria 734 e 798 53.1% e 399 4
Ukraine 696 e 267 54.4% e 133 -
Serbia 665 e 760 64.8% e 380 7
Total 6268 e 997 31.1% e 499 -

Table 6.1.: The countries in the Enable data set with median annual energy expenditure,
two conventional indicator values, and the income decile the minimum wage
corresponds to.
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7. Model building

This section involves the process of obtaining an ML black box model. First, the concept
of gradient boosting is explained, followed by the library of choice in this research,
CatBoost. Sections  7.3 ,  7.4 , and  7.5 consider the steps taken to employ CatBoost for the
model creation.

7.1. Gradient Boosting

Gradient boosting is a popular machine learning method, demonstrating state-of-the-
art performance on many modelling tasks, especially on tabular data with meaningful
features [ 24 ,  15 ]. It is highly suitable for interpretation, making it a useful ML method
for this research. Gradient boosting was developed as a combination of steepest descent
optimization (gradient) and additive modelling (boosting) to solve a function estima-
tion problem. It was first proposed in 1999 by Jerome Friedman [ 22 ]. In a function
estimation problem, as in Equation  7.1 , one approximates an unknown function that
maps an input vector x = {x1, · · · , xn} to an output value y. In practise, a natural pro-
cess is being estimated, thus the true function is a natural process. To estimate the true
function, the expected value of some loss function Ψ(y, F (x)) should be minimized for
a set of observations of this true function. Those observations make up the training data
{yi, xi}N1 . Rather than the more abstract function estimation, gradient boosting using
decision trees is described here.

F ∗(x) = argmin
F (x)

Ey,xΨ(y, F (x)) (7.1)

The true function is approximated using a method derived from additive modelling,
which is a technique for the creation of nonparametric regression models by summing
simple functions to approximate a more complicated one [ 48 ]. An initial guess F (0)

(F (j) denotes the jth iteration of our approximate function) is incrementally combined
with a simple function fm(x) that helps to minimize the loss, this is known as boosting.

F (M)(x) = F (0)(x) +
M∑

m=1

fm(x) (7.2)

Each addition to the model consists of a base learner 

1
 that attempts to minimize the

loss function value. In our case a base learner consists of a simple decision tree with L

1Some authors call these boosts or steps
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leaf nodes. The decision trees can be parameterized to get fm(x) = hm(x; am) where am
denotes the splits of the decision tree in the m-th iteration.

am = argmin
a

N∑
i=1

Ψ(yi, F
(m−1)(xi) + h(x; a)) (7.3)

We minimize the objective in Equation  7.1 , using steepest descent. The base learner
is fit by parameters optimization to the negative gradient of the loss function, known
as pseudo-residuals.

r̃im = −
[
∂Ψ(yi, F (xi))

∂F (xi)

]
F (x)=F (m−1)(x)

(7.4)

The feature space is partitioned into L disjoint regions {Rlm}Ll=1 each corresponding
to one leaf node. The decision tree base learner assigns the value corresponding to the
leaf node where the input x ends up at.

h(x; {Rlm}Ll=1) =

L∑
l=1

ỹlm1(x ∈ Rlm) (7.5)

The value assigned to each leaf node is the mean of the pseudo residuals of all train-
ing samples that are in the corresponding feature region: ỹlm = meanxi∈Rlm

r̃im. A
regularization term ν is added to allow the model to depend on more base learners and
produce a more robust model, less prone to overfitting. Typically, a value ≤ 0.1 is used
as shrinkage factor. Putting this all together results in the iterative procedure known as
gradient boosting.

F (m)(x) = F (m−1)(xi) + ν (ỹlm1(x ∈ Rlm)) (7.6)

For classification withK classes,K ensembles are created. Each with an output value
that is transformed using a softmax function that normalizes the output to a probability
distribution. The function Fk depicts the ensemble that gives an output value for class
k. Each class gets a probability, such that all sum to 1.

pk = σ(x)k =
eFk(x)∑K−1
l=0 eFl(x)

(7.7)

For multiclass logistic regression with cross-entropy loss function. The vector yi con-
sists of all zeros, except for the correct class, which has a value of one. The loss reduces
to the negative log of the probability assigned by the model to the correct class. In prac-
tise, a regularization term is added that penalizes complicated tree structures, guiding
the algorithm to build simpler trees [ 49 ]. This is done in order to prevent overfitting.

Ψ({yk, Fk(x)}K1 ) = −
K−1∑
l=0

yklog(pk(x)) = −log(ptruelabel(x)) (7.8)
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The technique of gradient boosting was improved on, by introducing stochasticity to
it. Instead of using the full data set to calculate the gradient and fit a decision tree to,
bootstrap aggregating (bagging) is used [ 50 ]. Here, in each iteration, a random subsam-
ple of the data set is selected to fit a decision tree on. This procedure prevents the model
from overfitting on the training data. Every gradient boosting library makes its own
minor tweaks to the algorithm, through which it attempts to maximize performance.

7.2. CatBoost

CatBoost is an innovative new gradient boosting library developed by the Russian tech
company Yandex [ 23 ,  25 ]. As opposed to many other popular gradient boosting li-
braries - such as scikit-learn [ 51 ], XGBoost [ 24 ], and LightGBM [ 52 ] - it can deal with
categorical features without any preprocessing steps required. It also drastically im-
proves prediction time and has many model analysis tools available.

Most gradient boosting libraries only support numerical features, such that two val-
ues can be compared using a > or < operation, necessary to perform splits. Categorical
data can have ordered categories, allowing them to be split using these operations. For
example, income deciles are categories where each one represents a range of incomes,
and therefore, can easily be compared. This type of categorical data is known as ordinal
data. Decision trees are invariant to monotonic transformations [ 53 ]. As a result, it is
easy to assign values to an ordinal feature, as only the ordering is relevant. There are
also cases where there is no clear ordering among the categories, for example, a sen-
tence describing the heating strategy of a household. Data corresponding to this type
of category, is known as nominal data. Nominal data has to be processed before it can be
used in most gradient boosting algorithms. CatBoost performs the preprocessing steps
required for nominal data internally.

There are several methods that process nominal data. A frequently used method is
the one-hot-encoding (OHE) method, in which the feature is transformed into as many
columns as it has unique values, the number of unique values is also known as its
cardinality. Each of the columns is a binary column; the column corresponding to the
answer is assigned a value of one, and all others are set to zero. This introduces a lot
of sparsity into the data. The nominal data can be transformed to ordinal data. This
is done by assigning each category a useful numeric representation, thus resulting in
the data having a new artificial ordering. This is usually done by using the mean target
value for a category over all samples. CatBoost uses a combination of the two methods
described above. If the cardinality of a categorical feature is equal to 2, OHE is used
to encode the feature. Otherwise, meaningful numeric values are assigned, calculated
using the training data. ∑n

j=1[xj,k = xi,k] ∗ Yj∑n
j=1[xj,k = xi,k]

(7.9)

Along all n samples, each with m features , (xp,q) ∈ Rn×m, every category of feature

39



7. Model building

household size, value>2.5

floor area, value>1.5

No

floor area, value>1.5

Yes

floor area, value>4.5

No

floor area, value>4.5

Yes

floor area, value>4.5

No

floor area, value>4.5

Yes

income bracket, value>3.5

No

income bracket, value>3.5

Yes

income bracket, value>3.5

No

income bracket, value>3.5

Yes

income bracket, value>3.5

No

income bracket, value>3.5

Yes

income bracket, value>3.5

No

income bracket, value>3.5

Yes

val = -0.008
val = -0.046
val = 0.100
val = -0.046

No

val = -0.042
val = 0.007
val = -0.042
val = 0.078

Yes

val = 0.000
val = 0.000
val = 0.000
val = 0.000

No

val = 0.000
val = 0.000
val = 0.000
val = 0.000

Yes

val = 0.039
val = -0.049
val = 0.060
val = -0.049

No

val = -0.049
val = 0.022
val = -0.049
val = 0.076

Yes

val = 0.088
val = -0.045
val = 0.002
val = -0.045

No

val = -0.047
val = 0.068
val = -0.047
val = 0.025

Yes

val = 0.035
val = -0.040
val = 0.045
val = -0.040

No

val = -0.039
val = 0.023
val = -0.039
val = 0.055

Yes

val = 0.000
val = 0.000
val = 0.000
val = 0.000

No

val = 0.000
val = 0.000
val = 0.000
val = 0.000

Yes

val = 0.061
val = -0.049
val = 0.037
val = -0.049

No

val = -0.049
val = 0.051
val = -0.049
val = 0.048

Yes

val = 0.095
val = -0.046
val = -0.004
val = -0.046

No

val = -0.048
val = 0.094
val = -0.048
val = 0.002

Yes

Figure 7.1.: One side of an oblivious tree applied in CatBoost.

k is assigned a numeric value using this equation. For all samples logical proposition
xj,k = xi,k is evaluated in Iverson brackets, represented by [·]. It equals 1 if the propo-
sition is true, i.e. the feature values are the same, and 0 otherwise. A modified version
of Equation  7.9 , including a novel scheme involving bagging to prevent overfitting, is
used in CatBoost to deal with categorical data [ 25 ].

The first tree of the final CatBoost model is plotted in Figure  7.1 . CatBoost uses obliv-
ious trees as base learners, those are trees that use the same criterion for every split on
the same level in the tree. Consequently, all trees have the same number of leaf nodes.
This is claimed to prevent overfitting of the model. Instead of inducing K trees for a
classification task with K classes, a contribution is assigned to every class at each leaf
node. The observation done in Section  3 that the model splits the multiclass classifica-
tion task into two binary ones, can also be observed in this figure. The split on income
bracket is made at 3.5, the income threshold is set at exactly this value. The model has
learned this correctly. The oblivious trees lead to more, increasingly redundant splits
being performed. This is illustrated by certain leaf nodes assigning zeros to all classes
as no input can reach it. As a result, training can take longer, but it enables an imple-
mentation for prediction that is significantly faster than other libraries.

7.3. Feature selection

The most influential feature to our model is income. Poverty and energy poverty are
closely connected, income is one of two features used to label the data. It was decided
to include income as a feature as it is an easy metric to get hold of for policy makers.
The additional features were chosen using domain expertise. From this point, a lot
of manual labor with trial and error resulted in the final selection of features. These
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resulted in the best model, and also included the features previously hypothesized to
be at play in predicting energy poverty. The final features selected can be found in Table

 3.1 .
The features: income bracket, house age, house detachment, and floor area have a dis-

tinct ordering of the corresponding answers, thus are ordinal features. Household size
and birth year respondent are numeric answers, represented by positive integer numbers.
The aforementioned features can be handled in a gradient boosting model with no pre-
processing necessary. Lastly, heating strategy corresponds to a question on what heating
strategy the households employ. This is one of 5 different heating strategies described
which can be found in Table  5.3 . This is a nominal feature and is treated by CatBoost
with no preprocessing required.

Feature selection by feature elimination with cross validation [ 54 ] has been attempted.
With this technique, a model is trained on an initial set of features. The feature with
lowest assigned permutation feature importance is dropped and a new model trained.
This is iteratively done until the new model no longer performs better than the pre-
vious. The resulting model indeed showed better results than our final model on the
validation set. However, it did not generalize well and performed poorly on the test
set. It barely performed better than random guessing after a split was performed on
income, resulting in diagonals around 50%.

7.4. Hyperparameter optimization

CatBoost has shown that it performs better with default parameter settings, than three
other popular gradient boosting libraries with tuned hyperparameters on several pub-
licly available data sets [ 25 ]. As a result, less time need to be spent on optimizing the
hyperparameters. However, to maximize performance, hyperparameters are still to be
tuned. CatBoost provides several optimization tools such as grid search and random
search. Grid search is a simple form of hyperparameter optimization, in which a grid
of hyperparameters specified by the user, is exhaustively searched. For each point a
model is trained, and its performance compared to models trained with other hyper-
parameters on the grid. In random search, random hyperparameter settings are tested,
this is often used to find a region in which to apply grid search. The three main hy-
perparameters in gradient boosting that can be tuned are the shrinkage factor ν, often
called the learning rate; the number of iterations or trees M ; and the number of leaf
nodes L of the base learners. Besides these, many other hyperparameters can be tuned
regarding, for example, regularization and bagging.

In his original paper, Friedman used L to denote the number of leaf nodes. As in the
CatBoost library oblivious trees are used, only the depth of the tree is a hyperparameter.
The depth of the trees determines what level interactions between features the model
can capture. This can be seen by observing the ANOVA expansion of a function.

F (x) =
∑
j

f(xj) +
∑
j,k

f(xj , xk) +
∑
j,k,l

f(xj , xk, xl) + ... (7.10)
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For a depth of 1 we only get the effects of the first sum, these are known as main
effects. Each function in it only depends on one input variable. Every summation we
go further, an interaction between input variables is added to the expansion. Every
extra level of depth we allow our base learners to go to, adds another summation of
the expansion that can be approximated by the model. Generally, the first few sums
explain most of the variance in the original function [ 22 ]. Grid search resulted in an
optimal tree depth of 4. This is less than the default value of 6.

Grid search determined the optimal learning rate to be at 0.05. The number of itera-
tions, trees, was set to 500. However, as CatBoost saves the best model it encountered
during training, the resulting model did not consist of 500 trees. The model started
overfitting long before this point. The training process is described in Section  7.5 and
plotted in Figure  7.2 .

The data set available was imbalanced, as can be observed in Table  5.2 . This can
be circumvented by taking a subsample of the training data with the same number of
points from each class, known as undersampling. Undersampling is a robust and effec-
tive approach to counter class imbalance [ 55 ]. The data set used in this research does
not have enough data points available to perform undersampling, as this would result
in too few samples to effectively train a model. Another method is to subsample with
replacement. This would include the same data point several times in the data set used
by the model for training. This is known as oversampling. There are also advanced
methods available to synthetically create additional data points of the minority class.
Most methods use some variation of taking a random point on a line in feature space,
between two data points from the same class [ 56 ,  57 ].

As we are trying to understand the mechanism that drive energy poverty in Europe,
artificially generated data points might lead to results not reflected by real data. There-
fore, class weights were passed to the classifier. CatBoost multiplies the gradient of a
sample with the weight corresponding to its true label. Weight were calculated on the
data set relative to the reciprocal of a class count in the data set. This has a similar ef-
fect on training as oversampling. With oversampling, if from one class with two data
points, one is doubly sampled. The gradient of this data point is used twice. Whereas,
by using class weights, both data point’s gradient is multiplied by 1.5. As a result, we
get a “smoother” form of oversampling.

7.5. Training

The model is trained using weighted multiclass logistic regression loss function, de-
picted in Equation  7.11 . The weights for each class are determined over the training set.
Splitting the data that is stratified by their labels ensures that the training, validation,
and test set have a similar class distribution.

−

∑N
i=1wilog

(
e
si,yi∑M−1

j=0 esi,j

)
∑N

i=1wi

(7.11)
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Catboost has many tools to monitor training, all metrics specified by the user are
plotted in real time. The model that performed best on the optimization metric, loss
function, is saved. The library also enables the user to use a different metric to eval-
uate the performance of the model. This can be a non-differentiable function, that is
evaluated at the end of each iteration. The evaluation metric is used to determine the
best model, and the differentiable loss function is used for optimization, to calculate the
gradient to construct the next tree for our ensemble.

For model evaluation, some important measures are the True Positive (TP), True Neg-
ative (TN), False Positive (FP), and False Negative (FN). For classification with more
than one or two classes, all classes other than the one evaluated are assumed to be of
the negative class. In a confusion matrix with absolute numbers, the TP representing
the samples correctly classified as the class being evaluated is the value on the diago-
nal. TN is the number of samples correctly not classified as the class: all entries except
the entries in the row and column corresponding to the class. FP are all samples that
were incorrectly classified as the class: the sum of all entries in the column, except the
diagonal. FN are all samples of our class that were not classified as being of the class:
the sum of the entries in the row except the diagonal.

Precision = TP
TP+FP , and recall = TP

TP+FN use the above described metrics to give
one number that encapsulates the relevance of the found positives by the model. Both
metrics can effortlessly be maximized by either classifying all (recall), or only a minor
fraction (precision) of the samples as positive. The F1 score is the harmonic mean of the
precision and recall and evaluates a model on both metrics simultaneously. It is used
as the evaluation metric in this study. It has long been known as the Sørensen–Dice co-
efficient to measure the degree of similarity between two sets [ 58 ,  59 ] given in Equation

 7.12 .

F1 =
2|X ∩ Y |
|X|+ |Y |

=
2TP

2TP + FN + FP
=

2(Precision ∗ Recall)
Precision + Recall

(7.12)

However, since we have four classes, we calculate the F1 score for each of the classes
and weigh them to get a total F1 score.

TotalF1 =

∑M−1
k=0 wkF1k∑M−1

k=0 wk

(7.13)

The training and validation learning curves are plotted in Figure  7.2 . The loss func-
tion starts around 1.3, which makes intuitive sense as then it would do little more than
random guessing, which would result in a loss of−log(14) ≈ 1.39 for all classes. Overfit-
ting of the model can be observed in both plots where the training and validation curves
start to diverge. The iteration with the best score on the validation set is indicated with
a dashed black line. This is at iteration 126 with a TotalF1 score of 0.65, and at iteration
264 with a loss function value of 0.64. The model results generalized poorly at the point
of minimum loss function value. We hypothesize this could be caused by some of the
risk classes being so small that the model starts overfitting on the few samples that are
in the training and validation set. A decision boundary tighter around these samples
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Figure 7.2.: Scores on validation and training set during training time. The dashed black
line indicates the iteration where the best validation score occurred.

would decrease the loss but hinders the generalization of the model. Five fold cross
validation shows very similar learning curves with the best average TotalF1 score of
0.63 at iteration 118, iteration 254 minimizes the average loss function at a value of 0.65.
These results confirm our findings and show that the results are robust.
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The methods used in this research are detailed in this section. Two methods that are
used in this research to analyze the internal model of the classifier, are discussed. A
relatively simple, but robust method, namely permutation feature importance is dis-
cussed. Another more advanced method that uses ideas from the Shapley value from
game theory is also explained. Model analyses can be performed for a single sample,
known as a local explanation. The model can also be analyzed as a whole, which is
known as a global explanation.

Many gradient boosting packages provide a default method of measuring feature
importance using an impurity metric. This is determined by the distribution of labels
on each side of the split. A perfect split, has only samples of the positive class on the
one side, and only negatives on the other. Evaluating the impurity on each side of the
splits made by a variable results in a measure of its importance. This is a fast method
and can provide some insights. However, this has a bias towards features used for
overfitting. A model that is highly overfitted will assign a high feature importance to
the features used to overfit. Features with few unique answers, low cardinality, are hard
to overfit on. Contrarily, features with high cardinality tend to get an overestimated
feature importance assigned. This holds especially true for categorical features [ 60 ].
Therefore, more advanced feature importance measures will be discussed: permutation
importance and mean absolute SHAP values.

8.1. Permutation importance

Permutation importance is a global measure of feature importance for machine learn-
ing models. The feature values are randomly permuted and assigned an importance
based on the resulting performance change of the model. Therefore, the assigned val-
ues can be positive when the performance of the model drops, but also negative when
the model performs better after the feature values are scrambled. A negative or near-
negative importance suggests that the feature does not aid the model in prediction and
might be an indication of the model using the feature solely to overfit. Permutation
feature importance was first described by Breiman [ 31 ]. An implementation by Python
library Scikit-learn [ 51 ] was used in our analysis. The feature permutation feature im-
portances are plotted in Figure  3.3 .

The simplicity of the method is appealing and have lead people to try and improve
on this method [ 61 ]. Permutation importance has been proposed as an unbiased feature
importance measure [ 60 ]. It is computationally very cheap with a complexity of only
O(n), and is statistically robust. moreover, the method makes intuitive sense. However,
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the method has also received criticism in recent years as it tends to overestimate the
feature importance of heavily correlated features [ 62 ].

8.2. SHAP values

In 2020, Lundberg et al. published set of tools for interpreting the results of tree-based
machine learning models [ 15 ]. Notably, they presented TreeExplainer, a simple model
to explain the prediction of a complex tree-based model. This is known as an explana-
tion model. TreeExplainer augments conventional Python tree-based models with local
and global explanations of predictions. The best explanation model for any model, is
the model itself. However, as models get more complex, they rapidly become too com-
plicated for a human to comprehend. An easier model to interpret the outputs and
provide the user with more insight into the workings of a complex one become valu-
able.

TreeExplainer uses Shapley Additive exPlanation (SHAP) values, based on Shapley
values. First proposed in 1953 by Lloyd Shapley, they have a solid theoretical founda-
tion from cooperative game theory [  63 ]. Shapley values are a method to fairly distribute
the payout of a game among the participating parties, known as coalitions. The Shap-
ley values measure the “importance” of each member of the coalition to determine the
payout. For the development of SHAP, Lundberg et al. borrowed this idea and adapted
it to determine a feature importance for an ML model.

SHAP values works with additive feature attributions: all feature attributions sum
up to the model output. The explanation model g(z) is a linear combination of the
binary coalition variable z ∈ {0, 1}M representing the input features, where M is the
number of input features. The function mx(z) = x maps the coalition vector to the real
input values. Explanation models often use simplified inputs x′, especially in image
processing to bundle pixels into meta or super pixels. However, as we are dealing with
tabular data, in this section we will not use simplified features and just work with input
vector x.

g(z) = φ0 +
M∑
i=1

φizi = f(mx(z)) (8.1)

During prediction all feature are “present”, z = ~1, this simplifies to

g(x) = φ0 +
M∑
i=1

φi = f(x) (8.2)

Now it become apparent that φi represents the contribution of the corresponding
feature, xi, to the final score of the model we are trying to interpret. This linearization
of the model only holds locally, for this input vector x. The bias φ0 is defined as the
output of the model when none of the features are present, a coalition vector of ~0. It is
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determined by the expected value over all samples in the data set [ 64 ].

φ0 = f(mx(~0)) = E
X

(
f(x)

)
(8.3)

Lundberg et al. formulate three desirable properties that an additive feature attribu-
tion method should adhere to. Local accuracy states that the explanation model predic-
tion should equal the output of the model f (Equation  8.2 ). The property of missingness
says that missing features should have zero contribution assigned. This is to ensure that
we have a unique solution, and in practice only used when a feature is constant for all
samples. Consistency states that for two models with the same input features, if

f ′(mx(z))− f ′(mx(z \ i)) ≤ f(mx(z))− f(mx(z \ i)) ∀z (8.4)

then φi(f
′, x) ≤ φi(f, x) (8.5)

The classic properties described in the original paper by Shapley: linearity, dummy,
and symmetry, follow from this property [  32 ]. Additive feature attributions, adhering
to the three desired properties leads to a unique solution. SHAP is the method proposed
that adheres to these properties. Computing exact Shapley values is NP-hard [ 32 ]. By
focusing on tree-based machine learning models, TreeExplainer can compute the SHAP
values based on exact Shapley values in polynomial time [ 15 ].

Another additive feature attribution method is LIME [ 12 ]. It linearizes the input of a
model in a similar fashion and was an inspiration for the SHAP values. LIME values
are calculated by minimizing a function. Imposing certain constraints on that function
enables LIME to be used to calculate the SHAP values. This is known as the Shapley
kernel [ 32 ].

A limitation of SHAP values is the assumed additive attributions of variables in-
putted to a model. If the model is not additive, then the SHAP values may be mis-
leading. The missingness property might be violated for our model. The permutation
feature importance results suggest that three features are of no importance at all to our
model. However, the missingness property states that a feature’s contribution can only
be zero is the feature is constant over the entire data set.

The mean absolute SHAP values attributed to each of the features in our model are
plotted in Figure  3.3 . Although SHAP values were developed to provide local expla-
nations, taking the mean of the absolute SHAP values provides valuable insights into a
feature’s importance. The mean absolute value indicates how much the feature affects
the prediction on average. For our research, each feature has different SHAP values
for every class as the model assigns each class a probability. The feature importances
were averaged over the classes. SHAP values have theoretical assurances of accuracy
on consistency, it is claimed to give a better global importance score than other feature
importances [ 15 ].

The SHAP values allow for both interesting and attractive visualizations. Decision
plots can be used to visualize how a model reached a prediction. These are plotted
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Figure 8.1.: A dependence plot for the feature birth year respondent, colored by the
value for house detachment for the class expenditure risk.
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in Figure  3.5 , and Figure  A.3 . Dependence plots can be used to identify how pairs
of features interact. This is plotted for our model in Figure  8.1 . The SHAP value for
one feature is plotted, and the data points are coloured using another feature. Before
interpreting a model, a minimum requirement is that the model should be performing
well. However, as stated in Section  3 , as we do not consider this requirement to be met,
we do not make any claims regarding these plots. The plots are there to demonstrate
the capabilities of the method. SHAP values provide an extensive set of powerful tools
to analyze tree based models.
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A. Additional plots

In Figure  A.1 , the absolute and approximated relative energy expenditure of house-
holds from each country are plotted. The y-axis depicts the frequency density: normal-
ized frequency. The vertical red line indicates the median. The number of respondents
is given after each country name.

In Figure  A.2 , the income distributions are plotted. The y-axis depicts the frequency
density that is shared in absolute values by all plots in the row. The dashed black line
is located at, ideally representative, frequency density of 10 %.

Four decision plots are shown in Figure  A.3 . We see two correctly classified house-
holds with very different SHAP values assigned to the features. The third decision path
shows a household that the model confidently misclassifies as being in the expenditure
risk group. The last plot shows a household where the probabilities for both classes
are very close. There are two classes that are moving together, these are the classes
corresponding to the two binary classification tasks that remain when the model splits
based on income. What really matters for the classification is how the two relevant
classes move relative to each other.

In Figure  A.4 , the confusion matrix to a theoretical classifier only splitting on income
would result in. By the framework (Figure  2.1 ), a classifier would be able to split on the
multi-class classification task in two binary ones. This greatly reduces the complexity
of the modelling problem at hand.
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Figure A.1.: Absolute (top), and approximate relative energy expenditure (bottom) for
all countries in the data set.

54



fre
qu

en
cy

 d
en

sit
y

Serbia (N=665) Ukraine (N=696) Bulgaria (N=734) Hungary (N=815)

fre
qu

en
cy

 d
en

sit
y

Poland (N=477) Italy (N=478) France (N=489) Spain (N=395)

1 2 3 4 5 6 7 8 9 10

fre
qu

en
cy

 d
en

sit
y

Germany (N=407)

1 2 3 4 5 6 7 8 9 10

United Kingdom (N=613)

1 2 3 4 5 6 7 8 9 10

Norway (N=499)

1 2 3 4 5 6 7 8 9 10

Data set (N=6268)

income decile

Figure A.2.: Income distributions of respondents per country.

55



A. Additional plots

2

2

1

1

0

0

1

1

2

2

model output values

income bracket (10)

heating strategy (auto adjust)

birth year respondent (1976)

house age (7)

house detachment (2)

household size (2)

floor area (3)

True label: No risk

Double risk (0.0)
Expenditure risk (0.38)
Income risk (0.0)
No risk (0.61)

2

2

1

1

0

0

1

1

2

2

model output values

income bracket (8)

heating strategy (manually)

birth year respondent (1966)

house age (4)

house detachment (4)

household size (3)

floor area (2)

True label: No risk

Double risk (0.0)
Expenditure risk (0.36)
Income risk (0.0)
No risk (0.63)

3

3

2

2

1

1

0

0

1

1

2

2

3

3

model output values

income bracket (9)

heating strategy (manually)

birth year respondent (1969)

house age (5)

house detachment (1)

household size (4)

floor area (6)

True label: No risk

Double risk (0.0)
Expenditure risk (0.76)
Income risk (0.0)
No risk (0.23)

2

2

1

1

0

0

1

1

2

2

model output values

income bracket (3)

heating strategy (one temperature)

birth year respondent (1982)

house age (4)

house detachment (4)

household size (2)

floor area (4)

True label: Income risk

Double risk (0.48)
Expenditure risk (0.01)
Income risk (0.5)
No risk (0.01)

Figure A.3.: The decision plots of four additional samples from the test data set.
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B. Survey questionnaire

B. Survey questionnaire [ 20 ]
 

D4.1 | Final report on comparative sociological analysis of the household 

survey results 

 

 

www.enable-eu.com  Page 42 of 71 

This project has received funding from the European 

Union’s Horizon 2020 research and innovation programme 

under grant agreement No 727524.  

 

Appendix 2. Survey questionnaire 
 

GENERAL questions: to be asked in ALL countries 

(Bulgaria, France, Germany, Hungary, Italy, Norway, Poland, Serbia, Spain, Ukraine, United Kingdom) 

 

Section H - HOME / BUILDING CHARACTERISTICS AND HOUSEHOLD POSSESSIONS 

 

H1. Which best describes your home? 

Only ONE answer. 

1. Single-family house detached from any other house 

2. Single-family house attached to one or more other houses (for example: duplex, row or terraced house, 

or townhome)  

3. Apartment in a building with 2 to 5 flats 

4. Apartment in a building with 6 or more flats 

 

H2. As far as you know, when was your home built? 

Only ONE answer. 

1. Before 1950 

2. 1950 to 1959 

3. 1960 to 1969 

4. 1970 to 1979 

5. 1980 to 1989 

6. 1990 to 1999 

7. 2000 to 2009 

8. 2010 to 2016 

99. (Don’t know) 

 

Instruction to the survey company: Please, use the answers with the relevant measurement system. Delete the 

unnecessary column.  

H3. In which group does your home belong? 

Only ONE answer. 

1 Up to 42 m2 

2 43 – 65 m2 

3 66 – 90 m2 

4 91 – 120 m2 

5 120 – 200 m2 

6 More than 200 m2 

7 Doesn’t know/ didn’t answer 

1 Up to 455 ft2 

2 456 – 700 ft2 

3 701 – 970 ft2 

4 971 – 1295 ft2 

5 1296 – 2160 ft2 

6 More than 2160 ft2 

7 Doesn’t know/ didn’t answer 

 

H4. How many of the following vehicles your household owns? 

One answer per row 
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Don’t have 

Number of vehicles 
(Don’t know) 

1 2 3+ 

A Petrol car 1 2 3 4 99 

B Diesel car 1 2 3 4 99 

C Alternative fuelled car (methan, LPG) 1 2 3 4 99 

D Electric car 1 2 3 4 99 

E Hybrid car 1 2 3 4 99 

F Motorcycle (or Scooters)  1 2 3 4 99 

G Electric Motorcycle (or Scooter) 1 2 3 4 99 

H Van, truck, caravan 1 2 3 4 99 

I Bicycle 1 2 3 4 99 

J Electric bicycle 1 2 3 4 99 

 

H5. Does your home have any of the following types of insulation? 

Tick all that apply 

1. Attic and/or roof insulation 

2. Cavity wall insulation 

3. External wall insulation 

4. My home does not have any additional insulation. 

99. (Don’t know) 

 

H6. What is the approximate percentage share of the energy sources you use for heating? 

 Indicate the approximate percentage share, based on the bills you paid 

1. Electricity (including under floor heating) 
………..% 

2. District heating, different than using natural gas from a central source? 
………..% 

3. Natural gas from a central source / propane or bottled gas 
………..% 

4. Wood 
………..% 

5. Coal or coke 
………..% 

6. Pellets 
………..% 

7. Fuel oil 
………..% 

8. Waste/garbage 
………..% 

9. Biomass 
………..% 

10. Geothermal or air-source heat pump 
………..% 

11. Other source, please specify……………………………. 
………..% 

99. Don’t know 
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H7. What was the cost of heating for your home for the last heating season? Indicate the cost per month 

or for the whole heating season, depending on how you pay your bills.  

 Fill only ONE of the answers, most suitable for you: 

1. About ………… [national currency] average per month Continue with the NEXT 

question 

2. About ………… [national currency] for the whole heating 

season 
Skip the NEXT question 

99. Don’t know 

 

H7A. Number of months, you pay for heating in the last heating season? 

1. Number of months ……………… 

99. (Don’t know) 

 

Instruction to the survey company: Use only one of the following two questions. If there is a country, where 

the two options are presented, ask both questions 

H8A. What was the average monthly bill for electricity of your household over the last 12 months? 

………………………. [National currency] 

 

H8B. What was the last annual bill for electricity of your household? 

………………………. [National currency] 

 

H9. Which of the following best describes how your household controls your main heating equipment 

most of the time? 

Only ONE answer. 

1. Set one temperature and leave it there most of the time 

2. Manually adjust the temperature (e.g. at night or when no one is at home) 

3. Program the thermostat to automatically adjust the temperature during the day and night at certain 

times 

4. Our household does not have control over the equipment 

 

H10. Does your household use electricity or heating, generated by any of the following technologies, 

which are owned by you or by you and your neighbours/community? 

Tick all that apply 

1. Solar photovoltaic panels (PV) for generation of electricity and/or heat 

2. Using biomass for generation of electricity and/or heat 

3. Solar collectors for water heating 

4. Geothermal or air-source heat pumps 

5. None of the previous 
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H11. About how old are the most used electrical appliances in your home? 

One answer per row. If you have more than one appliance of a given age, please answer for the most 

often used ones.  

  Up to 

3 

years 

old 

4-10 

years 

old 

Older 

than 10 

years 

Don’t 

have 

Don’t 

know 

A Cooker (stove, oven, cooktops) 1 2 4 5 99 

B Dishwasher 1 2 4 5 99 

C Clothes washer / Washing machine (Do not include 

community clothes washers that are located in the 

basement or laundry room of your apartment building) 

1 2 4 5 99 

D Refrigerator / freezer 1 2 4 5 99 

E Air conditioning units at your home 1 2 4 5 99 

F Portable electric heater(s) 1 2 4 5 99 

G Standalone electric water heater (boiler) 1 2 4 5 99 

h TV set / Home theater system 1 2 4 5 99 

 

H12. What portion of the light bulbs inside your home are: 

One answer per row 

  All Most About 

half 

Some None Don’t 

know 

A Incandescent bulbs (“old” classic 

bulbs) 

1 2 3 4 5 99 

B Energy efficient bulbs (e.g. LED, 

compact fluorescent bulbs or 

halogen bulbs) 

1 2 3 4 5 99 

 

H13. Does your home have any of the following “smart meters”, which records energy consumption in 

real time and sends this information to your utility company and in some cases includes also a monitor 

to see (and control) your energy usage? 

One answer per row. 

 Yes No Don’t know 

Electricity smart meter 1 2 99 

Gas smart meter 1 2 99 

Heating smart meter 1 2 99 

 Skip the NEXT 

question  

Continu

e with 

the 
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NEXT 

question 

  

H14. What are the main reasons not to have a “smart meter” at you home?20 

Tick all that apply. 

1. Smart meters are still not adopted by the utility companies 

2. Smart meters are adopted by the utility companies but they are not compulsory 

3. The cost of smart meters is too high 

4. Smart meters violate my privacy, sharing information about my consumption habits 

5. The utility company could misuse the data from the smart meters 

6. I don’t know whether I can use smart meters at home 

7. I heard that smart meters can be harmful to health 

8. Other, please specify …………………………………. 

 

H15. How much do you agree with the following statements?21 

ONE answer per row 

 
Strongly 

disagree 
Disagree Agree 

Strongly 

agree 

Don’t 

know 

I am not willing to do anything about the 

environment if others don’t do the same 
1 2 3 4 99 

Environmental impacts are frequently overstated 1 2 3 4 99 

Environmental issues should be dealt with primarily 

by future generations 
1 2 3 4 99 

I am willing to make compromises in my current 

lifestyle for the benefit of the environment 
1 2 3 4 99 

Policies introduced by the government to address 

environmental issues should not cost me extra 

money 

1 2 3 4 99 

Environmental issues will be resolved in any case 

through technological progress 
1 2 3 4 99 

Protecting the environment is a means of 

stimulating economic growth 
1 2 3 4 99 

 

  

                                                      
20 Removed from the survey questionnaire in Norway as not relevant due to factual reasons – the government started a 

campaign for installing smart meters to all households by 2019.  
21 Even the question is in the General section, it is mandatory to be asked only in the countries covered by the “Mobility” 

and “Heating and cooling” sections. In the rest of the countries (Bulgaria, Serbia and the UK) it should be included, if 

possible.  
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B. Reducing the CO2 emissions from the 

industry and the building sector 
      

C. Increasing the share of energy, 

generated by RES  
      

D. Improving the energy efficiency of the 

residential sector 
      

E. Mitigate the effects of the climate 

change 
      

F. Lowering the energy intensity of the 

industry 
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Section S - SOCIAL AND ECONOMIC CHARACTERISTICS 

 

S1. How many women and men at the following ages, live in this household for at least 6 months of the 

year? 

Indicate the number of people in each cell. If there are no people at the given age, write “0”. 

  Up to 18 year old 18-65 year old Above 65 year old 

A. Women _ _ _ _ _ _ 

B. Men _ _ _ _ _ _ 

 

S2. What is the highest level of studies, you have completed? 

Only ONE answer. 

1 No formal education or below primary  

2 Primary education 

3 Secondary and post-secondary non-tertiary education 

4 Tertiary education first stage, i.e. bachelor or master  

5 Tertiary education second stage (PhD) 

9 (Don’t know) 

 

S3. What best describes your current employment status? 

Only ONE answer. 

1 Employed full-time 

2 Employed part-time 

3 Long time not employed (more than 3 months) 

4 Retired / pensioner 

5 Student 

6 Other economically inactive person 

99 (Don’t know) 

 

S4. What year were you born? 

1. ………… 

99. (Don’t know / refuse to answer) 

 

S5. What is your gender? 

Only ONE answer. 

1. Male  

2. Female 

B. Survey questionnaire
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S6. Which phrase describes best the area where you live? 

Only ONE answer. 

1. A big city (more than 0,5 mln people) 

2. The suburbs or outskirts of a big city 

3. A town or a small city 

4. A country village 

5. A farm or home in the countryside 

6. (Don’t know) 

 

S7. Has your household or any member of it received any financial aid from a public institution, which 

has helped you to pay your energy bills in the last 12 months (incl. so called social tariffs)? 

Only ONE answer. 

1. Yes -> for Ukraine ONLY: continue with the NEXT question 

2. No -> for Ukraine ONLY: Skip the next question 

 

Question to be asked ONLY in Ukraine 

S7UA. What type of energy supplies are covered by the financial aid, received by you? 

Tick all that apply 

1. Gas supply 

2. Electricity supply 

3. Heat supply 

4. Water supply 

5. Other (please specify) …………………………………. 

 

S8. Which of the descriptions bellow comes closest to how you feel about your household’s income 

nowadays? 

Only ONE answer. 

1. Living comfortably on present income 

2. Coping on present income 

3. Finding it difficult on present income 

4. Finding it very difficult on present income 

99. (Don’t know) 

 

Instruction to the survey company: You can remain only one of the columns below (“per month” or “per 

year”) if the people in the country calculate their income correspondingly.  

S9. What was the average total monthly income of your household, after tax and compulsory deductions, 

from all sources, over the last 12 months? If you don't know the exact figure, please give an estimate. 

Please, tick only ONE answer.  

 Per month Per year 
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1 Up to …. [national currency]42 Up to …. [national currency] 

2 … … 

3 … … 

4 … … 

5 … … 

6 … … 

7 … … 

8 … … 

9 … … 

10 Over … [national currency] Over … [national currency] 

98 Refused to answer 

99 (Don’t know) 

 

 

Conclusion 

 

 

 

 

                                                      
42 Deciles of the income as given by the national statistics 
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